
COMPANY CONFIDENTIAL

IBM CUSTOMER ENGINEERING

Preliminary Instruction Text

IBM 7030 DATA PROCESSING SYSTEM

LOOKAHEAD UNIT
BOOK A

The information presented in this preliminary instruction
text is based on the electrical and mechanical status of the
7030 system as of December 15, I960. The contents of
this text has not been approved by the Engineering or Patent
Departments and has not been edited for final printing.
Distribution of this text shall be restricted to IBM employees
authorized by the nature of their duties to receive such infor­
mation.

LOOKAHEAD UNIT, BOOK A

CONTENTS

1.0.00 GENERAL INFORMATION 5
1 . 1 . 0 0 I n t r o d u c t i o n 5
1.2.00 Machine Terminology 9
1.3.00 General Machine Logic 13

2.0.00 FUNCTIONS AND CONTROLS 22
2.1.00 Level Description 22
2.2.00 Level Requirements 25
2.3.00 Lookahead Sequencing 29
2.4.00 Counter Controls 36
2.5.00 Data Flow Paths and Communication38

3.0.00 INSTRUCTION PREPARATION 3 9
3.1.00 General Description 39
3.2.00 Loading 4 5
3.3.00 Operand Checking 7 4
3,4.00 Forwarding 81

4.0.00 INSTRUCTION TRANSFER TO EXECUTION 89
4.1.00 General Description 89
4.2.00 Floating Point Operation 96
4.3.00 Variable Field Length 103
4.4.00 Non Arithmetic Instructions 117

1.0.00 GENERAL INFORMATION

1.1.00 Introduction

The Lookahead unit of the computer is responsible for

the proper sequencing and distribution of instructions plus per­

forming all store operations. The need for the Lookahead is

apparent when the overlap feature and speed of the computer

are considered. The Lookahead unit allows complete utiliza­

tion of the execution units. In previous computer systems,

operations were performed by an instruction time followed by

an execution time. The execution units were idle during the

instruction time as were the instruction units idle during the

execution time. In the 7030 system the instruction time and

execution time are independent of each others operation.

This means that instructions are being prepared while others

are being executed. The diagram in figure 1.1-1 illustrates

a comparison between both systems and the Lookahead rela­

tionship to the 7030 system.

5*

Previous Systems 7030 System.

I Time J Time^^ Execute

Execute I Time >Look ^ Execute

I Time J Time-) Ahead ^Execute

Execute ITime^ Execute

Figure 1. 1 -1

The function of Lookahead within the 7030 system is

evident in the illustration. To further understand the perfor­

mance of Lookahead, the following example is given.

An instruction has been decoded and is ready to be

loaded into Lookahead. As soon as the instruction is loaded

in Lookahead, the instruction unit is free to fetch the next

instruction and prepare it. As the instruction unit is pre­

paring the next instruction, Lookahead is processing the pre­

sent instruction. When the next instruction is ready, the

instruction unit loads it into Lookahead. In the meantime

Lookahead has transferred the first instruction to the execu­

tion unit. The chart in figure 1. 1-2 indicates the basic

operation and communication of the instruction unit and Look-

ahead and further illustrates the overlap feature of the com­

puter.

(o

I Box Lookahead Execution

1 - Fetch inst. (N)

2- Decode inst. (N)

3- Load inst. (N) to LA

4- Fetch inst. (N+l)

5- Decode inst. (N+l)

6- Load inst. (N+l) to LA

7- Fetch inst. (N+2)

8- Decode inst. (N+2)

9- Load inst. (N+2)

10 - Fetch inst. (N+3)

3-1 LA Decode inst. (N)

4-1 LA Sequencing inst. (N)

5-1 LA Distribution inst. (N) Execution (N)

6-1 LA Decode inst. (N+l)

7-1 LA Sequence inst. (N+l)

8-1 LA Distribution inst. (N+l) Execute (N+l)

9-1 Decode inst. (N+2)

10-1 LA Sequence (N+2)

11-1 LA Distribution inst. (N+2) Execute (N+2)

Figure 1.1-2

By increasing the capabilities of both the instruction unit

and Lookahead, as illustrated in figure 1. 1-3, the overlap feature

is expanded with even a greater increase in speed. Lookahead

was designed for the most efficient overlap operation.

The sequencing of instructions through Lookahead is

more complex than it may appear. Before any instruction can

be executed, the Lookahead must insure that the previous in­

struction completed without error. A "no error" condition

allows the execution of the next instruction. If the execution of

7

the previous instruction indicated an error, the computer program

would be interrupted. This interrupt action is initiated and

controlled by Lookahead. The action taken is a recovery of data

and a reset of both I Box and Lookahead. Upon completion of an

automatic correction routine, the normal program sequence

would start with the instruction following the one which caused the

error. It should be noted in the diagram in figure 1. 1-3 that the

Lookahead checks the previous instruction before transferring

the data for execution.

The distribution of the instruction consists of the trans­

ferring of the operation code and working data (operand) to the

proper execution unit. By decoding the instruction by type,

Lookahead determines the execution unit and transfers the data.

The execution units are considered to be the Parallel Arithmetic

Unit (PAU), Serial Arithmetic Unit (SAU) and the Input-Output

Units (I/O).

If the result of an operation, other than I/O, is to be

stored,, Lookahead will perform the operation. The load, data

check, data transfer, operation check, and store operations are

discussed in detail in the following sections. Figure 1.1-4 illus­

trates the Lookahead section in an overall computer diagram.

Figure 1.1-5 is a more detailed breakdown of the lookahead relationship.

Physically lookahead is contained in frames 18, 19, and 20 of the
7030 System. g

1.2.00 Machine Terminology

Before proceeding further, the reader should familiarize

himself with the following terms and definitions included in this

manual.

1.2.01 Basic Language

All data and control fields in Lookahead are in

straight binary. No special coding is used. The decod­

ing of Lookahead looks at the on or off (1 or 0) status of

certain bit locations to determine the action necessary.

1.2.02 Operand

The actual working data required by the opera­

tion. This data can be an instruction word, index core

storage word, internal register, or external memory

word. Lookahead does not perform any operation on

the data. It only receives, checks and transfers it to

an execution unit.

1.2.04 Pre-Execution

The execution, from start to the point of

modifying and addressable register is defined as Pre-

Execution. This time includes accepting the operation

code and operand from Lookahead, and executing the

instruction to where the modification of an addressable

register is necessary. The changing of the address­

able register is accomplished in the execute time for

the operation.

?

1.2.05 Interrupt

During each operation a comparison is made

between the pre-set mask register and the indicator

register. The indicator registor indicators can be

changed at any time during an operation. A no com­

parison condition is indicative of an error and is called

interrupt. Lookahead memorizes this line at the com­

pletion of the present instruction. When the execution

of the existing operation is completed, the following

Lookahead action is determined from the status of the

interrupt line. If the interrupt line is active, Look-

ahead will initiate a corrective action, which caused

the normal sequence of the program to be altered

(interrupted), and cause both the instruction unit and

Lookahead to be reset.

1.2.06 Houseclean

The action taken by Lookahead during an

interrupt is called housecleaning. Housecleaning re­

sults in nothing more than clearing out all data in the

Lookahead after the error was discovered. If some of

this data are index core storage words, that were loaded

into Lookahead by the I Box for temporary saving, they

must be sent back to the index core storage unit. When

housecleaning is over, the Lookahead is ready for a re­

load from I Box.

10

1.2.07 Pseudo-Store

Some instructions pertain to the instruction unit

only and are completely executed there. If any of these

instructions result in the changing of any index core

storage words, the original words must be saved in case

of an interrupt condition which may occur. Any instruc­

tion which is completely executed in the I Unit is out of

the normal sequence. It is for this reason that any in­

dex core storage words that have been changed must be

saved. These original words are loaded into Lookahead,

with a proper operation code for Lookahead recognition.

Any of these types in Lookahead are referred to as pseudo-

stores. If an instruction earlier in the normal program

sequence causes an interrupt, Lookahead looks for the

pseudo stores and returns the original core storage words

to I Box to back date the index memory. If no interrupt

exists, LA will pass over the pseudo store levels when

their normal program sequence time is due. An example

of this action is to assume instruction #5 is being executed

in an arithmetic unit. At this time the instruction unit is

processing instruction #9, and recognizes it to be executed

within the instruction unit. Instruction #9 is now being

executed at the same time as instruction #5. It is obvious

that this execution is well out of sequence. Instruction #9

is loaded into LA as a pseudo store after instruction #8

//

1. 2. 08 Recovery Level

This is a special level associated with certain branch instructions (VFL)

In a branch, I Box always assumes that there will be a "no branch condition"

and continues processing the following sequential instructions. If a branch should occur,

the recovery level associated with the branch instruction contains the branch address

and will initiate a look ahead and I Box recovery. This will be necessary since all

instructions following the branch will be invalid.

a

in the normal manner. If an interrupt occurs on instruc

tion #7, Lookahead looks for the pseudo stores and sends

the index core storage words (instruction #9) back to

index memory. The reason is clear that an error occur

red before the normal sequence of instruction #9 should

have happened. The program will resume with instruc­

tion #8 following any corrective routine, because index

core storage was restored, the word would be modified

again when instruction #9 is reprocessed and the proper

result is maintained.

1.3.00 General Machine Logic Figure 1.3-1

The basic logic of the Lookahead can be broken down

into five general operations plus error considerations. All in­

structions are received from the I Unit and loaded into Lookahead.

This loading is dependent upon a signal from Lookahead informing

the I Unit that it can be loaded. All control information is loaded

from the I Unit directly. The necessary operand (data field) can

be obtained from one of three distinct places. In some instances

the operand may be present in the instruction format itself and is

transferred directly into Lookahead from the IUnit. Generally

speaking, however, the operand is requested from memory by the

IUnit. The return address of the operand is the Lookahead level

just loaded.

If the instruction calls for an internal register as the

operand, the I Unit codes the information in lookahead. In this

13

latter case, the Lookahead recognizes this in the decoding of the

instruction and causes the internal register involved to be routed

to the proper execution unit at a later time. When an internal

register is noted as the required operand the data field in Look-

ahead is not required. Store instructions are of the same type

and do not require operands initially. The data field ac

ceptsthe information at a later time from the execution unit and

store$it. All control information is loaded directly from the I

Unit as in any type instruction. Here the data field is reserved

for the data to be stored.

Once the loading is completed, the operand involved

must be checked for any data errors. The action here is depen­

dent upon where the operand was received from. Where the

operand was received directly from the IUnit, Lookahead does

not require any checking because the operation is checked through

the I checker when loaded. In cases of an internal register

acting as the operand, Lookahead merely controls the gating out

of the internal register to the execution unit. When the internal

register is gated out, the data passes through the A checker

where it is checked. The only time the Lookahead must initiate

an operand check cycle is when the required operand is being

received from external memory. Once the operand is received

from memory, the Lookahead requests use of the I checker.

When the Lookahead priority is satisfied the data is gated through

the checker and checked for ECC. The data then returns to

Lookahead with correct parity bits. In case of an error in the I

checkerj a correct cycle is initiated to correct the error. If the

error can not be corrected, the data is still put into Lookahead,

but an error tag is also set to identify the error.

Once the loading and operand check cycle (if any) are

complete, the Lookahead is ready to go into the instruction ex­

ecution phase of the operation. Before LA can transfer the data

to the execution units, it is necessary to first decode the type

instruction involved (also to insure that the previous operation

was completed without error). During the loading process, the

I Unit tags the data to include pertinent facts about the instruc­

tion. The Lookahead uses these tag bit designations along with

the operation code to decode each instruction by type. There

are four types of instruction that the Lookahead must decode.

They are Floating Point (FLP), Variable Field Length (VFL),

Input Output (I/O), and I Unit. In addition to these basic four

types, Lookahead also uses the op code and tag bit designations

for control purposes.

The de­

coded control lines condition the transfer circuits to the proper

execution units and are used internally for Lookahead control

purposes.

At this time Lookahead is not sure that the previous

operation has completed without error. Still the transfer of the

operation code and data are allowed to take place to the various

AT

execution register. However, this data will only be acted upon

up to the point where an addressable register must be changed.

The operation will terminate here and the actual changing of the

addressable register is not allowed until Lookahead has checked

for error conditions in the previous instruction. This action is

called pre execution and allows the execution unit to process the

data, as much as possible, before the error or no error condi­

tion can be detected. If the execution unit were allowed to change

the addressable register and put the result of the present instruc­

tion into it and then LA found the previous instruction were in

error, the information previously in the addressable register

would be lost.

A signal from the execution unit indicating that it has

accepted the data and started pre-execution enables the LA to

continue to the next step of its operation. In order to allow the

execution unit to execute (change an addressable register) the

present instruction, tests must be made to determine the error

status of the previous instruction. Lookahead must make these

tests and inform the execution unit of the results. If the tests

indicate no error, the complete execution of the present instruc­

tion is allowed to take place. The error condition is a result

of the sampling of the indicator register. The indicator register

is updated from the lookahead during each operation. Actually

the changing of the indicator is not done in the LA, but rather

the results of any changes are stored there. During the LA

loading, any indicators changed as a result of instruction pre­

paration are recorded in the IUnit and the result appears in the

indicator register field after the load. Any indicators changed

as a result of indexing are transferred directly from the updated

index result indicator (UXIR) register in the IUnit to Lookahead.

Any indicators affected by the previous operation in the I/O or

arithmetic operations are entered directly into the main indicator

register. Upon completion of the previous instruction, the result

of the comparison between the main indicator register and the

mask register is sent to Lookahead as interrupt or no interrupt.

Assuming no interrupt (previous operation completed without

error), the Lookahead signals the execution unit to proceed

with the execution of the instruction. Also, LA transfers the indicator field

in LA to the main indicator register. Again during the execution of this

instruction the execution unit involved sets its indicators directly into the

main indicator register. At the end of this instruction the LA must again test

for a no error condition to see if the next operation will be allowed to complete.

As mentioned during loading, if the operand required

for execution was an internal register, the LA routes

the data to the proper execution unit at the proper time. Action

is taken during this LA time to complete the transfer of the

internal register to the execution unit. Of course, this action

is dependent upon the same conditions as before. That is the

17

previous instruction completed without error.

If the previous instruction caused an interrupt, the

execution unit is < not be allowed to complete the operation pre­

sently in the pre-execution state. The presence of the interrupt

line causes LA to signal the I Unit to do a house-

clean because it can be processing instructions beyond the one

causing the interrupt. In instructions that are executed in the

IUnit, words in index core storage are altered. Because the I Unit

is processing these instructions out of sequence - that is the

particular instruction can be several program steps behind the

one presently being executed in the execution unit - it becomes

necessary to retain the old index core storage word in case of

an interrupt prior to the normal sequence of the IUnit instruc­

tion. I Unit houseclean action will restore these words to index

core storage, clear out any other information and reset their

control circuits for loading and instruction preparation. When

the program interrupt is over and the program is again stepping

through the normal routine, all data in index core storage will

be in its original form as before the interrupt. Upon comple­

tion of the I Unit houseclean, LA is signaled to houseclean. LA

housecleaning consists of clearing all data left in LA after the

interrupt except any index core storage words that were sent

from the I Unitito be saved. These words are routed back to I

Unit to restore the index core storage as mentioned above. The

I S

LA control circuits are reset and houseclean is complete. After

the interrupt program routine, the program starts on the instruc­

tion which followed the one which caused the interrupt and the IUnit

and LA are back to normal operation. Assuming no interrupt,

LA decodes the instruction just executed to see if a store is re­

quired. If a store is not required, LA is ready to load another

instruction and repeat. However, if a store is required, LA

must determine the location of the store and take the proper

action before another load is allowed. There are three types of

stores and are only possible through Lookahead. By further de­

coding of the operation code and tag information, obtained during

the load, LA determines the area required for the store. The

three possible areas for storing are external storage, the

internal registers and index core storage. LA action is different

for each type. For storing into external storage, LA receives

the required data from the execution and because this is a store

to external memory, LA must insure that the data has the proper

parity structure and then generate error correction code (ECC)

for the data. The parity check and ECC generation is accomplished

through the I checker. Lookahead makes a request to the checker

and when the priority is satisfied LA routes the data through the

checker where the necessary action takes place. The data, with

ECC generation returns to LA. Lookahead then makes a request

to the memory bus priority system. When the request is satis­

fied, LA routes the data to the storage bus for storage. When

I f

the store is required to I Unit, Lookahead requests the I checker.

When the priority request is honored, the data is routed through

the checker with a control line to check the data for proper LA

parity. The output of the checker is gated into the I Unit with the

proper I Unit parity. Lookahead also initiates the Clear and

Write cycle for index core storage. I Unit, using timed lookahead

pulses, gates the data to the cores. If an error was detected on

the data passing through the I checker the store' would complete
'l

as mentioned, but the Instruction check indicator in the indicator

register would be turned on. In an internal type, store, the data

is already in the proper parity and Lookahead merely controls

the data path to the proper destination. Upon completion of a

store operation, Lookahead is ready to load another instruction.

When special type instructions or conditions arise

during an operation, Lookahead action is somewhat varied. The

procedure just described is the sequence and function performed

by Lookahead in the majority of the operations. A list of these

functions are:

1- Receive instructions from the I Unit.

2- Receive and check operands.

3- Transfer operation codes and operands to the

proper arithmetic unit.

4- Insure that each instruction is completed with­

out error.

a) Interrupt if error.

b) Houseclean I Unit and Lookahead.

<2-0

5- Receive operands to be stored.

6- Initiate all store operations.

To take maximum advantage of the overlap system. Look-

ahead duplicates four distinct areas to accomplish the logic just

described. Each of these areas is called a level and each level

has identical functions. Referring to figure 1. 1-3 each vertical

column in the Lookahead area represents one level. By under­

standing the operation of one level, all levels are understood.

The only restrictions to the operation is that no two levels can

be performing the same function simultaneously. Only one level

can be loading at a time, one level checking operands at a time,

etc. However, whenonelevel is loading, another can be checking

operands, another transferring data to execution, etc. , as indi­

cated in figure 1. 1-3.

2. 0. 00 FUNCTIONS AND CONTROLS

2.1, 00 Level Description

Lookahead contain four separate areas to buffer instructions for execution.

Each of these four areas or levels contain identical registers and controls. The

levels are named level 1, 2, 3 and 4. Each level contains an operation code

field, data field, tag bit field, indicator field and instruction counter field. A

brief explanation of each field is listed below. Figure 2,1-1,

Operation Code Field Figure 2.1-2.

This is an 11 bit field specifying the operation to be performed. The final

bit is a check bit on the other 10.

Operand (Data) Field Figure 2.1-3

This field contains 64 information bits and 12 check bits. The information

in the field can be any of the following:

1. Operand required for execution

2. Data to be stored

3. VFL instruction information

4. Input-Output instruction information

5. Information for computer recovery.

Tag Bit Field

The tag bit field is an eight bit field containing information concerning the

status of the instruction stored at the level. The tag bits are used in Lookahead

decoding to further control an operation as it sequences through the level. Each

of the bits and their function is listed below.

4>2>

Level Filled (LF) tag bit

Applies to the operand and indicates that the operand has been entered

in the level.

Level Check (LC) indicates that the operand at the level has been

checked and the check bits converted to those required by the operation.

Internal Bit indicates the operand required for execution must be fetched

from an internal computer register.

Instruction Counter (IC) Bit indicates that the value stored in the

instruction counter field of the level is valid for interrupt interrogation.

It also indicates the final instruction level of multiple level instructions.

Lookahead Operation Code (LAOP) indicates the information stored in

the Lookahead operation code field is for Lookahead control purposes

only.

Word Boundry Crossover (WB C) used in conjunction with "not LAOP"

indicates the operand associated with a VFL instruction at the level

crossed a storage word boundary. When used in conjunction with LAOP,

the bit indicates that the operand at the level had ECC bits generated

when it was loaded.

No Operation (NOOP) Bit indicates that the instruction buffered in

the level is to be executed as no operation.

Disconnect (Disc) Bit indicates that the lookahead level will not

participate in any Lookahead action. This bit is essentially a

maintenance feature.

£3

Indicator Field

The indicator field is a 15 bit field which indicates the status of the

indicators affected by instruction preparation in the instruction unit.

Instruction Counter Field

The address of the instruction immediately following the instruction at the

level is stored in the instruction counter field. The value is stored during in­

struction execution for re-entry into the ma n program in the event of an interrupt

In multi-level instructions, the value is only valid in the final instruction level.

In addition to the fields just described, the look-ahead also ^contains one

Look-ahead Address Register and one instruction counter buffer. These final

two fields serve all four look-ahead levels.

Look-ahead Address Register (LAAR)

The LAAR is a 19 bit register, of which the final bit is a check bit. The

register is used to buffer an operand address when necessary for instruction

execution. Instructions requiring the LAAR are of the store type or those

specifying the contents of an internal register as the operand.

Physically the LAAR is located within the memory bus control unit, but it

functions logically within the look-ahead.

Instruction Counter Buffer

The instruction counter buffer is a 21 bit field used to buffer the contents of

the IC field of the instruction currently being executed (N+l). The instruction

counter value of a level is transferred to the IC buffer as the instruction begins

execution and is retained during the interrogation of the program interrupt

procedure for re-entry into the program following the correction routine.

2. 2. 00 Lookahead Level Requirements

Each Jook-ahead level can accomodate a single half word instruction which

requires only one operation. Some instructions, however, may contain more than

one operation. When more than one operation is necessary to complete an instruc­

tion, additional levels of look-ahead are required. The instruction level require­

ments are determined by the instruction unit and loaded into look-ahead accordingly.

The level requirements for floating point operations range from a minimum of one

level to a maximum of two levels. Variable field length instructions, however,

range from a minimum of two levels to a maximum of six levels. The level

requirements are divided into classes and include fetch only operations, store

only operations, fetch and store operations, and recovery levels.

Because all floating point instructions are half-word instructions, all single

floating point operations require only one level of look-ahead. Some floating

point operations require a fetch and a store operation or two fetch operation

and require two levels of look-ahead buffering. In floatingpoint operations, these

are the only exceptional cases.

In variable field length instruction, the operation code requires a full word

for the instruction format. Because of the added information necessary in VFL

operations, part of the data field is required to buffer the additional op code in­

formation. With a portion of the data field used for the op code, the operand re­

quired cannot be placed at the same level as the instruction op code and thereby

an additional level is required for the instruction data. If the required operand

cross a word boundry, two operand fetches are required resulting in two additional

levels of look-ahead buffering. If the instruction is a fetch and store type instruction,

I f

an additional level is required for each operation. If the instruction crosses a

word boundry, two levels are required for the operands, and two for the store

levels. When progressive indexing is used, still another level is required. The

PX level is a recovery level containing recovery information in the event of an

interrupt from an earlier instruction. VFL level requirements consist of an operation

code level (always the first level), operand (fetch) levels, store levels and pro­

gressive indexing levels. Figure 2.2-1 and ' 2, 2-2 show the level designations

including all the possible conditions for FLP, VFL, I/O and I Unit instruction.

When more than one level is required for the execution of an instruction, the

operation code is valid only in the first level. All succeeding levels have look-ahead

op codes (LAOP), used for look-ahead control purposes only.

When the first level of an instruction is mentioned, it doesn't mean necessarily

that level one of look-ahead is used. The first level of any instruction is loaded into

the next available level in look-ahead. Any of the four look-ahead levels can be the

next available level ready to load. Look-ahead levels, 1, 2, 3, and 4 are only names

given to each level and in no way indicate the levels designated for loading multi-level

or single level instrutions. The reader should be familiar with this terminology

because in the later sections of the manual, the terms instruction levels and

look-ahead levels are used fluently.

Even though then* may be several look-ahead levels associated with one instruc­

tion, each look-ahead level essentially operates independent of any other level. The

look-ahead decoding circuits evaluate and determine the correct operation for each

level. When an instruction requires more than four levels of look-ahead buffering,

he two additional levels are held in the instruction unit until a free level is available

JLL

in look-ahead. As an example, using a six level VFL instruction, only four

levels can be buffered in look-ahead at a given time. Since the first level is the

operation code level, the look-ahead level becomes ready to reload as soon as the

op code is transferred. When the level is available, the fifth level cf the instruc­

tion is loaded. The status of the instruction now shows instruction levels 2, 3, 4, and

5 buffered in look-ahead, instruction level 1 (op code level) is in the execution unit

and instruction level 6 in the instruction unit, waiting to load in the next available

look-ahead level. Because the second instruction level is the first operand levd ,

that look-ahead level becomes available when the first operand is transferred to the

execution unit. When the level is available, the sixth instruction levd is loaded into

look-ahead. The status of the instruction now shows instruction levels 1 and 2 in the

execution unit and levels 3, 4, &, and 6 buffered in look-ahead. As the next level

of look-ahead is transferred Iinstruction level3), the look-ahead level then becomes

available to load the first level of the next instrution. The process repeats one

level at a time until the full instruction has beenexecuted by the execution unit. As

each level becomes free, the next instruction is loaded into that level from the

instruction unit.

Input/Output instructions always require two levels of look-ahead buffering.

The first instruction level is the data transfer level while the second level is a

dummy level used to reliably interrogate the interrupt mechanism.

The instruction unit requirements for look-ahead vary from one level to three

levels dependent upon the operation being performed and the indexing involved. These

instructions are executed within the instruction unit and therefore the necessity

for look-ahead requirements are limited. In general, the requirements are necessary

for recovery data storage for interrupt purposes, internal operand fetches for

47

instruction unit execution, look-ahead level clearing for special instruction

manory stores, and in some cases just an indicator transfer only is

necessary. These areas are covered in detail in the latter sections of this

manual.

2.3.00 Lookahead Sequencing

There are five operational steps necessary to sequence an operation through

Lookahead. Each of the five operational steps is controlled by a trigger. The associated

counter and operation step it controls is listed below.

Indexing Arithmetic Unit Counter (IAUC)

This trigger controls the level loading from the I Unit. With the IAUC trigger on,

Lookahead develops "load enable" signals and sends them to the I Unit. These signals

inform the I Unit that Lookahead can be loaded. The response to the enable signals are

the actual load pulses from the I Unit.

The I Unit load pulses time the data and control information to the Lookahead

Registers. The areas loaded from the IUnitin every load cycle are the operation code field,

indicator field, IC field and tag bit field. The Lookahead Address Register (LAAR) is

set irom the IUnitwhen the operation is a store, internal fetch or if the required operand is

from external memory. The LAAR is not affected when the required operand data is

loaded directly from the I Unit. The loading process sets the level filled (LF) and level check (LC) tag

bits on all type loads except loads requiring the operand from external storage. When

the operand is required from external storage, the setting of the LF and LC tag bits is

the responsibility of the OCC counter. On all other loads the data check and conversion

is accomplished during the loading from the I Unit or is not required.

The completion of the loading operation steps the IAUC counter to the next Look-

ahead level, providing the next level is not performing a store operation. If the next

level is completing a store operation, the stepping of the IAUC counter is delayed until

the store is complete. Once the storing is complete, the IAUC counter is allowed to

advance to initiate loading in the next Lookahead level.

Anticipation circuits are included in loading to save time. Using the anticipation

circuits, the load enable signals can be generated before the actual stepping of the

counter. These anticipation circuits are only active when it is assurred that the

counter will step and the next level loading will occur.

Operand Check Counter (OCC)

The function of the OCC is to check operands received from memory and to

convert them to the proper execution parity. This action is necessary on operands

received from external storage only. If the operand were received directly from the I Unit, it is

checked and converted when loaded through the I checker. When the required operand is

an internal register, Lookahead controls the gating of the data only. When Lookahead

gates the internal register to the execution unit, the data passes through the arithmetic

checker where the necessary data check occurs. Parity conversion is not necessary

because the internal register* already have the proper parity structure for execution.

The data check and parity conversion for data from external storage is accomplished by

the I checker. A level filled (LF) tag bit comes on in Lookahead indicating that the data has

been received from external memory. The OCC counter and the LF tag bit form a

priority request to the I checker. When priority is satisfied Lookahead gates the data

and check bits to the I checker with the proper control signals to check ECC and generate

Lookahead parity. After the check and conversion, the data is routed back into Lookahead

and a level check (LC) tag bit is set. If an error had occurred during the check, Lookahead

automatically starts a correct cycle to correct the error. If an error occurs again, the

data is routed back to Lookahead and an appropriate error tag is set.

Upon the completion of the OCC check cycle (or correct if necessary) the OCC

counter is allowed to advance to perform the check on the next level. Again as in the

LAUC function, anticipation circuits are included to save time. Because the level filled

(LF) and level check (LC) tag bits are set, Lookahead can start the next operational step

of this level. The LF and LC tag bits indicate the instruction preparation is complete and

execution may begin.

Transfer Bus Counter (TBC)

The function of the TBC is to transfer the data, operation code and other pertinent

control data to the proper execution unit. The TBC is allowed to function when Lookahead

recognizes that the LF and LC tag bits are on. By decoding of the operation code field

and tag bit field, Lookahead determines the execution unit involved and other control

information necessary for the TBC function. A DC gate out of the operation code field

and data field (if not internal) are accomplished by the TBC output. These DC lines hold

up the inputs to the execution unit execution register and the execution data input register

(via TOB). The TBC decoding conditions a timer which develops the required signals to

tell the execution unit to gate the data and the operation code into their respective

registers. The timer (Transfer Bus Timer T) also signals the execution unit to start

(pre-execution). With the acceptance of the data and operation code, the execution unit

returns a signal informing Lookahead that the information has been accepted. The receipt

of the signal from the execution unit allows the TBC to advance to the next level.

If the operand required for execution is an internal register, the internal tag bit

in Lookahead is on. During the decoding, Lookahead recognizes the internal tag bit and

does not signal the execution register to gate the data and operation code in. The start

signal is also blocked. The operation code field output is holding up the input to the

execution unit register from the TBC decoding. The actual gate in of the data and operation code is

accomplished during ABC time. The TBC is prevented from stepping until the execution unit signals the

data has been accepted. These signals are sent during ABC time. All internal fetches are

the responsibility of the ABC.

Arithmetic Bus Counter (ABC)

The basic function of the ABC is to perform all necessary functions for the proper

operation of the interrupt mechanism. These functions include the transferring of the

Lookahead indicator field to the indicator register, transferring the instruction counter

31

field to the IC Buffer, and in the event of an interrupt, marking the remaining unexecuted

instruction for proper handling.

Secondary functions performed by the ABC include internal operand fetches,

receiving data to be stored from the arithmetic unit, and performing the store operation if

the store address is an internal register.

Before the ^BC can perform any operations, Lookahead must be assurred that

the previous instruction was completed without a program interrupt. An indication that

the previous instruction completed without error is represented by a Modify Addressable

Register (MAR) mode condition. At the completion of the execution of each instruction,

Lookahead makes a series of tests to check the instruction. The tests insure that all units

involved with the present instruction have entered their indicators in the main indicator

register. When all the tests have been completed Lookahead will memorize the interrupt

line. The memorization is in the form of two triggers. One is interrupt next instruction

if the interrupt line is active and the other is the MAR mode trigger if the interrupt line is

inactive (no interrupt). Lookahead can memorize the line at this time because the tests

indicated that all indicators associated with the instruction have been entered in the main

indicator register and therefore the indicator register comparison to the pre-set mask

register is valid.

With the MAR mode present in Lookahead, from the previous instruction the ABC

is allowed to function for the present instruction. The indicator field in Lookahead is

loadedfrom the IUnitduring the loadingprocess. Any indicators altered by the I Unit in preparing

an instruction are buffered in the indicator field until the instruction can be executed in its

proper sequence. The ABC counter and MAR mode start a transfer indicator timer to

transfer the indicator field to the main indicator register. The timer also sends a signal

to execute (modify addressable registers) is sent to SAU. The signal is not necessary for

PAU because they duplicate the MAR mode test in their circuits and thereby know that they

AL

can execute the instruction. The MAR mode tests are duplicated in PAU circuits for

speed purposes only. The transfer indicator timer also transfer the IC field to the

IC buffer on all single level instruction. On multi-level instruction the IC field is not

transferred to the IC buffer until the last level of the instruction. With the IC field in the

IC buffer and containing the address of the present instruction plus 1, an instruction counter

value is available to the I Unit in the event that the present instruction should interrupt. On

the interrupt operation the IC buffer is returned to the I Unit and is used to restart the normal

program sequence following the correction routine for the interrupted instruction.

When an internal operand is required, the ABC makes the fetch to the specified

internal register and routes the data to the execution unit. When the data is routed from the

internal register to the execution unit data register, it passes through the A checker where

the proper parity check is performed. The presence of the internal bit during the ABC

decoding allows an A bus timer to be started. The A bus timer times the data from the

internal register to the execution unit and also signals the execution unit to gate in the

operation code and start. A signal that the data has been accepted is used by Lookahead

to step the TBC to the next level. (TBC step is held up on internal fetches.)

If the operation required a store, the ABC dwells after transferring indicators until

signalled from the execution unit that the data is ready. The data is routed into the

Lookahead data register for storing into external memory or index core storage. The

actual storing is accomplished by the SCC. An indication that the SCC has action is

accomplished by the ABC resetting the LF tag bit. If the store is to an internal register,

Lookahead controls the data routing directly from the arithmetic unit to the required

internal register. All store functions to LA and any internal registers are performed with the A bus timer.

The ABC stepping is determined by the type operation performed. A store or

internal fetch type instruction delays the ABC advance until the store or fetch is completed.

The stepping in these two cases is accomplished with the A bus timer. In operations not

involving a store or internal fetch, the transfer indicator timer performs the stepping.

33

With the stepping of the ABC counter, the ABC is allowed to function for the next level.

Store Check Counter (SCC)

The SCC is responsible for completing all store functions to external storage or

index core storage. Completion of the ABC action is generally an indication for the SCC

to initiate the storing function. This indication is in the form of logical combinations of

the tag bits and operation code field. When no stores are required the SCC counter is

stepped simultaneously with the ABC counter. When stores are required the SCC is not

stepped until it completes its action.

On stores to external memory, the SCC decoding makes a priority request to the

I checker (first priority). When the request is honored, a store check timer is started

to gate the data from Lookahead to the I checker. Signals are generated to the I checker

for parity check of the data and conversion of the data check bits to ECC. With the data

check and conversion complete, the data is routed back into the Lookahead data register.

The data is ready for storing into external storage. Lookahead makes a request to the

memory bus priority system. When the priority request (4th priority) is honored, a store

data timer is conditioned to time the data to the memory bus control unit where it is stored.

Where the store is required to the I Unit, the SCC action is slightly altered. The

initial SCC decoding makes a priority request to the I checker. For stores to the I Unit,

the Lookahead has fourth priority. When the priority request is honored, a Lookahead to

1 timer is conditioned to time the data through the I checker to the I Unit X register. Signals

are sent to the 1 checker to check the parity on the data transfer and to convert the check

bits to I Unit parity.

Because the instruction unit has no direct access to the contents of the internal

registers, requests for their contents must be made through Lookahead. The data is

buffered in Lookahead in the usual manner during ABC time. The SCC action is similar

to the 1 Unit index core storage store operation except the data is routed to the appropriate

I Unit working register instead of the X register. Data check and conversion are accomp-

lished in the usual manner. i

Completion of the store function allows the SCC to advance to the next level. As

soon as the SCC is stepped, the level is again available for loading under control of the IAUC

counter.

2.4.00 Counter Controls

The five control triggers just described are duplicated in each of the

four lookahead levels. Each level can completely sequence an operation

through lookahead. Each control trigger of a level is electronically tied to

the corresponding control trigger in the other levels. The lookahead system

has 5 distinct closed counter rings consisting of four triggers each. Figure 2.4-

shows the counter layout.

CTR

STEP

TGR
1

TGR
2

TGR
3

TGR
4

TGR
1

TGR
2

TGR
3

TGR
4

TGR
1

TGR
2

TGR
3

TGR
4

TGR
1

TGR
2

TGR
3

TGR
4

TGR
1

TGR
2

TGR
3

TGR
4

LA LEV 1

LA LEV 2

LA LEV 3

LA LEV 4

1AUC

CTR

OCC

CTR

TBC

CTR

ALC

CTR

SCC

CTR

— LOOKAHEAD LEVEL FUNCTION fc—
FIGURE 2.4-1.

Only one trigger in each ring can be on at a time. This means that only

one level can be loading at a time, only one level operand checking at a time,

etc. However, there may be more than one ring counter on in a given level.

That is, for example, the IAUC 1, OCC 1, TEC 1, ABC 1 and SCC 1 triggers

can all be on in level 1. The same holds true for the other lookahead levels

also. In operation however, the counters operate functionally from IAUC, OCC

TBC, ABC to SCC. The indications resulting from one counter operation allow

the next counter in the level to function, etc. For example, the OCC 1 counter

3b

cannot function, until the LAUC 1 counter has completed the loading cycle.

Indications that the loading has completed allows the OCC action to take plaee.

This may occur even before the IAUC counter is stepped to the next level. The

restrictions placed upon the counters stepping are such that no counter may

pass another and the IAUC cannot step into another level until the SCC has left

the level. As an example of the first condition assume that the IAUC counter

was prevented from stepping after a loading operation. The IAUC counter then

remaihs in the same level until the stepping is allowed. The OCC counter for

that level will function because the loading is complete. However the OCC

cannot step to the next level because the IAUC counter has not stepped, so it

too must wait. The stepping of the counters can be simultaneous.

An example of the second condition occurs when the IAUC has loaded a

level and is ready to step to the next level. If the SCC action is not complete

at the level, the IAUC stepping is blocked until the SCC counter steps out of

the level. The SCC step from the level allows the IAUC to step into the level.

The conditions just explained are the only restrictions placed upon the counter

stepping functions. Anticipation circuits are used to save time when stepping

the counters. In some instances the conditions within the lookahead are such

that the counter will be stepped in the next cycle. The anticipation circuits

recognize these conditions and allow an early stepping of the counters. The

stepping of the counters is covered in the areas dealing with the function they

perform. Figure 2.4-2 shows the overall lookahead logic broken down to

counter and functional operation.

37

2. 5. 00 DATA FLOW PATHS AND COMMUNICATION

The data flow paths to and from lookahead are shown in Fig. 2. 5-1.

All data transfer is parallel. By using specific timers started by lookahead

decoding the data is routed in and out on the busses shown. All data flow

paths shown enter and leave the lookahead data fields in all four lookahead

levels.

Fig. 2. 5-2 shows the data flow and basic control communications

between lookahead and the rest of the 7030 system. The dotted lines within

the I checker indicate that the data flow can follow any of the indicated paths.

The data flow is conditioned by I Unit or Lookahead controls. For convenience,

the communication lines are labelled with the lookahead control causing the

transfer (i. e. the transfer bus timer in lookahead causes the data transfer on

the transfer out bus 'TOB'). The lookahead action consists of sending and re­

ceiving data over the data busses listed and generating specific controls to

time the data and control information transfer.

t t

3, 0. 00 INSTRUCTION PREPARATION

The instruction preparation phase of lookahead operation con­

sists of loading a level from the instruction unit and checking the

operand for proper parity structure and errors. The IAUC counter

performs the loading function and the OCC controls the operand

cheeking»

3.1.00 GENERAL DESCRIPTION

The IAUC action Figure 3.1-1 consists of sending load enable signals to the

instruction unit informing them of a free lookahead level. The instruc­

tion unit responses to the enable signals are the actual load pulses.

The instruction unit loads the operation code field, indicator field, tag

bit field, IC field and, depending upon the type of instruction, the data

field is loaded and the LAAR is set. Some instructions do not require

the use of the LAAR and other instructions do not contain the required

data for execution. In the latter case the data either is not required

for execution or the data must be fetched from external storage. The

setting of the LAAR is necessary when an internal register is required

for the operand or when the instruction involves a store operation.

When either of the two conditions are necessary the instruction unit

sets the required address into the LAAR.

Where the required operand is set into lookahead from the

instruction unit or when the operand is not required, the LF and LC

tag bits in lookahead are set. If the required operand is from external

memory, the instruction unit tt»akes the fetch request to the memory

3f

bus priority system. When the priority is satisfied, the operand is

sent from memory bus to the lookahead data field. The LF tag bit in

lookahead is set when the memory bus sends the data to lookahead.

The LF tag bit indicates that the operand required for execution has

been loaded. The memory word as it comes from the control bus

unit has the ECC bits with it. Lookahead then must route the data

through the I checker to check the ECC and then convert the ECC bits

into the proper parity for execution. This action is the responsibility

of the OCC counter. The OCC counter requests the use of the I

checker. When the I checker priority is satisfied, the OCC action

routes the data to the I checker and sends the proper signals to the

I checker to check ECC and generate LA parity. If, during the ECC

check, a single bit error occurs, the OCC action automatically starts

a correct cycle. Upon completion of the check cycle or correct cycle

the data is routed back into the lookahead data field with the proper

parity bits. The LC tag bit is also set signifying that the required

operand is checked and in the proper parity. If a double error occurs

or if the correct cycle cannot correct the error, the data is still routed

back into lookahead and the LF and LC tag bits are set. The NOOP

tag bit and the instruction reject indicator are also set signifying the

error condition. During the execution phase of lookahead operation

the NOOP tag bit causes the operation to be executed as a no opera­

tion. Also the instruction reject indicator causes an interrupt during

tO

the execution of the instruction. The instruction reject indicator is

also set if a storage check indication occurs in the memory bus control

unit.

The LF and LC tag bits essentially separate the instruction

preparation and instruction execution phases of lookahead operation.

The setting of the LF and LC tag bits are dependent upon the source

of the operand. When the required operand is loaded directly from

the instruction unit, the data path passes through the I checker where

the necessary checks and parity conversions are made. The LF and

LC tag bits are set thereby indicating that the operand is loaded and

checked. This action is accomplished during the LA.UC loading opera­

tion. If there is a store type instruction or an internal fetch request,

the LF and LC tag bits are also set during the loading operation. In

this particular case the LF and LC tags signify that the operand is

not required for execution or that an internal fetch is necessary to

receive the operand. Both of the above actions occur during the load­

ing operation and because the LF and LC tags are set during this time

no OCC action is necessary. Only when the operand is requested from external

storage is the OCC counter action required. This is the only time the

operand is not checked when routed to lookahead. The OCC counter

then has to route the data through the checker to perform the check

and parity conversion. The absence of LF and LC signifies the

necessity of OCC action. In all other cases other than external storage

fetches, the operand is routed through the checker during the load or

the operand is not required and therefore no check is necessary.

*1

Special action is taken by lookahead when an external memory

fetch address compares with the address currently setting in the LAAR.

Before proceeding further a more thorough understanding of the LAAR

is necessary. Associated with the LAAR is a busy trigger which is

set whenever an internal fetch or a store type operation is required.

The internal register address or the store "to" address of external

memory setting in the LAAR are used by lookahead to address the

proper internal register or to address the correct storage location

during a store operation. When either of the above conditions prevail,

the LAAR busy trigger is set and no further setting of the LAAR can

be achieved until the store or internal fetch is realized. In cases

where an external fetch is required and the operation is not a store

or internal fetch the LAAR is set to the memory address if the busy

trigger is off. Remember it is the LAAR busy trigger that signifies

the contents of the LAAR are necessary for a store or internal fetch.

When the address of an external memory fetch (not a store operation)

is set into the LAAR, the busy trigger is not set. Because the busy

trigger is not set, any other external fetch requests will change the

LAAR. The busy trigger is never set unless the operation involved

is a store or internal fetch. When the instruction unit determines

that an external fetch is required for execution it sends the fetch re­

quest and the fetch address to the bus control unit. The bus control

unit compares the fetch address with the setting of the LAAR. If

there is a comparison between the two addresses, the bus control unit

cancels the fetch request. The comparison of addresses means

that the requested data is already in lookahead at another level.

Lookahead has provisions for routing the data from one level to

another if an address comparison is made on an external operand

fetch. This action is called forwarding. Each load operation that

sets the LAAR also sets a "from" tag bit into the level tag bit field.

This from tag bit indicates that the data field in that level is asso­

ciated with the operand address setting in the LAAR. When any

operand fetch address compares to the LAAR, the fetch request is

cancelled and forwarding is set up. The from bit tag designates the

level which the required data is forwarded from. The lookahead pro­

cedure consists of requesting the I checker to check the data transfer

for any errors. When the I checker priority is satisfied, the data is

forwarded from the from bit level to the requesting level. The from

bit is also set into the new level and the from bit in the original level

is reset. By changing the from bit to a newer level, the time possi­

bilities for further forwarding are increased. If the original level

is NOOPed the NOOP tag is also forwarded to the new level to indi­

cate that this level has an error condition associated with it. The

NOOP tag bit and instruction reject indicator are also set in the new

level if the I checker shows an error during the data transfer. The

forwarding controls prevent the forwarding action if the original from

bit level is a store level. Forwarding is delayed until the SCO counter

^3

takes the storing action. When the store operation is in progress,

forwarding is set up.

Forwarding before this time is blocked because of the possi­

bility that the necessary data may not have been received from the execu­

tion unit. Only when the storing function is started is lookahead sure

that the required data is at the from bit level. If the instruction

unit attempts to fetch an operand from storage when lookahead has

a store level associated with that address, the fetch must be cancelled

until the system is assured that the required data is in storage. An

operand fetch request with an address comparison with the LAAR and

with the LAAR busy trigger on, tells the instruction unit it is request­

ing data that has not yet been stored. Hence the fetch is cancelled

and forwarding is set up. The actual forwarding operation is accom­

plished during the SCC storing action. As an example of this action,

assume that a store instruction is being processed in lookahead with

the store address of 1000. If the instruction unit attempts to fetch

the word at address 1000, there is an address comparison with the

LAAR. The comparison condition cancels the fetch request. The

reason for the fetch cancellation is apparent when you consider that

the instruction unit is fetching operands considerably out of the normal

program sequence. The fetch is obviously intended to obtain the re­

sulting word of the store instruction which has not yet been completed

by lookahead. To prevent another fetch request and additional memory

cycles when the word is stored, lookahead sets up the forwarding con­

dition. During the storing cycle, the word is forwarded to the request-

ing level as well as stored in memory location 1000. In operations

where there are not any store levels in lookahead (noted by the LAAR

busy trigger being off) forwarding occurs during the IAUC loading

cycles. By this action all of the memory cycle time is saved. Only

when the LAAR busy trigger is on, will the forwarding to delayed

until the SCC action.

3.2.00 LOADING

The lookahead loading operation is divided into three distinct areas.

These three areas consist of enabling the load to the instruction unit, the

actual loading of data and stepping the IAUC counter to the next level. All

of these areas are controlled by the IAUC function and are dis cussed in detail

below.

3.2.01 Enabling The Load Figure 3.2-1

Load enable signals are signals developed by lookahead and sent to

the instruction unit to inform them that there is a free level available for

loading. The instruction unit responses to the load enable signals are the actual

load pulses. There are three types of loads each signifying a specific type

of operation. The three types of loads are identified as type 1, type 2, and

type 3, loads.

A type 1 load signifies that the operand required for execution is available

directly from the instruction unit. This type of load is used on instructions

with immediate indexing. Before a type 1 load can be loaded into lookahead,

a type 1 enable signal must be received by the instruction unit from lookahead.

/

A type 2 load signifies that the operand required for execution must be

fetched from external storage. The instruction unit discovers this necessity

in the initial decoding of the instruction. The fetch for the operand is made

by the instruction unit and the word, when fetched, is routed to the data

field in the appropriate lookahead level. If the LAAR busy trigger is not

set, the address of the fetched operand is set into the LAAR. The busy

trigger is never set when the LAAR is set with a type 2 load. Because the

LAAR busy trigger is not set on type 2 loads, successive type 2 loads change

the LAAR setting. The reason for setting the LAAR on type 2 loads is for

the convenience for forwarding if the conditions are later satisfied. If the

LAAR busy trigger is set, the type 2 load is still allowed to occur with the

exception of setting the LAAR to the fetch address. A type 2 load can only

be loaded from the instruction unit when the lookahead sends a load enable

2 signal tt> them.

A type 3 load signifies that the current instruction is an internal fetch

or store type instruction. Either of these two conditions demand the use of

the LAAR. When the LAAR is set to the address of the storage location or

internal register) the busy trigger is also set. The busy trigger remains on

until the internal fetch or store is complete. A load enable 3 signal is necessary

from lookahead before the type 3 can be loaded from the instruction unit.

The three types of lookahead loads are generally classified into two

groups. One group requiring the use of the LAAR (type 3) and the other group

not requiring the use of the LAAR (type 1 and type 2). If the LAAR is busy,

Lookahead cannot enable a type 3 load. If the next instruction from the

instruction unit is a type 3 load, the loading process is delayed until the

LAAR becomes not busy. However, type 1's and type 2's can still be loaded

H

if the LAAR is busy and the next instruction ready for loading from the

instruction uhit is a type 1 or type 2. Only one type 3 load is processed

through lookahead at a time. The reason for this is apparent when you realize

that there is only one LAAR for the entire lookahead and each type 3 demands

the use of the LAAR. Because the LAAR contains only one address at a time,

any following type 3 loads must wait until the LAAR is free (busy trigger off).

The load enable communication with the instruction unit is in the form of

two enable lines. The decoding conditions for both lines are basically identical.

The two lines are identified as "LALD enable 1 or 2" and "LALD enable 3".

An added condition exists for the enable 3 line. That condition is the LAAR

busy state. As previously mentioned, the LAAR busy trigger being on blocks

lookahead fr«m enabling a typ* 3 load. The LAAR busy trigger is the only

factor differentiating the two enable lines. The LAAR busy reset is anticipated

by the store data timer E and M lines (SCC Action). The store data timer is only active

when a store is completing. Unconditionally the LAAR trigger is reset by the timer.

Instead of waiting for the actual reset^the condition is anticapated and an early

enable is realized. The prime considerations for enabling any type of load

are concerned specifically with the present mode of lookahead operation.

When lookahead is in an operation resulting from an interrupt or if forewarding

is currently in process all load enable lines to the instruction unit are blocked.

In order to allow the enable signals to be sent to the instruction unit nnly once

during a loading operation, the four IAUC counters share a IAUC advance

enable sequence (AES) trigger. The AES trigger is turned on each time the

IAUC counter ring steps to a new level (initially it is reset on). The load

pulses from the instruction unit resets the AES trigger. The AES trigger remains

H-i

off until the next IAUC counter is turned on. The AES trigger is the final

condition foi: enabling the load and it insures that the enable signals are

sent to the instruction unit only once during any load cycle. The normal

Conditions then for enabling the loads signals to the instruction unit are

illustrated in Figure 3.2-1.

The other conditions illustrated in the

Figure are anticipation circuits included to enable the load at the earliest

possible time. When the normal conditions for enabling the load are not

yet satisfied, but confiitions are such that they are imminent, the anticipation

controls, by recognizing these conditions enables the load to the instruction

unit earlier than normal , thereby realizing a savings in time. By this

method the l«vel is loaded as soon as the IAUC step to the next level. The

time saving iB realized because the enable signals have already been s ent

to the instruction unit where loading action is initiated. The actual loading

of the data cannot be accomplished until the IAUC steps to the new level indicating

that the level is actually ready for loading. The anticipation circuits in

Figure 3. 2-1 are numbered and explained below.

Anticipation of LAUD ENABLE 1 & 2

1. This circuit is active during a type 3 load. To allow the fastest

loading possible in lookahead, the circuit is conditioned by an

actual loading pulse from the instruction unit. During the

loading of a type 3 load in one level it becomes desirable, for

speed purposes, to enable the load for the next level if possible.

The conditions for this circuit illustrates that the normal

conditions for enabling any load must prevail plus two additional

conditions indicating that the load may be enabled. These

final two conditions show the necessity for no interlock between

the SCC and IAUC, indicating that the stepping of the 1AUC will

not be delayed due to normal counter interlocking. The other

condition is that an ECC check on loading is not required for

the level currently being loaded. This line is necessary because

of the possibility of a correct cycle becoming necessary during

the existing ECC load which may delay the IAUC stepping for one

cycle in which any correcting action is accomplished. The ECC

CK on ED is a special condition necessary for a Transmit/Swap

instruction only.

2. The second anticipation circuit is much the same as the first

only the conditions for enabling the load were not prevalent when

the loading pulses were active. The LD Pulse Men En Adv

trigger is substituted for the loading pulse in this case. The

LD Pulse Mem En Adv trigger is always turned on during a

loading operation to remember that a load operation occurred.

Its purpose is to allow the stepping of the IAUC counter and to

allow load enable signals to be generated when the proper

conditions are met. During the loading operation conditions

were such that the IAUC counter was blocked or delayed from

stepping. To remember the load^the LD PLS MEM EN ADV

Trigger is used to allow the normal stepping and enabling functions

to occur after the blocking or delaying conditions no longer prevail.

The "NO IAUC AES" line is indicative of the fact that the IAUC

* 1

stepping function has not occurred.

3. and 4. These two circuits are essentially identical with the

first circuit. The conditions indicate the enabling of 1 and 2

loads during a lookahead 1 or 2 load from the instruction unit.

The "NO ECC CK ON LD" line is not necessary because it

never occurs during a type 1 or 2 load.

Anticipation of LA LD ENABLE 3

5. and 6. The circuits are identical to circuits 3 and 4 with the

additional condition of the LAAR not being busy. If the LAAR

is busy, the load enable 3 still may become active. The store

data timer E and M indicates that the storing function is almost

complete. The LAAR is reset unconditionally from the store

data timer so this Circuit is anticipating the LAAR busy reset

thereby allowing the type 3 to be enabled.

Circuit #7 compares with circuit #2 in that the LD PLS MEM EN

ADV trigger is used to remember that a load has occurred. The

additional condition placed upon this circuit is the LAAR not

busy line or the anticipation of the LAAR not busy as noted by

the aiore data timer E . M condition.

Special enable action is noted in circuits #8 and #9. Under special

conditions, the instruction unit in attempting a type 2 load sequence

discovers the action to be invalid and terminates the load. However,
i

the IAUC AES trigger is reset and, thus, the load enable signals

disappear. The signal type 2 cancel fetch memory allows the level

to be reloaded.

Either both of the enable lines or the LD EN 1 or 2 line only are

sc>

continually being generated and sent to the instruction unit as

new lookahead levels become available. Because the instruction

unit is fetching new instructions as fast as possible, the speed

at which lookahead is loaded is a prime consideration of the

overall speed of instruction preparation.

SI

3. 2. 02 Loading Figures 3.2-2, 3, 4, 5, 6, 7 and 8

The instruction unit responses to the load enable signals are the actual

load pulses. These pulses are identified as LLP1, LLP2, and LLP3. Regard­

less of the type of load being performed, certain control areas in lookahead are

loaded every load cycle. The lookahead operation code field, tag bit field, and

indicator field are conditioned for loading during any type of load. The data

field in lookahead is loaded directly from the instruction unit during type 1

loads only. The data field on type 2 loads is loaded from external storage or if

Conditions afe right, the data is forwarded from another lookahead level. The

d&ta field Is not required during a load operation from a type 3 load. The LAAR

and its associated busy trigger are set with a type 3 load pulse. The LAAR is

also set with each type 2 load if the LAAR busy trigger is off. The IC field in

lookahead is set With each single level instruction regardless of the type of load.

In multi-level instructions the IC field is set on the final level loaded from the

instruction unit. Each of these areas are explained below.

Operation Code Field

With the exception of bit position 8, all operation code bits are set in

their respective triggers in the same manner. The data lines from the instruction

unit are labeled "set LAOC pos x" (x=0-9 plus parity) and hold up the inputs to

their respective triggers. The sample for setting all positions, except position 8,

is developed by the load pulse from the instruction unit. The load pulse (LLP1,

LLP2 or LLP3) is conditioned by the IAUC counter value designating the loading

level. The pulse developed, "GILAi tag bits and op code, " samples the data

littes (either 1 or 0) into their respective triggers.

&

The setting of bit position 8 is varied due to special action on some

instructions. At times, bit position 8 is made to serve as an auxilliary NOOP

bit. The need for an auxiliary NOOP bit is necessary because the NOOP tag

bit cannot be set after the last operand level in a VFL instruction. Because

the last level of a VFL, instruction may contain pseudo store information from

progressive indexing or recovery information for branch instructions, some

method must be used to indicate an error, if the data at the final level failed

the I checker test during loading. The "set LAOC position 8" line from the

instruction unit conditions the trigger in position 8 of the operation code field.

The sample pulse for setting the position 8 trigger on type 2 and type 3 loads

is identical to the other bit positions. The IAUC value, designating the level,

conditions the type 2 (LLP2) or type 3 (LLP3) load pulse and develops the iample

to set bit position 8 direct. When doing type 1 loads that are branch recovery

levels or pseudo store levels from progressive indexing, the instruction unit

conditions position 8 of the operation code field to act as an auxiliary NOOP bit.

The instruction unit conditions the setting circuit, of position 8 with the line

"No Cond NOOP code on I Parity Error". In all type 1 loads except to two cases

mentioned, this line is inactive and allows position 8 to be set in a normal

manner. However, when the type 1 load contains progressive indexing or branch

recovery information, the normal setting of position 8 is blocked by the instruc -

tion unit with the "No Cond NOOP code on I parity error" line. This same line

conditions an alternative circuit that is conditioned by the I parity error signal

from the I checker. If the data being transferred from the instruction unit fails

the I checker test, position 8 of the operation code is set. In later lookahead

decoding, position 8 is used as an auxiliary NOOP bit, indicating the data error

in the two special recovery levels.

S3

Tag Bit Field

The tag bits that are conditioned only by the instruction unit are the

internal (INT), instruction counter (IC), lookahead operation code (LAOP),

and word boundary Crossover (WBC) tag bits. The level filled (LF), level

checked (LC), no operation (NOOP), and the from bit are conditioned by

either the instruction unit or lookahead. The disconnect tag is set from the

computer maintenance console only. Each of the tag bits is explained below.

Internal Tag Bit - when the instruction unit, in decoding an instruction,

finds that the operand required for execution applies to an internal register.

The instruction unit conditions the setting of the internal tag bit trigger in

lookahead with the line "set internal fetch". The sample to set the trigger is

developed by the type of load in progress (LLP1, LLP2, or LLP3). The load

pulse, conditioned by the IAUC value designating the level, turns the internal

tag trigger either on or off depending upon the status of the instruction unit

conditioning line. If the required operand does not apply to the <D ntents of an

internal register, the trigger is turned off. If an internal register is required,

the Conditioning line allows the sample to turn the trigger on. The internal tag

is set either on of off (bi-polar) with every load from the instruction unit.

Instruction Counter Tag Bit - indicates that the value stored in the IC

field of the lookahead level is valid for interrupt interrogation. The bit is con­

ditioned to set on the final level (this includes single level) of any instruction.

When the instruction unit is loading the final or single level of any instruction,

the line "set LA IC tag" is active. The sample developed to set the trigger is

the load pulse (LLP1, LLP 2, or LLP 3) from the instruction Unit.

The load pulse is conditioned by the IAUC value to insure that the IC bit is set

at the correct level. If the level loaded is any level other than the last level or

single level the conditioning line for setting the IC bit allows the sample pulse

to turn the IC tag bit trigger off.

Lookahead Operation Code (LAOP) - indicates the value store in the

lookahead operation code field is for lookahead control purposes only. A good

example for setting this bit is in multi-level instructions. The first instruction

level contains the real operation code and it is transferred to the execution unit.

All succeeding levels pertain to the same instruction, however, the op code

field in these levels contains data for lookahead control purposes only. These succeeding

levels all have the LAOP tag set. In essence it distinguishes the real op code

from lookahead control operation codes. Another example is a pseudo store level.

A pseudo store level contains data to be restored to index core storage in the

event of an interrupt. There is no real op code in this example as the level is

necessary only in the event of an interrupt. The operation code designates the

action to be taken by lookahead when an interrupt occurs. The LAOP tag is set

to indicate that the Op Code is for lookahead control purposes only. The "set

LAOP OP Cod Tag" line from the instruction unit conditions the setting of the

LAOP tag bit. The setting sample is developed by the load pulse (LLP1, 2 or 3)

and the IAUC value designating the level. The status of the conditioning line

determines if the tag bit trigger is turned on or off. If the op code being trans­

ferred from the instruction unit is a real op code, the "set LAOP tag bit" line

conditions the tag trigger to be reset with the sample pulse.

Word Boundary Crossover Tag (WBC) - the WBC tag is used to signify

two separate conditions in lookahead. When used with tie LAOP tag being off,

it indicates that the operand required for execution of a VFL instruction crosses

a work boundary in external storage. The WBC tag is transferred with the other

SS'

operation code data to the execution unit. It is always set in the op code level

of a VFL instruction when the required operand crosses a word boundary. When

the WBC tag is used with LAOP off, it always pertains to a VFL instruction operand.

When used with the LAOP tag being on, the WBC tag signifies that the store data

buffered at the level had ECC bits generated during the loading process. An

example of this decoding is a Transmit/Swap operation where the data being trans­

ferred from the instruction unit appears in lookahead in ECC instead of LA parity.

To denote this condition to the lookahead controls, the WBC and LAOP tag bits

are both set. As in the setting of the other tag bits mentioned previously, the

instruction unit conditions the setting of the WBC tag bit when it recognizes any

of the two conditions mentioned above. The conditioning line set'LA WBC tag"

from the instruction unit conditions the tag bit triggers . The sample developed

to set the trigger is the type of load pulse (LLP 1, 2 or 3) and the IAUC value

designating the lookahead level. If the WBC is not to be set, the status of the

conditioning line is such that the sample pulse turns the trigger off.

Level Filled Tag (LF) - this bit pertains to the data field in lookahead.

When on it indicates that the data required at the level is loaded or is not required.

The bF tag bit is set from the instruction unit during loading on type 1 and type 3

loads. On type 2 loads the LF setting is a function of the OCC action (refer

section 3.3.00). Because the LF setting is so varied, each type of load setting is

discussed.

In type 1 loads, the required operand is loaded directly from the in­

struction unit. The data path for the operand is through the I checker where the

I parity check and lookahead parity conversion is made. Unconditionally the

type 1 load pulse (LLP 1) , conditioned by the IAUC value designating the level,

sets the LF tag bit trigger.

SL

On type 2 loads, the required operand is from external storage. In
t •

this case, the instruction makes the fetch request to the BCU. Upon honoring

the fetch request, the data word is sent from memory and loaded into lookahead.

A memory pulse preceding the actual data word setsanLF indication (not the LF tag)

in lookahead. The LF indication allows the OCC to function. The LF indication

is in the form of an LFE,trigger and the LF tag is the LF M trigger. The next

sample pulse following the turn of LFE, turns on the LFM tag trigger. Refer

to section3. 3. 00 for a detailed description.

There are two variations in setting the LF tag bit on type 3 loads. When

a Transmit/Swap instruction is loaded to lookahead, the data is transferred with

ECC bits. The lookahead function is to store the words in external storage.

Because of this type of transfer the setting condition of the LF tag is dependent

upon the ECC error indication from the I checker. If the data transfer through

the I checker resulted in an ECC error, the setting of the LF tag is prevented

until the correct cycle. As soon as the error indication disappears, the LF tag

is set. The conditions then for setting the LF tag bit in this special case are:

LLP 3 from the instruction unit, IAUC value designating the level, and NO

single I checker error from the I checker. Except for the special case of

Transmit/Swap, the LF tag bit is conditioned to set directly from the instruction

unit. The conditions for setting the LF tag on a normal type 3 load are: LLP 3

from the instruction unit, IAUC counter value designating the level, and a "NO

ECC CK on Ld" signal from the instruction unit. This latter signal signifies

that no ECC check is necessary on this type 3 load (no Transmit/Swap). The LF

tag, unlike the tag triggers previously mentioned is unipolar. That is, the trigger

must have a pulse to set it and another pulse to reset it. The bi-polar settings

S7

are dependent upon the status of the conditioning lines to either turn on or off

the tag triggers. Separate conditions are necessary to turn the LF tag trigger

on or off. The reset conditions are discussed in section 5.4.00.

Level Checked Tag (LC) - this tag bit indicates that the data at the

lookahead level is checked and in the correct parity for execution. The con­

ditions for setting the LC tag bit for type 1 and type 3 loads are identical to the

LF tag bit. The same conditioning lines feed both the LF and LC tag bit triggers.

On type 2 loads, the LC tag setting is directly related to the OCC function. The

LC setting during the OCC function is explained in section 3.3.00, The LC tag

and the LF are also set at the completion of a forwarding operation. Forwarding

can only occur during type 2 loads. Forwarding is set up when the instruction

unit requests an operand from external storage. The fetch request address is

compared with the LAAR which contains the latest address of data in lookahead.

A comparison signal indicates that the required data is already in lookahead.

To save time, lookahead gates the data out of the level containing the required

data and forwards it to the level requesting the data. The data at the origin level

is not destroyed when it is gated out. The complete forwarding operation is

covered in section 3.4.00. The forwarding operation results in setting the LF

and LC tag bits at the loading level. When forwarding occurs, no OCC action

is necessary and therefore the LF and LC tag are the result of the forwarding

operation.

S9

No Operation Tag (NO-OP) - the NO-OP tag bit, when on,

indicates that the instruction buffered at the level is to be operated as

no operation. In multi-level instructions, the NO-OP bit is not set

beyond the last operand level. A NO-OP in any level of a multi-level

instruction causes the complete instruction to be operated as a no-operation.

A special case is noted for branch recovery levels and recovery level

information from progressive indexing by using bit position 8 of the

operation code as an auxiliary NOOP bit. This method is required

in these two special cases because the NO-OP bit cannot be set after the

last operand level. Because the two recovery levels are always the

last level, Opposition 8 is used for the NOOP indication. Refer to the

operation code setting previously explained in this section.

The NO-OP tag bit is set by several different conditions during

loading. If the instruction unit, in processing an instruction, discovers

something wrong with the instruction it sets the NOOP bit directly during

the loading operation. Any data transfers to lookahead through the I

checker that result in an error indication, the instruction unit conditions

the setting of the NOOP bit. Special conditioning lines are generated by

the instruction during special instructions and are used to condition the

NOOP bit. The special lines conditioning the NOOP bit are discussed

in the instruction unit manual. In this manual the conditioning line is

mentioned, but the multiple reasons are not discussed. This section

deals with the actual setting of the NOOP bit and only conditions peculiar

to lookahead are covered in detail. Also, the NOOP can be set during

later lookahead operations, hut in this section the setting applies to the

loading operation only.

If the instruction unit finds anything wrong about an instruction

while they are processing it, a "set LA NOOP" line is sent to lookahead

during the loading process. The load pulse (LLP1, 2, or 3) is conditioned

by the LAUC value to specify the level at which the NOOP bit is set. This

sample, load pulse and IAUC value, is gated by the "set NOOP bit" line

from the instruction unit. If the set NOOP line is active from the

instruction unit, the NOOP bit trigger is turned on with the sample.

Some instructions require the data transfer from the instruction

unit in ECC mode rather than lookahead parity (TSMT/SWAP). In an ECC

mode data transfer, a single bit error recognized in the I checker results

in an automatic correct cycle. If during the correct cycle, the error

proves uncorrectable, the NOOP bit in lookahead is set. In instructions

requiring the ECC transfer, the instruction unit indicates the condition

to lookahead. An "ECC correct load" signal combines with the IAUC

value, designating the level, to condition the NO-OP bit. The actual

output condition of the ECC correct load and the IAUC value is called

IB cond NOOP LA i on dbl error". If the ECC correct cycle results

in an uncorrectable error, the conditioning line allows the double error

indication line to set the NOOP bit.

On instructions where a data fetch (DF) or data store (DS) alarm

requires the instruction being loaded to be converted to a no-operation,

the instruction unit conditions the lookahead NO-OP setting with the line

condition LA NO-OP from alarm". If the BCU indicates an alarm on

this instruction, the alarm signal is gated to lookahead and gated by the

conditioning line, turns on the NOOP ta- bit.

Lo

On normal data loads from the instruction unit, the data is

passed through the I checker. The instruction unit signals the checker

to check instruction unit parity. If an error occurs during the parity

check, the NOOP tag in lookahead is set. On instructions requiring

this type of load, the instruction unit conditions the setting of the NOOP

bit with "cond NOOP i from ckr par error". This conditioning line

gated by the error indication, if any, sets the NOOP tag bit.

There are other methods and conditions that result in setting

the NO-OP bit. They are: memory check on type 2 loads, I checker

errors from OCC action or forwarding, no-op mode action, houseclean

action, forward no-op conversion operations, and divide double stores

with a zero divisor. Each of these conditions are explained in the section

covering each of the operations.

In general, the NO-OP bit is set anytime before the execution

of an instruction when any fault is found in the control information or

working data of the instruction.

From Tag Bit - When on in any of the lookahead levels, the

from bit signifies that the data stored in the data field is associated with

the address in the LAAR. The from bit is used in forwarding only and

always designates the level that the data is forwarded from (origin level).

Because the from bit applies to the LAAR, only type 2 and type 3 loads

are capable of setting it. A type 3 load requires the use of the LAAR

and therefore the from bit is always set when a type 3 load occurs. If

the LAAR is busy, a type 2 load does not change the contents of the LAAR.

u

However if the LAAR is not busy, a type 2 load alters the contents of

the LAAR and also sets the from bit at the level. The from bit is only

set when the LAAR is set in a type 2 load. Successive type 2 loads alter

the LAAR and therefore the previous from bit, which applied to the last

LAAR setting, is reset and the from bit at the new type 2 level is set

(naturally this last action is assuming the LAAR is not busy).

The conditions for setting the from bit on a type 3 load are

LLP3 (the actual load pulse) and the LAUC value designating the level.

Because there is only one from bit on at a time (only one setting of the

LAAR), any from bits at another level are reset. This is accomplished

with the LLP3 load pulse gated by no IAUC at the other levels. The IAUC

value designates the loading level only and therefore the other 3 lookahead

levels are at some other sequence. Because the from bit is set at the

LAUC value, the load pulse LLP3 resets the from bit at any of the other levels

by gating the reset pulse with not LAUC.

The conditions for setting the from bit during a type 2 load involves

more conditions than that for a type 3 load. The from bit is set with a

LLP2 load pulse that is conditioned by the IAUC value designating the level,

the LAAR busy trigger off, and no address compare. The busy trigger

being off is necessary because a type 2 load does not change the LAAR if

the busy trigger is on. The no address compare is necessary because

an address comparison on a type 2 load results in a forwarding operation.

Any from bits on at any other level are reset at the same time the from bit

iSL

is set at the IAUC level. The reset conditions are identical to the set

condition with the exception of the LAUC value. The from bit set level

is designated by the IAUC value and the reset condition is designated by

the not IAUC value. This means that any from bit on at levels not being

loaded (not IAUC) are reset when the from bit is set in the loading level

(IAUC).

The from bit at the IAUC level is reset when a type 1 is loaded

from the instruction unit. Since a type 1 load is in no way associated

with the LAAR, the from bit is reset during the load.

When the IAUC is conditioned to step into the next level and

that level has the NOOP tag and the from tag on, the from bit in that

level is reset to prevent the possibility of absolute forwarding. The

NOOP bit at the level indicates that the data is in error and therefore

the forwarding of error data is prevented.

The from tag set and reset conditions also occur during forwarding

operations and they are discussed in section 3.4.00. Logically then,

the from bit is set anytime the LAAR is set during a load. When the

from bit sets in a level during a load , all other from bits in lookahead

are reset. The forwarding operation also alters the from bits during

a forwarding operation by resetting the from bit at the origin level and

setting the from bit at the destination level.

Indicator Field

The indicator field in lookahead is divided into two groups; the

index result indicators and the non-index result indicators. The index

result indicators (XF, XCZ, XVLZ, XVC, XVGZ, XL, XE, and XH)

are set during every load cycle from the instruction unit. These

!e 3

indicators are buffered in lookahead and under certain instructions,

are transferred, at a later time, to the indicator register. They

contain the updated result of any indexing caused by preparation of the

current instruction. The indicators are bi-polar; that is their set and

reset is conditioned by the status of the input line from the instruction

unit. Each indicator is an IRG circuit and requires a (-) minus input

and a plus sample to turn the indicator on. With a plus input, the

sample pulse turns the indicator off. The status of the input is

determined by the instruction unit and the results sent to the input of

the individual indicators as "UDI Xi (i indicates individual indicators)

to LA IND". The sample is derived from the load pulse from the

instruction unit gated by the LAUC value designating the level at which

the indicators are set. The sample pulse set each indicator to the

status indicated by the input from the instruction unit.

The non-index result indicators (CN1DC, 1R, OP, AD, DS,

DF, and IF) are also set into lookahead in every load operation. The

setting of the OP, AD, and IF indicators are bi-polar and are conditioned

directly from the instruction unit. The sample pulse for setting the

OP, AD, and IF indicators is derived from the loading pulse and the

LAUC value designating the level. The status of the conditioning line

determines the on or off set of the indicators. The other non-index

result indicators (CN1DC, 1R, DF, and DS) are unipolar indicators;

they require a separate set and reset pulse. Besides being unipolar,

they differ from the other indicators in that they are conditioned by

(cH-

special action discovered during instruction preparation. Because

they also differ in their individual setting conditions, each one is

considered separately.

The CN1DC indicator is peculiar to the lookahead indicator

field. Under special action at a later lookahead time, it ultimately

affects setting of the MK indicator in the main indicator register. It

is conditioned to set from the instruction unit when any pseudo stores

or branch recovery levels are loaded. With the indicator conditioned

to set, any I parity error from the I checker during the data transfer

sets the indicator on.

The DF indicator is conditioned to set directly from the in-

struction unit when the data-fetch address is to a permanently protected

area of storage (addresses 1, 2, and 3). The conditional input directly

from the instruction unit is "set LADF". A sample pulse developed by

the load pulse and the LAUC value designating the level, turns the DF

indicator on with the "set LADF" line active from the instructionunit.

Any data fetches to storage, other than the permanently protected area,

results in the instruction unit conditioning the DF indicator set. The

sample to set the indicator is a boundary alarm signal from the BCU

indicating that the data fetch address is out of bounds.

The DS indicator is conditioned in the same manner as the DF

indicator. When the data store address is to a permanently protected

area of storage (addresses 1, 2, and 3) the instruction unit conditioning

line is "set LADS". A sample developed by the load pulse and the IAUC

value turns the indicator on directly. When the data store address is

to any address other than the permanently protected area, the instruction

unit conditions the DS indicator to turn on with a boundary alarm signal

from BCU. The boundry alarm signal comes only when the data store

address fails the boundry comparison set up by the programmer.

The IR indicator is peculiar to the lookahead indicator field.

Its output causes the instruction reject indicator (IJ) to be set at a later

lookahead time. The setting of the IR indicator in lookahead occurs

from several conditions both in the instruction unit and lookahead . Each

of these conditions are discussed, but only those peculiar to loading are

dispussed in detail in this section. References are made to other sections

of the manual where the details of the other conditions are noted.

If an instruction fails any instruction unit checks during preparation,

the instruction unit conditions the IR indicator bit with the line "set LA IDC"

which holds up the set input to the indicator trigger. The sample developed

during the loading operation (the load pulse and IAUC value) sets the indicator

on. On type 1 loads, the required operand is sent through the I checker

during the data transfer. During these loads, the instruction unit conditions

the IR indicator to turn on with an I parityerror from thp checker. A

combination of "cond IR from ckr parity error", from the instruction

unit, and "I ckr parity error" from the I checker turns the IR indicator on.

The above two conditions signify that there is an error in the instruction

itself (first example) or an error occurred during the instruction load to

lookahead (second example).

u

The other conditions that cause the IR indicator to turn on are

a memory check during type 2 loads (refer section 3. 3. 00). forwarding

(refer section 3.4. 00)^ operand checking (section 3. 3. 00), and forward

NO-OP conversion (section 3.4. 00).

Regardless of the causes for turning on the IR indicator in

lookahead, the fact that it is on indicates that the instruction buffered at

that level is, in some way, in error. During ABC time the IR indicator

is gated out to the main indicator register where, if on, it turns on the

instruction reject (IJ) indicator.

The IR indicator in the lookahead indicator field is reset with

the same pulse that resets the JLC tag. It occurs as the LAUC steps

into the level. All other unipolar indicators are reset during ABC time

after they are transferred to the main indicator register. The bi-polar

indicators are reset by the status of the conditioning line.

Instruction Counter Field

The instruction counter field of lookahead is set during the final

level of any instruction load. The address loaded from the instruction

unit is one address more than the instruction loaded. For example, if

instruction N is being loaded, the IC field in lookahead is set to address

N+l,when the final level of the instruction is loaded. The address in the

IC field is retained until the final instruction level is acted upon by lookahead.

At that time the IC field address is placed in the IC buffer field. It is the

address in the IC buffer which is returned to the instruttion unit in the

event instruction N interrupts. The IC buffer address is NkL, which

67

is the instruction that the instruction unit starts processing following

any corrective routine for instruction N.

The IC field contains a 19 bit data field and 2 parity bits (bit

positions 00-20). The conditioning lines from the instruction unit IC

field feed the corresponding bit positions in the lookahead IC field. The

bit position trigger are bi-polar and therefore the status of the conditioning

lines from the instruction unit determine if the individual triggers are

turned on or off. The conditioning line is "IC to LA IC pos i" and the

sample to for the trigger is developed by the load pulse and the LAUC

value designating the level.

Data Field

The data field in lookahead is a 76 bit field. Bit positions 00-63

contain the data; positions 64-75 are used for the 10 lookahead parity bits;

bit positions 66-73 are used for ECC bits; and bit positions 74 and 75

are reserved for the 2 residue bits. Figure 2.1-3.

The data field is loaded directly from the instruction unit during

type 1 loads. The data transfer is from the instruction unit through the

I checker into the lookahead data field. The I checker output bus (ICOB)

holds up the inputs to the individual triggers in the lookahead data field.

Because the checker output consists of lookahead parity and residue,

ECC bits, and instruction unit parity bits, the type that is gated into

lookahead is dependent upon the communication control from the instruction

unit. Generally, the checker output is gated into lookahead in lookahead

parity, plus the residue bits. On special instructions, however, the

instruction unit signals to lookahead, cause the data to be gated into lookahead

in the ECC mode. (TSMT/SWAP).

lot

On type 2 loads, the data field is set from the memory out

bus (IMOB). The sample for setting the triggers in this type of

load is initiated by a memory select. Type 2 loading is discussed

under OCC action in section 3.3.00.

A type 3 load is a store operation or internal fetch. The data

field is not set during the loading operation. The data, on type 3 loads

is set into lookahead at a later time. The store operations are discussed

in section 5.4. OOand the internal fetch operation is discussed in section 5. 3 . 00

The sample developed to set the data register during type 1

loads requiring lookahead parity is conditioned by a load signal from

the instruction unit. The sample pulse is sent to bit positions 00-b3

where it set the triggers either on or off depending upon the status of

the ICOB input line. The setting sample is further conditioned to gate

in the parity and residue bits into bits positions 64-73 (parity) and 7 4

and 75 (residue). If the required data is to be placed in lookahead in

ECC mode, the sample pulse conditions bit positions b6-73 to set to the

ECC bits also available in ICOB. The setting is either on or off depending

upon the status of the ICOB conditioning line. The differentiation to gate

in parity or ECC is originated in the instruction unit, and developed in

lookahead.

The special operand fields shown in figure 2.1-3 are loaded by type

1 loads. The figure shows the specific data and parity fields used by the

special operand fields.

b y

3.2.03 IAUC Counter Control Figure 3.2-9

The stepping of the IAUC counter to the next level occurs after

one level is loaded and there is no interlock existing between the IAUC

and SCC counters. The LAUC cannot step into a new level until the SCC

has left it (refer to section 2.4.00) In some cases, however, provisions

are made to anticipate the SCC advance out of a level thereby allowing

the IAUC to advance into the level when the interlock is evident.

The actual stepping function is the result of a conditioned advance

line, the existing IAUC level value, and the off condition of the IAUC advance

enable sequence trigger. The off conditions of the AES signifies that the

existing level has sent enable signals to the instruction unit and that the

instruction unit has responded by loading the level (the AES trigger is

reset with the first half of any load pulse). The existing IAUC value is

used to condition the correct stepping circuit to turn on the next IAUC

trigger and turn off the existing IAUC trigger. The key to the whole

stepping operation is the conditional advance line. The conditional

advance line is the result of any interlocks, load pulses and any special

cases which may alter the stepping of the IAUC counter. When the

advance line is active it signifies that all possible conditions are met and

that the IAUC can advance.

In order to remember that a load has occurred, the specific

type of load pulse turns on a load pulse memory trigger. The load

pulse memory trigger combines with a no IAUC-SCC interlock to produce

the conditional advance line. There are variations in turning on the load

pulse memory trigger due to the specific type of load being performed.

Each type is explained below.

70

A type 1 load pulse (LLP1) turns on the load pulse memory

-i-" directly. In this case the load pulse memory trigger remembers

that a load to the existing level has occurred. Because a type 2 load

requires an external memory fetch, the LLP2 load pulse is prevented

from turning on the load pulse memory trigger until lookahead is assured

that the BCU has accepted the instruction unit fetch request and that there

is no address comparison. The signal that the instruction unit fetch

has been honored is the signal "I Accept" from the BCU. The signal

indicates that the fetch for the required operand has been initiated in

storage and the data, after normal memory cycles, will be sent to lookahead.

The no address compare is necessary to indicate that forwarding is not

set up (forwarding requires the IAUC value of the existing level to show

the origin level of the forwarding operation). The LLP2 load pulse

combines with the "I Accept" and the no address compare indications to

turn on the load pulse memory trigger. The load pulse memory trigger,

conditioned by no IAUC-SCC interlock, allows the conditional advance line

to be activated. A load pulse 3 (LLP3) sets the load pulse memory trigger

directly if the type 3 load does not require an ECC check of the data load.

Normally, data is not loaded during type 3 loads, but when the instruction

is TSMT/SWAP, a data load is required in ECC mode. If an ECC check

is required, the LLP3 pulse is conditioned by a "no single I checker error

line". The turn on of the load pulse memory trigger must be delayed if

the ECC check results in an error during the check cycle. The delay is

necessary because of the extra two cycles required to accomplish the

automatic correct cycle. The LLP3 load pulse turns the load pulse

7/

memory trigger on during the correct cycle, if one is required, or

during the check cycle if a single ECC error does not occur. Again

the LLP3 turns the load pulse memory trigger on directly if the ECC

check is not required. With the load pulse memory trigger on and

no LAUC-SCC interlock the conditions are met for the advance line. If

during a type 2 load, an address comparison occurred, the LLP2 cannot

turn the load pulse memory trigger on. The address compare results

in a forwarding operation and the existing IAUC level is necessary for a

successful operation. The forwarding operation results in turning the

load pulse memory trigger on either during the forward check cycle

(no ECC error) or the forward correct cycle (ECC error) .

The load pulse memory trigger is reset after the IAUC steps.

The reset is conditioned by the AES trigger being on. The AES is set

during the counter advance.

To save time, the LLP1 and the LLP3 (if the ELP3 load does

not require an ECC check on load) combines with the NO IAUC-SCC

interlock directly to allow the advance line to be active. The LLP2

and the LLP 3(ECC check on load required) can only condition the advance

line by turning on the load pulse memory trigger. All of the advance

conditions mentioned so far assumed that the IAUC and SCC are not

interlocked. Normally, the advance of the IAUC is blocked if the IAUC

and SCC are interlocked. The IAUC stepping is blocked to prevent the

IAUC from stepping into the same level as the SCC. The IAUC cannot

Iz-

be at the same level as the SCC because the IAUC is trying to load and

the SCC is Storing. Both cases utilize the lookahead data field and I

checker requests. However, in some cases the SCC advance is anti­

cipated and the IAUC allowed to advance. The SCC anticipation is noted

when the LF tag bit remains on during ABC time. The LF tag being on

at ABC time indicates that the SCC does not have any action to perform

(no store operation) and therefore the IAUC is free to advance. Other

anticipations for SCC advance are indicated when the ABC stepping is

not delayed (ABC step is delayed only on store operations) and when

the ABC and SCC are interlocked (interlock indicates ABC and SCC will

step together.) Ti e details of this anticipation conditions are covered

in the later sections of the manual. Only a brief description is given

hereto show the IAUC step is allowed when the LAUC and SCC are

interlocked if the SCC advance is anticipated. All of the anticipation

circuits mentioned combine with the IAUC-SCC interlock condition to

allow the conditional advance line to become active to step the IAUC

counter and perform the tag bit and indicator resets.

73

3.3.00 OPERAND CHECKING Figures 3.3-1, 2, 3, 4, 5

Operand checking is necessary only when the operand required for execution is from

external storage (typs 2 load). The lookahead action is controlled by the OCC Counter

which is allowed to function when the LF and LC indications are not present after a load.

As previously mentioned, the LF and LC tag bits are set during the loading of a type 1

and 3 load. A typs 2 load requires a fetch from external storage. Because this memory

word is received from external storage with ECC bits, the OCC action consists of

routing the data to the I Checker along with the necessary control signals to check the ECC

bits and generate lookahead parity. These checking and conversion functions are accom­

plished during a type 1 load when the data passes through the I Checker during the loading

process. The action is not necessary during type 3 loads.

A signal, from the bus control unit, arrives just prior to the data and turns

on the LF indicator. The LF indication isused to gate the data and check bits to the

appropriate lookahead level. If a storage check occurs in the BCU, the NOOP tag bit

and instruction reject indicator (LI) in the level are set. After the data and check bits are

loaded, lookahead makes a request to the I Checker priority system (lookahead has

3rd priority for operand checking). When the priority Is satisfied an operand check timer

is started to gate the data and check bits to the I CHecker. The timer also sends the signals

to check ECC and generate LA parity. If no ECC error Is encountered during the check

cycle, the data and parity bits are routed back into the lookahead data field. If an ECC

error occurred during the check cycle, an operand correct timer is started to control the

error correct cycle. During the correct cycle the I Checker attempts to correct the

error. If the correction is made, the data and parity bits are routed to the lookahead

data field with the operand correct timer and no error indication is necessary. However,

I f

If the error proves uncorrectable, theoperandcorrect timer routes the output of the I

Checker Into the lookahead data field and the NOOP tag bit and instruction reject

indicator (LT) are set. At the completion of the operand check or correct cycle the LC

tag bit is also set. With the LF and LC tag bits set, the instruction perparation is complete.

Remember that the LF and LC tag bits are set for type 1 and type 3 loads during the loading

process. In these two cases, instruction preparation is complete during the IAUC function

since no OCC action is necessary. OCC action is only required during type 2 loads to check

and convert the operand. OCC action sets the LF and LC tag completing instruction

preparation for type 2 loads. A detailed description of the operand check and correct cycles

follows.

3.3. 01 Data Field Load

The time the lookahead data field is set on a type 2 load is dependent upon the BCU

priority system. After the operand fetch request is honored, the word is fetched from

storage and set into the memory data bus output register (MDBO). The output of the

register is available on IMOB. At the time the data is placed in the MDBO, the BCU

sends lookahead one of four memory select pulses selecting the level to receive the operand.
t

The memory select pulse is necessary to give a levelfill indication in lookahead. The
i

level fill indication in each of the four levels is in the form of a LFE trigger and its

associated LFM trigger. The LFE trigger is turned on with the memory select

pulse. The LFE and M condition devdlopes the gating in sample for the data from IMOB.

All data lines from IMOB feed the inputs to the lookahead data registers. The sampling

in pulse, developed from LFE and M, is only active for the level requiring the data. All

64 data bits and the 8 ECC check bits are gated into lookahead with the gate in sample.

7 s*

H a storage check indication from the BCU occurs during the operand fetch cycle ,

the NOOP and ins truction reject indicator in the lookahead level are set.

The next clock sample following the turning on of the LFE trigger, allows the LFE

trigger to turn on LFM. The LFM trigger is the LF tag bit and indicates that the operand

required for execution is loaded in the level. The LF indication is necessary to initiate

the operand check cycle.

3. 3.02 Operand Check Cycle

After the operand is loaded into lookahead the data and ECC check bits must be routed

to the I Checker to check the data transfer for error and to convert the ECC bits to

lookahead parity. Before the data can be gated to the I checker, lookahead must request

its use and wait until the priority request is honored. The I Checker priority system

is listed below

0 priority - actual use

1 priority - lookahead store check

2 priority - lookahead forwarding

3 priority - operand checking

4 priority - instruction unit.

The lookahead priority is honored when conditions are such that no 0, no 1, no 2, and 3

are requested. The OCC decoding using the LF indication makes the priority 3 request

to the checker. The priority scheme is shown in figure 3. 3-4. If the I Checker is not

in use or requested by lookahead, the instruction unit priority is always active. The priority

to the instruction unit is in the form of an "OF to ICK" trigger which when on gives the I

Checker priority to the instruction unit. When another priority request is honored by the

I Checker, the "OK to ICK" trigger is reset. The reason the trigger is used is to insure

%

that the instruction unit is informadof the priority cancellation as quickly as possible.

Besides informing the instruction unit erf its priority cancellation, the output of the "OK

to ICK' trigger is one condition necessary to allow further OCC action. The next OCC

action after the priority is satisfied to start the operand check timer. The conditions

necessary to start the timer are priority to check granted, a signal that theinstruction unit,

priority requests are blocked and a no I checker single error indication from the checker.

The reason for the no I checker single error line is to block the turn on of the opd ck timer

if the instruction unit is taking a correct cycle. Referring to figure , 3.3-4, , the I checker

condition causing the 0 priority to be active is I box check one half, which is an E and not M

pulse from an Instruction unit control area. This condition prevents the honoring of any

other priority requests during the im "ruction unit check cycle. If an ECC error occurs

during the check cycle the instruction unit must take a correct ccle, at the time the E and

not M signal is gone and thepriority system is free to honor any further requests

(No 0 priority). There is nothing to block the operand check (3) priority request and the

request is granted from the priority system. To prevent any action occurring from lookahead

when the instruction unit is taking the correct cycle even though the lookahead priority is

satisfied the "No I Ckr single error" line blocks the turn on of the operand check timer.

Onljt after the correct cycle is taken, is the "no I ckr sing error" line active. Gated with

the other priority conditions (3 priority granted and "ok to Ick" trigger off) the "NO I ckr

single error" line gates the turn on of the operand check timer.

The operand check timer is a standard E and M timer which controls the gating erf

the data to and from the I checker plus developing the proper signals to send to the checker.

The pulse to gate out the data field (bit positions 00-73) is developed with operand check E

trigger and the OCC level counter. Besides the gating out function, the operand check timer

77

E develops a "LA CHK ECC" signal and sends it to the I checker. So far the lookahead

data register has been gated out on ICIB to the I checker and the check ECC line generated

and sent to the checker.

The next sample pulse, following the setting of the OpdCk E trigger, turns on the

operand check timer M tigger. The M triger develops the sample for gating the data,

parity bits, and residue back to lookahead. The output from the I checker (ICOB) holds

up the inputs to the lookahead data field in all four levels. The opd ck timer M trigger

devlops the pulse for the proper level and samples the data inputs into the data register.

A pulse is also developed to gate in the LA parity bits and residue. Assuming no error

during the check cycle, the LC tag bit is set at the completion of the operaid check cycle.

With the LF and LC tag bits on, instruction preparation is complete. However, if an ECC

error occurred during the check cycle, the LC tag bit is not set and an operand correct

cycle is started.

3. 3.03 Operand Correct

The operand correct cycle is controlled by the operand correct timer. The timer consists

of an E trigger and an M trigger and provides an additional two clocKcjtcles necessary for

the correcting operation. The correct cycle is terminated by setting the LC tag bit and,

if the error proves uncorrectable, by setting the NOOP tag and the instruction reject (IJ)

indicator at the level.

The operand correct timer duplicates the action of the check timer by routing the data

from lookahead to the checker and gating the data from the checker back to lookahead

following the correct cycle. Because the correct cycle requires additional I checker time ,

the timer output duplicates the priority to the I checker by causing the o priority to continue

being active. The E trigger gates the data to the checker, E and M keeps the check

bits latched on the ICIB input, and the M trigger provides the gate in for the data, parity

bits and residue. The M trigger also conditions the setting of the NOOP tag and

instruction reject indicator if the checker signals the error is uncorrectable. The LC

tag is set by operand correct M. With the LF and LC tag bits set, the instruction

preparation is complete.

3. 3. 04 OCC Stepping.

The OCC Counter stepping is dependent upon the LC tag bit. With the LC tag bit on,

the co uditions for stepping are allowed providing there is not a counter interlock with the

TAUC. Whenever, the interclock is such that both the OCC Counter and IAUC Counter

are at the same level, the OCC is blocked from stepping until the IAUC steps. This is

necessary to key the counters in the proper sequence (refer to Section 2.4. Oo)j

With a no interlock condition the OCC is allowed to step as soon as the level

check (LC) tag bit is on. In type 1 or 3 loads where the LC is set during the loading process,

the OCC Counter is conditioned to step during the load. The LC tag being on indicates

that the OCC has no action so it steps as soon as the IAUC steps. In type 2 loads, however,

the OCC action is necessary and this is evidenced by the absence of the LC tag bit. The

OCC step is anticipated during the check cycle and if necessary during the correct cycle.

Both anticipation ciruits are controlled by the no interlock conditions. With the

interlock condition evident, the stepping is controlled by the normal method.

As with the IAUC, the OCC has a advance Enable Sequence Trigger associated with it.

Its purpose is to insure that the OCC functions only once in any particular level.

11

The AES output is used in starting the OCC action. As soon as the check cycle starts,

the AES is reset and does not turn on again until the OCC steps. This insures then that

the OCC junctions only once per level. If the OCC does not have any action, the AES remains

on and only the counter steps.

Figure 3. 3-6 illustrates the stepping action and shows both the normal and anticipation

circuits. The normal conditions for stepping are LC, OCC i (i indicating anyone of the

four levels), and no interlock. If there is an interlock, the stepping is delayed until the

interlock disappears. The operand check anticipation (E and M) is active if there

is no ECC error during the check cycle. If the single I checker error is active,

the operand check anticipation is blocked. The interlock condition must indicate no interlock

to allow any OCC stepping. The operand check can make the anticipation because the end

result of the check, assuming no error, is setting the LC tag bit. By this method time

can be saved, however, where there is an ECC error, the checking anticipation must be

blocked because the OCC requires more action. The operand correct (E and M) anticipation

steps the counter, assuming no interlock, during the correct cycle. This action can easily

be anticipated because the final action of the correct cycle is setting the LC tag bit. By this

time the "No I CKR sing error" is active and the counter stepping occurs. In any of the above

anticipation circuits the no interlock line is necessary. If there is a counter interlock during

the check or correct cycle the stepping is blocked. As soon as the interlock disappears, the

normal stepping is accomplished with the LC tag indication.

The conditioning line causes the existing level trigger (i) to be reset and the next counter

to be set (i + 1). The same condition turns on the AES trigger to allow OCC action, if

necessary, in the new level.

The disconnect line allows normal stepping of the counter if the level is disconnected

from the maintenance console.

so

3.4.00 FORWARDING

Forwarding, as the name implies, is the ability to move operands from

one level to another. It is set up at the time the instruction unit attempts to fetch

an operand from external storage. The fetch address is compared to the address

setting in the DAAR and any comparison allows forwarding to be initiated. The

comparison condition cancels the fetch request and turns on a forwarding required

trigger to remember the above conditions.

Forwarding can be accomplished from any of the four lookahead levels

depending upon which one has the from bit tag on. The level having the from tag

on, implies that the operand located at that level is associated with the address

setting in the LAAR. The from tag always identifies the level from which the data

is forwarded from. The level that receives the data is identified by the IAUC

value. Simply, then, forwarding takes place from the from bit level to the IAUC

value level.

The data path for the data being forwarded is through the I checker.

Therefore, before forwarding can begin a request must be made to the checker

priority system. Once the priority is satisfied the forwarding cycle can be

started. The from bit level can have the operand in two forms; lookahead

parity or ECC. Ignoring, for the moment, any store levels, the data at the from

bit level is always in lookahead parity. In this situation the I checker checks

the data for any fa rity errors. Any error indications result in the IAUC level being

NOOPted and the instruction reject inuicator being set. When the from oit level

is a store level, forwarding is delayed until the storing action is started. This is

necessary to insure that the required data is present at the level before allowing

forwarding. In a store level where data is to be stored in external storage, it

is necessary for the storing action to route the store data through the I checker

SI

to check lookahead parity and convert the parity into the ECC mode. During

this store check cycle, the output of the checker is routed back to the store level

in ECC and, if forwarding is required, to the LA.UC level in lookahead parity.

Normally, the from bit is reset in the originating level and set in the destination

level to allow further forwarding action when required, However, if the forwarding

action occurs during the store check cycle, explained above, the from bit is not

reset at the from bit level and the from bit is not set at the destination level. The

reason for the procedure is to prevent an error from the I checker if further

forwarding occurs before the LAAR is changed. The termination of the store

cycle results in a stored executed trigger being set, which participates in the I

checker control during forwarding. Whenever the store executed trigger is on,

the I checker is conditioned to check ECC during forwarding because the data at

the store level is in ECC at this time. If the from bit were transferred to the

destination level and forwarding started again after the store check cycle,

the data would be routed out of the destination level and sent to the checker in

lookahead parity, With the store executed trigger on, however, the checker

is controlled to check ECC and an error would ensue during the checker cycle as

the parity bits would fail the ECC test. To prevent this possiblity the from bit

remains in the store level after forwarding until the LAAR is changed or until

another forwarding action occurs. Any forwarding action occurring from the

store level, other than the store check cycle, operates in a normal maner.

If the data at any from bit level is NOOP'ed, forwarding can still occur

when required. However, the forwarding action results in the NOOP tag and

instruction reject (IJ) indicator at the destination level being set. This action is

called forward NOOP conversion.

&Z-

Still another type of forwarding is accomplished by lookahead. Absolute forwarding

is when the originating level and the destination level are the same level. An absolute

forwarding required trigger is used to remember the condition. Another method is necessary

because the priority request to the checker depends upon the LC bit being on in the from

bit level. The LC tag is reset when the IAUC advances to a new level and therefore, the

normal priority request conditions fail to get priority in this special case. The absolute

forwarding required trigger is used as an alternate means of allowing forwarding when the

IAUC and the from bit level are identical. An example of absolute forwarding is when the

IAUC is loading a level that has just completed an external store. The data still exists in

the level after tne IAUC advance into the level. If, when loading, the instruction unit makes

a fetch address to external storage and it compares to tne LAAR, the fetch is cancelled

and absolute forwarding is set up. The data is already at the IAUC level in ECC mode

(the data is not destroyed when it is gated out to be stored). Tne forwarding action would

consist of routing the data to the I checker with the signal "o check ECC. When the check

cycle is finished, assuming no error, the data and LA parity bits are routed back into the

same level in lookahead. Following is a detailed explanation of the forwarding action,

3.4.01 Forwarding Required Figure 3.4-1

An indication that forwarding is required is in the form of a forwarding required

trigger. The forwarding required trigger is turned by an instruction unit LLP2 pulse and

an address comparison signal from BCU. The first condition indicates that the instruction

unit is loading lookahead with a type 2 load. When the instruction unit makes the fetch for the

operand to BCU, the BCU compares the fetch address to the LAAR. If the two address

compare, the BCU cancels the fetch request and signals lookahead of the address comparison.

*3

The comparison signal signifies that the requested data is already in lookahead at another

level and therefore, the forwarding required trigger is turned on. Before any forwarding

can be accomplished, the lookahead must request use of the I checker. In the I checker

priority system, forwarding has priority 2. When the forwarding operation is not from a

store level containing data in ECC (completed store level), the priority request is decoded

by the from bit on, LC tag on, no store execute trigger on, LAAR not busy, and the TBC

counter at the level off. These conditions identify the level to be forwarded from (from bit)

that the data is available (LC tag), the data is in LA parity (no store execute trigger on)

not a store level (LAAR not busy) and the TBC is not functioning at the level (TBC i off).

The TBC i trigger off is necessary to insure that the data is not being transferred to two

areas simultaneously. Logically, there is no reason why the data could not be transferred

to the I checker and to the execution unit at the same time, but because of packaging re­

quirements, the data from a single register is gated to only one destination at a time because

there is only a Bingle unit of current available from the gate out circuit on the transistor

register trigger used in the operand field. When all gd nditions are satisfied the 2 priority

request is sent to the I checker. If the forwarding action is necessary from a store level

that contains the data in ECC mode, the priority request is granted when the LAAR is not

busy, the store executed trigger is on, and the forwarding required trigger is on. These

conditions identify the level by indicating that the store level data is available)LAAR not

busy), the store is completed and data is in ECC (store executed triggeron) and forwarding

is required (forwarding required trigger on). These three conditions are sufficient to make

the priority request to the checker. Still another type of priority request is necessary when

the conditions of forwarding indicate that origin and destination levels for forwarding are

the same level. This action is called absolute forwarding and is remembered in an absolute

trigger are the same as those necessary for the forwarding required trigger plus

the condition that the from bit is at the same level as the IAUC counter. The

reason this trigger is necessary is to make the priority request for the special case because

the normal priority circuit fails to qualify. Whenever the IAUC advances into a newlevel, the

LC tag bit is reset. With the LC tag off, the normal priority circuit cannot obtain the priority

request when absolute forwarding is required. Instead the priority request is made from

the absolute forwarding required trigger on and the LAAR not busy.

Any of the conditions just described cause lookahead to make the priority request

to the I checker priority system. The conditions for granting priority are similar to that

of operand checking only here we ask for second priority instead of the third (refer to Figure 3. 3-4).

The conditions then are No 0 required, no 1 required and 2 required. When these conditions

are satisfied, the priority is granted. The "no ok to I ck trigger" is turned off to block the

instruction unit from getting a priority. The output of the I checker priority system is

"OK LA 2 Req Fwd cycle". After the priority for forwarding is established, lookahead initiates

action to start the data transfer to the checker. The checker cycle is controlled by a

forward check timer.

3.4.02 Forward Check Cycle (Figure 3.4-2)

The forwarding check cycle is controlled by the forwarding check timer. This timer

consists of an E trigger and an M trigger. The conditions necessary to start the timer are

a priority for forwarding from the I checker, and indication that the instruction unit priority

requests are blocked, and no ECC error from the checker. If the ECC error line is active

from the checker, it indicates that the unit currently using the checker must take a correct

cycle. Because of the necessity for a correct cycle, the turning on of the forward check timer

is delayed to prevent gating data to the I checker during the correct cycle. When the I

checker indicates no single ECC error the forward check timer is turned on.

The forward check timer E trigger and the from bit tag (on in the level the data

is to be forwarded from) causd the data reqister bits 00-73 to be gated out to LAICIB. The

forward check E trigger and the status of the store executed trigger determines the signal

to the checker for the type erf check to perform (parity or ECC) the forward check timer

E trigger and the store executed trigger off signal the I checker to checkthe data for parity.

S the store executed trigger is on, the forward check timer develops a signal to the I

checker to check ECC.

The forward check E trigger oonditions the latch input to the M trigger.

The forward check M trigger conditions the data gate in from the checker. Because the

data la gated Into a different level than it was gated tut of, the forward check M trigger is

conditioned by the IAUC counter value to develop the gate in pulse of the data from the I

checker. In all forwarding operations, the data gated into the destination level is in look-

ahead parity. Besides bit 00-73 (data and parity), the two residue bits (bits 74 and 75)

are gated in the data field.

The next function of the forward check timer is dependent upon the type of check

the I checker is performing. Assuming the type of check was a lookahead parity cheok

and assuming no error occurred during the check, the foward cheok timer M trigger turns

on both the LF and LC tag bit in the destination level. Also the from bit at the origin level

is reset and the from bit at the destination level is set. All forwarding control triggers are

reset and forwarding is complete. H an error occurred during the parity check, the error

indication from the checker conditions the turn on of the NOOP tag bit and the instruction

reject. The turn on pulse for the NOOP tag and IJ indicator is developed from the foward

check timer M trigger and the IAUC counter value. The parity error conditions occur in

addition to the other forwarding functions explained above.

If the checker was checking the data for ECC and no error occurred, the data is

gated in at the origin level in LA parity, LF and LC tag bits are set, the from bit is reset

at the orgln level and set at the destination level, and all forwarding control triggers are reset.

n

H an ECC eror occurred during the check cycle, lookahead automatically starts a forward

correct cycle.

3.4.03 Forward Correct

A forward correct cycle is necessary only during a forwarding operation when the

data from the origin level is in ECC mode. The correct cycle is timed by a forward correct

timer which consists of an E trigger and an M trigger. The forward correct timer provide

the additional two cycles necessary for re-routing the data through the checker. The turn on

of the E trigger of the forward correct timer is conditioned by the forward check M trigger.

If an ECC error occurrs during the check cycle, the forward correct E trigger is turned'

on. The E trigger, conditioned by the from bit, develops the data gate out to the checker.

Following the E trigger function, the M trigger is turned on. The M trigger,

conditioned by the IAUC counter value, develops the gate in pulse for the data. The data sets

into the lookahead data field in lookahead parity. The residue bits are also gated into positions

74 and 75. The completion of the forward correct operation results in the LF and LC tag

bits being set, the origin level from bit resetting, the destination level from bit being set

and the forwarding control triggers being reset. In addition the NOOP tag bit and IJ indication

at the destination level are set if the ECC error proves uncorrectable,

3.4.04 Absolute Forwarding

If the origin level and the destiation level both specify the same lookahead level,

the absolute forwarding required is turned on. The absolute forwarding trigger is used to

obtain the forwarding priority from the I checker because the normal priority circuit fails

in this special case. Refer to section 3.4. 01. The normal data path and timers are used.

The only difference is in the priority request to the I checker.

&7

3.4.05 Forward NOOP Conversion

An additional complication arises If the data at the origin level is in error or

even non-existent as the result of the instruction at the origin level being rejected. The

condition is detected if the from tag and the NOOP tag compare at the level (both on). The

forwarding action still occurs when forwarding is required, except for any forward correct

action. Because a rejected instruction does not result in setting the store executed trigger,

it is not possible to request the checker to check ECC; thus no correct cycle is possible.

The forwarding action consists of setting the NOOP tag and IJ indicator in the destination level.

In addition all from bits are reset. With all the from bits reset, the address comparison

system in the BCU is disabled. With the address comparison system disabled, further forwarding

action is prevented until the contents of the LAAR change.

4.0.00 INSTRUCTION TRANSFER TO EXECUTION

4.1.00 GENERAL DESCRIPTION

Immediately following the instruction preparation phase of lookahead operation/

the lookahead execution phase begins. This section deals with the transfer of the operation

code field and operands to a selected execution unit. The selection and transfer of the

instruction are accomplished by lookahead. Much of the information in a level is for

lookahead decoding or Interrupt checking and therefore only the data required for execution

Is transferred.

The instruction transfer is the responsibility of the Transfer Bus Counter (TBC). The

TBC decoding gates out all required fields to the Transfer Out Bus (TOB). All acceptance

registers of PAU, SAU, and I/O are conditioned by TOB. The data on TOB are all DC

level decoded lines and require a setting pulse to set the information into any particular

execution unit. The setting pulse, initiated by a selective pulse from lookahead, is sent

to the proper execution unit to place the data into the execution input registers. A transfer

bus timer (T timer) times the data transfer operation. An E trigger and M trigger make up

the T timer. Combinations of the outputs of these triggers develop the required timing

pulses. The key to the transfer operation is the starting of the T timer. TBC decoded lines,

determining the required execution unit, start the timer. The timer output signalsare sent

to the execution unit and effect the setting of the instruction information into the execution

unit. A signal from the execution unit informing lookahead that the data is accepted

allows the TBC to advance to the next level. Basically, then, the function of the TBC

is to decode the instruction, start the T timer, and transfer the required information to the

execution unit. Whenever the operation requires an internal fetch or store (internal bit

on at the level) the TBC has no action. With the exception of two internal instruction

unit store operations, all Internal operations are controlled by the ABC function. With

the two exceptions just noted, the TBC function is limited to all operations not requiring

an internal fetch or store. The conditions for starting the T timer vary considerably

between VFL, FLP, and I/O operations and therefore each type is discussed separately.

To insure that the T timer is only started once per level, the TBC has an associated

Advance Enable Sequence trigger (AES) to condition the timer turn on. The AES trigger

is unconditionally reset by the timer and does not turn on again until the TBC steps to the

next level.

•4,'gur*. V-'ht,
All first level FLP instruetion^not requiring internal operands or store have the

same TIC action. Because most FLP instruction are buffered at one level, the TBC transfer

action Consists of transferring the operation code field and data field (operand) to the PAU.

The TIC decoding allows the operation code field in lookahead to be active to the input of

the PAU execution register and the lookahead data field to be active to TOB. All of the

decoded outputs (operation code field and data field) are dc decoded lines. Further

decoding by lookahead determines the instruction to be a floating point instruction not

requiring an internal Operand. With the instruction identified, the T timer is turned on.

The T timer Outputs, conditionea by decoded lines identifying the action, send a signal

to PAU to gate in the operation code field and start and a signal to gate the operand (data

field) into the C register (TOB feeds the C register). If PAU is unable to perform these

functions, it must remember the signals and gate the information in when it is able. The

TBC advance is conditioned by a signal from PAU indicating to lookahead that it has

accepted the information. The arrival of the signal from PAU allow the TBC to advance

contingent upon the TBC-OCC interlock. Basically the TBC action for single level Floating

ID

point instructions consists of timing the operation code and operand transfer to the PAU

execution register and C register respectfully. The maximum number of FLP level

requirements are 2. Except for the "multiply and add" (MPYC) instruction, ail the

second level FLP instructions are store levels and require no TBC action. The decodings

is such that the TBC is allowed to step under normal interlock conditions when those level

are encountered, "ftie MPYC instruction, however, requires TBC action. The TBC action

I I

for the MPYC operand (second operand) consists of a special signal (FLP continue") from

lookahead to PAU and another signal, "Gl TOB to C", informing PAU to set the MPYC

operand into the C register. A signal from PAU indicating the data has been accepted

allows the TBC to step contingent upon the TBC-OCC interlock. With all the information

accepted, PAU begins pre-execution. Pre-execution is defined as all data handling

possible up to the point where an addressable register must be modified. The modifying

of an addressable register is prevented until the system is assured that the previous instruction

did not interrupt. Lookahead has a series of tests it performs during ABC time to determine

the interrupt or no-interrupt (MAR MODE) condition. For speed purposes, PAU duplicates

the lookahead tests to determine the interrupt condition. The PAU test depends upon two

lookahead tests to completely interrogate the interrupt mechanism. The lookahead tests

for interrupt and no-interrupt (MAR MODE) are covered in detail in the next section of the

manual. With the interrupt test duplicated in PAU, the FLP execution does not depend

upon lookahead for a signal allowing PAU to modify any addressable register. Any action

taken due to an interrupt, however, is completely initiated by lookahead. Interrupt

procedures are discussed in section 8.0.00 of the manual.

v^ IA • J S 3 3 >
The function of the TBC for VFL operations„are basically the same. The operation

code and operand(s) are timed to the execution unit (SAU) by the TBC T timer. However,

there is considerable more decoding involved due to the variations in VFL instruction.

?!

Any VFL store levels, internal operand levels, or recovery levels do not require any

TBC action. In all other levels, the TBC action consists of transferring the operation

code, operands and WBC tag bit to SAU. The first level of any VFL instruction is always

the operation code level. Because of the extensive VFL decoding, the TBC employs a

TBC "late decode enable" trigger. The function of the LDE trigger is to allow enough

time for the decoding circuits to stabilize before starting the T timer. A decoded line

identifying the level (operation code level), the LDE trigger and AES trigger start the T

timer. Because the VFL operation code level requires additional Information, the lookahead

data field is used to store the extra data. The full operation code, then, exists between

the lookahead operation code field and the lookahead data field. Figure 2.1-3 shows

the special operand field used for the VFL operation code level. The T timer times the

data transfer such that the lookahead operation code field and the operand field (via TOB) are

both gated into the SAU execution register. Because the instruction may indicate the

operand involved cross a word boundry, the setting of the WBC tag is also gated to the SAU

execution register by the T timer. Besides timing the data transfer to the SAU execution

register, the T timer, conditioned by a decoded line identifying the level, turns on a

"VFL start" trigger. The VFL start line is sent to SAU and conditions the turn on of the

VFL housekeeping trigger. The VFL start trigger remains on until the SAU housekeeping

trigger is turned on. As soon as the SAU housekeeping trigger is turned on, a VFL house­

keeping line from SAU resets the VFL start trigger in lookahead. If SAU is unable to

start at the time lookahead sends the start signal, the VFL housekeeping trigger does not

turn on and therefore the VFL start trigger in lookahead remains on keeping the start line

active to SAU. The SAU housekeeping mode is the VFL pre-execution. Thus far the

first level of a VFL instruction has been transferred. The instruction level requirements

It*

for VFL operation range from a minimum of two to a maximum of six. The first level

is always the operation code level and does not include any of the working data (operands)

required for execution. The next level of the instruction contains the first (WBC) or only

(no WBC) operand. The TBC action at this level consists of gating out the lookahead data

field to the C register (via TOB) and timing the data transfer with the T timer. The operand

is the only information transferred because the execution unit operation code was transferred

during the first level TBC action. The operation code in lookahead at the second level or

any succeeding level is for lookahead control purposes only. If the instruction working

data crosses a word boundry, the third level of the instruction contains the second operand

and the data transfer is identical to that of the second level (except data in gated to the D

register via TOB and timed by the T timer). Any succeeding levels are store levels,

progressive indexing levels or recovery levels and do not require any TBC action. Basically,

the TBC action is identical for both FLP and VFL instructions except that the TBC action

required on VFL instructions ©ccuson succeeding levels. After the last operand (only

operand with no WBC or second operand with WBC) the T timer also generates a signal

for VFL Go. The Go signal to VFL is generated by the T timer, but is conditioned by

the fact that the previous instruction did not interrupt (Mar Mode). Unlike PAU, SAU

depends entirely upon lookahead for the signal to start execution. When Mar Mode is

present in lookahead, the T timer output from the last operand level generates the VFL

Go signal and relays it to SAU (Mar Mode is a function of ABC action and is covered in

$ectiond".&.oq). The VFL GO signal is the OK signal for SAU to modify addressable

registers (execution). The TBC stepping from one instruction level to another, after the

operation code level, is conditioned by a decoded line identifying the type of level

(only operand, first operand, second operand or MPYC operand) and a T timer output.

Special decoded signals ar® relayed to SAU during a MPYC instruction to allow the special

operand to be transferred correctly.

7 3

The TBC action on I/O instructions consists of the data field transfer, a decoded

operation code line identifying the instruction and a signal selecting the basic exchange

or the disc synchronizer. The operation is timed with the T timer. Before the T timer

can be started, the counter interlocks are such that a no store operation or interrupt

operation is preceeding the I/O instruction. When the TBC and ABC are interlocked

it is evident that there is no interrupt from a previous instruction or the ABC could not

step into the same level as the TBC. The ABC interlock with the SCC indicates that

there is no store preceeding the I/O instruction or the SCC could not have stepped into

the same level as the ABC. Once the counters are interlocked, a decoded line identifying

the I/O Instruction starts the T timer. The T timer outputs conditioned by further decoding

cause the select disc synchronizer or exchange pulse to become active. The selective

pulse initiates the action in either the exchange or disc synchronizer to gate TOB and

the operation code identification into the registers. When the instruction is accepted

from iookahead, the I/O unit involved (exchange or disc synchronizer) relays and

I/O accept signal back to Iookahead. If the 1/ O unit was busy and unable to accept the

instruction an I/O re|ect signal is relayed back to Iookahead. The arrival of either the

accept signal or reject signal cause an I/O reaction storage trigger to be turned on. The

purpose of the trigger is to establish a timing relationship between Iookahead and the I/O

unit. The outputs of the trigger resets the T timer and allows the TBC to advance. The

next level of the I/O instruction is a dummy level used to interrogate the interrupt mechanism

No TBC action is necessary other than stepping the counter by normal stepping methods.

TBC action is required on instruction unit instructions requiring a store to an

internal register. The data path involved in an internal store from the instruction unit

is via Iookahead (loading process) to the C register (via TOB). The TBC action then is

timing the data transfer from the lookahead data field to the C register. The operation

is timed by the T timer. A decoded line identifying the internal instruction unit store

plus the MAR mode conditions allows the T timer to be started. The same decoded

condition allows the output of the T timer to signal the gate in of the C register from TOB.

The TOB lines are dc output lines caused by the instruction unit internal store decoded

condition. The TBC advance is allowed by the decoded condition and the T timer output.

The data remains in the C register until the ABC starts action. The ABC action causes

the data to be routed from the C register to the required internal register. The internal

register address is noted by the LAAR.

All the basic TBC actions have just been covered. The remaining areas of this

section cover the TBC action in greater detail in respect to PAU, SAU, I/O and instruction

unit instructions. Again the important parts to remember are:

1. The TBC function is to select the correct execution unit and relay all

the required data to that unit.

2. The key to the TBC action is the T timer and the manner in which it

is started.

4.2.00 FLOATING POINT OPERATION

All FLP instructions are executed within PAU. The communication links between

lookahead and PAU are the C register for the operands and the PAU execution register for

the operation code information. All single or first level FLP instruction not requiring

internal operands are transferred by the TBC after instruttion preparation is complete.

FLP instructions that require internal operands are transferred during ABC time. The FLP

instructions which consist of two levels require no TBC action at the second level because

they are store levels. The only exception is the MPYC insinuation where the second level

is a special operand anci TBC action is required. Because all FLP instructions are half

word instructions, the operation code and operand are both contained within the same

lookahead level. The information transfer is accomplished by the transfer bus timer (T timer).

The key to the transfer operation is the starting of the T timer. All FLP decoding for TBC

action is shown in figure The TBC decoding causes the dc gate out of the lookahead

data field to the C register (via TOB) and the operation code dc gate out to the PAU

execution register. Further TBC decoding of the floating point instruction results in starting

the T timer to develop the pulses which initiate the setting of the C register and execution

register in PAU.

4.2.01 Floating Point Decoding

All floating point instructions are identified by decoding the operation code and tag

bit fields in lookahead. The level requirements for floating point instructions are a minimum

of one and a maximum of two. With the exception of the second level of a FLP MPYC

instruction, all second levels of FLP instructions are store levels. No TBC action is required

for FLP store levels so, therefore, a differentiation must be made by the decoding circuits

between first level, second level, and MPYC instructions. When internal operands are

%

required for execution, the TBC action is not required. The decoding circuits then must

also differentiate between internal and non-internal operand requirements. There is also

the possibility that the information at the level is in error as is noted by the NO-OP tag

being on. If that condition is evident the decoders must recognize it and prevent any

normal TBC action and cause instruction reject action to be taken. Other considerations

necessary for normal decoding are whether lookahead is currently operating in a reject or

houseclean mode. If either of the two conditions are prevalent, the normal TBC action

cannot be allowed and houseclean or reject action taken instead. The actions taken on

reject mode or houseclean mode are covered in sections 7.0.00 and 8.0.00 respectfully.

The basic decoding done by the TBC is shown in figure Lf- • The second major block

shows the basic TBC decoding for floating point instructions. The decoding circuits demand

the bit structures as shown and the tag bit designations as shown (l=on, 0 - off). Where a

blank position is shown, the bits at those positions do not affect the decoding and can be

either 1 or 0.

4.2.02 Data Field and Operation Code Gate Out f'^tve.5 £--3f)

As soon as the decode line "FLP NOT INT" becomes active in any level of lookahead

(normally as soon as LF and LC set) the decoded line gates out the lookahead data field on

TOB (bit 00-63 plus parity and residue). The TOB holds up the input to the PAU C register,

but does not set the data bits into the register, Because the decoded gate out line is a d.c.

line (no pulse) the input to the C register remains active as long as the decoded condition

is satisfied. The only way the decoded line can be altered is by changing the TBC value

to another level, a signal is required from PAU informing lookahead that the data has been

accepted. So until such time as these signals are generated the inputs to the C register

remain active. Notice that the gqte out is' conditioned by the FLP decoding that no

97

internal operands are required. If an internal operand is required the data field in lookahea

is not gated out as it does not contain the required data. The ABC function gates the requirt

operand from the addressed internal register (designated by LAAR) to the C register.

The lookahead operation code field is gated out to the PAU execution register by

the decoded line 'FLP 1st level". This decoded line conditions the operation code field

b.ts to become active to the input to the PAU execution register,; Again the inputs to the

execution register remain active as long as the decoded conditions are satisfied. The

execution register is not set by the input from lookahead, but only conditioned to set. As

with the C register, a pulse must be generated to set the data into the execution register.

Since the gate out of the operation code is not conditioned by a "not internal" condition,

the inputs to the execution register are active on any first level floating point instruction

regardless of any internal operand requirements. The actual transfer is made during ABC

time when internal operands are required, but the inputs to the E register remain active

from the TBC decoding during ABC time because the TBC is prevented from stepping until

the data is accepted by PAU. In the previous example, the TBC and ABC are at the same

level and both are stepped when the data is accepted.

Thus far the lookahead data field is active via TOB to the input to the C register

and the operation code field is active to the input to the PAU E register. The next step

is to develop the pulse to time the transfer.

4.2.03 Starting the T Timer C>

The turn on of the T timer is conditioned by a TBC advance enable sequence trigger.

The purpose of the AES trigger is to insure that the T timer functionJonly once during anyone

TBC level. The T timer output, once started resets the AES trigger preventing any further

conditions from restarting the timer while it remains in the existing level. After the TBC

9?

steps to the next level, the AES is turned back on to allow the timer to function at the

new level. Besides the AES conditioning line, the T timer requires a decoded line

identifying the need for the timer. In floating point instructions, the decoded line

"FLP NOT INT" allows the timer to be started. Again notice that the starting of the

timer is prevented if an internal operand is required. The transfer on this type of FLP

instruction is a function of the ABC. The T timer is a standard timer consisting of an

E trigger and an M trigger. The timer is started by turning on the E trigger. An E trigger

output allows the next clock sample to turn the M trigger on. An M trigger output conditions

the reset of the E trigger with the sample following the turn on of the M trigger. The M

trigger is reset when the timer function is complete. Combinations of the trigger outputs

provide the necessary timing pulse to complete the transfer of the instruction to PAU.

The T timer generates two signals. One signal tells the PAU to gate in the operation code

and start and the other signal is gate in to C. The first signal "FLP ENABLE" is generated

by E and not M of the T timer and conditioned by a decoded line (FLP not int) identifying

the action. The FP ENABLE signal is relayed to PAU where it initiates the action of setting

the operation code information into the C register and also allows PAU to start pre-execution.

Because SAU handles the exponent during FLP operation, an identical signal is also sent to

SAU to start their action on the FLP instruction. The signal to gate the operand into the

C register is conditioned by a decoded line "FLP NOT INT" and generated by T timer E and

not M. If PAU is unable to accept the signals, it must remember them and take action as

soon as it is able.

With the signals generated and sent to PAU, no further action is taken by lookahead

until a signal is received from PAU indicating that it has received the data and started.

The signal is a T0 pulse (PAU clock) and is interpreted in lookahead as FLP first cycle.

1?

The FLP first cycle pulse results in the reset of the T timer and the conditioning of the 7BC

step to the next level.

4.2.04 Counter Step and T Timer Reset 4-> ,2-7

The actual stepping of the TBC counter to the next level is contingent upon the TBC

interlock with the OCC. Assuming that there is no interlock between the OCC and the

TBC, the FLP 1st Cycle" pulse/Conditioned by no interlock, results in the adv condition

for the TBC. The TBC advance condition line is conditioned by the TBC value at the

existing level and the AES off condition, (the latter condition infuses that the T timer

functioned). The results of the three conditions cause the TBC trigger at the existing level

vese.T~
to be reset and the TBC trigger at the next level to be set TBC i, set TBC i +1). Besides

conditioning the counter step circuit, the advance condition line also sets the AES trigger

on and resets M of the T timer (E trigger reset with first clock sample following the M trigger

turn on). With the TBC stepped to the next level and the AES trigger on, the TBC is set

to function at the new level.

If the TBC and OCC are interlocked, the TBC cannot step until the OCC steps

(one counter cannot pass another). Because the "FLP 1st cycle" pulse is active from a

clock output from PAU, the condition may be passed before the TBC-OCC interlock dis­

appears. To prevent this possiblity, an "Execute First Cycle Mem" trigger is turned on

by the "FLP 1st cycle" pulse from PAU. The output of the trigger parallels the "FLP 1st

cycle" pulse in the advance condition circuit. If the first cycle pulse disappears before

the interlock between the OCC and TBC disappears, the "execute first cycle memory"

trigger causes the advance condition to become active after the interlock disappears.

The advance condition, once active, accomplishes the functions previously described.

The execute first cycle memory trigger is reset when the TBC AES is turned on.

The next lookahead action is the function of the ABC and is covered in the next

section of this manual. The area just covered shows the TBC action only for floating point

Joo

operations not involving a second level store or internal operands.

4.2.05 Special TBC Action on FLP MPYC

If the FLP instruction being transferred is a multiply and add instruction (MPYC) the

TBC has special action. The multiply and add instruction requires 2 lookahead levelsto

complete the data transfer. The first level of the instruction contains the operation code

and first operand. The TBC action for the first level of the instruction is identical to that

just described. The MPYC instruction is the onl^jX^eve ' FLP instruction that TBC action

is required. The second level of the instruction contains the special operand (implied

contents of address 14) required by PAU. To transfer the special operand to PAU again

involves gating out the data field to the C register and developing the required signals to

time the transfer. The timing of the transfer is accomplished by the T timer. The acceptance

of the special operand by PAU, causes PAU to relay an acceptance signal to lookahead

allowing the normal advance functions to occur.

Because the first level transfer is the same as any first level FLP instruction not

requiring internal operands, this section covers the second level transfer only. The TBC

action at the second level of the instruction consists of gating the lookahead data field to

the C register and timing the transfer with the T timer. Because the operation code at

the second level is for lookahead control purposes only, the field is prevented from being

gated to PAU. The real operation code necessary for the execution of the instruction is

transferred during the first level TBC action. Remember that the operation code gate out

at the first level was caused by the decoded line "FLP 1st level". Because the TBC is

now functioning at the second level of the FLP instruction the gate out line is not active

for the operation code field. The data field in the second level is gated out by a special

decoded line "transfer bus Gate Out" which is the result of the MPYC operation code

101

decoding at the second level. Referring to the TBC decoding diagram figure U-.ZL-X a

decoded line called "FLP continue" is decoded from the operation code and tag bit fields.

The same bit structure allows "cond TB timer" and "cond TB gate out" to be decoded. All

three of these decoded lines are used to transfer the second level of the MPYC instruction

to PAU.

The data field in lookahead is gated out when the "cond TB gate out" becomes

active. The actual gate out condition is a result of the "TB gate out" line, TBC counter

value, an a late decode enable trigger (LDE). The TBC value designates the level to be

gated out and the LDE trigger is necessary to allow sufficient time for all the decoded lines

to become stable before action is taken. The LDE trigger is turned on when instruction
/ >1 SufiEi

preparation is complete (LF and LC) and nemni that forwarding is not in process or

lookahead is not in a houseclean mode.

As soon as the three conditions are satisfied, the data field is gated out to the C

register, via TOB, and holds up the inputs to the register . The decode line

"cond TB timer", conditioned by the LDE and AES triggers, turns on the T timer to initiate

the transfer function. The E and not M output of the timer, conditioned by the decoded

line "FL Pt cont" is relayed to PAU as "MPYC cont". The arrival of the signal in PAU

causes PAU to set the C register according to the inputs active from TOB. The special

operand has now been transferred. After the acceptance PAU generates a signal "cumulative

multiplier accepted" and relays it back to lookahead. This signal accomplishes the same

function as the "FLP first cycle" pulse did in the first level. That is, allows the TBC advance

conditionto become active which allows the TBC to advance, set the AES on, reset the T

timer and reset the LDE trigger, if there is an interlock and the acceptance pulse from PAU

cannot allow the advance condition immediately, the execute first cycle trigger is turned on

tc -member the condition. The execute first cycle trigger replaces the acceptance pulse in

the advance condition when the TBC-OCC interlock disappears.

I D L

I

4.3.00 VARIABLE FIELD LENGTH (VFL) OPERATION

The restrictions to TBC action for VFL instructions are the same as for FLP instructions

plus two additional situations. That is, TBC action does not take place for any VFL instruction

levels that require internal operands, store levels, branch recovery levels or progressive indexing

levels (pseudo stores). TBC action is required on all VFL operation code levels and all operand

levels whose source was or external storage. Referring to section JL,1.00 relating to

lookahead and instruction level requirements, it states that VFL instructions require a minimum

of two to a maximum of six levels for any one VFL instruction. The only levels that require

TBC action on any VFL instruction are the operation code level (always first level) and the

operand levels (if not internal). When there is not a word boundry crossover the second level

is the only operand level and the last TBC action occurs at that level. If there is a WBC, then
7NT TATT

the second and third levels require TBC action (first operand and second operand TNTfr.

If anyone of the two operands requires an internal operand the TBC does not function for that

level. Only when the level does not designate an internal operand, a store, a recovery level

or progressive indexing level does the TBC function. In the following discussion of VFL TBC
K**F>

action only those levels which require TBC action are discussed. Keys in mind that these

levels do not include internal operand requirements, store levels, progressive indexing levels

of recovery levels (these levels are a function of ABC action and are discussed in section 5.0.00).

The first level of any VFL instruction is always the operation code level. Because

a VFL instruction requires much more operational data than a FLP instruction, the lookahead

data field as well as the operation code field is used to buffer the instruction. Because the

data field is used to buffer the additional VFL information for the operation code, any operands

required by the instruction must be buffered at succeeding levels (1 level for each operand -

2 operands maximum). The TBC action then on a VFL operation code level involves a transfer

of both the operation code field and the lookahead data field to the SAU execution (E) register.

103

Because no operands are available at the first level no data is gated to the C register. A

decoded "VFL operation code level" line conditions the gate out of the operation code field,

data field (via TOB) and the status of the WBC tag bit to the SAU execution register. Further

VFL decoding starts the T timer whose output, conditioned by a decoded line identifying the

action, turns on the VFL start trigger. The output of the VFL start trigger is relayed to SAU

and attempts to turn on the VFL housekeeping trigger and set the SAU execution register. If

SAU is busy, the turn on of the VFL housekeeping trigger and the setting of the execution

register is blocked. The reset of the VFL start trigger in lookahead I s accomplished by the

"on" condition of the VFL housekeeping trigger in SAU. Therefore if SAU is busy and the

housekeeping trigger cannot turn on, the VFL start trigger is lookahead is not reset. With

the VFL start trigger remaining on, the VFL start line remains active to SAU until such time

as SAU becomes not busy and allows the start line to turn the housekeeping trigger on and

set the operation code information into the execution register. When the VFL housekeeping

indication is relayed to lookahead the VFL start trigger is reset and the TBC is allowed to

advance to the next lookahead level. The TBC advance condition also resets the T timer.

The next lookahead level contains either the only operand (WBC) or the first of

two operands (WBC). The TBC action at the first or only operand level results in decoding

the condition (first or only and not internal) and gating the lookahead data field (via TOB)

to the inputs of the C register. The operation code at this level is for lookahead purposes

only (as noted by the LAOP tag being set) and is not gated out to SAU. Only the data

field (operand) is gated to SAU during VFL operand levels. The operation is timed by

starting the T timer which develops the necessary pulses to be relayed to SAU to gate the

data into the C register. Besides the decoded line, the T timer is conditioned by the fact

that the previous instruction did not interrupt (MAR MODE). The MAR MODE is necessary

because SAU does not duplicate the interrupt test equipmentand relys entirely upon lookahead

10 if-

for assurance that it may modify an addressable register. If the decoded level indicated

that it was the only operand level, the T timer, conditioned by MAR MODE, turns on a

VFL GO trigger. The GO Trigger output is sent to SAU and interpreted to mean that the

previous instruction completed without error, that all the operands required for execution

have been sent by lookahead and OK to execute. If the decoded condition indicated that

the level contained the first operand level (implying that another operand is in the next level,)

the VFL GO trigger is not turned on. The only TBC action required on the VFL first operand

level is the transfer of the data to the C register. The only operand level turns on the VFL

GO trigger in addition to the data transfer. A decoded line identifying either first or only

operand conditions a T timer output to step the TBC to the next lookahead level.

The action of the TBC at the next level of the instruction is determined by the TBC

decoding. The TBC only has action if the level is decoded as having the second operand

(WBC) not internal. Any other decoding (store, recovery or progressive indexing level)

does not require TBC action other than allowing it to step contingent upon the interlock with

the OCC. A decoded level indicating the second operand causes the data field to be gated

to the input of the D register (first operand was placed in the C register in the last level).

The decoded condition starts the T timer to time the data transfer. The T timer Output also

turns on the VFL GO trigger. The GO trigger indications sent to SAU to allow them to

start execution. The previous actions are conditioned by MAR mode which remains active

until again tested at the end of the present instruction. Again the T timer output allows the

TBC advance to occur in the same manner as mentioned previously. All remaining levels

of the VFL instruction, if any, do not require any TBC action other than the decoding con'

ditioning the TBC advance directly.

IDS'

To summarize the action very briefly; all data transfers are timed by the T timer.

The VFL start signal is generated at the VFL operation code level and the VFL Go signal

is generated at the last Operand transfer level. All data transfer other than the operation

code level are contingent upon MAR MODE being present within lookahead. All internal

operand transfers do not require TBC action - they are transferred during ABC action. The

VFL operation code level utilizes the data field at the level and is transferred to the SAU

execution register along with the operation code field and WBC tag. The presence of the

LA0P tag In all I •vels other than the operation code level, prevent the lookahead operation

code field from being transferred. The first or only operand is transferred to the C register

and the second operand, If required (WBC tag on) is transferred to the D register.

The branch on bit (BB) and the branch on indicator (Bl), although not VFL instructions,

are both investigated by SAU. These two branch instructions are influenced by the status of

an addressed bit location in any data word (BB) or indicator address in the indicator register

word. Because SAU is the Only unit which can inspect individual bits at groups of bits in

a word, the branch instructions (BB and Bl) are interrogated by that unit Figure £•/-»*-and

show the operation code field and special operand field layout in the BB and Bl operation

code levels. Unlike a VFL instruction where the operation code is transferred to SAU to

determine the instruction action (add, sub ect), the branch on bit or branch on indicator

is entirely decoded by lookahead and one decoded line only (BB or Bl) is sent to SAU.

i iturshows the operation code field as it is loaded from the instruction unit.

:ht conditional indicators shown apply to the "branch to" address and are Investigated by

SA'.I to determine the reliability of the branch condition. The data field shown in figure

shows the bit address (BB) or indicator address (Bl) and the control bits used to determine the

JS of the bit after Interrogation. The TBC action at the operation code level consists

of gating out the operation code field, data field, WBC tag and the decoded line identifying

the BB or Bl condition. The decoded line identifying the action (BB or Bl) starts the T timer

to time the transfer to the SAU execution register. The operand involved for the BB instruction

is transferred in a normal manner (VFL only operand tnt). If the operand required is internal,

the TBC has no action. The operand for the branch on indicator instruction is the indicator

register. Because the indicator register is an internal register, the TBC has no action at the

operand level of the Bl instruction.

4.3.01 VFL Decoding

F i g u r e - • £ s h o w s t h e T B C d e c o d i n g f o r V F L t y p e i n s t r u c t i o n s . B e c a u s e b r a n c h

on bit and branch on indicator instructions are also sent to SAU, their decoding is discussed

here and is also shown in figure . The VFL decoding all include a bit in position

7
9 of the operation code field. The VFL operation code is ttrictly a bit in positior^, no LAOP

tag and no instruction re|ect decoding (NO-OP). All VFL decoding during TBC time,

except the operation code, have the LAOP tag bit set indicating that the operation code at

that level is for lookahead use only. All VFL decoding is determined by combinations of

the lookahead operation code field and tag bits. The decoding involved for TBC VFL decoding

consists of operation code level, only operand, first operand, second operand, store level,

and multiply and add (MPYC). If the internal bit is on at the level it aesignates that the

required operand is located in an internal register. Internal register fetches are the responsi­

bility of the ABC function. Therefore, the VFL decoding of VFL operands is conditioned by

the internal tag bit being off which designates TBC action. The operation code bit structure

and tag bit designations cause further decoded control lines to become active to condition

the T timer and gate out functions. These other decoded lines are the results of the same

bit structure identifying the VFL level. Figure U-.H-Z, shows that the VFL identification

decoding also causes certain of the special decoded lines (lower part of figure) to become

active- For example the VFL op code decoding also cause "cond TB timer" to be active.

101

The branch on bit and branch on indicator decoding is shown also in figure

Notice that one of the necessary decoding conditions for these two type of instructions is

rhe presence of the LAOP tag bit. The LAOP bit designates that the operation code field

is for lookahead purposes only. Lookahead decodes the bits shown to find the branch on

bit or indicator condition. Instead of sending the operation code field to SAU for decoding,

Lookahead decodes the instruction and sends the decoded restlts to SAU. The decoded branch

condition also pariticpates in the gate out of the operation code field.to SAU as well as the

data field. Normally, anytime the LAOP tag is on, the operation code field is not gated

out. In the two branch instruction, the operation code field also buffers the conditional

indicators which pertain strictly to the "branch to" address. Because of the added data in

the operation code field, the decoded branch condition line allows the operation code field

to be gated out in order that SAU receives the conditional indicators. SAU looks at the

status of the conditional indicators to determine the success of the branch instruction. Figure

ZL.h%. shows the operation code field layout for the branch instructions. Notice that the

area that the indicators are buffered in no way affect the positions lookahead uses to decode

the branch condition. In the operation code field transfer, only the conditional indicators

are gated into SAU. The branch on indicator test level, shown in figured,/_3> is a special

format created by the Instruction unit to allow SAU to reset an indicator that caused an

interrupt. The level is generated by the instruction unit during interrupt action and is

discussed in section 8.0.00. The other two decoded branch levels are special decoding

used to allow the TBC to advance over a branch recovery level in the event the branch

instruction was not successful. The recovery level is required only when the branch in­

struction associated with it is successful.

All TBC decoding is conditioned by the TBC counter vaiue, designating the level at

which the action occurs and no re|ect action indicating the data at the level is free from error.

! 0 S

4.3.02 T Timer and information Transfer

This section discusses the starting of the T timer and data transfer for VFL operation

code levels, only operand levels, first operand levels and second operand levels. Included

also is the starting of the timer for the branch on bit and branch on indicator instructions.

All operand decoding used to start the timer are assumed to be non-internal because any

internal operand requirements are discussed in section 5.0.00.

VFL Operation Code Level i

The decoded line identifying the VFL operation code also causes "cond operation

code gate out" to become active. The "OP CODE GO" line, conditioned by the TBC value

and the LDE trigger, gates out the operation code field to the SAU execution register. The

bit positions hold up inputs to SAU execution register as long as the decoded condition remains.

Figuretf-3-d'Shows the relationship between the lookahead operation code field and the SAU

execution register positions. Because the lookahead data field also containijinstruction control

data at the VFL operation code level, it too is gated out to the SAU execution register. The

VFL Op code decoding also cause'cond TB (transfer bus) gate out"to become active. This

decoded line, conditioned by the LDE trigger and TBC value, causes the data field in lookahead

to hold up the inputs to the execution register via TOB. Because the required operand may

have crossed a word boundry, the WBC crossover tag bit is also gated out and holds up the

input bit position 0 of the SAU execution register. All the inputs to the execution register

from lookahead are d.c. gate out lines and they remain active as long as the gate out decoaed

condition exists (until the TBC step to the next level). To time the operation code level

transfer, the T timer is started. i(Tt5

The decoded line "TBC dec cond TB timer" (same decoding as VFL op code level),

conditioned by the TBC AES and the TBC LDE trigger allows the T timer to start with the next

sample pulse following the active output of the turn on condition. As soon as the T timer

comes on it resets the TBC AES trigger to insure that the TBC will function only once at the

level. The T timer output E and not M is conditioned by a "VFL EN START" line to turn

on the VFL start trigger. The "VFL EN START" line is conditioned directly from the decoded

VFL Op code level" line Identifying the level. The output of the VFL start trigger is sent to

SAU where it attempts to turn On the VFL housekeeping trigger and affect tfce setting of the

SAU execution register. If SAU is not busy, the VFL start signal from lookahead sets the

VFL housekeeping trigger and allows the setting of the execution register (inputs still active

from lookahead). If SAU is busy, the VFL start signal from lookahead cannot do anything

and remains active until SAU becomes not busy. When the SAU housekeeping trigger is

on, it generate/a signal "SAU Housekeeping" and relays it to lookahead to inform them that

the data has been accepted. The arrival of the SAU housekeeping signal resets the T timer

and conditions the TBC to advance to the next level. The SAU housekeeping trigger indicates

that pre-executlon has started in SAU.

Only Operand Level 1+.3-2-

The decoding of the Only operand level is shown in figure ^'-^-"^-.The TBC action

at the level Is basically the same as the TBC action at any level. That is, the decoding

identifying the level conditions the gate out of the lookahead data field to the C register.

With the Inputs active to the C register, the decoded condition starts the T timer to time the

transfer operation. The presence of the LAOP tag at the level justifies the blocking of the

operation code field transfer. Remember the previous level was the operation code level

and all control data was transferred at that time. SAU is waiting for the working data (operand).

Because this level was decoded as the only operand level, lookahead generates a "Go" signal

to SAU at the completion of the data transfer. The Go signal is the OK signal to execute

the instruction. The execution is allowed because the "GO" signal In lookahead is conditioned

n o

by MATTMODE indicating the previous instruction completed without interrupKng. SAU is

already in a housekeeping mode (from previous level) and therefore the full TBC action requin-

at this level is the operand transfer and Go signal generation.

The decoded line identifying the level gates out the data field (via TOB) to the C

register in the normal manner (d.c. gate out with decoded line conditioned by LDE trigger

and AES. Remember AES was reset at the last level during the transfer but when the TBC

stepped into this level it was turned on again). The inputs to the C register remain active

as long as the decoded gate condition exists. The "VFL only operand" decoded line causes

"cond TB timer on MAR" to become active to condition the turn on of the T timer^. Before

the timer can be started however, lookahead must be assured that the previous instruction

did not interrupt. This assurance is in the form of MAR MODE which is one of the prime

requirements for starting the timer at this level. Together with MAR MODE, AES, and LDE

the decoded line conditions the timer to start with the first sample pulse following the satis­

faction of the turn on requirements. The E and not M timer output together with the decoded

line cond Gl to C Reg" (caused from VFL only operand decoding) generate a signal to PAU.

The signal sets the C register to the inputs setting on TOB. Another decoded line "Cond

SAU MAR" (generated from the only operand decoding) together with the E and not M output

of the timer combine to turn on the VFL GO trigger in lookahead. The GO signal is relayed

to SAU where it initiates the execution action. As soon as SAU starts executing, the SAU

housekeeping trigger is reset. The reset of the housekeeping trigger is relayed back to look-

ahead where the Go trigger is reset. The decode VFL only operand'line allows the TBC

to advance when, contingent upon the interlock conditions, with the M trigger output of the

timer. The advance condition also allows the timer to be reset.

First Operand

The TBC action for the decoding of the first operand is identical to that just described

or the only operand decoding except that the Go trigger is not turned on. The decoded name

mplies that the level contains the first operand thereby indicating that there a re two operands

involved in the instruction. The GO trigger is a functionof the last operand transfer and

therefore it is not turned on at the first operand level, the TBC action is merely a gate out

of the data field to the C register and starting the T timer to time the transfer. The decoded

line "VFL 1st Operand" replaces the "VFL only operand" participation for the TBC action at

this level.

VFL Second Operand figur

The function of the TBC at the second operand level consists of the lookahead data

field transfer to the D register (first operand is in the C register) and the turn on of the VFL

GO trigger (last operand transfer) to all SAU to start execution. The TBC action at this

level is identical to the Only operand level except tha^he "VFL 2nd operand" decoding re­

places the "only operand" decoding in the action. Also the gate out of the data field is

conditioned to the D register instead of the C register (first operand is in the C register).

The second operand level also sets the Go trigger because this operand is the last operand

transfer. All control and functions are the same as the only operand level except the data

is gated to the D register. The TBC step in the normal manner by conditioning the advance

with the M trigger output of the timer. If the following levels pertain to the same instruction,

they are either store ieveis Or recovery levels and thereby do not require any TBC action

other than stepping the counter.

The MPYC instruction^requires special decoding and signal generation at the MPYC

operand level. The MPYC operand level is the last operand transfer and is the only level

requiring the special action. The operation code level and the other operand levels are

handled in the same manner already described. The TBC action at tht MPYC operand level

consists of the data field transfer to the C register. Before lookahead can time the data

transfer to the C register, it must be assured that the C register is free. An earlier operand

was placed in the C register and the "go" signal generated during the last normal operand

transfer. The go signal allows SAU to start executing, but it realizes it hasn't received the

special operand yet and therefore must make the C register available to receive it. The SAU

action moves the contents of the C register to the F register. When the C register is empty

SAU relays a signal to lookahead informing them of the action. The signal "SAU ready for

MPYC operand" turns on a "VFL wait for MPYC operand" trigger in lookahead. The output

of the trigger, together with a decoded line identifying the level (MPYC), the AES trigger
(F'^ure, »-3 '*

and LDE trigger allow the T timer to start,, The output of the data field is active from the

normal decoded gate out condition and therefore the inputs are active to the C register.

The T timer output and the MPYC decoded condition develop the gate in signal for rhe C

register. Besides gating the MPYC operand to the C register, a signal is also developed

and sent to the A checker to gate the residue of the MPYC operand into the MPYC initial

residue register. Thus the special MPYC operand has been transferred. The T timer resets

the VFL wait for MPYC operand" memory trigger. The MPYC decoding conditions the TBC

to advance contingent upon the usual advance interlocks.

The branch on bit and branch on indicator operation code levels are basically

operated upon in the same manner as any VFL operation code level. The "BB op code" or

"Bl op code" decoding replaces the "VFL op code" decoding in the TBC action for either

U3

these two branch instructions. Because the operation code field contains the conditional

indicators, the normal decoding of an instruction in SAU cannot occur. SAU only has

provisions for decoding VFL instruction. To determine the instruction, iookahead decodes

the operation code field. The result of the branch decoding is one line (BB op cd or Bl op cd).

The decoded line is sent to the execution register with the data field and operation code field.

The timer is started as in a normal VFL op code level (only using the BB or Bl decoding) and

the operation to the E register is timed. The TBC advance occurs in the normal manner.
IS >ioT In7\fr~nq.lj

If the operand involved with the BB instruction^ the resulting decoding and action

is identical to the only operand level. The Bl operand is the indicator register which is

an internal register and thereby no TBC action is required. Figured- 3 -J"shows the bit

position relationship in LA and SAU for the BB and Bl instruction.

4.3.03 TBC Stepping Controls

The prime condition allowing the TBC to advance is the TBC interlock with the OCC.

If the OCC is at the same level as the OCC the TBC cannot advance (one counter

cannot pass another). The advance condition for the TBC must be remembered if the interlock

condition is present when the advance condition is active. The advance condition for the

TBC at the VFL operation code level is from the VFL housekeeping signal. The housekeeping

signal signifies that SAU has accepted the operation code data and started pre-execution.

The housekeeping signal and the output of the VFL start trigger combine to give the VFL first

cycle line. This line is actually a pulse because the VFL start trigger is reset with the first

sample following the arrival of the housekeeping signal Ifrom SAU. The VFL first cycle,

conditioned by NO TBC-OCC interlock allows the TBC advance conditionto become active.

All VFL levels that require TBC action cause a control line "adv on TB timer M" to become

active. The decoded line combines with the M trigger output of the T timer. The output

of these two conditions ore further conditioned by the no interlock indication to provide

the TBC advance control line. The TBC advance line when active causes the present level

TBC digger to be reset and the next trigger set. Also the TBC AES is turned on again to

provide the necessary condition of allowing the TBC to function at the new level. Finally,

the advance also resets the late decode enable trigger. The LDE trigger turn on is conditioned

by instruction preparation being complete at the new level. When the AES trigger comes on

at the new level the output allows the next sample pulse to reset the T timer. Thus TBC action

at one level is fully complete and set up at the new level.

If there is a TBC-OCC counter interlock, the TBC stepping is blocked until the inter­

lock disappears. The stepping condition at the VFL operation code level is the VFL first cycle

pulse. If the stepping is blocked because of the interlock, the VFL first cycle pulse is

remembered. The pulse is remembered in the execute first cycle memory trigger, which the

pulse turns on. The first cycle memory trigger stays on until the stepping of the TBC occurs.

The first cycle memory trigger output replaces the VFL first cycle pulse in the stepping activity.

As soon as the TBC-OCC interlock disappears (OCC steps) the execute first cycle memory trigger

allows the TBC advance condition to become active. The advance condition resfets the existing

TBC trigger, sets the next TBC trigger on, sets the AES trigger on andfresets the LDE trigger.

When the AES trigger comes on it allows the next sample, following the sfetting of the AES,

to reset the execute first cycle memory trigger and ro reset the T timer. The TBC function is

u
complete for level i and set up for level i a*d 1. The stepping for the fether VFL levels is

the same as previously described with no interlock. The stepping for other VFL instruction

levels is a function of M of the T timer and the decoded line identifying the level. The M

trigger of the timer and the decoding both remain active until the counter steps so therefore

if the interlock prevents the TBC stepping initially, the inputs to the stepping function remain

active. The M trigger output remains active because the reset of the timer occurs after the

US'

TBC steps. If the TBC does not step the M trigger of the timer remains on. The decoded

line is a function of the operation code field and the TBC value. As long as the TBC does

not step the bits of the operation code field are decoded and remain active as long as the TBC

value remains the same. After the interlock disappears and the counter steps the new TBC

value applies to the operation code field at the new level. The stepping of the TBC counter

when the TBC at the level had no action is accomplished by the ABC action. When the TBC

at a particular level has no action, the ABC starts it action at the level. The TBC and the

ABC are then interlocked at the same level. When the ABC action is complete at the level,

it attempts to step to the next level, but it cannot pass the TBC counter. Therefore the ABC

advance condition together with the TBC-ABC interlock combine to allow the TBC to advance

which allows the ABC to advance. However if the TBC is also interlocked with the OCC,bo

the TBC and ABC are prevented from stepping until the OCC steps. As soon as the OCC

C c :r 2p which allows the ABC to step. Thus, the counters are kept in synchronis:

m

4.4.00 NON ARITHMETIC INSTRUCTIONS

The non arithmetic instructions include the input-output (I/O) and instruction unit

instructions. All input-output instructions require two levels of lookahead. The first level

of the instruction is the operating level while the second level is a dummy level to allow

lookahead to reliably interrogate the interrupt mechanism. The TBC action at the first

level consists of decoding the instruction for either the exchange or disc synchronizer,

gating a decoded line identifying the action, gating the lookahead data field to the input of

the selected unit and starting the T timer to time the transfer. The exchange or disc

synchronizer must inform lookahead of an acceptance of the data or a rejection. The return

indication turns on a trigger in lookahead to establish a timing relationship between the I/O

unit and lookahead. The output of the trigger is an I/O response and conditions the TBC

advance.

Most of the instruction unit instructions are completely executed by the instruction

unit. However, any instruction unit instructionsthat require a store to either an external or

internal address are loaded into lookahead for the store operation. An instruction unit store

to an external storage address does not require any TBC action. Stores to an internal register

however involve a data transfer to the C register. Once the data is in the C register, the

data is routed to the internal register designated by the LAAR. The transfer from the C

register to the internal register is a function of the ABC and is discussed in section 5.0.00.

However, the transfer of the data from lookahead to the C register is a function of the TBC.

The only time that TBC action is required for instruction unit instructions is when they require

a store to an internal register. The TBC action for internal instruction unit stores consist

of a data transfer from the lookahead data field to the C register (via TOB). The operation

is timed with the T timer. The TBC decoding of an internal instruction unit store allows the

l'7

d.c. gating out of the data field and the starting of the T timer to time the transfer. Furthe

decoding of the instruction unit internal store conditions the TBC advance.

4.4.01 Input/Output Instructions

The TBC decoding of the I/O instructions is shown in figure The decoding

shows that a bit in position 7 of the operation code field selects the disc synchronizer while

the absence of a bit in position 7 selects the exchange The initial decoding

shown in figure U-.iL-Z- decodes the instruction as an I/O instruction only. Because the

same decoded lines and fields are gated out and the T timer used for either type of I/O in­

struction, the initial I/O level decoding serves to gate out the lookahead data field and

operation code field. The lookahead data field (via TOB) hold up the inputs to the input
eyTc/y/?A/6 £

registers of both theflSK and disc sync. The output of the operation code field is further

decoded in lookahead to determine the type of operation to be performed. The decoding is

such that two decoded operation lines designate the and disc sync and hold up inputs to

both units. To time the transfer the T timer is started. The I/O level decoding is conditioned

by MAR MODE to insure that the previous instruction completed without interrupting. No

store operations can be preceeding the I/O instruction and this condition is indicated in the

initial I/O level decoding by conditioning the decoding with the ABC-SCC interlock. If

the SCC is at the same level as the ABC, which in turn is interlocked at the same level as

the TBC, then by the interlock conditions it is evident that there is not a store preceeding

the I/O instruction and that no interrupt occurred from the previous instruction. If either

the interrupt occurred or a store was preceeding the I/O level instruction, it is impossible to

interlock the counters at the same level. With the counters interlocked and MAR MODE

present, the I/O level decoding allows the T timer to be started to time the transfer

n v

T~timer M and the TBC decode line identifying the proper Exchange establishes the d.c.

Select Basic Exchange^or "Select High Speed Exchange^signals. No further action occurs

until the instruction has been accepted or rejected. When the Exchange accepts the

instruction, the accept pulse is remembered in the I/O Reaction Storage trigger and, after

proper clock pulse synchronization, the I/O response trigger serves to advance the TBC.

When the Exchange rejects the instruction, this signal is sent to the Interrupt Mechanism

controls to record the proper I/O reject indicator. This reject signal is then relayed to

the lookahead and performs essentially the same action in establishing the TBC advance

condition. In either case, the accept or reject signal resets T-timer M directly to terminate

the Select signal. The second level provided for I/O instructions is a dummy level tagged

with the IC bit such that the interrupt mechanism is interrogated.

4.4.02 Instruction Unit Instructions

The instructions executed within the instruction unit are generally completed within

that unit to a point where it is necessary to store and/or enter indicators. These functions

are completed by lookahead in proper sequence. Of these, only the instruction unit internal

store levels require TBC action. All others are accomplished by the ABC and are explained

in section 5.0.00.

The data path existing for transferring the store data from a lookaheaa level to an

internal register exists only through the C register. The TBC action then is only decoding the

instruction unit internal store and starting the T timer to time the data transfer. The decoding

for the instruction unit internal store is shown in figure Ahe decoding allows the data

field to be gated to the C register in the usual decode manner. The decoded internal store

condition, combines with MAR MODE to start the T timer^ The T timer output combines with

the decoded condition to set the C register. With the data in the C register the next action

is to gate out the C register to the internal register specified by the LAAR. This latter action

is a function of the AEC and is explained in the next section. The TBC decoded internal
ABC /) timer-

store combines with M of the^timer to allow the TBC to advance (contingent upon the counter

interlock). The advance, when allowed (no interlock) allows the normal advance control

function to occur.

FIGURE 1. 1-4. 7030 COMPUTER SYSTEM LOOKAHEAD RELATIONSHIP

FIGURE 1.8-1. LOOK-AHEAD LOGIC OPERATIONS

•®v

*> k

*2

IS

«t«o

O Kt vj

0
v|

-J kl

Isk.
, S

x1-'-

x yj
v
x»
v'iO
r^4hj
•x^j^

0^

CiM.
-Qi

<J5-QU

U.Vo€

2 <Oo

—ST"

5

Is «*»
4f k
Si oo >

Si

vo 00 r̂\ \j \l

ax>j QXiV

k*io ̂ h~«0 V/
o >J 0 O \J 0

IW»

<*v <k "•

3 * •«J

K
<5

<?>
>1

-Q
<»

xU. vu
xl

X *k
X J X -J
VJ>

x^O x'xO

x3^f*
X-OM V vj <t|

—• X. -V.
<t: <=> ^ Q
©«> Q<^

a ̂
<^u. <3>,J-

~<ki
0-*-Q0 o2-<yj

u_Vo€ kij
~ vj - v>
a -<n o Q -oo

•^osA.

J?«o o
v)1 0<k

' O •vj
-J Vc vJU.
. -k.l

3 01

_ -^--5
§ 9

V O r ° c h
0 <3

M
*> >o

c ' ^ V v-> (Q V
_

<4 r
5J **

CJ k. <3
93

c

5
S 3

c

^LX) 0
V^lpO

k* <t0

~" V

<5
%

-k

"t^Vi
• %

•^Q

S^L
^u.
_v

tlk-<Jv)

U.V»^"
- O

3<3<
<Jk.

.*k

vlO
-JU.
t i

|%
<k<U
O

~F *i u
l>

^ <5

5l

> 4.

k
VJ<

h<Q

L - \ M

Qt

NJ S m J >

0 ' - 0 0 - -

<7- 1 I
0 2

„ < 0 I <
a a Q a. re a a a:

it
b J
«5ui
?a

o
Dv->

< *.
irtO

<7- tr

-

<0 <0

_ Id f
9
o t a n

0
j z <
0 0
0 h
y < ^

Of
a Id
0 a

0
in in

L) in
Of

u pt 1
u
8

< "
o

J z a
S3 (0

~o 10
LI

J
<

J z
Z M

Ou
r x <d

" O - - Hu -

d) 0
7

Ij oa
_ o<

r- 0
a

t o
< ° 0 J o

I-

Q-ij
H >
Old
0-l
lid
1-Q

J3
2®-

Pi
g
9
W
i—i fa
w
Q
O
O

z o
HH
H

tf
W
CM
0

Q
<
W
a
<i

1
w

8
i-l

FjQ/l j //JJ2 tjO/AJ. "C.

£~LP T ypp u M*j£ vMO/UfC F r£s r~
<fiu

2 £co'sv/3
YfiJtL. Rem A #*5

No'J s/-q££ oPt/ipr/c^s 0)U) (c>
(*•) (/)(•A<->)Uyjfi) Otr) ^<Ffi) <£>c)

(pf) (£*)(/>r) (0irn<1)(PLujF)(s»'7:')(£ir)

o fifir? A r/oA>
6o£>C f

oP£eA*JQ

rOoT
fZcQoifieo

ft 00 To M£ /y 0£ y OPftP T'OAO^
(M Y) (A I / M)

ofifi P A T/ofiJ
Co 06 A
OFf A fi /\j Q

sroes

LofiO Fftc to A oPePP t/oaJs
(LPT) (OS)

ofittfi T/oA)
tooe t
OfiPfi/t/UD

s To*? <L o/»o(.An f&
fAoLT pLiCAoO

M O L T I P L Y f t / o n f t 0 f i (4 t +)
0P££4^O

S f i S C / A o
OCefiAuD

57~o£& 0 Fe BP T oas£>
(57-) (fteo) (ft>L£>) (ift-rj

OPF&P T/OAJ
loop g
$700. F

Ajo ~r <
Pe Qoneeb

VAemp,/£ fi E L b / e u r , T u i N i T e u t r / n M

VFL Ty'fit? t Flog urn OA.Me \ \ Ftps r la
try ..

SCCoATO
t-F c Fu

TA/PA
iW9 YAP

Foo erH
OF Leu

pre TH
LA LP!/

S'A 7/Y
LF Leu fe bMfifitrs

fYOrOSTofiC OPte^;*
(Y)Ucr) (L) (9.) (/:)(/:€)
<tr)fa(Cv)(Aj)CLu)P)
(fiF)(fiF6) (k Fg)(C tXM)

H H 0 fie PA T/OF
1 ooe

OAJL V
oA/AAF0 A/0 fYOrOSTofiC OPte^;*

(Y)Ucr) (L) (9.) (/:)(/:€)
<tr)fa(Cv)(Aj)CLu)P)
(fiF)(fiF6) (k Fg)(C tXM)

V

£L
y

/V OPefifiT/oF
f&AAMD

PA AS &DO
ofiefiAvo

fYOrOSTofiC OPte^;*
(Y)Ucr) (L) (9.) (/:)(/:€)
<tr)fa(Cv)(Aj)CLu)P)
(fiF)(fiF6) (k Fg)(C tXM)

V

£L
y

y: °&DY'°*
nffe^n

SPco/Of
OTfCAAjCr

fYOrOSTofiC OPte^;*
(Y)Ucr) (L) (9.) (/:)(/:€)
<tr)fa(Cv)(Aj)CLu)P)
(fiF)(fiF6) (k Fg)(C tXM)

V

£L
y Y

e> pet AT/ oo
c.oqe

F /Pi r
OpFP/itiO

St Co A/t
o peHA uo

Pa fiseooo
i Tores

Cs/P/vo> tAj;
H V oh P AT, OF

OfiOF
t>A/L v

OPtC-AA/p _ srcee

Cs/P/vo> tAj; V «g OPe t *T-OA
aoo*

0/><.Y
OPfCAFO . i re fie Pa fise/po

irofie Tu/O
iTotfie-
F <J FL.P/0**
fitsJ/O/S

Cs/P/vo> tAj;
V y OPefiA T/tHJ Flfir

OPrf* ,/L
seco«a
OPafiAFO

F'fii T « T» fie
SfilOA/t
STOfif

Tu/O
iTotfie-
F <J FL.P/0**
fitsJ/O/S

Cs/P/vo> tAj;

r / Ofe CAT, oF
tfOOg

Fit-, r
oPePPHh

4 IF co AtO
ofieAPuo

A/'fiir^ se<oup
s r-ofie

»A fitfoil
s rOA fi­

Tu/O
iTotfie-
F <J FL.P/0**
fitsJ/O/S

LOGO pynevt#- cfiet
(* D«)(S Oec) (CTree J)

(*+ • Off) urns)

V „| OPpAPoF TM-H p> rope P«Si,6Lt
7o HAL£
a fi/TfJy
ofitro ivT f/viy ofit
srofie oo*/

LOGO pynevt#- cfiet
(* D«)(S Oec) (CTree J)

(*+ • Off) urns)
y OA/lV

c>PrpA.,r sroers PA foeufie
STD^fi

P«Si,6Lt
7o HAL£
a fi/TfJy
ofitro ivT f/viy ofit
srofie oo*/

LOGO pynevt#- cfiet
(* D«)(S Oec) (CTree J)

(*+ • Off) urns) A/ V oPe *H-7?OL
Loot*

F> f\ r
OPe PA AJO

s e< ofO
CfFsFAAjn STOPS

P«Si,6Lt
7o HAL£
a fi/TfJy
ofitro ivT f/viy ofit
srofie oo*/

LOGO pynevt#- cfiet
(* D«)(S Oec) (CTree J)

(*+ • Off) urns)

y r QPFfiAJ/oi/
f i r i r nJ&PAA/o o^e&ua 5 Ta£fi h>* fisfjoo

s TV// r

P«Si,6Lt
7o HAL£
a fi/TfJy
ofitro ivT f/viy ofit
srofie oo*/

[AoLT/fiLg <fA0£> (AAJ)
C*f)

M V CPegAr.o/3
qfejfp/jA [AoLT/fiLg <fA0£> (AAJ)

C*f) y p O^fi^TeJA/
cone

OAiLf
Ofifcfpyf,

vecift. 4\AYt
afiCFA/yO

PA "st una
\Tofit

[AoLT/fiLg <fA0£> (AAJ)
C*f)

u V r, u*7
r,rffSpAi/L St CO//" iPet/At /AF/t

OfiefiAMT

[AoLT/fiLg <fA0£> (AAJ)
C*f)

y y OPJCP r/oH ««f 'S'JetM/oo
SPCOMO
OACYfUJ/i

SFtrctA L
Mayo ofifiA/n

fit PsOvOO
S7bfie

BPPAJCH OAJ tA/Q/carofi
(&*•) V \> oPetAT/oH

eoqs aw v
FPeeAt/o i rote meojtfiy

SAAfcH oaj 6 TT
IAA\ to K> ope a A t/oa

a oca
O/UA V s 7O/P: *?t<LOJ£*y

373p /AUT tne 'F OP 'TUC fij w OPeAA 7/»V
lOTOn

O£PPAA/6
OPePA/jn i To Pe Pstouefi/ ' •fififr, rr\ y

/ t i p o r / O O T P u r / ^ s r e ^ c r / O A U s

% /Ms /V JT MA/Fj , M ru/rp F / / ? ST P A Lt U S 6 COA/O
CA Lee

£xc Hfi/USe • ty"/Xfal) M ,
&TAJ0'•#<) Qr e)
Weumlel s
fi/SC S/A/C- (ecu)

OfFpfif/oAJ
boo*

D umny

FIGURE 2.2-1. LA LEVEL REQUIREMENTS

!i
s
j3

il

Hi
T*

n n

•li
!'

« £ g g s g

V
« £ S S g j i g

g S S S s g s g g g

5s m
« S S S s S
g g g g g g

11
1 !

88

1 1!
I II ii iiy

•I ii
V tl

£ £ £ :

i
A
*

i

O «a
c
2 e

1
JS
h. S !

i

H
fi U
• « « R

ea
l

S
to

re

in

P
G

R

I s 1
i
I

IM
 L

av
al

Ps
eu

do

S
to

re

R
ea

l
E

xt

S
to

re

in
 E

C
C

I S
j i i l l 1

, . T .
u

s 3 oS J K „ z - z "
SSgg-llsL S«

o S u g

I I
i m m 1 1

. f l j l l l i l ^ ' i f f s s 1 i p f i i

1 s i u i i i i i i i i l l i i i i i i i s i i i l i i l l a S l l I l l

o

5
£
M

s
«

O

3

i a

g g
o o

oo
66

uo in «c

To Lood Funp*ion Level 3

0)

FIGURE 2.4-2. COUNTER CONTROL

FIGURE 2.5-1. LOOK-AHEAD DATA FLOW

! 3? *<
% o Or
^ » ? ̂ % <J o Q. 'V " J <V

^<s><k'£:

•FVj
5

5jK
o o

4 ** * * > tr»
5
u

^ <r- o *i C> v ^ ^

Qc

o
-J OQ

o
t-H o 0 J
I-)

•J <
1
«
w §
0
5 Q
s J
§

W
ffi <

1

8

FIGURE 3.2-1. REPRESENTATIVE LOGIC LA ENABLE LOAD TO I-UNIT

4k

N
k $ c

<s.

IS

U<0
,

3 'i»

K ^

0 <a

M " <*

\J 0
y s

. >J
O

~~ £

bw

-X V-

rH -J u-

£<5

I*

> 'i? . *>

Vj

o
0

i <£ VI

••-4 ^

rJ J ^
n o V

V-

My
*
Vi^

o OK IJ

"V.
V)

IJ *
^ 5

^ •
£

Q

I
< Q

0 W

s«

<N W

wo

£2

Eh

T TYPE I IAUC ADV CN ,SEQ
INSN .TYPE I4N EN ABLE

IAUC ADV CN SEQ

LP PLS L-,E

I—
, L-T'M

L P -

LC-LM
^DPIS STJJIT

.3 FROM A.

Z TYPE 2 , IAUC ADV EN IPEQ
. TYPE NG ENABLE

IAUC,ADV EM SCO.

MO
RO(*WARDM6
ACTION

LP PLS H-E

N CM
IACCEPT

3 "STORE EVECUTCD

LO PLS Stop.

NQ LAAR BUSY
EFFECTIVE ADDRESS-Y
FROM A.

2. TYPE 2. , ADV EN SEP .
INSN ;TYPE REA ENABLE

FMO ERSL
AOV EN

, CD PLS IT E

FORWARD W6
ACTION

ADR COMPARE
. XI CM

FWD REOFP,
NO LAAR BUSY

/CHK ERR)
ADV EN SEOTP

FWDCHK. -E NQ .ETC. .EBR..

CHk. M
NO ECC

1CUECKE^C
PR CHECK. PAR , FROM IAUC

FO PLS SROG.

'S)N<5LC'TOC ERR
PW> CORRECT -E

A»»OORR-M
, FROM IAUC .
' T_D PES FCROW.
JLF.<.

ILTVPE 3 ,AQV EM SEP.
INSW . LO PLS

APY EN

.TYPE G EMASIE ,

NO LAAR QOSV
1' CFTEC-NVE APOF^SS ,

,10 PCSFR SROK.
i tr x
,F ROM XL

FIGURE 3.2-5. IAUC LEVEL FUNCTION

1

f I
N

OP
ER

AN
D

NO
 O

F
LI

NE
S

I-
 'JN

IT

CO
NT

RO
L

AR
EA

— >
>
V

•>
>

•>

*>

IrJ
tftY1
O-r n°
-J<t
-ffe 5°
n

>

[-O

8«

£ O

\

N

fV it •
u .

a* 7 O U

%
S
>

ri

in

$.n
oa
z
8

>

b

ll
0 a o..

r, <r a 7 O o

> > > > 1

f I
N

OP
ER

AN
D

NO
 O

F
LI

NE
S

I-
 'JN

IT

CO
NT

RO
L

AR
EA

— >
>
V

•>
>

•>

*>

IrJ
tftY1
O-r n°
-J<t
-ffe 5°
n

>

[-O

8«

£ O

\

N

fV it •
u .

a* 7 O U

%
S
>

ri

in

$.n
oa
z
8

>

b

ll
0 a o..

r, <r a 7 O o

> > N b

1

f I
N

OP
ER

AN
D

NO
 O

F
LI

NE
S

I-
 'JN

IT

CO
NT

RO
L

AR
EA

*>

:t uJ
p*
UJ 0-
> H-

%

2 UJ
£
LLI cv. > h

3 UJ
ll
0
o X o o

•>

*>

IrJ
tftY1
O-r n°
-J<t
-ffe 5°
n

>

[-O

8«

£ O

\

N

fV it •
u .

a* 7 O U

%
S
>

ri

in

$.n
oa
z
8

>

b

ll
0 a o..

r, <r a 7 O o

fV < [i

rVfV " °,

4 u D
/
8

1

f I
N

OP
ER

AN
D

NO
 O

F
LI

NE
S

^ I
Oq -J
!§ s
§cD 5
otb Q

61
£
5

K
%

S£
o z o a

UJ
M
u a X h

*>

:t uJ
p*
UJ 0-
> H-

%

2 UJ
£
LLI cv. > h

3 UJ
ll
0
o X o o

•>

*>

IrJ
tftY1
O-r n°
-J<t
-ffe 5°
n

>

[-O

8«

£ O

\

N

fV it •
u .

a* 7 O U

%
S
>

ri

in

$.n
oa
z
8

>

b

ll
0 a o..

r, <r a 7 O o

fV < [i

rVfV " °,

4 u D
/
8

rV
"•r/
o b

O'

nn
/
o 0

% OfT i in' n

nfl
z
8

rV c 0
(-J
(V n f)/
,0O
n (V On
r>
Z
8

o
<•

3

o IJ cJ ry
8
U o iiJ

1

f I
N

OP
ER

AN
D

NO
 O

F
LI

NE
S

£ •H tfl X

1

f I
N

OP
ER

AN
D

NO
 O

F
LI

NE
S

I
CO I < Y

SS3E X X X

5 * tfl Sg38 . X X X X
5

•Ju3 (9-CJ $ o (0 ap~*
oco^O X si x

LL

2 0
5 o
6 •
UJ
5

I
1

tfl §§H0<^
AO.5^5

X X X X

2 0
5 o
6 •
UJ
5

«/)
O

D osg!?<| X 2 0
5 o
6 •
UJ
5

«/)
O 3 tot-Ma 0(0*J)Q X X X X

2 0
5 o
6 •
UJ
5

U.
o

3 u-h- !j/§ DSOLL^S X

2 0
5 o
6 •
UJ
5

U.
o D U-TN^

0(00)0 X X X X

2 0
5 o
6 •
UJ
5

2 0
5 o
6 •
UJ
5 0^

3 £so~Ig X X

2 0
5 o
6 •
UJ
5 0^

D -"•flJOa X X X X

2 0
5 o
6 •
UJ
5

O .-itoocL—fia X

(0
V-
5

U-
0 D u-tc -J COt/1 X X ©

(0
V-
5

u -J D utK OcBt/) X X ©

(0
V-
5

!z tfl 5cooa X X X X
(0
V-
5

o (0 ys5s X X X X (0
V-
5 cO IsGs X X X X
2 H
Z

6 C9

(0 X X X X 2 H
Z

6 C9
o
o
z

3 3&S3?£i X
2 H
Z

6 C9
o
o
z

3 on fcczys zotoLuao X

2 H
Z

6 C9
o
o
z 3 00-tMQf^.SK ZOtDtKU.HS3 X X

2 H
Z

6 C9
o
o
z

3 zotfldo X X X X

2 H
Z

6 C9

» u
3 a-£!3 U-Sat <§> © <§)

2 H
Z

6 C9

» u 3 p-gu © X

0
8
0
z

111* mo tfl $fdl3s X X X X 0
8
0
z co

3 JTSss?-^,
0 0 0 b

X

0
8
0
z co CO b n) 05 0 0 0 b

£ 0 tfl oSt-4' o to op X X X X

o£ ^ lj > I/)
tO

CO §
a ° s

I 0
1

O >2 3
~ * I - 3 d
Gj 8
> £ H

2 w

•V y
y «
3 I r- <S) 0

o o o o < r z z z a
ll U; u. 4:

G ® ® © ®

•2 ^ O
5 « §
« fl

tea

fcSS >̂01

a
fcS-

two

figs
WifluJ

«5

O -J
H "9

(J ul

i-as

<n_>5

y»

s \ \ \ S
\ \ \ s S

s \ S S s N \

X

X
rt
j

|

vP

llJ
-J

<0 X
</»
O

<
Z
lJ

2

(O X
<
<
-J

Z
O
y-
a

*
r-

.r>
ul

X

z
LL

<y
<

&
Jf
in

h-
0
z
111
UJ
yi.
1
2
O
>-
0

cr- <T" 4-
z

uJ
h-

LLJ
<
O
D
<

h-
0
z
111
UJ
yi.
1
2
O
>-
0

X X X <0

\5
»-
a3
X

UJ

3
CL
UJ

—02"

<
t-
d3

i
—2

x X r4

UJ

3
CL
UJ

—02"

<
t-
d3

i
—2

X X <0

a.

8s
* ui
0-
ZU
OJ

-i

§3 Ui9

5
ul

u)
CL
>
h

5
u)

(4

*
V
h

2
lit

K)

U
a
>
H

15
ili
a
<
o

<

IS
lli
uJ
J
>-
<-)
V
o
aJ
X
J

5

?
i
ul

9

J
V
0.
5

P
10 •
3
ul

i
3

<4
ul
a. y
H

0
<
0
J
u
a
1
0

s
ul

i
«S 5 o o

3 O ?
_r 3 s s
2 « a a
5 x 5
> « tt 2
~ .t! <u 73

£j G * S
ui 5 a 2
,, _, — M
•4 II I'

2 a a

<̂5L $ SlflUj'j

P o i o o g o
m o u z z z 2
 ̂u_ u. u. u. u. u.

rJ (O tj- m <o o-

OT

|l
3 J p

Q PM

® 2
< H

LF EMI
Gl IMOB 00-43 and ECC to LA 1

FIGURE 3.2-8. GI AND GO LINES TO LOOK-AHEAD REGISTERS
INSTRUCTION PREPARATION

(

• i k •
••<
0. -i
o h* 0 O
2 U

I
I
o

a r

irr
3-2-

•v/r
hi

0 Ui

J k &
J ui j

S g J K

3|s8

z l f l

•IB Chk 1/2 Cv
O

St Clik-TIm Eft
O

Fwd Chk ESS

O

Fwd Corr EM

O

Opd Chk ESS

O

Opd Corr ESS

O

LA to 1 Tim Efl

O O

No LAAR Dec Int Adr

No LAAR Dec Index Adr

SCC Dec St Chk Reg

No LAAR Busy

Fwd Reoulreo

No LAAR Busy

I Abs Fwd Required

j No St Exec

OCC AE$

NoLcl

LT tt
LAAR Dec index Adr

SCC Dec St Chk Reo

SCC Dec LA to I No Reel St

SCC Dec IB Int Fetch

A+B.C A+B.C

OK LA 1 Reg St Chk

OK LA 2 Reg Fwd Cy

OK LA 3 Reg Opd Chk

OK LA 4 Reg LA to l-Unit

No LA
OK to
I Chicr

No LA Use of t Chkr No LA OK to I Chkr
(TC)

FIGURE 3.3-4. I-CHECKER PRIORITY0 OK TO I-CHECKER

JIBL

(IB)

IB Chk ECC

IB Chic I Par

Opd Chk EM

LA *o I Tim EM

Opd Chk EM

St Exec

ULB58

LA Chk
ECC

No Sup
Chk

(IB) I Gen Par

Suppress
Check

I Chk ECC

No Inhb I Chk In Prog

Gen Par Tqr

Chk LA Par Tgr

Chk ECC Tgr

Fwd Corr M Chk l|J Par Tqr

IB 2/2 Corr Cv

Opd Corr EM LA 2/2 Corr Cy

A+B,C

A+B,C

—

Gen
Par
Trig

Chk
LA
Par
Tgr

A+B.C

-&•

A+B,C

A+B,C

—<2>J—

2/2 Cy Sample

(Clock) Reset

2/2 Cy
Sample
or Reset

Chk
IB
Par
Tor

Chk
ECC
Tgr

FIGURE 3.3-5. I CHECKER INPUT CONTROLS

V

Opd Chk EM

Opd Corr EM

No ECC Err Itnd 2/2 Cy

No OCC-IAUC Inlk

QCC i

> a Disc 1 O > a

LC 1

O > a O

No OCC-IAUC Inlk

OCC 2

No OCC- IAUC Inlk

No OCC-IAUC Inlk

OCCJ

UL-L

Opd Chk E-M

OCC
I

OCC
2

OCC
3

OCC
4

OCC
AES

No OCC-IAUC Inlk

FIGURE 3.3-6. OCC COUNTERS AND OCC ADVANCE
ENABLE SEQUENCER

(IB) . LLP 2 A
Fwd Chk Eft

Fwd
Req'd Address Comp

A Fwd
Req'd

No Fwd Req'd

A Fwd
Req'd

A Fwd
Req'd

F BIMAUC
A

Fwd Chk Eft ABS
Fwd
Req'd

(IB) tlF 2
A

ABS
Fwd
Req'd

(MW Address Comp

A
ABS
Fwd
Req'd

No ABS Fwd Req'd

A

• —

ABS
Fwd
Req'd

A+B.C

..OK LA 2 Reg Fwd Cy"V\
A+B.C

LA OK To I Chkr

No ECC Err Ltnd 2/2 Cy

0"L

A+B.C

Fwd
Chk
E

A+B,C

Fwd Chk EM

Fwd Chk Eft

Fwd
Chk
M

Fwd Corr EM
A

Fwd Corr EM
Fwd
Corr
E

ECC Err Ltnd 2/2 Cy
A Fwd

Corr
E

A+B.C

A Fwd
Corr
E

Fwd
Corr
E

Fwd Corr Eft

Fwd
Corr
M

FIGURE 3.4-1. FWD REQUIRED; ABSOLUTE FWD REQUIRED;
F W D C H K E , M ; F W D C O R R E , M

N
2"
\ I

K

3

lx

<s

"O
f?

N/

$
k 0
$

Uj

—N —' X
•J

u 0
$1
3°

5 ^
£o

—N —' X
•J

u 0
$1
3° a! >
>J 3

J
R 0

SJ
5

^<DO
> k\.of

0 O -i^o

-
X —• vj

Q

C
> -J V
>

* 1^
Nlv

•**-<*
5 v

o

<*• S#

\ <3
O

J-
<*.*

£

Cl

*, i V
?vjV? V
<5e^^

sc'vk

-vl
* >
Qc 7
'•u
k

\

k
0
3

Q

<U

<3

k
-J vj
U. <C

Q <U

5
0 b o
iu

FIGURE 4 .2 -1 FLOATING POINT TBC ACTION

Piep Cornp

Walt for

Complete

Turn On TBC
Late Decode

Enable

Wait for
Forward
to Complete

Turn On TBC
Late Decode

Enable

Wait for
Forward
to Complete

Gate Out TOB
00-75 to PAU
C Register DC
Output

Start
T

T Timer

Signal PAU
Cont (PAU
Ctrls G 1
Op Code

FIGURE 4.2-3. FLOATING POINT TBC ACTION; TBC DECODE FLOATING POINT
(OP 8 NO OP 9)

DECODED DC LINES
No Timing indicated

Op 8

No Op 9|

Not Int

No No Op M

No LA OP

No No Op

TBC ;

No Fwd Cor & Ck E

TBC
Floating Point No

Store Internal

Cond TBC Dec Level i

Interlock

OCC TBC Interlock

TBC

TBC

TBC Dec Fl Pt Level i LA i

Go Operation Code

Floating Point Dec Floating Point Not Int LA i

Go LA 00-75 (Operand) to TOB 00-75

Floating Point G I to C

Floating Point G I Operation Code and Start

FUNCTION TIMING
A-B A-B B+A

FIGURE 4.2-3A.

V
$

<J £
'<1 op
o

o

Rs
-jN^

<*>}°
l-s

o

0

<5 i

5 H

, J , V
K| W£

5

Nil

>i
O *

k

-S--

vi
n.

t
i
k

o

*t
%

^ K £(N *J So X> ^ m >«
K tQ (N o

©
a Si
10 >
S3
<̂ '

y
M

•

3>?

Vl
w

I
<o

K

J
<y

' i < i

JO

v o
Vu
^ Q, ?

Q

41
Q

"0
<y

*
5

.3 ?
* S1

s i *
j| K Nl

IN
,0 ® <*
N o

Q vi
^ £ •*
4, o

J >

kj

£> ..

Hi

k

J
VO

J

£

FIGURE 4.2-6. TRANSFER BUS TIMER E AND M

FP 1st Cycit

t
Exec
First
Cycle
Memory

T

TBCMul1

U
r

TBC
1 - 1

T

TBC
AE5

Sample Pulse

No Int i

No Op 9

Op 8

TBC
T

L_
No No Op Mode

No Hscln Mode A

No LA Op i
38.22.12.1 38.22.12.1

No Disc i

No No Op i
38.22.12.1

Cond TBC
Dec Lev I
LA 1 nj

Fwd Cor&CkE

TBC
AES
T

TBC Dec
Fl Pt Lev

Op Cd
Reg
1 RG

0-3 T

This Circuit 1:
the only TBC
Action on Int

Operands

Op 0-8

FR LA
Go Op
CD i

Heavy lines show TBC actior
for internal operands

Heavy and Light Lines show
TBC action for non internal

operands

DC Output

PAU 18-25
r LA Op

0-7

TBC Dec Go LA

Fl Pt Nor
Int LP i

00-75

TOB

Data
Reg
2 RG

00-75
T

c

1 indicates LA Level 1, 2, 3 or 4 o<. indicates A or B Sample Pulse

T imer
E

T

00-73 -> C

74-75 A Ckr Residue

(Enable)

tr
Transfer

Bus
Timer

FIGURE 4 2-7 FLP OPERATIONS, TBC COUNTER CONTROL

\

r4

05
QL

6

O &

^ *
4

r>

S<0

58
0

rr

> *
'<J

O
<t>

r>

S<0

58
0

rr

O

>» «
ct

O V3

ct

O \

>»

^ C ^ C

va

%

V)

x

%

£

*A>

\
$
V)
*V

b

Wait for In­
struction to
Complete

If Branch Inst-Decoded
Line BB or Bl Sent to Exec ^
Reg Along With Cond Indy

In Op Code Field

Start Transfer
Bus

(T) Timer

Turn On VFL
Start

Trigger

Send St
to SAU
Gate Ir

art Pulse
(SAU
) and

«pina.
Start
Signal

Turn On Exec
First Cycle
Memory Trigger

Reset VFL Start
Trigger Step
TBC to Next
Level

TBC Step Con
tingent upon OCO

TBC Interlock

Sheet 1

FIGURE 4.3-1. VARIABLE FIELD LENGTH (VFL)

TBC ACTION
TBC DEC VFL OP 9

FIGURE 4.3-2. VFL TBC ACTION; SECOND LEVEL

FIGURE 4.3-3. VFL TBC ACTION, 3rd LEVEL

No TBC Act
Necessary a
these Levels

r Store and
TBC Action is
Not Required

No TBC Action.
These Levels
Acted on Dur­
ing ABC Time

Signal from
SAU VFL Ready

for MPYC
Operand

Turn On
Memory
Trigger

...

pr°cess

Turn On TBC
Late Decode

Enable

Wait for
Forwarding to
Complete

Turn On TBC
Late Decode

Enable

Wait for
Forwarding to
Complete

1 r

Decode Gate
Out of TOB
DC Output
Lines

1

Normal TBC
Actic

is Blocked

Reset VFL Ready for
MPYC Operand Tgr,
Off Signals SAU
Operand is Available CGO Signal was ^

Given When 2nd
Operand was pro-
cessedinTBC J

FIGURE 4.3-4. VFL TBC ACTION 4th - 5th - 6th LEVEL

V

^ X x

ow -
*3 <*0

-jV»
,^5S

y
S$

>
<*}

5^
•*fc S3
u» *M

0
!v
4:

A
\J
lu
*,
kl

^<56 -
—F

V>

CM

_ , . i , . .

.

.

]

'

....

i

•

COMPANY CONFIDENTIAL

IBM CUSTOMER ENGINEERING

Preliminary Instruction Text

IBM 7030 DATA PROCESSING SYSTEM

LOOKAHEAD UNIT
BOOK B

The information presented in this preliminary instruction
text is based on the electrical and mechanical status of the
7030 system as of December 15, I960. The contents of
this text has not been approved by the Engineering or Patent
Departments and has not been edited for final printing.
Distribution of this text shall be restricted to IBM employees
authorized by the nature of their duties to receive such infor­
mation.

LOOKAHEAD UNIT, BOOK B

CONTENTS

5. 0. 00 INTERRUPT TEST AND INSTRUCTION EXECUTION
5.1.00 General Description
5.2.00 Indicator Transfer
5.3.00 Internal Fetch Requests
5.4.00 Store Operations
5.5.00 Conditional Branching, Progressive Indexing and

Non Arithmetic ABC Action
5.6.00 ABC Counter Stepping
5.7.00 Modify Addressable Registers

6.0.00 LOOKAHEAD STORE OPERATIONS
6.1.00 General Description
6.2.00 External Storage Stores
6.3.00 Store to the I Unit

7.0.00 INSTRUCTION REJECT ACTION .
7.1.00 Conditions for NOOP
7.2.00 Lookahead Action

8.0.00 LOOKAHEAD HOUSECLEAN ACTION
8.1.00 Conditions for Houseclean
8 . 2 . 0 0 Housecleaning due to an Interrupt
8.3.00 Housecleaning due to Pseudo Interrupt
8.4.00 Housecleaning due to a Branch Recovery .

9.0.00 MAINTENANCE MODE

APPENDIX
Timing Diagrams

5
5

17
24
31

41
50
53

62
62
63
68

72
72
72

74
74
74
78
78

80

82
82

5. 0. 00 INTERRUPT TEST AND INSTRUCTION EXECUTION (ABC)

5. 1. 00 General Description

The execution phase of an instruction's defined as the modification of

an addressable register. Before any instruction is allowed to alter the

contents of any addressable register, the system must be assurred that the

preceding instruction completed without an error. The assurance is in the

form of MAR MODE which is a result of a reliable interrogation of the in­

terrupt mechanism at the completion of the preceding instruction. At the com­

pletion of each instruction it is the responsibility of lookahead to interrogate

the status of the interrupt mechanism. For lookahead purposes, the instruction

is not considered complete until lookahead is certain that all units associated

with the instruction have entered all abnormal results into the main indicator

register. This action insures that any indicators affected by the preparation

and execution of the instruction are set in the main indicator register. To make

sure all units have reported their results to the indicator register, lookahead

has a group of test triggers whose status is determined by the units involved in

the instruction. The test triggers|and their functionsjare listed below.

1. Lookahead Normal Indicator Test

This trigger records the fact that the lookahead has entered all indicators

associated with the instruction. Specifically these are the indicators affected

during instruction preparation.

2. Execution Unit Test

This trigger records the fact that the execution unit involved has entered all

indicators associated with the execution of the instruction. Any indicator^affected

by the execution of the instruction in the execution unit are entered in the in-

cT

dicator register directly from the execution unit.

3. A Checker Indicator Test

This trigger records the fact that the possible error detected during an

SCC (store) check and check bit conversion cycle for a store type instruction

has been entered into the indicator register. Unlike the other test triggers,

the store check trigger is normally on and is reset as an ABC function only when

it is evident that a store check cycle follows.

Each trigger must be set following each arithmetic unit instruction regard­

less of whether any error condition actually occurs.

The triggers just discussed are the test triggers for all arithmetic op­

erations and are not applicable to non-arithmetic instructions. Because the

interrupt mechanism must be interrogated following any instruction, an alternate

method isused to determine the final indicator setting for non arithmetic instruc­

tions or No OP'ed arithmetic instructions. A lookahead No-Op Indicator Test

Trigger records the last indicator setting for those instructions not requiring

the arithmetic units. Because lookahead is the only unit involved, the interrupt

interrogation is allowed on the basis of the Lookahead No-Op Test and the Store

Check Indicator Test Triggers only.

It is important to remember that the memory action of the interrupt line

due to the coincidence of the test triggers resulting from instruction N define

the action to be taken on instruction (N+l). For speed purposes PAU has a

duplicate set of test triggers and depends upon lookahead for assurance that it

has transferred indicators (La Normal indicator test trigger) and that the in-

mJica.Toy
struction does not require a store (store check^test trigger). In certain cases

(o

it is the responsibility of lookahead to properly sequence the PAU testing

as well as the lookahead tests. These special actions are discussed as

the situations are discussed later in the manual.

The coincidence of the arithmetic test triggers or the non arithmetic test

triggers allows lookahead to determine the status of the interrupt mechanism.

The result of the comparison of the indicator register and the mask register

comes to lookahead as interrupt or no interrupt. The interrupt line con­

ditioned by the coincidence of the test triggers, turns on the interrupt next

instruction trigger or if the no interrupt line is active it turns on the MAR

MODE trigger. Either trigger defines the action for the following instruction.

The interrupt next instruction causes lookahead to initiate recovery action and

the MAR MODE trigger allows the modification of addressable registers (ex­

ecution) by the following instruction.

The action of the Arithmetic Bus Counter (ABC) depends upon instruction

preparation being complete (LF and LC) and MAR MODE. With both conditions

present the ABC action is started. The primary function of the ABC at any

level is to transfer the lookahead indicator field to the main indicator register

and to transfer the lookahead IC field to the IC buffer. These two functions

are timed with the Indicator Transfer Timer. The timer is started by proper

ABC decoding, MAR MODE and instruction preparation being complete.

The indicators being transferred pertain to the instruction (N) presently

being executed. (The MAR MODE is a result of instruction N -1).

The IC field is placed in the IC buffer to be saved in the event the current

instruction causes an interrupt. If an interrupt does occur, the IC buffer contents

is sent to the instruction unit to provide them with an address to re-start with

7

following any correction routines resulting from the interrupt. Remember

the IC address located in the buffer is one more than the instruction being

executed. For example assume instruction N is being executed. The following

facts are known at this time.

1. MAR MODE is present from the result of testing instruction (N-l)

2. The address is the IC field is (N+l) as loaded from the instruction unit.

During the ABC function the indicator transfer timer is started. The timer

function cause three primary Occurrences.

1. Indicator field of the ABC level is transferred to the main

indicator register.

2. IC field (N+l) is tranferred to the IC buffer. The IC buffer

now contain address (N+l).

3. MAR MODE is reset.

As the instruction is being executed the MAR MODE test triggers start being

affected. When all units have reported (execution of instruction N is complete^

"the test trigger^allow the interrogation of the interrupt system. The interrupt

system at this time indicates either no interrupt or interrupt. With the test

triggers indicating instruction completion the interrupt line, if active, causes

the interrupt next instruction to come on. Before the execution of the next

instruction can occur, however, the interrupt next instruction trigger: starts

a recovery operation. Basically the recovery action is a houseclean request

to the instruction unit. When the instruction unit finishes its recovery cycle

they inform lookahead and lookahead proceeds to recover . One of the lookahead

recovery actions is to send pseudo stores back to the instruction unit to back

date the index core storage. Also the IC buffer contents is returned to give

a*)jinstruction address for the main program restart following any corrective

routines. Remember the IC buffer during the interrupt procedures contains

the address (N+l) and the interrupt was caused by the result of instruction (N).

Any corrective routines apply to instruction N and at their completion, the

(N+l) address is used to restart the main program, thereby maintaining the

proper program sequence. If the interrupt line resulting from instruction N

is not active, then the MAR MODE trigger is turned on. With the MAR MODE

trigger on the execution of instruction N+l occurs. Druing the execution of

instruction N+l, the IC field (containing address (N+2)) is transferred to the

IC buffer. The buffer now contains address (N+2) which is the restart address

for the instruction unit if instruction (N+l) interrupts. At the time the IC field

is transferred to the buffer, the lookahead indicator field is transferred to the

main indicator field register. Both of these transfer functions are controlled

by the indicator transfer timer during ABC time. The transfer of indicators and

the IC field transfer are the primary functions of the ABC counter. Secondary

functions of the ABC counter are control of internal operatioi\5(fetches and stores)

and receiving data fromflie execution units in preparation for an external or index

core storage store. Any internal operation is so noted by the internal tag bit

being set at the level being processed. The ABC decoding determines whether

the internal operation is a fetch or a store. Because any internal fetch or store

operation was loaded as a type 3 load, the LF and LC tag bits were set un­

conditionally thereby allowing the normal ABC function of transfer of indicators

and transfer of IC field to buffer (IC tag on). When the required operand for

9

an arithmetic operation is requested from an internal register, the ABC times

the data transfer on the arithmetic bus to the C or D register. All internal

registers are tied to the arithmetic bus and therefore the internal register

word required by SAU or PAU does not appear in the lookahead data field.

The A3C decoding for an internal fetch requests starts an A Bus timer to

time the data transfer. The address of the required internal register is con­

tained in the LAAR which was set during the lookahead load. Referring to the

TBC action^when internal operations were called for at a level, the TEC did

not start the T timer to transfer the data. This is tvt/e at any level tagged

with the internal tag bit. Also in this situation the TBC did not step because

the stepping depends upon a signal from the execution unit informing lookahead

that they have received the data. The A bus timer, when started, times the

data transfer and generates the required signals to gate the data in. In FLP

operation, the gate in signal also includes the operation code field which is still

being decoded by the TEC.

In a VFL operation the operation code is gated in normally because it is

never concerned with internal operations. All operand requirements for VFL

follow in succeeding levels and never appear at the operation code level. So in

a VFL operation, the operation code is transferred normally by the TBC, but

any succeeding levels requiring internal operations are dependent upon the

ABC. The ABC starts the A bus timer and times the data flow to the C or D

register and generates the necessary signals to gate the data in.

S~.l— I;
In a FLP instruction^ an operand appears at the same level as the operSLTloT)

10

code. If the level is tagged with an internal bit, the transfer of the operation

code and data to the execution unit automatically became a function of the ABC.

Because the TBC was prevented from stepping the d. c. , gate out of the op­

eration code field is still active from the TBC. When the A bus timer is

started the data from the internal register, designated by the LAAR, is timed

to the C register and the necessary signals are sent to PAU to gate in the

operation code field, C register and start. The execution register input was

'w"-5 j- C a result of the TBC setting and the signal to set the execution register^in the. W-m

befiii
cO-f i the A bus timer. When the data hae^accepted by PAU or SAU a return

signal from SAU or PAU allows the TBC to advance to the next level.

If the internal fetch is requested by the instruction unit, the specified internal
A cJiec.ke.-r t>«.s

register contents are gated out via the^in a normal manner, but instead of placing

the data in the C-D register, the data is placed in the lookahead data field where^

during SCC action,it is sent to uhe Y register in the instruction unit. The complete

operation is defined by the internal tag bit and the ABC decoding. *The LAAR

contains the address of the required internal register. By starting the A bus

timer, the necessary signals are generated to route the data from the internal

register to the lookahead data field via the ar/th-ma-tic. bus.

The ABC function for store levels consists of completing all internal store

operations while^stores to external storage and index core storage the ABC only

has partial action. When an internal store is required during an arithmetic op-
ih

eration, the ABC times the data transfer via £& arithmetic bus to the internal

register detonated by the LAAR. The A bus timer is started by the ABC when the

decoding is such that a store is required and the internal tag is on at this level.

//

Because the result of an arithmetic operation, as far as lookahead is con­

cerned, appears in the C-D register, the operation consists of routing the

data from the C-D register to the internal register. ~J7ie data does not

appear in lookahead, but all data control functions are derived in lookahead.

After the TBC function at a level, lookahead waits for a signal from the

execution unit saying that the data to be stored is latched on the arithmetic

bus (in the C-D register). With the arrival of that signal the A bus timer

is started to time the data transfer from the C-D register to the A checker

to the internal register designated by the LAAJR. The operation also resets

the LAAJR busy trigger because the store is complete. With the LAA.R

busy trigger off, forwarding can occur if the forwarding conditions are met.

When the store operation is to external storage or index core storage from

an arithmetic operation, the lookahead action is similar to an internal store

with the end result being the data being placed in the lookahead data field.

The initial lookahead action is the same^lookahead waits for a signal from the

arithmetic unit that the data is latched on the arithmetic bus}. The A bus

timer is started to time the data transfer from the C-D register to the A checker

to the lookahead data field. Also the A bus timer resets the LF tag bit and

the store check test trigger. Because the data is in the lookahead data field, the

store is not complete until the data is placed in the location designated by the

LAAR. The ABC action however is complete. The final storing of the data is

a function of the SCC counter and is described in section 6. 0. 00. The

signal to allow to SCC to function is the fact that the LF tag bit is reset.

IJL

code. If the level is tagged with an internal bit, the transfer of the operation

code and data to the execution unit automatically became a function of the ABC.

Because the TBC was prevented from stepping the d. c. , gate out of the op­

eration code field is still active from the TBC. When the A bus timer is

started the data from the internal register, designated by the LAAR, is timed

to the C register and the necessary signals are sent to PAU to gate in the

operation code field, C register and start. The execution register input was

a result of the TBC setting and the signal to set the execution register,,in the. W-*n

been
cOfi the A bus timer. When the data has^accepted by PAU or SAU a return

signal from SAU or PAU allows the TBC to advance to the next level.

If the internal fetch is requested by the instruction unit, the specified internal
$ cJiec-ke-v bus

register contents are gated out via the^in a normal manner, but instead of placing

the data in the C-D register, the data is placed in the lookahead data field where^

during SCC action,it is sent to die Y register in the instruction unit. The complete

operation is defined by the internal tag bit and the ABC decoding, "ffie LAAR

contains the address of the required internal register. By starting the A bus

timer, the necessary signals are generated to route the data from the internal

register to the lookahead data field via the SxtZhtne:tic bus.

The ABC function for store levels consists of completing all internal store

operations whilejpstores to external storage and index core storage the ABC only

has partial action. When an internal store is required during an arithmetic op-
ih

eration, the ABC times the data transfer via 4® arithmetic bus to the internal

register designated by the LAAR. The A bus timer is started by the ABC when the

decoding is such that a store is required and the internal tag is on at this level.

//

Because the result of an arithmetic operation, as far as lookahead is con­

cerned, appears in the C-D register, the operation consists of routing the

data from the C-D register to the internal register. ~fho. data does not

appear in lookahead, but all data control functions are derived in lookahead.

After the TBC function at a level, lookahead waits for a signal from the

execution unit saying that the data to be stored is latched on the arithmetic

bus (in the C-D register). With the arrival of that signal the A bus timer

is started to time the data transfer from the C-D register to the A checker

to the internal register designated by the LAAR. The operation also resets

the LAAR busy trigger because the store is complete. With the LAAR

busy trigger off, forwarding can occur if the forwarding conditions are met.

When the store operation is to external storage or index core storage from

an arithmetic operation, the lookahead action is similar to an internal store

with the end result being the data being placed in the lookahead data field.

The initial lookahead action is the same(J.ookahead waits for a signal from the

arithmetic unit that the data is latched on the arithmetic bus^ The A bus

timer is started to time the data transfer from the C-D register to the A checker

to the lookahead data field. Also the A bus timer resets the LF tag bit and

the store check test trigger. Because the data is in the lookahead data field, the

store is not complete until the data is placed in the location designated by the

LAAR. The ABC action however is complete. The final storing of the data is

a function of the SCC counter and is described in section 6. 0. 00. The

signal to allow to SCC to function is the fact that the LF tag bit is reset.

Whenever the SCC enters a level and the LF tag'hit is off, the SCC has a

store function to perform. If the LF tag is on whem the SCC steps into a level,

it signifies no storing action and the SCC merely steps to the next level.

The store check test trigger is reset to prevent a MAR Mode test until the

SCC finishes the storing action at which time the store check trigger is

turned on to allow the MAR Mode test to be completed.

The ABC action taken at branch recovery levels, other than the normal

transfer of indicators, varies depending upon the branch response from SAU.

There are three distinct responses from SAU about the branch success

or failure test. They are:

1. Branch unsuccessful. There is no action necessary when this res­

ponse is received from SAU. No action is required because SAU found the branch

condition was not satisfied. Because the instruction unit assumes that a BB and

a BI will not branch, they continue processing instructions sequentially. When

SAU tests for the branch and proves the branch condition is not satisfied it means

the instruction unit assumption was correct and therefore the ABC steps to the

next level and performs no action at the recovery level.

2. Branch successful —" Conditional Indicators. This response means

that the branch condition was satisfied, but one of the conditional indicators

that apply to the "branch to" address is on thereby causing an unsuccessful

branch condition. The conditional indicators are buffered in the operation

code field of the operation code level of the instruction and during the TBC

action are placed in the SAU execution register. It is important to remember

that these indicators (AD, IF, DS, EXE) apply to the "branch to" address.

/ 3

Therefore^if SAU finds the branch condition is satisfied it looks at the indicators

to see if the "branch to" area is reliable . If any one of the indicators are on it

indicates something is wrong with the "branch to" address and causes

the branch to be unsuccessful, The ABC action upon receiving the response

generates a gate in signal to set the indicators in the indicator register. The

indicators in SAU hold up the inputs to the corresponding indicators in the main

indicator register and if the response "branch successful-conditional indicators

is given, the ABC generates the gate in signal to set the indicators in the

main indicator register to the status of the inputs from the conditional indicator

in SAU.

3. Branch successful - TnO conditional indicators . This is the response given

when the SAU test show the branch condition is satisfied and the branch to address

is reliable. Because the instruction unit assumed the branch to be un­

successful, it continued processing the instruction sequentially. With SAU

saying the branch must occur it means that all instructions following

the branch instruction are invalid because they are no longer in the correct

sequence. Because of this, a branch successful response causes lookahead to

enter a recovery mode of operation irjorder to recover.

A variation of the Branch on Indicator instruction is encountered when

prefixed with the Store Instruction Counter If function. In this case an ad­

ditional level of lookahead is involved. This additional level requires dif­

ferent action depending upon the branch conditions.

No assumption is made concerning the success of the b?t test. Instead

after loading the recovery level into the lookahead, the Instruction Unit waits

for the SAU to complete the test before completing the instruction. (Since the

Instruction Unit retains the branch address in this case, no recovery is

m-

necessary and the"recovery level" exists only for control simplicity).

The special action of the ABC at the recovery level is modified to

the following: (The coding of this level differs from the recovery load for

Branch on Indicator/Bit only by the absence of the IC bit.)

1, Branch Unsuccessful

In addition to the transfer of indicators, the control pulse,

Resume-No Stica is sent to the Instruction Unit. The addition* t

level in this case is a "dummy" level with the IC tag bit to ef­

fectively close out the instruction and cause the interrupt mech­

anism to be memorized.

2. Branch Successful-conditional indicators

Same as 1) above with these indicators entered into the Indicator

Register.

3 Branch Successful - no conditional indicators

In this case, the control pulse Resume-Stica is given the

Instruction Unit. This unit proceeds to effect the store instruction

counter action and places the result in the lookahead for eventual

storing.

Certain instruction unit instructions while being processed in lookahead

require certain ABC action. This action results in a transfer of the index

result indicators when necessary. Each of the special ABC actions is dis­

cussed in the following sections.

As can be seen from the previous discussions, the ABC action is quite

diversified. Actions which occur every time regardless of any other con-

ditons are the transfer of indicators at every level and the transfer of the IC

field to the IC buffer at every ABC level tagged with an IC bit. The internal

IS

tag bit and ABC decoding determine additional and special ABC action and

each is discussed in the following sections of Section 5. 0. 00. An important

point to consider is the fact that for normal ABC functions, the ABC is

not dependent upon TBC action being complete. The normal ABC action

requires only instruction preparation being complete and MAR Mode, With

these conditions satisfied, the ABC can function and depending upon the time
the,

the conditions are meh> both^TBC and ABC can be functioning together. The

MAR Mode timing is the deterimining factor as far as the time the ABC can

function assumming of course that instruction preparation is complete. The

main thing to remember about ABC action is the normal indicator and IC -fie

transfer. An internal tag causes specific internal register routing and store

require still other action. By realizing the conditions at the ABC level,

the action can be easily followed. Specific details are given for normal ABC

action, internal operations, stores,and all special actions.

JL

5.2.00 Indicator Transfer ^

The indicator field at each lookahead level is classified into three main

categories. The distinction is necessary because of the variation in handling

the indicators during three major modes of lookahead operation (normal,

reject, and houseclean). Each group is explained below:

Instruction Exception (XR) Indicators

These indicators are the IR, OP, AD, DS, DF. and IF. They are gated

into the main indicator register from each level during normal operation and

instruction reject action. These indicators are the indicators affected during

instruction preparation from either the instruction unit or lookahead (refer

Section 3.0. 00).

Index Result (XR) Indicators

The index result indicators are the XF, SCZ, XVLZ, XVZ, XVGZ, XL, XE, and

XH. These indicators pertain strictly to the status of index core storage and

are loaded from the instruction unit during the loading process. These indicators

are gated to the main indicator register from distinctly coded instruction unit

instruction levels during normal operation only.

Conditional Machine Check (CNIDC) Indicator

This single indicator is gated to the main indicator register from each level

during instruction reject and houseclean action. When gated to the main

indicator register it effects the status of the MK indicator. The setting of the

CNIDC indicator in lookahead is conditioned by the instruction unit during the

loading process. The CNIDC indicator is set during the loading process when

an error occurs during the data transfer of any recovery information (psuedo

stores, progressive inking pseudo stores and branch recovery data). Only

I I

if the recovery data is to be used is the error significant.

All the indicators in the indicator field are gated out (dc gate out) to the

main indicator register simply by the ABC value. The ABC value designates

the level and the indicator field at the level hold up inputs to the corresponding

indicator positions in the main indicator register. The transfer indicator timer

is started as soon as instruction preparation (LF and Lc) IS complete and that

MAR MODE is present. The ABC decoding selects the timed outputs of the transfer

indicator timer to set the appropirate indicator in the main indicator register.

The indicators affected (XR, XR, CNTDC) is determined by the ABC decoding

and the setting pulse, selected by the decoding, is derived from the transfer

indicator timer.

Another function of the transfer indicator timer is the transfer of the lookahead

IC field to the IC buffer. This transfer however does not occur at each level.

An addtional requirement for the IC field transfer is the presence of the IC

tag bit. The IC tag bit indicates the final levd of any instruction and only

at that time is the IC field transferred to the IC buffer. The transfer is timed

with the transfer indicator timer.

5.2.01 Transfer Indicator Timer

The timing pulses necessary for the indicator and IC field transfer are

derived from the transfer indicator timer. The starting of the timer requires

only two specific conditions. First the instruction preparation must be com­

plete, "fhis is decoded by the ABC with a line called ABC decode level

loaded. Referring to Figure 5.2-1 all ABC decoding is shown. Item 35 shows

the required conditions are LF, LC, NO DISC and the ABC value designating

the level at which the action is to occur. The second requirement for starting

the timer is the presence of MAR MODE. The MAR MODE codition is neces­

sary to insure that the previous instruction did not cause an interrupt. It

signifies that the main indicator register is available to receive indicators for

the following instruction test. For speed purpose the MAR Mode anticipation

is used if MAR MODE is not yet present. The turn on of the indicator transfer

timer is further conditioned by'no houseclean mode and the ABC Advance

Enable Sequence (AES) trigger being on. The no houseclean mode signifies

normal ABC action and the AES trigger is used to insure that the timer functions

only once for any given level. The AES trigger is reset when the timer

functions and is not turned on again until the ABC steps to the next level. By

this method the transfer indicator timer can function only once at any level.

With all conditions satisfied the timer is turned on.

5.2.02 Indicator Transfer -

The ABC decoding determines which category of indicators to be transferred.

All indicators as well as the IC field are holding up inputs to their respective

triggers simply by the ABC Counter allowing the DC gate out. The ABC decoding

gates the timer output to allow the selected indicatoisjto be gated into the main

'?

indicator register.

Instruction Exception (XR) Indicators -- These indicators are transferred

at every level regardless of the decoding. The timer output E and M is sent

to the indicator register where the input lines from the look-ahead indicator

field are already active (IJ, AD, OP, DS, DF and IF). The arrival of the

setting pulse sets the indicators in the main indicator register to the status

of the input lines. The transfer of the conditional indicators only requires the

transfer indicator timer and the transfer occurs once in every ABC level.

Index Result Indicators -- The transfer of these indicators is also accomplished

with E and M of the indicator transfer timer. However, the timer output is

conditioned by an ABC decoded line identifying the transfer condition. The

decoded condition allowing the transfer of the index result indicators is

called "ABC decode NOR PX NO NOOP MODE". The conditions causing this

line to be active are shown in the ABC decoding chart in Figure 5.2-1 (Item 40).

Besides the bit structure shown the .line is also active when the ABC decodes:

1. Instruction unit external store (21)

2. Instruction unit pseudo store (24)

3. I Ex indicator transfer only (26)

4. Internal instruction unit store (32)

5. NOOP instruction unit pseudo store (38)

Those instructions which the instruction unit terminates by loading look-

ahead with any of the levels listed above may cause the index result indicators

to change, thus, the decoding of these levels allov^the indicator transfer to

the main indicator register. With these levels decoded by the ABC, the

decoded result gates the timer output to the main indicator register where

the indicators are set to the status of the input lines from the index result

indicators in look-ahead.

Conditional Machine Check (CNIDC) -- This indicator is transferred to the

MK indicator in the main indicator register by the transfer indicator timer

E and M output only when the ABC decodes;

1. Housefilean mode

2. NOOP coded recovery level after a successful branch condition.

3. NOOP Mode

4. - NOOP coded PX level with no NOOP tag.

This last condition is an example where op code position 8 is used

as an auxiliary NOOP bit. Remember the NOOP tag cannot be set after

, the last operand level of,a VFL instruction. Because the PX level of a

VFLi instruction is the last level of a VFL, instruction, op code position 8

serves as an auxiliary NOOP bit if a data error occurs during the data

load from the instruction unit. The decoding of this level also initiates a

pseudo interrupt and therefore theCHX, DC indicator is transferred because

the recovery information is required. Because the recovery data is required

and is in error, the error condition is so noted in the main indicator register

by transferring the CNIDC indicator from look-ahead to the MK indicator

in the main indicator register.

JH

The only time the CNIDC indicator is transferred to the MK indicator in the

main indicator register is during instruction reject, branch recovery or

houseclean action. Notice that each one of the decoded condition indicate one

of these conditions. The decoded condition gates the timer output to the MK

indicator in the main indicator register where it is set to the status of the

CNIDC input line from look-ahead.

5.2.03 IC Field to IC Buffer

Another function of the transfer indicator timer is to time the transfer of

the look-ahead IC field from the designated ABC level to the look-ahead IC

buffer. Unlike the indicator transfer, the IC field is transferred to the IC

buffer only when the level is tagged with the IC tag bit designating the final

level of the instruction. The input to the IC buffer is active from the ABC
PKYSILOCKE-H-E. SLA.

level counter designating the„level. These inputs are d. c. level inputs derived

from the output of the IC field. The ABC value allows the IC field output at

the counter value to become active to the input of the IC buffer. Eecause the

inputs are only d.c. lines, the buffer triggers require a setting pulse to set.

The setting pulse is derived from the indicator transfer timer E and not M

and is conditioned by the IC tag bit at the level. Regardless then of the IC

field input to the buffer, the only time the buffer triggers set is when the

IC tag is on at the level. The IC tag is set at the last level of any instruction

during the level load from the instruction unit. In a single level FLP

instruction the buffer is set during the ABC time of the level. In a six level

VFL instruction the IC buffer is set during the ABC action at the sixth level

because that is the only level at which the IC tag is on. Remember the IC

M -

buffer always contain the instruction value plus. 1 (N + 1) and is used to

give the instruction unit an instruction restart address if instruction N

should interrupt.

The indicator transfer timer also participates in the MAR MODE test

for the instruction at the level. This action is discussed in Section 5. 6.00.

The transfer of indicators occurs at every level of every instruction regard­

less of any conditions. The IC field is transferred to the IC buffer at every

level that contains an IC tag bit and, besides the IC tag, is an unconditional

transfer. These two operations however do not necessarily complete the

ABC action at a particular level. The ABC has control of all internal functions

and these functions are realized at any level tagged with the internal tag bit.

Also if the level is a store level the ABC has additional action is preparing

the data for the store operation. The internal operations and the store opera­

tions are covered in sections 5. 3. 00 and 5. 4. 00 respectfully. Assuming no store

level or internal requirements the AEC is allowed to stop, contingent upon

the TBC-ABC interlock at the completion of the transfer indicator function.

Section 5. 5. 00 explains the counter stepping in detail.

A 3

5.3.00 Internal Fetch Request - *4' ̂ n >"£-

Whenever an operand required for execution is located in an internal

register (address 3 and 5 thru 12), the fetch request is made by lookahead

during ABC time. The operands are required either by an arithmetic ex­

ecution unit or the I unit. When the operand is required by an arithmetic

unit (SAU or PAU) lookahead controls the data flow from the internal register

to the C-D register. All the data flow is on the arithmetic bus and the re­

quested data word does not physically appear in lookahead.

It is not necessary to place the word in lookahead because the internal

registers and the C-D register are both tied directly to the arithmetic bus.

The lookahead ABC action then consists of controlling the data flow and initiating

the proper signals to gate the word from the internal register and gating the

word into the C-D register.

- If the operand is requested from the I unit, the action is somewhat dif­

ferent in that the word is placed in lookahead. The lookahead ABC action

consists of gating the word from the internal register to the arithmetic bus

and then initiating the-proper control signals to gate the data into the lookahead

data field at the ABC level. The arrival of the data into the lookahead level

is the extent of the internal fetch action for the ABC. The following SCC action

routes the data field to the I unit Y register to complete the internal register

fetch for the I Unit.

It must be remembered that the above internal fetch actions are in ad­

dition to the normal ABC action of transferring indicator^ and if the level is

tagged with an IC bit, the transferring of the IC field to the IC buffer. The

transfer of indicators is accomplished with the indicator transfer timer and

H

the internal register fetching is achieved with the A bus timer; both are controlled

by the ABC.

The A bus timer differs slightly from the other timers used in lookahead in

that it has 3 steps instead of 2. The timer consists of an EE trigger, E trigger

and an M trigger. The basic conditions for starting the timer a Ye the internal

tag bit on, no noop bit, no noop mode and the pulse E and M from the transfer

indicator timer. The timer outputs developed the gate out and gate in pulses from

the internal register to the destination register (C-D register or lookahead) via

the arithmetic bus. The timer also develops special signals to the A checker to

pass the data through. If the level is a first level floating point instruction, the

A bus timer also develops a signal to PAU to gate in the operation code field from

lookahead and start. Remember that a FLP instruction buffers the operand at

the same level as the operation code field. If the operand is required from an

internal register, the T time is not started during the TBC time and consequently

the operation code is not transferred or the start signal given during the TBC action.

TBC action at the level consists only of a d. c. gate out of the operation code field

to the PAU execution register. Because nothing is tranferred at TBC time, PAU

does not develop the signal that it has gated in; hence, the TBC does not step. The

conditions for the A bus timer are not dependent upon any TBC action so as soon

as the ABC is at the same level as the TBC, the A bus timer starts. The TBC is

still gating out the operation code field to the PAU execution register. The A bus

timer along with the LAAR decoding determining the required internal register

gates the data tdthe C-D register and develops the signals to gate the data into the

5. 3.01

2S

C register plus sending PAUthesignal to gate in the operation code field

and start. As soon as PAU accepts the data and start signal, it returns

a (to) pulse to lookahead telling that they have accepted the data. The (to)

pulse allows the TBC to advance contingent upon the TBC-OCC interlock

Also the A bus timer M trigger provides for the ABC ' advance contingent upon

the ABC-TBC interlock.

To insure that the A bus timer functions only once at any given ABC

level, the ABC has an advance enable sequence (AES) trigger that is on when

the ABC starts action. When the transfer indicator timer functions the AES

trigger is reset for the balance of the ABC action. After the ABC action is

complete, the AES trigger is turned on when the counter steps. The turn on

of the AES allows the reset of the M trigger of the A bus timer. The EE trigger

and the E trigger are reset with the first sample following the E and M output from

the timer. The M trigger reset is the first sample following the turn on of the ABC

AES trigger which is a function of the ABC advance.

5.3. 02 Internal Register Gate1 Out

The gate out of the internal register is accomplished by EE of the A bus timer.

The address of the internal register is contained in the LAAR. Remember an

internal function is a type 3 load and requires the use of the EAAR. The address

of the internal register that an operand is required from is set into the LAAR

by the I unit during the load. When the A bus timer starts, the EE trigger

of the timer combines with the LAAR decoding and the internal bit and gates

the addressed internal register contents out on ACIB.

X L

The

LAAR decoding is shown in figure • At the same time the internal

register is gated out on ACIB, the A bus timer EE trigger signals the A

checker to "pass the data". This means that the A checker accepts the data

in the first level latches (ACIB) and transfers it to the second level latches

(ACOB). The following sample turns on uhe A bus timer E trigger which com­

bines with not M of the timer to provide the following ABC action. Because

the data is passing from one register to another, parity checks are made to

insure an error free transfer. However, if the addressed internal register was

address 7 or 11, the A checker checking circuits are blocked. All other

internal register addresses are parity checked. Address 7 and 11 do not

contain any check bits on their data contents and it i6 for this reason that the

checking is blocked. All that remains to be done is the gating in of the word
With

from ACOB to the C-D register. A Xhe. sample following the turn on of the E
With

trigger, the M trigger is turned on to complete the operation. t\ the data

latched on ACOB the internal register has effectively been gated out. The

destination of the word is dependent upon the ABC decoding. If the operation

is arithmetic the decoding is such that the word is gated into the C-D register. If

the fetch was requested for the I unit, the word is gated into the lookahead data

field for subsequent storing into the Y register in the I unit.

5.3.03 Arithmetic Internal Fetch

If the internal fetch was required for an arithmetic operation, the final

destination of the word is the C-D register. The A-bus timer function for gating

the word to the C or D register is determined by the ABC decoding. The only

time an operand is placed in the D register is when it is the second operand

X I

for a VFL instruction with WBC. When the ABC decoding is such that the

word is a VFL second operand, the word is routed to the D register, otherwise

it is gated to the C register. All FLP internal operands are routed to the C

register. The timer E and M pulse gated by the internal tag and the C register

required'line setijthe C register triggers to the ACOB lines feeding the register.

The ACOB output are a d. c. level lines holding up the inputs to all registers

tied to it. With the gated E and M pulse, just described, the C register is the

only register which receives the gate in pulse and therefore the result on ACOB

is gated into the C register. If the ABC decoding indicates the D register, the

setting pulse (E and M of the A bus timer) is routed to the D register instead of the

C register. The result is then that the ACOB data lines are set into the D reg­

ister. Because the internal register fetch is now complete, the LAAR is not

required and therefore the LAAR busy trigger is reset. The LAAR busy trig­

ger protected the LAAR from being altered because it contained the address

of the internal register that was required by the fetch. Since the fetch is

complete the LAAR can be altered by a type 3 or type 2 load. The reset pulse

for the LAAR busy trigger is the E and M output of the A bus timer conditioned

by the LAAR decoding internal address and the ABC decoding no branch on

indicator. The latter decoding is necessary because the branch on indicator re­

quires a normal internal fetch but the word must be re-stored at a later level

(after execution) and therefore the LAAR remains busy to protect the LAAR

address until the store is complete.

Another signal is developed by the E and M output of the A bus timer if

the ABC decoding specifies a FLP internal operand fetch. The TBC action at

this level results only in the TBC gating the operation code field to the input

of the PAU execution register. The inputs from the TBC to the execution

register are d.c. lines resulting from TBC decoding. To complete the

transfer then the ABC must generate the gate in signal for the execution re­

gister and also send the start signal to PAU. The start and gate in signal

is the A buS timer E and M pulse gated by the ABC decoding the FLP internal

condition. The acceptance of the signal by PAU results in a return signal

to lookahead allowing the stepping if the TBC. This action is never necessary

on VFLi instructions because the entire first level of a VFL instruction contains

operation code information only and no operands. Therefore a VFL first level

is always tranferred by the TBC normally and SAU starts its housekeeping.

Any operand requirements at succeeding levels are also transferred by the TBC

unless they are required of an internal register in which case they are trans­

ferred by the ABC action already explained.

5. 3. 04 Non Arithmetic Internal Fetch

If the internal fetch was made to obtain an operand for the I unit, the

word must be placed in the lookahead data field. The ABC decoding specifies

an internal I unit fetch. This decoding conditions E and M of the A bus timer
li.a.'f'tLs

to gate the latched^ori ACOB to the lookahead data field designated by the ABC

value included in the decoding. With the data located in the lookahead data field,
To

subsequent action is taken by lookahead at SCC time^place the data into the

Y register of the I unit. To signify that the SCC requires action, the ABC action

*r

on internal fetches resets the LF tag bit. The LF tag bit being off signifies

SCC action. The LF tag bit is reset by E and M of the A bus timer conditioned

by the I unit internal fetch decoding and the ABC value designating the level.

Following is a brief summary of the internal fetch action. The internal

fetch is specified by the internal tag bit being on at the level. By starting

the A bus timer the internal register contents designated by the LAAR are

gated out on ACIB to the A checker. The A checker latches the data on

ACOB. The data is gated into the C-D register or lookahead data field de­

pending upon the ABC decoding. If the data is routed to lookahead, the LF

tag is reset to pecify SCC action. The compeltion of the ABC action for the

internal fetch resets the LAAR busy trigger. The internal fetch is complete

and the ABC allowed to advance, ABC advance conditions are discussed in

section .5. fc- i O O .

So

5. 4. 00 STORE OPERATIONS

There are three possible areas to which lookahead can store data. They

are the internal registers, external storage and the I-unit. The ABC functions on

all types of stores regardless of the area at which the data is to be placed. The

ABC action differs between internal register stores and non-internal stores. The

difference is that the ABC entirely completes all stores to an internal register,

while the ABC action is limited when non-internal stores are specified. The ABC

action for non-internal stores is limited to resetting the LF tag bit as an indication

for SCC to function to complete the store and if the store involves an arithmetic

result, the ABC has the additional function of placing the data into lookahead from

the arithmetic unit. When data is received from the I-unit for-storing, there are

two possible locations it can be stored at. The LAAR decoding of the store "to"

address specifies either an internal or non-internal location. If the address specific#

an internal register, the data is routed to the C register during TBC time. When

the ABC functions at the level, the data is routed from C register to the internal

register specified by the LAAR. If the LAAR decoding indicates an external

location, the ABC action is limited only to a reset of the LF tag bit. The LF tag

bit being off allows the SCC to function to complete the store. In this latter example,

• the data is already in lookahead from the load from the I-unit.

If the store operation is a VFL or FLP instruction, the data to be stored

is either latched on the arithmetic checker out bus (ACOB) or in the CD register.

In all FLP instructions the store data is latched on the arithmetic out bus (ACOB).

In VFL instructions, however, the data is either latched on ACOB or in the CD

register. All VFL fetch and store instructions have the data placed in the CD

register. If a WBC exists, the first word is in the C register and the second word

3/

is in the D register. If no WBC crossover exists the single word is located in

the C register. This type of store is accomplished in two lookahead levels, but

the ABC action is identical for both levels except at one level the ABC gates the

data from C and the other level is gated from D. In the special operand fetch

and store instructions (MPYC, Load factor, etc.), where only one store level

exists regardless of the WBC condition, the data is latched on ACOB and the

action is identical to an FLP store operation.

The ABC action for internal stores when the data is latched on the arith­

metic bus consists of routing the data to the internal register specified by the

LAAR. The ACOB data outputs are available to the inputs of all internal registers.

The ABC action then consists of developing a setting pulse which becomes select­

ive to only the internal register designated by the LAAR decoding. When the

action is finished the store is complete and the LF tag is not reset. No SCC

action results if the LF tag bit is on when the SCC steps into the level. On non-

internal stores, the ABC action for data latched on ACOB consists of routing the

data to the lookahead data field specified by ABC value. The LAAR decoding of

not internal gates an ABC generated setting pulse to sample the data into lookahead.

At the same time, the LF'tag bit is reset. When the SCC steps into the level with

the LF tag off, it starts the action of storing the data at the location specified by

the LAAR. The ABC action is complete with the data transfer to lookahead and

the LF tag reset. In the VFL type instructions where the data is in the CD register

$2-

register to the A checker in bus (ACIB) and then to the A checker. The A

checker action latches the data on ACOB and from this point the ABC action

is identical to that already described.

All store operations with the exception of an I unit store to an external

address are accomplished with the A bus timer. Because all store instructions

are type 3 loads, the LAAR busy trigger is set during the load. The LAAR contains

the address of the location where the data is to be stored. This address must

be protected until the store is complete; hence the busy trigger. The busy

trigger is reset during ABC time on internal register stores, but the LAAR

remains busy on non internal stores. The LAAR reset is a function of the SCC

on non internal stores because it is the SCC that completes the storing action.

The ABC action for fetore levels involved with BB or BI instructions are

similar to that just described. The branch functions of the ABC are discussed

in section 5. 5. 00. This section discusses the ABC action for all store levels

other than those of conditional branching.

Again it is important to remember that ABC action just described is in

addition to the normal ABC action of transferring indicators and, if the level

is tagged with an IC bit, the IC field transfer to the buffer also occurs. In

addition to the transferring of the non index result indicators (XR), the index

result (XR) indicators are also transferred if the level is an instruction unit

store level.

3 3

5.4.01 Starting The A Bus Timer

The starting of the A bus timer for a ABC arithmetic store function is

determined by the ABC decoding and an indication from PAU or SAU that the

data is available. The ABC decoding of an I unit internal store is sufficient

to condition the start the timer for that type of store. An I unit external store

does not condition the start of the timer because it is ntot required for non-

internal I unit stores.

On all arithmetic type stores where the data is latched on ACOB, the

A bus timer E trigger is conditioned to turn on. The EE trigger of the timer

is not necessary because a two cycle transfer of the data from ACOB to lookahead

or the specified internal register is all that is required. When the store data

is located in the C-D register, however, an additional timer cycle is required.

The additional timer cycle is obtained by starting the A bus timer with the EE

trigger instead of the E trigger. The additional cycle is required to transfer

the dg.ta from the C-D register to the A checker output (ACOB). The variable

starting point of the timer is determined by the ABC decoding.

When the store level is decoded as an internal I unit store, the decode

line establishes the turn on condition of the A bus timer with the EE trigger.

Here again a three cycle transfer of the store data is required because the

TBC action placed the store data in the C register. The additional cycle' is

necessary for the C register to ACOB transfer. The E and M triggers ac­

complish the final transfer of data.

5.4.02 Arithmetic Store Operations - H~ ~2- (x^ 3

This section discusses all arithmetic store instructions both internal

and non internal. Because of the variable starting point of the A bus timer,

each specific store type is discussed separately.

J-H stores from the C-D Register in the VFL stores,where the store data

is located in the C-D register, the decoding is such that the A bus timer is

started by turning on the EE trigger of the timer. The ABC decoding of the

lookahead operand field results in a decoded line "ABC decode store C or D".

This line establishes the starting point of the A bus timer at the EE trigger.

Further conditioning for starting the timer is a signal from SAU that the data

to be stored is available. This signal from SAU is "VFL last cycle store

and results in a last cycle fetore memory trigger being turned on in lookahead.

This trigger remembers that the data is available. The final condition for

starting the timer is a transfer indicator E or M line from the transfer indicator

timer... This line is necessary as it proves the right for the ABC to function

(MAR MODE and instruction preparation complete). The M trigger of the

indicator transfer timer does not reset following the indicator transfer action.

The reset conditions for the reset of the M trigger of the indicator transfer

timer is a A bus timer output or an ABC advance condition. When the ABC

is in a store level, all ABC advance conditions are delayed and become a

function of the A bus timer. Of course if the level is NO-OPed, no ABC store

action occurs. The combination of the signals just mentioned (Xfer IND E or M,

last cycle store, ABC decode store C or D and no noop mode) allows a clock

sample pulse to turn on the EE trigger of the A bus timer. The A bus timer

combines with "ABC decode store C" or "ABC decode store D" to gate the

C or D register to ACIB. The C-D register output feeds the input (ACIB) to

the A checker. The EE trigger output also sends a "pass data LA" signal to

the A checker. This signal allows the A checker to accept the data from ACIB

and latch it on the arithmetic checker out bus (ACOB). The data gate out of

the C or D register and therfpass data"signal to the I checker is the extent of

the A bus timer EE function and with the following sample pulse the EE trigger

turns on the E trigger of the timer'. At the E trigger turn on; the store data is

latched on ACOB. The E and not M triggers of the timer send two signals to

the checker to control the A checking. The E and M output of the timer, gated

, , . r by>\de coded conditions resets the LAAR busy trigger. The reset conditions lor

the LAAR reset are the LAAR decoding an internal address, and no branch on

indicator fetch level. These decoded lines conditinn the E and M pulse from

the A timer to reset the LAAR. Because the store is to an internal register,

ifes use is now complete and the busy trigger can be reset. The no branch on

indicator condition is necessary because the fetch level on a branch on indicator

instruction is followed by a store level to return the word after testing. Because

the word is replaced, the LAAR must remain busy to protect the store address

With the data latched on ACOB, the next ABC action is determined by the

LAAR decoding. From ACOB the data is routed either to the internal register

specified by the LAAR or to lookahead if the decoding recognizes a non internal

store. If the store is to an internal register, the A bus timer E and M triggers

control the gate in of the specified internal register. Because the ACOB output

is available to all internal registers, the ~ setting pulse (E and M) is conditioned

by the LAAR decoding thereby selecting the proper internal register. The

conditioning foi the internal register gate in results from the LAAB decoding

an internal address, the ABC decoding a store, and the last cycle store memory

trigger on. These conditions result in a "cond internal register gate in" line

which combines with the E and M timer output and the decoded LAAR address

to provide the sample pulse to gate the data off ACOB into the register. Following

is a listing of the bits gated and the internal register address for VFL stores

from the C-D register.

LAAR Address LOOKAHEAD OUTPUT

1. Address 3 GIACOB To ULB 00-63
2.. Address 6 CND ACOB To CPU S00-19
3. Address 7 ACOB COUNTS
4. Address 8 CND A 00-59 & PARITY

CND A 60-63 & PARITY
5. Address 9 CND B 00-63 & PARITY
6. Address 10 G7 ACOB 00-07 SRAB 0-7
7. Address 11 CND ACOB To N 20-63
8. Address 12 CND ACOB To M 20-49

Notice that all the internal registers can be stored into except address 5. The

loading of address 5 is a function of the exchange operation. Lookahead cannot

store into address 5, but it can fetch it on an internal fetch. If address 11 is

the specified internal register, the ABC has additional action to perform. Because

the store is to the indicator register (address 11) the index result indicators may

be modified. In this special case, an additional timer is started by lookahead to

transfer the index result indicators in the main indicator register to the updated

indicator register in the I unit. The timer is started with E and M of the ABC

timer and a decoded ABC line identifying the store to the indicator register. If

it is the branch on indicator store level, however, the action is not taken because

the lookahead is only returning the index word after bit modification by SAU (no

new results are stored). The indicator transfer timer consists of an E and M

37

trigger. The E and M trigger outputs provide the transfer pulse for the index

result indicators in the main indicator register to the up-dated indicator register

in the I unit. The E trigger is reset with the first sample following the turning

on of the M trigger. The M trigger is reset when the ABC advances.

Special signals are also generated to the A checker when the internal

store is to address 8 or 9- These signals are "LA STORE TO A" (address 8)

or "LA STORE TO B" (address 9) and they are sent to the arithmetic checker to

update the residue.

If the store operation from the C-D register is designated to a non internal

address, the ABC action is simplified. The A bus timer EE function is identical

to that already described. The signals to control the A checker during the data

flow are also identical. The E and M functionsjbf the A bus timer differ for non

internal stores. The data, latched on ACOB following the EE function, is gated

into lookahead by the E and M triggers of the A bus timer. In addition, the LF

SCC-
tag bit is reset to signify AJ3-G action. The output of ACOB conditions the data

field of all the lookahead levels. The data field that accepts the E and M setting

pulse is determined by the ABC value. The data path is specified as ACOB to

lookahead by the LAAR decoding a non internal address. These conditions

combined with ABC decoding store and the last cycle store memory trigger on

combine with E and M of the A bus timer to set the data into the lookahead data

field, designated by the ABC value. The same conditions are used to gate E

and Mof the timer to reset the LF tag bit. With the LF tag bit reset, the SCC

recognizes that is has action and it completes the store to the address specified

by the LAAR. When the store is not internal, the LAAR busy trigger is not reset.

$ 2

The busy trigger reset for non internal stores is a function of the SCC action.

The stores just discussed are identical to an ABC decoding of an I unit internal

store. The data paths and A checker controls are the same.

If the decoded store operation is a FLP or a special store associated

with the load factor type of VFL instructions, the ABC action is similar but

not identical. The major difference is the operation of the A bus timer, In

the previous discussion of Stores, the A bus timer was started with the EE

trigger to obtain the required 3 cycle data transfer. This was necessary

because the store data was located in the C-D register. In the FLP stores and

the special VFL store levelSjthe data is already latched on ACOB. This eliminates

the use of theEE trigger of the A bus timer and therefore when the ABC decodes

this type of store the A bus timer is conditioned to start with the E trigger. The

turn on the E trigger of the A bus timer is transfer indicator E or M, last cycle

store (indicates data is. available) and ABC decode arithmetic bus. The latter

condition identifies the FLP or special VFL store level. The timer operation

controls the data flow to the address specified by the LAAR. The data flow

paths are the same as those already described. The only difference is the

signals to the A checker to control the data check. The signal to the A checker

is "store bus except" which tells the checker it can perform parity and residue

checks on the data. The signal is a result of the ABC decoding, A bus timer

E and M, and last cycle store memory. It effectively means that lookahead has

routed the data. Again if the store is to address ll^the indicator register timer

transfers the index result indicators to the updated indicator register in the I

unit. If the address is 8 or 9, special signals are generated and sent to the A

3?

checker to update the residue. If the store is internal^the LAAR busy trigger

is reset, or, if not internal the busy trigger remains on and the LF tag reset

to signify SCC action. The difference-between the store operations from the

C-D register versus those from ACOB E/SO the extra cycle (EE) needed to

transfer the data from C-D to ACOB on the C-D stores. The controls to the

checker for C-D stores are signals to pass the data from ACIB to ACOB and

check parity while the signal from ACOB stores is a signal to check parity and

residue. Data flow and data controls are identical from ACOB to the destination.

U-o

5.5.00 Conditional Branching, Progressive Indexing and Non Arithmetic
ABC Action

This first part of this section explains the ABC action for conditional

branching. The branch instructions considered are the branch on bit (BB) and the

branch on indicator (BI) instructions. Both of these instructions are tested

by SAU because SAU is the only unit capable of examining any bit and mo­

difying any bit in the computer system. These instructions require action

very similar to normal VFL instructions.

When the I unit process a BB or BI instruction, it assumes the branch will

fail and processes instructions accordingly. In the event that SAU finds a

successful branch condition, lookahead must have some means of restoring

the computer because instructions following the branch instruction are out of

sequence. To allow for the possible recovery action, an additional level is

associated with the BB and BI instructions. This level is called a branch

recovery level and contains the "branch to" address which lookahead sends

back to the I unit if the branch proves successful. When the SAU proves

a branch successful condition a modified housecleaning procedure occurs and

the "branch to" address is returned to the I unit.

The instruction preparation of the BB and BI instructions include testing

for those conditions, which, if the branch conditions are met, cause the instruction

to be rejected. These tests include the "branch to" address failing the ad­

dress invalid (AD) or instruction fetch (IF) tests, certain store address failing

the data store (DS) test and the instruction itself failing the execute exception

H-l

(EXE) test. These conditional indicators are buffered in the operation code field

of the first level associated with the BB or BI instructions. The indicators must

be interrogated by SAU such that the presence of any one causes any bit modi­

fication to be blocked if the branch conditions are met. If any one of the indicator

are on, regardless of the branch being successful, the system does not branch.

The system branches only when SAU indicates the branch conditions are met

and no conditional indicator is on.

The last part of this section covers ABC action on progressive indexing levels

(PX), 1/O levels, and certain I unit instruction levels. The ABC action is

generally simplified for these levels consisting of an indicator transfer and the

MAR Mode test.

5. 5. 01 Branch on Bit (BB) and Branch on Indicator

The BB and BI instructions consists of four levels. They are:

1. Operation Code Level
2. Fetch level (operand)
3. Store level
4. Recovery level

In addition the BI instruction, if specified, with the store instruction counter

instruction, (STICA) has an additional level. This additional level is a dummy

level tagged with an IC bit so to effectively allow lookahead to close out the

instruction. The difference between the normal BI instruction and the one pre-

fixed with the STICA instruction is that no assumption is made concerning

the success of the bit test. Instead after loading the recovery level into the

look-ahead, the Instruction Unit waits for the SAU to complete the test before

completing the instruction. (Since the Instruction Unit retains the branch '

address in this case, no recovery is necessary and the "recovery level"

exists only for control simplicity.)

_pecial action of the AEC at the recovery level is modified to the fol­

lowing: (The coding of this level differs from the recovery load for Branch

on Indicator/Bit only the absence of the IC bit.)

The operation code level is handled similar to the normal VFL operation

code. The only exception is that the branch condition is decoded in look-

ahead and relayed to SAU as EB or EI. The reason for this action is because

SAU does not have provisions for a decoding the branch instruction and also

the operation code field in look-ahead contains the conditional indicators which

are relayed to the execution register SAU for their test of the branch conditions.

With these exceptions the level is handled identically as any SAU operation

code level from TBC through SCC. The operand level is identical to any VFL

operand level. The BB store level is identical to a normal VFL store level

plus it receives an indication from SAU specifying the results of the branch

test. The BI store level is the same as a VFL store with address 11 except

that the indicator register timer is not necessary to transfer the main indicator

register to the I unit updated indicator register. This latter action is not

necessary because the word was not altered and is only being returned. The

same signalsjfrom SAU are received during AEC to indicate the status of the

branch conditions.

^3

Coincident with the Last Cycle Store pulse, responses indicating the

results of the bit test and the status of the conditional indicators are

memorized by the look-ahead in the Eranch Test Result triggers to define

the action to be taken at the branch recovery level.

The ABC action at the recovery level, in addition to the normal transfer

of indicators, etc., varies depending upon the response.

1. Branch Unsuccessful

No special action since Instruction Unit assumption was correct

and the instruction was not rejected.

2. Branch Successful-conditional indicators

Instruction Unit assumption was correct (since instruction is

rejected) and the conditional indicators are entered into the

Indicator Register. This is a direct path from the SAU exe­

cution register to the input gates of the Indicator Register.

Look-ahead develops the sample to set the indicators into

the main indicator register.

3. Branch Successful-no conditional indicators

This case indicates the Instruction Unit assumption was in­

correct and any later look-ahead levels must be considered

invalid. Thus, the housecleaning Mode of operation is initiated

in order to recover. Housecleaning caused by recovery action

is discussed in Section 8. 0. 00.

The branch on indicator instruction action is slightly different than a

normal store . The difference is:

The associated fetch and store levels of the Branch on Indicator instruction

are distinctly coded due to special handling of bit positions 0-19 of the

Indicator Register. These bit positions are normally unaffected by the

storing function; however, to accomplish the bit resetting function of this

instruction, coincident with the transfer of the register contents to the

C register, bits 0-19 are reset. There is then a unipolar gate provided

and activated by the ABC during the store transfer. With this exception,

the Branch on Indicator and Branch on Eit instructions are handled by

the look-ahead.

If the BI instruction is prefixed with the STICA instruction, the ABC action

is different than that of the normal BI instruction. Listed below is the action

taken by the ABC at the recovery level.

1. Branch Unsuccessful

In addition to the transfer of indicators, the control pulse, Resume-

No Stica is sent to the Instruction Unit. The additional level in

this case is a "dummy" level with the IC tag bit to effectively close

out the instruction and cause the interrupt mechanism to be memorized.

2. Branch Successful-conditional indicators

Same as 1) above with these indicators entered into the Indicator

Register.

3. Branch Successful-no conditional indicators

In this case, the control pulse Resume-Stica is given the Instruction

Unit. This unit proceeds to effect the store instruction counter action

and places the result in the look-ahead for eventual storing.

5.5.02 SAU Progressive Indexing (PX) levels.

The final level of all SAU instructions in which the progressive mode of

indexing is specified is used to buffer the original contents of the affected

index core storage location. During normal operation, the only look-ahead-

functions required are the transfer of indicators and instruction counter fields

at the ABC level. Since the progressive indexing function allows the index

result indicator to change, this category of indicators is included in the

transfer.

5.. 5. 03 Non Arithmetic ABC Action

This section discusses the ABC action for all I/O instruction and those I

I Unit instructions that are not internal stores or external fetches. The

internal stores and fetches are explained earlier in Section 5.0.00.

1/ O Instructions

The ABC action at the first level of an I/O instruction consists of the non

index result indicator transfer only. It is accomplished in the usual manner

by starting the indicator transfer timer with an ABC decoded line identifying

the I/O first level condition. The ABC action at the second (dummy) level of

an 1/O instruction transfers the non index result indicators and transfers the

IC field to the IC buffer (second level I/O is tagged with IC bit). Besides the

normal ABC transfer function the ABC resets the PAU master test complete

trigger and the TBC AES. The PAU master test complete trigger is PAU's

counterpart of the look-ahead MAR MODE trigger and therefore must be reset

between each instruction. Because the 1/O instruction is non arithmetic, the

look-ahead must accomplish the reset. If MAR MODE is present following

the I/O instruction the PAU master test complete trigger is turned on.

Although the TBC has no action to perform at the level, the advance must

be delayed until the PAU master test complete trigger is reset to prevent

the possibility of PAU falsely interrogating the trigger.

I Unit Instructions

The I Unit internal fetch and store instructions have already been discussed

earlier in Section 5. 4. 00. This section discusses the ABC action for all

other I Unit instructions and a review for the internal fetch and store instructions.

The instructions executed within the Instruction Unit are generally com­

pleted within that unit to the point where it is necessary to store and/or enter

indicators. These functions are completed by the look-ahead in proper

sequence. These levels are referred to as:

(1) Instruction Unit Store levels

(2) Indicator Transfer Only levels

Two other levels exist to process the cases where Index Core Storage is

modified and v/here the look-ahead must furnish the contents of an internal

register for proper execution by the Instruction Unit. These levels are refer­

red to as:

(3) Pseudo Store level

(4) Internal Fetch level

Proper combinations of these four types of levels provide the look-ahead

action necessary for completion of all Instruction Unit instructions.

It should be noted that those instructions which the Instruction Unit termi­

nates by loading the look-ahead with any of the first three levels above may

cause the Index Result indicators to change; thus, this category of indicators is

included in the transfer.

47

(1) Instruction Unit Store Levels

In general, these levels may specify either external memory locations or

an internal computer register as indicated by the contents of the LAAR. When

external memory is specified, the necessary ECC bits, if possible, are gener­

ated during the loading process, thus eliminating the necessity of a later SCC check

and check bit conversion cycle. The WBC tag bit is set by the Instruction Unit

and used in conjunction with this particular Look-ahead Operation Code to

identify this condition.

a. External Store in ECC

The ABC at this level, coincident with Indicator Transfer timer

E-M resets the LF tag bit to initiate SCC action. This latter

action provides the store request to the BCU directly.

b. External Store in Look-ahead Parity

It is not always possible, for checking purposes, to include the

generation of ECC during the loading process. Thus, the neces­

sity may exist for the normal SCC check cycle. The absence of the

WBC tag bit indicates this condition. The SCC action is identical

to that described in 6.0.00 with the Interrupt Mechanism inter­

rogated after the check and check bit conversion cycle.

Indicator Transfer Only Level

Processing the Indicator Transfer Only Level entails only the

indicator transfer function and interrupt sequencing action.

Pseudo Store Level

During normal operations, this level is identical to 2) above.

Only in the event of rejecting the instruction or detecting a pro­

gram interrupt do the Operand field contents become useful

information.

Internal Fetch Level

The look-ahead action of supplying the contents of an internal

register to be used as an Instruction Unit operand is accomplished

in two steps. The transfer from the specified internal register

to the Operand field is accomplished at the ABC level. This takes

place subsequent to the transfer of indicators and is timed by the

A-timer in the usual manner. The sample selected by A-timer

E-M"resets LF to allow completion of the transfer by the SCC.

The ABC decoding identifies each level to allow the timer to be started.

n

5.6. 00 ABC COUNTER STEPPING

The controls for stepping the ABC Counter are relatively simple. The basic

stepping condition is the TBC-ABC interlock. If the TBC is at the same level as

the ABC, the ABC cannot step until the TBC steps (one counter cannot pass another).

The other ABC stepping conditions are dependent upon the type of ABC action at the

level. If the ABC decoding indicates any internal or store operation, the ABC ad­

vance is delayed until the internal or store action has been completed. Also, if

lookahead is in a houseclean mode of operation, the houseclean timer steps the

ABC.

5.6.01 Normal Stepping (No stores or external operation).

The ABC action at every level, regardless of the decoding, is the transfer of

indicators at the level to the main indicator register. By decoding that the ABC

has no internal action or store action, the transfer indicator timer M trigger cause

the"cowd ABC advance'to become active. The conditional advance line combines

with the TBC-ABC interlock status. If no interlock, the advance is allowed. If

there is an interlock with the TBC, the advance cannot occur until the TBC steps.

In the latter case, the transfer indicator timer M trigger remains active because

the reset of the trigger is initiated by the ABC advancing. With no interlock signified

the "cond advance cond" line causes the "ABC advance" to become active. The ad-

vance line combines with the present ABC counter value and the AES offyreset the

present level ABC trigger and set the next level trigger. Also the advance line
AES

combines with the AES off, to turn thefttrigger back on. The AES is reset as soon

as ABC action starts at a level and remains off until the ABC steps. This insures

that the ABC functions occur only once at any given level. The advance condition

S~0

combines with the transfer indicator timer M trigger to provide the reset for the

timer. Besides causing the "Cond ABC advance cond" line, the transfer indicator

timer M trigger, conditioned by no stores and no internal operations, cause^kn

"anticipate ABC advance" line to be active. This line is sent to the SCC counter-

stepping controls when it participates in the SCC advance. This can be anticipated

because the SCC only has action on non internal stores and since the ABC decoded

condition, allowing the anticipation, has signified no stores, the SCC step can be

anticipated. The only time it can be anticipated is when the ABC action consists

of a transfer of indicators only. If the ABC has any other action at all, the SCC

advance is not conditioned by the ABC.

5.6.02 ABC Stepping at Store and Internal Levels

The stepping again is dependent upon the TBC-ABC interlock. The conditional

advance line becomes active dependent upon the ABC decoding. The transfer indi­

cator M trigger is blocked from causing the conditional advance to become active

by the ABC decoded line identifying the store or internal condition. Because the

ABC decoding results in an internal or store operation, the A bus timer M trigger

is used to obtain the conditional advance line. Normally, the A bus timer M trigger

is sufficient to allow the conditional advance line to become active, but if the ABC

decoding signifies that a store is to the indicator register and is not part of a branch

on indicator, the ABC advance is delayed further. The reason for the added delay

is because stores to the indicator register result in another timer (indicator transfer

timer) being started to transfer the main indicator register contents to the I unit

updated indicator register after the store. Because the additional data transfer

requires more ABC time, the ABC stepping is delayed and becomes a function of

s?

the indicator transfer timer M trigger. The indicator transfer timer is used in the

special case because it signifies that the ABC action is complete. If the store to

the indicator register was a result of a branch on indicator store level, the added

delay is not necessary because the word is not altered but is only beingjreplaced

after testing by SAU. The indicator register timer is not used and therefore the

ABC stepping on a branch on indicator store to the indicator register is a function

of the A bus timer. Briefly then, ABC stepping for internal or store operations is

a function of the A bus timer M trigger for all internal operations and stores except

a normal store to the indicator register, in which case, the stepping becomes a

function of the indicator register timer M trigger. When the conditional advance

line becomes active, it is further conditioned by the TBC-ABC interlock. The

reset of the M triggers of the A bus timer and indicator register timer are a func-
is

tion of the ABC stepping so therefore if an interlock prevails and steppin^blocked,

the conditional advance line remains active until the interlock disappears. When

the interlock disappears, the conditional advance line becomes active to allow the

ABC to step. The conditions from the point are identical with those described in

section 5. 6.01. The ABC trigger at the ejtistivig level is reset and the trigger at the

next level is set. The AES trigger is turned back on and resets are sent to the indi­

cator transfer timer, the A bus timer and indicator register timer. The ABC action

at level N is complete and all necessary resets are performed. The ABC is ready

to function at level N+l. The SCC stepping is not anticipated.

If lookahead is in a houseclean operation, the ABC stepping is provided by a

houseclean mode and houseclean timer. Housecleaning is discussed in section 8-0.00.

5.7.00 Modify Addressable Registers (MAR MODE)

The ABC functions are not only contingent upon instruction preparation

being complete, but that the interrupt mechanism has been reliably interrogated.

The course of normal ABC action entails those functions which require the

modification of an addressable register. Before any addressable register

can be modified, the computer system must be assurred that everything

functioned correctly up to that point. The assurrance is the responsibility

of lookahead because lookahead performs the instruction sequencing for

execution. The indication that everything functioned correctly through the

execution of any given instruction is in the form of MAR MODE and is the

result of a reliable interrogation of the interrupt mechanism. Before the

interrupt mechanism can be reliably interrogated, lookahead must test

to see that all units have set into the main indicator register a record of

any abnormal conditions arising from'the execution of an instruction.

Because such indicator settings arise from any number of non synchronous

units, each units participation must be recorded and only when all units have

reported can the interrupt line be reliably interrogated.

For the purpose of testing to see if all units have reported their

indicator settings, lookahead contains a set of test triggers. In each case

the sample pulse to set the trigger is timed identically with the sample

selected to gate the information into the main indicator register. The test

triggers and their functions were described in section 5.1.00 and are also

included here for review.

Execution Unit Indicator Test

This trigger records the fact that the execution unit involved has entered

all indicators associated with execution of instruction n.
S3

Lookahead Normal Indicator Test

This trigger records the fact that the lookahead has entered all indicators

associated with executing instruction n.

A-Checker Indicator Test

This trigger records the fact that the possible error detected during

the normal arithmetic result check of instruction n has been entered.

Store Check Indicator Test

This trigger records the fact that the possible error detected during

the SCC check and check bit conversion cycle for store instruction n has been

entered into the Indicator Register. This trigger, unlike the others, is

normally on and is reset as an ABC function only when it is evident such

a check cycle will follow.

Each trigger must be set following each arithmetic unit instruction

regardless of whether any abnormal condition actually (occurs. The

sample pulse selected by the coincidence of all the test triggers is used

to memorize the state of the interrupt me chanism. For speed purposes,

when all other units have reported, and no A checker error occurs, the

interrupt mechanism is memorized immediately. The A checker test

trigger is not set. If all other units have reported, then the A checker test

is the last one to complete and if it indicates no error, the interrupt

mechanism is memorized immediately rather than waiting until the test

trigger sets and then waiting for another sample to memorize to interrupt

state. The result of the interrupt memorization is MAR-MODE for the

normal conditions or Interrupt Next Instruction for the interrupt condition.

The test triggers are alsoresetat the same time to allow them to record the

indicator settings for the next instruction (N+l).

Because the interrupt mechanism must be interrogated between each

instruction, an alternate method must be used to determine the final indicator

setting of the main indicator register for non-arithmetic instructions or no-

oped arithmetic instructions because the execution units are not involved.

The lookahead NO-OP indicator test trigger records the last lookahead

indicator setting for these instructions. Because lookahead is the only unit

involved, the interrupt line is memorized by the sample selected by the

coincidence of the lookahead NO-OP test and store check indicator test trigger.

5.7.01 MAR MODE - Arithmetic Instructions - 'l"^

The units concerned with the execution of any arithmetic instruction

are lookahead, the A checker, and SAU or PAU. The test triggers used for

recording the indicator settings are:

In Lookahead:

1. Lookahead Normal Test

2. Store Check Indicator Test

In SAU or PAU

1. Execution Indicator Test

In A-checker

1. Check Indicator Test

o f , . . . The turn-on^lookahead normal indicator test trigger is determined by

the ABC decoding of the level, no no-op mode, and an indication that lookahead
\

has transferred indicators. The fact that lookahead has taken the transfer

indicator action is recognized in an indicator test E trigger. In multi level

SjT

instructions, the final indicator setting cannot be realized until the indicators

at each level are transferred; therefore a prime pre-requisite for turning

on the indicator test E trigger is the 1C tag being on. Only at the last level

can the indicator test E trigger be turned on. If the ABC action at the IC

level does not specify a store, the transfer indicator E and not M selects the

sample to turn on the indicator test E trigger. If the ABC decoding specifies

a store level, the turn on of the indicator test E trigger is accomplished with

E and hot M of the A bus timer. The turn on of indicator test E for ABC store

is delayed to catch a possible A checker error in the data transfer. In

effect, the possible A checker error is associated with the lookahead indicator

during ABC stores. Therefore the A bus timer E and not M participate in

the indicator test E trigger turn on when the ABC decodes a store at the IC

level. The indicator test E trigger, signifying lookahead indicator transfer,

conditions the turn on of the lookahead normal indicator test trigger. Other

conditions, besides indicator test E, that must be met before the lookahead

normal indicator test can be turned on are not NOOP mode (signified by the

NOOP mode trigger being off), the ABC decoding of an arithmetic type

instruction (specified by the decoded line "no ABC LA only MAR next

instruction) and the normal test indicator test being off. When all conditions

are met, the lookahead normal indicator trigger is turned on.

The execution unit.test trigger is turned on from a signal from either

SAU or PAU. Essentially the signal received from either of the execution

units is their end operation signal. The signal from PAU is "FL. P END OP"

the one from SAU is "VFL SIR TO LA" (SIR=set indicators and reset). Both

signals turn on the execution unit indicator test trigger directly.

The store check indicator test trigger is normally reset on. If the

ABC decodes any non internal store, the trigger is turned off. This action

delays the interrupt memorization until the SCC storing action is complete

(SCC storing action is discussed in section 6.0.00). At the completion of

the storing action the store check indicator test is turned back on. The

turn on of the trigger indicates that any abnormal conditions arising as a

result of the SCC storing action have .been entered in the main indicator

nt/r/ai/j,
register. Because the trigger isyjreset on, no test is necessary if the ABC

decoding specifies no SCC action (no stores to external storage or the I

unit).

The test triggers just described are combined to form a line called,

"all other test triggers." What this line means is that all tests, except

the check indicator test are complete. If anyone of the preceding tests is

not complete, the line "not all other tests complete" is active. The following

lookahead test action is determined by the status of the line.

The check indicator test trigger is turned on by two signals from the

A checker. One A checker signal "check complete" signifies that the

error testing is complete. The other line no "A checker error" indicates

there is no error in the checker at that time. Both lines are necessary to

turn on the check indicator test trigger. If the A checker discovered an

error during the check, the A checker signals to lookahead are delayed until

the error is recorded, with the final result being both the check complete

and ho error lines becoming active to lookahead. If the "not all other

test triggers" line is active (all other lookahead tests are not yet complete)

*7

the next sample following the receiving of the signals from the A checker

turns on the check indicator test complete trigger to record the completion

of the A checker test. If the line "all other test triggers" (all other lookahead

test triggers on) is active, the two signal lines from the A checker are

combined with it to memorize the interrupt or no interrupt line and the

check indicator test trigger is not set. By this latter method a savings in

time is realized because the interrupt status is memorized immediately by

setting the MAR MODE (no interrupt) or interrupt next instruction triggers

directly. If all other tests are not complete, the check indicator test trigger

is turned on. Eventually all test triggers come on and all test triggers

combine to form a sample ("cond interrupt and MAR triggers) for the interrupt

line.

The status of the interrupt line is the result of a comparison between

the pre-set mask register and the main indicator register. The coincidence

of all test triggers gates the "interrupt" line to turn on the interrupt next

instruction tirgger. The coincidence of all test triggers gate the "no

interrupt" line to turn on the MAR MODE trigger. Either the interrupt

or no interrupt line is active from the comparison so either MAR MODE

(no interrupt) or Interrupt next instruction (interrupt) is the final result.

If all other test triggers are on before the check indicator test trigger,

the A checker signals combine with the coincidence of the other test triggers

to gate the no interrupt line to '. '.turn on the MAR MODE trigger directly!

"the interrupt next instruction trigger is turned on directly if the interrupt line

is active. The MAR MODE trigger defines lookahead action for the next

instruction. The interrupt next instruction causes lookahead to go into a

st

housecleaning mode. Housecleaning is discussed in section 8.0.00. The

MAR MODE trigger is reset at the IC level of every instruction by the

transfer indicator E and not M output of the transfer indicator timer

(ABC). This means then that the tests must be made between each.instruction.

The test triggers are reset at the same time MAR MODE is set.

5. 7.02 MAR MODE - Non Arithmetic and NO-OPed Instructions-^i^tiv>e -J^'7"*'^- /

If the instruction being processed through lookahead is non arithmetic

or NO-OPed arithmetic, the test for MAR MODE just described can not be

accomplished because the arithmetic units are not involved. An alternate

method is used for memorizing the interrupt status for those instructions

not utilizing the arithmetic units. The alternative method uses a NOOP

indicator test trigger in combination with the store check indicator test

trigger. There are two ways in which the NOOP indicator test trigger can

be turned on. A NOOPed level conditions one turn on and the ABC decoding

of a non arithmetic instruction provides the second turn on condition for the

NOOP indicator test trigger. There is a third turn on condition provided,

but it applies to the houseclean mode of operation. Whenever houseclean is

over MAR MODE must be turned on to allow the ABC to function for the

first instruction following the houseclean recovery action.

The ABC decoding of any non arithmetic instruction results in the

line "ABC EA Only MAR NEXT INST(lookahead is the only unit involved

with the MAR test). This ABC decoded line is one condition for turning on

the NOOP indicator t^est trigger. Other conditions are indicator test E

(same as turn conditions discussed in 5.7.01) and the lookahead normal

indicator test ,being off (the ABC decoding blocks the turn on of th^ normal'

Sf

test trigger - "no ABC|LA MAR NEXT INST"). When all conditions are

met the NOOP indicator test trigger is turned on. The NOOP indicator

test trigger combines with the store check indicator test trigger to memorize

the state of the interrupt mechanism.

If any level of any instruction has the NOOP bit on, the transfer indicator

timer turns on the NOOP MODE trigger. The NOOP mode trigger blocks all

normal tests (arithmetic and non arithmetic) for MAR MODE. The NOOP

mode trigger combines with the indicator test E trigger and the not normal

test condition to turn on the NOOP indicator test trigger. The NOOP indicator

test trigger combines with the store check indicator test trigger to memorize

the state of the interrupt mechanism. The MAR MODE trigger is turned on

with the no interrupt line or interrupt next instruction is turned on with the

interrupt line being active. Even though the instruction is NOOPed the

tests must still be made. The result of no-oping the instruction may or

may not cause the system to interrupt (function of programming on some

indicators). If no interrupt is indicated as a result of no-oping an

instruction MAR MODE must still be realized to allow ABC action for the

next level. If interrupt is active, the turning on of the interrupt next

instruction trigger causes lookahead to enter a houseclean mode for .

recovery (refer section 8.0.00). At the same time the MAR MODE trigger

is turned on, the check triggers are reset. 1 MAR MODE is reset between

every linstruction at the IC level by the indicator transfer timer. The test

must be made for MAR MODE in order to continue program sequencing.

If the system interrupted, lookahead enters a houseclean mode of

operation which consists of returning pseudo store information back to

Lo

index core storage and resetting all levels following the one causing the
/

interrupt. At the conclusion of house cleaning, the houseclean timer turns

on the NOOP indicator test trigger. This trigger combines with the store

check indicator test trigger to memorize the interrupt mechanism to

obtain MAR MODE operation for the possible fix up routine. The houseclean

action is discussed in section 8.0.00.

&>/

6. 0. 00 LOOKAHEAD STORE OPERATIONS

6.1.00 GENERAL DESCRIPTION

This section discusses all lookahead storing operations to external

storage and the I unit. Lookahead store operations to internal registers is dis­

cussed in section 5. 4. 00. The storing operations to external storage and the I

unit are accomplished by the Store Check Counter (SCC).

The SCC action is similar to the lookahead OCC action discussed

in section 3. 0. 00. The operation code field of a store level becomes meaningful

to the SCC counter when the LF tag is reset. The ABC action at the store level

resets the LF tag bit when an external or I unit store is indicated.

When the data to be stored originated from an arithmetic unit,

it is always in lookahead parity. The data is already in lookahead at SCC time

because the ABC function routed the data from the C or D register to lookahead.

The SCC action at this type of level results in first a priority reqiest to the I

checker. When the priority (first priority) is satisfied, the SCC routed the data

to the I checker in lookahead parity along with the necessary signals for the I

checker to check lookahead parity. If the LAAR decoding (figure 5.3-2) indicates

a store to external storage, the data is routed back to lookahead in ECC mode.

Further SCC action results in a store requests signal being sent to the BCU. When the BCU

sends an accept signal to lookahead, the data is routed out on LAM1B for

storing. At the same time, the LAAR busy trigger is reset and the store ex­

ecute trigger is set. The store execute trigger defines the checking conditions

for any subsequent forwarding of the data .

Lt.

An exception to the above procedure exists when address 0 or

4 are specified., Because these are external storage locations, and sources

of zeros, the data is converted to zeros with ECC code and the store performed.

This action is accomplished by inhibiting the data transfer and check control

signal to the I checker. This effectively puts zeros on the output of the I checker

and, along with the ECC generated during the check cycle, the data is gated

back into lookahead.

The SCC action if the store address is index core storage (XCS)

consists of a priority request to the I checker (fourth priority) for the lookahead

to the I unit transfer. The data is gated to the I checker with the signal to check

lookahead parity. Signals are generated from lookahead to transfer the data

from the I checker output to the X register of the I unit. The gate in of the

word in the I unit is in I unit parity.

When the I unit requests the contents of an internal register as the

operand, the SCC action is almost identical to normal storing action to the I

unit. Remember the internal fetch was accomplished during ABC time and

the word placed in lookahead. The SCC action is identical except that lookahead

generates signals to gate the data to the I unit Y register instead of the X register

to complete the fetch for the I unit.

6. 2. 00 EXTERNAL STORAGE STORES Figure 6.2-2

When stores to external memory are specified, the first SCC

Action consists of routing the data through the I checker to check the word for

errors. The data transfer^ is timed with a Store Check timer which is started

lo3

by the SCC decoding. Besides the data transfer, signals must be sent to

the checker to designate the type of check to perform (ECC or parity). In

most of the storing operations, the data word is in lookahead parity and

therefore a signal to check lookahead parity is sent to the checker. When

the store level \3 part of a TSMT/SWAP instruction, the data is loaded into

lookahead in ECC mode and thus the need for a store check cycle is eliminated.

This condition is noted in the SCC decoding by the WBC tag and the LAOP tag

bits being present at the same level. In this case, the store request is made

directly to the BCU.

If the word is in lookahead parity, a store check cycle is necessary.

This action is denoted by the WBC tag or LADP tag being off at the store level.

A priority request must be made to the I checker to accomplish to parity check

and check bit conversion before the store request is sent to the BCU.

6.2.01 Priority Request

The operation code field of the store level becomes meaningful

to the SCC decoding when the L.F tag bit is off. The operation code decoding is

shown in figure £J.#-/,A decoded line identifying a store check request combines

with the LAAR decoding (identifying the external requirement), an SCC AES

trigger (allows one SCC function per level) and an SCC late decode enable

(LDE) trigger (allows decoded lines to stabilize) to form the one reqxest to

the checker. The checker priority scheme is the same as explained in section

3. 0. 00. When the one priority is granted, it conditions the turn on of the store

check timer E trigger. Other conditions necessary to allow the E trigger to

turn on are "no I checker single error" and "no OK to I check". The "no I

single error" insures that the I checker does not require an

automatic correct operation from a previous check cycle from another unit

and the "no ok to I ck" insures that any I unit checker requests are blocked.

These conditions, combining with the #1 priority granted from the I checker

priority scheme allows the E trigger of the store check timer to be turned on.

The E trigger turns off the SCC AES trigger to block any further timer functions

for the level.

6. 2. 02 Store Check Timer

The store check timer E trigger gates out the lookahead data

field to LA ICIB along with a control signal to "ck LAPAR". The sample fol­

lowing the data transfer to the checker allows the store check M trigger to be

turned on. With store check timer E and M both on, the IK indicator in the

main indicator register is conditioned to turn on if a LA parity error occurs

in the I checker test. The M trigger of the. store check timer gates the data

from ICOB (I check output) back into lookahead and also gates ECC bits in with

it. Following the checker test the data is back in lookahead in ECC and the

result of the test is recorded in the main indicator register by the IK indicator

(on if an error occurred).- The M trigger also turns on the store check indicator

test trigger to allow the MAR MODE test to be made (store check indicator

teat trigger was reset during ABC time when the store was realized). PAU is

also signalled that the store check has completed by a store check trigger

turned on by store check timer M. This allows PAU to make their interrupt

test. At the same time the store check timer M trigger turns on the LA store

request trigger'is also turned on.

L.f

An exception to the data transfer and checking occurs when

address 0 or 4 are specified as the "store to" location. Because addresses

0 and 4 are external storage locations and a source of zeros, the data in lookahead

is converted to zerosjwith ECC code and the store performed. This is accom­

plished by inhibiting both the gate out of the data to LAICIB and the reqiest

to check parity during the check cycle. To prevent the possibility of an error

during the check cycle, the "LA gen PAR" line is sent to the I checker to pre­

vent any comparison check from being made (all inputs to checker from look-

ahead are inactive). The "LA gen PAR" line is a result of LAAR decoding

Address 0 or 4 and the store check timer E and not M triggers. The M

trigger functions identically as described previously to complete the store.

The data gated in from ICOB is all zerosjwith ECC code. Because all inputs to

the I checker were inactive, the output is effectively all zeros and the check

cycle generates the ECC code. Store check timer M gates in the results in

ICOB (all zeros) and the ECC code into the lookahead data field.

Another point to be made here is that the store check E and not

M triggers participate in setting the forward check M trigger if forward required

is ON. This means that the data is routed into the SCC level of lookahead with 1

ECC bits during store check M time and the same data is routed into the IAUC

level in lookahead parity during forward check M time. This action is called

early forwarding.

6. 2. 03 Store Request to BCU

The output of the store request trigger is sent to the BCU to

request priority for the store. The sample setting the store request trigger

also sets the Gate Out LAMIB trigger necessary to gate the lookahead data

field to LAMIB. The store request trigger is a self-resetting trigger and

therefore its output gates the following sample pulse to reset the trigger.

The Gate Out LAMIB trigger output combines with the SCC value designating

the level and puts the data field results on the LAMIB. No further action

occurs until the arrival of a store accept pulse from the BCU. The store

accept pulse from the BCU turns on the E trigger of the store data timer to

time the data transfer. The timing of the data transfer is a matter of keeping

the inputs to LAMIB active long enough to allow the storage unit to sample the

MIB lines into the cores. This time is allowed for by the store data timer.

The E and not M of the timer condition the anticipation circuits for a type 3

load for the level because it is evident that the store is nearly completed.

The type 3 load then can be anticipated to allow fast loading. When the store

data timer M trigger comes on, the E and M output of the timer provide the

reset for the LAAR busy trigger, turn on the' store execute trigger to define

checking conditions for any subsequent forwarding from the level and E and

M also resets the GO LAMIB trigger dropping the lookahead inputs to the

LA/IIB. Sufficient time has been allotted to store the data, the M trigger

also allows the SCC advance to occur conditioned of course by the interlock

between the SCC and ABC. If the interlock is active, the M trigger of the timer

remains on until the interlock disappears, thereby keeping the advance circuits

conditioned until the interlock disappears. The advance of the SCC counter also

sets the AES trigger back on. The AES on condition allows the reset of the

M trigger of the store data timer. The external store is complete.

L7

In the case of a TSMT/SWAP instruction which specifies an

external location, the data is already in ECC mode when loaded. Because of

this, the necessity for a store check cycle is eliminated. The store check

cycle is prevented by the LAOP and WBC tag bits being on at the level. In

this example the store reqxest trigger is turned on directly by the SCC decoding

to complete the store. The turn on of the store request trigger is the SCC AES

trigger, SCC LDE trigger, and the WBC tag identifying the condition. When

the store request trigger comes on, the action is the same as already described.

6.3,00 STORE TO THE I UNIT Figures 6.3-1 and 2

When the SCC decoding designates a store or internal fetch to

the I unit, the SCC Action varies considerably from that already described.

The first action is a priority request for the I check. Data transfers to the I

Unit have fourth priority in the I checker scheme. The SCC decoding of an I

Unit store or I unit internal fetch causes a 4th priority request to the checker.

As soon as the priority is granted, an LA to I Timer is conditioned to start.

Other conditions necessary to start the timer are indications that any I unit

priority requests are blocked (no OK to I Ck LA") and that I checker is not

going into an automatic correct cycle from another units check cycle (no sing

I ckr error). With these conditions satisfied and the priority granted, the E

trigger of the LA to I timer is turned on.

6. 3. 01 LA To I Timer

The purpose of the timer is to time the data transfer to the I

unit. The E trigger combines with the SCC value (designates level) to gate
\

out the lookahead data field to the LAIC IB. The E and not M combination signal

the I checker to check the data for lookahead parity errors. Because the I

u

checker output feeds both the I unit and lookahead, it is not necessary to gate

the data back into lookahead following the check cycle. Instead, the LA to I

timer can time the transfer from the checker out bus (ICOB) directly to the

I Unit. Before this can occur however, further SCC decoded lines must be

available to designate the area in the I Unit that is to receive the data. There

are two possible storage locations in the I Unit. One is index core storage

where the normal I Unit store data is sent to and the other is the Y register ,

which receives the external fetch word. To facilitate the transfer to two

different I unit locations, the LA to I timer has two M triggers. One M trigger

times the transfer to the X register for index core storage stores and the other

M trigger times the data transfer to the Y register for internal fetch type

instructions. The E trigger thus far has timed the data transfer to the I checker

and sent the appropriate signal to check the LA parity. All that remains is the

turning on of the appropriate M trigger to time the data from the checker to the

I Unit.

6.3.02 Internal Fetch Requests Figure 6.3-1

The SCC decoding of not an index core storage store combines

with LA to I E trigger to turn on "I timer no trans to index" M trigger. Because

the I timer is started and the SCC decoding classified no index core storage

store, the only other available destination is the Y register. With the M trigger

on, it combines with the E trigger to provide the timing for the data transfer.

All lookahead to I unit transfersjother than index core storage are accomplished

with this particular M trigger.

i f

The data is gated into the Y register with I timer E and an

SCC decoded line identifying the no index core storage store. E and M of

the timer condition the MK indicator in the indicator register to set if a

lookahead parity error is encountered during the I checker test. Also if the

SCC decoding indicated an I unit internal fetch, the IDC trigger in the I Unit

is conditioned to set if a lookahead parity error is encountered in the checker

test. The IDC trigger in the I unit results in NOOP ing the instruction re­

questing the internal register word because the parity error indicates errors

in the required operand. The M trigger allows the SCC to advance contingent

upon the SCC-ABC interlock (normal stepping conditions and resets are per­

formed). Since this is not a real store the store execute trigger is not set

and the LAAR busy trigger is reset as a function of ABC time.

6.3.03 Store To Index Core Storage Figure 6.3-2

If the SCC decoding designated a store to index core storage, the

LA to I timer index transfer M trigger is set. The data is sampled into the

X register with the E trigger and an SCC decoded line identifying the index

core storage store. The E and M trigger outputs combine to set the store

check test trigger to inform PAU of the store and turns on a Clear Index E

trigger. Two timers, clear index and write index time the transfer from the

X register to the cores. Clear index E is essentially used as a store request

signal to the index core storage controls. Clear'index E and M is used to reset

the LAAR busy trigger, and turn on the store check indicator test trigger and

Set the store executed trigger. The write index M and no ABC-SCC interlock

allow normal SCC advancing and timer resets. The timers are necessary to

lo

allow sufficient time for the index core storage controls to sample the

register data into the cores. The store is complete.

1/

7. 0. 00 INSTRUCTION REJECT ACTION

7.1.00 Conditions for NOOP

The action described to this point allows processing the entire compute
instruction set under normal operating conditions. It is possible, upon
detection of certain conditions during preparation, to reject the instruc
tion. These conditions cause the No Op tag "bit to be set in the level
involved and include:

1) Abnormalties detected during the Instruction Unit prepara­
tion, prior to loading the lookahead, such as addresses fail-
ing the boundary comparison circuits, invalid operation
codes, errors, etc.

2) An operand address failing the Memory checking circuits.

3) The operand itself failing the I-Checker circuits.

7.2.00 Lookahead Action-7/^M v«. % £.-/

Under control of the No Op bit, normal functions are inhibited and only
the necessary interrupt system sequencing functions are performed.
The presence of this bit at any level through the last (fetch) operand
level associated with a given instruction causes the entire instruction
to be rejected. Beyond this point, the No Op bit will not appear since
the execution units are allowed to modify addressable registers.

During the ABC action (Transfer Indicators E* M) at a No Oped level,
the No Op MODE trigger is set and remains on to define the action
through the last level associated with the instruction.

TBC action consists of merely advancing over a rejected instruction
on the basis of No Op MODE^ICi* TBCj, At the last level, no action
occurs until the ABC^has completed action at this same level, at
which time the TBC advance into the next instruction and the No Op
MODE trigger reset occur simultaneously.

The ABC action during instruction rejection includes the transfer o;
the Instruction Exception and the CNIDC indicators, with the No Op
Indicator Test trigger recording the last transfer. In addition, up<>
detecting a store level during this mode of operation, the LAAR B.
trigger is reset and the No Op tag bit set. Thus, if necessary, th
Forward No Op Conversion cycle may take place to allow the com
to continue.

7̂

7.2.01 PAU Instruction Reject

In general, the PAU is not allowed to begin pre-execution of an instruc­
tion to be rejected. The exception occurs when the special operand as­
sociated with the PAU Multiply and ADD instruction is]No Oped. In this
case, the PAU MPYC Reject pulse is given in lieu of the PAU Continue
signal, and the instruction terminated prior to modifying an addressable
register.

7.2.02 SAU Instruction Reject

The d. c. output of the SAU Reject trigger serves to cause rejection of
SAU instruction. This signal is given only when housekeeping has
actually begun and is given only at the first No Oped operand level. The
SAU Enabled Memory trigger set by the ABC (Indicator Transfer E«M)'
at the first SAU level (if not rejected) remembers the.first condition
above. The logic for setting SAU Reject is, then, SAU Enabled Memory,
No Opi, ABCi, No No Op MODE, Indicator Transfer E« M. The trigger
is reset by the SAU NOT OPERATING condition indicating instruction
rejection prior to the modification of an addressable register. The SAU
Enabled Memory trigger is reset at the last level with the sample selected
by Indicator Transfer E*M, ABCi, ICf.

7.2.03 Pseudo Interrupt

Four levels exist which normally cause the Index Result indicators to
be changed. These axe:

1) Instruction Unit Store level
2) Indicator Transfer Only level
3) Instruction Unit Pseudo Store level
4) SAU-PX Pseudo Store level

When an instruction resulting in any of the above levels is rejected, the
transfer of these indicators is inhibited at the ABC level; thus, the
Instruction Unit record of these indicators is in error. The validity of
any subsequent levels appearing in the lookahead is in question and House-
cleaning action is initiated to recover. This recovery is referred to as a
"pseudo interrupt".

Following this action, the applicable bit positions of the Indicator Register
are transferred "back" to correct the Instruction Unit Updated Indicator
Register, the contents of the.IC Buffer are transferred to the Instruction
Counter and the Instruction Unit resumes by re-preparing instructions
from this point.

7.2.04 No Op Code

The interpretation placed on the No Op tag bit prohibits the bit setting be­
yond the last fetch operand level of SAU instructions.' However, errors
detected during the loading of 1) pseudo store data for the progressive

73

indexing level and 2) the branch address into the branch recovery level
must be recorded and appropriate action taken. Only if this recovery^
data is to be used is this error significant. The error line is gated into
Operation Code position 8 and the CNIDC indicator. The former action
converts these particular Lookahead Operation Codes to "No Op Codes
and the level is handled consistent with instruction reject action. When
it is determined a recovery is necessary, the CNIDC indicator is trans­
ferred to the MK position of the Indicator Register.
8.0.00 LOOKAHEAD HOUSE CLEAN ACTION

8.1.00 Conditions for Houseclean

The Housecleaning mode of operation may be necessitated by any of three
conditions:

1. Detection of program interrupt,
2. Detection of the need for "pseudo interrupt",
3. Detection of the need for "branch recovery".

In each case, the levels beyond that at which the ABC initiates the House-
cleaning mode are considered invalid. Lookahead loading is terminated
immediately and, at any level containing pseudo store data, the operand
field is transferred to Index Core Storage to "back date" this memory area.
This action continues until all counters are interlocked with the IAUC and
the IAUC Advance Enables Sequence trigger is on indicating all levels
have been processed. The necessary lookahead status triggers are then
reset to allow resumption of normal action before allowing the loading to
begin.

8.2.00 Housecleaning due to an Interrupt— u\r<-

This action is initiated due to the Interrupt Next Instruction trigger
indicating the latest memorization of the interrupt line. The sample
selected by this trigger, ABC Advance Enables Sequence, ABC^LFi*
LCi sets E trigger of the Houseclean Timer which is used (in place
of the Indicator Transfer timer) throughout the remaining levels dur­
ing this mode of operation. At this time, synchronization with the
Instruction and Execution Units occurs to define the status of the
computer.

The sample selected by Houseclean Timer E«M,No LA Houseclean
Mode. Interrupt Next Instruction: 1) sets the Interrupt Inhibits
Load trigger the output of which inhibits all Load Enable signals to
the Instruction Unit.-2) sets the LA Disable Interrupt trigger which
insures the memorization of no new interrupt until this recovery is
complete. -3) sets the I Houseclean Request trigger informing the
Instruction Unit of the recovery. This trigger is reset by that unit
upon initiation of that action necessary to insure availability of the
registers necessary to receive recovery data from the lookahead.
Completion of this action is indicated by the d. c. signal LA House-
clean Request from the Instruction Unit.

n

When the instruction at this level-i,e. , the instruction being inter-
rupted-is the first level of a PAU instruction (specifying a non-
internal operand and is not rejected), it is evident that the PAU will
begin precxecution. This units action upon detection of the interrupt
condition, is to terminate pre-execution and enter an "Idlb" state
such that no further instructions may begin. (This is necessary since
it cannot be guaranteed that the TBC has not given the GI Op Code &
Start signal which applies to the next instruction. Neither the PAU
nor the SAU may honor a Start signal from the lookahead while the
PAU is in this ••Idle" state.) .

The pulse, Set Execution Units Idle from the PAU indicates this condi­
tion and is sampled into the Execution Unit Idle trigger. Coincidence
of this trigger and Lookahead Houseclean Request sets the LA House-
clean Mode trigger which controls the action at the remaining levels of
lookahead.

When the interrupted instruction is the first level of an SAU instruc­
tion (not rejected), it is evident the SAU will begin its Housekeeping
activity. This ABC decode line, Houseclean Timer E-M, and No LA
Houseclean Mode sets SAU Instruction Interrupt as temporary stor­
age. This trigger and SAU Housekeeping sets the SAU Reject trigger
wh ich aga in i n fo rms t ha t un i t t o t e r mi na t e p r i o r t o mod i f i c a t i on , o f
an addressable register. SAU Not Operating,, SAU Reject)Interrupt
Inhibits Load-SAU Instruction Interrupt is used to set Execution Units
Idle.

When the ABC decodes any level other than the first level of PAU or
SAU instructions, the Execution Units Idle trigger is set directly
(Houseclean Timer E» M) by the lookahead such that the LA House-
clean Mode trigger will be set in the usual manner after the Instruc­
tion Unit completes the necessary recovery.

By this method, then, once LA Houseclean Mode is present,- the state
of all other units involved has been established and the lookahead may
proceed to restore any necessary data. (It should be noted that LA
Houseclean Mode inhibits normal TBC action, so until this trigger
comes on, the TBC continues to function normally. This should
justify the concept of the necessary execution units "idle" state.

The LA Houseclean Mode provides A continuous advance condition for
the TBC such that this counter will advance through to the IAUC level
contingent only upon the TBC-OCC interlock. At each level to be house-
cleaned, the ABC action is restricted to: hc^uye.

1) Transfer only the.CNIDC indicator to the Indicator Register
to record errors in recovery information.

I f

2) Reset LAAR Busy and set the No Op tag bit at level#
requiring use of the LAAR. (This again allows the
Forward No Op Conversion Cycle if forwarding has
been specified.) This action is performed by the
sample selected by LAAR Busy, ABCi, Fromi# House-
clean Timer E* M.

3) Resetting the LF tag bit in pseudo store levels to allow
the SCC to return the index word. This is done_with
the ABC decode line and Houseclean Timer E« M.

The advance condition of the ABC during housecleaning is HousecleSn
Timer M, LA Houseclean Mode and no interlock ABC-TBC.

The SCC action of returning the index word is contingent upon LA
Houseclean Mode and is very similar to effecting a valid store, to
Index Core Storage. The address involved, however, is buffered
impositions 1-4 of the Operation Code Field.

The process of returning this recovery information must be accono-
plished in "reverse" order--i. e.--the "earliest" original contents
of any one Index Core Storage location is the only information to be
restored. Thus, during the return of data, the address involved is
compared with all other pseudo store addresses in lookahead and
the comparison signal gated into Operation Code position O of the
level compared with. This new lookahead Operation Code is then
interpreted by the SCC as merely an advance condition.

The ABC and SCC action continues until all counters indicate The
same (IAUC) value indicating the lookahead is empty. With the
sample selected by LAUCi, OCCi, TBCi, ABCi, SCCi* IAUC Ad­
vance Enables Sequence, and LA Houseclean Mode, the Houseclean
Over Timer is used to reset the various computer statue triggers
to allow resumption of normal action.

Houseclean Over E M selects a sample to: -fi^uve- *&'.ZLr~3

1) Gate the contents of the IC Buffer to the Instruction
Counter. This is a direct path.

2) Gate the Index Result indicator position of the Indicator
Register to the Instruction Unit Updated Indicator Register.
This corrects the latter information for local interrogation.

3) Reset the PAU and SAU Start triggers. This removes the
false start which may have been set up by the TBC before
LA Houseclean Mode terminated this counters normal ac­
tion.

%

4) Reset lookahead MAR MODE and the PAU Master Tests
Complete triggers in preparation for re-memorizing the
interrupt line.

5) Reset LA Houseclean Mode and Interrupt Inhibit Load
triggers to allow further lookahead loading. (This
sample also resets Pseudo Interrupt Inhibits Load and
Branch Recovery Inhibits Load used during these types
of housecleaning action.)

Houseclean Over E» M selects a sample to:

1) Set the PAU Wait trigger. This essentially terminates
the PAU "Idles" state allowing this unit to accept new
instructions.

2) Set the No Op Indicator Test trigger which allows re-
memorization of the interrupt line in the usual manner.
Since the LA Disable Interrupt trigger is on, this memoriza-
tion results in MAR MODE and MAR Next Instruction.

Houseclean Over Timer-M forms a d. c. signal to the Instruction Unit
to resume. The first action includes "generating" a special Branch
on Indicator instruction (IRPT-BIN) to accomplish resetting the bit
which caused the interrupt. The conditions, branch if bit is off (F/N)
and set to zero (L/Z) are generated. Thus the SAU accomplishes the
bit resetting and the lookahead action is identical to that of the Branch
on Indicator instruction with the Branch Unsuccessful response. (The
TBC decode line at the first level is memorized by the SAU in lieuof
any SAU op code.)

The next instruction seen by the lookahead is the "free" instruction
stored at the address specified by the sum of the Interrupt Address
and the bit address of the bit causing the interrupt.

The LA Disable Interrupt trigger is reset by MAR Next Instruction,
Indicator Transfer timer E» M and inhibited by the ABC decode line
identifying the first level of the IRPT-BIN instruction. In this man­
ner, it is insured that both the IRPT-BIN instruction and the free '
instruction will be executed by the lookahead before a new interrupt
may be honored, j

(An additional Interrupt Test level exists for the special purpose of
forcing interrogation of the interrupt mechanism. In certain cases,
(notably the Transmit or Swap instructions) it is desirable for the
Instruction Unit to complete stores to the Index Core Storage areji
without recourse to loading successive pseudo store levels since the
depth of lookahead limits the degree of recovery possible. This may
be accomplished only upon proving logically that the instruction is
not to be interrupted.

Prior to taking this action, an Interrupt Test level is loaded into the
lookahead, after which the Instruction Unit waits for the Lookahead

77

Empty signa. This signal is fQrmed by MAR MODE* or IRPT
NEXT INSTRUCTION, No Forward Required, the absence of
all Inhibit Load triggers, all counters interlocked, LAUC Ad­
vance Enables Sequence, and the fact that the level designated
by the LAUC is not disconnected.

The normal action taken at this level is seen to be similar to
that of the Indicator Transfer Only level with the Index Result
indicators unaffected.)

8.3.00 Housecleaning due to Pseudo Interrupt £"3-/

This action is necessary upon detection of a rejected
instruction affecting the Index Result indicators. The
action is initiated during ABC action at the last (IC)
level of the rejected instruction, thus insuring the acf-
dressof the next instruction appears in the IC Buffer.

The sample selected by the ABC decode line, and Trans­
fer Indicators E* M sets the Fseudo Interrupt Inhibits Load
and the I Houseclean Request triggers. Following the
Instruction Unit recovery, the sample selected by LA
Houseclean Request, Pseudo Interrupt Inhibits Load and
No LA Houseclean Mode sets LA Houseclean Mode.

The lookahead action once the Mode trigger is on is identi­
cal to that previously described. The Instruction Unit re­
sumes, however, by merely re-preparing the instruction
specified by the contents of the IC Buffer. (The Inhibit
Load triggers serve as memory of the particular type of
housecleaning action and define the method of resumption
necessary for the Instruction Unit.)

8.lj..00 Housecleaning due to a Branch Recovery-%.3-l

This action is necessary upon detection of the Instruction
Unit making a false assumption in attempting to process
the Branch on Bit/Indicator instructions. The action is
initiated by the ABC at the branch recovery level associated
with these instructions.

The Branch Recovery Inhibits Load trigger terminates the
loading process, and the I Houseclean Request signal is
given. LA Houseclean Request from the Instruction Unit,
Branch Recovery Inhibits Load and No LA Houseclean Mode
sets the LA Houseclean Mode trigger. SCC action of return­
ing the branch address^ is contingent upon this Mode trigger
(since LF was reset by the ABC "early".) The LA to I timer
is used to time the transfer with the data destination of a pre­
selected Y Register.

It

The recovery at the remaining levels is identical to that
for housecleaning due to a "real" interrupt or pseudo
interrupt. However, upon completion of this recovery,
the Instruction Unit resumes by preparing the instruction
specified by the Branch Address and continues from this
point.

Regardless of the type of recovery, the reset accom -
plished with Houseclean Over Timer essentially allows
normal lookahead action to continue when die Instruction
Unit resumes the loadihg process.

9. 0. 00 MAINTENANCE MODE

Each of the four lookahead levels has a disconnect switch

associated with it. The switches are physically located on the 7030 main-r

tenance console. When any of the switches are turned on, the level to which

to switch is associated is "disconnected" from the system. The action per­

formed by the switch is a blocking function of all operations within the level.

If any level is disconnected the sequencing counters at the level are all un­

conditionally allowed to step to the next level and all operations in the level

are blocked. Effectively, the 7030 system operates without the level. By

using the switches, any level or combination of levels can be disconnected.

If all four switches are on, the system does not operate because there is in

effect no lookahead. If trouble is expected in any one level, the other three

switches can be turned on and effectively limit lookahead to a one level opera­

tion which can be easily checked.

In addition to the disconnect switches lookahead OCC action is

also altered when the maintenance console panel keys are addressed as an

operand in the maintenance mode of operation. The fetch, controlled by the

BCU, returns the data with no associated ECC bits to lookahead. To identify

this type of operation, the I unit codes the preparation tag bits by setting internal,

not LF and not LC. The storage select results in internal, LF and not LC. The

OCC signal to the I checker to check ECC is suppressed and another signal sub­

stituted to merely generate parity and residue. Finally, the operand check E

and M forms the normal coding of such a level as not internal, Lf* and LC by

resetting the internal tag bit as well as setting LC. For consistency the in

ternal tag bit is always reset by operand check E and M.

? /

-X

•

ZI/1°
°0<

a> 5 o)

-q tOUJ
to -ZI

II

t
i s <0 a

£ O

8 8 „
_M

,? 6
t f e

III 51

IT

a *

2 ^

17 5.8

a 5

IS
s
ifl
7 fV

I I «U
3

a
LU
U.

u .
< a

LU
U. f

9 5
2

m iu

< a
- J jO

S| w s & 2

%su

% t;l»

3 S

in 51!
S|'

a

I 3

s
u "•

u 5

§ P ' & .

3 S ^
£f£r s uT

e
v H

O
a:

o i
2 O el
J 2

J 3

<t

*1

xf

£3

I £ s | t
g]8 H - I

< p
- d l

CD > < 0 >
, UJ
4 J

5 O

f l l l i l s f l l f l
W 0 | f 2 g g W

s [l
tfJ at

, ^ l T

d i

I

u

&5
a

£ £

5- oj

yT -,1 Ul I

d3 ii
* "ft

oluJ

¥"

§•

U <n f M » d 11? 5 Si
u W

%s

%

25
"S
o<

Ft

I

en a. <iJ 101° o 2
? ?o9
::Z2

b>;
-r mT 1
.J

£7

J) J Z> al
CO >
-c !J

II

ro o
mQ
o£ 8̂

M\ M

I t* <•
5

lu •-< 0D°r

UJ os.

<VJ
J^o

;*c* ft*- i*
& o > 0) 5
^rDol< ?
5 oSt u

O t i"k
8 "I tl

siktL
z. m pTaT^<£
=> ,D fc u p

t-i

BL
, »- 0 llu

% K
5 4
5 <

L

5^3

V- O ^ t-

lisgg

, Ju!^

5 J <P £
jafcg *
U- -*
>U A) 3 UJZ

SBsig^
5=afn«r ~

UJ Jz Ui
d?5 $-j°

g g z

^1 ft5 J
zzo
6 o
apuj
71/3 •4 *? v-

5 sl

fi o 5o

3g

t
UK QH

M

„ c?
o.o

5I?t £ oT

oi

0 o
a y
CI o

jR

V v tf?l

S O

?!

U ot

:l $ [r A

Sd
<D £

3 3

w| 6i
P|§

I

5 2 *

UJ h
001 Wj. —N
uj in ^
0: a ?

K £ D
^ 1O0
5 os

in in (
o o \

o to I UJ

t i g
M ?

fig 2 <}

S!

a

74

2 0

•* 1
2

1-1°

" 5 5 _ «jJ
•t iO oy. o H7-ft5

K^iyWa; U)
£Su.<o :> o

O-O <ov-
oy

•uf
o
2

I t

<io
o I m z r^i I n

1^05
iniho ooa

??s

KrS
?],

Wr 1

Is

10 >

(Y
Ul u « >

b
(1 7
Ul J
Ifl . !
Z

I/I
7 I.I

N U
n
<

- o 3 ft s - • °
y

7 ijr) uj U
I Ul C/1 ' O

-Ja

Ul

§; a

0
x

" t Q

7.
LJ

I ̂ I
Jj <J

A A>

ID
<

U u
0
0 u
5 v> i IJ
ai a
Oi
o
2

00

H ui

"1

Ul
ol

9

o7

*f
al

^ n
I- ?
$ a
Lii y
or <n

3

D X

w

%

97

St 5

§ <

if

o
liJ „
vPT£

I '
F j
^H'Q

la

UJ '
a

m

ui1

0
rr<k

!* o

8

f3 a

§ 8

p
O 0 ,

Or
z

"liu iMNQfl
T 9 0 o M^7J oo

?ogo fi r^OO O Q2-?

d o

51

f f

»

OQ 0-

< o

3m1 5
'3 JS

<r> J 5 >

)oo

° I
tu
if) UJ

iij
2

rv

<n
UJ
•? »L

UJ
<r F LJ

in
T

0
hi

_J
o V) i

VI X
7 UJ UJ

>
a

ZA £A

UJ , I n n SI i

ts

!

J u.Ti
3 M
(01 O (J f 8

a: H
til <
5 5
F
<
UJ U

0
(J)

Of b: •Sf
CO

h- h- J=|

K lc

UJ a)
A> H 1/1 UJ

<• T"I "V •- <»Tv."
£ M H 1_ "J ^
,1 «Jk fc KJ® ki gg s

"> fc; n

51
t-

V

K *

85
X1"
w*

/* /

<]2
H

<y Z

i

>
M
D
(0

Q
Z

<F
UJT

H O °T

I S
!V

O

I k

!S

U. » Q

& 5
>-•1 HL
E? O

3?

5>
(Q ul
<

a ui
S Q
00
Z5

9 88
<T! z5

i t

fc
< H-I | , v- y D
°rw br^T ̂
b d i a
¥ !S r fc
l> & v/1 V0

<r

CO

§
LL

1 Z

CT liJ

U_ a:
3 0/
2 o
^T»-
HlW

• / 03

IIs
5 T Z T A
f.m

2 w i '

c O £ - r

u U

its

, o o o o » Z 2

Sr

I
. in -I

< j [^ w r ,
£ • * - S •
0 5 1 £ i i

1

\otj~

toy

j 0 to

101

3J

? oo
- z2

ujgO
Qa z
^9u-

*4
9]

8 W
m - 1

3

J,

3J§[|

EO Q- iy
? 88

u

a 8

q t j

.PJ

"j £

i ' g

CO

<

to$

U0

2 u a
pir. 7.

1
)T

J r
i i

2<

oz
tvS <oi-

a o
Q u Z 0
(£+ z.
x
oj

t] UJ
0 OJJ

?
g

3 ft <

c.
0 h
0
21

t/7

i
h
3~ <
<n
h-

w ' p

rnQ-UJ
000
in00
^Z2

(flSC-"-1
rfiSoo
t900
intn-z2

o:
llJ
5
K
h

fK 5
uJ
>
h u

' UJJ

- • CJ_ >. UJ

3
(0 w
4g

•V tJfe
In _ uj Z
or. uj

arA

£80

01 2

K

- ^
i/W1

^ Q

O -
2T>J

I

iff

z-r Sf
?I "J 5 Q
si 9

rn q_uj
N NoQ
T TOO
in if* Z5

UJ

I
a?

(YT
IU >

u t
Y-
\—

•m In UJ o
> o o ,? r <

Uor £Y

o
V)

rr K CJ x

no

3 o
fi55

R CLW
O OD
_1 oo
S z5

ill o

2 - ST 9

R 0-W
o oo
T O O
a

•I I,

Kj V

Hi ii II gj
o «f b <n

o
<
VI p

fc 9
en

z
UJ

VJ I
UJT 1

///

iT> Z
-3 O
2 ^

p
0- O

p

fcgt

uu zg

UJ<t

?
§ §

JO
cK
uj uJ

i*
s°is

Ej Jo
-r ^ cD
S^-Cj
4J -J h u _j <r
S ?o

;' J
juinj

j _j uJ _i <

_. B.5R0
£ [l tO 3 ul
' 1- ̂ "J Z
H V; <1 tO Q
J2 « 11I O- X
c fj fi 3~ <o 3 z

i 41 a _T T. s.l cc *1

3

o u H o UJ UJ UJ M
Q O Q S

n L

pM
uImI

ui
UIT

"I

p[!

113

<y&

d l-iij

6 z

3 , n-*-

\ii<

s
1/1 t

(k 1

Sufe
»tG

V3
H X
l/1AX

/ / f

UU/Mtf
-fry
Z-o —y

3§§S

a8^ >^^y>

*$& 82C98J
FaZu C-3S5 ff(

8f j'f

V&
jp
u.-pw~

ho n

Of F

^ 2
Cf -J
u o </>T (0

, >

UJ

J
Ln

2
n:

Uj
7

U F

8 F

P
w

4
J

n

sr

0 0 _
8 « 8

O 0
U)
a

&o

O- i/l
2 7

"kfl $1

US'

o l *
^^z3uj

o J to \f)0

§Sa 2 d
u l
%

a z

^ i * % I &
otf

§J
afe JSU

eggs
B!j K1(0 ^ 2

was Eh3?
J ,

ir^"
?
o

PTg
I
t-
<
M"

Kill

u r°

fe

/ / £

/ /7

JL
A Q'J

u

i

a
n
co

7.

u
c

"J

Jz
bild

r J

2 <

1^1%

S S o

m iiJ

v go
SzS

Sa>J
go°

m

«y

Ujlu

5

5 H o z
OT ~

5 J

1*1 id
LJ n

? s
"r""

aa
,q a

///

119

l i

1 f.

IJLO

5 < '

a —

-I «I
0]

— iS 15

5 2 a! (\! •"» o »J y
« f)

in a; ~ ilI
2
F

i£L

p.w

121

9 <

ftp n
o 3

<f (-

8
o

in o o 10

So ft r

£ © § &

fO Q_
fO fO Q UJ
5 K o o°

{C W©

o

O Id
O H
2 v

! U-

3

A LU ~) I*
£ t < °
& y 7

ioj CO UJ
u h-F
or .

Of ?I

L

a?

it
0 Q

2

<L

a ob'g
1 3 ° ^ 2 I

vQ (3)

rf> JRguJ
* ? ° o
O j , z | in.O

15' U) @

2 £ In
2 < P

u o
LUI fD ?
inl i_ • lu ' T hi"

/ 2 3

<U1

B

ul|b>
O _j z <
u) g

a. £

<o i°Q-oin ""Q-UJ

?£?8g?g?8g
rfl lO2 5
<" •"©

tfi ffjQ- u

7*?|§
<n°cn*5
m rog)

(" U15-U
r*o8g
toO^zg
I" t"0

o
z

o
z

s

<

o

o vr Pi
UJ

ui
o
2

in
UJ
a:

rn uj rn lj

^rt rn ^
V9L_IAI

(h,Jo
r*^-Uh<

•• &l LJ^OV

|5l 'W<

S#&8 "?9go
rflfOZi
cTtrCt

tnD
a?cv
dJ

XLiL
UJlu_

Ufi«

l0§

**10131

lO<
Ooi-

^99
8$

2
0
6 <

2
4 u> j <J Id in 3 0 1

a
4.
hi a a <
P
0
2
</>
bl
0 0

!

t

i

3
I
a
J
3 3

2
0
6 <

2
4 u> j <J Id in 3 0 1

Si 1 u)
or
T 0
F o
o
tr
h lft
2
H

i

L

3
I

5
3 3

a
< ui a a
<

a
8 .

1

Si 1 u)
or
T 0
F o
o
tr
h lft
2
H

Z
0
5
s a
0
J
<
2 a. o z

£

I I
n>

$
5
F

§
§
£ <

q Id c/>

2 o
«

a

I

i

B D

§

cr Q in
Z Id
i.
3

s Id
z id
a <

. A

s
a Ft £ h
fcT S zg

a * F ^ tf § 9 X T £ D 51 IlL L1/1
? 3" » ui Ml o w 2 |

3
*1 hT J ml< s 0
OC O

§ K
if tig
15 l B"

bi ifl
1
<R
1*

I I> Id td <P

1 01

ui IV
n a

ifl *
4

Z
0
5
s a
0
J
<
2 a. o z

is g
5
en

m
6
in

Hi
B
in

C
O

U
N

TE
R

0 t O
2 <

o u <0

127

S
z
F

fl z.
Z 2

I = i

ej£ 1/1

^ u ia
3404014

o

T*V°g
mOrfiz§
m

m n1Q-
Sj COOUJ

-<*99o
lO Of°o Z
m to®

J

o z

o c*
— UJT

^ & 5
± § F

Li. 2

fl Ddl

£0tO

Slsfs < f

H ir>

Suj
O °h <?fto

ro §<
m -

1
z$

<np

2<

fcL

t1
lO

21

O 7 uj £ a O

™i5 to.
? L
«1 Q

1 a

UJ q:

2 2

*; </>. 4„

S SauJ <°CKfl0O J mCLLU
- K C o a
; o ? o o

o i3
2

Of a

CLcO,
ouj
oH

ps

uj a -|

130

5^
slSi

Il-L« , O-^UI , ~* < U £ ^ 2

rSr

Si
M- 5

o„S
4.

III o "1 x z "1 LU
c) o Y - lJ
5

UJ i/)
IJ

(/)

M 0 fV M 0

H IU P

IS

131

i f l n ! p s r

SI

3 o
S o

ill:

3 3

40 3 cnu

5 o
—, a.

13^

SL
<1*.

0• h

O p <0

-T U

Ai

a n s t

\ 3 3

32

ua
>-

UJ?
aO
mp

J
Ox
i*-a
fc?
<u.

UE

V»
UJr-

1

/3:T

~sT

t;

°t?i

sjS
Hi -r
o z

fc
a
£

9*

S4r 9 -td

a* in-

h
of
y

y £ ||
|lgj

s fcl

J 3 L

v-'l U- I!
U. -r

" S

rf)Q-.

&Sr
S§8

(TlU
0\-
Z 2 <(

^ I(V
t l t i

13 7

a<1

t s

uiT
10 | uj j

.*1
O
CO

UJ
o
z
LJ
(X.
UJ
U-
UJ
ty

CL

2

cQ

<ot4u
o ^ g ? ^ 8 0 : E §
ci<5 4<2
O J o , o-^

t1- r1-

PJ M
(0 (O
° ?

i $

• 2
J

M^uJ
503:0 ° • o

• <x

*2

m

01-1

<0
<t

S S $ o S S ? S

C 3

cvj (vJ
(rt eJ o o
g cn 0 (O

(0 CO fsj fJ ' <° <° 7) n O 0 ° 0
S

(0 cJ 5j <r «° K
0 0 • • i i •
r t S S I r 3 ^ O i v j

I 3 f

LINE ABC DECODED OP C DD A NC

7

T

8

\G

9

s
0 <

o

z

:>

o

z IN
T

LC

1

If
<

y

AND'ED WITH OTHER COND OR'ED

1 1st Lev VFL No Op 1 0 0 0 3, 6

2 2nd Lev I/O 1 u 1 0 1 u 0
3 BB Op Cd No Op 1 0 0 0 1 1 1 0 0
4 BIN Fetch Lev 0 1 1 1 1 1 1 0 0
5 BIN Intrpt Lev 1 1 1 1 0 1 1
6 BIN Op Cd No t)p 1 1 1 0 1 1 0 0
7 BIN Store Level 1 0 0 0 0 1 1 0 0
8 Cond ABC Dec Br Recovery 1
9 Cond ABC Dec No Op Cd Rec Lev 1

10 Cond ABC Set and No Op 1 0 0 1
11 1 1 0 10 and Branch Successful Condition Ind
1? n n 1 1 1 1 1 0

n I 0 0 1 1 1 0
13 Cond SAU MAR 0 0 0 1 0 1 1 4,

Cond SAU MAR 0 0 0 1 1 1 1
14 Data Ret On House-lean 1 0 1

1 f 1
15 0 n 1 15

Del ABC Adv 0 0 1 0 1 1 1 0 0
Del ABC Adv 0 1 1 1 0 0 c 0

1A Del Ind Test c 0 1 0 1 1 1 0 0
Del Ind test 0 1 1 1 0 0 c 0

17 FLP 1st Level 1 0 0
1R FLP Int 1 0 0 0 0 1
19 FLP Store 0 0 1 0 1 1 1 0 0

FLP Store 0 1 1 1 0 0 0
70 Gl D 0 0 0 1 1 1 1 Note: VFL 2nd Operand

21 1 Box Ext Store c 1 1 0 1 1 1 0 0 No LAAR Dec Int Add and No LAAR Dec Index Add
1 0 1 0 0 1 1 c 0
0 1 1 0 1 1 I 0 0 0 No LAAR Dec Int Add and No LAAR Dec Index Add

74 1 Box Pseudo St 0 0 0 1 c 1 0 6
25 1 Box S.ore No Op 0 1 1 0 1 1 1 1 1
26 1 Ex Ind Transfer Only 1 1 0 0 1 1 1 0 0
27 Ind Transfer STICA BIN 1 0 1 1 1 1 1 0 0
28 Inhibit Gl C On Int ABC 0 0 0 1 1 1 1
29 Inhibit Set Idles 1 0 0 0 3. 6

Inhibit Set Idles 1 0 0 0 0
30 Initiate Branch Rec 1 0 1 0 1 1 0 0 Branch Successful Not Condition Ind and 8
31 Initiate Pseudo Int 0 0 1 c 1 1 25. 39. 38

Initiate Pseudo Int 0 0 1 1 0 1 0
32 Int 1 Box Store 0 1 1 0 1 1 1 0 0 LAAR Dec Int Add
33 Interrupt Test Level 0 0 0 0 0 I 0 0
34 LA Only MAR Next Inst 0 1 1 0 1 1 1 0 0 33, 24, 26, 2, 22
35 Level Loaded 1 1 0 ABC i
36 No Op Code PX NO No Op 0 0 1 1 0 1 0
37 No OpTIoded REC Level 1 1 0 0 9 and 10 Branch Successful Not Cond Ind
38 No Op 1 Box Pseudo Store 0 0 0 1 0 0 1 1
39 No Op 1 Execute Ind Transfer 1 1 0 0 1 1 1 1 1
40 Normal PX No No Op Mode 0 0 1 0 0 1 0 24. 26, 32, 21, 38
41 Reset IBC Atb 0 1 1 0 1 1 1 0 0 No LAAR Dec Int Add and No LAAR Dec Index Add 24, 27, 26, 45, 33, 2,
4? Resume Branch STICA EM 1 0 0 1 1 1 0 0
43 Resume No Branch STICA EM 1 0 0 1 1 1 0 No Branch Successful Not Condition Ind
44 Set a Return Ind XE 0 0 1 0 1 1 30, 45, 21,

Set a Return Ind XE 0 0 1 1 0 1 0
45 STICA BIN Store 0 1 1 0 0 1 1
46 Store A Store B 0 0 1 0 1 1 1 0 0 50, 7, 48, 49

Store A Store B 0 1 1 1 0 0 0 0
47 Store Arith Bus 0 0 1 0 1 1 1 0 0 50.

Store Arith bus 0 1 1 1 0 0 0 0
48 Store C 0 1 1 1 1 1 0

Store D 0 1 0 0 1 1 1 0
50 VFL Store Bus 0 0 1 1 0 1 1 0

FIGURE 5.2-1. ABC DECODING

To SCC Advance
= Fl Pt Store No Int
= Fl Pt Int

1RG Tgrs
- IC Field
0-16 + IP
17& 18 IP

© -

No LA Hscln Mode

Cond Interrupt MAR Tgrs

To Latch Set
and Reset

I?5"
LiirV-

1 RG
Tgrs LA

. Ind Reg
LA Ind to Ind Regis

A r 1 M/

LTH

R Next

| Cn
DF

nst

IJ , A
, IF-(Sa

X OP, DS, r

mple to Ind Reg)

On
E • M

A To Latch Reset
MAR Next Inst

FIGURE 5.2-2. ABC ACTION FLP (NO STORE - NO INTERNAL

Transfer Ind M
No No Op ABC i
No No OP Mode

A Bus
Timer
Triggei

LAAR Dec Add 3
LAAR Dec Add 5
LAAR Dec Add 6
LAAR Dec Add 7
LAAR Dec Add 8
LAAR Dec Add 9
LAAR Dec Add 10
LAAR Dec Add 11
LAAR Dec Add 12

Step
9&!°
Level

©

i
To Latch Input, Turn
on ABC AES r

A Bus Timer
for Int Operands Only

ULB to ULBACIB 00-73
Channel Address to AC IB 5
CPS 00-63 to AC IB
AOC-LZC To ACII
GTA 00-59 and P to AC IB
GTA SRAB 04-07 to AC IB 60-63
GTB 00-63 and P to AC IB
GTI SRAB 00-07 to ACIB 0-7 and P
GT N 00-63 to ACIB

\ GT M C

To Latch Input - Reset ABC i ~ Set ABC i

Pass Data LA

(Signal Ckr)

L
A Bus

LTH Timer

Trigger

(No Br Ind) No Inhib LAAR Busy Reset
LAAR Dec Int Add

r
No LAAR Dec Add 7

No LAAR Dec Add

Inhibit Ck Int Fetch

No Inhibit Ck Int Fetch

Latch Reset of Bus Tin

ABC Dec FPInt .

(G I ACOB To C)
Condition C 00-63 and P Fa. QQ-63

F looting Point LA Enable

FIGURE 5.3-1. INTERNAL OPERAND FETCH AND COUNTER CONTROL

LAAR BIT POSITION

1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

LAAR
Decode y

Add Decode
LAAR
Decode y

Add Condition 1
Used Y

Co
Co
Co
n

ndi
id
nd

tior
Yes
No

=1
=0

u
0

u
0

U
0

U
I ADD 1 *>- 1

0 0 I 0 0 0 0 I 0 0
0 0 I l ADD 3
0 1 0 0 ADD 4 0

0 1 0 1 ADD 5
0 1 0 0 ADD 6
0 1 1 1 ADD 7 0
1 0 0 0 ADD 8
1 0 0 1 ADD 9
1 0 1 0 ADD 10
1 0 1 1 ADD 11 0

1 1 0 0 ADD 12
1 1 0 1 ADD 13 >• 0

1 1 1 0 ADD 14 0
1 1 1 1 ADD 15 0

0 0 0 0
COND "ND"

1 1 1 0 0 0 0 LAAR P OS 0-3 1 1 1

0 0 0 0
COND "ND"

1 1 1 0 0 0 0 LAAR POS4-7 1 1 1

0 0 0 0
COND "NO"

1 1 1 0 0 0 0 LAAR POS8-11 1 1 1

0 0 COND "NO"
1 1 0 0

LAAR POS 12-13 1 1

0 1
COND

1 0 1 LAAR 13 > 1

SPECIAL DECODING

LAAR DEC 1

SPECIAL DECODING

INT ADD

SPECIAL DECODING
LAAR DEC n

SPECIAL DECODING INDEX ADD SPECIAL DECODING
LAAR DEC 1

SPECIAL DECODING

INDEX ADD

SPECIAL DECODING

NO INHIBIT !

SPECIAL DECODING

CK INT FETCH

FIGURE 5.3-2. LAAR DECODING

FL PT
UNIT

•To Mem

FP M Q p

Dec Store

with n9 dz

Set FP Ind

(L) (L)
Last
Cycle

1
Store

Mem T

Indicates Data
is Latched on Arith Pulse

Transfer Ind E or M

ABC Dec Store

A Bus
Timer

A E
- Internal Store Only

= Non Internal Store Only

fU A Bus

A M

-J

No LAAR Dec Int Add

Delay Ind Test IC

* I Box Int Fetch

ABC
LA No Op In

• No ABC Only LA MATT
Instruction

FIGURE 5.4-2. FLP STORE INT

LA

Norm
A Ind

Test M

I Interrupt Test Le
^ ' I Box Pseudo St

IFX Ind Transfer Only
2nd Level I/O
Op Code

ABC Dec Int 1 Box C

5tore

Cond Gl Int Reg

Last Cycle Store

ABC Dec Store B

LAAR Dec Int Add

I AAP Add 3

DEC Add 6

(8) Lin

ABC Dec Fl Pt Store
No ABC Dec Fl Dt Store

(8)

Ind Req

LAAR Dec Add y

(8)

•©-

GIACOB

060-63
5RAB 4-7

G 1 ACOB to ULB 00-63 Add 3
Cnd ACOB To CPU S00-19 Add 6
ACOB - Counts Add 7

G 1 ACOB 00-07 SRAB 0-7 Add 10

Cnd ACOB TO N20-63 Add 1 1

Cnd ACOB TO M20-49 Add 12

Cnd A00-59 and P Add 8
Cnd B00-63 and P Add 9

ABC ACTION
INTERNAL STORE

FLPT

O

Hi)
Cnd A 60-63 and P

LA St<?re t? B

(To A Checker Signals \

to Update the Residue /

| Norm Adv Cond(7)

Del ABC Adv
A Bus Timer M

Ind
Reg

Timer
E T

r Ind
Reg

Timer Cond ABC Adv Cond

FIGURE 5.4-3. FLP STORE INT

M A R ,
/v)OQ£

eX£C<JT/iM
or

foST /V

1

(?£J£ T
fAfi#
Mooe

' t

LOo/trAHfAl
T£ST OF
/A>sr A/

(OA/ Tti
s-rjer

A/o
f T £ - 5 T \
St/ouJS -WoV

\££R0*/

ftffcMuPr
N£tT-

MST/evCT/oi)

M fit?

M O O £

Fxecur/o/u
Oitr

/ H s r
A/ Ft

iUTZPT
AlTioA)
tompLene

jY) moor t£0

/V<T £ > ? - /

££P£* r

fic.Tio*j

#Q.7/Z>/J

Check Comp

Chk Cmpt Lthd to LA

No A Checker Error to

VFL SIR

FP End Op

(B) (NO Store)

© (St,

Op 7, 6 , 5, 0, 9. 8, LA Op, No Op or Mod<
ABC Dec I Box Pseudo Store
ABC Dec Interrupt lest Leve
ABC Dec I Px Ind Tronsfi
ABC Dec Zr\d Level I/O
ABC Dec I Box Int Fetch

ABC Dec Store D

ABC Dec Store C

ABC Dec Int I Box Store

ABC Dec BIN Store Level

ABC Dec VFL Store Bus

No No Op Mode, Op 6, Op 8
No LA OP
No Op 5
Op 7

8o bp-mr

No Op 7
LA Up
Op V
No OpO

No Del Ind Test

®

FIGURE 5.7-2. MAR MAR MODE TEST

o z Q o
Q
U
X

SCC STORE ACTION
EXT

Not SCC LDE

LF i 7

A
LC i .

A No Disc i \ A
SCC i ,

A A

SCC Dec Store Check Request

©
Reset AES Store Ck
Timer E • M *

I M

No Ck to I Ck LA
OK LA Req Store Check

Put Ckr in 0 Priority
(Actual Use)

M (L)

(L) ,

LA Store xcept

LA Date

Bits
G O 00-73

{74)

Data

E T

Data
Timer
M T

P
:•

Store Ck E • M

No LAAR Dec 0,
No LAAR Dec 4,

G O LA to LAIC IB Cond A

No LAAR Dec 0
No LAAR Dec 4

LA Ck Parity to I

Checkei Controls

00-73
T (74)

LAIC IB to I Ckr

LA Data Reg

V

I M ,
No Intk SCC ABC

(CO, CI, C2, C4, C8,
C16, C32, CT)

a LA Store Request to BCU

FIGURE 6.2-2. SCC STORE ACTION EXT

FIGURE 6.3-1. SCC ACTION INTERNAL FETCH

1 SCC J 00-73
T (74)

Index Store

G I LA To X Reg

j LA Gate Data to Y IC

SCC Dec Real Index Store
: Internal Fetch Only

LA GO LAAR
13-17 & P

Sto Test

PAUPTC
T9'

SCC Dec Real Index
Set Store Execute Tri

FIGURE 6.3-2. SCC ACTION STORE TO I UNIT

* i
o 0 u

 ̂ £
4 -t e,
* ̂

S
£
0
\
k}

!

?* v*j
\i

i
N

<L
'l,
3
V) rs <3 \J

V» ̂
?

<5$

I
0

1

h

v v
<o

^!-

i *o
v£>

fc ^

o
Q
0,

'O

K

	Book A
	Book B

