
Inter-Office Memorandum

To TinyTalk Disinterest Date January 4,1980

From Larry Tesler and Kim McCall Location Palo Alto

Subject TinyTalk Stack Changes Organization PARC/SSL

XEROX

Filed on: <Tesler>TinyStack.memo

These plans are not guaranteed to be well thought out.

(1) The PC stored in each stack frame is currently that of the caller. The debugger will
be simpler if the PC is that of thisContext instead. Dan is planning to do this in full Smalltalk also.
So we'll change it.

(2) The callerBP (and callerSP) is currently encoded by taking the real machine address
and setting the low order bit. It would be more meaningful to have it be a word offset from the
base of the system stack. That way, contexts could do arithmetic on it to access fields of the stack
frame. So we'll change it

(3) Class TContext should have the messages: pc, method, receiver, caller, argSn, arg$n*-x,
temp$n, and temp$n<-x. Eventually, they can do range checking. They should all call self
component: wordOffset which in turn calls Sys location: wordOffset + bpOffset.

(4) To evaluate an expression in the context of a stack frame that is being debugged (the
seen context), we have two problems to fix.

(a) When the expression ends normally, it should just return to the eval'er. But if the
message is something like proceed or quit, then the stack must be popped down to the
debugged frame (or some ancestor of it). This will be done by calling a primidve
thisDialog relurnTo: seenContexl (or whatever context it is returning to).

(b) The compiler must compile any references to temporaries r.nd arguments of the seen
context as follows: tl is compiled as if it were tl value and tl*-v as if it were ll value<-v.
The evaluator must then push, for each argument and temporary of the seen context, a
corresponding temporary for the evaluation, whose value is a StackReference that has one
field, the word offset of that variable from the base of the stack. To do this, the Smalltalk-
coded eval allocates all the necessary StackReferences into a Vector, and passes that Vector
to the primitive eval, which copies the Vector onto the stack.

(5) As an experiment in safety, we will add a word to each stack frame that is either nil
or the oop of the sole instance of class TContext that references that stack frame. During return, if
the word is non-/z/7, then the TContext it references must be invalidated. For now, we'll simply nil
out both fields of it (the alternative is metamorphosis).

Doing this makes it inadvisable to cause a deep return by changing thisContext caller. But
thisDialog relurnTo: context can just check for TContexts to invalidate along the way.

-- Messages from f i le: [PARC-MAXC]<ADEl.E>MESSAGE . TXT; 1
-- SUNDAY, JANUARY 6, 1980 13:36:25-PST --

Date: 4 Jan 1980 11:13 am (Friday)
From: Tesier
Subject: Bayles Holt
To: Ingal ls
cc: Adele, Tesier

Here is our whole correspondence.

Date: 5 Dec 1979 10:18 am (Wednesday)
From: McCall
Subject: TinyTalk
To: Tesier
cc: McCall

I received this. I t looks as though this guy has the wrong idea of what the
interpreter is l ike; but we might be able to send him copies of the emerging
documentation -- just your book chapters or something -- lett ing him pick out
the relevant parts i f he's interested enough.

I ' l l let him know that there is no Tiny-specif ic documentation and that I am
asking you how we might accommodate to his request.

Kim

Date: 3 Dec 1979 7:47 am (Monday)
From: Holt.WBST
Subject: TinyTalk
To: McCall .PA
cc: Holt

I have been doing some study in Forth and forth-l ike languages and have
pursued with interest some of the development of Tiny accomplished by you and
Larry Tesier. Is there now more information avai lable or some distr ibut ion l ist
which can help keep me up to date on current developments? (That is i f you do
not object to my questioning.)

Thanks, Bayles.

Date: 5 Dec 1979 10:26 am (Wednesday)
From: McCal1.PA
Subject: Re: TinyTalk
In-reply-to: Your message of 3 Dec 1979 7:47 am (Monday)
To: Holt.WBST
cc: McCall , Tesier

I 'm glad you're interested. The TinyTalk (as we are now cal l ing i t) interpreter
not as Forth-l ike as some of the original discussion of the system may have made
i t appear, but you might be interested anyway. We have been concerned
mainly with implementation to this point and haven't done terr ibly much in the
way of documentation. LRG is however wri t ing a book on SmallTalk and a
discussion of TinyTalk wi l l appear in that book as i t is now conceived. Some
considerable documentation of the storage management system has been wri t ten
in that connection. Larry has been wri t ing al l the documentation, and I have
asked him what we can do for you. When he answers, I ' l l let you know; or i f
you prefer, you could msg him direct ly.

Thanks for your interest,
Kim

Date: 6 Dec 1979 1:39 pm (Thursday)
From: Tesier.Maxc
Subject: Re: TinyTalk
In-reply-to: Your message of 5 Dec 1979 10:18 am (Wednesday)
To: Holt.wbst
cc: McCal1, Tesier

Hi, Bayles. I ' l l start announcing TinyTalk milestones on Small talklnterest (and
suggest Dan do the same for new implementations of ful l Small talk). As Kim
said, the TinyTalk documentation is embodied in chapters and appendices of the
Small talk book. I ' l l talk to Adele about sending you copies to read. Are you
interested in function, implementation, or both?

One point of interest is that we think we can support regular Small talk syntax
for hardly any more code than Forth syntax. On the negative side, the system is
now 3 t imes larger than our target size.

Larry

Date: 13 Dec 1979 11:41 am (Thursday)
From: Holt.WBST
Subject: TinyTalk
To: Tesler.Maxc
cc: Holt.WBST, McCall .Maxc

Thanks for message. I have not repl ied because of several delays mostly due to
the f i le server being down. My interest in TinyTalk stems from a desire to make
i t useable in a 68000 system. I am therefore interested in both function and
implementation but especial ly implementation. I t would be extremely nice to
discover ease in transport ing, but i f not, I 'm st i l l interested in i ts function. The
stack architecture is what impresses me.

Thanks

Date: 13 Dec 1979 12:18 pm (Thursday)
From: Tesler.Maxc
Subject: Re: TinyTalk
In-reply-to: Your message of 13 Dec 1979 11:41 am (Thursday)
To: Holt.WBST
cc: Tesler, McCall , Adele, Ingal ls, Alan

I am glad you are interested in gett ing TinyTalk up on a 68000 system. How
much memory wi l l i t have? I f 64K bytes, Tinytalk wi l l be good for many
appl icat ions. I f less, i t wi l l be good for very few. I f 256KB or more, you should
consider ful l Small talk-78, which is also based on a stack architecture. Both are
easy to transport, although TinyTalk is somewhat easier because i t is 2KB instead
of 5KB machine code (sizes guesstimated).

I f you implement ei ther one on a 68000, I hope i t is entirely compatible with our
8086 implementation and that we can arrange to acquire i t and possibly publ ish
i t .

I f you real ly prefer Forth-l ike syntax, you can have that, but we offer more
conventional syntax in ful l Small talk-78 and hope to soon in Tinytalk.

Larry

Date: 2 Jan 1980 7:08 am (Wednesday)
From: Holt.WBST
Subject: Re: TinyTalk
In-reply-to: Your message of 13 Dec 1979 12:18 pm (Thursday)
To: Tesler.Maxc
cc: Holt, Genovese, McCall .Maxc, Adele.Maxc, Ingal1s.Maxc, Alan.Maxc

We are interested in making a f lexible development system for the 68000 without
being t ied to Motorola's sometimes inadequate support. We had or iginal ly
planned about 32K bytes for starters but could probably make 64K without to
much trouble. Later on we might even expand that.

Right now the prospect of having access to Small talk would be very attract ive
but let me emphasize that i t is the stack architecture that we're after, the syntax
is a bonus.

I 'm now your student and am entirely open to suggestions as to where to go from
here.

Date: 2 Jan 1980 1:21 pm (Wednesday)
From: Tesler.Maxc
Subject: Re: TinyTalk
In-reply-to: Your message of 2 Jan 1980 7:08 am (Wednesday)
To: Holt.WBST
cc: Tesler, Genovese.WBST, McCall , Adele, Ingal ls, Alan

Bayles,

I am not sure what you mean by "stack architecture": doesn't al l microcomputer
software these days make use of the hardware stack?

And what do you mean by "development system"? Do you want to prototype in
TinyTalk and then recode in 68000 assembly language? Or make products that
run TinyTalk? Or something else?

TinyTalk is meant for relat ively small Small talk programs, with simple character
stream i /o. Is that al l you need? There aren't windows, editors, and al l that
other Small talk stuff .

I don't know when we wi l l start to support TinyTalk for users, nor to what
extent we wi l l support i t . The only sure thing is that i t wi l l be wel l documented
in our book. I can't imagine that LRG could give better support than Motorola. I

had in mind that you would read the documentation and support your own copy
of the system yourself.

Larry

Today, I sent him a copy of the TinyTalk progress report that Smalltalklnterest
got last week. I had told him Dec 6 to get on the l ist, but he didn't do i t .

P.S. You see that my Dec 13 message (cc: you) mentioned his famil iarity with
Forth.

To: Book Writers, Inc
From: The Whip
Re: A New Outline

Well gang, you cranked it out enough for me to draw up a slightly different blueprint. The
changes really only effect the folks writing on Parts 1 and 2. Mostly what I did was shuffle the
sections a bit to have more balance between theory and implementation discussions. Don't stop
writing-keep the text coming and I will provide the editorial feedback as usual. Remember our

goal is to have a full draft by December.

Adele Goldberg

file: < my disk > book.outline2

Version: 8-14-78

theory (prog language)-Prelude,I,II

implementation (kernel)-III-XI

theory (user interface)-XtI

implementation (graphics)-XIIl-XVI

theory (Language)-XVII

implementation (templates,thinglab, findit, music)-XVIII-XXI

theory (futures)-XXII

Smalltalk: Dreams and Schemes

Prelude: Opening Scenario

A scenario showing how the current system is used for accessing and manipulating information, towards the goal of

planning a software implementation (of ?). The plan here is to set the stage for interactive computing the Smalltalk

way, emphasizing what Smalltalk is, what it looks like, and why it is an interesting system (done through capsule

scenes, not discussion). The selected scenario should show: windows containing text and pictures (that is, user

interaction), static organization of class definitions, dynamic operation in terms of sending messages by typing or

menu selection, and the existence of active/ interacting objects. The scenario actor browses for and runs some

already defined methods, makes some modifications to an existing definition and reruns with a "spy" providing some

statistical feedback. The idea here is to leave the reader with enough gaps so he can fill them for himself with his

own desires.

PART 1 Towards the Design of a Personal Computing System

This part is philosophical in nature. It includes the notion of a computing system made up of (active) information:

that information is simulation; that a computer is a tool that should be malleable like clay; and that, to borrow an

analogy from ACK, the goal is to help kids and managers alike fly 747s rather than paper airplanes. By the end of

this part, we should be able to trust that the reader knows what a Dynabook is, why LRG is designing it and what

are the programming language problems.

I. Capturing Information for Personal Use

The goal is to provide a new medium with which anyone could describe his ideas about the world in a way

that produces a running simulation. A simulation is a dynamic system, a collection of parts which are either

acting upon other parts, being acted upon, or mutually interacting. We want to be able to observe, alter the

state, or alter the cause of state changes occurring in such systems. There are problems involved in knowing

(or specifying) how the parts are constrained to communicate or interact, in being able to write such

specifications in a machine readable form, and in being able to make use of the various tools available for

realizing these goals.

This medium is what we mean by a personal computer. Its intended users are system builders, application

programmers, and users of applications such as painting, animation, music, game design, and text editing

systems. Its proposed implementation environment is a personally controllable, ownable computing system.

Being able to own the system is a function of its hardware costs; being able to control the system depends on

the design of the programming language and the user interface for editing, browsing, debugging, and getting

assistance. Although each personal computer is self-contained in its support of these tools, personal computing

should encourage communication with the owners of other such systems. We are interested in computer

network problems both to enhance people-to-people interactions as well as to increase an individual's access to

information.

II. Basic Concepts of a Programming Language for Personal Computing

Given the goals for personal computing set forth in Chapter I, what concepts must be considered in the design

of the programming language? Here is a good place to introduce ACK's biological model as a metaphor for

the wholes and parts problem, and to emphasize communication and classification ideas. This is intended as a

philosophical discussion which motivates the decision for an object-oriented environment: that is, the desire to

create wholes from parts and to communicate with them as well as with their parts.

III. Smalltalk: Object-Oriented Programming

Definition of Object-Oriented Programming

Basic data structure: object

Basic processing: sending messages
Naming: accessing objects, including objects that are collections of objects, through names

References and comparisons to other object-oriented programming languages are provided here (Simula,

CLU, Hewitt's Actors, ThingLab and Findit)

Reasons we chose the class/subclass/instance model for implementation

Example Structure

(If possible) Examples in this section will be done using message protocol only; implementaUon of

algorithms will be shown after introducing the syntax in the next part of the book.

Revisit the example in the prelude, focusing on the organization of the objects involved.

Program modularity: adding messages, subclassing

IV. Technical Characteristics of Smalltalk-76

Introduction

Here we divide the system into two parts: the kernel system and the basic system. The idea is to define a

system in which the user would do no machine or microcode level programming, but might have to write a

lot of class definitions, such as Set, that a lot of users would agree are generally useful. These "useful"

definitions will be introduced in Part 3.

By "kernel", we include the data structure of an object and its activation, and message sending. There is

"kernel" syntax since we say that the parser is kernel: it is the way to generate executable code. And

therefore it includes the notion of a literal, which includes the notion of a code literal—the essential

ingredient for sequence control.

In the "basic" system, we extend the kernel system to include additions to kernel definitions as well as new

(abstract) class definitions, especially those abstract classes that support user connection to the hardware

(because the hardware is not sufficiently powerful or because it is necessary to link to the hardware through

machine code for such functions as text display or files). We also add constraints, say. to message syntax,

class definition format, and program description syntax.

The main distinction being made here is that, regardless of hardware or the latest implementation

experiment, the kernel system exists as described. As such, it is the meaning of the generic term: Smalltalk.

Depending on hardware and current implementation design, there is a basic system without which no user

interactions can take place. For example, in the course of our design cycles, we have changed the message

syntax considerably in order to be "readable"; we have altered the class definition format in the way we

account for temporary (activation) variables; we might further alter the source program description to

become a non-linear declaration of constraints (see Chapter XIX). This implies that the process scheduler is

part of the basic system.

'I~hc Implementation Machine

its function, not its organization; that is, its function is to execute code and to interface to hardware

Program execution

e.g., the bytecode interpreter

The hardware interface

The Kernel System

Objects

(as already described) parts, including Class

Dictionaries

Classes

property dictionary and message dictionary

class hierarchy

here we provide an illustrative example of the subclassing idea. Two examples: (1) HashSet's subclass

is Dictionary, and (2) arithmetic, such as

Number

ComplexNumber

RealNumber Complex ShortComplex

WholeNumber Real ShortReal

Integer Shortlnteger

(Short* implemented for fixed precision to get efficiency)

Objects revisited (as instance of a class)

creating an instance

managing its storage (in the abstract)

managing its behavior (message dictionary)

Programs (as descriptions of messages to objects)

object code message syntax

(sending a message includes the idea of a class being in the form of a dictionary. Graphically display

context in terms of nesting of dictionaries for (a) nesting message sending and (b) Smalltalk-76 nesting of

class dictionaries. Comment here on idea of syntactic extensibility that existed in earlier versions of

Smalltalk; discussion of this topic is deferred to a section at the end of this chapter.)

Execution of the object program

activation records (message semantics, interpreter state)

Remote code for sequence control

Execution revisited

the canonical cycle of execution (allocating activation records)

the specially performed bytecodes (arithmetic and indexing)

the primitive methods

Objects re-revisited (owning up to the idea of variable length object which is ultimately
an implementation consideration)

the class Array and its subclasses SubArray, String and Vector

The Basic System

Interpreters and Compilers

source code message syntax

Hardware interaction

clock, keyboard, CRT (class Rectangle, TextFrame or Projector), pointing device, disk (class File), ethernet

Error Handler

process interruption, display and resumption

Process Scheduler

process cooperation

[needs a title!]

Uniformity of Expression

Notice that Smalltalk is not really that different; a small piece of a Smalltalk program will look a lot like a

small piece of a program in other programming languages; moreover, you can write those same programs.

In fact, from a dynamic (execution) point of view, the difference in Smalltalk is the mechanism for "calling

a procedure"; the decision about which procedure is being called is made at runtime by a dictionary lookup

rather than at compile time by a symbol table lookup. But the most significant difference in the design of

the system as a whole is the uniformity of expression that is seen throughout all layers of the system, from

the user interface to the system implementation.

Refer back to the introductory remarks on the definition of a good programming language and examine the

effect of the language design on ease of expression, on choice of algorithm, on style of designing a system.

Example Classifications

Illustrate with several examples how we organize worlds into objects. We provide only the message protocol

here and will return to look at the implementations after the next part. [Please make suggestions.]

Set and SetReader (some history talks about Stream)

queue, chained list
scheduling the objects on the chained list

animated objects: a class Movie

IC Layout program [to be used later in the debugging chapter]

PART 2 Software Architecture: Realizing a Smalltalk System

VI. Introduction

Assume Smalltalk as the programming metaphor, then the goal is to get Smalltalk running on some hardware
configuration. In this section, we describe the Smalltalk-76 implementation, covering the history of prior

implementations in a subsequent chapter.

What is the effect of the language design on implementation efficiency? We care about obtaining a lower level
on memory cycles (against some criteria for performance and generality) and peripheral support. For a data
structure we have chosen an atomic object, a dictionary of properties and messages with associated responses,
and a method for putting objects together. Processing means sending messages to objects; algorithms are
encapsulated as the response to a message (captured within the context of the object). The design decision for
syntax is directed by the issue of "readability": in Smalltalk-76, "compilable" means readable by a human.
We compile to parse, not to do type checking. Type checking, in the form of determining that the object can

receive the message, is done at runtime.

VII. Basic Data Structure

The idea here is to talk about objects as they are actually represented in the machine.

Objects

Strings

first example of an object
a repository for bits, a variable length set of constants

Programs

Strings whose bits are instructions for the implementation machine

Vectors

variable length collections of objects

Dictionaries

Two vectors plus some semantics

Direct and indirect message and part name

Classes

Property dictionary and message dictionary
Class hierarchy

Objects Revisited (as instances of a class)

Creating an instance

Managing its storage
Managing its behavior (message dictionary)

VIII. Smalltalk Execution

Message Passing

Selectors and arguments

note that selectors is a language concept from Smalltalk-76. There used to be more levels of detail about
open colons, keyholes, and so on having to do with syntactic extensibility; we defer discussion on

execution having to do with programmable syntax until Chapter X.

Methods
Method/message dictionaries
Classes
Evaluation context

names and values
meaning of Smalltalk method is relative to a context

context includes receiver, method, temporary and global values for names

Fundamental rule of Smalltalk evaluation

the current context determines the next message description

the next message description consists of a next receiver, a selector and some arguments

the next receiver's class and the selector determine the next method

the next method, the next receiver and the arguments determine a new current context (closing the loop)

Basic Control Structure

Activation records (method interpreters)

sender
method progress (method + program counter)
context (receiver + temporary values)

Activation stack formats

special activation stack ala Smalltalk-72
instances of class ActivationRecord
instances of class Stack or Process

Compilation

fundamental change in the process of translation: internal representation changed sufficiently to warrent its
being called compilation. The compiler looks up most names and orders the arguments to messages; still

do not know which procedure to call until runtime-in fact, procedure might not be there.

Idle bytccodc language

allows the description of messages to objects consisting of a selector and several arguments

The compiler

translates Smalltalk to bytccode language

special treatment for in-line literals: integer. Iloat, large integer, siring, unique string, vector

The bytecode interpreter

implements the actions described by the instructions of the bytecode language

Implementation Optimization

small integers and unique strings. Remote code for iteration, if not moved to a lower level, ends up with

an extra activation record

Bootstrapping a new system

Smalltalk-76 carries around in it the ability to reproduce itself.

IX. Error Handling and Process Scheduling

Compile Time Errors

parsing errors shown as in-line comments

Run Time Errors

process interruption

viewing and interacting with the semantics of class activation

process resumption

typical error: message not understood

user generated errors: argument or state checking such as incorrect indexing or popping an empty stack;
incorrect use of the three loopholes: 's (inst field) and apply (performDangerously) and mem (maybe
asObject as well)

Explicit Polling

messages startup, firsttime, eachtime, lasttime

Event Scheduling

ala Simula

Multi-processes

handling input/output without, and then with, Smalltalk processes

X. [History chaplcr-nccds a title]

Interpretation of Smalltalk

Introduction

This section covers two topics within the context of two implementation experiments:

(1) how far you translate before runtime is a function of what object programs look like

(where you find code for the machine that runs a program,
effect of program transformation on syntax choice, programmable syntax)

(2) whether the interpreter is centralized or distributed

Smalltalk-72 Implementation

external representation is a string. You parse it to lists and lists of atoms ("tokenization") and then, at
runtime, an interpreter docs the rest, The interpreter is a- single low level program operating on two

addess spaces, the activation stack and the set of Smalltalk objects (includes programs and classes, and is

called the "heap").

Fastalk Implementation

the translation process is the same as in Smalltalk-72. The interpreter is a Smalltalk program in that it is
several messages to several objects. That is, the interpreter is distributed: many low level programs
implement certain message responses for several system classes (ActivationRecord and Class primarily)
which result in the ability to interpret Smalltalk code by the exchange of primitive messages. Because the
activation objects are now "first-class citizens", there is only a single address space.

Syntactic Extensibility

By syntactic extensibility, we mean that the message is parsed at runtime by the object that receives it, and
that the grammar is defined by the object itself. This section contains a discussion of the advantages (e.g.,
flexibility for the writer of the program) and disadvantages (e.g., flexibility and therefore non-readability for
the reader of the program) of syntactic extensibility. Experimentation evolved conventions in syntax, e.g.,
left-arrow to mean "store" as part of a message pattern.

Its the programs people write that are not readable, because of the dynamic process of parsing, that cause a
user nightmare: execution proceeds as usual. The Fastalk implementation is a "clean" method for
interpreting grammar-free message forms. With programmable syntax, a Smalltalk program is composed of
lists containing atoms and other lists. It is not possible to know which parts are objects and which
messages, other than that the first element of the list evaluates to an object which then gets to decide what

its arguments are, with the assistance of the arguments themselves, and so on.

XI. Storage Management

Basic Idea

We have chosen a hardware system and now must provide space for objects: why a virtual memory? what
does it do?

Data Flow Maps

how to read them

Schemes

includes optimization considerations

Smalltalk-72

Reference counting with files for backup

objects accessed through direct pointer to their storage so objects not moveable

Page mode Smalltalk

Virtual memory on a swapping disk: OOZE

A virtual memory design using reference counting and implicit use of a single file

Problems: picking up on cyclic structures

Loss of the swapping disk [NoteTakcr]

Reference counting- with files for backup, objects are movable because they are accessed through indirect

pointer to their storage

What wc have discovered

standard interfaces

collapsing levels for speed gains

famous tricks

Statistical Tools

Note: the eight hour garbage collection service might be discussed in this chapter, where?

Large Virtual Memories

beginning of a discussion on Findit (retrieval) ideas versus OOZE

PART 3 Coupling to the User

XII. The Programming Environment

Integration of programming tools; integration of modes of interaction

The integration of software tools is one of those important, difficult, and exasperating areas that is too little

discussed. Yet it is the comprehensive power, simplification, and uniformity obtained through integration

that is most relevant for nonexpert users of computer systems.

Objects and messages are preserved at the top level. This can not happen by accident--i.e., the top level

could become a procedure-oriented interaction, translated into the object/message structure. For example,

events, like pressing a mouse button or striking a keyboard key, are messages too.

Towards the goal of controlling the user-level interaction style, we have chosen some common metaphors

with supporting class definitions. filtering templates as an approach to user interface design.

Viewing and Editing Methods

windows supported by menus (discusses scheduling of window selection):

documents and projectors, filtering information

scrolling (analogy between scrolling, windows and virtual memories)

includes composition ideas: galleys: documents with modeless text editing: command menus: experiments

with hand character recognition for editing windows (reference example: GRAIL).

Communicating and Retrieving

Personal computing does not mean computing in isolation

Use of file servers, printers, inter-machine communcation

XIII. Creating a Graphical Interface: System Considerations

When teletypewriter is no longer the user interface...discovering the display medium. This discussion was

motivated by the environment considerations of Chapter XII.

The Problem

People want to view informaton in both textual and pictorial forms. There are heavy conventions about text

and pictures. The solutions hinge on the ease of communication. We care about how text is handled

bccsause we want to be compatible with the printing world and we care about making a professional artist

happy. Moreoever. we want to satisfy both procssions at the same time. Ihere exists further tension here

due to our desires to satisfy novices as well as experts.

The problem is hard because we want to do the above without giving an inch. Text and graphics must be

totally editable and have total compatibility for filing and printing. We need to edit these entities fast yet in

a small amount of space, still satisfying the history of opinions of what functions must be available.

Solutions must answer the questions of what does editability mean and where does the control of textual and

pictorial structure belong? Add to this a need for common interaction methods that are part of a general

programming environment

Experience with Input/Output Devices

Teletype Simulation

imitative with character generator

Character-generator Approach

first animation and painting attempts

Raster-scan Display

higher resolution, putting it where you want it

Convert

Windows

given the hardware and software environment several compromises on the idea of updating the screen

were made relative to a user interface based on windows

Turtle

line drawing methods, simulation of the LOGO-turtle concept

Text System versus Graphics System

Management of text versus management of "graphical" data

Characters, graphical forms surrounded by highly formal conventions

Bitblt and Us Impact on Text and Graphics

Unification of primitives for display

Printing Becomes Part of the Medium

difficulties in a multi-resolution environment

Smalltalk-76 system primitives

point, rectangle, bitblt, turtle

Animation

Kaos/Shazam, Simulation Kit example, double buffering in ThingLab

XIV. Graphics: Forms, Paths and Images

some graphics applications and the development of a simple system metaphor

Idioms and Tools

addressing the problems of anarchy. When designing the Taj Mahal, it is nice to have the technology of

bricks taken care of. Example: an idiomatic approach to illustration-toolbox.

Composition and Layout

Does the printing industry really do all that stuff? Problems associated with typography. Example: the

layout problem-Cypress.

A Simple Metaphor

Paths, forms and images...unifying the manipulation and display of text and graphics.

XV. User Aids: Viewing, Retrieving and Editing

the use of a two-dimensional medium to view a dynamic, multi-dimensional system; break points, tracing,

viewing class organization, help system ideas

how may a programmer actually solve and correct a bug (notify window, inspect window)

infinite loops (keyboard interrupt)

rading code dynamically (keyboard interrupt)

reading code statically (browser)

defining new methods

organizing methods

defining new classes

changing class definitions

organizing classes

approaches to program development and effect of working environment on programming style

help aids

XVI. Network Communication

Smalltalk Network Software

handling a real I/O device

real-time constraints

peculiarities of network communications [time-outs,etc]

experience/problems with the scheduling mechanism

earliest Alto/Nova communications

iterations of the design

performance problems

existing design, printing files, WFS

Distributed Computing

[this really belongs in the next part and coordinates with the Findit presentation--let's just write it as shown

here and worry about separation ideas after we have the text to work with]

more general problems of distributed computing

coordination among machines

sending code through the network

current thinking about distributing Smalltalk programs over a set of machines

how might we write programs to be run in this manner

PART 4. New Language Ideas: Research Directions

XVII. Introduction

Discusses "language" in the larger sense. Smalllalk-76 is a systems programming language. We have seen

already that text editing, as an example, is a different language using mouse clicks and pointing; of course, it

has been designed with a great deal of compatibility with the object/message metaphor. If we want to support

13

a language for information retrieval or for geometric configurations or for planning, further consideration of the
metaphorical bases is needed. This part examines several research efforts whose purpose is to explore new

views of the programming language and its environment

XVIII. Findit: Extending the name space of an object

Introduction

In general, knowing the (global) name of an object gives us a reference to that object If the user does not
know the name of something, but knows one or more properties about it he should still be able to obtain a
reference to it (find it). A generalization of the browsing problem in which the retrieval is based on
categories, the solution proposed here is to be able to specify the parts of an object and then to find all
objects which satisfy those parts.

Historical Perspective: a Cross Referencing System

teletype-oriented interaction, no object storage outside the Smalltalk system, and no indexing capabilities

Forms as a Retrieval Language

CRT-oriented interaction in which creating and modifying objects take place through record forms. The
forms are made up of labelled parts called "fields" which can be specified with different editors, e.g., text,
pictures, diagrams. Forms for creating records and specifying retrieval requests are the same; this removes
the need to use boolean expressions for specifying retrieval. Fields can have incomplete field matches or
date ranges. Then retrievals are represented as stream-like set expressions, rather than as explicit lists of
objects. References other similar systems from IBM, Berkeley.

Examples: mailing lists, tickets and calculators

Storage Management and Retrieval Methods

Findit-72 introduced file storage for objects and sets, which are lists of references to the objects. Objects
were referenced through a master-object table (this system, therefore, was a precursor to the design of the
OOZE virtual memory system). External storage of indices as B-Trees [ref. McCreight] and calendars.

Problems: insufficient memory, response time too slow.

With OOZE, the virtual memory system, it was possible to discard a separate file management system
because records and sets were automatically stored as objects in the virtual memory. This became a
disadvantage due to the limited address space and awkwardness of file backup method. Decision to keep B-

Trees as external files was due mainly to the complexity of the B-Tree implementation.

In anticipation of different hardware storage capacities (limits of local storage), we are currently returning to
the methods of Findit-72, but incorporating extensions to data bases accessible over a communications

network.

Viewing and Editing Methods

Use of a "modeless" text editor. Because the parts are named, the forms can be collapsed into menus of
the names that can also be edited. When a form is considered to be a "document", the menus of names
provide an alternative approach to the idea of scrolling. With the introduction of "projectors" (Chapter V),
forms became "labelled galleys".

Viewing: sets have set readers: documents have windows: objects have notions of whether or not they are

viewed so it is possible, when they are not viewed, to compact them.

A Research Center Library Application

XIX. ThingLab: Constraints and Merges in the Language Kernel

Purpose of Thing Lab (as a simulation laboratory)

ThingLab provides an environment for building simulations. Within this environment, new objects are

constructed by combining and editing existing objects. Constraints are used to describe the relations among
the parts of an object, while the operation of merging is used to specify connectivity and to apply pre

defined constraints.

Focus of this Chapter

describe ways in which the Smalltalk notion of an object has been extended in order to be able to have a
manipulatable handle on constraints, their specification and satisfaction.

1. why the extension is needed: because Smalltalk method of dynamic object creation does not lend itself

to handling constraints.
2. want to handle constraints because it is a new languag eidea in which the programmer focuses on the
solution as a set of state changes and stae relations - a way to package up the necesssary procedural and
decclarative knowledge in order to maintain a relationship among objects.
3. interactive graphic definitional approach to programming is a form of programming by demonstration

with constraint satisfaction.

Solution Idea

1. objects are in terms of parts and wholes

2. constraints are objects that stand for relations. A case of this is when the relation is =, which we

can implement as a sharing. Pragmatically, sharing is handled as a subclass of a constraint called a merge,
i.e., merges are objects that stand for sharing of parts.

3. messages are objects that stand for the act of sending a request

4. prototypes are objects that casn be interactively constructed and used as master versions for generating

like objects.

Example

problems stated in terms of constraints and merges: bar chart example, inadvertant sharing of parts, no

constraints implies explicit programs are needed

Historical Perspective

the evolution of the ThingLab constraint representation and the procedural-declarative controversy;

references Sketchpad, Abset, Simula, KRL

Simulating TinkcrToy models

Partial rc-implcmcntation of Sketchpad

Pointers everywhere scheme

Fastalk implementation

Smalltalk-76 implementation

Prototypes, Parts and Whole

Subparts: paths

Prototypes and instances of prototypes

comparison with class-instance structure

Relation to inheritance and subclassing

Interactive constaiction of prototypes

Describing Relations Among Parts

Merges

done with paths; who owns the merge and why

Constraints

constraints as bundles of continuously sent messages; applying constraints

why is this way useful?

it allows the user to add new information in a linear manner, even though the interactions of the new

information with existing information may be non-linear.

Constraint Satisfaction

why this is hard-some perverse examples

compile time versus run time

methods used; working forwards, working backwards, relaxation, inclusion of runtime checks

description of constraint satisfaction for bar chart example

ThingLab Editor

interactive construction of objects, again emphasizing the need for prototypes

Putting 'ITiingLab Ideas into the Smalltalk Language Kernel

Philosophy

note on the general philosophy of attacking hard problems in language design by first building a

subsystem

Interactions between current Smalltalk code and constraints

Mutiple superclasses

whenFirst statement

Time-dependent ideas; event queues

Parallelism

Storage management using merges

Generative procedural information from dcclaractive information for constraints

Meta-constraints

Multiple views

XX. Programming in Two Dimensions

Templates as a Surface Syntax

Graphic templates for object definition and sequence control; a new surface language for Smalltalk.

Dictionary template

Literal template

Message sending template

Control template

Object description template

Menus and Forms Editing

Automatic menuing for message sending; layout editing; program illustration.

XXI. Music

Why Include a Chapter on Computer Music?

Music for its own sake

For musical interaction, the computer is not just another process control device, like a robot

Conventional musical systems, with some qualifications, lack several characteristics that could enhance ones

ability to produce structured acoustic phenomena;

(1) it is not easy for a single individual to play more than one instrument at a time; need to find others

who play the right instruments;

(2) in order to explore other instruments, have to take the time to gain a reasonable level of mastery of

them; and

(3) it is totally impossible, with a given ensemble, to explore variations in the actual execution of some

acoustic performance.

Music as an exemplar of all the various media for which the computer can serve as
"meta-medium"

The "minimal" personal computer offers certain means of interaction which happen to be most cost-

efficient for the human user. Thus the ubiquitous typewriter keyboard and display. The ultimate

personal computer strives to make accessible all I/O modalities. It will be more richly connected with the

user's physical and sensory environment-not just his intellectual environment. The destiny of the personal

computer can lie not so much in its service through one particular medium, but as a meta-medium

through which the user can interact with the various media in his environment. This potential is

particularly strikingly illustrated by the Smalltalk music system.

Fundamental Design Criteria

Software-based system.

No hardware other than keyboard and D/A

Real-Time

12 simultaneous voices, frequency response greater than 5 khz. Note." this criterion was so firmly

established so early in the development of our computer hardware systems that it became one of the

design criteria for the hardware itself.

Organization and Interaction Principles: Graphical Editing Methods

Introduction: Music is structured sound

Sound is a rich and potentially very complex medium. In order to give user full control over it, must

invest considerably in developing new idioms for manipulating sound. Typically, these idioms will not be

acoustic or musical, since they would be too cumbersome and inefficient to use. Use of graphical devices

is more efficient

The higher level structure (notes) is a set of discrete pitches and durations-the musical score. The lower
level structure, invoked for each pitch-duration pair in the score, is a specification for playing a single
note of music-the timbre or instrument This represents a partitioning of information according to the

idiosyncracies of conventional occidental music. But this is just a special case of the more general
problem: Arbitrarily nested levels of specification of the basic parameters-pitch, volume and harmonic
spectrum. A facility for producing music must provide means for interacting with the various levels of

musical structure.

Drawing wave forms

Timbre editing

novel, compact, four-dimensional graph

Note editing

straightforward "piano roll" model

Implementation Considerations

Bandwidth

Sampling synthesis

Saunders' poor man's FM method

Dreams

semi-special purpose hardware
conventional score notation
unification of representation for music and graphics

XXII. The Book End

Here we complete the scenario started as the prelude to the book, but now the idea of a system that aids a
designer in his quest for accessing and making good use of information is not understood in the sense of
already having had one round of implementation. The intention of this final scenario is to indicate our next
steps so that the next book can be written and read on a Dynabook.

Part 5 Appendices

Appendix 1 The Basic Smalltalk System

A summary of definitions from Parts 1 and 2

Appendix 2 The "Useful" Smalltalk System

A summary of definitions from Part 3

Appendix 3 Acknowledgements: An LRG History

- - M e s s a g e s f r o m f i l e : [P A R C - M A X C] < T E S L E R > M E S S A G E . T X T ; 1
- - F R I D A Y , A U G U S T 2 5 , 1 9 7 8 0 9 : 3 5 : 1 7 - P D T —

D a t e : 2 5 A U G 1 9 7 8 0 7 5 7 - P D T
F r o m : A D E L E
S u b j e c t : b o o k c h a p t e r s
T o : t e s l e r , i n g a l l s , r o b s o n

I a m o f f f o r t h e w e e k e n d a n d D a n a n d L a r r y w i l l b e g o n e
f o r l o n g e r s o I p u t o n I V Y < A D E L E > B O O K > C H A P T E R . * t h e
w o r k i n g v e r s i o n s t h a t I h a v e o f c h a t e r s 3 , 4 , 6 , 8 , a n d 1 5 .
D a n h a s a l a r g e e d i t p l a n n e d f o r 3 , I h a v e a l o t o f n o t e s
i n s m a l l p r i n t w h e r e c h a t e r 4 n e e d s e x a a p l e s a n d m e p r o s e .
M u c h o f t h a t p r o s e c a n s t i l l c o m e f r o m L a r r y ' s o r i g i n a l
m a n u a l a l b e i t , c a r e f u l l y s t i l l t h e s t y l e i s d i f f e r e n t . I t
d i v e s t o o f a s t i n t o t h e i n f o r m a t o n , a - w e l l i t o u g h t t o
s i n c e i t i s a r e f e r e n c e m a n u a l . C h a p t e r 6 i s s i m p l y m y
p i e c i n g t o g e t h e r t h e t w o w r i t i n g s o f D a v e - - I h a v e n o t
e x a m i n e d t h e m c a r e f u l l y t o s e e i f t h e y m a k e s i n c e — t h e y c e r t a i n l y
d o n o t i n t h e o r d e r c u r r e n t l y t h e r e . C h a p t e r 8 i s t h e
c o m p i l e r t e x t L a r r y d i d — I r a n o u t o f d i s k s p a c e s o t h e
f i g u r e s a r e n o t t h e r e (t h e y a r e o n m a x c < t e s l e r > c o m p i l e r -
c h a p t e r . p r e s s . A l s o o n I V Y < A D E L E > B O O K > B O O K U S E R . c m i s
t h e u s e r f i l e I h a v e b e e n u s i n g - - i t i s s l i g h t l y
d i f f e r e n t t h a n a l l o f y o u r s b e c a u s e I h a v e b e e n f o r m a t t i n g ! !
C h a p t e r 3 h a s f i g u r e s - - t h e f u l l c h a p t e r i s
o n t h a t s a m e d i r e c t o r y a s c h a p t e r - 3 . p r e s s .

[L o o k s l i k e I a m n o t t y p i n g w e l l - - i n t h e a b o v e ,
c h a t e r s i s c h a p t e r s a n d s i n c e i s s e n s e]

C u r r e n t a s s i g n m e n t s a r e : h a v e a g o o d v a c a t i o n b u t i f y o u
d e c i d e t o w r i t e , t h e r e i s a l a r g e n e e d f o r e x a m p l e s f o r c h a p e r 5 (I a m t r y i n g t o f i g u r e o u t a g o o d
f o r m a t) : D a v e w i l l g e t t h e c o n t e n t o f C h a t r 6 (I m p l e m e n t a t i o n)
s t r a i g h t e n e d o u t ; L a r r y h a s a b i g r e w r i t e o f t h e
u s e r - a i d s (1 5) u s i n g K i m ' s w o r k , a s w e l l a s w r i t i n g u p t h e
i c e x a m p l e : w h e n T e d c o m e s b a c k , D a n h a d s o m e s u g g e s t i o n s
t o h a v e h i s s t u f f m a k e b e t t e r s e n s e . A n d i t i s s t i l n o t
c l e a r t o m e w h a t d o e s i n C h a t e r 7 — c u r r e n t l y t h o u g h t o f a s
P r o g r a m E x e c u t i o n o r i n t r o d u c i n g a c t i v a t i o n r e c o r d s i n
m o r e d e t a i l .

A d e l e

To: Book Writers, Inc
From: lire Whip
Date: July 25, 1978

Here is a list of class names in the summer release of Smalltalk. (Thanks to John Maxwell whose
class free generated the file.) Rather than my editing the list (to exclude John's personal
definitions, for example), I am distributing it in this way. 'Ihe idea is for you to highlight, any old
way you choose, the classes to which you refer in your writing. 'l"hat will give me a first pass on
appendices. 1 do want to sort the references from the "Kernel" system from the "Basic" system,
but I can do that later. Add any classes you invent for illustrative purposes (in alphabetical order
and/or in the class hierarchy).

Compressor
Context
Cursor
DefineVariables
Directory
Document Galley

Etherworld
FieldReference
FontWindow
Form
FormSet
Generator JustParser

Array CoreLocs
Interval
Paragraph
String
Substring
Vector

TextEntity
UniqueString

BitBlt
BitRectTool
Class
ClassOrganizer

VariableLengthClass
SystemOrganizer

Page

HashSet
Searcher
Dictionary
MessageDict

SymbolTable

Menu
MessageTally
Number Date

Float
Int32
Integer
Largelntegcr

ObjectReference
Pacbuf
Page Buffer
ParagraphPrinter BravoPrinter

PressPrinter
ParagraphScanner

• ParsedAssignment
ParsedConditional
ParsedConjunct
ParsedDisjunct
ParsedFieldReference
Parsedl .oop
ParsedMessage
ParsedObjectReference
ParsedRemote
Parser
ParseStack
Point
PressFile
Prioritylnterrupt
PriorityScheduler
Projector
RadioButtons
Reader
Rectangle
ScrollBar
Selection

Socket

Stream

Style
Textframe

TextStyle
rPime
Timer
TokenCollector
Turtle
User View
VirtualMemory
Vmapper
Width Table
Window

ParsedNegation

UserEvent

BitRect

BitRectSelection
TextSelection
EFTPReceiver
EFTPSender
RoutingUpdater
Disp frame
File
ParsedBlock
PQueue
Queue
Set

SetReader

ListPane

ParagraphEditor

AltoFile

SafeQ
EventQueue
Image
Path

ClassPane
OrganizationPane
SelectorPane
StackPane
SystemPane
VariablePane

FicldNameCollector
PressTurtle

BitRectEditor

CodePane
Document Window

PanedWindow

GalleyWindow
PageWindow
BrowseWindow
CodeWindow
InspectWindow
NotifyWindow
SyntaxWindow

Vt-VU:

Optimizations

(1) Boolean
IfO^ ̂ \

{and | or I not} r ^

Don't evaluate unnecessarily

{if | while} {and | or | not}

Jump after each conjunct <l~ ^ -

instead of forming , j 1*^ V *
^ o î sT-'M Boolean result

Suppress Jump after Return

(2) Pop/Push
x<-y + z. t<-x-r.

... store&pop x; push x;...

... store x;...

(3) Short jump

Jmp1...Jmp8, Bfp1...Bfp8

are one byte instead of two

C }

Compiler Organization

X

PASS 1

PASS 2

Source Code Stream

>
Characters
•

• u'
SCANNER

Tokens

PARSER

Productions

TREE BUILDER^,

t

/ ^
Scanner /Parser In ter face

-v

p andg cfr [3] 'three'

Scanner
(Peter Deutsch)

read Into: parser

(For

each

token)

(Terminat ion)

\\

\

identifier: 'p'
keyword: 'andg'
identifier: 'q'
onechar: 27 —
onechar: 91
integer: '3' ^—
onechar: 93
string: 'three'

Parser

</ .

,JCL J I1

(In i t ia l i za t ion)

integer: chars
float: i fraction: f exp: e

string: chars

identifier: chars
keyword: chars

otheratom: chars

leftparen
right pare n

onechar: char

separator: char
comment: chars

trailer: chars

contents

#>

V - Vto /}

I

f - ptjsJXA—u-^XV
—• \

To obta in a token, parser executes:
self aduance

which cocal ls scannerand sets var iab les

K type and token

5 ̂
^sCa>

Parser/Builder Interface

p andg <^> [3] 'three' /
v,

Productions

a <- builder variable: 'p'
b <- builder uariable: 'q,'
c <r rcur: a selector: 'andg' args: b
d <- builder literal: 3
e e builder literal: 'three'
f <- builder ifExpr: c thenExpr: d elseExpr: e

Parser Builder

to: generator

pattern: block
temporaries: block

(for each decl)

body: block

(for

each

production)

mustBcDone

%

X

(initialization)

(compile heading)

\
X

declaration: token asArg: bool

(compile body)

l i te ra l : obj

uariable: name

rcur: rcur selector: sel args: args

ifExpr: e I thenExpr: e2 elseExpr: e3

assignment: uar expr: expr

(termination)

f] n Ij

Optimizer Pass 7y/

ifExpr(0,F), thenExpr, jmp L, F: elseExpr, L: <z

**i^

|~CAFKiitional P and°° [3] 'chree'
(1 4
|7
2
4
7

IzeForValue^
/felstfSiz^v- elseExpr si
vKenSlzey^ thenExpr s
/ IfSize x IfExpr sizeFor
/ fn'fSize + rhenSlze + e

zeForValue.
IzeForValue + elseStze jmpStze.
Truth: 0 falsity: thenSize.
seSlze

/ ifExpr thenExpr thenSize elseExpr elseSize

A

Qtfi-

push

Literal 3

slzeForValue I

location

Literal tKree '
sizeForValue

location

push)t^t^

cAmJ(P^)

g. ItTe/uP
<jj\ \ ĥ k -7

left(0,F), right(T,F)

Conjunct 2
p and.§ q,

sizeForTrurh: rrueSkin falsiru: falseSklp
2
4

rlyhtSlze <- right sizeForTrurh: rrueShlp falsity. falseStelp
fr(Left sizeForTrurh.: 0 falsity: riyhrSlze+falseShip) + rlyhtSize

left right rightSize

(J) (\10—

Ujv-cL̂ W

push p, bfp F push q, bfp F

Variable
0 £

iflz€forlYuthPr falsiru: f
size <- r jmpSlze.
ftl + (stze+f) bfpSlze + size

location

Variable "q"

sizeForTrurh: r falsiru: f T
size <- r jmpSlze.
ffl + (slze+f) bfpSlze + size

location

^̂ 'J
fj|3—i 7 — ——trv̂ l- v , rJb) vJn*-4

<*va~

IwP

^l/uf

d \^jj^>
V)*\t Ay
UK oLh .
jUi

' i f j ^ ^
d j jc ^

^ jp* 7 A^AAA^/^
K/* ^ K / i '
7-^V7V7y ^"2-ur^

' v-L* ̂ W7V

SC
d

Emitter Pass

push p , b fp 4 , push q , b fp 2 ,push3, jmp1,push ' th ree '

Conditional P and§ ^ ̂ 'tlare0'
emirForValue: code 1

] falsity: tKenSize into: code.
2: code,
e.
r. code.

IfExpr emitForTrutK:
tKenExpr emitForValu
else Size emitJmp: cod
elseExdr emirForValue

] falsity: tKenSize into: code.
2: code,
e.
r. code.

i f Exp r thenExpr thenSize elseExpr elseSize
i n

push 3

m
push ' th ree

Literal
emir For Value: code
code next <- locarion.

location

Literal 'tKree'

emirForValue: code
code nexr <- locarion.

location

push P, b fp 4 , push Q, b fp 2

Conjunct 2
p andg q

emitForTrurK: rrueSteta falsitu: falseSteln Into: code
2
4

left emitForTrurK: 0 falsity. rlgKtSlze+falseSklp Into: code.
rlgKt emitForTrurK: trueStelp falsity. falseSklp: Into: code.

left r ight r ightSize
8 2 1

push p , b fp 4 push q , b fp 2

Variable P
O 4 Variable ^

0 2
emirForTrurh: r falsitu: f Into: code 1 emitForTrurK: t falsitu: f Inro: code 1

code next <-• locarion.
(t jmpSlze + f) emltBfp: code,
t emitJmp: code.

code nexr <- location,
(t jmpSlze + f) emltBfp: code,
r emit Jmp: code.

location location

Strategy

(1) Optimize as much as possible in the tree

^^uheaper than recopying object code.
(La^Mjr ^ ^JL imT^

(2) Each node measu res itself,
/ /

optimizes itself, ^
remembers its optimization, ^

emits its own code.

Easier to program. lc

(3) Distinguish uses of result:
/

For value;
For effect;

Discard or repush?

For truth, cO fhjju^J

V ° f ef

(jlyvc

^vir^T",

<vJ

)

r /V^ajj ArUo—

u /iivw^\l * II y

ko^u^ (rt=-
Xo

J-S

-(JU)-^ I I *

lA-V

Compiler

Draft^-- August^ 1978 5:28 PM

[note to editor: I assume the following concepts are already understood by the reader:' .]

The Purpose of Compilation

The compiler takes a single method expressed in the Smalltalk source language and translates it to the
byte-coded object language. If it detects errors during translation, it notifies the user by inserting an
error message into the source text at the point of the error. If no errors are detected, the method is
installed in the specified message dictionary add immediately becomes part of the environment.

The Structure of the Compiler

The compiler has three major phases of operation: initialization, translation, and installation.
Initialization builds a symbol table with the names of fields of the class and other standard names, such
as self. It also initializes and links up the various routines needed during translation. Translation scans
the source text and generates object code. Installation converts certain special methods (such as those
with no code body) to a special form, installs the object code in the message dictionary, and updates the
class organizer.

The translation phase is performed by five cooperating modules: the scanner, the parser, the tree builder,
the optimizer, and the emitter. The scanner scans the source text and tokenizes it. The parser matches
the token stream against the productions of the grammar by recuisive-descgnt- The tree builder
constructs a parse tree with one node per production matched. The optimizer walks the tree finding
opportunities for optimization. The emitter walks the tree emitting optimized object code.

The translator operates in three passes. In pass one, the scanner, the parser, and the tree builder march
together through the input stream; the scanner and parser are coroutines and the builder is a set of
subroutines of the parser. In pass two, the optimizer walks the parse tree. In pass three, the emitter
walks the parse tree and appends byte codes to the output stream. Of the three passes, only the first is
through the source text, and only the third is through the object code. All three passes span the parse
tree, the first one building it, the second one seeking optimizations, and the third one emitting optimized
code.

The time taken by a typical compilation is divided as follows:

Initialization 17%
Translation 61%
Installation 22%

Translation time is typically divided as follows:

Scanner 42%
Parser 42%
Tree Builder 6%
Optimizer 5%
Emitter 5%

These times were determined using the Smalltalk "spy" facility [see chapter Y], Note that a large
portion of the time is taken in scanning and parsing. If the method were stored and edited in parsed
form, as in the program template notation (chapter T), these modules could be eliminated and the
compiler would become about twice as fast. Of course, the speed advantage and the clarity of program
template notation must be weighed against the conciseness and the free-form editability of linear text
notation.

The Scanner

The scanner is a typical table-driven one. Each time it is asked for a token, it scans over one identifier,
number, or special character and tells its coroutine (the parser) what it found by sending a message such
as integer: chxtrs where Cliars is a string of the characters forming a token that is an Integer literal
(see Figure S/P). The scanner used by the compiler is general enough that it is used as a front end to
other programs such as a code compressor.

The Parser

The parser is a typical recursive descent type. When it finds a complete syntactic construct it tells its
helper (the tree-builder) what it found and the helper returns an object that shall represent that construct
in enclosing constructs, (see Figure P/B) For example, during the parse of X <r y + z, the parser
executes the following statements:

uar «- helper variable: 'x'

rcur <- helper variable: 'y'.

arg <- helper uartaUe: 'z\

expr «- lielper rcur: rcur op: '+' args: arg.

stmt <r helper assign: uar expr: expr

The parser is general enough to be used as a front end in other applications than compilation. All one
must do is provide a helper other than the tree builder. This technique is used in a program that parses
a method and displays it as a two-dimensional program template.

The Tree Builder

Each call on the tree builder returns a node of the parse tree. The node belongs to a class associated
with the syntactic construct reported by the parser, e.g., ParsedAssigrttnent in the last example
above, ParsedMessoge in the next-to-last. The fields of the node include the arguments of the call
(e.g., uar and expr in a ParsedAssignment).

The Optimizer

The optimizer makes a top-down scan through the tree. The scan is performed by passing a message to
the root node, which passes messages to each of its descendants, and so forth. In response to the
message it receives, each node returns the number of bytes of object code that it will emit. Of course,
the node is able to find out from all its descendants how much code they will emit before it must
compute its own amount. Thus, in a single pass through the tree, the size of the object code can be
determined (see Figure OP).

During the tree walk, any node may attempt an optimization. For example, a node of class
ParsedConditional representing ifExpr^[tKenExpr]elseExpr can tell if Expr to generate jumps for
andg/org expressions instead of generating true/ false results. It can determine the relative
destinations of the jumps before activating if Expr by first measuring thenExpr and eiseExpr.

Thus, each node must be ready to measure itself and emit code differently when it is in normal use or
when it is the condition of a conditional. Another distinction is made as well: whether the value of the
expression the node represents is to be used in further computation (wanted for value) or discarded
(wanted for effect). Each node should respond to three different measuring messages:

size For Value
returns the amount of code the node would emit to evaluate its subtree and to return
the result.

sizeForEffect: ncxtPush.
returns the amount of code the node would emit to evaluate its subtree and to discard
the result. The argument nextPush. (if not false) is a variable that the parent node
knows will be pushed onto the stack immediately after this node completes its evaluation
(the statements in a block are asked their size from right to left). If the last code
emitted by this node would be store&pop var and the next code would be var, then this
node emits only store without a pop and the next node emits var, which has the same
overall effect but is less expensive.

size For Truth.: trueSkip falsity: falseSkip
returns the amount of code the node would emit to evaluate its subtree and to jump
false Skip when the value is false, true Skip otherwise.

For some classes of node, some of these messages are defined in terms of each other or are defined in
superclasses.

Each node remembers certain information it computed during the optimizer pass so that it can generate
the correct code during the emitter pass.

Because Smalltalk is a structured language without a goto statement, each node is able to measure its
descendants in an order that assures that the jumps are measured after the code they jump over.

The Emitter

At the end of the optimizer pass, the compiler knows how much code will be generated by the method,
and it allocates exactly the needed amount of space.

The emitter then makes a top-down scan through the tree by passing messages to the nodes. One
argument of each message is a stream onto which the node must emit the amount of code it promised in
the optimizer pass. Another argument to each message is an object that keeps track of the current and
maximum depth of the stack that will be needed during evaluation; the node must inform that object of
all pushes and pops (see Figure EM).

Each node should respond to three different measuring messages:

emitForValue: code on.: stack
appends bytes to code (informing Stack of pushes and pops) to evaluate its subtree
and to return the result.

emitForEffect: code on: stack
appends bytes to code (informing Stack of pushes and pops) to evaluate its subtree
and to discard the result.

emitForTrutft: trueSkip falsity: falseSkip into: code on: stack
appends bytes to code (informing Stack of pushes and pops) to evaluate its subtree
and to jump falseSkip when the value is false, trueSkip otherwise.

As above, some of these messages are defined in terms of each oLher or are defined in superclasses.

Quality of Code

The compiler has no peephole optimizer and no postscans over the object code, yet it optimizes boolean
expressions perfectly and optimizes out pop-push pairs. It is cheaper to walk a parse tree an extra time

than to recopy object code squeezing out unneeded bytes.

The implementation of parse tree nodes as objects means that they can retain state between passes, and
that they can receive and pass different messages to evaluate their subtrees for different purposes.

v/w <_$ a r-«--j-g- -+-

\/V*j_P-\\ p^-Q. (-& c-too

D •£

, s M J ^
/ i w ?

\ I " ^

C X ^ J L ^NJUA *>Nf -» . .-• —O., v cy^^~°-y>«_r /

I D "* ^^yVwV Qjtovr-^ »

^ W>A-jJ! ^7^^

)

I D "* ^^yVwV Qjtovr-^ »

^ W>A-jJ! ^7^^

)

I D "* ^^yVwV Qjtovr-^ »

^ W>A-jJ! ^7^^

) V /
(<?A£g_U

Kns Kns

1 Jrts Sv— .At'« Crvwv'U/ OckT

« ^ w " 9 . « ^ w " 9 .

\V\AvwoJ «j LXAI^ (AaJ\'I j foT \V\AvwoJ «j LXAI^ (AaJ\'I j foT

p°^j "jz-yV

\n/-P G&Uk*S

^ tfVv ^icu^J"

p°^j "jz-yV

\n/-P G&Uk*S

^ tfVv ^icu^J"

p°^j "jz-yV

\n/-P G&Uk*S

^ tfVv ^icu^J"

p°^j "jz-yV

\n/-P G&Uk*S

^ tfVv ^icu^J"

_

^
Ls l r fuwx«-

0?

/ "

V) t^<- CVN hzJriu*-^ jsTlO
'

c)

vi .

^^(MA^v| o^ V \X* ^ h>d-Q yj

(\

vi .

^^(MA^v| o^ V \X* ^ h>d-Q

\jy

[Maxc]<Tesler>ICExample.bravo September 13, 1978 5:01 PM

[this part for Chapter ?]

An IC Design Example

During the design of an integrated circuit, a geometric layout must be produced that specifies the
masks for each layer of the chip. There are a number of ways to have a computer system assist the
designer in creating such a layout. This topic is discussed in [chapter 4, Mead and Conway,
Introduction to VLSI Systems], We will adopt one of these methods and show how the core of the
machine-assisted portion was implemented in Smalltalk in one week by a Philosophy major with a
few months of programming experience.

The method requires the designer to plot (usually by hand) each component, or "cell" of the circuit,
on graph paper, using different colored pencils to outline the portions on the different layers. If the
same cell is repeated in many places, it can be detailed just once and then represented by an outline
of the right shape and size everywhere else.

When the plot is done, it is hand-coded into a symbolic layout language that can be interpreted by
a computer program and converted to a form (CalTech Intermediate Form, "CIF") that can drive
output devices such as a plotter and a pattern generator. An example of such a language is ICLIC,
developed at CalTech by Maureen Stone and Ron Ayres and described in [Stone, chapter ?, ???,
How-To Manual], There is a compiler for ICLIC that Ayres developed by extending an existing
compiler for the strongly typed language ICL. The ICLIC compiler compiles a program that when
excuted converts the description to CIF.

We can define a set of classes in Smalltalk that serve the same role as the features of ICLIC. The
most important class is class Symbol, which is an abstract class. By subclassing class Symbol, the
designer can define new kinds of cells. Each subclass must have a method that specifies tire layout
of the cell in terms of smaller cells. It must also have or inherit a method for displaying the layout
on the screen and one for converting it to CIF.

Since cells are built up out of smaller cells, there must be atomic cells from which all others are
built. The atomic cells in this system are instances of class Box, which represents a rectangle on a
specified layer of the chip, and class Wire, which represents a path of specified width connecting a
series of points on a specified layer.

There must also be a way to compose smaller cells into larger ones. The primary constructor in this
S' stem is class CompSymbol, which is implemented as an array of symbols that represent cells of
any kind. There are also some special constructors, such as class Contact, which is a stack of
overlapping boxes in different layers, and class CompWire, which represents a wire that is routed
between layers in mid-path via a suitable contact.

All the classes mentioned so far are subclasses of Symbol. Finally, there is class Layer, which is
not. A layer helps to identify a symbol, and knows characteristics such as the default wire width.
The layers are predefined in the system:

poly diff metal etc

Standard contacts are predefined between pairs of layers that may be connected:

pToD pToM mToD

Here are some examples of expressions that compute cells in the system:

to be copied from Kim's inspect window

Here is an example of a user-defined cell class:

Kim's pullup example

Note that when a pullup is initialized, it builds its structure and stores it in a field. Thus, when it is
asked its mbb (minimum bounding box) or asked to display or to convert to CIF, it need not
recompute the structure. This saves time, but costs space. A contrasting example is:

Kim's nand example

Note that when a nand gate is initialized, it only remembers its parameter, which is the width of its
pulldown part. When it is asked its mbb, or asked to display or to CIF, it must compute its
structure every time. This costs time, but saves space. The system gives the designer the choice of
approach in each class of cell. In the original ICLIC, objects were not available, so this flexibility
was lacking.

Another advantage of an object-oriented implementation over the original ICLIC is that the classes
that are defined can be given other messages, such as simulate, and the structure that is built can
then be simulated. The original ICLIC was built on a functional rather than an object-oriented
language and so this opportunity for extensions was not readily available.

[this part for Debugging Chapter]

Not written yet, here are Kim and my notes on his best bugs:

(1) (Box printon) called (Stream append: rect) led to error because (Stream append:) requires a
string. He should have used (Stream print: rect) or (Stream append: rect asString).

(2) There was a variable 'black' at the top level and also one in class Symbol. He was at the top
level when he executed some code so he got the wrong one.

(3) uninteresting

At this point, he filed out IcDesign.st!l

(4) uninteresting

(5) he used (is: Integer) instead of (Is: Number) so a Float wasnt one

(6) He made a Path with (Path new) and forgot to init the fields, so they were all nil and something
blew up

(7) He omitted a period between statements. The last thing in the first statement was a string; the
first thing in the second statement was self. It tried to pass the message 'self to the string!

(8) uninteresting

(9) uninteresting

(10) Infinite recursion. The 'array' field of WireSet was supoosed to have a Vector value and then
the 'printon: strm' message was [array printon: strmj. But the 'array' field was self instead, thus the
endless recursion. This happened because 'WireSet fonnContacts' in the simplest case did ?[]
instead of ?[tvec], so self got returned instead of vec.

(11) uninteresting

At this point, he filed out IcDesign.st!2

(12) Layer nextlnCluster omitted the tstream so it returned itself.

(13) uninteresting

(14) uninteresting

(15) uninteresting

(16) color: black looks good but is wrong because the value of black is (and is supposed to be) a
Layer. (This was a bad choice for Smalltalk in general but is copied from ICITC where it makes
perfect sense. Maybe we should call layers 'diff, 'poly', 'metal', etc instead of color names.)

At this point, he filed out IcDesign.st!3

(17) In a for-loop on i, i was a symbol, and he used it as an mbb. He should have done a for-loop
on j and then (i«-j mbb) before using i.

At this point, he filed out IcDesigu.st!4

(18) O-Point (in CompSymbol show) should have been 0@0-Point. Subtraction of Points and
Integers is non-commutative, unfortunately.

(19) In implementing multi-layer wires, lie had essentially {...~aPoint~aContact~...} and aPoint was
used three times: where shown, as the first point on the next layer, and as the center of aContact.
He forgot to copy aPoint to use it as the center of aContact, so when the whole shebang was
rotated, the loop down the list rotated aPoint twice! This is why Peter Deutsch thinks points should
be "scalars", i.e., unalterable.

(20) He divided an integer by 2 and forgot to float it first, so it got truncated, which was not desired.

(21) He forgot to initialize the field 'path' of an object.

(22) don't remember what this one is -- could replay tape

(23) (Integer * Float) got Integer result, he expected Float.

(24) something about Integer round ... ? It wasn't defined maybe?

At this point, he filed out IcDesign.st!9

(25) 'someclass mbb' essentially did a 'self mbb' and got an infinite recursion

At this point, he filed out IcDesign.stllO

JTc i Slsu 6 o1§ ̂ ^>/7 $

g§

si <Zf

4 rU/J "" b Jr ^2*t-£ -4^uz (h> Ia
c d&Z&j) ' S A icxfl̂ b^L

Oi> j ecf
C_([\Ji C ̂®-d-«a_TJ

I/ iduy\<iroj

A-c,-hv*J)ss\
rless^jc

5Hc&SL^&p2>¥ (fa c Cl_ pOSf l Ujd StjS*fc<~V "TO 6v,/U (PVv "TlA- Cz^i^JlK
* C& <f*A uM <-*-eeyJ^

UJ/j (f jjy, Ad Jo
' o?T

. / 1
PI CsC4^L$L it> fooJt) jr4u! 7-L

/y^ /4^
CC^J^ir

U4~<

~T
x

&

A^4L-

/y&~a Q. < -̂<A\ •* >j

Q 3 cJ7 5c,yjfvK_^
(2) 1 /o /9^ ,, ,J$ ^ CuH^S f«»Xt C V? s **'" "

4/F •— ~" } • --•.-i,-f-v y Cd r̂i, iCiJ '•+** s^cXsW? ,
$" JLJLj-A-&-£—-—.

f s"<: _ cl̂ -JLg / ,1 lOjiWio;^ (AjLetA 60 ̂ LX-̂ 2

L.

~ ; i ^ i f /sj*y cr/v ̂ 0 u
<xJL£L o!4^v itt-^tJiy

M^aJil.^ U

<xJL£L o!4^v itt-^tJiy
M^aJil.^ U

<xJL£L o!4^v itt-^tJiy
M^aJil.^ U

^^JLUL.- J^S^k=^d^f<ruj ^ppas^,^

[A ,- <£>"<^- - â 4-r*r\

XJ jf/L -̂̂ t-xQ. , ro <Wrf-«->^< /t-cJ^. <^ ^a-^-g_SL_J>

[A ,- <£>"<^- - â 4-r*r\

XJ jf/L -̂̂ t-xQ. , ro <Wrf-«->^< /t-cJ^. <^ ^a-^-g_SL_J>

1*rSsiiil"-' ^ CAM-JZJ

-<.frfe"."j i- ^u1' /--"jiT ^~* ,/^-S-o cyi-̂ 0̂ , L*-ef <i /o"/ ,4^ L / Sf

{jLisJ-S J ./

,i^g-—^ -r-» (—prqtip -1" f * 'Yi^'y L ^ f <sJ$£-£̂

£Lẑ i~-< < r / 4 ^ v v > < £ - , ^ 5J!&XI6L-̂ , /\xSoc-i»A*-\ <VU^x<. &u, /f

yzJw^p- P

\ /^^^ip"- P Y*^4 - ^

v_ ^ Ĵ S '

\ /^^^ip"- P Y*^4 - ^

v_ ^ Ĵ S '

^um. .. oij -

(rrSJL t̂>Cî . A\^v
/ \ >> '

L ;sj- An**} r C{cLLe^)
j^no ^'Ctr K - - \ /

**— J&2&&1& £7^ V<L^r, -^54-t-^-y f ,

/ \ >> '
L ;sj- An**} r C{cLLe^)

j^no ^'Ctr K - - \ /

**— J&2&&1& £7^ V<L^r, -^54-t-^-y f ,

/ \ >> '
L ;sj- An**} r C{cLLe^)

j^no ^'Ctr K - - \ /

**— J&2&&1& £7^ V<L^r, -^54-t-^-y f ,
V ,

<2^zJk^eUSLtfJ kU ̂ ^<^_ft /WrQ^T^^/ i'Ĵ i v
V ,

<2^zJk^eUSLtfJ kU ̂ ^<^_ft /WrQ^T^^/ i'Ĵ i v

Smalltalk Class Outline

September 18-22, 1978
Adele Goldberg and Larry Tesler

Monday September 18

Theme What is object-oriented programming?

Reference Draft-0 of Chapter III Smalltalk: Dreams and Schemes

basic data structure: object
state
behavior

basic processing: message sending

Smalltalk's version
conceptual object: internal and external view
conceptual class, instances, subclasses

message determination

Examples environments to organize into objects and to specify tire message protocol of the
objects

what are the objects?
what are their protocols?

[car wash, amusement park]

Off-line assignment

choose one from each column and specify the objects and their protocols

bank data base text editor
integrated circuit calculator
animated movie musical performance
telephone network computer

PARC

On-line assignment [see handout #1]

using the Smalltalk user interface, lcam to text edit and print your off-line assignment

Please write down all your questions and give them to us before class so we
can order them for a better organized sequence of responses.

Tuesday September 18

Theme hierarchical class organization

Reference Draft-0 Chapter IV Smalltalk: Dreams and Schemes

subclassing

methods

pseudo-variables self and Sltper

examples

HashSet, Dictionary, DataDlctlonary
Record, Bank Account
a job shop simulation

Syntax of Smalltalk-76

special consideration for initializing class, pool, and instance variables

Classes in the Basic System

Off-line assignment (but actually done on-line) [see handout #2]

goal: do some browsing on-line to find the indicated definitions; watch out for use of Self
and super. Try to read the definitions of Stream, Point, and Rectanyle.
Read the class definitions for HasKSet and Dictionary to determine what they can do.
How do you create a new instance of the class Dictionary? An instance of the class
Dictionary understands a message of the form Insert: name with: ualue. In
executing the method associated with this message, a number of messages to self are sent.
Which ones are they and who holds the message dictionary in which each is found?

On-line assignment [see handout #3]

implement a class that represents a data structure

examples to choose from:

chained list, ordered or unordered
set
binary tree
ring

Wednesday September 20

SubTheme The nitty gritty folklore of files and printing [see handout #4]

Theme Message protocol as a command language; browsing and reading class definitions

already available in Smalltalk-76

Examples

Putting text up on the screen (Textframe)
Making a sketch (BitRect); making a movie
Making a PanedWindow (PomedWlndow not to be confused with PainedWtndOW)

On-line assignment

Using classes Vector or Set, BltRectEditor, CodeWlndow, and/or LlstPane in
making a kind of four-paned PanedWindow of the following form

first pane list of components, that is, classes, that can be used in retrieving
information or displaying information

second pane list of existing subclasses or instances (note one of the panes should
make it possible to add new ones)

third pane tire interface to the component (typically part of the message protocol)
that the user can view and/or modify

fourth pane editable view of tire implementation of the interface (possibly code or
a picture)

Here's an example

First pane contains the list

clerks
salesmen
instructors
eueryone

Second pane contains the names of people who are in the selected position. For example,
suppose salesmen is selected in the first pane, then the second pane might show

joe brown
nenry clay

Third pane contains information about the people, for example,

face
salary

Fourth pane would show either a picture of the person's face or the person's salary.

Try to write something like the above....

Thursday September 21

SubTheme reading class definitions written by your classmates!

Theme scheduling the active objects

Example Windows and Menus

On-line assignment [see handout #5]

Define the following rectangular areas:
a menu
a pictorial view of something like a circuit, office, telephone, etc
a place for defining new objects

clean up your display screen, create one or more instances of the above objects, and
schedule each one such that moving the mouse inside the area "wakes the window up"

Friday September 22

SubTheme how long will your version be up-to-date?

Theme Distributed control and modularity of class design

Example

the message print
the message show
read the definitions written by the students

On-line assignment

your work!! ask for help whenever...

'From Smalltalk 5.3c on 19 September 1978 at 10:58:43 pm.'_J

"Movie"
Class new title: 'Movie'

subclassof: Object
fields: 'frames path myrtle'
declare:
asFollows~

A simple movie maker -- you create a filmstrip of n frames,
sketch in those frames, define a path for the movie to traverse,
and run it

create using

Movie new init: <number of frames>

you will be asked to provide the first frame

or

Movie new init: <number of frames> with: <rectangle for first frame>

Initialization
clear | each.

[forg each from: frames dog [each, clear: white]]
init: Length. | rect

["the filmstrip is length long, the user must draw the rectangle"
rect <- Rectangle new fromuser.
self init: length with: rect.]

init: length with: rect| i
["the filmstrip is length long"
frames Vector new: length.

"first frame is rect; rest of frames are next to it and same si2e"
forg i to: length dog

[frames o if rect copy,
rect mouebu: ((rect extent x + 5) 0 0).
(frameso t) outline.].

"create a turtle for sketching in the filmstrip"
myrtle <- Turtle init

frame: ((frameso 1) origin rect: (frameso Length) corner).]

Painting
copy: a into: b |

[(frames o a) bit: ((frames o b) origin) mode: storing.]
path | turt pt

[turt turtle init.
path <r Stream new of: (Vector new: 10).
untilg user bluebua dog

[user redbug [pt <- user mp.
''connect lines or place turtle"
[path empty

[turt penup; goto: pt; pend-n]
turt goto: pt].

path next <- pt.]]]

sketch | "sketch with redbug, erase with yellowbug, finish with bluebug"
[untitg user bluebug dog

[user redbug [myrtle black; goto: (user mp - (framesoi) origin)]
user yellowbug [myrtle white; goto: (user mp - (framesoi) origin)]
myrtle penup; goto: (user mp - (framesoi) origin); pendn]]

Running
run| "mouie shows once at the fixed test area"

[self runAt: 20©20]
runAt: Loc| each "mouie shows once at location loc"

[forg each from: frames dog
[each bit: loc mode: storing]]

trauel | each "mouie shows once at each point in the path"
[forg each from: path contents dog

[self runAt: each]]

SystemOrganization classify: r>Mouie under: 'Graphical Objects'._J

"Parted Window"
Class new title: 'PanedWindow'

subclassof: Window
fields: 'panes templates title'
declare:
asfollows—J

A paned window is a Window that has suhwindows (panes) that are awakened and
resized in unison.

Initialization
title: title with: panes at: templates | pane

[self reset. CitationReasons CltattonReasons+1.
[org pane from: panes clog [^an^imx]]

Window protocol
close | pane

[forg pane from: panes clog tnane r.inqel.
CitationReasons CitationReasons-1 J

eachtime I pane
[frame has: user mp^>

[user bluebug:> [itself bluebug] § a

selfCoutsldeC [T^' w

user anybugz>[frame has: user mp^>[] ftfalse]
user kbckofuser kbd. frame flash] "flush typing outside"]

enter | pane
[super show.
forg pane from: panes dog rpane windowenterll

erase
[self titlerect clear, super erase]

fixframe: f
[flRectangle new origin: f origin extent: (f extent max: 160 ©80)]

frame: frame "(Reinitialize my frame, and tell my panes their locations."
| template Stream templa te pane

[tc ha plate Stream <r templates asStream.
forg pane from: panes dog

["It would be nice to have parallel fors as in MLISP."
template <- template Stream next.
vane frame (template*frame extent /36 +frame origin Inset: 1)]]

hardcopy | p ~
[p <- dpo pressfile: (self title+'.press') asFileName.
self hardcopy: p.
p page; close]

hardcopy: p | pane
[self showtitle.
titleframe hardcopy: p.
forg pane from: panes dog [pane hardcopy: p]]

/kbd | pane \
f [(pane self pickedpane)^ [fipane kbdl] \
I keyset | pane I
V» [(pane <- self pickedpane)^ [npanckeuset]]/

leaue | pane 1 J.uu JIUUI'
[forg pane from: panes dog [pane windowieauell

outline
[frame outline: 1]

(

pickedpane | pane
[for? pane from: panes dog [vane picked^ [ftpane]]
frame flash., ftfalse]

y redbug | pane
C. [ipane «- self pickeclpane)^ fflpane redbyq]] J

show | pane
[super show.
forg pane from: panes dog [pane outline]]

take Cursor "
f (paneso i) take Cursor]

title - ~ "
[rttitle]

Cyeliowbug | pane
[(pane <- self picked.pane)^> [ftpane yellowbug]] J

Pane services
uanish.

[self close; erase, user unschedule: self.]

Private
titlerect

[flframe origin -(2 0 (Default Text Style lineheight +4)) rect: (frame corner
x©frame origin y) + (2©0)]
_J
SystemOrganization classify: Paned.Wind.ow under: 'Windows'._J

f

C i

"Window"
Class new title: 'Window'

subclassof: Object
fields: 'frame cdlapsed titlepara growing ex it flag '
declare: 'titlerun border titleloc tttleframe windowrnenu ';
asrollows_J

This is a superclass for presenting windows on the screen. Besides outlining and
scheduling the frame, it includes the distribution of user events which will someday
be driven'by interrupts.

Initialization
classlnit "Window cLasslnlt"

[border 2 02.
tttleframe Textframe new para: nil frame: nil.
titleloc <r 4©(3-titleframe linehetght).
titlerun <- String new: 2.
titlerun word: 1 <- 0177401.
windowmenu <- Menu new string:

'under
frame
close
print
printbits

reset
[exltflag<-true. growings-false]

Scheduling
eachtime

[frame lias: user mpi>
[user kbckz>[Oself kbd]
user anybug=>

[user redbugr>[Oself redbug]
user gellowbug^»[Oself yellowbug]

' user bluebug^tilself bluebug]]
user anykeus^tOself keyset]]

self outside^[J
user anybug^[frame has: user mp^>[] Ofalse]
user kbek^fuser kbd. frame flask J "flush typing outside"]

firstti me
[frame lias: user mp^ [self reset, Oself enter] Ofalse]

lasttime
[self leaue. Oexitflag]

Framing
clear Title: color

[(tttleframe window inset: 4 0 4) clear: color]
erase

[(frame inset: 2 0 2) clear,
self clearTltle: background.]

fixedwid.tkfrom.user: width | a b oldframe [
user waitnobug.
[frameHiaUof] self aboutToFrame; erase],
a OriginCursor show while g user waitbug.

growing <- true.
self frame: (frame <r self fixframe; (a rect: a+(width©32))); show.
CornerCursor showwhileg [

while? (a <r user mpnext) dog [ax f frame corner x.
[oktframe=nil^> [user cursorloc <- a max: frame comer]],
old frame <- frame copy.
self frame: (frame v- self fixframe: (frame y row to: a));

moueFrom: oldframe]].
growing <r false,
self take Cursor]

fixframe; f [frf]
frame; f

[frame self fixframe; f]
moueFrom; oldframe_

[(oldframe inset; 1) clear, self show]
newframe | a oldframe [

user waitnobuy.
[frame=nUo[] self aboutToFrame; erase],

<;a Origin Cursor show while g user waitbug.
growing true.
self frame; (frame self fixframe: (a rect: a+32)); show.
CornerCursor show whiles [

whiles (a v- user mpnext) dog [
[oldframennil^y [user cursorloc <- a max: frame corner]],
oldframe <- frame copy.
self frame: (frame self fixframe: (frame growto: a));

moueFrom: oldframe]].
growing <r false,
self take Cursor]

outline
["Clear and outline me."
frame outline]

show [
self outline,
growing^]
self showtitle]

show title
[titleframe put:

(Paragraph new text: self title runs: titlerun alignment: 0)
at: frame origin+titleloc.

titleframe outline]
takeCursor

["Move the cursor to my center."
user cursorloc frame center]

title [fi'unoccupied'J

Default: Euent responses
aboutToFrame

[" M y f r a m e i s a b o u t t o c h a n g e . I d o n t c a r e . "]
bluebug

[windowmenu bug
=1 r>[HcxitfLag false];
=2r>[self newframe, self enter];
=3r>[self close, self erase.

user unschedule: self, ft false];
= 4 [s e l f h a r d c o p y] ;
=5z>[self print]]

close []
enter [self show]
hardcopy [frame flash]
kbd [user kbd. frame flash]
keyset [frame flash]
leaue []
outside [(]false]
print

[(dpa pressfile: (self title + '.press.') asFileName)
scrcenout: frame scale; PressScale]

rcdbuy
[frame flash]

yellowbug
[frame flash]

_J
SystemOrganization classify; c* Window under; 'Windows
Window classlnit_J

'From Smalltalk 5.3ie on 21 September 1978 at 10:21:59 am.'J

"MouielnkPane"
Class new title: 'MouielnkPane'

subclassof: Object
fields: 'window frame ink'
declare:
asFollowsli

I am a pane to select an ink color for sketching

Initialization
initln: window

[Ink <r 1]

Pane protocol
close
eacktime

[frame kas: user mp^
[user bluebug^ [flfalse]
user redbut);>

[Ink <r i - ink.
self skow.
window Ink: ink.
user waitnobug]]

flfalse]
firsttlme

[self picked^ [self enter] flfalse]
frame frame
init
lasttime

[self leaue]
outline

[frame outline]
picked

[flframe kas: user mp]
takeCursor

[user cursorloc frame center]
windowenter

[self skow]
windowleaue

Priuate
enter

[frame flask]
leaue
skow

[frame color: ink mode: storing]

SystemOrganization classify: <r> MouielnkPane under: 'Mouie'._J

Class new title: 'MouieSketchPane'
subclassof: Object
fields: 'window frame sketch myrtle'
declare: 'sketchMenu ';
asFollows_J

I am a pane for sketching a movie frame

Initialization
classlnit

[sketchMenu <- Menu new string:
'clear
copy
paste
cut
run']
initln; window

Pane protocol
close
eachtime

[frame has: user mp^
[user bluebuy^ [ftfalse]
user yellowbuy^ [self operate]
[user redbugi> [myrtle pcndn] myrtle penup].
myrtle goto: user mp - frame origin]

ft false]
firsttime

[self picked^ [self enter] ftfalse]
frame <- f

[frame f inset: 202.
sketch Form new extent: frame extent,
myrtle <- Turtle init frame: frame]

init
Lasttime

[self leaue]
outline

[frame outline]
picked

[ftframe has: user mp]
takeCursor

[user cursorloc <- frame center]
windowenter

[self show]
windowleaue

Priuate
enter

[frame flash,
self show.
window ink=blacki> [myrtle black] myrtle white]

leaue
[self saue]

operate
[sketchMenu bug

=1=> [self clear];
-2^> [self copy];
=3^ [self paste];
=4^> [self cut];
=5i> [self saue; run]]

saue "saue the clots"
[sketch fromrectanyle: frame]

show
[self outline; show At: frame oriyln]

showAt: pt
[sketch displayat: pt effect: storlny clippedBy: user screenrect]

Menu commands
clear

[frame outline]
copy

[window buffer sketch]
cut

[self copy; clear]
paste

[sketch window buffer,
self show]

run
[window runThrouyh: self]

SustemOryanization classify: c^MouieSketchPane under: 'Mouie'. |
MouieSketchPane classlnit_J

Class new title: 'MouieViewPane'
subclassof: Object
fields: 'window frame path'
declare:
asFollows_J

/ am a pane for showing a movie along a path

Initialization
initln: window

[path. frame center inVector]

Pane protocol
close
eachtime

[frame has: user mpz>
[user bluebuy;> [fifalse]
user redbuy^ [self path.]]

fifalse]
firsttime

[self picked^ [self enter] fifalse]
frame <- frame

[path. <- frame center inVector]
init
Lasttime

[self leaue]
outline

[frame outline]
takeCursor

[user cursorloc frame center]
windowenter

[frame outline, self show Path.]
windowleaue

Viewing
run: sketchPanes | pt

[forg pt from: path dog
[frame outline,
self run: sketchPanes at: pt]]

run: sketchPanes at: pt | sp
[forg sp from: sketchPanes dog

[sp showAt: pt]]

Priuate
enter

[frame flash]
leaue
path | pt s myrtle

[frame outline.
s <- (Vector new: 10) asStream.
myrtle <- Turtle init frame: frame,
whileg user redbuy dog

[[s empty^> [myrtle penup] myrtle pendn].
pt <r user mp.
myrtle yoto: pt-frame oriyin.

s next <r- pt].
s empty^ [path. <- frame center tnVector]
path s contents.]

picked
[f!frame has: user mp]

show Path | myrtle pt
[myrtle <- Turtle init.
myrtle penup; yoto: pathoi.
forg pt from: path dog [myrtle pendn; yoto: pt]]

SystemOryanlzatlon classify: r> Mo uie View Pane under: 'Mouie'._j

6

"Mouie Window"
Class new title: 'Mouie Window'

subclassof: PanedWindow
fields: 'ink'
declare: 'buffer ';
asFollows_J

I am a movie window with a pane for viewing it, a number of panes for sketching
frames, and a pane for selecting the ink color for sketching

Initialization
default | I temps "init with 9 frames in the strip"

[temps <- (Vector new: 1 1) asStream.
temps next 0©0 rect: 36 018.
temps next 0©18 rect: 36 022.
forg i to: 9 dog

[temps next <- (4*(i-i))©22 rect: (4*1)036].
self Init: 9 in: temps contents]

init: length, in: templates | each "init with the specified length+2 templates"
[ink <- black.

"Create and acquire the panes"
self title: 'Mouie'

with: (Mouie View Pane new, MouielnkPane new concat:
((Vector new: length) transforms each tog MouieSketchPane new))

at: templates.

"Let user specify locations"
self new frame; show.

"Initialize them"
forg each from: panes dog [each initln: self].

"Start it up"
user restart up: self]

Sketching
buffer "the form in the buffer"

[rtbuffer]
buffer <r form "copy form into the buffer"

[buffer <- form recopy]
ink

[ffink]
ink; ink

Viewing
runThrough.: lastPane | uiewPane first Sketch Pane "show the mouie"

[uiewPane panesoi. first Sketch Pane <r 3.
uiewPane run: (paneso(firstSketchPane to: (panes find: lastPane)))]

SystemOrganization classify: Mouie Window under: 'Mouie'._|

'From Smalltalk 5.3ie on 21 September 1978 at 8:35:31 pm.'_J

"Mouie Window"
Class new title: 'MouieWindow'

subclassof: PanedWindow
fields: 'ink brush'
declare: 'buffer ';
asFollows_J

I am a movie window with a pane for viewing it running, a number of panes for
sketching frames, and a pane for selecting the ink color and pen width for
sketching

Initialization
default "init with 9 frames in the strip"

[self init: 9]
init: length. | each "length frames (up to 36) in the strip"

[ink black, "initial ink color for sketching"
brush 1. "initial pen width for sketching"

"Create and acquire the panes"
self title: 'Mouie'

with: (Mouie View Pane new, Mouie Palette Pane new concat:
((Vector new: length) transforms each tog MouieSketchPane new))

at: (self templates: length).

"Let user specify frame"
self new frame; show.

"Initialize them"
fors each from: panes dog [each initln: self].

"start me up"
user top Window leaue.
user restartup: self]

Parameters for sketching
brush

[flbrush]
brush: brush
buffer "the form in the buffer"

[Obuffer]
buffer <- form "copy form into the buffer"

[buffer *- form recopy]
ink

[flink]
ink: ink

Viewing the mouie
runThrough: lastPane erase With: whiteSketch "show the movie"

| pane sketches uiewPane firstSketchPane
[ulewPane <- panesoi.
firstSketchPane 3.
sketches <- (paneso (firstSketchPane to: (panes find: lastPane))) transformg

pane tog pane sketch.
uiewPane run: sketches, whiteSketch]

Private
templates: Length | temps width I "the pane proportions on a 36 0 36 scale"

[temps <- (Vector new: length+2) asStream.
temps next o©o rect: 36 0 18. "top half is view pane"
temps next <- 0©18 rect: 36 022. "thin stripe for ink pane"
width <- (36/length) aslnteger. "width of each sketch pane"
forg I to: length dog

[temps next (width*(l-i))©22 rect: (width*l)©36].
fttemps contents]

SystemOryanlzatlon classify: c^Moule Window under: 'Mouie'._J

3

"Pane"
Class new title: 'Pane'

subclassof: Object
fields: 'window frame'
declare:
asFollows_J

This class handles the protocol expected hp the class PanedWindow.
A PanedWindow contains one or more Panes, scheduling them in a
manner similar to the top-level window scheduling.
Subclass this class to Implement a typical pane.
Note that the pane knows Us own location on the screen (frame).
It also knows what window it Is in. The window also references the pane, so

there is a a cycle which must be broken when the window is closed.

Initialization
init "gets called right after the pane Is created"
initln; window "gets called a while later after frame*- and show"

Pane protocol
close ''break cycles"

[window *- nil]
eachtime "this superclass implements no command language"

[self picked i> "is the cursor 'in' this pane?"
[user kbck i> [ftself kbd] "keyboard activity"
user bluebug ;> [ftself bluebug] "commands for the paned window as a

whole"
user yellowbug ;> [ftself yellowbug] "commands for the pane itself"
user redbug ^ [ftself redbug] "selection In the pane"
user anykeys ^ [ftself keyset] "keyset activity"
ftself inside] "in the pane, but no activity"

ftself outside] "outside the pane"
firstti me

["should the pane wake up?
response to self picked determines the answer"
self picked ;> [self enter] ftfalse]

frame frame determine the border of the pane; subclass
might want to Initialize any Instance variables
that depend on the frame"

lasttime "the pane lias gone to sleep, needs some Last minute housecleaning"
[self leave]

outline
[frame outline]

picked
["a typical reason for waking up the pane Is tltat the cursor is in it"
ft frame has: user mp]

takeCursor "put the cursor Inside the pane"
[user cursorloc <- frame center]

windowenter "The PanedWindow distributes this message to its panes"
[self show]

windowleaue "The PanedWindow distributes this message to Its panes"

Event defaults
bluebug "yield control to the paned window"

[ftfalse]
enter "Indicate to the user that this particular pane has been entered"

[frame flash.]
inside
kbd

[user kbd. "discard keystroke"
frame flash.]

keyset
[frame flash.]

leaue "This particular pane has been Left"
outside "uield control"

[ftfalse]
redbug

[frame flash.]
show "each class of pane should define what it means to display"
yellowbug

[frame flash.]

SystemOrganization classify; c^Pane under: 'Mouie'._J

"MouiePalettePane"
Class new title: 'MouiePalettePane'

subclassof: Pane
fields: 'ink brush'
declare:
asFollowslJ

/ am a pane to select an ink color and a pen width, for sketching

Initialization
initln: window

Event protocol
redbug

[[window ink=bLack=> [window ink: white; brush.: 4] window ink: black; brush.:
1] .

self show,
user waitnobug]

show
[frame color: window ink mode: storing]

SystemOrganization classify: c> MouiePalettePane under: 'Mouie'._J

"MouieSketchPane"
Class new title: 'MouieSketchPane'

subclassof: Pane
fields: 'sketch myrtle'
declare: 'sketchMenu
asFollows_J

I am a pane for sketching a single movie frame

Initialization
classlnit "my command language is executed from a menu"

[sketchMenu <r Menu new string.'
'clear
copy
paste
cut
run']

Aspects
sketch

[ftsketch]

Pane protocol
frame <r f

[frame f inset: 2 02. *
sketch. Form new extent: frame extent, sketch white. -
myrtle Turtle init frame: frame,
myrtle penup.]

Euent protocol
enter

[frame flash,
self show.
myrtle width: window brush.
[window ink = black [myrtle black] myrtle white],
myrtle penup.
self track Cursor]

inside
[myrtle penup. self trackCursor]

leaue
[self saue]

redbug
[myrtle pendn. self trackCursor]

show
[frame outline.
sketch displayat: frame origin effect: storing clippedBy: frame]

yellowbug
[sketcnMenu bug

=1 ^ [self clear];
-2 ^ [self saue; copy];
-3 o [self paste];
-4 o [self cut];
=5 [self saue; run]]

Private
save "save the dots"

[sketch, fromrectangle: frame]

track Cursor
[myrtle goto: user mp - frame origin]

Menu commands
clear

[frame outline]
copy

[window buffers-sketch]
cut

[self copy; clear]
paste

[sketch s- window buffer,
self show]

run | eraser
[eraser s- Form new extent: frame extent, eraser white,
window runThrough: self erase With: eraser]

SystemOrganization classify: c^MouieSketchPane under: 'Mouie'._J
MouieSketchPane classlnitjj

"Movie ViewP am"
Class new title: 'MovieViewParte'

subclassof: Pane
fields: 'path myrtle'
declare:
asFollows-J

I am a pane for showing a movie along a path

Initialization
initln; window

[path- frame center inVector]

Viewing the movie
run: sketches | pt "sketches is a Vector of Forms"

[frame outline,
forg pt from: path dog

[self run: sketches at: pt]]

Pane protocol
frame <- frame "clone before initln:"

[path <r frame center inVector.
murtle <- Turtle init frame: frame]

windowenter
[self show]

Event protocol
bluebuy

[flfalse]
enter

[self show]
redbuy | pt s

[frame outline.
s<- (Vector new: 10) asStrearn,
whileg user redbuy dog
[[s empty z> [myrtle penup] myrtle pendn],

pt user mp.
self track: pt.
s next <r pt].

s empty [path> frame center inVector]
path <- s contents.]

show | pt
[frame outline,
myrtle penup.
forg pt from: path dog [self track: pt. myrtle pendn]]

Private
run: sketches at: pt | sketch

[forg sketch from: sketches dog
[sketch displayat: pt-(sketch extent/2) effect: storiny clippedBy: frame]]

track: pt
[myrtle yoto: pt-frame orlyin]

SystemOryanization classify: r> Movie View Pane under: 'Movie'._J

Q u e s t i o n s 1 9 - S e p - 7 8 2 3 : 4 3 : 2 7 P a g e 1

1 . W h y d o n ' t t h e s u c c e s s i v e m e s s a g e s s e n t t o ' C l a s s n e w ' r e q u i r e s e m i c o l o n s b e t w e e n t h e m ?

2 . ' P o i n t ' h a s a m e s s a g e ' x < - ' w h o s e m e t h o d i s ' x « - x ' , a c c o r d i n g t o B r o w s e r . D o n ' t u n d e r s t a n d s y n t a x .

3 . I n B r o w s e r , i s t h e r e a n e a s y w a y t o f i n d o u t w h a t s u p e r c l a s s a c c e p t s a p a r t i c u l a r m e s s a g e t h a t i s n o
* * t a c c e p t e d b y t h e c u r r e n t c l a s s ? I s t h e r e a w a y t o f i n d o u t w h a t c l a s s e s a c c e p t a p a r t i c u l a r m e s s a g e
* * ? (e . g . , I c o u l d n ' t f i g u r e o u t w h o a c c e p t s ' h a s h ') .

4 . I w a s n ' t a b l e t o d e c i d e w h e t h e r V e c t o r s w e r e 0 - o r i g i n o r 1 - o r i g i n . I g u e s s e d z e r o , a n d a p p a r e n t l y I
* * w a s w r o n g . I f y o u b r o w s e f a r e n o u g h d o w n i n t o t h e d e f i n i t i o n o f V e c t o r y o u e n d u p d i v i n g i n t o m i c r o
• • c o d e d p r i m i t i v e s t h a t d o n ' t s e e m t o b e d o c u m e n t e d .

"SortedStream."
CLass new title: 'SortedStream'

subclassof: Object
fields: 'list current length'
declare:
asFoLLows_J

A Linear List of objects that are sorted according to a quantity called "rank". The
objects might be anything, as long as they respond to the message "rank" with an
integer value. The List will be kept sorted according to these values.

This class can not be replaced by Stream, because Stream recognises 61 different
message types, while SortedStream only recognises 4. Sorted stream should therefore be
easier to use for the novice.

Trygve Reenskaug - Sept -78.

Initialization
init: maxLength

[List Vector nevo: maxLength.
current 0.
length. max Length.]

Read - Write
current

[0[(current<Length andg current>0)^[Listocurrent]nit]]
first

[current <- 1.
ftseLf current]

next
[current <- current + 1.
flself current]

next^-object | i
[I length.
whlleg (t>0 andg ListoUnil) dog [t «- i-i]. "finds last significant element"
l=length ^ [user notify: 'list full']

vvhileg (i>0 andg (Clistoi) rank > object rank)) dog
[listo(i+i) <r listoi.-
i <- i-1], "moue large objects up one position"

listo (i+i)<-object]

Illegal
,x [user notify: 'illegal message to tills class']
arasOff: stack [user notify: 'illegal message to this class']
asvector [user notify: 'illegal message to this class']
emitForValue: code on: stack [user notify: 'illegal message to this class']
firstPush [user notify: 'illegal message to titis class']
length. [user notify: 'illegal message to this class']
max [user notify: 'illegal message to this class']
nail [user notify: 'illegal message to this class']
printon: strm [user notify: 'illegal message to this class']
remote: generator [user notify: 'illegal message to this class']
sizeForValue [user notify: 'illegal message to this class']
unNail [user notify: 'illegal message to this class']

"TestSortedStream"
Class new title: 'TestSortedStream'

subclassof: Object
fields: 'rank'
declare:
asFollows_J

Tests objects of class SortedStream

Operation
init: rank
rank [rtrank]

Testing
printon: strm

[strm append: 'rank=' + rank as Text]
testing r

List <r SortedStream init: 5.
List next*-TestSortedStream init: 3.
List next<-TestSortedStream init: 5.
List next^TestSortedStream init: 9.
List nextTest Sorted Stream init: 7.
List next Test SortedStream init: 8.
List next Test SortedStream init: 3.

List first List next List nail

List inspect

"]
_J
SystemOrganizatLon classify: Test SortedStream under: 'Current_J

g^*Z.
'From Smalltalk 5.3ie on 20 September 1978 at 6:13:20 pm.'_J

"Bucket"
Class new title: 'Bucket'

subclassof: Dictionary
fields: 'cardinal ordinal'
declare: ";
asFollows_J

Buckets are structured sets in which multiple Instances of an element may
reside.
Union and Intersection are defined as the max and min # of elements

respectively.

Initialization
init: size | t "Initialize counts of number of elements and number of
distinct elements to 0"

[super init: size. cardinal^-ordinal<-0.]

Insertions and deletions
delete: element "Tests if element in set, decrements cardinality and
ordinality, then inuokes delete within Dictionary"

[self Lookup: element^
[cardinal<-cardinal-l.
ordinal<-ordinal- (self o element).
super delete: element

extract: element | t "Check if element in bucket, take one instance of
element out of bucket by decrementiny count and inuokiny delete if
necessary"

[self look up: element^
[(t<-selfoelement)>l;>[selfoelement«-t-l.

ordinal^-ordinal-i]
self delete: element

]

insert: element | t "Put one instance of element in to bucket by
incrementiny count and calliny upon Dictionary insert if necessary"

[ordinal^-ordinal+i.
t self lookup: element i>

[selfoelement<Ht+i)]
cardinat*-cardinal+i.
super insert: element,
self o elemental

]

Set operations
hasMember: element "test if 'element' is in my bucket"

[self lookup: elements [fttrue] Ofalse]
intersection: bucket2 | bucket! element t card ord "for each element in both
buckets,put it into the resultant bucketi with count ualue = minimum of
counti and count2"

[bucket! <^bucket2. ord*-card<-0.
forg element from: bucket2 dog

[t<-self lookup: element^

[card<-card+i. bucket2oelement>ti>
[bucket] oelement<-t.ord«-ord+t]
ord<-bucket2oelement+ord

bucketi delete: element

bucketi cardinality *-card; ordinallty<-ord.
ftbucketl

isEmpty "test for empty bucket"
[caramal=Qo[fftrue]flf alse]

union: bucket2 | bucketi element t card ord "for each element in either
bucket,put it into the resultant bucketi with count ualue = maximum of
counti and count2"

[bucketi *-self.
card^self cardinality,
ord^self ordinality.
forg element from: bucket2 dog

[t^-self lookup: element^
[bucket2oeloment>t^>
[bucketi o element «-bucket2oelement.
ord<-ord+(bucket2oelement)-t.]]

bucketi insert: element,
bucketi oelement«-bucket2oelement.
card<-card+i.
ord*-ord+(bucket2oelement)

bucketi cardinality^-card; ordinality^-ord.
ftbucketl

+ bucket "union (maximum) of two buckets"
[self union: bucket]

* bucket "intersection (minimum) of two buckets"
[self intersection: bucket]

Counting
cardinality "returns number of distinct elements in bucket"

[ficardtnal]
cardinality *- integer "sets number of distinct elements"

[cardinal integer]
ordinality "returns total number of (indistinguishable) elements in bucket

[ffordinal]
ordinality <- integer "sets total number of (indistinguishable) elements

[ordinal integer]

SystemOrganization classify: Bucket under: 'Sets and Dictionaries'.—|

Example Organizations -- First Ideas (distributed September 26, 1978)

The first assignment in the Smalltalk class was to specify the objects and their protocols for
various suggested situations. Several members of the class turned in their assignment. With
only minor editing, they are presented here for your consideration and possible implementation.

Bank Data Base

The following is a basic set of specifications for one bank database assuming that it consists of a
file of customers (or customer account numbers) and, for each a current account balance. JNo
history of the account is preserved.

class Database
subclassof; Dictionary

withdraw: amount returns "done" or "insufficient funds"
from: account

deposit: amount
into: account

total: account returns the current balance in the specified account

Second suggestion distinguishes amoung the kinds of accounts. Perhaps a superclass BankAccount
could be usefully described. The accounts are not inter-related, nor are they aware of the actual
bank in which they exist.

class SauinysAccount

new Account assign new account number to customer, balance
is 0

makeDeposit: amount add amount to balance of account, put in date of
deposit

make Withdrawal: amount compute interest, add interest to balance, see if
enough funds. Renegotiate on insufficient funds;
otherwise subtract amount from balance, date the
withdrawal, and give to customer

balance Books periodically compute interest by account number,
credit to account number, show deposits as + to
bank assets, show interest and withdrawals as
liabilities

update Statement periodically or on customer demand print
transactions and interest and balance for
customer

close Account compute interest, add interest to balance, give
total to customer and invalidate account number

class Check iny Account

subcLassof; SuumysAccount

printChecks

class LoanAccount

new Account

make Payment

balance Books

update Statement

billAccount
foreclose Account

except interest is 0 in Calif

initially and on custem demand print blank
checks, make withdrawal of cost from account

credit check, assign new account number,
balance to amount of loan, date and interest and
terms of loan record
subtract amount from balance, if less than due
foreclose, if more than due reduce principal, if
excess per terms levy fine, if some late levy fine,
if very late foreclose, if balance is now 0 close,
enter date and payment amounts
periodically add up balances on loans and add to
bank liabilities
periodically or on customer demand print
transactions and interest and balance for
customer
periodically per terms bill customer
check payments against terms, foreclose if
necessary

Third suggestion focuses on the user of the database. However, this is actually an "account" being
described, rather than a "customer", since a customer might have more than one account.

class Customer
fields: accountNumber,
balanceDayProduct

deposit: amount
withdraw: amount
dailyUpdate
monthlyUpdate

customerName, accountType, balance,

add an amount to the balance of the account
subtract an amount less than or equal to the balance
compute new balanceDayProduct, etc
produce monthly statement

3

Animated Movie

The Movie and Moule Window examples presented in class are further ideas about how to
do an animated movie.

class EditableComposite

init initialize to empty composite
add: part add part to composite

at: position
delete: part remove previously added part

class Film
subclassof: EditableComposite

uses superclass to add or delete scene with respect to a scene number

new Film: title initialize to empty film
uiew: startFrame look at film
at: speed

class Scene
subclassof; EditableComposite

uses superclass to delete previously added layer

add: eel add layer to scene
on: LeuelNumber
at: coordinates

setDuration: frameCount specify length in frames

class Cel
subclassof: EditableComposite

uses superclass to add figure at specific coordinates

class Figure
subclassof: EditableComposite

addLineFrom: relatiueTrajectoryl add line with own motion
to: re la tiue Trajectory 2

addRectangleUpperLeft: relatiueTrajectoryi fill a solid area
lowerRigitt: relatiueTrajectory2

class RelatlueTrajectory

set Origin: xyPair starting point
setMotion: motionFunction take function mapping lime into location relative

to origin
position.: time return location as function of time

Calculator

class Display

show: string

class Keyboard

depress; keyld
current Key

class Microprocessor

turnOn
Clock Tick Read keyboard, compute if necessary, update

display if not current

Text Editor

Handling input and editing

class Character

show
characterClass; classTable returns class of character from table

class String

show
copy: string
length
concatenate: string
compare: string
search: string

returns length

returns true or false
returns position of first character, or false

insert: character
at Character Number: position

remoue: firstCharacterNumber
length: length

get: charNumber
put: character

class Word
subclassof: String

make Into Index Word
hyphenation returns list of positions for hyphenation
hyphenate: position

class Paragraph

paragraph value is a special character

output control

class Document

file Key Is: string
chapter: numbercode
heading: heading indicates start of new chapter
pageOf Character: character returns page number for given character
illustration: page

position: rectangle

class Font

class Illustration,

class CrossReference

crossReference: word

class Footnote

footnote: string
on Page: page Number

class MailingList

class Date

currentDate

class Index

producelndex returns a string

Integrated Circuit

class Transistor

change Gate: point
change Source: point
change Drain: point
scrunch.: scrunch.List

class Contact

new Sides: point 1 and: point2

class Instance

change Connection: point

class Line

split
doesltCross: otherLlne

class EndPoint

x

Computer

This is a stack-oriented computer. (Note, there are seveeral ways to compress the number of classs
definitions shown here.)

class Controller

executeAt: loc

class InstructlonReglster

glue Value
setValue: ual

class ProgramCounter

glue Value
setValue: ual

processor section

class ALU

add
subtract
and
or
xor
zero
condltlonCode

class Stack

pusla: ual
pop

class OperandRegister

class ZeroRegister

glue Value

class OneRegister

glue Value

class MlnusOneRegister

glue Value

gives the current code

is first operands for ALU

second operand for ALU

read-only registers

read-only register

read-only register

non-processor section

class Memory

glue Value; loc

Outline of Questions and Decisions to Think About and Decide About

Issues

Book
Smalltalk Interpeter
Smalltalk storage management
Epist'logical design ideas

(messages, primitive classes, naming conventions,...)
Metaphors

(e.g., form,path,image)
Information Storage and Retrieval

(basis for the interpreter, help, communications)
User Interface
New Hardware

(Ethernet connection for the NoteTaker)

Time considerations
pre-moratorium
moratorium
post-moratorium

The idea of a moratorium is that during some time period (suggestion is 6 months):

*no new machine code that is to be supported will be written

*no new releases of any Smalltalk (Alto or NoteTaker)

*paper design and short-term expendable software tests might be done
a first draft on an epist'logical design will be created

During the pre-moratorium period, no new interpreter will be designed and no new metaphors tested
(these are for post-moratorium and moratorium periods). Doug would like strategy for Ethernet
hardware to be completed in the pre-moratorium period.

what do you expect to get from a NoteTaker Smalltalk?
i.e., what do you want, expect to learn?
what sort of demonstration of hardware do you anticipate needing?
what kinds of leverage would you like for investing in future--marketing, software development,
Dynabook prototyping?

1. Need to have a "demo" working of the hardware in order to

--give a computing forum (Doug) -^
--show the NoteTaker to Shugarl or Diablo (Chris, Doug)

Claim this is done because we can use BitBlt so can bit characters from keyboard strikes and can
read/write image from the disk. Doug agrees that he has what he needs for a computing forum.

2. Need to have a Smalltalk working on the NoteTaker or do we? before the moratorium

--we need to get on with a house cleaning soon
- -Inil 10 NoteTakers will be here by end of January and, without a Smalltalk, we take a chance

on/lft^milchines being idle or someone implementing some other language (Mesa? could be worse-
Eortran) on the NoteTaker before a Smalltalk is done

*a first draft of the book

ModeJ/ A
transfer Alto Smalltalk to NoteTaker

2

y„ odel B
create a new Smalltalk for the NoteTaker

Model C
999

Claim: Models B and C belong in post-moratorium period. The following are ways to do Model A.

J:
V.

\VTI

same interpreter (2 week job, mostly done already)
simple file system (1 week job)
storage management (designed already, 1 week job)

proper subset of existing classes (being done now, new choice is function of metaphors and is
ruled out of pre-moratorium period)

text (code escapes currently handled by short machine code -- 10 liners -- will be rewritten but
5,6,7 are "biggies")

floating point
line drawing

We agree that I-IV is correct and pick from one of the text, floating point, and line drawing options,

text options

1. write the current routines in Smalltalk
write new machine code in which the primitive for text is
2. paragraphs (second easiest to do as is translantion of Diana's current code, least flexible,

fastest)
3. lines (hardness equal to runs)
4. runs (second most flexible, second slowest)
5. characters (easiest since is practically just BitBlt, most flexibility but least speed)

floating point options

1. leave it out
2. if there exists Intel software, grab it, otherwise
3. use Sproull's code, translated
4. transcribe 8080 code
5. design from scratch

line drawing options

leave it out
if have floating point, do it in Smalltalk
do it in Smalltalk with single precision
do it in machine code

J>la4)—An— irave- n<* fakcr—Smalk:t4k-- aad._cail moratorium—Deeembel "I 1

Plan B. do taXu floating point, and line drawing optkJTnT 1. CMl moratorium with this slower than
molasses JSrhalltalk. /Have parallel effort (bw^Bfuce?) to do different V,VI,VI1 so that a faster
Smalltalk is done during or at end of jnefratorium.

Pjan C. do Smalltalk as in B bjj-t—^all a split moratorium so ''that certain kcy-H»capTe^start the
moratorium late imorder to dp-Text option 2, floating point option 4, arid liiuTcIrawing 2. This might
take an extra month fofr^say, Dan, Diana and Bruce working together.

what really has to be rewritten in Alto Smalltalk to check out form, path, image metaphor? wasn't
there talk of redoing text machine code to eliminate textframe in favor of texlimage?

how can we use the moratorium to assist dissertations (John, Al, Steve, Ted????)

can we control demons, visitors better?

T)

m *-' ^ u . g ^ . ——-v

->) ^~Jr) p^Le^Xj. / (j-a&h^r^L ̂ „ *->-& f

2.) /j&£&x7<2iJ £ ru_s«̂ *j Sb̂ -̂̂ Hsû - <rsû

•») /Cû ̂ JLz^A *f. £uv̂ . xr,

^ Vy-o y^ rW2" ̂ ^Y> 3r!h^VAyvMr

7' ̂ & \/5". (ji 0/̂ .33)

./ /gŷ jL.
(̂ J } C - P '̂jr ̂

f*(£,

Drafl-0 Smalltalk: Dreams and Schemes, Chapter TS

TS

Tiny Storage Management

Storage Management Funct ions

The storage management section of any programming environment must allocate and deallocate

storage for objects.

In Tiny Smalltalk, a new object is allocated explicitly (e.g., when the message new is sent to a

class) but there is 110 explicit language construct that causes an object to be deallocated. Instead,

the storage manager must identify objects that have become inaccessible from the program and

deallocate them automatically, a task that is traditionally known as garbage collection.

In many storage management systems, an object once allocated at a certain memory location

stays at that location until it is deallocated. To allocate a new object in such systems, it is

necessary to find a "hole" between existing objects large enough to hold the new object. After a

while, such systems tend to "fragment" or "checkerboard" memory; that is, there is a lot of

unallocated space in the memory, but it is fragmented into pieces too small to satsify allocation

requests. Theoretical explorations of this problem have proven that no allocation strategy can

reduce it to acceptable proportions [ref. McCreight's source].

The simplest way to repair a fragmented memory is to compact object storage. All objects that

are still in use are moved towards one end of memory, squeezing out all the free space between

them, and leaving one large unallocated block at the other end. Adopting this strategy, Tiny

Smalltalk compacts storage after every garbage collection. The compacting garbage collector is a

space-thrifty deallocation technique on a small computer.

Rack Allocation

Tiny Smalltalk employs a simple allocation technique we call rack allocation. A rack is similar

to a stack in that all new allocation occurs at the top. To allocate n words of storage, the top-

pointer is simply incremented by n. However, unlike a stack, deallocation can -- and usually

does - occur in the middle of the rack.

The trouble with a rack allocator is that the rack will become full as soon as the top-pointer

reaches the end of available memory. When that happens, the rack must be compacted. In Tiny

Smalltalk, this is accomplished by invoking the compacting garbage collector.

During compaction, when an object is moved, it is necessary to update all pointers to its rack

storage. To make this update inexpensive, only one pointer to an object's rack storage is kept.

That pointer is kept in an object table (OT). References to the object from the rest of storage

must be indirccted through the OT. Thus, the ordinary object pointers (OOPs) found in

Smalltalk objects are really pointers to the OT, in which pointers into tire rack are in turn found.

Deallocation Speed

Although the rack allocator can allocate an object very quickly, the compacting garbage collector

has a severe performance handicap. When there is very little unallocated space and substantial

allocation/deallocation activity, very few allocations have a chance to occur between successive

compactions, and the overhead of the compacter becomes unacceptably high.

One solution would be to defer compaction as long as possible by allocating objects in the

middle of the storage area when sufficient free space can be found there. Techniques for doing

so can be found in [Knuth], but they lose the simplicity inherent in the rack approach.

Tiny Smalltalk keeps compactions from occurring too frequently by declaring memory to be

"exhausted" whenever the proportion of time spent during compaction exceeds the time spent

between compactions. Tire typical effect is to keep the rack from getting more than about 90%

full, thus reducing storage efficiency by about 10%.

A Simple Object Format

A simple format for an object stored in the rack is:

Header

OOP of this object

SIZE of this object (including header)

oop of this object's CLASS

Data

first field or element

last field or element

In this format, tire actual data of the object is preceded by a three word header that contains the

object's OOP, its storage size (including header), and its class. In our Intel 8086 implementation,

the SIZE is always an even number of bytes.

The OOP of the object is present in the header so that when the compacter moves the object it

can quickly find the OT entry to update.

The SIZE of the object is present so that the compacter can know how many words to move

when the object is relocated.

The CLASS of the object is present so that when a message is sent to the object the correct

message dictionary can be consulted.

Objects are of varying sizes, but in typical Smalltalk programs they average about 10 words.

Thus, a three word header and a one word OT entry constitute a large space overhead to pay for

every object. Later in this chapter, we will show how to reduce that overhead. For now, the

simplicity of the three word header will make it easy to program the allocator and the

compacting garbage collector.

Address ing Convent ions

In our 8086 implementation of Tiny Smalltalk, every object header and every OT entry starts at

an even byte location in the rack. This convention has no cost, because every ROT entry and

every rack object has an even number of bytes. The advantages arc that 8086 memory bus

access is faster when words are at even byte locations, and that all OOPs and OT entries have a

low order bit of zero that can be used as a flag bit by the storage management system.

Each data word of the object contains a field of the object (or an element, if the object is an

array). The low order bit of the field is used as a flag bit. If the flag bit is zero, then die field

contains the OOP of an object. If the flag bit is one, then the field contains an instance of class

Integer, stored as immediate data in the remaining 15 bits. This representation of integers limits

their range to + 16K, and forces the interpreter to make special checks to distinguish OOPs from

integers, but it also saves a lot of memory space (an OT entry, a three word header, and a word

of data) for each of these very common objects.

The OT lies in the low 32K bytes of the 64K address space. This convention frees the high

order bit of an OOP to be used as a flag bit. The high order b;t of the CLASS field of a header

is sometimes used in that way.

The entire address space is partitioned as follows, in order of ascending address:

Machine Language programs (interpreter, etc.)

OT (fixed size)

Rack (grows upward)

Stack (grows downward on the 8086)

A S i m p l e A l l o c a t o r

To allocate an object, it is necessary to obtain sufficient space for the header and the data from

the next available location h. at the top of the rack and one word from the next available

location 00 p in the OT. Location 00 p is made to point at h, and the three words starting at h.

are filled in with tire header information.

Checks must be performed for insufficient room in the rack and for an exhausted OT. If either

condition occurs, compaction is invoked and the allocation is retried. If the allocation fails

again, the system stops and reports an error to the user.

To make the finding of a free OT entry rapid, all free entries are kept on a linked list headed at

rtextOop. The top of the rack is at mxtSpace and the end of available storage is at

endSpace.

The fields of a header are accessed by offsets from the first word, as follows:

5

oopX =0 Offset of the OOP field

sizeX =2 Offset of the SIZE field

classX =4 Offset of the CLASS field

The allocation algorithm is:

allocate: bytes class: class | new Next oop h,
[newNext <- nextSpace + bytes, "proposed new top of rack"
[newNext > end-Space or: nextOop = 0z> "rack or OT full?"

[self gc. "run the compacting garbage collector"
newNext <- nextSpace + bytes, "new top of rack"
newNext > endSpace or: nextOop = Cb "rack or OT still full?"

[self out Of Memory Error "hopeless -- stop and report"]]].
oop nextOop. "obtain a rot entry"
nextOop <r rot word-: nextOop. "remove it from the free list"
h nextSpace. "address of header"
nextSpace <- newNext. "new top of rack"
rot word: oop <- h. "make rot entry point at header"
rack word-: (la+oopX) <- oop. "fill oop into header"
rack word-: (la+sizeX) <- bytes, "fill size into header"
rack word: (K+classX) <- class, "fill class into header"

floop "return the oop"]

A Simple Compacter

Assume that the garbage collector has marked every accessible object by setting a mark bit. In

our Intel 8086 implementation, the mark bit is the normally zero low order bit of the normally

even OT entry. The job of the compacter is to sweep through the rack from the bottom to the

top, squeezing all accessible objects together and updating their OT entries. For the benefit of

subsequent allocation, it should also link the OT entries of inaccessible objects onto the free-list,

and clear the area of the compacted rack above the top to all nil.

The compacter maintains two pointers into the rack: St and di. The pointer Si points at the

header of an object that is currently being considered for keeping or discarding. The pointer di

points at the place further down the rack to which the object will be moved if it is kept.

If the bottom of the rack is at beglnSpace, the compaction algorithm is:

compact | si di words oop t
[si <r di beylnSpace. "both pointers start at the beginning"

wKlleg si < cndSpace dog "for each object"
[words «- (rack word; sl+sizeX) / 2. "its size in words"

oop <- rack word; sl+oopX. "its oop"
(rot word; oop bit; mark Bit) = Cb "is it unmarked?"

[si <- si + (2*words). "inaccessible, so skip over it"
rot word; oop <- nextOop. ncxtOop oop "add to free

list"]
"The object is accessible"
rot word; oop dl. "update OT entry"
sl=db "will distance moved be zero?"

[dl <- si <- si + (2*words) "just advance the pointers"]
forg I from: i to: words dog "for every word in the object"

[rack word: dl rack word: si. "move the word"
dl <- dl + 2. si <- si + 2 "on to tlie nest word"]].

forg I from: dl to: endSpace by: 2 dog "nil out free rack space"
[rack word: I <- 0]]

A Simple Garbage Collector

The job of the garbage collector is to set the mark bit of just those objects that are accessible.

This is most easily done by a recursive search from the "roots of tire world", namely, the

interpreter's stack and the global variable table. To make tilings easier, the collector first pushes

the OOP of the global variable table onto the stack, and pops it off when it is done; thus, all the

roots of the world are in the stack. It also marks the high order bit of that stack entry as a stop

bit so it can tell when it gets there. Then it points a roving index rl just past the base of the

stack (highest address in the 8086) and executes the algorithm described in the next paragraph.

For each oop stored before location rl and after the first preceding location whose stop bit is

set, do the rest of this paragraph. Follow the oop to tire OT and check whether the object is

marked. If it is already marked, there is nothing to do. Otherwise, set the mark bit of tire

object, set the stop bit in the last header word of the object, save rt, rcpoint ri just past the last

data word of the object, execute the algorithm described in this paragraph, and restore ri.

When the stop bit is delected, reset the stop bit and terminate the algorithm.

The algorithm of the preceding paragraph can be implemented by the following method, which

accomplishes the saving and restoring of ri by its recursive behavior:

gc: ri | oop h.
[urttlig ((oop <- rack, word: (ri<-ri-2)) bit: stopBit) = i dog "for all data"

[(oop bit: intBit) = o^> "is it an oop (not an integer)?"
[(rot word: oop bit: mark Bit) = 0^ "is it unmarked?"

[h <r rot word: oop. "address of the header"
rot word: oop bit; mark Bit 1. "set mark hit"
rack word: (h+classX) bit: stopBit <- 1. "set stop

hit"
self gc: h + (rack word; h.+sizeX). "recur"]]].

rack word; ri bit; stopBit <- 0 "reset mark hit"]]]]

This simple collection algorithm is recursive and therefore must use a slack to execute. The

depth of the stack must be greater than the longest chain of pointers in memory. This

requirement is hard to satisfy when memory space is tight, which is the situation whenever the

collector runs.

A Non-Recurs ive Col lector

To avoid using a stack during garbage collection, the previous value of ri can be remembered in

the current object, by storing it in the header field usually reserved for lire OOP. Of course, the

OOP of the current object must be restored to the header after the current object is all marked.

This is easily done, because when the collector returns to ri it will find the current object's oop

there, that being how it got to the current object in the first place. This sort of trick is common

in garbage collectors [see Dcutsch, et al, etc.].

Tire non-recursive garbage collection algorithm is shown below. Parts that are different from the

recursive version are underlined. The value of fldrSlze is 6, the number of bytes in the header.

gc: ri | oop h.

fwh.ileg true dog "repeat until return executed below"

[untilg ((oop <- rack word: (rl«-rt-2)) bit: stopBit) = 1 dog "for all data"

[(oop bit: IntBlt) = Cb "Is it an oop (not an integer)?"

[(rot word: oop bit: mark Bit) - Qo "is it unmarked?"

[h «- rot word: oop. "address of the header"

rot word: oop bit: markBlt <- 1. "set mark hit"

rack word: (h+oopX) <- rl. "save ri"

rack word: (h+classX) bit: stopBit <- i. "set stop

hit"
rl <- h + (rack word: h+sizeX). "recur"]]].

rack word: rl bit: stopBit 0 "reset mark hit".

rl > end-Space^ ffltrue "stack all marked: done!"]

K rl -hdrSlze +2. "the address of the header"

rl rack word: (h+oopX), "restore rl to the pointer that got us here"

rack word: (K+oopX) *- rack word: rl "restore oop to header"]]

A Two-Word Header Format

As was pointed out earlier, the overhead of a three word header and an OT entry is significant

when objects are on the order of ten words in size. Here we will show how to reduce every

header to two words. In Chapter [Ooze], we will show how the average header size can be

reduced even further.

The word we will remove from the header is the OOP field. That field is not needed by the

interpreter, only by the compacter, which uses it to find the OT entry when it changes the rack

location of the object. Just before the compacter runs, we will slip the OOP into the header of

every object, overwriting the CLASS field. When the object is moved by the compacter, we will

put the class back into the CLASS field. We need a place to keep the class in the meantime;

let's keep it in the OT entry, overwriting the rack pointer. When the object is moved, we will

have to change the OT entry to point at the object's new location - but we had to do that

anyway!

The new object format is:

Header

SIZE of this object (including header)

CLASS (except during gc: oop of this object)

Data

first field or element

last field or element

The allocator is the same as before except that the following statement is deleted:

rack word; (h.+oopX) <- oop. "fill oop into header"

The compacter changes a little more. Assume as before that the garbage collector has marked

every accessible object by setting the mark bit. Also assume that the OOP of every object has

overwritten the CLASS field of its two-word header, and that the OT entry has been overwritten

by the object's class. The mark bit shares the OT entry with the class, and tire stop bit will

share the header entry with the OOP.

The compaction algorithm is the same as the two-word header version, except that the offsets

class X and 00pX have the same value (namely, 2), and, right after the comment:

"The object is accessible"

the following statement must be added:

rack word; sl+ctassX <- (rot word; oop) Ixor; 1.

which restores tire class field to the header from the OT entry, stripping off the mark on the

way.

If we use the recursive garbage collector shown earlier, then between marking and compaction a

step is required that installs the OOP into headers and the class into OT entries. This step is

called OT reversal, since it makes headers point at OT entries instead of tire usual situation in

which OT entries point at headers. Tire algorithm is:

pre Compact | oop h. mark

[forg oop from; becjlrtOT to: endOT dog " for a l l OT en t r i e s"

[h <- rot word; oop. "either rack pointer or free list link"

h. > endOT^ "is it a rack pointer?"

["reverse the entry"

mark <- rot word: oop bit: mark Bit.

rot word: oop <- (rack word: (K+cLassX)) lor: mark.

rack word: (K+classX) <- oop]]]

A Non-Recurs ive Col lector for Two-Word Headers

If we wish to use a nonrecursive collector, the one shown earlier won't work with two word

headers, because it uses the OOP field of the header to remember rl while the object is being

marked. Instead, we'll use the following approach.

Before starting to process the object, overwrite the CLASS field with rl. This takes care of

remembering rl, but we'd better not forget the object's class, so let's keep it in the OT entry.

After the stop bit has been encountered and processing of the object is complete, recover rl

from the CLASS field and follow it back to the pointer that got us to this object. That pointer

is the OOP of this object. We could set things back in their original places, but let's instead just

overwrite the CLASS field with this OOP, so that the precompaction step will not have to do

that. The precompacter will not have to put the class in the OT entry cither, because it is

already there. Thus, all accessible OT entries will be reversed as a side effect of garbage

collection, without having to perform a separate reversal step! The inaccessible entries still will

have to be dealt with in a separate step.

The garbage collection algorithm is the same as the non-recursive collector except: (1) OOpX and

ClassX both have the value 2; (2) KdrSlze has the value 4; (3) the final statement must set the

mark bit in the CLASS/OOP field of the header so that the compacter can distinguish objects

that are free; (4) the statement that zeroed the stop bit in the CLASS/OOP field can be deleted

as superfluous because the final statement overwrites that whole field.

The free-list maker is best run between garbage collection and compaction. It is the same as the

OT reverser except that the statements that began with the comment:

"reverse tlie entry"

are replaced by:

"add to free List"

rot word: oop nextOop.

nextOop «- oop

The compacter must change slightly to omit the free list update and to find the mark in the

header instead of the OT, because there is no OOP in the header for a free object. The

statements:

(rot word; oop bit; mark Bit) = 0^> "is it unmarked?"

[si <- si + (2*words). "Inaccessible, so skip over it"

rot word; oop <- nextOop. nextOop <- oop "add to free

List"]

are changed to:

(oop bit; mark Bit) = 0^> "is it unmarked?"

[si <- si + (2*words), "inaccessible, so skip over it"]

Non-Pointer Objects

The simple object format of Tiny Smalltalk is not particularly space efficient, but since its

uniformity makes the system software small and simple, this inefficiency can generally be

forgiven. There is one class of object for which the inefficiency is intolerable, namely, character

strings. There are usually many strings in storage, and when stored one character per word, they

are very wasteful of space. We also would like to treat byte-coded methods as regular Smalltalk

objects, and thus would like to store them two byte-codes per word in the rack.

To store such objects more efficiently, we will allow an alternative storage format in which the

data part of an object packs two bytes into a word. When there are an odd number of bytes of

data, tire last byte of the last word will be zero (a slight waste of space), and the SIZE field of

the header will be odd.

The element-accessing primitives for byte-per-element classes must be aware of the special

storage method and convert beteen full-word and half-word representations.
/\

The elements of byte-per-element objects are always small integers, and never OOPs. Therefore,

tire garbage collector need not process their fields in search of further accessible objects. To let

the collector know that an object contains no OOPs, the allocator sets the high order (stop) bit

of the CLASS field of the header, and the collector notices its presence and leaves it set.

The allocator must be changed as follows. Tire btjtes argument is allowed to be be odd. The

class argument must have the high order bit set if the fields are to be non-OOPs. The

statement:

newNext nextSpace + bytes,

must be followed by:

[newNext isOddo [nevoNext <r newNext+1]].

The garbage collector is changed as follows. After the statement:

rot word: oop bit: mark Bit <- 1. "set mark bit"

is added:

(rack word: (K+cLassX) bit: stopBit) = 1^> []

which bypasses processing of the object's fields if they are known to contain no OOPs.

The precompacter ana compacter are unchanged.

The 8086 assembly language versions of all the storage management algorithms are in Appendix

{whatever].

Note that a class could be defined that is like a string but whose elements are 16-bit integers

instead of 8-bit integers, as long as the clement-accessing primitives know about the special

format and as long as the high order bit of the CLASS field is set to warn the garbage collector.

T i n y l n t e r p . 1 s 7 - J u n - 7 9 1 3 : 0 9 : 4 7 P a g e 1

!

1 B C A T i n y l n t e r p . b c a ; R E S U M E S M A L L . B O O T
2 B C A / E T i n y l n t e r p . b c a ; G Y P S Y
3 B C A / L T i n y l n t e r p . b c a ; E M P T i n y l n t e r p . I s ; D E L T i n y l n t e r p
4
5 T h i s f i l e c o n t a i n s t h e T I N Y S M A L L T A L K I N T E R P R E T E R
6 A u t h o r D a n I n g a l l s (m a d e t i n y b y K i m M c C a l i)
7 L a s t c h a n g e d : J u n e 6 , 1 9 7 9 7 : 4 8 P M
8
9 . P R E D E F I N E " 8 0 8 6 P R E D E F S . S R "

1 0 . P R E D E F I N E " E X T E R N A L S l . B C A "
1 1

3 0 0 0 1 2 . L O C I N T E R P R E T E R
3 0 0 0 4 3 3 0 1 3 . A D R N E X T ; E N T R Y P O I N T S
3 0 0 2 7 9 3 1 1 4 . A D R I R E T N
3 0 0 4 D 9 3 0 1 5 . A D R S E N D A X

1 6
3 0 0 6 F E 0 3 1 7 S T O R E M O D E : . A D R I L L O O P ; = I L L O O P O R O O P T O S T O R E

1 8
1 9
2 0 / " T A B L E S W H I C H H A V E T O C O M E A T B E G I N N I N G
2 1 B Y T E T A B L E : ; D I S P A T C H T A B L E F O R 1 6 B Y T E C A T E G O R I E S

3 0 0 8 9 4 3 0 2 2 . A D R L D I N S T
3 0 0 A 5 E 3 0 2 3 . A D R L D T E M P
3 0 0 C 7 1 3 0 2 4 . A D R L D L I T
3 0 0 E 5 D 3 0 2 5 . A D R B A D B Y T E
3 0 1 0 7 F 3 0 2 6 . A D R L D L I T I
3 0 1 2 5 D 3 0 2 7 . A D R B A D B Y T E
3 0 1 4 5 D 3 0 2 8 . A D R B A D B Y T E
3 0 1 6 5 D 3 0 2 9 . A D R B A D B Y T E
3 0 1 8 B 4 3 0 3 0 . A D R S U N D R Y
3 0 1 A 5 0 3 0 3 1 . A D R B A D B Y T E
3 0 1 C 9 2 3 1 3 2 . A D R L U M P
3 0 1 E 5 D 3 0 3 3 . A D R B A D B Y T E
3 0 2 0 5 0 3 0 3 4 . A D R B A D B Y T E
3 0 2 2 C D 3 0 3 5 . A D R S E N D
3 0 2 4 5 0 3 0 3 6 . A D R B A D B Y T E
3 0 2 6 5 D 3 0 3 7 . A D R B A D B Y T E

3 8
3 9 C O N T R L : I D I S P A T C H T A B L E F O R C O N T R O L O P E R A T I O N S

3 0 2 8 B 8 3 0 4 0 . A D R S T O P O P
3 0 2 A B F 3 0 4 1 . A D R S T O N P
3 0 2 C C 3 3 0 4 2 . A D R P O P S
3 0 2 E 7 6 3 1 4 3 . A D R R E T U R N
3 0 3 0 5 D 3 0 4 4 . A D R B A D B Y T E
3 0 3 2 5 D 3 0 4 5 . A D R B A D B Y T E
3 0 3 4 5 D 3 0 4 6 . A D R B A D B Y T E
3 0 3 6 C 7 3 0 4 7 . A D R L S E L F
3 0 3 8 5 0 3 0 4 8 . A D R B A D B Y T E
3 0 3 A 5 D 3 0 4 9 . A D R B A D B Y T E
3 0 3 C 5 D 3 0 5 0 . A D R B A D B Y T E
3 0 3 E 5 D 3 0 5 1 . A D R B A D B Y T E
3 0 4 0 5 0 3 0 5 2 . A D R B A D B Y T E

6 3

Tinylnterp. Is 7-Jun-79 13:09:47 Page 2

3042 53

305D CC

54
55
56
57

3043 8A ID 58 NEXT: MOV
3045 FF C7 59 INC
3047 8B F 3 60 MOV
3049 81 E6 OF 00 61 AND
304D Dl E6 62 SHL
304F 81 E3 FO 00 63 AND
3053 Dl EB 64 SHR
3055 Dl EB 65 SHR
3057 Dl EB 66 SHR
3059 FF A7 08 30 67 JMPI

/ * PUSH VALUE IN BX FROM PREVIOUS OPERATION * /
PUSH BX

/ * INSTRUCTION FETCH * /
BL.OIDI ;01 IS PC CORE ADDRESS
DI
SI ,BX
SI.0OF
SI ;SI «- LOW 4 BITS SHIFTED FOR WORD OFFSET
BX,#0F0
BX
BX
BX ;BX <- HI 4 BITS SHIFTED FOR WORD OFFSET
BYTETABLE!BX ;DISPATCH INTO BYTE TABLE

68
69
70
71
72

; /* BAD BYTE * /
BADBYTE: INT3

/* LOAD TEMP »/
305E 8B DD 73 LDTEMP: MOV BX, BP
3060 8B 46 04 74 MOV AX,NARGS!BP
3063 2D 03 00 75 SUB AX,#3 ;2*NARGS - 2
3066 F7 DE 76 NEG SI ; - (+ AFTER

3068 2B FO 77 SUB SI ,AX
306A 78 32 78 JS LDORSTORE
306C 83 C6 OA 79 ADD SI,#SELF-STEMP1
306F EB 2D 80 J LDORSTORE

81
8 2 LOAD LITERAL * /

3071 88 5E 06 83 LDLIT: MOV BX , METHOD 1 BP
3074 8B 9F 00 10 84 MOV BX,ROT 1BX
3078 03 F3 85 ADD SI ,BX
307A 8B 5C 08 86 MOV BX,CMLITO!SI
307D EB C3 87 JMP PNEXT

;ADDR OF CODE BASE

; INDEX OF LITERAL
;LOAD LITERAL

/* LOAD LITERAL INDIRECT • /
307F 8B 5E 06 90 LDLITI: MOV BX,METHOD 1 BP ;ADDR OF CODE BASE
3082 8B 9F 00 10 91 MOV BX,ROT 1BX
3086 03 F3 92 ADD SI,BX ;INDEX OF LITERAL
3088 8B 5C 08 93 MOV BX,CMLITO1 SI ;GET LITERAL
308B 8B 9 F 00 10 94 MOV BX,ROT IBX
308F BE 06 00 95 MOV SI,0ORREF ;OFFSET OF OBJ REF
3092 EB OA 96 J LDORSTORE

97
98 /* LOAD INST FIELD •/

3094 8B 5E 08 99 LDINST: MOV BX,SELF 1 BP
3097 8B 9F 00 10 100 MOV BX,ROT 1BX
309B 83 C6 06 101 ADD SI,(S'OBFLDL

102
103
104 /* ALL LOADS, BX =• BASE, SI - OFFSET

309E A1 06 30 105 LDORSTORE : MOV AX,STOREMODE
30A1 3D FE 03 106 CMP AX,##ILLOOP
30A4 75 04 107 JNE DOSTORE
30A6 8B 18 108 MOV BX.01BXI SI
30A8 EB 98 109 JMP PNEXT

110 ;
30AA 89 00 111 DOSTORE MOV 01BX1 SI,AX ;EXCHANGE NEW VALUE W/PREV
30AC C7 06 06 30 FE 03 112 MOV STOREMODE ,#)5IILLOOP : RESET STORE-MODE
30B2 EB 8F 113 JMP NEXT

114 ;
115 ; /* SUNDRY */

30B4 FF A4 28 30 116 SUNDRY: JMPI CONTRL1 SI
117 ;

30B8 5B 118 STOPOP: POP BX ; /* STORE AND POP
30B9 89 IE 06 30 119 STP1: MOV STOREMODE,BX
30BD EB 84 120 JMP NEXT ;STORE FLAG IS SET

121
30BF 5B 122 STONP: POP BX ; /• STORE, NO POP
30C0 53 123 PUSH BX
30C1 EB F6 124 J STP1

125 ;
30C3 5B~ 126 POPS: POP BX ; /* POP
30C4 E9 7C FF 127 JMP NEXT

Tinylnterp 1 s 7-Jun-79 13:09:47 Page

30C7 8B 5E 08 129 LSELF: MOV BX,SELF I BP
30CA E9 75 FF 130 JMP PNEXT

131
132
133 /* SEND MESSAGE */

30CD 8B 5E 06 134 SEND: MOV BX,METHOD 1 BP ;ADDR OF CODE BASE
30D0 8B 9F 00 10 135 MOV BX,ROT IBX
30D4 03 F3 136 ADD SI, BX
30D6 8B 44 08 137 MOV AX,CMLITO 1 SI ; AX <- MESSAGE SELECTOR
3009 5B 138 SENDAX: POP BX ;RECEIVER
30DA 53 139 PUSH BX
30DB F7 C3 01 00 140 TEST BX ,#INTBIT ; BX <- OOP OF DICT OF OBJ IN
30DF 74 05 141 JZ NOTINT
30E1 BB 12 00 142 MOV BX,#CLINTEG
30E4 EB 07 143 J HAVCLS
30E6 8B 9 F 00 10 144 NOTINT: MOV BX,ROT 1BX
30EA 8B 5 F 04 145 MOV BX,CLWORD1BX
30ED 8B 9 F 00 10 146 HAVCLS: MOV BX . ROT 1BX
30F1 8B 5 F OC 147 MOV BX,CMDICTIBX
30F4 8B 9 F 00 10 148 MOV BX,ROT 1BX
30F8 8B F7 149 MOV SI ,DI
30FA 8B 7 F 06 150 MOV DI,MDSELS1BX ;SELECTOR VECTOR
30FD 8B BD 00 10 151 MOV DI.ROT1DI
3101 8B D7 152 MOV DX.DI ;SAVE FOR LATER SUBTRACTION

153 ... GET LENGTH AND SCAN FOR SELECTOR
3103 8B OD 154 MOV CX,LENWORD1DI
3105 FC 155 CLD
3106 01 E9 156 SHR CX -.LENGTH IN WORDS INCL HEADER
3108 F2 157 REP
3109 AF 158 SCAW
310A 87 FE 159 EXCHG DI, SI
310C 74 01 160 JZ FOUND

161 ;

310E CC 162 MESSFAIL: INT3 ;NOT YET IMPLEMENTED
163 ;

310F 83 EE 02 164 FOUND: SUB SI,##Z
3112 2B F 2 165 SUB SI.DX
3114 8B 5F 08 166 MOV BX , MDVALS1BX ;MD METHODS
3117 8B 9F 00 10 167 MOV BX,ROT 1BX
311B 8B 18 168 MOV BX.0 IBXISI ;INDEX BY SI TO GET METHOD
311D 8B B7 00 10 169 MOV SI,ROT 1BX
3121 8B 4C 06 170 MOV CX.CMHDRISI ;METHOD HEADER
3124 53 171 PUSH BX ;METHOD OOP
3125 8B CI 172 MOV AX.CX
3127 25 OF 00 173 AND AX,#NAMSK
312A 01 EO 174 SAL AX
312C FF CO 175 INC AX ;MAKING IT A SMALLTALK INTEGER
312E 50 176 PUSH AX ;NARGS
312F 8A C5 177 MOV AL.CH ;(CONTAINS IPC)
3131 25 7E 00 178 AND AX,#IPCMSK
3134 8B 5E 06 179 MOV BX,METHOD!BP
3137 8B 9F 00 10 180 MOV BX,ROT IBX
313B 2B FB 181 SUB DI, BX
313D D1 E 7 182 SAL DI
313F FF C7 183 INC DI ;MAKING IT A SMALLTALK INTEGER
3141 57 184 PUSH DI
3142 D1 E5 185 SAL BP
3144 FF C5 186 INC BP ;MAKING IT A SMALLTALK INTEGER
3146 55 187 PUSH BP
3147 8B EC 188 MOV BP.SP ;NEW FRAME POINTER
3149 8B FE 189 MOV DI,SI
314B 03 F8 190 ADD DI, AX ;SO NOW DI IS PC
314D BB D1 191 MOV DX.CX ;STILL HAVE THE HEADER
314F D1 F9 192 SAR CX
3151 D1 F9 193 SAR CX
3153 D1 F9 194 SAR CX
3155 D1 F9 195 SAR CX
3157 81 El IF 00 196 AND CX.0NTMSK
316B 74 06 197 JZ CKPRIM
315D BB 00 00 198 MOV BX.jMNIL
3160 53 199 NILTMP: PUSH BX ;STORE NIL IN ALL TEMPS
3161 E2 FD 200 LOOP NILTMP
3163 85 D2 201 CKPRIM: TEST DX.DX
3165 78 03 202 JS DOPRIM ;DO PRIMITIVE FIRST, IF INDICATED
3167 E9 D9 FE 203 JMP NEXT

204 ;

TinyInterp Is 7-Jun-79 13:09:47 Page

205 / * DISPATCH TO PRIMITIVE CODE
316A 8B 75 FE 206 DOPRIM: MOV SI . -21DI ; FIND PRIM INDEX AT IPC-2
316D 01 E6 207 SHL SI WORD INDEX
316F 8B 46 08 208 MOV AX ,SELF ! BP ; AX«- RECEIVER
3172 FF A4 42 37 209 JMPI PRIMTABLE1 SI

210 ;
211 ; / •RETURN • /

3176 58 212 RETURN: POP AX VALUE TO BE RETURNED
3177 88 E5 213 MOV SP.BP
3179 50 214 IRETN: POP BP RESTORING OLD STACK REFERENCE POINT
317A D1 ED 215 SHR BP ;WAS ST INTEGER
317C 5F 216 POP DI OLD METHOD PLACE
317D D1 EF 217 SHR DI ;WAS ST INTEGER
317F 8B 5E 06 218 MOV BX,METHOD 1 BP
3182 8B 9 F 00 10 219 MOV BX.ROTIBX
3186 03 FB 220 ADD DI ,BX DI NOW POINTS AT NEXT BYTE
3188 59 221 POP CX ST INTEGER FOR NARGS
3189 83 CI 03 222 ADD CX, #3 ABOVE,SHR,+2(Meth & Sel f) ,SHL(Wds)
318C 03 El 223 ADD SP.CX ELIMINATING ARGS, SELF, & METHOD
318E 50 224 PUSH AX PUSH NEW VALUE
318F E9 B1 FE 225 JMP NEXT AND RESUME EXECUTION

226 ;
227 ; /* LONG JUMPS • /

3192 8A 05 228 LJMP: MOV AL.OIDI PICK UP NEXT BYTE
3194 FF C7 229 INC DI AX «- DELTA LOW BITS
3196 83 FE 10 230 CMP SI ,#10 AX=DELTA, SI<16 => UNCONDITIONAL
3199 7C 06 231 OL DOJMP
319B 5B 232 POP BX
319C 83 FB 02 233 CMP BX,#FALSE
319F 75 OE 234 JNE NOTFALSE
31A1 8B CE 235 DOJMP: MOV CX.SI
31A3 DO F9 236 SAR CL
31A5 80 El 07 237 AND CL, t f l
31A8 80 E9 04 238 SUB CL, #4
31AB 8A El 239 MOV AH, CL + BIAS*256
31AD 03 F8 240 ADD DI, AX
31AF E9 91 FE 241 NOTFALSE: JMP NEXT

242 ;
243 j
244 .END

Making the Tiny compiler faster and shorter

compile; code

whiles self actOnNextToken clog [].
(!...]

actOnNextToken | first word
[whiles [first <- sourceStream peek^ [first isDelim] frfalse] clos

[sourceStream next],
first >071

[first lsLetter^>
[word <- self nextWord.
word last is Alphanumeric^ [self uariable: word] self selector: word]

sourceStream next,
f Lrst =• 136r>

["T" methodStream next <- 0203]
first=0175^>

["]" methodStream last^0203^> [methodStream next<-0i6i; next<-0203]]
self UlToken; first InStriny]

flrst>060 org flrst=025^>
["digit or high, minus" self emit: Hit Literal; self nextWord aslnteyer]

sourceStream next,
f irst=056^>

["." methodStream next 0202]
=04 7;>

["'" self emit; Hit literal: (sourceStream upto: 04 7). sourceStream
next]

self ilLToken: first InStriny]

nextWord | s first
[s <r Stream default.
untils (first <- sourceStream next) IsDelim dos [s next first],
lis contents]

findOrlnsertLit; lit
[same as before, but use Lit instead of (Obj <~self WOrdAsObj)]

emit: kind literal: lit
[methodStream next <- kind + (self findOrlnsertLit: lit)]

variable: word | b w ref
[(b <- locals lookup: word)^. [self next <- b]
(b ctrls lookup: word)^ [self perform: b]
w <r word unique.
(ref <r classVars lookupRef: w) ors (ref Smalltalk lookupRef: w)^>

[self emit: ILitl literal: ref]
self illToken: word]

selector: word
[self emit; send literal: lit]

UlToken: token
[user notify: 'input not understood ' + token]

get rid of actOnWord and wordAsObj
make their clients use appropriate other messages

be sure nextWord is only used when a variable or selector is expected

Classlllit should initialize the dictionaries
locals (including self, temps, fields) as byte codes
Class Vars -- right from the class

Smalltalk should have true false nil

do
[blockStack last do; self]

ForLoop's do; compiler
should use compiler selector; 'asStream!' etc.

Draft-0 Smalltalk: Dreams and Schemes, Chapter IX

We could use an outline of this chapter to see if there really is a chapter worth of material

i A M °K.

r

}

i

^7 A

ft
x ft
cy

I ° u-̂ ls

 ̂ &JF. *H't> A™*01*

f\(to<uA C 1

1

/

tzf^

jQ5 Kfi ft 6r

^afiTAp^JK <^MA(JL^AUIV

GUt^ls qs Qbecis - J
J JETGTxT* jjj i c.

Tinylll.draft June 19, 1979 4:59 PM

global this Dialog

Class Dialog
fields leuel topContext seenContext ancestor

default
[topContext <- Context default,
self conuerse; 1]

conuerse: leuel
[self see: topContext.
whiles true do?

[thisDialog self,
self prompt.
(self obeyFrom: terminal nextCommand asStream) printon: terminal]]

obeuFrom: q | w method errorText className field Names
[w <- a nextToken.
w='e> i>

[method <- Method new patternFrom: q.
errorText <- method behauiorFrom: q=> [iTerrorText]
method class tnsertMethod; m. ftmj

[className <- q nextToken.
field Names <- q rest Of Tokens.
IT Class new title: className fields; fieldNames]

method <- seenContext method copy behauiorFrom: q reset.
iTseenContext evaluate: method]

prompt | i
[terminal new Line.
forg i to; leuel dog [terminal append: ' ! '] .
terminal space]

see: context
[context^ [iTseenContext context]
iT'no more contexts']

for debugger only...

in: topContext
[ancestor this Dialog,
self conuerse: ancestor leuel+i]

callerOf; context | earlier
[earlier context caller.
earller=ancestor topContext^> [ftfalse]
hearIter]

caUeeOf; context J earlier later
[earlier <- topContext. later <- false,
untilg earller=context clog

[later earlier,
earlier <- later caller],

fl Later]

topContext
[1] top Context]

Leuel
[flleuel]

M
[OseenContext method asText: seenContext pc]

[fiseenContext receluer class asText: seenContext receluer]

E
[itself see: (self callerOf: seenContext)]

[itself see: (self caUeeOf: seenContext)]

Q
[ancestor^ [itthls Context caller <- topContext]
it'no outer dialogs']

3

Class Terminal

fields can Erase

nextCommand | s c
[s <- Stream default,
untilg (c<-self next)=doitChar dog

[c=bsChar=>
[s empty^ [self erasedAll]
self eraseChar: s pop.
self erasedChar]

c=bwCKar^>
[s emptu^> [self erasedAll]
untilg [s empty org s last isDeltm=false] dog [self eraseChar: s pop],
untilg [s empty org s last isDeltm] dog [self eraseChar: s pop],
self erased Word]

c=delChar^>
[untilg s empty dog [self eraseChar: s pop],
self erasedAll]

c=retypeChar^>
[self echo All: s contents]

s next <- c. self next c].
s next <- c. terminal newLlne.
Hs contents]

eraseChar: c
[canErase^. [self really Erase Char: c]]

erasedChar
[canErase^ [] self append: 'V]

erasedWord
[canErase:> [] self append: '<- ']

erasedAll
[canErase^ [] self append: ' XXX'; newLlne]

echoAU: s
[canErase^ [] self nervLine; append- : s]

next
[] primitlue: n

next <r c
[] primitlue: n

realluEraseChar: c
[J primitiue: n

Class Method

patternFrom: q | s t
[s Vector new as Stream,
t <- q nextToken.
untilg (t='[' org t='|') clog [s push; t. t q nextToken],
selector s pop.
class <- Smalltalk lookup: s pop unique.
nArgs <- s position, arguments s contents,
s reset.
untilg t = '[' dog [s push: t. t <- q nextToken].
nTemps s position, temporaries s contents]

behaulorFrom: stream
[Compiler new behaulorFrom: stream Into: self]

for debugging only...

asText: pc
["decompile this method, marking pc location"
"return a string"]

Class Class

title: title fields; fields
["to be written"]

insertMethod: method
["to be written"]

for debugging only...

asText: instance
[title printon: terminal,
terminal space,
fields printon: terminal]

Class VariableLenythClass

for debugging only...

asText; instance
[title prlnton: terminal,
terminal space.
instance length prlnton; terminal]

Class Context

fields sp bp

default
[sp bp <r somepLaceWitHADefaultMetlaod]

eualuate; method
["copy to top of stack,

jam in method,
run it,
copy temps &• args back down"] primitiue; n

for debugging only...

bp
[flbp]

receiuer
[fisystemStack word; (bp+selfOffset)]

caller <r context
[systemStack word: (bp+oldBpOffset) <- context bp.
systemStack word; (bp+oldSpOffset) context sp,
flcontext]

caller
[BContext new bp: (systemStack word: (bp+oldBpOffset)) sp: (systemStack

word: (bp+oldSpOffset))]

notUnderstood
['Messaye not understood' prlnton: terminal.
Dialoy new in; self]

Class Stream

nextToken | s
[s <- Stream default.
untllg (self emptu org self peek IsDellmnfalse) dog [self next],
self empty^ [fi false]
untllg (self empty org self peek IsDellm) dog [s next <- self next],
fls contents]

restOfTokens | s t
[s <- Vector new as Stream.
wKtieg (t self nextToken) dog [s next <- t].
fls contents]

Class Compiler

behauiorFrom: stream into: method
["compile source metKod into PyteStriny and literals, possibly increasiny

nTemps"
"return an error striny, or false if OK"]

Class SystemStack

word: w
[] primitiue: n

word: w <- x
[] primitiue: n

0 O
*Z O /

t 0 CL
C? Q 3 }

I 0 o * J
(^ 0 r J
! H G 6 J
(£ 0 -7 2
£ 0 0 V z 2- 0
Z t^. z> l»J
Z- & o i/
5 0 0 li

2 1 0 13
3 <f 0 If
5 6 0 /T

L.oft^/sroR.z t£mP
" /I/2-6-

VjfTzAi L ~LAi0172^7

U>A0

5"&U$)

2.04D 5ftCjXt_

TVAtf 6$/t<u/AA£>
TV A(P <34^
6g4a^^ . F$^T£ -x- Paf .

^ ?vc tA

„ 14

^4 ^

3^1<3y{? v^A/<, >^^-
(^ "^eL-vA.

C'O <>j<[e relapses

(5 / *-&O0 ^3^? (J ^L
c SiXf

SW^')0 rv^

C^OT U (^ ^ ^

(b<? £-^4^
<U*S

f(04^^ C*»*

Inter-Office Memorandum

To Adele, Dave, Kim Date April 30, 1979

From Larry Teslcr

Subject Polish Tool

Location Palo Alto

Organization PARC/SSL

?ox
Filed on: <Tesler>PolishTool.press, .memo

Here is yet another plan for Tool. We do have an interpreter for a symbolic language, but instead
of LISP-like S-notation (prefix Polish), we use Forth-like postfix Polish. The interpreted code is a
list of symbols with no sublists. Compare:

Smalltalk

X 25010 rect: x1©t)1. user show: X asString.

S-notation

[O x (rect: (0 25 10) (0 xi yD)] (slaovy; user (asString x))]

Postfix Polish

yl xi 0 10 25 0 rect: x . x asString! user show: .

Both S-notation and Postfix Polish yield a usable system without a compiler.

S-notation is somewhat more readable and is more amenable to symbolic manipulation if
one wants to have programs- that write programs ala LISP.

Polish postfix has a couple of advantages for the book. The read routine is easier than that
for S-notation. The interpreter is easier, and is much closer in its structure to the byte code
interpreter, because byte codes are also postfix Polish.

We would introduce the postfix Polish notation and write its interpreter in Smalltalk. [I think there
is no need to write the same interpreter in machine language ala Forth; it requires more curriculum
material and ends up with an inherently slow and uncompact system.] Then we would introduce
byte coding; present a Polish-symbolic to byte-code translator in Smalltalk; present the interpreter
in Smalltalk; present the same interpreter in (Kim's) machine code.

To obtain a complete runnable system for the 8086, we could then either (1) present the Polish-
symbolic to byte-code translator in machine code or, better, (2) print a precompiled hexadecimal
byte code version of the Smalltalk translator, which would then be interpreted by the interpreter to
read other Smalltalk programs. Choice (2) would be slower but would require less machine code,
code that we won't want later in the book when the real compiler is introduced.

Inter-Office Memorandum

f
Smalltalk Interest January 22, 1979 o Date

From Larry Tesler Location Palo Alto

Subject Stalk-notation Organization PARC/SSL

XEROX

Filed on: < Tesler > slalk.press,.memo

One of the shortcomings of Smalltalk is the absence of a LISP-like S-expression notation. It is true
that in every version of Smalltalk there has been a read message that turns parenthesized program
text into a nested structure. However, that structuring does not qualify as a true S-notation, because
the levels of the nested representation do not correspond to the semantic or syntactic units of tire
language. The lack of correspondence is due to the fact that style, syntax, and precedence rules
discourage the use of parentheses to delimit units.

The current compiler for Smalltalk-76 creates a parse tree according to syntactic units, with selector
names and byte codes at the leaves. The tree can print itself in a fully parenthesized form, but that
form was designed for debugging purposes and is not convenient, consistent, or comprehensible.
Furthermore, there is no facility for converting that form to a parse tree, and such a facility would
be of little use given the presence of byte codes at the leaves.

Peter Dcutsch has long maintained that Maslerscope-like facilities would most easily be
implemented in Smalltalk if there were an S-expression notation. Additionally, all the well-known
advantages that LISP gains from S-notation would be available. Generating, transforming, and
interpreting programs would be easier. The output of symbolic mathematics manipulators could be
executed. Alternate user languages could be provided that all compile into the same intermediate
notation. More precise and concise descriptions of Smalltalk semantics could be written. Ideas for
language extensions could be proposed more formally and analyzed more rigorously.

There arc several possible starting points for specifying an S-nolation for Smalltalk. 1 will use a
variant of the aforementioned compiler parse tree, bent more towards traditional LISP. 1 will call it
S-lalk, or simply .s/cz/A'-notation.

The LISP S-notation has a simple structure. An S-exprcssion is either an atom or a parenthesized
list of S-exprcssions. When an S-expression represents a program, the atoms are string constants,
numeric constants, and variable names. The lists are of the form:

(f al ... aN)

where f evaluates to a function name and al...aN evaluate to the arguments of the function.

For Smalltalk, it would seem practical to place the recipient of the message at the front of the list,
thus:

(r m al ... aN)

where r evaluates to the recipient object, m evaluates to the message selector, and al...aN evaluate
to the arguments. Examples:

Stalk notation 2

(2 + 3)

(user sched)

(a max: b)

(2 to:by: 10 1)

((2 + 3) to:by: ((user sched) length) (a max: b))

So far, stalk-notation does not account for non-numeric literal data, assignment, or sequencing
constructs like conditionals, blocks, loops, and cascading.

LISP's solution to these cases is to reserve certain names to have special meaning in the first
position, e.g., QUO TE for literals, CON1) for conditionals, PROG for blocks, SETQ for assignment.
The special names imply nonstandard evaluation of the arguments: none for QUO TE, selective for
COND, and sequential for PROG.

An alternative to reserving special names in the first position is to change the parentheses to special
brackets. However, such a convention could quickly use up all available brackets and make bracket
characters unavailable as selector names. 1 propose to reserve only ()[]{}' as special brackets, as in
the current user syntax:

(r m al...aN)
sends the message m to r with arguments al...aN

[si ... sN]
executes si through sN in order, yielding sN as a value

[? el si ... cN sN s]
evaluates el...eN until a non-false is found, then evaluates the next s; if all are
false, evaluates the last s

[<" v e]
assigns the value of c to the variable v

[t e]
returns e from the current method

[* c si
evaluates e and s repeatedly until e is false, then stops before the next evaluation of
s

{c f 1:v 1 ... fN:vN}
represents an object of class c with components named fl...fN having values vl...vN
respectively.

{c vl ... vN)
represents an object of class c with components implicitly numbered 1...N having
values vl...vN respectively.

'a.../.'
is an abbreviated form for a string

Remote evaluation is determined by open colons in the selector name. Cascading in the user syntax
would be expanded in S-nolation into a block of messages sent to the same recipient; if the
recipient is computed, it must be assigned to a temporary variable. Comments would be "quoted".

Stalk-notation 3

It is possible to reduce all (...), and [...] forms to the literal form,

'abc' = > (String 65 66 67}

(3 + 4) = > (Message recipient: 3 selector: '4-' arguments: (Vector 4}}

[si ... sN] = > (Block statements: (Vector si ... sN}}

[? el si ... eN sN s] = >
(Conditional

conditions: (Vector el...eN}
consequences: (Vector sl...sN]
alternative: s]

[«- v e] = > (Assignment variable: V value: e}

[t e] = > (Return value: e}

[* e s] = > (Loop condition: e action: s)

Note that Message, Block, Conditional, Assignment, Return, and Loop must all be Smalltalk classes.
Each of them as well as certain other classes would be able to print, read, compile, and interpret its
part of the notation.

A method definition would be simply a literal of class Method:

(Method
class: Number
selector: 'max:'
arguments: (Vector V}
program: [t [? (self > x) self x]]

}

Note that the selector is a single string, while the argument list is a vector of strings. (1 use the
word 'Vector' here for historical reasons; 1 think it indescriplive of an ordered set.)

Stalk-notation should map directly to and from any two-dimensional notation that we adopt, and
can be compiled very rapidly into byte codes. It is as easy to produce from current user syntax as
is the current compiler parse tree; however, in-place error message capability would have to be
sacrificed unless we had coroutines or unless we installed backpointers in the S-cxpression to the
source code. (Backpointers could be in a (ield of the major classes like Message and Block, but
could be suppressed from the minor classes like String and from all printed forms.)

I welcome comments and further development of these notions.

Inter-Office Memorandum

To A dele, Dave, Kim Date April 26, 1979

From Larry Tesler Location Palo Alto

Subject Classes for Tool Organization PARC/SSL

XEROX

Piled on: < Tesler > ToolClasses.press, .memo

Here is a possible plan for "Tool", mainly, the class definitions for late in chapter II and early in
chapter 1II-A.

Classes Introduced in Chapter II

Class new title: 'True' fields:
lliere is one instance: (true).

Class new title: 'P'alse' fields:
There is one instance: (false).

Class new title: 'Nil' fields:
There is one instance: (nil).

Class new title: 'List' fields: 'first rest'
'Hie elements of a list (x) are (x first), (x rest first), (x rest rest first), etc., until (x rest) is
(nil). Two different instances may be equal in value.

Class new title: 'Number' fields: 'bitList*
A number is a list of bits, low order first, sign last: true represents 1, false represents 0.
(Two different instances may be equal in value.)

Class new title: 'Character' fields: 'ascii'
There are 128 instances of this' class, each with a different ascii value between 0 and 127.

Class new title: 'String' fields: 'charList'
A siring is a list of characters. (Two different instances may be equal in value.)

Class new title: 'Stack' fields: 'itcmList'
A slack is a LIFO list of items.

All the above classes should have their methods defined, and some example LISP-like programs should
be shown. No loops allowed, just recursion.

Classes for Tool

Classes Introduced in Chapter III

Class

Class new title: 'Instruction' fields: 'kind which'
See next section for field meanings.

2

new title: 'Selector' fields: 'nameString'
Every instance of this class has an unequal nameString.

Class new title: 'Method' fields: 'instructionList literalList numTemps'
A method is a list of instructions and a list of literals. Its execution requires numTemps
temporary variables initialized to nil.

Class new title: 'MessageBinding' fields: 'selector method'
A message binding associates a selector with a method.

Class new title: 'MessageDictionary' fields: 'bindingList'
A message dictionary is a list of message bindings, each with a different selector.

Class new title: 'Context' fields: 'receiver argumentList tcmporaryList evaluationStack method pc'
A context has a receiver (self), a list of argument variable values, a list of temporary
variable values, an evaluation stack, a method, and a pc (program counter).

Class new title: 'Process' fields: 'contextList'
A (the) process is a L1FO list of contexts.

Class new title: 'Instance' fields: 'messageDiclionary fieldl.ist'
An instance has a pointer to the message dictionary of its class and has a list of its own
fields. (This is somewhat circular, but we may need it to write the interpreter.)

Classes for Tool 3

Instruction kinds for the Interpreter

Pop
Pops the top item from the evaluation stack.

Load Self
Pushes (self) onto the evaluation stack.

Load Argument
Pushes the context's which'th argument onto the evaluation stack.

Store Argument
Replaces the context's which'th argument by the top of the evaluation stack.

Load Temporary
Pushes the context's which'th temporary onto the evaluation stack.

Store Temporary
Replaces the context's which'th temporary by the top of the evaluation stack.

Load Field
Pushes die receiver's which'th field onto the evaluation stack.

Store Field
Replaces the receiver's which'th field by the lop of the evaluation stack.

Load lateral
Pushes the value of the method's which'th literal onto the evaluation stack.

Load Indirect Literal
Pushes the value of the global variable referenced by the method's which'th literal onto the
evaluation stack.

Store Indirect Literal
Replaces the value of the global variable referenced by the method's which'th literal by the
top of the evaluation stack.

Send Message
Sends a message to the object on top of the stack. rlbe arguments are beneath the top of
the stack. The selector is the method's which'th literal.

Classes for Tool 4

The Interpreter

We assume that a compiler exists that translates Smalltalk source code to object methods according
to the above schema.

Then, we write an interpreter in Smalltalk using that schema. No loops, just recursion.

Next, we decide to store many of the supposed linked lists contiguously: numbers (16 bit limit),
strings, methods (byte coded), dictionaries (two parallel vectors), contexts. The context lists are
concatenated into a single stack. No interpreter can be written in Smalltalk at this point, because
we haven't introduced variable length classes. But Kim's nice two page 8086 version can be written,
and we do so after introducing Store Mode and the 8086 instruction set.

Chapter 5 will close the loop by introducing variable length classes.

Inter-Office Memorandum

To Adcle, Dave, Kim Date April 26, 1979

From Larry Tesler Location Palo Alto

Subject An Interpretive Tool Organization PARC/SSL

XEROX

Filed on: < Tesler > InterpretiveTool.press, .memo

Here is an alternative plan for "Tool". Hie class definitions for chapter II are the same, but those
for chapter III are different. Mainly, no compiler is assumed: an S-expression interpreter is used
instead. This version is even closer lo Smalltalk-72 than the last one, but the source code is fully
parenthesized as in LISP. We assume that a simple parser exists that translates Smalltalk source
code lo object methods according to the above schema. (Or we could even write that parser!)
Then, we write an interpreter in Smalltalk using the above schema. No loops, just recursion. Next,
we assume a compiler and move on to the plan of the previous memo, "Classes for Tool" .

Classes Introduced in Chapter III

Class new title: 'Name' fields: 'nameString'
Every instance of this class has an unequal nameString.

Class new title: 'Variable' fields: 'name value'
This class is introduced to enable the interpreter to resolve variable bindings at run time

Class new title: 'Selector' fields: 'name'

Class new title: 'Literal' fields: 'value'

Class new title: 'Message' fields: 'receiver selector argumcntList'
The receiver is a (variable) name or a message or a literal.

Class new title: 'Method' fields: 'numTcmps messageList'

Class new title: 'MessageBinding' fields: 'selector method'

Class new title: 'MessageDiclionary' fields: 'bindingList'

Class new title: 'Context' fields: 'receiver argumcntList tcmporaryList evaluationStack pc'
A context has a receiver (self), a list of argument variables, a list of temporary variables, an
evaluation stack, and a pc (program counter: a direct pointer into the method structure).

Class new title: 'Process' fields: 'contextList'

Class new title: 'Instance' fields: 'messageDictionary fieldList'

Draft-0 Smalltalk: Dreams and Schemes, Chapter SIM September 12, 1979 Tesler

SIM

Simula 67 and Smalltalk

Simula 67

Simula 67 [refs] is a popular programming language for simulation and other applications. The

language is an extension of Algol 60. The most significant extension is the class declaration.

A Simula 67 class declaration looks very much like a procedure declaration but when it is

invoked an object is allocated. The value returned by the invocation is a reference to the new

object. The body of a class declaration declares procedures and variables that become part of

every object created by the class. An object may be thought of as a packet of data (variables)

with associated programs (procedures).

A Simula 67 class may be declared as a variant, or subclass, of a previously declared class. The

subclass inherits the procedures and variables of its superclass. The variables and procedures in

each object of the subclass are the concatenation of those declared in the superclass and subclass

declaration.

Smalltalk

Smalltalk borrows the class concept from Simula 67. However, unlike Simula 67, Smalltalk is

not built on an Algol 60 base. The class concept of Simula has been enriched and generalized

enough in Smalltalk to serve as a complete language semantics. The syntax of Smalltalk was

designed from scratch.

The way Simula semantics was collapsed was to implement many primitive concepts of Simula

by class declarations in Smalltalk. The Algol data types real and integer as well as the data

structuring concepts array and siring are implemented by class declarations in Smalltalk. Even

Simula's novel concepts ~ class and object - are implemented by class declarations in Smalltalk

(this may seem circular, but it works out very well).

The syntax of Smalltalk is not based on any other language. It was designed to support the

object-oriented semantics while allowing somewhat more concise programs than in most

languages (but not as much conciseness as in APT). As a result, the syntax appears strange to

most experienced programmers when they first learn Smalltalk.

Terminology of Smalltalk

The variables named in a class declaration that appear in every instance of the class are called

fields to emphasize the internal structural similarity between an object in Smalltalk and a record

in a business-oriented language. Asking an object to call one of its procedures is known as

sending a message to the object to emphasize the external behavioral similarity between an object

in Smalltalk and an autonomous process in a multi-process operating system. The procedures

declared in a class body are called methods because they define how the object will respond to

various messages.

Specific Omissions in Smalltalk

In Smalltalk, the state of an object can only be accessed directly by procedures of that object.

Other objects are required to send messages requesting access to the state. All interfaces

between objects are procedural. It is easy to change the representation of an object while

maintaining the same external interface because it is certain that no external object depended on

the particular representation. (Of course, a change in representation may lead to a change in

performance. Improved performance is a common motivation for wanting to change a

representation.)

There are no type declarations in Smalltalk. The value of every variable is a reference to an

object. The syntax provides no way to constrain the class of the referenced object. Although it

would be possible and in fact helpful to allow some sort of type declaration capability, it is far

from essential. The reason is that Smalltalk programs are developed interactively and

incrementally and thus errors due to type mismatch during assignment to variables and

arguments are generally caught and fixed just a few minutes after a method is compiled.

Simula allows a class declaration to have a main part. The main part is a set of unnamed

statements after the procedure and variable declarations. The main part of an object of the class

can be started and stopped during the lifetime of the object. This facility permits a degree of

concurrent execution sufficient for implementing discrete simulations. In Smalltalk, class

declarations do not have a main part. A similar effect can be obtained by declaring methods

called start and stop that in turn invoke process-manipulation methods.

Simula allows an object executing the main part of a superclass declaration to execute the main

part of the subclass declaration by use of the inner construct. Smalltalk has no main parts, but it

allows an object executing a method defined in a superclass to invoke a method of another name

defined in the subclass by sending a message to the pseudo-variable self. It also allows an

object executing a method defined in a subclass to invoke a method of the same or another

name in the superclass by sending a message to the pseudo-variable Sliper

Simula allows a name to be declared virtual in a class declaration as long as an actual declaration

is supplied in each subclass. Since Smalltalk has no type declarations, there is no need for a

virtual construct. All names are intrinsically virtual. This means that all procedures are generic;

i.e., when a message is passed to an object, there is a run-time determination of which of

possibly several methods of that name will be invoked, depending on the class of the receiver of

the message.

In Simula, a class is a language construct whose uses and methods are fixed by the manual and

the compiler. Smalltalk has a class named Class that describes the behavior of all classes, and

that can be augmented even at execution time. The Simula construct for creating an object of

class Q is NEW Q and requires a reserved word in the language, namely, NEW. The Smalltalk

construct for creating an object of class Q is Q new, and simply sends the message new to Q,

invoking a (primitive) method of class Class.

The NEW construct of Simula allows for arguments to be passed to the class to accomplish

initialization of the new object. New Smalltalk objects have all their fields initialized to nil.

Subsequent initialization is accomplished by sending messages as usual.

In Simula, an object, like a class, is a language constaict whose uses and methods are fixed by

the manual and the compiler. Smalltalk has a class named Object that is the ultimate superclass

of all other classes, and which thus describes behavior common to all objects (except those

having override procedures). The hierarchy of subclasses in Smalltalk has a single root, class

Object.

In Simula, a stack, like a class or an object, is a language construct whose uses and methods are

fixed by the manual and the compiler. Smalltalk has classes named Context and Process that

allows access to the internal representation of the execution stacks and thus makes the

programming of debugging tools straightforward. By manipulation of contexts, a wide variety of

multi-process mechanisms can be implemented. Thus, Smalltalk has no concurrency constructs

built into the language itself.

Syntact ic Di f ferences

Procedure call.

x.k(a)

x k: a

x.klk2(al, a2)

x ki: al k2: a2

x.assignk(a, v)

x k: a <r v

x.assignklk2(al, a2, v)

x k 1: al &2: a2 v

x.assignsub(y, v)

X o y < r v

A Comparison of Smalltalk and Simula

Simi lar i t i e s

Smalltalk was largely inspired by Simula. Both have objects, classes, and subclasses.

Terminology Di f ferences

Procedures are called methods.

Calling a procedure is called sending a message.

??? are called fields.

Semant ic Di f ferences

No access to state. All interfaces are procedural.

No type declarations. Type errors are caught at run-time.

No main part or START keyword. Use a method instead.

No INNER. Use self and super instead.

No VIRTUAL. All procedures are generic.

Class is a class.

No NEW keyword and no ??? (class deel args). Use a method instead.

Object is a class.

The subclass hierarchy has a single root (class Object).

Context is a class.

No concurrency constructs. Manipulate contexts instead.

Integer, Array, String, etc. are classes.

Syntact i c Di f ferences

Procedure call.

6

x.p

X p

x.k(a)

x k; a

x.klk2(al, a2)

x k l : a l k 2 : a 2

x.sub(y)

X o y

x.assignp(v)

X p <r V

x.assignk(a, v)

x k: a v

x.assignklk2(al, a2, v)

x k l : a i k 2 : a2 <- v

x.assignsub(y, v)

X o y <r v

Block.

begin si] s2] ... sn end

[si. s2. ... sn]

Conditional.

if a tlien b else c

[a z> [b] c]

Iteration.

for i «- a step b until c do begin ... end

forg I from: a to: c by: b dog [...]

Method declaration.

real procedure p; begin real v, w; ... return(z); end;

p | V VO [... rtz]

Class declaration.

D class C;

begin

real fl, f2;

real procedure p; begin real v, w; ... end;

real procedure q; begin ... end;

end;

Class new title: 'C' subclassof: D fields: 'f1 f 2 ' declare: asfoLlows
p | v w [...]

4 [... 1

