
70! (JUML
IBM DEPARTMENT OF EDUCATION

Customer Adminis t ra t ive Program - Endicot t , New York
Type 701 Computat ion Seminar - Class No. 941

May 3 to 6 , 1954

Adams, Charles (Dr.)
Massachuset ts Inst i tute of Technology-Project High

Amaya, Leland H. , Mathematical Engineer
Lockheed Aircraf t Corporat ion

Amdahl , G. M.
IBM Corporat ion

Armer, Paul , Chief , Numerical Analysis Department
The Rand Corporat ion

Backus, John W. ,
IBM Corporat ion

Beckman, Frank
IBM Corporat ion

Blum, Dorothy T , (Mrs.) , Technical Consul tant
Nat ional Securi ty Agency

Carlson, Bengt , Group Leader
Universi ty of Cal i fornia , Los Alamos Scient i f ic Lab

Chancel lor , Justus (III)
IBM Corporat ion

Crossman, Stuar t L. , Head, Machine Computat ion Lab.
United Aircraf t Corporat ion

DeCarlo, Charles R. ,
IBM Corporat ion

Dobrusky, Wil l iam B. , Computing Engineer
Douglas Aircraf t Co. , Inc.

Fagg, Peter , Analyst - 701 Programmer
National Securi ty Agency

Fernbach, Sidney, Physicis t
Universi ty of Cal i fornia , Radiat ion Laboratory

Furth, Donald H. , Computing Analyst
Douglas Aircraf t Co. , Inc.

Griff i th , John E. , Engineer
Universi ty of Cal i fornia

Grosch, Herbert R. J . , Manager - Numerical Analysis
General Electr ic Company

Hart , Donald E. , Supervisor , Special Problems Dept .
Research Laborator ies Div. , GMC

Heising, W. P .
IBM Corporat ion

Horner , John T. , Senior Project Engineer
General Motors Corporat ion, All ison Divis ion

Hughes, John B. , Unit Engineer
General Electr ic Company

Johnson, Richard L , Computing Engineer
Douglas Aircraf t Co. , Inc.

Johnson, W. H.
IBM Corporat ion

Boston, Mass.

Bur bank, Cal i f .

Poughkeepsie , N Y.

Santa Monica, Cal i f .

Poughkeepsie , N. Y.

New York, N. Y.

Washington, D. C.

Los Alamos, N, M.

Endicot t , N. Y.

E. Hartford, Conn.

New York, N. Y.

El Segundo, Cal i f .

Washington, D. C.

Livermore, Cal i f .

Santa Monica, Cal i f .

Livermore, Cal i f .

Cincinnat i , O.

Detroi t , Mich.

Washington, D. C.

Indianapol is , Ind.

Cincinnat i , O.

El Segundo, Cal i f .

New York, N. Y.

Class No. 941 - Page 2 REVISED

Kogbet l iantz , E. G. , Applied Science Department
IBM Corporat ion

Kolsky, Harwood G. , Assoc. Group Leader
Los Alamos# Scient i f ic Laboratory

Ligget t , I . C. , Product Planning
IBM Corporat ion

Lowe, John R. , Chief Computing Engineer
Douglas Aircraf t Co. , Inc.

Madden, John D. , Associate Mathematician
The Rand Corporat ion

Malone, Fred C. , Assis tant Design Special is t
The Glenn L. Mart in Company

McClel land, Wil l iam F. ,
IBM Corporat ion

Meyer , Warren E. , Aerophysics Engineer
Consol idated Vultee Aircraf t Corporat ion

Oldfield, Bruce G. , Mathematician
USNOTS Math Divis ion

Owen, Frank T. , (Lt .)
USN Aviat ion Supply Off ice

Pendery, D. W.
IBM Corporat ion

Porter , Randal l E. , Senior Group Engineer
Boeing Airplane Company

Ramshaw, Walter A. , Supervisor , Analyt ical Operat ions
United Aircraf t Corporat ion

Rochester , Nathaniel
IBM Corporat ion

Shuman, Frederick G. , Research Meterologis t
Joint Numerical Weather Pred. Unit (Pr inceton U.)

S imonet , Wil l iam P. , Tabulat ing Analyst
Lockheed Aircraf t Corporat ion

Smagorinsky, Joseph, Meterologis t
Numerical Weather Predict ion Unit

Stockman, John F. , Associate Re search Engineer
Boeing Airplane Company

Strong, Jack A. , Supervisor , IBM Computing Group
North American Aviat ion, Inc.

Sweeney, Dura W. , Assis tant Group Leader
Universi ty of Cal i fornia Los Alamost Scient i f ic Lab.

Ti l l i t t , Harley E. , Head Computing Branch
USNOTS Math Divis ion

Utman, Richard E. (Lt .) Off icer in Charge
USN Aviat ion Supply Off ice

Voorhees, Edward A. , (Jr .) , Staff Member
Universi ty of Cal i fornia

Wagner , Francis V. , Engineer ing Computing Coordinator
North American Aviat ion, Inc.

Walters , L.
IBM Corporat ion

Wolanski , Henry S. , Aerophysics Group Engineer
Consol idated Vultee Aircraf t Corporat ion

(49)

New York, N. Y.

Los Alamos, N. M.

Poughkeepsie , N. Y.

Santa Monica, Cal i f .

Santa Monica, Cal i f .

Bal t imore, Md.

Santa Monica, Cal i f .

Fort Worth, Tex.

China Lake, Cal i f .

Phi ladelphia , Pa.

Los Angeles , Cal i f .

Seat t le , Wash.

E„ Hartford, Conn.

Poughkeepsie , N. Y.

Pr inceton, N. J .

Burbank, Cal i f .

Washington, D. C.

Seat t le , Wash,

Los Angeles , Cal i f .

Los Alamos, N. M.

China Lake, Cal i f .

Phi ladelphia , Pa.

Los Alamos, N. M.

Los Angeles , Cal i f .

Poughkeepsie , N. Y.

Fort Worth, Tex.

Class No 941 - Page 3 REVISED

IBM Representat ives
C, C. Hurd - New York
G. T. Hunter - New York
J . C McPherson - New York (Monday)
G. W. Petr ie III - Washington
W. J . Eckert - Watson Laboratory
D. Mace - Watson Laboratory
L. H. Thomas - Watson Laboratory

IBM DEPARTMENT OF EDUCATION
Customer Administrative School - Class No. 941

May 3 to 6, 1954

PICTURE IDENTIFICATION

ROW I ROW II

1. L. S. Crandall 1. W. C. Davison
2. S. Crossman ' 2. W. F. McClelland
3. H. R. J. Grosch 3. P. Fagg
4. D. Blum 4. w. P. Simonet
5. E. G. Kogbetliantz 5. H. S. Wolanski
6. L. H. Amaya 6. G. M. Amdahl
7. R. E. Porter 7. H. Tillitt
8. F. C Malone 8. D. W. Pendery
9. G. T. Hunter 9. S. Fernbach

10. L. Walters

ROW III ROW IV

1. J. Backus 1. J. C„ McPherson
2. D. H. Furth 2. W. L. Williams
3. W. B. Dobrusky 3. B. Oldfield
4. J. T. Horner 4. J. Griffith
5. D. E. Hart 5. G. W. Petrie
6. H. G. Kolsky 6. W. A. Ramshaw
7. F. G. Shuman 7. J. B. Hughes
8. J. F. Stockman 8. J. Chancellor
9. B. Carlson 9. R. L. Johnson

10. J. D. Madden 10. D. W. Sweeney
11. I. C. Liggett 11. P. Arme r
12... J. A. Strong

FIRST PRINTING

IBM DEPARTMENT OF EDUCATION
Customer Administrat ive Program - Endicott , New York

Type 701 Computat ion Seminar - Class No. 941
May 3 to 6 , 19 54

Amaya, Leland H. , Mathematical Engineer Burbank, Calif
Lockheed Aircraft Corporat ion

Amdahl, T. W. Poughkeepsie , N. Y.
IBM Corporat ion

Armer, Paul , Chief , Numerical Analysis Department Santa Monica, Calif .
The Rand Corporat ion

Backus, John W. Poughkeepsie, N. Y.
IBM Corporat ion

Beckman, Frank New York, N. Y.
IBM Corporat ion

Blum, Dorothy T. , (Mrs.) , Technical Consultant Washington, D. C.
National Securi ty Agency

Carlson, Bengt, Group Leader Los Alamos , N. M.
Universi ty of California

Crossman, Stuart E. Hartford, Conn.
United Aircraft Corporat ion

DeCarlo, Charles R. New York, N. Y.
IBM Corporat ion

Dobrusky, Will iam B. , Computing Engineer ElSegundo, Calif .
Douglas Aircraft

Fagg, Peter , Analyst - 701 Programmer Washington, D. C.
National Securi ty Agency

Fernbach, Sidney, Physicist Livermore , Calif .
Universi ty of California

Furth, Donald H. , Computing Analyst Santa Monica, Calif .
Douglas Aircraft

Griff i th, John E. , Engineer Livermore, Calif .
Universi ty of California

Grosch, Herbert R. J . , Manager - Numerical Analysis Cincinnati , O.
General Electr ic Company

Hart , Donald E. , Supervisor, Special Problems Department Detroi t , Mich.
Research Laboratories Division

Heising, W. P. Washington, D. C.
IBM Corporat ion

Horner, John T. , Senior Project Engineer Indianapolis , Ind.
General Motors Corporat ion

Hughes, John B. , Unit Engineer Cincinnati , O.
General Electr ic Company

Johnson, Richard L. , Computing Engineer El Segundo , Calif .
Douglas Aircraft

Johnson, W. H. New York, N. Y.
IBM Corporat ion

Kogbetl ientz, E. G. , Applied Science Department New York, N. Y.
IBM Corporat ion

t

t

Class No. 941 - Page 2

Kolsky, Harwood G. , (Dr.), Assoc. Group Leader
Los Alamos Scientific Laboratory-

Lowe, John R. , Chief Computing Engineer
Douglas Aircraft

Madden, John D. , Associate Mathematician
The Rand Corporation

Malone, Fred C. , Assistant Design Specialist
The Glenn L. Martin Company

Mason, D. R. , Applied Science Department
IBM Corporation

McClelland, William F.
IBM Corporation

Meyer, Warren E„ , Aerophysics Engineer
Consolidated Vultee Aircraft Corporation

Oldfield, Bruce G. , Mathematician
USNOTS Math Division

Owen, W. , (Lt„),
USN Aviation Supply Office

Pendery, G. W.
IBM Corporation

Porter, Randall E. , Senior Group Engineer
Boeing Airplane Company

Ram.sh.aw, Walter A.
United Aircraft Corporation

Rochester, Nathaniel
IBM Corporation

Shuman, Frederick G. , Research Meterologist
Joint Numerical Weather Prediction Unit

Simonet, William P. , Tabulating Analyst
Lockheed Aircraft Corporation

Smagorinsky, Joseph, Meteorologist
Numerical Weather Prediction Unit

Stockman, John F. , Associate Research Engineer
Boeing Airplane Company

Strong, Jack A, , Supervisor, IBM Computing Group
North American Aviation, Inc.

Sweeney, Dura W. , Assistant Group Leader
University of California

Tillittj, Harley E. , Head Computing Branch
USNOTS Math Division

Utman, R. E. (Lt.)
USN Aviation Supply Office

Voorhees, Edward A. , (Jr.), Staff Member
University of California

Wagner, Francis V. , Engineering Computing Coordinator
North American Aviation, Inc.

Walters, L.
IBM Corporation

Wolanski, Henry S. , Aerophysics Group Engineer
Consolidated Vultee Aircraft Corporation

First Printing

Los Alamos, N. M.

Santa Monica, Calif.

Santa Monica, Calif.

Baltimore, Md.

New York, N. Y.

Santa Monica, Calif.

Fort Worth, Tex.

China Lake, Calif.

Philadelphia, Pa.

Los Angeles, Calif.

Seattle, Wash.

E. Hartford, Conn.

Poughkeepsie, N. Y.

Princeton, N. J.

Burbank, Calif.

Washington, D. C.

Seattle, Wash.

Los Angeles, Calif.

Los Alamos, N. M.

China Lake, Calif.

Philadelphia, Pa.

Los Alamos, N. M.

Los Angeles, Calif.

Poughkeepsie, N. Y.

Fort Worth, Tex.

(47)

Class No. 941 - Page 3 First Print ing

IBM Representat ives
C. C, Hurd - New York
G. T. Hunter - New York
J . C. McPherson - New York (Monday)
G. W. Petr ie III - Washington
W. J . Eckert - Watson Laboratory
R. Seeber - Watson Laboratory
L. H. Thomas - Watson Laboratory

First Printing
IBM DEPARTMENT OF EDUCATION

Customer Administrative Program - Endicott, New York
Local Government - Class No. 940

May 3 to 7, 1954

Boyle, Francis X. , Analyst
City of New York, Fire Department

Buckley, Romanus J. , Deputy Revenue Commissioner
City of Philadelphia

Collette, Joe G. , Chief Accounting Officer
City of Winston-Salem

Coons, Aubrey, Commissioner of Finance
City of Poughkeepsie

Cronan, F. L. , Controller
City of New Haven

Ermentrout., Donald, Chief Clerk
Berks County Commissioners

Hearn, James J., Deputy Revenue Commissioner
City of Philadelphia

Hickey, Paul, Assistant Commissioner of Finance
The Corporation of the City of Hamilton

Home, Archie J„ , Assessor, Board of Assessors
City of Worcester

Howe, Raymond, Assistant Budget Dir. ,
County of Ulster

Kelly, Francis J. , Financial Consultant to City Controller
City of New Haven

McLernon, Joseph F. , City Controller
City of Bethlehem

Merklein, Carl J. , County Auditor
County of Onondaga

Myers, Donald A. , Assistant Treasurer
Prince George's County

O'Connor, Leo T. , Deputy County Treasurer
County of Onondaga

Payrow, H. Gordon (Jr.), Councilman
City of Bethlehem

Regan, Daniel, Supervisor, Tabulating Division, Treasury Dept
The Corporation of the City of Hamilton

Smith, Ray B. , First Assistant County Auditor
Dallas County Auditor

Tlevi, Aloysius F. , Captain, Central Records Division
City of Philadelphia, Police, Central Records Div.

Trimmer, Albert J. , Inspector, Cen. Records & Communication Div.
City of Philadelphia, Police

Zwicker, Lester, Analyst
City of New York, Fire Department

(2 1)
IBM Representative s
G. I. Cargin - Endicott

New York, N. Y.

Philadelphia, Pa.

Winston-Salem, N. C.

Poughkeepsie, N. Y.

New Haven, Conn.

Reading, Pa.

Philadelphia, Pa.

Hamilton, Ont.

Worcester, Mass.

Kingston, N. Y.

New Haven, Conn.

Bethlehem, Pa.

Syracuse, N. Y.

Upper Marlboro, Md.

Syracuse, N. Y.

Bethlehem, Pa.

Hamilton, Ont.

Dallas, Tex.

Philadelphia, Pa.

Philadelphia, Pa.

New York, N. Y.

IBM CUSTOMER ADMINISTRATIVE SCHOOL

Announcements

Identification Badges
It is asked that you wear the identification badge furnished you as i t will facil i tate gett ing
acquainted with other members of your class. One of the values to be derived from the
Customer Administrative School is the association with representatives of other companies
with whom you can discuss subjects of mutual interest .

Class List
Enclosed is a preliminary l ist of the members of your class. I t is suggested that you bring
this with you on Monday for use during the opening session.

Recreation
The enclosed IBM Country Club guest card enti t les the holder to use of al l recreational
facil i t ies at the Country Club without charge.

Mail
Mail addressed to our guests c/o Customer Administrative School or c/o IBM Homestead,
Endicott , will be delivered to the school and distributed at recess and lunch periods.

Mail addressed to the IBM Homestead, Johnson City, will be delivered to the Homestead
bind placed in the rooms. Outgoing mail at the Homestead should be dropped in slot of the
office door.

Transportation
You will have an opportunity to consult with our transportation representative on Monday
concerning return transportation and/or hotel reservations. If you have any government
transportation orders or return tickets^ i t is suggested that you have them with you at that
t ime.

Laundry, Pressing and Cleaning
Three days are required for laundry service. Bag and sl ips are in room closet . Please
record name and room number on sl ip. Outgoing laundry should be left in r ight hand closet
in vestibule. Tags for pressing and cleaning are in desk drawer. Outgoing clothing should
be left in right hand closet in the vestibule.

Use Binghamton taxi
Use Johnson City taxi
Use Endicott taxi
Use Endicott taxi
Use Endicott taxi

Taxi Service
The following rates prevail ;

Homestead to Binghamton 1 . 50
Homestead to Johnson City 1 . 00
Homestead to Endicott 1. 50
Endicott to Binghamton 3. 00
Endicott to Johnson City 2. 00

(over)

Long Distance Telephone Calls
• i i

Homestead: A coin-operated telephone is located on the lower f loor of the Homestead for
your convenience. Change may be obtained from the Homestead office. If you use the
telephone on the main f loor, i t is requested that you ask the operator to give you the charge
immediately upon completion of the call in order that you may record i t on the sl ip provided
for you in the telephone booth and sett le with the Homestead office.

School: I t is suggested that you ask the secretary in Room 204 to place the call for you,
advising her whether you want to pay the charge or have the call placed collect .

I t is requested that men wear their coats in the dining room and on the main f loor of the
Homestead.

In order that all may enjoy their visi t and none be offended, we ask observance of a company
rule prohibit ing all intoxicants on IBM property.

.
We respectfully ask you to assist us in complying with a New York State Law which makes
IBM liable for a misdemeanor if guests engage in gambling at the Homestead.

I t is earnestly requested that no gratuit ies be extended to any member of IBM.

The Homestead basement is the shelter area for al l Homestead properties.

3/25/54
#16

DINNER
HONOR ING

CUSTOMER ADMINISTRATIVE CLASS 940
CUSTOMER ADMINISTRATIVE CLASS 941

IBM HOMESTEAD
MAY 6 1954

TABLE NAME TABLE NAME

18 MR F V ADAMS
18 MRS F V ADAMS
15 MR L H AMAYA

2 MR G M AMDAHL
3 MR R W ARMSTRONG

10 MR J W BACKUS
18 MR L G BARNES

5 MR D E BEEMAN
5 MRS D E BEEMAN

16 MR K BJORKMAN
1 1 MRS D T BLUM

3 MR F X BOYLE
16 MR R J BUCKLEY

1 1 MR G I CARGIN
10 MR B CARLSON

6 MR S L CARR
1 MR J CHANCELLOR
6 MR W M CHAUDOIN
1 MR J G COLLETTE

17 MR A E COOPER

1 1 MR W C DAVISON
8 MRS W C DAVISON

15 MR D L DITTBERNER
5 MR W B DOBRUSKY

12 MR W C DOUD
12 MRS W C DOUD

8 MR R F DUNK IN

3RD

14 MRS C H GREENE
10 MR R H GREGG
14 MR J E GRIFFITH

14 MR D E HART
5 MR J J HEARN

15 MR W P HEISING
3 MR H A HENDRICH
3 MRS H A HENDRICH
8 MR P HICKEY
6 MR A J HORNE

16 MR J D HOSIE
14 MR N E HOWARD
18 MR R HOWE

8 MR G T HUNTER
8 MRS G T HUNTER

11 MR C C HURD

3 MR R L JOHNSON

17 MR G F KENNARD
9 MR E G KOGRETLIANTZ
5 MR H G KOLSKY
9 MR J J KRAMER
9 MRS J J KRAMER

12 MR E KYLE

11 MR T V LEARSON
4 MR S L L IDA

1 MR T A ECK
1 MRS T A ECK
5 MR W J ECKERT

17 MR D ERMENTROUT

8 MR S FERNBACH
9 MR T FITZGERALD
4 MR D H FURTH

14 MR C H GREENE

17 MR F C MALONE
12 MR E W MARTIN JR

2 MR K T MC BRIDE
2 MRS K T MC BRIDE
4 MR W F MC CLELLAND

12 MR c J MERKLEIN
7 MR w E MEYER

15 MR D A MYERS

1 MR R H NORD

TABLE NAME TABLE NAME

11 MR L T 0 CONNOR
9 MR 5 G OLDFIELD

18 LT F T OWEN
6 MRS U S OWEN

6 MR D w PENDERY
14 MR G w PETRIE 3RD
15 MR J K PLANCK

7 MR R D PUTTY
7
7

1 2 MR W A RAMSHAW
1 0 MR P A RAUTH JR
1 7 MR W M REEDY

7 MR D REGAN
1 7 MR J A RETKA
1 8 MR D N RORBINS
1 8 MRS D N ROBRINS

4 MR S W ROBERTS
4 MRS s W ROBERTS

1 4 MR L ROBINSON
1 7 MR N ROCHESTER

1 2
18

10 MR F J SCHWARTZ JR
17 MR A G SHI NN

5 MR G D SIMON 3
15 MR W P SI MONET 6
16 MR J SMAGORINSKY 15

4 MR R B SMITH 15
4 MR L H STINSON 10

14 MR J F STOCKMAN 10
5 MR J A STRONG 6
2 MR w C STYSLINGER JR 6
3 MISS I M SVENTEK

16 MISS E B SWANK
8 MR E H SWARTOUT 10

MR D W SWEENEY

MR N TATUSKO
MRS N TATUSKO
MR C L TAYLOR
MRS C L TAYLOR
MR L E TAYLOR
MRS L E TAYLOR
MR J TEMPLETO
MRS J TEMPLETO
MR R A TERBOSS
MRS R A TERBOSS
MR H M THOMAS
MRS H M THOMAS
MR H E T ILLITT
MR A F TREVI
MR A J TRIMMER

LT R E UTMAN

MR A A VAYDA
MR E A VOORHEES

MR F V WAGNER
MRS F WAY
MR J M WICKER
MRS J M WICKER
MR W L WILLI MAS
MRS W L WILLIAMS
MR H S WOLANSKI
MRS H S WOLANSKI

MR L ZWICKER

MAP OF

E N D I C O T T

BROOME COUNTY

N.Y.

*°C"K1 I B M
HOMESTEAD

COUNTRY CLUB

TON
CLUB

WEST
CORNERS

T5TO1

IDDllffiE
insda RANR

ORCHARL TOWN or
VE STAL

KOVTt

IGAR:

HEALTH
CLUB

N JOIE
GOLF

SpaJL<lc f 3 *X4fov. 1̂ 3̂ Jkc3vX

.s^»uM u,»£<e A* <*> ±r"*«»
I ffc*4 <KM 2, M**1 f &faM4 #us&n̂ gẑ zfAj
3 , £>ur~
4_ UAJ> T^-X
1; ** ̂ „ s*"?̂ erfcr"*™*-
z'f ^

tK
'

f, r**** '
/a „ "/i "
//,
'2 ' cJUn^̂ r y— -<3̂

^ >+*
PX- t<r>tyz&?c jz&HAM , yW#*'<**££*>

— J&U4-&?

ar*™^̂ •' "%j2*/ &J
/ — . t *2sS/TL i*s L X /VHP, yC&tW-

m SK0 . <%£&' X, /A ~}
B a-d î ̂ C&3
/>! /*4. £*&&
P

#JAUy- M-jpl,^ ^
W~WJ ,y
ffl&.7 &*> y4*L0T4 &-*

X-cUt, y~Xf- {C&j
Jh^X~ lAj J

~f3vm c/ed(ju*K*> .
ct*/z

•

5/V-U

 ̂ f atC&J)

FAsfiL* (fie-**- & CJf <*&.J

MJF/T

OUyO ̂

' jW'
fsWtf

f̂ i*At((£fŷ <fifi

fô A /ty4jkis (fit fi

SfLjÛ ' (f*f* *3>

C/°~$* gj

/<& ̂2

(fi?S" sn**ix

]77/QtAcAcfiza?, — ££-£d̂ (£-£(fip j

— <Z*Aa>yvOZ. fia4?<£*̂ CXt2 f C(~

- &tsrviA*£ y (/Aŝ / \C (pu+Z&c)

~3 CZnMA. Ĵ ez£- ĵsCA*-1£

$e G sy\L**j(lL2

ZPC $>(? SL*C //*d* .

S*̂ UAâ ; (v fi~sf ^̂ 3 a*t*>atc*-z. fitsi

U* 5>7̂ /efi>7 : *? /3 fiâ **** /£> jtfif. , ŝ Gŝ sJ)
' 3 - C &- /^wj

SK** ' ̂

- tyw fv&fiA ,
-siMAJujlP J f

~ stjZc&*»£ <G <urM*f*c/̂ <ps*<-£•* /C*e3&ucJp ̂ <*-&<jz£pTZZs0<>fi y (3fi

- J -
_ ajAjfalHjiZcj jZa." f&> Zfe /nu*>* /-fepff}

 ̂ 3 /&2<2?>v£-(Pl£&-1

fy, *' X* &"-&*?? r

<r£ /A# (£h(j(>ltm " ~

)

f

/f 'Â n̂ af -TIHx.?̂ fajcc/ur*,' •-&*

(j^tM-)^ /-*- s^- 4*,s^ix)
f * ̂ . C&t̂ -suszty sfzAn̂ t J

5 /y-&tot4-(aa. ajt <X̂ L % ̂ 6yY -^w: JAW*?*

3~f̂ U frta * 2 <r#wb&* X 3 X 56?

- / SSJZ Ŷ /Urfy s*jZ4&?!L f "*& <i£u*u*e. J

3 jUtf* jL V 4> (6*̂ 2 Ŷ̂ -J cr*

/£<*? if* ^ S3

CyUJff £ *̂nt -? -2— ̂ C**

fĥ U± > â xtpp &< 7o " Yp ^ 66$f' ̂ /v0*?*

fujĵ j- Yb

/7&0 yĈ â M Ĵt̂ L syy&X&t?.

wmebx ̂ %? d?ti>pc<5gj ~6u.a<Y (jSJ&a. yb̂ Ŷ)

— £Wi T̂fpfpp f̂up̂ y £St

JjY C0U*n Ĉ<fZ*0- YZ<!n/H fa/P-*-

~~~~ r -



IBM COMPUTATION SEMINAR 

TYPE 701 

May 3-6, 1954 

k'olskij 
V 

Monday 
9:00 - 10:15 

10:15 - 12:00 

1:00 - 3:00 

3:00 - 4:00 

General Opening, Picture, Announcements 

Boeing - "Engineering Computing Considerations" - Porter 
Douglas - Organization of a Computing Group" - Lowe 

Rand - "Organization of a 701 Installation" - Madden 
United Aircraft - "Speedcoding at Work" - Ramshaw 

Discussion 

Tuesday 
9:00 -  12:00 

1.00 - 4:00 

Wednesday 
9:00 - 12:00 

1:00 - 3:00 

3:00 - 4:00 

Thursday 
9:00 -  12:00 

1:00 - 3:00 

3:00 - 4:00 

Friday 

Douglas - "Quick and Double Quick Abstraction" - Dobrusky 
Lockheed - "An IBM Type 701 Matrix Abstraction and its 

Environment" - Amaya 
North American - "Single Address Assembly Program" - Strong 

Inyokern - "Theodolite Data Reduction" - Oldfield 
Inyokern - "Information Searching" - Tillitt 
Convair - "Aerodynamic Calculations" - Meyer 
Los Alamos - "Numerical Solution of Simultaneous 

Differential Equations" - Kolsky 

Los Alamos - "Monte Carlo" - Carlson 
IBM - WHQ - "Diagonalization of Matrices" - Kogbetliantz 

Discussion 

Los Alamos - "Coding and Checking" - Voorhees 
NSA - "Sorting on the 701" - Fagg 

General Electric - "Remote Data Transmission" - G^o^ch l/tl 
Numerical Weather -'Weather Calculations" - Smagorinsky 
IBM - "Weather Calculations" - Heising 

Discussion 

Visit 701 at IBM - New York City (Optional for all) 



- »  

* 

# 

4 

1 .  

2. 

^ 3 ,  

4. 

5. 

6 .  

^ 7. 

8 .  

9. 

^ 1 0 .  

1 1 .  

1 2 .  

^ 13. 

14. 

15. 

1 6 .  

17. 

18. 

19. 

2 0 .  

COMPUTATION SEMINAR - TYPE 701 

TABLE OF CONTENTS 

sjt >}: >Js >[« sjt Jjc 

Douglas - "Organization of a. Computing Group" 

Boeing - "Engineering Computing Considerations" 

United Aircraft - "Speedcoding at Work" 

General Electric - "Remote Data Transmission" 

Rand - "Organization of a 701 Installation" 

Douglas - "Quick and Double Quick Abstraction" 

Lockheed - "An IBM Type 701 Matrix Abstraction 
and its Environment" 

Los Alamos - "Coding and Checking" 

North American - "Single Address Assembly Program" 

Inyokern - "Theodolite Data Reduction" 

Inyokern - "Information Searching" 

Convair - "Aerodynamic Calculations" 

Los Alamos - "Numerical Solution of Simultaneous 
Differential Equations" 

Los Alamos - "Monte Carlo" 

IBM - WHQ - "Diagonalization of Matrices" 

Rand - "Applications of Cathode Ray Tube Read-Out 
Device for 701" 

NSA - "Sorting on the 701" 

Numerical Weather - "Weather Calculations" 
IBM - "Weather Calculations" 

IBM Poughkeepsie - "701A Machine" 
IBM Poughkeepsie - "Programming the Type 701A" 

IBM Corp. - "EDPM - Type 702" 

J. R. Lowe 

R. E. Porter 

W. A. Ramshaw 
ffu. 

.-5-.—Groseh 

J. D. Madden 

W. B. Dobrusky 

L. H. Amaya 

E. A. Voorhees, Jr. 

J. A. Strong 

B. G. Oldfield 

H. E. Tillitt 

W. E. Meyer 

H. G. Kolsky 

B. Carlson 

E. G. Kogbetlientz 

P. Armer 

P. Fagg 

J. Smagorinsky 
W. P. Heising 

G. M. Amdahl 
J. Backus 



April 29, 1954 00//0i0S%^-

THE DOMESTICATION OF A 701 

John R. Lowe, Douglas Aircraft Company, Inc. 
Santa Monica Division 

INTRODUCTION 
The 701 is a computing instrument of enormous power, but efficiently-
applying this power to the problems of a large engineering department 
is not simple. Such matters as how much computing time is justified 
by certain Jobs, co-ordination of the computing efforts of the various 
engineering groups, efficient coding techniques, and smooth flow of 
information between the engineers and the computing facility must be 
considered. Perhaps most important of all, engineering methods must 
be re-examined in the light of this new computing power. 

This paper is largely an outline of methods found useful by Douglas, 
Santa Monica. No pretense is made that these methods are "best". They 
have been evolving for over two years and are still being improved. 

ORGANIZATION 
The steps in solving a problem on a digital computer (and, with some 
changes of terminology, on any computer) are: 

(1) State the physical problem 
( 2 )  T r a n s l a t e  t o  a  m a t h e m a t i c a l  m o d e l  
( 3 )  T r a n s l a t e  t o  a  n u m e r i c a l  f o r m  
(h) Translate to a machine code 
( 5 )  C o m p u t e  
( 6 )  I n t e r p r e t  t h e  r e s u l t s  I n  t e r m s  o f  ( l ) .  

The Computing Engineering Section operates as a service function for 
the rest of the engineering department. As such, it assumes full 
responsibility for steps (3), (4), and (5) and often assists in steps 
( 2 )  a n d  ( 6 ) .  

-1-



The Section is divided into a 701 coding group of twenty-six people, 
a 701 operating group of three people, an analog group, a standard 
punched-card equipment group, and a key-punch group. Most of the 
people in the coding and operating groups have a Bachelor' s or Master' s 
degree in mathematics or physics. 

The coding group has a leader who schedules and assigns work, and who 
is responsible for its over-all efficiencyi Under him are three co
ordinators. Each job to be coded is assigned to a co-ordinator and 
to a less experienced man who does most of the actual work. The co
ordinator is responsible for the choice of optimum techniques and for 
the technical integrity of the job. 

HANDLING NEW PROBLEMS 
An engineer wishing to have computations performed normally contacts 
the leader of the coding group and explains his problem. A co-ordina-
tor and coder are assigned to the job. Their first efforts are to 
explore the job to determine its proper scope and decide whether or not 
existing programs can handle it, wholly or in part. For instance, it 
may be discovered that Computing should properly do considerably more 
or considerably less of the total job than originally proposed by the 
engineer, or that some existing program, with slight modification, can 
solve the problem. Also, it is decided whether the job can best be 
done on the 701, standard punched-card equipment, analog computers, or 
on some combination of the three. 

This analysis of a problem often reveals that its mathematical statement 
can be simplified. Manipulations of arrays of numbers are often best 
handled as matrix operations. The use of complex numbers may yield a 
simpler and clearer form than other representations. Another simplifi
cation may be to integrate numerically rather than to evaluate the 
analytic expression for an integral. 

A complete and exact statement of the problem is developed on vellum so 
that all interested persons can have bluelined copies. Fran this vellum 

-2-



statement a computational statement is prepared, showing sequence 
of calculations, numerical techniques to "be used, checks to be made, 
ranges of variables, input and output. Actual flow charts and coding 
are prepared from this computational statement. 

The coder prepares test cases and checks out the job on the machine. 

He also prepares a complete write-up of the Job, including operating 
instructions and loading vellums, and turns it over to the operating 
group for production runs. Thereafter the engineer deals with the 
operating group. 

CODING METHODS 

The salient feature of the coding system is the facility it provides 
for handling a problem in logical blocks, or regions. Normally, a 
master flow chart is prepared from the computational statement, each 
block representing a region. This process can be iterated, the blocks 
of the master flow chart being separately charted and each block again 
becoming a region, etc. 

A specification is written for each region to be coded. From these 
specifications, the actual coding can be prepared and checked out by 
inexperienced people working independently of each other and requiring 
no knowledge of the problem as a whole. 

These regions operate essentially as subroutines. They are controlled 
by a master routine which does no computation but contains the logic 
of the problem. Again, there may be a hierarchy of such master routines. 

There are several advantages to this block system. It permits attack
ing a problem in its details rather than in its dismaying whole. By 
allowing several people to work on the coding at one time, elapsed time 
can be reduced. It minimizes the necessity for checking out large blocks 
of programming. It facilitates changes and permits easy use of i or 
part of one program in another program. 

-3-



DOUGIRS £ 

Three coding systems are being used: actual machine language, a 
floating point abstraction similar to the Los Alamos "Dual", and a 
matrix abstraction. Actual machine language accounts for the largest 
number of jobs and the largest volume of calculation. 

Library subroutines are written on magnetic tape in a form such that 
they can be stored in any portion of memory, the necessary modifica
tions of address parts being accomplished while reading from the tape. 
This tape is normally on unit being removed only for rare jobs re-
Quiring four tape units for data storage. Each time a problem is run, 
the required subroutines are called from the tape. The library pres-
ently contains about 8000 instructions. About five seconds are re
quired to read the entire tape. 

It is felt that standardization of coding methods is very important 
and considerable effort has been expended to insure this. Each coder 
has a copy of the Coding Manual which contains explanations of stan
dard nomenclature and methods, and complete descriptions of all 
library subroutines. 

Loading vellums are prepared by the coder for most programs. These 
are used by the engineers to submit data for production runs. Beside 
each number space, the identification of the quantity in the engineer's 
language and its storage location in the machine are shown. Positions 
of decimal points are carefully indicated. At the top of each sheet, 
the number of the input routine being used and the program number are 
printed. Prom these vellums the engineers have bluelines made as re
quired. When the data for a particular run have been entered, the 
sheets go to the operating group and then to key-punch, which can punch 
and verify cards without further instructions. From key-punch the sheets 
and cards go back to the operating group which again has all the in
formation necessary for running the job. 

Printed output is made easy to read and use. Careful attention is 
given to the printing format, including decimal points and alphabetic 



OOUGLRS 

headings. The form of the output is often a compromise "between 
these considerations and economy of machine time. 

PARTICULAR PROGRAMS 

1. Assembly Program. Electrostatic storage is divided into three 
sections: instructions, data storage, and temporary storage. Instruc
tions are introduced in the form of symbolic decimal cards in sequence 
by location. These are packed into the lower section of memory, trans
lated from symbolic to actual form and assembled. The program computes 
the origins of temporary storage and data storage. Both symbolic and 
actual instructions are printed and the actual instructions are punched, 
k6 per card. In addition, the symbolic instructions are punched in 
binary, 15 per card. The symbolic binary deck can be combined with 
decimal symbolic changes as input to a re-assembly program for rapid 
modification of an assembly. 

The fact that it is not necessary to specify origins to the assembly 
program makes it possible to assemble a block of instructions, or 
region, in various ways. For example, a region can be assembled with 
a few simple orders to test it, and later with other regions to form 
a complete program. Also, a region coded for one job can be lifted 
bodily and used in another job. 

It is possible to specify origins for the three sections of storage, 
and this is done where it is convenient or necessary to have only a 
part of the total program in electrostatic storage at one time. In 
this case, each block, while assembled separately, must refer to the 
same origins of temporary and data storage. 

2. Matrix Abstraction. This program operates in the single address 
mode and provides 32 operations. All numbers are represented in single 
precision floating point form. Artificial storage units for matrices 
are established on tapes and drums. A tape may store any number of 
matrices up to its full capacity, but, of course, the normal rules of 
tape operation must be observed by the coder. The first word of every 

-5-



matrix gives its number of rows and columns, this information being 
read in as part of a data matrix or computed as part of a result. The 
coding is independent of the sizes and shapes of the matrices, subject 
to the rules of matrix algebra and a limit of 625 elements in one matrix. 
The use of check sums is optional. To multiply two 25x25 matrices or to 
invert a 25x25 matrix takes about one minute. 

Considerable care has been taken in this program to preserve accuracy in 
intermediate calculations. For example, in multiplying two matrices 
the positive and negative terms of a summation are summed separately, 
double precision, and then the two halves added and rounded to single 
precision form. 

The matrix abstraction has been found useful for small matrix jobs and 
for exploratory calculations. However, it is usually considered to be 
too slow for extensive production use. As the library of matrix sub
routines grows and as the coders become more familiar with them, the 
matrix abstraction is being used less and less. 

3. Matrix Subroutines. A number of these are available, many in both 
fixed and floating point form, so that the programmer can take advan
tage of the peculiarities of his job. Of particular interest are: 

a) Gauss-Seidel iteration of a quasi-diagonal matrix which mini
mizes storage requirements. In one case, this routine obtained 
a solution to a system of 100 equations in about five minutes. 

b) Matrices containing mostly zero elements occur extensively in 
some types of engineering problems. Here it i6 economical of 
storage and time to store only non-zero elements together with 
their row-column identifications. A number of "addressed 
element" programs are available to handle these matrices. In 
one class of these programs the operands are on two tapes and 
the result is written on a third tape. In this manner very 
large matrices can be easily manipulated. 

c) A routine which multiplies a rectangular matrix stored on a 
drum by a vector stored in electrostatic memory, all opera
tions being done between drum copies. 

-6-



4. Input Routines. A general input subroutine which allows the 
card to be divided into arbitrary fields of between one and eleven 
digits, the limit being 72 one-digit fields. The fields are convert
ed as integers and stored in consecutive locations. In all practical 
cases, sufficient time for scaling and relocation is available between 
cards. 

5. Output Routines. 
a) A roving point print subroutine which prints six 11-decimal 

digit numbers on a line. The calling sequence of the 
subroutine specifies the locations of the binary points in 
the numbers to be printed, and the subroutine determines the 
location of the decimal point, properly positions it in the 
card image and prints it in the proper place within the decimal 
number. 

b) A general print subroutine which is similar to the general 
input subroutine. It operates on pre-scaled binary numbers 
stored in consecutive full or half words and forms a card 
image containing an arbitrary number of fields of from one 
to eleven decimal digits. Again the limit is J2 one-digit 
fields. Normally, a printer board which emits the decimal 
points must be wired for each application of this subroutine. 

6. Memory Print-Out Program. Ibis program takes advantage of the fact 
that all programs begin with standard instructions in memory locations 
zero through seven. It first dumps the contents of memory on a drum, 
prints out the contents, and finally restores memory to its original 
state. Instructions and numbers are printed in their proper form, 
four full words per line. Any line containing all zeros or all ones 
is omitted. 

7» One Card Programs. Several one card utility programs are available: 
a) A program to read instructions punched in either octal or 

binary, together with their locations, and store them in 
the proper locations. This is useful for modifying programs. 



DOUGLRS 

b) A memory to tape or drum program which writes the contents of 
memory on any tape or drum, preceding it with self-load in
structions. If tape or drum one is used, memory can be re
stored to its original condition by pressing the load button, 

c) A first difference memory print-out program which compares an 
executed program with the original binary deck and stores 
zeros in place of those instructions which have not changed. 
The memory print-out program is then used to print the in
structions which have been changed. 

8. Plotting Program. Computed ordinates can be punched in binary, 120 
per card. After a run through a collator and a reproducer, these summary 
cards are plotted on a hOT at 150 points per minute. Up to five curves, 
with different symbols for each curve, can be plotted on one page. 

FUTURE PROGRESS 
Further contributions by computing to the engineering effort depend on 
three factors: better machines, better computing methods, and engineering 
techniques which better utilize the new power of computation. 

The 701 would be much more useful for processing data if the entry and 
output of data could be speeded up. As one step in this direction, 
Douglas is planning to build a device for translating FWM magnetic telem

etry tape into 701 tape. 

Progress in computing methods seems to lie in the direction of mechanizing 
the coding. This Bhould reduce errors, speed up programming, and con
serve the time of valuable people and machines. 

Development of better engineering techniques can take several directions. 
Problems formerly handled piecemeal now can be more efficiently handled 

as one job. Since programming is slow and costly, it is advantageous to 
generalize problems so that one program can handle several physical prob
lems. Problems formerly solved by extensive testing, by making too many 
simplifying assumptions, or by "educated guessing" should be examined to 



OOUO  ̂

see if computing can help. Methods which were so slow that they 
could be applied only to analysis of final designs can now be 
used at early stages to help develop the design. 

-9-



ENGINEERING COMPUTING CONSIDERATIONS 

By Randall E. Porter 

C A I C  

C H E C K  

A R r D 

I- • 
R E V I S E D  D A T E  

ENGINEERING COMPUTING CONSIDERATIONS 

BOEING AIRPLANE COMPANY 
S E A T T L E  H .  W A S H I N G T O N  

R A G E  

> 7 3  ; ;  R  

29-1013-0(B) 



ENGINEERING COMPUTING CONS3DEHATIONS 

ABSTRACT 

The barriers between engineers with problems to solve and mathema

ticians with large scale computing machines at their disposal are 

reviewed and suggestions made to increase the teamwork between these 

t roups necessary to solve existing engineering problems. The 

minimization of restrictive machine program planning rales and of 

problem solution set up time achieved through the use of a "free 

machine" is discussed. A method used to keep the benefits of an 

Internally stored utility program library without sacrificing machine 

freedom is outlined. Specifications for general purpose or utility 

type programs are stated together with suggested ways of implementing 

them. The role of the machine assembly pro,-ram and its assistance to 

the problem planner is explained. The importance of "the program write 

up in the dissemination of pertinent program information is emphasized, 

and a typical program write up included. Acknowledgement is made of 

the assistance rendered by others to the Boeing Engineering Computing 

Facility in its installation and successful operation of the IBM 

Model 701 Electronic Data Processing Machine as a powerful new engi

neering tool. 

CA C 
i H E C f  

aw 
A  • :  

. i « 
29-1013-0(B) 

Porter 3-51* d a t f  

ENGINEERING COMPUTING CONSIDERATIONS 

B O E I N G  A I R P L A N E  C O M P A N Y  
SfATTLS 14 W A S H 'N G tC n 

PAGE 



J *  

ENGINEERING COMPUTING CONSIDERATIONS 

I. Computing Considerations 

The problems facing engineering organizations today encompass such a 
variety of physical problems as to make impractical if not impossible 
the formation of a group of mathematical and engineering specialists 
capable, by themselves, of reducing the solutions to all problems to 
forms suitable for numerical solution. The engineer has in the past 
used his ingenuity, engineering experience, and what might be termed 
"garden variety" mathematics to attack his everyday problems. Such 
tools have repeatedly proven to be the means by which engineering 
problems, impractical to theoretically formulate, have been solved. 
He has developed the ability to make accurate simplifying assumptions 
based on experience to account for complex interelationships existing 
in the physical system being analyzed. The engineer's present abilitj 
and experience cannot be replaced try the mere substitution of complec 
mathematical equations, even though digital computing machines can 
now accomplish the solution of such equations in reasonable lengths 
of time. Instead, his abilities must be augmented by placing at his^ 
disposal an engineering tool limited only by his own ability to utilize 
it; the high speed stored program digital computing machine. A machine 
of this type, such as the IBM Model 701, with its ability to produce 
the proper combination of both logical and arithmetic results is 
capable of becoming a more integral part of engineering analysis than 
was possible for either the digital or analog computers which pre
ceded it. Whether or not this capability is realized depends to a 
large extent upon the mutual education of both engineers and mathe
maticians. 

The IBM Model 701 must become an easily used and trusted tool before 
an engineer can be expected to fully exploit its capabilities in the 
solution of his problems. The average engineer feels, and not without 
justification, that if he goes into all the details of his problem a 
sufficient number of times to fix them in the mind of a machine pro
grammer unfamiliar with the engineering physics and policies involved, 
more time would be expended than is available for the splution of 
the problem. He, therefore, only considers using high speed computing 
assistance when faced with analyses which require a volume of 
arithmetic computation beyond the scope of manual computation methods. 
Many an engineer has been initially oversold by the optomistic claims 
of mathematicians who were still "starry eyed" over the capabilities 
of their latest acquisition in computing machines, only to be badly 

\  R E V I S E D  .  D A T E  

ENGINEERING COMPUTING CONSIDERATIONS 

B O E I N G  A I R P L A N E  C O M P A N Y  
SEATTLE 14 WASHINGTON 1 

i  ac ,  -T •  « :> 

29-1013-0(B) 



disillusioned by the elapsed time required for his problem's solution. 
He overlooks the fact that he carved a piece from the middle of his 
real problem and passed this piece together with a minimum of support
ing explanation along to the mathematician. He then expected this 
mathematician to come up with a comprehensive set of typical solutions 
among which he hoped to find part of the solution to his real problem 
by the exercise of his ingenuity and engineering experience. 

The mathematician, on the other hand, tends to make solution method 
refinement and machine efficiency his primary goals instead of the 
minimization of the overall solution time required for the problem 
submitted to him. These are natural impulses arising from academic 
training in the first case and dictated by necessity in the latter 
case when using machines of limited storage capacity and cyclic speed. 
The mathematician familiar with present day engineering computations 
is also often led by the circumstantial evidence of impractical para
meter ranges, incompletely defined problems, poorly arranged initial 
data, and mathematically inelegant methods of solution to believe that 
the engineer doesn't know his own problem. Both the engineer and the 
mathematician need to revise their present concepts regarding the 
proper place in engineering analyses which can be most efficiently 
filled by the high speed digital computing machine. 

The engineer must learn to translate his present engineering methods 
into mathematical and logical terms. He must learn to define in a 
machine program the manner in which he now examines numerical results 
and makes decisions based on his experience. He must exercise his 
foresight and provide in advance for contingencies which may arise 
during the numerical solution of his problem rather than dealing with 
each eventuality as it arises. 

The mathematician with high speed digital computing equipment at his 
disposal must learn to pool his machine "know how" with the engineer's 
experience. He must develop methods which use the computing machine 
itself to handle as many of the clerical details of problems as 
possible. He must use methods of analysis which are easily understood 
by the engineer who is, after all, the one held responsible for the 
validity of the solution. 

It is worthy of note that too much publicity of the "giant brain" 
variety, while excellent from the viewpoint of the lay person who does 
not have to deal with such "beasts," is actually a deterring factor 
to the engineer unfamiliar with computing machinery. He often resents 
the implication that a machine can do any but the most slavish type 
of arithmetical analysis better than he. He is sometimes fearful of 
committing his problem to the questionable mercy of a mechanical 
monster because of the rather lurid results described in the latest 

c a i c  ; Porter _ R£V,SE0_ .DATE 

C H E C K  H  4  "  ENGINEERING COMPUTING CONSIDERATIONS 

B O E I N G  A I R P L A N E  C O M P A N Y  
P A G E  

S E A T T L E  1 4  W A S H I N G T O N  2 
' • A ' "  » 1 3  * • >  R  >  

29-1013-0(B) 



science fiction magazine. An engineer may subconsciously hesitate to 
use machine assistance because the incredible computing speed adver
tised by machine manufacturers might work him out of his ^ob as he 
visualizes it today. While such resentments or fears are never given 
voice, they nevertheless increase the barrier between the engineer 
and his confident use of computing machinery. 

CALC 

CHECK 

AF'F 'D 

Porter* 3-51i  '  REVISED :  DATE 

ENGINEERING COMPUTING CONSIDERATIONS 

B O E I N G  A I R P L A N E  C O M P A N Y  
SEATTLE 14  WASHINGTON 

PAGE 

i rA :  973 0  R3 

29-1013-0(B) 



Ii. The "Free Machine" Concept 

The combining of the engineer's knovrledge of his problem with the 
mathematician's knowledge of numerical analysis methods becomes largely 
a one way street when the engineer must learn machine limitations and 
conventions set up by the mathematician interested solely in promoting * 
machine efficiency. The engineer, whose primary work leaves him little 
tine for learning machine details, especially in the arbitrary conven
tion category-, is not at all impressed with machine efficiency but is 
chiefly concerned with minimizing the total time and effort he must 
spend to solve his problem. He is by nature interested in the 
mechanics of computing devices themselves and will gladly make an 
intelligent effort to understand the physical concepts upon which their 
design was based. Once this is understood, however, he chaffs at 
having to abide by arbitrarily chosen conventions such as a rule which 
denies him the use of a certain portion of the machine's memory 
because someone else has stored some constants there for use at a 
later date, even though some of them may be useful to him in his own 
problem. He dislikes being forced into the rut of someone else's 
thinking on how a computing device with the speed, capacity and versa
tility of the IBM Model 701 should be used. His educational and 
working background have trained him to understand complex mechanisms 
and to adapt them to new uses rather than to accept the original 
designer's ideas as the only applicable ones. He is not, however, a 
complete individualist, since no one is more aware than he that the 
best results are achieved by intelligent compromise among the ideas 
of many competent individuals engaged in the various facets of a major 
problem. Hence he is willing to accept and use those ideas which 
contribute to the solution of his problem without at the same time 
disrupting his own plan or thought pattern for that solution. 

The foregoing considerations coupled with the impracticability of 
obtaining enough machine specialists who are at the same time masters 
of the many engineering sciences involved in aircraft design caused 
the Boeing Engineering Computing Facility to adopt the "free machine" 
concept for the operation of the ISM Model 701 computer. This concept 
is, that at the time a solution to any problem is planned for the 
Model 701, the entire machine is at the disposal of the planner. No 
portion of memory is reserved. He may use any or all of the tapes or 
drums as he pleases. He nay use general purpose programs written by 
others or write his own programs. He may operate the Model 701 himself 
or use the computing facility's operators to run the machine solution 
at his direction. The IBM Model 701 may in fact be used by him in 
any way he chooses subject only to the design Imitations of the 
machine itself. 

The freedom of planning outlined in the preceding paragraph ,1s not to 
be regarded as license. Good and bad computing practices are explained 

c*ic Porter 3-Sh reused ' 1 
DATE 

A  c  r  

ENGINEERING COMPUTING CONSIDERATIONS 

B O E I N G  A I R P L A N E  C O M P A N Y  
S E A T T L E  1 4  W A S H I N G T O N  

PAGE 

'  , 7 - 3  C ' •  

29-1013-0(B) 



to the engineer by the computing facility personnel. He ia urged to 
employ general purpose programs whenever possible to minimize problem 
programming time. He is asked to participate in the selection of and 
specifications for the types of general purpose programs useful in 
the numerical analyses he may encounter in his future work once he 
becomes familiar with the possibilities of the Model 701. He is given 
the assistance of skilled mathematicians and machine programmers when
ever he so requests. They may be em-'loyed as full partners in the 
solution planning or asked onlg uo rill in those portions of the 
machine programming which require specialized detailed skill such as 
the timing of input-output components. Only in the case of obvious 
incompetency would an engineer be denied the right- to use the Model 
701 as he sees fit. 

-T" ~ 
c a i c  Porter 3—r e v i s e d  d a t e  

ENGINEERING COMPUTING CONSIDERATIONS P h e c k :  _  .  ENGINEERING COMPUTING CONSIDERATIONS !  '  i  
^  ;  -

A i  f  C -

ENGINEERING COMPUTING CONSIDERATIONS 

P A G E  ^  

!  '  i  
^  ;  -

A i  f  C -
B O E I N G  A I R P L A N E  C O M P A N Y  

S E A T T L E  1 4  W A S H I N G T O N  

P A G E  ^  

• V  ;  i ;  R  i  
29-1013-0(B) 



III. The Program Library 

A library of macnine programs, especially- those which are general 
purpose in nature, is required to eliminate duplication of effort, 
minimize programming time, reduce the specialized machine knowledge 
needed by an engineer using the machine, decrease time lost because of 
programming errors, simplify program checkout on the machine and 
permit machine participation in the assembly of programs to solve each 
particular problem. The free machine concept precludes setting 
aside any portion of the IBM Model 701's internal memory for library 
purposes when computing the solution to a problem. Yet, such an 
internal libraiy to which the machine itself has rapid access is an 
advantage which cannot be sacrificed even to provide a free machine. 
Ihis fact caused the Boeing Engineering Computing Facility to divide 
machine solution planning into two distinct parts, namely "assembly 
time" and "computing time." When the machine itself is to be used in 
the assembly of its own programs, certain portions of the machine's 
memory capacity are of necessity reserved to hold the general purpose 
program libraiy, and a few restrictions consistent with the functions 
of an assembly program are imposed upon the problem planner. These 
reservations and restrictions do not apply at the time the problem's 
solution is actually computed by the Model 701. Programs may there
fore be assigned to temporary electrostatic storage locations during 
assembly time while actually being designed to work from other 
electrostatic locations at computing time. 

jfrie time required for random block tape search eliminates the use of 
magnetic tape as a library storage medium if any faster method can be 
found. Electrostatic storage is far too small to contain a very 
comprehensive library and still provide a place in which to assemble 
the desired program components in practical sized pieces. These 
facts caused the Boeing facility to choose magnetic drums as the units 
in which a machine program libraiy can be efficiently stored and 
rapidly referred to at assembly time. Since a libraiy cannot be left 
permanently on the magnetic drums in a free machine operation, the 
library must be kept in a form which permits rapid reloading. This 
form must also permit rapid libraiy alteration, addition or deletion, 
and must be safeguarded against unwitting destruction or alteration 
by a user of the machine. While IBM cards meet some of the above 
specifications, the loading of four magnetic drums with information 
recorded on binary cards requires too much tine when compared with 
the input rate of magnetic tape. 

A magnetic tape meets all of the library storage and consecutive reload
ing requirements admirably. The entire contents of four magnetic drums 
nay be recorded on approximately fifty feet of tape. The library tape 
may be left oermanently mounted on a tape unit to save the reel removal 
and mounting time resulting from the rather cumbersome method employed 

CA'.C 

C H E C K  

A t >  P I  

Porter j-5k R E V I S E D  D A T E  

ENGINEERING COMPUTING CONSIDERATIONS 

B O E I N G  A I R P L A N E  C O M P A N Y  
S E A T T L E  1 4 .  W A S H I N G T O N  

P A G E  

i  A  ; 7 3  P  «  

29-1013-0(B) 



on the IBM Model 701. The library tape may also be safeguarded from 
accidental erasure by mounting a metal leader on both ends of the 
library section. Only the deliberate lifting of the metal leader from 
the guide roller will permit the library tape to be advanced to the 
reading or writing position. When not in the latter positions tie 
library tape may be left, on the take-up reel and the machine user's 
tape simply attached to the metal leader on the beginning of the library 
tape. Due to the variety of program "building blocks" required by-
different engineering branches, separate libraries containing those 
programs peculiar to units which use the Model 701 most extensively 
may also be kept in readiness in a similar fashion. This precludes 
limiting the iotal number of general purpose programs available from 
the machine's library by the storage capacity of the four magnetic 

General purpose programs written in "regional" form may be assigned 
to any desired locations at the time they are entered in the machine's 
electrostatic storage from IBM cards. The card reading time consumed 
and the necessity of making new regional assignments each time a new 
location is chosen make it impractical to use general puipose programs 
in this form after their initial entry in the machine's library. The 
storage of such programs within the machine library in regional form 
requires an excessive amount of internal storage since for each 
instruction the regional location number, the operation code, and the 
regional address must be stored. This internal storage problem may be 
minimized by storing each general purpose program less its erasable 
storage in actual form relative to the locations it occupies in the 
magnetic drum library. That is, if the program occupied electro
static storage addresses identical to its magnetic drum libraiy 
addresses, it would actually operate the Model 701 correctly when con
trol was transferred to it. A "relocation program" may then be used 
within the Model 701 to move any selected library program from the 
magnetic drums into electrostatic storage and correct the address 
parte of its instructions so that the program will work from whatever 
storage location it may be assigned to by the user. 

The address parts of the single address instructions used by the IBM 
Model 701 fall into two categories, namely those which depend upon 
their relative location in a program sequence and those which do not. 
Each of the preceding address categories may be readily identified by-
referring to its accompanying operation code. For example, the address 
parts of such operations as ADD, SUBTRACT, TRANSFER, and etc., are 
normally dependent upon their relative locations in a program while the 
address parts of such operations as READ, SHIFT, REWIND, and etc., are 
normally independent of relative location. The Boeing relocation 
program checks the first "U" half words of a library program on the 
premise that they are "normal" in character and treats the remaining 

drums. 

CAU-. : Porter 3-5U i !  R E V I S E D  ° .ate 

ENGINEERING COMPUTING CONSIDERATIONS 

B O E I N G  A I R P L A N E  C O M P A N Y  7 S E A T T L E  H .  W A S H I N G T O N  

9 7 3  E -  R u  

29-1013-0(B) 



half words as "exceptions." Program or instructional constants are 
the type of half word usually placed in the exception portion of a 
library program. Normal instructions have their addresses modified 
if they are dependent on location and their addresses left unmodified 
if they are independent OT? location as thej are moved into electro
static storage. The "exceptions" are not subject to modification and 
are therefore transferred without alteration. 

C A I C  Porter 3-5U REV,SEC .. DATE 

C H E C K  ENGINEERING COMPUTING CONSIDERATIONS 

B O E I N G  A I R P L A N E  C O M P A N Y  
P A G E  

S f A T T L E  1 4 .  W A S H I N G T O N  8 
•»' _• v:< 

2 9 - 1 0 1 3 - 0 ( B )  

L 



IV. The General Purpose Program 

The final machine program used to compute the solution of a large 
scale problem using the IBM Model 701 computer must usually be con
structed from a number of "building block" or "general purpose" 
programs coupled with that portion of the program unique to the 
particular problem being solved. The man hours required make it 
impractical if not impossible to write a completely new program for 
each new problem's solution. The advance preparation and repeated 
use of general purpose programs is therefore mandatory when a variety 
of problems must be handled. The basic requirements of a general 
purpose program arej 

a. That it be designed to permit assignment or reassignment by 
the Model 701 computer itself to any electrostatic storage 
location selected by its user. 

b. That after completing its task the program rnust return 
machine control to a known location in the main program 
controlling; the solution of the problem. 

t 

c. That it be self checking insofar as it is practical. 

d. That in case of random machine error the program repeat 
itself and try to obtain a correct result without causing 
the inachine to stop. 

e. That in case repeated machine errors occur, the program 
stop the machine and indicate the type of failure which 
causes the check to fail. 

f. That it permit complete control of its operation by the 
person using it. 

g. That it be easily identifiable in a program library index 
both as to type and possible usefulness. 

First with regard to identification, some systematic yet simple classi
fication method is a distinct aid to a person consulting the index of 
a library of programs in the hope of finding assistance in the solution 
of his particular problem. The idea of using the original programmer's 
initials followed by a sequence number to identify general purpose 
programs is a worthy one from the standpoint of individual credit but 
veiy confusing to a person tiying to quickly discover which programs 
might be of assistance to him. A straight all numeric code number is 
convenient from a library reference point of view and relatively 
simple to use once the code is learned. The addition of an alphabetic 

C A L C  [ Porter |_ 3-91 : REV,5ED DATE 

C H E C K ,  . .  _  |  ij . . . .  . . .  _ .  

Af'-D j . 

ENGINEERING COMPUTING CONSIDERATIONS 

P A G E  

9 
A WO 

ENGINEERING COMPUTING CONSIDERATIONS 

P A G E  

9 
A WO B O E I N G  A i R P L A N E  C O M P A N Y  

S E A T T L E  1 4  W A S H I N G T O N  

P A G E  

9 . . l i  . . . . . . .  .  

B O E I N G  A i R P L A N E  C O M P A N Y  
S E A T T L E  1 4  W A S H I N G T O N  

P A G E  

9 
•  A :  9 * 3  J  R'.i 

29-1013-0(B) 



prefix serves to key the person consulting the index as to the general 
type of the program, thus narrowing the group of program numbers he 
must actually decode to find the one best suited to his needs; espe
cially if the alphabetic prefix has a phonetic connotation such as A 
for "arithmetic" program, C for "card" program, and etc. The 
classification system for general purpose programs in use at Boeing 
identifies the type of program with an alphabetic prefix followed by a 
numerically coded number system identification and writing sequence. 
The writing sequence was included to identify the degree of sophisti
cation the user might reasonably expect from the program since it is 
to be hoped that this will increase as machine operating and programming 
experience are obtained. The details of this classification system 
are as follows: 

Programs written for the IBM Model 701 computer are classified at 
Boeing as a sequence of four alphabetic and numeric characters. The 
first character defines the purpose of the program. It is always a 
letter. 

1st Letter 

A 

C 

D 

F 

J 

M 

N 

P 

S 

T 

U 

c m c  Porter 3-5U R £ V | S i D _ D A T E  

C H E C K  

A P T D  ^  u 

A  r  f  D  

ENGINEERING COMPUTING CONSIDERATIONS 

P A G E  

10 

c m c  Porter 3-5U R £ V | S i D _ D A T E  

C H E C K  

A P T D  ^  u 

A  r  f  D  B O E I N G  A I R P L A N E  C O M P A N Y  
S E A T T L E  M  W A S H I N G T O N  

P A G E  

10 
V 7 3  D  R 3  

* Purpose 

Arithmetic programs - general purpose. 

Card reading or punching programs - general purpose. 

Drum read or write programs - general purpose. 

Function determination programs - general purpose. 

Job programs - special purpose. 

Matrix programs - general purpose. 

Numerical analysis programs - general purpose. 

Printing programs - general puipose. 

Statistical analysis programs - general purpose. 

Tape read or write programs - general purpose. 

Utility programs - general purpose. 



The second character defines the number system used in the program 
for all except the ,:J" purpose classification. In this latter case 
the second character is a letter indicating the Boeing Engineering-
Unit or Company Division which originates the job. In all other 
cases the second character is a number. 

2nd Number Number System 

0 Decimal - stated point. 

1 Decimal - floating point, 

2 Binary - stated point. 

3 Binary - floating point. 

k Unassigned. 

5 Unassigned. 

6 Combination of number systems. 

7 Number system not relevant. 

8 Octal - stated point. 

9 Octal - floating point. 

C A L C  [  Porter _ i 3-51... REVI5ED„. . DATE 

C H E C K  j • h ^ 
A P P D  

A P P D  

ENGINEERING COMPUTING CONSIDERATIONS 

B O E i N G  A I R P L A N E  C O M P A N Y  
C , F . A T T L E  1 4  W A S H I N G T O N  

P A G E  
11 

BAC 973 R3 
29-1013-0(B) 



For "J" classification only: 

2nd Letter Engineering Unit or Company Division 

A Aerodynamics. 

B Pilotless Aircraft Division. 

C Processes and Standards. 

E Acoustics and Electrical. 

F Flight Test. 

G Armament. 

I Industrial Engineering Division. 

J Project. 

M Mechanical Equipment. 

P Power Plant. 

R Physical Research. 

S Stress. 

T Industrial Products Division. 

V Structural Dynamics. 

W Weights. 

X Preliminary Design. 

The third and fourth characters are a two digit sequence number to 
distinguish programs within the classifications of the first two 
characters. The first program in a given sequence is designated 
"00." 

All general purpose programs written at Boeing begin with a standard 
basic linkage entry. An additional entry point may be provided in 
addition to the basic linkage entry if the program is designed to read 
a control card from which it will obtain the necessary control data to 

c * ! c .  Porter 3-5>U r w .e u  D A T E  

C H E C K '  
•  *  -  -  T *  2NGENESRING COMPUTING CONSIDERATIONS 

A  :  7  i  B O E I N G  A I R P L A N E  C O M P A N Y  
S E A T T L E  1 4  W A S H I N G T O N  

P A G E  

12 



direct the program's operation. Binary control cards are used when
ever possible to minimize storage requirements. The control card 
permits control of the program from outside the electrostatic storage 
while the basic linkage entiy permits internal program; control. 
Immediately following the basic linkage entry, feeing programs check 
the condition of the overflow indicator at the time the sub-program 
was entered. Should the overflow indicator be "ON" at the time of 
sub-program entry , a "locked in" machine STOP occurs which can only be 
cleared by manually^ transferring around the STOP. Such an "OVERFLOW 
STOP" indicates that the programmer has violated a basic rule by 
entering a sub-program while an overflow condition set up by his main 
program still exists. The rule that the overflow indicator must be 
"OFF" when entering a sub-program was set up to permit legal use of 
the overflow condition by a general purpose program without disturbing, 
or being disturbed by, an overflow condition set up by the main program. 
The Boein^ general purpose programs do not use either the sense lights 
or switches. These are left free for use in the main program where 
both solution progress and external control are likely to be required. 

A standard entry point for all general purpose program control data 
minimises the clerical burden imposed upon a person try ing to use it. 
Boeing general purpose programs are written so that the fifth half 
word location of the sub-program's instruction sequence is assigned to 
hold the first item of control data, the sixth half word the next item 
of control data, and etc., until all control data items are entered. 
This saves the user from the rather grim chore of having to stuff his 
control data into the program at whatever point the person who wrote 
the sub-program decided he needed that piece of data. The entry-
section of a typical Boeing general purpose program is illustrated below: 

Location Operation Address 

1000 

1001 
1002 

1003 
lOOlr 
1005 
1006 
1007 

1008 
1009 

Store A 

TR OV 
TR 

STOP 

1231 

1003 
1007 

1003 
(1st Control No.) 
(2nd Control No.) 
(3rd Control No.) 

1500 ' Add 

Store A 12 b$ 

Explanation 

Usually used to store point at which 
main program was left, in "Error Stop" 
location. 
Check overflow condition. 
Transfer around overflow STOP and 
constants if overflow is "OFF." 
"Locked in" stop if overflow was "ON." 

Control Constants. 

Basic Linkage—word 1500 contains 2 
in this example. 
Store "exit transfer" address. 
Continue with sub-program. 

CAir. _j_ l fHECKi 
APPD _ ^ 
aPpd 

- f —  

][ 

-f-i! 
•4-

Porter J-5LLrevised. l DATE 

ENGINEERING COMPUTING CONSIDERATIONS 

B O E I N G  A I R P L A N E  C O M P A N Y  
SEATTLE 14 WASHINGTON 

PAGE 

13 
6A<~ 973 U R3 

2 9 - 1 0 1 3 - 0 ( B )  



I 

Since a general purpose program would not be used in cases where an 
unchecked simple program is sufficient for the user's purpose, most 
Boeing sub-programs provide for at least two tries plus a comparison 
which must check before machine control is returned to the main program. 
When possible without the sacrifice of too much electrostatic storage 
space, an independent check is used. In any case the original data 
supplied to the sub-program is not altered by the action of the sub
program. This latter provision makes repetition possible in case 
random machine errors occur. Usually at least one more try at 
correct completion is made by the sub-program in case an error is 
detected, before the programmed machine Error STOP is activated, thus 
minimizing the time lost because of random machine error. Should an 
error be again detected on the second txy, the machine is presumed to 
be malfunctioning and stopped to permit the initial or control data to 
be checked for conformity to the sub-program's limitations. The 
storage of the main program's exit location as the address part of an 
Error STOP instruction is a help in keying the operator as to which of 
perhaps several uses of that sub-program is subject to error. 

Programs which perform the transfer of blocks of data from one unit of 
the Model 701 to another require a check sum against which the check 
sum calculated from the transferred data may be compared. It is 
confusing, and therefore one more source of error, for the problem 
planner to have to remember to add two to the half word count of his 
actual data every time he transfers it from one place to another. It 
is particularly annoying to be forced to leave room in electrostatic 
storage at the end of each block of data for a check sum, especially 
if the data blocks represent instruction sequences which must work as 
a complete unit at computing time. The Boeing general purpose programs 
therefore use the "invisible" check sum approach, that is, check sums 
being read from cards, magnetic tapes or magnetic drums are kept in 
the erasable storage of the transfer program and not affixed as the 
last full word of the data block itself in electrostatic storage. 
This permits blocks of data or instructions to be assembled in elec
trostatic storage without leaving space for check sums between blocks. 
When data are to be transferred from electrostatic storage to cards, 
magnetic tapes or magnetic drums, the check sum of the entire block of 
data to be transferred is calculated and stored in the erasable storage 
of the transfer program. The data are transferred, and then the 
calculated check sum is written as the last full word of the transferred 
record. Only when writing on the magnetic drums does the programmer 
htve to plan for storage space for the check sum. Card check sums are 
punched in specified cards or locations on a card and are therefore 
fixed in location so the programmer does not have to consider them. 

CAIX Porter REVISED DATE 

ENGINEERING COMPUTING CONSIDERATIONS CHECK ' ii ENGINEERING COMPUTING CONSIDERATIONS 
A*PD J i 

ENGINEERING COMPUTING CONSIDERATIONS 

APFD Ij B O E I N G  A I R P L A N E  C O M P A N Y  
SEATTLE 14 WASHINGTON 

PAGE 

Hi 
ii —— 

B O E I N G  A I R P L A N E  C O M P A N Y  
SEATTLE 14 WASHINGTON 

PAGE 

Hi 
EAC *73 L> R3 

29-1013-0(B) 



V. The Assembly Program 

The ability of the IBM Model 701 itself to combine general purpose 
programs from its internal library with other instructions read from 
any of its forms of input media enables it to materially assist in 
the assembly of the complete set of machine instructions required to 
solve large problems. Since the total number of instructions for a 
large problem may not all fit into the available electrostatic storage 
space at assembly time, provision must also be made in an assembly 
program for recording logical portions of the complete program on a 
suitable output media such as IBM cards or IBM magnetic tape for 
future re-entry in the Model 701 at computing time. An assembly 
program must in addition be able to provide the problem planner with 
partial listings of the assembled instructions to permit him to 
monitor the work done by the machine under his direction. The basic 
assembly program functions stated above, those of assembling, record
ing and providing a trail of the work done, must be accomplisned by 
the machine with a minimum of clerical detail required of the problem 
planner to be of maximum assistance to him while at the same time 
providing him with complete machine control at all times. 

Since the majority of the engineers using the IBM Model 701 at Boeing 
are not familiar with either the octal or binary number systems, 
Boeing assembly programs are controlled by IBM cards punched in the 
decimal number system. The first five digit field in each decimal 
control card is interrogated by the assembly program to determine 
which of its functions to perform. The succeeding five digit fields 
in the card are punched with the minimum control data needed by the 
assembly program to activate the general purpose program actually 
performing the desired function. When the assembly program senses 
the code to bring a library program into electrostatic storage for 
example, it knows that the next control card field will contain the 
library number of the desired program, the following field the electro
static storage location in which the first word of the library program 
is to be placed at assembly time and the field after that the 
electrostatic storage location in which the first word of the libraiy 
program will be at computing time. These two latter locations may 
or may not be the same. Using the program library number as a guide, 
the assembly program then searches its library index to find the 
magnetic drum location, number of half words and the number of 
instructions affected by relocation for the general purpose program 
desired by the problem planner. These control data together with the 
specified electrostatic storage locations are inserted in a relocation 
program by the assembly program which then transfers machine control 
to the relocation program via basic linkage. After the library pro
gram is successfully installed in electrostatic storage, the relocation 
program automatically returns machine control to the assembly- program 

CMc ( Porter /J-5k on""n^ 
{HECK ENGINEERING COMPUTING CONSIDERATIONS 
Af PD_ I  

APPD B O E I N G  A I R P L A N E  C O M P A N Y  
PAGE 

35 SEATTLE 14 WASHINGTON 

sac i> r ; : -

2 9 - 1 0 1 3 - 0 ( B )  



which then reads another control card to find out what to do next. 
Typical functions performed by Boeing assembly programs ares 

a. Punch a binary card self loading program and its associated 
control card to perform automatic re-entry of assembled 
programs recorded in binary card form. 

b. irfrite a tape self load program as the first unit record of 
a tape selected for subsequent recording of assembled programs. 

c. Read regional instruction cards and convert them into an 
actual instruction sequence in specified electrostatic 
storage locations. 

d. Bring a general purpose program from the machine library and 
relocate it to work from specified electrostauic storage 
locations. 

e. Read a sequence of instructions from previously recorded 
binary cards and place them in electrostatic storage. 

f. Read a sequence of instructions from previously recoraeu IBM 
magnetic tape and place them in electrostatic storage. 

g. Read a program comment and place it in electrostatic storage 
as a card image beginning at a specified location. 

h. Record a specified number of consecutive electrostatic 
storage location contents in binary punched card form. 

i. Record a specified number of consecutive electrostatic 
storage location contents as the next unit record on an IBM 
magnetic tape. 

j. Print a specified number of consecutive electrostatic 
storage location contents as machine instructions in decimal 
and octal form. 

k. Transfer machine control from the assembly'- program to the 
program just assembled. 

C A l  C  

C H E C K  

/  f ' D  

Por+er 2-Ch r e v i s e d  c a i e  

ENGINEERING COMPUTING CON3IDB31A TIONS 

B O E I N G  A I R P L A N E  C O M P A N Y  
S E A T T L E  1 4  W A S H I N G T O N  

EASE 

Id 

2 9 - 1 0 1 3  - 0 ( B )  



VI. The Program Write Up 

A general purpose program write up disseminates pertinent information 
used by a program planner in the selection, control, and usage of 
machine library programs. Unless these write ups follow a systematic 
outline and are edited for consistency, a rather heterogeneous collec
tion of program information results. It is particularly important that 
this not be allowed to happen when engineering personnel not intimately 
familiar with all the details of machine operation are trying to 
discover which general purpose programs will assist in the solution 
of their problems. It is also important that these personnel not be 
overwhelmed by a mass of detail, such as the list of actual machine 
instructions, at the time they consult the library of program write 
ups. The Boeing Engineering Computing Facility has adopted the policy 
of placing the general purpose write ups exclusive of the program 
block diagram and list of instructions in one document and the program 
details in another. The document containing the write ups is given 
wide circulation throughout the engineering department. The detail 
document is restricted in circulation principally to the mathematical 
services group itself where it may be consulted by any engineer 
actually interested in programming techniques. A typical Boeing 
general purpoae program write up is given on the following pages and 
is self explanatory. 

. C A I C  ' Porter t 3-51.; REV,SED CA1E 

C H E C K ;  

A * ? ?  . . . . . . .  . . .  R .  .  

ENGINEERING COMPUTING CONSIDERATIONS 

P A G E  

17 

. C A I C  ' Porter t 3-51.; REV,SED CA1E 

C H E C K ;  

A * ? ?  . . . . . . .  . . .  R .  .  

B O E I N G  A I R P L A N E  C O M P A N Y  
S E A T T L E  1 4  W A S H I N G T O N  

P A G E  

17 

29-1013-0(B) 



Program Title - D702 DRUM TO OR FROM E. 5. 

I. PURPOSE 

This program reads V half words into consecutive locations in electro
static storat e from a drum or writes V half words on a drum from 
consecutive locations in electrostatic storage. 

II. METHOD 

A. Drum to electrostatic storage 
After preparing the drum for reading, V half words are copied into 
electrostatic storage. A check sum is then copied from the drum 
into the erasable storage of this program and used to check the 
data read from the drum. 

B. Electrostatic storage to drum 
Prior to beginning writing, a check sum of the V half words is 
formed and stored in the erasable storage of this program. After 
preDaring the drum for writing, V half words are copied onto the 
drum from electrostatic storage. Hie check sum is then copied 
into the next full word location on the drum. 

G. Pro ram. Limitations 
Data can be successfully transferred try this program provided the 
starting location plus the number of half words does not exceed 
J1096) - ?(8000), i.e., 

M + |v| UO?it 
where: K is the first word address in E. S. 

and provided that no part of this program lies between the first 
and last locations of data, i.e., 

M  +  | V | ^ t  o r  ^ ( t + S l O ^ M  

where t is the starting location of this program. Note that V 
does not include the check sum. 

D. Checking 
The full -<ord check sum used by this program for checking is the 
standard check sum and is equal to the sums ou the absolute values 
plus cn times the number of negative half words of data to be 
transferred. In writing on the drum, this check sun is formed 
and writ sen in the full voir drum location immediately following 
the last word of data trans!erred. In reading from the drum 
second check sum is formed ana compared with the check sum copied 
from the drum. They must agree exactly for the transfer to check. 

C A D.I. Cook 11-53 : > , L  

ENGINEERING COMPUTING CONSIDERATIONS 

B O E I N G  A I R P L A N E  C O M P A N Y  
A T T L E  u  W A ' H ' N G T C N  

P A G E  

18 

29-1013-0(B) 



III. USAGE 

A. Program Entry 

TXPE 

Basic 
Linkage 

LOCATION OPERATION 

R ADD 

ADDRESS 
Dec. 

r 

Octal 

r+1 TR 

REMARKS 

r =• location in 
iiiain program. 

t • first half 
word location of 
this program. 

r+2 control returned 
here. 

Binary 
Control 

Card 

Self Load 

TR t+ 29 t+35 when entered at 
this location the 
program will read 
a control card. 

(Does not apply) 

B. Control Data - Basic Linkage Entry 

ITEM 

M 

±V 

LXATION 
Decimal Octal 

EXPLANATION 

"b+U 

t+5 

t+k 

t+5 

N 

B 

t+6 

t+7 

t+6 

t+7 

The first positive even location in 
E.S. of data to be transferred. 

The even number of half words to be 
transferred exclusive of the check 
sum. If V is negative, the transfer 
is from drum to E.S, If V is posi
tive, the transfer is from E.S. to 
drum. Note that 0 £ M + |V|^ U096, 

The positive drum number where 
128  ̂N 131. 

The first positive even drum address 
of data to be transferred. 

C A I C  D.I. Cook : 11-53 REV15ED 

CHECK ! _ 
APPC ' _ 

D A T E  

-tf- ENGINEERING COMPUTING CONSIDERATIONS 

B O E I N G  A I R P L A N E  C O M P A N Y  
SFATTLE M WASHINGTON 

PAGE 
19 

29-10l3-0(B) 



III. USAGE (cont'd) 

(cont'd) 

Control Data - Binary Control Card Entry 

ITEM 

M 

±V 

FORM 

STOP M 

±STOP V 

STOP N 

STOP B 

STOP* S 

CARD 
COLUMNS 

1-18 

19-36 

15-62 

63-80 

1-18 

CARD 
ROW 

9 

9 

9 

9 

8 

EXPLANATION 

The first positive even location 
in E.S. of data to be transferred. 

The even nuiriber of half words to 
be transferred exclusive of the 
check sum. If V is negative, the 
transfer is from drum to E.S. If 
V is positive, the transfer is 
from E.S. to drum. Note that 
0 M + |V| ^ U0?6. 

The positive drum number where 
128  ̂N 4 131. 

The first positive even drum 
address of data to be transferred. 

The location in E.S. to which con
trol is to be given after success
ful completion of the data 
transfer. 

L®T 1 
FIGHT 

1 
Row 8 STOP* S : 1 1 

Row 9 STCP M ±ST0P V STOP N : STOP B 1 

Card Cols. 1-18 19-36 37-hh 15-62 63-80 

"""This instruction can be replaced by nTA S" if a successful 
stop is not desired. 

Transfer to location /0(t+29) = ?(t+35) of this program to cause 
it to read the above binary control card. 

C A K .  D.I. Cook 11-53 RFViSEF- D A T E  

C H E C K  

/  •  i '  r  
- - ENGINEERING COMPUTING CONSIDERATIONS 

/. ? • 
B O E I N G  A I R P L A N E  C O M P A N Y  

S E A T T L E  1 4  W A S H I N G T O N  

P A G E  
20 

29-1013-0(B) 



m. USAGE (cont'd) 

C. Input Data 

2. 
3, 

This program can transfer any number of half words of data 
Which can be contained in electrostatic storage exclusive of 
the locations occupied by this program. The number of half 
words to be transferred (V) must be at least 2. 
The form of the input data is irrelevant. 
Data to be read from a dram must have a check sum in the full 
word drum location immediately following the last word of 
d a t a ,  i . e . ,  i n  d r u m  l o c a t i o n  B  +  | V | .  

D. 

E. 

Auxiliary Programs Required (None) 

Program Storage Requirements 

NO. ITEM STARTING LOCATION 
Decimal Oc~al 

NO. OF 
HALF WORDS 

Decimal Octal 

1 Program including 
erasable storage 

2 Program without 
erasable storage 

3 Instructions affected 
by Relocation 

h Program Constants 
5 Erasable Storage 

Program Constants 

t t 8U 12li 

t t 76 nij 

t t 72 110 

t+72 t+uo h h 
t+76 t+llli 8 10 

F. 

DECIMAL OCTAL 
Loc. Op. Address Loc. Op. Address 

t+72 00 0000 t+110 00 0000 
t+73 00 0001 t+111 00 0001 
t+7ii 00 0002 t+112 00 0002 
t+75 00 0003 t+113 00 0003 

;ional Constants 

REGIONAL CONSTANT NO. OF HALF WOPDS IN REGION 

F0000 
B0000 
E000Q 

Decimal 

72 
h 
8 

110 
h 

10 

lc D.I. Cook 11-53 CA 

< F C K  ^  

A r :'D 

/ ^ P f .  

R E V I S E D  D A T E  

ENGINEERING COMPUTING CONSIDERATIONS 

B O E I N G  A I R P L A N E  C O M P A N Y  
S E A T T L E  H  W A S H I N G T O N  

a 
' if T7'3 ' n :, 
29-1013-0(B) 



T> 
P c o o 

M c> 
CO 

M 

H 

a 

s 

w a, H 
5 5 
GO o <8 « 
1 M 

E-i 
£ < H 
U) o erf 
o 3 5 
a, O 

<L> Q 
• 

o 

8  o tH 
© 

£3 

"8 p 
O 

o o 
© £3 
P 

CO 

i 

+ p 

no 
5  

& 
CO 

& 
$ -Si* C^l 
V-i rH + 

-P =. Bi. XJ P 
§ o • 
* 
© to CO X5 © C\j as to + 
p =! P 

^ O 5 

•>> ^ 
5 5 

fcD • Cl tn> 

1| u © bO o 
2 2 a. a 

T g - P  ctf p rt! o N o 
• 5 5  M o 

iiO P 

o 5 p 
O CO M 

S5 U a) d* ^ 

2 p 
a 

p 
(2 

o PJ + .p 

fe 

j j j  
o c 
P o H ° 

25 p 
c n 
o © v •£ 
n a © 3 n a 3 
ctf c 
O CO 

c 
>> „ 
© a 
* 5  j 

cfl o 
o CO H 

£ 
5 

00 Q 
5 3 

CO c • 

S SB 
m p rt a, so o 

i-l 
2 p 
c 
o o 
(4 
o <* 

a 
$ cn 

5  co n © • 
8"E 
£ 3 

3 p 

% 

CO 

© 'M w 

CO 
•g 
§ 

8 e-c 

1A 
+ p 

CsJ CO <—1 
m + cn + * -P -p p 

v> 

© u 
01 • 
£ 5  

•3 
p h 
ctf © 

n 

12 p 
o o o e-t p 

cvi + 

© •H 

1 

p 
"S 

5  w m © o 
o 
£ 

C A L C  D.I. Cook 11-53.. RfVi5ED ..0ATE. 
C H E C K  • 4 -
APPD * 
APPC 

~f-
i 

CSJ 
o 

1—1 rH + 
p 

o NO r~ + * p P 

a, 
ps 

CO H 

ENGINEERING COMPUTING CONSIDERATIONS 

BOEING AIRPLANE COMPANY 
SEATTLE 14 W A S H I N G T O N  

PAGE 
22 

3AC 973 . Rs 
29-1013-0(B) j 

— 



VII. Acknowledgements 

The installation and successful operation of the IBM Model 701 
Electronic Data Processing Machine by the Boeing Engineering Comput
ing Facility as a powerful new engineering tool was made possible by 
information and assistance from several sources, Hie machine 
operating characteristics described so well by the IBM engineers 
from the Poughkeepsie laboratory gave us an excellent start toward 
understanding the equipment from the design standpoint. The 
discussions of programming techniques and the preparation of utility 
programs by the IBM Applied Science Department personnel equipped us 
to begin successful operation of the machine with a minimum of delay 
and confusion. Although neither the New York nor Poughkeepsie types of 
IBM utility programs were suitable for the type of operation assigned 
to the Boeing computing facility, both of these forms were invaluable 
as "bootstraps" to set up the system now in use before Boeing programs 
were operable. The IBM Speedcoding system is being used at Boeing for 
problems suitable for solution with abstract coding. Finally, the 
week spent by a number of Boeing personnel on the Model 701 installed 
at IBM World Headquarters in New York straightened out our thinking 
and prepared us for the immediate use of our own machine. 

Information received from the Los Alamos Scientific Laboratory was 
also greatly appreciated by the Boeing facility. We expect to place 
the "Dual" system in operation for any engineer requesting it and 
have derived a great deal of benefit from the T-l Utility Program 
Manual. Although our method of operation is slightly different, we 
are encouraged by the success at Los Alamos achieved by "outsiders" 
programming their own problems. 

Lastly, we desire to express our appreciation to the IBM Customer 
Engineering Department for their excellent performance which has 
resulted in such satisfactory operation of the Model 701 installed at 
Boeing Seattle plant. Without in any way minimizing the initial 
contributions of all others, the continuing effort required of IBM 
service engineers to keep a machine as complex as the IBM Model 701 
in good operating condition is the largest single factor in its 
success, for without trouble free operation the best planning per
sonnel are helpless. 

c a l c  } Porter 
C H E C K :  

A  F  P D  j  _ _  

:  R E V I S E D  D A T E  

ENGINEERING COMPUTING CONSIDERATIONS 

P A G E  
23 

A P P D  t  

> •  

B O E I N G  A I R P L A N E  C O M P A N Y  
S E A T T L E  1 4  W A S H I N G T O N  

P A G E  
23 

"73 
2 9 - 1 0 1 3 - 0 ( B )  



SpeedCo at Work 

The United Aircraft Corporation Computation Laboratory has been 

operating an IBM 701 since early in October of 1955» Practically all of 

the work done on the machine during this period was performed through the 

medium of the Speedcoding System, a multiple address floating point inter

pretive routine prepared and distributed by the IBM Scientific Computing 

Service in New York City# 

SpeedCo operates upon numbers which are expressed, inside the 

machine, in floating binary. The fractional part (or mantissa) of each 

of these numbers occupies one full 701 word. The corresponding exponent 

occupies the left half of the next full 701 word. The right half of this 

word is not used. 

Primary input to, and final results from the calculator are expressed 

in floating decimal. Each piece of input data consists of a ten digit decimal 

fraction accompanied by a three digit exponent. All resxilts printed by the 

calculator are also expressed in this form. Card reader input and printer 

output are both at the rate of 750 pieces of data per minute. Conversion 

between binary and decimal notation and between powers-of-two and powers-of-

ten is completely automatic. 

SpeedCo instructions each occupy two full 701 words. Each instruction 

provides for two distinct operations. First, a three address arithmetic, trigo

nometric or exponential operation may be performed upon the floating point num

bers handled by SpeedCo. (This three address portion of the SpeedCo instruction 

is also used to control blockwise transfers of information within electrostatic 

, M ^ 
4lh 



and between electrostatic and tapes, drums, or the printer) 0 Second, an 

entirely unrelated single address operation may be included in order to 

provide conditional or unconditional transfer of control, fixed point 

modification of addresses of the program, or control of certain built-in 

checking features „ These compound two operation four address instructions 

are interpreted and executed at the rate of about 250 per second, which is 

roughly one-twentieth of the rate at which machine language solutions proceed. 

Our almost exclusive concentration on such a relatively slow coding 

system would appear to indicate that we feel that we can be rather prodigal 

of machine time, In a sense this is true. We are much more interested in 

minimizing the total time a problem spends in the Computation Laboratory 

than in minimizing the time it spends on the 701, And for the general range 

of our problems the coding and debugging time represents by far the biggest 

portion of the total elapsed time. Hence considerations of overall effi

ciency of our operation require that we adopt coding procedures which are 

easy to use and which result in coded sequences which are easy to debug. 

It has been our experience that SpeedCo satisfies these requirements. 

Our use of SpeedCo during this six month period has, ho /ever, suggested 

the desirability of certain changes and modifications. Some of these we have 

already made; others are still in the planning stage, These changes are des

cribed below, (No special importance attaches to the order in which these 

changes are described. The presentation is in fact, more or less chronological), 

1, Additional operation READ 

SpeedCo, as originally written, assumed that all data and instructions 

for a problem were loaded into the calculator and stored in electrostatic or 

on tapes or drums before the calculation began. Under these circumstances there 

— 2 — 



was no need for a SpeedCo instruction which would cause the card reader to 

resume operation (under control of the program) after some calculations had 

been performed. Hence SpeedCo provided no such instruction. 

There are, however, numbers of problems at United Aircraft which can 

•be much more efficiently handled if the programmer is not restricted to loading 

all of the input information for the entire problem before the calculation 

begins. In many of these problems, for example, a much better mode of operation 

is as follows. The instructions and only as much data as is needed for the 

first case are read into the calculator and stored. The first case is calcu

lated and the results are printed. Then, under program control, the card reader 

resumes operation and the data for the second case is read in. The second set 

of results is then calculated and printed. The card reader then starts up again 

and reads in the third set of data. And so on. 

In order to facilitate the solution of such problems the operation READ 

was added to SpeedCo. Whenever this instruction is executed, the card reader 

Initiates the reading of the next card in the hopper. If this card is (as it 

should be) the self-loading SpeedCo 99 99 card the cards following will be loaded 

and stored in the usual fashion. 

2. Additional operations LEAVE and RETURN 

In order to facilitate the use of SpeedCo language subroutines, the 

operations LEAVE and RETURN were added to SpeedCo. 

Whenever LEAVE is executed the current contents of the SpeedCo program 

counter are stored in a special electrostatic register reserved for this purpose 

and control is then unconditionally transferred to the location given as the D 

address associated with LEAVE. 



Whenever RETURN is executed control is unconditionally transferred 

to the SpeedCo instruction located in that memory cell whose address exceeds 

by one the contents of the special register referred to above . 

3« Additional operation OUT 

Most of the problems encountered at United Aircraft are of such nature 

that the "balance" provided in SpeedCo (no more than one single address logical 

operation for each three address arithmetic operation) is quite satisfactory. 

There are a very few problems, however, where the number of single address 

logical operations required greatly exceeds the number of arithmetic operations 

to be performed. Typical of these is the problem of solving a set of linear 

simultaneous equations 0 Here the number of arithmetic operations is very small 

compared to the number of logical operations» Hence a direct SpeedCo solution 

would be quite inefficient, since most of the instructions would consist of 

single address logical operations bracketted with time-wasting NO OPERATION 

three address arithmetic operations. 

In order to permit more efficient solution of this sort of problem the 

operation OUT has been added to SpeedCo. Whenever this instruction is executed 

control is transferred to that address which is four times the D address used 

with OUT. At this location the programmer will have stored a machine language 

routine which will carry out the necessary logical operations at full 

language speed. These logical operations having been couple ted, this machine 

language program will then transfer control back to the SpeedCo interpretive 

loop in order to permit resumption of floating point arithmetic calculations. 

4. Additional operations WRITE NEW FILE TAPE X 

Some of the problems encountered at United Aircraft can be more easily 

coded if one can write more than one file of information on a single tape. 

4 



It has been discovered that this can be done successfully if the following 

procedure is used„ After writing the last record of a file, do not write the 

end of file gap. Instead, the tape must be left undisturbed until the first 

record of the next file is to be written,, At this tin® the end of file gap 

should be written, followed immediately by the writing of the first record 

of the next file. The timing here is important. The tape must not be per

mitted to stop after writing the end of file gap and before writing the first 

record of the next file. If it is permitted to stop, the machine will not be 

able to read the tape because of noise pulses at the end of the end of file 

gap. 

The operations WRITE NEW FILE TAPE X have been written with this in 

mind. Whenever one of these instructions is encountered an end of file gap is 

written on the designated tape and the first record of the next file is written. 

Since only one machine language instruction (a transfer) intervenes between the 

machine language instructions "Write End of File" and "Write Tape", the tape 

has no time to stop and hence the machine has no difficulty in reading the tape 

thus written. 

5. Additional operations WRITE and READ ELECTROSTATIC TWO 

The United Aircraft 701 was equipped with a second electrostatic memory 

frame during February of this year. It has been integrated into SpeedCo 

merely as a very fast form of auxiliary storage. The two instructions involved 

are WRITE ELECTROSTATIC TWO and READ ELECTROSTATIC TWO. 

Whenever WRITE ELECTROSTATIC TWO is executed a block of information is 

transferred from E.S.F. 1 to E.S.F. 2. The given block extends from A to B in 

E.S.F. 1 and the relocated block extends from C to C+B-A in E.S.F. 2. 



Whenever READ ELECTROSTATIC TWO is executed a block of information is 

transferred from E.S.F. Z to EoS.F0 1. The given block extends from C to 

C+B-A in EoScE, 2 and the relocated block extends from A to B is E6S0F. 1« 

It is interesting to note that problems which made extensive use of 

drum storage have benefitted to a surprising extent by receding them to place 

the most frequently consulted information in E.ScFo 2. In one case this cut 

the running time for a moderate size problem in half j in another the running 

time for a rather long problem was cut by one-third 0 

60 DPBC and sign checks on data cards 

SpeedCo was originally so written as to check data cards for double 

punches and blank columns,, In addition, it also checked that every fractional 

part and exponent read into the machine was identified either by a twelve punch 

for plus or an eleven punch for minus 0 

It does not appear to us that the restrictions inherent in these checks 

are justified by the advantages obtained „ Operating experience with the United 

Aircraft machine seems to indicate that errors of the sort caught by these checks 

are quite infrequent . We have therefore changed SpeedCo to permit the loading 

of data cards on which 

(a) blank columns represent zeros 0 

(b) x punches represent minus signs. 

(c) no x's represent plus signs. 

7. Accumulating storage 

SpeedCo was originally so written that the result computed by any one 

of the arithmetic, trigonometric, or exponential operations was sent to storage 

where it replaced the previous contents of the register C. In many cases, 

however, it would clearly be preferable to have this result add itself to the 

previous contents of C0 We have changed SpeedCo in order to make this possible. 

a 6 oa 



In order to permit the programmer to exercise his choice as to Whether 

the result is to replace the previous contents of C or whether it is to be 

added to the previous contents of C, a quantity K has been included in each 

SpeedCo instruction. K, which is punched in column 14 of each instruction . 

card, can have either of the two values zero or one0 If JC is zero, the result 

replaces the previous contents of C. If K is one, the result is added to the 

previous contents of C. 

Programs which make frequent use of the operation ADD benefit in two 

ways from this change. First (and most important) such programs are shortened 

considerably, since many of the additions required need not be separately 

programmed but may be obtained merely by giving K for the preceding instruction 

the value one. Second, there is also a time wise advantage since the interpre

tation time for this "accumulating storage" addition is very much less than the 

interpretation time for the regularly coded operation ADD. In the case of the 

combination multiply and add, for instance, a time saving of just under one-

fifth is achieved o 

80 Decimal punching 

A decimal punching subroutine has been added to SpeedCo. Five floating 

point numbers are punched per card. Punching proceeds at the rate of 100 cards 

per minuteo 

9. Additional operation TABLE LOOK UP 

Problems arising at United Aircraft frequently require the representation, 

within the machine, of empirical bivariate functions for which no analytic ex

pressions exist. Usually we replace such functions by bivariate polynomials, 

making use of standard orthogonal polynomial approximation techniques. Occasionally, 

however, it turns out that the given function cannot be satisfactorily approxi

mated in this fashion. In such cases we resort to tabulating the function using 



quadratic interpolation in both directions. The resultant tables are then 

written on tape with each table comprising one unit record 0 A tape searching 

and interpolation routine called TABLE LOOK UP has been added to our SpeeoCo, 

and this routine is used in connection with this tape. The A address gives 

the location of x, the B address gives the location of y and the C address 

gives the table number. When the instruction TABLE LOOK UP is encountered 

the machine first searches the tape for the correct table (unit record) . It 

then searches this unit record for the correct section of the table. The 

interpolation coefficients for this section of the table are then read into 

electrostatic and the interpolation is performed. 

10o SpeedCo "Qne-And-One-Half" 

In a very few cases problems have been encountered at United Aircraft 

which have required greater precision than is afforded by the 35 bit fractional 

part provided by SpeedCo. In order to take care of these unusual problems, we 

have written a special SpeedCo which provides 52 bit precision and which is 

called "SpeedCo One-And-Qne-Half" 0 In this SpeedCo the data word occupies two 

full 701 words and is arranged as follows. The first full word contains the 

most significant 35 bits of the fractional part. The left half of the second 

full word contains (as before) the exponent. The right half of the second full 

word (which was previously unused) now contains the least significant 17 bits of 

the complete 52 bit fractional part. The arithmetic operations have been rewritten 

to provide 52 bit precision^ The additional electrostatic space needed for these 

more precise subroutines has been obtained by deleting the trigonometric and ex

ponential operations. In all other respects SpeedCo One-And-One-Half is the same 

as the United Aircraft SpeedCo. In particular, the decimal input and output 

remain at the same ten digit level of precision9 The read in con

version process automatically gives the value zero fcs the least significant 17 

CM Q <=5 



bits of each 52 bit fractional parte The print routine ignores these 17 

bits entirely * Throughout the entire calculation, however, these 17 bits 

are of course correctly handled by the arithmetic operations available in 

this special SpeedCo <> 

llo Assembly 

A Speed Co assembly program is presently being prepared 0 This program 

follows the general pattern of IBM Assembly Program S 02, It will provide 

in the case of SpeedCo problems, essentially the same features that S 02 

provides for machine language problems« Regional programming will be usedo 

The output of this program will usually be by decimal listing and binary 

punching, with eleven SpeedCo instructions punched on each binary cardo 

120 Projected changes 

In order to realize more fully the advantages inherent in the doubled 

electrostatic memory capacity, it is obviously desirable to rewrite SpeedCo 

so that it uses the entire electrostatic as working memory instead of (as at 

present) using half as working memory and half as fast auxiliary storage. This 

is of course a very far-reaching change since the interpretive loop and 

subroutines which in aiy nay use or operate upon SpeedCo addresses must be 

rewritten to conform to whatever new address numbering system is adopted for 

the larger working memory. This project is now under way at United Aircraft. 

In the new system, as in the old, each instruction and each data word will 

occupy two full 701 words. The first of these words will be located in a 56 

bit cell in E0SoF„ 1 and the second will be located in that 36 bit cell in 

E«S,F« 2 whose address exceeds by one the address of the E»S„F„ 1 cell contain

ing the first word. 



Since the modifications entailed in making this change are so 

extensive as to require the complete rewriting of large sections of SpeedCo, 

it has been decided that certain other desirable changes may as well be made 

at the same time. These changes are as follows, 

(A) Tracing 

1, Change the interpretive loop so that tracing will begin only 

after the instruction in location F has been executed n tines. 

In all other respects tracing will be controllable by sense 

switches, as at present. 

2, Make such changes to the tracing routine itself as may be needed 

to at least double the speed of tracing. Among these changes are 

the following, 

(a) Decrease the quantity of information printed to such extent 

that only one type stroke per instruction is necessary, 

(b) Delete the extensive system of checks, so that the routine 

itself will no longer encroach upon programmer storage. 

(c) In order to retain reasonable printer efficiency, continue 

the present system of executing ten instructions, printing 

the tracing information for these ten instructions, executing 

the next ten instructions, printing their tracing information, 

etc. In order to speed this process up, however, do not use 

drum storage to accumulate the ten line block of tracing 

information to be printed. Instead, store this information 

in electrostatic, 

(B) Checking 

During the execution of each SpeedCo instruction approximately one-third 

of a millisecond is devoted to set up time for the built in checking routine, 

S3 10 



even when this routine is not i>eing used. But experience with the United 

Aircraft 701 shows that the machine makes very, very few calculation errors 

of the sort detected by the checking routines built into SpeedCo. Hence it 

appears advisable to change this feature so that checking is under sense 

switch control. This will have the advantage that only the occasional program 

which requires SpeedCo checking will be burdened with any significant amount 

of checking set up time. 

(C) Tracing during checking 

Change the tracing routine so that tracing during the second pass 

through a checking loop is under sense switch control. 

(D) Starting point control 

SpeedCo is so written that the calculation always begins with the 

execution of the instruction stored in location 500. This is to be changed 

in order to permit the programmer to specify any register he chooses as the 

starting point of the calculation. 

(E) Tape and drum identifications 

SpeedCo is so written that it is not possible to operate upon an 

instruction such as WRITE TAPE M in older to change it to, say, WRITE TAPE K. 

However, instructions of this sort would be very helpful in certain problems 

which transfer information back and forth between tapes and such instructions 

will therefore be added. 

(F) READ BACKWARD TAPE X 

These instructions will be deleted, since they have never been used. 

(G) RA» RG and EG Counters 

SpeedCo provides three fixed point counters which are useful for a 

variety of purposes such as stepping addresses, counting the number of times 

some loop has been traversed, etc. The contents of these counters are usually 

controlled by means of TRANSFER AND INCREASE XYZ and TRANSFER AND DECREASE XYZ 

instructions o Whenever one of these operations is 

-11-



executed the contents of the designated counter or counters are increased or 

decreased by one and control is unconditionally transferred to the 1) address 

given in the same instruction„ Programming experience with SpeedCo indicates 

that these counters would be much more useful if some convenient means existed 

for incrementing their contents by amounts other than one. In order to accom

plish this it has been decided to eliminate the transfer function from these 

instructions and make them merely counting instructions, with the D address 

being used to specify the desired increment,, A skip feature will be incor

porated into the DKCREASE operations which will cause the SpeedCo program to 

skip one instruction when the contents of the designated R counter are decreased 

to zero0 This will permit the coding of two°instruction loops which are termi

nated by means of a count-down-to-zsro-and-skip procedure, 

( H j  Error skins 

SpeedCo signals the occurrence of certain errors such as tape check sum 

discreoancies by executing a program skip of one or two instructions. This 

arrangement is going to be reversed so that the skip occurs if the operation 

succeeds and does not occur if the operation fails. 

(J) Data card forms 

Two data card forms are to be incorporated into the rewritten system. 

The one form will be the same as the present form with 5 ten digit fractional 

parts and 5 exponents per card. The other, for use with jobs where a large 

volume of data of low precision has to be read in, will provide for 10 five 

digit fractional parts and 5 exponents per card. Each exponent will apply to 

both of the five digit fractional parts to its left. 

(K) LEAVE and RETURN 

These instructions presently provide for convenient transfers only 

between the main program and its subroutines. It has been decided that this 

— 12 — 



same principle should be extended in cascade fashion at leatt enough to also 

permit similar transfers between subroutines of the main program and subroutines 

of these subroutines0 

(L) Numbering unit records on tape 

It has been decided that the C address of the tape reading and writing 

instructions will be used to identify tape unit records „ During the execution 

of WRITE TAPE the C address will be written on the tape at the beginning of the 

record. During the execution of READ TAPE a tape search will take place which 

will locate and read the desired unit record. It would appear that this can be 

accomplished without incurring any significant time penalty. 

- 13 -



TELETYPE COMMUTATIONS: 

ITS APPLICATIONS IN A COMPUTING SERVICE 

BY: JOHN B. HUGHES 

April 26, I95I+ 



•The Numerical Analysis group at General Electric in Evendale, Ohio is presently 

engaged in the operation of an IBM 701 calculator. Relatively early in our operating 

history we found that a considerable portion of our problems were originating at 

remote points. Examples of these problems are test data reduction problem where 

the test facilities are located in Iynn, Massachusetts and design problems originating 

in the Steam. Turbine Division of General Electric in Lynn and Schenectady. 

Due to the urgency of the solution of these problems, a rapid communication 

system between these remote points and the Evendale 701 was necessary. In order to 

establish this communication a teletype network was installed. This network presently 

is made up of four stations connected to a single circuit. These stations are: 

1) Evendale, 2) Schenectady, 3) and two stations in Iynn. These stations time share 

the wire facility with practically all traffic being to and from Evendale. 

The circuit facility and terminal machinery are standard Western Union rental 

equipment. All stations are equipeed with a model 15 sending-receiving teleprinter, a 

model 39 typing reperforator, a distributor transmitter, and selector equipment for the 

control of remote stations. This equipment allows the transmission of either taped 

data or data sent via a keyboard. The receipt of data is either or both a printer copy 

and a punched paper tape. In order that the data may be converted to and from punched 

cards automatically, the IBM type 0^3 and 063 machines are used. The C43 will read 

standard teletype five hole tape and punch cards. The coding and card form are under 

control of a plugboard. The 063 performs the inverse operation of reading cards and 

producing teletype tape. 

The two different types of problems, i.e., data reduction and design problems, 

impose somewhat different requirement upon the data transmission, in the case of de

sign problems the amount of input data is relatively small but an error of a single 

digit in the transmission may produce disastrous results in the running of the problem. 

F u r t h e r m o r e ,  s i n c e  t h e  d e s i g n  p r o b l e m  m a y  w e l l  f a l l  i n t o  a n  a r e a  o f  i n v e s t i g a t i o n  f o r  

which the designer has no intuitive feeling of what the answer should be, errors in the 



- 2 -

results may go unnoticed. Data reduction on the other hand usually implies large 

volumes of data with somewhat less stringent requirements on accuracy. Generally 

the test data is taken for a multitude of similar operating points. If an error 

occurs it is detected relatively easily by plotting, examining trends, etc. For 

the above reasons two separate and distinct methods of data transmission and checking 

are used for the two different types of problems. 

The design problems and analytical studies being transmitted to us from the 

Steam Turbine Division in Lynn and Schenectady are processed through the 701 as 

shown in Figure 1. The data is initially keypunched from a source document orig

inated by the engineer specifying the problem. The cards are then check summed on 

a 407 and the computed check sum is placed at the end of the deck of cards to be 

transmitted. The 407 also produces a copy of the input data so that a neat permanent 

record of data is available at the sending station. The cards are then processed to 

tape using the 063 • Control information is automatically punched into the tape so 

that the teletype tape produced will cause the teleprinters to print formats comparable 

with the h07. The tape is then transmitted by means of the tape reader. While the 

tape is being transmitted the teleprinter monitors the transmission. This gives the 

operator a visual check of the progress of the outgoing information. At the re

ceiving station the data is age.in punched onto tape and interpreted on the tape. The 

teleprinter also monitors the transmission. The tape is then processed through the 

0I3 which produces a deck of cards. If all is well, this deck of cards is a duplicate 

of the original at the remote point. The cards are then checked by recomputing the 

check sum and comparing this with the original. As a by-product of this check 

summing a copy of the input data is produced by the ^07* Given on this copy of the 

input data is a program number which specifies the deck of binary program cards to 

be used for the calculation and refers the operator to a set of operating instructions 

for the 701. Normally the output of the 701 is decimal cards. These cards go through 

a similar process to return the results to the problem originator. In the event of an 



\ 

FIG. I. PROBLEM FLOW DIAGRAM 



-3-

error the receiving operator checks through the input data to see if there are any 

erroneous characters or cards obviously in error. The teletype copy is then checked to 

determine if the error was in transmission or conversion. It it occured in conversion, 

the error can be fixed by reprocessing the tape or keypunching the error card. If the 

mistake is not easily found, 'then the deck containing the check sum error is retrans

mitted. The Keyboard facilities are used by the operators to give verbal instruction 

for reruns etc. 

The processing of data reduction problems follows the same flow diagram for the 

conversion and transmission. The recording of data is originally done in the test 

cell as the test progresses. The data is recorded on standardized log sheets which 

have been designed to fit given instrumentation layouts and are not the most logical 

for transmission or programming. In order to simplify the recording of data onto cards 

the operator merely punches the log sheet data and appropriate identification numbers. 

The identification numbers are fixed for any given test but the amount of data taken 

may vary. The cards are then transmitted to Evendale. As the cards are made they are 

checked for proper format and for erroneous characters. The cards are then checked on 

a collator for proper identification numbers. The identification numbers are later 

converted to addresses by means of a table look-up in the 701. When the cards are 

read into the 701; parts of the data are checked to see if they are within specified 

ranges and if sufficient data has been transmitted to perform the calculation specified. 

If all tests are passed the 701 computes and prints the results with appropriate al

phabetic headings. In some cases the results are punched on decimal cards so that 

graphs can be produced on automatic plotting equipment. 

One additional field of work which we are embarking upon is the processing of 

test data which has been automatically recorded. Our test facility in Lynn has in

stalled an automatic recording analog to digital converter. This device was built by 

the A. D. Little Co. It has the capacity* for reading 50 channels of input and recording 



* 

-li

the information by means of a Flexcwriter. 'The Flexowriter also produces paper tape 

which can be transmitted for processing cn the 701. This system places additional 

requirements on the transmission of the data. The volume of data produced by such 

machinery may be tremendous and, therefore, require maximum speed and efficiency in 

communication with the data reduction center. 

Several economic factors must be considered in the installation of a teletype 

system. The saving of time is the major advantage to be gained. In the case of test 

data reduction we are dealing with test facilities which have operating expenses in 

the order of $500 per hour. It is imperative that the results of these tests be avail

able at the earliest possible time so that the progress of the test may be determined. 

The calculation which we are doing would require a prohibitive amount of hand computing 

at the test site and mail service would probably introduce a two day delay. Our -oral 

rental for the wire service and. terminal equipment is about $1500 per month for the 

four stations. This includes about 750 milss of wire facilities. At present the ccst 

of transmitting decimal digits ever this wire facility is the same order of magnituu-

as reading them into the 701. Then costwise, we are supplying these remote customers 

with a hypothetical 701 which has half speed input and output for data. We feel that 

there is a class of problems which are economical on this hypothetical machine. Of 

course the economics will vary with the length of line, type of problem, and alternate 

methods of solving the particular problems. 

In the future we hope to see improved, cheaper, and more reliable methods of 

transmitting data. It would be a considerable advantage to have the remote customer 

in more direct communication with the machine. At present it dees no- appea- practical 

to tie a machine such as the 701 directly to telegraphic facilities, irreatei bandwidths 

and special equipment would be necessary. The ISM 065 card to card machine will allow 

us a more direct communication since there will be no intermediate medium such as tape 

and the transmission is self checking. 



In conclusion I would like to acknowledge the effort of Mr. R. A. Butterworth cf 

the Steam Turbine Division in planning the problem transmission system described. 



A  N O T E  C O N C E R N I N G  T H E  O R G A N I Z A T I O N  O F  
A N  I B M  T Y P E  7 0 1  I N S T A L L A T I O N  

J o h n  D .  M a d d e n  

P - 5 0 5  

7  A p r i l  1 9 5 4  

-7̂  KS."H 11 \J doifc&iAtioH 
1 7 0 0  M A I N  S I  •  S A N T A  M O N I C A  •  C A L I f  



P-500 
i 

S u m m a r y  

T h i s  i s  a  b r i e f  r e p o r t  o n  t h r e e  p r o j e c t s  i n  t h e  

R A N D  N u m e r i c a l  A n a l y s i s  D e p a r t m e n t .  T h e  f i r s t  i s  a  s u r v e y  

of the organizational setups used at various IBM Type 701 

i n s t a l l a t i o n s .  T h e  r e s u l t s  g i v e  a n  i n s i g h t  i n t o  t h e  

p h i l o s o p h i e s  i n f l u e n c i n g  o p e r a t i o n  o f  e a c h  o f  e l e v e n  c o m p u t i n g  

g r o u p s .  T h e  s e c o n d  i s  t h e  d e v e l o p m e n t  a n d  v a l i d a t i o n  o f  a  

t e s t  w h i c h  w i l l  h e l p  t o  d i s t i n g u i s h  g o o d  p r o s p e c t s  f o r  c o m p u t i n g  

J o b s  f r o m  b a d  o n e s .  T h e  l a s t  i s  t h e  i n s t a l l a t i o n  o f  a  c a m e r a  

i n  t h e  7 0 1  r o o m  t o  e x p e d i t e  c h e c k i n g  o f  m a c h i n e  p r o g r a m s .  I t  

i s  f e l t  t h a t  t h e  c a m e r a  w i l l  a l l o w  d i v o r c i n g  t h e  p r o g r a m m e r s  

f r o m  m a c h i n e  o p e r a t i o n  a n d  t h a t  t h i s  w i l l  e f f e c t  a n  i n c r e a s e d  

e f f i c i e n c y  i n  m a c h i n e  u t i l i z a t i o n .  

29-1013-0(R) 



P - 3 0 5  
p . l  

A  N O T E  C O N C E R N I N G  T H E  O R G A N I Z A T I O N  O F  A N  
I B M  T Y P E  7 0 1  I N S T A L L A T I O N  

T h i s  i s  a  r e p o r t  o n  t h r e e  p r o j e c t s  i n  t h e  : , R A N D  

N u m e r i c a l  A n a l y s i s  D e p a r t m e n t  —  o n e  v i r t u a l l y  c o m p l e t e d ,  a n o t h e r  

i n  p r o c e s s ,  a n d  t h e  l a s t  a b o u t  t o  b e g i n .  T h e  O r g a n i z a t i o n  S u r v e y  

s e c t i o n  i s  c o m p l e t e l y  c o n s i s t e n t  w i t h  t h e  t i t l e  o f  t h e  p a p e r  

w h e r e a s  t h e  T e s t  P r o j e c t  a n d  C a m e r a  P r o j e c t  s e c t i o n s  b e a r  o n l y  

i n d i r e c t l y  o n  t h e  o r g a n i z a t i o n  o f  a n  i n s t a l l a t i o n .  

O r g  a n  i  z  a  t i o  n  S u r v e y  

E a r l y  t h i s  y e a r  w e  d e c i d e d  t o  s u r v e y  c o m p u t i n g  g r o u p s  

t h a t  u s e  I B M  T y p e  7 0 1  m a c h i n e s .  W e  w e r e  i n t e r e s t e d  i n  a s c e r t a i n -

i n y  h o w  e a c h  w a s  s e t  u p  o r g a n i z a t i o n a l l y .  A c c o r d  i n  y l y ,  q u e s t i o n 

n a i r e s ®  w e r e  s e n t  t o  t w e l v e  c o m p a n i e s  t h a t  h a d  7 0 1 ' s  i n s t a l l e d  

a n d  " o n  r e n t a l . "  T h e  p a r t i c i p a n t s  a r e  l i s t e d  b e l o w .  

B o e i n g  A i r p l a n e  C o m p a n y  

D o u g l a s  A i r c r a f t  C o m p a n y ,  I n c .  ( E l  S e y u n d o )  

D o u g l a s  A i r c r a f t  C o m p a n y ,  I n c .  ( S a n t a  M o n i c a )  

G e n e r a l  E l e c t r i c  C o m p a n y  

G e n e r a l  M o t o r s  C o r p o r a t i o n  

I n t e r n a t i o n a l  B u s i n e s s  M a c h i n e s  C o r p o r a t i o n  

(J. S. Naval Ordnance Test Station (Inyokern, 
C h i n a  L a k e ,  C a l i f o r n i a )  

L o c k h e e d  A i r c r a f t  C o r p o r a t i o n  

L o s  A l a m o s  S c i e n t i f i c  L a b o r a t o r y  

N o r t h  A m e r i c a n  A v i a t i o n ,  I n c .  

T h e  R A N D  C o r p o r a t i o n  

U n i t e d  A i r c r a f t  C o r p o r a t i o n  

W e  b e l i e v e  t h a t  t h e r e  a r e  b e n e f i t s  f o r  a l l  i n  t h e  

® A  c o p y  o f  t h e  q u e s t i o n n a i r e  a p p e a r s  a t  t h e  e n d  o f  t h e  p a p e r .  

29-1013-0(R) 



p-,3o;J 
p . 2  

u n r e s t r i c t e d  s h a r i n g  o f  i n f o r m a t i o n  o f  t h i s  k i n d .  T h i s  p r o v i d e s  

t h e  b a s i c  m o t i v a t i o n  f o r  o u r  u n d e r t a k i n g  t h e  s u r v e y .  A d m i t t e d l y ,  

o u r  a t t i t u d e  i s  t h a t  o f  a n  o r g a n i z a t i o n  w h i c h  i s  n o t  e n g a g e d  i n  

c o m p e t i t i o n  w i t h  l i k e  o r g a n i z a t i o n s .  

S p e c i f i c a l l y ,  w e  w e r e  i n t e r e s t e d  i n  c o l l e c t i n g  d a t a  o n  

t h r e e  p o i n t s .  W e  r e a l i z e d  t h a t  o u r  p r o g r a m m i n g  a n d  c o d i n g  ^ r o u p  

w a s  u n d e r - s t a f f e d .  T h i s  w a s  e v i d e n c e d  b y  t h e  f a c t  t h a t  t h e s e  

p e o p l e  w e r e  f r a n t i c a l l y  w o r k i n g  t o  p r o c e s s  * h e  j o b s  a n d  k e e p  t h e  

m a c h i n e  b u s y  o n  u s e f u l  w o r k  w h i l e  d e v o t i n y  t o o  l i t t l e  t i m e  t o  t h e  

i m p o r t a n t  j o b  o f  p r e p a r i n g  a n d  r e v i s i n g  g e n e  r e  1  r o u t i n e s .  W e  

w o n d e r e d  i f  t h i s  s i t u a t i o n  o b t a i n e d  a t  o t h e r  i n s t a l l a t i o n s .  A l s o ,  

w e  w e r e  i n t e r e s t e d  i n  c o m p a r i n g  o u r  p r o p o r t i o n s  o f  t h e  p e o p l e  i n  

t h e  v a r i o u s  j o b  c l a s s i f i c a t i o n s  w i t h  t h e  n o r m .  W e  f e l t  t h a t  w e  

m i g h t  g a i n  b y  s e e i n g  t h e s e  f i g u r e s .  A l s o ,  w e  w a n t e d  t o  a s c e r t a i n  

i f  o t h e r  i n s t a l l a t i o n s  w e r e  h i r i n g  p e o p l e  w i t h  s p e c i a l i s t  c l a s s i f i 

c a t i o n s  w h i c h  w e  h a d  n o t  c o n s i d e r e d .  

T h e  f i r s t  f i v e  q u e s t i o n s  o n  t h e  q u e s t i o n n a i r e  a r e  

i n t e n d e d  t o  f r a m e  t h e  m o d e  o f  o p e r a t i o n  o f  t h e  r e p o r t i n g  g r o u p .  

A  c o m p i l a t i o n  o f  t h e  a n s w e r s  t o  t h e s e  q u e s t i o n s  f o l l o w s .  

1 .  H o w  m a n y  h o u r s  p e r  d a y  i s  y o u r  7 0 1 ' s  p o w e r  o n ?  

36, 20,  17.  16,  16,  11,  11,  10.  10, 9,  9 

m e a n :  1 3  

T h i s  r e q u i r e s  l i t t l e  c o m m e n t  a l t h o u g h  t h e  " t h i r t y - s i x "  f i g u r e  

i s  o b v i o u s l y  a  t w o - m a c h i n e  a n s w e r .  

29-1013-0(R) 



P - 5 0 5  
p . 3  

2 .  W h a t  p e r c e n t a g e  o f  y o u r  m a c h i n e ' s  p r o d u c t i o n  t i m e *  
i s  l o g g e d  o n  p r o b l e m s  c o d e d  a n d  p r o g r a m m e d  b y  
m e m b e r s  o f  y o u r  C o m p u t i n g  D e p a r t m e n t ?  

1 0 0 ,  1 0 0 ,  1 0 0 ,  1 0 0 ,  8 0 , - 8 0 ,  8 0 ,  7 5 ,  6 5 ,  2 0 ,  0  

m e a n :  7 3  

I t  i s  i n t e r e s t i n g  t o  n o t e  t h a t  i n s t a l l a t i o n s  t e n d  t o  h a v e  a  

c o m p l e t e l y  " c l o s e d  s h o p "  o r  a  c o m p l e t e l y  " o p e n  s h o p "  a n d  t h e  

l a r g e r  n u m b e r  o f  g r o u p s  p r e f e r  C o m p u t i n g  D e p a r t m e n t  p r o g r a m m i n g .  

5 .  W h a t  p e r c e n t a g e  o f  y o u r  m a c h i n e ' s  p r o d u c t i o n  t i m e  
i s  l o g g e d  o n  p r o b l e m s  w h i c h  u s e  a b s t r a c t  c o d e  a n d  
i n t e r p r e t i v e  r o u t i n e s ?  

/ 

1 0 0 ,  9 5 ,  9 0 ,  9 0 ,  8 0 ,  7 0 ,  3 0 ,  2 5 ,  2 5 ,  1 5 ,  0  

m e a n :  5 6  

H e r e ,  t h e r e  a p p e a r s  t h e  s a m e  t e n d e n c y  t o  g o  t o  o n e  e n d  o f  t h e  

s c a l e  o r  t h e  o t h e r .  H o w e v e r ,  i n  t h i s  c a s e ,  i n s t a l l a t i o n s  a r e  

a b o u t  e v e n l y  d i v i d e d  b e t w e e n  a b s t r a c t  c o d e  e m p h a s i s  a n d  d e - e m p h a s i s .  

4 .  W h a t  p e r c e n t a g e  o f  y o u r  m a c h i n e ' s  p r o d u c t i o n  t i m e  
i s  l o g g e d  o n  p r o b l e m s  o f  a  o n e - s h o t  n a t u r e  ( a s  
d i s t i n g u i s h e d  f r o m  p r o b l e m s  w h i c h  r e c u r  w e e k  a f t e r  
w e e k  o r  m o n t h  a f t e r  m o n t h ) ?  

1 0 0 ,  9 0 ,  8 0 ,  7 0 ,  2 0 ,  2 0 ,  2 0 ,  1 0 ,  5 ,  0  

m e a n :  4 2  

P r o d u c t i o n  t i n e  i s  u s e d  i n  t h e  s e n s e  o f  g o o d  m a c h i n e  t i m e  
e x c l u d i n g  a s s e m b l y  a n d  c o d e - c h e c k .  
29-1013-0(R) 



P - 5 0 5  
p . 4  

H e r e  t h e  s a m e  t e n d e n c y  a p p e a r s  a l t h o u g h  o n e  w o u l d  s u s p e c t  t h a t  

s o m e  g r o u p s  a r e  a n s w e r i n g  o n e  q u e s t i o n  a n d  s o m e  g r o u p s  a n o t h e r .  

T h i s  q u e s t i o n  w a s  i n t e n d e d  t o  d e t e r m i n e  t h e  p e r c e n t a g e  o f  a n  

i n s t a l l a t i o n '  s  m a c h i n e  t i m e  u s e d  o n  c o d e s  w h i c h  a r e  r u n ,  f i l e d  

a w a y ,  a n d  f o r g o t t e n .  H o w e v e r ,  w e  f e e l  t h a t  s o m e  o f  t h e  s m a l l  

a n s w e r s  r e f l e c t  a  d i f f e r e n t  i n t e r p r e t a t i o n  o f  t h e  q u e s t i o n .  

5 .  H o w  m u c h  p r o d u c t i o n  t i m e  i s  l o g g e d  o n  a n  a v e r a g e -
l e n g t h  p r o b l e m ?  

2 5 . 0 ,  1 0 . 0 ,  0 . 0 ,  2 . 5 ,  2 . 0 ,  1 . 0 ,  . 0 ,  . 3 ,  . 2 ,  . 2  

m e a n :  ^  . 0  

H e r e ,  a g a i n ,  w e  s u s p e c t  t h a t  t h e s e  a r e  n o t  a l l  a n s w e r i n g  t h e  

s a m e  q u e s t i o n .  I n  t h i s  c a s e  w e  w e r e  a t t e m p t i n g  t o  d e t e r m i n e  " t h e  

n u m b e r  o f  h o u r s  l o g g e d  o n  c o m p l e t e d  j o b s "  d i v i d e d  b y  " t h e  n u m b e r  

o f  c o m p l e t e d  j o b s . "  T h e  s m a l l  o n e s  l o o k  t o o  s m a l l .  T h i s  i s  a  

d i f f i c u l t  q u e s t i o n  t o  a n s w e r  f o r  m a n y  g r o u p s  s i n c e  t h e y  h a v e  

v e r y  f e w  " c o m p l e t e d "  j o b s .  

E n t r i e s  i n  t h e  t a b l e  w h i c h  c o n s t i t u t e s  i t e m  6  o n  t h e  

q u e s t i o n n a i r e  s h o w  t h a t  t o t a l  p e r s o n n e l  n u m b e r s  r a n g e  f r o m  f e w e r  

t h a n  f i f t e e n  t o  g r e a t e r  t h a n  f i f t y  w i t h  a  m e a n  o f  t h i r t y - t h r e e .  

I n  o r d e r  t o  o b t a i n  t h e  n u m b e r s  o f  p e o p l e  i n  v a r i o u s  j o b  c l a s s i f i 

c a t i o n s ,  i t  w a s  n e c e s s a r y  t o  m a k e  t h e s e  c l a s s i f i c a t i o n s  b r o a d e r  

s i n c e  m a n y  p e r s o n s  o c c u p y  p o s i t i o n s  w h i c h  f i t  i n  t w o  o r  m o r e  o f  

t h e  s u g g e s t e d  c a t e g o r i e s .  C o n s e q u e n t l y ,  7 0 1  o p e r a t o r s  a n d  d i s 

p a t c h e r s  a r e  c o n s i d e r e d  a s  o n e  g r o u p ;  p u n c h e d - c a r d  m a c h i n e  o p e r 

a t o r s  i n c l u d i n g  k e y p u n c h  o p e r a t o r s  c o m p r i s e  a  s e c o n d  g r o u p ;  a n d  

29-1013-0(R) 



P- 5 0 5  
p .  5  

a l l  p r o g r a m m e r s ,  c o d e r s  a n d  n u m e r i c a l  a n a l y s t s  m a k e  u p  t h e  t h i r d  

g r o u p .  T h e  m e a n  p r o p o r t i o n  r a t i o s  f o r  t h e s e  t h r e e  g r o u p s  a r e  

a p p r o x i m a t e l y  1 : 2 : 7 .  I t  i s  c u r i o u s  t o  n o t e  t h a t  t h i s  a p p r o x i m a t e s  

c l o s e l y  t h e  r a t i o s  s e l e c t e d  b y  m a n y  g r o u p s .  

T h e  f o l l o w i n g  r e s u l t s  p e r t a i n  t o  t h e  s p e c i f i c  p o i n t s  w e  

w a n t e d  t o  i n v e s t i g a t e .  

1 .  O u r  " p r o g r a m m i n g ,  c o d i n g ,  a n d  n u m e r i c a l  a n a l y s i s "  

s t a f f  i s  s l i g h t l y  l a r g e r  t h a n  t h e  a v e r a g e .  W e  d o  

n o t  f e e l ,  h o w e v e r ,  t h a t  t h e  f a c t  t h a t  w e  a r e  u n d e r 

s t a f f e d  i m p l i e s  t h a t  g r o u p s  w i t h  f e w e r  p e o p l e  a r e  

a l s o  u n d e r s t a f f e d .  T h e r e  i s  t o o  m u c h  v a r i a n c e  i n  

t h e  m a n p o w e r  d e m a n d s  o f  d i f f e r e n t  m o d e s  o f  o p e r a t i o n  

o f  a  c o m p u t i n g  d e p a r t m e n t .  

2 .  O u r  p r o p o r t i o n s  o f  p e o p l e  i n  t h e  v a r i o u s  j o b  

c l a s s i f i c a t i o n s  a r e  q u i t e  c l o s e  t o  t h e  n o r m .  

3 .  T h e  s p e c i a l i s t  c l a s s i f i c a t i o n s  ( d i f f e r e n t  f r o m  t h o s e  

s u g g e s t e d  o n  t h e  f o r m )  w e r e  " a n a l o g  o p e r a t o r s "  i n  

o n e  g r o u p  a n d  p e o p l e  e n g a g e d  i n  " b u s i n e s s  a p p l i c a t i o n s  

a t  a n o t h e r  i n s t a l l a t i o n .  

T e s t  P r o j  e c  t  

F o r  s o m e  y e a r s  w e  h a v e  b e e n  c o n c e r n e d  a b o u t  h o w  w e  

a r e  t o  s e l e c t  g o o d  p r o s p e c t s  f o r  o u r  d e p a r t m e n t  o u t  o f  a  g r o u p  

o f  a p p l i c a n t s .  I t  i s  d i f f i c u l t  t o  s i n g l e  o u t  g o o d  p e o p l e  f r o m  

a  g r o u p  o f  r e c e n t  g r a d u a t e s  p a r t i c u l a r l y  w h e n  t h e y  h a v e  n o  w o r k  

e x p e r i e n c e .  U n f o r t u n a t e l y  t h i s  i s  t h e  c a t e g o r y  o f  m o r e  t h a n  h a l f  

29-1013- 0(R) 



P— 50 a 
p • 6 

o f  t h o s e  w h o  a p p l y .  J u d g m e n t  h a s  b e e n  b a s e d  o n  w h e t h e r  o r  n o t  

t h e  n a n  " t a l k s "  a  g o o d  i n t e r v i e w  a n d  o n  h i s  c o l l e g e  g r a d e s .  

N e i t h e r  o f  t h e s e  i s  a  c e r t a i n  c r i t e r i o n .  I n  f a c t ,  i t  i s  n o t  

c l e a r  t h a t  w e  w a n t  t h e  p e o p l e  w i t h  t h e  b e s t  m a r k s .  

W e  h a v e  e x p e r i e n c e d  t h e  s i t u a t i o n  i n  w h i c h  t w o  p e r s o n s  

w i t h  v i r t u a l l y  i d e n t i c a l  b a c k g r o u n d s  a r e  h i r e d ,  a r e  g i v e n  s i m i l a r  

o p p o r t u n i t i e s ,  a n d  o n e  p r o v e s  t o  b e  c o n s i d e r a b l y  m o r e  v a l u a b l e  

t h a n  t h e  o t h e r .  A l s o ,  w e  h a v e  c a s e s  o f  p e r s o n s  w h o  w e r e  a l m o s t  

r e j e c t e d  w h o  h a v e  b e c o m e  u s e f u l  a d d i t i o n s  t o  t h e  d e p a r t m e n t .  O n e  

m a n ,  i n  p a r t i c u l a r ,  h a d  l o w e r  t h a n  u s u a l  g r a d e s  a n d  " t a l k e d "  a n  

a v e r a g e  i n t e r v i e w .  H e  l i a s  s i n c e  d e v e l o p e d  i n t o  a  l e a d e r  i n  o u r  

g r o u p .  I t  i s  d i s c o u r a g i n g  t o  c o n t e m p l a t e  t h e  n u m b e r  o f  g o o d  m e n  

w h o  h a v e  g o t t e n  a w a y  b e c a u s e  w e  f a i l e d  t o  r e c o g n i s e  t h e i r  w o r t h .  

I n  t h e  i n t e r e s t  o f  g e t t i n g  a  b e t t e r  i n d i c a t i o n  o f  t h e  

a p t i t u d e  o f  p e r s o n s  b e f o r e  t h e y  a r e  h i r e d  o r  r e j e c t e d ,  w e  a s k e d  

p s y c h o l o g i s t s  i n  t h e  R A N D  S o c i a l  S c i e n c e  D i v i s i o n  t o  a i d  u s  i n  

o b t a i n i n g  a  t e s t  w h i c h  w o u l d  h e l p  d i s c r i m i n a t e  b e t w e e n  t h e  l i k e l y  

a n d  u n l i k e l y  a p p l i c a n t s .  D r .  R o b e r t  L .  C h a p m a n  c o n s e n t e d  t o  u n d e r 

t a k e  t h i s .  

W e  s t a r t e d  t h e  p r o j e c t  b y  l o o k i n g  o v e r  m a n y  t e s t s  a n d  

t r y i n g  t o  p r e d i c t  w h e t h e r  o r  n o t  e a c h  t e s t  m e a s u r e d  a t t r i b u t e s  

w h i c h  w e r e  d e s i r a b l e  o r  u n d e s i r a b l e  t o  u s .  W e  w e r e  i n t e r e s t e d  

i n  t e s t s  w h i c h  w o u l d  g i v e  a  n e g a t i v e  c o r r e l a t i o n  w i t h  w h a t  w e  

c o n s i d e r e d  d e s i r a b l e  a s  w e l l  a s  t h o s e  w h i c h  w o u l d  s h o w  a  p o s i t i v e  

c o r r e l a t i o n .  A  g r o u p  o f  t e s t s  w a s  s e l e c t e d  a n d  a d m i n i s t e r e d  t o  

a l l  o f  t h e  p e o p l e  i n  o u r  d e p a r t m e n t  a n d  t o  p e o p l e  i n  t h e  I n y o k e r n  

a n d  D o u g l a s ,  S a n t a  M o n i c a  i n s t a l l a t i o n s .  T h i s  g a v e  u s  a  s a m p l e  

29-1013-0(R) 



P- 5 0 5  
p . 7  

o f  a b o u t  1 0 0 .  T h e  t e s t  s c o r e s  w e r e  c o r r e l a t e d  w i t h  r a t i n g s  

o f  t h e  s u b j e c t s  m a d e  b y  s u p e r v i s o r y  p e o p l e  i n  e a c h  i n s t a l l a t i o n .  

T h e  f i n a l ,  f i n i s h e d  r e s u l t s  o f  t h e  s t u d y  a r e  n o t  c o m p l e t e .  

H o w e v e r ,  i t  a p p e a r s  t h a t  t h r e e  " f a c t o r s "  a r e  i m p o r t a n t .  T h e y  a r e  

c a l l e d  " r e a s o n i n g , "  " s p a c e , "  a n d  " s t a b i l i t y . "  S o m e w h a t  s i m p l i f i e d  

d e f i n i t i o n s  o f  t h e s e  q u a l i t i e s  f o l l o w .  

" r e a s o n i n g "  -  t h e  a b i l i t y  t o  s o l v e  l o g i c a l  p r o b l e m s  
—  t o  f o r e s e e  a n d  p l a n .  

" s p a c e "  -  t h e  a b i l i t y  t o  t h i n k  a b o u t  o b j e c t s  
i n  t w o  o r  t h r e e  d i m e n s i o n s .  

" s t a b i l i t y "  -  t h e  a b i l i t y  t o  r e m a i n  c a l m  i n  a  c r i s i s ,  
t o  d i s r e g a r d  d i s t r a c t i o n s  w h i l e  w o r k i n g ,  
t o  a v o i d  b e c o m i n g  i r r i t a t e d  i f  i n t e r r u p t 
e d  w h e n  c o n c e n t r a t i n g .  

I n  o r d e r  t o  d e t e r m i n e  t h e  a m o u n t  o f  e a c h  o f  t h e s e  

a t t r i b u t e s  w h i c h  a n  a p p l i c a n t  h a s ,  w e  h a v e  b e e n  u s i n g  t w o  t e s t s  —  

t h e  T h u r s t o n e  P r i m a r y  M e n t a l  A b i l i t i e s  t e s t  a n d  t h e  T h u r s t o n e  

T e m p e r a m e n t  S c h e d u l e  t e s t .  E v i d e n c e  a s  t o  t h e  u s e f u l n e s s  o f  

t h e  t e s t s  i s ,  o f  n e c e s s i t y ,  p r e t t y  m u c h  o f  a  " t e s t i m o n i a l "  n a t u r e .  

A l l  p e r s o n s  w h o  w e r e  h i r e d  a f t e r  t e s t i n g  w e l l ,  h a v e  w o r k e d  o u t  w e l l .  

W e  d i d  h i r e  t w o  m e n  w h o  h a d  l o w  " s t a b i l i t y "  s c o r e s ,  B o t h  o f  t h e s e  

m e n  h a d  r e c o r d s  o f  f r e q u e n t  j o b  c h a n g e s  a n d  b o t h  h a v e  s i n c e  l e f t  

u s .  I t  i s  n o t  t o o  d i f f i c u l t  t o  e x t r a p o l a t e  " c h r o n i c  d i s s a t i s 

f a c t i o n  w i t h  j o b  s i t u a t i o n s "  f r o m  a  l a c k  o f  s t a b i l i t y  q u a l i t i e s .  

I t  s h o u l d  b e  e m p h a s i z e d  t h a t  w e  d o  n o t  u s e  t h e  t e s t  

a s  a n  a b s o l u t e  d e t e r m i n e r .  W e  b e l i e v e  t h a t  i t  s h o u l d  b e  c o n 

s i d e r e d  n o  m o r e  t h a n  a n  i n d i c a t i o n  o f  t h e  p o t e n t i a l  o f  t h e  

i n d i v i d u a l .  A p p a r e n t l y ,  s o m e  p e o p l e  e n j o y  t a k i n g  t e s t s  w h e r e a s  

29-1013-0(R) 



P-505 
p .  0  

o t h e r s  a r e  u p s e t  b y  a  t e s t i n g  s i t u a t i o n  a n d  f a i l  t o  d o  a s  w e l l  

a s  t h e y  s h o u l d .  H o w e v e r ,  s u b j e c t s  d o  n o t  s c o r e  b e t t e r  t h a n  t h e y  

a r e  c a p a b l e  o f ,  h e n c e ,  h i g h  s c o r e s  o n  t h e  t e s t s  i n d i c a t e  a n  

a b u n d a n c e  o f  t h e  q u a l i t y  b e i n g  m e a s u r e d .  

O n e  a t t r i b u t e  w h i c h  t h e  t e s t s  d o  n o t  s e n s e  i s  " d r i v e . "  

N e  h a v e  n o t  f o u n d  a  w a y  t o  s e l e c t  p e r s o n s  w i t h  t h i s  c h a r a c t e r i s t i c  

a n d  w e  f e e l  t h a t  i t  i s  i m p o r t a n t .  B y  " d r i v e "  w e  m e a n  a n  a t t i t u d e  

w h i c h  w i l l  n o t  a l l o w  t h e  i n d i v i d u a l  t o  d r o p  a  p r o b l e m  u n t i l  h e  

h a s  c o m p l e t e l y  s o l v e d  i t .  W e  h a v e  t h e  c a s e  o f  t w o  m e n  b o t h  o f  

w h o m  h a d  a l m o s t  i d e n t i c a l l y  h i g h  t e s t  s c o r e s  —  o n e  i s  g o o d  a n d  

t h e  o t h e r  i s  v e r y  g o o d .  T h i s  i s  d u e  t o  c  t r e m e n d o u s  a m o u n t  o f  

" d r i v e "  i n  t h e  l a t t e r  m a n .  W e  a r e  s t i l l  s e a r c h i n g  f o r  a  w a y  t o  

d e t e r m i n e  t h i s  c h a r a c t e r i s t i c .  

C A M E R A  P R O J E C T  

W e  a r e  b u i l d i n g  a  c a m e r a  f o r  i n s t a l l a t i o n  i n  o u r  7 0 1  

r o o m  t o  p h o t o g r a p h  t h e  m a c h i n e ' s  c o n s o l e  p a n e l .  W e  e x p e c t  t h a t  

t h i s  w i l l  b e  a  h e l p  i n  c o d e - c h e c k i n g  a n d  a n  a i d  t o w a r d  t r y i n g  o u t  

a  p a i r  o f  t h e o r i e s  c o n c e r n e d  w i t h  t h e  e f f i c i e n t  o p e r a t i o n  o f  o  

c o m p u t i n g  d e p a r t m e n t .  

F o r  s o m e  t i m e  w e  h a v e  f e l t  t h a t  a  d e g r e e  o f  j o b  s p e c i a l i  

z a t i o n  i n  a  c o m p u t i n g  i n s t a l l a t i o n  i s  d e s i r a b l e .  I n  o u r  p u n c h e d  

c a r d  w o r k ,  a  p r o g r a m m e r  w r i t e s  a  d e t a i l e d  o u t l i n e  o f  t h e  w o r k  t h a t  

m u s t  b e  d o n e  a n d  s u b m i t s  i t  t o  t h e  m a c h i n e  r o o m  v / h e r e  o p e r a t o r s  

p r o c e s s  t h e  c a r d s  i n  a c c o r d a n c e  w i t h  t h e  w r i t t e n  i n s t r u c t i o n s .  

W e  t h i n k  t h a t  t h i s  s y s t e m  h a s  a d v a n t a g e s  o v e r  o n e  i n  w h i c h  a n  

i n d i v i d u a l  d o e s  a l l  o f  t h e  w o r k  o n  o n e  j o b .  I t  a s s u r e s  o u r  h a v i n g  

e x p e r i e n c e d  p e o p l e  w o r k i n g  w i t h  t h e  m a c h i n e r y ;  i t  a l l o w s  u s  t o  

p r o c e s s  J o b s  o n  a n  a r o u n d - t h e - c l o c k  b a s i s ;  a n d  i t  t e n d s  t o  f o r c e  

29-1013-0(R) 



P-505 
p . 9  

t h e  p r o g r a m m e r  t o  t h i n k  " r e a l  h a r d "  a b o u t  t h e  j o b  b e f o r e  i t  y e t s  

t o  t h e  m a c h i n e  r a t h e r  t h a n  w h i l e  i t  i s  o n  t h e  m a c h i n e  o r  a f t e r  a  

d i f f i c u l t y  h a s  a p p e a r e d .  

W e  t h e o r i z e  t h a t  t h e  a d v a n t a g e s  o f  t h i s  s y s t e m  r e a l i z e d  

i n  p u n c h e d - c a r d  w o r k  a r e  a l s o  o b t a i n a b l e  i n  7 0 1  w o r k .  F u r t h e r ,  

i t  w o u l d  a p p e a r  t h a t  t h e  s a v i n g  i s  i n c r e a s e d  d u e  t o  t h e  r e l a t i v e l y  

l a r g e r  m a c h i n e  r e n t a l  o f  t h e  7 0 1 .  M o s t  o f  o u r  7 0 1  " p r o d u c t i o n "  

w o r k  ( a s  d i s t i n g u i s h e d  f r o m  c o d e - c h e c k i n g  a n d  a s s e m b l y )  i s  d o n e  

b y  7 0 1  o p e r a t o r s  f r o m  " p r o c e d u r e s "  w r i t t e n  b y  t h e  p r o g r a m m e r s .  

S o m e  o f  t h e  c o d e - c h e c k i n g  i s  d o n e  i n  t h i s  m a n n e r .  

T h e  o t h e r  t h e o r y  w h i c h  w e  w o u l d  l i k e  t o  t e s t  i s  t h e  

f o l l o w i n g :  W e  b e l i e v e  t h a t  m u c h  c o d e  d e b u g g i n g  m a y  b e  d o n e  b y  

m e r e l y  o b s e r v i n g  t h e  7 0 1  c o n s o l e  p a n e l  w h e n  t h e  m a c h i n e  s t o p s  

r a t h e r  t h a n  i n d i s c r i m i n a t e l y  r e s o r t i n g  t o  s u c h  p r o p s  a s  m e m o r y  

p r i n t - o u t s  ( M P O ' s )  a n d  t r a c i n g .  A l s o ,  w e  b e l i e v e  t h a t  t h e  a v e r a g e  

c o s t  o f  d i s c o v e r i n g  a  c o d i n g  e r r o r  w i l l  b e  s m a l l e r  i f  t h e  p r o g r a m m e r  

f i r s t  t r i e s  t o  f i n d  h i s  d i f f i c u l t y  u s i n g  c l u e s  a v a i l a b l e  o n  t h e  

c o n s o l e  p a n e l  a n d  t h e n  g o e s  t o  o t h e r  s c h e m e s  w h e r e  n e c e s s a r y .  

W e  h a v e  g o n e  t h r o u g h  a t  l e a s t  t w o  s t a g e s  i n  d e v e l o p i n g  

a  c o d e - c h e c k i n g  t e c h n i q u e .  A t  t h e  b e g i n n i n g  w e  u s e d  t r a c i n g  t o  

a  g r e a t  e x t e n t .  T h i s  w a s  i n  l a r g e  p a r t  d u e  t o  h a b i t s  d e v e l o p e d  

o v e r  a  p e r i o d  o f  y e a r s  i n  c h e c k i n g  C P C  c o d e s  a n d ,  b e f o r e  t h a t ,  

i n  c h e c k i n g - o u t  6 0 4  a n d  6 0 5  c o n t r o l  p a n e l s .  W h e n  w e  d e t e r m i n e d  

t h e  r e l a t i v e  m e r i t s  o f  t r a c i n g  a n d  M P O ' s  a n d  c o m p a r e d  t h e s e  w i t h  

t h e i r  r e l a t i v e  c o s t s ,  w e  p l a c e d  e m p h a s i s  o n  M P O ' s .  N o w ,  w e  a r e  

t e n d i n g  t o w a r d  s p a r i n g  u s e  o f  M P O ' s  a n d  g r e a t e r  u s e  o f  t h e  " s t o p  

i n f o r m a t i o n "  o n l y .  

29-1013-0(R) 



P-505 
p .  1 0  

I n  o r d e r  t o  d i v o r c e  t h e  p r o g r a m m e r s  f r o m  o p e r a t i o n  o f  

t h e  m a c h i n e  a n d  a t  t h e  s a m e  t i m e  t o  e n c o u r a g e  a  t e s t  o f  o u r  c o d e -

c h e c k  t h e o r y ,  w e  a r e  i n s t a l l i n g  t h e  c a m e r a .  W h e n e v e r  a n  u n p r e -

d i c t e d  s t o p  o c c u r s ,  e i t h e r  d u r i n g  a  p r o d u c t i o n  r u n  o r  c u r i n g  

c o d e - c h e c k ,  a  p h o t o g r a p h  o f  t h e  c o n s o l e  p a n e l  w i l l  b e  t a k e n ,  

t i m e - s t a m p e d ,  a n d  r e t u r n e d  t o  t h e  p r o g r a m m e r  a l o n g  w i t h  t h e  

r e s t  o f  h i s  m a t e r i a l s .  T h e  p r o g r a m m e r  w i l l  t r y  t o  d e t e r m i n e  t h e  

r e a s o n  f o r  t h e  s t o p  u s i n g  t h e  p a n e l  c l u e s  a n d  t a k e  a p p r o p r i a t e  

a c t i o n .  I n  s o m e  c a s e s  t h i s  w i l l  i n v o l v e  r e q u e s t i n g  t h e  o p e r a t o r  

t o  r u n  t o  t h e  s a m e  p l a c e  a n d  g e t  a n  M P O .  

I t  i s  t r u e  t h a t  t h e  o p e r a t o r  c o u l d  r e a d  a n d  r e c o r d  t h e  

i n f o r m a t i o n  o n  t h e  p a n e l  i n s t e a d  o f  p h o t o g r a p h i n g  i t .  A n d ,  h e  

m i g h t ,  i n  t h i s  w a y ,  b e  a b l e  t o  r e c o r d  t h e  p e r t i n e n t  i n f o r m a t i o n  

f a s t e r ,  o r  a t  l e a s t  c h e a p e r ,  t h a n  w e  c a n  w i t h  t h e  c a m e r a .  H o w e v e r ,  

i f  t h e  c o n t e n t s  o f  A ,  M Q ,  a n d / o r  M e m o r y  R e g i s t e r  a r e  d e s i r e d ,  i t  

i s  c l e a r  t h a t  t h e  p i c t u r e  i s  m o r e  e f f i c i e n t .  F u r t h e r ,  t h e  p h o t o 

g r a p h  w i l l  m a k e  i t  m o r e  d i f f i c u l t  t o  o v e r l o o k  a n y  i n f o r m a t i o n  

a v a i l a b l e  o n  t h e  p a n e l .  F o r  i n s t a n c e ,  t h e  p i c t u r e  w i l l  i n d i c a t e  

w h e t h e r  o r  n o t  t h e  o p e r a t o r  h a s  s e t  t h e  S e n s e  S w i t c h e s  c o r r e c t l y .  

T h e  c a m e r a  w i l l  b e  m o u n t e d  o n  t h e  w a l l  a c r o s s  t h e  r o o m  

f r o m  t h e  c o n s o l e .  T h e  p i c t u r e s  w i l l  r e q u i r e  a  t i m e  e x p o s u r e  o f  

o b o u t  o n e  s e c o n d .  F o r  t h i s  i n t e r v a l ,  e n o u g h  l i g h t s  i n  t h e  r o o m  

w i l l  b e  t u r n e d  o u t  ( a u t o m a t i c a l l y )  s o  a s  t o  a v o i d  l o s i n g  t h e  

c o n s o l e  l i g h t s  a n d  a t  t h e  s a m e  t i m e  t o  r e c o r d  t h e  s w i t c h  s e t t i n g s .  

A  t i m e  e x p o s u r e  i s  r e q u i r e d  b e c a u s e  t h e  o r t h o c h r o m o t i c  P o l a r o i d  

f i l m  i s  r e l a t i v e l y  i n s e n s i t i v e  t o  t h e  r e d  l i g h t  o f  t h e  n e o n s .  

29-1013-0(R) 



P-jOO 
p . 1 1  

T h i s  c a m e r a  i d e a  i s  n o t  n e w  w i t h  u s .  F o r  s o m e  t i m e  t h e  

p e o p l e  a t  M I T  h a v e  b e e n  u s i n g  a  c a m e r a  t o  p h o t o g r a p h  t h e  W h i r l w i n d  

c o n t r o l  p a n e l s .  T h e i r  p u r p o s e  i s  s o m e w h a t  d i f f e r e n t  f r o m  o u r s ,  

h o w e v e r .  T h e  d e v i c e  i s  u s e d  a s  a n  a i d  i n  t r a c k i n g  d o w n  i n t e r 

m i t t e n t  m a c h i n e  e r r o r s .  T h e  p i c t u r e s  g i v e  t h e n  a  p e r m a n e n t  r e c o r d  

o f  t h e  c o n d i t i o n  o f  e a c h  t o g g l e  a n d  o f  e a c h  c o n t r o l  s w i t c h  s e t t i n g  

a t  t h e  t i m e  a n  e r r o r  o c c u r s .  W e ,  t o o ,  s h a l l  h a v e  t h e  i n f o r m a t i o n  

f o r  t h i s  p u r p o s e  b u t  o u r  p r i m a r y  a i m  i s  t o  e x p e d i t e  c o d e - c h e c k i n g .  

29-1013-0(R) 



I V  $  A  

1  i *  F -  5 0 5  
l  ,  p .  1 2  

r  7 0 1  F a c i l i t y  Q u e s t i o n n a i r e  
b  " 

1 .  H o w  m a n y  h o u r s  p e r  d a y  i s  y o u r  7 0 1 ' s  p o w e r  o n ?  

2 .  W h a t  p e r c e n t a g e  o f  y o u r  m a c h i n e ' s  ^ p r o d u c t i o n  t i m e  
i s  l o g g e d  o n  p r o b l e m s  c o d e d  a n d  p r o g r a m m e d  b y  
m e m b e r s  o f  y o u r  C o m p u t i n g  D e p a r t m e n t ?  

3 .  W h a t  p e r c e n t a g e  o f  y o u r  m a c h i n e ' s  p r o d u c t i o n  t i m e  
i s  l o g g e d  o n  p r o b l e m s  w h i c h  u s e  a b s t r a c t  c o d e  a n d  
i n t e r p r e t i v e  r o u t i n e s ?  

4 .  W h a t  p e r c e n t a g e  o f  y o u r  m a c h i n e ' s  p r o d u c t i o n  t i m e  
i s  l o g g e d  o n  p r o b l e m s  o f  a  o n e - s h o t  n a t u r e  ( a s  
d i s t i n g u i s h e d  f r o m  p r o b l e m s  w h i c h  r e c u r  w e e k  
a f t e r  w e e k  o r  m o n t h  a f t e r  m o n t h ) ?  

J .  H o w  m u c h  p r o d u c t i o n  t i m e  i s  l o g g e d  o n  a n  a v e r a g e - -
l e n g t h  p r o b l e m ?  

0 .  H o w  m a n y  o f  y o u r  C o m p u t i n g  D e p a r t m e n t  p e o p l e  f i t ,  
p r i m a r i l y ,  i n  e a c h  o f  t h e  s l o t s  i n  t h e  t a b l e  
b e l o w ?  A d d  a p p r o p r i a t e  c a t e g o r i e s  i f  t h e y  d o  n o t  
a l r e a d y  a p p e a r .  

S u p e r v i s o r y  N o n - S u p e r v i  s o r y  

701 operators  

7 0 1  d i s p a t c h e r s  

P u n c h e d - c a r d  m a c h i n e  
o p e r a t o r s  ( n o t  k e y p u n c h )  

K e y p u n c h  o p e r a t o r s  

701 programmers and coders 

P u n c h e d - c a r d  p r o g r a m m e r s  a n d  
c o d e r s  

N u m e r i c a l  A n a l y s t s  

A d r o i n i s t r a t o r s  

* " P r o d u c t i o n  t i m e H i s  u s e d  i n  t h e  s e n s e  o f  g o o d  m a c h i n e  t i m e  e x c l u d i n g  
a s s e m b l y  a n d  c o d e - c h e c k .  

29-1013-0(R) 



QUICK AND DOUBLE QUICK: 

FLOATING POINT ABSTRACTIONS 

Donald W. Oantner 
Computing Engineer 

Douglas Aircraft Company, Inc. 
El Segundo Division 

QUICK and DOUBLE QUICK are single address, float
ing quaternary point abstractions, employing single pre
cision and double precision arithmetic respectively. 
The companion abstractions utilize identical codes and 
hence a problem, once programmed, may be run in either 
system at the discretion of the analyst. 

Originally, QUICK was conceived to fill the need for 
a 'quick and dirty' programming system. The last part 
of the phrase was dropped when development and refinement 
produced an abstract system which was obviously useful 
for other than one-shot Jobs. The system may still be de
scribed as QUICK, since refinements were not allowed to 
submerge the original requirements which follow: 

1. That the system be straightforward so as to 
preclude virtually all programming errors. 

2. That it be simple, requiring a minimum of 
training and experience as a prerequisite to 
successful programming. 

3. Most important, and as a result of the first 
two requirements, that the elapsed time between 
receipt of the problem and the delivery of 
correct solutions be minimized. 

An abstract system was clearly needed, for despite 
the admirable flexibility of the machine operations, fixed 



Page 2 

binary arithmetic can be considered neither simple nor 
straightforward to those educated In the decimal system. 
Furthermore, if the abstract Instruction is tailored to 
the specific application, a single abstract instruction 
can initiate execution of a series of instructions cor
rectly, thus reducing programming and programming errors. 

The requirements immediately dictated a floating 
point system with its inherent relief from scaling, shift
ing, record keeping and assorted apprehensions. Quater
nary point was indicated since it affords faster floating 
than binary point, and yields more significance for any 
given word size. Finally, the basic single address system 
was chosen as best satisfying the requirements of simpli
city and straightforwardness. 

DOUBLE QUICK was developed when it was discovered 
that QUICK was sufficiently fast to warrant its use over 
a large range of problems. DOUBLE QUICK serves two pur
poses. Primarily, it is a double precision system, yield
ing twice the accuracy obtained from QUICK. In addition, 
it most adequately stifles the cries of 'deception' fre
quently heard from the fixed point proponents, and occasion
ally from the customer. They claim, and rightly so, that 
one is lulled into a false sense of security by the appear
ance of eight or more digits in the final result. By the 
simple expedient of running a representative case or cases 
in both abstractions, fears are allayed or substantiated by 
observing the significant digit agreement. Should the fears 
be substantiated, one has the option of manning the whole 
problem in DOUBIE QUICK. Since it is considerably slower 
than QUICK, its use would normally be restricted to emer
gencies seldom found in engineering problems. 

The principal features of QUICK are enumerated below: 

DATA INPUT 

Input is in decimal, eight- significant digits with sign 

29-1013 -0(D) 



Page 3 

and an exponent whose range is "t 38. Data are converted 
to binary and stored in the location designated on the data 
card. In continuous reading, input is accomplished at the 
rate of 600 floating point numbers per minute. 

DATA OUTPUT 

Output is in decimal, eight significant digits with 
sign and an exponent whose range is t 36. Results may be 
printed in any of six print positions, up to six results 
per line. In addition, a four-digit identification number 
may be printed in the left margin. In continuous writing, 
900 floating point numbers may be printed per minute. 

ARITHMETIC 

All arithmetic operations, except those on addresses, 
are carried out in floating quaternary point arithmetic. 
Calculations are carried out to thirty-five bits of signifi
cance, rounded to twenty-eight, and the result stored with 
its associated seven bit exponent. Exponents too large or 
too small for the range cause the machine to stop or the 
result to be made exactly zero respectively. The internal 
range of the exponent is the same as that for Input and 
output. 

STORAGES 

Only electrostatic is accessible. At present, 2560 
half-words are available for the programmer to divide as 
he will between instructions (half-words) and data (full-
words). It is expected that this will be reduced to approxi
mately 2000 half-words upon completion and Insertion of the 
proposed function programs. 

SPEED 

Arithmetic operations requiring floating are performed 
at an average rate of more than four hundred per second. 
All other operations are performed at rates between 1060 
and 2700 per second. See table below for more complete 
break-down. 

29-1013 -0(D) 



Page 4 

CHECKING 

Memory-print-out at the rate of 1200 words per minute, 
and tracing at the rate of 900 inetructions per minute are 
available. Tracing yields the location of every sixth in
struction and the contents of the A register in floating 
decimal notation. 

OPERATIONS 

The table below lists the possible operations, with 
codes, times, and result of the operation. Times are approxi
mate and will be increased by excessive floating. Programm
ing is done in alphabetic code, a is the address part of 
the abstract instruction. A and M are permanent registers; 
c(a) means the contents of electrostatic location a; and 
a (a) means the address part of the contents of location a. 

CODE OPERATION 

AD Add 
RA Reset Add 
MA Multiply Add 
SU Subtract 
RS Reset Subtract 
MS Multiply Subtract 
MP Multiply 
DV Divide 
AV Absolute Value 
DA Add Address 
AR Reset Add Address 
US Subtract Address 
SR Reset Subtract Addr. 
TS Store AddresB 
1*1 Load M 
AM A in M 
ST Store 
NO No Operation 
HT Halt and Transfer 
TR Transfer 
TZ Transfer on Zero 
TP Transfer on Plus 
TN Transfer on Neg. 
PM Post Mortem 
RD Read 
PR Print 
RT Square Root 
FU Function 

' y ̂  

RESULT 

+  c ( a )  c ( A )  +  <  
c ( a )  A  
(~c(M) x c(a)J + c(A)-»-A 
c(A) - c(a)-*- A 
- c  ( a ) —  A  
- G B ( M )  x  c ( a ) U  +  c ( A ) - * -  A  
c(M) x c(a)-*- A 
c (A) -f c(a)-»- A 
|  c  ( A ) l  A  
c ( A )  +  a ( a )  A  
a ( a ) - » -  A  
c(A) - a(a)-»- A 
-a(a)-#- A 
a ( A ) — a  
c M 
c (A J-*- M 
c (A)-*- a 
No operation 
Halt, Transfer to a 
TR to a Unconditionally 
TR to a if A «= 0 
TR to a if A is positive 
TR to a if A is negative 
(see below) 
(see below) 
(see below) 
\lc(a.) A 
f  L c ( A ) J  A  ( s e e  b e l o w )  

-TTOE-f 
M . S .  
T. 37" 

.66 
3.15 
2.57 

.66 
3.15 
2.27 
2.26 

.66 

.9^ 

.9^ 

.9^ 

.9^ .66 

.66 
• 73 . 66 
A9 
.37 
.37 
.71 
.71 
.66 

3.77 



Page 5 

Most of these operations are self-explanatory. An 
easily memorized two letter alphabetic code is used. Note 
also that the codes for fixed-point operations on addresses 
are identical to their floating-point counterparts with the 
letters interchanged. Mixing fixed and floating-point opera
tions should be avoided unless the internal operation of 
QUICK is thoroughly understood. The several operations 
Post Mortem, Read, Print and Function, require explanation and 
are interesting from the development standpoint. 

Post Mortem (PM) is the code which controls tracing, 
when executed in conjunction with three sense switches. A 
high speed tracing system with only partial display of re
gister status was considered to be more useful than a com
plete display with much slower tracing. Consequently, QUICK 
traces at six times the conventional rate but prints only 
the contents of the A register, plus every sixth location 
for orientation. 

t A valuable feature of the tracing procedure is the 
ease with which it may be initiated or discontinued. PM 
codes are sprinkled judiciously through the program or may 
be keyed in manually. With sense switches off, execution 
of a PM is identical to execution of a No Operation. 

< 
cr 
o 

29-1013-0(D) 



Page 6 

Inspection of the diagram and the possible sense switch 
settings discloses the flexibility of the arrangement. When 
a PM is reached, the operator may at will continue high 
speed calculation indefinitely, continue high speed to the 
next PM, initiate tracing, discontinue tracing and return 
to high speed, continue tracing indefinitely, continue trac
ing to the next PM, etc. In addition, tracing may be dis
continued at any time by turning the sense switches off, 
whereupon high speed computation Is resumed. During tracing, 
all normal printing is suppressed. 

A simple example may clarify the incomplete diagram. 
Suppose a program contains ten PM operations and it is de
sired to trace between the fourth and sixth Post Mortems 
only. Placing sense No. 1 on, No. 2 and No. 3 off, the 
program is started. Upon reaching the first PM, a program 
stop occurs. The operator depresses the start button and 
notes that the first PM has been passed. Counting the stops 
encountered, he starts the machine two more times, arriving 
at the fourth Post Mortem. Senses No. 2 and No. 3 are now 
turned on, the machine is started, tracing is initiated 
and continues to the fifth PM. The start button is depress
ed once more and tracing continues to the sixth PM. Placing 
senses No. 1 and No. 3 off and starting the machine causes 
return to high speed calculation. 

Briefly then, one may desire to continue or discontinue 
either tracing or high speed calculation. Sense No. 1 pro
vides for stopping the program at the appropriate position, 
3ense No. 2 allows the decision of continuation or discontinua
tion to be made, and sense No. 3 implements the decision. 

The Read Instruction causes the floating decimal num
bers, on cards in the Card Reader, to be converted to float
ing quaternary numbers and to be stored in electrostatic 
memory. A data card contains four floating decimal numbers, 
each with an associated location. ThiB location is added to 
the address part of the Read instruction to form the address 
at which the floating-point number will be stored. Ibis 

29-1013-0(D) 



Page 7 

feature enables the programmer to use symbolic coding, mean
while maintaining the same simplicity of data input as is 
possible in absolute programming. Reading continues with
out further instructions until a blank card is reached or 
an appropriate punch is detected, at which point execution 
of the abstract program is resumed. 

Execution of a Print code produces various results, 
dependent upon the address part of the instruction. Ad
dresses 0-6 are storing addresses and 10, 20 and ^0 are 
printing addresses. Specifically, an address of zero stores 
the address part of the contents of the- A register for future 
printing at the left margin as an identification. Addresses 
1 - 6 store the contents of the A register for future print
ing at the print positions 1-6 (left to right). The 
printing addresses 10, 20, and 40 cause (l) single, double 
or quadruple spacing before printing, (2) conversion of the 
numbers stored by addresses 0-6 to decimal, (3) printing 
of these converted numbers. Where duplicate storing address
es are given between printing addresses, the last number 
stored will be printed. Where a storing address is not used, 
that print position will be blank. The printing addresses 
0-6 may be programmed in any order. Continuous printing 
(150 lines per minute) is possible where computing time be
tween printing addresses does not exceed approximately 100 
mi Hi-seconds. 

The Function code is another whose address determines 
the specific operation to be performed. Dependent upon this 
address, some function of the contents of A is computed and 
stored in A. The instruction is run through a multi-way 
switch, similar to the main switch, and thence to the particu
lar section of electrostatic memory containing the pertinent 
program. 

The functions are not yet completely programmed. In 
order to increase the usefulness of QUICK and to further 
accelerate programming, plans call for inclusion of about 
twenty functions. Preliminary work Indicates that this can 

29-1013-0(D) 



Page 8 

be accomplished with leBS than four hundred instructions, 
placing the emphasis on speed for six or eight most frequent
ly used functions, and emphasizing conservation of storage 
for the others. In addition, several codes will be avail
able for insertion of unusual functions not included in the 
twenty above. Similar to a library subroutine, a simple 
binary card loading process will mate their utilization in 
a program as easy as the standard functions. 

It may be observed that four of the possible thirty-
two operations have not been used. Although many additional 
useful operations occur to one almost immediately, it was 
deemed wise to let experience dictate their form. Had the 
codes been used and later changed to represent more desirable 
operations, earlier programs would be invalidated. 

QUICK programs are written in symbolic coding and are 
assembled by a slightly modified version of a standard assem
bly program developed at El Segundo. The assembly program, 
QUICK, and the alteration instructions for tracing, are 
stored serai -permanently on one drum, providing fast and 
handy access. Assembly of a QUICK program produces a binary 
program deck, parallel listing of the program (before and 
after assembly), and stores the assembled program in electro
static memory, ready for running. 

It was intimated in the opening paragraphs that the 
area of economical application of QUICK is greater than might 
be suspected. Versus non-abstract, fixed point symbolic 
programming, QUICK offers the following economic advantages: 

1. Fewer re-assemblies, through fewer programming 
errors and hence less machine time for check-out. 

2. No time spent in tape search for subroutines, nor 
in reading subroutines from tape. 

3. Reduced programmer's time through faster initial 
programming and less correction time. 

Against these advantages must be weighed the disadvantages of 
greater machine time for production runs. The ratio is of 



Page 9 

the order of twelve to one. This appears to be an over
whelming argument against QUICK until one considers the 
actual rather than the percentage increase. 

The solution of many problems can be effected by ex
ecution of less than a million abstract instructions. In 
these cases, QUICK will almost invariably produce the re
sult more economically. Consider that the abstract instruc
tions are executed at the rate of approximately 60,000 per 
minute, that programming time is cut from fifty to ninety 
percent, that five minutes is the minimum machine time re
quired for additional assembly and check-out, that tape 
searches of from half a minute to two minutes are completely 
eliminated, that time for reading data and printing results 
is not Increased. 

Suppose now that one has a recurring problem which has 
been previously checked out. If less than 100,000 instruc
tions are to be executed, QUICK will generally do it in less 
time. 

QUICK is clearly useful in cases Where the range of 
parameters is such that overflow or loss of accuracy occurs 
for certain parameters at the extremes of the range. Scaling 
and re-scaling are expensive operations, especially so when 
the trouble was not predicted and a re-run is required. 

The above are clear cut areas in which QUICK excells, 
despite the training of the programmer. Superimposed upon 
them, and making feasible the use of QUICK for much larger 
programs, are the considerations of programmers' inexperience 
and mental attitude. Where the degree of arithmetic skill 
is not high, QUICK is a crutch. For the able mathematician, 
QUICK affords relief from the tedium of bookkeeping, freeing 
the mind for Ingenious programming and clearer analysis. 

In addition, the advantages of having DOUBLE QUICK for 
proof of accuracy and as a double precision tool, available 
without re-programming, must be evaluated in any decision re
garding a choice of programing Bystems. 



Page 10 

In conclusion, It appears that for all but the largest 
or best behaved engineering problems, use of QUICK may be 
advantageous. The Inherent properties of abstractions, 
symbolic coding, and floating point arithmetic should com
bine to simplify and accelerate programming in the average 
computing installation. 

29-1013-0(D) 



t 

i 

L O C K H E E D  A I R C R A F T  C O R P O R A T I O N  
C * L I F O R N • A  D I V I S I O N  R E P O R T  

MATHEMATICAL ANALYSIS DEPARTMENT STUDY NO. 28 

March 17, 195^ 

AN I3M TYPE 701 MATRIX ABSTRACTION 

AND ITS ENVIRONMENT 

Prepared by:  

«2_ 
H., Amaya 

wo 

Approved by:  

F . P .  C o z z c  t & i / M a n a g e r  
Mathematical  Analysis  Department  

i 
Form 5767-1 29-1013-0(1) 



P r e p a r e d  

N A M f  

L. H. Amaya 
I .  A T  F  

3-17-5J LOCKHEED AIRCRAFT CORP. 
c  a i  : f  r f - r , . A  ;  ;  \  i  i : O N  

1  i  M P ,  I f  H M .  

P a q e  1  

C h e c k e d  
Aft IBM TYPE 701 MATRIX ABSTRACTIC 

AND ITS ENVIRONMENT 
^ M o d e l  

A p p r o v e d  

Aft IBM TYPE 701 MATRIX ABSTRACTIC 
AND ITS ENVIRONMENT MAS 2b 

The purpose of this paper is  to present an IBM Type 701 matrix 
abstraction, with emphasis on the environment in which i t  was 
developed and the one in which i t  now operates.  Environment in 
this case means the reasoning behind the matrix abstraction, i ts 
evaluation, i ts  particular function, programs used in conjunction 
with i t ,  applicable problem types, programming techniques, and the 
philosophy of i ts  operation. In addition, examples will  be given 
to il lustrate the effect of the abstraction on such aspects as 
economy and efficiency when performing particular matrix operations. 
Emphasis is  not placed on the detailed coding of the routine, num
ber of commands used, portion of electrostatic memory occupied, and 
other pertinent facts because the coding must usually fi t  a very 
particular set of restrictions, whereas the environment is of a 
much more general nature and consequently of more interest at  large. 

At the outset of developing the matrix abstraction (January, 1953) 
we at  Lockheed had no experience whatsoever with actual problems 
on the IBM Type 701 or on any machine of similar type and magni
tude. In fact,  at  this time we were st i l l  in a state of ecstasy 
with the thought of tremendous speed and a wealth of memory, as 
compared to the IBM Card-Programmed Calculators and IBM Type 6o4's 
which we were then operating. The task before us was to prepare 
ourselves and the 701 for the solution of problems involving 
matrices.  One of the first  steps was to consider the matrix oper
ations which were being done on the existing equipment.  The bulk 
of matrix additions, multiplications, inversions, and simultaneous 
l inear equation solutions were run on the 60A. The majority of the 
eigenvalue problems, that is  those requiring the solution of all  
roots and vectors,  were solved using both the 60k and CPC. The 
high order eigenvalue problem which required the solutions of only 
the dominant roots and vectors and the low order problem requiring 
all  roots were done entirely on the CPC along with such problems 
as low order simultaneous l inear equations resulting from least 
square problems. The operations being done on the o04 were general
ly of the three address type, that is,  two operands were fed into 
the machine and a resultant matrix emerged punched in cards. The 
resultant matrix was in a form which could be either an operand 
in the next operation or be printed. The f lexibili ty,  the third 
address,  of such a system is due to the manual and mechanical oper
ations performed between the 604 calculations. The disadvantage, 
however,  is  that the handling has always been the greatest source 
of error.  

The question then: How do we program matrix operations for the 701 
so that they can be used on various order matrices,  in any sequence, 
and sti l l  retain the present f lexibili ty! The direct approach might 
be, since we have a machine which will  do the Job of both the 604 
and the CPC, to use the 701 in the capacity of either the 604 or 
the CPC with a stored program which is equivalent to the correspond
ing plugboard. As absurd as i t  is to use the 701 in this manner,  
the actual cost of doing the Job would be less than on 604's as 
will  be i l lustrated later.  Assuming we have 701 routines tf perform 



Prepared 

N A M E  

L.H.Amaya 
C A T T  

3-17-54 LOCKHEED AIRCRAFT CORP. 
C A L I F O R N I A  O I V I S I O N  

T E M P .  P E R M .  

Pege 2 

Checked 

T I T L E  

AN IBM TYPE 701 MATRIX ABSTRACTI0 
AND ITS ENVIRONMENT 

^ Modo! 

Approved 

T I T L E  

AN IBM TYPE 701 MATRIX ABSTRACTI0 
AND ITS ENVIRONMENT MAS 20 

each of the operations, the next question considered was how to 
eliminate all  the manual handling required between two 604 matrix 
operations. I t  looked as though we needed a special routine to load 
the data,  other routines to perform the operations, routines to do 
the handling mentioned above which includes storing intermediate 
results,  and st i l l  others to cause output of results.  With the 
routines mentioned we can solve the handling problem as i t  was asso
ciated with 604 and CPC operation. However,  we have magnified the 
task corresponding to that of placing the plugboard into the 604 or 
the CPC, i .e. ,  the manual handling of all  the routines and their 
l inkage. Also, manual Juggling of routines is considerably more 
susceptible to error than is the handling of plugboards. 

How can we eliminate the handling and manual l inkage of the routines.*'  
One possibili ty is to keep the routines in symbolic form punched in 
binary cards and have a 701 assembly program which is  capable of 
arranging the routines in a prescribed sequence prior to the running 
of each problem. In addition, we must have a special program or 
have incorporated in the operational routines,  a scheme for locat
ing the result  of- one operation in position for the next command to 
operate on. 

The next step in the direction of the complete abstraction might be 
to locate all  of the routines in a specified portion of the machine 
memory, and assemble them, as required, from the memory rather than 
from cards. 

Finally,  of course, there is the complete matrix abstraction which 
performs matrix operations and logic automatically upon command. The 
decision to be made between the last  two phases of automation is« 
Shall  we retain the flexibili ty and assemble the program for each 
problem, or shall  we forfeit  some flexibili ty and gain from simplic
i ty! At Lockheed we chose the latter.  

The matrix abstraction, through IBM Type 701 machine coding, alters 
the machine to one which performs, as such, operations and logic ^ 
required in the general matrix problem. The basic rout ineVaccomo-
dates 24th or lesser order matrices with real or complex elements.  
To provide for matrix storage, sixty portions of the total memory 
have been assigned abstract addresses which will  store a maximum of 
sixty 24th order complex number matrices.  

The arithmetic operations are performed double precision floating 
point,  with the number word consisting of a sign bit  for the 
characteristic,  a sign bit  for the exponent,  a 27 bit  characteristic,  
and a 7 bit  exponent.  The matrix number word Is exactly the same 
composition as the number used in FLOP .  (FLOP, a contraction 
for* floating octal point,  is Lockheed's general f loating point 
abstraction for the 701.) Because of the exactness of the number 
words, the systems may be used in conjunction as one very complete 
abstraction. Together the two abstractions provide for accomplish
ing both scalar and matrix arithmetic in floating point,  and for 

! 
* 
X 
h 

t 8 
* 

\ 
U 

8 
* 
* 

29-1013-0(L) 



P r e p a r e d  

N A M  

4,. H. A Amaya 3-17-5^ 

Checked 

A p p r o v e d  

LOCKHEED AIRCRAFT CORP. 
(  '  F  -1 K N A '  ;  C' - .  P a g o  

AN ISM TYPE 701 MATRIX ABSTRACT
ION AND ITS ENVIRONMENT 

l 

Model  

MAS 28 

performing logic either in machine commands cr in one of the abstract-
Ions. Both the matrix abstraction and FLOP use full  words for com
mands as they do for numbers; however,  the command word structures are 
somewhat different.  

MATRIX OPERATIONS 

COMMAND WORD 

In the command word, the following components are specified as requir
ed for each Instruction. 

OP •=» Operation 

A Storage address ofi A__ 

% * Number of rows in 1 Aj 

m = Number of columns in [ A j 

B = Storage address ofLBj 

n = Number of columns in >_3j 

P = As explained in commands 

The number of row3 In '_BJ is  specified by --L. or m depending 011 the 
command. Each component is  2 octal digits except (3 which is four.  
A and B can be any of the 60 matrix storage addresses.  

ARITHMETIC OPERATIONS 

ADD [A] + [a] 

SUBTRACT [A] -  [B] 

MULTIPLY [A] '  LB] 

SCALAR MULTIPLY P»[A] 

INVERT [A J  ~1  

FORM CHECK SUMS 

CHECK 

Computes the sum of the matrix in storage A and 
the matrix in storage B. 

Subtracts the matrix in storage B from the 
matrix in storage A. 

Computes the product of the matrix in storage A 
and the matrix in storage B. 

Multiplies the matrix in storage A by the scal
ar in electrostatic address f3. 

Computes the inverse of the matrix in storage A 

Computes a row and column of check sums for the 
matrix in storage A. 

Checks the sum of the elements of the matrix In 
storage A against Its check 3ums to a specified 
number of f igures.  If the matrix does not 
check, the machine stops and the difference 
between the check asked for and the actual num
ber of f igures I t  does check to is displayed in 
the accumulator.  

FORM 362B 1 29-1013-0(L) 



% 
..... N A M E  

L.H.Amaya 
D A T E  

3-17-5^ 
LOCKHEED AIRCRAFT CORP. 

C A L I F O R N I A  D I V I S I O N  

T E M P .  

Page 

P E R M .  

4 

Checked 

T l T L L  

AN IBM TYPE 701 MATRIX 
ABSTRACTION AND ITS ENVIRONMENT 

Model 

Approved 

T l T L L  

AN IBM TYPE 701 MATRIX 
ABSTRACTION AND ITS ENVIRONMENT MAS 2b 

The result  of the operations ADD, SUBTRACT, and MULTIPLY may be stor
ed in any of three specified matrix storage locations. For the 
SCALAR MULTIPLY and INVERT operations, the result  location is fixed. 
Check sums are automatically calculated on the commands ADD, SUBTRACT* 
MULTIPLY, and SCALAR MULTIPLY. 

LOGICAL OPERATIONS 

TRANS FOSE 

STORE 

STORE £ 

TRANSFER 

FLOP 

WRITE END OF FILE 
AND REWIND 

Forms the transpose of the matrix in storage A. 

The contents of matrix storage B is replaced by 
the matrix in storage A. 

The matrix in storage A replaces the contents of 
a portion of electrostatic memory where P speci
fies the electrostatic address of the (1, l)  ele
ment.  The command also can reverse itself and 
store any portion of electrostatic in any matrix 
location. The command is  used for expanding and 
diminishing the order of a matrix.  

Causes the machine to take i ts  next matrix 
command from electrostatic address p. 

Causes the machine to interpret all  subsequent 
commands as FLOP commands. 

Causes the tape addressed to either Write EOF 
and rewind or Just rewind depending on whether 
the tape is in write or read status.  

INPUT -  OUTPUT OPERATIONS 

LOAD 

PRINT 

PRINT (SENSED) 

Loads the matrix from cards into matrix storage A. 

Prints the matrix in storage A. The elements are 
shown as a characteristic and decimal exponent,  
and are printed in matrix form. A matrix identi
fication number is  printed, as well a3 row and 
column identification which is  printed down the 
left  side and across the top of the page. 

Prints the matrix in storage A or skips the 
command depending on the position of a sense 
switch. The command is used for printing inter
mediate results,  usually while a problem is being 
checked out.  

PUNCH Punches 
tains a 
row and 
element 

maximum 

the matrix in storage A. Each card con-
matrix identification number and matrix 
column identification of the first  
in the card, a card check sum, and a 
of 11 complex elements.  

29-1013-0(L) 



Prepared LtHtAmava 3-17-54 
LOCKHEED AIRCRAFT CORP. 

C A L I F O R N I A  D I V I S I O N  Page 5 

Checked 

Approved 

AN IBM TYPE 701 MATRIX 
ABSTRACTION AND ITS ENVIRONMENT 

Model  

MAS 28 
ft . 

The descriptions given with each command are not necessari ly complete,  
al thcugh the basic function Is Indicated.  

The t ime (to the nearest  second) required to perform the basic ari th
metic operations is  tabulated below. The t ime shown is  for complex 
number operations,  and for both operands of the same order with no 
zero elements.  

ORDER ADD and SU3TRACT MULTIPLY 

2nd 2 JM, 3 

6 th 3 8 

10th 4 30 

16th 7 106 

24th 14 304 

Since the system is  a modified three address,  the operation times 
Include access of the two operands and t ime for storing the result .  
For real  number operations the t ime is  sl ightly less than one-third 
of that  shown for complex number elements.  The reason complex oper
at ions were incorporated into the routine rather than using douole 
order real  operations is  apparent when one compares the t ime involved. 
The 24th order maximum In the routine was selected because I t  is  a 
practical  one for the 701 and also seemed satisfactory for the antici^ 
pated problems. If  the problems exceed 24th order the abstraction 
may s t i l l  be used since i t  readily lends i tself  to parti t ioning 
methods 1  for al l  ari thmetic operations.  

Having brought the matrix abstraction through i ts  development stages,  
let  us now consider the environment in which i t  operates.  The 
digital  group at  Lockheed is  purely a service group involved primar
i ly with the solution of design and production type engineering prob
lems. These problems vary in magnitude from large to very small  with 
respect to programming t ime, machine t ime, and combinations of both.  
Therefore the computing group must be capable of solving almost any 
problem. Not only must the problem be solved but i t  must be solved 
within a specified t ime which may be anything from immediately to a 
year hence.  With such a wide range of possibil i t ies i t  is  absolutely 
necessary that  some preparation be done in advance if  the customer is  
to be satisfied.  We consider the matrix abstraction as part  of this 
preparation.  

Everyone should be and usually is  interested in the economy and 
efficiency of the computing operation.  As insignificant and ineffi
cient a job'as could be chosen for the IBM Type 701 is  the single 
multiplicaption of two matrices where both operands are In cards and 
the results  are to be printed.  For i l lustration purposes,  let  us 
perform the operatl  cn of mil  t !  Dlying two 10th order matrices to form 
a 10th order product,  and compare the t ime and cost  of doing this 
job by hand, on the IBM Type 604 and auxiliary equipment,  am cn . .he 
IBM Type 701 using the matrix abstraction.  

F O P u  3 6 2 P  1  
29-1013-0(L) 



t 

t 

Prepared 

Checked 

Approved 

L.H. Amaya 3-17-5 A LOCKHEED AIRCRAFT CORP. 
CALIFORNIA DIVISION 

AN IBM TYPE 701 MATRIX 
"ABSTRACTION AND ITS ENVIRONMENT 

Page 

Model 

MAS 2b 

10 
Elapsed time required 
for the Job not Includ
ing punching. 

Time ratio for doing the 
same Job with respect 
to doing i t  on the 701. 

Cost ratio to do the Job 
with respect to the cost 
of doing i t  on the 701. 

1044 

33 

IBM TYPE 
604 

50 min. 

109 

IBM TYPE 
701 

25 sec. 

1.0 

15 1.0 

The t ime quoted for each method is that to do only the stated matrix 
operation (or continuously repeat the same operation) at  a production 
rate of speed. Again, the example chosen is of the worst type for 
the 701 because of i ts  small percentage of computing as compared to 
the Input and output t ime; however,  i t  does i l lustrate,  contrary to 
common belief,  that I t  is at  least practical to do the smallest 
of matrix problems on a large machine. Another point of interest is 
the fact that with the program in the machine i t  takes only four 
matrix commands to perform the i l lustrated matrix multiplication. 
The high ratio of machine to abstract commands is obvious and is 
of course one of the prime reasons for the util i ty of the abstraction. 

The f irst  few problems attempted with the matrix abstraction were of 
the ideal type. They were the formation of aerolastic matrices 2  

and contained approximately fifty serial matrix operations to be per
formed for three sets of data.  The program was coded and checked 
practically error free. The 701 also cooperated, doing the problem 
without any machine errors.  You can imagine that by now we had the 
impression that the abstraction was the alleviator of all  the 604 and 
CPC procedure i l ls.  Then came the task of programming the Myklestad 
method for dynamic structural analysis.  The method is  full  of matrix 
operations and looked Ideal for the abstraction. The structural 
analysis problem is what we call  a routine problem, one which may use 
the same program for solution thousands of times with varied data over 
a period of years.  Since the program will  run hours on the machine i t  
behooves us to make the program as efficient as possible at  a cost 
of programming time which is eventually more than saved In machine 
t ime. 

Well,  the matrix abstraction did net achieve the utmost in machine 
speed on this problem due to the fact that the program left  the 
matrix abstraction frequently between matrix commands for non-matrix 
logic and calculations of single elements.  Since I t  was necessary to 
reload the matrix abstraction from the magnetic drum to electrostatic 
after each non-matrix operation, i t  soon became evident that about 
15% of the machine t ime could be saved if  the abstraction were not 
used. In connection with the problem mentioned i t  should be empha

sized that It  was of the routine type and additional t ime was avail-
bie for coding. The Job stated is perhaps an extreme because i t  

TORM 362B- I 29-1013-OFL) 



Prepared 

N A M E  

L.H.Amaya 
D A T E  

3-17-5' 
LOCKHEED AIRCRAFT CORP. 

C A L I F O R N I A  D i V I S ' O N  

T  i M P .  r  E  R M  .  

Page 7 

Checked 

T . T L L  

AN I3M TYPE 701 MATRIX 
ABSTRACTION AND ITS ENVIRONMENT 

Model  

Approved 

T . T L L  

AN I3M TYPE 701 MATRIX 
ABSTRACTION AND ITS ENVIRONMENT MAS 28 

could not be planned in such a way as to avoid the drum time involved; 
however,  many problems may be restated and the operations done in a 
sequence which will  allow the matrix operations s to be done without 
referring to other means for non matrix logic and computations between 
the matrix commands. 

A routine Job such as the |A-BA| eigenvalue problem which consumes 
a large percentage of the 701 machine t ime at Lockheed is  another 
example of the type problem which should definitely not be programmed 
in the matrix abstraction even though floating point is  used. As 
explained, if  the Job is routine and will  eventually run for possibly 
hundreds of hours,  the programming t ime spent on the routine to save 
machine time will  be paid for manyfold. There is  a point of diminish
ing return, however.  

Opposed to the aforementioned routine type problems, we recently had 
a problem from the preliminary design group which had to do with the 
sweep angle and aerolastic design criteria of a wing. The details 
are of a classified nature? however,  to be of real value, the custo
mer needed answers Immediately. The problem involved approximately 
100 matrix operations and used almost every command in the matrix 
abstraction. There were very few cases run, which, including check
out time, only consumed 4.5 hours of machine time. The programming 
t ime was a minimum and required only one man full  t ime and one more 
part  time, a total of about 25 man hours for the Job. Needless to 
say, the Job probably could not have been done in less elapsed time 
any other way, and because of the number of different matrix oper
ations required and the relatively few cases run, there is much doubt 
that the program could have been checked out and run in the amount of j 
machine time used even if  there had been unlimited elapsed time avail
able .  

The two extreme usages of the matrix abstraction have been brought 
forth in the previous examples. Somewhere between the two is a point 
of diminishing return which, of course, will  vary appreciably with 
the computing organization. For example, if  you are caught short for 
coders,  or with inexperienced coders,  the point of diminishing return 
v#m be far removed from where i t  will  be if  you have a large stafi  
of very experienced coders.  Thus the matrix abstraction assumes i ts  
place in the organization. 

Another very important usage of the matrix abstraction is in research 
of matrix methods, such as any number of methods for solution of the 
eigenvalue problem which can be broken down into a sequence of 
standard matrix operations. In the search for a method, we again 
have a consideration» Shall  we spend weeks coding the method and 
find i t  is inadequate after 15 minutes running time on the machine 
or ahall  we code i t  in a few days and find the method doesn't  work 
after 20 minutes run time? If the method works the f irst  time, there 
are always refinements to try which may be programmed with many t imes 
fewer changes than if  the program were in absolute coding. Also in 
trying to develop a method, one is  perplexed with the programming, 

29-1013-0(L) 



Prepared \ Li* H • AiH&ySl 
( 

Checked I 

Approved 

3-1T-51  
LOCKHEED AIRCRAFT CORP. 

C A L I F O R N I A  D I V I S I O N  

AN IBM TYPE 701 MATRIX 
ABSTRACTION AND ITS ENVIRONMENT 

Page 

Model 

MAS 28 aasaeoMi 

perhaps the Inadequacy of the method, machine errors,  methods of 
checking, and many others which are at  least somewhat reduced when 
using an abstraction. If  you have ever found yourself in the above 
predicament you know that assistance from any direction is more than 
welcome. 

A speaker in Los Angeles once commented that the 701 enables him to 
find that his method is  inadequate faster than by any other means. 
If  he is  not using one, i t  might be added that with the assistance 
of a matrix abstraction he could probably find the same results even 
faster.  

In conclusion, let  us summarize a few of the more interesting points 
mentioned: A history of development was presented; some flexibili ty 
was forfeited for simplicity; the matrix abstraction should be used 
with other scalar abstractions; the abstraction is best util ized, in 
general,  on short one-time Jobs, and is indispensable on a long pro
gram job which consumes l i t t le running time and requires a minimum 
of elapsed time; very small matrix Jobs are practical on the 701» 
for the most part ,  no routine Job should be coded with the matrix ab
straction; there is a place for the matrix abstraction in research of 
matrix methods; in evaluating a matrix abstraction, attempt to locate 
the exact role i t  will  assume with respect to the type of problem to 
be solved, philosophy of operation, personnel in the organization and 
economy desired; make the abstraction f i t  your restrictions as well 
as your requirements.  

Ŝ 0  ̂  ̂

200 n <r* 

References: 

1 .  " Matrices in Engineering 4  Louis A. Pipes 
Mathematics for Modern Engineering; Lecture IV. 

2.  NACA Technical Report 1000. 

29-1013-Of L> 



Los Alamos Debugging Programs and Techniques 

As Used on the IBM 701 

by Edward A. Voorhees, Jr. 

Introduction 

If the experience at other IBM 701 installations coincides with our 
experience at Los Alamos, I believe we may agree that the main bottleneck 
in the course of a problem is the period beginning after the coding of the 
problem has been assembled on cards and ending with the successful cal
culation of the first results, i.e., the debugging period. Also, in some 
problems, the code will never take on a fixed form, for with the entry 
of new parameters it is often necessary to modify the code and, in some 
cases, to actually recode portions of the problem. Frequently, this 
situation will require the UBe of debugging programs and techniques. 

At present, there seem to be two main general debugging methods: 
(a) memory print-out and (b) tracing. Memory print-out may be defined 
as the listing of a stored program (or a selected part thereof) whose 
instructions are not being executed concurrently with the execution of the 
listing program. A tracing program is one that lists the instructions 
and certain additional information as the instructions of the stored pro
gram are actually being executed. It would seem that, in general, the 
memory print-out method makes for more efficient use of the machine, 
whereas, the tracing method makes the detection of coding errors easier 
for the individual at the expense of the machine. There are quite a few 
exceptions to this statement which arise because of the particular nature 
of the error being sought. 

At Los Alamos a large majority of the coding (and debugging) is 
performed by persons who are not full-time coders. Many of these people 
are very capable coders, but for them coding is only a tool of their 
profession - a tool not unlike operating a slide rule or hand calculator 
before the advent of large scale computers. As a result, our debugging 
programs and techniques have been developed with these people in mind, 
and the trend has been to somewhat favor the person instead of the 
machine in the developing of new debugging programs. It has been our 
experience that the beginning coder will rely almost exclusively on 
tracing programs and that, as he gains experience, he will make increas
ing use of memory print-outs. The experienced individual will use either 
tracing or memory print-out, making his choice on the basis of the nature 
o f  t h e  s u s p e c t e d  e r r o r  a n d  t h e  d i f f i c u l t y  h e  a n t i c i p a t e s  i n  f i n d i n g  i t .  

Our method of time scheduling serves, however, as a check against 
idle or excessive wasted time during the debugging phase of the problem. 
This is accomplished by scheduling short periods of time, of the order 
of 10 minutes, in general, for debugging during the daytime and longer 
periods of time during the evening and night for "production" running. 

The particular programs described below are used for debugging 
programs coded in machine language. Our two interpretive coding systems, 
the single-address Dual system and the three-address Shaco system, each 
has its own peculiar debugging program and technique. Since 80$ of current 
problems are coded in machine language, (and the figure is gradually in
creasing) no further development of debugging routines for these systems 



-2-

la anticipated. 

A) 1 memory print-out programs print information in octal, and all 
tracing programs print information in octal and decimal. Electrostatic 
storage will be referred to as memory in the remainder of the paper. 

Memory Print-out Programs 

a. 186 is a program to print in octal the contents of electrostatic 
storage except for the 151 half-words which it, itself, occupies. The 
program will search memory, beginning at the first half-word following 
itself, for the first half-word neither plus zero nor minus all ones. 
It will then print the location of that half-word, the half-word, and 
the following ten half-words, regardless of the composition of these 
ten words. It then continues the search and prints whenever the above 
condition is satisfied. 186 may be located anywhere in electrostatic 
storage. * 

186 is commonly employed when the problem stops unexpectedly and 
151 consecutive half-words of storage are available. After noting the 
location of the stop and inserting the print board, the operator loads 
a properly located 186 deck of cards and the listing is issued auto
matically. Occasionally, 186 is used at an intentional stop to obtain 
memory listing. A memory malfunction is occasionally detected through 
186, in which case the particular memory drawer at fault can be deter
mined. At present, we are revising 186 to print n (8dn-ll) instructions 
to a line to accommodate those people who find an octal print-out with 
8 instructions to the line easier to read. 

b. 982 is essentially a 186 program that will print all of memory 
except for the two full-words with location -0000 and -0002. This is 
accomplished through a self-loading program that transfers all of memory 

. except for these two full-words to a drum. This program is intended for 
use with those programs which are so large that 151 half-words are not 
available for storing 186. After the listing is complete, memory is 
restored to its original form with the exception of the two full-words 
destroyed by the self-loading program. The listing is identical with 
that obtained from 186. 

c. jQk is a program which lists all references made by a specified 
consecutive range of instructions to a specified consecutive range of 
half-words. The program operates in the following manner. The first 
half-word of the specified range of half-words, (viewed as an instruction) 
and its location are printed and marked with an asterisk. Then the ad
dress of each instruction of the set of instructions is examined, and, 
whenever the address is equal to the location of the half-word being 
considered, the instruction is printed. When the set of instructions 
has been completely searched in this manner, the next consecutive half-
word is printed and the search is begun again. This continues until the 
set of half-words is exhausted. A control card specifies the location 
of the first and last instructions and the location of the first and 
last half-words. When the search indicated by a control card is complete, 
the program stops and pressing the START button causes the program to 
read the next control card. The ranges indicated may be of unit length. 



- 3 -

This program is quite useful after having the machine COPY CHECK 
with control being where it was never intended to be. The offending 
transfer order can readily be detected by searching the code for 
references to thio half-word. 

is a progi-am to compare original ordinary binary program 
cards with the program stored in the machine. 786 is identical, except 
that it compares regional binary cards with the^Tored program. The 
program first transfers all of memory, except for the contents of -0000 
and -0002, to a drum. It then reads the first card of the coders pro
gram, reads the corresponding set of words from the drum, and then prints 
all half-words that do not agree. The print-out consists of the location 
of the half-word, the half-word from the program card, and the half-word 
from the drum. This process continues until all program cards have been 
checked. The listing is double-Bpaced after the printing for each card. 

This program has been very widely used, not only in debugging codes, 
but also in the detection of machine errors. If the code has been 
mutated by a memory malfunction, this will appear in the listing along 
wi:;i the instructions with variable addresses. The incorrect instruction 
can be spotted almost immediately by a person familiar with the program. 
Uaualiy, the appropriate action can then be undertaken without delay. 
Occasionally 7^5 is used to check a corrected binary deck against an old 
binary deck where the listed discrepancies are assumed to be known. 

Tracing Programs 

a. 79*+ in a tracing program that can be used in one of two ways: 
(a) To list, all instructions with a specified operation, and (b) to list 
all instructions whose addresses lie within a specified range. All list
ing is done during the execution of the program. A sense switch deter
mines whether the program should or should not stop on negative transfer 
orders. A second senoe switch is used to inform the program as to whether 
operation or address tracing in desired. It is also p>oesIble, by means 
of & third switch, to have the instructions READ, WRITE, and READ BACK
WARD '"dummy" executed. If these orders are not "dummy" executed, control 
ie relinquished by the tracing program find given to the input-output 
program involved. Information printed includes the status of the over
flow indicator, the overflow bits, the location of the instruction (octal), 
the instruction (octal), the sign and first 17 bite of the accumulator 
(octal), the sign and complete contents of accumulator, MQ, and storage 
referred to in the address part of the instruction (all as decimal frac
tions ). 

b. 796 is a tracing program that lists all transfer and cense orders 
as they are being executed, i.e. J06 traces logic. A control card deter
mines the location of the first instruction to be traced. A conditional 
transfer or sense tliat ie not executed, i.e., has no effect on control, 
is not printed. I3o sense switches are used by 79^. The program has been 
coded for a two electrostatic frame 701. The application of the program 
is readily apparent. 

c. 795 is Q high-speed tracing program which can be used with either 
a single or double electrostatic frame machine. Provision is made to 
accommodate any number of "traps", a "trap" being defined to be a portion 



J*. 

of the coder's program which is to be traced. If a portion of the program 
is not being traced it is executed at full speed. After the coder's 
program has been loaded, 795 is loaded with n+1 control cards. The first 
n cords designate the range of the n desired traps and the n+lst card 
contains the location of the first instruction (R) of the coder's program. 
On each of the n trap cards is the location of the first instruction of 
the trap (M^) and the location of the last instruction of the trap (II ), 
M.'6'iL. As 795 reads the ith trap control card, it replaces the instruc
tion fl. with a transfer to a portion, D., of the tracing program. Then 
795 otores M^, E and the contents of M in the D. block. It then reads 
the i+lst control card and repeats the procedure In the D.+l block, 
continuing to read control coords until an "R" card is reached, whereupon 
control is transferred to R. Each D. block is 6 half-words in length, hence 
the number of traps which may be specified is limited to the amount of 
space which is available in the machine for the trap table (D^) block. 

When the coder's program reaches the instruction M^, control is 
transferred to 795 &nd tracing begun, with or without printing depending 
on the position of a sense switch. When instruction II. is reached, it is 
traced and afterward control io relinquished by 795 &na given to the 
coder's program at instruction Nj+1. 

When a trap is encountered, the paper is spaced, and the contents of 
the accumulator, MQ, and overflow bits before the execution of the first 
instruction are printed, provided the "print" switch is on. The paper 
is spaced whether printing occurs or does not occur. If the instruction 
READ, WRITE, or • READ BACKWARD is encountered while tracing, it is listed 
but not executed. All COPY orders are "dummy" executed by loading the 
MQ with the contents of the memory location referred to in the CO£Y 
instruction. All other instructions, including - SENSE ^Og, and - 00 
and - 01 transfers between the first and second banks of memory, are 
executed. 

If, while a particular trap is being traced, the coder no longer 
wishes to trace this trap, he may "erase" this trap by depressing a 
sense switch which will replace the "transfer to tracing" order in M 
with the original instruction. 

I 
The information printed consists of the location of the instruction; 

the instruction; the status of the overflow indicator; the overflow bits; 
and the sign and contents of the accumulator, MQ, and storage location 
being referred to in the address part of the instruction in octal and 
decimal. 

Conclusion 

These programs constitute the major portion of our library of programs 
used in debugging problem programs. Any of these programs are available 
to IBM 701 installations. We at Los Alamos would be interested in any 
suggestions for the improvement of these programs. We would also be 
interested in any ideas for debugging programs that you have utilized. 
We feel that only through the exchange of ideas can each installation 
benefit from the experience gained at other installations. 



LOB Alamos Coding System and Aasombly Program for the IBM 701 

by Dura W. Sweeney 

The process of coding, coding assembly, and check-out of the 
assembled code is the most demanding upon the coder's attention and, 
in many cases, his time. Therefore, it is necessary to furnish the 
coder with a simple but highly versatile coding system and assembly 
program, and a variety of utility programs to aid him in the detection 
and correction of coding errorB. 

As a result of our self-service system at Los Alamos, many people 
with virtually no experience with internally programmed machines have 
undertaken the coding of large problems for the 701. The first such 
coders are now quite adept, but more people arc still starting to learn 
to code. This has required a versatile coding system with as few 
restrictions and conventions outside of the use of the thirty-two 
operations as pocsible, because of two reasons. First, that both the 
new and experienced coder use a system based as closely as possible upon 
the machine language, and second that the new coder be unhampered by 
restrictions so that he may be free to devise new coding techniques. 
Another requirement is that the asocmbly program for this system must 
be easily usable and virtually fool-proof. 

Regional Programming 

Regional programming ie one of the coding systems which fits these 
requirements and is used almost exclusively at Los Alamos. A brief 
description of the system follows. 

The coder uees three main divisions of electrostatic storage. They 
are storage for problem constants, storage for numbers calculated by the 
code, and storage occupied by the code itself. Any or all of these 
divisions may be sub-divided. For example, the storage for numbers 
calculated by the code may be sub-divided into erasable storage used in 
certain coding loops and storage used to contain numbere for later print
ing. Using regional programming, the coder assigns a letter to distinguish 
each variety of storage. These letters are in the range from A to H and 
from J to Q. The letters A, B, E, and F are the most commonly used and 
denote respectively storage for universal constants, storage for problem 
constants, erasable storage, and storage for code. 

The coder makes a flow diagram or breaks the problem into smell 
logical calculations. Then each block of the flow diagram or logical part 
of the problem is assigned a number in the range from zero to ninety-nine. 

This number and letter are combined and called the regional index, 
and the coder may distinguish at a glance the part of the problem and type 
of storage referred to. Each regional index is followed by a regional 
location which is in the range from 0000 to h095- Coding proceeds with 
the coder filling these various blocks of storage starting from regional 
location zero. 

The coding form used is divided into columns which correspond to card 
columns. One column contains a digit to designate whether this is a control 



-2-

• card or a caxd containing coding. The next seven columns contain the 
regional location index and regional location. The next three columns 
contain the sign and operation parts of the address. Tho next seven 
columns contain the regional address index and regional address. Then, 
twenty columns are allowed for comments about the code followed by eight 
columns which contain the alphabetic abbreviation of the operation. Each 
line oi the coding form contains one half-word Instruction and corresponds 
to one punched card. 

When the coding is finished, the coder prepares a control card for 
each regional index. This control card indicates the absolute location 
in electrostatic storage which the assembly program will assign to the 
regional location. The coder may assign these locations so that there 
Ore no gape in his code or may locate different regions with gaps between 
them to be filled with other sections of code. In the course of coding, 
it is necessary to use operations whose address parts do not refer to 
electrostatic memory, such as shift orders. This type of address is 
characterised by the regional index, OOR, and no control card is neces
sary for this index, as the address is already absolute and does not 
need to be located. After the control cards are prepared, the coder is 
ready to use the assembly program. 

Regional Assembly Program 

Regional Assembly Program, 607, has been written at Los Alamos to 
replace a similar program, called 802, written by IBM. 607 uses the Card 
Reader, Printer, Punch and Electrostatic Storage only. Normally, all 
control cards are read into the 701 prior to the reading of the card3 
containing the regional code. Each card is road, assembled, checked, and 
stored in electrostatic storege before the next card is read. After each 
card is assembled, its location is checked against the previous card's 
location. If the locations arc in consecutive order, card reading is 
resumed until forty-four cards (forty-three cards in the esse of regional 
binary punching) are asoembled. If non-coneecutive locations are en
countered or if forty-four cards have been rend, card reading stops, one 
binary card is punched and a page is printed showing the original code 
and the assembled code in both decimal and octal notation. Then card 
reading is resumed. 

607 allows three types of control cards. One type is used to assign 
absolute locations to regional locations and regional addresses; one type 
is used to expand or contract regional locations and addresses; and one 
type is used to change one regional index to another. Up to two hundred 
control cords may be entered. 

607 also allows one other type of card which is used to introduce 
half-word or full-word constants into regional locations before aosembly. 
This type of card contains the usual regional location index and regional 
location, but the operation and regional address are zero, and the regional 
address index is 00R. The sign of the operation specifies whether the 
information punched in the comments columns is to be converted to a half-
word or a full-word. The constant is considered a fractional number 
consisting of twelve digits and a sign. It is followed by a two digit 
decimal scaling factor end a two digit binary scaling factor. The decimal 
scale factor is in the range 00 to .11 to indicate the number of integers 
in the constant. The binary scale factor is in the range 00 to 35 to 
indicate the number of binary integers in the converted constant. In the 



case of a half-word, constant, the constant is converted to binary and 
stored in the operation and address part of this card's location. In 
the case of a full-word constant, the left half-word is stored in this 
card's operation and address part, then another card image is formed in 
electrostatic storage with location one greater than the previous loca
tion, and the right half-word is stored in this cord image's operation 
and address part. 

607 checks each card for double punching and blank columns. It 
check3 each original regional location index, regional location, operation 
regional address index and regional address to see if they are within 
the prescribed ranges. It checks each assembled regional location index, 
location, regional address index, and address to see that they are still 
within the prescribed ranges. It also checks that there is a control card 
giving an absolute location for each regional location and address. 607 
also checks each constant for double punching 01* blank columns and checks 
that the binary scaling is large enough to accommodate the decimal scaling 
and that the rounding of the converted twelve digit number to thirty-five 
bits (or seventeen bits) does not overflow. 

All printing and punching io controlled by Sense Switches. 607 
contains one print program and three different punch programs. The first 
punch program punches binary cords containing up to forty-four half-words 
in the eight through the twelve-row of the card. The nine-row contains 
the check sum, the half -word count, and the location of the firBt word. 
The 6econd punch program punches new regional decimal cards. The third 
program punches what we term regional binary cards. 

Let me digress here, briefly, to explain regional binary cards and 
their importance to the 701 user. 

Regional Binary Cards 

Every half-word of code consists of an operation and address. This 
address must either refer to a location in electrostatic, or, in the case 
of operations Buch as Read, Write, Sense, or shift orders, net rexer to 
any electrostatic location. We will define all addresses which refer to 
electrostatic locations as variant addresses. All others will be defined 
as invariant addresses. The significance of this definition is that a 
variant address will change if the program is relocated in electrostatic, 
but an invariant address will not. 

A regional binary card contains a designation ss to the variance or 
invariance of the address of each half-word on the card. Regional binary 
cards contain up to forty-three half-words per card instead of the forty-
four on ordinary binary cards. 

This designation of variance or invariance of addressee now leads to 
several important new applications. All Buitable utility programs, such 
as print, punch, tape and drum programs, have been assembled in regional 
binary form so that the coder may locate these programs where he pleases 
in the machine without having to reassemble them ao & part of his own 
code using 607. A self-loading, card-reading progress, called 025, -or 
loading regional binsry cards has been written which allow? the user 0 
enter an increment to be added to all locations and variant addresses on 
succeeding regional binary cards. Several sets of regional binary car s, 
each with a different increment may be loaded successively. Probably 



the most important application is the regional binary assembly program, 
620. 

Regional Binary Assembly Program ^ 

Regional binary assembly program, 620, will expand a program and insert 
new orders, contract a program and delete unwanted orders, replace incorrect 
orders with correct orders, and permanently relocate programs. 

620 reads forty-three half - word 3 per card compared to COJ'B one half-
word per card. 620 c-lso prints seven times &c much octal information per 
page ao 60? docs. Only one control card ia allowed in 620 at one time, 
but this curd may contain a lower cut-address, and increment, and an upper 
eut-address. Thia allows the user to add an increment to any location or 
variant address greater than or equal to the lower cut-address, but less 
than the upper cut-address. 

All half-words are read, assembled and stored as full worcls, with 
location an the address part of the left half-word and the sign, operation, 
and address in the right half-word. The operation part of the left half-
word is "STOP" if the address is variant and "TR" if the address is in
variant. These full words are all positive. Prims 128 and 129 are reset 
to the full words, minus zero, flow each location is doubled and us.ed as 
the Set Drum address for Drum 128, if it is in the range 0000 to fOyt, 
and for Drun 129, if it 5.3 in the range '+096 to 819O; then the full word 
is stored in that drum location. This gives a full-word drum location 
corresponding to each half-word electrostatic location. After this 
"sorting" operation, the drums are searched, new binary cards are punched, 
and octal listings printed. 

Correction of Errors 

Loe Alamos1 procedure for the detection of errors ia explained in 
another article; the remainder of this paper x*ill be devoted to methods 
of correction of such errors. 

If the coder is interested in the correction of an instruction, he 
may uoe one of several methoda. The direct correction of the binary card 
is the moot commonly used. The coder may block out incorrect punches in 
the binary card and then punch the correct bits, or he my only correct 
the instruction, itself and uae programs 925 or 926 which will read the 
corrected card into electrostatic storage, recompute the chcck-sum and 
punch a correct card. (925 operates on ordinary binary cards, and 926 
open tea on regional binary cards.) Two other methods of correction are 
available, but both require more 721 time than the previous method 
described. Tie coder piny punch a correct regional decimal card, and 
reassemble a correct binary card using 607; or he may punch a card sim
ilar to a regional binary card containing the correct instruction, place 
this behind the incorrect regional binary card, and, using 620, obtain a 
correct regional binary card. 

Trie moat difficult part, of code correction is the insertion of 
several additional orders in the middle of the code. If there are very 
few such corrections, the coder replaces the instruction following the 
place, where the insertion is to be made by a vrane.for order to some un
used portion of electrostatic storage. There he locates the orders to 
be inserted and the replaced order and transfers back to the main code. 



II many of these so called "patchca" arc Inserted, it becomes very 
difficult to follow the sequence of the program. 

Both 607 end 620 allow the coder to form gaps in his code in which 
the inserted orders arc to be located. In this ce.ee, as cell as the 
case^in which the coder deletes unwanted orders rrtd closes up a gap, 
the /01 does the "bookkeeping" so chat increments are properly added to 
the locations to be changed, and 00 that all addresses are also properly 
changed. Tills method, using either 620 or 607, allows the coder"to" " 
keep his program in sequential electrostatic locations without unneces
sary transfers. In actual pi act ice, ftu ccclsr uses 620 to correct his 
program, then, if necessary, r-Jtee r. . Lial assembly with 607, after 
inserting the regional decim.;.]. correction • .<1 control cards, to obtain 
a iinal correct listing showing the progrr. 1 co?.;.:entc and absolute 
decimal and octal program. 



S I N G L E  A D D R E S S  A S S E M B L Y  P R O G R A M  

Data written 
July, 1953 

Written by With suggestions from 
Ed La* Jack Strong 

Charles Davis 

Report written 
March, 1954 

Written by With suggestions from 
Ed Law Jack Strong 

Frank Wagner 
Florence Anderson 

Roger Mills 

29-1015-0(HA) 



C O N T E N T S  

Page 

GENERAL DESCRIPTION 1 
Objectives 1 
Philosophy 1 
Capacity U 
Speed U 
Components Used 5 
Checks 5 
Input 6 
Output 6 
Assembled Program Location 6 
Electrostatic Storage Use during Assembly 7 
Block Diagram 8 

SYMBOLIC INPUT 10 
Location 10 
Operation 10 
Alphabetic Operation Codes 11 
Alphabetic Type Codes 11 
Type 12 
Address 12 
Remarks 12 
Ex&sf)les 13 

MACHINE ASSEMBLY 15 
Symbolic Decimal Card Form 15 
Card Order and Reader Board 15 
Sense Switches 15 
Programmed Stops and Sense Lights 16 
Printer Board and Alteration Switches 17 
Printer Board Wiring 18 
Description of the Listing 19 
Punch Panel 19 
Binary Card Form and Loading 19 

DETAIL LISTING PART I 21 
Coding 21 
Data 25 
Temporary 25 

DETAIL LISTING PART II 26 
Coding 26 
Data 32 
Temporary 32 

29-1013-0(NA) 



SINGLE ADDRESS ASSEMBLY PROGRAM 

GENERAL DESCRIPTION 

OBJECTIVES: 

1 To provide a Beans of converting a program written in a symbolic 
decimal and alphabetic form to an absolute binary form. 

2 To keep the symbolic form used as simple and direct as possible. 
3 To avoid having to break any but the very largest program into 

blocks for assembly. 
4 To produce a listing of the assenfeled program showing the symbolic 

and absalite forms as well as a description of the steps taken. 
5 To punch binary cards which are reacfcr fcr loading and execution. 

Each binary card to contain word count, initial address, check 
sum, and a signal as to whether or not it is the last card of & 
group. 

6 To approach as nearly as possible the speed of continuous card 
reading and printing regardless of the size of the program 
being assenfeled. 

7 To provide certain checks on the program being assembled. 

PHILOSOPHY: 

The reason for wanting to write a program in a symbolic form 
rather than in an absolute form is foimd in the programmer's desire 
for "elbow room" in developing the program. The analysis of even the 
best organized problem may be found in fault and changed after the 
program has been partially completed. The need for additional 
instructions in one part of a program often becomes apparent as 
another part is written. This sort of change is disastrous when the 
program has been written in absolute form. 

More often than not, it is convenient to write the core of a 
program first, and then build out from that tcward the beginning and 
and of the program. It is impossible in this case to know what absolute 
location each instruction will eventually occupy whan the program ia 
complete. But we do know that whoi the program is complete, successive 
instructions will occupy successive absolute locations. Hence we may 
adopt an arbitrary sequence of digits to stand for the location of the 
instruction. Call this the symbolic location. Then the only regularity 
demanded of the set of symbolic locations is that they be in order. 
No other restrictions need be placed cn the qjrmtollc locations used. 

2 9-1013-0(NA) 



GENERAL DESCRIPTION (Continued 2. 

It is convenient, though not necessary, to adopt some convention as 
to the use of the sequence of digits making up the symbolic location. 
The coding usually falls into several logical sections. It is common 
practice to call them regions. The order of the instructions within a 
region is called the sequence nuafcer. Finally, at least one digit is 
needed for insert ions between adjacent sequence numbers. Two decimal 
digits for region number gives the possibility of one hundred regions 
within a program. Up to one hundred instructions can be written in 
each region by using two more decimal digits for sequence number within 
a region. Finally, one decimal digit used for insertions gives the 
possibility of nine insertions between each instruction. Thus a total 
of five decimal digits used for symbolic location would seem ample for 
easy flexible programing. 

Now since five decimal digits will convert to, at most, seventeen 
binary bits, a symbolic location will occupy one half word. This is 
important because the maximum size of the program which can be assembled 
depends directly on the space required for each symbolic location. 

In general, the data required by a program fall into two classifi
cations. There are the data required by the program every time it is 
executed. Call this permanent data. And there are the data which 
change each time the program is executed. Call this variable data. 
There will be data which fall in between the two classifications some
where, but the following will still hold. In the interest of minimum 
loading time, the permanent data should probably be converted and 
punched on binary cards. This might also be done to variable data if 
it is going to be loaded more than once, but even if it is loaded from 
decimal cards, there should be as many numbers per card as possible. 
Either of these alternatives strongly suggests a compact data arrange
ment. This consists of a single area for a whole program with pieces 
of data assigned to consecutive locations within the area. The area 
itself can be assigned by the assembly program to the absolute locations 
immediately following the last instruction. 

The need for freedom to make insertions in the instruction area all 
during the preparation of a program stems from the sequential way in 
which the machine executes the instructions. This is not the case with 
data, so no difficulty arises from assigning the data compactly within 
the data area. 

A certain amount of erasable or temporary storage is also needed 
by the program during its execution. In general, a temporary location 
is used only briefly by the program and can be reused several times 
during the course of the program. As in the case of data, there is no 
programming objection to assigning the temporary locations compactly 
in a single temporary area. This facilitates an efficient use of a 
minimum number of temporary locations. The temporary area can be 
assigned by the assembly program to the absolute locations immediately 
fdllowing the data area. 

The program has been broken, then, into three distinct areas in 
electrostatic storage—the instruction area, the data area, and the 
temporary area. Addresses referring to the instruction area will be 

29-1013-0(NA) 



GENERAL DESCRIPTION (Continued) 3 

called symbolic type addresses. Those referring to the data area will 
be called data type, and those referring to the temporary area will be 
called temporary type. There is a fourth type of address which over
laps the other three. This is the absolute type by which reference is 
made directly to an absolute location anywhere in electrostatic storage 
or to an input-output unit, switch, light, etc. 

Each of the four types of address requires different handling during 
the assembly process in order to correctly assign the corresponding ab
solute address. A symbolic address necessitates a search for the cor
responding symbolic location. Since any instruction in a program may 
refer by way of its address to any other instruction in the program, it 
is necessary to hare in electrostatic storage a file of all the sym
bolic locations used in the program being assembled. If each symbolic 
location requires only one half word in the file, the limit on the number 
of instructions vfaich can bo assonblod at on© tin© is ©qu&l to 4096 minus 
the number of half words required by the assembly program itself. 

This file of symbolic locations can be built up by retaining in 
electrostatic storage each syafeolic location as the instructions are 
readi|o/6ne£bard. The remaining information on each card can be written 
on tape so ttet the cards will not have to be read again. When all of 
the instructions have been read and the file of symbolic locations is 
complete, the instructions can be read back from tape one at a time, and 
the symbolic type addresses used as the arguments in a ssarch of the 
file of symbolic locations. The absolute file location in which the 
correct symbolic location is found is linearly related to the absolute 
program location. In fact, since the symbolic locations each occupy a 
half word in the file, the difference between the file origin and the 
assigned program origin is of course the difference between any file 
location and the corresponding program location. This difference can 
be stored and applied against each absolute file location which results 
from the search of the symbolic locations to yield the program location 
as assembly proceeds. 

At the time the instructions have all been read into the nachine and 
the file of symbolic locations completed, the number of instructions in 
the program being assembled can be calculated. Now, if the programsr 
has specified the absolute location at which his program should begin 
and the nunber of half words of data used in the program, the data area 
origin and the temporary area origin can be calculated. The data 
becomes the first even address following the last instruction, and th 
temporary origin becomes the first even address following the last data 
location. Then the absolute equivalent cf a data type address or * 
temporary type address can be calculated by adding the relative addres 
to the respective origin. If the number of half words of temporary 
storage is also specified, a check can be made to be certain the program 
is not located too high in memory. 

The three values which the programmer has bean asked to 
the program origin, the number of half words of data, and the nunber of 
half words of temporary, are written in absolute ae the addresses o 
the last three instructions. 

29-1013-0(NA) 



GENERAL DESCRIPTION (Continued) 4« 

When the tape is read back record by record and each instruction is 
assembled into absolute form, immediate printing saves both time and 
storage space. Tape reading and symbolic searching can be completed 
quite easily between continuous print cycles. Since the program listing 
should be in direct oder, the instructions have to come off the tape 
one by one in the same direct order. But it would be advantageous to 
avoid having to wait for the tape to rewind between writing and reading. 
This can be done if the instructions are written on the tape in reverse 
order and then the tape is read backwards. The cards can be sorted into 
reverse order as easily as into direct order. And the file of symbolic 
locations used can be set up starting at half word 4095 and working 
back. The last file location entered then becomes the file origin. 

An alphabetic operation code is convenient to avoid having to 
memorize the absolute operation codes. It can be short and still be 
sufficiently mnemonic. It is desirable to have some kind of a check 
that the operation code written is allowable and that it has been key
punched correctly. The latter check demands some regularity in the 
codesj for example, that they all be two letter alphabetic codes. This 
is far from sufficient as a check, but it will catch a great many errors. 

With regard to the first check, if the alphabetic codes are chosen 
so that t.he numeric underpunching is unique, the underpunching can be 
used as the argument in a table lookup operation to obtain the cor
responding absolute code. Along with the absolute code, a test amount 
can be picked up to indicate that the underpunching is an allowable 
combination. This type of operation lookup also has the advantage of 
a readily accessible table if changes are desired. Additional operations 
for an interpretive scheme may be added for assembly. 

The sign of an instruction is important when that instruction is to 
be modified, but otherwise it has a meaning which does not follow directly 
that of a full- or half-word reference. Many of the instructions are never 
modified, and when one is, the programmer's attention is directed to that 
instruction specifically. Consequently, the use of a 1 or a 2 instead of 
a sign in the symbolic instruction to mean one half word or two half words 
(a full word) is perhaps slightly more direct. This might not matter to 
the experienced progranmer, but it may make a difference to the part-time 
man. 

CAPACITY: Will assemble a program containing up to 3700 instructions. 

SPEED: Requires approximately 850 milliseconds per instruction assembled. 
Host of this time is used in card reading and printing. Tape writing 
takes place between cards without slowing card reading. Thei tape reading, 
assembly, and drum writing* take place between printing the assembled 
instructions one per line at full printing speed. Finally 

*When the program being assembled contains more than 1850 instructions 

29-1013-0(NA) 



GEH&RAL DESCRIPTION (Continued) 5. 

drum reading* and binary punching take place. This speed can almost 
be doubled if a listing of the assembled program is not required. Put
ting sense switch #5 down eliminates printing. 

OOMFONESTS USED 

Makes use of the card reader, all of electrostatic storage, tape #1 
or tape #2 (under the control of sense switch #2), drua #4*» the print
er if a listing of the assembled program is desired, and the punch. 

CHECKS 

The symbolic instructions are sequence checked as they are read. 
Any instruction out of sequence will result in a programed stop. 

The punch pattern on the cards is checked as the cards are read. 
Any punching which is contrary to the numeric-alphabetic pattern will 
result in a programmed stop. 

The operation code is checked as the cards art read. Underpunching 
which does not match one of the standard codes will result in a pro
grammed stop. 

In these three cases, the offending card is the third one from the 
end if the cards are fed out. In the last two cases, running a correct
ed card followed by the reminder of the cards into the reader and press
ing ths start button will continue the process where it was interrupted. 
This is not possible in the case of the sequence error because the 701 
tapes cannot be stepped back a unit record while they are in write 
status. 

The number of instructions is checked during card reading, and a 
programmed stop will occur if an attempt is made to read in mors than 
3700 instructions.  ̂

t. fr "e X. 
r A check sum is carried with each unit record on tape and will re- Je

suit in a programmed stop in the event of a tape error, 

' * ? 
It printing is to take place, a cheek is made to be certain that •. r 

the correct printer board is in. If lV*\e uofc, a programmed stop will * 
occur. If the start button is pressed after the correct board has been 
put in, the assembly process will continue. 

A check is made to be certain that every symbolic address has a 
corresponding symbolic location. If this is not the case, a programmed 
stop irill occur. If the start is pressed, the assembly process will 
continue with an indication being printed beside the instruction with 
the bad address. This dddress check is applied only to those instructions 
having symbolic addresses. 

*When the program being assembled contains more than 1850 instructions 

29-1013-0(NA) 



GENERAL DESCRIPTION (Continued) 6. 

The total amount and location of electrostatic storage used for 
instructions, data, and temporary storage is checked to be certain that 
the high order end of electrostatic storage is not exceeded. If it is, 
a programmed stop will occur. 

In all of the above stops, one of the sense lights (see section on 
sense lights) is turned on to help idoitify the cause of the stop. 

INPUT 

Input to the card reader consists of symbolic instructions punched 
one per card. See the section on machine assembly for the exact card 
columns. The principle reason for reading only one instruction per 
card is to maintain the ease of inserting or deleting single instructions. 

The input must include three dummy instructions for the purpose of 
specifying three pieces of information about the program to be assembled. 
The three highest instructions must have as their address parts respect
ively the program origin, the nunber of half words of data, and finally 
the number of half words of temporary storage as shown in the following 
example: 

99997 ST A1 2000 Program origin 
99998 IE A1 48 Half words data 
99999 IE A1 20 Half words temporary 

OUTPUT 

Output consists of both printing and punching. The program is list
ed one instruction per line in both symbolic decimal and absolute octalo 
Remarks are printed to help in following the course of a program. The 
absolute is printed in octal rather than decimal because octal is the form 
most useful in using the console, memory printouts, etc. 

The assembled program is binary punched forty-four instructions per 
card. The nine—left row of each card is used for control information 
for that card. Columns 10-14 contain the flill word count on that card. 
Columns 15-26 contain the address for the first instruction on that card 
to read into. Columns 33-44, when other than zero, signal that the card 
is the last of a group and give the address to which control is to be 
transferred when the card has finished reading. The 12-right row, or 
the last half row punched if the card is not full, contains the check 
sum, a simple sum of all the other half rows on the card, including the 
9-left control word. 

ASSEMBLED PROGRAM LOCATION: 

There is no restriction on the area of electrostatic storage for 
which a program may be as sent led. However, if a program origin is spec
ified so high that instructions , data, and temporary will exceed the re
mainder of storage, an error stop will occur. (See the section on checks). 

29-1013-0(NA) 



GENERAL DESCRIPTION (Continued) 7. 

The instruction area begins at the program origin which has been speci
fied by the prograsmer. The data origin is assigned by the assembly pro gran 
to the first even location following the last instruction (the third of 
the three final dumay instructions). The origin of temporary storage is 
assigned by the assembly program to the first even location following 
the last data location. This has been determined by the programmer's 
specification of the number of half words of data. 

ELECTROSTATIC STORAGE USE DURING ASSEMBLY 

The assembly program itself occupies absolute decimal locations 40 
thru 395. The self-loading binary reading program for loading the 
assembly program occupies absolute deciiral locations 0 thru 35* loca
tions 36 thru 39 are used as an absolute transition area between the two 
halves of the assembly program. 

The file of symbolic locations used is located in direct order against 
the high order end of electrostatic storage. If the nuxber of instruc
tions in the program being assembled ie 1850 or less* the assembled 
instructions are stored beginning in absolute dednal location 396 until 
they are binary punched. If there are more than 1850 instructions, they 
are stored on drum in pairs after assembly until they are binary 
punchedo 

29-1013-0(NA) 



QEMERAL DESCRIPTION (Continued) 

Block Diagram 

8. 

Part one 

Self-load binary card 
reading program 

Load and transfer 
to first half assembly 
program. 

* 
Set up initial condi
tions. 

0101C-01230 

Read card and conTert 
to binary. 

02010-10080 

I 
'is punch pattern 
[correct? 
1 1201C-12050; 

1 Yes 

Obtain true 
code. Test 
code. 

operati on 
for bad 

12100-12263 
Good 

Are symbolic decimal 
cards in sequence? 

12296-12310 

i Ye3 

Transfer to read in 
second half assembly-
program. 

0403C 

9 punch In col. 9 

;t<t 212 „ 
Light 2 ° 
12080-12090 

3ad_ 

Set up symbolic in
struction. lend sym
bolic location to file 

1233C-1243Q 

No ^ STOP 2560 
Lipht 1 
1221 5—12210 

Run out cards. Fix 
third from last. Run 
In. Press start. 

Sl'-OP 237. 
}Light 3 

down Sl'-OP 237. 
}Light 3 Sw. 3 

12266-12270 up 

Lea-re marker to 
indicate bad op. code. 

12283-12293 

Correct condition and 
start over. 

Alter file address. Is 
file too large? 

12440-12500 
No 

Write card image and 
converted instruction 
on tape. 

1301C-L.070 
1 

Yej STOP 303. 
Light L c 

12530-12540 

First 3 cards 

Store initial informa
tion about program 
being assembled. 

16010-1610C 

29-1013-0(NA) 



GENERAL DESCRIPTION (Continued) 

Block Diagram 

Binary reading program 
entered by Part one 

9. 

Part two 

Load and transfer to second 
half assembly program. 

~~ t 
'Write end of file on tape 
used. 

20030 

Calculate data and tempo
rary origins. 

20040-20170 

Head assembled program from 
drum if drum used. 

37040-37140 

"Punch program onto binary 
cards, 

4001Q-4Q390 

X 

Is la3t temporary location 
*4095? 

20300-20200? 
Mo STOP 0470 

Light 7 6 

47030-47020 
Yes 

Teot size of program and 
set drum gates. 

20360-20510 

Set up data origin and 
extent for possible data 
assembly. 

42010-42016 

Program completed. Stop or 
load another, 

42013-42060 

I > 
/ STOP Ol36ft 

Light 1 B 

20590-20600 

Put correct printer board 
Is correct printer board No 

STOP Ol36ft 
Light 1 B 

20590-20600 
in. Press start button. Is correct printer board No 

STOP Ol36ft 
Light 1 B 

20590-20600 in? 

STOP Ol36ft 
Light 1 B 

20590-20600 
70530-20586 

1 Yes hnd ol I lie 

Read unit record from tape. 
Is check sum correct? 

22010-22280 
1— 

STOP 0175, 
Light 3 6 

22280-22281 

Step tape up one unit 
record and reread. 

22286-22288 

Test type of address. 
24015-24080 

S . Search file for 
matching symbolic 
location. 

26010-26290 

Test type of address. 
24015-24080 

Search file for 
matching symbolic 
location. 

26010-26290 ! A,T ,D 

Search file for 
matching symbolic 
location. 

26010-26290 
Add address to correct 
orLgin. 

27010-29030 

Add address to correct 
orLgin. 

27010-29030 Was the search 
successful? 

26160, 26220 

Was the search 
successful? 

26160, 26220 
itora assembled instruc
tion, 

31010-3.1290 

Yes itora assembled instruc
tion, 

31010-3.1290 Press start button 
to continue. 
Press start button 
to continue. 

1 
Print assembled 
instruction if to print. 

31.300-35090 

N<L 
Set up print marker before 
stopping. 

26300-26316 

^ STOP 0257, 
Light 4 
26320-26330 

29-1013 -0(NA) 



SYMBOLIC INPUT 10. 

LOCATION 

Consists of five decimal digits which may be used in any way desired 
as long as the locations for a program are monotonically increasing. A 
suggested division of the five is to use the first two for region number, 
the third and fourth for sequence number within the region, and the 
fifth for insertions. 

Consecutive absolute locations beginning with the program origin 
specified by the programmer as the third from the last instruction are 
assigned to the successive symbolic locations during the assembly 
process. 

OPERATION 

Consists of a two-letter alphabetic code as shown in the attached 
table of operations. These have been chosen for their mnemonic value and 
for unique underpunching. The absolute operation codes are assigned by 
the assembly program during the execution of its first part. 

There are two operations shown which are not standard. The first is 
ET for "Extract r" This is a programming convenience only, since the 
assembly program assigns to it the absolute operation code of the Send 
Address order. ET must be used only with full-word addresses. The 
second is YE for "Your Entry." This is used in calling sequences when 
the address part is the specification of some absolute amount such as 
a magnitude. The reason for using this operation is found in the North 
American change routine. The YE operation part tells the change routine 
that the address part is an absolute amount and not to be changed as 
though it were an address when insertions or deletions of instructions 
are made elsewhere in the program. This in no way affects anyone who 
is not using the change routine. 

Any or all of the alphabetic codes may be changed quite easily. 
The assembly program binary cards punched 0111201 thru 0111203 in 
columns 1 thru 7 are the data for the first part of the asseraoly program. 
The data origin for this first part is 354fl. The operations table runs 
from Dl 11 thru D1 99. The absolute equivalent of any alphabetic opera
tion code should be in the relative data location Dl xx where xx is the 
alphabetic underpunching of the alphabetic code. This location should 
also contain 2525* for the legitimate operation check. In other words, 
the ent(i/f)BB in the operations table are each a half word in length. 
The first or high order twelve bits are used for the legitimate opera
tion check amount, 2525g. The last or low order five bits contain the 
absolute operation code. Note that this is the reverse of the usual 
operation-address order. The location of a given entry in the operations 
table can be computed by adding octally the underpunching of the alpha
betic operation code to the base of the table, 354a. Any new codes must 
be two-letter codes since the punch pattern check tests these card columns 
along with the rest. 

29-1013-0(NA) 



SYMBOLIC INPUT (Continued) 11. 

ALPHABETIC OPERATION CODES 

Stop and £ransfer ST 
Unconditional Transfer UT 
Overflow Transfer OV 
Plus Transfer PT 
Zero Transfer ZT 

Subtract SU 
Reset and Subtract RS 
Subtract as if Plus SP 

No Instruction NI 

ADd AD 
Reset and Add RA 
Add as if Plus AP 

Send Result SR 
Send Address SA 
Send SQ 

Load Mg LQ 

MultiplY MT 
Multiply and Round NR 

DiVide DV 

RouNd RN 

Long Left Shift LL 
Long Right Shift LR 
Accumulator Left Shift AL 
Accumulator Right Shift AR 

ReaD RD 
Read in Reverse RR 
WRite " WR 
Write &id of File EF 
Rewind RW 
Set Dpun Address LA 
Sense and Skip or Control SS 
Copy and Skip CS 

ExtracT ET 

Tour Entry 

ALPHABETIC TYPE CODES 

Absolute A 
Symbolic S 
Temporary T 

Data D 

29-1013-0(NA) 



SYMBOLIC INPUT (Continued) 12. 

TYPE 

Consists of a two-column description of the address on that in
struction. The first column is alphabetic and tells whether the address 
is written in absolute or is a reference to the symbolic area, data 
storage area, or temporary storage area. The letters for these are A, 
S, D, or T respectively. 

The second column is a one if the address refers to a half-word 
location and a two if the address refers to a full-word location. This 
column is the e qaivalent of the sign when the instruction is in absolute 
form. 

An advantage of using this type column is that the address column 
is then left oompletely free of arbitrary restrictions on the choice 
of regions. 

ADDRESS 

Consists of five decimal digits. If the address is a reference to 
a symbolic location, the five decimal digits must be identical to the 
five decimal digits of the symbolic location referred to. An address 
with type MS" which does not have a corresponding symbolic location 
will result in an error stop. 

If the address is a reference to a data or a temporary location, 
the absolute address will be obtained by adding the written address to 
the respective origin. The programmer usually assigns data or temporary 
locations compactly beginning with the respective origin, but this is 
not a requirement. When either or both of these areas have not been 
assigned compactly, special care should be taken that the specified 
number of half words of data or temporary covers both used and unused 
words in the area. 

If the address is a reference to an absolute location, the type is 
"A" and the absolute address is exactly as written. 

If the address is a modifiable address, it should be written as 
type "A" with brackets in the address colunns. The brackets are then 
keypunched as a numeric X followed by four zeros. It is possible to 
include absolute, data, or temporary addresses within the brackets, but 
not symbolic addresses. A reference to full-word data location 2 (later 
to be modified) would be written D2 1 2:and keypunched D2 X0002. 

REMARKS 

Anything which can be keypunched and for >hich there are characters 
on the 716 printer can be written in the remarks column. Thirty-five 
card columns.are reserved for these renarks. They are written onto and 

-1013-qNA) 



SYMBOLIC HPUT (Continued) 13. 

read from the tape without check sun. Only the left side of the card 
image is included in the tape check sua. 

An adequate description of each instruction written in the remarks 
column as the program is prepared will prove very useful when the pro
gram is being tested cr changed. These remarks on the listing of the 
assembled program will be of assistance to the ooder during the checkout 
period. 

EXAMPLES 

The attached fora ED-622-3 serves as an example of the form used at 
North American for symbolic programming and contains some isolated in
structions from the assembly program to illustrate the manner in which 
the symbolic decimal input is written. 

The first instruction has symbolic location 02020 and is a Read 
operatioh vdth absolute address 2048, the address of the card reader. 

Instruction 02070 is a Store operation in temporary full word 56. 
Instruction 08040 is a Transfer on Overflow to symbolic halt-vord 
location 08050. Instruction 08250 is a Subtract operation with the 
address data half-word location 1. 

Instruction 12180 is a Divide by data full-word location 6, 
Instruction 12240 is a Reset and Add operation with address being a 
modifiable half word. Instruction 22120 is a Copy operation with address 
being a modifiable full word. Both of these modifiable addresses are 
initially setup by the program itself and altered by instructions in 
the same loop. 

Finally, instruction 26150 is a Subtract temporary half-ward loca
tion 58. 

-1013 -0(NA) 



'/> 
w 
9 
O 

0 

1 f0* 

w 
o 
£ 

p w Q 

>-
OCl 

o 

& I 
9 i 
§ s 
£ K 

£ 

u 

:o 
i2 K n 

a O 

1-1 o 
.-I M 
' E-i 

r<  ̂
-0 

*• •£ C" o 

a rM 

I8| 
o 
CO 

o> 

lf\ 
_-t 

e 

•4 

o 
N 

O 
« 

o 
w 
o 

N 
_Q 

SPEEDEX CCD£ 3HEST 14. 3 

<4 
H 

« 
JO 
o 
e* 
o 

w 

-ft 

1 
H| 
a 

• 
o1 

O 
-4 
o 

B 
u 
H 
62 a 

w 
a 
> 
a 

rt 

« 

«• 

I 

« 

iJ 

9 
Si 

S a 

« 
IT 

w H 
H 

«) 
a 

0 
01 

o 
ft »r 

H 

JH-

KD-622-3 
29-1013-0{NA) 



MACHINE ASSEMBLY 15. 

SYMBOLIC DECIMAL CARD FORM 

See "SYMBOLIC INPUT" far more detailed description of symbolic instruction. 

Card column Contents 

1-8 Indicative information if desired 

9 Must be left blank 

10-14 Symbolic location. Must have sii^le numeric 
punch in each column. 

15-16 Alphabetic operation code. Must have an alpha
betic punch in both columns. 

17 Alphabetic A, S, T, or D for type address. 
Must be alphabetic. 

18 Numeric 1 or 2 for half or full-word address, 
respectively. Must be numeric. 

19-23 Address. Must have a single numeric punch in 
each column. Numeric X in first column will 
give bracket. In this case, must not have 
digit punch also. 

24-45 Should be left blank 

46-80 Remarks. May be mixed alphabetic, numeric, 
or blank. 

CARD ORDER AND READER BOARD 

The symbolic decimal cards must be sorted into reverse order on 
columns 10 thru 14, the symbolic location. This puts the three program 
specification cards first. The binary cards for the assembly program 
are then split into two parts. Cards 01 100 01 and 01 112 01 thru 
01 112 08 are put on the front of the reversed symbolic decinal deck. 
Cards 01 112 09 thru 01 112 19 are put on the back of the reversed 
decimal deck. The whole deck is then ready for the card reader. 

A standard reader board reading card columns 9 thru 80 straight into 
calculate entries left and right will read both the binary and the 
decimal cards correctly. 

SENSE SWITCHES 

Switch #1: Not used by assembly program 

29-1013-0(NA) 



MACHINE ASSEMBLY (Continued) 16* 

Switch #2: Tape selection switch 
Up - Tape #1 used for intermediate storage 
Down - Tape #2 used for intermediate storage 

Switch #3'• Bad operation correction switch 
Up - Pressing the start button after a non-allowable operation 

stop will cause the assentoly process to continue after a 
marker has been left indicating that the instruction on 
vfrich the stop occurred has a bad operation code. 

Dowi - Pressing the start button after a non-allowable operation 
stop will cause the card on vMch the dtop occurred to be 
reread. This assumes that the operator has run the cards 
under the brushes out, corrected the third from the last, 
and run it along with the following cards into the reader 
again. 

Switch #4: Tape reading error reread switch 
Up - Pressing the start button after a tape check sum stop will 

cause the assembly process to continue after a marker has 
been left indicating that the instruction on which the stop 
occurred had a tape error. 

Down - The unit record on which the stop occurred will be reread 
if the start button is pressed. If the original stop was 
caused by a reading errcr, a second attempt to read the 
unit record may very well be successful. 

Switch #5• Print switch 
Up - A complete listing of the program being assembled will be 

printed out at the rate of 150 instructions per minute. 
Down - No listing of the program being assembled will be printed. 

Switch #6: Program following switch 
Up - When the assembly process has been completed and the binary-

cards punched, a program stop will occur. 
Down - When the assembly process has been completed and the binary-

cards punched, the programmed equivalent of the load button 
will occur for the purpose of reading in any self-loading 
program which follows the assembly program. 

PROGRAMMED STOPS AND SENSE LIGHTS 

For the purpose of being able to quickly ascertain the nature of a stop 
during the assembly process, one of tte sense limits is turned on for each 
of the stops. The assembly process is iroken into two parts, reading cards 
and printing or reading tape. The part being executed, plus one of the 
four lights will uniquely identify any one of the eight stops. The stops, 
associated lights, printing marker if there is one, and reconmanded course 
of action are shown below: 

While reading cards: 

Octal Loc. Light Marker Meaning and Course of Action 

0256 1 None Decimal cards out of sequence. Put in 
sequence and restart from beginning. 

29-1013-0(NA) 



MACHINE ASSEMBLY (Continued) 

Octal Loc. Light Marker 
0212 2 None 

0237 

0303 None 

While printing or reading tape*: 

17. 
Meaning and Course of Action 

Punch pattern bad. Run cards out, fix 
third from last, run it and following 
cards into reader, and press start 
button. 
Alphabetic operation code bad. Continue 
or reread bad card. See description 
of sense switch #3 use. 
File too large. Attempting to assemble 
more than 3700 instructions. Break up 
into blocks to assenhle. 

Octal Loc. 
0136 

0175 

0470 

0257 

Lifdit Marker Meaning and Course of Action 
1 None Wrong printer board. Put correct 

board in and press start button. 
2 6 *Tape check sum error. Continue or 

reread unit record. See description 
of sense switch #4 use. Check punch
ed binary card for error. 

3 None *Upper limit of electrostatic storage 
exceeded. Reassign program origin 
and begin over again. 

4 7 *No such location in file for this 
symbolic address. Press start button 
to continue. 

* In the event one of the last three error stops occurs while assembling 
without printing (sense switch #5 down), put sense switch #5 up before 
pressing the start button and let one or two lines print before putting 
it down again. This will give a reccrd of the instruction beire; assem
bled on which the stop occurred. 

PRINTER BOARD AND ALTERATION SWITCHES: 

Alteration Switch #1 

Normal - Spacing across the printed sheet is wider and more open. 
Somewhat easier to read. Occupies approximately 8 inches. 

Transferred — Spacing across the printed sheet is narrower in order 
to fit on a narrow form. Occupies approximately 7 inches. 

Alteration Switch #2 

Normal - Double spacing 
Transferred - Single spacing 

The printer board wiring is shown on the attached wiring diagram. 
The printing Is not echo checked since the critical part of the output 
is the binary punching. Zero control is not wired. The co—selectors 
are used for the horizontal spacing. The date is emitted thru a selector 
controlled by the carriage overflow impulse for printing on the first 
line of each sheet. 

29-1013-0(NA) 



MACHINE ASSEMBLY (Continued) 

PRINTER BOARD WIRING 

18 

29-1013-0(NA) 



MACHINE ASSEMBLY (Continued) 19. 

DESCRIPTION OF THE LISTING 

The attached listing is the assembly program assembled by it self 0 
Any program being assembled will list in thi s same form if sense switch 
#5 is up. 

The symbolic decimal coding is printed to the left in exactly the 
same form as written. Brackets are printed as two slashes. 

The absolute octal form of the program is printed in the center. 
Absolute octal was chosen rather than absolute decinBl because of the 
necessity of using octal in connection with the console, memory print
outs, etc. The idea of printing both was discarded because of its 
tendency to confuse. 

The remarks or description of the instruction is printed to the 
right exactly as punched. 

If a marker has been left by one of the error stops, it will print 
to the left of the symbolic decimal on the line with the instruction 
in error. 

PUNCH PANEL 

The punch panel is a standard seventy-two column board with cal
culate exits left and right being punched straight into card coliums 
9 thru 80. 

BINARY CARD FORM AND LOADING 

The binary cards punched by the assembly program are in the following 
form. The nine left row is used as a control word and contains (1) the 
number of full words on the card,excluding the control ward itself ard 
the check almoin columns 10-14, (2) the address into vhich the nine 
right word on the card is to read in columns 15—26, (3) the signal as 
to whether or not the card is the last of a group, and if it is, to 
what location control is to transfer when the card has been read. The 
last is in oolumns 33—44. It is zero on all except those cards on 
which a transfer of control away from the reading program is desired, 
i.e., the last card of a program. 

The last half row punched (the 12 ri,£it row in tte case of a full 
card) is the check sum for that card. It is the simple sum of all the 
other half rows on the card with the overflows disregarded. The nine 
left row is included in the check sum. 

The binary cards punched may be loaded for execution with a copy 
of the first card of the first part of the assembly program. This card 
is identified with an 01 100 01 in columns 1 thru 7. It Is a self-loading 
binary card-reading program which occupies and makes use of absolute 
octal locations 0 thru 43. When already in storage it can be entered 

29-1013-0(NA) 



MACHINE ASSEMBLY (Continued) 20. 

for the purpose of reading more binary cards by transferring to absolute 
location 0006. A check sua error while reading in binary cards will 
cause a stop at octal location 0036. The difference between the card 
check sum and the calculated check sum will show in the accumulator at 
the time of the stop. The card in error should be reread by running 
it into the reader and transferring to 0006g or by reloading card 
01 100 01 ahead of it. 

Any binary data cards being loaded should precede the program cards 
since the program will be executed as soon as the last program card 
has been read. 

This binary card form was chosen because it was felt that it would 
lend itself to the most oompact punching and reading programs while 
at the same time maintaining the advantage that each card is an inde
pendent unit reccrd. 

29-1013-0(NA) 



DETAIL LISTING PART I 21. 

Symbolic Decimal Absolute Octal 
Loc. Op. 

fa* Addr. Loc. Op. Addr. 
0 1 0 1 0  R A  D 1  0 0 0 0 9  0 0 5 0  +  1 2  0 3 6 5  
0 1 0 2 0  S A  S I  1 2 4 3 0  0 0 5 1  +  1 5  0 2 7 2  
0 1 0 3 0  R A  S I  1 9 0 0 1  0 0 5 2  +  1 2  0 3 3 4  
0 1 0 4 0  S A  S I  1 4 0 7 0  0 0 5 3  +  1 5  0 3 2 1  
0  1 0 5 0  R A  S I  1 9 0 0 8  O 0 5 4  +  1 2  0 3 4 3  
0 1 0 6 0  S A  S I  1 6 0 2 0  0 0 5 5  +  1 5  0 3 2 3  
0 1 0 8 0  R A  D 1  0 0 0 0 6  0 0  5 6  +  1 2  0 3 6 2  
0 1 0 9 0  S R  A 2  0 0 0 3 6  0 0 5 7  - 1 4  0 0 4 4  
0 1 1 0 0  S R  A 2  0 0 0 3 8  0 0 6 0  - 1 4  0 0 4 6  
O H I O  R A  D 1  0 0 0 1 0  0 0 6 1  +  1 2  0 3 6 6  
0 1 1 3 0  S R  A 1  0 0 0 0 1  0 0 6 2  +  1 4  0 0 0 1  
0 1 1 4 0  S S  A 1  0 0 0 7 0  0 0 6 3  +  3 6  0 1 0 6  
0 1 1 5 0  I J T  S I  0 1 2 3 0  0 0 6 4  +  0 1  0 0 7 0  
0 1 1 6 0  R A  S I  1 9 0 1 2  0 0 6 5  +  1 2  0 3 4 7  
0 1 1 7 0  S A  S I  0  1 2 3 0  0 0 6 6  +  1 5  0 0 7 0  
0 1 1 8 0  S A  S I  1 2 3 2 0  0 0 6 7  +  1 5  0 2 5 7  
0 1 2  3  0  R W  A 1  0 0 2 5 6  0 0 7 0  +  3 4  0 4 0 0  
0 2 0 1 0  W R  A 1  0 2 0 5 2  0 0 7 1  +  3 2  4 0 0 4  
0 2 0 2 0  R D  A 1  0 2 0 4 8  0 0 7 2  +  3 0  4 0 0 0  
0 2 0 3 0  R A  D 1  0 0 0 0 6  0 0 7 3  +  1 2  0 3 6 2  
0 2 0 4 0  S R  1 2  0 0 0 5 0  0 0 7 4  - 1 4  0 6 0 2  
0 2 0 5 0  S R  1 2  0 0 0 5 2  0 0 7 5  - 1 4  0 6 0 4  
0 2 0 6 0  S R  1 2  0 0 0 5 4  0 0 7 6  - 1 4  0 6 0 6  
0 2 0 7 0  S R  1 2  0 0 0 5 6  0 0 7 7  - 1 4  0 6 1 0  
0 2 0 8 0  R A  S I  1 9 0 0 2  0 1 0 0  +  1 2  0 3 3 5  
0 2 0 9 0  S A  S I  0 4 0 1 0  0 1 0 1  +  1 5  0 1 0 7  
0 2 0 9 5  S A  S I  0 4 0 2 0  0 1 0 2  +  1 5  0 1 1 0  
0 2 1 0 0  S A  S I  1 4 0 1 0  0 1 0 3  +  1 5  0 3 1 3  
0 2 1 1 0  R A  S I  1 9 0 0 3  0 1 0 4  +  1 2  0 3 3 6  
0 2 1 2 0  S A  S I  0 8 1 8 0  0 1 0 5  +  1 5  0 1 6 0  
0 2 1 3 0  S S  A 1  0 0 0 6 4  0 1 0 6  +  3 6  0 1 0 0  
0 4 0 1 0  C S  A 2  / / 0 1 0 7  - 3 7  0 0 0 0  
0 4 0 2 0  R S  A 2  / / 0 1 1 0  - 0 6  0 0 0 0  
0 4 0 3 0  P T  A 1  0 0 0 0 6  0 1 1 1  + 0 3  0 0 0 6  
0 4 0 4 0  R A  S I  0 4 0 1 0  0 1 1 2  +  1 2  0 1 0 7  
0 4 0 5 0  S A  S I  0 5 0 1 0  0 1 1 3  +  1 5  0 1 3 3  
0 4 0 6 0  S A  S I  1 0 0 1 0  0 1 1 4  +  1 5  0 1 7 4  
0 4 0 7 0  S U  D 1  0 0 0 0 1  0 1 1 5  +  0 5  0 3 5 5  
0 4 0 8 0  S A  S I  1 0 0  2 0  0 1 1 6  +  1 5  0 1 7 5  
0 4 0 9 0  S U  D 1  0 0 0 0 1  0 1 1 7  +  0 5  0 3 5 5  
0 4 1 0 0  S A  S I  0 4 1 2 0  0 1 2 0  +  1 5  0 1 2 1  
0 4 1 2 0  C S  A 2  / / 0 1 2 1  - 3 7  0 0 0 0  
0 4 1 2 5  S U  D 1  0 0 0 0 2  0 1 2 2  +  0 5  0 3 5 6  
0 4 1 3 0  S A  S I  0 4 0 1 0  0 1 2 3  +  1 5  0 1 0 7  
0 4 1 3 5  S A  S I  0 4 0 2 0  0 1 2 4  +  1 5  0 1 1 0  
0 4 1 4 0  R S  S I  0 2 0 4 0  0 1 2 5  +  0 6  0 0 7 4  
0 4 1 5 0  S A  S I  0 8 1 6 0  0 1 2 6  +  1 5  0 1 5 6  
0 4 1 6 0  S A  S I  0 8 1 7 0  0 1 2 7  +  1 5  0 1 5 7  
0 4 1 7 0  A D  D 1  0 0 0 0 1  0 1 3 0  +  1 1  0 3 5 5  
0 4 1 8 0  S A  S I  0 8 1 9 0  0 1 3 1  +  1 5  0 1 6 1  
0 4 1 9 0  S A  S I  0 8 2 0 0  0 1 3 2  +  1 5  0 1 6 2  
0 5 0 1 0  L Q  A 2  / / 0 1 3 3  - 1 7  0 0 0 0  

29-1013-O(NA) 

Remarks 

S E T  S T A R T I N G  A D D R E S S  C 0 R  F I L E  
X  
S E T  E N T R A N C E  T O  I N I T I A L  3  R E G I O N  
X  
S E T  S R  A D D R  I N  I N I T I A L  3  R E G I O N  
X  
C L E A R  I N F O R M A T I O N  A R E A  
X  
X  
S E T U P  F I R S T  V A L U E  F O R  S E Q U E N C E  C K  
X  
C H A N G E  T A P E S  I F  2  D O W N  
X  
X  
X  
X  
I N S U R E  T H A T  T A P E  I S  R E W O U N D  
I N S U R E  T H A T  M O  N O T  I N  U S E  
P R E P A R E  T O  R E A D  C A R D  
C L E A R  C A R D  C O N V E R S I O N  C O U N T E R S  
X  
X  
X  
C L E A R  C K  S U M  C O U N T E R  
R E S E T  I N I T I A L  C O P Y  L O O P  A D D R E S S  
X  
X  
x 
R E S E T  T R A N S F F R  A D D R F S S  
X  
T U R N  O F F  S E N S E  L I G H T S  
C O P Y  L E F T  W O R D  
T E S T  S I G N  O F  W O R D  J U S T  C O P I E D  
E N D  O F  F I L E  I F  P L U S  
L E F T  C O P Y  A D D R E S S  
A t - T E R  L Q  A D D R E S S  
S T O R E  L E F T  W O R D  A D D R E S S E S  

F O R  C K  S U M  
X  
X  
A L T E R  R I G H T  W O R D  C O P Y  A D D R F S S  
C O P Y  R I G H T  W O R D  
X  
A L T E R  L E F T  W O R D  C O P Y  A D D R E S S  
X  
R E S E T  A D D R F S S E S  I N  C A R D  

C O N V E R S I O N  L O O P  
X  
X  
X  
X  
S P A C E  L E F T  R O W  I M A G E  



DETAIL LISTING PART I (Continued) 22. 

05020 
05030 
05040 
08010 
0 8 0 2 0  
0 8 0 3 0  
08040 
08050 
0 8 0 6 0  
08070 
0 8 0 8 0  
080QO 
08100 
08110 
0 8 1 2 0  
08130 
08140 
0 8 1 5 0  
08160 
08170 
08130 
081Q0 
0 8 2 0 0  
0 8 2 1 0  
0 8 2 2 0  
08230 
08240 
08250 
0 8 2 6 0  
08270 
0 8 2 8 0  
0 8 2 0 0  
1001' 
10020 
10030 
10040 
10050 
10060 
10070 
10080 
12010 
12O20 
12030 
12040 
12050 
1 2 0 8 0  
120Q0 
12100 
12110 
12120 
12130 
12140 
12150 

LL 
AL 
LR 
RA 
SU 
ZT 
OV 
RA 
LL 
OV 
SR 
AL 
AO 
UT 
RA 
SA 
UT 
AL 
AD 
5R 
UT 
AD 
5R 
RS 
SU 
SA 
SA 
SU 
SA 
SA 
SU 
PT 
RS 
SU 
AR 
AD 
SR 
RS 
AD 
PT 
RA 
AD 
AD 
SU 
ZT 
SS 
ST 
RA 
SR 
SR 
SR 
LQ 
DV 

A 1 
A 1 
A1 
SI 
SI 
SI 
51 
D 1 
A 1 
52 
T 2 
A 1 
T 2 
SI 
SI 
SI 
SI 
A 1 
A1 
A1 
A1 
A 1 
A1 
SI 
D1 
SI 
SI 
D1 
SI 
SI 
51 
52 
A 1 
A 1 
A 1 
T2 
T2 
SI 
SI 
51 
T1 
T1 
T 1 
D1 
52 
A1 
SI 
01 
T1 
T 1 
T 1 
T 2 
D2 

00005 
00001 
00006 
04 120 
19004 
08120 
08050 
00008 
00001 
08150 
00048 
00002 
00048 
0 8 0 6 0  
19005 
08180 
08040 
0001 8 
/ 
/ 
/ 
/ 
/ 

/ 
/ 
/ 
/ 
/ 

08170 
00002 
OR 160 
03170 
00001 
081Q0 
08200 
020 7 0 
08040 
/  /  
/  /  
00018 
00056 
00056 
10010 
19006 
04010 
00050 
00052 
00054 
00003 
12100 
00066 
0 ? 0 1 0  
0 0 0 0 6  
00050 
00052 
00054 
00052 
00006 

0134 
0135 
0136 
0137 
0140 
0141 
014? 
0143 
0 144 
0145 
O 146 
0 147 
O 150 
0151 
0 1 6 2  
0163 
0 164 
0155 
0156 
0167 
0 1 6 0  
0 1 6 1  
0 1 6 ?  
0163 
0164 
0165 
0166 
0167 
0170 
0171 
017? 
0173 
0174 
0 175 
0176 
0177 
0 2 0 0  
0 2 0 1  
0 2 0 2  
0203 
0 204 
0 205 
0 206 
0207 
0 2 1 0  
0 2 1 1  
021 ? 
0213 
0214 
0215 
0 2 1 6  
0217 
0 2 2 0  

+ 24 
+ 26 
+ 25 
+ 12 
+05 
+04 
+02 
+ 12 
+ 24 
-02 
-14 
+ 26 
-11 
+01 
+ 12 
+ 16 
+01 
+ 26 
+ 11 
+ 14 
+01 
+ 11 
+ 14 
+06 
+05 
+ 16 
+ 16 
+ 05 
+ 16 
+ 15 
+ 06 
-03 
+ 06 
+05 
+ 27 
-11 
-14 
+ 06 
+ 11 
+03 
+ 12 
+ 11 
+ 11 
+ 05 
-04 
+ 36 
+00 
+ 1? 
+ 14 
+ 14 
+ 14 
-17 
-22 

0005 
0001 
0 0 0 6  
0 1 2 1  
0337 
0152 
0143 
0364 
0001 
0156 
0600  
0 0 0 2  
0600 
0144 
0340 
0 1 6 0  
0142 
0 0 2 2  
0000 
0000 
OOOO 
0000  
0000  
0157 
0356 
0156 
0157 
0355 
0 1 6 1  
0 1 6 2  
0077 
0142 
0000 
0000 
0 0 2 2  
0610 
0610 
0174 
0341 
0107 
0602 
0604 
0606 
0357 
0213 
0102 
0071 
036? 
0602 
0604 
0606 
0604 
0362 

X 
X 
X 
TEST FOR ZERO ROW 
X 
X 
RESET OVERFLOW INDICATOR 
SET END OF GROUP INDICATOR 
DIGIT INTO ACCUMULATOR 
LNNP END IF LAST DIGIT 
CONVERSION TO RINARV 
X 
X 
RETURN FOR NEXT DIGIT 
ALTER TRANSFFR FORK ADDRFSS 
X 
RETURN TO CONVERSION 
POSITION CONVERTFD GROUP 

SINGLE SUM CONVERSION CNTRS 

SUMS IF ROW 
SUM CONVFRSI 

0 THRU I ;  
ON CNTRS 

ADD 
X 
AVOID DBLF 
ADD DOUBLE 
X 
ALTER SINGLE SUM ADDRESSES 
X 
X 
X 
ALTER DOUBLE SUM ADDRESSES 
X 
X 
LOOP END TEST 
CONVERT NEXT GROUP 
MINUS LEFT HALS WORD 
MINUS RIGHT HALF WORD 

PREVIOUS PARTIAL C« SUM 
STORE NEW PARTIAL CK SUM 
TEST FOR FND OF CARD 
* X 
ADD SINGLE SUM CONVERSION CNTRS 
X 
X 
SUBTRACT CONVERSION TEST SUM 
TRANSFER IE CORRECT 
PUNCH PATTFRN FRROR STOP 
X 
CLEAR HIGH ORDSR OF CONVERTED 

SYMBOLIC QPFRAT I ON AND ADDR 
X 
X 
OBTAIN SYM OPER AS DIVIDEND 
DIVIDE BY TEN 

.3- 0.3- (NA) 



DETAIL LISTING PART I (Continued) 23 

1 2 1 6 0  S R  A 2  
1 2 1 7 0  R A  D 1  
1 2 1 8 0  D V  D 2  
1 2 1 9 0  S R  T  2  
1 2 2 0 0  S Q  A 2  
1 2 2 1 0  R A  A  1  
1 2 2 2 0  A D  S I  
1 2 2 3 0  S A  S I  
1 2 2 4 0  R A  A  1  
1 2 2 4 5  L Q  D  1  
1 2 2 5 0  L R  A 1  
1 2 2 6 0  S U  D 2  
1 2 2 6 3  Z T  S I  
1 2 2 6 6  S S  A  1  
1 2 2 7 0  S T  S I  
1 2 2 7 3  S S  A  1  
1 2 2 7 6  U T  S I  
1 2 2 8 0  U T  S I  
1 2 2 8 3  R A  D  1  
1 2 2 8 6  A R  A  1  
1 2 2 9 0  A D  T  2  
1 2 2 9 3  S R  T  2  
1 2 2 9 6  R A  T  1  
1 2 3 0 0  S U  A 1  
1 2 3 0 3  P T  S I  
1 2 3 0 5  R A  T  1  
1 2 3 0 7  S R  A  1  
1 2 3 1 0  U T  S I  
1 2 3 1 3  S S  A 1  
1 2 3 1 6  S T  S I  
1 2 3 2 0  W R  A  1  
1 2 3 3 0  L L  A  1  
1 2 3 4 0  A D  T  1  
1 2 3 5 0  A D  T  2  
1 2 3 6 U  S R  T  2  
1 2 3 7 0  R A  A 2  
1 2 3 8 0  A R  A  1  
1 2 3 9 0  Z T  S  1  
1 2 4 0 0  R S  T  2  
1 2 4 1 0  S R  T ?  
1 2 4 2 0  R A  T  1  
1 2 4 3 0  S R  A  1  
1 2 4 4 0  R A  S I  
1 2 4 5 0  S A  A  1  
1 2 4 6 0  S A  T  1  
1 2 4 7 0  S U  D 1  
1 2 4 8 0  S A  S I  
1 2 4 9 0  S U  S I  
1 2 5 0 0  P T  S  2  
1 2 5 3 0  S S  A  1  
1 ? 5 4 0  S T  S I  
1 3 0 1 0  R S  T  1  
1 3 0 2 0  S U  T  1  

3 -G(NA) 

0 0 0 0 2  0 2 2 1  - 1 4  0 0 0 2  F I R S T  R E M A I N D E R  I S  S Y M  S I G N  
0 0 0 0 6  0 2 2 ?  + 1 2 ,  0 2 6 2  C L E A R  A C C U M U L A T O R  
0 0 0 0 6  0 2 2 2  - 2 2  0 2 6 ?  D I V I D E  R Y  T E N  
0 0 0 4 8  0 2 2 4  - 1 4  0 6 0 0  S E C O N D  R E M A I N D E R  I S  T Y P E  
0 0 0 0 4  0 2 2 3  - 1 6  0 0 0 4  C O D E D  O P E R A T I O N  A S  F U L L  W O R D  
0 0 0 0 5  0 2 2 6  + 1 2  0 0 0 5  C O D E D  O P E R A T I O N  A S  H A L F  W O R D  
1 9 0 0 9  0 2 2 7  + 1 1  0 2 4 4  A D D  R A S E  O F  A S S F M R L Y  D A T A  
1 2 2 4 0  0 2 3 0  + 1 5  0 2 3 1  A D D R E S S  O F  T R U E  O P E R A T I O N  C O D E  
/  /  0 2 3 1  + 1 2  0 0 0 0  O R T A I N  T R U E  O P E R A T I O N  C O D E  
0 0 0 0 6  0 2 3 2  + 1 7  0 3 6 ?  C L E A R  M Q  
0 0 0 2 3  0 2 3 3  + 2 5  0 0 2 7  S H I F T  O P E R A T I O N  T O  M Q  
0 0 0 0 4  0 2 3 4  - 0 5  0 3 6 0  S U B T R A C T  O P E R A T I O N  C K  C O N S T A N T  
1 2 2 0 6  0 2 3 5  + 0 4  0 2 4 7  A V O I D  E R R O R  I N D I C A T I O N  I F  O P E R A T I O N  
0 0 0 6 7  0 2 3 6  + 3 6  0 1 0 3  E R R O R  I N D I C A T I O N  N O  S U C H  O P E R A T I O N  
1 2 2 7 3  0 2 3 7  + 0 0  0 2 4 0  X  
0 0 0 7 1  0 2 4 0  + 3 6  0 1 0 7  C O N T I N U E  O R  R E R E A D  B A D  O P F R A T I  O N  
1 2 2 8 3  0 2 4 1  + 0 1  0 2 4 3  C O N T I N U E  
0 2 0 2 0  0 2 4 2  + 0 1  0 0 7 2  R E R E A D  B A D  O P E R A T I O N  C O R R E C T E D  
0 0 0 0 1  0 2 4 3  + 1 2  0 3 5 5  L E A V E  I N D I C A T I O N  O F  B A D  O P E R A T I O N  
O O O i ?  0 2 4 4  + 2 7  0 0 2 1  X  
O O O O A  0 2 4 5  - 1 1  0 5 2 4  X  
0 0 0 0 4  0 2 4 6  - 1 4  0 5 2 4  X  
0 0 0 5 1  0 2 4 7  + 1 2  0 6 0 3  S E Q U E N C E  C H E C K  O F  L O C A T I O N S  
0 0 0 0 1  0 2 5 0  + 0 5  0 0 0 1  X  
1 2 3 1 3  0 2 5 1  + 0 3  0 2 5 5  S E Q U E N C E  E R R O R  I F  P L U S  
0 0 0 5 1  0 2 5 2  + 1 2  0 6 0 3  R E P L A C E  L A S T  W I T H  C U R R E N T  L O C A T I O N  
0 0 0 0 1  0 2 6 3  + 1 4  0 0 0 1  X  
1 2 3 2 0  0 2 5 4  + 0 1  0 2 5 7  C O N T I N U E  
0 0 0 6 5  0 2 5 5  + 3 6  0 1 0 1  S E Q U E N C E  E R R O R  
0 1 0 1 0  0 2 5 6  + 0 0  0 0 5 0  X  
0 0 2 5 6  0 2 5 7  + 3 2  0 4 0 0  P R E P A R E  T O  W R I T E  O N  T A P E  
0 0 0 3 5  0 2 6 0  + 2 4  0 0 4 3  S H I F T  O P E R A T I O N  B A C K  T O  A C C U M  
0 0 0 4 9  0 2 6 1  + 1 1  0 6 0 1  A D D  T Y P E  O F  A D D R F S S  
0 0 0 5 4  0 2 6 2  - 1 1  0 6 0 6  A D D  S Y M  A D D R  T O  O P E R  A N D  T Y P E  
0 0 0 4 8  0 2 6 3  - 1 4  0 6 0 0  S T O R E  O P  A N D  T Y P E  A N D  A D D R  
0 0 0 0 2  0 2 6 4  - 1 2  0 0 0 2  S Y M B O L I C  S I G N  
0 0 0 0 1  0 2 6 5  + 2 7  0 0 0 1  S H I F T  F O R  1  O R  2  O D D  O R  E V E N  
1 2 4 2 0  0 2 6 6  + 0 4  0 2 7 1  A V O I D  M I N U S  A C T I O N  
0 0 0 4 8  0 2 6 7  - 0 6  0 6 0 0  A T T A C H  M I N U S  S I G N  I F  N E G A T I V E  
0 0 0 4 8  0 ? 7 U  - 1 4  0 6 0 0  X  
0 0 0 5 1  0 2 7 1  + 1 2  0 6 0 3  S Y M B O L I C  L O C A T I O N  
/  /  0 2 7 2  + 1 4  0 0 0 0  S T O R E  I N  F I L E  
1 2 4 3 0  0 2 7 3  + 1 2  0 2 7 2  F I L E  A D D R E S S  
0 0 0 3 9  0 2 7 4  + 1 5  0 0 4 7  L A S T  F I L E  A D D R F S S  L E F T  H F R F  
0 0 0 5 0  0 2 7 5  + 1 5  0 6 0 2  F I L E  A D D R E S S  F O R  T A P E  W R I T I N G  
0 0 0 0 1  0 2 7 6  + 0 5  0 3 5 5  A L T E R  F I L E  A D D R E S S  
1 2 4 3 0  0 2 7 7  + 1 5  0 2 7 2  X  
1 9 0 1 3  0 3 0 0  + 0 5  0 3 5 0  S U B T R A C T  F I L E  L O W E R  L I M I T  
1 3 0 1 0  0 3 0 1  - 0 3  0 3 0 4  A V O I D  E R R O R  I N D I C A T I O N  
0 0 0 6 8  0 3 0 2  + 3 6  0 ] 0 4  F R R O R  F I L E  T O O  L A R G E  
0 1 0 1 0  0 3 0 3  + 0 0  0 0 5 0  X  
0 0 0 4 8  0 3 0 4  + 0 6  0 6 0 0  C O M P L  F T F  C H F C K  S U M  
0 0 0 4 9  0 3 0 5  + 0 5  0 6 0 1  X  



DETAIL LISTING PART I (Continued) 24. 

13030 SU T1 00050 0306 + 05 
13040 SU T1 0005 1 0307 + 05 
13050 AR A1 00018 0310 + 27 
13060 AD T 2 00056 0311 -11 
13070 SR T2 00052 0312 -14 
14010 CS A 2 / / 0313 -37 
14020 RA SI 14010 0314 + 12 
14030 SU D1 00002 0315 + 05 
14040 SA SI 14010 0316 + 15 
14050 SU SI 19010 0317 +05 
14060 PT SI 14010 0320 + 03 
14070 UT A1 / / 0321 +01 
16010 RA T1 00049 0322 + 12 
16020 SR A1 / / 0323 + 14 
16030 RA SI 16020 0324 + 12 
16040 SU D1 00001 0325 +05 
16050 SA SI 16020 0326 + 15 
16060 SU SI 19011 032 7 +05 
16070 PT SI 02010 0330 + 03 
16080 RA SI 16100 0331 + 17 
160QO SA SI 14970 0 3^7 + 14 
16100 UT S2 02010 0333 -01 
1 POO 1 ST SI 16010 0334 +00 
19002 ST T1 00000 0335 +00 
19003 ST SI 0S190 0336 +00 
19004 CS T 2 00038 0337 -37 
19005 ST SI 03210 0340 +00 
19006 RS T1 00044 0341 + 06 
19007 CS T 2 00048 0 34 2 -37 
19003 ST A1 00038 0343 + 00 
19^09 ST D1 00000 0344 +00 
19010 CS T 2 00054 0345 -37 
1901 1 SR A1 00036 0346 + 14 
19012 RW A 1 00257 O 34 7 + 34 
19013 SR A1 00396 0350 + 14 
19997 ST A1 00040 0351 +00 
19998 ST Al 00100 035? +00 
19999 ST A 1 000 5 8 0353 +00 

39-i:i3-C(N' ) 

X 
X 
X 
X 
X 
COPY WORD 
ALTER COPY ADDRFSS 
X 
X 
CHECK FOR END OF LOOP 
REMAIN IN LOOP IF PLUS 
FIRST THREF CARD GATE 
PLACE INITIAL INFORMATION 
X 
ALTER SR ADDRESS 
X 
X 
TEST FOR LAST INITIAL SPEC 
RFTURN TO NEXT CARD IF PLUS 
STOP USE OF REGION 1ft 
X 
RETURN TO READ NEXT CARD 
FNTRANCF TO INITIAL 3 RFGI ON 
9 LEFT ROW IMAGE ADDRESS 
DOUBLE SUM ADDITION INSTRUCTION 
0 RIGHT ROW IMAGE ADDRESS 
AVOID DOUBLE SIJM TRANSFER ADDR 
END OF CARD TEST ADDRFSS 
CARD IMAGE END TEST ADDRESS 
FIRST SR ADDRESS IN INITIAL 3 
BASE OF DATA RFGI ON 
TAPE WRITING LOOP END TEST 
LAST INITIAL 3 TFST WORD 
TAPE 2 ADDRESS 
EILE LOWER LIMIT TEST 
PROGRAM ORIGIN 
NUMBER HALF WORDS DATA 
NUMBER HALF WORDS TEMPORARY 

OfiO? 
0603 
0022 
0610 
0604 
0000 
0313 
0356 
0313 
0345 
0313 
0000 
0601 
0000 
0323 
0355 
0323 
0346 
0071 
0333 
0321 
0071 
0322 
0520 
0 1 6 1  
0566 
0163 
0574 
0600 
0046 
0354 
0606 
0044 
0401 
Oft 14 
0050 
0144 
0072 



DETAIL LISTING PART I (Contim»d) 

DATA 

Location 

D1 0 
D1 1 
D1 2 
D1 3 
D2 4 
D1 6 
D1 7 
D1 8 
D1 9 
D1 10 
D1 11A 

D1 99, 

TEMPORARY 

Location 

T2 0" 

T2* 46 
T2 48 

T1 50' 
o 
o 

Tl' 55, 
T2 56 

Content a Binary Magnitude 

4096 17 
1 17 
2 17 

Conversion Test Sua 17 
Operation Test Constant 35 

0 17 
10 17 

8 17 
4095 17 

131071 17 

Operation Table 

Use 

Card Image 

Conversion Working Storage 
Address Type 
Operation, Type, and Address 

Conversion Sumning Locations 

Partial Check Sum 

29-1013-0(NA) 



DETAIL LISTING PART II 26. 

2 0 0 0 1  S S  A  1  0 0 0 7 0  0 0 5 0  +  3 6  0 1 0 6  
2 0 0 0 2  U T  S I  2 0 0  1 0  0 0 5 1  +  0 1  0 0 5 6  
2 0 0 0 3  R A  S I  4 9 0 1 0  0 0 5 2  +  1 2  0 6 0 1  
2 0 0 0 4  S A  S I  2 0 0 1 0  0 0 6 3  +  1 6  0 0 5 6  
2 0 0 0 6  S A  S I  2 2 0 1 0  0 0 6 4  +  1 6  O  1  4 0  
2 0 0 0 6  S A  S I  2 2 2 8 6  0 0 6 5  +  1 6  0 2 0 0  
2 0 0 1 0  E E  A 1  0 0 2 5 6  0 0 6 6  +  3 3  0 4 0 0  
2 0 0 2 0  W R  A 1  0 0 5 1 2  0 0 6 7  +  3 ?  1 0 0 O  
2 0 0 3 0  S S  A 1  0 0 5 2 1  0 0 6 0  +  3 6  1 0 1 1  
2 0 0 4 0  R A  A  1  0 0 0 3 6  0 0 6 1  +  1 ?  0 0 4 4  
2 0 0 5 0  S U  A 1  0 0 0 3 9  0 0 6 2  + 0 5  0 0 4 7  
2 0 0 6 0  S R  T 1  0 0 0 5 4  0 0 6 3  +  1 4  0 6 0 4  
2 0 0 8 0  A D  D 1  0 0 0 0 3  0 0 6 4  +  1 1  0 5 1  1  
2 0 0 9 0  A D  D 1  0 0 0 0 1  0 0 6 5  +  1 1  0 5 0 7  
2 0 1 0 0  A R  A 1  0 0 0 1 9  0 0 6 6  +  2 7  0 0 2 3  
2 0 1 1 0  A L  A 1  0 0 0 1 9  0 0 6 7  +  2 6  0 0 2 3  
2 0 1 2 0  S R  T 1  0 0 0 5 5  0 0 7 0  +  1 4  0 6 0 5  
2 0 1 3 0  A D  A 1  0 0 0 3 7  0 0 7 1  +  1 1  0 0 4 5  
2 0 1 4 0  A D  D 1  0 0 0 0 1  0 0 7 ?  +  1 1  0 5 0 7  
2 0 1 5 0  A R  A  1  0 0 0 1 9  0 0 7 3  +  2 7  0 0 2 3  
2 0 1 6 0  A L  A 1  0 0 0 1 9  0 0 7 4  +  2 6  0 0 2 3  
2 0 1 7 0  S R  T 1  0 0 0 5 6  0 0 7 5  +  1 4  0 6 0 6  
2 0 1 8 0  A D  A  1  0 0 0 3 8  0 0 7 6  +  1 1  0 0 4 6  
2 0 1 9 0  S U  D 1  0 0 0 0 7  0 0 7 7  + 0 5  0 5 1 5  
2 0 2 0 0  P T  S I  4 7 0 1 0  0 1 0 0  + 0 3  0 4 6 7  
2 0 3 1 0  R A  A 1  0 0 0 3 9  0 1 0 1  +  1 2  0 0 4 7  
2 0 3 2 0  S U  D 1  0 0 0 0 1  0 1 0 2  +  0 5  0 5 0 7  
2 0 3 3 0  S R  T  1  0 0 0 5 7  0 1 0 3  +  1 4  0 6 0 7  
2 0 3 4 0  R A  D 1  0 0 0 0 0  0 1 0 4  +  1 2  0 5 0 6  
2 0 3 5 0  S A  S I  3 1 2 3 0  0  1 0 5  +  1 6  0 3 1 1  
2 0 3 6 0  R A  T  1  0 0 0 5 5  0 1 0 6  +  1 ?  0 6 0 5  
2 0 3 7 0  S U  A 1  0 0 0 3 6  0  1 0 7  + 0 6  0 0 4 4  
2 0 3 8 0  S R  T  1  0 0 0 5 9  0 1 1 0  +  1 4  0 6 1 1  
2 0 3 9 0  S U  D 1  0 0 0 0 6  0 1 1 1  + 0 5  0 5  1 4  
2 0 4 0 0  P T  S I  2 0 4 5 0  O i l ?  + 0 3  0 1 1 7  
2 0 4 1 0  R A  S I  3 1 1 8 0  0 1 1 3  +  1 2  0 3 0 6  
2 0 4 2 0  S A  S I  3 1 1 5 0  0 1 1 4  +  1 5  0 3 0 2  
2 0 4 3 0  R A  S I  4 9 0 0 9  0 1 1 6  +  1 2  0 6 0 0  
2 0 4 4 0  U T  S I  2 0 4 8 0  0 1 1 6  + 0 1  0 1 2 2  
2 0 4 5 0  R A  S I  4 9 0 0 7  0 1 1 7  +  1 ?  0 4 7 6  
2 0 4 6 0  S A  S I  3 1 1 5 0  0 1 ? 0  +  1 6  0 3 0 2  
2 0 4 7 0  R A  S I  4 9 0 0 8  o  1 ? 1  +  1 ?  0 4 7 7  
2 0 4 8 0  S A  S I  3 7 0 3 0  0  1 ? 2  +  1 5  0 3 7 0  
2 0 4 9 0  R A  S I  3 1 2 7 0  0 1 2 3  +  1 ?  0 3 1 5  
2 0 5 0 0  S U  T 1  0 0 0 5 9  0  1  ? 4  + 0 6  0 6 1 1  
2 0 5 1 0  S A  S I  4 9 0 0 6  0 1 ? 5  +  1 5  0 4 7 5  
2 0 5 3 0  S S  A 1  0 0 0 7 3  0 1 2 6  +  3 6  0 1 1 1  
2 0 5 3 5  U T  S  2  2 0 5 5 0  0 1 2 7  - 0 1  0 1 3 1  
2 0 5 4 0  U T  S  2  2 0 6 1 0  0 1 3 0  - 0 1  0 1 3 7  
2 0 5 5 0  S S  A  1  0 0 0 6 5  0 1 3 1  +  3 6  0 1 0 1  
2 0 5 8 4  M Y  A 1  0 0 0 0 0  0 1 3 2  +  2 0  0 0 0 0  
2 0 5 8 5  M Y  A 1  0 0 0 0 0  0 1 3 3  +  2 0  0 0 0 0  

C H A N G E  T A P F S  I F  ?  D O W N  
X  
X  
X  
X  
X  
W R I T E  E N D  O F  F  I  L F  O N • T A P E  
P R E P A R E  T O  I D E N T I F Y  P R I N T E R  B O A R D  
X  
P R O G R A M  L O C A T I O N  M I N U S  F I L E  L O C A T I O  
X  
X  
A D D  4 0 Q 6  
A D D  O N E  T O  C A R R Y  I F  O D D  
F O R C E  L O W  O R D E R  R I  T  T O  Z E R O  
X  
O R  I G I N  D A T A  S T O R A G E  
A D D  N U M B E R  H A L F  W O R D S  D A T  4  
A D D  O N E  T O  C A R R Y  I F  O D D  
F O R C E  L O W  O R D F R  R  I T  T O  Z F R O  
X  
O R I G I N  T E M P O R A R Y  S T O R A G E  
A D D  N U M B E R  H A L F  W O R D S  T E M P O R A R Y  
S U B T R A C T  4 0 9 7  
E L E C T R O S T A T I C  E X C E F D E D  I F  P L U S  
O B T A I N  T H E  L O W E R  S E A R C H  E X T R E M E  
X  
X  
S E T  F I R S T  D A  A D D R E S S  T O  Z E R O  
X  
O B T A I N  N U M B E R  H A L F  W O R D S  I N  D R O G  
X  
X  
T E S T  S I Z E  O F  P R O G R A M  
L A R G E  P R O G R A M  | F  P L U S  
S E T  D R U M  G A T E S  F O R  S M A L L  P R O G R A M  
X  
X  
X  
S E T  D R U M  G A T E S  F O R  L A R G E  P R O G R A M  
X  
X  
X  
S E T  D R U M  R F A D  T E S T  A D D R E S S  
X  
X  
S K I P S  I F  N O  P R I N T I N G  D E S I R E D  
T R A N S F E R  I F  P R I N T I N G  D F S I  R E D  
N O  P R  I N T  I N G  D E S I  R E D  
T U R N  O N  S E N S E  L  I  T E S  
A L L O W  T I M E  F O R  S E L E C T O R  P I C K U P  
X  

29-1313-i(IWA) 



DETAIL LISTING PART II (Continued) 27  

2 0 5 8 6  M Y A1  00000  0 134  + 20  
2 0 5 9 0  SS  A1  0 0 5 2 ?  0135  +  36  
2 0 6 0 0  S T  S I  2 0 0 3 0  0136  +  00  
2 0 6 1 0  SS  A1  00064  0137  +  36  
22010  RR A1  00256  0140  +  3 1  
22020  CS  T  2  00052  0141  -37  
22030  UT S I  2 2 0 5 0  0142  +  01  
2 2 0 4 0  U T S2  37010  0143  -01  
22050  CS  T  2  00050  0144  -37  
22060  RA S I  22050  0145  +  12  
2 2 0 7 0  AD D1  00 0 0 2  0146  +  11  
2 2 0 8 0  SA S I  2 2 1 2 0  0147  +  15  
2 2 0 9 0  SA S I  22130  0150  +  15  
2 2 1 0 0  SU D1  00001  0151  +  05  
22110  SA S I  ??  140  015?  +  15  
2 2 1 2 0  CS  A2  / / 0153  -37  
22130  RA A  1  / / 0154  +  12  
2 2 1 4 0  AD A 1  / / DISS  +  11  
22150  AR A  1  00018  0156  +  27  
22160  A D  T?  0005?  0167  -11  
22170  SR  T  2  00052  0 1 6 0  - 14  
22180  RA S I  22120  0161  +  12  
22190  AD D1  00002  016?  +  11  
22200  SA S I  ???10  0  163  +  16  
22210  C S  A2  / / 0164  -37  
22220  UT S I  22070  0165  +  01  
2 2 2 3 0  SR  A 1  00396  0166  +  14  
22240  RA T  1  00050  0 1 6  7  +  12  
22250  AD T  1  00051  0170  +  11  
2 2 2 6 0  AR A 1  00018  0171  +  27  
2 2 2 7 0  AD T  2  0 0 0 5 2  0172  -11  
22275  Z T  S I  24 0 1 0  0173  +  0 4  
22280  SS  A 1  00067  0174  +  36  
22281  ST  S I  22282  0 1 7 5  +  00  
22282  SS  A 1  0007?  0176  +  36  
22284  U T S I  22290  0177  +01  
22286  RD  A 1  00256  0200  +  3 0  
22288  U T S I  20610  0201  +  01  
2 2 2 9 0  RA D 1  00001  0202  +  12  
2 2 3 0 0  AR A 1  00015  0203  +  27  
22303  AD T  2  0001?  0204  -11  
22306  SR  T  2  00012  0205  - 14  
2 4 0 1 0  RA S I  24030  0206  +  1?  
2 4 0 2 0  AP  T1  00048  0207  +  13  
2 4 0 3 0  SA S I  24040  0210  +  15  
24040  UT A1  / / 0211  +  01  
2 4 0 5 0  U T S2  29010  021?  -01  
2 4 0 6 0  UT S2  26010  0213  -01  
2 4 0 7 0  U T S  2  27010  0214  -01  
24080  U T S  2  28 0 1 0  0215  -01  
2 6 0 1 0  RA T  1  00057  0216  +  1 ?  
2 6 0 2 0  SR  T  1  00052  0217  +  14  
2 6 0 3 0  RA D1  00003  02  20  +  12  

X  
IS  CORRECT PRINT E R BOARD IN  
ST OP I F  NOT 
TURN OF F  S EN S E L IT E S  IE  SO 
PREPARE TO READ IN  REVERS E 
COPY TAPE CHECK SUM 
AVOID END OE F I L E  OUT 
E ND O F  F ILE  OUT 
COPY WORD 
S E T  F IRST  ADDRESS  O F  COPY LOOP 
AL T E R COPY ADDRESS  
X  
STORE ADDRESS  FOR CK  SUM 
X  
X  
COPY LEFT WORD 
LF F T  WORD AGAINST CK SUM 
X  
X 
X  
X  
S ET  RI G H T COPY ADDRESS  
X  
X  
COPY R I  GHT WOR D 
CONTINUE IN  LOOP 
INS T RUCT IONAL  CONSTANT 
COMP LETE CK SUM CH ECK  
X 
X 
X  
Z E RO TRANSFER I F  CORRECT 
TURN ON LITE  3  FOR TAPE ERROR 
ERROR STOP TAPE ERROR 
REREAD OR GO ON 
LEAVE MARKER AMD GO ON 
STFP  BA CK  
REREA D  
ERROR INDICATION TAPE ERROR 
X 
X 
X  
OR IGIN OF TRANSFER REG I O N  
OPERATION A N D  TYPE 
STORE TRANSFER FOR K ADDRESS  
TRANSFER TO -TY PE TRANSFER 
T RANS F E R FO R ABSOL UT E  TY P E 
T RANS F E R FOR  SYMBOLIC  TYPE  
T RANS F E R FOR  TEMPO R A R Y  TYPE 
TRANSFER FOR  DATA TYPE 
O BTAIN  LOWER EXTREME 
STORE AS  WORKING LOWER 
OBTA IN  UPPER EXTREME 

0000 
101?  
0060 
0100 
0 4 0 0  
0 6 0 2  
0144  
0366  
0600 
0144  
0610 
0 1  S3  
0154  
0S07  
0155  
0000 
0000 
0000 
002?  
0602 
060?  
0153  
0510  
0164  
0000 
0146  
0614  
0600 
0601 
0 0 2 2  
060?  
0206 
0103  
0176  
0110 
020?  
0400  
0137  
0507  
0017  
053?  
053?  
0210 
0576  
0 2 1 1  
0000 
0264  
0216 
0 2 6 0  
026?  
0607  
0602 
0511  

29-1013 -O(NA) 



DETAIL LISTING PART II (Continued) 28. 

2 6 0 4 0  S R  T 1  0 0 0 5 3  0 2 2 1  +  1 4  
2 6 0 S 0  R A  T 1  0 0 0 5 ?  0 2  ? 2  +  1 2  
2 6 0 6 0  A D  T 1  0 0 0 5 3  0 2 ? 3  +  1 1  
2 6 0 7 0  A R  A 1  0 0 0 0 1  0 ? ? 4  +  2 7  
2 6 0 8 0  S R  T 1  0 0 0 5 8  0  ?  ?  5  +  1 4  
2 6 0 9 0  S A  S I  ? 6  1 0 0  o ? ? 6  +  1 6  
2 6 1 0 0  R A  A 1  / / 0  ?  ?  7  +  1 ?  
2 6 1 1 0  su T 1  0 0 0 4 Q  0 2  3 0  +  0 6  
2 6 1 2 0  Z T  S I  2 6 2 6 0  0 ? 3  1 + 0 4  
2 6 1 3 0  P T  S I  2 6 2 0 0  0  2  3 2  +  0 3  
2 6 1 4 0  R A  T 1  0 0 0 5 ?  0 2 3 3  + 1? 
2 6 1 5 0  S U  T 1  0 0 0 5 8  0 2 3 4  +  0 6  
2 6 1 6 0  P T  S I  2 6 3 0 0  0 2 3 5  +  0 3  
2 6 1 7 0  R A  T 1  0 0 0 5 8  0 2 3 6  +  1 2  
2 6 1 8 0  S R  T 1  0 0 0 5 2  0 2 3 7  +  1 4  
2 6 1 9 0  U T  S I  2 6 0 6 0  0 ? 6 0  +  0 1  
2 < 6 2 0 0  R A  T 1  0 0 0 5 8  0 2 4 1  +  1 ?  
2 6 2 1 0  S U  T 1  0 0 0 5 3  n ? 4 ?  +  0 6  
2 6 2 2 0  P T  S I  2 6 3 0 0  0 2 4 3  +  0 3  
2 6 2 3 0  R A  T 1  0 0 0 5 8  0 2 4 4  +  1 2  
2 6 2 4 0  S R  T 1  0 0 0 5 3  0 ? 4 5  +  1 4  
2 6 2 5 0  U T  S I  2 6 0 5 0  0 2 4 6  + 0 1  
2 6 2 6 0  R A  S I  2 6 1 0 0  0 2 4 7  +  1 2  
2 6 2 7 0  A D  T 1  0 0 0 5 4  0 2 5 0  +  1 1  
2 6 2 9 0  U T  S 2  2 9 0 3 0  0 2 5 1  - 0 1  
2 6 3 0 0  R A  D 1  0 0 0 0 1  0 2 5 2  +  1 2  
2 6 3 1 0  A R  A 1  0 0 0 1 6  0 ? 5 3  +  2 7  
2 6 3 1 3  A D  T ?  0 0 0 0 8  0  2  6 6 .  - 1 1  
2 6 3 1 6  S R  T  2  0 0 0 0 8  0 2 5 5  - 1 4  
2 6 3 2 0  ss A 1  0 0 0 6 0  0  ?  6 6  +  3 6  
2 6 3 3 0  S T  S I  3 1 0 1 0  0 2 5 7  + 0 0  
2 7 0 1 0  R A  T 1  0 0 0 5 6  0 2 6 0  +  1 2  
2 7 0 2 0  U T  S I  ? Q 0 ? 0  0 ? 6 1  + 0 1  
2 8 0 1 0  R A  T 1  0 0 0 5 5  0 2 6 ?  +  1 2  
2 8 0 2 0  U T  S I  2 9 0 2 0  0 2 6 3  + 0 1  
2 9 0 1 0  R A  D 1  0 0 0 0 0  0 2 6 4  +  1 2  
2 9 0 2 0  A D  T 1  0 0 0 4 9  0 2 6 5  +  1 1  
2 9 0 3 0  S A  T 1  0 0 0 4 8  0 2 6 6  +  1 5  
3 1 0 1 0  R A  T 1  0 0 0 5 0  0 2 6 7  +  1 ?  
3 1 0 2 0  A D  T 1  0 0 0 5 4  0 ? 7 0  + 11 
3 1 0 3 0  S R  T  1  0 0 0 5 0  0 2 7 1  +  1 4  
3  1 0 4 0  R A  T 1  0 0 0 4 "  0  ? 7  ?  +  1 2  
3 1 0 5 0  S R  A 1  0 0 3 9 4  0 2 7 3  +  1 4  
3  1 0 6 0  R A  S I  3 1 0 5 0  0 2 7 4  +  1 ?  
3 1 0 7 0  A D  D 1  0 0 0 0 1  0 2 7 5  +  1 1  
3 1 0 8 0  S A  S I  3 1 0 5 0  0 2 7 6  +  1 5  
3 1 0 8 1  S A  S I  3 1 0 8 3  0 2 7 7  +  1 6  
3 1 0 8 2  R A  D 1  0 0 0 0 0  0 3 0 0  +  1 2  
3 1 0 8 3  S R  A 1  / / 0 3 0 1  +  1 4  
3 1 1 5 0  U T  A 1  / / 0 3 0 2  + 0 1  
3 1 1 6 0  R S  S I  3 1 0 5 0  0 3 0 3  +  0 6  
3 1 1 7 0  A D  S I  2 2 2 3 0  0 3 0 4  + 11 
3 1 1 8 0  P T  S I  3 1 3 0 0  0 3 0 5  + 0  3  

29-1C13 -0(NA) 

S T O R E  A S  W O R K I N G  U P P E R  
B E G I N N I N G  O F  S F A R C H  L O O P  
S U M  O F  U P P E R  A N D  L O W E R  E X T R E M E S  
M E A N  O F  U P P E R  A N D  L O W E R  E X T R F M F S  
S T O R F  M F A N  
S T O R F  M F  A N  A G  A P i n R F  G S  
C O N T F N T S  M F  A M  L O C A T I O N  
S U B T R A C T  S V M R O L I C  A D D R E S S  
O U T  O F  L O O P  I F  S E A R C H  C O M P L E T E D  
A V O I D  M I N U S  A C T I O N  
R E S E T  A D D  O L D  L O W E R  
S U B T R A C T  N E W  L O W E R  
E R R O R  N O  S U C H  S Y M B O L I C  A D D R E S S  
M E A N  R E C O M E S  M E W  L O W E R  
S T O R E  N E W  L O W E R  
R E T U R N  F O R  N E X T  T R I A L  
RFSFT ADD THF M F A N  
S U B T R A C T  O L D  I I P P F R  
E R R O R  N O  S U C H  S Y M B O L I C  A D D R E S S  
R E S E T  A D D  T H E  M E A N  
S T O R E  N E W  U P P E R  
R E T U R N  F O R  N E X T  T R  I  A L  
R E S E T  A D D  F I N A L  S E A R C H  L O C A T I O N  
O B T A I N  A C T U A L  A D D R E S S  
E N D  O F  I N S T R U C T I O N  A S S E M B L Y  
N O  S U C H  S Y M B O L I C  A D D R E S S  
X  
X  
X  
X  
X  
O R  I G I N  O F  T E M P O R A R Y  
X  
O R  I G I N  O F  D A T A  
X  
Z E R O  
A D D  S Y M B O L I C  A D D R E S S  
S T O R E  A C T U A L  A D D R E S S  
F I L E  L O C A T I O N  
O B T A I N  A C T U A L  L O C A T I O N  
R E P L A C E  F I L E  L O C  W I T H  A C T U A L  L O C  
A C T U A L  I N S T R U C T I O N  
S T O R F  I N  T E M P O R A R Y  L O C A T I O N  
A L T E R  T E M P O R A R Y  L O C A T I O N  R Y  1  
X  
X  
N E X T  T E M P O R A R Y  L O C A T I O N  
Z E R O  
C L E A R  N E X T  T E M P O R A R Y  L O C A T I O N  
P R E S E T  D R U M  G A T E  
T E M P O R A R Y  L O C A T I O N  
T E M P O R A R Y  T E S T  L O C A T I O N  
T R A N S F E R  I F  P A I R  N O T  R F A D Y  

0 6 0  3  
0 6 0 ?  
0 6 0 3  
0001 
0610 
0  ?  ?  7  
0000 
O S  7 7  
0 2 4 7  
0 2 4 1  
0 6 0 ?  
0610 
0 ? 5 ?  
0610 
060? 
0 2 2 3  
0610 
0 6 0 3  
0 2 S 2  
0610 
0 6 0 3  
0 2 2 ?  
0 2 ? 7  
0 6 0 4  
0266 
0 S 0 7  
0 0 2 0  
O S  2 6  
O S  ? 6  
0 1 0 4  
0 ? 6 7  
0606 
0 2 6 S  
0 6 0  S  
0 ? 6 S  
0 S 0 6  
0 S 7 7  
0 S 7 6  
0600 
0 6 0 4  
0600 
O S  7 6  
0 6 1 ?  
0  ?  7  3  
0 S 0 7  
0 2 7 3  
0 3 0 1  
0 S 0 6  
0000 
0000 
0 2 7 3  
0166 
0 3 2 0  



DETAIL LISTING PART II (Continued) 29. 

31190 WR A1 00131 0306 + 3? 
31200 RA SI 31270 0307 + 12 
3 1220 SA SI 31050 0310 + 15 
31230 DA A? / / 0311 -35 
31240 RA SI 31230 031? + 1? 
3 1250 SU D1 00002 0313 + 05 
31260 SA SI 31230 0314 + 15 
31270 CS A2 00394 0315 -37 
3 1280 RA D1 00000 0316 + 12 
31290 SR A2 00394 0317 -14 
31300 SS A1 00073 03?0 + 36 
31305 UT S2 31320 0 3 ? 1 -01 
31310 UT SI 20610 032? + 01 
31320 WR A1 0051? 0323 + 3? 
31330 RA T1 00040 0324 + 12 
31340 AL A1 00011 0325 + ?6 
3 1350 ZT SI 33010 0326 + 04 
31360 SS A1 00520 0327 + 36 
33010 RA D1 00002 0330 + 12 
33020 SR T2 00052 0331 -14 
33025 RA T1 00048 033? + 12 
33030 PT SI 33040 0333 +03 
33035 SS A1 00518 0334 + 36 
33040 LR A1 00035 0335 + 25 
33050 RA T1 00050 0336 + 12 
33060 AR A1 00017 0337 + 27 
33070 LR A1 00013 0340 + 25 
33080 LL A1 00003 0341 + 24 
33090 AL A1 00020 0342 + 26 
33100 AD SI 49001 0343 + 11 
33110 SA SI 33160 0344 + 15 
33120 SA SI 33170 0345 + 15 
33130 RA T2 00052 0346 -12 
33140 AR A1 00001 0347 + 27 
33150 SR T 2 00052 0350 -14 
33160 AD A? / / 0351 -11 
33170 SR A2 / / 035? -14 
33180 AL A1 00027 0353 + 26 
33190 ZT SI 33080 0354 +04 
35010 RA SI 49002 0355 + 1? 
35020 SA SI 35030 0356 + 15 
35030 CS A? / / 0357 -37 
35040 RA SI 35030 0360 + 12 
35050 SU D1 00002 0361 + 05 
35060 SA SI 35030 036? + 16 
35070 SU SI 49003 0363 + 06 
35080 PT SI 35030 0364 + 03 
35090 UT SI 20610 0365 + 01 
37010 WR A1 00512 0366 + 3? 
37020 SS A1 00519 0367 + 36 
37030 UT A1 / / 0370 +01 
37040 RA SI 49005 0371 + 1? 
37050 SR SI 31300 0372 + 14 

PREPARE TO WRITE ON DRUM 
RESET TEMPORARY PAIR ADDRESS 
X 
SET DRUM ADDRESS 
MODIFY DRUM ADDRFSS 
X 
X 
COPY WORD 
RESET PAIR LOCATION TO ZERO 
X 
SKIPS IF NO PRINTING DFSI RED 
PRINTING DESIRED 
NO PR INT I NG DES I RED 
PREPARE TO WRITE PRINTER 
11 LEFT ROW IMAGE 
X 
TRANSFER IF NO X 
PICKUP PRINT SELEC FOR PAREN 
COLUMN INDICATOR 
X 
ASSEMBLED INSTRUCTION 
AVOID PICKING SELECTOR IF PLUS 
PICK FOR MINUS 
SHIFT TO MQ 
ACTUAL LOCATION 
X 
SHIFT INTO MQ 
BEGIN CONVERSION LOOP 
FOUR TIMES DIGIT EQUIV TO ADDR 
ADD CARD IMAGE BASE 
CORRECT ROW IMAGE ADDRESS 
X 
ALTER COLUMN INDICATOR 
X 
X 
ADD CORRFCT ROW IMAGF 
STORE IN CORRECT ROW IMAGE 
TEST FOR END OF CONVERSION 
REMAIN IN LOOP IF ZERO 
SET UP FIRST COPY ADDRESS 
X 
COPY WORD 
ALTER COPY ADDRESS 
X 
X 
TEST FOR END OF LOOP 
REMAIN IN LOOP 
TRANSFER TO NEXT TAPE READ 
EJFCT LAST PAGE IN PRINTER 
EJECT LAST PAGE IN PRINTER 
PRESET DRUM GATE 
WRITE LAST WORD ON DRUM 
X 

0203 
0 3 1 S 
0 ?73 
OOOO 
0311 
0510 
0311 
061? 
0606 
0612 
0 1 1 1  
0323 
0137 
1000 
0566 
0013 
0330 
1 0 1 0  
0510 
0602 
0576 
0335 
1006 
0043 
06on 
0021 
0015 
0003 
0024 
0471 
0351 
0352 
0602 
onn 1 
060? 
0000 
0000 
0033 
0341 
047 2 
0357 
0000 
0357 
0510 
0BS7 
0473 
0357 
0137 
1000 
1007 
0000 
0474 
0320 

-1013-0(NA) 



DETAIL LISTING PART II (Continued) 30. 

37060 UT SI 31 190 0373 +01 
37070 RD A1 00131 0374 + 30 
37080 DA A2 00000 0375 -35 
37090 CS A2 00394 0376 -37 
37100 RA SI 37090 0377 + 1? 
37110 SU D1 OOOO? 0400 +05 
37120 SA SI 37090 0401 + 15 
37130 SU SI 49006 040? + 05 
37140 PT SI 37090 0403 +03 
40010 RA D1 00005 0404 + 12 
40020 SR T1 00053 0405 + 14 
40030 AL A1 00011 0406 + 26 
40040 AD A1 00036 0407 + 11 
40050 SR T2 00000 0410 -14 
40060 RA T 1 00059 0411 + 1? 
40070 ZT S2 42010 041? -04 
40080 WR A 1 01024 0413 + 32 
40090 SU D1 00005 0414 +05 
40100 ZT SI 40120 0415 +04 
40110 PT SI 40210 0416 + 03 
40120 RA A1 00036 0417 + 12 
40130 AR A1 00018 0420 + 27 
40140 AD T 1 00000 04 ? 1 + 11 
40150 LR A1 00030 0422 +25 
40160 RA T1 00059 0423 + 1? 
40170 SR T1 00053 0424 + 14 
40180 AR A1 00019 04 ?S + ?7 
40190 LR A1 00005 04 ?6 + ?S 
40195 SQ T 2 00000 04 ?7 -16 
40200 RA D1 00000 0430 + 1? 
40210 SR T1 00059 0431 + 14 
40220 CS T 2 00000 0432 -37 
40230 RA T2 00000 0433 -12 
40240 SR T2 00002 0434 -14 
40250 RS SI 40290 0435 +06 
40260 AD T 1 00D53 0436 + 11 
40270 SR T1 00052 0437 + 14 
40280 RA T2 00002 0440 -1? 
40290 CS A2 00394 0441 -37 
40300 AD A2 00394 044? -11 
40310 SR T 2 00002 0443 -14 
40320 RA SI 40290 0444 + 1? 
40330 SU D1 00002 0445 +05 
40340 SA SI 40290 0446 + 15 
40350 SA SI 40300 0447 + 15 
40360 AD T 1 00052 0450 + 11 
40370 PT SI 40280 0451 +03 
40380 CS T 2 00002 045? -37 
40383 RA T2 00000 0453 -12 
40386 AD T1 00053 0454 + 11 
40390 UT SI 40050 0455 +01 
42010 RA T1 00055 0456 + 1? 
4201? SR A1 04094 0457 + 14 

29-1013 -0(NAI 

X 
READ RECORD FROM DRUM 
X 
X 
X 
X 
X 
X 
X 
HALF AND FULL WORD COUNT FOR 

FIRST CARD 
X 
1ST ADDRESS FOR 1ST CARD INTO 
X 
RFC, INNING OF PUNCH LOOP 
OUT IF PUNCHING FINISHED 
PRFPARF TO PUNCH 
SUBTRACT 44 
TO LAST CARD ACTION 
AVOID LAST CARD ACTION 
F I RST TO FXELX 
X 
FIRST TO READ INTO 
X 
HALF AND FULL WORD COUNT FOR LAST 
X 
X 
X 
STORE CONTROL WORD FOR LAST CARD 
CLEAR ACCUMULATOR 
NUMBER HALF WORDS LEFT 
COPY Q LEFT ROW 
START CK SUM 
X 
SETUP TEST LOOP WORD 
X 
X 
PARTIAL CK SUM 
COPY WORD 
ADD 'TO CK SUM 
X 
ALTER LOOP ADDRFSSFS 
X 
X 
X 
TEST FOR END OF LOOP 
REMAIN IN LOOP IF PLUS 
COPY CK SUM 
FIRST INTO FOR NEXT CARD 
X 
RETURN TO PUNCH NEXT CARD 
.SFTIJP DATA OR I G I W 
X 

0306 
0203 
0000 
061? 
0376 
0510 
0376 
0475 
0376 
0513 
0603 
0013 
0044 
0516 
0611 
0456 
?000 
0513 
0417 
0431 
0044 
00 22 
0516 
0036 
0 6 1 1  
0603 
0023 
0005 
0516 
0506 
06H 
0516 
0516 
0520 
0441 
0603 
060? 
0520 
061? 
0 6 1 ?  
0520 
0441 
0510 
0441 
044? 
0602 
0440 
0520 
0516 
0603 
0410 
0605 
7776 



DETAIL LISTING PART II (Continued) 31. 

4 2 0 1 4  R A  A  1  0 0 0 3 7  0 4 6 0  +  1 2  
4 2 0 1 6  S R  A 1  0 4 0 9 5  0 4 6 1  +  1 4  
4 2 0 1 3  S S  A 1  0 0 0 7 4  0 4 6 2  +  3 6  
4 2 0 2 0  S T  A 1  0 0 0 0 6  0 4 6 3  +  0 0  
4 2 0 4 0  R D  A  1  0 2 0 4 8  0 4 6 4  +  3 0  
4 2 0 5 0  C S  A  2  0 0 0 0 0  0 4 6 5  - 3 7  
4 2 0 6 0  U T  A 1  0 0 0 0 0  0 4 6 6  +  0 1  
4 7 0 1 0  S S  A 1  0 0 0 6 6  0 4 6 7  - + 3 6  
4 7 0 2 0  S T  S I  2 0 3 1 0  0 4 7 0  +  0 0  
4 9 0 0 1  S T  T  2  0 0 0 3 6  0 4 7 1  - 0 0  
4 9 0 0 2  S T  T  2  0 0 0 0 0  0 4 7 2  - 0 0  
4 9 0 0 3  C S  T  2  0 0 0 4 8  0 4 7 3  - 3 7  
4 9 0 0 5  U T  S I  3 7 0 7 0  0 4 7 4  +  0 1  
4 9 0 0 6  C S  A 2  / / 0 4 7 5  - 3 7  
4 9 0 0 7  S T  S I  3 1 1 6 0  0 4 7 6  +  0 0  
4 9 0 0 8  S T  S I  3 7 0 4 0  0 4 7 7  +  0 0  
4 9 0 0 9  S T  S I  4 0 0 1 0  0 5 0 0  +  0 0  
4 9 0 1 0  S T  A  1  0 0 2 5 7  0 5 0 1  +  0 0  
4 9 9 9 7  S T  A  1  0 0 0 4 0  0 5 0 2  + 0 0  
4 9 9 9 8  S T  A  1  0 0 0 0 8  0 5 0 3  +  0 0  
4 9 9 9 9  S T  A 1  0 0 0 6 0  0 5 0 4  + 0 0  

S E T U P  N U M B E R  H A L F  W O R D S  D A T A  
X  
S K I P  I F  A N O T H E R  P R O G R A M  R E A D Y  
P R O G R A M  F  I N I S H  
E Q U I V A L A N T  O F  L O A D  B U T T O N  
X  
X  
F S  C A P A C I T Y  E X C F F D F D  E R R O R  
X  
0  L E F T  R O W  I M A G E  A D D R E S S  
9  L E F T  R O W  I M A G E  A D D R E S S  
C A R D  I M A G E  E N D  T E S T  A D D R E S S  
D R U M  W R I T E  R E T U R N  A D D R E S S  
D R U M  R E A D  C O P Y  L O O P  T E S T  
D R U M  G A T E  A D D R E S S E S  
X  
X  
T A P E  2  A D D R E S S  
P R O G R A M  O R I G I N  
N U M B E R  H A L F  W O R D S  D A T A  
N U M B E R  H A L F  W O R D S  T E M P O R A R Y  

0 0 4 5  
7 7 7 7  
0112 
0006 
4 0 0 0  
0000 
0000 
010? 
0101 
0 5 6 ?  
0 5 1 6  
0 5 7 6  
0 3 7 4  
0000 
0 3 0 3  
0 3 7 1  
0 4 0 4  
0 4 0 1  
0 0 5 0  
0010 
0 0 7 4  

29-1013-0(NA) 



DETAIL LISTUG PART II (Continued) 

DATA 

fc9«*U9n Contents 

D1 0 0 
D1 1 1 
D1 2 2 
D1 3 4096 
D1 4 256 
D1 5 44 
D1 6 Drum Uee 
D1 7 4097 

Rlirrr ""mi+'Yih 

TEMPORARY 

P°c#tlon Ofs 

T2 0 * 
• 

• ' Card Iaage 

T2 
o 

46 J 
T2 48 Operation, Type, and Address 
T2 50 Pile and Symbolic Locations 
T2 52 Tape Check Sua 

Print Conversion Colum Indicator 
T1 52 Working Search Lower Bxtreas 

Punching Loop Test Word 
T1 53 Working Search Upper Extreme 

Half Word Count for Card 
T1 54 Program Origin minus File Origin 
T1 55 Origin Data Area 
T1 56 Origin Temporary Area 
T1 57 File Lower extreme 
T1 58 Working Search' Mean 
T1 59 lumber Half Words to Punch 

29-1013-0(NA) 



THE THEODOLITE DATA REDUCTION PROBLEM 

By Bruce G. Oldfield 
U. S. Naval Ordnance Test Station 

China Lake, California 

The development and testing programs at the Naval Ordnance Test Station 

(NOTS) produce a large amount of data. Success in these programs is often 

very dependent upon the rapid and accurate reduction of this raw data to 

useful numerical measures. There are many different kinds of recording 

instruments used on the ground and aircraft ranges at NOTS, and consequently 

there are many types of data produced, each requiring a different method of 

reduction. The reduction of the Askania theodolite data is one of the most 

important of these problems, and is the one that will be discussed in 

detail in this presentation. 

The theodolite camera was first used at NOTS in 19^5• Since this 

early beginning, there have been vast improvements in the camera, the methods 

of data reduction, and the computational facilities. This is well illus

trated by contrasting the original combination of a Mitchell theodolite, 

simple film reader, and projection method for solution on a hand computer, 

with the present combination of a greatly improved Askania theodolite, mech

anized film reading with the Iconolog punch film viewers, three camera 

weighted least squares solution and the 701 for the actual computation. 

601, 602, and 6(& Multipliers 

The Computing Branch did its first theodolite reduction on a 601 multi

plier in 19^8. The Assessment Branch was soon interested in obtaining more 

accurate trajectories by making additional corrections to the angular data 

29-1013-0(DR) 



and by using a more refined method of computation. A 602 multiplier was 

obtained and a modified least squares solution was set up which required 

forty different control panels. The best average time that was ever achieved 

was six minutes per point; however, there were often machine errors and 

breakdowns which substantially increased the actual computing time. This 

same method was used on the 6(A multiplier when it was acquired, and on 

that machine the procedure required only twenty control panels, was faster, 

and was much less susceptible to errors and breakdowns. 

Card Programmed Calculator (CPC) 

The two methods previously mentioned could be computed with the step-

by-step techniques of the 602 and 6o4. The present least squares method* 

requires the approximate coordinates of each point to use as weighting 

factors in the final solution, which means that points along the trajectory 

must be computed in a sequential manner. This method, as set up for the 

model I CPC, required that four separate runs be made. In order to solve 

this problem in a more efficient manner, NOTS was very interested in a 

better 6oU. The subject was discussed with IBM representatives and resulted 

in the delivery of the original model II-60̂ . For the first time it then 

became possible to sequence the complete theodolite computation. The deck 

required 295 instructions, three data cards, and approximately 165 seconds 

per point. With the arrival of the Model II Tabulator, the theodolite 

problem was set up on a very efficient multi-channel board which could 

enter as many as three eight-digit numbers and one five-digit number and 

exit with two eight-digit numbers each card cycle. This method required 

•References (l), (2), and (3) give a comprehensive discussion of the 
theodolite problem, including the weighted least squares solution 
now being used at NOTS. 

2 
29-1013-0(DR) 



80 seconds per point. By that time a faster and more versatile computer 

was the only way to make a significant improvement in the computational 

procedure. 

701 Calculator 

The computation of theodolite data on the 701 falls into three general 

categories: a searching routine, a computing routine, and an editing-

computing routine. These three categories will now be discussed in greater 

detail. 

Searching Routine 

Each flight is normally covered by a number of theodolite cameras 

stationed at various points along the range line. The problem is to use 

a particular set of two or three cameras for a specified part of the 

trajectory, change combinations several times for other parts of the 

trajectory, and quite often actually recompute sections of the trajectory 

using a different combination of cameras. To accomplish this generality 

of selection in a simple way, the following information and processes are 

used. 

Camera Station Constants. Each station has an identification number 

and 13 constants associated with it. Each set occupies twenty half-words 

which are read into the 701 and stored at the beginning of the compu

tation. As many as ten different stations can be used on any one trajectory. 

Camera Station Coordinates. Each station is located by three position 

coordinates which may remain constant for several years. The identifica

tion numbers and position coordinates of twenty-one different stations are 

read into the 701 at the beginning. 

29-1013-O(DR) 
3 



Camera Data. The Askania records at a rate of four frames per second 

The developed film is read on an Iconolog film reader, which is connected 

to an IBU summary punch that records on each card a station number, a frame 

number, and six quantities relating to the azimuth and elevation angles. 

The data from all the stations are read into the 701 at the beginning; 

provision is made for as many as 297 different points. 

Control Numbers. The last type of information consists of three trans

lation constants, three slant range constants, and as many as 10 different 

sets of control numbers. These control numbers designate the stations to 

be used and the frame numbers to be considered by this combination. For 

example, one might have stations 2, 5# and 9# frames 10 to 29, followed by 

stations 2, 9> and 11, frames 21 to 57# followed by a two station solution 

such as 5# H# and 0, frames 50 to 75. 

Since all of the information is read in at the beginning, the constants, 

coordinates, and data must be searched on the basis of the control numbers. 

The station constants and the station coordinates are searched just once 

for each set of control numbers. The first frame number is found for each 

station and then by advancing each frame address, all points are considered 

until the last frame constant is reached. This process rejects any point 

whose frame number is missing from one or more stations. The control infor

mation is considered one set at a time until all of the desired combinations 

have been computed. 

Computing Routine 

Computation of the desired space coordinates and residual angles for 

trajectory points is achieved by the following steps. 

29-1013-0(DR) k 



Corrected Angles. The first step is to compute the corrected azimuth 

and elevation angles for each camera. This computation takes the data 

along with the station constants and coordinates and adjusts both angles 

for such things as tracking corrections, leveling error, refraction correc

tion, curvature of the earth, zero point correction, and dial eccentricity 

correction. 

Space Position. From these corrected azimuth and elevation angles the 

direction cosines of each station's line of sight are computed. Using 

these direction cosines, the least squares coefficients for a set of 

three simultaneous equations are found. These equations are solved for 

the space coordinates of the missile. 

Residual Angles. The next step is to compute the residual angles. 

A residual angle is defined as the difference between the measured azimuth 

or elevation angle of any station and the azimuth or elevation angle as 

computed from the space coordinates just determined above. These residuals 

should be quite small, and they provide an excellent check on the accuracy 

of the original data as well as on the accuracy of each 701 computation. 

The following 12 quantities are computed for each point and must be 

stored: Frame number; x, y, z coordinates; slant range; six residual 

angles; and the time. It would be desirable to compute a number of points 

before storing the answers on drum or tape, but this would mean a compro

mise with the amount of original data which could be handled at any one 

time. Consequently, each set of answers is stored on the drum as soon as 

it has been computed. 
need serf tnloq erft II .emit bnfi ^aefgrta Isybiaet xts t©gnai trials 

Editing-Computing Routine^^^ g at j-b tbedaloqaitxe 

This routine gives, in most cases, a complete set of velocity and 

29-1013-0(DR) (Ha>o-5:xoi~es 



acceleration computations. The program is on bimry cards, which follow 

the last data card, and is called for as soon as the computations are 

completed. The answers on the drum are read back into electrostatic 

storage and examined in the following way. 

(1) All missing frame numbers are counted and identified. Using 

this information the data is relocated, filling in zeros for each block 

of missing data. 

(2) The residual angles are examined and tested against a specified 

tolerance. Any point that has a residual exceeding this tolerance is 

identified and consequently rejected. 

(3) The x, y, z values are now found for all missing and all 

rejected points. A second degree formula is used which extrapolates for

ward if there are three good values, and also extrapolates backward if 

there are three good values. The average of these two extrapolated values 

is used as the new value. If there are three good values in only one 

direction, that extrapolation is used. (A previously extrapolated value is 

not considered a good value.) If there are not three good values in either 

direction, the routine notes this fact by leaving zero for the x, y and z 

coordinates. 

(4-) There is now available as complete a set of space positions as 

the program can get, so the next step is to compute the velocity and the 

acceleration. 

(5) The results are now printed, each line representing one point. 

The form of the results are frame num er, x, y, z, velocity, acceleration, 

slant range, six residual angles, and time. If the point has been 

extrapolated, it is identified by a zero frame numoer. 

29-1013-0(DR) 
6 



(6) An automatic data plotter is used in the preparation of the final 

report, so it is desirable to record the results on punched cards. The 

form of the punched results are frame number, x, y, 2, velocity, acceleration, 

slant range, time for the position data, and time for the velocity. 

The approximate 701 time required for a typical trajectory may be of 

interest. Let us consider a three-station, 90-point trajectory as an 

example. The time required to read in, compute, print, and punch the 90 

points would be as follows: 

Card reading time (program 2h seconds 

Card reading time (data) 112 seconds 

Computing time 95 seconds 

Printing time 36 seconds 

Punching time 5^ seconds 

TOTAL TIME 321 seconds 

Thus, this example would require 3«57 seconds per point, which is higher 

than the usual case since the time per point is reduced if a number of 

data points are used several times. This occurs when different combi

nations are required involving the same points. 

The following are some interesting consequences of the 701 method, 

(l) The computation is more accurate even though the same equations are 

used as with the CPC. The method uses an approximate value of x, y and 

z in order to correct the angles for refraction and curvature of the earth 

and in order to weight the least squares coefficients. These are minor 

corrections and consequently the previously computed point on the trajectory 

is adequate to estimate the corrections unless it happens to be a bad point. 

In such a case sizeable errors can be introduced into the values for the 

29-1013-O(DR) 
7 



succeeding point. This difficulty is eliminated on the 701 by always com

puting x, y and z a second time. (2) It is now quite common to request 

more combinations and more points on each test. In fact, on any given 

trajectory the tendency has been to compute almost twice as many points 

as would have been previously requested. (3) The editing-computing 

routine has caused a significant decrease in the number of man-hours spent 

on each test. In most cases the results can be plotted and sent out 

directly, with an estimated saving of twelve to twenty man-hours per test, 

which often means a saving of a week or more in issuing the final report 

because better scheduling is possible. 

Work is continuing in an effort to improve the accuracy of the 

theodolite data. These efforts include improvements in the Askania camera, 

consideration of other methods of reduction, and an investigation of the 

bias of each Askania camera. 

REFERENCES 

(1) U. S. Naval Ordnance Test Station, Inyokern. Methods of Measurement 

and Computation to Determine Trajectory Data from Askania Cinetheodolite 

Records, by John Titus, Mary Driggers, and Laurence Minvielle. China 

Lake, Calif., NOTS, 10 September 1951- (NAVORD Report 1907, NOTS V71). 

(2) U. S. Naval Ordnance Test Station, Inyokern. Techniques for the 

Statistical Analysis of Cinetheodolite Data, by R. C. Davis. China 

Lake, Calif., 22 March 1951- (NAVORD Report 1299, NOTS 369) • 

(3) International Business Machines Corporation, Endicott, New York. 

Proceedings, Computational Seminar of August 1951- IBM Card Programmed 

Electronic Calculator Operations Using a Type U02-hl7 BB and 60^-2, 

by Martha Kenyon, Bruce Oldfield, and Harley E. Tillitt. 

8 
29-1013-0(DR) 



AN EXPERIMENT IN INFORMATION SEARCHING WITH THE 701 CALCULATOR 

By Harley E. Tillitt 
U. S. Naval Ordnance Test Station 

China Lake, California 

At the U. S. Naval Ordnance Test Station, an attempt has been made 

to use the 701 Calculator as a tool in the task of searching library files 

for documents referring to special subjects. The present system includes 

only reports which have been written in certain agencies throughout 

the country and does not include periodicals or bookso Furthermore, 

the subjects are for the most part related to the development and test

ing of items of naval ordnance. 

In any organization that includes research and development in its 

functions, it is economical in both time and money to be able to determine 

what has been done in a field before new programs are started. Scientists 

and engineers, therefore, are anxious to learn what is in the literature 

prior to starting some new task. Frequently, however, the labor of search

ing library files is so great or so unprofitable that it is either not done, 

or is done very incompletely. 

One of the reasons for the difficulty in searching is that the catalog

ing of reports may be such that important aspects of their contents are 

obscured. For example, the following report, Equilibrium Composition and 

Thermodynamic Properties of Combustion Gases, could logically be cataloged 

under one or more of several subject headings, which might or might not be 

appropriate, depending somewhat upon the technical skill of the cataloger. 

29-1013-O(IS) 



This particular report was filed in the Inyokern Technical Library under 

two subjects: Gases and Physics0 Both of these are standard Library of 

Congress subject headings, and are more or less descriptive of the report. 

However, under each subject heading there were found to be several 

hundred other reports filed, in itself a situation that could discourage 

searching. More serious however, was the fact that scientists interested 

in such a category of ordnance development might be equally likely to 

search under the subjects of Combustion or Physical Chemistry. Most 

serious however, was the fact that there was no indication in the catalog

ing process that one of the main contributions of the report was to describe 

a numerical method by means of which the thermodynamic properties were 

computed. As a result, for one reason or another, the report was, in 

certain respects, lost, as far as many interested individuals were concerned* 

To avoid some of the difficulty of cataloging documents by subject 

heading, a system can be used that depends upon a document being described 

by several single terms called descriptors.^ In the library application of 

this system, there is a card for each descriptor. As documents come to the 

library they are given an acquisition serial number and this number is 

entered upon as many different descriptor cards as seem necessary to des

cribe the document. 

In the example above, if the serial number of the report had been 

123A, this number might have been entered on the following cards: Thermo

dynamics; Combustion; Gases; Computation; Fuel; Impulse; Pressure; Tempera

ture; Entropy; Enthalpy; Adiabatic. Some descriptors do not seem related 

^One discussion of this type of system is given in a series of 8 technical 
reports by Mortimer Taube of Documentation Incorporated, Washington 6, D.C. 
These reports were prepared under Contract No. AF l8(600)-376 for the Armed 
Forces Technical Information Agency in the period Judy 1952 to March 1953• 

29-1013-0(IS) -2-



to the title, but could have been assigned after a brief inspection of 

the contents by the cataloger. To use such a system when information of 

a certain type is desired, an individual would Hist descriptors that 

would, in his opinion, describe his needs. These descriptor cards would 

then be pulled from the files and be visually compared for numbers that 

matched on the several cards. Reports corresponding to these matching 

serial numbers would then be withdrawn. 

The original purpose of the 701 program to be described was to 

mechanize the above procedure with a view to the possible establishment 

of a daily schedule for library searching. 

In designing the 701 system, attention was given to the current size 

of the file and the expected growth during the next five years. The two 

quantities considered were the expected total number of serial numbers 

and the total number of descriptors. It was estimated that during the 

next five years there would be no more than 30,000 serial numbers nor 

more than 5000 descriptors. Furthermore, it was estimated that in search

ing for documents on a particular subject no more than 8 descriptors would 

be listed and that any one of these would not have more than 1000 serial 

numbers associated with it. 

This coordinate index system has only recently been put into use 

at the Naval Ordnance Test Station, and at the time the 701 programming 

was started there had been established a list of approximately 2500 des

criptors. New descriptors are being added at the rate of about 100 per 

month, with an anticipated upper limit of 5000. On these 2500 cards there 

had been recorded a total of about 20,000 numbers describing nearly 4.000 

documents, indicating that each serial number was recorded on an average 

29-1013-0(IS) -3-



of 5 different descriptor cards. 

At the present time, additions are being made to the system at the 

rate of about 500 documents per month. This currently represents approxi

mately AOOO additional entries of serial numbers per' month, since the 

catalogers are becoming more experienced with the system and are now using 

about 8 descriptors per document. 

The 701 operations are quite simple and go through nearly the same 

steps as are required in a normal hand search. These steps are as follows: 

(1) Install the master tape reel on which the file has been written. 

(The present arrangement of information on the tape is that each descriptor 

and associated report serial numbers form a unit record. The unit records 

are on the tape in order of increasing descriptor number.) 

(2) Load the searching program plus from 1 to 20 cards on each of 

which are punched the 2 to 8 descriptors called K's, that describe the 

subject of interest. (After loading, transition is made to the search 

program itself.) 

(3) Report serial numbers which appeared under all selected descrip

tors are printed. 

The following brief descriptions show the purpose of several programs 

used in the system. 

It can be seen that A and B will be used only once, when the system is 

started; C through G whenever a search is made; and H and I when additions 

are made as required by the continued acquisition of documents. 

Program A. Read into electrostatic storage as many decimal cards as 

required for a descriptor group. 

-A-
29-1013-0(IS) 



Program B. Compute a check sum for a descriptor group and write it plus 

the group on tape. 

Program C. Read a group, including its descriptor, from tape and match 

the descriptor against the 2 to 8 K's. 

Program D. If a group descriptor matches any K write the group on drum. 

Program E. After either 8 groups have been written on drum, or all of the 

K's exhausted, read the first two groups from drum and match 

report serial numbers. Store the matches where the first 

group had been. 

Program F. Read subsequent groups from drum one at a time and continue 

to match those that remain with each new group, storing these, 

where the first group had been0 

Program G„ When all groups have been read from drum and matched, print 

the final matches that remain. 

Program H. Read a group from cards. Determine whether this is an addi

tion to a group already on the tape or a group having a descrip

tor not previously used. 

Program I. If the group in H is an addition to an old group, produce a 

new check sum for the old group plus the addition. If the 

group in H is new, produce a check sum for it. In either case 

collate the new information with that on the tape and write 

it on a second tape. 

One of the objectives of the experiment is to attempt to reduce the 

amount of time spent in entering new serial numbers onto cards. This is a 

29-1013-0(IS) 5-



hand job requiring manipulation of the file and the recording of numbers, 

which is a slow process as well as a source of interference with indivi

duals wishing to use the file at the same time. With the use of Programs 

H and I, the system can be kept up to date without the need for hand 

operations except for the listing of additions on the sheet of paper as 

contrasted with making card entries.. 

A second objective is to attempt to establish a daily schedule for 

document searching. Presumably, this would eliminate conflicts that arise 

when more than one person happens to want to use the file at the same time. 

Also, it is possible that if the mechanics of searching are such that 

scientists and engineers can delegate the task to their secretaries (and 

the 701), the general use of reports will be increased, with presumably 

beneficial results. At the present time from 10 to 20 searches are made 

per day. 

Although there are cases when an individual may wish to search at once, 

it is believed that most such "urgent" needs can be planned to meet a 

schedule, especially if such a schedule would include two periods, such 

as 11:30 AM and A*00 PM, There has been no real experience on this part 

of the experiment as yet. 

At present only one search can be made at a time. This is because 

the system is built to accommodate 8 descriptors per search, each of which 

might contain up to 1000 serial numbers. However, as indicated above, up 

to 20 searches can be made to follow in order with only one loading. 

An improvement planned but not yet in effect is that of searching for 

8 K's but also printing those serial numbers that match for 7, 6, 5, 

3, or 2 K*s. 

It is difficult to estimate the 701 time required for what may become 

a typical scheduled searching period. This depends upon several factory 

M&M 

29-1013 -0(IS) 



including the total number of searches to be made in one period, the 

number of K's, the number of serial numbers per descriptor, and the loca

tion of the descriptor groups on the tape0 

The time required to load the cards, which include the program and the 

K'et plus the pushing of card reader and load buttons, is about 10-15 

secondso A search for 8 K's through 300 groups, with from 5 to 40 serial 

numbers each, all located at the front of the tape, requires about 10-15 

seconds# The minimum time of search, therefore, is the range of 20-30 seconds# 

As the file increases in size, by new descriptor groups being entered 

and new serial numbers being added to old groups, the time per search will 

approach that required to read the tape. 

If the present estimate of 4.000 new entries per month proves to be 

correct, there will be about 240,000 plus the present 20,000 in five years# 

Since these are recorded as half words, there would be room to load the file 

on one 1200 foot tape. Therefore, a maximum search would require about the 

time needed to read 1200 feet of tape, or approximately 4 minutes. The 

Inyokern Technical Library staff suggests that if the labor of putting 

entries on cards is reduced, the number of descriptors assigned to a docu

ment may be greatly increased, perhaps by a factor of two. If this should 

happen, a single tape might hot be sufficient. 

In summary, this paper describes a method by means of which the 701 

Calculator can perform certain library searching tasks. Depending upon 

several variables, a single search may require as little as 20 seconds or 

as much as 4 minutes. The system is at present in the nature of an experi

ment, and whether or not it will prove to be economical or practical remains 

to be seen# 

29-1013-0(IS) 





ATI ON IN IBM is primarily an organized 
nge of ideas, facts and experiences. Everyone 
Company takes part in some form of systema-
rning, and the participation continues from 

year. Educational programs, covering both re
courses for vocational preparation and volun-
rses meeting general interests, make a three-
tribution to the development of IBM people, 
, and service. 

the beginning of his work in IBM, Mr. Thomas 
n, president of the Company for 35 years and 
n of the Board since 1949, laid the founda-
and guided the development of the educa-

ograms which have been identified with every 
the business. The early beginnings, steady 

nent, and wide range of education in IBM are 
d by the following outline of some of the par-
programs and the years in which they were 

fd: 

instruction in applications of products, and in IBM 
M u v 1915. 

EERING instruction in the installation and mainte-
lce of IBM equipment, 1918. 

JMERS' OPERATORS training, 1929. 

LOPMENT ENGINEERING training, 1932. 

MAKER apprentice training, 1932. 

Ms SERVICE training of women field representatives 
IBM. 1935. 

JMERS ADMINISTRATORS and executive instruction in 
M Accounting, statistics, and scientific research, 1936. 

NCED applied mathematics and computation, 1946. 

GRADUATE engineering studies, 1949. 

lwhile, other types of instruction which were 
streams for what became a comprehensive gen-
i vocational education program, as well as man-
it and job training activities, had beginnings 
l the 20's and 30's. And with the completion of 
school building in 1933 at Endicott, New York, 
ts largest manufacturing plant and engineering 
hment, IBM had a useful symbol of the signifi-
>f education in the operations of the Company. 

% a 
'/fx / 

ffi, / 

llfX 

. /  

/'//V 

• 

" 'LIS  T  E N  

XT.ETTTiT 

FIVE STEPS  TO  KNOW LEDGE 
Entrance to the Endicott IBM School 

IBM EDUCATIONAL PROGRAMS fall generally 
into these broad classifications: for IBM employees, 
for IBM's customers, and for special professional and 
scientific groups. By their participation all groups 
acknowledge the fundamental truth stated by Mr. 
Watson, "There is no saturation point in education." 

F O R  E M P L O Y E E S  
Professional Training. The specialized technical knowl
edge required in the development, building, selling 
and servicing of IBM products, together with the high 
degree of teamwork characteristic of the organization, 
makes continuing education an indispensable part of 
Company operations. Engineering, sales, customer 
engineering, systems service and other technical work 
all require specialized IBM training, and the various 
programs give IBM personnel a good start in their 
careers. Training proceeds from preliminary prepara
tion in branch offices, plants or laboratories to full-time 
instruction in the specialized schools. Nor does the 

training end upon completion of the basic courses in 
each field. Keeping pace with advances, continuing 
their learning as a natural part of their work, em
ployees in these and other divisions frequently attend 
classes for post-graduate study of new methods and 
machines. 

Job Training. Apart from the above programs, other 
members of IBM participate, at one time or another, 
in educational activities within the Company's regular 
operations. Every level of plant, office and field activity 
is reached by job training programs. Periodic short-
term courses in job instruction, job methods and 
human relations are conducted for managers and 
executives. Longer courses, requiring as much as one 
to three years for completion, are also given in spe
cialized fields or management activities. Extension 
education materials have been developed for em
ployees, especially those in the field, who may be 
unable to attend regular classes. Additional material 
for home study is made available from time to time. 

Business, Technical and Cultural Courses. Surround
ing the various courses and groups of courses related 
to particular occupations and responsibilities within 
the Company is the General and Vocational Education 
program conducted at plant locations and in the New 
York City area. This is a full-scale adult education 
program offering spare-time courses ranging from 
ungraded technical subjects to liberal arts studies on 
the college level. Enrollment is entirely voluntary, 
without cost to employees. Seventy-five per cent of 
plant employees have participated in this program, 
with many of them enrolling regularly each term. 
Certificates are awarded for fifteen or more units. 
There is no hard-and-fast distinction between voca
tional and general development but many employees 
regularly maintain a good balance by taking various 
kinds of courses in subjects serving either both aims 
or none save the need for a worthwhile, stimulating 
pastime. These courses, whose class meetings usually 
are once a week for two hours, are given in a two-
semester year which conforms generally to public 
school practice. Instructors are specially qualified Com
pany personnel and faculty members from nearby 
colleges and schools. 



WELCOME 
TO 

IBM 
o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o  

CO 
z: 
oc 

CO 
m 

oc 
• • 

LU 
Q 

o 

PLANT NO. I OF INTERNATIONAL BUSINESS  MACHINES 

CORPORATION IS HONORED TO SERVE AS YOUR HOST. 

WE SINCERELY HOPE YOUR VISIT WILL BE AN 

ENJOYABLE OCCASION AND ONE TO BE REMEMBERED. 

IBM CORPORATION ENDICOTT, NEW YORK 

PLEASE INSERT THIS CARD IN YOUR BREAST COAT POCKET. 

1 2 3 4 5 6 7 8 9  I D  I I  1 2  1 3  1 4  1 5  1 6  1 7  1 8  1 9  2 0  2 1  2 2  2 3  2 4  2 5  2 6  2 7 1 2 8 2 9  3 0  3 1  3 2  3 3 1 3 4 3 5 3 6  3 7  3 8  3 9 4 0  4 1  4 2  4 3 4 4 4 5 4 6 4 7 4 8 4 9 5 0 1 5 1  5 2  5 3  5 4  5 5  5 6 1 5 7  5 8  5 9  6 0 1 6 1  6 2  8 3  6 4 6 5  6 6  6 7  6 8  6 9  7 0  7 1  7 2  7 3  7 4  7 5  7 6  7 7 1 7 8  7 9  6  
GUEST CARD NAME 



p P  P  P  
c bo 

G E 
c/5 
© G 

© 
G 

)h rU 
— Jh 

o G o 
© 0 

© 
CD © A 
03 © 

JZ © hC 
G TO 

© 
hG 

03 
> 

CM 

TO "G 
UH 03 M 
0 u 

G 
hG 03 

Dh 
0 , 
— 03 © © 

© Oh 
© 
© G 

P 5 rt w 
5 O" e O 

U re 
c .5 

8 . 8 - *  

•a .E 
c • c 
v -3 u 
be "w S 
a «e -

.5 s •-
2 « a 
S v -> 

•o "O 
c c 
<y re 

s -8 
o 

e 1 
S £ 
cr . _ 
2 S «-> 
» C 

C cm . 2  °  
y5 

.E "o 
"O 3 
u « 
© _ro © 

•S m 
o 3 

"3 p 5 re & 

QJ 
-P — •- ft c 

P os 

s * 
t ° § > «  

•a g TO r> 

-0 © 
"g > o ^ ^ ® 
be'D •§ 
qj u c» 

n u ID 

v.2 =3 J 
p £ -2 S 
" E 

© 
> 
o 

HD 
o3 
<D 
G 

3 g. 

Cm © 
C/5 C © x • -> 
© © 

- 2 * 2  
Dm "© S 

G w — 
(-1 03 
S a s :s <to *-» 

I  jh 
£ n 
re a 

< -5 
. M 

bo h 
.8 cm 
S ° 

S 2 
.> © 
h* -2 

G 

•§ 5 

3 g g •-
a; tfi os 
£  o ^ §  
p ~ 2 •§ 

3 re ~ 3 

•H U bo * 
* re 

2 re 

§P| 
p £ 
re £ 
G c/5 

03 
o W5 

W-l C 

C/5 
~ o c -5 
© _ .G 

'G © £ . _ > h 
> © 

'TO *"* J2 
© >>G e 

2 M ^ tfl c W pD qj 
n • ^ 

G c ? 3 
2 ° Js o 
y -n -a u 

oS 
8 £ c 

n" 1/5 ^ o .— ~ 

G 
a; 
•TO 
© 
G 

G 
G 
O u 

QJ 
-
C3 

G 
o 
CJ 
u <D 
50 
G 
O 
J 

^G P3 
^ u a; tj 

>— qj 
> 

G «-> 
ri 3 

2 u G ° 
3 X 

JG a 

sp
e
- G 

YS e
m

-

G G 
© 

• TO o 
X CM 

G 
© > 

W 
T3 
© 

be V5 
© Dh 

o 
o © © -> > 03 'TO © 
© Jh 

© 
03 

"G 

03 C 

c 
o 

G 
© 
E 

© 
© 

X5 

© © 
be © 

> 
Dh 03 03 
s G 

03 
-G 

o 
© E !/5 

O CM c © : 
© 4TO , 

C/5 C/5 03 
Jh 
03 

TD s 
© © 

QG G 
© O 
© T3 
Jh 

JZ 
© 
N 03 

© 
G 

o "G -
© © 

2 CT3 

6 S 

— <u 

S.S 
o • 1-^ 

3 I 
3 2 < -

a; 
^ 3 QJ -3 
c/j 03 ^5 —-

»2 73 
03 
> 

*. rt 
a qj 

2 13 v 

£ be 2 
GJ 3 u, 

^ c« 
3 U -
.5 c >, 

iH ii 
a. rt 3 c/5 c/5 
<u 0 - w 

s « i  
>,-3 -C 
O « u 
a £ 

G 

IS 

u .3 

G 
#o 

4—i 
a3 cj 
G 

W 

a, 
G 
o 
&5 

TG 
G 
03 

GG ^ 
•2 § 

C/5 • 
G ti n ^ 
2 u G-i o £ > 
G G 
G 

-
G 
O u 
C/5 
G 

.o 

> 
a; 

-G 

3 bp 

G ^ 
O C •-< <L) 
s o 

GJ 
3 -G 
u T2 u 
O .jg 
j-« ^ 
03 G 

GG ^ 
G 

•S E 

S . o  
GJ 

JG 

g § 

* 're 
u u 
^ 3 
tl -a 
^ <u 

"g 3 

£ "3 re re 
<*> 
C U 

. 2  re  3 u 
re <? 
u s 
® 3 

C-M 4-> 

£ 

E c 

° 0 re 
T ,  _  "  • r! </5 qj 

£r 0 

bo "2 
P 3 

• G •*-' 
bo 5/5 

G C/5 

2 S 

E S . S  

" " 3 fe 
o _ 
fe -3 <u Cb o i-

re o y>. v a 

3 s» o 

X- J 

^ h w 
P 03 

S 
G 03 
0 <J ^ 

1 S 

& 
O u 

O 

QJ 03 C/5 ^ 
U cj 

§5 
(J ~ 

0 
CD w 

S «« 

G u i qj 
CD .X, 

£ TO 3 
OH g 
c« 
. . oj 
be u 

S G 

2 u C a; 

qj qj 
.b > 
G «3 

S Er 
G c/5 qj 
> 
(D 

c ^ 
(D . 

G JS 

§D G 
— a; GJ GJ 

a o 73 

G QJ 
GJ W 
o ^ 

r3 Gh 
w 6 

. QJ 

S - 5 a, be 
- * n 

o 
b ° "^ 

a. c "g 
«? « w ~ 

> 
a 

JG 

G <u 
GJ 

4-1 
GJ 

JG 

G 
#o 

CD 
G 

Ox 
s 

C/5 C/5 
3 g 
O .G 

' £  «  
03 
> JH 

g » i  

be >-
C G5 

•r2 o3 
«« 5 (—4 C/5 
G G 

S C/5 

^ s 

G 
c3 

^ 3 
w G 
os a, 

G o 

4-J JH 

^ • s  

G 
JG 

G 
GJ 

s 
Dh 
o 

2 ^ 
G-, G 

S 2 
GJ 

GJ 0 be u 
,2 
'o G 
u O 

« .G 
•S i 

s 
GJ 

*G 

GJ QJ 
<u ^ JG 
^ O pj 

'a 

E 

c« 
G GJ 

» E S 

« JS 
CP s 

J2 .3 b 

v (h 
GJ 

JG 

TJ 
C 

03 1/5 

c« 

03 ^r; o v — <i i (*> 

GJ GJ 
G2 GJ 

i£ 

C M  
0 " 

^ V C/5 
o3 O 
, JG 

0 ^ 

TG GJ GJ c/5 
C/5 (15 •*-• 

S 
•r « 
150 fc 
<u P 
s- n 
re to 

C/T Q/5 
£ 6 M  M  
ri C 

P O 
^ w 

JG 
in 
03 GJ 
G 

s 
o 

,*H ctf 
G 
cr 
>> in 

GG ^ 
^ -e 

-3 3 .5 ct 

GJ 
G G 

be'I 
13 £ 
c >. 
re -r 

S C/5 (1) J! - « 
« E > ^ 
re CH 
c^ ^ 

^ "5 

ki «i 

^ 5 
r s: 

O " 

S o 
c< .b 

•o 

g« 

V 

£ ^ 
^3 o 

b « 
5/5 b 

k3 g 

*•»• .-
k. < 

^ c« "G 
GG GJ C 

2 Ji. « 
u O -
C re; w 
£ a- c 
BC P O 

3 S g 
o .2 
b" *-* 

**£ S 
— p 

a. S U h '3 

-b bo J3 

u O 

JS « 
3 -a 
bo C qj • — 

i- ^P 
o .2 
^ jp 

IU 
°J i 
> re 

IU re 
u u 

p £ 
Oc« QJ 

(J G 
<U QJ 
a. P cf) b. 

ac ^ 
re PP 
w 3 
fa u 
o re 4-» <H-| 
GJ 

2 -a 3 c 
c « 

03 
a 

C/5 
o 
o 

8 ! « 

' 5  § - g  G ^ G 
™ G [3 
U qj 
Cl« n c/5 

—. GJ 
. be >~n qj 
C ZZ 2 ° 
G- u 

O 
O 

pG 
CD 
c« 

© ys 03 H C/5 03 © 
03 

CM s 
© CM 
o C 

_c 

03 
G/3 u 

C 
_c y5 

TO* 
03 JZ < JH 73 a TO 

3 
«M "© *© -

O 
o 

»5 
c 

H. y5 
—J 
JH 
i 73 

fO JH 
0 c 

DH 03 JH © 

I-3 < 
© 

CG 

A. C/5 

•G 
C 
03 

© 
-E 

2 03 YT 5TO 
3 

O "© JH 
© 

Cro 

o 
G 

"re 
u 

'c 
JP 
£ 

H re o 
< u 2 
U -a 3 

D 

Q „ 

=Q 

S o -

33 G o 

» E n, -> •" QJ 
G W GJ 
2 » js 

bb Mr 

CO 

c*j 

fit) 

>N 

O 

ft. 

5 

«« 7 
bo 

f K 

<3 

•O 
u 

V 
JP 

O -5: 
W -5 ^ 

Cre U « u PS -

S » E 

c E | 

u u | '/5 3 J 
O 

it 

d p  - ^ . 2  

11 s 

f l ' i  
.E •£ m 

2| o 
'5 K £ 
^ 0 -G 

up 
H W 
- y o 
G be 
QJ O U 
G - \3 
2 • C« 
O- «2 T 
o tJ SJ 

£ 

-s gS 
UP 

•C s ̂  
" s HH >-4 

•S "" i 
tS Is 

"53 £ 
£ bo re 
u C au 
= .2 ^ 

c u ° 

^ O GJ c/5 GJ 
bJD bb 

"TG C GJ 
GJ TO T3 

"o GJ 
- E 
re 2 
n ia 
 ̂ Z 

OJ u 
3 , 

03 C/5 
c/5 qj 

11 
C/5 

-5 be 
. 5  . 5  

c w 
m w 

.£ 
£ be .2 e 
G w TO 
U 

s ^ ^5 C GJ 0 

be '5 

.5 2 
3 U 
I §• 
4H 
c ^ 
0 
u 

.J u 

C •£ 
-G w 
U T3 
D ^ 

J. GJ 
2 E 
03 -G 
DH V 
gj —: 

O h c S  

o 
u -*-» 
03 C/5 
C GJ 

•2 re 
£ 3 

8 S 
> « 
HI 
GJ 
c« XJ 
y, ?J 

03 
£ a 

03 o 

E O 

E = 
GJ ^03 
c« 'u q; 
1/5 Dh 

be ^ 
G GJ . —q U 
Sh ' Z 
QJ cr 
.5 a 
be 
c 
QJ TO 

•o B o 

I I I  
- *••§ 
_ E — 
U O u 
G >- O 
C H 
O <« -fa 
» -a c 
fa qj re QJ qj 
DH GJ DH 

O -«M U C/5 
2 DH ^ 

^ c o 

_ o 

GJ C 
> .S 

'So 2 
C/5 

I d 
& 8 

G J3 
CD 

o3 
u 

J2 

GJ 
JZ 

GJ 
o 

o 

£ 

hG CD 

T3 GJ 

CD 
GJ 
DH 

GJ 
-C 

CD 
G 

G is 
o ^ 

5. S -3 .5 

•r; GJ 
QJ C 

.2 o 
£ 
TO q; 
be > 
0 W CM 

I S 
CJ its G 

C D ^ D U  T O  53 03 05 
t .  5  o  S C - - U  

TO 7 3 —i 

c C/5 
TO H w 

5/5 5h 
G bp 

TO fc 

SC 2 o 

GJ 
> 
o 
CD 

o -5 > 
— 03 w 
C QJ 
03 

5 1 

o 
QJ 
a. 

S 
35 

re QJ 
H U C H J HM Jr" •"• ^ <•*> Ti G QJ GJ 
U GJ o £5 £ 2 w 

D- 1/5 .S- z: S.c 

c 
GJ 
s 

c 
03 

TO 
GJ 

03 
QJ 

S •5 
D4 

CD be 
*M O 
a Hh 
D- _ 

ei 

GJ > 
. GJ 

O GJ 
2 « 

G ^ 

.2 o ^ > 
GJ 
b e .  
be 

2 -

r GJ 
H bo < c 

U 2 

® £ 
w .£ 

2 be 
DH C 

(A 

G t- — 
O „ 
U w  « >  

GJ 

TO 5^ GJ 

03 
GJ 

CD — 
M O 
s u 

,G 

5- « 'o 

^03 
C3 
Y5 TO 
D 
C3 
GJ 
^ qj 
xC -D 
0TO 

- CJ " > 
GJ 

o e u: 
QJ .3 

QJ 
s £ 

"3 ^ 5P c 

S>! 0 

SC ^ 
>> 

w bO 
h G GJ -D s 

GJ 
be 

c > 

O QJ 
•— C/} 

5 ^ c 
03 

G c/T 
TO ^ © QJ CD 53 

0s. 

^  5 ^ 2  o "  G  C  =  

2 O QJ J | S 
^ U U QJ "D 
.2 GJ .£ - C; ^ 

Z -5 I H jh 
® o £ " !c "5 
S P «  O  - g  w  8  - r  ^  

•G c m »M G c ?* TO qj . y "T? -to 
QJ TO 

be £ M QJ H 
S h ' o  

© H 
•S c c 

OR TO ^ TO G TO G 

! * !  
-5.U 

^ TO 
-D 

"G TO GJ 

TO be G3 
O U i- CM 

C DH O 

O O D= 

© 
£ ?j 
DH S 
O r3 

• © 

p
a
i © 

© 
£ 

© TO >-
M © 

CM TO 
"o W 

© r-
S #© 
c 
C/5 £ 
H. 
© 

© • — 

;ro C/5 
JH 

M 03 
3 © 
O 
be © 
3 JZ 

o G 
C 

5 
os 
C/5 

© G 
"M 03 

JH 
be 

HD 0 
JH 
TO g: 
^ o 
TO 3 © D3 

u 
© -G -TO 
> "G 
© TO 

s: 

• Z OC 

© C5 

c . 
.2 ^ 

D 
3 — 
1H TO t/5 

• 5 - S  
y? -to ^ TO t-1 TO >— U O 
D CD < 

ce 

O TO 
z ^ 

W 

CM 

CM 
CM UL JO C 

05 c 2 ^ 
-z E 

« wj be •= be c ^ = -  =  S  =  ^  

e is = - SP 

« Eh 
2 ^ 

is 

c z TO
SS w 
TO © TO CJ 
Z 3 

O 
TO < 
ct 
UJ 
OH 
o 

o 
H ys 
3 
u 

TO 
z 
3 
z 
w 
H 
Z TO 
5 
cu 
O 
— 
w 
> 
u 

.3 905 
C 35 

.TO QJ tn 
QJ (J 

.i" iE 

II X D qj 'A 
TiV 

* .53 
P 3! 

y m 
Z OC 
> o 
a: — 
w > ce m 
y5 ^ s 2 TO im <—H 
Cfl 0 
>" 

ce 

< TO 
TO ys c/5 
z be 
S 'G 
3 c 
< 3 
. c 
a 3 

s< 

is 
fe 2 TO ^ 
U 

03 
cr. 

OH 
E 
u 

TO TO i-

bC 
G 
© 
TO 
H < 
G 
3 
< 
a: 
o 
H 

© 
© 
© 
£ 

-C 
#© 

IS 

c 
#o 
M 
© 
G 

C C 
GJ 03 
bo 3 

£ " 
A HH 

5 
UP ? 

2 -
c. 1,1 

E 

C/5 Chh •" 
60 O U4 TO Jh 

.5 c o 
c o >-
P "3 > 

" S o J i  £  
*  ° - z  

E 

"8 2 
© • -G 

C 
0 

y5 X "to 
© 
Dh ^ 

^ 2 
JH 
© 

•S o 

c3 
CJ 
3 

T3 
^ M 

73 
c 
0 

« M G3 Y5 TO 
- t5 w .to ^ 

> * 3 

5 G3 J2 TO TO E ci 
fco ~ 
p » c 

M I  £  
£ £D g. 

c "a E • G © o 
bp G3 (J 
G w 
© CM © 

*a ° £ 

re "o fS re X! o 
M ^2 
= £ s 
^ TO ; (A O 
DH _ 
be G Xr CM TO QJ QJ 

•C 2 ^ TO TO 

03 

D-
O 

03 qj 

G 
03 
© 
s 

C rt 
TO D) S 0 
JH > 
A T3 
© E (j C3 

r-< 
Z c3 
0 D. W5 © 

TO 
OS 

O 
or> be 

D G 
C G 

G5 
0 

• •—6 

03 
YS 
o 

'G 
HD 

G CM O 
3 © O 
03 HG HG TO © 
— C/5 
G 
© 
G 

"BE 
G 

G 
£ 

G 
© 
G 

0 O V — 
be G C/5 
03 TO • TO 

cS G3 -G 
^ 03 w 

a •" .5 
re H 
a 2 c 
S W 2 
to M *. 
© H 03 
be tj y i— HH ^ 
03 © 

—' G © 
^ G *-• ^3 CM •TO c/5 0 

° 3 8 

© 2 G 
.ti CZ» 03 

C/5 © © 

) 5 P  P  
5 

5 P  
p P  
p 
p 
p 
p 
p p 
p 
p 
p P  
p 
p 
p P  
p 
p P  
p P  
p P  
p P  P  P  
p 
p 
p P  P  





• 1 s in .71 m i t :  • • i 
Overlooking rhe upper Susquehanna V alley about two miles east of Plant J; the Homestea 
is a guest house for members of IBM customer classes meeting in Endicott, New York 

i  i  ft-
Jf 1 

•L£k.-P 

T H . E  I B M  H O M E S T E A D  



Eastward up the Susquehanna Valley toward Johnson City and Binghamton 

M A P  O F  T H E  P A R K  A R E A  



SCcdLE" One inch*ISOYards 

^LEGEJVD i}or?!cmcSites 

I B M 
-P̂  P< K , 

THE IBM PARK at Endicott consists of more than six 
hundred acres of rolling greens and woodland overlooking 
the Susquehanna Valley in south-central New \ ork State. 
It abounds with hiking and nature trails, picnic sites, and 
other recreational facilities. Several miles of surfaced roads 
wind through the park, affording vantage points for lovely 
upland scenery in all seasons. The area contains buildings 
and grounds of the IBM Homestead and the IBM Country 
Club, with their respective golf courses of nine and 18 holes. 





TITLE 

"Calculation of Aerodynamic Characteristics for 

Lifting Surfaces by the Vortex Lattice Theory" 

REPORT MR-E-18 

DATE 20 April 195^ 



) 

REPORT MR-E-lS 

DATE 20 April 1954 

TITLE 

"Calculation of Aerodynamic Characteristics for 

Lifting Surfaces by the Vortex Lattice Theory" 

GROUP: Aerephy,sici 

CHECKED BY: "S» APPROVED BY:NS^^O , 

PREPARED BY: 

NO. OF PAGES 47 

NO. OF DIAGRAMS 10 



TABLE OF CONTENTS 
Page 

LIST OF FIGURES 3 

LIST OF TABLES 4 

LIST OF SYMBOLS 5 

ABSTRACT 8 

INTRODUCTION 9 

THEORY 10 

EQUATIONS 13 

PROGRAM 23 

RESULTS 33 

DISCUSSION 44 

REFERENCES 47 



LIST OF FIGURES 

Number Page 

1 Diagram of Wing Planform Parameters 20 

2 Diagram of Vortex Lattice and Control Points 21 

3 General Flow Chart of Computation Procedure 29 

4 Flow Chart for Computation Program F 30 

5 Flow Chart for Computation Program G 31 

6 Flow Chart for Computatioh Program M 32 

7 Diagrams of Example Wings 37 

£ Local Aerodynamic Center versus Semi-span Length 

for Wing A 3$ 

9 Local Aerodynamic Center versus Semi-span Length 

for Wing B 39 

10 Local Aerodynamic Center versus Semi-span Length 

for Wing C 40 

- 3 -



LIST OF TABLES 

Number Page 

1 P-circulation, Downwash, and Modified Simpson 

Factors 22 

2 Spanwise Loading Coefficients for Wing A 41 

3 Spanwise Loading Coefficients for Wing B 41 

4 Spanwise Loading Coefficients for Wing C 42 

5 Aerodynamic Center of the Complete Wing for Wings 

A, B, and C 43 

6 Lift Curve Slope for Wings A, B, and C 43 

- 4 -



1. AR 

2. a 

3. a 
mn 

4. CDi 

5. CL 

6. CLoc 

7. C 
0 

a. CR 

9. c 

10. "c 

11. C1 

12. Di 

13. F 

14. Fm( 

15. GV,A 5 

16. L 

17. 1 

IS. M 

19. P , P 19. a 

20. Pa > 1 

LIST OF SYMBOLS 

2 wing aspect ratio, 4s /S 

wing cutout factor (Figure 1) 

loading series coefficients 

induced drag coefficient, D^/qS 

lift coefficient, L/qS 

lift curve slope 

chordwise dimension used in wing planform 

definition C /(1-a) 
R 

wing root chord 

local wing chord 

wing mean aerodynamic centef, 

local lift coefficient at a given span station 

induced drag 

geometric function used in downwash calculation 

spanwise terra in basic loading series 

dimensionless circulation factors 

lift 

local lift at a given span station 

Mach number 

auxiliary circulation functions used in modified 

solution 

additional circulation series coefficients 

- 5 -



used in modified solution 

21. P pressure 

22. q dynamic pressure, 1 ̂V 

23. s wing area 

24. s wing semispan 

25. V free stream velocity 

26. w downwash velocity 

27. X* Y* dimentionless coordinates used in downwash 

c deviation for a horseshoe vortex 

•
 

t
o
 

CM xac 
local aerodynamic center at a given span 

station 

29. *ac aerodynamic center of a complete wing 

30. oc angle of incidence 

31. r total circulation about the wing chord 

32. * complement of the leading edge sweepback 

angle (Figure 1) 

33. n dimentionless wing span station (Figure 2) 

34. V 
wing spanwise center of pressure 

35. A taper ratio, i.e., ratio of wing tip chord 

to root chord (Figure 1) 

36. spanwise station defining the center of a 

horseshoe vortex (Figure 2) 

37. •y chordwise position index for bound vortex 

locations (Figure 2) 

38. ^ density of air 

- 6 -



39. <f> 

40. R 

Subscripts: 

o 

P 

Note: 

span parameter used in induced drag calcu

lations, SIN~'J I- R|*' 

represents residual or loading error due 

to planform discontinuities near the root 

irefers to vortex locations 

refers to control point locations 

The quantities SQQ, a02' a04,al0' a12' a14' 
defined as symbol 3 are concerned with the 

standard, uncorrected solution. They will 

be referred to, hereafter, as the Faulkner 

"a" functions or simply as the na" functions. 

The quantities aQ', paQ, pbQ, a^, pfll, pbl> 

defined as-, symbols 3 and 20, are concerned 

with the modifications to the standard 

solution and will be referred to, hereafter, 

as the Faulkner MpM functions or the "pM 

functions. 

- 7 -



ABSTRACT 

A procedure for the calculation of aerodynamic char

acteristics for lifting surfaces by V. M. Falkner's 

Vortex Lattice Theory has been used at Convair on a 

study of over 500 wing planforms. This study h&s supplied 

the aerodynamicist with predictions of the lift curve slope, 

spanwise loading, spanwise center of pressure, induced drag 

coefficients, aerodynamic center and local wing pressure 

coefficients for the various wing planforms. The uniform 

simplicity of the vortex lattice allows straightforward 

calculations which can be handled successfully on electronic 

calculators. Due to the large number of calculations required 

for one wing planform, application of this theory has become 

practical only with the aid of a high speed, large storage 

capacity electronic calculator. 



INTRODUCTION 

In the evaluation of a given airplane design proposal 

the accurate estimation of the aerodynamic characteristics 

of the configuration is of primary importance. For the 

purpose of developing various prediction methods, Convair 

has set up at its Fort Worth Division a group devoted to 

the study of generalized lift and drag problems. The 

prediction methods are usually derived from experimental data 

correlation based on available theoretical results. This 

paper summarizes the adaptation on one of these theoretical 

methods, the Falkner subsonic lifting surface theory, to 

the IBM 701 calculator. 



THEORY 

In the field of aerodynamic theory the existence of 

an exact solution is the exception rather than the rule. 

As a result a given method is only as accurate as the 

approximations used to arrive at its solution and, because of 

the various possible approximations, many methods exist 

for the solution of the various aerodynamic problems. For 

example, at least 15 methods, suggested by various authors, 

exist for the solution of the subsonic lifting wing problem. 

Of the various lifting wing methods the three currently 
( \ )  

receiving the most interest are the Weissinger modified lifting 
1 

line theory, the Multhopp continuous lifting surface theory 

and the Falkner vortex lattice theory. The latter two, being 

lifting surface theories, define chordwise loading on the 

surface whereas the lifting line theory assumes a given chordwise 

distribution. This consideration ruled out the use of the 

Weissinger theory. The Multhopp theory, though slightly more 

accurate than the Falkner theory, is more difficult to adapt 

to a calculator because of the occurrence of incomplete elliptic 

integrals in a part of the downwash summation procedure. 

The Falkner theory was chosen for use in this study for 

the following reasons: 

1. It is only slightly less accurate than the Multhopp 

theory. 

2. Being a lifting surface theory, it provides solutions 

for the chordwise loading. 

- 10 -



3. Because of its mathematical simplicity it is relatively 

easier to adapt for calculation and also easier to 

extend to related lifting wing solutions such as the 

downwash in space and biplane problems. 

The Falkner theory arranges (or concentrates) the vortex 

sheet of the wing into a number of elements of line vorticity 

which are arranged in a lattice over the surface. The cir

culation of a given vortex can be calculated and knowing the 

circulation, the downwash can be obtained. The downwash effect 

of all of the vortices is then obtained at a series of stations 

or control points. The results obtained at the control points 

can be written into a set of equations, the solutions of which 

are used to obtain the total circulation of the wing at various 

span stations. If the circulation is known, it is possible to 

obtain various aerodynamic characteristics such as, the lift 

curve slope, the spanwise loading coefficients, the spanwise 

center of pressure, the coefficient of induced drag, the 

local aerodynamic center, the complete aerodynamic center 

and the local wing pressure coefficient among others. 

Moreover, by modifying the procedure, it is possible 

to determine changes in lift caused by camber and twist, 

the effectiveness of flaps, the downwash in space to obtain 

airflow characteristics in the vicinity of the wing, and other 

quantities determined by the downwash or circulation. 

- 11 -



The Falkner method of calculating these characteristics 

was summarized into a set of equations by Kulakowski (reference 

5), which were programmed for the IBM-701 calculator. 

The method was restricted, previously, to the study of a 

few carefully chosen wing planforms because of the great amount 

of computational labor involved (estimated by Falkner at twelve 

to fourteen days per wing planform). The time required for the 

present pregram, on the 701, is about ten minutes. 

The greatly reduced time of calculation makes possible 

the use of this procedure for generalized wing studies. The 

program has been applied at Convair to over $00 planforms 

and a preliminary investigation of the results have indicated 

that the theory is valuable enough to justify an additional 

study of around 800 more planforms. 

- 12 -



EQUATIONS 

The equations used in the calculations are summarized 

below. These equations have been formulated from Falkner's 

Vortex Lattice Theory by Mr. L. J. Kulakowski, Senior 

Aerodynamics Engineer, Convair-Fort Worth Division (ref.5). 

1. 

2. 

# yp = 20 

20 
tan € 

3. 

4. 

5. 

6. 

7. 

9. 

10, 

Xf 

y*-

x*. 

F = 

e. f « 

ZOjJL 

20 
tant 

* * 
yP - Vo 

v ̂  — y* A p A0 

x*(y*+ i) 

WHH.N \ 0 

I I 

x * - +  ( y * -  i f  

x# (y*-1) 

Y*+ I y*-i 
WHEM X = O 

Z fV4 - K* |_Gv1*(at,,.+ p.la0>» + p-'a**) 

+ 6v.»(a,^ + |i1a1)t + |i4a,A)] = 'Ao 

21 i—v1-* [&v,. (a^. + p-*"a0,2 + [<-4a.,*) 

+ &v,6(a,,»+ ̂ *a,,l + (i.','a,,4)]- 'Ao = R 

- 13 -



ii. Z p [gv,a + pa ^>t)0 + Pb ^ 

+ G-v.&tei V'" K* + P® fa,i + Pfe = " P 

12. Pa - > . 0 4 7 8 1 0 4 - +  5 .  N o . i o - > 7 ) * ;  L o g e  A *  

^ 1 + (o.\o + vtf Log. Bg + 1 if Log. C.J 
Wheu •. A. . 0.994*874 0-»|) + 0.<Hl-»f 

IO.R944874 ( l -»t)  -  o.9V»-9 t l |  

ga _ o.4449a74Vi-^' + o9 (>-9) 
|o .9949874^l-*7*-  -  o.9( i -9) |  

c a= V'-n* '  -  C1-9)  
W'- 1? 2 -  +  0-9)  

13. Pk - 0,0960329^1-^' + 1 f (©.20-vj)* Loge Ab 
2.TT L 0 

+  ( 0 . 2 0  + L o g e  B b  +  ^ * 1 *  L o g t  C b J  

where ; Ab , 0.9797959 (i-»0 4 o.S^i^tL 
|o.9797959 O-f) ~ o.8V»-«7z'| 

Bb = 0.4797959 Yl-1?*' + 0.8 ( > - 4 >  
1 0 . 9 7 9 7 9 5 9 -  0 . 8  ( 1 -  9 ) |  

C b^ ^l-^ '  -  C»-9l  
V + (1-17) 

14. F»(*p = V»-»f '  (ao.o + a®,t  + i4ao^) 

+ a: + Pa Ko 4 pb 1FV 

15. p,(*|)= (a, , .  + «f a, ,* + «f a , ,4) 

+ V1- 8, + ^pa,i + Pb jpfe,i 

- 14 -



16. 
AR 

_ n: 
8 
8(V + i aw) + i(ao,i+ + (a„,+ + ia,,4) 

+ 8(a'. + i a; ) + 0.50888 (f>a,0 + pa>1) 

+ I.OI5l7(f.b,0+ipbil)] 

17. ^ ̂ 

16, 

CLZ 

^cp 

= 4^AR.|F0(n) + 4F,(n) 
Cloc 

41TAR 
C 

19. _*£C_ 
/C 

20. Xac 

Cr 

iAB_ |~i^a0)0+ i a1>0 + a0 + i a, J 

• 0.01595^+4^ 4 0.03229 b̂/>+iKi 

j_ F0(n)-»- f.(h) 

4 F. (q> + i F, (n> 

I-A M . 4TTAR 
FT V + "7T- (f-^)(â +a,'+a;+a') 

21. ARC P l  

"cT^ 

+ lj"o.o49?6- 0,01595(1-A)" ̂pa,o + fV.) 
^ « 

• ifo.09967-0,03229(1-A) ^ 

- 15 -



26. sm^> - ^*{* 

<- • A, s TT |&0,o ^ ̂1,0 + ̂  ®o,t ̂  u i,t 

+ ia„ + ̂a,^ + a. +xa;j 

28. As . ̂ia« + ia,,t+|a^ + |La,^ 

29. As = jL(a„ + ia,>4) 

* * 
Note 1: Fur the twelve values cf X and Y calculated 

using the tip correction vortices ( 0.9625), 
$ £ 
X , Y , and F (equations 5,6,7, and S respec

tively) must be multiplied by four. 

- 16 -



Note 2: 

Note 3> 

Note U' 

- 17 -

Equations 12, 13, 14, 15, 17, and 19 which 

are functions of 7^ are calculated for eleven 

values of \ incremented equally from equal £? 

toequal one. 

Values of the Simpson Factors used in the 

integration in equation 21 found in Table 1. 

Values of (W/V)p , and (W/V)p used in equation 
ra rb 

24 are found in Table 1. 



The general scheme ©f calcclation is as follows. For a 

given wing planform defined by a, A , and -€ , (Figure 1), and 

a given control point with generalized coordinates ("^pj'Jp), 

(Figure 2), and a vertex with generalized coordinates (V0,|A), 

(Figure 2), calculate equations through 9. Repeat this 

calculaticri for each of the 126 vortices representing the 

wing vcrticity, summing at equation 9. This series of cal

culations will result in an equation (equation 9), in six 

variables, the Falkner "a" functions. Repeat this procedure 

for each of the control points, 1 through 6, (Figure 2), and 

the result is a set of six equations in the six "a" functions. 

This set may be solved for the Falkner "a" functions. 

The solution for the "a" functions (derived by writing the 

downwash equations at control points 1 through 6), does not 

satisfy the boundary conditions at control points 7 through 10 

because of wing planform slope discontinuities. The discrep

ancy may be determined by writing the downwash equations for 

points 7 through 10 and using the nan functions in equation 10. 

Using the same set of vortices, and control points 1,2, 

7,8,9,10, calculate equations 1 through 8,10,11,12, and 13, 

summing, for each control peint, at equations 10 and 11, 

This results in a set of six equations (equation 11) in the six 

npn functions, which may be solved for the Falkner "p" functions. 

It may be noted that the calculation for control points 

1 and 2 has been repeated. This was done in order that six 

equations could be formed. The residual, or loading error, 

R, (equation 10), should be zero for control points 1 and 2. 

- 18 -



At this point, six "a" functions and six "p" functions have 

been calculated. These calculations have taken about 92% of 

the total time of calculation of this problem. What remains 

is the calculation of the wing aerodynamic characteristics, 

using the na" and "p" functions. 

Given the Falkner "a" and npn coefficients, equations 

twelve through twenty are calculated. They give the lift 

curve slope (equation 16), the spanwise loading (equation 17), 

the spanwise center of pressure, (equation IS), the local aero

dynamic center (equation 19), and the aerodynamic center of 

the complete wing (equation 20). The spanwise center of pres

sure and the local aerodynamic center are calculated for 

eleven span positions from the root to the wing tip, represented 

by values of s 0, .1, .2, . 3, . 4, .3, . 1, . 3, . ), and 

1.0. 

The induced drag is obtained from equation 21. The 

integration indicated is performed using a Simpson integration 

procedure. Since the rate of change of the integral becomes 

large in the vicinity of the wing tip (large V| ) special 

revised Simpson factors are used. These factors were cal

culated by Falkner and are tabulated in Table 1. The (W/V)p a 

and (W/V)p used in equation 24 are included in Table 1. 

- 19 -



Figure 1 Diagram of Wing Planform Parameters 



Diagram of Vortex Lattice and Control Points 

- 21 -



Table 1. 

P-circulation, Downwash, and Modified Simpson Factors 

1 (W/V)p 
ra 

(W/V)p 
b 

Simpson 
Factors 

0.00 1.0 1.00 1 

0.05 0.5 0.75 4 

0.10 0.0 0.50 2 

0.15 0.0 0.25 4 

0.20 0.0 0.00 2 

0.25 0.0 0.00 4 

0.30 0.0 0.00 2 

0.35 0.0 0.00 4 

0.40 0.0 0.00 2 

0.45 0.0 0.00 4 

0.50 0.0 0.00 2 

0.55 0.0 0.00 4 

0.60 0.0 0.00 2 

0.65 0.0 0.00 4 

0.70 0.0 0.00 2 

0.75 0.0 0.00 / 4 

0.60 0.0 0.00 2 

0.65 0.0 0.00 4 

0.90 0.0 0.00 1.600 

0.95 0.0 0.00 ' 4.525 

1.00 0.0 0.00 0.675 

- 22 -



PROGRAM 

Programming of this problem was begun shortly before 

Convair reCei/ed the 701. The program was written in the IBM 

Speedco System. There were three main reasons for this choice 

of coding system. First, preliminary investigations of the 

calculations involved showed that for the input data which 

was to be used, there was large variation in some of the 

calculated values with different problems. Some quantities, 

if scaled for maximums, would result in only two significant 

digits for the minimums. Since it would be obviously impractical 

to scale differently for different problems, it was felt that 

at least some of the calculations should be written in a 

floating point system. At this time there were no floating 

point sub-programs available at Gonvair• The second reason 

was the decision that the problem should be done as quickly 

as possible and in as simple a form as possible. This 

qualified Speedco in several ways. Time would not be required 

to write floating-point sub-routines, the time required to 

scale the fixed point operations would be saved, and the 

programming would be carried out in the familiar three-

acldress arithmetic. The third reason was incidental to the 

first two. In anticipation of other problems to use Speedco, 

it was necessary to become familiar with the system as soon 

as possible. 

- 23 -



As a consequence of the use of Speedco, the available 

ES storage was limited to 713 positions. This necessitated 

the division of the program into three major blocks, the F 

program, the M program and the G program. The F program 

brings in the problem data via the card reader, computes the 

a and the p coefficients, brings the M and G programs off the 

drums, and is the program which controls the flow of the entire 

problem, The M program takes the coefficients of the aTs and 

the p's and computes the a and p coefficients using a standard 

elimination method to reduce the matrices. The G program takes 

the a and p coefficients and computes and prints out the required 

results. 

The flow of the problem is as follows: The M program is 

loaded onto drum; the G program is loaded onto drum; the F pro

gram is loaded into ES followed by the data for the first 

problem. The F program computes the 42 quantities required 

for the solution of the six equations in the Falkner a coefficients 

and then dumps all of ES except that occupied by Speedco onto 

a tape (for availability in case of machine error). The F 

program then calls the M program from drum and transfers control 

to the M program. The M program computes the a coefficients 

and transfers control back to the F program which then cal

culates the required matrix elements for the p functions. Once 

again the ES is placed on tape (with the exception of that 

occupied by Speedco). The F program transfers control to the 

M program which computes the p coefficients and transfers 

- 24 -



control back to the F program. The F program reads the G program 

off the drum and into the ES occupied by the M program and trans

fers control to the G program. The G program computes and prints 

out the results and transfers control to the F program which 

repeats the cycle by activating the card reader for the next 

set of problem data. 

This flow is developed in more detail in figures 4,5, an(* 

6 and in figure 3. 

The data for this problem is in two groups, the problem 

data and the program data. Because the theory imposes the same 

' vortex network on all surfaces, it is possible to reduce the 

'.•problem data to three quantities, a, A , and •€ , which denne 

uniquely the shape of the wing according to the figure 5. 

The coordinates for the vortices and control points are loaded 

previous to the first problem and serve for all problems. 

These coordinates might have been generated by the program, 

but the programs for the generating functions would have 

taken approximately the same amount of ES, so they were loaded 

as program constants, simplifying the program. 

The breakdown of storage is as follows; problem data, 3; 

program data, 110; erasable, 100 (this includes the print area 

of 85); program F, 230; program G, 257; program M, 75. 

The Speedco checking system was used for all of the 

arithmetic operations, except the summation operations. After 

running problems with this program to the extent of more than 

- 25 -



15 machine hours, it was noted that at no time had the program 

stopped as a result of an error within the checking loop but 

that in all cases of machine error, the program was damaged 

badly enough to cause the machine .error to become obvious 

because of tight loops, stops, etc. Therefore, the Speedco 

check was removed from the program which cut the time per 

problem from approximately 15 minutes to 10 minutes. However, 

at the same time, it was decided that the machine was making 

a sufficiently large number of errors that it would be ad

visable to incorporate a set-back routine to cut the possible 

maximum time loss for a given problem. It had been noticed 

that in several cases Speedco had failed at times when the 

program was very close to the print—out stage. In these cases 

it was felt that very little time could be saved by searching 

the Speedco program for possible manual set-back or correction 

procedures and so, unless the stop was a well defined program 

stop, the problem was started over, resulting in a loss of almost 

15 (or 10) minutes. This can be rather costly in terms of 

machine time, particularly if the machine is not behaving 

exactly as it should. 

For this reason, the entire usable ES is placed on tape 

at two points in the course of the calculation; at the end of 

the calculation of the "a" equation coefficients (or about 

time 4 minutes) and similarly after calculation of the "p" 

equation coefficients (about time 9 minutes). Thus, although 

- 26 -



time may still be lost due to machine error, the possible maximum 

has been cut from about ten minutes to around five. The 

second dumping has the following "bonus" benefit. When one 

set of results are printed out, they are almost immediately 

erased in ES by other numbers. If the operator has not set 

up the printer correctly (the wrong board, carriage tape, alteration 

switches, etc.), the final portions of the program may be 

repeated (from the last dump - including the print-out) 

with the loss of only around a minute of machine time. 

The ES on tape is called back (in case of trouble) by 

a four card deck which is loaded after resetting memory and 

which is followed in the card hopper by the data cards for 

those problems not completed. 

Prior to print-out, there is no check on the calculations. 

At print-out there is a visual check of the results by the 

operator to insure that certain key results lie within pre

determined limits. If they do not, the problem is rerun from 

the last dump. If the results remain the same, the problem 

is rerun from the beginning. As a second check certain results 

are plotted as soon as possible. This will almost always 

catch errors in the output data or results of this problem. 

Luckily, over 95% of the machine errors in the running of the 

program have been spotted as unfamiliar situations on the 

control panel or as errors in the results which were obvious 

to the operator. 

- 27 -



The matrix reduction used here was not a sub-routine but 

was programmed specifically for this program. Because of this 

it was possible to compress it into a small portion of Eb. 

The program makes use of an instruction not in the standard 

Speedco list 'although it is now standard at Convair). The 

"Read Card Reader" instruction transfers control to the 

Speedco loading program which reads any cards which may be 

ready in the card reader. This loading is terminated by the 

standard Speedco termination card which transfers control 

to Speedco location 300. This instruction allows the program 

to load only as much data as is required for the current 

problem and therefore the operator is given a check on the 

progress of the program which is independent of the printed 

results. 

When the program was completely checked out, it was loaded 

and ES from 1200 to 4056 was punched in binary, resulting 

in a binary deck of around 65 cards of instructions and 

program data. This contrasts very favorably with the more 

than 700 decimal Speedco cards. 



Figure 3 Generalized Flow Chart of Computation Procedure 

- 29 -



h 0£ 
< 
iP 

or 
•z o c* u-

30 



M 

* S « a 
. >. * t 5 s V# * 
• X 
- S I 8 5 ' 

S y 5 
- i s ? 3 2 

rf 0 
1 
I f  

c o f ®  

1 ? s? 3 - 0 t, - * o o c L a *  9 « 

x-o 2 

. s ,°-t 

• i 
« * 
5 3 

«- u 1 - ! * l i  I ? t 
5 j s 2 
* £ > 5 + i r * 2 c 2 o 

•- » 2 
5 ? 3 

2 : ! es 

t  I s Si 

* 

"s 
•V 

• c* 
to. # • 

1A 
V 

to. 

? ° r . IT r* L> 
MM z S 
s -
£ W 
8 *" 

I u.:< 
Iw- M 9 h 

% 
\ 

M « • • 
8 u 

CiJ 

z CE 

O 
c£ 

<d 
c-> 

of o 

oc: 

<—> 

CD 

ID 
l 
u* or o 
Or 

31 



1 

m *> 
* 
0 
1 
« 
a. 
V 

»• 
y 
u 
3 
i 
o n 

u 
5: o a u 

r 

<» 
o 

c£ 

o 
h~ 
<£ 

o 
o 

b 

•-2 

vrf 
1 

•1 • M -<• 
W « 

N* If 
H ? 1/1 0 «* 

U X '5 £ « 5 

? 1/1 0 «* 
U X 

g u> 
*  ̂ J ttf k 

4 ip 
>Q 
V 
X 

5 

* 0 P 
u 

•c 
1 0  
2 M «K r  o r  

? ?  • r  *  

O 
.  O  
* c f !  

* * % i  J  
. * 

s 

c  #  
J 5 

£ 5 f !  
* * % i  J  
. * 

w v> 
O 

a ? M 5 i m 
% 

- M «n < 

— u 
D I 
a m « ef 

0 
a 

x 
tP 

9 " 
u »- i-

0 
c * 

" w 

4 

* 
" o 
u of 
•j H X 
& ® 

0£ 

O 

1 
ai 
w 3 
<0 

32 



RESULTS 

A discussion of the results of this project may be 

divided into two sections, the application of the 701 to 

the prcb Lem, and the degree of success of the theory. 

The 701 program is assumed correct; the word assumed is 

used because there conceivably are data combinations, not 

yet used, which would result in unforseen situations, not 

considered in the programming. The program was never checked, 

digit for digit, with any standard solution, and for this 

reason, also, there is a possibility of undetected program 

errors which, for the solutions used for comparison, would 

result in small or insignificant errors. There were three 

set of solutions available for comparison and checking. 

One; a set of solutions was published by Falkner which 

could not be compared exactly because of the fact that they 

were calculated using eight control points instead of the ten 

used at Convair. In addition to this, they were calculated, 

to a large extent, on desk calculators, probably carrying 

less than the ten digits used by Speedco. 

Second; a solution was calculated, at Convair, using 

the ten control points, on desk calculators. This solution 

also carried less than ten significant digits and hence, 

could not be checked against the 701 solution. 

Third; a problem was run on the Convair CPEC's carrying 

eight digits in a floating decimal scheme. This problem was 

- 33 -



run four times resulting in three different sets of results. 

The two sets which agreed were identical to eight places 

in about 75# of the results, with the other 25# showing 

significant discrepancies in the sixth, seventh, and eighth 

places. 

The 701 solution, when all of the "Bugs" were removed, 

checked all three of these solutions (that is, the Falkner, 

the Convair hand solution, and the CPC solution) to at least 

three significant digits in the final results. In addition 

to this it checked the CPC results, final and intermediate, 

to four, and in most cases, five or more significant digits. 

All of the arithmetic operations had been checked in detail, 

and the logic operations had been checked as carefully as 

possible. These considerations led to the belief that the 

program was correct. 

Insofar as the numerical methods are concerned, it 

appears that the ten significant digits carried are sufficient 

to produce good results. In the case of some wings of low 

£ , the calculation of X* results in the subtraction of 

* 
two numbers of the order of thousands, resulting in an X 

of the order of only two or three significant digits. But 

this occurs only for four or six of the vortices in a set of 

126, and so, cannot be regarded too seriously. 

How successfully the theory obtains the aerodynamic 

characteristics is a question which cannot be answered as 

readily. It is difficult to make quantitative comparisons 



among the various theories. Probably the best, ultimate 

test is the comparison of the theory with experimental 

results. 

The decision made at Convair, with respect to the theory, 

is; a., the Falkner theory probably does a better job, for the 

wings considered, than any of the existing theories with the 

exception of the Multhopp theory; b. the modified 10 point 

solution, (involving the root correction control points), for 

most cases, results, in better correspondence than the standard 

6 point solution with the more exact Multhopp theory and 

with experimental results and some theoretical results; c. the 

Falkner theory, in common with the other theories, is not 

too good when applied to wings with pointed tips. 

In Figures 8,9, and 10 are comparisons of the local 

aerodynamic center with the vortex lattice 6 point, the vortex 

lattice 10 point, and the Multhopp theories. It might be 

noted that as the amount chopped off of the tip increases, the 

three curves more closely approach each other, even though 

the aspect ratio is decreasing. 

In tables 2,3, and 4, the sp&nwise loading is compared 

using the three previously named and Weissinger theory. In 

this case all of the values are close and in the case of 

the more outboard stations, the plots of these curves (with the 

possible exception cff the vortex lattice 6 point solution) 

become indistinguishable. Tables 5 and 6 give similar comparisons 

of the complete wing aerodynamic center and the lift curve 

slope, respectively. - 35 -



The values obtained by the Weissinger and Multhopp 

theories used in this comparison were taken from reference 

The Multhopp values were assumed the most correct. 

- 36 -



Figure 7a Wing A 

a=3/7, A=5/9, 6=45°, AR»1.714 

Figure 7b Wing B 

a-3/7, A-7/16, €=45* , AR-2.640 

Figure 7c Wing C 

a =3/7, A=2/9, €=45°, AR=3.Sl3 

Figure 7 Diagram of Example Wings 

- 37 -



38 

j 



39 





TABLE 2 Ae & Wing A 
C|_ <c 

H Vortex Lattice Vortex Lattice Multhopp Weissinger 
' 6 point 10 point 16 point 4 point 

0.0 1.239 
0.1 1.235 
0.2 1.221 
0.3 1-197 
0.4 1.160 
0.5 1.108 
0.6 1.034 
0.7 0.933 
0.8 0.791 
0.9 0.579 
1.0 0.000 

1.224 1.235 1.227 
1.225 1.231 1.222 
1.218 1.222 1.213 
1.197 1.201 1.196 
1.162 1.173 1.161 
1.111 1.120 1.110 
1.038 1.044 1.040 
0.937 0.944 0.944 
0.795 0.808 0.808 
0.582 0.598 0.598 
0.000 0.000 0.000 

1 

TABLE 3 _££_£. Wing B 
c. z 

Vortex Lattice Vortex Lattice Multhopp Weissinger 
6 point 10 point 16 point 4 point 

0.0 1.223 1.195 
0.1 1.218 1.202 
0.2 1.206 1.200 
0.3 1.183 1.183 
0.4 1.150 1.153 
0.5 1.102 1.107 
0.6 1.036 1.043 
0.7 0.944 0.951 
0.8 0.812 0.819 
0.9 0.606 0.611 
1.0 0.000 0.000 

1.208 1.200 
1.212 1.203 
1.204 1.198 
1.188 1.188 
1.153 1.161 
1.109 1.120 
1.041 1.050 
0.949 0.94# 
0.816 0.816 
0.609 0.609 
0.000 0.000 

- 41 -



TABLE 4 Wing C 
C,Z 

to Vortex Lattice Vortex Lattice Multhopp Weissinger 
" 6 point 10 point 16 point 4 point 

0.0 1.257 
0.1 1.250 
0.2 1.231 
0.3 1.199 

• 0.4 1.154 
0.5 1.094 
0.6 1.013 

1 0.7 0.920 
0.3 0.733 
0.9 0.539 
1.0 0.000 

1.217 1.220 
1.227 1.230 
1.223 1.225 
1.199 1.199 
1.153 1.153 
1.102 1.102 
1.023 1.023 
0.930 0.930 
0.793 0.793 
0.597 0.597 
0.000 0.000 

1.211 
1.210 
1.202 
1.139 
1.164 
1.120 
1.033 
0.930 
0.793 
0.597 
0.000 

- 42 -



TABLE 5 xac/fe 

Vortex Lattice, 6 point 

Vortex Lattice, 10 point 

Weissinger, 4 point 

Multhopp, 16 point 

TABLE 6 

Vortex Lattice, 6 point 

Vortex Lattice, 10 point 

Weissinger, 4 point 

Multhopp, 16 point 

Wing A Wing B Wing C 

0.5217 0.619# 0.7579 

0.5232 0.6563 0.7657 

0.5335 0.6502 0.7563 

0.531# 0.6640 0.7714 

°ItC 

Wing A Wing B Wing C 

2.190 2.#10 3.26# 

2.163 2.771 3.217 

2.0## 2.631 3.129 

2.136 2.735 3.204 

- 43 -



DISCUSSION 

This problem was previously programmed at Convair for 

the Model I and Model II CPC, using a floating decimal board 

with all of the necessary operations. Because of the large 

number of operations involved, it was broken down into four 

separate programs, one to obtain and punch out the coefficients 

of the Falkner "a's", one to obtain and punch out the coefficients 

of the Falkner "p's", one a 6 X 6 matrix reduction, and one to 

obtain and print the aerodynamic characteristics. The first 

program took approximately six and one half hours, the second 

took about seven and one half hours, the third about two minutes, 

and the fourth took about ten minutes making a total running 

time for one problem of about 14 to 15 hours. It was learned 

that the results were not reliable, but that in running the 

machines continuously for 6-B hours on one set of coefficients, 

a machine error was almost certain to occur. This meant that 

it would be necessary to either incorporate a check of some 

kind, essentially doubling the running time of the problem, 

or to assume the results were gocd and hope that in the plotting 

of the results the errors would be obvious. Because of the time 

required and because of the uncertainty about the results, 

it was decided that the problem could not be handled efficiently 

by the CPC. 

However, a problem which was much too large for the CPC 

turns out to be almost ideal for the 701. The decimal program 

- 44 -



and program data cards, once the program has been checked 

out, are punched out in binary, making a total of 60 to 70 

cards to be loaded as the program. (The number is flexible 

since the program is occasionally modified and the decimal 

change cards are inserted behind the binary deck). The 

problem data consists of three numbers on one card, and the 

output is 34 lines of print. Thus in 10 minutes of running 

time, one card is read, 34 lines are printed, and less than 

fifteen seconds are spent in reading drums and writing tape. 

The time required may be further contrasted with the 

required time of 14 days estimated by Falkner to compute one 

solution. However, the time of ten minutes is somewhat 

excessive in the sense that the large number of logical operations 

used by this program are all, of necessity, performed in the 

Speedco System. This tends to slow down the running. First, 

the fact that the logic commands must be first interpreted 

by Speedco and then executed means a delay. Second, it was 

noted that, for this problem at least, the standard machine 

commands, or instructions, probably would have led to a more 

flexible, more natural logic. Unfortunately, time has not 

been available to reprogram this problem. If it were to be 

started over again, it would probably be programmed using 

standard machine instructions and, in addition, using floating 

point programs for these arithmetic steps which require them. 

The computing time per problem would certainly drop; how much, 

has not been estimated. 

- 45 -



The program has behaved very nicely in the sense that 

to date, no unforeseen situations have appeared. Because of 

its almost complete use of ES and drums, it has become a fair 

indicator of how well the machine is operating on a particular 

day. 

Because of the uniformity of the results, it has been 

decided that the theory and the method of calculation might 

well be applied to the study of further effects. At the present 

time, the 701 program is being modified to calculate several 

aerodynamic properties not covered in the original set-up. 

It appears that the Falkner theory will be a long-range 

project at Convair. 

- 46 -



REFERENCES 

1. V. M. Falkner The Calculation of Aerodynamic 
Loading on Surfaces of Any Shape 
(August, 1943) A.R.C.R. and M., 
1910 (British) 

2. V. M. Falkner The Solution of Lifting Plane 
Problems by Vortex Lattice Theory 
(29 September 1947) A.R.C. 10, $95 
(British) 

3„ y. M. Falkner Calculated Loadings Due to Incidence 
of a Number of Straight and Swept-
Back Wings (5 June 194$) A.R.C. 11, 
542 (British) 

4. H. C. Garner A Critical Comparison of Four 
Subsonic Vortex Sheet Theories 
(12 July 1951) A.R.C. 14, 13S 
(British) 

5. L. J. Kulakowski Subsonic Aerodynamic Characteristics 
of Wing Planforms as Given by Application 
of the Falkner Lifting Surface Theory, 
Convair FZA-076 (to be published) 

- 47 -



NUMERICAL SOLUTION OF THREE SIMULTANEOUS SECOND-ORDER DIFFERENTIAL EQUATIONS 
ARISING IN THE LOW ENERGY MESON THEORY OF THE DEUTERON 

Harwood G. Kolsky 
Los Alamos Scientific Laboratory 

Los Alamos, New Mexico 

1. Introduction: 

Considerable progress has been made during the past few years toward 
getting a consistent picture of the structure of the nucleus by use of the 
meson theory of nuclear forces. In this theory the nucleus is postulated 
as being composed of neutrons and protous (called nucleons collectively) 
with very strong, very short-range forces being transmitted between them 
by particles weighing about 280 times as much as an electron, called 
pi-mesons. An excellent account of the historical development and status 
of the theory has been given in a series of lectures by H. A. Bethe 

(refs. 1,2). 

Although the qualitative success of the meson theory is very good, 
attempts by theoretical physicists to predict accurate quantitative 
results from the theory have so far led to contradictions. Since the 
deuteron is the simplest of the compound nuclei, containing only two 
nucleons, it has naturally been the object of intense research Jn recent 
years. Most workers have used the perturbation approach to the theory, 
that is, the nucleon-nucleon interaction is expanded in a power series of 
a coupling constant, G. This approach was very successful when applied 
to atoms and electromagnetic fields, mainly because their coupling 
constant is quite small (l/l37). In meson theory, however, one finds 
the coupling constant to be the order of l/2 , so the equations are 
strongly perturbed indeed. In view of this, the fact that serious diffi
culties arise in using the perturbation method is perhaps not surprising. 

An approach which yielded an approximate second-order equation for 
two particles interacting in a scalar meson field was developed independ
ently by Taram (ref. 3) and- Dancoff (ref. 4). M. Levy (ref. 5) extended 
this formalism to include higher order processes involving multiple meson 

2 9 - 1 0 1 3 - 0 ( L A )  



- 2 -

exchange and pair creation. To incorporate radiative corrections, he used 
the relativistic tvo-body equation of Bethe and Salpeter (refs. 6). 

From these theoretical considerations, l£vy was ahle to deduce poten
tial functions vhich for the lov energy case could be substituted in the 
ordinary Schrodinger equation to give a set of equations for the radial 
wavefunctions of the deuteron. From these wavefunctions one can compute 
values for the physically observed properties of the deuteron and thus 
have a check on the theory. By the suitable selection of the parameters 
in his potentials, Levy vas able to get rather good agreement vith the 
experimental quantities. 

In spite of this apparent success, his vork vas no sooner published 
than Levy's methods fell under attack by other vorkers in the field. In 
particular, Klein (ref. 7) felt that the derivations, although probably 
correct in general, lacked cogency in certain details and completeness. 
Following a procedure vhich vas as internally consistent as possible, 
Klein derived a set of potentials vhich differed from Levy's in the second 
and higher terms of the perturbation expansion. The present calculation 
(ref. 8) was an attempt to check these potentials against the experimental 
results. 

It must be stated in all fairness, that although Klein's potentials 
were accepted as being more correct, they gained a pyrrbic victory, 
because it proved to be impossible to fit the experimental quantities 
using them without the introduction of additional adjustable parameters. 

At the present time, there is a widespread feeling among vorkers in 
the field that perhaps the whole perturbation approach to the meson theory 
of nuclear forces is doomed and something much more elegant is needed. 
As yet no such theory has put in its appearance, although one can be 
certain that there will be plenty of computing needed to check it when it 
does come. 

II. The Differential Equations: 

The differential equations for the radial wavefunctions (u,v,v) of 
the deuteron may be written as follows for the lov energy case: 
(See ref. 5) 

29- 1013-0(LA) 



-3-

(A) For the singlet-S state: 

2 
—^ = S(x,a) v(x) for x > x 
•j c C 
dx 

with "boundary conditions v(x) a 0 for x ^ x 
C 

and asymptotic form v(x) ~ 1 + —— for Large x 

(B) For the triplet-S and triplet-D states: 

.2 
—£ a U(x,a) u(x) + v(x,a) v(x) 
dx 

for x ^ x£ 

-̂4 - W(x,a) u(x) + Y(x,a) w(x) 
dx 

with boundary conditions u(x) • w(x) • 0 for x ^ xc 

/ \ x 
and asymptotic forms u(x) ~ e 

for Large x 

w(x) — /)e"'x [ 1 + ̂ - + 
r L fx fox)4 

Where the functions S, U, etc. may be written to terms of second 

degree in a: 

S(x,a) = a [L(X) + a M(x] 

U(x,a) = ^ 2 + a [L(X) + a M(x)] 

W(x,a) • a |N(X) + a R(x)] 

Y(x,a) a rf + ̂  + a fp(x) +a Q(x)] 

29-1013-0(LA) 



- K -

where 
M = mass of nucleoli 

/JL ~ mass of pi-meson 

& = binding energy of deuteron ground state (-2.23 Mev) 

a = sero energy singlet effective scattering length s 
QZ 

a = = the meson coupling constant 

x » the 'butoff" radius of the interaction c 

The functions L(x), M(x), etc. depend on the particular potential used. 
The equations have been written in the above form so that one can change 
the potential by changing the calculations for L(x), etc. without 
having to recode the rest of the problem provided, of course, one keeps 
just squared terms in a. In terms of usual notation, the functions are: 

(x) 

&N(x) = 

4 
P(x) = L(x) - 2"1 N(x) 

Q(x) = M(x) - 2"1 R(x) 

where V 2 means the G /1»TT term of the central force, VT4. means the 

2 2 (G /k^T) term of the tensor force, etc. 

For Levy's potentials, the functions were: 

29-1013-0(LA) 



- 5 -

L(x) = • £ ^M) 

M(x) = " hrfe) 

N(x) = v ( N(x) = 2  J  1 

R(x) » 0 

- X  

For Klein's potentials, they were: 

.x 
L(x) 

M(x) 

N(x) 

5 (M) 

1 !M\ 3 1 
= 3tr (mJ X 

» 

=• +2%- ( 1 +  1 (  
I X \ 

* 1 lM I3 
a - 2 BTr (jjJ 

and K1(x) are 

+ W,J * K c ^ ( p  + * )  

L(x) 

argument (ref. 9 )  

The formulas for calculating the experimental quantities from the 
above wavefunctions are as follows: 

(A) The singlet effective range 

M i '*A) - v f dx 

(B) The triplet effective range 

M .  
~Ztl* U + MC 

1 +/3* 
dx 

29-1013-0( LA) 



- 6 -

(C) The electric quadrupole moment of the deuteron 

(D) Kie effective proportion of D State 

dx 

III. Numerical Procedure: 

The step-wise integration of the differential equations was done 

using centered-difference equations. For example, for v(x): 

Since the equation for v(x) is not coupled to those for u(x) 

and w(x) except through the cut-off boundary condition, x , it can 
c 

be solved separately. Solving it for various values of a, one gets 

a function of xc vs a in tabular form. The equations for u(x) and 

w(x), vhen solved together, give a second function of x vs a. The 
c 

final solution for all three equations is the xc and a corresponding 

to the intersection of these two functions. 

The 701 calculations were done using the Dual Coding System (ref. 10), 

a floating decimal interpretive routine perfected at Los Alamos. Dual 

was considered ideal for this problem, since it contains a built-in 

exponential calculation, and takes care of all questions of scaling. 

Since the total running time of the problem is very short compared to the 

time spent in setting it up, the slight increase in machine time required 

in using Dual is considered insignificant. 

(d x) 
Tbe error in this formula is '  _ v  ,  a s  c a n  b e  s h o w n  b y  s u b s t i -

12 n * 

tuting in Taylor series expansions for an£l v 

n-1 

29-1013-0(LA) 



- 7 -

The calculation was broken into the following parts: 

(A) Evaluate L(x), M(x), N(x), R(x). 

(B) Integrate v(x). 

(C) Integrate u(x) and w(x). 

(D) Evaluate the experimental check quantities for v(x). 

(E) Evaluate the experimental check quantities for u(x) and w(x). 

In (A) a separate code was made for each potential tried. The Bessel 

functions were somewhat of a problem because, although "reasonable" 

series expansions for them exist for large values of the argument, they 

can be computed only with difficulty for values near 1 (ref. 9)- This 

problem was solved in the present case by having tables of the K's to 

be used punched up and stored in the 701. The functions M(x) and 

R(x) for values of x < 4.0 were computed using these tables. For x 

greater than 4.0, the series expansions were used. Tables of 

L, M, N, R vs x were then punched out in binary form ready to be loaded 

with the other routines. 

In solving the equations for u(x) and w(x), it was necessary to 

find a value of /° in the asymptotic expression for w such that u and 

w went to zero at the same value of This proved to be rather tricky 

to code, since if the value of /0 is very far from the correct value, 

one or the other of the wavefunctions will fail to cross the axis and 

will start climbing toward positive infinity. Decisions had to be made 

to advance the value of /o in the right direction if one of the functions 

exceeded a certain large value. After u and w both cross the axis, 

ordinary linear interpolation was used to select the next guess on /0 to 

bring them to the same xc. Another interesting case arises when there 

exists no solution for xc for the value of a being tried. In this 

case there is a region of /O's where both u and w start to increase 

without limit and neither crosses the axis. A special decision was 

required to take care of this case and prevent the machine from going 

berserk looking for a solution. 

When the final values of a and /o have been found, the code (E) 

is called in,which evaluates the following integrals using the trapezoidal 

rule while the equations for u and w are being solved numerically: 

29-lGii-0(LA) 



- 8 -

From these and. their analytic extensions from x to infinity, the 
experimental quantities listed in II were easily found and printed out. 

IV. Results: 

To check out the system, Levy's potentials were tried first. Several 
attempts were made changing the size of A x, etc. to test the numerical 
methods. The results checked out within the rather large experimental 
error quoted in hi6 paper, although the solution vas not as clear-cut 
as one would have hoped. 

In trying Klein's potentials, listed in II, it soon became apparent 
that no solutions existed for any values of a small enough to be inter
esting. It was finally necessary to use different values of a for the 
first power terms and square terms to get meaningful results. Although 
there is nothing in the theory which forbids one using different values 
of the coupling constant for the different terms, it means that the 
system is really more complicated than has been assumed, and that any 
attempt to extend the perturbation theory to higher degree terms is 
probably hopeless. 

One example of the type of results obtained is: 

taking for ag = ^5; for V^: a^ = 5> *c = 0.28 
Calculated Results Experimental Values (ref 11 

1 
" ro 1.5^24 x 10"13 1.55 * .30 x 10"13 

><3r 
o 1.6821 x 10"13 1.197 ± -024 x 10"13 

Q 2.7647 X lo"27 2.738 t .016 x 10"2? 

P® 0.06355 .02 to .06 

29-1013-0(LA) 



- 9 -

Since one can get reasonably good agreement with experiment for 
a considerable range of parameters a2, a^, xc or for that matter, a 
considerable variety of potentials, Any thought of working backwards 
from the experimental data to the theory is futile, unless one is 
interested in a purely phenomonalogical approach. 

References: 

(1) H. A. Bethe, Physics Today, 7 no. 2, p. 5 (1954) 
(2) H. A. Bethe, Lectures on High Energy Phenomena, Cornell University 

Physics Dept. (1953) 
(3) I. Tamm, J. Phys. U.S.S.R. £, 449 (1945) 
(4) S. M. Dancoff, Phys. Rev. 78, 382 (1950) 
(5) M. Levy, Phys. Rev. 88, 72 and 725, (1952) 
(6) E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232, (1951) 
(7) A. Klein, Phys. Rev. 90, 1101 (1953) 
(8) H. G. Kolsky and A. Klein, Phys. Rev. 91, 459 (1953) 
(9) G. N. Watson, 'A Treatise on the Theory of Bessel Functions ", 

p. 77, P. 202 (1952 Ed.) 
(10) S. Schlesinger, 'Dual Coding System," Los Alamos Scientific 

Laboratory Report IA-I573 (1953) 
(11) G. Snow, Phys. Rev. 8£, 21 (1952) 

29-1013 -0( LA) 



The Monte Carlo Method Applied to a 

Problem in y-ray Diffusion 

by Bengt Carlson 

The Monte Carlo Method is, by now, a well known and widely used 

statistical technique for obtaining numerical solutions to problems in 

applied mathematics. It has, for instance, been applied successfully 

to the evaluation of multiple integrals, the inversion of matrices, and 

to the solution of differential and integral equations of various types. 

The method was originally proposed by Dr. S. Ulam of Los Alamos and 

formalized by Dr. J. von Neumann, early in 19^8* BLB a method for solving 

neutron diffusion problems. The mathematical description of such 

problems usually takes the form of an integro-differential equation, 

father than solve this equation directly, a very difficult task even 

in simple cases, one would, using the Monte Carlo technique, "follow" 

a large number of neutrons, collect the appropriate statistics, and, 

from the latter, extract the solution. It was evident from the beginning 

that the success of the method would be closely connected with the develop

ment of high speed computing machines. Nevertheless, much work was done 

by hand, using graphical aids and desk calculators, and, as calculators 

of moderate speed, such as the 604 and CPC, became available, work of this 

kind increased considerably. 

In this paper, an example of a Monte Carlo calculation performed on 

the 701 will be presented to illustrate the principal techniques involved; 

those relating to the method, as well as those connected with the best 

utilization of the 701. A problem in the diffusion of ^-rays in an 

electron gas will be considered for this purpose. The details of this 

problem will be discussed later. 

29-1013-0(MC) 



-2-

It might be mentioned now that the 701 performed this particular 

problem elegantly and with impressive speed, at least 1000 times faster 

than possible on the punch-card equipment mentioned, without, however, 

entirely suppressing one's desire for still faster and more versatile 

calculators; for we are handling and anticipating far more elaborate 

applications of the Monte Carlo Method. 

The Geometry of Diffusion. 

A particle may be specified as to location and direction by six 

variables, the position by the coordinates x, y, and z, and the direction 

by the cosines o( , /&, and £ , where ̂  + p "" + ft = 1. In addition, a 

number of parameters may be attached to the particle, such as its energy 

or velocity. A particle may be followed from one collision through the 

next by prescribing three numbers, the prescription depending on the 

physical laws involved. One quantity^, the path length to the next 

collision, is required to find the new location, x' = x , y' = y 

and z' = z + Two quantities, i) = cos 0and<£ = cos <^), defining the 

direction of scattering, are required to find the new direction. Here & 

and <P represent the deflection and azimuthal angles, respectively. Using 

the tools of spherical trigonometry, the following formulae were derived 

2 r 2 
for the new direction cosines: ' = ^|l -o< V 1 - i) 

= [/?(0-«<oc,)+ x jr~ 
X' = |jf Ji ' h -"S1 

p 
t (1 ), and 

. d -«?), 

where the upper signs are chosen if <f< IT , the lower if TT±f><- 27T. 

If spherical, rather than Cartesian coordinates are used, it is 

2 convenient to take r and Tf as position and direction variables where 

is the direction cosine of the particle with respect to the radius r. 

2 2 /t 2 /] 
In this case, the new location is given b r*~ f r1* + JL + 2^X r/t . The 

direction r/* is replaced by rM in the process where rJU = Jl + ryw. . 

29-101E-0(MC) 



-3-

The direction after scattering is given by (r^)' = l) r/i + 5" Jl -\)2  Jr2 - rZ<~2. 

Random Numbers and Random Variables. 

The quantities JL , kJ, and are determined with the aid of random 

numbers biased according to the physical laws involved in the problem. 

There are several methods for generating random numbers, or, at least, 

reasonable facsimiles thereof. Two methods are in general use. In the 

middle square method, a 3^-bit (referring to the 701) fraction A is 

selected and squared and the middle 3k bits (Ag) of the 68-bit product 

regarded as a random number. A chain of such numbers is then 

generated by subjecting A^ and its successors to the same procedure. In 

the method described in a letter by Dr. D. P. Wall to Dr. C. C. Hurd, as 

a variation of the method due to Dr. D. H. Lehmer, a fixed 35-bit fraction 

A0 ending with the bits 101 is multiplied by a selected 35-bit fraction 

A]_ ending with 1, and the last 35 bits ( A2) of the product are regarded 

as a random number. By repeating this procedure, multiplying and its 

successors by AQ, a chain of 33-bit random numbers ^A^ J is generated. 

The last two bits are always the same and must, therefore, be excluded. 

The number A^ must, in each case, be selected so that a chain of suf

ficient length for the problem is generated. 

A variable x, a6xtb, is said to be a random variable, if to x 

corresponds a probability density function p(x), a-xib, such that 

p(x)dx = 1. For random numbers generated by one of the methods men

tioned above, Ofr A<1 and p(A)-l. If we now want to relate two random 

variables A and x, and if p(A)rl and p(x) subject to the integral con

dition stated, we have dA = p(x)dx, hence, by integration, 

p ( x ) d x = P ( x ) ,  a n d ,  b y  i n v e r s i o n ,  x  =  P  _1(A). To amplify this, 

note that the probability of A being in the range (Ax, A 2) equals 

^ = P(x2) - P(x1), which is precisely the probability that x be 

29-1013-0(MC) 



-k-

ir. the range (x̂ , x̂ ). The above concepts may be generalized to the case 

where the variable is discrete and to the case where p is a function of 

several variables. Now, it may not always be possible to perform the 

integration and inversion analytically, but numerical procedures exist 

which accomplish the same thing, precisely or approximately. We shall 

return to this subject later. 

The probability of a particle penetrating a distance X is, in many 

_Q .JP 
cases, given in the form p(J[ ) = <Te" where (T* is a function of the 

particle parameters, as well as the scattering material. In this case, 

the integration of p(JL ) gives /A = P(^ ) = 1 - e~ and the inversion 

JL - ~ ^ ̂ . The values of the azimuthal scattering angle are, in 

many applications, equally likely, hence p{(p ) = > p( ' and 

<p = 2 7T\. 

Scattering and Absorption of X -rays. 

The Monte Carlo Method was applied to the problem of finding the 

emerging energy spectrum at the surface of a sphere of radius a due to 

a central source of ft-rays of initial energy eQ, with eQ in the MEV 

range. The scattering material was, in this particular case, taken to be 

tungsten (Z = 7*0 • The processes of scattering and absorption of -rays 

by the electrons were considered, the former defined by the Klein-Nishina 

formula, and the latter by a l/e^^ law. This is not a realistic treatment 

of the problem, since, in this e and Z range, (l) the absorption law given 

is only an approximate one, and (2) processes other than those mentioned 

are not unimportant. Nevertheless, this furnishes us with a good test 

problem. 

The quantities JL an°- are determined, using random numbers, as 

described previously with cT = C + (j~ , where: 
& B 

29-1013 -0(MC) 



cr  = C /e a a' 

-5-

7/2 

(1).  

1_ 
8 ~S 8e2 

0" = C 26 (1+e2 + h + (e - 2 - |) /n (1 + 2e) 
(l+2e) e 

with C = 1.^75 and C = 3.0&3 ^or tungsten. Note that both 0" and rj-as a s 
are functions of the ^-ray energy e, eie^. The direction \) i6 calculated 

from l) = 1 - ^ + - where e and e' are the energies before and after 
0 0 

scattering. The probability function associated with e', f:e'^:e, 

is given by: 

! e' 1 1,2 t  +  —  +  ( 1  -  - r  +  - )  - 1  
, 1  \  & '  '  

(2) p(e',e) = 
2ejl+|) + k + (e . 2 _ |).£n(l + 2e) 
(l+2e) e 

These formulae may be found in a text by W. Heitler1^ or in the collection 

of tables prepared under the direction of H. Mayer2K 

Calculation of Functions by Approximate Methods. 

Although p(e',e) can be integrated analytically, it cannot be so 

inverted. The inverted function is, however, tabulated in the report by 

H. Mayer. We, therefore, chose to approximate it by a rational expression 

which could be easily calculated. We obatined: 

( 3 )  e ' = P " 1 ( ^ , e )  =  
1  +  s  A  +  (2e -  s )A 3  

where s = e/(l •+ .5625e), a formula which was regarded as sufficiently 

accurate for the problem at hand. It could, however, easily be improved 

upon, if necessary. 

This brings up an important point. Since the final result will be 

statistical in nature, and hence appear with a probable error which one 

1) W. Heitler: The Quantum Theory of Radiation. 

2) H. Mayer: Tables of the Compton Effect Cross Sections and Energies, 
LAMS-1199. 

29-1013-0(MC) 



-6-

cannot normally afford to bring below, say, the 1$ level, it is not worth

while calculating functions appearing as part of calculation to excessive 

accuracy. The table look-up method is, therefore, used extensively. "Hie 

functions -$Lnx, cos 77~x, and S3 were, for instance, stored in the 701, 

each function occupying 128 half-word locations, x being n/256 in each 

case, n = 1,3,5,...,255. Similarly, 0" + (T *nd +0"l) were «L B ® " 

calculated just once and stored for the arguments e • ê  ~ 55 > n • 1,2,... 

down to e = , the cut-off energy for which the probability of absorp

tion is about $7j&. A square root routine was required, and this was 

based on the approximate formula: 

(k) » -16022 + X , r£x£l, 
.70719 + .̂ 5303x 

which is good, on the average, to l/kfi. Similar formulae have been derived 

for -Ĵ nx and 6in x with average absolute errors of .001 and .0002, 

respectively: 

 ̂ 1 - x 
' 5 

A 1 - X -fnx» , *£x£l, 

(5) 
.1+2135 + .6x 

sin x = x 11 " ̂  , Otxil. 
7 + x 

These formulae were, however, not used in the problem we are now discussing. 

Details and Results of the Calculation. 

We have now outlined the techniques and stated or derived the formulae 

required for the problem. The logical structure of the calculation is best 

visualized with the aid of a flow diagram. Some of the notations have to 

be explained. N represents the number of initial particles, n the number, 

i the accumulated track count, and the accumulated path length of 

escaping particles. The random numbers AA2> Xy *nd/\̂  were generated 

all in one cycle by the second method mentioned, being the first 7 bits, 

29-1013 -O(MC) 



- 7 -

A0 the next 10> Ao the next 8, and A,  the last 8; a total of 33 bits. 

Two print-outs were provided for, one printing the data obtained for an 

individual escape, the other printing a table of results. 

The problem was coded in fixed-point with the use of regional pro

gramming and the absolute code obtained by using Assembly Program 607• 

These topics are discussed in a paper b.\ D. Sweeney. The de-bugging 

was done usir.g Tracing Program 795 > discussed by b. 'oorl cos in another 

paper. About 300 orders were required for the problem, pins 300 full-

words of storage for constants and tables, plus a print program. 
o 

The results of a calculation with e,, =3 mc units (l -533 K27) and 

a = 5.13 cm (4.1'7 mean free path units) are giver, in the tau.le and represent 

about 20 minutes of "01 time Thus, ar. average of 21'K) particles was 

processed per minute, or about a track length every 10 milliseconds, a 

very satisfactory speed. 

Certain integral results arc o1' primary interest, such as the per

centages of escaping particles (T^) and of escaping energy (T ). The 

correct value of T^, the number of particles escaping vitr.out collisions, 

is giver, in parentheses at the bottom of the table. This lumber is, of 

course, equal to e 0"(c'j)& an£ gives us a pvoss check on the randomness of 

the "random numbers" generated. 

A quantity which is of particular interest 5s the average pat! length 

which a particle oraverses '.r, the spr.cre before cscap-'r.,*. iote that o..is 

average is only 2)o longer than t.-.e radius. A calculation similar to the 

one reported on here was performed t > .er' . t.'.at the calibrat ion procedure 

associated with & certain experiment was satis factor . T is procedure 

assumed, 'n fact, that the path length correction as small. 

In conclusion, I would like to mention that a solution of this 

problem car. also be obtained l seizing a certain integro-di ferer.t.ial 

29-1013-0(MC) 



-8-

equation numerically, but this would be a far more time-consuming 

approach than the one discussed here. Neither approach is very practical 

without a calculator comparable in speed to the 701- Nevertheless, much 

work has been done in this field using semi -analytical methods developed 

for the purpose, in conjunction with less powerful computing equipment. 

29-1013-0(MC) 



Table 

Leakage Spectrum for a Central Source of Y-rays in a Sphere. 

eQ = 3.0 mc2(l.533 MEV), a = 5.13 cm. 

e(mc2) V 0 0 
S5 Av. no. of Av. length 

escapes collisions of path 

3.00 649 0 5-13 
2.75-3.00 185 1.06 5.14 
2.50-2.75 245 1.25 5.17 
2.25-2.50 231 1.41 5.21 
2.00-2.25 220 1.67 5.26 
1.75-2.00 209 2.02 5.31 
1.50-1.75 198 2.04 5.38 
1.25-1.50 157 2.35 5.40 
1.00-1.25 100 2.62 5.52 

.75-1.00 47 3.13 5.52 

.3*+- .75 11 3.55 5.47 

.34-3.00 2252 1.26 5.24 

N - 43176, T0 = 1.50* (1.54) ,  (r(e0)  « .813 

T e  = 3.53%, Tn  -  5.22<f> 

its f Le * . CWxy, / 

> Fu- (m^5V 

< i  r t M . . e ! , U < r '  

Gc*b.' U.KeU : " Offi-</ Ard> Ud* " (S«~j 

29-1013-0(MC) 



29-1013-0(MC) 



t̂o-^crnaJLx ̂ t * ^ - f l -  CJ> €^L/<-te.n  ̂ l*\e*£l4K. 
EI. Ci-. t^~o^ ^~e_ ~"P €* < 

JAr 

J l .  3 T ~  ^  C J r ^ ~ ^  t 3 s - 3 )  - H ^ .  
oup^JU.-*-cJ\T<r  ̂ <fj- TJSLclSL Wtt <LJC'~" 

dg^lA. clg- Ji "to 4—« CH-AA Klflj^ W C®-\ » i K 
</̂ 7 

|v^MA-e_ "7--^~«-XT wv-^ rv^A ^ ctjC. z "r̂ -̂â STŷ  ̂
( t -  V ^ -

u^'ta^ H„ far.) = K,(>.»'>J 

9 *„«•„, = (fit ^ * 

"&«z_ <2^*., 

0» ~fcur» *Z£_aJtL f W/C. 

Ovt K^r $L-«_ u>*-oAoJ@_ lM.cfcJr<5^- ^A.-(1U -

f> d>w Iwcl^VI )< f~f . XT/*- urcc^ d^J^Lrv^** uwi ' tf 

j i^pvC*t^ L̂ Axx̂ JT ^ 

(*-) -/A. * TT~ 
Vt «/ 

~€sL*A 
V 

O o  K K A V  =  L, 
L> t* a %/u ^ov\+Ji f(^e CJIJUU^_Q^S  ̂

19^ACX< ojzjl CA^COXJL^ZJ  ̂sSTTZ. (^€>< ĵ2w>r«cJLujMk^) er  ̂
H. Tic ^ I a^iWaXi^c^v ^ J{ * ^>e*-5f 



< o-wv jj. -t Usl ^ Cer^J-L*_ -e^jLtJjT^ P. 3, 

t̂ C>' """ 
W _ 'Hx = * 

'•^>'««| ,Ys. t̂ ^-^v^woOJTS, <'«JTS ^u-/" inU ĵt 
-Oi -ê ô T̂  ur/ft a Pŷ aJTM'c 

«Mns-» 

Oe^Tj •mo^v.V, 7£t -vUJtTZ (3) s ire* 

H = ̂ l/A/ 

«~L «W(^ H-^/^L1^ 

TIk  ̂ Si'̂ ^cLl. IKA-e^XPna K <^A«-£jU -ti*. 

& * =  h i /  =  

i-pQ-' •  ̂ "to 

Sry^^rat î corvx ) sLr^JLA & <£. (j^^r 

1<ka~~^kj <fLe_ >i"~frf*.<JL>z.«5ni»H <#y fteSx^j, f;«-* 
Î ud, -4vh«. kjuj Vthtv^c  ̂ uoxJLX 
<*-*> 1 f1! «JL C.O-VC. , 2̂ -C_ T̂ clX* 2-_̂ rS\ <3-̂  

^cjTra  ̂ -C« -eiui ^ îTrw <rf Cvt , /i-X* 
} j ;  t o  6 r ;  i - t>wjL  £> .  C ^eJL^J^A. . VZuAjfc. (Xh-Q_ 

Lt̂ *4r<ŝ  iî u^_ U ĵl. <£JZSLul*T*  ̂ 7^-flJJ wT-

fLuj kw 

£e -wf- ̂   ̂ (CJ^^O 

a^JUxJiatsi, . C^V^jBuhJt. 

0> f t}̂ T> U ĵfkjrcî  ! s ^UaJ{ ~̂̂ uĴ Ji „ 



cT^ A /-t'cc**. Ci~£l^'^' 
ĉ J$\̂ J*- ^ cAA^uJ^a*-Jt-5r~cJ\* lr/~7 C> ^ /£«-

't̂ AuU  ̂ (3Cj£ ^'cM^fKa-C Lo^a^X\^cM. /-* *-n C33 C^ ' ̂  
Asi^j^Js\ t^- cMuJr^'^ f K ^ ^ 

uAeJl <^> ^e ^ 1^ pfL^uz- ^ 
T/L^ W^STS' * r̂Ur̂  -
-ZcJrr  ̂  ̂ o^xJi ^Lu^JnU  ̂ 'Co wvT y^oJtJi 

G* . j  
b  r |  •  1  4 r *  t  v »  1 /  •  *  > w i  c '  

Oc5wvCejyc u^cxJfi^G * . ^iuLyir^\<xJ^K -^ 'h.C| (S-
-/ rC ^^ , , . . . / . ^U/. 7^ ..A^ 

( 

L <4 

\jJ[jL>^e_ '"fcCo. W(Ŝ ckJIY* *. (^— 'S ^ 
* .^THaLXt <0*.^ (3r 

WvEL. (o.) aJT^ ^ " T> S *) / T^/ V K*\ vipuuJ^ — CD wrftt K= G-'G-'*^ A= %• / /wi 

C~«sT^ cx, r/ie^ /i ^ ,£-r r^ 
Ij^Tk, 4 /i ̂  P«)t ^U- cr(. G 
k) is K^Uu, ̂ JUj^ c 
ID *^jtuul . $C-, ̂ vre  ̂ 4- M* ^'y 
n JjzaXZ, -ts H= G1^, rf ;x 
V\ JlxZJL 4 Jy^vttJL C^-ASju  ̂ 1^~JT^'X (^rn— U^^ak) 

-V// , ^5^ (Xj£j*JL^ Url {k ^<J^U o— 
£ G-

*J H =• C-G /5 CL/H . 



i-T * C^IJLOLSL (La\*~j^4_£JC. ^r^/LArJihji_ ^oJTT^f X &- ̂  ^6^ t<-4vT /fc/u^ 

rxs>\i> "C/~ £>̂ ) -tjcj 5*X ~P+*-*>L "~G4.aJf~~ 1 

TTcS-T sk; 

uAa>ce ^ C( u^cAjpui K -e^g> »«-Q*« 

lyj\̂  cA\ <x>r-e_ G~- ^ 

CXTUL -̂ eJbTeJ  ̂ "C> fî *~LK_ <rf *t<Lj o um. <xJj\.i ce  ̂ G- G— <x-̂ ) 

(~r- , ^1 ^-CSf'tivD LeS'TAA^Ji {-i ou* u^oJT^i cqJ± hxArt — 

^^ -̂0-̂ S uJL* cU cOxJL iZaJL lj~cArr& f*-

^7Orf-cuF— 

<̂ ^K. Ua O-^lK flCUt̂ - i~(»JL ^yjLmJxJL)̂  

(j^^ljUJ) I+^t-XaJLa epuaJ!. 'to cAx.Oj\ <c*Jf^W^TC 

(5- G- G-c?^? [ ic • |* s= X- 0 
• •> <-/ C/ 

_L i iao (f ) W-«-

G - =  z r t C T ^  

o -  T K - U "  

<U ViW' «^CO ;s • 

f!?J ^ ^ *T IC""1"?*^ 

L wA. "Guro / 

uS) J* Uî IiJtX r̂d CtJ  ̂  ̂ *"" — 

^Z tcxwvi ^A^xV^4~L^x5TT^ 

'^ML Vzf*- : 

&u * UlJC" 



•V 

o) T ~ T ,̂ 
JT 

9 7 

tr = ^nr 
JT-"° 7 /"' 

 ̂î O. Tf̂   ̂  ̂
 ̂ r̂->  ̂

l̂Jz£pjL*S \̂r*JUj . T -̂C- cX-°w-|J  ̂  ̂

 ̂̂  '¥, ' * f/ *f&  ̂̂  
-I jjt*L-«£7c-«__ ; L/ n f̂ ĉ- x x 

^  t̂ _ jt & > -  r f  ^ T ~  
3-f n i h> n A n ^Sc i na  ̂ a^u) ^^cA^RrtxS to ttuz. t ^J r̂tLuuJrt 

y, "flu, 4 
jr<ẑ  is cU\o^C&-<^X. "» 

|3. ^ • 
* . (p*' —U-» — 'JT~  ̂ Jl̂ JU Vr̂ <J  ̂tU (CwHX *̂*- -T 0>y-

vjuu S..-1 , - <4 
n~«?«aA>v XMCty)); v-O -̂̂ --

17s pieW r̂i <̂ =', <L, ~ -L.' 0 ~~~ '' 
(a ̂ tc < m 4n), «** *5TCA*_̂  !̂ ~ 
;_H „J3 m-̂  V^~~ 
• T x. ok A* 4- « >~our̂ ><-

*k -r^^r/-' •-« 
«?  ̂V ; <« a,. 



 ̂ cc tC-TVJ 

(2) = 
-1 x> 

The U CZ) is. ^TL^X^j -/no «  ( 1  [  

C*4 X I -f- I <AH ^ — Qe^Z. Cojz 

%z . 
, 1 

% 
• I 

- -
1 
j 

% I 
£j#z- -

1 
> ̂  -

% 

* 

J* C<5"&<.»»v*v 

1 % 
\ •vi—tC cjh •*' * "V»̂  

- 7*4 

<̂  * 2 t; 
. z) — Goi&p 
Ruj!̂  

Gli2<j>. 

<1  ̂  ̂ ~  ̂ ' ""*« ĉ ; A  ̂

(p̂  
• - —i-L^— 

: 1 

- '̂rV-1̂ - - -
' ! /\ 

H<SL 
P —J fy*u K: Wl .• . /2 Ur&lSL a^ {Lo^t /̂  

^tui ^tii^MJ i c£7 < 

U*.*,.6̂ ) - u.(z, <„.CV = *.'<*>. c/ c/ </ 

^ii fU_ yit^JbLz^STrZ*rf. « u+cj^ 



f- I CM 
€ )  A 0  ^  A - , ,  A Z j  

r̂c_ 'T-c-

0') Jl, = u'CM. A «..<*> (/J-A) 
J J •/"• ,/ 

N idVXJL^JL. Jf yf 
A - u'STTT. A. II u. /V " 1=1 H.| " 

 ̂ 1, A = K M AAc qo  ̂  ̂
vW K1 -,t <*'M &, S^O™. - a ~ ~«*-

"W K "th.usi**i -to cAc<ri 
#M .  To U f t u L . ^  

^T^Uc 

4î > triuL. u ô̂ Vcl*. L4,_i - (T "))  ̂ ^ 

«.̂  w ft-<•«..•) <~m .•*-(**-»f-. J j JJ J J / 
Jê  / j t U  t c . t i w  « " ' &  & * -  t j - f t  
^ ot-tlarrf- fU. *•-* A ^ 5 

K{k\& 2T  ̂"* frsusy^yuS^  ̂ jfix H*-
"̂ -UA. t£̂ L  ̂* f*j } ^J CL̂  Sj 



c 5> 

C/n 

P. 2 
XjQjfyJULsvvtXL <*f- 7&^> <S^~ <A 

CMC^-e „  ̂̂  ĵ -y «-
«. (Wjl V^e. ^ro^sA, W «-/^ c^H^-

*M- fj^s rf- <U^*~5TS Jy~~ 

un~R -̂ ŷ rU iU tfiJ 

J)- yrinlJLa*.  ̂,<y,1 \n^w{k 

6>VCJ£- C  ̂ CLajl̂ jC_ Ct-3) tf" ^ifif^>Jr' ̂  
ik fit*. 1>UL  ̂T |̂  ̂ tu5T VAT^-fC l̂̂ A , f& 1+^J^JLuJi 

"^7 lA î ivi s^- î Ck CCAA <  ̂
-P-0  ̂  ̂ M>^O-<LmJIA. 

KaJV̂ LŜ  H<*. 

/"<L>TA A/vX"  ̂ e\ * VuA-^Xa>x_ C^CJIMA fa*. ^-0 -
jLuJU c<J!i?. cr  ̂—d)a^r»<d 

~{yl\CL*y <*~ Lj7^i*yikJU~J L'^fyQfi l&u-^-cL . ̂  * O^H^i Lvo ^h>, u^-

(VuA fcl+4- r̂  yiâ r̂cJl dLfiMJL *̂S5j 2^aa-/ 
^0 z^e/i>o u/L Ôtui h-̂ -̂̂ xSDx d̂ ~—/~ 

C> ĵlA  ̂. -T7a. VJ-la^SS7  ̂, ^1 o ĵĵ oJU ̂ <vQ <™- u ẑ̂  

!^e.. c^W î" JL^eJ  ̂ o^S #sJ<-jj~̂ VA û cx̂ î j â cM+JLireA 

U KA^u^Xes- <^Z- Sr^k/s — j>/l 

\y*A 

iy* 

\J\jlAj2, XX*L Q^yJjL  ̂ k ^^^3  ̂

OUtAjuJiai:  ̂



1  ̂ J/J ,5 JUTeJr̂ î  (L 3̂ 
Jul, U*S~ •—*-& t̂ e. ur-C#Jl i_ê _ 6 M  ̂  ̂ £! LQ_ 

\lAT^>lcx^C. , V"^€- /"--<>-tLuJU <ff- Aj — ̂  JLqj— 

oXajmĴ  tX, -T l̂Z <T>^4_ ~to e ~~  ̂ y J-o 

'Oiu>X mJLAA yb (UjcMJL  ̂ C,̂ ". 

X f̂ <*T Vie /"̂ -C. (Tẑ  ô  / m <=ĉ  6*̂  aJ~J*  ̂

 ̂iri (Iaj V" /Lc, Kâ o-̂ -uJLĉ   ̂ f̂~̂ ~~ ~̂l a~̂ Gyi °J-

>VA<M î  ̂ ^XajJ  ̂ i'L-Z U*-oJiuJLi (JUL ( 

-!b 

Cĵ JM U^L uâ Î JLlâ  -~Jti (A-̂ #y\ <JL 

\*T-lJU LL$_ Qj±\ 
„ - Z 3  — 1 0  _  ̂  
-e 2? 10 ~ s* Uk v̂ ctaT cLê tJn-jJLjẑ  Lô T /"/«-€. '5 

c6<x̂ 6iA_a crv\£_ 

Ĵ = Ca" )̂  tê rÂ  C! = tfCrsD 

C = u^,(^)- A - u^).B 

^  B  = ( ( k A "  A .  « . _ t « j .  

ô > GlZy &y V- eJS} 

^JLtAVtA  ̂ ( llW  ̂-CU eA^e î ; 



/ I  A  A  J  w  *  Kjw C; = A J 
°JU* 

\fy".£. - 4 v - C » i Z - + # •  • £ ' » z .  ;  i f p T £  =  —  A, <£*z, •+^&)z-* j* y y Q j y </ 
\f- C ~ + z ; f-C= -v^+^*2 

\if C* = + +q"^ 
~[~L( CJUA^I2-—5S <rf~~^~ ca-KB_ T5^aAi_^?x<. c>-i ^•&-&v>rt 

e . =  ̂ ~ y  - f r .  

J '̂ ̂ j = ^ ̂  + "*j ̂  y' ^ C-J = " V ̂  + ̂ j V 

j*- - J'K *7-cj~" -yk«z + 4^* 

ue-$? «.s 

CW-^* + o^-zfe, + *ia,̂ P"'z- ^*z» 

' V * , '  ^ ^ * = - < V K ^ " z ^ +  ' W ' - o i ^ ~ + "  ^ r n G s i 2 , •  

C„JJ<f*s.&J&. ̂ -owG^-V" ̂ '"zCi'i;-t-4w^ / 

Nj"^. 03) ^iee<Jl iî  ' 
(O) |Cit*l t|Ctc«,| -t"/CtrvK 1^ +lC*n.l — Z'Wl 



#0 <W£~  ̂— -4 .̂<w 

tU— 
-JUjAAaJUl^e* ZZ; I>ii-'>',-I^I^I>/1 . 

Cl ) C (. /Tfe*>"') 
i  i y + , v r  -  ' v ^ ' v 1 -

uA^A X^yjfU.h_ui-f fL ^ j ; ^rurv*. -&L»x~ H^~ 
kV^v^vv <"*'̂ ~ L^^^^-AreOT î cc^w l̂ 0~vft I <m; 

l i e i -  ? i ^ r  =  z n , i ' .  m « .  
V y __V_ y  

X £" CAtrlcs.  ̂ .z = 8 -t- i'̂  î Jl C * 'y • 

£»*.* j Za*"  ̂ «^3 f^-c  ̂
^) 7r = &  ̂ &C  ̂(^€_ c U/"U » 

T^-£_ c^0^7 /fw> •=. $  ̂ •— J [a/LscA ^*— 
cM^m cc <7V3 : 

(I?) 1 *** r̂  ~  ̂*~r ~^ = ° 

d . tV ~h a> - T" — £? . c — <£ = £? 

•̂ -€_ tZiŷ oZ* i+4. Jf 



i  B i z  
( iV O+/*-<•£)£  -t Ft- — ci>o 

f t 3 )  ( J )  —  a  —  + .  f * z ~  —  C j >  — • ^  + i £ * J  = - 0  

U Ajaa.-{t-e_ -tJIMJI, aA<-
Jbg_JjujuLj, ^t»-<x>L  ̂ Q. J 

 ̂ *4 [r̂  

-t- (<, ) = M + •• 

i" CCUl* — ^*.u.) - P +,-J:> 

£(**»> + <?~J = /V tu 

i fa*—«**) - ©- + «y 

•= P<2. -t- ^7; 6* P^ -; C - J\P& + y > 

S) = AW + ; (pP= aC6-d) 5 
(1°)  

v 

£. = vv Q. — -t » 
£ *  =  » -  & y - » P )  

6$~LeJi unSuLb J) A j EL j OJzjl. <$r+j-*X. £LL*L%~ 

J ) i r f y  + / £  - f - ^ 4 * * , ]  

D-/W/e*= i -a^a^] 

m 
rnmrn 



•U, ft*. 

i ,.tu vy*(^: 

, J) j-A -t-/^- ^,) 

T^ + B-CL 

U ' ^  i ^ - Q ^ / o V C B - o '  +  e 1 ;  

/te -K ft* /ô ± V^-

*-Vk* . TJe. ĉ ,  ̂ ^ ̂  

t~20 = W^ST; -Ct-etX^O^ B^c 

« -LG^Ct-ZJ^ -i(t-i)(j+tt) = ^ 

1 iwU  ̂(3>«- /V)1"t-C & —CD1 Cj  ̂  ̂

^ ^ So t u<*x 
'Cn& = ^  ,  Q,+A>CB-c) = coL  ,  

|\jW-€_ C~ <L*^ U^~ ^ 

} v.',^ = = u> 

Vi o i<? € 
<2 . J «v .. .„«• _ ^ ..x ^ 

w ) i  ~  f c .  , . =  c ( x ^  ̂  R l _  ^  _ L .  

J)e«^S7^ A* _fy ^ r 

& « r - V  '  < T e " f  fo^o)' ~ ' X' . C O  
<X 

L <?&) ^ tu^r \r\ - r.*0r), ̂  

•^(£*20) = ^Cb-t-A) . <?(<jp) - <s*(B—1d) 

T̂̂ -e irtxXuot  ̂ cL&  ̂ t<̂ $~~ 



; ioi_ 0 c îS) acU  ̂ĉ rK̂ 7' 
f^l < f" ^ cA î̂ A <*_̂ sT 

JL  ̂ -̂ AHL 6̂ *) = 1. s~S) 
•= it£"ZPJ • •s-'Cd -+/*). /!• •**&*-
Vwiv̂ JL ĉ rv-Jĵ TUj u/e.  ̂

j /̂ y  ̂  ̂ F*.  ̂  ̂
5 , &» . <c„*).(££)* c-a.e- ̂  =-« 

L si£= e-yafcn* e,.(*r,ltLL\i -,o 
i1 Jf uar J r̂  ̂

f<Ui>t- a>r* tK 

e( ô A_ (̂ _ oJloj-ĉ ij*f̂ > A" ̂  • 
QejJajcu^j Ej F, co ,K. Cj ^ JF t 

a>̂ > H+ u7U _̂ ô -̂̂ 't̂ etc)1 —( 

co * u-*-e* *\  ̂j 

+  < E L* 

=CJ>+̂ VC9-Ox+£:,i" =  ̂
& 3 )   ̂

J  3 - A  A *  ^  
e.K + B +C. 

. w 



#j/£e vwAa  ̂6 (la *̂A~ &. <U<#Ve* cOzAi h<OuL .U*_ 

TtHtSTcr** (l£) 

^+*L,«*~) f  I «LI s-  as £(•  %.<W ++ '<L I* 

U*J l—l*«J l~ 4 ( X Q + * f )  = 4c? , /su 

T.[l>—.A -/(=-*"] i -C = f-(D + /^- ;^ - c  

ri t u-\inci &) a^A. : 
e . K  - B  -  H  —  B  

t^re J-ee -c^r <= -= -t- J_. T^u ,̂ 

•  3 —  A  + / £ * "  

C2-0 "t" - • 
Tt -t B + c. 

*~V 9^- 7 7  _ D - A  

" 1-TT.T B + CL 

U3aj •=• - /Yr-r)a+^-)— i  = 

O i ^  ^  $ * ,  ̂  

J *• * - *f£ ; 

Go 
VT V ^ ' * V f v  ;  

tLeM q 



P. 1C 

(3^LAA^» * <j ct&uX  ̂ a -̂to^sL. ir-o 

"$cpcT~ t?l <C Cc^V_jL w-e^/ukz>&s 

^•=T ^ i- ^ ^ C,Lc*J*jH-*J-tLhU *^-«l 

<^^>~L S, ^ C, * ^ ^ <X-H^t 

^TT*>1_ C*j~c£ ^AKX3UK^_ tTUJL f * cc^A-o — 

^Jta^ y-cJL*^ ^ d* jjf̂  /> ^ . 

^>cjc ^ Ar^ i-T 

r j-»> i:-.f = io-Ai( i^)* 

&) 1 

$ * - S » ? - q 1 i l l ) 1  0 

w z „  

t ^ -W <7 

^ / l ?  / - _  / Y * _  A -

£ « .  c ^  / Y * - ^  

\/p v-sp") 
O 

tl 
I 



P.I/ 
* tut ) f ' 

\7XE tu^l+JTv  ̂ T^CB t\ tL^I> fr*Jl*^**fr ŝ' ^f~~ 
^W5 . ^~be 1**4 /b*MX C^C^R*C<-#U  ̂ <V ' ~ ' 
»/.* ,T—A. *• ;p = V <-^O-

O^-A F^V"^ A-*~*> /& * &*(R), 
$  +  ̂ - s  ) 0 - T = ' l ,  p i - / ' *  

(\OtK+ &I*.A« T »c~l+rU*J* R 

a w -
JFST«* *~*-YR TVT^«W 
- PFC„.+ /VG*S - V -/»** + * 

'*Uy.SrU 

CKMM 0) CM* »<* ^ 
CU~~. *> ^M^rs • 
I^RFC-O- TRETT - V- ^ - 0 

I^FPL, («»-«.). VJW 4 «&Y " 0 

T/FRFU^+F-) • V6*5" - t M r  * °  

T « F P X . L + W «  T M ?  



P. 18 
TU^ wk-v=^£ 

•~v" * y ~ cw y f T 
9̂  e(ut. ai**** k«-^, Cl? ?•* S^VV ••*» ' 
WKfe. •«--> -"•fl'r- r<*T/cU 

) tfri. <4. - «~> • V3M , r<v * «*•*/<*•' 
^ tf? Hfc.-c-) .MU.-fC- rr*V»r 

i ifprcA,-e~-i =LrJ'*' * * -
eir

"  H v/& r̂ 
TL^ <L._ •*• CL -tic' fctt,-*- c +'C« / <U. - c' 

r %> C - *>»«*. [ vew • T&r]/<r • t *> 
I 1 AI / ..*\ 

•; 

= 2^.[y•<*' fc.^jj/iir-rrO 

TLuc l̂ wire */l* "* 
&u*,T.ifw< u^a-e^ 
5, « , s',h*,<? • % '̂y 
Chi) ch<.tj icy }  t  v feJLi 



P.1J 

® T = M (c,c,*+s,s, -e QCSfC^—C/S,*j 

V = 0* + e,3 *) + Ffrc,*-S> s> *) 

CI *h~M'-sxs*r) fry*A-(<h*V unffp 

/U  ̂ V £***-
f L t o L ' f r l  T < ^ >  V  1 * j j * < - i ~ c .  t i  * u ~  f t *  

tcJL CR 5 1—  ̂ »>•*• 

'i**- t̂c 

<3u. , C.W <KU. ^ a~\ . FT*-. 
1TL«_ (5" «^iS H 

G= i_r\+ f) c,e(* + (j\-?)s,s* +(Jf+(X) stc* +Ctf- & cis* 

H =/*-pJ',<r +6*+ n t,s'-(Jf -my,' ~(Jt*a) w, 

71-i <*• <̂M~us, 
cmJU ^ A,*,*,*. £.•»--« -*-< 

«,j> ,i, ft— •ft* ~5k-

icr LUL\a ̂  -H*s*] 

m f n  

k-



^ r'° 
m) ° ° 

0 ^—"./l 

p,n<UJL ^Le U 9<if/- ?;«%*»**-
Q **, •"'* eu "> 4 f—*" 

^ v - V ̂  ~"-y*~^ 
v/p. cv - * "y ̂  * V 
"̂- 9* = uj*- c*>:z- + y* x 

uAl^c k" ̂  - ft ^ 
£>- ̂  = <?,*<:* • ts+c+JJp-
Q^Z, - ccV -'V^l7* 

< - £ft s) ̂  - c<; *<* - < «*> s** 
<j-(•:/•'-/^vcr + (Cj 
<y* (ajk C, + S, Vx + 6̂ '*/ ~ *Ĵ / Vi 
<.-(£.«. -*>*/ >, - (&  ̂ c X  9 



R21 

y 
— ^yc*-ctys'^Si-

i J J o * 
cy/ ~(a".0* — a" s, )C4 y ^ y  y  „ f \ n _._ f a' e _ ^ . /  S / ) - S L  

< £  =  ( V + v s '  C ^ ' -  7  4 7  >  0  
J  y  v  , r a - ' *  ^ 
y* =6? f• c» - < <?)e* y- ' «/* c! =(a'!•?, j* ^y *y 

(*) 

* = y>'C "*5*x '  

x = c * v-*"5' 

V 
O/ * 4T7 C?~ + &' ' S,* ^ * **/ '  **/ '  

A* = v^' - «• *' 
<JV» CQL 

z3' *J»e> - 5* 
^. ,£«. - «£*, 

f-<f ?—*!*'* 
* X* r*—a"S* 

C = y J ' 
/  C7 . ef>. 
9' J 

f +** + ~ + c. = <*•£* *£ -Sj 

yfV+xV 

,. \*. <£ - P-X 

(j>i) 
"J 

Vv 
// 

* St* <* « * s »  

£- X. c, 

V J'mre* 
+• <* £. 



&S2 
iah g-*-Q-e>p3i r~Tr̂ .**-̂ . g~ct̂  ̂

\JJIju+ u> b. o ^ trt Q y or <a= Q_. 0 

T/jl_ ĴU L̂̂ SL iXST̂  (|£ 6" 8-?") /vŝ Ls ôr toMi ^O. 

wt ^CcjC--<*JL X-"OC qju^qji ^ co»co ^0 *. 

31) CdyLo ^ CO* -  0 ^ TT^) CO= O J 0)*"^C5; 

*e) 4j =£o *"= o , £~t- Era-e*V<>, 

I?) & •=. co * a £- _. £-•*•=<?  ̂ CuJt~ nQ. 0 i  

Y )  w = w *  =  6 - ( = - * - =  n  -  < 5  ,  ^  7 ^ 0 ;  

JZT) 6j — co*= G- = £"*= (j^ — f n jL o . 

CamI) • 

_ L « - f c t o j  C « V L  C O * — C > (  ; J (  6  —  d  -  3 )  - t - f t  -  o ,  

-&J Co >0 io -e^aT - £•*'''•=. coV 6T1 >» w1, >o. 

T^A. lE*l — R. ^0. e-yjjx^rwv. ^f<- T=-

CiJlA^C%v>£>> "1+ TC^ — O S-ihC*. r*=0, 

* - / / , " )  =  ± t  U\mJL 

( 1 +  tkj)C&3i" ?  0  = 0 .  

[^uT |6«f ^•<:|1-= ^31 <*"S> 73^17 - ^ 3 ,  

•? = ± oo o»S> ^ *= C^i/, •= + oo. C^-jj^STTZ* 

*̂~J ̂ SL*4 /^ ^ 



^ s* — } (AAAA 

^ p -<£u K* O^^aJV. (JT fU^ Cc^. . V *_ C AJ X M  \ — °  

^Jbx*±Kx_ ^f^^urisc. t^-a- ur f s~,*JUc* H f-

y£A C. 2 Q?fa) - «r"(D-<-A) vj^JLk. .'k>Jfe*/-

Vwi j)-*-A -0. Uoxt fa-

<, c,,<i, <i,^aju. fe)«••Y4""1 £> 
*. 6~tj£r ^ * x 

* , * - *  , < * - *  ,  * ? -  - ^ p  ^ = t f  

Xv, ^-<. C<x^c. ^ 

r c -Tfoj = r/£ iAc* - cfe*£ KsJ 

x J <=i^Os y-^C f-4 -^e*)-M 

&) )  o  n ^ i -  ( r Y I (  r t ( i  -  *£*)•&$ 

.  c Z ^ ^ ) - { K L W  

& =(A+p)t,+(v-t<a)s l  > # = 0~y>c, +0" v^' 

H= Qn-Vc.-rf-*)*, ; k ={*-{>) Cn~? )s>> 
/ij JjL^^r\  ̂ft* C_ 

- ~ Jfafa 

\ *"«  <?* .  ^  

«* 
!^)V -KJ V "J ~ 
fart. <_,.- < + 4̂ ') ; tfT c* = <;. - . «• Ĉ ). 

Yt 



\c /  

M 

TU tJK) eJK cĵ  <L> 
f C?at4-e. -2T) _ j n ~ 

^ *p. fJ  ' 
a** sfttf ^ 
O * a .  * x e f \ A £ y  ^  .  / ( —  
wV ,\-< ,* - «<"/<* < Ci- / , r' 

fajLuJ**. <>9) *, 

-*« = Hs^ ' O 2 
(tf1C = [^-<4 •~^e) ks^J -" 

vJWa. Q.=(M.ir P)e,* H 
#= G*-*jrtC,*VC*—/)^i* ^ ^ 

<£ C* ft'-,c^; ,u/kA- -^A. 

« £  / f c . ,  £ ,  | t  -  ̂\Xcrn 

<*Pfr '<~*'Z • 

^  ̂  r - ) f *  = ° °  ' ^ / ^ = < r 6 %  

C*=e, =1 ; e* ; |  f  =«*% 

ĝu ĴUji C-2-9) M-̂ t" 

a*. {^^rtcul-^ -*-%£mU* +^EE* }] 
:x* = oo M*=°° ,  

£• _ j („ j *f * et r) -  <wT -  v£ -1 [? -  <ee'*)] 
,A'*=. oo f.r-*> 



£ J p=zi = ^ et K40+ 

£ j % of - %*v i K -̂) - «*=-*>»] 

J-i«**. ; K IE ) fi-l-0 

P ;  

^jTo^c^-o^ y f"t*. "Z^V^oJL^ » S ' 

cf •= /VP +(A-P).<?Cg£-*) -(k-^vO) -t 

£ " = U\ + b + (i«— ft $)<?&) — ICk. | 

< V e  J V P  +  C A t P ) < ! ^ + J - Cn-f)<rCE) 

vv,-^ «.<>y*wfe?*) +^-a) -(jr+Q.)? (£*) 

54. c,>, <v.y  *** & 
{333 V) • 

fttA-e. 11/ f 

u tu, ,a,* = 0 — 
ri>id=^0 c—A 3) ±oft =• c -

oi£ vX rv^OtM ,D ;  e e  

f A + v - o  P ^ + r - °  

i 30 { JfQ.+ y~o -»"^'v = ° 

K &  - n P ^ O  



? >4 

\ r P  r ' ^  -52- = JL. - _  ̂= — = X G*C) 
/A c£ *• / 

j «*. Vih ĵY^—-oN 

v*-£-£-e -̂*Js_ u/Lfi-t-i "*" ( ^»n* / j S-"*" >^c-*—. 

K-j"+u,».jv̂  2(/*Q +**>-/*) = *(i*X-)(*~+£)^=>o 

H -̂e (2  ̂>-0 5 *  ̂

?x^^vL £-T  ̂ ^<-c— c-c*->̂  .1? )̂ 

v/>\e. ttaX )̂-̂ w V\  ̂(2 2:6 

** l/t. <L«^Lu-fc* J UtKs T 
0t k. tr K» ^<C»M *s1+i\ 

A+'> P\—ij> 6l-t'« 
n/  ̂ e -=<2?  ̂c ^SlJUjUUI. l^6\yj ~JZ> **•*-

-̂£- <7vJL^> -̂ uCcjTr̂ VJ 

(#+ in) + (At ifXUz&r, 

^—\ •%«-«-_ OVoL -e.̂ u^STrwn  ̂

'-̂ X7r-̂ r-i iY<3->T -̂j W^_ ~G*Acj2_ ^~=!-  ̂ ^ 
cS a. <<r^— 

-± —in ~ ̂  

^  7 ^ =  K ~/ .(n  ̂,• 67) 
Q, -eHT W/'/i R.— 



v/ z> Us 27 
U~ 10 •= (?-rtKt—trtJ = 

r 
'Cly ~ £ j p  = —I[t~£)(l+ CTr) - ^ \rtA 

J ^ 
&<*? • ^5 * 

R 
</ f \̂ VT* 

£**-««.«, <*& £ <%*». - *-"<$*- ,<-**- h***-

• % - -s * - *•<'—) * 4«s* ̂ Crif) 
fyjL JoVJ^ ^ jj «~D ^ ^U^~ 

^O.S««_ JIJ* K, 
j>;« . <p,fv t^-T-jfT" 

 ̂ f + r - ẑ - r' 
/f^r y J L ^ o  ^  < ~ F - = r \ J ' t =  

V \  ~  ~ * ~  n  ̂  ^ ~  ^  
ify = (P&,^ - Mf,\2P)» =R (Pp+JC)^^) = ->K—|rR 



<£- <•-« + £*. <0, *"~ ' 1 r <0, 

« ** 4- R. C * « *n — R 

^Tu>-̂ ê  

e**. -t-C^̂  = 2£Al + <H.) - <? -(• <fmm . 

TLt. 

iJVtVV ~t k-«*-3T" i^v» c.cu\ĵ  

£*4g. 

AAjjuj f* ^SS") <t£±* ffz=.o «*+Si) <r&e/i>rf>y 
W -t ci >0 , -£© -tLoS" M-tfW CJL>L^U *ly Si =^ O 

K_ 'Arrvh J\fQ ~{- W& r=  ̂ p̂ Cot/F" (xJL^rV 
- tf~7  ̂ / — 0. &-jyu^a^T^r\ 0 O 

&-ta  +iti>t + a = o 

I, Marty™ r«i-«) ca^ft-/.) 
t^t^CS ir !f.) = -Gu. CI" <••*)« — — 

r 7 6L 
u .7t 1\ = Vo.Vpv t <fc> <£>= R%-̂ >v. 

rn , ft-*/ -t-
N V̂"1 5> L -̂TT>} Ccĉ t -̂ S. bJ p/a. 4~- *û  

-a^]* (Ofe^y -acy«0 



t b- 0 fl «-v^ Q-Jro «^ £j •• 

.) t .o  ~D -̂iCŝ r 

&) £ = f  ^  i<<p •= ?^,-. 
7 2  

-&»<*- \tAj ^ ± j U / € _ $~lsti-<*yJis.L 

1/i) ̂  Y )̂ \G?) uJ\sL&L. 

j><0 j 

^>,9 f£jl JrJLjt-to^ a.) , <&^f~~ 

M-//" L-Ĵ -X . IaJ\b-~< trr~?'̂ - <J-°" 

{ / J f  r 2 r v ^  « £ _ * _  •  - j K " ~ j o  < L 0  f ^ —  

jJLsrrZ *)U^~ wtu^ ^ 

<^JU^ f) JUJL L&ts. ^ 

V ĴL £-«-<--*•€- TraĴ  ̂ f̂̂ 1-  ̂

— C^p cj^) «S^ — J-^, '/nâ AA-̂ y 

< • 5^1 * . „* ^/„,f,/. W>ii «j%<-/K< 
K r ,  ^>] 

/>/"* ur^- l̂ cK r̂t.  ̂» "̂ ~y  ̂ Li/IUL@J^ oo 



W txw j) •=. 0 . 3T\ /"4-e. 

(*'J  i^M[Sk r  _^).(U r te i fW»=.0 

£> tUtf" f i x p . €*£<£) c^dl p = •s'Caj.lool, «Jk(U 0- •'* 

*f* <f 7* t) Cx/) firCtcrWS 
f i m J [ x - « p > )  (V^=*) 

V ^ ~  * = f , *  h = o  .  ̂  kc .̂ ̂  

&)($*$*m  i[r-tyj] >y -C-j/'-xv" 

I $ - §* = i tx +- ̂ -0 ^ ^c/-e** 

®s.~ e* , -s^ J* ***. 

L  ( y i )  A f c  h  ^ 0 .  k M . d  p ^ o .  
d ~Jji b — 0 1 ty\̂ AA &j£4r+*&.\ 

c f J  r < L  -  *  -?• '«"  <-  -  -**•  * / •<&•> 

( <2^ *=. m -t (j2.<s*£&) c -=- wvi — c^Q,) 

t~£_Je_ t/^bjLH ^ AA^  ̂l\r^V\ C3*) » 

61-0 t  &A~ n 0 > -^yjL*572* C3l? J 

'•. i 0 + %,~t — ry. — 0 

^ - ^(n)^jL-iQ ( tX'ci. 



•= fC»))}~£-

H-*ju> 
k ^ « .  f O O ^ - ^ ] 1  ,  ^ s * . »  

{%% '(w^iia+t)^ . <i-s*-1 
;nc«. y^—o , f t* sf-  (Q. £W^ 

u f / A  n  ^ . o  c * & * y C @ s  a ' — o .  V Z e ,  ( ^ 5 )  
^ 0 Ur€_ 

^/\re -t * = 0 

<2. >t-

./* ' vl/0 
f  f  '  =  A \  +  — ^  =  A \  -  t t  R .  

(W *" 
I c ^ - * + K  C - ~-1^-

tvA-i ^ k/»( «X. fke. l2L . ̂ êtU ĉ <• 
%*_ ^V—IolJL O^J ££*_ 

Wa^J^WX 0. • 



~d •' otfyijn zM.j £ iJrrn a-Aj> 

<$t~ €j*-cjU l^a- a^-<fUyn^~ f- ' + ̂ ^ 
<r/ &re teKuS^ \pwf£^M '"» 'C^ 

ĵO^A u,<Ĵ  C .4 (Wp  ̂^«>~ 

•yfijL yf- Hy^nLuJLi yf~ 'fflf-Al "-*)** 

-eJUs^-e^S^l . S '  v  i  
* ̂ J <i /? 

Aj- tU u+ccr̂ x A Adir  ̂ j—  ̂

%^iajx>Z^JA <^L X*v~ty4*.cJl -eJU^-e^AAz 'Sf-
^ ,V<^M 

U, Os'-v^U?^ (it) u-cA^r 

|clj1- + lc.„jv = i4„it-+KJt- + t**J+l<J'' 

*^1^4 ^#o<Sr̂ /rvtfvê  ĉ wvê ^K ĴL-  ̂ a
~
uJx

~ 

r °_ **4 CO^i 

^ <t^vV \' 
|^vc-T J@_ G-^VA-€>'^^^O^CJQ-

^ /c6e^^ '"C^J  ̂̂ tL*£7cljZ LU^^tcZx igl*\ ce-



 ̂ TcTK t̂ vi CXufe. 1̂ 

'̂ ^<r>* <î /̂ a -̂x-ŝ  <^y£ ^o*ja_xL>l_ ^^yucw-Sr̂ xA. 

JL <S t̂*w£ ctfWT  ̂ lJ\*JÛ  

tX^L l^-^lfi>\ $JtsLJyA^ Lw/Jxjej*J^QJ± 

u*\ t <^_ fb ce-c_ 'tfc. û o~̂ lkJL( 

<S^ aJ^i ^ <rVL#  ̂ Q&JL&S4 #_ 

^ Ĉ AJXsvŜ  

fi<^ a^(^t^i/L^Aj. 

X  ̂ A * L̂Af̂ âMsi QjlJÛ hS*̂ * 

T X > 4 ^  ^ k j u u l  < j j ~  c ^ \ j f —  c L f i ^  

yidh JLtJjL«Jl <?K tht Sf-

#y>yjL C~4^d*^T ufkj^^^L (jxT^A— 

~fc„ \Â û +JUsi <ŝ ~ i rftÂ d~nn̂  î £̂ >̂̂ S' 

W v̂/ »T &r u*  ̂

v-iA r̂sUJLw  ̂ |̂ -l <ry CK*. 

a JL*. eft \s f'*vr t> <>•* ̂  

•ft? ^vjr^ ^ ̂ =5V^ 

>̂Jk~ HjMa. CĈ U*̂  CL̂ t&Si, GLL. 

i-̂ ouL tsfcp £ W ^ c v  j i  itJFo 



_£)- ( ( A - -  )) l S  IA4- ie«-#0 
OwrĴ L <r*jc «f~tirt> ĴUod̂ T IcJ ,CrlU*+riU.J+-

<jSUû Ĵ  C . •= o 1«P*JLA. -ĉ .̂ «- etf̂ L "£> • ' ° 

<j£i uiL^r^«_ -CUT H-e- •^ee4 
v^viyCx c^ 

i. -rl\, y J-4>V •> ^»y" )  °fy * ^ o <? .,«> v^~ 
J^^VVUv, ^ cTUJ->-'Co) °*"M ^•U^A^A^e^-

y —* 0 —• ; ^ 
a —>o — >  ̂  ;  ^  ^ ?  

0 
51 ^ ' ^««.' :><-^ 

TL ,̂ e>^9L5r!rw> ^lO ^ 
L I •+• I I — '  ̂
I 11 -t- U -̂1* - ' c-y'' > 

J'-IC •ll-|«,yWE+*-.^-*1'-



fT/y-

AAi H«* 
v ( 2. ii\ Ai •> i^ i# i^ •+• 
*iyM'y +u~')+ cy ' ~1J 

^ +51^. aj{ SKTV) 

, i  i i ^ U £ . ~ « 4  / / ?  >  ~  t 5 - 1 '  
?f- ;i .rfSS'-Jf*sO **¥^"<3 'r' "j 

' i  i ,  - / ,  v  ~ 3  ~ r ^ 7 '  

fiU ** f (X7̂ "~ 
urfrt *. «U uu~*fJ Vf*"*)" 

IaJL*J*A <rvtc-e- ^ °y 
\/J\jUU^ K>^tw&fc* /j— C^ycJU^, C*«>(y/V -̂

s j -  ; • • ^ ^ 
.-°ca -ell2p.^-c^,-^) 

y "y L ^ r 
fcjl 'to , 1/  ̂ *f 

OyJU)L± Lsiye.jik da^ LL  ̂ ~C4*t 
%C<M*>*uje  ̂Oro tW  ̂ A 

t> vw£u&S <j^ M^iJU 



^ rt^ p~-JL ^ eiC 

Ic^i *~ = i (Jj'-1 

(c il ^ 4: (1 ^ ^ 
J-̂ -53Z — ^ crv^ JUa <tL± '« ^-s 

(^ ;«|l + I ^y"*'l * ^*/' *^^*\j'' ~ 
« iOy~ '* + ' ̂ *-|X f"'^h*'^* 

U*_ - <M-*~ ~ -eL, 
c JWc,-^ i—' 

c' f <*-<>* ^ y ^ mj. ,1,-0 

Jt J 
<6.~ •^Wu rf- u^ttLJJ <ff 

4 Tj.^.-ft ««. efj-°4f^-**^3 * 

tfyjly i^ro S^ju^ /f- <^£ <*& J ' 



A --b 
.e 

L ^ toC*1 0 S^/<ĉ frjL̂  

l^rcLuJLi <ff. d^2s-?ti o~ffTF*»JL "&WA <*>** 

JlcJ, tU^r^r^LOTy, £ H-JXr 

jj^  ̂[< ~ of-od *".  ̂

/f « c^JU- £ 

/* |i- ~ C"-')1 J — £* 

uAjU* M 5̂ , C-r* «CJL tMĉ x̂  £ 

S feM »i  ̂  ̂

^ ^ ^ ̂  y^JL -&** 

(We*vy> e. tU"^- y Jû sr̂ -e , 

I^- J^tXJL9uh^ 10 iu U^ 

0,13 c^» lo 3^ , ̂  /^-e ) y 

1/cl) (JL>A XXjw<-  ̂o5t~ eyt̂  ~£o 

f̂fc, 1C <u.<M /u &• i° 

Ut i^_ -CCJT  ̂
- V yA . 

^̂ dx-tSio *z_ 

'"Qfc h/jL*+~&u^ 

y 
— lo 

_ -L 

,e x v r wv * 



«-/*r 7£*k£ /€<ffat Urt r̂«fc«*44 6C  ̂ C *ĉ  7~>tk 

"Co i-JOL*JcJl o/eU**4 

I* £**-d+ cdl cut̂ _ €̂A*ji) : '̂ ĉ-̂ <vr 

-K e«_«Z tÛ A tn"x Jr̂ ĵ ZjL* 

^Vo cjeS-t</M_ û v̂ -CA-̂ ot̂  X-̂ vv̂  /* C*̂ ~̂ K-" 

Ol<£) /vuyvVVt  ̂ X-̂ -t-frS*. /X /S~ olê irL̂ ĥ  ^ 

<f~l &T̂ gAJC 0~*J\. l̂ JL-tfXsorJ. £-J 

g j d L J t A  « J L ^ j ~  ^ c*£ c-*s~̂ ri . 

<_/* ̂ c-e u/ 

 ̂/̂ JtL Û Tt̂ U J) /S 

ĵ Y 6«-̂  (j1̂ UX' >̂M. P *̂M«. 

/C~ve  ̂  ̂, <t  ̂ <?  ̂̂  ̂ 

Ẑ î̂ fauA cp̂ Â t+XTtĵ  (Q > J \f€Tẑ y isLe. Ĉ ŷ fa P̂ *>v 

Cl \ ^  > 0  <£w «*>, = -4»**c ̂  & + 'f c+^—d~ 

pV*Vt . yjHtl U*  ̂j  ̂/ /̂-̂ /  ̂  ̂

\Pu~>̂ La~<t -&tjL_ (̂ U*~Q*~ZT= ° 

T>eX(̂ ê _ "£j A <4-i nA ê (̂ — 

<*«*  

r̂  = c «-£> 



t '  *  ,  %  =  *  -  \  r - 7 -  ^ _  r - 3 j  
XT *. *~*rr?} $• 12? 7£T Jf (••? •'' &— ,Z*7 ,5V_ e 
•*.¥>*, Co.*.±° • <*  ̂ ^ 
w ft*. -**• «T*"*, S ;; >_.^. 

> i  ̂  ̂ u*/-e na>V<- / • ~~ /* X>La^~ ~~ tf J c/ ^ 
-ip.^- - >*-2 -J*-®"* 

_^.eA - , 
U*. L̂ -

To tu. W >  y — _  __JS-5 

U ? -  .  „  c ,  djZ = 0 U^r U* z: •=• U z -=-  ̂
<*-> , z> u^e-

. A.ci. is t— It* L'TU^T' i. .t—M —' ? - ?• 

c^n'A  ̂ e K u . ~ c ^ ~ °   ̂

U W*-°°  ̂£v 
£jT v^v ^£-== 
<£uj;t {<* Ys °°* ^/C//^r • 
Vfc. a^cJU^  ̂ /prt tUf 



*  _  ~  •>  P - V t f  

^ ' ^F  ̂
J T. Cj .  = a.^ ((f+ is*) *<uj  & *  —/e ,* )  

nJT. e/V = 4;* fa -'s, ) •* 0;  ̂0, * <0= 

J J 
- fir.. £-<:, + ) — #*/ &/ + 'c') 

2 y 

£•» -H**-* 
_^ |2 : .C V ~  - / S / )  "*  

T* jrJZL*. cU  ̂  ̂  ̂̂  

(S - ,  <v>  ,  ̂  zJ^ju. ^  ^  

f>_ (3 * £ — — CCX-A J <^="~Q 

ufL;«k ;c, i v~<prV^#« , £*«- <?, -*» - °-

"pU^<^A. * y*-W 

/ </*-£> in-WX-,' ̂  v*Sr*~. 'S 

Aj&JlU  ̂ c^L iu -ou 

"(ask 'th-S- Jr^*~~j£~^y 'S £>"0< • " 

£# Cgw^AjC u^Uk 

/o p'jLc e^>v^^*'w , o^' * 's 

, k l  Qj i .o^  

z* — 



— <2= £  +£~*  =  0 .  W We <v / p f/ 
Cct^e. c»)2'= Qi*2"* &1*-D1 

i;„Z6-~L\z£= ^«T*» 0^0=0*2.? = %-
So -tLcJ- . ĵ cJT 

=  £  B _ C l  s -  A .  
00 P *-C-LĴ T y •=: — ComJ  ̂ •=  ̂. Y? ~~ ->  ̂  ̂

#t/ -C > U/€. C^^cJLt̂ J* ^T~<r~y (3 0 

' J « * =  < * a * ~ / s  , c* - c 

\M^riZutArQA. Urt U^mK. CL*" = (® £ovi> 2>  ̂ — *—  ̂
'iPta C3 Z )  

t £ <pi nc-a_ ( .̂ =-*^y ' 
yul 

r&vj (~j««-, 
 ̂  ̂ Cc-X<) Q, ̂  

C**A*. £e. i)" IajAA£*~ -̂4 G-el 6t>  ̂ J> * V <Tlr  ̂
(Y , ̂  ̂  J~i <uO /u / H Y ̂  >) t2 t̂?-« -̂ii. 

G= A 4$.P + ^^T) , H= M-frP + J)^) 

- *> + f^/S +• £ = hi — ^4 + *K) 

® «/K<L Vi_£ (̂%P) QMe nfi 0*; 



p. V* 

«:.- r~ - # ) 

K " if * = "S" ' 
'fc*. 

»jâ d?. waTm x 

fUs 0/r if J} <**-* >~*aJ > 

Vn = n = /> — = £ — G *"= = ̂ ~ 

<T^ • , t;- f y ci 1 ^ = p<a, A 
6 = m > C- jva, £>= /M/, « = <0* = R =^eV.DX-

Vo — fR/. û/l̂ >tJt_ 

^-/aNtO1" 3 R^- A/^t- P^ 

^5 t^te^vfe &| £ ^ "C^e -S-"^ 

^ + ^ -TCui ^ 

TX̂ A* "HcC. C-tfK̂ l ̂  <̂  (Ĵ  — Cm4̂ C  ̂' |r*" 

S -ip d -

XX̂ xĴ ÛL 

(̂ /(t\ k̂- _ c ŝ __ 1 ^ ̂ 
j * - P ~ ̂  ;  ̂ JK ~ K± 



/wp—v<a 
"3 = C»i 2® ~ C»*.(s -*•  ̂ ' 

*  .  A P + X 4  
r. cw£- ^a-O - -^R7 

( • «  , * . « «  

u/U>ot e } £*,y ,y* = ± L «A-» "HjT̂  'f' S/•> 

/e^KM^iuul «-*• (<*2 

/LJT"te Ik «.(swwl"»< w/ <fL 

*itnS)- *(#), <t(c*A-*(p) t*(su)~<.a),«QU)-*(*\ 

fa^u* vC rwc. «-* 

Sfci^ - s»»c« •«•*•> •*• 2<k*f&tm * 

 ̂ ĴLcĉ . fl* (*e<Uw  ̂
•̂W.  ̂ AyAT, £, 4 0„ -5 ,** • 

I ~ * Ciriu 2&) * P̂ ) 

| 6 * . *QR0 

TZto^q & = ^ / > A A - P ^  , v ^ c  
<3 f 9 = <5'(• '-M.V* — PVJ 

e = ^X^-kQ-R^ 
^*= «£M/1^-PftA) 



4-C-€>Vt. e cLesyJi t% p fa 

C$0) Our* P<2)Of̂  +PR,)s -eAP-̂ Q) 
OC/KA ^C^CJtviKa [M?^1 yQl < R|R .̂ (VkavUjfK-J 
i* ii~ Tb. Sj- .A. o^. <*£ P <s\ <rf~ Q j ̂  
f̂iutK x,de^STCUQ KJIA^X O*tjl uj^i^Ji ;* ĴL— 

 ̂C ĵe oL l̂Ca. 
^LmX~(1(3) '̂rê  ^u"c-  ̂

o~JL o^a t ^f- ;s •&> <iWt -e<u**- ^ •*«•-
^M^JUf-i^, (/*I>V|^|P4| Hi. 
(XuJ*LuJUke» uj. /?4 iQ/.R* ^ hlftA lP|-Ri-
Xr /£ tzj^a^srl-JL "Go <*t»wr<. H+5~ fU. C^urtOL" 

G  =  < Y > a / — p « )  c t ^ J l  « = P z < S l * J  
IM.&* •«• i'K« (̂  (Av/̂ | * I P3I - VZIAA^OK  ̂

W^SL J '̂i~-fr£ |̂-~ ~f̂ e_ Tt*JU^ <j^~ 
tkww /AW/ ;><TP« I ̂  C^JI (p£|;>|/Wl ̂ 0. 

S>( / / w i > i P f t i ^ , + U w  
uA^e. a? * =. • ^Xe traXuje_ <ĵ - £T cLZĴ L*̂  

^Lsl irWw <5 -̂ ; if- J*-N <T PQ  ̂Q } 

£ * — 4 , ?(X 0 } <£ r= -+ Jt 
C6Kc&*>w«L£. £. * CJ*<fr\ 

0VW 



\ P f i l  > 0  ,  V U * p  

£* = <S(Q) n *= -<?(P) yJUU e« -eTPA). 
i*, ur^L "<-@0-

^ ttyyy ™y ̂  
Q l h .  c ^ _  i f  Q * > u > x J > 4 p r > d r ! .  r t o  t  l * J L  o - c L J - i  Crew <ff ^ 

Co ec~A_ ti  ̂ f V° t:L<*3~ H*4_ ĉ fwSri «*^a_ 
f£ST^£tZ-A*S> IkCA. S-inS / Ca-iS / &*4 , C*A°( ^ 

cA*j*AM*e. 7ANL ftuLnjẑ rv*-  ̂ f̂ -e- t̂ -v* IPQI > 
I AJ/V | ̂  £ = ^ CP<2.) ^ ^ "= i- j£ Glffil} 

<t^Jl «*« <s"CP3 . % »M. G*>T-* ^ I 
•n 
tt 

xy j cn: 
|AAA/| > IPftl > O 

€"= 

^£3 

6 = 

wa> 
7 
+i 
+i 

/ - _ 
«YA) 
f e n  

\m 

Dl 

-art evX?^ >^W^r"e^U jAtfl-lWI-0 
^  ( / W A T l  - I P Q . I  > 0  •  T U  f ^ r ^ u .  l i  « -
^w6yj^ CM«. ^ ivii^ £* prir^e^ u-

( M/v| SB I P£ | > 0 

-s'fo) , 
^~}s ft L CiS~w^-e^. 

^jAAc^^Aj . '-J L^_ cls^JL. 

'id JUs<^VeJL <t~ 

"fin) x̂irtô siĴ  : M~M— 0 Asyy. d A/\C= — o. 



(Sb)usPA * ®-

w* our-;* ax* c***Jn̂ QK  ̂  ̂

ff?,® MR t  . 

« r>P+^>OC = * -> J° 

f = ( ?  „ T  7 = t t .  / ^  „ « j L ^  ̂  f  > / W  

-u^VvJU JS*<*. j if f=& , s - < * '  *  <s> 

{°iuUlJL^UL„ 

C f , o J •. 4 , € - «^>, ) - -W '/ «*»**) 

xAzJU %*7T 3 /•«%» # ~ 

rT = *•-> y*--j. ,  € • ~ 6^ )  

<*0 cA<±~yi~̂  Hue er~JUs 

£ s * s  O  H v j w ^ ^ W  £ *" ,t̂ ~ 

iv* *ttue if«•«•>.><>. "s-ê wXf-, Jk*u>^^~~jj£Aj >*£ 

y * =  l  }  e  -  « - ? < 4 0  _ ,  ^  = •  c r / > J  A  » * -

J-ee. •fe^woT (</• 'i eyu-4~V<u£±~5~ 

<=• e <g/0*.Af) t y s + I } *"_ GjO<«j 

<3*7 -fo 

€ * * ( ? & )  ,  y  *  y * =  < ? ( P )  

> / V -  P &  , - ' ( M P " )  - a t .  

o 

*r 



 ̂ () 2; (̂  ̂^ A f = P < H ^ O  

OA. ,Y z4-*uu & MA/s Pai 

u« e.wA*H« ^ fa <J "* fa~ 

-2) JLl~ [aa)I —>IP*I. fi* 

C^jrzc2riztt~ ~6T4) <*^> 

r^» «>y>; , -«v<a) fa ^ a W-

\fe-d. 3 C&eXYY~> *<\ *MA/ — p<5 > -^r = •^"•T" 

\Tĉ ~i2L&>i 1̂ > eL<*5~ e * **-» 

 ̂ CoA-e J±Af^=: —P<S ^ g> 

^ + ( X R 2 = 0  ^  

FLs^fa*. ?=c^*0 = +± 0^0 °* sf' 7T-

^ t l o  , H * ~ .  s = - J L - f  

(̂  **- G ŝ cl̂  (̂ «£ =•  ̂ J : 

(«) /> =^7C/; « 1 , €* = *($*)**(*) ,y*= <&?)**(*) 

(JLJU. fl=^vr J - -ir- * ^ 

>7 = -1 ., rfvW € = -**7, = -<?H 
^JXAtJd^L^ ^ ̂  -1 W C<»~< ^-e-fc. & 

£> £<w) f u/l$i. ^/^Va) - -1_ ^ <JY>£> 
tytre h»^eL 



1 

u« e^JT t^K ^ ^r<^' 
1JL, , fU c .̂ |M/vj« /Pal 

/rwla tur JKA/PQ^O. 
" &***•  ̂= p̂  = ° 

/<•*• « « J \. A -*-
r̂ ~ a£> jf ~t cZ "=£" O • 

^LoS" "C^o «JZ- |U  ̂ •*»*»  ̂
,^sr >*~ "yH 

aju~ -tt«5r~ H t̂ 4- **• t̂ ~< 

GoJ«. Ur€ ur  ̂ <» O. 
<̂ Jl*£i£-̂ rz-e. ,*-** L*-*rt *J!H 'fiJi-a4. - I  

CaJVfy uAju~ 'fcs-* L7 

j) /V — P — O •'- (̂ t* , 4+m* —4m>̂ ) 

2.) r\=a=<? J tfP °̂ *'• C4L.—jltoft**) 

J) /A-?-0 =h0 *=°J 

v)  A=  P  =vAT=0 .  6?  *  
A , ((«*?<»?* 
y A - P-<2«<? , Af^ 



*£JUu»> st*~0 «̂ > e? = ± ,<JLA rev s 

_ taJU  ̂ . 
a; ™, S>J <0 _ O J y I a; w $<-' , V \ r J 

I eA»&4=0, Jf=P=0 J J P f O , M = Q * 0 M 4 O s  JMklQ^J 
->•- Vn "T , —z'*r"\ S>toi CCJO 1 *(&•) T <?<r<2) i €-£V) 

1 

«"(>*) I [ (CI=0) (ci=0) i (CI=0) 

To >wî A fUi t«4lc wt. Aoî  /Ct A, 

OoAft ^ ^ 
3 V' ^ *5 .: . . ^ 

'£\A  ̂

^C a^u S •*= p ? y\̂  

I - TUul̂ .- , ~ Cĉ   ̂

J t , .  * , '  

oW- £=<? , v=^~r *,*-<> /c*=1 • a *** co^ 

3) ^ *tr«a* ^s = (5 <^*-0 ^ 

t/kjL tuo C-tiV-5) i tT«-r̂ > "ZaS-Ct̂  •&« 

C ^ . c ^ - o  ^  ^ M - 0 "  

y* oWv -w- - u/U^ TT=o 

^ r ? ( * - « « « > - *  

rc M <0,uJU<Ly-** $*m'f*a) yl̂ a 

xJrU* -  ** C^ l)  T^M. ^= 

)̂ s  -  0 —  
v  s > ~  j p ,  '  '  a; 



&* i) X 

5 / =  *x 
c . l  
' R, 

xxJT S. • 1  4+ 

j^Cjz. <^«Ce-^v<V_ e^//LC 

% 7 t ^ c ^ f )  *ku a  t  *-*• ,-e^f^ 
*******-'• 

Y«**»* ^ ^ J*̂ T£s S' ~ s,<\a) ' C/ 

€> ^ \ Z  f j f r m  

v r ^ .  I*.c*sv*~ *S, —  ) C  =  ̂ ^  - »  
«j-> -tL^ e***- 3) ^ u f̂eA ?= ^ 

^  I "  

C U * . C « £ - < 9 , " « -  — ^ ^  

a ' ^ e ^ - o  L o  6 ^  *  « ? « & < > , *  

j , - ^ )  ,  c , - o  (  * , * - *  ,  < • * - « * » * )  

o/\uJL5u^JLji^ ^7 -

t&TcU  ̂ XL*̂ &y+J*dbS 

C®-4e «3^ ^t~ ̂ = ̂ / 
â V7!l*T" J*y *"=•<? f C*= L As-£/ 7̂  

=  i  

v e  

A /  

^ " #  c t O  < 7  « * * -  • •  
i; - u  1  tj 

§(0.) £(2 )  

P/R, 0 0 

<fAKV 

c? 



/ŷ  Ur*. A*. (̂ <^4 ft fd. 

• irU^ sfi S/f 0, , S* ,c,* ~t« y** 5 f*"—l°* 

(I?)  ̂U*. £U4_ (Sl)->*** « 
*-l ML- (MA/l^rlPQl "  (A/v)=|P<al y-0.  

X: vU ca-u. <̂v * pa = 0 fUj «**-
 ̂jVê , (ffc G*4&_ (Jiy 

J iL e&~-* ^C — «-+-*"• ̂  
^—&«- («<• g"- ^*~r  ̂

Jr. - « - Jr. •<* + «J~S- 1 

^ - ( S . - S . - s ^  W  

•  x w x x  

oA, Ure&_ "A ,-
Cû  « R.-t-B-i = \J ̂ \a 
C_ « 'R,-̂ - \TmW- -V^r ; 

£**£ e-toyr*--vvi-»vJi o-̂ -t i~*JTi  ̂

^L«X~ { <'3")  <~\*_~ ^ 

wî  £-= A£*<* +PC*s a^s+ftM-T+V-VRt 
-POy —.A£« s •* GLk-4 - T-V"=ft,--R* 

X> •» c-C- ,̂ V Ca&cl -•- <£i I. K R, jp£"3s "<" \ff-£>*s = . 



 ̂13 C *-11 C ̂  

Jf a. i4*& uo-jy^t* isw- >»~csw«-
W^jlSVu fs i<f~ o»~ &_ &««% 

Srfivl „-r> 7-^ 
^  _ o  • =  « = o  , w e  k o * « -  y > a  
^ ' -  j  

-w •• — 

fii?l ^ ef^ -= -^-.  (l\-^px) 
X p  P  

Cc*- A o Q t̂b̂  %& ~ /'R  ̂. 

* » - e < ^ -  =  

W« Ue *(&«*•)- *&) *° **""• 

c,* * e. -

* * «  $  =  C^°) 

( W -  | A l l  + \ T y V p I  

c _  =  I  A i l  - f ^ v p 1  

>  -  V  -  > c '  - > *  

5""=  "V S> 5 /  "*" 5 , '~C /  

T f c  ^  l u j ^ < J U x « J < r < * y e S U \  f t d L  c A ^ M ^ j u i i S u x .  
"G ĴL fai£**<dL r*j&*L\ PC Jihc£ U '(k)=u'fr). 



{hfk. £>& It/ U— *J2 rtUuL X 
I\ JUtsiK^^A 6L* <r«\  ̂ L/ 
(ylm. 0-L*̂ **.<*Jl ir^w U+aJf * 

tu* )X XtoJ JVr~~JLX  ̂ j* 
V f  % * £ >  I * * ,  " * * -  H ^ l  ' * * %  y 

/\ = P «~D A-u^-t t^u.-  ̂ ; «> " ~ *t ****** 

HV 

Qij* 9 ' '/̂ ~ '̂ l*1 /̂*  ̂ V * '̂ 1*< 

^r.etj W~~~u»-5rî  <>*£****> ,  ̂1-̂ e 

is ^^^^^v^Awy viccT" <**«,= Q.±tn- *"  ̂
jo £UT jT~f=0.tCa iW^«  ̂'* 
U Q\ . Ivfe £~*L 

L Uuh^Av 1? cW eu- «•-f~- :  7" 

vvUt̂ Vv» l/S knaM^r^k t ̂  
 ̂ A*r V «. c/^=f «-Arc< x  ;  ' 

shW ĵe. JL  ̂ **- * 
£?  ̂ /'m ;̂ *4 tyLyjX^U & • 

L*yt; f* «le<»J., <^= z, <Aw rn^usL/y <rf 
C^aMls OisST <rf-Oj^t S/1*A*&J&»- & = "% ; f " 7 » 
c*-4, *,*-*, , «t*-4, V-* 
< u * i p * ) \ * / £ *  u  O g  ^  ̂  - f e u x -



- * ; —fi , > C*~(« 

(> . s -Sv C^. = -Sv -~T—-
 ̂eu_ 2̂r-H r̂-C cs aUc 

^W^weTt-Tc: ^vu-vTft«- .̂ /  ̂ '•*• 
-S^eu/ <H/w^^JTt><  ̂ Imxs**̂ * {-t0-** *-

ifiJ-wJL . TIul>^L^L./  ̂ ia-̂ T+JU * »«^ <Vgf 

^JL <rf rt,yU" c^f^M ^rv*. «.£*)  ̂̂  
«'<£*- ^;= <?&/**»«* 

cfs Jtjktut̂ f̂ Sicl <uroX£. U*, tt-u* 
V^uzJLX\ cjl\0 rtL -£y^* 
f — ^  > ^ 9 " »  

<Tl, eyJ*^ t- 1*-*  ̂
rQg_fi«j[ C^^") 
O) (& + ;«).€" +itrt -e((2-'O = 0 __ 
S-0 fUX  ̂̂  f* fWje***JiT*v.«t4 ow 1̂ , 
V Ws c«^v  ̂JC ^ET (^W f S ̂  • 
 ̂XrwJL.A ûMÛ U fn?W«Meli^ 

"£T a^v-V.J/} o>t-e \n>JL\A £o^> •^n. G^ = L 

^14.^," ^*t», ^ $~l*v~ (33) 

£(( — w + l \  }  * • — w / A  TX-^Tgl^*• pl-t-t\ 



C&). 

£i5~- Î SlfoirJî j>*»» <^A^*t-i X . 
T*^. O^oJTi-Lk jfa- — (£"<*,.. 3) f$ CaHa*"** tita^. uAt^-

. QljU^^J^t * <£AA~~l£-«» <~cJTt«X 

Q_ ^ m ~ n «|d -0 , K«*,-^0= ̂  > z VO"? 

•iCott,. ~- J\f I (It*. "* 4,̂  ) — (J • 

V t w ^ T - z  ,  * =  f  
% - e *  X - V ,  C- =• ,^,*-s. ,s '-X '-»-s '  

Yfc Au^^Jr^^fTL c^jn^^r^A y i-0 
K%mX~ ^VuwvvciA-iiCi KO C< * u^€" 
JoUJ rfs <̂ ô  a-̂ -Tê uTs-frZ. -ZAM>$r. 

To û  -eur  ̂  ̂̂  
Wf" o(^vS\^j 'H-e. (*Jtsts<~l~tfcL*~ CMaji°-tJ^v T CL~ 

Vm ĴTWix digest** HjJ ft-il 'Cî e. " °<v 

Wiswiu. (33.) e =6 .̂ <L =^" 
yU^UL^V**, =0 <^) 1%JL>̂ **~ V«~ 
^>»«/£. C <s/t-e. <*  ̂
wLsû  •&_ C* «t UA«Jfii x. 

. # ' . ' ,  



T& epuJ^(li) fa T- <£ 

-t- 2 PT - <?^—'•/) - O 
/ ^jUHfairi ic^a~ 

a"i  ̂ H«C «̂̂  
-;jr}t* - •£•/=? y <? +;J

*) * * 
we AS2u». /£«_ < .̂ /£«  ̂

t+~3.8 - ^ ~€L*p ~~k~ 

£„ 18 « $£ ly> = — 
J = Cs^iS" — 3^® c <o ' •* £ 

uA  ̂ = vCv + P1 TL= VaATV Î. 

(r^r3* 
*, . - <̂ '-i£Ji , 4*.̂ . = 

Cj yLo a^> S(yj • <*a 
Af J J ynsu+UiLn '* 

ĵ > \To^Jî 4ub  ̂ X-o S^s. 0 J (̂ /- ej 0' 



(2Z —) </e^y - p, S~f 
Jp̂ !> pi C  ̂

ô . Q^O , T= M V = jfM»s +  ̂ • 

v  e k  . . f ^ t T = A t r =  A  +  f ^  
^ )  Q _  =  r p — j / Y z : A - f *  =  A " K  

U^^sr M-o .T-£* £*-

Ct̂ JU Ĉ fL f d̂ —J-
f-C*— 

r  t^~*~l /> \--=k0. r»z 
*•** 

n. r̂ Z 1 iCejê v̂ ju 

/ 
fa Wejf f> i t 

t r  *  
civ dcc^ u/ *v» S: 

-  L  (  '  * K - r j  
^74C*_ \ - t l l f l  ^ 1 ̂  ^ '* Ca^~ 

J f  &  <r£^pj*c<Xk, 4 ^  
^  > 7 ^  î\(̂  « T  p "  Ct^v^ &h0^o 

^  C L ^ >  =  —  £ r " ^ ?  ^  ^  y  ̂  ̂  
H Vje^cJCHrt^ . *T**Uk* *y $ ~ 



ŝu/fjUJTi , f&b&uri K* y « "R/1 P / ^T* f? S" £ 
P ̂ (9 <a>^JL y ~ oo r̂*. I ~ O  ̂ ure. sCSaJ.*. ^ci P^O •' 

,•.*. -^)(j(! - ̂ >J l  ;  <f-ft-[i (!•£)]* 

V  ̂ / kA(>| h* d  ̂ ĉ * 
7̂ «. Gŷ cĴ  A* t tXfJL -o ,U, fAsr rtf •*-*(/)• 
Ue W ^ cl T=0 t^ ,c{ ?^0 : 

s?= s> - i [1 - *W| r 

fN c - i [1 + *fr)] e,»s,= 

RwU AO /L<r̂  JT=o , uA~re  ̂ /s  ̂

4- P 0 . P "t^y 

-=• -A -t- ifi  ̂ • XV-

fin P •= 0 yXT — Ow<- R. I^fl-

l̂oa. - ̂  i—+«*•>£ 

WaX cueop«-t* CI * A-e* , «A A~ 

6i) uJU^L /iri P T^o 

2 C°<--t ' -tC^/'fc ^mS).<&C P} 
2/7^ -+ ;r) + <?•.. -e C^+^O-AP) 

JUu. f4 p=o y ' ' y 

(V + ;X)Ji: ̂  a v + <?. ^ (j3 +;»)&- <*. — # v • 

* y " 5 ^ "  * * •  - ? * •  >  ̂ A -  - > '  

C4"cl- K-H j < *£"i -••«*—C 

C5~ ,13 $~ 4 



Rs<) 

V > , c/„ , S~ /Ve~ f?! y > -j * j* > j 

* j~  > 3,*--«£ = H.*/H. 

< j= C J~-  K - X S > '  'J.— 'y-'C'l 

^TL'S KoJTeA, t̂ a i5^(L| ^uP&TZ~d*\ ceA . 

^ Ct&ysJiT* 

jr.«. W.-A, — ® »-<**= -̂̂ *1° 

^ u/e$? ^ ^ /V -i-J1' • 

•Vk.-rUi «/ 
</sW-o >u ,  r t^ -  ~  JhG- -e* l >~° -

XhnJn*., H* iCv™*«. Cs") f"a j 

c* -W) &~4/W -'7  ̂  ̂

< w , ^ ,  - 4  f t .  - -

r̂  

M A - 0 .  Ujt Jv = 0j ? ̂ o - v r 
li/ J> C£V^~? 7  ̂ /̂ lr-€. Die ̂ CUA .̂ V v 

t w fyjug. CaA£- HLj) u*e (.m*- ~ J  ̂•=. fl. 



f>Co 
o. = i •+ it Q. •= Jf ten 

n ir '< (N+f^> 4  = P - ^  0 ( ^ J f - j  

& 1 . 0 3 ) y A e J L A  i v ^ w  o w ^  c r w - a .  

PX(z+^) -MCo^zt 5-) = c [*k. (t-X) — f  6a(*-^} 
t rC*> o c_*vJj"7 fa <r*t± cOtjt 

Mr^ g 3 f=2io C^cJT ^ 

^ _7Ci-?z = - * j  I Prs3 
Ul € /Cte>v»«. ci n^t~ b-uj-r ck c-e. -?«^ !j>lJî f̂jir' 

f~ «^v .S ^ " ICkr fX/i/^o £>«» ^ 
)Wt_ uriZ? kove G ^-e c«ap 

kWr«^. X/ P\ J\P >0 _, ftX OO j 

P -^A <^» "t- J\f& 5^<> ~ ,̂-
Tl? ^f/u^oS^v^ ^ 'VeA 

Lv2TTJT/o i &*&? = fX 
TX^ t 

£c> 
OV^r 

X /l ~ 
f-t ^ */x ^y 

v We ^ ,p >V- $-?-&>»•-



P. 6-1 

ce. <sYgO* = 

vj <a. ^ 

C* = Cy = [i((-^T)J^ ; s*Ls, = <zV>7.[i(/-0}-J-

<* - IK1 n~1j^ / S m - ̂  [i^"f 

lyf ^=c> s^; ;i *-iT ^ v«^'-

' f e * -  y  ~  ® ( 2 - 9 )  ^ 
; = + <*• / c«.»." ~  ̂

Vihce G=— ^ = ^ 
f (/ r/ = "R <^2) c * •= e* =2-

-  — C i ^  1  v  

/IGpW (5 S>~*- nju^Xn>^ \Ta^~t!*h : 

M «/ - <2. = /V= P = o 

£l/vC<1 ~ 4Hi**, 

? ^ a  < T L .  c ^ - - . p r w ,  a .  =  e . .  =  £  « * *  

•f /i. 

chjo-bK*- C&vJtTr 

0VS 



c^u>r P. G  ̂

l£:-*$ — <?.C+±M C 'f 
Pfc- <2-^W^T& ^ ^ /e ~ ^ 

y/flx/lAvl IAJ2_^ ^KX^ ^ ^f^-JL C-tfVw m^<» V <*^cc'- 0^ '" ^ 

le; A -4 a>r^PklH  ̂. UAL <,?- h - & ux JLiXc 

^=~c^s>8=  fc .O^v 1 ]  *"  ^  = «V/) .  

^fLe>W- '̂-Je- ^ 

c ,*~  ? ,  -  [ iO-eD] 1 .  4*=^  =  «y ;  . [£ ( ' -*>3*  

du^-^~-4\ cf-' • 

<v  .  -<**" -< .  /A*"  ^ K ^cx  +  ' "X 

< W * r *  S - V *  'C 
.el t^ja^XaAA, oAa oU '̂~>v-e-t, W^t>c5_ /TU. Lcc*%*-tk u^ju^LQA  ̂ OXJL CXJL 1̂^  ̂

30  ^»^2  ! • •  

^ = <^.~= L 

A»J. 15" , <3^ 



r \ 
A P P L I C A T I O N S  O F  A  C A T H O D E  R A Y  T O B E  R E A D 

O U T  D E V I C E  F O R  T H E  I B M  7 0 1  E L E C T R O N I C  
D A T A  P R O C E S S I N G  M A C H I N E  

P a u l  A r m e r  

P - 5 0 9  

8  A p r i l  1 9 5 4  

V J 

1 2  p a g e s  
29-1013-0(RC) 

-7& K -H 11 V 
1 7 0 0  M A I N  S T .  •  S A N T A  M O N I C A  •  C A L I F O R N I A  



P-509 
4-8-54 

SUMMARY 

A  C a t h o d e  R a y  T u b e  R e a d o u t  D e v i c e  f o r  t h e  7 0 1  i s  d e s 
c r i b e d  f r o m  t h e  u s e r s  v i e w p o i n t .  I t s  a p p l i c a t i o n  t o  
a  p a r t i c u l a r  p r o b l e m  i s  d i s c u s s e d .  T h i s  p r o b l e m  i n -
v o l v e s  a  l a r g e  a m o u n t  o f  o u t p u t  a n d  i s  u n u s u a l  i n  
t h a t  i t  i s  t h e  i n v e r s e  o f  t h e  d a t a  r e d u c t i o n  p r o b l e m .  
M o r e  g e n e r a l  u s e s  a r e  a l s o  t o u c h e d  u p o n .  



P-509 
4-8-54 

A P P L I C A T I O N S  O F  A  C A T H O D E  R A Y  T U B E  R E A D O U T  D E V I C E  
F O R  T H E  I B M  7 0 1  E L E C T R O N I C  D A T A  P R O C E S S I N G  M A C H I N E  

A  g o o d  d e a l  h a s  b e e n  w r i t t e n  a n d  a  g r e a t  d e a l  m o r e  h a s  

b e e n  s a i d  a b o u t  t h e  p r o b l e m  o f  d a t a  r e d u c t i o n .  B y  d a t a  r e 

d u c t i o n  I  r e f e r  t o  t h e  p r o c e s s  w h e r e  i n s t r u m e n t s  a r e  r e a d ,  

t h e  r e a d i n g s  a r e  r e c o r d e d ,  a n d  t h e  r e c o r d e d  i n f o r m a t i o n  i s  

t h e n  p r o c e s s e d  t o  y i e l d  a  h i s t o r y  o f  w h a t  t o o k  p l a c e .  S o m e  

o f  t h e  p r o b l e m s  i n v o l v e d  a r e  i n s t r u m e n t a t i o n ,  d a t a  r e c o r d i n g  

a n d  d a t a  p r o c e s s i n g .  T h e  i n s t r u m e n t a t i o n  p r o b l e m  i s  f r e 

q u e n t l y  v e r y  d i f f i c u l t  a n d  t h e  d a t a  r e c o r d i n g  o f t e n  v e r y  

t e d i o u s .  T h e  m e a s u r e m e n t s  a r e  u s u a l l y  m a d e  i n  a n  a n a l o g  

f a s h i o n  s o  a n  a n a l o g - t o - d i g i t a l  c o n v e r s i o n  i s  r e q u i r e d  i n  

o r d e r  t o  p r o c e s s  t h e  m e a s u r e m e n t s  o n  a  d i g i t a l  c o m p u t e r .  

T h e  c o n v e r t e r  m a y  b e  b u i l t  r i g h t  i n t o  t h e  i n s t r u m e n t ,  a s  i t  

i s  i n  a  d i g i t a l  v o l t m e t e r ,  s o  t h a t  t h e  d a t a  r e c o r d e d  i s  

d i g i t a l  i n  n a t u r e  r a t h e r  t h a n  a n a l o g ,  o r  t h e  d a t a  m a y  b e  r e 

c o r d e d  i n  a n  a n a l o g  w a y  a s  i t  i s  o n  a n  o s c i l l o g r a p h  t r a c e .  

A l l  o f  t h i s  i s  s a i d  i n  t h e  w a y  o f  i n t r o d u c t i o n  t o  a  p r o 

b l e m  w h i c h  I  f e e l  w i l l  b e ,  a t  l e a s t ,  o f  a c a d e m i c  i n t e r e s t  t o  

t h o s e  c o n c e r n e d  w i t h  d a t a  r e d u c t i o n .  T h e  s o l u t i o n  t o  t h e  

p r o b l e m  i n v o l v e s  s o m e  h a r d w a r e  w h i c l i  I  f e e l  w i l l  b e  o f  i n t e r e s t  

t o  m o s t  o f  y o u .  T h a t  f a c e t  o f  t h e  p r o b l e m  w h i c h  m a k e s  i t  

u n u s u a l  i s  t h a t  i t  i s  e s s e n t i a l l y  t h e  i n v e r s e  o f  t h e  d a t a  

r e d u c t i o n  p r o b l e m  i n  t h a t  w e  w a n t  t o  e n d  u p  p r o d u c i n g  a n  

i n s t r u m e n t  r e a d i n g  r a t h e r  t h a n  s t a r t i n g  w i t h  o n e .  I n s t e a d  

29-1013-0(RC) 



P-509 
-2-  4-0-54 

o f  a n  a n a l o g - t o - d i g i t a l  c o n v e r s i o n ,  w e  h a v e  a  d i g i t a l - t o -

a n a l o g  c o n v e r s i o n  t o  m a k e ;  t h e  c o m p u t i n g  c o m e s  f i r s t ,  n o t  

l a s t .  

T h e  s p e c i f i c  p r o b l e m  w i t h  w h i c h  w e  w e r e  f a c e d  w a s  t h a t  

o f  t r a i n i n g  a  r a d a r  o p e r a t o r .  F o r  t h e  s a k e  o f  b r e v i t y  I  

w i l l  s i m p l i f y  t h e  p r o b l e m  s o m e w h a t .  O n e  w a y  t o  a t t a c k  t h e  

p r o b l e m  i s  t o  d r e a m  u p  a  s y n t h e t i c  t r a c k  o f  a n  a i r c r a f t  

w h e r e  t h e  c o o r d i n a t e s  i n  s p a c e  a r e  a  f u n c t i o n  o f  t i m e  a n d  

t h e n  s o m e h o w  g e t  t h e  t r a c k  o n t o  t h e  s c o p e  s e e n  b y  t h e  r a d a r  

o p e r a t o r .  L e t ' s  t a k e  a  s h o r t  l o o k  a t  t h e  c o m p u t a t i o n a l  p r o 

b l e m  i n v o l v e d .  S u p p o s e  o n e  w a n t s  t o  p r e s e n t  s i x  t r a c k s  t o  

t h e  o p e r a t o r  a s  a  t r a i n i n g  p r o b l e m  w h i c h  i s  t o  l a s t  o n e  h o u r .  

S i n c e  t h e  p r e s e n t a t i o n  c h a n g e s  w i t h  e a c h  r o t a t i o n  o f  t h e  

r a d a r  a n t e n n a ,  w e  w i l l  n e e d  t o  k n o w  j u s t  w h e r e  e a c h  a i r 

c r a f t  i s  f o r  e a c h  r o t a t i o n .  I f  t h e  a n t e n n a  i n  o u r  t r a i n i n g  

p r o b l e m  m a k e s  o n e  r o t a t i o n  p e r  m i n u t e ,  w e ' l l  n e e d  p o s i t i o n s  

f o r  s i x t y  r o t a t i o n s  f o r  s i x  a i r c r a f t ,  y i e l d i n g  3 6 0  s e t s  o f  

i n f o r m a t i o n  f o r  o u r  p r o b l e m .  F r o m  a  c o m p u t a t i o n a l  s t a n d 

p o i n t ,  w e  c a n  c o m p l e t e l y  s p e c i f y  a  g i v e n  t r a c k  b y  a s s u m i n g  

t h a t  e v e r y  t r a c k  i s  m a d e  u p  o f  s t r a i g h t  l i n e  s e g m e n t s  a n d  

g i v i n g  t h e  c o o r d i n a t e s  a n d  t i m e  o f  t h e  e n d  p o i n t s .  

T h i s  " t u r n i n g  p o i n t "  i n f o r m a t i o n  f o r  e a c h  t r a c k  i s  f e d  

i n t o  t h e  7 0 1 ,  w h i c h  t h e n  c o m p u t e s ,  b y  l i n e a r  i n t e r p o l a t i o n ,  

t h e  c o o r d i n a t e s  o f  t h e  a i r c r a f t  f o r  e a c h  r o t a t i o n  o f  t h e  

r a d a r  a n t e n n a .  W h e t h e r  o r  n o t  t h e  r a d a r  a c t u a l l y  " s e e s "  t h e  

29-1013-0(RC) 



P-509 
-3- 4-8-54 

a i r c r a f t  a t  a  s p e c i f i c  p o i n t  i n  s p a c e  i s  a  f u n c t i o n  o f  t h e  

l o c a l  t o p o g r a p h y .  T h e  7 0 1  i s  p r o g r a m m e d  t o  m a k e  t h e  d e c i s i o n  

a s  t o  w h e t h e r  o r  n o t  t h e  a i r c r a f t  d o e s  a p p e a r  o n  t h e  s c o p e  

a t  e a c h  p o i n t  a l o n g  i t s  t r a c k .  S i n c e  t h e  s e e - n o  s e e  d e c i s i o n  

i s  a  f u n c t i o n  o f  t h e  z  c o o r d i n a t e ,  t h i s  c o o r d i n a t e  m u s t  b e  

c o m p u t e d  e v e n  t h o u g h  o n l y  x  a n d  y  a r e  d i s p l a y e d .  

T o  t h o s e  o f  y o u  f a m i l i a r  w i t h  r a d a r ,  i t  w i l l  b e  o b v i o u s  

f r o m  t h e  a b o v e  t h a t  I  a m  t a l k i n g  a b o u t  a  P P I  s c o p e  -  t h e  

p l a n  p o s i t i o n  i n d i c a t o r .  S u c h  a  s c o p e  p r e s e n t s  o n l y  a  p l a n  

p i c t u r e  o f  t h e  a r e a  a r o u n d  t h e  a n t e n n a .  N o  h e i g h t  i n f o r m a 

t i o n  i s  p r e s e n t e d .  

W h e n  t h e  c o o r d i n a t e s  f o r  e a c h  a i r c r a f t  h a v e  b e e n  c o m 

p u t e d  f o r  e a c h  a n t e n n a  r o t a t i o n ,  i t  i s  n e c e s s a r y  t o  o r d e r  

t h i s  i n f o r m a t i o n  w i t h  r e s p e c t  t o  t i m e .  N o r m a l l y ,  a l l  t h e  

p o i n t s  f o r  a  g i v e n  t r a c k  a r e  c o m p u t e d  b e f o r e  g o i n g  o n t o  t h e  

n e x t  t r a c k .  S i n c e  t h e  p r e s e n t a t i o n  i s  c h r o n o l o g i c a l ,  a  

s o r t i n g  o p e r a t i o n  ( o r  m e r g i n g  i f  y o u  p r e f e r )  i s  r e q u i r e d  t o  

g i v e  a  t i m e  o r d e r i n g  r a t h e r  t h a n  a n  o r d e r i n g  b y  t r a c k .  O n c e  

t h i s  i s  a c c o m p l i s h e d ,  i t  i s  n e c e s s a r y  t o  g e t  t h e  i n f o r m a t i o n  

o u t  o f  t h e  c o m p u t e r  a n d  e v e n t u a l l y  o n t o  t h e  t r a i n i n g  s c o p e .  

J u s t  h o w  w e  w e r e  t o  o u t p u t  t h i s  i n f o r m a t i o n  a n d  s t o r e  i t  

p r i o r  t o  i t s  p r e s e n t a t i o n  o n  a  t r a i n i n g  s c o p e  w a s  t h e  b i g  

p r o b l e m .  T e c h n i q u e s  e x i s t e d  f o r  g e t t i n g  i n f o r m a t i o n  f r o m  

f i l m  t o  t h e  c a t h o d e  r a y  t u b e  ( C R T )  o f  a  r a d a r  s o  f i l m  a p p e a r e d  

t o  b e  a  d e s i r a b l e  m e d i u m  f o r  r e c o r d i n g  a n d  s t o r i n g  t h e  i n f o r -

29-1013-0(RC) 



P-509 
-4- 4-8-54 

m a t i o n  t o  b e  d i s p l a y e d .  

A t  t h i s  p o i n t ,  t h e  o n l y  h u r d l e  r e m a i n i n g  w a s  t o  g e t  t h e  

i n f o r m a t i o n  o n  t h e  f i l m .  T h e  o b v i o u s  a n s w e r  w a s  t o  p h o t o 

g r a p h  a  C R T  w i t h  t h e  c o o r d i n a t e  i n f o r m a t i o n  d i s p l a y e d  o n  i t .  

C R T ' s  h a d  b e e n  u s e d  a s  o u t p u t  d e v i c e s  f o r  c o m p u t e r s  b y  o t h e r  

p e o p l e ,  n o t a b l y  M I T  a n d  t h e  U n i v e r s i t y  o f  I l l i n o i s .  N o w  a l l  

t h a t  w a s  r e q u i r e d  w a s  t o  g e t  t h e  h a r d w a r e  b u i l t .  W e  w e n t  t o  

IBB with our problem and they undertook to construct a CRT 

r e a d o u t  d e v i c e  f o r  u s .  I t  w a s  i n s t a l l e d  o n  o u r  7 0 1  e a r l y  

i n  A p r i l .  

B e f o r e  I  s t a r t  t o  g i v e  s o m e  o f  t h e  d e t a i l s  o f  t h i s  u n i t  

I  w o u l d  l i k e  t o  e x p l a i n  t h a t  b e c a u s e  o f  o u r  p a r t i c u l a r  a p 

p l i c a t i o n ,  i t  w a s  n e c e s s a r y  t o  g e t  a s  m u c h  a c c u r a c y  o u t  o f  

t h e  s y s t e m  a s  t h e  s t a t e  o f  t h e  a r t  w o u l d  a l l o w .  T h i s  a c c u r a c y  

i s  p r o b a b l y  g r e a t e r  t h a n  m o s t  o f  y o u  w o u l d  r e q u i r e  f o r  y o u r  

o w n  p u r p o s e s .  

T h e  u n i t  a c t u a l l y  h a s  t w o  C R T ' s ;  o n e ,  a  s e v e n  i n c h  t u b e  

i r .  w h a t  i s  c a l l e d  t h e  " r e c o r d i n g  u n i t " ,  i s  t h e  t u b e  w h i c h  i s  

p h o t o g r a p h e d .  T h e  o t h e r  t u b e  i s  f o r  v i s u a l  o b s e r v a t i o n  a n d  

i s  a  w h o p p i n g  2 1  i n c h e r .  T h i s  i s  c a l l e d  t h e  " d i s p l a y  u n i t " .  

T h e  r e c o r d i n g  u n i t  w o r k s  s o m e t h i n g  l i k e  t h i s .  I n f o r m a 

t i o n  f o r  t h e  p o i n t  t o  b e  p l o t t e d  m u s t  b e  i n  e l e c t r o s t a t i c  

s t o r a g e .  E a c h  o f  t h e  c o o r d i n a t e s  i s  s p e c i f i e d  b y  t e n  b i n a r y  

d i g i t s .  T h e  x  c o o r d i n a t e  n o r m a l l y  a p p e a r s  i n  t h e  l e f t  a d 

d r e s s  a n d  t h e  y  c o o r d i n a t e  i n  t h e  r i g h t  a d d r e s s  a l t h o u g h  p r o -

29-1013-0(RC) 



P - 5 0 9  
- 5 -  4 - 0 - 5 4  

v i s i o n  i s  m a d e ,  u n d e r  c o n t r o l  o f  a  s w i t c h ,  f o r  r e a d i n g  t h e m  

f r o m  t h e  r i g h t m o s t  2 0  b i t s  o f  t h e  w o r d .  N h e n  a  c o p y  o r d e r  

i s  g i v e n ,  a f t e r  t h e  C R T  h a s  b e e n  s e l e c t e d ,  t h i s  i n f o r m a t i o n  

i s  p a s s e d  v i a  t h e  M u l t i p l i e r - Q u o t i e n t  R e g i s t e r  ( M Q )  t o  t w o  

b u f f e r  s t o r a g e  u n i t s  c a l l e d  t h e  d e f l e c t i o n  r e g i s t e r s .  T h e  

d i g i t a l  i n f o r m a t i o n  i n  t h e s e  r e g i s t e r s  g o e s  t h r o u g h  t w o  

d i g i t a l - t o - a n a l o g  c o n v e r t e r s  t o  b e c o m e  t h e  a p p r o p r i a t e  d e f l e c 

t i o n  v o l t a g e s  f o r  t h e  C R T  a n d  t h e n  t h e  b e a m  i s  t u r n e d  o n .  A l l  

t h i s  m a k e s  i t  s o u n d  q u i t e  s i m p l e  w h i l e  i n  r e a l i t y  i t  w a s n ' t ,  

d u e ,  p r i n c i p a l l y ,  t o  t h e  a c c u r a c y  w e  w e r e  a f t e r .  F o r  e x a m p l e ,  

n o r m a l  C R T  t u b e s  a r e n ' t  v e r y  o r t h o g o n a l  n o r  v e r y  l i n e a r .  T o  

s a t i s f y  o u r  n e e d s  f o r  b e t t e r  t u b e s ,  w e  h a d  D u M o n t  b u i l d  s o m e  

s p e c i a l  o n e s  f o r  u s .  

S i n c e  t e n  b i t s  g o  i n t o  e a c h  c o o r d i n a t e ,  w e  h a v e  a  1 0 2 4 x 1 0 2 4  

r a s t e r .  T h i s  r a s t e r  i s  a b o u t  t h r e e  i n c h e s  o n  a  s i d e  o n  t h e  

s e v e n  i n c h  t u b e .  T h e  s p o t  d i a m e t e r  i s  a b o u t  . 0 1 2  i n c h e s  a n d  

c o n s e q u e n t l y  i s  a b o u t  f o u r  t i m e s  a s  l a r g e  a s  t h e  s p a c i n g  b e 

t w e e n  p o i n t s  o n  t h e  r a s t e r .  T h i s  m a y  s e e m  a  l i t t l e  s t r a n g e  

b u t  w e  h o p e  t o  r e d u c e  t h e  s p o t  s i z e  a t  w h i c h  t i m e  t h e  t e n t h  

b i t  i n  t h e  d e f l e c t i o n  i n f o r m a t i o n  w i l l  b e c o m e  m o r e  m e a n i n g f u l .  
a  

A l s o  w i t h  t h i s  e x t r a  b i t  i t  i s  p o s s i b l e  t o  d r a w / c o n t i n u o u s  

s m o o t h  c u r v e  b y  c a l l i n g  f o r  t h e  d i s p l a y i n g  o f  a d j a c e n t  p o i n t s .  

I  m i g h t  m a k e  s o m e  g e n e r a l  ( I  p u r p o s e l y  e m p h a s i z e  t h e  

w o r d  g e n e r a l )  s t a t e m e n t s  a b o u t  a c c u r a c y .  T h e  s h o r t  t e r m  a c 

c u r a c y  o f  t h e  r e c o r d i n g  u n i t  i s  o f  t h e  o r d e r  o f  . 1 %  o f  f u l l  

29-1013-O(RC) 



P-509 
-6- 4-8-54 

s c a l e .  O v e r  a  p e r i o d  o f  h o u r s ,  i t  i s  c o n c e i v a b l e  t h a t  t h e  

a c c u r a c y  m a y  d e t e r i o r a t e  t o  a s  m u c h  a s  % %  b u t  t o  d a t e  h a s  

s h o w n  v e r y  l i t t l e  t e n d e n c y  t o  a c t u a l l y  d o  s o .  T h o s e  o f  y o u  

f a m i l i a r  w i t h  a n a l o g  e q u i p m e n t  w i l l  u n d e r s t a n d  t h e  r e a s o n s  

f o r  t h i s  -  f o r  t h i s  e q u i p m e n t  i s  a n  a n a l o g  d e v i c e .  T h e  d i s 

p l a y  u n i t  s h o u l d  b e  g o o d  t o  a b o u t  3 %  o f  f u l l  s c a l e .  T h e  

g r e a t e r  e r r o r  i n  t h e  d i s p l a y  u n i t  i s  d u e  t o  t h e  c h a r a c t e r i s t i c s  

o f  t h e  l a r g e r  t u b e .  

S e v e r a l  s e n s e  i n s t r u c t i o n s  h a v e  b e e n  a d d e d  i n  o r d e r  t o  

s h o r t e n  t h e  l o o p  r e q u i r e d  f o r  d i s p l a y i n g  a  n u m b e r  o f  p o i n t s .  

( K i t h  t h e s e  s e n s e  i n s t r u c t i o n s  t h e  t o t a l  t i m e  f o r  d i s p l a y i n g  

o n e  p o i n t  i s  a p p r o x i m a t e l y  4 0 0  m i c r o s e c o n d s .  T h i s  t i m e  i n 

c l u d e s  t h e  t i m e  t a k e n  t o  c a r r y  o u t  a l l  t h e  o r d e r s  i n  t h e  l o o p .  

T h e  a c t u a l  t i m e  c o n s u m e d  i n  t h e  d i s p l a y i n g  o f  a  s i n g l e  s p o t  

i s  a b o u t  2 0 0  m i c r o s e c o n d s .  P e r s i s t e n c e  o f  t h e  s p o t s  o n  t h e  

r e c o r d i n g  t u b e  i s  o f  t h e  o r d e r  o f  a  f e w  m i c r o s e c o n d s ,  a n d  u n 

l e s s  r e g e n e r a t e d ,  c a n  s c a r c e l y  b e  d e t e c t e d  b y  t h e  e y e .  S p o t s  

o n  t h e  d i s p l a y  t u b e  w i l l  p e r s i s t  f o r  a b o u t  2 0  s e c o n d s .  W i t h  

t h i s  l o n g  p e r s i s t e n c e ,  i t  i s n ' t  n e c e s s a r y  t o  w o r r y ,  i f  y o u  

h a v e  a  g o o d  m a n y  p o i n t s  t o  d i s p l a y ,  a b o u t  t h e  f i r s t  p o i n t  

plotted dying out before the last  one is  displayed. At 40Q/W 

p e r  p o i n t ,  s o m e  5 0 , 0 0 0  p o i n t s  c o u l d  b e  d i s p l a y e d  i n  2 0  s e c o n d s .  

T h e  m o v i e  c a m e r a ,  w h i c h  p h o t o g r a p h s  t h e  r e c o r d i n g  u n i t  

C R T ,  i s  n o t  u n d e r  t h e  c o n t r o l  o f  t h e  c o m p u t e r .  T h e  s p e e d  o f  

t h e  c a m e r a  i s  v a r i a b l e  u p  t o  t w e n t y  f r a m e s  p e r  s e c o n d  a n d ,  i f  

29-1013-O(RC) 



P-509 
-7- 4-0-54 

s e t  f o r  t h a t  s p e e d ,  w i l l  a d v a n c e  o n e  f r a m e  e v e r y  5 0  m s  n o  

m a t t e r  w h a t  t h e  7 0 1  i s  d o i n g .  I n  o r d e r  t o  s y n c h r o n i z e  t h e  

c a m e r a  w i t h  t h e  d i s p l a y i n g  o f  p o i n t s  b y  t h e  7 0 1 ,  t h e  s t a t u s  

o f  v a r i o u s  f e a t u r e s  o f  t h e  c a m e r a  i s  r e p o r t e d  t o  t o g g l e s  i n  

t h e  7 0 1 .  T h e  s t a t e  o f  t h e s e  t o g g l e s  c a n  t h e n  b e  s e n s e d  b y  

s e n s e  i n s t r u c t i o n s .  F i v e  s e n s e  i n s t r u c t i o n s  h a v e  b e e n  a d d e d  

f o r  u s e  w i t h  t h e  C R T .  T h r e e  o f  t h e s e  a r e  a s s o c i a t e d  w i t h  t h e  

c a m e r a  a n d  t h e  C R T ,  t w o  o f  t h e m  a r e  i n t e r n a l  t o  t h e  7 0 1 .  T h e  

t w o  w h i c h  a r e  i n t e r n a l  t o  t h e  7 0 1  a r e  o f  g e n e r a l  i n t e r e s t .  

O n e  l o o k s  a t  t h e  p o s i t i o n  o f  t h e  H Q  a n d  t h e  7 0 1  s k i p s  a n  

i n s t r u c t i o n  i f  i t  f i n d s  a  " 1 "  p r e s e n t .  T h e  o t h e r  i s  i d e n t i c a l  

t o  t h e  f i r s t  e x c e p t  t h a t  i t  l o o k s  a t  t h e  2 ~ ~  p o s i t i o n  i n  t h e  

MQ. 

I ' d  l i k e  t o  d i s c u s s  s o m e  o t h e r  u s e s  w e  i n t e n d  t o  m a k e  o f  

t h e  C R T  u n i t .  S i n c e  i t  i s  l o g i c a l l y  t h e  s a m e  a s  a  h i g h  s p e e d  

p o i n t  p l o t t e r  c o n n e c t e d  d i r e c t l y  t o  t h e  c o m p u t e r ,  i t  h a s  t h e  

o b v i o u s  a p p l i c a t i o n s  o f  a  p o i n t  p l o t t e r .  I n  a d d i t i o n  t o  t h e  

p l o t t i n g  o f  r e s u l t s ,  r o u t i n e s  c a n  b e  d e v i s e d  t o  d i s p l a y  a l p h a 

m e r i c  c h a r a c t e r s .  H o w e v e r ,  a s  l o n g  a s  a l l  t h e  p o i n t s  f o r  

e a c h  c h a r a c t e r  m u s t  b e  g e n e r a t e d  w i t h i n  t h e  m a c h i n e ,  t h e  o u t 

p u t  s p e e d  i s  r a t h e r  s l o w ,  b e i n g  o f  t h e  o r d e r  o f  5 0  c h a r a c t e r s  

p e r  s e c o n d .  T h i s  i s  a b o u t  o n e - s i x t h  t h e  s p e e d  o f  a  4 0 7  p r i n t e r .  

A  g o o d  m a n y  c o m p u t i n g  p r o b l e m s  a r e  o f  s u c h  a  n a t u r e  t h a t  

t h e r e  i s  a  m a n  i n  t h e  f e e d b a c k  l o o p ;  t h a t  i s ,  r e s u l t s  f o r  o n e  

r u n  a r e  o b t a i n e d  o n  t h e  c o m p u t e r ,  t h e s e  a r e  a n a l y z e d  b y  t h e  

29-1013-O(RC) 



P - 5 0 9  
— 8 —  4 - 8 - 5 4  

l i u m a n ,  t h e  p r o b l e m  i s  t h e n  c h a n g e d ,  p o s s i b l y  o n l y  t o  t h e  

e x t e n t  t h a t  n e w  p a r a m e t e r  v a l u e s  a r e  c h o s e n ,  a n d  t h e n  t h e  

p r o b l e m  g o e s  b a c k  o n  t h e  m a c h i n e .  T h e  p r o b l e m  g o e s  a r o u n d  

t h i s  l o o p  s e v e r a l  t i m e s  b e f o r e  i t  i s  c o m p l e t e d .  F o r  m a n y  

o f  t h e s e  p r o b l e m s ,  t h e  e c o n o m i c s  o f  t h e  s i t u a t i o n  r e q u i r e  

t h a t  t h e  a n a l y s i s  o f  t h e  r e s u l t s  b e  c a r r i e d  o u t  a p a r t  f r o m  

t h e  m a c h i n e  s o  t h a t  e x p e n s i v e  m a c h i n e  t i m e  i s  n o t  w a s t e d .  

H o w e v e r ,  I  b e l i e v e  t h a t  f o r  s o m e  o f  t h e s e  p r o b l e m s ,  i t  

i s  e c o n o m i c a l l y  f e a s i b l e  t o  h a v e  t h e  h u m a n  " t h i n k  o n  h i s  

f e e t "  a t  t h e  m a c h i n e .  W e  h a v e  b e e n  d o i n g  p r o b l e m s  i n  t h i s  

f a s h i o n  o n  o u r  a n a l o g  e q u i p m e n t  f o r  a  g o o d  m a n y  y e a r s .  C a l 

c u l u s  o f  v a r i a t i o n  p r o b l e m s  a r e  a n  e x a m p l e  o f  t h i s  k i n d  o f  

p r o b l e m .  

T o  d o  t h i s  w e l l ,  t w o  t h i n g s  a r e  r e q u i r e d .  F i r s t ,  i t  

m u s t  b e  p o s s i b l e  t o  p r e s e n t  t h e  r e s u l t s  r a p i d l y ,  p a r t i c u l a r l y  

i f  t h e  o u t p u t  i s  m o r e  t h a n  a  v e r y  f e w  n u m b e r s ,  a n d  t o  p r e s e n t  

t h e m  i n  s u c h  a  f a s h i o n  t h a t  t h e y  m a y  b e  r a p i d l y  a s s i m i l a t e d  

b y  t h e  l i u m a n  b e i n g  i n  t h e  l o o p .  S e c o n d l y ,  t h e r e  m u s t  b e  a n  

e a s y  w a y  f o r  t h e  i n d i v i d u a l  t o  c o m m u n i c a t e  h i s  d e c i s i o n s  b a c k  

t o  t h e  c o m p u t e r .  

I  b e l i e v e  t h e  C R T  f i l l s  t h e  f i r s t  r e q u i r e m e n t  p r e t t y  

w e l l  b u t  t h e  s e c o n d  h a s  y e t  t o  b e  m e t  s a t i s f a c t o r i l y  f o r  t h e  

7 0 1 .  T h e  n e e d  f o r  s u c h  a  f a c i l i t y  f o r  t h e  C P C  g a v e  r i s e  t o  

s u c h  g a d g e t s  a s  t h e  G i z m o  o f  t h e  U n i v e r s i t y  o f  W i s c o n s i n  a n d  

o t h e r  s u c h  " p a r a m e t e r  b o a r d s " .  T h e  s i t u a t i o n  i s  d i f f e r e n t  

29-1013-0(RC) 



P - 5 0 9  
- 9 -  4 - 3 - 5 4  

h e r e ,  h o w e v e r .  F o r  t h e  C P C ,  o n e  w a s  u s u a l l y  s e t t i n g  i n  a  

p r e d e t e r m i n e d  p a t t e r n  -  i t  w a s  J u s t  m u c h  e a s i e r  t o  u s e  t h e  

p a r a m e t e r  b o a r d  t h a n  t o  f e e d  i n  c a r d s  w i t h  t h e  a p p r o p r i a t e  

i n f o r m a t i o n .  T h e  p r o b l e m  w a s  t o  g e t  t h e  c a r d s  i n  t h e  a p -

p r o p r i a t e  p l a c e s  i n  t h e  p r o g r a m  d e c k .  O n  t h e  7 0 1 ,  t h e  s a m e  

t h i n g  c a n  e a s i l y  b e  a c c o m p l i s h e d  b y  c o d e .  H o w e v e r ,  i f  t h e  

n u m b e r s  t o  b e  e n t e r e d  a r e  n o t  p r e d e t e r m i n e d ,  i t ' s  n o t  s o  e a s y .  

I t  i s  p o s s i b l e  t o  g e t  t h e s e  n o n - p r e d e t e r m i n e d  n u m b e r s  

i n t o  t h e  m a c h i n e  v i a  t h e  c o n s o l e  o r  v i a  c a r d s  k e y p u n c h e d  o n  

t h e  s p o t .  B u t  n e i t h e r  o f  t h e s e  m e t h o d s  w o r k s  o u t  v e r y  w e l l .  

M r .  E u g e n e  J a c o b s  o f  R A N I )  c a m e  u p  w i t h  a n  i m p r o v e m e n t  o v e r  

t h e  a b o v e  s c h e m e s  w h i c h  u s e s  t h e  c a r d  r e a d e r .  I m p u l s e s  f r o m  

t h e  d i g i t  e m i t t e r  o n  t h e  r e a d e r  a r e  t a k e n  t o  a  r o t a r y  s w i t c h  

a n d  t h e n  b a c k  t o  t h e  C a l c u l a t e  E n t r y  h u b s .  O n e  s w i t c h  i s  

r e q u i r e d  f o r  e a c h  d i g i t  t o  b e  e n t e r e d .  T h r o u g h  t h e  u s e  o f  

s e l e c t o r s ,  s u c h  a  b o a r d  c a n  s t i l l  b e  u s e d  t o  r e n d  c a r d s  

n o r m a l l y .  W h e n  e n t e r i n g  n u m b e r s  i n  t h i s  f a s h i o n ,  b l a n k  c a r d s  

w i t h  a n  a p p r o p r i a t e  x  p u n c h  a r e  u s e d .  

N a t  R o c h e s t e r  o f  I B M  h a s  s u g g e s t e d  y e t  a n o t h e r ,  t h o u g h  

s i m i l a r ,  s c h e m e  w h i c h  u s e s  t h e  e c h o  i m p u l s e s  f r o m  t h e  p r i n t e r  

b a c k  t o  t h e  c o m p u t e r  t o  g e t  i n f o r m a t i o n  f r o m  a  G i z m o - l i k e  

s e t u p  i n t o  t h e  m a c h i n e .  H o w e v e r ,  n e i t h e r * o f  t h e s e  m e t h o d s  

q u i t e  s a t i s f i e s  m c  f o r  I ' v e  b e e n  s p o i l e d  b y  a l l  t h e  p o t e n t i o 

m e t e r s  ( p o t s )  I  c a n  s e t  o n  o u r  a n a l o g  c o m p u t e r .  I ' d  l i k e  t o  

have pots, either analog or digital, to set on the 701. 

29-1013-0(RC) 



P-509 
-JO- 4-8-54 

I ' d  l i k e  t o  g o  e v e n  a  l i t t l e  f u r t h e r  w i t h  t h i s  p o t  i d e a  

a n d  a s k  t h a t  t h e s e  p o t  s e t t i n g s  b e  a d d r e s s a b l e  i n  t h e  s a m e  w a y  

a s  a n y  m e m o r y  p o s i t i o n .  I f  I  h a d  s e v e r a l  s u c h  a d d r e s s a b l e  

p o t s ,  t h e n  I ' d  a l s o  l i k e  s o m e  a d d i t i o n a l  a n a l o g  o u t p u t s  s u c h  

a s  m e t e r s  a n d  m a y b e  e v e n  a n o t h e r  C R T  d i s p l a y  u n i t .  

29-1013-0(RC) 



SORTING ON THE 701 

by 

D. T. Blum and P. Fagg 

With contributions by: 

L. B. Stinnett 

H. D. /vram 
v 

N. D. Belnap 

T. E. McCool 

29-101i-0(BF) 



This paper attempts to describe the effort of oar 701 programming group 
on sorting. 

It is well to state, in the beginning of this paper, that there was a great deal 
of skepticism displayed by those involved in initial planning of programs for 
our 701 concerning the feasibility of utilizing a "mathematically conceived!' 
electronic computer for data-handling problems; one of these problems was 
sorting. However, it was felt that it was important to program a sort of 
some kind, exploiting all possible time-saving mechanisms in programming. 
Unfamiliarity with 701 programming, inexperienced personnel, and lack of 
development time hampered a truly thorough search of the problem, and we 
are still involved in that program now, over a year since our machine was 
delivered. 

Much effort is yet to be expended in the future. We have adapted programs 
of other people, have written original programs, and have varied our opera
tional procedure according to the job on hand. We have found, as yet, no 
set rule for application to all jobs which require sorting. However, we feel 
that we have proven the feasibility of sorting on the 701, and are processing 
data utilizing sorting programs at the present time. 

29-1013 ~0(BF) 



THE BIT SORT 

The "Bit Sort" is a 701 program designed to sort information in binary form 
bit by bit. It has the advantage of allow in g sorting on any particular number 
of bits, rather than on a specified number of half or full words. 

In theory, the bit sort is actually a special case of multi-bit or address sort. 
It performs on the 701 what a non-existent two pocket sorter could perform on 
cards punched with data in the binary system (ie. ,only I's or O's). A description 
of the bit sort in terms of the two pocket sorter, with the analogous 701 terms 
in parenthesis, follows below. 

First, the data cards are loaded into the hopper of the two pocket sorter (the 
binary data is loaded onto magnetic tapes). Then, starting at some specified 
column (bit location), all cards (full words) with a 0 in that location are routed 
to one pocket (tape), and those with a 1 are routed to another pocket (tape), At 
the end of one run (pass), the cards are reloaded in the sorter hopper so as to 
preserve the effects of the previous passes (the tapes are read backward in the 
proper order) and the process is repeated until the data has been sorted on desired 
columns (bits). 

An actual example showing the steps involved in this particular bit sort is given 
later. 

The particular bit sort in use was written by T. E. McCool, and has the following 
characteristics: 

1. Without any manual changing of the tapes, it will sort a 
maximum of one full tape of data, and the original data may 
be on either tape 400 or 401 or both as specified by positive 
constants in two locations. 

2. The initial data tape can consist of any number of unit records 
of 200 full words or less, but always with an even number of full 
words per unit record. Each unit record is comprised of "sorting 
units" of two full words, the first containing indicative,informdtibn, 
and the second full word containing the data to be sorted. The 
number of sorting units in different unit records can be variable 
so long as it does not exceed 100. A similar program could be 
written also allowing flexible sorting unit format, but we do not 
have one available. 
3. At present it is set to sort on all 35 bits of the full word, al
though with minor modifications or a calling sequence it could be adapted 
to sort any block of bits within the full word. 

- 2 -

29-1013-0(BF) 



The actual program is written in symbolic, and it has been assembled to use 
the following locations: 

Decimal Octal 

Program Storage 300-632 0454-1170 
"0" Storage blocks 800-1199 1440-2257 

1200-1599 2260-3076 
"1" storage blocks 1600-1999 3100-3717 

2000-2399 3720-4537 

Total storage 1933 decimal locations,, 

A step by step example of the use of the bit sort on binary information follows: 

The tapes with the initial data (tapes 400 or 401 or both), must be positioned 
at the end of file before the bit sort can begin, as the program only reads backwards. 

Assume a file of 7 unit records on tape 400, which are to be sorted successively 
' on bits 1,2,3, 4, and 5 from the right of the full word. Instead of showing the 

full sorting units, consisting of one full word of indicative followed by a full 
word of sorting material only the bits actually being sorted are shown. In sorting, 
these units are preserved as compete entities. 

INITIAL DATA ON TAPE 400 

bits 54321 

00100 Beginning of file 
11111 
11011 
10111 
00111 
10100 
10010 End of file 

In the first pass, tape 400 is read backwards from the end of file condition, a 
full unit record at a time (note that in any pass, an entire unit record, not a sorting 
unit, is either written or read at one time). The data in each unit record is 
examined on bit 1, and all the sorting units with a "0" in bit 1 are stored in the 0 
storage block in electrostatic memory, while the "1" data is stored in the 1 
storage block. The contents of these storage blocks in electrostatic memory 
are written only on the appropriate tapes after 200 sorting units-have been accumu
lated, or at the end of the sorting pass. The first pass takes the original data, 
which may have been in variable length unit records, and puts it into unit records 
containing 200 sorting units, except for the last unit record, which may be short. 

29-1013 -0(BF) - 3 -



For any odd pass, data is read backwards from tape 400 and then 401, the data 
with a zero in the bit being sorted, is written on tape 402, and the data with a 
one is written in tape 403. 

The results of the first pass are given below: 

"0" Tape (402) "1" Tape (403) 
1_ 1_ Beginning cf File 

10010 00111 
10100 10111 
00100 11011 

11111 End of file 

SECOM) PASS 

On the second, and all even passes, the "1" tape from the preceding pass (403) 
is read backward before the "0" tape (402). This sequence is necessary to 
preserve the effects of previous sorting passes. The new "0" data is written 
on tape 400, and the "1" data on tape 401, as indicated below: 

At the end of each even pass, the data is in descending sequence according to 
the sorted bits when reading forward from tape 401 and then tape 400. 

"0" Tape (400) "1" Tape (401) 

2 22 
00100 11111 
10100 11011 

10111 
00111 
10010 

THIRD PASS 

In the third pass, and all odd passes after the first, the "0" tape (400) is read 
backward firs^/the "1" tape (401) is read backward next, the new "0" data is 
written on tape 402, and the new ,fl" data is written on 403. This reading sequence 
preserves the effect of the previous passes. 

At the end of each odd pass, the data is in ascending sequence according to the 
sorted bits wken reading forward from tapes 402 and then 403. 

"0" Tape (402) "l" Tape (403) 
3 3 

10010 10100 
• 11011 00100 

00111 
10111 
11111 

29-1013-0(BF) - 4 -



The results for die 4th and 5th passes are shown below: 

^FOURTH PASS FIFTH PASS 

"0" Tape (400) "1" Tape (401) "0" Tape (402) "1" Tape (403) 
4 4 5 5 

10111 11111 00100 10010 
00111 11011 00111 10100 
00100 10111 
10100 11011 
10010 11111 

For each pass after the first, the basic rules and the results for each pass are outlined 
below: 

ODD PASS 

1. Read back "0" tape (400), then "1" tape (401) 
2. Write resulting "0" data on tape 402, "1" data on tape 403 
3. The results at the end of this pass will be in ascending sequence when reading 
forward from tape 402 and then 403. 

EVEN PASS' 

1. Read back "1" tape (403) then "0" tape (402). 
2. Write resulting "0" data on tape 400, "1" data on tape 401. 
3. The results at the end of this pass will be in descending sequence when reading 
forward from tape 401 and then 403. 

Note that data with zero in the bit being sorted is always written on either tape 
400 or 402 and data with a one in the corresponding bit is always written on either 
tape 401 or 403. 

The final status of the data at the end of the sort depends only on whether there have been 
an even or an odd number of bits sorted on. 

TIMING 

A full tape, or about 1100 unit records of information, can be sorted on a full word (ie. , 35 
passes), in about 3 hours, or about 5 minutes/bit/full tape. This is equivalent to roughly 
0.3 sec/unit-record/bit. For sizeable quantities of data, the total time is about twice the 
reading time required, remembering that in effect only one bit is read during each pass. 
On the average, for each unit record that is read from the tape, one unit record is written 
on either the "1" or "0" tape. Actually the zero or one data is written whenever the storage 

^jplock (which is equivalent in'size to a full unit record) becomes filled. 

Added to the double reading time required is the time consumed in Writing End of File, 
in Reading Back from the End of File condition, in Rewinding past the Beginning of File, 
and in Writing the Beginning of File. This time is completely independent of the number 
29-1013-0(BF) - 5 -



of unit records, and totals about 3.6 seconds/bit, or 2 minutes/full word. 

Expressed mathematically, the total sorting time may be expressed by the equation 

Total time (minutes) = number bits being sorted (.06 + number of 200 
word-unit records x .005 ) 

Note that by dealing with unit records usually containing 100 words to be sorted, rather 
than having a separate unit record for each sorted word, the sorting time is reduced 
considerably, the strain ot the tapes is decreased, and the amount of information which 
can be stored on the tape is increased perhaps eight fold. 

USE 

The "bit sort" is exceeding useful in several operations. It is the only sort we have which 
is well adapted to block sorting large quantities of data (ie. ,of breaking it up into blocks, 
not of sorting individual blocks). It is equally good for sorting information using only a 
few bits in the sorting wor$, and it is flexible enough to be used as a normal sort within 
other programs. One of its main disadvantages has been the operational necessity of 
starting over when tape trouble occurs. Also, unless the original material is duplicated 
and saved on another tape, it may be lost. Use of the i?Sense Tape" order should reduce 
this difficulty, but will not eliminate it. 

OPERATIONAL EXPERIENCE 

The "bit sort" has been used successfully many times, but it has encountered tape trouble 
on many occasions for several reasons. 

1. Inadequate storage of the tapes, if tape performance can be improved 
considerably by special storage of the tapes. No special care is given to 
our tapes other than keeping them in the 701 air conditioned room. 

2. The "bit sapt" is hard on the tapes, and most trouble within the tape units 
of the 701 will show up as operational difficulties. For sorting on more than a 
few bits, the bit sort may read and write on the tapes more than some of the 
other sorting programs, and therefore may be more subject to tape errors. 

The possibility of either losing the original data, or having to restart the sorting operation 
if machine trouble occurs, must be considered. 

- 6 -

29-1013-0(BF) 



ADDRESS Off MULTI-BIT SORT 

^•The "address sort" is a 701 program designed to sort information stored within the 
^Electrostatic memory. 

The input is a number of units of data. The address sort does not actually move the data 
being sorted^ rather, its output is a file of addresses with the address of the lowest valued 
data first, and the address of the highest value data last. It does this by a method akin to that 
employed by the standard IBM sorter. That is, the addresses of the sorting units are 
distributed into various pockets (blocks of electrostatic memory), according to the value 
of groups of bits in successively more significant fields (that is, in minor, then intermediate, 
then major fields), until the sort is completed. 

p?he method employed in sorting on a particular group of bits is basically as follows: A run 
is made through all the data in order to count the number of units of data in each category. 
There will be two categories, where n is the number of bits being sorted each pass ( n is 
usually 5, 6, or 7). "n" bits is equivalent to a single character. A "pocket" (block of 
electrostatic memory) is then allocated or set up for each category, and its size is determinec 
by the number of units of data in this category, as found in the counting described ^bove. 
It is then necessary to make an additional run through the data in order to put the addresses 
of the units into the pockets provided for them. The operation is similar to that of the IBM 
sorter, except that variable pocket sizes are pre-determined by the counting, because it is 
inconvenient to "empty" a pocket when it gets full, as is done on the sorter. 

^^Consider the following example which indicates the steps involved in address sorting some 
data. The 701 category will be complete if instead of considering sorting by columns, groups 
of bits or characters/ had been sorted each pass. 

The data to be sorted by means of its addresses consists of six two digit numbers, and it is 
known that the value of these digits ranges from 0 to 3. Nine locations of associated material 
follow each two digit number location. In other words, the sorting block consists of 10 
locations, and it is to be sorted on the data in the first location The addresses or locations 
are followed by the letter A to distinguish them from the data. 

LOCATIONS OF INFORMATDN 
LOCATIONS OF DATA DATA TO BE ASSOCIATED WITH THE 

TO BE SORTED SORTED DATA TO BE SORTED 

QA 21 1 A - 9 A 
10 A 10 11 A - 19 A 
20 A 30 21 A - 29 A 
30 A 12 31 A - 39 A 
40 A 01 41 A - 49 A 
50 A ,23, 51 A - 59 A 

Col. 2 Col. 1 

- 7 -

29-1013-0(BF) 



FIRST PASS 

Each pass consists of three major steps: 

1. Accumulate the frequency of the characters in each category for the 
column being sorted, (ie., the number of O's, l's, and 2's in column 1). 
Thife entails one run through the data. 

LOCATION OF COUNTER WHAT IT COUNTS RESULTS (on col. 1) 

t 

100 A zeros 2 
101 A ones 2 
102 A twos .. 1 
103 A threes * 1 

2. COMPUTE THE INITIAL STORAGE ADDRESSES FOR EACH CATEGORY 
(Starting at locationjfequals 200 A) 

Stores addresses of data with O's in col. 1 beginning at loc. 200 A 
Stores addresses of data with l's in col. 1 beginning at loc. 202 A 

(200 A plus number of O's) 
Stores addresses of data with 2's in col. 1 beginning at loc. 204 A 

(200 A plus number of O's and l's) 
Stores addresses of data with 3's in col. 1 beginning at loc. 205 A 

(200 A plus number of O's, l's, and 2's.) 

3. SEQUENCE THE ADDRESSES 0F THE DATA ACCORDING TO THE SORT ON Col. 1 

Examine the first column of the original data directly again and store the address 
of the data in the appropriate category and location as determined in step 2. Af ter 
storing an address in any category, increase the storage address for that category 1 
location. 

LOCATION OF SORTED ADDRESSES ADDRESS STORED (in parentheses is 
STORED BY THE FIRST PASS the column the address refers to ) 

200 A 10 A (address of 0 in col. 1 
201 A 20 A (address of 0 in col. 1 
202 A OA (address of 1 in col. 1 
203 A 40 A (address of 1 in col. 1 
204 A 30 A (address of 2 in col. 1 
205 A 50 A (address of 3 in col. 1 

SECOND AND ALL FOLLOWING PASSES 

The major difference between the first and the succ eeding passes is that the succeeding 
passes must preserve the effect of the previous passes. The effect of this shows up in 

- 8 -

29-1013-0(BF) 



step 3. Step 1 and step 2 can be done as before, using thernn through theunsorted data. 
The actual sequencing in step 3 must be dom through reference to the addresses just 
sorted and then to the data, rather than referring directly to the unsorted data. 

1. COUNT the data in each category as before, except that the sort is now being 
maple on a different column (ie., col. 2 in this example). 

LOCATION OF COUNTER WHAT IT COUNTS RESULTS (on col. 2) 

Note that the counter locations and what they count are fixed, but the counters 
themselves are cleared to zero before each counting run. 

2. COMPUTE THE INITIAL STORAGE ADDRESSES FOR EACH CATEGORY 

There are two blocks of storage for the addresses: The X block (starting at 
address 200 A in this example), and the Y block (starting at 300 A). These 
blocks are alternated each pass, so that the Y storage locations are used for 
all the even numbered passes, and the X storage locations are used for all the 
odd numbered passes, such as the first one. 

Start storing address of data with 0's in col. 2 in loc. 300 A 
Start storing address of data with l's in col. 2 in loc. 301 A 

(300 A plus the number of 0's) 
Start storing address of data with 2's in col. 2 in loc. 303 A 

(300 A plus the number of 0's and l's) 
Start storing address of data with 3's in col. 2 in loc. 305 A 

(300 A plus the number of 0's , l's, and 2's) 

3. SEQUENCE THE ADDRESSES OF THE DATA ACCORDING TO THIS SORT AND 
THE PREVIOUS SORTS (For this example, according to the major sort on col. 2 
and the minor sort on col. 1) 

Pick up the data that the first address in X or Y (whichever was stored in the last 
pass) refers to. Examine the data on the column being sorted, and store the address 
of this data in the appropriate category and location as determined in step 2. 
After storing an address in any category, increase the storage address for that 
category 1 location. Pick up the next address sorted during the previous pass, then 
the data it refers to, and continue in this fashion until the pass is completed. Note 
the extra step introduced here to preserve the effects of the previous passes. In the 
first pass: 

100 A 
101 A 
102 A 
103 A threes 

zeros 
ones 
twos 

3 
2 
2 
1 

- 9 -
29-1013-0(BF) 



a. The original data is referred to. 
b. The addresses of this data are stored in the appropriate locations. 

In all other passes: 

a. The addresses sorted in the previous pass are referred to. 
b. The original data to which these addresses refer is examined. 
c. The addresses of this data are stored in the appropriate locations. 

LOCATIONS OF SORTED ADDRESSES ADDRESS STORED (in parentheses 
STORED BY THE FIRST PASS is the data the address refers to) 

300 A 40 A (address of 01) 
301 A 10 A (address of 10) 
302 A 30 A (address of 12) 
303 A OA (address of 21) 
304 A 50 A (address of 23) 
305 A 20 A (address of 30) 

At the end of this pass, continue in the same manner as for the 2nd pass until all 
the columns to be sorted have been completed. 

The file of addresses is now in order according to the data it refers to, and an exit is 
made from the address sort. From this point on, the programmer can either rearrange 
the actual data into sort within electrostatic memory, store the data in sort on the tapes 
or drums, work with the sorted addresses, or treat it in some other manner. Programming 
to use the addresses is not difficult, although some storage problems may arise in actually 
moving the data within electrostatic memory. 

PROGRAM CHARACTERISTICS 

This'hddress" or "multi-bit" sort was written by N. Belnap, and must be supplied with 
the parameters listed below. A sorting unit is defined as one complete unit of information 
to be sorted together with the associated indicative information. It is comparable to an IBM 
card, and consists of a specified number of full words. A sorting block consists of a 
group of sorting units, each wih the same format. 

1. Number of full words in the sorting unit, including the non-sorted 
or indicative information. 
2. Number of full words within the sorting unit to be actually sorted. 
(Note that as the program is now written the sorted material must come 
just within the sorting unit; also the program sorts on groups of bits of 
full words. Therefore all numbers are sorted on their absolute bit value.) 
3. "n", the number of bits to be sorted each pass. 2 counter locations 
must be set aside in memory, n = 5 through 7 is a reasonable value, although 

- 10 -

29-1013-0(BF) 



12 is theoretically possible. Increasing the number of bits being sorted 
does not necessarilytdecrease the sorting time proportionally, as more 
time is required to clear the counters and to set up the initial category 
addresses. 
4. Number of passes to be made per full sorting word. 
5. Number of non-sorted bits in the right of each word. The combination 
of 3, 4, and 5 means that the bits to be sorted on within each full word can 
be specified, but these bits must be the same for all the full words being 
sorted within the sorting unit. 
'6. Number of sorting units per block. 
7. Address to transfer to when the program is completed. 

In the accompanying listing, the program -sorts information in the following form : 

1. 4 full words per sorting unit. 
2. Sort on 1st three full words 
3. Sort 7 bits per pass. 
4. 5 passes per full word. 
5. No unsorted bits in the right of the full word. 
6. 500 sorting units per block. 
7. Transfers tor symbolic location 50.00.00 at end of program. 

STORAGE 

The actual program is written in symbolic, and has been assembled to use the following 
locations: 

Decimal Octal 
Program Storage 200 - 437 310 - 665 
Counter Storage 0 - 127 0 - 177 
X storage block 3000 - 3499 5670 - 6653 
Y storage block 3500 - 3999 6654 - 7637 
Data 1000 - 2999 1750 - 5667 

If the maximum storage space is to be used, and the data is to be rearranged within 
electrostatic memory after the address sort, it might prove helpful to reassemble and use 
blocks of memory other than those utilized now. 

TIMING 
For sorting data within eletstrostatic memory, the address sort is very efficient and is 
the only general program we have available. The special cases of a very small quantity 
of data, or data without indicative information could probably be processed more quickly 
by some other program, but thealdress sort will handle them. 

-  11  -

29-1013-0(BF) 



If P = number of passes needed to complete the sort (ie., the total number of 
bits to be sorted divided by the number of bits sorted in one pass) 

U = Number of sorting units per sorting block. 
then the total address sorting time T is given approximately by the expression: 

T = 2 P U / 1000 seconds 

If n is called the number of bits sorted each pass, thenf a more exact expression 
for the total sorting time is: 

T = 1.76 + P(l.76 + ,76n + 1.92 U) 
1000 seconds 

For example, to address sort 200 sorting units on three full words, seven 
bits per pass, and to carry along one or two full words of indicative information, 
would take about 2PU/1000 = 2(15)(200)/1000 = 6 seconds. 

USE 
The address sort is the only general purpose sort for handling data within electrostatic 
memory that we have available, and therefore it is used extensively. 

The address sort is well adapted to sort blocks of data on the tapes or the drums, provided 
that each block does not exceed the capacity of electrostatic memory. The blocks will 
be sorted independently of each other, and therefore machine failure should normally 
result in loss of only a few seocnds or a few minute^ machine time. If, however, the orig
inal data tape is damaged in processing, an indefinite amount of time is lost. 

A revised version of this program is now being written making possible the following 
variations by the use of appropriate parameters: 

1. Size of sorting unit and sorting field 
2. Size of block 
3. Location of sorting field within the unit 
4. Size of character to be sorted on each pass 
5. Location and number of characters in each word. 

OPERATIONAL EXPERIENCE 
The address sort by itself utilizes only electrostatic memory, which has proven itself to 
be quite reliable compared to the other components of the 701. As a result of this factor 
and the rapidity or short duration of the sort it has not encountered any machine operating 
difficulties. 

- 12 -

29-1013-0(BF) 



The address sort has not been tested extensively on single or multi-tape sorting, although 
it will be in the near future. It is expected to perform more reliably than any other type of 
tape sort, due to the minimum of tape references. The data tapes are read once only, 
and the sorted data is written once. Tape breaks, etc. may cause considerable trouble, 
but the possibility of tape trouble is minimized. 

t 
29-1013-0(BF) 

- 13 -



BUCHHOLZ SORT 

The "Buohholz" sort is an adaptation of an IBM program which was written for an earlier 
version of the 701. 

The Buchholz sort is a merge sort, which merely means that it is patterned after a 
collator rather than a sorter. Instead of sorting data into "pockets" by some means, it 
sorts by building "sequences'1 . In its present form, it is limited to sorting a maximum 
of one full tape of data, and each sorting unit must be in a separate unit record, identical 
in format with the other sorting units. It is an ascending sort. 

In theory, the Buchholz sort is nearly identical with the standard 519 IBM collator as it 
is used to merge and sequence check. There is one major change. Normally, the 
collator is wired so that when a step-down condition occurs, either the collator stops or 
the out of sequence card falls into a different stacker. In the 701 version of the collator, 
a sequence change rather than a single step-down condition by itself results in a change 
in procedure. 

A single step-down condition by itself does not constitute a sequence break. A sequence 
break consists of the following conditions: 

1. Step-down in both primary and secondary feeds. 
2. Step-down in one feed, and no cards in the other feed. 
3. No cards in either feed (this is really an end of one merge pass). 

In the 701 collator stackers are employed alternately. The stacker being used is reversed 
in each sequence break, so that alternate sequences go to alternate stackers. In this way 
each new sequence including the sequence breaking card, goes into the alternate pocket. 
At the end of a pass, the cards from each stacker are kept separated and are reloaded 
into the primary and secondary feeds in preparation for another merge pass. On the 
initial pass, only one feed is utilized. However, on the 701 version of the collator, the 
effect is that this one feed supplies cards to both the primary and secondary. 

In the simplified flow chart this modification on the change of sequence is indicated by the 
block which alternated the tapes upon which the data is being written. The purpose of 
alternating the output tapes is to have the merged sequences about equally divided in 
number in two different files ready for the next pass, also to speed up the sorting. 

With a few minor changes, the following explanation and example of the merge sort are 
taken from Buchholz's own description, IBM Report 11.010.241, April 25, 1951. The 
simplified flow chart shows most of the logic employed. 

Four tapes are used, two tapes serving as the input and two tapes -serving as the output. 
The roles of the pairs being interchanged after each pass. The memory location of the 
two unit records will be referred to as A and B. In addition to storing in A and B, it 
is necessary to store the control word of the last preceding unit, record which was written 
on one of the two output tapes. This control word will be called P, and it starts at 0, 
and is reset to 0, for each pass. 

29-1013 -0(BF) - 14 -



Tapes and Tg are possible inputs for memory locations A, and tapes Tg and T^ for B. 

Daring one pass and Tg will be feeding unit records to A and B, respectively, with Tg 

and acting as output tapes. During the next pass, A will recei/e information from 

Tg and B from T^, and Tg being the output tapes. During the first pass only, the 

single tape supplies unit records to both memory locations A and B. 

In order to merge pairs of sequences from the input tapes into longer sequences on one 
of the output tapes, it is necessary to make a three-way comparison between A, B, and 
P. The comparison determines whether A or B should be written next, or whether a 
new sequence must be started. The process is perhaps best explained by an example. 
Let each control represent an entire unit record. Decimal rather than binary numbers 
are chosen for convenience. 

A set of 13 "unit records" are assumed to be distributed on tapes T^ (400) and Tg (401) 

in an arbitrary manner as indicated below. These unit records fall into 7 sets of subse
quences as indicated by the solid lines. 

t 
The object is to merge these sequences into larger ones, and to distribute them alternately 
onto tapes Tg (402) and T^ (403) starting with Tg, as indicated belbw. 

MERGE MERGE 
DATA BEFORE. PASS DATA AFTER PASS 

T1 T2 T3 T4 

45 01 01 08 
53 53 45 13 
67 13 53 30 
08 30 53 83 
02 27 67 
15 86 02 

83 15 
27 
86 

The step-by-step procedure by which the result is obtained is given below. The data 
in parenthesis is unchanged from the previous step. The blank columns indicate unused 
decisions or data unref erred to. 

- 15 -
29-1013-0(BF) 



CONTENTS OF 
A B P 

DECISIONS 
Write A Write B 

45 
(45) 
53 
67 

(67) 
08 

(08) 
02 

(02) 
(02) 
(02) 
15 

END 
RUN 
OUT 

01 
53 

(53) 
(53) 
13 

(13) 
(13) 
(13) 
30 
27 

(27) 
(27) 

((27) 
J 86 
\  83 

1(83) 
END 

reset to 
00 
01 
45 
53 
53 
67 

08 
13 
30 

02 
15 
27 
86 

83 

X 
X 

X 

X 

X 
X 

X 

X 
X 

X 
X 

X 

SWITCH OUTPUT 
TAPES COMMENTS 

i 

X 

X 

X 

step-down in B 
stept-down in A 

step-down in A 

step-down in B 

end of A 

step-down in B 

end of B 

To begin with, the first unit records from T. (45) and T^ (01) are stored at locations 
A and B. They are compared in step 1, and" the lower one, 01 in B, is written on T^. 
It is replaced by the next recoid from T£, 53, as shown on line 2. The control work 
of the outgoing record is stored in P. Both A and B are greater than P; this means that 
the sequence is not yet ended. A and B are compared again in step 2; this time A is 
smaller and it is written on Tg. In step 3, A and B are equal; either A or B could be 
written. An arbitrary convention is followed of always writing A when they are equal. 
B is written on the following line 4. 

t 

At step 5, it is found that the new B (13) is smaller than P. Thus B must belong to a 
new sequence. This condition is referred to as a "step-down" in B. Note that a single 
step^down by itself does not constitute a break in sequence. No more records from B 
can be added to the present sequence. But A is still greater than P, and it is now 
written. In step 6, however, there is also a step-down in A. Thus the sequence is ended, 
as neither A nor B can be added to the present sequence, and the output is switched to 
tape T4 to start a new sequence. In step 7, A and B are again compared, and A being the 
lower, it is written on T4. P is effectively 0 for each start of a new sequence, although 
this result may be achieved by by-passing the comparison with P, rather than actually 
resetting it to 0. In step 7, A and B are again compared, and A being the lower, it is 
written on T4. This continues until at step 10, there has been a step-down in both A and 
B. The output is switched back to Tg, and the merging continues. 

- 16 -

29-1013-0(BF) 



At step 13, Tape T-^ has come to an end, and hence there is nothing more in A. The 
unit records remaining in B and on Tg must still be run out to the output tapes. This 
is done ty a simple comparison of P and B So long as B is greater or equal to P, B 
is written on the current output tape. When B is less than P, the output tajies are switched 
and the process continues. When Tg also comes to an end, this pass is finished. A 
new pass may then begin using Tg and T^ as the input. 

The end of sorting is indicated when no switching of output tapes occurs for an entire 
pass. If the sorted data is on tape Ti (400), the program stops; otherwise it rewrites 
it onto 400. This rewrite option, which may consume 5 minutes or so for a full tape, 
may be eliminated if desired. 

CHARACTERISTICS OF PRESENT PROGRAM 

This merge sort was written by W, Buchholz of IBM, and our adaptation for the701 
was written by H. Avram. The actual program was written in symbolic, and has been 
assembled into storage locations 300g through 753g, or a total of 299-^q half word 
locations. 

The program must be supplied with the data indicated for the following locations, either 
manually or by a calling sequence: 

302o + N Number of full words in a unit record = N 

The original file of unsorted data must be on tape 400, and the file of sorted data will 
end on tape 400. 

The program stops at the end of the first pass, allowing the original data tape to be 
taken off and replaced, so that the original data need not be lost unless tape 400 breaks 
while being read the first time. 

It is possible, with minor modifications which have been made and tested, but are not 
in the accompanying listing, to sort on either half word of the specified full word, 
instead of the full word. 

Sorting non-positive numbers has not been tried, but the theory indicates that the numbers 
would be sequenced in the following normal order: 

The largest valued negative number to - zero followed by plus zero and the 
positive numbers in ascending order. 

3048 -

305a -

306g + 

303g + k Control word or word to be sorted upon is k word of 
the unit record 
First address of unit record A 

First address of unit record B 

Address where transfer to at end of merge. 

- 17 -
29-1013-0(BF) 



This merge sort does not employ the Read Tape Backward order, which would result 
in considerable time saving. The Buchholz sort is written very compactly, is not 
easily modified and as we have not used it extensively, not too much effort has been 
expended in revising it. 

TIMING 

Unlike many sorting programs whose operational time varies in general only with the 
amount of data being sorted, the time for the merge sort varies with the quantity of the 
data and the type of sort it is in already. In other words, the number of passes re
quired to merge the data varies with the type of data. The maximum and minimum 
sorting time result when the data is in sort in reverse order, and in sort in ascending 
order respectively. If the data is random, the sorting time is one-half the maximum 
time. The number of passes required to complete the sort, and the respective times 
required are given below: 

TYPE OF DATA 

In ascending sort 

NUMBER OF MERGE PASSES 
REQUIRED TO COMPLETE 
THE SORT TIME REQUIRED (in seconds) 

2N (.0055n + .012) sec. 

In reverse sort 

In random sort 

next even integer which is 
= to (log2N) 

1/2 next even integer which 
is = to (loggN) 

2N(.0055n+ .012) (log2 N) 
sec. even int. 

N (.005n - .012) (log2N) 
sec. even int. 

t 
where N = number of unit records in the file 
and n = number of words in each unit record 

As an example, a file of 1000 unit records in random order with 10 words per record 
requires 11 minutes to sort by merging. 

If the tape were read backward instead of rewound, the above example would take a 
little less than 9 minutes. 

The "log2n term for a reverse sort arises from the fact that Q merge passes will suffice 
to merge roughly 2^Q different step-down conditions, and for data in reverse sort N, 
the number of unit records also equal the number of step-down conditiors. so that 2^ 
would = N, or Q, the number of passes would = loggN . 

When sorting considerable information, there is a severe disadvantage in putting each 
sorting unit into a separate unit record. This arises from the 1" length of the unit 
record gap, compared to the 1/16" required per full word. Thus, for any sorting unit 
consisting of less than 16 full words, more tape space is required for the unit record 
gap than for the data; for a two word sorting unit, l/9th of the tape is used for data, 
and 8/9ths for the unit record gap. By allowing each unit record to contain a number 
of sorting units, such as is done in the bit sort, the tape is used more efficiently, and 
the machine time is correspondingly reduced. 

t 
29-1013-0(BF) - 18 -



USE 

The Buchholz sort is best adapted to sorting a moderate amount of data on tape on one 
or more full words. So far the Buchholz sort has not yet been used in production, 
but it has been tested on data and has operated successfully. It is being incorporated 
in a program which is not yet fully completed. 

OPERATIONAL EXPERIENCE 

No true operating experience is available yet. It is worth mentioning that if something 
happens to tape 400 during the first pass original data may be lost. If, at any time 
after the first pass, something happens to the tape being read, and the original data 
tape has been saved, the program will have to be started again. If, after the first 
pass, something happens to the tape being written upon, the sort can be continued 
approximately from the point at which thetrouble has occurred. 

29-1013-O(BF) 



INITIAL SORT 

This is an original program, written as a companion program to the "merge sort" 
by L. B. Stinnett of oar 701* group. 

It is a "merge sort", as was the Buchholz sort, but this program merges information 
into "blocks" of data, sorting these blocks in on tape in a form which is usable by the 
merge-sort' program for the completion of the merging. The program merges the data 

in an ascending order, and attempts to take advantage of random sequences. 

It accepts information in the form of four words per sorting unit, and stores the informa
tion as two unit records of 100 sorting units each in a sorting block (that is each block 
of 200 units of data is in sort). It also fills out the unit records to an even number. 

Two unit records at a time are read from tape, sorted, and written on another tape. 
1600 words of electrostatic storage are set aside for data, twice the size of the data 
being sorted. Each unit record is sorted with ES, transferring sorted information 
between two sets of storage locations until each unit record is in sort. The two sorted 
unit records are then merged as the data is written on magnetic tape. 

The program operates as follows: the first sorting unit of unit record 1 and the last 
sorting unit of the same unit record are compared in storage block A. The smaller 
of the two is stored in block B; the sorting unit adjacent to it is used for the next A 
comparison; and the procedure is repeated. Where in block B the data is stored ^ 
depends whether the unit stored previously is smaller or larger than the one being 
stored. If the ascending sequence is kept, the data is stored adjacent to the last loca
tion used; if the ascending sequence is broken, a new sequence is begun in block B 
at the far end of the block. The sequence therefore, are present in both ascending and 
descending order, within the storage block B. The procedure is repeated until the 
last piece of data is compared against itself; this condition is recognized as the end 
of block A processing, and the processing of block B now proceeds in the identical 
manner, transferring the newly merged data from block B to block A. The storing of 
the complete block of 100 sorting units without a change of sequence is recognized as 
the end of the single block sort. This is accomplished for two blocks, and the two blocks 
are then merged as they are recorded on magnetic tape in the form of two 400-word 
unit records. 

An example is given below, using a configuration of a ten-unit block. 
The original data appears as follows: 
Block A: 

loc. (1) 3 loc. (6) 6 
(2) 8 (7) 7 
(3) 2 (8) 6 
(4) 6 (9) 3 
(5) 5 (10) 1 

§ 
29-1013-0(BF) -  20  -



1. The contents of locations (1) and (10) are compared, 3^. ^ and 

1(A 10) *S stored *nto Block B, location (1). 

2. and ^(A9) are coir>pared. 3 is compared with 1^^ and stored 
into Block B, location (2), and also location (3) . 

3. 8(^2) and ® ( A 8 )  are cornPared' ® ( A 2 )  cornPared ^(B3) an<^ stored 

into (B4)„ . 

4. ®(^2) an(^ ^(A7) are comPared- ^(A7) iS comPared with ®(B4) an(^ stored 

into (B5). 

5. an<3 are compared.6^g^ is compared with 7^gy  A  new sequence 
is begun by storing into (BIO), 

^(A5) anC^ ^(A5) are con]Pared5 tden ^(A5) widl ®(B10)* ^ n6W se<4uence 

is begun by storing 5^^ into (B6). 

7. 8(A2) and ^(A4) are C0:mParedj then 6(^4) with ^(B6) and stored into 

8. 8^2^ and 2^^ are compared; then 2^^ and 6^^. A  new sequence is 
started in(B9)with 2^^. 

9. 8^) is compared with 8(^2)' The end of the first merge is recognized; 

8(^2) is stored in (B8). 

10. The dataappears in B block as follows: 
(1) 1 (6) 5 
(2) 3 (7) 6 
(3) 3 (8) 8 
(4) 6 (9) 2 
(5) 7 (10) 6 

29-1013-O(BF) 
-  21  -



11. Following the same procedure, Parting with 1^) and 6(310) anc* stor^n<? 
into the A block, the following sequence is found in A at the end of the merge: 

(1) 1 then B (1) 1 and A (D 1 
(2) 3 (2) 2 (2) 2 
(3) 3 (3) 3 (3) 3 
(4) 6 (4) 3 (4) 3 
(5) 6 (5) 6 (5) 5 
(6) 5 (6) 6 (6) 6 
(7) 6 (7) 8 (7) 6 
(8) 8 (8) 7 (8) 6 
(9) 7 (9) 6 (9) 7 

(10) 2 (10) 5 (10) 8 

In this example, it can be seen that no advantage is gained by taking into'account at only 
one point of the comparing routine, the ordering (by random) of the information. It is 
felt that a new sort should be written to take advantage of all types of runs in the data. 

In order to use the program, the data must be written on tape and left at the end of 
file condition. There are four full words per sorting unit, three of which are compared, 
the last for identification. There are one hundred units per unit record. A calling 
sequence is used which contains the number of tapes (one or two), the address of the 
even tape to be read from, the total number of unit records and the number of words 
needed is the last record to make it a complete four hundred words. 

The program has been used in two recurrent jobs. The length of time varies with the 
initial order of the data. Observed timing has ranged from 25 to 55 seconds (with an 
average of 45 seconds) per each 200 units sorted. 

The instructions and constants occupy 548 half-word locations. The data occupies the 
last 1600 full wcrd locations of electrostatic storage. The program reads from one or 
two tapes and writes on two tapes. 

Normal tape difficulties have been encountered in the use of this program, and the data 
tapes both before and after the sort have been retained for safeguarding time expended 
in using this sort. The inflexibility of this particular program together with the poor 
timing achieved make it questionable as to its future use unless quite thoroughly revised. 

29-1013-0(BF) 

-  22  -



MERGE - SORT 

This program was written as a companion program to the "initial sort", bat can be 
ased for ordering large amounts of information, given a preliminary sort by any 
methodj the information, however must be written on the tapes in a prescribed_form 
for the merge-sort. This program requires the data to be stored on two tapes in a 
unit record size of 400 full words. This unit record is further broken down into sorting 
units of four words, in which the sorting field may be 1-3 consecutive woids of the 
sorting unit, and the remaining words indicative information.* The "sorting block", 
or the number of sorting units already in ascending order is assumed by the merge-sort 
program to be 2 unit records--or 200 sorting units. The number of unit records on 
each tape must be even and not exceed 512. The initial processing preliminary to use 
of this program, which leaves the information in this form, will now be called "Pass 1". 

"Pass 1" must also provide the following information: 

1. The number of tapes (1 or 2) on which the information is to be recorded at 
the end of the merge-sort. 

2. The address of the first of the 2 "write" tapes; that is, the tapes on which 
informaticnifeto be recorded at the beginning of the program. 

3. The number of unit records on Tape A  (first data tape.) 

4. The number of unit records on Thpe B (second data tape). 

The program merges pairs of sorting blocks of information (one block from each tape) 
into a single new sorting block of twice the size, normally. The program also handles 
"short blocks" which may occur any time data tapes contain a number of unit records 
not equal to a powers of 2. On each pass, the information is read from two tapes (A and 
B), called the "read Rapes'', merged, and written on two tapes, the "write"tapes, A^ and 
B ; The complete A tape is written first, then the B tape. The "write" tapes A and 
B then become "read" tapes A and B, and vice-versa. This continues until all 
informatioq makes up a single sorting block, or all the information is in sort. The 
final information can be written, under program control, on one tape (if the length 
permits) or two tapes. The use of sense switch 1 controls whether the data is to be 
rewritten in ascending order, if further processing makes this rewrite step necessary. 

* Our usage has been primarily with the first three words as the sorting field; the 
fourths indicative information. 

-  23 -

29-1013-0(BF) 



The program utilizes the "Read Backward" tape instruction to eliminate rewinding 
between passes and minimize operation time. All calculations necessary for a pass 
are made prior to that pass. All merging of information is done within the write and 
"write-copy" time of the program. Theinformation is sorted alternately in descending 
and ascending order, the even passes being descending and the odd ascending (counting 
the initial sort as the first pass). The number of passes required, p, can be calculated 
from the number of unit records, N, where p1 = k^N and p = p if integral, or the 
next larger integral value, and N = number of sorting units/100 . The program 
calculates p and comes to a stop after the p^1 pass. 

This program has been written by H. Avram in symbolic and assembled into absolute 
locations. Practically speaking, the program occupies all 2048 words of internal storage; 
the locations used for data manipulation are the last 1600full words; the remaining 
locations are used for the sort proper, a drum recording and calling stequence for the 
tape rewrite routine, and a tape check routine which rereads the data tape check sense 
if desired. The program allows for locations 0000 - 0070(8) , being used by FE J 035, the 
loading program (or a calling sequence not written as yet), but erases these routines 
and relocates a portion of itself in '0000 - 0064(8). 

The merge-sort program as it now stands is limited by the inflexibility of the unit-
record size of four words. Sorting non-positive data has not been tried. The advantages 
of speed in sorting data in the proper format by use of this program makes it probable 
that further effort will be spent in making it more flexible, as well as writing another 
initial sort and a calling sequence for companion use. 

The program itself must be supplied with the data indicated for the following locations: 

(1) 1514^ number of tapes for final recording 
(2) 1515^ address of "write" tape 1 

(3) 1516^ number of unit records on "read" tape A 
(4) 1517^ number of unt records on ^read" tape B. 
(5) 1264^ "001174^" to be inserted if original data tapes are to be retained. 

(These tapes must be physically removed from the units.) 

Timing 

The formula used for estimating the time for sorting on this program arrived at 
empirically is: 

t (seconds) = N [1.468 - (N-l) (.003274)J 

where it does not include Pass 1 and N = number of unit records. t 
- 24 -

29-1013-0(BF) 



Use and Operational Experience 

The merge-sort has been used operationally in four large sorting programs, in each 
case with the "initial sort" as the companion program. It has been operated successfully 
on moderate amounts of data, but tape troubles have prevented truly successful effort 
for complete running on a regular schedule. One of these jobs, however, is a recurrent 
job on which our best success has been achieved. Tapes are normally saved from the 
initial sort, and should operation be impaired by tape errors or breakage, normal 
procedure is to repeat processing from the 3'initial sort" completed tape. Since this 
program is quite rapid, this procedure seems satisfactory at present. 

Some thought has been given to rewriting the merge-sort to design greater flexibility 
into the program with aminimum of effort at the time of usage. 

29-1013-0(BF) 
-25-



TAPE - MERGE 

This program is used in order to merge a large volume of data which has been sorted 
by single tapes or pairs of tapes by the use of the merge-sort. 

Since of the four tape units available two must be used for reading, and two for 
writing, the program involves much operator handling of the magnetic tapes. The 
first of the two pairs of tapes are merged and written on the two write tapes. The 
program comes to a stop at the point at which either (or both) of the read tapes is 
exhausted as data, with an indication of which tape is to be replaced. ( A sense switch 
is used to inform the program if the last of a set of tapes is being loaded). The next 
tape of that set replaces the used tape, and the program continues. 

The program also stops if both write tapes have been used, and both tapes are then 
replaced by blank tapes. The program has been designed so that no unnecessary 
stops are made (as the end of the last tape of a set). There is no limit to the number 
of tapes that are to be merged, and any number, n-, of tapes in set 1 can be merged 
with any number, n^, in set 2 . 

However, the use of the program involves much external handling both of magnetic tapes 
and sense switches. This means that capable, alert operators are required for 
successful running d the program. 

Operational Experience 

This program has not been used opa*ationally up to the present time. It is felt advisable 
to avoid its use, if possible, since tape failures or operator errors can easily ruin 
a large volume of completed machine runs. 

Timing 

The program time consumed is approximately the read plus the write time. Operator 
handling of the tapes must be added to this basic program time. 

29-1013-0(BF) 

-  26  -



AN EXAMPLE OF A LARGE SCALE SORTING OPERATION 

An intriguing problem involving a relatively massive amount of 701 sorting is in 
process. It is mentioned as an example, as it effectively illustrates how several sorting 
methods could be combined. 

One of the purposes of the following attack is to reduce the amount of material which 
could be lost at one time due to machine difficulties. It is also designed to use a com
paratively small number of tapes, and to keep theproblems of operation at a reasonable 
level. 

The actual sorting should involve about 60 tapes of data, and five different sorting 
programs may be used altogether. This treatment assumes that only about 80 tapes 
are available. The successive steps will probably be as follows: 

1. Load about 20 tapes of data in duplicate (ie., write the data onto 2 tapes 
simultaneously). Included is a tape check "re-reading" routine to be used 
for testing the duplicate tapes after they are made from the original data . 
This is to guarantee proper recording of data on the magnetic tapes before 
any sorting is attempted. 

2. Block sort the 20 tapes into 8 blocks of about 3 tapes each. This will be 
done in three passes by a modified version of the bit sort. The length of the 
unit record will be 400 full words. 

3. Sort the 400 full word unit records on each tape independently, so that each 
unit record is now in sort within itself. This will be done by the address sort, 
and the resulting tapes will be duplicated either during or after this step. 

4. Merge all the unit records within a given block (note that before this step 
there are 8 blocks of about 3 tapes each). The will be done either by the "merge-
sort" described earlier, or by a new merge sort now being written, followed by 
the tape merge sort. At the end of this step, each block will be in sequence. 
By arranging the blocks in the proper order as determined by the original bit 
sort, all 20 tapes will now be in sort. 

These four steps will then be repeated on the two other groups of 20 tapes. 

5. As a final step, the three groups of 20 tapes will be merged into a single 
sequence in one operation, and also sequence checked. This is the only major 
step which will not be backed up by duplicate tapes from the previous step, but 
it only requires one pass on each tape. 

29-1013-0(BF) 

- 27 -



SUMMARY 

The entire field of sorting programs is still very young, as is the field of magnetic 
tape handling. Our experience has indicated that for small volume jobs, (those which 
can be handled in electrostatic storage), the multi-bit sort is efficient in terms of time 
and storage; in addition, it is extremely flexible for varying sizes of sorting field, 
indicative information, and selection of these fields without alteration of data. 

For jobs which require storage on magnetic tapes, repetitive multi-bit sorts, though 
flexibility remains, do not provide the fastest method. It is felt that the following type 
of processing should be set up. 

Large volumes of data exceeding capacity of two tape loads should be tbLock-sorted 
(as Step 1) into blocks not exceeding two tapes of data. Thus external tape handling would 
be taken care of in the initial processing stages. All processing from this point on 
would involve an individual pair of tapes. Some jobs might practically be run (after 
sorting) on this piece-meal basis, really in the form of many small jobs. 

After block-sorting, by either a bit or multi-bit method, each pair of tapes is sorted 
by use of multi-bit sort into blocks of 200 sorting unite and recorded on tapes in the 
proper form for a merge-sort. Thethird step is the rqerge«-sort to order each pair of 
tapes as a unit. 

This procedure, in general, is planned for the current job with a large volume of sorting 
(over 3 million sorting units) previously described. At present, no practical experience 
on this sorting problem is available. 

Consideration is being given to rewriting the merge-sort to make it more flexible for 
field sizes. It is felt that a maximum of approximately 400 words per unit record 
is a necessary limitation, regardless of the size of the sorting unit. This comes about 
because it is necessary to allocate electrostatic storage for four unit records in order 
to minimize the timing (to utilize all the "write"time for making the comparisons and 
selections). The program itself easily will use the remaining 800-odd half-<"^ords. 

It is planned to design the program so that the sorting fields used can be flexible in 
terms of size (full or half words) and location (assignment of minor, intermediate, 
major); as a consequence, flexibility in the indicative information field will result. 

It is further planned to use, as the initial sort companion program, a general sort of 
the "address" type (multi-bit sort). Some experimental programming will be done on 
further development of the present "initial sort" to take complete advantage of random 
sequences in the data. However, it is expected that this may not prove to be efficient 
or flexible enough to warrant its use in place of the multi-bit sort. 

One other program is afoot to provide more effective operation in sorting programs. 
This is the incoipczation of a sequence-checking routine to be used at the option of either 
the programmer or the operator. This routine will make possible the checking of the 
partial sort at the end of any selected pass within the processing of the data. It is 
felt that optional checking is a desirable feature. 
29-1013-0(BF) ?o 



Many of the problems incurred in the operation of our 701 have revolved around the 
use of the magnetic tapes. Air-conditioning, dust-filtering, and humidity-control 
problems have aggravated these tape troubles and have muddled the picture enough 
so that we cannot determine whether physical conditions or machine conditions are 
primarily responsible for the difficulties. Tape breakage is one large recurrent 
problem; tape checks, thought to be due to dust and also faulty tapes, are also prevalent. 
These types of tape checks are not susceptible to elimination by use of the tape sense 
order, as any number of rereads will consistently yield another tape check. Lorg time 
operation with magnetic tapes seems to be impractical. Measures have been taken to 
correct improper physical conditions, with special attention given to tape storage and 
humility- control. 

It is sincerely hoped that improved sorting programs and magnetic tape operations 
will be clearly seen in the near future in our 701 operations. 

29-1013-O(BF) 
- 29 -



ABSTRACT 

NUMERICAL WEATHER PREDICTION 

Joseph Sm agorinsky 
U.S. Weather Bureau 

The physical background and historical development of numerical weather pre

diction is summarized. 

The nature of the mathematical problem and the work-load for a digital computer 

are then described. 



ABSTRACT 

NUMERICAL WEATHER PREDICTION PROGRAMMING 
on the IBM 701 

William P. Heising 
IBM 

This paper will treat the programming of a specific numerical weather 
weather prediction problem of moderate difficulty. The overall layout 
of the program will be given (together with specific attention given to 

checking and restarting methods and the form of the output. 

29-1013-O(NW) 



X 
*> y NUMERICAL WEATHER PREDICTION ON THE IBM 701 

£ T^v. \<) W, P. JHeisincf 
IBM 

Washington, D.C, 

The Numerical Weather Prediction Unit, a joint group supported by the Weather Bureau, 
the Navy, and the Air Force, has been formed to perform numerical weather prediction 
operationally. In order to evaluate the IBM 701 as a possible computer for numerical 
weather forecasting, a test was made on the 701 using the mathematical system just 
outlined by Dr. Smagorinsky. 

Lt. Commander Albert Stickles, U. S. Navy, Major Herbert Zartner, U. S. A. F., 
and I were assigned to program, test, and demonstrate three 24-hour forecasts. As 
none of us had previously prepared any problems for the 701, and the other two pro
grammers had not even seen the 701 manual, it was a formidable task to accomplish 
this work in less than two months. 

The main part of the computations involved the solution of Poisson's equation (modified 
by Helmholtz terms), and an integration step involving the evaluation of Jacobians. 
For a 19 x 19 grid using three vertical levels in the atmosphere, this becomes: 

V  x  < - i  r- 2  f - 2  
Given: q ^ ; <2 ^ ; q ijk ; (2 ijk and fy 

i, j = 0,1,2,... ,18 k = 0, 1, 2 . 
Vv ' 

a. Integration of q. 
v T-2 r f-1 t-1 t-1 -j 

q  i j k =  q  i j k +  r ~  L I ( V - ' 0  ̂ + J < V 0  I j k ' J  

for k = 0,1,2 and i, j ^ 0 or 18 . 

b. First approximation to Poisson Equation solve by extrapolation: 

r  x-i t r-2 

* ijk ijk " ^ijk 

c. "Poisson Equation" solved by Liebmann iteration: 
A n T n-1 t 2 n'n_1 r 2 ^ n,n-l T -k 
•  ^ i j k =  ^ i j k  +  1 / F i i  

29-1013-0(NW) 

1 = 0 

For i or j ^ 0 or 18 



- 2 -

t  n ff .n,C n-1 X  _ 1 3  
Iterate and take 0 ̂  whenj 0 - 0 j <  2 ~  for all i, j ,k . 

Computations were performed on a 19 x 19 square grid at three vertical levels in the 
atmosphere. Half word cells are used throughout the computations without rounding. 
All data blocks consisted of 364 half words, 2 hal£words for a check sum of the IBM 
K02 subroutine type, 361 half words for one level of the 19 x 19 grid and one zero 
half word. 

Computations use two variables at up to three different time points, hence 3 time 
points x 2 variables x 3 levels/variable x 364 half words per variable per level indicate 
the overall active storage requirement to be 6552 half words. Drums or tapes must be 
used, and the drums were chosen in this case. Three time steps of q, and 0 (6552 
half words) were kept on drums at all times and onetime step of data (2184 half words) 
plus 2 x 364 half words of working storage (total 2912 half words) were assigned from 
electrostatic storage for data, thus leaving space for 1184 instructions, or slightly 
more than 1/4 of E. S/storage. 

T - i  X - 1  f - 2  f  - 2  
Of course after each time step^what had been 0 and q became 0 and q 
from the programmers point of view. Rather than actually reading from the drum 
and rewriting in other locations dn the drum 4368 half words, it was quicker to cyclically 
permute the drum addresses in the program itself to eliminate data shuffling completely. 

Approximately 950 instructions are needed to perform and check the numerical step 
by step integration of 0 and q . In addition, after each six (half hour) time steps, 
the following is to be printed: 

X  
(a) 0 All values except where i or j ^ 0 or 18 

(b) cLf> /<& < 
x + i  r + i  v - i  f - i  

w 1 " *k[^ijk + 1/2 " ^ijk-1/2 " ^ijk+l/2+ ^ijk-1/2? + 
t j  
i}k + 

f.. ij 
J ^ijk-1/2 " ^ijk+1/20 x/ \ 

The output calculation and printing require 730 instructions, hence they must be called 
from the drum before each use. The printing of a two digit row identification (j) and 
17 3-digit fields was accomplished using P04 slightly modified, with complete echo 
checking including sign. 

29-1013-0(NW) 



- 3 -

The printing was arranged in a nearly square array, 0, 70 inch vs 2/3 inch vertically. 
Consideration is being given to printing directly on a weather map. 

The entire problem (except M10 used for decimal-to-binary conversion of initial data) 
required about 1700 instructions including about 400 from standard subroutines (K02 
and P04). S02 Assembly required about 30 minutes, and debugging required about 
2 machine hours (spread over two days). 

Three 24-hour weather predictions were made during the demonstration, and required 
about three hours. Occasionally K02 check sum stops from drum operation were en
countered, but the "restart procedures" handled these with little time loss. 

Two types of procedures were set up for handling error conditions. Since a 24-hour 
weather prediction required nearly an hour, it was undesirable to start over at the be
ginning unless the error occurred in the first few minutes. One procedure used a \ 
transfer of control to a routine in the program to restart that particular time step, 
disregarding all data in electrostatic storage, and working from the information on / 
the drum. Usually the error did not recur, indicating the error had occurred in 
computation or in E.S. storage. 

In case the error recurred, (indicating something had been written incorrectly on the 
drum), a different procedure was used. 

A complete record of past integrations was kept on the tape. and in the second re
starting procedure the tape information was read back and reloaded on the drums, 
and then computation was resumed. 

Each time step involves two main computations, integration and Liebmann interation for 
the solution of the Poisson equation. The two computations are of comparable complexity 
and time (for one execution). The integration is performed twice (includes a check run) 
while the Liebmann iteration is performed n + 1 times (n times for convergence, 
one additional for checking). 

On the basis of a similar computation on the I. A.S. machine, it was estimated that 
4-10 iterations of the Poisson equation might be required for convergence, and accord- • 
ingly particular emphasis in programming for speed was given to the Poisson equation. 

The actual machine run showed that only 1-2 iterations were required for convergence, 
and that consequently the integration took more time than the Poisson equation solution, 
a rather surprising development. 

The value of extrapolation of 0 to obtain a first guess for the Poissen equation was 
shown by the fact that atV = 1, (where two previous time steps were not available), 
four iterations instead of one or two were required for convergence. Use of the 
previous solution, instead of extrapolation as first approximation throughout, would 
have dengthened the solution time 6-8 minutes. 

29-1013-0(NW) 



- 4 -

Improvements contemplated in the present program are being made on the following lines: 

a. Tighten up the time integration (q) computation in view of its previously 
unsuspected importance on the running time. 

b. Use of a different type of check sum (in place of K02) to permit simultaneous 
reading (or writing) and checking. 

c. Restart procedures to be completely automatized. 

d. Master program on tape (instead of cards) to eliminate card input of instruction 
at the start of the problem. 

e. Output will be actual vertical velocity (instead of dp/dt a related quantity). 

f. Certain linearizing approximations are being eliminated, introducing slightly 
more complexity and higher accuracy. 

g. A different set of three vertical pressure levels is to be used in the future; 
the principal effect on the program will be that the relaxation factor in the 
Poissen equation mil differ at different levels. 

h. Thought is being given to the inclusion of "smoothed" orography. 

29-1013-0(NW) 



THE IMPROVED 701 . 

Gene M. Amdahl 
IBM Engineering Laboratory 

Poughkeepsie, N.Y. 

The Engineering Laboratory at IBM Poughkeepsie has, for some 
time, been engaged in a project of improvement of the 701. At the time 
the 701 was first planned and constructed, it was necessary to keep the 
machine logic as simple as was reasonable in order that the engineering 
and production schedules could be made as short as possible. 

Since the 701's have been in use by ourselves and our customers, 
it has been possible to study the uses to which these machines have been 
applied, and consequently, to determine a number of logical additions 
which would be of general usefulness. 

The improvements which are, at present, undergoing engineering 
development may be grouped under six headings, each of which will be 
discussed in greater detail later: 

1) Operation code modification to make space available for 
the improvements. 

2) Special instructions to reduce programming labor and 
running time. 

3) Speeded-up multiplication and division. 

4) An indexing system for automatic address modification. 

5) A changed drum system with greatly improved access time 
and information transfer rate. 

t 

6) Built-in floating point operations. 

The descriptions of these features are still subject to modification. 

Modification of the Operation C.ode 

In order to provide the necessary new instructions for the improved 
701, the operation code had to be revised and consolidated. The means for 



doing this were two-fold: 1) the signs of the instructions in many cases 
were not being employed by the machine; and 2) many instructions were 
not utilizing their address parts efficiently. 

More efficient use of the sign of the instruction may be exemplified 
by our new handling of conditional transfers. The present conditional trans
fers will be obtained by a corresponding instruction having a positive sign, 
but if given a negative sign, the condition for transfer will be inverted. 
For example, plus transfer on overflow will cause a transfer if the over
flow trigger is on, and minus transfer on overflow will cause a transfer 
if this trigger is off. 

Efficient use of operation codes was attained by assigning operation 
codes to only those instructions which required a memory address for 
execution. Instructions such as input and output operations and shift 
instructions were grouped together under the single operation code SENSE, 
with the word divided as below. 

S  1 - 5 6 - 9  1 0 - 1 7  

+ 

shift counter and input-output unit 
^ address part (8 bits). 

—> SENSE class selector (4 bits). 

—^ operation code (5 bits). 

—•> sign (1 bit). 

In these instructions an eight bit address part is sufficient for specifying the 
input or output unit or the required amount of shifting. The four remaining 
bits of the address part are used to specify which input-output operation or 
shift is desired. The normal SENSE instructions are also included in this 
same instruction, and are designated by a particular value of the four bit 
portion and the proper eight bit designation. In order to use this consolida
tion efficiently, an additional STORE ADDRESS instruction is included, which 
allows the storage of the rightmost eight bits of the address part. This per
mits storing an input-output address or the amount of a shift into a SENSE 
instruction. The new STORE ADDRESS instruction shares an operation code 
with the present twelve bit STORE ADDRESS, but is designated by a minus 
sign. 

- 2 -



Special Instructions 

The special instructions have been added primarily for the purposes 
of simplifying logical manipulations, including table lookup and producing 
check sums. 

The purely logical instructions will include: full word logical "and" 
to memory; full word logical "or" to memory; full word logical "and" to 
the accumulator; full word logical "or" to the accumulator; and an MQ ring 
shift to the left, the sign included. 

There are others provided also, such as: complement accumulator 
magnitude; set accumulator positive; set accumulator negative; change 
accumulator sign; set accumulator to zero; test rightmost bit of accumula
tor and skip; test MQ sign and skip; test P position of accumulator and skip; 
and test divide check (now to be called the MQ overflow trigger) and skip. 
This latter instruction permits the 701 to continue calculating even though 
a division was incapable of being carried out. In addition to the above, the 
status of the sense lights may be determined by a SENSE and SKIP. 

The instructions for aiding table lookup are: compare MQ with 
accumulator and transfer if MQ is low; and compare memory with accumu
lator and skip if memory is high or equal. The instruction "compare MQ 
with accumulator" permits table lookup in data stored on the magnetic drum 
without requiring this data to be brought into memory, and allows this to be 
performed at the full new drum speed. 

The computation of check sums is greatly facilitated by the new instruc
tion END AROUND CARRY ADD, which adds the sign bit of a word in memory 
into the P position of the accumulator. The carries from the P position are 
reintroduced into position 35 of the accumulator. The sign of the accumula
tor is ignored and unchanged by this operation. With this instruction the 
check sum may be accumulated with no intervening manipulations. 

Speeded-up Multiplication and Division 

The operations of multiplication and division at present require 38 
machine cycles or 456 micro-seconds. By means of paralleling sub-operations 
and changing some of the logic, it has been possible to reduce the time required 
to 20 machine cycles or 240 micro-seconds. A corresponding reduction in the 
number of succeeding instructions which will not require forced regeneration 
cycles from 12 down to 6 is necessary. The actual multiplication and division 
operations are carried out at double present speeds. 



Indexing System 

The indexing system provides automatic address modification which 
substantially reduces the amount of "red tape" in a program. On a typical 
problem the combination of indexing and speeded up multiplication and 
d i v i s i o n  s e e m s  t o  a p p r o x i m a t e l y  d o u b l e  t h e  s p e e d  o f  t h e  7 0 1 .  

Indexing is best described by means of an example, such as multiply 
and accumulate: 

1 . 0  L O A D  I N D E X  R E G I S T E R ;  1 .  1  +  0 1  
AQ+2N 
BQ+2N 
C 

1 . 2  L O A D  M Q  
1 . 4  M P Y  
1 . 6  A D D  
1 . 7  S T O R E  C  
1 . 8  T R  O N  I N D E X  1 .  2  
1.10 rest of program 

;  1 . 3  + 0 1  
;  1 . 5  -  0 1  

;  1 . 9  +  0 1  

2N 
0 
0 

The iteration loop above requires 348 microseconds to carry out com
pared to 696 for the shortest possible iteration loop on the 701. The storage 
requirements for the program are also less, being 10 half words compared 
t o  a  m i n i m u m  o f  1 6  o n  t h e  7 0 1 .  

The more interesting features of the indexing system are shown in this 
program. For example, indexed instructions are full words, where the left 
half word is the normal instruction and the right half word contains indexing 
information. The allocation of digits in the full word instruction is shown 
below: 

S 1 - 5 6 - 17 18 19 - 23 24 - 35 

decrement part (12 bits) CT 

tag part (5 bits) 

—^ indicator part (1 bit) 

normal address part (12 bits) 

normal operation part (5 bits) 

normal sign part (1 bit) 

The sequence of operations when using index registers are essentially 
as follows: 1) the desired index register is loaded with the range of memory 

- 4 -



addresses to be traversed during the iteration; 2) the instructions which 
are to have their address parts modified are executed, and in the process 
of execution they are reduced by the contents of the specified index register; 
and 3) the contents of the index register is reduced by the desired decrement 
and the loop repeated if the iteration is not completed. 

There are a few features in this programmed example which are still 
unexplained. The tag part (or operation part of the right half word) specifies 
which index register is being used in any given instruction. The indicator 
part (or sign of the right half word) specifies whether or not to continue using 
full word instructions (or equivalently, whether or not to remain in the "index
ing mode"). An example of this is 1. 5 (or the right half word of 1.4), where 
the minus sign causes the calculator to go back to half word operation. The 
execution of an indexing instruction, such as 1. 0 or 1. 8 causes the calculator 
to return to the indexing mode. 

The instruction TRANSFER ON INDEX performs the following sequence 
of operations: 1) the difference between the decrement and the original con
tents of an index register is generated; 2) this difference is tested to see if 
it is greater than zero; 3) if the result is greater than zero, the index regis
ter is indexed (that is, its contents are replaced by the difference) and if 
zero or negative, the index register retains its original contents; and 4) the 
calculator transfers to the address specified if the register is indexed and 
the instruction is positive (this being a conditional transfer, if it were nega
tive, the condition for transfer would be inverted). 

There are four more full word instructions in addition to TRANSFER 
ON INDEX, which control the index register contents. These are all address-
less (SENSE class) instructions. They are: 1) load index register with the 
decrement part; 2) load index register with the complement of the decrement 
part; 3) load index register with the accumulator address part; and 4) put 
the algebraic difference of the index register and decrement part into the 
accumulator sign and address part. 

There are also four half word instructions governing indexing: 1) an 
addressless instruction to force entering the indexing mode; and 2) a set of 
three instructions (one for each index register) which cause the complement 
of their address part to be entered into the proper index register. 

Higher Speed Drum System 

The magnetic drum system has been revised in three ways. The first 
two decrease the access time and the third increases the word transfer rate. 



The access t ime has been improved for  reading by introducing 
electronic switching between drums.  The electronic switching requires 
only one-half  a  mil l isecond compared to the present  thir ty mil l iseconds 
for  relay switching.  In the case of wri t ing,  relays are st i l l  used,  but  the 
switching t ime has been cut  in half ,  f rom thir ty down to f if teen mil l iseconds.  

The access t ime has further  been decreased by reducing the t ime 
required for  index searching.  This  has been accomplished by two improve
ments:  1)  the drum counter  continues counting drum timing pulses from 
the last  drum selected,  even though no longer selected;  and 2) the two 
logical  drums on the same physical  drum now share a  common t iming 
and index track,  consequently,  the drum counter  wil l  remain in synchronism 
even though switching between these two logical  drums occurs.  

The information transfer  rate has been increased from the present  
800 words per  second to 10,000 words per  second.  This  has been accom
plished by reducing the interlace on the drum from 128 words down to 8 
words.  This  interlace change is  s l ightly too great  to permit  programmed 
word transfer  even with indexing,  so the drum has been physical ly slowed 
by about  20%. 

Keeping the drum counter  continually connected to the t iming track 
does not  permit  the operat ion SET DRUM to be performed,  but  a  correspond
ing operat ion LOCATE DRUM ADDRESS has been introduced.  The execution 
of this  instruct ion causes the address part  of  the instruct ion to be continuously 
compared with the drum counter  contents  unti l  equali ty exists ,  at  which t ime 
the calculator  procedes to the next  instruct ion.  

Since the word transfer  rate is  10,  000 words per  second,  the t ime 
between copies ( including a  COPY instruct ion) is  only 100 microseconds,  
hence there is  t ime for  only one instruct ion in addit ion to the COPY instruc
t ion.  This  addit ional  instruct ion wil l  normally be a  TRANSFER ON INDEX 
instruct ion with the t ransfer  address being the address of the COPY instruc
t ion.  When performing table lookup on the drum, this  addit ional  instruct ion 
would be COMPARE MQ WITH ACCUMULATOR, with i ts  t ransfer  address 
again being the address of the COPY instruct ion.  

Float ing Point  

The problem of aiding the performance of programmed float ing point  
operat ions was invest igated quite  intensively.  The results  of  the invest igat ion 
were that  half  measures gave l i t t le  real  advantage to the programmer,  there
fore,  the decision was made to "build in" the set  of f loat ing point  operat ions:  
add,  subtract ,  mult iply,  and divide.  

- 6 -



In order to be able to perform these operat ions with s ingle instruct ions,  
i t  was necessary to combine the exponent  and fract ion parts  in a  single ful l  
word,  much as in the Los Alamos Dual  System. The arrangement of digi ts  
within a  f loat ing point  word is  shown below. 

s 1 - 8 9 - 3 5  

U fract ion part  (27 bi ts)  

characteris t ic  part  (8 bi ts)  

s ign of f ract ion part  ( 1  b i t )  

The characteris t ic  part  consists  of  8  bi ts  and contains the exponent  of  2 
plus 128.  The fract ion part  is  27 bi ts  long and when in the proper,  or  normalized 
form, has a  1 in i ts  lef tmost  posi t ion.  The binary point  is  considered to be just  
to the lef t  of  the fract ion part .  

When performing float ing point  operat ions,  the original  operands are 
brought into the accumulator  or  MQ by the normal operat ions of RESET AND 
ADD or LOAD MQ respectively.  The f loat ing point  operat ion is  then ini t iated 
by giving the proper f loat ing point  instruct ion.  At al l  t imes during the f loat ing 
point  operat ions the ar i thmetic registers  manipulate the information with the 
same division of digi ts  as  shown for  the f loat ing point  word.  The results  may 
be s tored by STORE or STORE MQ. Condit ional  t ransfers  are st i l l  direct ly 
applicable.  

If  properly normalized numbers are used as  operands,  properly normalized 
results  wil l  be produced,  with the exceptions of a  zero result ,  or  if  normalizat ion 
is  inhibi ted.  If  the fract ion part  of  a  result  is  zero,  the complete f loat ing point  
word is  made zero automatical ly.  The inhibi t ion of normalizat ion is  control led 
by the programmer,  and if  the calculator  is  instructed to go into the non-normal
izing mode,  lef t  shif ts  to remove leading zeros are inhibi ted in the operat ions of 
addit ion,  subtract ion and mult ipl icat ion.  All  r ight  shif ts ,  to take care of carr ies  
as in addit ion,  are st i l l  required to take place to prevent  loss of information.  

Characteris t ics  which exceed the range of 0 through 255 wil l  turn on the 
accumulator  overflow tr igger or  the MQ overflow tr igger (formerly divide 
check tr igger)  if  they are the characteris t ics  of the accumulator  fract ion part  
or  MQ fract ion part  respectively.  In the case of the accumulator  characteris t ic ,  
exceeding the range by gett ing too small  wil l  cause 1 's  to appear in both over
flow posi t ions P and Q. If  too large,  only the P posit ion wil l  contain a  1.  The 
MQ register  has no corresponding posi t ions,  so no determination of the direc
t ion of excess is  direct ly available.  



The float ing point  operat ions have been considered from the s tand
point  of  double precision operat ion,  and certain features have been included 
to expedite them. For example,  al l  possible information is  retained,  and 
with the proper characteris t ic ,  so that  i t  is  readily usable.  

The operat ions of addit ion and subtract ion in f loat ing point  require 
7 machine cycles,  or  84 microseconds,  to complete.  If  more than 10 
shif ts  are needed to al ign the operands or  more than 4 required to nor
malize the result ,  addit ional  cycles wil l  be required.  

The operat ions of mult ipl icat ion and division require 17 and 18 machine 
cycles respectively,  or  204 and 216 microseconds.  

Program Revisions 

For the use of our Poughkeepsie group,  we are writ ing several  programs 
to aid us in the conversion of our old 701 programs so that  they can be run on 
our improved 701.  The conversion essential ly converts  from the present  in
struct ion code to the revised instruct ion code.  Two of these wil l  be discussed 
very briefly.  

The f i rs t  of  these programs accepts  programs punched on binary cards,  
and punches out  a  new set  of binary cards with the converted program. Prior  
to reading of the binary cards,  a  l is t  of  the addresses of those constants  which 
should not  be converted ( i .e .  which look l ike instruct ions but  are not)  must  be 
supplied to the program. There are two i tems st i l l  unconverted which may be 
taken care of by octonary cards at  this  point :  1)  putt ing the proper s ign on 
those STORE ADDRESS instruct ions which refer  to input-output  or  shif t  
instruct ions;  and 2)  correct ing input-output  addresses which are stored 
alone as  constants .  

The second program is  an assembly program which takes properly 
marked 701 assembly cards and assembles a  converted program which wil l  
run on the improved 701.  The proper marking consists  of  noting essential ly 
the same information on the assembly card as was needed for  the f i rs t  pro
gram described.  

In cases l ike the drum copy loops,  these sect ions of the programs re
quire a  revision,  for  indexing must  be used to copy from the high speed 
drum. 



A/v̂ -chU. 7 C) 
I ,  ^ p i ^ c ? t £ - c -  < * •  " - ryv> A /n^'fa4 
X r  a a & - -
2i_ Y Xr* yifvJLj upj 

Zfc>_ 

5 > cAsiyd Jm** •* 

c . ^-(c< '/ A A' 

!, Sl+V<#(̂ L<aACĵ  / jSt 

U*L£ of ^ym^W^V>>w»- • 

V" 7/1 <?// ^ 

— lApdv Zi *t**W ' £t<p AfA»*̂ 0 

~ jA+ , . S&VXfJL. tyfJt*. 

t n  . î j _ z  ~ ~  

®•&£-> 

t(<u* s&A* jk*vA 

1 

_ /n^t^ s?Ap\e eddk-. ŷ ĥ Ax S/ /f 1?X A* 

JgyAtJ /' /, -W C*"c/ yg\ A . 

/>>::'•"' ;•' .'J — /W «</ z ,n*<rUc Ajlc/^C.cj (c; £&&<****>-

*ZaMXZ-
'• 0* ' JAA £ 

J-/--*'' fnwM- v £Z Ĉ C<-4*< -vu  ̂ X ^ ̂ 

To—T̂ tŷ cr 7&rpAisfj-\ -rCf iff 
/,* M %  7̂ *7* f n T  i  
r4— ttp :—MZ<fc-

_/J ,« 

hi ' ,. _ 
:, # ~fA shJA/ A-jl 



v 
V i ». v 

~ <hcAM£t. 4<<<cM4 "4*lH (J&jfcuTAM 

^ O ,— 

CcyTtl^-xm * 

tH/UAv&A. &h .^.-^i.)., f - 0-?*L~ 

- / 2? Mvtfî Û c ~~ 4? 2 

ŝ JIM. ' Jb'i&z £A/a** MAJ< 

/ O.QeW /̂̂ jex. -+/\fl vwJ*i A 

C (? d-*, >̂W-fr ,, 

4&' jt**' «*/**' *?• 

A*" '* y**- cutd. _. 1!L H>4-/>1 5HJ 
*4«* _ M ) y-4fe^T *?/<&.. 

V X - r" --- 7- -

y?f, ^,cC 2f«-v /-A. 
/*<? 

^717<^-

s-t« > '  : . '  •  



OPERATIONAL CHARACTERISTICS OF THE 701A 

John W0 Backus 
Applied Science Division 

Internationa] Business Machines Corporation 
590 Madison Avenue 

New York 22;) New York 

29- 1013-0(OC) 

May 4, 1954 



OPERATIONAL CHARACTERISTICS OF THET701A 

IBM°s efforts to improve its Electronic Data Processing equipment 
depend on two related areas of research? 

lo Research in component development. 

2. Research in logical design. 

Research in component development produces the units which logical design 
research seeks to integrate into the most effective calculating or data 
processing machine possible. The 701A is the result of logical design changes 
in the 701 „ With additional equipment for control and storage of information 
the 70IA makes use of the components of the 701 from two to twenty times 
more effectively during most calculations. 

Although externally the 701A completely resembles the 701, new internal 
equipment and circuits provide many new and powerful features which make 
the 701A a faster, more economical, and convenient calculating tool than has 
previously been available. From an operating viewpoint, the 701A has 
briefly the following features in addition to those of the 701? 

1„ Automatic Floating Point Operation. 

2„ Automatic Address Modification. 

3„ Higher Sp* ed Transmission of Information to 
and from Magnetic Drums. 

4. 240 Microsecond Multiply and Divide time. 

5. New Operations. 

In the following materia! an attempt will be made to describe only those 
f eatures of the 701A which are not to be found in the 701 or are different from 
corresponding features of thi 701. This information is of a preliminary 
nature and may be subject to change . 

Before taking up any off these features in detail, it is first necessary to 
understand that the 701A has many more distinct operation codes than the 
701. This is achieved by using two instruction forms, one identical to the 
present instruction form; the other having a ten-bit operation code (including 
sign bit) and an eight-bit address part as follows? 

(B) 

s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
| x  X  x  X ? * n 2 x  2 X  X  X  X  X  X X 

s 1 2 3 4 5 6 7 8 9 )0 11 12 13 14 15 16 17 
X 0 0 0 1 0 X X X X X X X X X X X X 3, 

29 oa co <=> 1 «= 



Note that type (B) Instructions all have the same number in positions 1 
through 5 and that type (A) instructions may never have this number as an 
operation part, thus there is never any confusion about which type an instruction 
belongs to All instructions which refer to electrostatic storage or to drum 
location are of type (A)<, most other instructions are of type (B)„ 

Automatic floating binary point operation is achieved by four new type 
A operationss FLOATING ADD, FLOATING SUBTRACT, FLOATING 
MULTIPLY, and FLOATING DIVIDE, Floating binary information is 
represented in a full word by a sign, a characteristic, and a fraction. The 
characteristic is a positive integer between 0 and 255 inclusive and is equal 
to the exponent of the number increased by 128. The characteristic is given 
by bits 1 - 8 of a full-word. The fraction is given by bits 9 = 35 of the full 
word and is regarded as a 27-bit proper fraction. The sign indicated by the 
sign bit is associated with the fraction, Thus the floating binary point 
representation of =12 on which the 701A can operate automatically is, 

35 bits 

sign - J 0000000, 100 ^ ' V ^ 

characteristic fraction 
' & 

This representation of floating point numbers gives an equivalent decimal 
precision of more than 8 digits in the fraction and an equivalent decimal 
exponent range of better than 1Q±«*80 a zero which results from a floating 
point operation is represented by a zero characteristic and a zero fraction 
with the sign determined as in fixed point arithmetic. A floating point number 
as described is said to be in normal form if the first bit of its fraction is a 1, 
or if the number is a floating point zero. All floating point operations refer 
to full words only. 

When FLOATING ADD or FLOATING SUBTRACT is executed the float
ing point number in the accumulator is added to the contents of the specified 
full-word memory location. The floating point sum appears in the 
accumulator. In order to facilitate double precision operations a less 
significant portion of the sum appears in the MQ register in floating point 
form, 

A floating point sum or difference is formed automatically as follows 
by the execution of FLOATING ADD or FLOATING SUBTRACT^ 

1 o The MQ register is cleared0 

2. The number specified in electrostatic storage is placed 
in the memory register, with inverted sign when subtracting. 

3. If the number with the smaller exponent is in the memory 
register, the contents of the memory register and the 
accumulator are inter changed. 

4. The fraction in the accumulator is shifted right a number 
of positions equal to the difference in the characteristics. 
Bits shifted out of the low order end of the accumulator 
enter position 9 of the MQ and continue to be shifted 
right in the MQ. 

29=1013 ucoc; 2 



5. The sign of the MQ is made to correspond with that of 
the accumulatore (The sign of the number with the 
smaller exponent,) 

6„ The characteristic in the memory register is placed in 
positions 1 - 8 of the accumulator. 

7. The fraction in the memory register is added algebraically 
to the fraction in the accumulator (positions 9 - 35). 

8. If there is a carry out of position 9 into 8, positions 9 -
35 of both the accumulator and the MQ are shifted 1 position 
right and a 1 is inserted in position 9 of the accumul ator. 

90 If the fraction in the accumulator is zero, the accum
ulator is cleared. 

10. The characteristic in the accumulator, reduced by 27 , 
is placed in positions 1 - 8 of the MQ register unless the 
accumulator contains zero, in which case zero is placed 
in positions 1 - 8 of the MQ register. 

11. If the floating point number in the accumulator is not in 
normal form, the fraction in the accumulator only is 
shifted left and the characteristic in the accumulator 
is adjusted until a one appears in position 9„ 

The programmer can cause step 11. to be done or to be omitted in the 
execution of FLOATING ADD and FLOATING SUBTRACT operations. This 
is controlled by a "normalizing indicator'*. If the indicator is on, step 11. 
is performed for alTTIoitfng point additions and subtractions. If the normal
izing indicator is off, step 11. is omitted. A pair of instructions, ENTER 
NORMALIZING MODE and LEAVE NORMALIZING MODE turn the normal
izing indicator on and turn it off respectively. 

In using floating point operations it is desirable to be able to detect the 
occurrence of a result with too large or too small an exponent, i.e. greater 
than +127 or less than -128. Too large an exponent corresponds to a character
istic greater than 255. too small an exponent to a negative characteristic. 
In all floating point operations, if the number appearing in the accumulator 
after the operation is executed has too large an exponent, the corresponding 
characteristic appears in position p. 1 - 8 and the overflow indicator is on. 
If such a number in the accumulator has too small an exponent, the ones'-
complement-plus-one of the corresponding characteristic appears in position 
Q.> P.? 1 - 8 and the overflow indicator is on. If the number in the MQ register 
after a floating point operation should have too large an exponent, only the 
l o w  o r d e r  8  b i t s  o f  t h e  c o r r e s p o n d i n g  c h a r a c t e r i s t i c  a p p e a r  i n  p o s i t i o n s  1 - 8 .  
The MQ overflow indicator is turned on to indicate this. Similarly, if a 
number with too small an exponent should appear in the MQ as a result of a 
floating point operation, the low order 8 bits of the one' s-compl ement-plus -
one of the corresponding characteristic appear in positions 1-8 and the 
MQ overflow indicator is turned on. 

29-1013-OfOC) - 3 -



3 w £ s S M CQ 
CD L 
S O EJ -M O 3 
w ,2 d 
w d o 
* S3 
- d c 

>-> o --1 

- O hC 
y d C 
EJ —I - OJ N 
aj: zi 
3" rt 
age 
P -M o p- c 

-S £ 

So 

c 
o 
+- o © O o o rP O © © o o © o TP O O rp c © © © © © © o cS 
«•-» 

r-i O i—1 *p ip © *P Tp © o o o 

jj ip O o Tp VP H © T— TH ip 1—1 O 
(r* •P H «p —'« H © © O © © o c 
U TP © o © © © —P VP T-t VP VP © 

en 8 + + + 0 8 + a + 11 0 + 
JO;-BOIPUT 
M0XJJ3A0 o o o o o o o o o o o  o  

u I  
IS 
-x * ]U 
i o 
O Pi 
o o> 

""I 

fr
ac

tio
n 

fr
ac

tio
n 

10
0 

10
0 

11
1 

10
0 

10
0 

10
0 

11
0 

11
0 

11
0 

10
0 

10
0 

00
0 

1 
C9 10

0 TOt 10
1 

11
0 

10
0 

10
0 

11
1 000 

000 11
1 

10
0 

00
0 

a o © © o o © o 1-H © - o © 
o' © © © © o o © © o o o 
en + + + + + + a 8 8 0 + + 

JO^-BOipUI*. 
AOJJJdAO o 

5M ®t-t 
o o o o o o o o o o  o  

c 
o •H <4-t -4-« 

O d 

* 3  C i-3 
a> . -M >> 
C PI 
o o 
u a 

<u 
2 

c 
o 

« 
Pi 
a, GU 
O 

CO 

© *-4 tH 
Q , T-t O 

o o 
rp tP 
o -P 

o o o 
o o o 

o 
o 

O O O i-p o 
© c o o  o  
tP I—I ^P TP O 

1-j o o 
o o o 
O O 1-1 

o 
o 

+ + + 0 + D 

Q Q Q Q Q ffl Q Q ff) 
to « _ tT* Q 

CQ 
© Q Q Q Q Q p Q Q ff) 

to « _ tT* Q 
CQ 
© 

<3 <3 <! < < en <3 < en E£J Q en 
J J i-3 J J J >-3 J J »-3 ^ t-3 
PP PP Pp PP PP PP PP PP PP U Q 3  PP 

o 0 • 9 0 a o o o o o 
F-4 CM C3 m © 00 a> © 

i-H •H 

c 
a> 
XI 

09 Z3 o 1-i 
a. 
PI 
a 

•3 
X! 

5 
o 
a 
CO 

d 
g 

T3 
a> 
A 
S 
a 
at 
a> 
x 

> 
J 
T3 
9 

i  
pi 
o -M 
d 
a 
3 
5 
i* 
o 
a pi 
£ 
o 
a> A 
H 
* 

PT 

I  
3 
pi 
o «tp 
a> 
tsi 

13 
3 £ 
0 o 

a 
xt « 
1 0 f a  
33 
3 a 
to ® 

o 
^-S 
5* »p 
T3 ° 
0) 09 
3 be 
*3  ̂
•9^ 
XI ^ 
o o 
CD ° 

l i  
3 x 
w .2 
09 A 
U £ 

o £ 

i l  
31 -w ° 

3 s  

43 £3 

53 
00 2 s g 

d 

3 s ^ o 
a sj 
00 42 

2 O 

J o 

3 

29-1013-OFOC) 



The execution of FLOATING MULTIPLY causes a double precision 
floating point product of the number In the MQ register and the specified 
number in electrostatic storage to appear in the Accumulator and MQ register 
in the following ways 

Accumulator MQ 
q p 1 8 9 35 1 8 9 35 

v ^^ 'V . J 
A B C  D  

Where A and B are the characteristic and fraction of the most significant 
part of the product and C and D constitute the least significant, parte C is 
always precisely 27 less than A unless A is Jess than 27 or greater than 255; 
in the former case, C is the ones-compJement-plus-one of A-27, in the latter 
case C equals A-27 modulo 256, K the fixed point product of the fractions of 
the factors is less than one-half, and the normalizing indicator is on, A is 
the sum of the two factor exponents plus 127; if this product is not less than 
one-half, A is the sum of the two factor exponents plus 128. This means that 
if the two factors are in normal form, the number in the accumulator will be 
in normal form, provided the normalizing indicator is on, If it is off, A is 
always the sum of the factor exponents plus 128, 

The execution of FLOATING DIVIDE produces a floating point quotient 
and remainder as a result of dividing the normal number in the accumulator 
by the normal number in the specified electrostatic storage location. The 
number originally in the MQ register is not regarded as part of the dividend. 
The quotient appears in the MQ register and the remainder in the accumulator. 
If the dividend is A, the divisor B, the quotient Q and the remainder R, the 
following relationship holds? if the most significant floating point part of the 
product Q o B is denoted by QB and the least significant part by (QB)7, then 
the following operations result in A being in the accumulator and a number 
with a zero fraction in the MQ register? 

CLEAR AND ADD L( (QB)' ) 
FLOATING ADD L lR) 
FLOATING ADD L <QB) 

If the divisor is not in normal form and its fraction is less than or 
equal to one-half the fraction of the dividend the division will produce an 
incorrect result and the MQ overflow indicator will be on,Division of a normal 
dividend by a normal divisor always produces a normal quotient provided its 
exponent is in the allowable range. The position of the normalizing indicator 
does not affect the execution of FLOATING DIVIDE, 

The execution of FLOATING ADD or FLOATING SUBTRACT will each 
require 7 basic machine cycles or 84 microseconds provided the exponents of 
the ope rands differ by 10 or less and normalization does not require more than 4 shifts. 

If a and b are the exponents of the operands and a = b and £ is the 
exponent of the result the exact number of basic cycles, n , required is? 

29-1013-Of OC* => 5 — 



n s 5 + r + s 
_ r. - O 

r = smallest positive integer containing —j**—— 

s = smallest positive integer containing a " c if a - c < 27 
4 

s = 1 if a •= c = 27 

The execution time of FLOATING ADD and FLOATING SUBTRACT is not 
changed when they follow multiplication or division operations. The execution 
of FLOATING MULTIPLY or FLOATING DIVIDE requires 17 and.18 hasic 
cycles or 204 and 216 microseconds respectively. 

The six instructions following either of these operations may be executed 
in less than their normal time according to the principles pertaining at present 
to the twelve instructions following MULTIPLY or DIVIDE, 

The automatic address modification feature of the 701A makes it 
possible to carry out so-called "housekeeping" operations involved in a 
problem with a minimum number of instructions and at a maximum speed. 
The problem of programming such operations is reduced accordingly. 

The basic purpose of automatic address modification or "indexing" is 
to permit changing the addresses of many instructions by executing a single 
instruction. The indexing principle is to have information accompanying 
each instruction which may designate one of several special registers, called 
index registers. Then as each instruction is obtained for execution, the 
contents of the indicated register is applied as an increment or decrement to 
the address portion of that instruction before it is executed. Thus, the 
address part of an instruction as it is executed may differ from the address 
part of the instruction as it is stored in memory. If we call the address 
part of an instruction as it is executed its "effective address" then, of course, 
the effective addresses of all instructions which designate a certain index 
register are changed simply by changing the contents of that register. 

Indexing is achieved in the 701A by allowing the machine to execute 
instructions in either of two_modes; the normal mode or the indexing mode. 
An "indexing indicator" determines which mode is to be used. The manner 
in which this indicator is turned on and off is described in subsequent para
graphs. When the indexing indicator is off, instructions are interpreted and 
executed as half-words in the normal way. When it is on, however, instructions 
are interpreted as "indexed instructions". Indexed instructions occupy a 
full word and the form of such instructions is as follows? 

29-1013 =OOCJ 



Where° 
A = operation part (6 bits) 
A' - operation part (10 bits) 
B = address part (12 bits) 
B = address part (8 bits) 
C = indicator part 
D - tag part 
E - decrement part 

The sign, the operation, and address parts of an indexed instruction 
have the same significance as they do in an ordinary half word instruction, 
thus the first half word of an indexed instruction may be any 701A instruction. 
The indicator part determines whether the indexing indicator is to be turned 
off after executing a given indexed Instruction;, a 1 denoting that it should be 
turned off, a zero that it should not be turned offc Thus, an indexed 
instruction with an indicator part, of 1 signifies that subsequent instructions 
are to be executed in the normal way (as half words). The purpose of the tag 
part is to specify which, if any, of the three 12- bit index registers is involved 
in the interpretation or execution of the indexed instruction. A zero tag part 
indicates no index register is to be involved, 1 specifies index register,!, 2__ 
specifies index register 2, 4 specifies index register 4, The tag part may 
have only these values. There is no index register 3. The decrement part 
has significance only for those indexed instructions which operate on the 
contents of an index register,, 

Most indexed instructions, called modifiable instructions, may have 
their address parts modified during interpretation if the tag part specifies 
an index register. Such instructions, without the second half word, may 
also be executed in the normal mode. There are a few instructions, however, 
which are peculiar to indexing which must always be executed in the indexing 
mode, therefore, if one of these instructions is encountered when the indexing 
indicator is off, it will be turned on. Since these instructions are always 
interpreted as indexed instructions they must occupy a full. word. All of these 
latter instructions either change the information in an index register or obtain 
information from such a register. Since the tag parts in such cases are 
used to specify which index register is to be operated upon, the contents of 
the specified index register is not used to modify the address part of such an 
instruction, hence these are called non-modifiable indexed instructions. 

There are a few other non-modifiable instructions which do not operate 
upon the index registers and which may be executed either as normal or 
indexed instructions but which do not have their address parts modified by an 
index register even though such modification is specified. These are° HALT 
AND TRANSFER, LOCATE DRUM ADDRESS (similar to the 701 operation 
SET DRUM), and SENSE-type instructions which are not related to indexing. 

The interpretation of a modifiable indexed instruction takes place as 
follows? 

1. The sign and operation part (6 bits) are placed in the 
instruction register. 

< = 7  —  
29-1013-OfOCD 



20 If the tag part is zero the address part (12 bits) is placed 
in the instruction register,, 

3. If the tag part is 1, 2, or 4 the difference of the address 
part minus the contents of the specified index register is 
placed in the address portion of the instruction register pro
vided the difference is positive. If it is negative, the one's-
complement-plus-one of the difference (12 bits) is placed in 
the instruction register,, 

The instruction which results in the instruction register by the above steps 
is then executed in the normal way. The time required to interpret and 
execute an indexed instruction is the same as that required for the resulting 
normal instruction. 

Since the interpretation of a modifiable indexed instruction modifies 
the instruction as if it had a 12=bit address part, care must be taken when an 
instruction with an 8-bit address part is to have its address modified auto
matically to assure that bits 6 ~ 9 of the instruction are not altered in the 
modification. 

The operations involved in non-modifiable indexed instructions fall into 
three categories, hi the first category are two operations which serve to 
insert information into an index register. These operations have SENSE 
type operation codes, that is, they have ten-bit operation codes and the 
remaining eight bits of the left half word are also used to completely dis
tinguish the particular operation,, The execution of LOAD INDEX REGISTER 
causes the number equal to the decrement part (bits 24 = 35) of the instruction 
to be placed in the index register specified by the tag part. The execution 
of ACCUMULATOR TO INDEX REGISTER causes the number given by bits 
6 = TTbf the accumulator to be placed in the index register specified by the 
tag part. The decrement part has no significance. 

The next category of non-modifiable indexed instructions consists of 
one instruction, also a SENSE type instruction, which serves to obtain the 
contents of an index register for use in a calculation or for storage. The 
execution of COMPARE INDEX REGISTER causes the signed difference of 
the contents of the index register specified by the tag part minus the number 
equal to the decrement part to appear in positions 6 - 17 of the accumulator. 
The other positions of the accumulator are zero. 

The third category consists of two instructions which are perhaps the 
most powerful instructions in the 701A. Each of these instructions is 
designated by a six bit ope ration code (including sign), hence the address 
part may designate a location in memory. The execution of TRANSFER ON 
INDEX results in the reduction of the contents of the index register specified 
by the tag part by an amount equal to the decrement part and a transfer of 
control to the address given by the address part, provided such reduction 
would not give a zero or negative result. If the decrement part is larger 
than or equal to the contents of the specified index register, TRANSFER ON 
INDEX is equivalent to NO OPERATION, that is, the contents of the index 
register remain unchanged and the transfer does not take place, TRANSFER 
ON NO INDEX performs the same functions as TRANSFER ON INDEX except 
that transfer of control takes place on the opposite condition, i.e. when the 

29-1013-Of OCj) 
29-101? 3 a 



reduction would result in a zero or negative quantity„ 

These instructions are unique in that they are always executed as 
indexed instructions and will cause subsequent instructions to be executed in 
the indexing mode until an instruction with an indicator part equal to 1 is 
encountered^ 

LOAD INDEX REGISTER 
ACCUMULATOR TO INDEX REGISTER 
COMPARE INDEX REGISTER 
TRANSFER ON INDEX 
TRANSFER ON NO INDEX 

There is one other instruction, a SENSE- type instruction, which will turn the 
indexing indicator one ENTER INDEXING MODE is executed as a hall word 
instruction and in addition to turning on the indexing indicator will cause the 
following indexed instruction to be obtained from the next, higher full word 
location, regardless of whether ENTER INDEXING MODE itself occupies an 
even or odd address. 

Finally, there are three instructions which place information in the index 
registers and may also have their address parts modified automatically. 
These instructions have 6-bit operation codes and may be executed as normal, 
half-word instructions or as indexed instructions. The execution of LOAD 
INDEX REGISTER 1, COMPLEMENT as a normal instruction causes the 
number equal to the one's-complement-p]us-one of the address part to be 
placed in index register 1, One of the principal purposes of such an instruction 
is to provide a convenient, rapid method of specifying the address of a para
meter to a subroutine, Thus, to specify the address X it is only necessary to 
give LOAD INDEX REGISTER 1, COMPLEMENT with address part X and to 
have indexed instructions in the subroutine which are to make reference to 
the specified location have address parts equal to zero and tag parts equal to 
1, The corresponding two remaining instructions in this group ares LOAD 
INDEX REGISTER 2 COMPLEMENT and LOAD INDEX REGISTER 4 
COMPLEMENT^, When any of these instructions are executed as indexed 
instructions, they are interpreted by the same procedure used for other 
modifiable indexed instructions, i„ e. the address part is reduced by the 
contents of the index register specified by the tag part, even if the tag part 
specifies the register which is to be loaded. The one's-complement-plus-
one of the reduced address is then placed in the index register called for by 
the operation code. 

All of the instructions described above with reference to indexing 
require 4 basic cycles for their execution unless a MULTIPLY, DIVIDE, 
FLOATING MULTIPLY or FLOATING DIVIDE is among the preceding 6 
instructions, in which case 2 basic cycles are required. 

The new timing conditions for Magnetic Drums in the 701A are as 
follows s 

10 48 microseconds are available between successive COPY 
instructions (in addition to the time required to execute 

9 a 



the COPY'S themselves)o 

2„ 48 microseconds are available between LOCATE DRUM 
ADDRESS (replaces SET DRUM) and the first COPY. 

3. Consecutively=addressed drum locations pass under the 
reading heads at the rate of 10,000 per second, con
sequently COPY'S are executed at this rate„ 

4. The execution of the first COPY will be completed 100 
microseconds after the execution of LOCATE DRUM 
ADDRESS. 

5. Any amount of time is available for programming between 
the execution of a READ or WRITE referring to drums 
and the interpretation of LOCATE DRUM ADDRESSo 

6o The elapsed time, T, between the execution of READ or 
WRITE (referring to drums) and the execution of 
LOCATE DRUM ADDRESS is given by the following 
formulas 

T = max (rj + r2 , t) + r3 

r^ = 15 milliseconds for WRITE 

r^ = „ 6 milliseconds for READ 

T2 = 0 if the drum selected is on the same physical 
drum last selected 

r2 = The elapsed time between the execution of the 
READ or WRITE and the appearance of a timing 
mark at the timing track reading head if the drum 
selected is not the one previously selected. In this 
case r2 will have an average value of 12. 5 
milliseconds and a maximum of 25 milliseconds. 

t = time required to execute the instructions intervening 
between READ or WRITE and LOCATE DRUM ADDRESS. 

r2 = Time required for the location specified by LOCATE 
DRUM ADDRESS to appear under the reading heads 

(following the appearance of the timing mark if the 
READ or WRITE selects the physical drum not previously 
selected). The average value of r2 is 12. 5. The 
maximum value is 25 milliseconds. 

The above formula gives an average access time of about 13 milliseconds 
for reading and 27. 5 for writing when the last selected physical drum is 
selected and about 25. 5 milliseconds for reading and 40 milliseconds writing 
when the other physical drum is selected. 

It is important to note that this arrangement permits optimum programming 
for access to data on the same physical drum. 

29-1013-0(OC) _ 10 -



The new 701A instructions have a variety of uses. Their purpose is, 
of course, to simplify the job of programming certain common types of 
routines and to speed up the execution of such routines. Brief descriptions 
of these new instructions not described above follow. 

Operations with 6-bit operation codes (including sign): 

END-AROUND-CARRY ADD (full words and half-words). Full Words: 
The specified 36-bit number (including sign bit) is added positively into 
positions p, 1-35 of the accumulator, the number in the accumulator is 
regarded aiso as positive. Any carry out of position p is introduced into 
position 35. The sign and q position of the accumulator and the overflow 
indicator are not changed by this operation. Half-words: same as full word 
with left half-word as specified, right half word zero. 

STORE 8 RIGHT MOST POSITIONS OF ADDRESS (half words only). 
Bits 10 - 17 of the accumulator are stored in the corresponding positions 
of the specified half-word leaving the remaining bits of the half word unchanged. 

HALT AND PROCEED (no memory reference). The calculator stops; 
the next instruction is executed when the start button is depressed. 

HALT AND TRANSFER TO FIRST MEMORY FRAME. 

HALT AND TRANSFER TO SECOND MEMORY FRAME. 

TRANSFER NO OVERFLOW. 

TRANSFER ON NOT ZERO 

TRANSFER ON NOT PLUS 

LOGICAL OR TO MEMORY (full words only). A zero is stored in 
every position of the specified 36-bit word wherever the original word and 
the accumulator both contain zeroes and l's are stored in every other position. 

LOGICAL AND TO ACCUMULATOR (full words only). Analogous to 
present extract order except result appears in the accumulator and accumulator 
sign. 

LOGICAL OR TO ACCUMULATOR. 

TRANSFER ON MQ LESS THAN ACCUMULATOR. Transfer of control 
to the specified address takes place if the contents of the MQ is algebraically 
properly less than the contents of the accumulator. 

TEST MEMORY GREATER THAN OR EQUAL TO ACCUMULATOR AND 
SKIP. Compare the contents of the specified full-word address with the 
contents of the accumulator and skip if the former is algebraically greater 
than or equal to the latter. 

Instruction which has a 10-bit operation part: 

QUOTIENT LEFT RING SHIFT. Ring shift the contents of the MQ 

29-1013=0ijOC) a H 



including the sign bi t  as  a 36-bit  register  to the lef t  by the amount 
specif ied by the 8-bi t  address part .  

SENSE-type instruct ions.  The whole half-word is  used to designate the 
part icular  operat ion;  

COMPLEMENT ACCUMULATOR MAGNITUDE. Inverts  every bi t  of  
the accumulator .  Sign bi t  is  unchanged.  

SET ACCUMULATOR POSITIVE. Make sign bi t  plus.  

SET ACCUMULATOR NEGATIVE. 

CHANGE ACCUMULATOR SIGN. 

CLEAR ACCUMULATOR MAGNITUDE. Leaves sign unchanged.  

The fol lowing SENSE-type test  instruct ions cause the next  instruct ion 
to be shipped if  an indicated sign is  negative or  an indicated bi t  is  a  1 or  if  
a  given indicator  is  on:  

TEST LEAST SIGNIFICANT BIT OF ACCUMULATOR. 

TEST MQ SIGN. 

TEST P BIT. 

TEST TA PE CHECK. 

TEST MQ OVERFLOW INDICATOR. 

TEST INDEXING INDICATOR. 

TEST NORMALIZING INDICATOR. 

TEST HALF WORD SELECT INDICATOR. 

V 

TP 

29-1013-0(OC) 



Computer programming: 

How much does it cost to press the start button? 

A computer is just a machine. No matter how fast, how powerful or 
how big it is, it can do only what you tell it to, the way you tell it to. 
So your program of instructions determines how well your computer 
operates. Programming systems, which come with every IBM computer, 
make it easier to instruct the machine to operate efficiently. They save 
programming time. They save operating time. They save you money. 



Computer programming starts with An IBM computer automatically These instructions, on magnetic 
English-like statements that translates the problem to numerical tape or punched cards, are used to 
describe a problem. computer instructions. operate the computer. 

££J plSTAI^C-
RATF ^  T I M  

000 101 110 000 000 000 

000 010 110 000 000 000 

000 110 000 001 000 000 

000 001 000 000 000 100 

000 000 000 101 110 000 

000 010 000 101 000 001 

A digital computer is a paradox 
It can solve equations that would give a mathematician 
trouble. It can predict the path a missile will take. It 
can help you decide when to announce a new product. 

But a man has to guide the computer through the 
decision making process—step by simple step. 

Even multiplying one times two is a major problem: 
you have to tell the computer where to find the one and 
two, how to identify them, how to multiply them, 
where to find the answer and what to do with it. 

Even a simple payroll job may take thousands of in
structions. And these instructions must be written in a 
special numerical code—the only language the com
puter understands. Once the instructions are written 
they can be stored inside the computer and the system 
will perform the job automatically, as often as may 
be necessary. 

But writing the instructions takes time. Each simple 
step has to be converted to a symbol the computer un
derstands. And each computer type has a symbolic 
language all its own. 

In the old days—five or ten years ago—a computer 
programmer laboriously had to write out every instruc
tion in this computer code. He had a code book—a 
computer dictionary—to guide him. But it was a tedi
ous, time-consuming job. And there was a chance for 
error on every instruction. 

Writing this computer code cost money. An aver
age instruction costs $5 to $10, counting the original 

writing, checking, error correction and testing. And 
any sizable job took thousands of instructions. 

That's why IBM has been working steadily for the 
past decade to simplify programming—to cut down the 
number of instructions your programmers must write, 
to make the symbols they use simpler and easier to 
understand, to standardize programming of common 
problems and eliminate the need to reprogram every 
function every time it's needed. 

Symbolic instructions -
easier to remember 
Our first efforts were to develop instructions that could 
be written with letters of the alphabet instead of num
bers. For example, we would use the letter "P" instead 
of the numeral "4" to tell the machine to punch a card. 
The letter "P" is easier to remember, it is more mean
ingful to a human being, and it is less likely to cause 
a programming error. 

In these symbolic codes, one program instruction 
represents one numerical instruction. A packaged pro
gram, supplied by IBM, guides the computer in making 
the translation. 

Symbolic codes—much improved and updated—are 
still used in many applications. 

Common languages-
fewer instructions 
Common languages—such as COBOL and FORTRAN— 
take advantage of common problems, let your pro-



IBM programming systems help you They also help you program A library of IBM Application 
reduce computer programming input and output devices most Programs helps you solve 
and operating costs. efficiently. specialized problems. 

grammers give the computer one standardized instruc
tion to represent a series of steps the computer must go 
through to perform a function. 

These common languages—source languages, we call 
them—are written with symbols as nearly as possible 
like everyday English words. 

For example, the programmer would write: 
SET DISTANCE = RATE * TIME. 

A program, supplied by IBM, would translate that to 
machine language that would look like this: 

000 101 110 000 000 000 
000 010 110 000 000 000 
000 110 000 001 000 000 
000 001 000 000 000 100 
000 000 000 101 110 000 
000 010 000 101 000 001 

Thus, four English words and two arithmetic signs 
translate, in the computer, to the necessary machine in
structions. Once the translation is made, you use the 
machine-language program to run your computer. 

This saves time and money and reduces error. 
It also enables the programmer to concentrate on 

the problem to be solved instead of the machine and 
its idiosyncrasies. 

Obviously, it still costs money—computer time—to 
translate from source language to machine language. 
But it's a lot less expensive than doing it by hand. And 

IBM is continually improving its translator programs so 
that they require less computer time. 

Fast way to organize 
input and output 
So far we've been talking about programs that handle 
the processing of data more efficiently. Yet that is only 
one part of the data processing activity—the fast part. 

It's just as important to speed up the handling of 
information as it goes into the computer and as it 
comes out. IBM has help for you here, too. 

Programs, called Input/Output Control Systems, 
simplify programming of printers, card readers, tape 
files, disk drives and other input and output devices. 
They help your programmers generate efficient operat
ing programs that include built-in error checks and 
signals to the operator when the end of a reel of mag
netic tape or the end of a program is coming up. They 
help you make maximum use of your IBM computer's 
calculating power. 

Sort/Merge Programs help you, too. They reduce 
the number of times you have to handle cards or spin 
tape to arrange an input or output file in proper se
quence. They eliminate the need for complete pro
gramming of these routine functions. 

Other IBM programs help you test a program before 
using it...convert your files from card to tape, tape to 
printer, tape to disk...change from one job to another 
or let you stack jobs on the computer so that it moves 
from job to job without help from the operator. 



What to look for 
in a data processing system 
The point is a computer is just a machine. And, 
whether you rent or buy, it's the machine you pay for 
— its speed and information storage capacity. But it's 
the way you use the machine that pays off for you. And 
that's where IBM programs come to your aid. 

They cut your programming costs. They give you 
generalized approaches and procedures for each ma
chine; they quickly make translations from common 
languages like COBOL and FORTRAN to machine lan
guage—often require only one pass through the com
puter instead of two; they let you tailor computer 
functions to your problems and make it possible to put 
new jobs on your computer at minimum cost. 

They also make computer processing, itself, more 
efficient. They give you programs that take less storage 
space in the computer (space that costs you money)... 
programs that take less time to execute.. .programs that 
permit better utilization of mechanical input and out
put machines. 

Application Programs 
for specific jobs 
In addition, IBM offers you a variety of Application 
Programs — programs that are aimed at the solution 
of specific business problems. Like Demand Deposit 
Accounting for banks, AUTOSPOT for numerical con
trol of machine tools, Inventory Management Simu
lation for a variety of industries. We also operate an 
information exchange service that permits customers, 
who wish, to exchange programming and problem 
solving information. 

IBM programs offer you a more economical utiliza
tion of your IBM computer. All are available on 
punched cards or magnetic tape, ready to be used on 
your computer. 

We also offer you the counsel and advice of program
ming experts when you need help. Their job is to help 
you solve your business problems more effectively with 
IBM Data Processing:. 

IBM 
D A T A  P R O C E S S I N G  

520-1761 
For reprints of this article, write to International Business Machine Corporation, 
Data Processing Division • 112 East Post Road, White Plains, New York. 



+1 

s 

s 

fh V0f~ 



704 FORM A-027 CORRECTIONS 

Location ±P Decrement 
Index 
Reg. 
No. 

Address 

Remarks 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 

• 


	102663105-05-01-acc
	102663105-05-012-src.pdf

