The purpose of this article is two fold. One is to assist a prozrammer currently involved in writing chess programs to reorganize the decision making process for move selection by the machine. The second purpose is to assist a human chess player to have an effective logical process for finding combinations leading to wate. There is a great deal of interest in chess playing computers from the hobby computer enthusiest as well as chess players. The ftrst macrocomputer chess tournament was held this year in San Jose. There are several retail chess playing computers programmed by the manufacturer currently on the market. There are sever al available programs written for the home hobby computer which may be purchased from your local game or computer store. Sargon, a program for the Z-80 developed by a husband and wife program team, Kathe and Dan Spraeklen will be available tais year. Their program finished in first place with a convincinge5 - o score against 10 other programs entered in $\operatorname{san} y o s e$ programing a computer to play chess is enormous but if a computer were progremmed to seek mating moves first in its desision dacing process before moving on lower level priorities such as excnenge velues, mobility, developizent and control of the center, it would play agressive chess and perhaps create threats not possible under current programming techniques. The game of chess is so exact, there Hust be a correct process of steps leading to mate. Current chess books provide variations of attacks from past games of masters, however different authors may provide confilcting view points expiaining why the attack was successful. I will describe a logical process which will find mate at every opportunity where a mating comuantacu exists. There are several elements which lead to mate. In this Erticle I will dwell on the first two key elements. The four elements are:

1. the checking piece 2. moving a pieca to support caeck 3. moving a piece thet if captured, check can be given. 4. Moving a plece that

- denies response to a check. The first priority is the onecking piece. There are three responses to a check, they are (A) capturing the checking piece (B) interposing (C) moving the king out of check. The second priority is moving a plece to support check. In the following examples you will see that we will deal only with the pieces involved in the meting combination and will not examine non related pleces on the chess board.

At the present tiwe computer games may develop a mating position but usually as a result of the weakness of the opponent ratner than due to the aggressiveness of the computer. For example the coin-uter \#ᄑiy jaike a move dased on the value result of an exchange. If the macaine has a choice of exchenging a queen for a knignt or a pawn for a knight it will weigh the differences of the value of pleces after the exchance and will elect to exchange the pawn for a kaight if it Les a caoice. The reason being the value of a knight is 3 points, tice velue of a queen is y, and the value of the pawn is 1 point. By exchanging the pqwa for a knight it will have an excnange value of plus 2 eni D_{j} exchanging a ques. for a knight it will gave a negailve velue of minus 6 . By comparing these tho results it is cay to see that exchanging the pawn for the anight has wore value then exchangind a queen for the knioht. Why not prograf the machine 0 seek चite first and ust ine lover level decisions sucn as exchenoe veliut second and ao on.

A programmer can do this by setking a checking move first, the opporent can only respond to a check three ways; 1. capturing the checking piece 2. interposing 3. moving the king out of check. If the opponent cannot respond to these conditions the result is mate. (See following example:)

$$
\begin{aligned}
& \text { computER } \\
& \text { Bishop AT B2 } \\
& \text { Queen AT C3 } \\
& \text { King AT G1 }
\end{aligned}
$$

opponent King ATG 8 ROK AT F8 Pawns AT (F7)
(GT)

The flow chart would look like this:

If the opponent can respond positively to the checking move as in the following position the logic process is as follows: Can QP + computer give check? The answer is yes. Can the enemy capture?
$B \times Q$ ($y \in s$) Since that condition is true or yes, following the flow chart can computer give gheck again is asked and the answer is (yes) $R+0 E 8$ The enemy cannot respond by capturing, interposing, or moving the king. The result is mate.

Computer
Bishop AT B2
Queen at C 3
ROOK RT GI
ROOK AT EL
King AT HI

duplicate gage
the following is A perfect example To examine in Detail to see why this process worries
whits
King AT CI
Rooks AT DI AUD EI
Knight AT D2
PAWN: AT A2-B2-C3

Computer
Queen at Ez
BIShopS AT EH
06
this simple position is Rich in tracking Potential se we can do An Exhaustive GAme tree sestich And compare it with the fhow-chart As we qu Abound the computer is polack छwhis the the move; the computer has i queen Ans two Bishops ether pieces were nemuver As they Are net important to the mating secquence.
you can see the computer has two? possible checks; one is exp ck And the second is $a \times N$ CK bets examine the game tree with that dhow-chart sirs

As you can see the computer has two possible checks; ene is GXPCK AnD the second is $a \times N$ CK bets examine the gamine tree with the dhow-chart

As you can see the computer has two II possible checks; one is exp ck An the second is $a \times N$ ck bets examine the game tree with the drow-chart 3^{20}
path

As you can see the computer. has two ls possible checks; one is exp ck And the second is axN CK bets examine the game tree with the drow-chart

$4+5$

As you can see the computer has twos Possible checks; one is GXP CK And the second is $a \times N$ CK bets examine the quine tree with the flow-chart $5^{\text {th }}$ PAth

the Ayracking cenisiruns heasing to mate Are A RESULT of Gluing CK Anr the uponents Response te that chects. the new condition of musina a pieer te supperer eheels can be Demunstrated le the Sollewing position
computer
King AT $H 1$
Queen - F2
Rook - EI
Bishop - B2
opponent
King AT G8
ROK AT F8
Knight AT FG
Pawns AT F9-G7-H?

CAn cOMPUTer give check- (NO) CAN computer move A piece to support check? (yes) $Q \times N$ supporting check AT G7. CAM that piece le capture? (yes) $P \times Q$ if that piece is captured. CAN Computer give check (yes) RTOGI + CAN that piece be cAptures (NO) interposed (ho) move king (y, $\mathrm{K}-\mathrm{H}$) if condition is true can computer glue check (yes) can opponent capture (no) interpose (na). Move king (no) the Result is mote.

$A=$ CAPTURE $B=$ InTERPOSE $C=$ move king

By combining the elements of a check and a move to support check it wauld work as shown in the above diagrams (A and B). See diagram A - With white to move, waite exhausts all the checking possibilities first and finds he must move to the next level of priority which is moving a piece to support check - which is knight takes pawn at G6 which supports check with the queen at H8. Following the flow chart, the question is asked - can this piece be captutured? Since the answer is yes - again following the flow chart, the question is asked - if this piece is captured - can I give check? The reault is yes with QXP check forceing the condition B interposing with the knight which leads to diagram (B). Following the flow chart, white can force a win by giving check with the rook at H forceing condition A, king captures rook. If this piece is captured can you give check? The answer is yes - with queen to H6 check, forceing condition C In the flow chart - king moves to GO which leads to the pawn move of $G 5$ to $G 6$ which is moving a piece to support check and mate follows next move.

insert showing only CAptures Anis Cheeks

Position A page GA

END of cheeks

Let us examine the following diagrams: In the diagram on the left with Anderssen as white to nove, by consulting the flow chart and exheusting the checking move first you will see that by moving the queen to $H 6$ is moving a piece to support check. It wins the game by force as you can see, the queen can be captured by the pewn. The follow up of course is giving check by knight takes pawn inate. In the diagram on the right this is the position of a came played In 1920 et Zurich. With white to move Teichmann played rook ti.les ferm et lic. Cen you see why? If not consult the flow chert. There Ere no cheeking moves but this move, movcs a plece to support check at 48 . Black responded with knight takes rook and white moved its queen to $G 5$ which is moving a piece to su_ port orieck at DE. Eleck reinforced the checking squere by lnight to $F 7$ and white noved queen to DB cueck. Bleck captured the queen vith the knight and white moved pawn to the which is moving af giece to support check. There is no vay out for bleok. ne resigned.

AMATEUR

ANDERSSEN
A MAGNIFICENT finish from an odds game by Teichmann, played at Zurich in 1920.

examine the following paition. fisher 20 MOVED TO SUPPORT check AT G7 After exausting the checking possllities first. BLACK Reinforced the position with Q-F (See fLowchart) ASk yourself can you que check (yes QXPt (HT) CAn That piece be cAptured (yes) condition (A) cAn you give check if that piece is captured (yes) $P \times P$ Dis check cAn the checking piece Le captured meeting condition A (yes) if that piece is capture can you Give check (yes) B to E4+ CAn the checking piece Le captured no interposes no, cAn the king move no the Result MATE.

White to move fisher

1. Q-H6 $Q-F 8$
$2 Q \times P+K \times Q$
2. $P \times P($ dis t) $k \times P$
3. Ben mate

Here are two ex aples of a supportive aove waich leads to wate as described in the flow chart. The first diagram on the left is ε problew ocmposed by Kax lwe in 1920. White moves queen to D6 which is poving e piece to su, ort cheok. If you follow the flow chert which seys that this piece cen be ceptured (conuswaw true). If captured can you give rheck again? The enswer is yes by moving the rook to Cl , the rewult is infte.

White mates in 2

The diegram on the right is another example of moving a piece to support check. Wita walte to move, white moved knight to F5 whilen supports check at. E] and $H 6$. If tils piece is captured by the pawn check can be given by moving the rook to $G 4$ which leads to mate. Black responded not with capturing the knight but queen tekes rook at $h 4$ which guards ajzainst both mates and threatens cueen tekes pawn at $H \hat{L}$ and leaves whites queen vulnerable to attack by black's rook at D8. Waite responded vith the move cueen to $H 5$ which again is moving a piece to support check. It supports check with the knight at H6. Flease note the queen cannot be captured by eicher the pawn or the black queen because white would mate with the next move.

In the following positions Bobby Fischer forces a win in diagram C with a queen move to $B 3$ waich moves a plece to support check by moving the rook next move. In diagram D in the famous Fischer Byrne game for the United States Championsiip 1963-64, Fischer as black moved queen to $D 7$ which sup orts check at $H 3$ and Byrne resigned. In diagram E, Fischer again forces a win by moving a piece to support check with bishop to Cl which supports check at F4. In exemining diagram F, we look at the fanous Morphy sacrifice against Paulsen With queen takes bishop at F3. This is moving a piece to support check, following the flow chart you will see that if that plece is captured check can be given by the rook at G6. Norphy followed up the check with a supportive move to a check by moving the bishop to H . One final example of a move which supports check is in the following diagrein: G. edWithlwhite to move he first exhausts the checking possibilities and then moves the queen to E5 which supports check at E8. If this piece is captured, check follows. with the rook at D8
forceing mate.
c.

D. 21... Q-Q2!

FISCHER

Final Position after
21. . . Q-Q2!

BYRNE

White resigns

Problem: White to play and win.
F.

As explained earlier there are other priorities in forceing a checkmate. That is the third priority of moving a piece that if captured check can be given. In diagram H, with Pal Benko with the White pieces to move, captured the bishop with his knight at E6. It leaves his queen open to capture by the enemy rook, however check follows with rook to $A 8$ and mate cannot be stopped. If the knight is captured queen takes rook at 98. Another famous diagran is 2 With maite to nove. White moved bishop to $E 8$ which supports a check at $F 8$. If the bishog is captured by the eneay Rools, queen taces bishop check forcing mate, The fourth priority is moving a piece that denies response to a check can be demonstrated in the last diagram J which occured between Larsen and Rogoff in Lone pine 1978. After rook takes pewn check at A7 if black king captured rook, white responds with queen takes pawn at C6 which denies the black king of condition C when followed up with a checking move of rook Fl to Al.

In summary if a computer seeks mate first by the use of the checking move the enemies response to that check and moving a piece to support check it will deal with the pieces involved only in the mate combination and not every iece on the board. If a mate is there it will find it. If a mate is not there it will then go to the lesser priorities such as mobility, exchange value, developement, control of the center,
(H):

(1)

(J)

The following article is perhal the seeds of an Thea than cen be developed into an exacting proc es for lieyine the feme of chess. Most chess books explain the principles well enough to improve your game. The outline of the idea previously explained is by no means complete. I have mentioned four programmable reasons leading to a mating position. The first is the checking piece, the second is moving a piece to support check, the third is moving a piece that if captured check can be given. The fourth is moving a piece that will deny a response to a check such as capture, interposing, or denying the enemy king the right to move out of checks. For every elg.aent stated thrive are others visiting to we found but the level of difficulty increases proportionately. The first two priorities are most important. If you look at game 5 between Spasisky and Fischer, Fischer had the black pieces and moved 27 bishop takes pawn at A4. This does not fit with any of the above elements. cerheps it could be sited that Fischer move was moving a piece that if captured a piece can be moved that threatens check, and so it grows. Fie idea is there, the moves are there, it is up to someone to write the program on a machine language level. Can you larine playing an opponent tint seeks mete first and foremonst before considering other moves.

Sincerely yours
Ron Brinegar

Service Is Our Specialty - Satisfaction Our Guarantee SERVICE ON ALL BRANDS

LYON APPLIANCE
Tuolumne County's Oldest Dealer Phone (209) 532-4894

Mono village Center 19515 Village Dr.

