
k m

hBRfti

IBM
speedcoding

system

for the

701 type

E L E C T R O N I C

D A T A P R O C E S S I N G

M A C H I N E S

I N T E R N A T I O N A L B U S I N E S S M A C H I N E S C O R P O R A T I O N

p

r

This edition replaces a restricted, tentative version issued early
in 1953. Information in this edition is as of September 10, 1953.

Copyright 1954 by International Business Machines Corporation, 590 Madison Avenue. New York 22, X. Y.

Printed in U.S.A. Form 24-6059-0

f o r e w o r d

THE IBM Type 701 Speedcoding System was designed to minimize the amount
of time spent in problem preparation. It is applicable to small computing problems
and to many large computing problems. Because programming for the IBM
Electronic Data Processing Machines, Type 701 and Associated Equipment, is
developing rapidly and because it is advantageous to make changes in the svstem
easily and informally, this manual will be obsoleted fairly often, and new revisions
published.

It is hardly possible to assign credit for the IBM Speedcoding System because
the group in IBM which developed the system has benefited from the suggestions
of so many. Historically, the ingenious development of general purpose systems
for the IBM Card Programmed Calculator certainly influenced the basic think­
ing. Once the IBM 701 was announced, scientists concerned with preparing for
these machines actively considered the problem of reducing problem preparation.
Many useful and provocative ideas in this area were discussed in Poughkeepsie,
New ork, during the week of August 25-28, 1952, when representatives from
the following organizations met to consider programming ideas: Boeing Air­
plane Company, Douglas Aircraft Company (El Segundo and Santa Monica),
General Electric Company, International Business Machines Corporation, Lock­
heed Aircraft Corporation, Los Alamos Scientific Laboratory, National Bureau
of Standards, U. S. Naval Ordnance Laboratory, U. S. Naval Ordnance Test
Station (Inyokern), North American Aviation, Inc., United Aircraft Corpora­
tion, Bell Telephone Laboratories, RAND Corporation, U. S. Atomic Energy
Commission. At that meeting there were specific discussions of systems analo­
gous to Speedcoding.

The group at IBM which developed the Speedcoding System undertook to do
so after discussing such systems with Dr. Willard Bouricius, head of the Type
701 Planning Group at Los Alamos Scientific Laboratory. This group, under the
direction of Mr. Bengt Carlson, had completed a program with objectives similar
to those of Speedcoding. Many discussions were held with Mr. Stuart Crossman's
group at United Aircraft, particularly with Mr. Walter Ramshaw, whose assist­
ance was extremely helpful in organizing and collating information and text.

Finally, appreciation is expressed to those at IBM who have been most closely
associated with the Speedcoding project since its beginning in January, 1953.
These are: Mr. John Backus, who supervised the project, Mr. Harlan L. Herrick,
Mr. Donald A. Quarles, Jr., Mr. Sherwood Skillman, Mr. John Pulos, and
Miss Lucy A. Siegel. The project was carried out under the general direction of
Mr. John Sheldon.

c o n t e n t s

GENERAL INFORMATION 7

STORAGE 7
ELECTROSTATIC STORAGE ... 7
MAGNETIC DRUMS 7
MAGNETIC TAPES <?

COMPUTING 8
ADDITION AND SUBTRACTION 9

MULTIPLICATION 1 0
DIVISION 1 0
ELEMENTARY ARITHMETIC OPERATIONS:

GENERAL 1 0

CONTROL 1 0
PROGRAM COUNTER 1 1
I N S T R U C T I O N L A Y O U T 1 1

OPERATIONS 1 3
OPI OPERATIONS 1 3
OP2 OPERATIONS 1 5

ELEMENTARY MATHEMATICAL
FUNCTIONS 1 6

INPUT-OUTPUT COMPONENTS . . 1 6
PUNCHED CARDS 1 7
INSTRUCTION CARD FORM 1 7
DATA CARD FORM 1 8
CARD READER 1 8
MAGNETIC TAPE 2 0
WRITING ON TAPE 2 0
READING FROM TAPE 2 2
TAPE SKIPPING 2 3
TAPE REWINDING 2 4

TAPE STATUS 2 4
MAGNETIC DRUMS 2 5
LOADING PROCEDURES FOR LENGTHY

PROGRAMS 2 7
PRINTER 2 8

TRANSFER OPERATIONS ... 2 8
TRANSFER (TR) . 2 9
TRANSFER PLUS (TRPL) 29

TRANSFER MINUS (TRMN) 29

TRANSFER ZERO (TRZ) 29

TRANSFER PLUS, MINUS AND ZERO . . 29

SENSE AND TRANSFER (SNTRP, SNTRQ) . .• 3 0
OTHER TRANSFER OPERATIONS . . . 3 0

ADDRESS MODIFICATION ... 3 0
TRANSFER AND INCREASE OPERATIONS . . 3 1
TRANSFER AND DECREASE OPERATIONS . . 3 1
SET RA, SET RB, SET R0 3 1
SKIP RA, SKIP RB, SKIP R0 3 2
EXAMPLES INVOLVING ADDRESS

MODIFICATIONS 3 2
ADDRESS COUNTER 3 4
ADDRESS MODIFICATION : GENERAL . . 3 5
COMBINED USE OF ADDRESS COUNTER AND

R-QUANTITIES 3 5

CHECKING 3 6

LISTING 3 8

TIMING 3 9
EXECUTION TIME FOR OPI 3 9
EXECUTION TIME FOR OP2 ... 4 1

APPENDIX 4 3

•

'

'

- - -—c

•

TYPE 701 SPEEDCODING SYSTEM

G E N E R A L I N F O R M A T I O N

SPEEDCO I is the name of a system—an integrated
combination of a large-scale digital computer and a
method by which that computer may readily be pro­
grammed to solve scientific and engineering problems.

The computer used is the IBM Type 701. Its in­
ternal high-speed memory on cathode-ray tubes will
be referred to as the electrostatic memory. When the
amount of storage available in the electrostatic mem­
ory is not large enough, magnetic drums are used to
store and supply large blocks of information for ready
access at frequent intervals. The drum memory is also
capable of retaining its contents while the power is
turned oflf, so that intermediate results remain avail­
able overnight when the machine is shut down. Any
part of the information on the drums may be selec­
tively altered by SpeedCo I at any time.

If a larger secondary memory is needed, or if in­
formation is to be filed away for future reference,
magnetic tapes may be used instead of magnetic
drums. Magnetic tape is a storage and input-output
medium that provides compactness, allows rapid read­
ing and writing, and can be re-used many times.

To achieve greater computing efficiency, the ma­
chine works internally in the binary number system.
The user of SpeedCo I will find, however, that this
fact does not in any way afifect the programming.
During SpeedCo I operation all numbers introduced
into the machine and all results printed by the ma­
chine are expressed in the decimal number system.
SpeedCo I automatically performs all necessary con­
versions between the decimal and binary number
systems.

The programs may be written and introduced into
the computer in various ways. Usually the instruc­
tions are key-punched on cards and read into the
machine. If the program is to be preserved for future
use, it can then be recorded on tape and filed away in
compact form. To prepare the machine for calculation,
the appropriate magnetic tapes are inserted in the tape
units, and the cards contaihing the instructions and
data of the problem are placed in the hopper of the
card reader. Pushing a button then causes the machine

to store the program and data of the problem and start
calculating. From then on, operation of the computer
is fully automatic, with all its components under com­
plete control of the program, although it is possible for
the operator to interrupt the calculation manually at
any time.

The primary unit of information handled by
SpeedCo I consists of 72 binary digits and is called
a word.

S T O R A G E

INFORMATION may be stored in electrostatic storage,
on magnetic drums, and on magnetic tape. The follow­
ing description covers, in general terms, the nature
and extent of each of these storage media.

Electrostatic Storage

The heart of the machine is the electrostatic storage
unit, through which all information to and from all
other components of the machine must pass. Electro­
static storage consists of a bank of cathode-ray tubes.
Information is stored on the screens of the tubes
through the presence or absence of charged spots at
certain locations on the screens. In this way a certain
number of binary digits (or bits) may be stored on
each tube. SpeedCo I provides for 714 words of this
sort of storage.

The principal advantages of electrostatic storage
over other types are the very small time necessary to
extract information from any given location and send
it to the computing unit, and the fact that the pro­
grammer has random access to any electrostatic stor­
age location. Information is lost when the power is
turned off.

Magnetic Drums

Additional storage capacity is provided by two
magnetic drums. These drums are rotating cylinders
surfaced with a material that can be magnetized lo­
cally. Binary digits are stored on a drum through the
presence or absence of small magnetized areas at cer­
tain locations on the surface of the drum. Each drum
has a storage capacity of 1024 words. Information is

7

8 T Y P E 7 0 1 S P E E D

transmitted to and from drum storage only through
electrostatic storage. When such a transfer of infor­
mation occurs, the machine is said to write on or read
from the drum.

Any part of the information on a drum can be selec­
tively altered by SpeedCo I at any time. Because access
to individual words on a drum is slow compared to
electrostatic storage access, it is more efficient to use
the drums for storing large blocks of information.
After the first word of such a block has been located,
the remaining words are read at the rate of 400 per
second. Magnetic drums will retain stored information
even when the power is turned off.

Magnetic Tapes
There is also a tape-storage section which includes

four magnetic tape units. Each tape, which may be up
to 1400 feet long, is wound on a reel. The tape itself is
a non-metallic, oxide-coated band one-half inch wide.
Binary information is recorded on tape by means of
magnetized spots. A block of words recorded consecu­
tively on a tape is called a record or a unit record. The
amount of information contained on each tape depends
on the lengths of the individual records, because there
is a certain amount of space between successive rec­
ords to allow for starting and stopping the tape. It is
possible to store approximately 140,000 words on
each tape. The machine can read or write on a tape
only through the medium of electrostatic storage. On
the average, about 10 milliseconds are needed for the
tape to accelerate to its reading or writing speed, after
which the reading or writing of a unit record takes
place at the rate of 625 words per second. Because
the tapes are removable, a library of standard pro­
gramming and mathematical tables may be kept on
tapes.

C O M P U T I N G

THE NUMBERS handled by SpeedCo I are expressed in
scientific, or floating-point, notation. Every number
read, stored, computed or printed is of the form

F X R E

where F is the fractional part, R is the radix of the
number system used, and E is the exponent.

All numbers that are of direct concern to the pro­
grammer (that is, all numbers read into or printed by
the machine) are expressed in the decimal system.
For these numbers the following relationships apply:

1. R = 10

C O D I N G S Y S T E M

2. 0^ |£| ̂ 236

3 f ^ | E | < l o r E = 0

(.For less restricted input, see Appendix B

Note particularly that the absolute value of the deci­
mal exponent of any quantity read into or printed by
the machine may not be greater than 236. Any attempt
to read or print an exponent that does not fall in this
range will result in an automatic machine stop.

The fractional part F is a ten-decimal digit fraction.
Hence the maximum precision attainable by SpeedCo I
is one part in 1010.

Numbers that do not come to the direct attention
of the programmer (that is, numbers handled inside
the machine) are expressed in the binary system. For
these numbers the corresponding relationships are:

1 . R = 2

2. 0^ |F| ^ 131,071

3 . | ^ | F | < l o r F = 0

As has been pointed out above, the necessary con­
versions between the decimal information read into
and printed by the machine and the binary informa­
tion used inside the machine are performed automati­
cally by SpeedCo I. Note, however, that SpeedCo I
permits the binary quantities inside the machine a
much greater magnitude range than is permitted those
quantities to be converted to decimal and printed. In
this connection the programmer should not attempt to
print any quantity whose decimal exponent is larger,
in absolute value, than 236.

It is important to note that because of the intrinsic
error involved in conversion from the decimal float­
ing-point form to the binary floating-point form, the
programmer should not expect an exact correspond­
ence between his decimal input and the resulting
binary numbers stored in the machine. For example,
the floating-decimal number with fractional part +.1
and exponent part +1 (which is a floating-decimal
representation of the integer 1) happens to result in
the stored binary number 1 -f- 2-34.

Numbers are stored in the various memory organs
of the machine as shown in Figure 1.

Because 3y$ bits are about equivalent in informa­
tion content to one decimal digit, the 35 bits allotted
to the fractional part are more than adequate to
preserve the precision of the ten decimal-digit-input
quantities.

C O M P U T I N G 9

+ F + E —

1

-<

1

2

1

-< 7

1

2 Jits

Bit Positions Item

1 Sign of the quantity
2-36 Fractional part
37 Sign of the exponent

38-54 Exponent
55-72 These bit positions are not used

FIGURE 1

Each portion of the electrostatic memory capable of
storing a word is called a storage location or a mem­
ory cell. These locations are numbered. The number
associated with any particular location is called its
address. In SpeedCo I the 714 locations available to
the programmer are numbered from 300 to 1013, in­
clusive.

In describing a program, it is frequently necessary
to refer to a particular location in memory. These
references are often conveniently abbreviated by re­
ferring merely to the address itself. For instance, the
phrase "x is stored at a" is customarily used in place
of the more precise phrase "the quantity x is located
in that memory cell whose address is the integer a."
The same phrase is often further abbreviated to:

L (x) = a

Similarly, it is often necessary to refer to the word
stored in a particular memory cell. This word is usu­
ally referred to as "the contents of a" or "the quantity
at a" where in both cases the precise phrase abbrevi­
ated is "the quantity located in that memory cell whose
address is the integer a." The symbolic abbreviation
used here is:

Q (a) = x

To cause SpeedCo I to carry out a numerical calcu­
lation, the programmer must supply four pieces of
information. The first of these, referred to as OP1;

tells the machine which numerical operation it is to
perform. The second and third, designated A and B,
are the addresses in electrostatic storage, of the two

operands. The fourth, C, is the address of the electro­
static memory cell in which the result is to be stored.

This information having been supplied, SpeedCo I
then selects the two numbers located at memory cells
A and B, performs upon them the operation OP!, and
sends the result to electrostatic memory cell C where
it is stored in place of the previous contents of C.

The following paragraphs describe the elementary
arithmetic operations in general terms. The actual
methods and instructions necessary for performing
these operations are explained later.

Addition and Subtraction

The addition operation is performed as follows.
The exponent at A is compared with the exponent

at B. If these exponents are not equal, the fractional
part associated with the smaller exponent is shifted to
the right as many binary places as are necessary to
make the two exponents equal.

The fractional parts are then added algebraically.
Next the machine checks the fractional part of the
result. If the absolute value of this fractional part is in
the range equal to or greater than one-half and less
than one, the fractional part and the exponent are
stored at C. If this absolute value falls outside this
range, however, the fractional part itself is shifted to
the left or right as necessary to restore it to this range,
and the exponent is modified accordingly. The new
fractional part and exponent are then stored at C. In
the case where the two operands are exactly equal and
of opposite sign, plus zero is stored as the fractional

10 T Y P E 7 0 1 S P E E D C O D I N G S Y S T E M

part of the result, and the decimal equivalent of the
stored exponent of the result becomes minus 235.

Subtraction proceeds in exactly the same way—
except, of course, that the fractional part at B is alge­
braically subtracted from the fractional part at A.

Both addition and subtraction may also be per­
formed, if the programmer so desires, by using the
absolute value of the quantity at B in conjunction with
either the algebraic or the absolute value of the quan­
tity at A.

Multiplication

Two computations are performed. In one, the frac­
tional part at A is multiplied by the fractional part at
B. In the other, the exponent at A is added to the
exponent at B. The absolute value of the product of
the fractional parts is then checked.

If this absolute value is equal to or greater than
one-half, the product of the fractional parts is then the
fractional part of the product, and the sum of the ex­
ponents is the exponent of the product. These numbers
are therefore stored at C. If, on the other hand, the
absolute value of the product of the fractional parts is
less than one-half, the fractional part of the product is
obtained by doubling the product of the fractional
parts, and the exponent of the product is formed by
reducing the sum of the exponents by one. These
modifications having been made, the result is then
stored at C.

Two multiplication operations are available. The
one forms the product with its correct algebraic sign.
The other forms the negative of the product.

Division

Here also two computations are performed. In one,
one-half of the fractional part at A is divided by the
fractional part at B to obtain a 35-bit rounded quo­
tient. In the other, the exponent at B is subtracted
from the exponent at A. The absolute value of the
quotient of the fractional parts is then checked. If this
absolute value is less than one-half, the fractional part
of the quotient is taken as twice the quotient of the
fractional parts, and the difference of the exponents is
the exponent of the quotient. If, on the other hand, the
absolute value of the quotient of the fractional parts is
greater than or equal to one-half, the fractional part of
the quotient is taken as the quotient of the fractional
parts, and the exponent of the quotient is formed by

increasing the difference of the exponents by one.
These modifications having been made, the result is
then stored at C.

Two division operations are available. The one
forms the quotient with its correct algebraic sign. The
other forms the negative of the quotient.

If during any division operation the fractional part
of the divisor happens to be zero, the calculator will
stop and a signal light called the Divide-Check light
will light up on the operator's panel.

Elementary Arithmetic Operations: General

Note that each of the above ten operations takes
two numbers already expressed in the standard float­
ing-binary form previously specified, performs upon
them the desired elementary arithmetic operations,
and then adjusts the result so that it, too, is in the
standard form.

Note also that the result returned to memory by
any one of these operations is not rounded—except in
the case of division, where either a 35-bit or a 34-bit
rounded quotient is obtained.

C O N T R O L

SPEEDCO I is a stored program system in which the
programmer's instructions to the machine are all
stored in the machine's memory before the calculation
begins. The procedure leading to this result is:

1. The programmer analyzes his problem and
breaks its solution down into the basic steps that
SpeedCo I can perform.

2. By means of an alphamerical code, determined
by the design of SpeedCo I, he translates these
steps into a form that can be interpreted by the
machine. Each of these steps, which will here­
after be referred to as an instruction, is then
stored in the machine's memory.

3. Data necessary for the solution of the problem
are also stored in the memory of the machine.

4. Upon completion of this storing process, calcu­
lation automatically begins with the execution
of the instruction which is at that time in electro­
static memory cell 300. From this point on the
machine operates without any further interven­
tion on the part of the programmer, automati­
cally locating and executing all succeeding in­
structions of the program.

C O N T R O L 1!

A complete analysis of the SpeedCo I instruction
system follows.

Program Counter

The numerical representation of an instruction oc­
cupies the space of one word in memory. SpeedCo I
instructions may temporarily be stored on drums or
tape, but at the time they are to be used they must be
in electrostatic storage.

A program contains a set of instructions, usually to
be executed in sequence, which will cause the machine
to compute a desired result. These instructions are
ordinarily introduced into consecutively-numbered
storage locations in the order in which they are to be
executed. The reasons for this follow.

Each time an operation is to be performed, the ma­
chine looks up the instruction in electrostatic memory,
executes it, and then goes back to the memory for the
next instruction. The order in which instructions are
executed is controlled by the program counter. This
counter contains the address of the instruction cur­
rently being executed. After each execution, the num­
ber in this counter is automatically increased by one.
Consequently, the machine automatically takes its
next instruction from that electrostatic storage loca­
tion whose address is one higher than the address of
the cell from which the current instruction was ob­
tained. In this way the machine continues to execute
instructions in the sequence in which they were stored
in memory.

This normal sequence of instructions can be altered
by means of certain transfer operations explained
below. By means of these operations, any electrostatic
storage location from 300 to 1013 inclusive can be
designated as the source of the next instruction. The
transfer operation used accomplishes this result by
placing into the program counter the address of the
designated storage location. Following this, the ma­
chine looks up and executes the instruction in the
designated memory cell; thereafter, execution of the
program proceeds sequentially from this new electro­
static storage location. Under these circumstances, a
transfer of control is said to have occurred.

An important observation about stored program
technique should be noted. Instructions are stored in
the machine just like numerical data; the only distinc­
tion between the two is the way they are interpreted
by the machine. Hence the addresses that are part of
SpeedCo I instructions may be modified while they
are in the machine through the use of special opera­

tions. Thus, one part of a program may modify an­
other instruction of the same program by directing
the machine to compute a new address, or new ad­
dresses, for the instruction to be modified.

A further consequence of the fact that both data and
instructions are stored in the machine's memory in the
form of binary words is that if, for any reason, a
transfer operation enters the address of a piece of data
into the program counter, the data at that location will
be interpreted as if it were an instruction. Exactly
what will happen when SpeedCo I attempts to execute
this instruction is in general quite unpredictable, but
certainly such misuse of a transfer operation is bound
to result in erroneous calculations.

A further similar difficulty will arise if a transfer
operation enters any address from 0 to 299 or 1014 to
1023 into the program counter. During SpeedCo I
operation these electrostatic-storage regions are al­
ways occupied by a block of control information. If it
were not for this control information, the 701 would
operate under the guidance of its own built-in control
circuits only, and would therefore behave as a fixed-
point binary calculator. The combination of the
built-in 701 circuitry and the control information
(stored in electrostatic memory cells 0 to 299 and
1014 to 1023) enables SpeedCo I to read and print in
the decimal system, to calculate on a floating-point
basis and to perform those other SpeedCo I operations
that are not part of the machine's built-in order code.

Because this control information has been stored
in these electrostatic locations, it is necessary that
SpeedCo I programs be so written as to use only those
memory cells with addresses from 300 to 1013 inclu­
sive. In particular, a transfer operation that enters
any number not in this interval (300 to 1013) into
the program counter, is always in error, since it will
cause the control information at that location to be
interpreted as if it were an instruction. Here too it is
impossible to predict exactly what will happen when
SpeedCo I attempts to execute this instruction, but it
is again true that the results will be erroneous.

Instruction Layout

Each operation that SpeedCo I can execute is as­
signed an alphabetical-code designation and a numeri­
cal-code designation. The alphabetical designations
have been chosen on a mnemonic basis, and consist of
combinations of from two to five letters each. These
alphabetical designations are solely a programming
convenience, however, because the calculator is not

12 T Y P E 7 0 1 S P E E D

able to recognize them. If the programmer has pre­
pared his program using these alphabetical designa­
tions, his instruction cards must first be processed on
standard IBM sorting and gang punching equipment.
The effect of this preliminary processing will be to
punch in the cards of his instruction deck the numeri­
cal code designations that correspond to the various
alphabetical code designations used in his program.
This having been accomplished, the instruction cards
are then ready to be loaded by SpeedCo I, because the
machine uses the numerical designations to identify
the desired operations.

If the programmer is willing to forego the mne­
monic advantages of the alphabetical code, there is no
reason why he cannot prepare his program entirely in
numerical form, specifying each desired operation by
giving its numerical designation. This procedure has
the advantage of making the preliminary sorting and
gang-punching operations referred to above unneces­
sary.

Each numerical code designation is a three-digit
integer. The complete list of all SpeedCo I opera-

C O D / N G S Y S T E M

tions, together with their alphabetical and numerical
code designations, appears in the section entitled
Operations.

In general, each SpeedCo I instruction may specify
two distinct operations, referred to as OPj and OP2.
A summary of the OPi operations is as follows: ele­
mentary arithmetic operations, computation of square
root, evaluation of elementary trigonometric and ex­
ponential functions, transfers of information between
tapes or drums and electrostatic storage, and final-
result printing.

The addresses A, B and C are used in connection
with the OPi operations.

Frequently it is desirable to be able to execute the
same series of instructions a number of times, each
time increasing or decreasing any or all of the ad­
dresses A, B and/or C by one. As will be explained in
the section entitled Address Modification, SpeedCo I
provides a convenient means of accomplishing this
purpose. In order to designate which addresses, if any,
should be so modified, the programmer includes in
each instruction a quantity called the R-code. In addi-

OP, OP2

*3' - 1 2 - 10—Hi 1 0 - - 1 0 - 2 h*3-i

72 Bits

Bit Positions Item

1 Sign of instruction (automatically
supplied by SpeedCo I)

2 Always zero
3-5 R-code

6 Always zero
7-18 OPi

19-26 OP2

27-36 D
37 Always zero

38-47 A
48-57 B
58-59 Always zero
60-62 L
63-72 C

FIGURE 2

O P E R A T I O N S

tion to the above information, each instruction (in all
but a few exceptional cases to be pointed out later)
can also call for an OP2 operation.

A summary of the OP2 operations follows: condi­
tional and unconditional transfers of control, address-
modification operations, and error-checking opera­
tions.

Each instruction also contains an address portion
designated D. The D address is used in connection
with almost all OP2 operations.

13

Finally, every instruction contains a portion desig­
nated L. The numbers coded here, together with the
positions of certain switches on the operator's panel,
control a detailed listing of the entire program—in­
structions, intermediate results and final results. This
feature is extremely helpful in tracking down pro­
gramming errors when the program is first being
tested.

Instructions are stored in the various memory
organs of the machine as shown in Figure 2.

O P E R A T I O N S
FOLLOWING is a list of all SpeedCo I operations. For convenient reference, the
descriptions are given in abbreviated form. Complete descriptions of all these
operations appear in other sections.

OPi Operations
Alphabetical

Code
Numerical

Code Name Description

ADD 658 Add 0 (A) -f- Q (B) = Q (C)
SUB 696 Subtract 0 (A) - Q (B) = 0 (C)
ADDAB 699 Add absolute Q (A) + |Q (B) | = 0 (C)
ABADD 703 Absolute add |0 (A)| + |0 (B)| = Q (C)
SUBAB 707 Subtract absolute 0 (A) - |Q (B) | = Q (C)
ABSUB 711 Absolute subtract |Q (A)| - |0 (B)| = Q (C)
MPY 715 Multiply 10 (A)] X [Q (B)] = Q (C)
NGMPY 731 Negative multiply - [0 (A)] X [Q (B)] = 0 (C)
DIV 734 Divide [0 (A)] - [Q (B)] = Q (C)
NGDIV 748 Negative divide - [Q (A)] -i- [Q (B)] = 0 (C)
SQRT 782 Square root V0 (A) = Q (C)
SINE 780 Sine sin [0 (A)] = 0 (C)
ARTAN 781 Arc tangent tan"1 |0 (A)] = 0 (C)
EXP 783 Exponential EKMAU = Q (C)

LN 784 Logarithm log, [Q (A)] = 0 (C)

MOVE 690 Move The block of information stored in electrostatic cells A to
B is stored in electrostatic cells C to C T B — A. See
Appendix E.

WRTPJ 532 Write tape J The block of information stored in electrostatic cells A to
WRTPK 533 Write tape K B is written on the designated tape. The most recent
WRTPL 534 Write tape L previous instruction affecting the same tape must be
WRTPM 535 Write tape M either WRITE or REWIND.

RFTPJ 435 Read forward tape J The first B — A -j- 1 words of the next block of informa­

RFTPK 437 Read forward tape K tion store'd on the designated tape are read and stored in

RFTPL 439 Read forward tape L electrostatic cells A to B. (Notes 1, 3, and 4.)
RFTPM 441 Read forward tape M

T Y P E 7 0 1 S P E E D C O D I N G S Y S T E M

RBTPJ 416 Read backward tape J
RBTPK 417 Read backward tape K
RBTPL 418 Read backward tape L
RBTPM 419 Read backward tape M

SFTPJ 556 Skip forward tape J
SFTPK 557 Skip forward tape K
SFTPL 558 Skip forward tape L
SFTPM 559 Skip forward tape M

SBTPJ 546 Skip backward tape J
SBTPK 547 Skip backward tape K
SBTPL 548 Skip backward tape L
SBTPM 549 Skip backward tape M

RWTPJ 572 Rewind tape J
RWTPK 574 Rewind tape K
RWTPL 576 Rewind tape L
RWTPM 578 Rewind tape M

EFTPJ 564 End file tape J
EFTPK 566 End file tape K
EFTPL 568 End file tape L
EFTPM 570 End file tape M

WRDRP 497 Write drum P
WRDRQ 498 Write drum Q

RFDRP 526 Read forward drum P
RFDRQ 528 Read forward drum Q

PRINT 580 Print

EJECT 767 Eject

NOOP 751 No operation

The first B — A -(- 1 words of the preceding block of
information stored on the designated tape are read and
stored in electrostatic cells A to B. (Notes 2, 3, and 5.)

The designated tape is advanced (without being read) to
the end of the next block of information. (Notes 1 and 4.)

The designated tape is backspaced (without being read)
to the beginning of the preceding block of information.
(Notes 2 and 5.)

The designated tape is rewound to its starting position.
The most recent previous instruction affecting the same
tape may have been anything except WRITE.

The next 6 feet of the designated tape are erased. This
erased length identifies the end of the tape during future
tape reading operations. The most recent previous in­
struction affecting the same tape must be WRITE.

The block of information stored in electrostatic cells A to
B is written on the designated drum starting at drum
address C. The writing process is then automatically
checked. If any errors are detected the program skips the
next two instructions.

The block of information stored on the designated drum
starting at drum address C is read and stored in electro­
static cells A to B.

The block of data stored in electrostatic cells A to B is
printed. For identification purposes the C address and a
line number are printed at the left end of each line of the
report.

The printer paper is ejected. (See Appendix C.)

Note 1: The most recent previous instruction affecting the same tape must be either
READ FORWARD, READ BACKWARD, SKIP FORWARD, SKIP BACKWARD or RE­

WIND.

Note 2: The most recent previous instruction affecting the same tape must be either
READ FORWARD, READ BACKWARD, SKIP FORWARD, SKIP BACKWARD Or END

FILE.

Note 3 : If the recomputed check sum fails to agree with the check sum on the tape,
the program skips the next two instructions.

Note 4: If the designated tape is already at the end-of-file gap when this instruction
is given, the program skips the next instruction.

Note 5: If the designated tape is already at the beginning-of-file gap when this
instruction is given, the program skips the next instruction.

O P E R A T I O N S

OP2 Operations
Alphabetical Numerical

Code Code Name Description

TR 104 T ransfer Control is unconditionally transferred to electrostatic
cell D.

TRPL 109 Transfer plus Control is transferred to electrostatic cell D if Q (C) is
positive.

TRMN 115 Transfer minus Control is transferred to electrostatic cell D if Q (C) is
negative.

TRZ 112 Transfer zero Control is transferred to electrostatic cell D if the frac­
tional part of Q (C) is zero.

SNTRP, 117 Sense and transfer P Control is transferred to electrostatic cell D if operator's

SNTRQ 120 Sense and transfer Q panel sense switch P (or Q) is down. (These sense Sense and transfer Q
switches, P and Q, are numbered 4 and 5, respectively,
on the operator's panel.)

TIA 128 Transfer and increase Ra RA, Rb. and R0 are quantities stored in electrostatic

TIB 126 Transfer and increase RB memory which can be used to modify the addresses A, B,

TIC 125 Transfer and increase Rc and C, respectively. Execution of one of these instruc­

TIAB 130 Transfer and increase Rab tions increases each of the designated R-quantities by one

TIBC 127 Transfer and increase RBc and transfers control to electrostatic cell D.

TIAC 129 Transfer and increase RAc
TIABC 131 Transfer and increase Rabc

TDA 135 Transfer and decrease Ra Same as the corresponding transfer-and-increase opera­

TDB 133 Transfer and decrease RB tions except that each of the designated R-quantities is

TDC 132 Transfer and decrease Rc decreased by one.

TDAB 137 Transfer and decrease Rab

TDBC 134 Transfer and decrease RBc
TDAC 136 Transfer and decrease Rac

TDABC 138 Transfer and decrease Rabc

SETRA 139 Set RA The designated R-quantity is replaced by the D address.

SETRB 250 Set RB

SETRC 145 Set Rc

SKRA 152 Skip RA The program skips the next instruction if the designated

SKRB 159 Skip Rk R-quantity is equal to the D address.

SKRC 162 Skip Rc

RADDA 199 Reset and add A The designated address of the instruction located at D is

RADDB 202 Reset and add B added into the address counter after this counter has

RADDC 205 Reset and add C been reset to zero.

RADDD 208 Reset and add D

ADDA 177 Add A The designated address of the instruction located at D is

ADDB 184 Add B added to the contents of the address counter.

ADDC 190 Add C

ADDD 193 Add D

SUBA 211 Subtract A The designated address of the instruction located at D is

SUBB 216 Subtract B subtracted from the contents of the address counter.

SUBC 221 Subtract C

SUBD 226 Subtract D

16 T Y P E 7 0 1 S P E E D C O D I N G S Y S T E M

STA 251 Store A
STB 252 Store B
STC 235 Store C
STD 244 Store D

SKIP 165 Skip

PRCH 232 Prepare check

STCH 253 Start check

ECHTR 254 End check and transfer

STOP 123 Stop and transfer

000 No operation

The designated address of the instruction located at D is
replaced by the contents of the address counter.

The program skips the next instruction if the D address
is equal to the contents of the address counter.

This operation must always be given prior to the first use
of the start-check operation.

This operation causes the instruction of which it is a part
to become the first instruction in a checking loop, that is,
in a sequence of instructions which will be performed
twice to check for machine errors.

This operation causes the instruction of which it is a part
to become the last instruction in a checking loop. The
first time it is encountered it causes a transfer to D,
where D is usually the location of the preceding start-
check operation. The second time it is encountered it
compares the results of the two passes through the loop.
If the results are the same the next instruction is skipped.
If there is a discrepancy this skip does not occur.

Upon encountering this instruction the calculator stops.
If it is then restarted by the operator, the first instruction
executed is a transfer of control to D. At the time of the
stop, the address D is visible (in binary) on the accumu­
lator register lights on the operator's panel.

(Note that the alphabetical code for no OPx is NOOP, and for no OP2 is simply a blank.)

E L E M E N T A R Y M A T H E M A T I C A L
F U N C T I O N S

SPEEDCO I provides for the direct computation of the
following elementary mathematical functions: square
root, sine, arc tangent, exponential, and natural loga­
rithm.

For each of these operations the programmer must
specify the appropriate alphabetical or numerical OPi
code, the address A of the independent variable, and
the address C at which the result is to be stored. These
instructions do not require the specification of a B
address; hence the number coded there is immaterial.

The present available set of these five elementary
functions is designed to give at least seven significant
decimal digits of accuracy. For details as to the range
of the argument and accuracy of approximation, see
Appendix A.

Problems may arise where the accuracy provided is
inadequate. In such cases it is possible to modify the
SpeedCo I control information to obtain greater accu­
racy. Such modifications may, however, increase the
storage requirements for this control information.
Hence the programmer must balance the advantages
of greater precision against the disadvantage that the
electrostatic storage capacity may decrease from the
714 words now available with the present approxima­
tions.

Descriptions of alternative sets of approximations
will be added to the appendix as they become available.

I N P U T - O U T P U T C O M P O N E N T S
THE CARD READER, printer, magnetic tapes and mag­
netic drums are all classified as input-output compo­
nents of the machine, because they all share the com-

I N P U T - O U T P U T C O M P O N E N T S 17

PROGRAM
LABEL

A
ADDRESS

D
ADDRESS

0 0 0 0 0 0 0
1 2 3 4 5 8)

t 1 1 1 1 1 1

2 2 2 2 2 2 2

2 3 3 3 3 3 3

4 4 4 4 4 4 4

5 5 5 5 5 5 5
6 6 6 6 6 6 6

7 7 7 7 7 7 7

8 8 8 8 8 8 8

9 9 9 9 9 9 9
1 2 3 4 5 S 7

0 0 0 01
Id II 12 13

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

7 7 7 7

9 9 9 9
10 11 12 13

63052

0 0 0 0 0
IS ts I) 18 19

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

6 6 6 6 6

7 7 7 7 7

8 8 8 8 8

9 9 9 9 9
15 18 17 18 19

0 D 0 0
21 22 23 24

1111

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

7 7 7 7

8 8 8 8

0 0 0 0
25 26 27 28

1111

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

7 7 7 7

00001
29 30 31 32

1111

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

7 7 7 7

0 0 0 0 0
35 36 37 38 39

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

6 6 6 6 6

7 7 7 7 7

0 0 0 0
40 41 42 43

1111

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

7 7 7 7

0 0 0
46 47 48

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

0 0 0
49 50 51

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

& 8 8

9 9 9
49 50 51

0 0 0 0
52 53 54 55

O O O O O O G O O O O O O O O O O O D O O O O O O
56 57 58 59 60 61 62 63 64 65 66 67 68 63 70 71 72 73 74 75 76 77 70 79 8C

1

2

3

4

5

6

7

8 8 8 8 8 8 8 8 8 8 8 . 8 8 8 8 8 8 8 8 8 8 8 8 8 8

9
56 57 58 53 GO 61 62 63 04 65 GO 67 GO 59 70 71 77 73 74 75 75 77 75 79 80

FIGURE 3

mon property of being able to automatically receive
information from, or transmit information to, electro­
static storage. In fact, it must be remembered that,
whenever information is transmitted from one com­
ponent of the machine to another, it must pass through
electrostatic storage.

Any machine component capable of automatically
transmitting information both to and from electro­
static storage (such as tapes and drums) may be re­
garded as an auxiliary storage (as distinguished from
the electrostatic working storage). However, the com­
mon input-output terminology will be used in this
section.

The computer has full automatic control over all
input-output components. As will be seen from what
follows, this control is exercised by means of the
stored program.

Punched Cards

SpeedCo I uses punched cards as its primary input
medium because of their great flexibility and because
of the availability of apparatus for key-punching, veri­
fying, and duplicating. Errors in key-punching are
easily detected and corrected. Input data may readily
be prepared on several key-punches simultaneously,
and the cards may then be collected for entry into the
computer. Cards are particularly desirable for manual
access to a file because they can easily be separated,
and their contents can be printed on them.

Instruction Card Form (Figure 3)

SpeedCo I instructions are initially entered into the
calculator by means of punched cards, one instruction
being punched per card. The punching fields are
shown in Figure 4.

Note that the instruction card form provides space
for both the alphabetical and the numerical OPx and
OP2 code designations. If the program has been writ­
ten using the alphabetical designations, the following
procedure applies: (1) the alphabetical designations
are key-punched from the programmer's manuscript
into card columns 15-19 and 35-39; (2) after the key­
punching has been verified, a sort and gang-punch
process is carried out which punches the correspond­
ing numerical designations into columns 46-48 and
49-51.

If, on the other hand, the program was written
using the numerical designations for OPt and OP2,
these numerical designations have only to be key­
punched and verified. In this case the alphabetical
fields (columns 15-19 and 35-39) are left blank, and
no sorting and gang-punching operations are nec­
essary.

Note that the Type 701 is controlled by the numeri­
cal code punching only, the alphabetical punching
being unintelligible to the machine. For this reason,
SpeedCo I instruction cards should never be fed into
the Type 701 with only the alphabetical OPx and OP2

code designations punched. All columns, except those

T Y P E 7 0 1 S P E E D C O D I N G S Y S T E M

Card Columns Symbol Description

1 - 7 Not used by SpeedCo I.
8 Must never have zero and one punch simultaneously.
9 Must always be blank.

10-13 Location Electrostatic memory location at which the instruction is to be stored.
14 Always punched zero.

15-19 OPi Alphabetical code designation for OPj.
20 R The digit coded here controls which of the addresses A, B and C are to be increased

by RA, RB and RC, respectively.
21-24 A Address in electrostatic storage of the first operand.
25-28 B Address in electrostatic storage of the second operand.
29-32 C Address in electrostatic memory at which the result is to be stored.

33-34 Always punched zero.
35-39 OP2 Alphabetical code designation for OP2.
40-43 D Address used in connection with the OP2 operation.

44 L This digit, taken in conjunction with the positions of the three list switches labeled 1,
2, and 3 on the operator's panel, controls a detailed listing of instructions and results.

45 Not used by SpeedCo I.
46-48 OPx Numerical code designation for OPi.
49-51 OP2 Numerical code designation for OP2.
52-55 Always punched zero.
56-80 Not used by SpeedCo I.

FIGURE 4

specifically designated to be blank or not used and
except the alphabetical operation codes, must have a
single numerical punch.

Data Card Form

Data are initially entered into the calculator by
means of punched cards, five or fewer pieces of data
being punched per card. The punching fields are
shown in Figure 5.

A sign must be specified for each fractional part
and each exponent. In each case the sign is punched
over the least significant digit of the fractional part or
exponent to which it applies. A 12 punch means plus,
and an 11 punch means minus. If the word count is
less than 5, the irrelevant signs need not be punched,
but the card itself must be filled out with zeros or, at
least, some single numerical punch for each irrelevant
column.

In no case may the absolute value of an exponent
exceed 236.

Card Reader

The process of loading the data and instructions of
a program into the calculator is carried out as follows.

The data and instruction cards are key-punched and
verified, and any necessary sort-and-gang-punch oper­
ations are performed. The programmer will be sup­
plied with a certain constant deck of cards labelled
SPEEDCODING i. (This deck will contain all of the con­
trol information necessary to cause the 701 to operate
according to the SpeedCo I system. The last card of
this deck will be labelled Transfer Control Card.)
From this constant deck and his own variable deck he
will make up a single deck by inserting his variable
deck between the last and the next-to-last card of the
constant deck, and adding three blank cards after the
last card of the constant deck. The resulting deck is
then placed in the hopper of the card reader, and the
card-reader start button is depressed to ready the card
reader. The calculator is then started by pressing the
load button on the operator's panel. No further man­
ual intervention is necessary, subsequent operation
being entirely automatic.

The cards in the hopper feed through the card
reader, and the information on them is transmitted to
electrostatic storage. SpeedCo I then directs and con­
trols the conversion of the decimal information read
from the cards.

In the case of instruction cards, the information is

I N P U T - O U T P U T C O M P O N E N T S 19

converted to binary and assembled in the standard
binary instruction form given in the section entitled
Control. In the case of data cards, the conversion
process involves not only the change from decimal to
binary, but also includes the change from the powers-
of-ten punched on the cards to the powers-of-two
employed within the calculator. This converted data
is then assembled in the standard floating-binary-
number form given in the section on Computing. In

both cases the converted information is stored in
electrostatic memory at the designated locations. The
execution of the problem then automatically begins
with execution of the instruction stored at location
300.

During this read-in process the card reader oper­
ates at the rate of 150 cards per minute. Hence data is
read and converted at the rate of 750 numbers per min­
ute, while the rate for instructions is 150 per minute.

dm,
IDENTIFICATION T FIRST

Ni ni _

TV ~ +

N2

V

712 _

' I;.T~

if "

• v-4'

113 _ N 4 ru _

'*' 'TV TigSV

N 5 ns _

IBM 701 SPEEDCODING
SYSTEM

DATA CARD

Q O f l O O O Q O
1 2 3 4 5 6 7 8
1 1 1 1 1 1 1 1

2 2 2 2 - 2 2 2 2

' 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5

6 6 6 6 E 6 6 6

7 7 7 7 7 7 7 7

8 8 8 8 8 8 8 8

9 9 9 9 9 9 9 9
! 7 5 3 4 5 S 7 S

9

8

3

0 C 0 0
10 II 12 13
1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

5 5 5 5

6 6 6 6

7 7 7 7

8 8 8 8

9 9 9 9
10 1" 12 13

a 0 0 0 G 0 0 D 0 G
14 15 16 17 15 19 20 27 T 23

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6 6 6

7 7 7 7 7 7 7 7 7 7

6 8 8 8 8 8 8 8 8 8

9 9 9 9 9 9 9 S 9 9
1 4 I S 1 6 1 7 1 8 1 9 3 0 2 1 2 2 2 3

0 0 0
2 4 2 5 2 6
1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9
2 4 2 5 2 6

0 0 0 0 0 0 0 0 0 0
2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6
1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6 6 6

7 7 7 7 7 7 7 7 7 7

8 8 8 8 8 8 8 8 8 8

9 9 9 9 9 9 9 9 9 9
2 7 2 ! 2 9 3 0 3 1 3 2 3 7 3 4 3 5 3 6

0 0 0
3 7 3 9 3 9
1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9
3 7 3 8 3 9

o o o o o - ; - i o o o o o
40 41 42 43 44;4sj 47 48 49 50
1 1 1 1 1 H 1 1 1 1 1

2 2 2 2 2/.'2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 v 5 5 5 5 5

6 6 6 6 6,;.; E 6 6 6 6

7 7 7 7 7 y 7 7 7 7 7

8 8 8 8 8 '••'•8 8 8 8 8

:•!
9 9 9 9 9 -;i9 9 9 9 9
4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9

0 8 0
5 1 5 2 5 3
1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

3 8 8

9 9 9
5 1 5 2 5 3

0 0 0 0 0 0 0 0 0 0
5 4 5 5 5 6 5 7 5 6 5 9 G O 6 1 6 2 6 3
1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6 6 6

7 7 7 7 7 7 7 7 7 7

8 8 8 8 8 8 8 8 8 8

9 9 9 9 9 9 9 9 9 9
5 4 5 5 5 6 5 7 5 8 5 9 6 0 6 1 6 2 6 3

0 0 0
6 4 6 5 6 6
1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9
6 4 6 5 6 6

0 0 0 0 0 0 0 0 0 0
6 7 6 8 6 9 7 0 7 1 7 2 7 3 7 4 7 5 7 6
1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5

6 6 6 6 6 6 6 6 6 6

7 7 7 7 7 7 7 7 7 7

8 8 8 8 8 8 8 8 8 8

9 9 9 9 9 9 9 9 9 9
6 7 6 9 6 9 7 0 7 1 7 2 7 3 7 4 7 5 7 6

0 0 0
7 7 7 8 7 9
1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9
7 7 7 1 7 9

1

2

3

4

5

6 0

IBM 701 SPEEDCODING
SYSTEM

DATA CARD

I1M 8 30 5 2 0

Card Columns Symbol Description

1 - 7
8

Not used by SpeedCo I.
Always double-punched zero and one.

9 Always punched eight.
10- 13 Location Electrostatic memory location at which the first piece of data on the card is to be

stored. The remaining four pieces of data will be stored in the next n consecutively-
numbered locations, where n = 0, 1, 2, 3 or 4 depending upon whether the word
count is 1, 2, 3, 4 or 5, respectively.

14-23 N, First fractional part.
24-26 First exponent.
27-36 N 2 Second fractional part.
37-39 «2 Second exponent.
40 - 44 \ N 3

Third fractional part. (In punching NS column 45 must be skipped since this card
46- 50 /

N 3 column is not read by SpeedCo I.)
51 - 53 Third exponent.
54-63 N T Fourth fractional part.
64-66 «4 Fourth exponent.
67-76 Ns Fifth fractional part.
77-79 »5 Fifth exponent.

80 Word count Number of pieces of data on the card (= 1, 2, 3, 4 or 5).

FIGURE 5

20 T Y P E 7 0 1 S P E E D C O D / N G S Y S T E M

All calculations made in the process of converting
the decimal information on the cards to the required
binary form are automatically checked. Any discrep­
ancy causes the machine to stop and give an error
indication.

Magnetic Tape

Magnetic tapes may be used either as a high-
capacity long-term memory or as input from a pre­
vious problem that had stored its results on tape.
Input data from cards, including programs, can be
transcribed by the computer on tape to conserve stor­
age space or to save time when the data must be
repeatedly entered into the computer.

There are four tape units designated by the letters
J, K, L and M. Each contains a magnetic tape of any
length up to 1400 feet. After the tape has been placed
in motion, it can read or write information at the rate
of 625 words per second.

Information is recorded on tape in six channels that
run parallel to the length of the tape. A bit of informa­
tion is represented by a magnetized spot in a channel.
A set of six bits recorded in a line perpendicular to the
six channels will be referred to as a group of bits.
Twelve groups recorded serially on a tape are needed
to store one binary word of 72 bits.

A seventh channel on the tape serves to check the
reading and writing in the other six channels by the
so-called redundancy-check principle. That is, either a
0 or a 1 is recorded in the seventh channel so that
across the seven channels there is an odd number of
l's in each set of seven bits. When the tape is read, the
number of l's is automatically checked. If the number
is even, the calculator stops, and a signal light on the
operator's panel called the tape-check light is turned on.

If the number of l's is odd (as it should be when
correct), the machine continues the reading process.
It should be emphasized that the operation of this
seventh channel is completely automatic and requires
no attention whatever on the part of the programmer.

A schematic diagram of how a word of 72 bits is
recorded on tape is shown in Figure 6. Each x denotes
a binary 1 or 0 recorded in that position on the tape.
The 72 bits recorded in the six recording channels
represent the full word. The tape moves in the direc­
tion of the arrow. The group numbered 1 contains the
first six bits of the word. The remaining eleven groups
contain the following bits of the word in groups of six.
Thus, group 2 contains bits 7 through 12 of the
word, etc.

x x x x x x x x x x x x
x x x x x x x x x x x x
x x x x x x x x x x x x
x x x x x x x x x x x x
x x x x x x x x x x x x
x x x x x x x x x x x x
x x x x x x x x x x x x

1 2 1 1 1 0 9 8 7 6 5 4 3 2 f

FIGURE 6

Writing on Tape
The general procedure for writing a file of informa­

tion on tape is as follows. A write-tape instruction is
given. This instruction causes the selected tape to be
started in motion and causes it to record, as one unit
record, the information stored in that block of con­
secutively-numbered electrostatic memory cells which
begins at cell A and ends at cell B.

For example, consider the following write-tape
instruction:

OPi A B C

WRTPK 0301 0387 —

This instruction will cause the block of information
stored in electrostatic cells 301 to 387 inclusive to be
written, as a unit record, on tape K.

The writing process requires that all previous mag­
netic marks be erased from that portion of the tape
being written on. To accomplish this, an erasing appa­
ratus precedes the recording apparatus by approxi­
mately two inches. As the tape moves under the
impetus of the write-tape instruction, the erasing
apparatus is continually active, while the recording
apparatus does not operate until told to do so by
SpeedCo I.

If the write-tape instruction is given when the tape
unit is in the rewound condition (i.e., in position to
write a file of records), the actual writing on tape is
delayed eight-tenths of a second. The erase circuits,
however, are functioning during this time, and the
result is a blank portion of tape called the beginning-
of-file gap.

As soon as the beginning-of-file gap has been writ­
ten, the recording process begins. The selected tape
unit takes the word located at A and records it on the
tape as 12 six-bit groups in the manner shown in the
diagram above. Next the word at A+l is recorded.

REDUNDANCY
CHANNEL

SIX
RECORDING
CHANNELS

I N P U T - O U T P U T C O M P O N E N T S 21

This is followed immediately by the recording of the
word at A+2. This process continues until the word
located at B has been recorded.

During this process two other operations have also
been taking place. First, as each group of bits was re­
corded on tape, the corresponding redundancy bit was
automatically computed and recorded. Second, as the
successive words of the record being written were
selected from electrostatic storage a calculation was
carried on that resulted in the formation of a weighted
sum of all the binary information comprising the rec­
ord. This sum (called the check sum) is then auto­
matically recorded on the tape immediately behind the
word taken from location B.

Note that the length of the unit record is variable,
the number of words recorded being given by the ex­
pression B — A-j-1. This number of words and their
associated check sum having been written, the tape
unit automatically disconnects itself from the calcu­
lator and stops. Because of the time necessary for the
tape to come to a complete stop, and the two-inch dis­
tance between the erase head and writing head, there
results a small section of erased tape. The gap caused
by this erasure is called an cnd-of-record gap.

Note that the write-tape instruction makes no use
of the address C; and so any number coded in the C
address field is irrelevant to the execution of the
instruction.

The first unit record of the file has now been writ­
ten. To write a second unit record, a second write-tape
instruction is programmed. In this way a series of
records may be recorded. Note again that the records
may be of variable size if desired.

The complete recording on a tape consists of a num­
ber of unit records that make up a file of information.

Tapes can be re-used many times, and a new file can
be written over an old file, the old one being erased in

the process. Each time a new file is written, it is
started at the beginning of the tape, and only one
usable file of unit records can be on a tape at one time.
Different files, however, will have different lengths, so
that there is a possibility that beyond the last record
of the most recent record file, bits may be left over
from a previous use of the tape. These residual bits of
information may not be properly spaced in relation to
the record just written. This may result in an error
on a later reading of the new record.

To avoid having to erase the entire tape every time,
and for certain control purposes to be mentioned later,
an instruction called END FILE TAPE has been provided.
This instruction, which must be given after writing
any file, erases a further section of tape after the last
unit record. The section of tape erased in this way is
called an end-of-file gap.

For example, to end a file of records just written on
tape K, the following instruction should be given:

OPJ A B C
EFTPK — —

In this instruction the addresses A, B and C are
irrelevant to the execution of the instruction.

Figure 7 shows schematically how a typical file of
information is recorded on tape. The arrow designates
the forward direction of tape motion. Writing can be
done only when the tape is moving forward. A begin-
ning-of-file gap is followed by a number of unit rec­
ords with intervening end-of-record gaps. Note that
these gaps are of a fixed length regardless of the
lengths of the unit records themselves. Finally, an
end-of-file gap appears after the last unit record. Note,
too, that the machine operates so that the lengths of
the two gaps at each end of a file are equal to each
other, but are longer than the intervening end-of-
record gaps.

END-OF-RECORD GAPS

FIGURE 7

T Y P E 7 0 1 S P E E D C O D I N G S Y S T E M

To recapitulate, there are three kinds of gaps in the
recording of information on tape:

1. The normal spacing between successive groups
of six bits within a unit record.

2. The longer gap between unit records. This gap
is long enough to allow the tape to start and stop
between records.

3. The still longer gaps at the ends of the file.

Reading from Tape

The general procedure for reading a file of informa­
tion from tape is as follows.

Assume that the tape is in position to read the first
unit record of the file. A read-forward-tape instruction
is given. This instruction causes the selected tape to
be started in motion and causes it to transmit the first
B — A+l words of the first unit record to electro­
static memory where they are stored in that block of
consecutively-numbered memory cells which begins at
cell A and ends at cell B.

For example, consider the following read-forward-
tape instruction:

OPi A B C
RFTPK 0851 0885 —

If the first unit record of the file contains 35 words
(in establishing the number of words in a unit record
on tape, the check sum is not included in the count),
this instruction will cause those 35 words to be read
from tape K and stored blockwise in electrostatic
memory cells 851 to 885 inclusive. If, on the other
hand, the first unit record contains more than 35
words, this instruction will cause the first 35 of these
words to be read from the tape and stored in the desig­
nated memory cells.

In detail, the read-forward process proceeds as fol­
lows. The selected tape transmits the first word to
electrostatic memory where it is stored at A. Next the
second word is transmitted and stored at A+l. This
is followed immediately by the transmittal of the third
word and its storage at A+2. This process continues
until the word to be stored at B has been transmitted
and recorded in electrostatic memory.

During this process two other operations have also
been taking place. First, as each group of bits was read
from the tape, the corresponding redundancy bit was
also read and checked. Any discrepancy in this re­
dundancy check will stop the calculator and light the
tape-check light.

Second, as the successive words of the record being
read were transmitted to electrostatic storage, the
check sum was recomputed and compared with the
check sum read from the tape. Any discrepancy in this
comparison will cause the calculator to ignore the next
two instructions of the program and skip to the third
instruction following the read-forward-tape instruc­
tion.

Note that both of these checking procedures are
carried out for the entire unit record being read, even
in those cases where only part of the record is being
stored in electrostatic memory. In such cases the stor­
ing process is discontinued after the (B — A + 1)st
word has been read and stored, but the tape unit con­
tinues transmitting until all words of the unit record,
including the check sum, have been transmitted. Dur­
ing this latter phase, when the words being read from
tape are not being stored in electrostatic memory, the
redundancy-check process and the check sum calcula­
tion still continue. Hence if the calculator does not
stop, and if it does not skip the two instructions fol­
lowing the read-forward-tape instruction, the pro­
grammer is assured that the tape-writing and reading
process has been correctly performed.

Note also that since the reading process is always
continued to the end of the record, even when only
part of the record is stored in electrostatic memory,
the tape always stops at the end-of-record gap; this
concludes the record just read.

Because the read-forward-tape instruction makes
no use of the address C, any number coded in the C
address field is irrelevant to the execution of the
instruction.

If for any reason the A and B addresses of a read-
forward-tape instruction are so chosen that B — A+l
is larger than the number of words in the record being
read, the calculator will stop and a signal light on the
operator's panel called the copy-check light will be
turned on.

The process described above reads the first unit
record of the file. The remaining records of the file
may be read in the same way. After the last unit rec­
ord of the file has been read, the tape is positioned at
the end-of-file gap.

If, at this time, another read-forward-tape instruc­
tion is given, the designated tape unit starts up and
attempts to read another unit record. Instead of a unit
record, however, it finds the end-of-file gap. This
causes the calculator to ignore the next instruction of
the program and skip to the second instruction follow-

i

< C

V

-

I N P U T - O U T P U T C O M P O N E N T S 23

ing the read-forward-tape instruction. The pro­
grammer may then take advantage of this automatic
skip to go into a new phase of the program. This end-
of-file skip cannot be obtained from a blank tape; at
least one unit record must be written on the tape to
distinguish the normal space at the start of the file
from the end-of-file gap obtained by use of the end-
file-tape instruction.

It should be emphasized, however, that this is not
the only function of the end-of-file gap (see section en­
titled Writing on Tape). Even if the program is so
written as to make no use whatever of the end-of-file
skip feature, it is still necessary to give an end-file-tape
instruction after writing a file on tape.

Any OP2 operation may be used with a read-
forward-tape instruction. However, it is important to
note that SpeedCo I is so constructed that such an
OP2 operation will only be executed if neither the
check-sum-discrepancy skip nor the end-of-file skip
has occurred.

In certain types of programs it is convenient to be
able to read the unit records which make up a file on
tape in the reverse order from the order in which they
are written. To facilitate such tape reading programs,
the read-backward-tape instruction has been provided
as part of SpeedCo I.

The read-backward-tape instruction is very similar
to the read-forward-tape instruction.

They differ only in the following respects. When
KKAD BACKWARD TAPE is given, the designated tape is
first backspaced one unit record. During this back­
spacing no reading, checking or storing takes place.
The unit record is then read in the forward direction
and checked, exactly as in the read-forward-tape case.
The designated tape then backspaces once more—
again without reading, checking or storing. After exe­
cution of the read-backward-tape instruction, the tape
stops at the end-of-record gap that precedes, on the
tape, the unit record just reach

For example, assume that the tape to be read is
stopped at the end-of-record gap between the fourth
and fifth unit records on the tape. The instruction
READ FORWARD TAPE will read and store the fifth rec­
ord. and the tape will stop at the end-of-record gap
between the fifth and sixth unit records. If the instruc­
tion given had been a read-backward-tape instruction,
however, the fourth record would have been read and
stored, and the tape would have stopped at the end-of-
record gap between the third and fourth unit records.

Note that the addresses A and B have the same

significance in the instruction READ BACKWARD TAPE
as they have in the instruction READ FORWARD TAPE.
Thus the instruction READ BACKWARD TAPE causes
B — A + 1 words to be transmitted to electrostatic
memory and stored in cells A through B. If the unit
record contains more than this number of words, only
the first B — A + 1 words of the record are stored in
electrostatic memory (where first is used in the sense
first written).

The redundancy-check process and the check-sum
calculation are carried out for the entire unit record
involved, even though only part of the record may
be stored.

If any discrepancy is detected in the redundancy
check, the calculator will stop, and the tape-check light
will be turned on. If the recomputed check sum fails to
agree with the check sum read from the tape, the cal­
culator will skip the next two instructions.

If A and B are so chosen that B — A + 1 exceeds
the number of words in the record being read, the
calculator will stop, and the copy-check light will be
turned on.

In all three of the above cases the error is detected
during the second (or read-forward) phase of the
read-backward-tape instruction. For this reason the
tape comes to rest, not at the end-of-record gap that
precedes the record read, but at the end-of-record gap
that follows the record read. The final back-spacing,
which is normally part of the read-backward-tape in­
struction, does not take place when one of these three
error conditions is encountered.

The C address of the read-backward-tape instruc­
tion is irrelevant to the execution of the instruction.

When reading a tape backward, an end-of-file gap
is recognized just as in reading forward. After the
unit record at the beginning of the file has been read
backward, the tape will be positioned at the beginning-
of-file gap. A further read-backward-tape instruction
causes the tape unit to treat the beginning-of-file gap
as if it were an end-of-file gap, and the calculator skips
the next instruction.

As in the case of a read-forward-tape instruction,
any OP2 operation may be used with a read-backward-
tape instruction, but the OP2 operation will only be
executed if neither the check-sum-discrepancy skip
nor the end-of-file skip has occurred.

T a p e S k i p p i n g

Cases will frequently arise where the unit records
of a file on a tape must be read in a more-or-less ran-

2 4 T Y P E 7 0 7 S P E E D

dom order. The instructions READ FORWARD TAPE and
READ BACKWARD TAPE do not by themselves conven­
iently permit such tape reading, because the instruc­
tion READ FORWARD TAPE reads only the record which
immediately follows the end-of-record gap at which
the tape is stopped, while the instruction READ BACK­
WARD TAPE reads only the record which immediately
precedes this same end-of-record gap. In order to
facilitate random tape reading, therefore, the instruc­
tions SKIP FORWARD TAPE and SKIP BACKWARD TAPE
have been provided.

The instruction SKIP FORWARD TAPE advances the
designated tape one unit record, the tape stopping at
the end-of-record gap following the one at which it
was stopped when the instruction was given. No read­
ing or checking is performed.

The instruction SKIP BACKWARD TAPE backspaces
the designated tape one unit record, the tape stopping
at the end-of-record gap preceding the one at which
it was stopped when the instruction was given. Again,
no reading or checking is performed.

For example, suppose that the last operation involv­
ing tape K was a read-backward-tape-K instruction
that read and stored the fifth unit record of the file.
Tape K is therefore stopped at the end-of-record gap
between the fourth and fifth records. If the next record
to be read is the second, the programmer could accom­
plish this by giving the instruction SKIP BACKWARD
TAPE K two times, followed by the instruction READ
BACKWARD TAPE K.

The two skip-backward-tape-K instructions would
backspace tape K to the end-of-record gap between
the second and third records; and the read-backward-
tape-K instruction would read and store the second
record, the tape finally stopping at the end-of-record
gap between the first and second records.

The instructions SKIP FORWARD TAPE and SKIP BACK­
WARD TAPE both embody an end-of-file skip feature.
If SKIP FORWARD TAPE is given when the designated
tape is stopped at the end-of-file gap, or if SKIP BACK­
WARD TAPE is given when the tape is stopped at the
beginning-of-file gap, the calculator ignores the next
instruction and proceeds immediately to the execution
of the second instruction following the tape skip
instruction.

Any OP2 operation may be used with a skip-for­
ward-tape or skip-backward-tape instruction. How­
ever, it is important to note that such an OP2 opera­
tion will only be executed providing an end-of-file skip
has not occurred.

C O D I N G S Y S T E M

The A, B and C addresses of the instructions SKIP
FORWARD TAPE and SKIP BACKWARD TAPE are irrele­
vant to the execution of the instructions.

After the instruction SKIP FORWARD TAPE or SKIP
BACKWARD TAPE has been given and interpreted and
the actual tape motion has begun, the calculator pro­
ceeds with the interpretation and execution of the fol­
lowing instructions of the program without waiting
for the tape to come to a stop. If a subsequent instruc­
tion calls for the same tape while it is still in motion,
the program is automatically delayed until the tape
stops.

Tape Rewinding
The instruction REWIND TAPE is used to cause the

designated tape to return to the starting point of its
file of records.

When writing a file of unit records on a tape, the
instruction REWIND TAPE should not be given until
after the instruction END FILE TAPE has been used to
terminate the file.

The A, B and C addresses of the instruction RE­
WIND TAPE are irrelevant to the execution of the in­
struction.

After the instruction REWIND TAPE has caused the
rewinding action to begin, the calculator proceeds to
the following instructions of the program without
waiting for the tape to stop. If a subsequent instruc­
tion calls for the same tape before the actual rewinding
is complete, the program is then automatically delayed
until the tape comes to a stop.

Tape Status
It is not possible both to read and write on a single

passage of a tape in one direction through the tape
unit. If information is being written on a tape, the file
should first be completed by writing an end-of-file gap
before the information is read. The tape can then be
read backward immediately, or it can be rewound and
then read in the forward direction. When a tape has
been used for reading, it must first be rewound before
any new information can be written on it.

Circuits associated with each tape unit remember
whether the tape is being read or written. When the
circuits are set up for reading, the tape unit is said to
be in read status; when the circuits are set up for
writing, the tape unit is said to be in write status. If
the tape unit is in neither read status nor write status,
it is said to be in neutral status.

I N P U T - O U T P U T C O M P O N E N T S 25

When a tape unit is in read status, it may be used
only for reading and skipping; when in write status, it
may be used only for writing. If the instruction WRITE
TAPE is given for a tape unit that is in read status, the
instruction is not executed, the calculator stops, and
the copy-check light is turned on. Similarly, if any one
of the instructions READ FORWARD TAPE, READ BACK­
WARD TAPE, SKIP FORWARD TAPE, Or SKIP BACKWARD
TAPE is given for a tape unit that is in write status, the
instruction is not executed, the calculator stops, and
the copy-check light is turned on.

If the instruction END FILE TAPE is given for a tape
unit that is in read status, the instruction is not exe­
cuted, and the tape remains stationary.

Any write, read or skip instructions will be executed
in the normal manner, if the tape called for is in neu­
tral status. After the execution of a normal write
instruction, the tape unit used will be left in write
status. After the execution of a normal read or skip
instruction, the tape unit used will be left in read
status. Irrespective of its previous status, the execu­
tion of a rewind instruction will always restore a tape
unit to neutral status. An end-file-tape instruction will
return the tape to neutral status only if it was origini-
nally in write status.

Figure 8 shows the status that will result when each
one of the tape instructions is given under all possible
conditions.

REWIND TAPE will be executed with the tape unit in
any status. However, REWIND TAPE should not be
given while the unit is in write status, END FILE TAPE,
which resets the tape unit to neutral, should always
precede REWIND TAPE in those cases where the tape
was originally in write status.

A rewind-tape instruction must always be given
before writing on a tape previously in read status,
even after reading backward all the way to the begin-
ning-of-file gap.

Once a tape has been rewound, further rewind-tape
instructions may be given, but they will be ignored as
long as the tape remains rewound.

After an end-of-file gap has been written, the tape
unit will be in neutral status. At this point the pro­
grammer must not give any of the instruction READ
FORWARD TAPE, SKIP FORWARD TAPE, WRITE TAPE, Or

END FILE TAPE (each of which would move the tape
further forward) although the neutral status would
permit such meaningless action. Only READ BACK­
WARD TAPE, SKIP BACKWARD TAPE, Or REWIND TAPE
can follow END FILE TAPE.

When a tape is being read or skipped in the forward
direction and the end-of-file gap has once been sensed,
no further read-forward-tape or skip-forward-tape
instructions (which would move the tape further for­
ward) should be given. Only READ BACKWARD TAPE,
SKIP BACKWARD TAPE, Or REWIND TAPE can follow
the detection of an end-of-file gap. Similarly, after
sensing the beginning-of-file gap on reading or skip­
ping backward, or after giving the instruction REWIND
TAPE, the programmer must not give READ BACKWARD
TAPE or SKIP BACKWARD TAPE.

Magnetic Drums

The magnetic drum storage is divided into two
blocks of 1024 words each, with addresses consisting
of the integers from 0 to 1023. Each block will be
referred to as a drum. The two drums are designated

Instruction
Resulting status if original status was:

Instruction
Read Neutral Write

READ FORWARD TAPE Read Read Write*
READ BACKWARD TAPE Read Read Write*
SKIP FORWARD TAPE Read Read Write*
SKIP BACKWARD TAPE Read Read Write*
WRITE TAPE Read* Write Write
END FILE TAPE Read** Neutral Neutral
REWIND TAPE Neutral Neutral Neutral

''Instruction not executed. Copy-check stop.
**Instruction not executed. No copy-check stop.

FIGURE 8

26 T Y P E 7 0 1 S P E E D

by the letters P and Q. These drums provide an aux­
iliary memory that is, for many purposes, more acces­
sible than tape memory. Individual words on a drum
can be selectively altered at any time. Drums are used
to a large extent for storing tables of data and sections
of long programs that may not fit into the electrostatic
memory.

Information is usually recorded on the drum as
blocks of words called unit records. The words of a
unit record are stored in locations with consecutive
addresses, although the first word of a record may be
placed at any drum address.

The following paragraphs describe the process of
writing a unit record on a drum.

A write-drum instruction is given. This causes the
designated drum to be connected to the calculator and
causes it to record, as one unit record, the information
stored in that block of consecutively-numbered elec­
trostatic memory cells which begins at cell A and ends
at cell B. The first word of the unit record is written
on the drum at drum address C, and the last word is
written at drum address C+B — A.

For example, consider the following write-drum
instruction:

OP, A B C

WRDRQ 0947 1013 0032

This instruction will cause the block of information
stored in electrostatic cells 947 to 1013, inclusive, to
be written on drum Q as a unit record beginning at
drum address 32 and ending at drum address 98.

The instruction WRITE DRUM also includes a check­
ing feature that operates as follows. After the block of
information from electrostatic storage has been writ­
ten on the drum, and before the calculator goes on to
the next instruction of the program, the information
just written on the drum is read back into electrostatic
storage and checked, word for word, against the in­
formation originally in electrostatic storage. If there
is no discrepancy, the calculator proceeds to the inter­
pretation and execution of the next instruction of the
program. If, on the other hand, the calculator detects
any discrepancy between the original information and
the information read back from the drum, the next
two instructions of the program are ignored, and the
calculator skips to the third instruction following the
write-drum instruction. Hence, if the calculator does
not skip the two instructions following the write-drum

C O D I N G S Y S T E M

instruction, the programmer is assured that the drum
writing process has been correctly performed.

Any OP2 operation may be used with a write-drum
instruction. However, it is important to note that such
an OP2 operation will only be executed if a check-
sum-discrepancy skip has not occurred.

The drum reading operation is very similar. It is
carried out as follows. A read-forward-drum instruc­
tion is given. This causes the designated drum to be
connected to the calculator and causes it to transmit to
electrostatic storage that block of B — A + 1 words
which is stored on the drum beginning at drum ad­
dress C.

Upon its transmittal to electrostatic memory, this
information is stored in that block of consecutively-
numbered electrostatic memory cells which begins at
cell A and ends at cell B.

For example, consider the following read-forward-
drum instruction:

OP, A B C

RFDRQ 0811 0820 0041

This instruction will cause the block of information
stored on drum Q, beginning at drum address 41 and
ending at drum address 50, to be transmitted to elec­
trostatic storage and stored in electrostatic cells 811
to 820 inclusive.

No checking features are included in the drum-
reading operation.

Note that a unit record written on a drum does not
preserve its identity as a unit record, there being no
end-of-record gaps to mark its beginning and end.
For instance, the information read in the above read-
forward-drum example would be the 10th through the
19th words of the unit record written in the preceding
write-drum example, unless another write-drum in­
struction involving this region of the drum had inter­
vened.

If only a single word is to be written or read, the
electrostatic address of this word must be used as both
the A and the B addresses of the instruction concerned.

Drum reading and writing have none of the status
limitations that affect tape reading and writing, nor is
there anything in drum reading and writing which
corresponds to the end-of-file features of tape reading
and writing.

The programmer must not attempt to read or write
beyond drum address 1023. For example, it is not

I N P U T - O U T P U T C O M P O N E N T S 27

possible to write a 7-word record beginning at drum
address 1022 and ending at drum address 4.

Loading Procedures for Lengthy Programs

In the section entitled Card Reader a procedure is
described for loading short programs into the calcu­
lator. This procedure does not apply, however, to pro­
grams which involve more than 714 words of instruc­
tions and data. In such cases, the additional storage
capacity of tapes or drums must be utilized. This is
done in the following way.

During the writing of the program the programmer
subdivides it into a number of blocks, each of which
requires no more than 714 words of storage to accom­
modate all of its input data, its instructions, its output
data and any erasable storage needed to retain inter­
mediate results temporarily.

The punched cards that contain the instructions and
data of the problem are then grouped in blocks in the
same way, the cards of each block being separated
from those of the next block by means of a control
card. This control card contains information that
completely specifies a tape-writing or drum-writing
operation.

The layout of the loading control card is as follows:

Card
Columns Description

1 - 7 Not used by SpeedCo I.
8 Must not be punched with zero and one

simultaneously.
9 Always punched nine.
10 Always punched zero.

11 -14 Electrostatic storage address of first word of
unit record to be written on tape or drum.

15 Always punched zero.
16- 19 Electrostatic storage address of last word of

unit record to be written on tape or drum.
20 Always punched zero.

21-24 Drum address of first word of unit record to
be written on drum. (In case tape writing is
specified, the field is irrelevant but must be
filled out with zeros.)

25-28 Always punched zero.
29 Tape or drum identification: J, K, L or M

for tape; P or Q for drum.
30-80 Not used by SpeedCo I.

With one important exception, the loading process
is the same as in the simpler case already described.
That is, the programmer inserts his variable deck of

instruction, data and loading control cards between
the last and the next-to-last cards of the constant deck
labelled SPEEDCODING I, adds three blanks, puts this
resulting deck in the hopper of the card reader, de­
presses the start button of the card reader and the load
button on the operator's panel.

The loading action is now as follows. The first
block of data and instruction is read by the card reader
and stored in the designated electrostatic memory lo­
cations. The first control card is then read, the card
reader stops, and the information of the first block is
taken from electrostatic storage and written as a unit
record on the designated tape or drum. The card
reader automatically resumes operation, and the in­
structions and data of the second block are read, con­
verted and stored in electrostatic storage. The second
control card stops the card reader again and causes
the information of the second block to be written on
the designated tape or drum. The card reader resumes
operation. This process continues until all blocks ex­
cept the last have been dealt with. The last block is
read in, converted, and stored in electrostatic memory,
following which execution of the program begins with
the execution of the instruction which is then stored
at location 300.

Because the first instruction executed is one of those
in the last block loaded, the deck of cards fed through
the card reader must be arranged to take care of this.

The important exception mentioned above in this
kind of loading is: if any of the loading control cards
have specified tape writing, the specified tapes should
first be given an end-file-tape instruction and a rewind-
tape instruction if the programmer desires to begin
reading these tapes from the beginning-of-file in his
problem, or merely an end-file-tape instruction if he
desires to begin reading backwards. These prepara­
tory tape instructions must be provided by the pro­
gram itself unless the programmer desires merely to
continue writing on the tapes in question after the
loading process is completed and his program begins
execution.

The actual sequence of tape events in any SpeedCo I
loading is as follows. In normal operation, all four
tapes are always rewound (for suppression of tape re­
winding, see Appendix D) before any instruction
cards, data cards, or loading control cards are read by
the card reader. If no loading cards pertaining to tapes
are contained in the programmer's deck, the tapes stay
in this rewound, neutral status until they are first used
hy the program. If any loading cards pertaining to

28 T Y P E 7 0 1 S P E E D C O D I N G S Y S T E M

tapes are contained in this deck, the effect on the tapes
is exactly the same as though a write-tape instruction
had been executed as many times as there are such
loading-control cards, and in the same order as they
occur in the deck.

The abov,e process may easily be modified to accom­
modate the case of a lengthy program which is to be
executed using the same instructions, but not the same
data, many times in the future. In this event a signifi­
cant time saving will usually be achieved if the in­
structions are transferred from cards to tape once for
all, and are thereafter loaded from tape. If this is done,
the loading process for future runs will be to put the
program tape on the correct tape unit and to load the
data by means of the card reader. The only other re­
quirement is that a few special instruction cards be
loaded along with the data cards. After the data and
these special cards have been read, converted and
stored in electrostatic memory, the calculation will
begin with a tape-reading operation. As a result of
this operation the first block of the program will be
read from the tape into electrostatic storage. The cal­
culation then begins, in normal fashion, with the exe­
cution of the instruction that has been stored in loca­
tion 300 by the tape-reading operation just completed.

Printer

The final results of SpeedCo I are printed on a line
printer which prints at the rate of 150 lines per minute.
Five results and a line-identification number print on
each line, so that numbers are printed at the rate of
750 per minute.

The general procedure for printing a unit record is
as follows. A print instruction is given. This causes
the printer to be connected to the calculator and causes
it to print, as one unit record, the results stored in
that block of consecutively-numbered electrostatic
memory cells which begins at cell A and ends at cell B.
The results are printed five numbers to the line. An
identification number prints opposite each line of re­
sults. This number is automatically computed using
the formula 100 C+w, where C is the number coded
as the C address of the print instruction and n is the
number of the line in the block.

For example, consider the following print instruc­
tion :

OPx A B C

PRINT 0461 0473 0407

This instruction will cause the block of results
stored in electrostatic cells 461 to 473 inclusive to be
printed and identified as follows:

Identi­
fication Results

407 01
407 02
407 03

0(461)
0(466)
0(471)

0(462)
0(467)
0(472)

0(463)
0(468)
0(473)

0(464)
0(469)

0(465)
0(470)

The results are printed in floating decimal. The con­
version from the floating-binary information within
the calculator to the floating-decimal information
printed is performed automatically by SpeedCo I.
Once the conversion has been performed SpeedCo I
checks the process by reconverting the decimal infor­
mation to binary and comparing the results with the
original binary information. The mechanical action of
the printer is also automatically checked. After the
type mechanism has been physically set up to print a
line, it transmits to the calculator a series of signals
indicating what characters the type wheels are posi­
tioned to print. SpeedCo I then compares this infor­
mation with the setup signals previously sent by the
calculator to the printer. If either of these two com­
parison checks reveals any discrepancy, the calculator
stops and gives an error indication. Hence if the print
operation is concluded without this error indication
arising, the programmer is assured that the informa­
tion printed is the true decimal equivalent of the binary
unit record specified.

The checking procedure is incomplete in only one
respect. The print mechanism does not send back to
the calculator any indication of the signs it prints—
hence if there is an error in the algebraic sign of a
quantity printed, no error indication will be given.

It is very important that the programmer remember
that the absolute value of the decimal exponent of any
quantity to be printed may never exceed 236.

T R A N S F E R O P E R A T I O N S

ONE OF THE very important advantages of a stored-
program calculator is the ease with which it can be
controlled to carry out the instructions stored in its
memory in some order other than the order in which
they appear there. By use of the various operations
available in SpeedCo I, for instance, the programmer
may cause the calculator to repeat a designated se­
quence of instructions a specified number of times, or
to repeat the sequence as often as necessary to produce

T R A N S F E R O f E U H O N S 29

a specified result, or to choose between two or more
alternate procedures depending upon the sign or the
size of a computed quantity, or to depart in various
other ways from its normal routine of executing in­
structions in the order in which they are stored.

These transfers of control are effected, as is ex­
plained in the section entitled Control, by placing into
the program counter the address of some instruction
other than the one that immediately follows the cur­
rent instruction. Because the program counter con­
trols which instruction is to be executed next, the
program does not continue in the usual sequential
manner, but instead transfers control to the new loca­
tion given.

The following transfer instructions are available.
They are all OP2 operations.

T r a n s f e r (T R)

When the program encounters this instruction the
number coded in its D address field is placed into the
program counter, so that the instruction located at D
is the next instruction executed.

For example, consider the following transfer in­
struction :

LOC OP2 D

0487 TR 0811

In this case the program will execute the OPi-A-B-C
portion of the instruction located at 487, and will then
enter the number 811 into the program counter. As a
result the next instruction executed will be the one
stored at 811, following which the program will be
executed sequentially from this new location until an­
other transfer operation is encountered.

T r a n s f e r P l u s (T R P L)

When the program encounters this instruction, the
number coded in its D address field is placed into the
program counter if, and only if, the quantity computed
and stored at C by the OPi-A-B-C part of the same
instruction is positive. (Zero is regarded as positive.)

For example, consider the following instruction:

LOC OPi A B C OP2 D

0519 ABSUB 0684 0832 | 0712 TRPL 0498

This instruction will cause the calculator to compute
the value of j Q (684) | — |Q (832) |. This result will
then be stored at location 712. If this result was posi­
tive, the next instruction executed will be the instruc­

tion located in cell 498. If, on the other hand, this
result was negative, the next instruction executed will
be the instruction located in cell 520.

T r a n s f e r M i n u s (T R M N)

When the program encounters this instruction, the
number coded in its D address field is placed into the
program counter if, and only if, the quantity computed
and stored by the OPi-A-B-C part of the same in­
struction is negative. Hence, if the result at C is nega­
tive, control transfers to D whereas, if it is positive,
the program continues sequentially. (Zero is regarded
as positive.)

T r a n s f e r Z e r o (T R Z)

When the program encounters this instruction, the
number coded in its D address field is placed into the
program counter if, and only if, the fractional part of
the quantity computed and stored by the OPX-A-B-C
part of the same instruction is equal to zero.

For example, consider the following instruction :

LOC OPi A C OP2 D

0519 ABSUB 0684-1 f 08321 1 07121 TRZ 0498

This instruction will cause the calculator to compute
the value of |Q(684) | — |Q(832)|. This result will
then be stored at location 712. If the fractional part of
this result was equal to zero, the next instruction exe­
cuted will be the instruction located in cell 498. If on
the other hand this fractional part was non-zero, the
next instruction executed will be the instruction lo­
cated in cell 520. The programmer is warned that be­
cause of the intrinsic error involved in conversion,
exact agreement of numbers resulting from his deci­
mal computations does not necessarily produce exact
agreement between the corresponding binary numbers.

T r a n s f e r P l u s , M i n u s a n d Z e r o

The operations TRANSFER PLUS, TRANSFER MINUS
and TRANSFER ZERO are all conditional transfer opera­
tions whose effect depends upon the value of the quan­
tity computed and stored at C. For this reason no one
of these instructions should be given as part of a
SpeedCo I instruction which does not, during its
OPx-A-B-C part, compute and store a number at C.

A situation may arise when the programmer wants
to determine both whether a computed result is zero
or non-zero, and also whether the same computed re-

30 T Y P E 7 0 1 S P E E D C O D I N G S Y S T E M

suit is positive or negative. Suppose for example that
a transfer is to occur if the difference between two
numbers (x and y) is less than or equal to zero, but is
not to take place if this difference is greater than zero.
The following pair of instructions illustrates one of
several possible methods of accomplishing this result:

LOC OPx A B c OP2 D

f
f + 1

SUB
SUB

L (x)
L (x)

L (y)
L(y)

L (x — y)
L (x y)

TRZ
TRMN

9
9

If jr — 3; is zero, a transfer to g will occur as a result
of instruction /. If x — y is non-zero, this transfer will
not occur and instruction /+1 will be executed next.
Here the instruction is repeated, except that OP2 is a
TRANSFER MINUS. Hence \i x — y\s negative, a trans­
fer to g will take place. Thus the combination of in­
structions f and f+1 results in a transfer to g if x — y
is equal to or less than zero, whereas, if x — y is non­
zero and positive, the program continues sequentially
with instruction f+2.

S e n s e a n d T r a n s f e r (S N T R P , S N T R Q)

These two operations are also conditional transfer
operations. Each of them is associated with a switch
on the operator's panel called a sense switch. Sense
switches P and Q are labelled 4 and 5, respectively, on
the operator's panel. If the designated switch is in the
ON position when SENSE AND TRANSFER is given, con­
trol is transferred to the location specified by the D
address of the sense-and-transfer instruction. If, on
the other hand, the switch is in the OFF position, the
transfer does not take place. These operations are in­
tended primarily to permit the operator to modify the
action of the program manually while it is stored in
the machine.

For instance, in a program that includes an iterative
process of some sort, it might be desirable to print the
results of every iteration in some cases and to omit
iterative-result printing entirely in others. This could
be accomplished as follows. Let the print instruction
which prints the results of each iteration be located in
cell f. Then, in the OP2 operation field of instruction
f — 1, code the instruction SENSE AND TRANSFER P
(or Q), and in the D address field of the same instruc­
tion code the address f+1. Then, if the designated
sense switch is OFF, printing will take place at the end
of each iteration, whereas, if the switch is ON, printing
will be omitted.

O t h e r T r a n s f e r O p e r a t i o n s

In addition to the operations described above,
SpeedCo I includes two other types of transfer instruc­
tions called TRANSFER AND INCREASE and TRANSFER
AND DECREASE. These instructions are explained in the
section entitled Address Modification.

A D D R E S S M O D I F I C A T I O N

To REALIZE fully the advantages of stored-program
calculation, it is necessary that means be provided to
modify the addresses of the program while the pro­
gram is being executed. This requirement arises in the
fact that in a great many problems the solution is quite
repetitious in form, the same sequence of instructions
being executed over and over, each time operating
upon different data. To facilitate solution of this typi­
cal kind of problem, SpeedCo I provides several means
for modifying the address parts of stored instructions
as the calculation proceeds.

One of these modification features involves the use
of three non-negative quantities designated RA, RB,
and Rc, which are stored as part of the SpeedCo I
control information. These R-quantities serve as in­
crements that may selectively be added to the A, B
and/or C addresses of designated instructions of the
program.

Whenever such an addition takes place, it occurs
while the instruction concerned is being interpreted,
and prior to the time of its execution. Thus the effec­
tive address is not the address stored as part of the
instruction, but is the stored address increased by the
corresponding R-quantity.

It is most important that the programmer bear in
mind that the address of the instruction, as stored, is
not changed by this incrementing process. While it is
true that the result of executing such an incremented
instruction is precisely the same as if the stored in­
struction had been changed in storage and then exe­
cuted, as stated above the actual situation is that the
change is made during the process of interpreting the
instruction.

Whether none, one, two or all three of the possible
additions takes place in the case of any particular in­
struction, is determined by the value the programmer
assigns to the R-code for that instruction, where the
R-code is a single digit punched in column 20 of the
instruction card. The following table indicates the
effect of each possible value of the R-code:

A D D R E S S M O D I F I C A T I O N 31

R-code value Effective addresses These seven operations are the following:

0 A B C Name Abbreviation
1 A B C -F- RC TRANSFER AND INCREASE RC TIC
2 A B -)- RB C TRANSFER AND INCREASE RB TIB
3 A B -F- RB C -J- RC TRANSFER AND INCREASE RBC TIBC
4 A + RA B C TRANSFER AND INCREASE RA TIA
5 A + RA B C -J- RC TRANSFER AND INCREASE RAC TIAC
6 A + RA B -J- RB C TRANSFER AND INCREASE RAB TIAB
7 A + RA B -F- RB C -F- R0 TRANSFER AND INCREASE RABC TIABC

Consider, for example, the following instruction:

OP: A B C

ADD 0410 0563 0741

Assume that the R-quantities stored when this in­
struction is encountered are:

Ra = 0007 R„ = 0019 Rc = 0104

Then, the following table indicates what action will
take place for each possible value of R :

R Action

0 0(410) + 0(563) = 0(741)
1 0(410) + 0(563) = 0(845)
2 0(410) + 0(582) = 0(741)
3 0(410) + 0(582) = 0(845)
4 0(417) + 0 (563) = 0(741)
5 0(417) + 0(563) = 0(845)
6 0(417) + 0(582) - 0(741)
7 0(417) + 0(582) = 0(845)

Transfer and Increase Operations

SpeedCo I provides seven OP2 operations known
as transfer-and-increase operations. Typical of these
is the instruction TRANSFER AND INCREASE Rc. When
the program encounters this instruction, the number
coded in its D address field is placed into the program
counter, and the quantity Rc is increased by one.

In normal usage a transfer-and-increase instruction
transfers control back to the beginning of a sequence
of instructions that has just been executed, meanwhile
modifying any or all of the three R-quantities. The
result is that during the next execution of this same
sequence of instructions, the data operated upon will
be located in cells immediately adjacent to the cells
that contain the data used during the first execution.

When any one of the instructions in this group is
encountered, the designated R-quantity or quantities
are increased by one, and control is transferred to D.

Transfer and Decrease Operations
SpeedCo I provides seven OP2 operations known as

transfer-and-decrease operations. These operations
are very similar to the transfer-and-increase opera­
tions explained above. The only difference is that, as
the name implies, the designated R-quantity or quan­
tities are decreased by one each time one of these in­
structions is executed.

These seven operations are the following:

Name Abbreviation
TRANSFER AND DECREASE Rc TDC

TRANSFER AND DECREASE RB TDB

TRANSFER AND DECREASE RB0 TDBC

TRANSFER AND DECREASE RA TDA

TRANSFER AND DECREASE RAC TDAC

TRANSFER AND DECREASE RAB TDAB

TRANSFER AND DECREASE RABc TDABC

When any one of the instructions in this group is
encountered, the designated R-quantity or quantities
are decreased by one, and control is transferred to D.
If an attempt is made to decrease any of the R-quan­
tities below zero, an automatic error stop will occur.

Set RA, Set RN, Set RC

Through the use of the transfer-and-increase and
transfer-and-decrease instructions the quantities RA,
Rb and RC can be increased or decreased one unit at a
time. It is often desirable, however, to change these
R-quantities by more than unity. For instance, if the
program requires more than one independent use of
the R-quantities, it will usually be necessary to reset
them to zero after the first use and prior to the second.

32 T Y P E 7 0 1 S P E E D C O D I N G S Y S T E M

The 0P2 operations SET RA, SET Rb and SET Rc have
been provided for this purpose. When any one of these
instructions is encountered the designated R-quantity
is replaced by the number coded in the D address field
of the instruction. It is of course impossible to set any
of the R-quantities to a negative value, since D is not
provided with a sign.

Skip Ra , Skip Rb , Skip RC

The normal use of a transfer-and-increase instruc­
tion forms what is called a loop in the program. Each
time the transfer-and-increase instruction is encoun­
tered, the designated R-quantities are increased by
one and control is transferred back to an earlier in­
struction of the program. Obviously, however, some
means must be provided to stop this process after the
loop has been repeated the required number of times.
It is for this purpose that the OP2 operations SKIP RA,
SKIP Rb and SKIP Rc have been provided. When any
one of these instructions is encountered, the desig­
nated R-quantity is compared with the number coded
in the D address field of the instruction. If these two
numbers are equal, the calculator ignores the next in­
struction of the program entirely and proceeds directly
to the interpretation and execution of the second in­
struction following the skip instruction. If, however,
the numbers compared are unequal, this skip does not
take place.

In making use of this instruction, bear in mind that
the execution of the OP^A-B-C part of a SpeedCo I
instruction always precedes the execution of the
OP2-D part of that same instruction.

Examples Involving Address Modifications

An example of the use of the above instructions is
given below.

Assume that it is necessary to compute the sum of
34 quantities stored in locations 688 through 721 and
to store the sum in cell 945. Assume further that cell
1013 contains the number zero and that instruction
416 is the next instruction to be executed. The se­
quence of instructions shown below could be used for
this purpose:

LOC OPx R A B C OP2 D
0416 ADD 0 1013 1013 094+ SETRA 0000
0417 ADD 4 0688 0945 0945 SKRA 0033
0418 NOOP 0 0000 0000 0000 TIA 0417

1. Instruction 416 initializes the operation by first re­

setting the previous contents of 945 to zero and
then resetting RA to zero.

2. Since the R-code for instruction 417 is a 4, the
effective A address for this instruction will be
A+Ra. During the first execution of instruction
417, RA = 0. Hence the effective A address is 688.
The quantity at 688 is therefore added to zero and
the sum is stored in 945. The 33 in the D field is
then compared with RA and, since they are unequal,
no skip occurs. Instruction 418 then increases RA

to one and transfers control back to 417.

3. During the second execution of instruction 417,
RA = 1 and therefore the effective A address is
688+1 = 689. Hence the quantity at 689 is added
to the contents of 945 and the sum is stored in 945.
Since 33 + 1, no skip occurs and instruction 418
increases RA to 2 and transfers control back to 417.

4. During the third execution of instruction 417,
Ra = 2 and therefore the effective A address is
688+2 = 690. Hence the quantity at 690 is added
to the contents of 945 and the sum is stored in 945.
Since 33 + 2, no skip occurs and instruction 418
increases RA to 3 and transfers control back to 417.

5. Instructions 417 and 418 thus form a loop. During
the nth execution of this loop, RA = n — 1 and,
therefore, the effective A address is 688 + (n — 1).
Hence the quantity stored in this cell is added to
the contents of 945 (which at this point contains
the sum of the quantities stored in the first n — 1
cells), and the sum is stored in 945. The 33 in the
D field of instruction 417 is then compared with
Ra. If these numbers are unequal, Ra is increased
from n — 1 to n and control is transferred back to
417.

6. During the 34th execution of the loop, RA = 33
and therefore the effective A address is 688+33 =
721. Hence the quantity at 721 is added to the con­
tents of 945 and the final result is stored in 945.
The 33 in the D field of instruction 417 is then
compared with RA and since RA now equals 33 the
skip occurs, control transfers to 419 and the next
phase of the calculation begins.

A more complex example of the use of these tech­
niques is the following matrix multiplication problem.

Assume that it is necessary to postmultiply the
matrix + of order 18 X 20 by the matrix B of order
20 X 16. Let the elements of + be stored in electro­
static cells 500 through 859 in the order 1; a1? 2, 3,

A D D R E S S M O D I F I C A T I O N 33

• • • > a l , 20> ®2, 1> 0 2.2' <*2,3> • • • > a2, 20? a3, 1> ^3, 2i • • • >
<7.3.20' • • • > <7j8. i' <7i8.2> <7i8,3, . . . , <718,2o and let the ele­
ments of the first column of 5 be stored in electrostatic
cells 900 through 919 in the order bi, i, bi, i, bz, i,. . . ,
&20.,. The remaining columns of B will be assumed to
have been written on tape J, each column comprising
one unit record. Let the electrostatic storage cells set
aside for the elements of each successive column of the
product be those with addresses running from 950
through 967. Two cells of erasable storage are re­
quired; let them be 1000 and 1001. Let the contents
of 1013 be zero. Assume that tape J is in read (or
neutral) status and that it is stopped at the beginning-
of-file gap; also that tape K is in write (or neutral)
status and stopped at the same place. Finally, assume
that RA = RB = RE = 0 and that instruction 354 is
the next instruction to be executed.

The following sequence of instructions could be
used for this purpose:

LOC OPJ R A B C OIL D

0354 ADD 0 1013 1013 1000 —

0355 MPY 6 0500 0900 1001 SKRB 0020
0356 ADD 0 1000 1001 1000 TIAB 0355
0357 ADD 1 1013 1000 0950 SETRB 0000
0358 ADD 0 1013 1013 1000 SKRC 0017
0359 NOOP 0 0000 0000 0000 TIC 0355
0360 NOOP 0 0000 0000 0000 SETRC 0000
0361 WRTPK 0 0950 0967 0000 SETRA 0000
0362 RFTPJ 0 0900 0919 0000 —

0363 NOOP 0 0000 0000 0000 TR 0355
0364 EFTPK 0 0000 0000 0000 TR 0366
0365 SBTPJ 0 0000 0000 0000 STOP 0362

1. Instruction 354 resets 1000, the location at which
each successive element of C will be accumulated.

2. Instructions 355 and 356 form a loop which evalu­
ates the successive elements of C. In the case of clt i,
for instance, the first execution of this loop places
the product flq,, but into cell 1000 and changes RA

and R„ from 0 to 1. The second execution of this
loop then computes ah2 b2, i, adds it to the contents
of 1000, stores the sum in 1000 and changes RA

and R„ from 1 to 2. The third execution of this
loop then computes a13b3tl, adds it to the contents
of 1000, stores the sum in 1000 and changes RA

^ and R„ from 2 to 3. This continues until the loop
has been executed 20 times. During the 20th cycle

ai,so ^20,1 is computed, added to the contents of
1000 and the sum (Cj 1) is stored in 1000. In addi­
tion Ra and RK are changed from 19 to 20. Control
then transfers back to 355 and an irrelevant multi­
plication of n2, I by the contents of cell 920 takes
place. The skip RI(instruction next transfers con­
trol to instruction 357 which transfers c,.] from
cell 1000 to cell 950 and resets RB to zero. Instruc­
tion 358 resets cell 1000 to zero. Instruction 359
changes R,. from 0 to 1 and transfers control back
to 355.

3. The loop which consists of instructions 355 and
356 is then executed 20 times forming C2,\ in cell
1000. Instruction 357 next transfers c2. i from cell
1000 to cell 951 and again resets RB to zero. In­
struction 358 then resets cell 1000 to zero. Instruc­
tion 359 changes Rcfrom 1 to 2 and returns control
to 355.

4. Since the matrix A has 18 rows, this larger loop
(instructions 355 through 359) must be executed
18 times in order to compute the first column of C.
During the 18th execution of this loop Rc = 17.
Hence instruction 358 this time causes a skip to
instruction 360 which resets R0 to zero. Instruction
361 then writes the completed first column of C on
tape K and resets RA to zero. Instruction 362 reads
the second column of the matrix B into the same
block of electrostatic cells previously occupied by
the first column of B. Instruction 363 transfers
control back to 355.

5. From here on the process is completely cyclic. It
terminates when all 16 columns of B have been
processed. At that time instruction 362 attempts to
read the 17th column of B from tape J. Since there
is nothing there to read, an end-of-file skip occurs
which transfers control to 364. Instruction 364
writes an end-of-file gap on tape K and transfers
control to 366 where the next phase of the calcula­
tion begins.

6. If during any of the executions of the instruction
READ FORWARD TAPE j the recomputed check sum
fails to agree with the check sum read from the
tape, two instructions are skipped, thus trans­
ferring control to 365. The OP] part of this in­
struction causes the tape to backspace to the start
of the record just read. The OP2 part of this in­
struction being a stop-and-transfer instruction,
the calculator then stops. If it is manually restarted,
control will transfer to 362 and the calculator will

again attempt to read the record whose check sum
failed. If the original error was a random tape
reading error, the program will continue in normal
fashion. If not, the calculator will stop again. In
this latter event a tape writing error is indicated,
and the calculations which initially wrote the suc­
cessive columns of B on tape J should be repeated.

Address Counter

The preceding sections deal with address modifica­
tions accomplished by means of the R-quantities. As
was emphasized in the above, the use of this method of
address modification means that the addresses of the
stored instructions are not changed, since the incre­
menting process takes place after the machine has
begun to interpret the instruction and before it is
executed.

The programmer is not limited, however, to this
method of address modification. SpeedCo I also pro­
vides a counter called the address counter. Fixed point
addition and subtraction may be carried out in this
counter, the operands being addresses and address in­
crements. It should be noted that when this method of
address modification is used, the addresses of the
stored instructions are changed in memory.

The address counter is capable of adding to or sub­
tracting from its contents a number taken from the
A, B, C or D address field of any SpeedCo I instruc­
tion which happens to be in electrostatic storage at the
time. This counter is also capable, as a single pro­
grammed operation, of resetting itself to zero and then
adding. Finally, the contents of the address counter
can be stored in the A, B, C or D address field of any
SpeedCo I instruction which is at that time in electro­
static storage.

The address counter may contain any integer in the
range from —131,071 to +131,071. When the pro­
gram controls this counter to store its contents in the
A, B, C or D address field of a designated instruction,
however, what is actually stored is the absolute value
of the contents modulo 1024. Hence in order to deter­
mine what will be stored from the address counter at
any given time, the absolute value of the contents of
this counter must be reduced by the largest integral
multiple of 1024 which leaves a positive remainder
less than 1024. It is this remainder which will be
stored. The following tabulation gives a few typical
cases:

O D / N G S Y S T E M

Address Counter Reads Quantity Stored Is

+0308 +0308
-1003 +1003
+ 1348 +0324
— 1888 +0864
+2348 +0300

The following 16 OP2 operations control the func­
tioning of the address counter.

Four operations cause the address counter to reset
itself to zero and to add the A, B, C or D address of a
designated instruction. They are:

RESET AND ADD A (RADDA)
RESET AND ADD B (RADDB)
RESET AND ADD C (RADDC)
RESET AND ADD D (RADDD)

The instruction RESET AND ADD A, for example, will
cause the contents of the address counter to be re­
placed by the A address of that instruction whose loca­
tion is given in the D field of the reset-and-add-A
instruction.

Four operations cause the address counter to add to
its contents the A, B, C or D address of a designated
instruction. They are:

ADD A (ADDA)
ADD B (ADDB)
ADD C (ADDC)
ADD D (ADDD)

The instruction ADD B, for example, will cause the
address counter to add to its contents the B address of
that instruction whose location is given in the D field
of the add-B instruction.

Four operations cause the address counter to sub­
tract from its contents the A, B, C or D address of a
designated instruction. They are:

SUBTRACT A (SUBA)
SUBTRACT B (SUBB)
SUBTRACT C (SUBC)
SUBTRACTD (SUBD)

The instruction SUBTRACT c,for example, will cause
the address counter to subtract from its contents the C
address of that instruction whose location is given in
the D field of the subtract-C instruction.

Finally, four operations cause the absolute value
(modulo 1024) of the contents of the address counter
to be stored in the A, B, C or D address field of a
designated instruction. They are:

A D D R E S S M O D I F I C A T I O N 35

STORE A (STA)
STORE B (STB)
STORE C (STC)
STORED (STD)

The instruction STORE B, for example, will cause the
absolute value (modulo 1024) of the contents of the
address counter to be stored as the B address of that
instruction whose location is given in the D field of
the store-B instruction.

As an example of the use of the address counter,
suppose that, starting with the execution of instruc­
tion 428, it is necessary to modify the matrix multi­
plication coding given above in order to permit the
postmultiplication of a 12 X 17 matrix by a 17 X 13
matrix. This requires that the D address of instruction
355 be changed from 20 to 17 and that the D address
of instruction 358 be changed from 17 to 12 — 1 = 11.
The following sequence of instructions would accom­
plish this:

LOC OP, R A B c OP2 D

0428 NOOP 0 0017 0006 0000 RADDA 0428
0429 xxxxx X xxxx xxxx xxxx STD 0355
0430 xxxxx X xxxx xxxx xxxx SUBB 0428
0431 xxxxx X xxxx xxxx xxxx STD 0358

Instruction 428 replaces the previous contents of
the address counter by 17, the A address of instruc­
tion 428. Instruction 429 stores this value (17) as the
D address of instruction 355. Instruction 430 sub­
tracts 6 from the contents of the address counter; the
6 being obtained from the B field of instruction 428.
Instruction 431 stores the difference (11) as the D
address of instruction 358.

In the above example the necessary constants are
stored as the A and B addresses of the NOOP operation
located at 428. However, it is usually not necessary to
code special NOOP operations for this purpose. In most
programs a considerable number of the instructions
will have blank OP2-D parts. Constants (such as 17
and 6 in the above example) can be coded as D ad­
dresses of such instructions, the OP2 field in those
cases being left blank. Any tape instructions (which
always involve at least one irrelevant field) can also be
used for this purpose.

Address modification by means of the address
counter and its associated instructions may readily be
used to create program loops. Here again means have
been provided to terminate the repetition of such a

loop after it has been executed the required number of
times. The instruction which controls this termination
is the OP2 operation SKIP. When the SKIP instruction
is encountered, the calculator compares the D address
of the SKIP instruction with the absolute value of the
contents of the address counter. If these two numbers
are equal, the calculator ignores the next instruction
of the program and proceeds directly to the interpreta­
tion and execution of the second instruction following
the SKIP instruction. If on the other hand the two
numbers are unequal, the program continues in the
usual sequential fashion.

Address Modification: General
In employing address modification techniques

(either the R-quantity method or the address counter
method) the programmer must guard carefully
against the possibility of computing a modified ad­
dress that is less than 300 or greater than 1013. If for
any reason the program should compute an address in
the range from 0 to 299 inclusive, or from 1014 to
1023 inclusive, and should then execute the instruc­
tion of which this address is a part, the results are
certain to be incorrect, since these regions of electro­
static memory are occupied by SpeedCo I control in­
formation, and not by data or instruction of the
program.

Combined Use of Address Counter
and R-quantities

In many cases it will be found very desirable to be
able to reset and add to, add to, or subtract from the
address counter one of the quantities RA, RB, or Rc,
or, conversely, to be able to replace RA, RB, or R0 by
the contents of the address counter. SpeedCo I does
not directly provide for performing these manipula­
tions by special logical operations, but they can be
effected by judicious use of the previously described
operations and the location 0025, which contains key
control information associated with the R-quantities
and may (only in the cases given below) be regarded
as an instruction location.

LOC OP2 D

f RADDX 0025

The above instruction at f replaces the contents of
the address counter by the quantity Rx (where :r =
A, B or C). This operation is of particular value in
case it is desired to save the number R^, for later use.

36 T Y P E 7 0 1 S P E E D C O D / N G S Y S T E M

LOC OP2 D

9 ADDX 0025

The above instruction at g adds the quantity R
to the contents of the address counter.

LOC OP2 D

h SUBX 0025

The above instruction at h subtracts the quantity R®
from the contents of the address counter.

To perform the reverse operation of replacing one
of the R-quantities by the absolute value (modulo
1024) of the contents of the address counter, one may
use the following idea:

LOC OP2 D

f STD f+1
/+1 SETRX (AO

Suppose the absolute value (modulo 1024) of the
contents of the address counter is N. Thus the execu­
tion of the above instruction at f results in storing N,
as indicated, in the D-field of the instruction at f+1,
which is then executed and results in setting R* to the
value N, as required.

An example of the use of these instructions would
be in a case where it is desired to replace RA by a com­
pletely new value for a different logical use, but at the
same time to save the present value of RA. Suppose
that the present value of RA is 800, and consider the
following set of instructions:

LOC OP2 D

0500 RADDA 0025
0501 STD 0600

0502 SETRA 0000

0600 SETRA (0800)

The effect of the above instruction at 500 is to store
the value 800 of RA in the address counter. The in­
struction at 501 then stores this value 800 as the
D-address in a SETRA instruction, to be used much
later in the program. Instruction 502 then changes
the value of RA from 800 to 0. The program then con­
tinues, making use of this new value of RA for perhaps
a completely new logical purpose, and when instruc­
tion 600 is executed, the old value 800 of RA is re­

stored. Note that the address counter is also free for
completely new logical functions after the execution

of the instruction at 501.

C H E C K I N G

IN ADDITION to those checking features that are an in­
tegral part of certain of the input-output instructions,
SpeedCo I provides means for obtaining a general
over-all check of any part of the program. This check
is based upon the principle of performing the compu­
tations twice and comparing the results. The determi­
nation as to what part, if any, of the program is to be
checked in this way is entirely up to the programmer.
He may use this checking feature to check the entire
program, or he may use it only for certain parts of the
program, or he may elect not to use it at all.

This checking feature involves the use of the follow­

ing OP2 operations:

PREPARE CHECK (PRCH)
START CHECK (STCH)
END CHECK AND TRANSFER (ECHTR)

At some time prior to the first use of this checking
feature, or at the beginning of the program if the
entire program is to be checked, the instruction PRE­
PARE CHECK must be given. This instruction has the
effect of initializing certain portions of the SpeedCo I
control information. This initializing has to take place
before any checking can be done. Note that the instruc­
tion PREPARE CHECK ordinarily need not be given
more than once in any one program, even in those
cases where the checking feature is used only inter­
mittently, with checked portions of the program alter­
nating with unchecked portions. For the exception to
this rule, see the last paragraph of this section. Note
also that the instruction PREPARE CHECK makes no
use of the D address. Hence the number coded there is

irrelevant.
The instructions START CHECK and END CHECK

AND TRANSFER occur in pairs. A start-check instruc­
tion marks the beginning of a checking loop and the
following end-check-and-transfer instruction marks
the end of the same loop. The calculations included in
this loop are performed twice in order to check for

errors.
In detail, the procedure is as follows. The instruc­

tion START CHECK is coded as the OP2 part of a
SpeedCo I instruction. (Note that the instruction

C H E C K I N G 37

START CHECK makes no use of the D address. Hence
any number coded there is irrelevant.) When the cal­
culator encounters this SpeedCo I instruction, the
presence of the start-check operation causes the calcu­
lator not only to store the computed result for that
instruction in location C, but also to reset to zero a
counter called check counter 1 and to enter the same
result into this counter. From this point on in the cal­
culation every computed result is not only stored in
the desired location C in the usual way, but is also
added into check counter 1. This addition into check
counter 1 is not floating point addition, however. For
reasons of speed and convenience this addition is car­
ried out in fixed point fashion, each floating point
number being treated as if it were two fixed point
numbers, the exponents being added in along with the
fractional parts. Thus while the quantity accumulated
has no mathematical or physical significance, it is a
function of all of the computed results which enter into
its composition, and hence it may be used as a check
sum.

This check summing process continues until the
calculator encounters a SpeedCo I instruction which
has the operation END CHECK AND TRANSFER as its
OP2 part. The presence of this end-check-and-transfer
operation causes the computed result for that instruc­
tion to be the last result added into check counter 1.
Control then transfers to the location specified in the
D field of this instruction.

In many cases this would be the location of the pre­
ceding start-check operation. (Cases will arise where
certain initializing operations will have to be per­
formed before control can be returned to the location
of the start-check instruction; these will be discussed
below.) In the present case, however, the calculator
transfers control back to the location of the preceding
start-check operation and all of the instructions of the
checking loop except for the operation PRINT are then
executed a second time. At the start of this second
execution, check counter 2 is reset to zero and during
this second execution a check sum is accumulated in
check counter 2. When the end-check-and-transfer in­
struction is encountered the second time, the calculator
compares the contents of check counters 1 and 2. If
they are equal the calculator ignores the next instruc­
tion of the program and proceeds directly to the in­
terpretation and execution of the second instruction
following the end-check-and-transfer instruction. If
there is any disagreement, however, this skip does not
take place and the instruction following the end-check-

and-transfer instruction is interpreted and executed in
the usual way.

Consider, for example, the following short check­
ing loop:

LOC OP, R A B C

0379 MPY 0 L (x) L (x) 0400
0380 MPY 0 L (y) L (y) 0401
0381 ADD 0 0400 0401 0402
0382 SQRT 0 0402 0000 0403
0383 NOOP 0 0000 0000 0000

OP,

ECHTR

STOP

D

0379
0379

Instruction 379 computes x2 and starts the check
summing procedure in check counter 1. Instructions
380-382 compute y2, x2 + y2 and V-C + y2 and con­
tinue the check summing in check counter 1. The end-
check-and-transfer operation in instruction 382 then
transfers control back to 379. The same four opera­
tions are repeated, but this time the check sum accu­
mulates in check counter 2. The second execution of
instruction 382 causes the two check sums to be com­
pared. If they agree, control skips to 384 and the next
phase of the program begins. If there is any disagree­
ment, instruction 383 is not skipped and the calculator
stops. If it is restarted manually the entire process
described above will be repeated.

Note that this process checks only those instructions
which compute and store a result at C. Drum reading
instructions, for instance, are not directly checked by
this process, although if the program is so written as
to consist of an unbroken series of checking loops
then the drum reading instructions will be indirectly
checked, since the data read will enter into calculations
which produce the check sums.

In many cases the D address of the end-check-and-
transfer instruction cannot be the location of the pre­
ceding start-check instruction. For example, suppose
that one of the instructions of the checking loop has
the OP, part READ FORWARD TAPE M. One of the effects
of this instruction is to move the tape forward one unit
record. Hence the second execution of the checking
loop would not produce the same results as the first,
since a different unit record would be read. The tape
must therefore be backspaced before the second pass
through the checking loop begins.

Certain types of address modifications also preclude
the direct repetition of a checking loop. Suppose, for
instance, that at the start of the first pass through the
loop, RB = 17 and that as a result of thirteen transfer-

38 T Y P E 7 0 1 S P E E D C O D I N G S Y S T E M

and-increase-R instructions within the loop the final
value of RB is 30. Then RP, must be reset to 17 before
the second pass is begun.

The above adjustments could be programmed as
shown below:

LOC OP, A B c OP2 D

/ xxxxx xxxx xxxx xxxx STCH 0000

0480 xxxxx xxxx xxxx xxxx ECHTR 0483
0481 NOOP 0000 0000 0000 STOP 0483
0482 NOOP 0000 0000 0000 TR 0486
0483 SBTPM 0000 0000 0000
0484 NOOP 0000 0000 0000 SETRB 0017
0485 NOOP 0000 0000 0000 TR f

Assume that during the first execution of the loop,
tape M is moved forward one unit record and RB

changes from 17 to 30. Instruction 480 then transfers
control to 483. Instruction 483 backspaces tape M to
its original position. Instruction 484 resets RB to 17,
its original value. Instruction 485 transfers control
back to f, and the second pass through the loop begins.
At the end of the second pass the two check sums are
compared. If they agree, control skips to instruction
482 which in turn transfers control to 486 where the
next phase of the program begins. If the check sums
do not agree, however, the skip does not take place,
instruction 481 is executed, and the calculator stops.
If it is manually restarted control transfers to 483,
conditions are initialized once more and the entire
process is repeated.

It is important to note that, should any such initial­
izing sequence require the performance of numerical
calculations, the results of these calculations will not
become part of either check sum. SpeedCo I recog­
nizes that calculations performed after an end-check-
and-transfer instruction and before a start-check in­
struction do not belong to the checking loop, and
therefore does not add such results into either check
counter.

Two simple rules which must be remembered in
using the three checking operations, PREPARE CHECK,
START CHECK, and END CHECK AND TRANSFER, are the
following:

1. If an END CHECK AND TRANSFER is being exe­
cuted, the last executed checking operation must
have been a START CHECK.

2. If a START CHECK is being executed, the last
executed checking operation must have been
either an END CHECK AND TRANSFER or a PRE­
PARE CHECK.

Rule 2 is particularly pertinent in case the pro­
grammer has arranged a transfer operation out of a
checked loop, that is, between a START CHECK and an
END CHECK AND TRANSFER. He might wish to do this,
for example, on a tape end-of-file or tape error condi­
tion. In such a case it is essential to give a PREPARE
CHECK before the execution of the next START CHECK.

L I S T I N G

LISTING is the process of printing, in complete detail,
all of the pertinent information concerning one or
more instructions of a program while the program is
being executed. The SpeedCo I listing operation prints
on a single line the following information for each in­
struction listed, from left to right in the order shown:

1. Location of the instruction
2. Alphabetical OP, code
3. R-code
4. A address
5. B address
6. C address
7. Alphabetical OP2 code
8. D address
9. L-code

10. Absolute value of contents of address
counter modulo 1024

11. RA

12. RB

13. RC

14. Contents of effective A
15. Contents of effective B
16. Contents of effective C

All numerical information is printed in the decimal
number system.

The actual listing process will not be completely
concurrent with the execution of the instruction being
listed. Instead the information will gradually be stored
up on a drum until a block of information correspond­
ing to ten instructions has been accumulated. At this
point the program will be temporarily interrupted and
the printing will take place. As only blocks of ten lines

T I M I N G 39

are listed it will sometimes be necessary to artificially
continue the program beyond the natural stopping
point in order to list all lines desired.

It is very important to remember that the above
information listed for any one particular instruction
pertains to the status of the program after the OPx of
that instruction has been completely executed, but
before the execution of the OP2 of the instruction has
been commenced.

If any item is irrelevant (for example, the contents
of A, B and C in a no-OPi or tape or drum instruc­
tion), the field corresponding to this item will be
blank.

If OPx of the listed instruction is SUB, the negative
of the contents of B will be printed instead of the con­
tents of B. The other exceptions are as follows:

10(A) | and |Q(B) | are listed for ABADD

|Q(A) | and — |Q(B) | are listed for ABSUB

| Q (B) | is listed for ADDAB

— |0(B) | is listed for SUBAB

— 0(A) is listed for NGMPY and NGDIV

If the exponent part of 0(A), 0(B) or 0(C) is
greater in absolute value than 236, the corresponding
listed information for the value will be 0 for the frac­
tional part and plus or minus 999, depending on
whether the exponent is plus or minus, respectively.

Listing is not intended as a means of printing re­
sults, but is instead an aid in debugging new, un­
checked programs.

When the complete program is being listed, the
large volume of printed output required slows the cal­
culator down to an effective speed of only about 75 in­
structions per minute. The listing process is selective,
however. It is possible to so code the problem that,
depending on sense switch settings, the information
for only some of the instructions executed will be
printed. This decrease in the volume of printed output
will bring about a corresponding increase in the effec­
tive calculating speed during listing. No listing will
ever take place for instructions being executed the sec­
ond time around a checked loop (see Checking).

Whether the information for any particular instruc­
tion will be printed is determined by the number coded
in its L field and by the position of the corresponding
operator's panel sense switch. The L-code of an in­
struction may be 0, 3 or 6. These three codes are asso­
ciated with the three sense switches labelled 1, 2, 3,
respectively, on the operator's panel. When the "0"

switch is in the ON position, the information for every
instruction with a zero in its L field will be printed.
When the "0" switch is off the information for such
instructions will not be printed. The listing of instruc­
tions with a 3 or a 6 in their L fields is similarly con­
trolled by the "3" and the "6" switches.

T I M I N G

THE AVERAGE and maximum times required for the
complete execution of each of the SpeedCo I OPx and
OP2 operations, except for the elementary functions
SQRT, EXP, LN, SINE and ARTAN, are listed in Figure
9. (For the execution time of the elementary func­
tions, see the Appendix.)

The OPj and OP2 times for each instruction are
completely independent, so the programmer may com­
pute the time required for the complete execution of
any instruction by simply adding the OP2 time to the
OPx time, unless the OP2 is no operation, in which
case the complete instruction time is simply the OPx

time. Note, however, that unlike NOOP2, the OPx oper­
ation NOOP requires a non-zero time.

Execution Time for OP< (Figure 9)

Condition 1: The most recent previous instruction
affecting the same tape has been WRTP ().

Condition 2: The most recent previous instruction
affecting the same tape has been RWTP ().

Condition 3: The most recent previous instruction
affecting the same tape has been RFTP() or
SFTP().

Condition 4: The most recent previous instruction
affecting the same tape has been RBTP() or
SBTP().

Condition 5: The most recent previous instruction
affecting the same tape has been EFTP ().

Condition 6: The PRINT instruction is not being
executed for the second time around a checking loop.

Condition 7: The PRINT instruction is being exe­
cuted for the second time around a checking loop.

Note 1: These times must be amended if the next
instruction to be executed affecting the same tape
occurs sooner than a certain time. The tape unit will
be disconnected from the calculator after the times

OP!
Average Time
(milliseconds)

Maximum Time
(milliseconds) Condition

ADD 4.200 19.272

SUB 4.368 19.440

ADDAB 4.428 19.500

ABADD 4.656 19.728

SUBAB 4.428 19.500

ABSUB 4.656 19.728
MPY 3.546 3.552
NGMPY 3.714 3.720

DIV 3.666 3.720

NGDIV 3.834 3.888

MOVE 3.180+ (.816) (B — A+ 1) • 3.180+ (.816) (B-

WRTP () 14.000+ (1.600) (B — A + 1) 19.000+ (-1.600) (B -

904.000+ (1.600) (B — A + 1) 1204.000 + (1.600) (B -

RFTP () 14.000+ (1.600) (») 19.000+ (1.600) (n) RFTP (
24.000+ (1.600) (n) 31.000+ (1.600) (n)

904.000+ (1.600) (n) 1504.000+ (1.600) (n)
where n = number of words in the unit record.

RBTP () 57.000+ (4.800) (n) 76.000+ (4.800) (w)
67.000+ (4.800) (w) 88.000+ (4.800) (M)

946.000 + (4.800) (n) 1260.000+ (4.800) (n)

where n = number of words in the unit record.

SFTP() 14.000 (see Note 1) 19.000 (see Note 1))
24.000 (see Note 1) 31.000 (see Note 1)

904.000 (see Note 1) 1504.000 (see Note 1)

SBTP () 14.000 (see Note 1) 19.000 (see Note 1) SBTP ()
24.000 (see Note 1) 31.000 (see Note 1)

904.000 (see Note 1) 1204.000 (see Note 1)

RWTP () 2.832 (see Note 2) 2.832 (see Note 2)
EFTP () 2.832 (see Note 2) 2.832 (see Note 2)
WRDR() 103.072 + (5.120) (B - A + 1) 144.382+ (5.120) (B
RFDR() 53.072+(2.560) (B —A+1) 73.727 + (2.560) (B - A + 1)

PRINT 1663.000+ (400.000) (/) 1683.000+ (400.000) (I)

where I = smallest integer greater than or equal to (1/5)(B — A + 1)
2.896 2.896

EJECT 3.036 3.036
NOOP 2.736 2.736

FIGURE 9

1
2

3
4
2

4
3
5

3
4
2

4
3
5

6

7

40

T I M I N G

given, and the program will proceed, but an automatic
delay will occur if the calculator is required to perform
a function involving the same tape before the tape has
skipped entirely over the unit record. If this delay
occurs, the amount which must be added to the times
given will be, in milliseconds, (1.600) (n) — t, where
n is the number of words in the unit record being
skipped and t is the time elapsed between the time the
tape unit disconnects and the beginning of the execu­
tion of the next instruction affecting the same tape.

Note 2: Here also these times must be amended if
the next instruction to be executed affecting the same
tape occurs sooner than a certain time. The tape will
be disconnected from the calculator after the times
given, and the actual physical rewinding or end-of-file
writing will take place simultaneously with the execu­
tion of the following instructions unless these physical
functions are not completed before an instruction af­
fecting the same tape is reached in the program. In
this case there will be an automatic delay, the amount
of which can be computed by using the following facts:

a) The check sum for each unit record occupies a
half word of space.

b) Each word in a unit record occupies inches
of tape.

c) The tape length of the unit record gap is one
inch.

d) The tape length of the beginning-of-file gap is
72 inches.

e) The tape length of the end-of-file gap is 72
inches.

f) The tapes move at a rate of 75 inches per sec­
ond of time.

Thus it requires 72/75 = 0.96 seconds for the cal­
culator to write the end-of-file gap, so if the time con­
sumed after an EFTP() operation before reaching
the next instruction affecting the same tape is more
than 0.96 seconds, there will be no extra loss of time.
Or suppose a tape file consists of 100 unit records of
ten words each. The tape length for this file in inches
would be 2 • 72 + [100 • (10 + 1/2)] • 3/25 +
99 • 1 = 369; therefore the time required to rewind
this file would be 369/75 = 4.920 seconds. If the next
instruction affecting the same tape occurs sooner than
this time, there will be a delay until this time interval
has been completed.

Execution Time for OPa (Figure 10)

The information in Figure 10 should be adequate
to give the programmer a means of computing the
machine time necessary for the execution of his pro­
gram, exclusive of listing time and initial loading time.

In listing, the average and maximum times required
per instruction listed are 1.325 seconds and 1.370 sec­
onds, respectively.

The machine time necessary for the initial loading
of instructions and data from punched cards to electro­
static storage, tapes, and/or drums is almost entirely
a function of the number of cards to be loaded.

Only one instruction can be loaded on an instruc­
tion card but up to five floating decimal numbers can
be loaded on a data card, all at the regular card reading
speed of 150 cards per minute, or 0.4 seconds per card,
unless a loading control card intervenes, which may
stop the card reader to give the calculator time enough
to load the specified data and/or instructions on the
specified tape or drum. The maximum time the card-
reader may stop is about two seconds and should aver­
age about 0.6 seconds. (For small blocks to be loaded
on tapes or drums it may not stop at all.)

The amount of machine time consumed in reading
the constant deck labelled SPEEDCODING I, which must
always be used with the variable program cards (see
pages 18 and 27) is either about 55 seconds or
about two seconds, depending upon which of the two
possible constant decks is used (one deck will consist
of about 130 cards and will be used in case the two
drums set aside for storage of the control information
which constitutes the SpeedCo I system do not already
contain this information; the other deck will consist of
two cards and will be used in case the two drums do
already contain the required information, which should
always be the case if these two drums have not been
used since the last SpeedCo problem was run on the
calculator).

Hence the programmer can approximate the load­
ing time, in seconds, by the formula

(0.4) (n) + (0.6) (c) + e
where

n = total number of instruction, data, and load­
ing control cards.

c = total number of loading control cards.

e = 2 or 55 depending upon whether the SpeedCo
I system is or is not already on the two spe­
cial drums, respectively.

OP2 Time (milliseconds)

TR 0.768
TRPL 0.876 or 0.648 (for plus or minus condition, respectively)
TRMN 0.924 or 0.696 (for minus or plus condition, respectively)
TRZ 0.876 or 0.648 (for zero or non-zero condition, respectively)
SNTRP 0.864 or 0.588 (for on or of? condition, respectively)
SNTRQ 0.864 or 0.588 (for on or off condition, respectively)
TIA 2.256
TIB 2.256
TIC 2.256
TIAB 2.256
TIBC 2.256
TIAC 2.256
TIABC 2.256
TDA 2.880
TDB 3.036
TDC 2.880
TDAB 3.036
TDBC 3.036
TDAC 2.880
TDABC 3.036
SETRA 2.160
SETRB 2.328
SETRC 2.280
SKRA 0.984 or 0.756 (for equal or non-equal condition, respectively)
SKRB 1.032 or 0.804 (for equal or non-equal condition, respectively)
SKRC 1.032 or 0.804 (for equal or non-equal condition, respectively)
RADDA 1.560
RADDB 1.656
RADDC 1.656
RADDD 1.320
ADDA 1.392
ADDB 1.488
ADDC 1.488
ADDD 1.152
SUB A 1.548
SUBB 1.644
SUBC 1.644
SUBD 1.152
STA 1.596
STB 1.740
STC 1.656
STD 1.368
SKIP °-984 or 0.756 (for equal or non-equal condition, respectively)
PRCH 0.660
STCH 1-440 or 1.596 (for first or second time, respectively)
ECHTR 1.368 or 1.260 (for first or second time, respectively)
STOP 0.816
No operation 0.000

FIGURE 10

42

appendix

A P P E N D I X A

Elementary Functions — Set 1

THE NAMES and important characteristics of the pres­
ently used set (Set 1) of elementary function opera­
tions are listed below.

Square Root (SQRT)

This operation uses the usual Newton iteration
technique to compute V Q (A) to at least 9 significant
decimal digits for any value of Q(A) for which the
absolute value of the decimal exponent part does not
exceed 39,456. Any larger exponent will give com­
pletely meaningless results. If the fractional part of
Q (A) i s n e g a t i v e , t h e v a l u e o b t a i n e d f r o m V Q (A)
will be the same as that obtained for Q(A) = 0,
namely 0 for the fractional part and the least integer
greater than or equal to one-half the exponent part of
Q(A) for the exponent part.

Average Time: 8.2 milliseconds
Maximum Time: 9.016 milliseconds

Sine (SINE)
This operation uses a series approximation to com­

pute sin Q(A). Since it is necessary that the argument
in the series lie between —ir/2 and +t/2, the original
argument Q (A) is first reduced to an equivalent argu­
ment lying in this interval. This reduction of angle
results in a loss of significance in the argument of
about n decimal places, where n = absolute value of the
decimal exponent part of Q(A). The series approxi­
mation itself gives an accuracy of at least 8 decimal
places. Hence the final result sin Q(A) is accurate to
about 8 decimal places if 11 < 3, and is accurate
to about 10 — n decimal places if 2 < n < 11. If
10 < n < 77, the result obtained for sin Q(A) will be
0 for the fractional part and +7 for the binary ex­
ponent part (i.e., about +2 for the decimal exponent).
This result is also obtained for any Q(A) whose frac­
tional part is 0. for n > 76, the result will generally
be meaningless.

Average Time: 13 milliseconds
Maximum Time: 25.416 milliseconds

Inverse Tangent (ARTAN)
This operation uses a series approximation to com­

pute the principal value of arctan Q(A) to at least 7
decimal places for any value of Q(A) for which the
a b s o l u t e v a l u e o f t h e d e c i m a l e x p o n e n t p a r t o f Q (A)
does not exceed 76. For larger values of the exponent
the result will generally be meaningless.

Average Time: 13 milliseconds
Maximum Time: 27.648 milliseconds

Exponential (EXP)
This operation uses a series approximation to

compute exp [Q(A)] to at least 8 significant deci­
mal digits. Since the output of the program provides
only for decimal exponents up to ± 39,456, the
argument Q(A) should be small enough so that exp
[Q(A)] < 10 39'456, which means roughly that the
decimal exponent part of Q(A) should not be larger
than 5. The smallest allowable negative value of the
input exponent is —76. For smaller negative expo­
nents, the result will generally be meaningless.

Average Time: 13 milliseconds
Maximum Time: 14.040 milliseconds

Natural Logarithm (LN)
This operation uses a binary digit generation

method to compute loge Q(A). The highest allowable
a b s o l u t e v a l u e f o r t h e d e c i m a l e x p o n e n t p a r t o f Q (A)
is 39,456. Any larger value will give completely
meaningless results. If the exponent part of the result
obtained is non-positive (i.e., if |loge Q(A) | < 1,
w h i c h i s e q u i v a l e n t t o t h e c o n d i t i o n \ / e < Q (A) < e) ,
the result is accurate to at least nine decimal places.
If the exponent part of the result is positive, the result
is accurate to at least nine significant decimal digits.
If the fractional part of Q(A) is 0, the result obtained
i s t h e s a m e a s i f t h e b i n a r y f r a c t i o n a l p a r t o f Q (A)
had been the value 1/2 [hence the result obtained
would be approximately (loge 10) times the decimal
exponent part of Q(A)]. If the fractional part of
Q(A) is negative, the result obtained is the same as if
the fractional part had been positive.

Average Time : 33 milliseconds
Maximum Time : 55.836 milliseconds

43

A P P E N D I X B

Less Restricted Type of Input Data

THE FRACTIONAL part TV) of the numbers punched on
the data cards , to be loaded need not be restricted to
the conditions 1/10 2= Nt < 1 or Nt = 0, as stated on
Page 8. These conditions, which essentially say that
all non-zero Nt must not have any leading zeros, are
altered to the following condition:

The total number of leading zeros for the five (or
fewer) non-zero Nt to be loaded for any card should
not exceed 20.

Thus one may load a card with TV) = .OOOOx xxxxx
for i = 1, 2, 3, 4, 5, since the number of leading zeros
for this card would be 4 X 5 = 20.

If it is attempted to load a data card containing
more than a total of 20 leading zeros for the TV) on the
card, the result may be a copy check stop when the
machine attempts to read the next card.

A P P E N D I X C

Additional OPi-Code: Eject

To THE group of OP! operations in the SpeedCo I
Control System, there has been added an operation
which has the alphabetic code EJECT and the numeri­
cal code 767. The execution of this OP! effects the
ejection of the printer paper, except on the second
cycle of a STCH to ECHTR checking loop in which case
this OPi acts as an NOOP. Any OP2 may be used in
combination with this OPi on an instruction. The
other fields of the instruction are not specially re­
stricted, and have no effect upon the ejection. When
an instruction involving the EJECT operation is listed,
the fields containing the contents of the effective A, B,
and C (items 14, 15 and 16 of page 38) will, as in the
case of an NOOP, consist of zeros.

A P P E N D I X D

Suppression of Tape Rewinding

IN THE normal operation of the loading system, all
four tapes J, K, L, and M are rewound prior to the
reading by the card reader of any instruction cards,
data cards, or loading control cards. (See Page 27.)
Sense switch 6 (heretofore not used by SpeedCo I)

C O D I N G S Y S T E M

on the operator's panel may be used to selectively con­
trol this rewinding action. If, prior to the loading of
either of the two SpeedCo I constant decks (see Page
41), sense switch 6 is placed in the ON (i.e., DOWN)
position, none of the four tapes will be rewound by the
loading system, while, if sense switch 6 is placed in the
OFF (i.e., NORMAL) position, all four tapes will be re­
wound as described above. This selective control thus
makes it possible to retain the prior status and the
prior position of each of the four tapes during loading.

A P P E N D I X E

Additional OPi-Code: Move

AN OPI operation has been added to the SpeedCo I
Control System which has the alphabetic code MOVE
and the numerical code 690. This operation makes it
possible to move a block of information (which may
consist of either instructions or data or both) from
one set of consecutive locations to another. The ad­
dress A of the instruction on which the OPi is MOVE
specifies the first location of the block to be moved,
B the last, and C the first location of the relocated
block. Providing there is no overlap between the loca­
tions of the block to be moved and the locations of the
relocated block, the execution of this operation does
not alter the contents of the former locations. Any OP2

operation may be used in combination with MOVE, and
although the storing of the relocated block takes place
prior to the execution of the OP2, this does not pre­
vent the successful operation of the MOVE and the asso­
ciated OP2 even if the instruction on which they occur
is located within the region to be occupied by the
relocated block. When an instruction involving the
MOVE operation is listed, the fields containing the con­
tents of the effective A, B, and C (items 14, 15, and
16 of Page 38) will consist of zeros.

In all cases, the operation MOVE successively moves
the contents of A to C, the contents of A + 1 to C + 1
. > . . , the contents of B to C -(- (B — A), with the
requirement that A ^ B. From this information, it
may be deduced that there is one special case in which
the block to be moved would not be relocated in the
manner previously described. This special case arises
when A < C ^ B. The result of executing a MOVE
operation in this special case may be deduced in
general from the following example. Let A = 400,
B = 405, C = 402, and assume the R-code value is
zero. Then, letting primes indicate the new contents

A P P E N D I X 45

as distinguished from the old, the result of the MOVE
operation is: Q'(402) = 0(400). Q'(403) = 0(401),
0'(4O4) = Q'(402) = Q(400), Q'(405) = Q'(403)
= 0(401), 0'(4O6) = 0'(4O4) = 0(400), and
0'(4O7) = 0'(4O5) = 0(401).

If an instruction (or an instructional constant) is
moved by the MOVE operation, the programmer should
be mindful of the fact that the address parts of these
instructions (or instructional constants), or of others,
may need to be changed.

PLANNING CHARTS AND PRINTED FORMS FOR THE IBM SPEEDCODING SYSTEM

46

»

I B M

Form 24-6059-0 (5-54:2M-W)

