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INTRODUCTION 

Your Martin Space Rule is an instrument 
specifically designed to aid the student of astro­
nautics and the skilled engineer in solving pre­
liminary design problems that are most fre­
quently encountered in several space flight 
technological areas. 

For example, the Space Rule enables the 
user to determine very rapidly individual boost­
er stage sizes and takeoff gross weights for sin­
gle- or multiple-staged boosters, as well as the 
mission velocity requirements and associated 
flight parameters for most ballistic, orbital and 
interplanetary problems. The rapid methods 
for solving problems produce results with ac­
ceptable degrees of accuracy. However, appli­
cations of the Rule are not limited to quick 
answers. Techniques are presented which also 
enable the user to conduct various parametric 
and optimization studies to achieve a very high 
degree of accuracy without resorting to a com­
puter. In addition, an insight into the effects 
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of variation of the basic design parameters 
may be attained. 

The only prerequisites for the use of the 
Rule are a familiarity with the basic slide rule 
and a rudimentary understanding of rocketry. 

Your Martin Space Rule was originally con­
ceived by Michael Stoiko and subsequently de­
veloped to its present status jointly with 
Werner Furth. Both men are engineers at 
Martin's Space Systems Division. 
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YOUR SPACE RULE 
The layout of the Rule arid the grouping of 

the scales facilitate calculations in four space 
technology categories: 

1. Booster design. 
2. Exterior ballistics. 
3. Orbital mechanics 
4. Interplanetary travel. 

Scales pertinent to each category are arranged 
together on the Rule, reducing the number of 
operations required in problem solving. Th' 
"front" of the Rule may be identified as the 
side having the D scale and the slide with the 
C scale showing. The "back" side of the Rule 
presents a completely solid face. 

RATIONALE OF THE 
SPACE RULE 

A man driving his car measures the magni­
tude of his trip (the mission) by the distance 
traveled, and the performance of his car by the 
distance traveled per gallon of gasoline. In 
modern rocketry, however, velocity rather than 
distance is the common denominator of a mis­
sion capability. A familiar example of this 
concept is the mission velocity normally asso-
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ciated with an escape from the earths gravi­
tational field, i.e., 36,700 fps. 

Procedures for solving space problems with 
the Space Rule are derived from the relation­
ship of velocity, mission, and performance. 
Four basic principles underlie the method: 

1. It is possible to define a particular mis­
sion by a velocity. 

2. It is possible to describe the performance 
capability of a vehicle by a velocity. 

3. It is possible to account for performance 
losses due to gravity and aerodynamic 
drag, by a velocity. 

4. Requirements for maneuvering, reserve 
performance, safety factors, stabilization, 
vehicle orientation, payload variations, 
and other criteria can also be expressed 
by a velocity. 

The velocities described above are all neces­
sary factors in determining the characteristic 
mission velocity. The characteristic mission 
velocity is the concept around which the con­
struction of the Space Rule and the computa­
tional techniques outlined in this handbook are 
developed. The user of the Space Rule should 
understand and appreciate this fundamental 
concept. 



CHARACTERISTIC MISSION 
VELOCITY 

For each specific spaceflight mission there is 
a unique velocity associated with that mission. 
For a rocket booster to perform the required 
mission, it must achieve a velocity equal to 
that unique velocity at the end of its powered 
flight phase (burnout). 

If an initially stationary booster is flown in 
a drag-free, gravity-free environment, the 
booster would be sized to carry only that 
amount of propellant required to produce the 
velocity increment equivalent to the burnout 
velocity. But since all boosters launched from 
earth incur velocity losses due to gravity, aero­
dynamic drag, and from other sources, these 
velocity losses must be added to the burnout 
velocity to determine the total velocity poten­
tial that the booster must have in order to 
successfully perform the given mission. This 
total velocity requirement is defined as the 
characteristic mission velocity. 

EARTH'S ROTATIONAL 
VELOCITY 

Determination of the total velocity require­
ments, for orbital missions, must also take into 
consideration the velocity component due to the 
rotation of the earth about its polar axis. Be­
cause of this rotation, a point on the equator 
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moves due east at 1520 fps relative to the 
center of the earth. At latitudes other than the 
equator, the velocity component is also due 
east but is equal to 1520 cos A fps. 

Consequently, a booster launched due east 
inherits the earth's rotational velocity compo­
nent, thereby reducing the total velocity re­
quirement for the mission by an amount equal 
to the earth's rotational velocity. 

If the booster is launched due west, then the 
total velocity requirements must be increased 
by the amount of the earth's rotational velocity. 
For polar orbits, the rotation of the earth may 
be neglected, since the direction of the earth's 
rotation is perpendicular to the final flight 
directions. 

For initial booster design purposes, the effec­
tive initial velocity due to the rotation at the 
earth may be assumed to be 

Vr = reo> cos A sin /? 

where: 

re = radius of earth 
w = angular velocity of the earth 
A = launch latitude 
/? = launch azimuth, measured clockwise 

from north. 

From Cape Canaveral, this velocity is 1340 
sin (3 fps. 

For ballistic missions, the rotational velocity 
of the earth is to be neglected. 
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EARTH'S ORBITAL 
VELOCITY 

Just as the earth's rotational velocity applies 
to earth-centered orbits, the earth's orbital 
velocity applies to sun-centered orbits. The 
earth is moving in an orbit around the sun at 
a velocity of 97,760 fps. For problems involv­
ing transfer between coplanar outer planets, 
launching in the orbital direction—that is, tak­
ing advantage of the earth's orbital speed—is 
the only practical means of conducting inter­
planetary missions. 

For travel to the inner planets, or even to 
the sun, it is advantageous to decrease the 
velocity of the spacecraft. This velocity is 
measured in respect to the sun. The decrease 
requires a velocity increment in the direction 
opposite to the starting velocity of 97,760 fps. 

VELOCITY LOSSES 
Raising a particle from the earth requires 

doing work against gravity. Therefore, if we 
add a fixed amount of energy to a particle (or 
payload), the final velocity depends on how 
high we raise the particle during the process 
of adding energy. The higher we raise the par­
ticle, the lower the velocity. The decrease in 
the final velocity of a booster due to the in­
crease in altitude is referred to as a velocity 
loss due to gravity. 

In the same manner, moving a particle 
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through the atmosphere works against aero­
dynamic forces such as drag. This, too, results 
in a slow down or velocity loss. 

Appendix A presents a table of mission 
velocity loss estimates which can be applied 
with reasonable confidence in the absence of 
more precise information. The table makes no 
attempt to isolate individual velocity loss con­
tributions. Rather, it uses representative cri­
teria from the mission profile for estimating 
the losses, which are a composite of such fac­
tors as booster drag, flight path control, thrust-
to-weight history and burnout conditions. 

NOMENCLATURE — TYPICAL 
THREE-STAGE VEHICLE 

Effective Payload 
of Stage 1 
(Stage 2 4" Stage 3 4* Payload) 

Effective Payload of Stage 3 
Booster Payload & 

Vehicle Takeoff 
Gross Weight 
(Stage 1 4-
Stage 2 4-
Stage 3 4" Payload) 

Effective Payload 
of Stage 2 
(Stage 3 4- Payload) 

Stage 2 Vehicle 

Payload or 
Spacecraft 

Booster 

Stage 1 

-Y-
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PROPELLANT 
MASS 

FRACTION 
Estimating the propellant mass fraction of a 

stage is difficult in the initial phases of design. 
In lieu of an engineering basis for this esti­
mate, the curves presented in Appendix B may 
be used. These curves express an empirical 
relationship between A, payload and the pro­
pellant mass fraction. Since stage performance 
is extremely sensitive to the propellant mass 
fraction, an accurate value for this parameter 
should be ascertained as quickly as possible 
from a detailed weight analysis. 

There are three auxiliary scales on the front 
face of the Space Rule which are applicable to 
the problem of determining the stage's mass 
fraction. 

DEFINITION OF SCALES 
Utilization of these scales will determine the 

following design parameters: 

%WP,—percentage of the propellant loaded 
that remains in the stage at burnout. 

%Wd—stage dry weight divided by the total 
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stage weight (pay load excluded). 
Ratio is expressed as a percentage. 

MF—propellant mass fraction of a stage, 
defined as the ratio of the stage pro-
pellants consumed for power divided 
by the gross weight of the stage 
(payload excluded). Thus, the mass 
fraction is a number greater than 
zero and less than one. 

OPERATION OF SCALES 
The Rule is constructed so that if any two 

of the values for %Wpr, %Wd or MF are 
known, the third value is fixed and read di­
rectly. Furthermore, the physical limits within 
which these parameters can vary are estab­
lished by one setting of the Space Rule. 

EXERCISE ONE : Assuming that the weight 
of a stage structure is 12.5% of the stage 
weight and that the weight of the residual pro­
pellant is 7.5% of the total loaded propellant 
weight, find the stage mass fraction. 

(1) On the %Wd scale, place the hairline 
over 12.5. 

(2) Adjust the slide so that 7.5 on the 
%Wpr scale lies under the hairline. 

(3) With the slide stationary, move the hair­
line to the indicator, |MF. 

(4) Under the hairline, read: 
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MF—propellant mass fraction: 0.809. 

EXERCISE TWO: Determine, by the Space 
Ruie, the limits of %Wpr and %Wd. Assume 
that the booster stage has a propellant mass 
fraction of 0.9. 

(1) On the MF scale, place the hairline over 
0.9. 

(2) Adjust the slide so that the indicator, 
IMF, lies under the hairline. With the 
slide stationary, move the hairline to the 
left index on the %W.pr scale. 

(3) Under the hairline, read: 
%Wd—percentage dry weight: 10% 

(assuming no residual propel 
lants). 

(4) On the %Wd scale, move hairline to 0. 

(5) Under the hairline, read: 
%Wpr—residual propellants: 10% (the 

maximum even for a perfect 
weightless structure). 

In practice, the %W.pr normally does not ex­
ceed 2%. For first approximations in design 
work, 1% is an acceptable mean value. Design 
judgment must be exercised in an assumption 
of %Wd or MF, but generally it is easier to 
find a working value for MF. 

The propellant mass fraction may be speci­
fied or it may be calculated by the use of the 
Rule and the procedures established above. If 
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the required information is not available, the 
curves in Appendix B may be utilized. These 
curves relate A, payload and the propellant 
mass fraction. 

A is found at the same time as the K' value, 
and therefore, it varies as K', and is a function 
of the velocity of the stage. The definition of 
A and K' are found in Section V. Payload, 
generally, is a known or given value for most 
problems one encounters in design. 
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Ill 
EXTERIOR 

BALLISTICS 
The scales grouped on the lower back or 

solid face of the Space Rule are used for ex­
terior ballistics as applied to ballistic missile 
flight. In developing these scales, it was as­
sumed that the earth is a stationary sphere 
without atmosphere, that burnout velocity is 
reached at zero altitude, that the ballistic tra­
jectory, after burnout, is unpowered for the 
remainder of the flight, and that the burnout 
flight path angle is optimum for maximum 
range. 

DEFINITION OF SCALES 
The definitions of the exterior ballistic scales 

are: 

V2—velocity at burnout of booster (103 fps). 
Ri—range from burnout at low altitude to 

impact on earth surface (103 stat mi— 
downrange). 

yb0—flight path angle at burnout (deg—from 
horizontal). 

T F — time of flight from burnout to impact 
(min). 

Ha —maximum altitude of flight (stat mi). 
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OPERATION OF SCALES 
Determining the related flight parameters on 

the ballistic missile scales is simply and con­
veniently accomplished with one setting of the 
hairline. If either the burnout velocity (V2) or 
the range (Rj) is known, then setting the hair­
line on either of the known values will deter­
mine the remaining vehicle performance pa­
rameters. 

EXERCISE ONE: For a 5000-statute-mile 
ballistic missile, determine the characteristic 
mission velocity and the related flight param­
eters for this mission. 

(1) On the Rj scale, set the hairline over 
5 (5000 stat mi). 

(2) Under the hairline, read: 
V,—required burnout velocity: 22.36 

(22,360 fps). 
YBO—burnout angle: 26.9 deg. 
Tf—time of flight: 28.1 min. 
Ha—height at apogee: 787 stat mi. 

The 22,360 fps is the burnout velocity re­
quired to achieve the range of 5000 statute 
miles and does not include the losses incurred 
by the vehicle during powered flight. Typical 
flight losses (given in Appendix A) must be 
added to the burnout velocity. In this mission, 
the losses are 4000 fps. Therefore, at launch, 
the booster must have a capability of delivering 
a total or characteristic mission velocity of 
26,360 fps. 
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IV 

EARTH 
ORBITAL MECHANICS 
The earth orbital mechanics scales are con­

tained on the solid face of the Rule and are 
grouped primarily in the upper half. These 
scales utilize one important assumption: that 
all orbits found on these scales have a 200-mile 
perigee. The velocities relate to a stationary, 
homogeneous sphere (therefore, to inertial 
space), and external forces other than the 
earth's gravity (e.g., atmospheric effects, influ­
ence of other bodies) are neglected. 

DEFINITION OF SCALES 

The orbital parameter scales on the upper 
part of the Rule are: 

e—eccentricity of the orbit. 
Va—velocity at apogee (103 fps). 
ha—altitude at apogee (103 stat mi). 
hm—mean altitude of the orbit (103 stat 

mi) 
r—orbital period (hr). 
Vx—velocity at perigee (103 fps). 

At the bottom of the-Rule, on the same face, 
is an additional orbital mechanics scale: 

hc—altitude of circular orbit (103 stat mi). 

This scale is used in conjunction with the V2 
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scale, which then shows the corresponding cir­
cular orbit velocity (in 103 fps) at any desired 
altitude (hc). 

OPERATION OF SCALES 
One setting of the hairline suffices to deter­

mine the several correlated orbital parameters, 
just as it did for exterior ballistics. 

In determining the period (r) of a circular 
orbit, the hm scale rather than ha scale is used 
as the orbit altitude. Use of the hm and T 

scales also defines the period of any orbit, 
since all orbits (elliptical or circular) sharing 
a common mean altitude have identical periods. 
In particular, the period of a circular orbit is 
immediately determined since the mean altitude 
is equal to the orbital height. 

EXERCISE ONE: Find the circular veloc­
ity for a 1000-statute-mile orbit. 

(1) On the hc scale, set the hairline over 1 
(1000 stat mi). 

(2) Under the hairline, read: 
V2—orbital circular velocity: 23.2 

(23,200 fps). 

EXERCISE TWO: Find the period of a 
1000-statute-mile circular orbit. 

(1) On the hm scale, set the hairline over 1 
(1000 stat mi). 
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(2) Under the hairline, read: 
T—orbital period: 1.97 hr. 

EXERCISE THREE: A satellite is injected 
with a zero flight path angle into orbit at an 
altitude of 200 miles with a velocity of 33,280 
fps. Find the orbital parameters. 

(1) On the Y1 scale, set the hairline over the 
injection velocity: 33.28 (33,280 fps). 

(2) Under the hairline, read: 

r—orbital period: 10.6 hr. 
hm—mean altitude: 11.3 (11,300 stat 

mi). 
ha—apogee altitude: 22.4 (22,400 stat 

mi). 
Va—velocity at apogee: 5.24 (5240 

fps). 
e—orbital eccentricity: 0.727. 

It should be noted that with an injection 
velocity of 35,808 fps the orbital payload 
would have reached an altitude at apogee of 
infinity and would have escaped the earth's 
gravitational field. For injection velocities 
higher than 35,808 fps, the orbit is hyperbolic, 
rather than elliptical. The terms T, hm, ha, and 
Ya are not defined. However, the eccentricity 
of the orbit is a meaningful quantity, even 
though greater than 1, and is shown for veloc­
ities higher than the escape velocity. 
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EXERCISE FOUR: For Exercise Three, 
find the velocity which must be added to the 
satellite to establish a circular orbit at the 
apogee altitude of 22,400 statute miles. 

(1) On the hc scale, set the hairline over 22.4 
(22,400 stat mi). 

(2) Under the hairline, read: 
V2—orbital circular velocity: 10.05 

(10,050 fps). 
(3) Subtract the satellite velocity at apogee 

from the velocity required to maintain 
a circular orbit. This is the velocity in­
crement which must be added to the 
satellite at apogee to inject into a circu­
lar orbit. Thus: 

AV = 10,050 — 5240 = 4810 fps. 

EXERCISE FIVE: In Exercise Four 
above, find the period of the circular orbit. 

(1) On the hm scale, set the hairline over 
22.4 (22,400 stat mi). 

(2) Under the hairline, read: 
r—orbital period: 24.2 hr. 

In the preceding example, it is well to re­
member that when the satellite is launched 
from earth, it will take 5.3 hours to reach 
apogee. This is one-half of the orbital period 
of the elliptical transfer orbit. At this time, 
the AV of 4810 fps is added to the satellite to 
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inject it into a circular orbit at the apogee 
altitude of 22,400 statute miles. This final ve­
locity increment will be added when the satel­
lite is halfway around the world, in reference 
to the 200-statute-mile perigee. 
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V 
BOOSTER DESIGN 

The booster design scales relating the physi­
cal characteristics of a vehicle to the vehicle's 
performance are located on the front of the 
Rule (slide side). For these calculations the 
slide must be inserted with the C scale showing. 

DEFINITION OF SCALES 

On the upper half of the Rule are the scales 
used to establish the stage weight of an n-stage 
booster: 

A—ratio of the initial weight of a stage at 
launch to its final weight at burnout. 

K4—ratio of the (n-3rd) stage weight to 
the payload weight. 

K3—ratio of the (n - 2nd) stage weight to 
the payload weight. 

K2—ratio of the (n - 1st) stage weight to 
the payload weight. 

Kx—ratio of the nth stage weight to the 
payload weight. 

Scales on the "slide" are: 

Isp—engine overall specific impulse (sec)*. 

* For engines operating from sea level to vac­
uum conditions, an average value Isp should 
be used. For engines operating in a vacuum, 
the Isp value at this condition is used. 
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K0—numerically equal to K'. 
%Wpr—see Section II. 
C—conventional slide rule C scale. 

The following scales are on the lower half of 
the Rule: 

D—conventional slide rule D scale. 

K' -—. 
A—1 

%Wd—see Section II. 

The standard slide rule C and D scales per­
mit multiplication and division. The D scale 
has an additional function in that it is used 
as a velocity scale for stage sizing calculations. 

OPERATION OF SCALES 
The operation of the booster design scales 

requires positioning the slide twice and moving 
the hairline four times. These operations are 
performed in the following order. 

(1) When the characteristic mission velocity 
for the stage or the booster is estab­
lished, the hairline is set to this value on 
D, the velocity scale. 

(2) The slide is moved so that the stage 
specific impulse as shown on the Isp scale 
is also under the hairline. 

(3) The values of K' and A are now deter­
mined by moving the hairline to the in-

20 



dex on the C scale.* The value of K' 
is recorded. 

(4) On the MF scale, the hairline is next 
moved to the stage propellant mass frac­
tion value, and the right index of the C 
scale is moved under the hairline. 

(5) With this setting of the slide, the pre­
viously found value of K' is transferred 
to the K0 scale, i.e., the hairline is 
moved over this value on the K0 scale. 

(6) Then the value of Kx is read. This value 
is the ratio between the first-stage weight 
and the payload weight. 

For simplified and rapid determination of 
the stage weight and launch weight of an n-
stage vehicle, the relative sizes can be found 
from Step (6) above by just reading the values 
of Kx, K2, K3, etc. The only provision is that 
the characteristic mission velocity on the D 
scale is divided by the number of stages and 
that the average values are used for the specific 
impulse and the mass fraction. For more de­
tailed design, the stage parameters may be cal­
culated individually. This involves substituting 
the appropriate mass fractions for each stage, 
beginning with the top stage (for which the 
payload is known) and continuing down (the 
payload for each stage being the weight of all 

* In some problems, the opposite index must 
be used in the same manner as a standard 
slide rule. 

21 



higher stages plus the vehicle payload). The 
variation between the basic and detailed meth­
ods is slight, however, particularly when the 
stage mass fractions are not grossly different. 

The ratios obtained by using the K1( K2, K3, 
and K4 scales are summarized in Table 1 (on 
the next page) for multiple-stage boosters. The 
K factors represent the ratio of the stage weight 
to the payload or spacecraft weight. This table 
also provides the expressions for determining 
the booster gross weight (W0) and gross 
weight-to-payload ratio in terms of the pay-
load weight (WPL), K, and stage weight 
(W*n)-

EXERCISE ONE: Find the stage weight, 
launch weight, propellants consumed, burnout 
weight, and the ratio of the launch weight to 
the burnout weight of a single-stage booster 
which is to deliver a velocity increment of 
15,000 fps. Assume a stage mass fraction of 
0.9, an effective specific impulse of 300 seconds, 
and a payload weight of 1000 pounds. The 
velocity losses are zero. 

(1) On the D scale, set the hairline to 1.5 
(15,000 fps) and move the slide until 
300 on the Isp scale is under the hair­
line. Now index the hairline at the end 
of the C scale. 

(2) Under the hairline, read: 
K' = 1.268. 
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With the same setting, one can read that 
A — 4.73, which means that the launch 
weight is 4.73 times heavier than the 
burnout weight. 

In some problems, the ratio of takeoff gross 
weight to burnout weight, A, will be known 
or assumed at the outset. In this case, the value 
of K' is found immediately by setting the hair­
line over the A value (4.73) and directly read­
ing 1.268 under the K' scale. 

(3) On the MF scale, set the hairline to 
0.90. Move the right index of the C 
scale under the hairline. Then on the 
K0 scale set the hairline to 1.268 (K' 
value). 

(4) Under the hairline, read: 
Kx = 7.08. 

(5) The weight of the stage loaded is: 
Ws = WPL XKj = 1000 X 7.08 

= 7080 lb. 
(6) The launch weight of the booster is: 

W0 = Ws + WPL = 7080 + 1000 
= 8080 lb. 

(7) The weight of propellants consumed is: 
Wpu = W6 X MF = 7080 X 0.9 

= 6372 lb. 
(8) The burnout weight is: 

Wbo = W0 — Wpu = 8080 — 6372 
= 1708 lb. 
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(9) The launch weight to burnout weight 
ratio is: 

W„/Wto = 8080/1708 = 4.73. 

The value 4.73 is identical to the value of A 
found initially. 

If a mass fraction of 0.79 had been used 
instead of 0.9, notice that Kx= °o. This means 
that no matter how large the stage is, it will 
never accomplish the mission. Physically, the 
burnout weight of the stage with zero payload 
is 1/A or 1/4.73 of the stage weight. Conse­
quently, all the permissible weight is in the 
stage, none being left for the payload. 

EXERCISE TWO: Find the range of a 
single-stage IRBM with a launch weight of 
46,500 pounds carrying a 3000-pound payload. 
The stage has a propellant mass fraction of 
0.91 and an average Isp of 270 seconds. 

(1) Find Kx, the ratio of booster weight to 
payload weight: 

46,500 — 3000 Kx = — = 14.5. 
3000 

(2) On the MF scale, set the hairline over 
0.91 and move the slide so that the right-
hand C index is under the hairline. 
Then, on the Kx scale, set the hairline 
over 14.5. 

(3) Under the hairline, read: 
EL =1.175. 
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(4) On the K' scale, set the hairline over 
1.175 and move the slide so that the 
right index is under the hairline. Then, 
on the lsp scale, set the hairline over 
270. 

(5) Under the hairline, read: 
D = 1.66 (16,600 fps). This is the 
characteristic mission velocity. 

(6) From Appendix A, find 3000 fps as the 
estimated velocity loss for an IRBM-
class vehicle. Therefore, the burnout 
velocity is: 

ybo = 16,600 — 3000 = 13,600 fps. 
(7) On the V2 scale, set the hairline over 

13.6 (13,600 fps). 
(8) Under the hairline, read: 

Rj = 1.27 (1270 stat mi). 

EXERCISE THREE: It is desired to have 
a three-stage vehicle deliver a 1000-pound pay-
load to a 45,000-fps velocity, assuming no flight 
velocity losses. The specific impulse of each 
stage is 450 seconds and the mass fraction of 
each stage is 0.9. 

(1) The average mass fraction is: 
(0.9 + 0.9 + 0.9)/3 = 0.9. 

(2) The average specific impulse is: 
(450 + 450 + 450) /3 = 450 sec. 

(3) The velocity delivered per stage is: 
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45,000/3 = 15,000 fps. 
(4) On the D scale, set the hairline on 1.5 

(15,000 fps) and move the slide until the 
specific impulse value of 450 is under 
the hairline; then move the hairline to 
the right index on the C scale. 

(5) Under the hairline, read: 
K — 1.55. 

(6) On the MF scale, set the hairline on 0.90 
and move the slide until the right index 
on the C scale is under the hairline. 
Now, on the K„ scale, move the hairline 
to K0 = 1.55. 

(7) Under the hairline, read: 
Ki = 2.53; K2 = 8.9; K3 = 31.5. 

(8) Compute the stage weights: 
WSa = K, X WPL = 2.53 X 1000 

= 2530 lb. 
WSo = K2 X WPL — 8.90 X 1000 

= 8900 lb. 
WSi = K3 X WPL = 31.50 X 1000 

= 31,500 lb. 
(9) The booster weight at launch is: 

W0 = w8i + WS2 + W63 + WPL 

W„ = 31,500 + 8900 +2530 + 1000 
= 43,930 lb. 

EXERCISE FOUR: Determine the payload 
weight of a three-stage vehicle with a launch 
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weight of 1,000,000 pounds which must deliver 
a payload into a 173-statute-mile circular polar 
orbit. Assume specific impulses of 305, 425, 
and 423 and mass fractions of 0.92, 0.90, and 
0.88 for Stages 1 through 3, respectively. 

(1) On the hc scale, set the hairline to 0.173 
(173 stat mi). 

(2) Under the hairline, read: 
V2 = 25.4 (25,400 fps). This is the 
circular orbital velocity at that alti­
tude. 

(3) From Appendix A, estimate the velocity 
losses due to gravity and aerodynamic 
drag as 5960 fps. 

(4) The characteristic mission velocity is: 
V = 25,400 -F 5960 = 31,360 fps. 

(5) The average specific impulse is: 
(305 + 425 + 425) /3 = 385 sec. 

(6) The average mass fraction is: 
(0.92 + 0.90 +0.88)/3= 0.90. 

(7) Divide the characteristic mission velocity 
by 3, the number of stages (31,360/3 = 
10,453), to find the velocity delivered 
per stage. 

(8) On the D scale, set the hairline to 10.453 
(10,453 fps), move the slide until 385 
on the Isp scale is under the hairline, 
and then move the hairline to the right 
index on the C scale. 
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(9) Under the hairline, read: 
K' = 1.755. 

(10) On the MF scale, set the hairline over 
0.90 and bring the right index of the 
C scale under the hairline. Then, on the 
K0 scale, move the hairline to 1.755. 

(11) Under the hairline, read: 
Kj = 1.72; K2 = 4.70; K3 = 12.80. 

(12) The ratio of launch weight to pay load 
is: 

W0/WPL = K, + K2 + K3 + 1 
= 20.22. 

(13) Therefore, the pay load is: 
WPL = Wo/20.22 = 1,000,000/20.22 

= 49,444 lb. 
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VI 

STA6E OPTIMIZATION 
With the basic method for determining take­

off gross weight (TOGW), explained in Sec­
tion V, it was possible to estimate quickly a 
TOGW very close to the optimum value for 
conventional vehicles. This procedure is exact 
when the stages have the same specific impulse 
and the same propellant mass fraction. For 
boosters whose stages have dissimilar specific 
impulses or mass fractions, a more elaborate 
technique can be employed, if desired, to arrive 
at the optimum staging. 

DEFINITION 

Optimization of an n-stage vehicle is defined 
as determining the minimum TOGW for a 
specific payload and mission. 

OPERATION 

The key to the optimization procedure is 
first to allocate the characteristic mission veloc­
ity among the stages in proportion to the 
specific impulses of the stages. Then, around 
this proportional velocity distribution, assign 
arbitrary stage velocity distributions, both 
larger and smaller, and calculate the booster 
TOGW for each of these combinations. 
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In these calculations, each stage is treated 
individually as having its own specific impulse 
and mass fraction. The parameters of the nth 

stage are determined first, which in turn estab­
lishes the payload for the stage below it. 

The results of the calculations are tabulated 
(or plotted) and the velocity distribution com­
bination producing the minimum TOGW is 
determined. In particular, the effect of chang­
ing the relative stage sizes is demonstrated. 

EXERCISE ONE: Optimize a two-stage 
IRBM with a burnout velocity of 12,000 fps. 
Assume that the payload is 1000 pounds, the 
effective (or average) specific impulse of the 
first stage is 270 seconds, and that of the sec­
ond stage is 310 seconds. 

(1) From Appendix A, establish flight losses 
as 3000 fps. Add the flight losses to the 
burnout velocity (12,000 + 3000) to ob­
tain a characteristic mission velocity 
(V) of 15,000 fps. 

(2) The average specific impulse for the 
booster is: I-P(av8)= (27° + 310)/2 = 290 sec-

(3) Find the velocity increment of each 
stage in proportion to its specific im­
pulse by: 

V.= (V/n) X (I,P/ISP(avg)) 
Vx = 6980 fps; V2 = 8020 fps. 
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(4) Determine the second stage weight: 
(a) On the D scale, set the hairline on 

8.02 (8020 fps). Move the slide until 
310 on the Isp scale is under the 
hairline, and then move the hairline 
to the left index C scale. 

(b) Under the hairline, read: 
K' = 1.81 and A = 2.24. 

(c) By using the pay load weight of 1000 
lb and A = 2.24, determine the mass 
fraction to be 0.818 from Appendix B. 

(d) On the MF scale, set the hairline on 
0.818 and move the slide to the right 
index C scale. Then, on the K0 scale, 
set the hairline on 1.81 (value of K'). 

(e) Under the hairline, read: 
Kx = 2.08. 

(f) The second stage weight (without 
pay load) is: 

WSo = Kx X WPL = 2.08 X 1000 
= 2080 lb. 

(5) Determine the weight of the first stage 
in the same manner as Step (4). The 
following values are used or found: Vx 

= 6980 fps; K' = 1.81; A = 2.24; WPL 

= 3080 lb. Therefore, we have: MF = 
0.852, Kx = 1.85, and WSi = 5700 lb. 

(6) Now, vary the velocity distribution of 
the second stage by multiplying the ini-
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tial velocity by arbitrary factors—for 
example, V2 (8020 fps) X 1.4, 1.2, 0.8, 
0.6, etc. For each of these assumed new 
velocities, there is a corresponding veloc­
ity for the first stage such that the sum 
of each pair equals the characteristic 
mission velocity. 

(7) Determine the weights of the second and 
first stages for each velocity distribution 
in the same manner as Steps (4) and 
(5). Prepare a table, as shown below, 
and identify the velocity distribution 
which yields the lowest TOGW. Here, 
it is shown to be 8700 lb. 

VX v2 MFX MF2 Ws SI ws 2 TOGW 

0 15,000 0.869 0 8,600 9,600 
2,200 1 2,800 0.823 0.850 2,310 5,600 8,910 
3,800 11,200 0.840 0.843 3,080 4,050 8,730 
5,390 9,610 0.850 0.830 4,750 2,950 8,700 
6,980 8,020 0.852 0.818 5,700 2,080 8,780 
8,600 6,400 0.860 0.805 6,650 1,450 9,100 

10,290 4,710 0.865 0.787 8,000 950 9,950 

(8) For comparison, determine the TOGW 
by the rapid method, using the average 
specific impulse of 290 sec and an aver­
age MF of 0.835. The latter value is 
obtained from the fractions established 
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for the original velocity distribution 
where MF;2 = 0.818 and MFX = 0.852. 
Following the procedure established in 
Section V, we find that Kx = 1.95 and 
K2 = 5.75. Therefore, 

(a) wg2 = 1.95 X 1000 = 1950 lb. 
(b) WSi = 5.75 X 1000 = 5750 lb. 
(c) TOGW = 5750 + 1950 + 1000 

= 8700 lb. 

This TOGW is identical to the weight found 
by the optimization procedure. Depending on 
the spread of the specific impulses and mass 
fractions between stages, normally one can 
expect differences no greater than 5%. 

THREE-STAGE 
OPTIMIZATION 

The principle of optimizing a three-stage 
vehicle is to divide the three-stage booster into 
a two-stage and a one-stage design problem. 

Assume that the velocity distribution for the 
upper two stages is proportional to their spe­
cific impulse. Then, for this two-stage problem, 
the second and third stages are sized to mini­
mize their total weight. This minimum weight, 
plus the final payload, is the gross payload 
weight for the first stage. 

The first stage velocity increment is equal 
to the characteristic mission velocity minus the 
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velocity increment assumed for upper stages. 
Thus, the first stage weight and TOGW are 
computed. 

A range of TOGW can then be determined 
by varying the assumed velocity increment of 
the second and third stages and repeating the 
above steps. TOGW may be plotted, as a func­
tion of first stage velocity increment, with the 
understanding that the second and third stages 
are properly chosen. The minimum TOGW can 
then be determined. 

A set of tables like the following can be con­
structed. In each, the sum of V2 + V3 equals 
an assumed constant value, as shown in form 
below. 

V2 v3 MF2 MF3 w8 2 
Ws, 3 

W,2 + W»3 + WPL 

10,000 
8,000 
6,000 

5,000 
7,000 
9,000 

For an assumed V2> 3 (the sum of V2 + V3), 
the minimum WS2 + WSs + WpL is deter­
mined by first varying the second stage (V2) 
velocity increment and then computing the MF2 

and MF3 for each variation. The minimum 
W&2 + W.Ss +WPli is determined by plotting 
WS2 + WS3 +WpL as a function of V2. 
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After determining the minimum WS2 + WS3 

+ WPL for several values of V2,3, Table 
2 may be used to determine Vx and TOGW. 
TOGW is then plotted as a function of first 
stage velocity increment to determine the 
minimum. 

FOUR-STAGE OPTIMIZATION 
A four-stage vehicle is optimized basically in 

the same manner as a three-stage vehicle. The 
procedure is to solve the problem as a series of 
two-stage vehicles in which: 

(1) A division of the characteristic mission 
velocity between the upper and lower 
two stages is assumed. 

(2) The upper two stages are optimized to 
a spread of arbitrary velocity increments 
within the originally assumed division. 

(3) The lower two stages are optimized in 
the same manner, using the minimum 
weight of the upper two stages for the 
payload. The best TOGW, therefore, is 
determined for the assumed division of 
the characteristic mission velocity. 

(4) A different division of the characteristic 
mission velocity between the lower and 
the upper two stages is assumed and 
Steps (2) and (3) are repeated. 

(5) The minimum TOGW is computed from 
the different TOGW's of Step (4). 
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V I I  
INTERPLANETARY 

MISSIONS 
Scales applicable to interplanetary flight, or 

sun-centered orbits, are contained on the re­
verse side of the "slide". Complete removal of 
the slide reveals a reference of planetary sym­
bols, escape velocities, and planetary radii. 

Data obtained from the interplanetary scales 
are subject, by assumption, to the following 
conditions: 

(1) The flight path from the earth follows a 
minimum energy path. 

(2) The gravitational field of the earth acts 
only for a short distance compared to 
the interplanetary distances traveled. 

(3) The gravitational field of the sun is the 
only force acting upon the vehicle after 
escape from the earth, except during 
soft landing on a target planet. 

(4) The time of flight is not affected by the 
gravitational fields of the earth or other 
planets. 

(5) Planetary and lunar orbits are circular 
and coplanar. 

These assumptions do not materially affect 
the gross results presented on the scales. 

39 



DEFINITION OF SCALES 
The following scales are used for interplane­

tary flight calculations: 

V3 (Impact Landing)—burnout velocity re­
quired to leave earth and coast to 
aphelion or the orbit of the target 
planet (103 fps). 

V3 (Soft Landing)—required velocity to 
leave earth and coast to the target 
planet, and to counteract that 
planet's gravitational attraction on 
landing (103 fps). 

Time of travel—time to coast from earth 
to interplanetary aphelion (years). 
Applicable only to the outer planets. 

Ra/Re—aphelion distance divided by the 
earth's mean orbital radius around 
the sun (A.U.). Applicable only to 
outer planets. 

Vcirc—velocity of circular planetary orbit 
around the sun (103 fps). 

R/Re—radius of orbit around the sun di­
vided by radius of the earth's orbit 
from the sun (A.U.). 

OPERATION OF SCALES 
The operation of the interplanetary scales 

is analogous to that of orbital mechanics, and 
the procedures are similar. In essence, the sun 
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replaces the earth as the orbital center. Simply 
setting the hairline on the interplanetary scale 
defines the parameters in adjacent scales. 

V3 

The V3 scale is in two parts for determining 
characteristic mission velocity requirements, 
one for impact landing and the other for soft 
landing a spacecraft on a planetary body. 

In the impact landing, the spacecraft, at the 
apogee of its orbit around the sun, is captured 
by the gravitational field of the target planet 
and impacts upon it. Therefore, the spacecraft 
reaches the planet surface with a finite velocity 
in relation to the planet. This velocity is due 
to the combined effects of an initial approach 
velocity and the gravitational pull of the 
planet. Thus, the term "impact landing" is 
used. 

In a soft landing, the relative velocity due to 
the approach velocity and the gravitational 
pull must be neutralized. Neutralization is 
achieved by providing an additional velocity 
increment to the spacecraft during the landing 
phase. Since the final velocity relative to the 
planet will be zero, the term "soft landing" is 
used. Planetary atmospheric drag is neglected. 

For both the impact landing and the soft 
landing velocity requirements, it is assumed 
that a Hohmann transfer is used to go from 
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the earth to the planet. The orbits of planets 
are assumed to be eoplanar and circular. 

Time of travel (years) 
The "Time of travel" scale can be used with 

either the V3 (Impact Landing) scale or the 
Ra/Re scale. Used in conjunction with the 
planetary symbols on the V3 scale, the time to 
travel to any outer planet of the solar system 
can be read directly from the Rule. In con­
junction with the Ra/Re scale, the time to reach 
apogee at any distance (in astronomical units) 
for sun-centered orbits is also read directly 
from the scales. 

Ra/Re 
The Ra/Re scale presents a ratio in which 

Re, the mean distance of the earth's orbit 
around the sun, is a constant, or 92.9 X 106 

statute miles (1 astronomical unit). This means 
that the orbital radius of any planet is easily 
determined and the radius at apogee (Ra) of 
any sun-centered orbit originating from the 
earth can be calculated. 

^circ 

The Vcirc scale is used primarily with the 
R/Re scale. For example, by placing the hair­
line on the R/Re scale, the velocity required 
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for any circular orbit about the sun can be 
read directly on the VCirc scale as a function 
of the mean distance from the sun. 

R/Re 

R/Re is the distance (in A.U.) from the sun 
where the circular velocity is Vcirc. In the 
R/Re scale, R may also stand for the mean 
distance from the sun of any elliptic orbit. The 
two definitions are consistent because the mean 
velocity of an elliptic orbit occurs at the mean 
distance of that orbit. 

EXERCISE ONE: Soft land a spacecraft 
on Mars. Determine the flight parameters. 

(1) On the V3 (Soft Landing) scale, place 
the hairline over the symbol ($) for 
Mars. 

(2) Under the hairline, read: 
V3—characteristic mission velocity for 

soft landing on Mars: 55.9 
(55,900 fps). 

(3) On the V3 (Impact Landing) scale, 
place the hairline over the symbol for 
Mars. 

(4) Under the hairline, read: 
V3—characteristic mission velocity for 

departure from earth to achieve 
a transfer orbit to the orbit of 
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Mars: 37.04 (37,040 fps). 
Time of travel—flight time from earth 

to aphelion at orbit of Mars: 0.71 
year. 

Ra/Re—maximum distance of the 
spacecraft from the sun: 1.52 
times the distance of the earth 
from the sun. 

(5) The difference between the 55,900 fps 
and the 37,040 fps (18,860 fps) is the 
velocity that must be applied when the 
spacecraft reaches aphelion at the orbit 
of Mars. 

EXERCISE TWO: Place a spacecraft into 
an orbit around the sun with a period of four 
years. Determine the characteristic mission 
velocity and the maximum distance of the 
spacecraft from the sun. 

(1) On the "Time of travel" scale, place the 
hairline over 2. (The time to travel from 
perihelion to aphelion is half the orbital 
period.) 

(2) Under the hairline, read: 
V3 (Impact Landing)—characteristic 

velocity required to leave the 
earth and its orbit: 44.05 ( 44,050 
fps). 

Ra/Re—maximum distance of the 
spacecraft from the sun: 4.05 
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times the distance of the earth to 
the sun. 

The minimum distance or perihelion will 
be the same as the earth-sun distance. 

EXERCISE THREE: Design a four-stage 
booster capable of soft landing a 10,000-pound 
spacecraft on the moon. Use the first two 
stages to achieve an easterly launch to a 200-
mile earth orbit, the third stage to transfer 
from the earth orbit to the moon's orbit, and 
the fourth stage to soft land the spacecraft on 
the moon. Use a specific impulse of 435 sec­
onds for all four stages and a propellant mass 
fraction of 0.93, 0.93, 0.90 and 0.88 for the 
first, second, third and fourth stages, respec­
tively. 

(1) Determine the characteristic mission 
velocity for each stage. 

(a) On the hc scale, set the hairline over 
200 miles. 

(b) Under the hairline, read: 
V2 = 25.32 (25,320 fps) orbital cir­

cular velocity. 
(e) From Appendix A, assume that the 

first two stages require 6500 fps to 
overcome gravity and drag losses. 
Since the vehicle is launched east, it 
starts with a finite velocity, i.e., the 
velocity of the earth, in the intended 

4-5 



direction. The first two stages must 
therefore be capable of delivering a 
characteristic mission velocity of 
25,320 + 6500 — 1400 = 30,420 fps. 

(d) On the V3 (Impact Landing) scale, 
set the hairline over the moon symbol. 

(e) Under the hairline, read: 
V 3  ( I m p a c t  L a n d i n g )  =  3 5 . 5  

(35,500 fps) required to escape 
the earth and reach the moon's 
orbit. 

Since the spacecraft has an orbital 
velocity of 25,320 fps and the char­
acteristic mission velocity to impact 
on the moon is 35,500 fps, the third 
stage must be capable of delivering a 
velocity of 35,500 + 1000 (losses) 
25,320 = 11,180 fps. 

( f )  O n  t h e  V 3  ( S o f t  L a n d i n g )  s c a l e ,  s e t  
the hairline over the moon symbol. 

(g) Under the hairline, read: 
V3 (Soft Landing) — 43.2 (43,200 

fps) required to soft land on 
the moon. 

Therefore, to overcome the lunar ap­
proach velocity and the lunar gravita­
tional attraction for soft landing on 
the moon, the fourth stage must be 
capable of delivering a velocity of 
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43,200 — 35,500 = 7700 + losses — 
9000 fps. 

(2 )  S ize  the  ind iv idua l  s t ages .  The  p roce ­
dure is to work backwards. That is, first 
the fourth (or last) stage is sized. This 
stage plus the payload is considered as 
the net payload for the third stage, 
which can now be sized. This simple 
procedure is applicable because the char­
acteristic mission velocity for each of 
the upper two stages is known. 
When the weights of the third and 
fourth stages are determined, then the 
lower two stages, for which only the 
total characteristic mission velocity is 
specified, should be optimized to mini­
mize the total vehicle weight. 

( a )  By  fo l lowing  the  p rocedure  fo r  a  
single-stage vehicle (Chapter V, Ex­
ercise One) it can be shown that 
the fourth stage weight to payload 
ratio is 1.17. Therefore, with a 10,000-
lb payload, we have: 

WS4 = 1.17 X 10,000 = 11,700 lb. 
WS4 + WPL = 11,700 + 10,000 

4 = 21,700 lb. 
This weight is used as the payload for 
the third stage. 

(b )  The  th i rd  s t age  we igh t  t o  pay load  
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ratio is found to be 1.57. Therefore, 
with a 21,700-lb payload, we have: 

W,3 = 1.57 X 21,700 = 34,200 lb. 
W„3 + WB, + WPL = 34,200 + 

11,700 + 10,000 = 55,900 lb. 
(c) By following the outlined procedure 

for a two-stage configuration, we can 
show that: 

= 2.5 (second stage to payload 
ratio). 

K, = 8.5 (first stage to payload 
ratio). 

Therefore, the weights of the stages 
are: 

WSz = 2.5 X 55,900 = 140,000 lb. 
WSi = 8.5 X 55,900 = 475,000 lb. 

(3) The detail weights of the vehicle design 
can be summarized as follows: 

STAGE WEIGHT DETAILS (LB) 

ws wpu wb0 WPL 

4 
3 
2 
1 

11,700 
34,200 

140,000 
475,000 

10,300 
30,800 

130,000 
442,000 

1,400 
3,400 

10,000 
33,000 

10,000 
TOTALS 660,900 613,100 — 10,000 
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The vehicle TOGW is 660,900 + 10,000 
= 670,900 lb. 

(4) Compare the exact results derived above 
with the approximate technique outlined 
in Chapter Y, Exercise Three, 

(a) AV = 30,420 + 11,180 + 9000 — 
50,600 fps. 

<b> *•»<..«> = <435 + 435 + 435 + 435) 

/4 = 435 sec. 
(c) MF(avg) = (0.93 + 0.93 + 0.90 + 

0.88) /4 = 0.91. 
(d) Kx = 1.87; K2 = 5.4; K3 = 15.5; 

and K4 = 45. 
(e) The TOGW is found by: 

TOGW = WPL (1 + Kx + K2 + 
K3 + K4). 

TOGW = 10,000 X 68.8 = 688,000 
lb. 

The approximate method differs by less 
than 2.5% from the total vehicle weight 
found in Step (3). 
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APPENDIX A 
TYPICAL MISSION 
VELOCITY LOSSES 

This information is provided only for initial 
estimates and preliminary evaluations. For a 
specific problem, when preliminary work is 
carried beyond the preliminary design stage, 
values should be replaced with more accurate 
trajectory data. 

Mission Losses 

Mission 

Orbit to escape [These losses are 
due to gravity (200 fps) plus 
allowance for margin and guid­
ance corrections.] 

IRBM 

ICBM 

Boost glide 

Low orbits (100 miles) [For di­
rect injection into orbit, at alti­
tudes greater than 100 stat mi, 
add 20 fps to the velocity losses 
for every statute mile higher 
than 100.] 

Lunar and interplanetary mis­
sions 

( f p s )  

1000 

3000 

4000 

4500 

4500 

6000 

A1 





APPENDIX B 
MASS FRACTION DETERMINATION 

20 3.0 4.0 5.0 6.0 7.0 8.0 9.0 





APPENDIX C 
ELLIPTICAL 
EQUATIONS 

Semimajor axis: 
ra + rp 

a 
2 

Semiminor axis: 
b = a V1 — e2 

Semilatus rectum: 
P = ra (1 ~ e); = a (1 — e2) 

Eccentricity: 

e 

Radius at apogee: 

; — a (1 + e); — rp ( Va 

Radius at perigee: 

_ P __ /-. » _ rP ~:—: » ~ a(l — e); — ra 
1 + e 

C1 



Acceleration—gravity: 

* —  

Circular velocity: 

V, =4^ 
* r 

Escape velocity: 
Ve = Vc V~2 

Velocity at any radius: 

v=44J-4) 
Velocity at apogee: 

V„  =  V„^-M; =V 0 i V(l -e )  

Velocity at perigee: 

Vp = V.( — 1; =VCpV(T+T) 

Orbital period: 
2tt 2TT r 

t= a3/2  = -(1 — e)~3/2  

V/ i  V,  

C2 
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