
&SRI-ARC 18-N0V-75 20:20 33522
33522

NLS Programmers' Guide

Content Analyzer
L< 10 Language

Command Meta Language
NDDT

Augmentation Research Center

22 NOV 7b

Stanford Research Institute
333 Ravenswood Avenue

Menlo park, California 94025

&SRI-ARC 18-NQV-75 20:20 33522
NLS Programmers* Guide ARC 33522 Rev, 22 NOV 75

sent to COM 18-NOV-75. Remove journal directives before using this as a
printfile. NDN

page i

A R C 3 3 5 2 2 R e v , 2 2 N O V 7 5
& S P J - A R C 1 8 - N O V - 7 5 2 0 : 2 0 3 3 5 2 2

N L S P r o g r a m m e r s ' G u i d e

p a g e i i

NLS Programmers* Guide
Table of Contents

&SRI-ARC 18-NOV-75 20:20 33522
ABC 33522 Rev, 22 NOV 75

TABLE OF CONTENTS

INTRODUCTION 2

PART ONE: Content Analyzer Patterns 3

Section 1: Introduction 3a
Section 2: Patterns..,.,.,... 3B
Section 3: Examples of Content Analyzer Patterns ,3c
Section 4: Using the Content Analyzer 3D

PART Two: introduction to L1Q Programming 4

Section 1: Content Analyzer Programs »4A
Introduction,,.,., ,.,4A1
Program structure.... 4A2
Procedure Structure... .4A3
Example: 4A4
Declaration Statements. 4A5
Body of the Procedure..,., 4A6
Programming style: File Structure... 4A7
Using Content Analyzer Programs,,., 4A8
Pr obi ems 4A9

Section 2: content Analyzer Programs: Modifying, 4B
Introduction,,.,, 4B1
String Construction..,., .., .4B2
Example: ..4B3
More Than One Change per Statement..................4B4
Controlling which statements are Modified 4B5
Problems,,,,,,,,., ,,...4B6

PART THREE: Basic LIQ Programming, .5

Section 1: The User Program Environment ,...,»,.,,5A
Introduction 5A1
The Sequence Generator 5A2
Content Analyzer Filters 5A3
The portrayal Formatter ,.5A4

Section 2: program structure 5B
An NLS user program consists of the following,5Bl
An example of a simple L10 program... ,,.,5B2

section 3: Declarations 5C
Introduction,,.,,... 5C 1
Variables., *... ,5C2
Simple Variables ,5C3
Arrays,,,, 5C4
Text Pointers,,.. ,5C5

page ill

ABC 33522 Rev, 22 NOV 75

&SRI-ARC i8-NOV-75 20f20 33522
NLS Programmers' Guide

Table of Contents

Strings . SC6
Referenced Variables....,5C7
Declaring Many Variables in One Statement,,.,, 5C8
Declaring Locals 5C9

Section 4: Statements... ,,,.,.,50
Introduction, ,501
Assignment.,,. 5D2
BUMP Statement., 503
IF Statement 504
CASE Statement,,, 5D5
LOOP Statement ,,, 506
WHILE.,,D0 Statement ,,...507
UNTIL,, ,00 Statement 508
DO,,,UNTIL/DO, . .WHILE Statement, 509
FOR.,,00 Statement ,....,.5010
BEGIN,,,END Statement , , ,5D11
EXIT Statement.,., 5D12
REPEAT Statement 5D13
DIVIDE Statement ,5014
PROCEDURE CALL Statement 5015
RETURN Statement .5D16
GOTO Statement,,., 5D17
NULL Statement... 5018

Section 5: Expressions 5E
Introduction 5E1
Primitives, 5E2
Operators,.,.,,,,,.. 5E3
Expressions.,, 5 k*4

Section b: string Test and Manipulation 5F
Introduction,,,.,..,....,.,,. 5F1
Current Character position (CCPOS) ,5F2
FIND Statement 5F3
FIND Patterns 5F4
String Construction 5F5
Example: ...5F6
More Than One Change per Statement.,.. ...5F7
Text, pointer Comparisons5F8

Section 7; invocation of User Filters,..., ,5G
Introduction.... »5G1
Programs Subsystem 5G2
Examples of user Programs ,.,..,,5G3

page iv

NLS Programmers' Guide
Tab!e of Contents

&SRI-ARC 18-NOV-75 20:20 33522
ARC 33522 Rev, 22 NOV 75

PART FOUR: Interactive MO Programming 6

Section 1: Introduction,,. . OA
Section 2: Command Met a Language (CML) ,.,,.66

Introduction,,,.,, .,....,,.,.,..681
Program Structure ,662
Subsystems.,.,683
Rules . 684
Declarations 685
CML Elements ...686
Sample CML Program 6B7

Section 3: LlQ Execution Procedures... 6C
Section 4: Additional L10 Capabilities ,60

Introduction ...601
Moving Around within NLS Files ..6D2
Calling NLS Commands...,..., 603
Opening Files,...,.....,,.,,....,...... 604
Displaying Messages ,..,.,..605
Setting Up for Display Ref reshinq 606
Other Useful Procedures ..607
Globals of interest... .608

section 5: creating and usinq Attachable Subsystems....6F

PART FIVE: Advanced Programming Topics....... ,.7

Section 1: Error Handling -- SIGNALS...... 7A
Section 2; NDDT Debugging,,76

Introduction .7B1
Access inq NDDT 782
NDDT Address Expressions...... 7B3
Single-Word variables ,..,.7B4
String Variables ,7B5
Records., 7B6
Built in NDDT symbols. ...7B7
Special character commands 788
Traces and Breakpoints789
L10 Procedures,.,, 7 B1 0
Symbo 1 s,..,, .7811
Scanning for Content 7B12

Section 3: writing CML Parsefunctions 7c
Section 4: calculator Capabilities ,7D

Introduction,..,...,.......,,,,,,.701
Converting String to Double-Precision Floating 702
Converting Floating point to String,..,, 703
Calculations with Foating point., 704

page v

ARC 33522 Rev. 22 NOV 75

&SRI-ARC 18-N0V-75 20:20 33522
MLS Programmers' Guide

Table of Contents

Section 5: Fields and Records »7E
Section 6: Stacks and Rings, 7F
Section 7: Using the sequence Generator 7G

Introduction 7G1
Co-Routine Effect ,7G2
Sequence work Area ..7G3
Displaying Strings 7G4
Using sequences «... 7G5

Section 8: Conditional Compiling, ,...,7H

ASCII 7-BIT CHARACTER CODES... ...,.8

page vi

&SRI-ARC 18-NOV-75 20:20
i NLS Programmers' Guide ARC 33522 Rev, 22 NOV
Introduction

INTRODUCTION

NLS provides a variety of commands for file manipulation and
viewing, Editing commands allow the user to insert and change the
text in a file. Viewing commands Cviewspecs) allow the user to
control how the system prints or displays the file. Line
truncation and control of. statement numbers are examples of these
viewing facilities, .

Occasionally one may need more sophisticated view controls than
those available with the viewing features of NLS,

For example, one may want to see only those statements that
contain a particular word or phrase.

Or one might, want to see one line of text that compacts the
information found in several longer statements,

one might also wish to perform a series of routine editing
operations without specifying each of the NLS commands over and
over again, or build commands for specific applications.

User-written programs may tailor the presentation of the
information in a tile t.o particular needs. Experienced users may
write programs that edit files automatically*

User-written programs currently must be coded in ARC'S
procedure-oriented programming language, L1Q, NLS itself is coded
in Lio, LlO is a high-level language which must be compiled into
machine-readable instructions. This document describes LlO.
Programs which interact with users additionally use a language
developed at ARC cal led command Meta Language (CML), descr ibed in
Part Four of this document.

This document describes three general types of programs:

--simple filters that control what is portrayed on the user's
teletype or oisplay (Parts One and Two),

--programs that may modify the statements as they decide
whether to print them (Parts Two and Three),

--those that, like commands, are explicitly given control of
the job and interact, with the user (Part Four),

User programs that control what material is portrayed tafce

&SRI-ARC 18-NOV-75 20:20 33522

•
ARC 33522 Rev, 22 Nov 75 NLs Programmers* Guide

Introduction

effect when NLS presents a sequence of statements in response
to a command like Print (or Jump in PNLS), 2f4

In processing such a command, NLS looks at a sequence of
statements, examining each statement to see if it satisfies
the viewspecs then in force, At this point NLS may pass the
statement to a user-written program to see if it satisfies
the requirements specified in that program, If the user
program returns a value of TRUE, the (passed) statement is
printed and the next statement in the sequence is tested; if
FALSE, NLS just, noes on to the next statement, 2f4a

While the program is examining the statement to decide whether
or not to print it, it may modify the contents of the
statement. Such a program can do anything the user can do with
NLS commands, 2f5

For more complex tasks, a user program function as a
special-purpose subsystem having (in addition to the may
supervisor commands) one or more commands. Once such a proqram
is loaded, it can be used just like any of the standard
subsystems, (The MESSAGE program is an example.) 2f6

This document is divided into five parts: 2g

Part One is intended for the general user, 2gl

It is a primer on content Analyzer patterns, allowing the
NLS user to set up simple yet powerful filters whrough which
he may view and edit files, This does not involve learning
the Ll0 language nor programming, This section can stand
alone, and the general (if somewhat experienced) NLS user
should find it very useful, 2gla

Part Two is intended for the beginning programmer, 2g2

It presents a hasty overview of L10 programming, with enough
tools to write simple programs, This is intended as an
introduction for the beginning user programmer, who we
assume is reasonably familiar with NLS (its commands,
subsystems, and capabilities) and has some aptitude for
programming, 2g2a

Part Three is a more complete presentation of L10, 2g3

It is intended to acquaint a Potential L10 programmer with
enough of the language and NLS environment to satisfy most
requirements tor automated editing programs. Many of the

page 2

NLS Programmers' Guide
Introduction

&SRI-ARC 18-N0V-75 20;20 33522
ARC 33522 Rev, 22 NOV 75

concepts in part Two are repeated in Part Three so that it
may stand alone as an intermediate programmer's reference
guide. This is the section in which to begin looking for
answers to specific questions, 2g3a

Part Four presents more advanced HO tools and an introduction
to CML# allowing command syntax specification. 2g4

This should give the programmer the ability to write
programs which work across files, which move through files
in other than the standard sequential order# and which
interact with the user. It allows the programmer to build
user-attachable subsystems with commands looking very much
like standard NLS facilities, 2g4a

Part Five presents a number of subjects of interest to the
advanced L10 progammer, 2g5

We suggest that those who are new to L10 begin by acquiring a
thorough understanding of Part One, Then Part Two should be
studied one section at a time, pausing between sections to try
out the concepts presented by actually writing patterns or
programs that put the new ideas to experimental use. Actual
experience is of at least as much value as this tutorial,
Tutorial guidance should be requested from ARC through your
architect. If you have problems at any point, you should get
help from AFC before proceeding to the next section, 2g6

For examples of user programs which serve a variety of needs,
examine the attachable subsystems in the <PROGRAMS> directory and
their descriptions in Help, For Information about commands
mentioned, ask for the programming subsystem with the NLS Help
command, 2h

Page 3

& S R I - A R C 1 8 - N U V - 7 5 2 0 : 2 0 3 3 5 2 2
A R C 3 3 5 2 2 R e v , 2 2 N O V 7 5 N L S P r o g r a m m e r s ' G u i d e

P a r t O n e : I n t r o d u c t i o n

p a g e 4

&SRI-ARC 18-NOV-75 20:20 33522
NLS Programmers' Guide A R C 33522 Rev, 22 NCV 75

Part. One: Introduction

PART ONE: Content Analyzer patterns

Section i: Introduction 3 a

3ai

Content analysis patterns cannot affect the format in which a
statement is printed, no r can they edit a file, They can only
determine whether a statement should be printed at all, iney are,
in a sense, a filter through which you may view the tile. Wore
complex tasks can he accomplished through programs, as described

later in this document.

The content Analyzer filter is created by typing in (or selectinq
from the text in a tile) a string of a special form which
describes those statements which will pass through the filter.
This string is called the "Content Analyzer Pattern", Each
statement is checked against the pattern before it is printed;
only statements that are described by the pattern will be printed, a

Some quick examples of Content Analyzer Patterns: 3 a 3

' ($LD ') will show all statements whose first character is an
open parenthesis* then any number of letters or digits* then a

close parenthesis,

t"blap"1 will show all statements with the string "blap"

somewhere in them,

SINCE (3-JUN-75 00:00) will show all statements edited since

June 3> 1975

The next part of this section will describe the elements which
make up content Analyzer patterns, followed by some examples. The
final subject of this section is how to put them to use, daA

3a3a

3a3b

3a3c

page 5

&SRI-ARC 18-N0V-75 20:20 33522
ARC 33522 Rev, 22 NOV 75 NLg Programmers' Guide

Part One: patterns

Section 2; Patterns 3b

Elements of Content Analyzer Patterns 3bI

Content Analyzer Patterns describe certain things the system
must check before printing a statement. It may check one or a
series of things. Each test is called an element; the many
possible elements will be described below, 3bla

The Content Analyzer searches a statement from the
beginning, character by character, for described elements.
As it encounters each element of the pattern, the Content
Analyzer checks the statement for the occurrence of that
element? if the test fails, the whole statement is failed
(unless there was an "or" condition, as described later) and
not printed; if the test is passed, an imaginary marker
moves on to the next character in the statement, and the
next test in the pattern is considered.

For example, if the next element in the Content Analyzer
pattern is "LD", the imaginary marker will move over the
next character and go on to test the next element of the
pattern only if the next character is a letter or a digit?
otherwise the wnole statement fails to pass the filter.

The pattern may include any sequence of the following elements;
the Content Analyzer moves the marker through the statement
checking tor each element of the Pattern in turn: 3blb

Literal String elements 3bic

'c -- the given character (e,g, a lower case c)

"string" -- the given string (may include non-printing
characters, such as spaces)

Character class elements 3bld

Ch -- any character

L -- lowercase or uppercase letter

D -- digit

UL -- uppercase letter

LL -- lowercase letter

page 6

•
NLS Programmers* Guide
Part One: Patterns

&SRI-ARC 18-N0V-75 20:20 33522
APC 33522 Rev, 22 NOV 75

ULD -- uppercase letter# or diqit

LLD -- lowercase letter# or digit

LD -- lowercase or uppercase letter# or digit

NLD -- not a letter nor digit.

PT -« any printing character (letters# digits# punctuation)

NP -- any non-printing character (e,q, spaces# control
characters)

Special non-printing character elements 3bie

SP -- a soace

TAB -- tab character

CR -- a carriage return

LF -- line teed character

EOL -- TENEX tOL (end ot line) character

ALT -- altmode character

Special elements 3blt

ENDCHR -- beginning and end of every NLS statement: can't
scan past, it; not considered a character

TRUE -- is true without checking anything in statement (used
with OR constructs# as described below)

TD= id -- statement created by user whose Ident is given

ID# id -- statement not created by user whose ident is given

BEFORE (d-t) -- statement edited before given date and time

SINCE (ci-t) -- statement edited since given date and time

E,q, BEFORE (1 OCT 1974 00:00) ;

The date and time must, both appear in the parentheses.
It accepts almost any reasonable date and time syntax.

Page 7

ARC 33522 Rev, 22 NOV 75

&SRI-ARC 18-N0V-75 20520 33522
NLS Programmers' Guide

Part One: patterns

Examples of valid dates

17-APR-74
APR-17-74
APR 17 74
APRIL 17 * 1474

17 APRIL 74
17/5/1974
5/17/74

Examples of valid times:

1:12:13 1234:56
1234 1156AM
1:56-EST 1200NOON
16: 30 (i ,e, 4:30 PM)
12:00:00AM ti,e, midnight)
11:59:59AM-EST (i.e. late morning)
12:00:01AM (i.e. early morning)

Scan direction 3blg

< -- set scan direction to the left

> -- set scan direction to the right

The default, re-initialized for each new statement, is
scan to the right from before the first character in the
statement (beginning to end),

Modifying Elements 3b2

Several operators can modify any of the elements except the
"special elements": 3b2a

NU MRER -- multiple occurrences 3b2b

A number preceding any element othpr than one of the
"Special elements" means that tne test will succeed only if
it finds exactly that many occurrences of the element, If
there aren't that many, tne statement will be rejected,
Even though there mav be more, it will stop after that many
and go on to check the next element in the pattern,

3UL means three upper case letters

S - - r a n g e o f o c c u r r e n c e s 3 b 2 c

A dollar sign ($) preceding any element other than the
"Special elements" means "any number of occurrences of".

page 8

•
NLS Programmers' Guide
Part One: Patterns

&SFI-ARC 18-NOV-75 20:20 33522
ARC 33522 Rev, 22 NOV 75

3b2d

This may include zero occurrences. It is good practice to
put the element itself in parentheses,

$('-) means any number of dashes

A number in front of the dollar sign sets a lower limit,

3$(D) means three or more digits

A number after the dollar sign sets an upper limit for the
search. It. will stop after that number and then check, for
the next element in the pattern, even it it could have found

more,

$3(LD) means from zero to three letters or digits

5$7(FT) means from 5 to 7 (inclusive) printing

charac ter s

U — floating scan

flk To do other than a character by character check, you may
enclose an element or series of elements in square brackets
[], The content Analyzer will scan a statement until the
element(s) is found, (If the element is not in souare
brackets, the whole statement fails if the very next
character or string fails the test of the next element,)
This test will reject the statement it it can't find the
element anywhere in the statement. If it succeeds, it will
leave the marker for the next test just after the strino
satisfying the contents of the square brackets,

"start" means check to see if the next five characters
are: s t a r t,

["start") means scan until it finds the string: star

t,

[3D] means scan until it finds three digits,

t 3D 'I] means scan until it finds three digits followed

by a colon

— negation 3b2e

If an element is preceded by a minus sign •» the statement
Jfc. will pass that test if the element does not occur.

page 9

&SRI-ARC 18-NOV-75 20:20 33522
ARC 33522 Rev, 22 NOV 75 NLS Programmers' Guide

Part One: patterns

•LD means anything other than a letter or digit, such as
punctuation, invisibles, etc,

NOT -«• negation 3b2f

NOT wm be TRUE if the element or group of elements
enclosed in parent heses following the NOT is false,

NOT LD will pass if the next character is neither a
letter nor a digit.

Combining Elements 3b3

You may put together any number of any of these elements to
form a pattern. They may be combined in any order. Spaces
within the pattern are ignored (except in literal strings) so
they may be used to make reading easier for you, 3b3a

e, Q, 1SFT t", NLS;11 1SD] -SP

i.e. one or more printing characters, then scan for ,NLS;
followed by one or more digits, then check that the next
character is not a space

Nore sophisticated patterns can by written by using the Boolean
logical expression features of LlO, combinations of elements
may in turn be treated as single elements, to be modified or
combined using logical operators, 3b3b

Generally# an expression is executed left to right. The
following operations are done in the given order:

C)
/

NOT
AND
OR 3b3c

() 3b3d

Parentheses (and square brackets for floating scans) may be
used to group elements. It is good practice to use
parenthesis liberally,

/ means "either or"; the bracketed element, consisting of
two or more alternatives, will be true if either (any)
element is true,

3b3e

page 10

•
NLS Programmers' Guide
Part One: patterns

&SRI-ARC 18-NOV-75 20:20 33522
ARC 33522 Rev, 22 NOV 75

(3D L / 40) means either three digits and a letter or
four digits.

Since the slash is executed before NOT, NOT D / 'h will be
true if the next character is NEITHER a digit nor the letter
"h", It is the same as NOT (D/'h),

Sometimes you may want want the scan to pass your marker
over something if It happens to be there (an optional
element), "TRUE" is true without testing the statement. If
the other tests fail, the imaginary marker is not moved,

(0 / TRUE) looks for a digit and passes the imaginary
marker over it, It the next character is not a digit, it
will just go on to the next test element in the pattern
without moving the marker and without failing the test,
(This test always passes,)

i.e. it is used to scan past something(s) which may or
may not be there.

Since expressions are executed from left to right, it does
no good to have TRUE as the first option, (If it is first,
the test will immediately pass without trying to scan over
any elements,)

AND 3b3£

AND means both of the two separated groups of elements must
be true for the statement to pass,

SINCE (3/6/73 00:00) and ID#NDM means statements written
since march 6, 1973 by someone other than NpM,

OR 3b3g

OR means the test will be true if either of the separated
elements is true, it does the same thing as slash, but
after "AND" and "NOT" have been executed, allowing greater
flexibility,

D AND LLD OR UL means the same as (D AND LLD) OR UL
D AND OLD / UL means the same as D AND (LLD / UL)

While such patterns are correct and succinct, parentheses
make for much clearer patterns, Elements within
parentneses are taken as a group; the group will be true
only it the statement passes all the requirements of the

page il

&SRI-ARC 18-NOV-75 20:20 33522
ARC 33522 Rev, 22 NOV 75 NLs Programmers* Guide

Part One: patterns

qroup, It is a good idea to use parentheses whenever
there might be any ambiguity.

page 12

&SRI-ARC 18-NOV-75 20:20 33522

•
NLS Programmers' Guide ARC 33522 Rev, 22 NOV 75
Part One; Examples of Content Analyzer Patterns

Section 3: Examples of Content Analyzer Patterns 3c

D 2SLD / t"CA"] / ["Content Analyzer"] 3ct

This pattern will match, and pass any of three types ot NLS
statements: those beginning with a numerical digit followed by
at least two characters which may be either letters or digits,
or statements with either of the strings "CA" or "Content
Analyzer" anywhere in the statement, 3cla

Note the use of the square brackets to permit a floating
scan -- a search for a pattern anywhere in the statement,
Note also the use of the slash tor alternatives,

BEFORE (2 5 - J A N - 7 2 1 2 : 0 0) 3c2

This pattern will match those statements created or modified
before noon on 2 5 January 1 9 7 2 , 3c2a

(ID = HGL) OR (ID = NDM) 3c3

This Pattern will match all statements created or modified by
users with the Identifiers "HGL" or "NDM", 3c3a

[(2L (SP/TRUE) / 2D) D 4D] 3c4

This pattern will match characters in the form of phone numbers
anywhere in a statement.. Numbers matched may have an
alphabetic exchange followed by an optional space (note the use
of the TRUE construction t° accomplish this) or a numerical
exchange, 3c4a

EX amp 1 . es include DA 6 - 6 2 0 0 , D A 6 - 6 2 0 0 , and 3 2 6 - 6 2 0 0 ,

[ENDCBR] < "Cfca" 3c5

This will pass those statements ending with "abc". It will go
to the end of the statement, change the scan direction to left,
and check for the characters "cba". Note that since you are
scanning backwards, to find "abc" you must look for "cba".
Since the "cba" is not enclosed in square brackets, it must be
the very last characters in the statement, 3c5a

page 13

AFC 3J522 Rev, 22 NOV 75
&SRI-ARC 18-NOV-75 20:20 33522

NLS Programmers' Guide
Part One: using the Content Analyzer

Section 4: Using the Content Analyzer 3d

Content Analyzer Patterns may be entered in two ways 3d 1

1) From the BASE subsystem# use the command 3dia

Set Content (pattern) To PATTERN UK

2) From the PROGRAMS subsystem# use the command 3dlb

Compile content (pattern) PATTERN OK

OK means "Command Accept"# a control-D or#
in TNI.S (by default) a carriage return.

In either case 3d2

1) patterns may be typed in from the keyboard, or 3d2a

2) they may be text in a file 3d2b

In this case# the pattern will be read from the first
character addressed and continue until it finds a semicolon
(;) so ycu must put a semicolon at the end of the pattern
(in the file) ,

Viewspec j must be on (i.e. Content Analyzer off) when entering
a pattern, 3d2c

Entering a Content Analyzer Pattern does two things: 3d3

1) compiles a small user program from the characters in the
pattern, and 3d3a

2) takes that program and "institutes" it as the current
Content Analyzer filter program, deinstituting any previous
pattern, 3d3b

"Instituting" a program means selecting it as the one to
take effect wnen the Content Analyzer is turned on, You may
have more than one program compiled but only one instituted.

when a pattern is deinstituted# it still exists in your
program buffer space and may be instituted again at any time
with the commend in the PROGRAMS subsystem;

institute Program PROGRAM-NAME (as) Content (analyzer) OK

page 14

&SRI-ARC 18-NOV-75 20;20 33522
NLS Programmers' Guide ARC 33522 Rev, 22 NOV 75
Part One: Using the Content Analyzer

The programs may he retered to by number instead of
name. They are numbered sequentially, the first
entered being number 1,

All the programs you have compiled and the one you have
instituted may be listed with the command in the PROGRAMS
subsystem:

Show Status (of programs buffer) OK

Programs may build up in your program buffer, To clear the
program buffer, use the PROGRAMS subsystem command;

Delete All (programs in buffer) OK

We recommend that you do this before each new pattern,
unless you specifically want to preserve previous
patterns,

To invoice the content Analyzer: 3d4

when viewspec i is on, the instituted Content Analyzer program
(if any) win check every statement before it is printed (or
displayed), 3d4a

If a statement does not pass all of the requirements of the
Content Analyzer program, it will not be printed.

in DNLS, it no statements from the top of the screen
onward through the file pass the content Analyzer filter*
the word "Empty" will be displayed.

Note: you will not see the normal structure since one
statement may oass the content Analyzer although its source
does not, Viewspec m (statement numpers on) will help you
determine the position of the statement in the file,

when viewspec K is on, the instituted Content Analyzer filter
will check until it finds one statement that passes the
requirements of the pattern. Then, the rest of the output
(branch, plex, display screen, etc,} will be printed without
checking the content Analyzer, 3d4b

When viewspec 3 is on, no content Analyzer searching is done.
This is the default state; every statement in the output
(branch, plex, display screen, etc,) will be printed. Note
that i, j» and k are mutually exclusive, 3d4c

page 15

&SRI-ARC 18-MDV-75 20;20 33522
ARC 33522 Rev, 22 NOV 75 NLS Programmers* Guide

Part One; Using the Content Analyzer

Notes on the use of Content Analyzer filters; 3d5

Some NLS commands are always affected by the current viewspecs
(including i,j, or K); 3d5a

Output

Jump (in DNLS)

Print (in TNLS)

Most NLS commands ignore the Content Analyzer in their editing.
The following BASE subsystem commands offer the option of
specifying viewspecs, or "Filters", (which may turn on the
Content Analyzer) which apply only for the purpose of that one
command and affect what statements the command works on (only
those statements which pass the filter will be copied, moved,
etc,; structure will be adjusted); 3d5b

Copy

Delete

Move

Substitute

At this point, it would be wise to practice until you become
proficient at Content Analyzer patterns, you might begm by
trying to use some of the patterns given in the above examples,
and then try writing a few patterns of your own. These patterns
are both a useful NLS tool and a basic component of many LlO
programs, we further recommend that you contact AHC via your
architect before you begin the next part, 3d6

page 16

NLS Programmers' Guide
Part Two: Content Analyzer programs

&SRI-ARC 18-N0V-75 20:20 33522
ARC 33522 Rev. 22 NOV 75

PART TWO; introduction to L10 Programming 4

Section 1: Content Analyzer Programs 4a

Introduction 4al

When you specity a content Analyzer Pattern, the PROGRAMS
subsystem constructs a program which looks for the pattern in
each statement and only displays the statement if the pattern
notching succeeds, lou can gain more control and do more
things if you build the program yourself. The program will be
used just like the simple pattern proqram and has many of the
same limitations. Programs are written in NLS just like any
other text file, They then can be converted to executable code
by a compiler. This code resides (or is loaded) in your
programs buffer space; it can be instituted as the current
Content Analyzer filter program like a Content Analyzer
Pattern, 4ala

Program Structure 4a2

If you specify a Content. Analyzer Pattern, NLS compiles a small
program that looks lixe this (with the word "pattern" standing
for whatever vou typed in); 4a2a

PROGRAM name

(name) PROCEDURE?

IF FIND pattern THEN RETURN(TRUE) ELSE RETURN(FALSE);

END,

FINISH

L10 programs must begin with a header statement, the word
PROGRAM (all caps) followed by the name of the first procedure
to be executed (all lower-case). This name is also the name of
the program, It the program is being compiled into a file (to
be described at the end of this section), the word FILE should
be substituted for the word PROGRAM, E,g, 4a2b

PROGRAM first
or

FILE deldir

page 17

&SRI-ARC 18-N0V-75 20 S 20 33522
ARC 33522 Rev, 22 NOV 75 NLs Programmers' Guide

part Two: Content Analyzer Programs

(Note: tne Content Analyzer compiler makes up a program
name consisting ot UP#'xxxxx, where

is a sequential number# the first pattern being number
one# and

xxxxx is the first five characters of your pattern,)

E.g, UP1j SLD [F

The body of a program consists ot a series of DECLARATION
statements and PROCEDURES (in any order) which are blocks of
instructions. In the above case# the program consisted of only
one small procedure and no declarations. When the program is
loaded into your programs buffer space, the declarations
reserve space in the system to store information (variables),
when the program is used as a content Analyzer filter program,
the first procedure is called tor each statement. It may in
turn call other procedures and access variables in the program
or in the NLS system, E.g, 4a2c

DECLARE x, y, z ; (described below)
(first) PROCEDURE ;

The end of the program is delimited by the word "FINISH" (in
ail uoper case). The compiler stops at that point, so any text
after that in the NLS source file will be Ignored, 4a2d

Comments may be enclosed in percent signs (%) anywhere in the
program, even in the middle of LiO statements. The L10
compiler will iqnore them, 4a2e

Except within literal strings, variable names and special LiO
words, spaces are ignored, it is good practice to use them
liberally so that your program will be easy to read, Also, NLS
file structure is ignored; statements will be read
sequentially, regardless of their level. Structure is,
however, very valuable in making the program readable, and it
is good practice to use it in close correlation to the
program's logical structure. For instance, the programmer
usually makes each of the elements of a program (declarations,
procedures, and FINISH) separate statements, below the header
statement in file structure. This point will be discussed
further later. 4a2f

So far, we have file wnich looks something like; 4a2g

page 18

&SRI-ARC 18-N0V-75 20:20 33522
NLS Programmers' Guide ARC 33522 Rev, 22 NOV 75
Part Two: Content Analyzer Programs

PROGRAM namel

DECLARE ... ;

DECLARE ;

enamel) PROCEDURE ;

(name2) PROCEDURE ;

FINISH

Procedure Structure 4a 3

Each procedure must begin with its header statement, This
header statement is a name enclosed in parentheses followed by
the word PROCEDURE, and terminated by a semicolon, E,g, 4a3a

(name) PROCEDURE j

The body of the procedure may consist of Local declarations,
then L10 statements. An LiO statement is any program
instruction, terminated by a semicolon, The body must at some
point return control to the procedure that called it. All this
will be further discussed later, 4a3b

The procedure must end with the terminal statement: 4a3c

END,

page 19

&SRI-ARC lg-NOV-75 20:20 33522
ARC 33522 Rev, 22 NOV 75 NLs Programmers' Guide

part Two: Content Analyzer programs

Example (the actual GlO statements in this example will become
clear as you read on): 4a4

PROGRAM compare % Content analyzer. Displays statement if
first two visibles are the same, % 4a4a

preserve space for ("declare") four text pointers named
"ptl" through "pt4"%

DECLARE TEXT POINTER p t l , p t 2 , p t 3 , P t 4 ;
Preserve 100 characters of space for each of two string
variables named "visl" and "vis2",%

DECLARE STRING visltlOO], vis2tl00J;
(compare) PROCEDURE ;

%if find two visibles, set pointers around first two
visibles (strings of printing characters)%

IF FIND SNP *ptl 1SPT "pt2 SNP *pt3 1$PT *pt4 THEN
BEGIN
%put visibles in strings!

*visl« _ ptl pt2 ;
vis2 _ pt3 pt4 ;

%compare contents of strings, return and display
the statement if identical %

IF *visl* = *Vis2* THEN RETURN(TRUE)J
END;

%otherwise, return and don't display!
RETURN (FALSE) ;

END,
FINISH

Declaration Statements 4a5

As you may have guessed from the above example, Content
Analyzer programs can manipulate variables (like text pointers
and strings)* while patterns cannot, 4a5a

Text Pointers 4a5b

A text pointer points to a particular location within an NLS
statement (Or into a string, as described later),

The text oointer points between two characters in a
statement, By putting the pointers between characters, a
single oointer can be used to mark both the end of one
string and the beginning of the string starting with the
next character.

Text pointers are declared with the following Declaration
statement:

page 20

NLS Programmers' Guide
Part Two: Content Analyzer programs

&SRI-ARC 18-NOV-75 20:20 33522
ARC 33522 Rev, 22 NOV 75

DECLARE TEXT POINTER name :

Strings 4a5c

String variables bold text. When they are declared, the
maximum number of characters is set.

To declare a string:

DECLARE STRING namefnuml ?

num is the maximum number of characters allowed for the
string.

e , g •

DECLARE STRING 1string[I 003 ;

declares a string named "lstrinq" with a maximum length
of 100 characters and a current length of 0 characters
(it's empty"),

you can refer to the contents of a string variable by
surrounding the name with asterisks, E,g,

lstring is the string stored in the variable named
"lstrinq",

(Petering to lstrinq without the asterisks represents
only the first computer word of th® string. This is
rarely needed,)

you can put the text between two text pointers in a string
variable with the L10 statement:

lstrinq _ ptrl ptr2 ;

where ptrl and ptr2 are the names of previously declared
and set text pointers, and lstrinq is a previously
declared string variable,

These variables will retain their value from one statement to
the next, nther types of variables and their use will be
discussed in detail in Part Three, Section 3. 4a5d

Body of the procedure 4a6

RETURN Statement 4a6a

page 21

&SRI«ARC 18-NOV-75 20:20 33522
ARC 33522 Rev, 22 NOV 75 NLS Programmers' Guide

Part Two: Content Analyzer Programs

No matter what it does, every procedure must return control
to the procedure that called it. The statement which does
this is the RETURN statement, E,g,

RETURN ;

A RETURN statement may Pass values to the procedure that
called it, The values must be enclosed in parentheses after
the word RETURN, E.g.

RETURN (1,23,47) ;

A Content Analyzer program must return either a value of
TRUE or of FALSE, If it returns the value TRUE (1), the
statement will be printed; if it returns FALSE (0), the
statement will not be printed. I.e.

RETURN (TRUE); will print the Statement
RETURN (FALSE); will not print the statement

The RETURN statement often is at the end of a procedure, but
it need not be. For example, In the middle of the procedure
you may want to either RETURN or go on depending on the
result of a test.

Other than the requirement of a RFTURN statement# the body of
the procedure is entirely a function of the purpose of the
procedure, A few of the many possible statements will be
described here; others will be introduced in part Three of this
document, 4a6b

FIND Statement 4a6c

One of the most useful statements for Content Analyzer
programs is the FIND statement. The find statement
specifies a content Analyzer pattern to be tested against
the statement, and text pointers to be manipulated and set,
starting from the Current Character position (that invisible
marker refered to in Section 1), If the test succeeds, the
character position is moved past the last character read,
if at any point the test fails, the character position is
left at the position prior to the FIND statement, The
values of text pointers set in the statement prior to the
failing element will remain as set; others of course will
not be changed,

FIND pattern ;

page 22

&SRI-ARC 18-NOV-75 20:20 33522
NLS Programmers' Guide ARC 33522 Rev, 22 NOV 25
Part Two: Content Analyzer programs

The Current Character position is initialized to BEFORE THE
FIRST CHARACTER# and the scan direction is initialized to
left to RIGHT# FOR EACH NEW STATEMENT passed to the Content
Analyzer program.

Any simple Content Analyzer pattern (as describe above) is
valid in a FIND statement.

In addition# the following elements can he incorporated in
the pattern:

stringname

the contents of the string variable

"ptr

store current scan position into the text pointer
specified by ptr# the name of a declared text pointer

_NUM ptr

back up the specified text pointer by the specified
number (NUM) of characters, if NUM is not specified,
1 will be assumed. Backup is in the direction
opposite to the current scan direction,

ptr

Set current character position to this position, ptr
is the name of a previously set text pointer,

SF(ptr)

The Current Character Position is set to tne front of
the statement in wpich the text pointer ptr is set and
scan direction is set from left to right,

SE(ptr)

The Current Character Position is set to the end of
the statement in Which the text pointer ptr is set and
scan direction is set from right to left,

page 23

•

&SRI-ARC 18-NOV-75 20:20 33522
ARC 33522 Rev, 22 NOV 75 NLs Programmers' Guide

Part Two: Content Analyzer Programs

BETWEEN ptr 1 ptr2 (pattern)

Search limited to between positions specified, ptr Is
a previously set text pointer; the two must be in the
same statement or string. Current Character position
is set to first position before the pattern is tested,
E,g,

BETWEEN ptl pt2 (2D I,] SNP)

FINDS may be used as expressions as well as free-standing
statements. If used as an expression, for example m IF
statements, it has the value TRUE if all pattern elements
within it are true and the value FALSE if any one of the
elements is false. E.g.

IF FIND pattern THEN ... ;

Complicated example;

IF FIND "St $NP '($(LD/*-) ') [", " *Str*J SE(Sf) $NP
THEN RETURN(TRUE) ELSE RETURN(FALSE)J

IF Statement 4a6d

IE causes execution of a statement if a tested expression is
TRUE, If it is FALSE and the optional ELSE part is present,
the statement following the ELSE is executed. Control then
passes to the statement immediately following the IF
statement,

IF testexp THEN statement ;

IF testexp THEN statementl ELSE statement.2 ;

The statements within the IF statement can be any valid L10
statement, but are not followed by the usual semicolon; the
whole IF statement is one LlO statement and is followed by a
semicolon.

E.g.

IF FIND (5D1 THEN RETURN(FALSE) ELSE RETURN(TRUE) ;

Programming style* File structure 4a7

The compiler which converts your NLS text to code ignores NLS
file structure. This allows you to use structure to make your

page 24

•
NLS Programmers' Guide
Part Two; Content Analyzer Programs

&SPI-ARC 18-NOV-75 20:20 33522
ARC 33522 Rev, 22 NOV 75

program text easier to read and understand. Logical use of
structure often facilitates the actual programming task as
well. Some conventions have developed at ARC in this respect,
although flexioility is essential. These should seem obvious
and logical to you, 4a7a

All declarations and PROCEDURE statements should be one
level below the PROGRAM statement.

All local declarations (not yet described) and code should
be one level below the PROCEDURE statement,

It is qood style, and makes for much easier programming, to
list what you want to do as comment statements (in percent
signs) at the level below the PROCEDURE statement. Then you
can go back and fill in the code that accomplishes the task
described in each comment, statement. The code should qo one
level below the comment,

it is also worthwhile to put comments in individual
statements whose purpose is not obvious.

We will later describe how to block a series of statements
where one is required. These blocks should go a. level below
the statement of which they are a part.

File structure should follow the logical structure of the
program as cioseiy as possible, E,q,

IF FIND [5D]

THEN RETURN(TRUE)

ELSE RETURN(FALSE);

Using Content Analyzer Programs 4a8

Once the content Analyzer program has been written (in an NLS
file), there are two steps in using it. First, the program
must be "compiled," i.e. translated into machine-readable code;
tpe compiled code is "loaded" into a space reserved for user
programs (the user programs buffer), secondly, the loaded
program must be "instituted" as the current Content Analyzer

* program, 4a8a

There are two ways to compile and load a program: 4a8b

1) You may compile a program and load it into your programs

page 25

ARC 33522 Rev, 22 NOV 75

&SRI-ARC 1B-NQV-75 20:20 33522
NLS Programmers' Guide

part Two: Content Analyzer programs

buffer all in one operation, in this case, the program
header statement nust have the word PROGRAM in it. When the
user resets his job or logs off, the compiled code will
disappear.

First* enter the Programs subsystem with the command:

Goto Programs OK

Then you may compile the program with the command:

Compile L10 (user program at) SOURCE OK

SOURCE is the NLS file address of the PROGRAM
statement.

2) you may compile a program into a TENEX code file and then
load it into your buffer in a separate operation, The
program can then be loaded from the file into your user
programs buffer at any time without recompiling. The header
statement must use the word FILE instead of PROGRAM. Use
the PROGPAMS subsystem command;

Compile file (at) SOURCE (using) L10 (to file) FILENAME
OK

The FILENAME must be the same as the program's name,

The code file is called a REL (RELocatable code) file,
Whenever vou wish to load the program code into the user
programs buffer* use the PROGRAMS subsystem command:

Load Program (file) FILENAME OK

once a compiled proaram has been loaded (by either route)* it
must be instituted, Tbis is done with the PROGRAMS subsystem
command: 4a8c

institute Program PROGRAM-NAME (as) Content (analyzer
program) OK

The named program will be instituted as the current Content
Analyzer filter* and any previously instituted program will
be deinstituted (but will remain in the buffer).

Again, the programs in the buffer are numbered* the first in
being number one. You may use the number instead of the
program's name as a shorthand for PROGRAM-NAME,

page 26

&SKI-ARC 18-NOV-75 20:20 33522
NLS Programmers* Guide Apc 33522 Rev, 22 NOV 75
Part Two: content Analyzer Programs

To invoke the Content Analyzer using whatever program Is
currently instituted* use the viewspec i, 1, or k, as describe
in Part One, section 4 [3d4).

4a9
Prob lems

Given these few constructs, you should now pe able to write a
number of useful Content Analyzer programs. Try programming
the following: a a

1) Show those statements which have a number somewhere in
the first 20 characters.

2) Show those statements where the first visible in the
statement is repeated somewhere in the statement.

page 27

AHC 33522 Rev, 22 NOV 75

&SRI-ARC 18-NOV-75 20:20 33522
NLS Programmers' Guide

Part Two: Content Analyzer programs

Sample solutions:

Problem 1

4a9b

PROGRAM number
DECLARE TEXT POINTER ptrl, ptr2 ;
(number) PROCEDURE ;

FIND "ptrl S20CH "Ptr2 J
IF FIND BETWEEN ptrl Ptr2 (ID))

THEN RETURN(TRUE)
ELSE RETURN(FALSE);

END,
FINISH

Alternate solution to problem 1; Content Analyzer Filter

S20CH < ID]

Problem 2

PROGRAM Vis
DECLARE TEXT POINTER ptrl, ptr2 ;
DECLARE STRING StrTbOO] }
(vis) PROCEDURE ;

FIND SNP "ptrl 1$PT "ptr2 ?
str - ptrl ptr2 ;
IF FIND Ptr2 [NP *st r * NP]

THEN RETURN(TRUE)
ELSE RETURN(FALSE);

END,
FINISH

paae 28

NLS Programmers' Guide
&SRI-ARC 18-NOV-7 5 20:20 33522
ARC 33522 Rev, 22 NOV 75

Part Two: Content Analyzer Programs: Modifying Statements

Section 2: Content Analyzer Programs: Modifying statements 4b

Introduction 4b 1

Content Analyzer programs may edit the statements as well as
decide whether or not they are printed. They are very useful
where a series of editing operations has to be done time and
time again. This section will introduce you to these
capabilities. All these constructs will be covered in detail
in Part Three, 4bla

A content Analyzer program has several limitations. It can
manipulate only one tile and it can look; at statements only in
sequential order (as they appear in the filel. It cannot back
up and re-examine previous statements, nor can it skip ahecsd to
other parts of the file, it cannot interact with the user.
Part Four provides the tools to overcome these limitations, 4blb

String Construction 4b2

Statements and the contents of string variables may be modified
by either of the following two statements: 4b2a

ST ptr _ stringlist ?

The whole statement in which the text pointer named "ptr"
resides will be replaced by the string list (to be
described in a minute).

ST ptr ptr _ stringlist ?

The part of the statement from the first otr to the
second ptr will be replaced by the string list,

ptr may be a previously set text pointer or SF(ptr) or
SE(ptr),

The content of string variables may be replaced with the string
assignment statement: 4b2b

stringname _ stringlist ;

The string list (stringlist) may be any series of strlnq
designators, separated by commas. The string designators may
be any of the following (other possibilities to be described
later): 4b2c

page 29

&SRI-ARC 18-N0V-75 20:20 33522
ARC 33522 Rev. 22 NOV 75 NLS Programmers' Guide

Part Two: Content Analyzer Programs: Modifying Statements

a string constant# e.g. "ABC" or 'w

ptr ptr

the text between two text pointers previously set in
either a statement or a string

str ingnarre

a string name in asterisks, refer.ing to the contents of
the string

E.g.: 4b2d

ST pi p2 - *string# ;
or

ST pi _ SF(pl) pi, *string*, p2 SE(p2);

(Note: these have exactly the same meaning.)

Example: 4b3

PROGRAM delsp % Content analyzer. Deletes all leading
spaces from statements, % 4b3a

preserve space tor ("declare") a text pointer named "pt."%
DECLARE TEXT POINTER ptf

(delsp) PROCEDURE ;
%if any leading spaces, scan past them and set pointer!

IF FIND 1SSP -pt THEN
Ireolace statement with text from pointer to
statement eno%

ST pt _ pt SE(pt);
%return, don't display anything%

RETURN (FALSE) ;
END.

FINISH

More Than One Change per Statement 4b4

Part of a text pointer is a character count, This count stays
the same until the text pointer is again set (to some other
position), even though the statement has been edited, If, for
example, you have the statement 4b4a

abcdefg

and if you have set a pointer between the "d" and the "e", it
will always point between the fourth and fifth characters in

page 30

&SPI-ARC 18-NOV-75 20j20 33522
„ . , apf1 Rev. 22 NOV 75

MLS programmers' Guide tt
Part Two: content Analyzer programs: Modifying statements

4b4b

4b5

4b5a

^hp statement. If you then delete the character "a", your
pointer will be between the "e» and the "f", now the fourth and
fifth characters. For this reason, you should begin a series
of edits with the last one in the statement and work backwards
through the statement.

Controlling Which Statements are Modified

In TNLS, the Content Analyzer program will be called for
commands which construct a printout of the file (print and
Output), The program will run on every statement for which it
is called ce.Q. every statement in the branch during a Print.
Branch command) which pass all the other viewspecs,, Once you
have written, compiled, and instituted a program which does
some editing operation, the Print command is the easiest way to
run the program on a statement, branch, plex, or group.

In DNLS, the system will call the Content Analyzer program
whenever the display is recreated (e,q, viewspec t and the Jump
commands), and also for the Output commands. If the Pr^ram
returns TRUE, it will only run on enough statements to f 11 t

I screen. It is safer to have programs that edit the file return
FALSE, Then when you set viewspec i, it will run on al
statements from the top of the display on, and when it is cone
it will display the word "Empty", At that point, change to
viewspec j and recreate the display with viewsoec F, then all
statements including the changes will be displayed, you can
control which statements are edited with level viewspecs and
the branch only (g) or plex only (1) viewspecs, and by
positioning the top of your window.

After having run your program on a file, you may wish to Update
to permanently incorporate the changes in the file« s wlse

to Update before vou run the program so that, if- the program
does something unexpected, you can Delete Modifications and
return to a good file,

4b6
Problems

Try writing the following programs: 4b6a

1) Remove any invisibles from the end of each statement,

2) Make the first word a statement name surrounded by
parentheses.

4b5b

page 31

&SRI-ARC 18-NOV-75 20 s 2 0 33522
ARC 33522 Rev. 22 NOV 75 NLS Programmers* Guide

Part Two: Content Analyzer Programs: Modifying statements

Sample solutions 4b6b

Problem 1

PROGRAM enciinv
DECLARE TEXT POINTER ptr ;
Cendinv) PROCEDURE ;

IF FIND "ptr SE(ptr) 1 $np "Ptr

FINISH

Problem 2

PROGRAM makename
DECLARE TEXT POINTER ptrl, ptr2 J
(makename) PROCEDURE ;

IF FIND $NP "ptr1 1$LD "ptr?
THEN ST ptr1 - '(, ptrl ptr2, '), ptr2 SE(ptr2);

RETURN(FALSE)
END,

THEN ST Ptr _ SF(ptr) ptr ;
RETURN (FALSE) ;
END.

FINISH

page 32

&SRI-ARC 18-NOV-75 20:20 33522
NLS Programmers' Guide ARC 33522 Rev, 22 NOV 75
Part Three: The User Program Environment

PART THREE: Basic LlO Programming 5

Section i; The User Program Environment 5a

Introduction Sal

User-written content Analyzer programs are called in the
process of creating a view of an nuS file e.g.# with a Print
command in TnlS, with any of the Output commands* and with the
Jump command in DNLS, 5a la

The sequence generator provides statements one at a time;
tpe Content Analyzer may then check each one. Finally, the
formatter prints it or puts It on the screen.

Thus if one had a user Content Analyzer program compiled and
instituted, one could have a printout made containing only
those statements in the file satisfying the pattern.

Attachable subsystems are independent of this portrayal
process, although thev are welcome to make use of it« They
consist of commands, which may utilize all the powers of NLS, 5alb

The Sequence Generator 5a2

in the portrayal process, the sequence generator looks at
statements one at a time, beginning at the point specified by
the user, It observes viewspecs like level truncation in
determining which statements to pass on to the formatter. When
the sequence generator finds a statement that passes all the
viewspec requirements, it sends the statement to t.he formatter
and waits to be called again for the next statement in the
sequence, 5a2a

For example, the viewspecs may indicate that only the first
line of statements in the two highest levels are to be
output. The default NLS sequence generator will produce
pointers only to those statements passing the structural
filters; the formatter will then truncate the text to only
the first line before it displays or prints the statement.

Content Analyzer Filters 5a3

one of tne viewspecs that the sequence generator pays attention
to is «i» -- the viewspec that indicates whether a user Content
Analyzer filter is to be applied to the statement, If this

page 33

&SRI-ARC 18-NOV-75 20;20 33522
ARC 33522 Rev, 22 NOV 75 NLS Programmers' Guide

Part Three: The user Program Environment

vlewspec is on# the sequence generator passes control to a user
Content Analyzer program, which looks at the statement and
decides whether it should be included in the sequence, If the
statement passes the content Analyzer (i.e. the user program
returns a value of TRUE), the sequence generator sends the
statement tc the formatter; otherwise, it processes the next
statement in the seouence and sends it to the user Content
Analyzer program for verification. (The particular user
program chosen as a filter is determined by what program is
instituted as the current Content Analyzer proqram, as
described below,) 5a3a

in the process of examinino a statement and deciding whether
or not it should be printed, the Content Analyzer program
may edit the text of the statement. These edits appear in
the partial copy, just, as it the user had made them himself.
This provides a powerful mechanism tor automatic editing,

in DNLS, if you display any statements, the program will
stop after filling the screen. If you are not displaying
any statements, the Drogram will run on either the whole
file, a plex (viewspec 1), or a branch Cviewspec g), These
along with level clipping viewspecs give one precise control
over what statements in the tile will be passed to the
program,

The Portrayal Formatter 5a4

The formatter arranges text Passed to it by the sequence
generator in the style specified by other viewspecs. The
formatter observes viewspecs such as line truncation, length
and indenting; it also formats the text in accord with the
reauirements of the output device, 5a4a

page 34

•
NLS programmers' Guide
Part Three: Program Structure

&SRI-ARC iR-NOV-75 20:20 33522
ARC 33522 Rev, 22 NOV 75

Section 2: program structure

An NLS user proqram consists of the followinq elements# which must
be arranged in a definite manner with strict adherence to
syntactic punctuation:

The header -

a statement consisting of the word PROGRAM# followed by the
name of a procedure in the program, proqram execution win
begin with a call to the procedure with this name,

PROGRAM name

The PROGRAM statement may have a statement name in
parentheses; it will be ignored,

the word FILE should be substituted for the word PROGRAM if
the code is to be compiled into a file to be saved.

The FILE statement may have a statement name; if so# that
name will be used as the code-file symbol. You must not
follow the word FILE with a name if there is a statement
name precedinq FILE,

The body -

consists of declarations and procedures in any order:

1) declaration statements which specify information
about the aata to be processed by the procedures in the
program and enter the data identifiers in the program's
symbol table, terminated by a semicolon, E,g,

DECLARE x#y#z ;
DECLARE STRING test 1500] ;
REF x# z:

Declaration statements will be covered in section 3
C5c J.

2) procedures which specify certain execution tasks.
Each procedure must consist of:

the procedure name enclosed in parentheses followed by
the word PROCEDURE and optionally an argument list
containing names of variables that are passed by the

5b I a

5b lb

page 35

&SRI-ARC 18-N0V-75 20:20 33522
ARC 33522 Rev, 22 NOV 75 NLS Programmers' Guide

part Three: Program structure

calling procedure for referencing within the called
procedure, This statement must he terminated by a
semicolon, E, q,

(name) PROCEDURE ;
(name) PROCEDURE (paraml, param2) ;

You should always include a comment in the
procedure statement breifly summarizing the
function of the procedure.

the body of the procedure which may consist of LOCAL,
REF, and L10 statements,

LOCAL and REF declarations within a procedure must
precede executable code. They will be covered in
Section 3 (5c),

L10 statements will be covered in Sections 4 and 5
(5d) (5e),

A RETURN statement must be included at some
point, to pass control back to the calling
procedure,

the statement that terminates the procedure (note the
final period):

END,

The program terminal statement - 5blc

FINISH

Note: this is a sianal to the compiler to stop
compilation; it does not mean stop execution. Any text
after that in the NLS source file will be ignored.

Notes on Program Writing Style 5o2

Except for within literal strings, variable names, and special
L10 reserved words, spaces are ignored. It is good practice to
use them liberally so that your proqram will be easy to read, 5b2a

Comments may be enclosed in percent signs (%) wherever spaces
are allowed. They will be ignored by the compiler. It is good
practice to use the level below the procedure statement for
comments, filling in the code that executes the commented

page 36

NLS Programmers' Guide
Part Three: Program Structure

&SRI-ARC 18-NOV-75 20;20 33522
ARC 33522 Rev. 22 NOV 75

function at; the level below the comment. It is also wise to
add comments to any individual statements whose function is not
obvious, particularly calls on other procedures, 5b2b

You may find it convenient to add a comment to the FILE
statement including the information needed by the Compile
File command. E.g.

FTLE program % (MO,) to (directory,Program,subsys,) %

Also, NLS file structure is ianored. Structure is, however,
very valuable in making the program readable, and it is good
practice to use it in close correlation to the program's
logical structure, 5b2c

An example of a simple L10 program is provided here, The reader
should easily understand this program after having studied this
document, 5b3

PROGRAM delsp % content analyzer. Deletes all leading
spaces from statements, % 5b3a

Preserve space for ("declare") a text pointer named "pt"%
DECLARE TEXT POINTER pt?

(delsp) FROCEDURE j
%if any leading spaces, scan past them and set pointer?,

IF FIND 1SSP *pt THEN
Ireolace statement holding pt with text from
pointer to statement end%

ST pt _ pt SE(pt);
%return, don't display%

RETURN (FALSE) ;
END,

FINISH

page 37

ARC 33522 Rev. 22 NOV 75
&SRI-ARC 18-N0V-75 20:20 33522

NLS Programmers' Guide
Part Three: Declarations

Sect ion 3; Dec larations 5C

introduction 5cl

L10 declarations provide information to the compiler about the
data that is to be accessed; they are not executed. Every
variable used in the program must be declared somewhere in the
system (either in your program or in the NLS system), 5cla

There are a number of types of variables available, each with
its own declaration statement; the most frequently used are
discussed here, (Complete documentation is available in the
LI0 Reference Guide -- 7052,) 5clb

Variables 5c2

Six types of variables are described in this document: simple,
constants, arrays, text pointers, strings, and referenced,
Each is represented by an identifier, some unique lowercase
name. Each can be declared on three levels: local, global, or
external, 5c2a

LocalVariables 5c2b

A local variable is k"no«n and accessible only to the
procedure in which it appears, Local variables must appear
in a procedure argument list or be declared in a procedure's
LOCAL declaration statements (to be explained below), Any
LOCAL declarations must precede the executable statements in
a procedure.

Local variables in the different procedures may have the
same name without conflict, A global variable may not be
declared as a local variable and a procedure name may be
used as neither, in such cases the name is considered to be
multiply defined and a compilation error results.

Global Variables 5c2c

Global variables are defined in the program's DECLARE
statements. Variables specified in these declarations are
outside any procedure and may be used by all procedures in
the program,

External Variables 5c2d

page 3R

•
NLS Programmers' Guide
Part Three: Declarations

&SRI~ARC 1B-NOV-75 20:20 33522
ARC 33522 Rev, 22 NOV 75

5c3

External variables are defined in the program's DECLARE
statements or in the NLS system urogram.

Variables specified in these declarations may be used by all
procedures anywhere in the system. Many externals are
defined as part of the NLS system; user programs have
complete access to these. Since other procedures may access
the same variable, the user programmer must be very careful
about changing their values.

Simple Variables

Simple variables represent one computer word, or 36 bits, of
memorv. Each bit is either on or off., allowing binary numbers
to be stored in words. Each word can hold up to five ASCII
7-bit characters, a single number, or may be divided into
fields and hold more than one number, 5 c i a

Declaring a variable allocates a word in the computer to
hold the contents of the variable. The variable name refers
to the contents of that word. One may refer to the address
of that computer word by preceding the variable name by a
dollar sign (S),

For example, if one has declared a simple variable called
"num", one may put the number three in that variable with
the statement:

num - 3 t

One may add two to a variable with the statement:

num _ num + 2 *

One may put the address of num into a variable called
addr with the statement:

adcr - Snum ;

Qne may refer to predefined fields in any variable by
following the name of the variable with a period, then the
field name. For example, the fields RH and LH are globally
defined to be the right and left half (18 bits) of the word
respectively; e,g,

num.LH - 2 ;

page 39

&SRI-ARC 18"NOV"75 20:20 33522
ARC 33522 Rev, 22 NOV 75 NLS Programmers' Guide

Part Three: Declarations

Fields may be defined by the user with RECORD statements
(described in section 5 of Part Five), Additionally, you
may refer to system-defined fields (e,g, RH), They divide
words into fields by numbers of bits, so they may refer to
any declared word. For example, the field "LH" refers to
the left-most Id bits in any 36-bit word.

If you assign a full word to a field of n bits within a
word, the right-most n bits will be assigned to the field
in the destination word; the rest of the destination word
will be untouched.

If you assign a field with a word to a full word, it will
be right-justified within the destination word; the
remaining bits in the destination word (to the left of
the assianed bits) will oe set to zero.

Declaring Simple Global Variables 5c3b

DECLARE name ;

"name" is the name of the variable. It must oe all
lower-case letters or digits, and must begin with a
letter.

E.g.

DECLARE XI ;

Optionally, the user may specify the initial value of the
variable being declared, If a simple variable is not
initialized at the program level, for safety it should be
initialized in the first executed procedure in which it
appears,

DECLARE name = exp ?

exp is the initial value of name, it may be any of the
following:

- a numeric constant optionally preceded by a minus
sign (-)

- a string, up to five characters, enclosed in
ouctatlon marks

- another variable name previously defined in a SET

page 40

•
NLS Programmers* Guide
Part Three: Declarations

K.SR1 - ARC 18-N0V-75 20:20 33522
AFC 33522 Rev. 22 NOV 75

statement (described below), causing the letter's
value to be assigned

Examples:

DECLARE X 2 = 5 ;

%x2 contains the value 8%

DECLARE x3="OUT";

%x3 contains the word UUT%

DECLARE xx=x4j

%x4 has previously been declared in a SET
stat;ement%

Formal parameters (passed to a procedure) are allocated as
local simple variables, then initialized whenever the procedure
is called, within the called procedure, they should be treated
as simple variables.

Constants

¥ou may declare a (simple) variable to be a constant value with

the statement:

set namel=exp ;

where names and expressions are as described above for
initializing simple variables.

Constants take no memory. They may be refeped to just like
simple variables* except the name must be preceded by a dollar
sign ($), They may not be cnanged by the program. E.g. 5c4b

after the declaration:
SET var = 4 ;

the assignment:
num „ $var ;

will assign the value 4 to the variable num.

Arrays

Multi-word (one-olmensional) array variables may be declared;
computer words within them may be accessed by indexing the
variable name. The index follows the variable name, and is

5c ic

5C4

5c4a

5c5

page 41

& S R I - A R C 1 8 — N O V — 7 5 2 0 : 2 0 3 3 5 2 2
A R C 3 3 5 2 2 R e v , 2 2 N o v 7 5 ^ L s P r o g r a m m e r s ' G u i d e

P a r t T h r e e : D e c l a r a t i o n s

e n c l o s e d i n s q u a r e b r a c k e t s U , T h e f i r s t w o r d o f t h e a r r a y
n e e d n o t b e i n d e x e d . T h e i n d e x o f t h e f i r s t w o r d i s z e r o , s o
i f w e h a v e d e c l a r e d a t e n e l e m e n t a r r a y n a m e d " b l a h " : 5 c 5 a

b l a h i s t h e f i r s t w o r d o f t h e a r r a y
b l a h C l] i s t h e s e c o n d w o r d o f t h e a r r a y
b l a h 1 9 1 i s t h e l a s t w o r d o f t h e a r r a y

D e c l a r i n g G l o b a l A r r a y V a r i a b l e s 5 c 5 b

D E C L A R E n a m e [n u m] ;

n u m i s t h e n u m b e r o f e l e m e n t s i n t h e a r r a y i f t h e a r r a y
i s n o t b e i n g i n i t i a l i z e d . I t m u s t , o f c o u r s e , b e a n
i n t e g e r ,

E . g .

D E C L A R E s a m (1 0 3 ;

d e c l a r e s a n a r r a y n a m e d " s a m " c o n t a i n i n g 1 0 e l e m e n t s .

O p t i o n a l l y / t h e u s e r m a y s p e c i f y t h e i n i t i a l v a l u e o f e a c h
e l e m e n t c f t h e a r r a y . I f a r r a y v a l u e s a r e n o t i n i t i a l i z e d
a t t h e p r o g r a m l e v e l , f o r s a f e t y t h e y s h o u l d b e i n i t i a l i z e d
I n t h e f i r s t e x e c u t e d p r o c e d u r e i n w h i c h t h e a r r a y i s u s e d ,

D E C L A R E n a m e = C n u m l , n u m 2 » . . .) j

n u m i s t h e i n i t i a l v a l u e o f e a c h e l e m e n t o f . t h e a r r a y .
T h e n u m b e r o f c o n s t a n t s i m p l i c i t l y d e f i n e s t h e n u m b e r
o f e l e m e n t s i n t h e a r r a y . T h e y m a y b e a n y o f t h e
c o n s t a n t s a l l o w e d f o r s i m p l e v a r i a b l e s .

N o t e : t h e r e i s a o n e - t o - o n e c o r r e s p o n d e n c e b e t w e e n t h e
f i r s t c o n s t a n t a n d t h e f i r s t e l e m e n t / t h e s e c o n d c o n s t a n t
a n d t h e s e c o n d e l e m e n t / e t c .

E x a m p l e s :

D E C L A R E n u m f c s = (1 , 2 , 3) ;

d e c l a r e s a n a r r a y n a m e d n u m b s c o n t a i n i n g 3 e l e m e n t s
w h i c h a r e i n i t i a l i z e d s u c h t h a t :

n u m b s = 1
n umbs 11] = 2
n u m b s t 2 J = 3

p a g e 4 2

& S R I - A R C 1 8 - N O V - 7 5 2 0 : 2 0 3 3 5 2 2
N L S P r o g r a m m e r s * G u i d e A R C 3 3 5 2 2 R e v . 2 2 N O V 7 5
P a r t T h r e e : D e c l a r a t i o n s

D E C L A R E m o t l e y s (i O , S b l a h) j

o e c l a r e s a n a r r a v n a m e d m o t l e y c o n t a i n i n g 2
e l e m e n t s w h i c h a r e i n i t i a l i z e d s u c h t h a t :

m o t l e y = 1 0

m o t l e y C l l = $ b l a h = t h e a d d r e s s o f t h e v a r i a b l e
" b l a h "

T e x t P o i n t e r s

A t e x t p o i n t e r i s a n L 1 0 f e a t u r e u s e d i n s t r i n g m a n i p u l a t i o n
c o n s t r u c t i o n s . I t i s a t w o - w o r d e n t i t y w h i c h p r o v i d e s
i n f o r m a t i o n f o r p o i n t i n g t o p a r t i c u l a r l o c a t i o n s w i t h i n t e x t . #
w h e t h e r i n s t r i n g v a r i a b l e s o r i n N L S s t a t e m e n t s .

T h e t e x t p o i n t e r p o i n t s b e t w e e n t w o c h a r a c t e r s i n a
s t a t e m e n t o r s t r i n g . B y p u t t i n g t h e p o i n t e r s b e t w e e n
c h a r a c t e r s a s i n g l e p o i n t e r c a n b e u s e d t o m a r k b o t h t h e e n d
o f o n e s u b s t r i n g a n d t h e b e g i n n i n g o f t h e s u b s t r i n g s t a r t i n g
w i t h t h e n e x t c h a r a c t e r # t h e r e b y s i m p l i f y i n g t h e s t r i n g
m a n i p u l a t i o n a l g o r i t h m s a n d t h e w a y o n e t h i n k s a b o u t
s t r i n g s .

A t e x t p o i n t e r c o n s i s t s o f t w o w o r d s : a s t r i n g i d e n t i f i e r a n d a
c h a r a c t e r c o u n t . A s s u m e y o u h a v e d e c l a r e d a t e x t p o i n t e r n a m e d
" P t , »

p t r e f e r s t o t h e f i r s t w o r d o f t h e t e x t p o i n t e r . T h e f i r s t
w o r d # c a l l e d a n " s t i d # " c o n t a i n s t h r e e s y s t e m - d e f i n e d
f i e l d s :

s t f i i e - - t h e f i l e n u m b e r (i f a n N L S s t a t e m e n t)
s t a s t r - - a b i t i n d i c a t i n g s t r i n g # n o t a n n l S s t a t e m e n t
s t p s i d - • » t h e p s i d o f t h e s t a t e m e n t ; e v e r y s t a t e m e n t h a s
a u n i q u e n u m b e r (p s i d) a t t a c h e d t o i t .

T h e s t i d i s t h e b a s i c h a n d l e o n a s t a t e m e n t i n L 1 0 , i t
i s o f t e n u s e d a l o n e , S i n c e i t i s a s i n g l e - w o r d v a l u e # i t
m a y b e s t o r e d i n a s i m p l e v a r i a b l e a n d p a s s e d e a s i l y
b e t w e e n p r o c e d u r e s # a n d i s u s e d b y m a n y r o u t i n e s t o
s p e c i f y a s t a t e m e n t o r s t r i n g ,

i f a n s t i d i s u s e d w i t h o u t b e i n g p r o p e r l y s e t # t h e
r u n - t i m e e r r o r m e s s a g e " f s t e n t r y n o n e x i s t a n t " m a y
r e s u 1 1 ,

5 c 6

5 c 6 a

5 c 6 b

p a g e 4 3

&SPT-ARC 18-NOV-75 20;20 33522

•
ARC 33522 Rev, 22 NOV 75 NLS Programmers' Guide

Part Threes Declarations

pt[1] refers to the second word of the text pointer. The
second word contains a character count; with the first
position being 1 (before the first character),

For example# one might nave the foilowing series of
assignment statements which fill the three fields of the
first word and the second word with data, with pt being the
name of a declared text pointers

pt,stfile _ fileno;

%fiieno is a simple variable with a number in it%

pt.stastr _ FALSE;

%a statement# not a strinq%

pt,stpsid _ origin;

%al 1 origin statements have the psid = 2; origin is a
qlcdai variable with the value 2 in it%

ptCU - 1;

%the word one after pt (l,e, the character count) gets
1, the beginning of the statement%

It is important that stid's be initialized properly to avoid
errors, Text pointers may be most easily initialized by
setting them in a FIND statement (see Section 6),

Declaring Text pointers 5c6c

DECLARE TEXT POINTER pt ;

The names pi# n2# p3, p4# and p5 are globally declared and
reserved for system use.

Strings 5c7

String variables are a series of words holding text, When they
are declared# the maximum number of characters is set, The
first word contains the two globally defined fields: 5c7a

M -- the maximum number of characters the string can hold
L -- the actual number of characters currently in the string

The next series of words (as many as are required by the

page 44

•
NLS Programmers* Guide
Part Three: Declarations

&SRI-ARC 1R-NOV-75 20:20 33522
ARC .33522 Rev, 22 NOV 75

maximum string size) hold the actual characters, five per word,

st.r refers to the contents of the string variable "str",

str refers to the first word of the string variable "str";
typically this is only useful in combination with the two
fields "M" and «L":

str,N refers to the maximum declared length of the
string variable "str" (an integer),

str.L refers to the current length of the string stored
in the string variable "str" (an integer).

Declaring strings 5c7c

The DECLARE SIRING enables the user to declare a global
string variable by initializing the strinq and/or declaring
its maximum character length.

To declare a string:

DECLARE STRING name[num) ;

num is the maximum number ot characters allowed for
the string

Since the maximum statement length is 2000 characters,
you should not need to declare a strinq greater than
2000 characters long.

DECLARE STRING 1string[t00];

declares a string named "lstring" with a maximum
length of 100 characters and a current length of 0
characters

10 declare and initialize a string:

DECLARE string name="Any string of text" :

The length of the literal string defines the maximum
length of the string variable.

in ASCII 7-bit code 5c7b

E,q

E.g

Page 45

&SRI-ARC 18-NOV-75 20:20 33522
ARC 33522 Rev, 22 NOV 75 NI.S Programmers' Guide

Part Three: Declarations

DECLARE STRING m essage="RED ALERT";

declares the strinq message, with an actual and
maximum length of 9 characters and contains the text
"RED ALERT"

REF: Referenced Variables bc8

Reference Declarations 5c8a

After a simple variable has been declared* the REF statement
can defire it to represent some other variable, A
referenced variable holds the address of another declared
variable of anv type, whenever the referenced variable is
mentioned* L10 will operate on the other variable instead *
as if it were declared in that procedure and named at that
point,

This is useful when you wish a procedure to know about a
multi-word variable, in procedure calls, you are only
allowed to pass single-word parameters. If you wish a
called procedure to use or operate on a text pointer* array,
or string, you may pass the address of that multi-word
variable. Then, in the called procedure, you must REF the
formal parameter receiving that address. From then on In
the called procedure, when you refer to the REFed parameter*
you are actually operating on the multi-word variable
declared in some other procedure to which the local REFed
variable points* i.e. on the variable at the address
contained in the REFed parameter.

Example:

If the simple variable "loc" in the current procedure
has been REFed and contains the address of the strinq
"str" local to the calling procedure, then operations
on loc actually operate on the string in str:

rres « *loc*;

%mes qets the string in str%

#loc* — "corpuscle";

%str gets the string "corpuscle"%

Similarly* you cannot return multi-word variables from a
called procedure, if you wish a procedure to return a

page 45

K.SRI-ARC 18-NOV-75 20:20 33527

•
NLS Programmers' Guide ARC 33522 Rev, 22 NOV 75
Part Three: Declarations

string, you must declare the string as a local in the
CALLING procedure, pass its address to a REFed variable in
the called procedure. Then the called procedure can modify
the string as if it were local (and return nothing). The
modifications will be made in the actual string variable.

Unreferencing REFed Variables 5c8b

one may refer to the actual contents (an address) of a REFed
variable (l,e, "unref" it) by preceding the referenced
variable name with an ampersand (&). It, for example, an
address was passed to a REFed variable, and you wish now to
pass that address on to another procedure, you can "unref"
it, i.e. access the actual content (the address of some
variable),

E.g. if x has been REFed and holds the address of y:

%z gets the CONTENTS of y%

z - &x ;

%z gets the ADDRESS of y %

This construct might be used, for example, if one procedure
has been passed the address of a string, operates on it,
then wishes to pass (the address of) that string on to
another procedure that it calls.

This can be a tricky concept; it may be worthwhile to review
this section carefully,

REbing Simple Variables 5c8c

Once a simple variable has been declared (as a global,
local, or parameter), it may be REFed with the LlO
declaration statement;

REF var ;

It win he a reference from then on in that procedure# and
you must always use the ampersand to refer to its actual
contents: the address of the variable it references.

Note that the RFF statement does not allocate storage; it
just sets an attribute of an existing variable.

Page 47

ARC 33522 Rev, 22 NOV 75

&SRI-ARC 18-N0V-75 20:20 33522
NLs Programmers' Guide

Part Three: Declarations

If you wish to use a variable that is not REFed as if it
were REFed, enclose it in square brackets [], E,g, assume
the simple variable "astr" holds the address of a string
variable but was NOT REFed:

[astrJ refers to the contents of the string variable
whose address is in astr.

Note on Programming Style 5c8d

You should always REF locals and parameters which hold the
address cf something to be accessed (even if that variable
is only used to pass the address on to another procedure).

Declaring Many Variables in one Statement 5c9

One may avoid putting several individual declarations of
variables in a series by putting variables of similar type,
initialized or not, in a list in one statement following a
single DECLARE, separated by commas and terminated by the usual
semicolon. Array and simple varibles may be nut together in
one statement, 5c9a

Examples:

DECLARE x, vilO], z = (1, 2, -5);
DECLARE TEXT POINTER tP, S t , Ptl, Pt2 :
DECLARE STRING istrinq1100 J, meSSage = HRED ALERT" j

Declaring Locals 5cl0

Program level declarations (DECLARE and REF) and procedures may
appear in any order. However, procedure level declarations
(LOCAL and PEE inside a procedure) must appear before any
executable statements in the procedure. The different types of
variables may be declared in any order# but a variable must be
declared before it can be REFed. SclOa

Whenever possible, LOCALS should be used instead of globals.
It makes for a cleaner program if you pass parameters amonq
procedures rather than depend on global variables to
transmit information.

with one exception, a local variable declaration statement is
just the same as a global with the word "LOCAL" substituted for
the word "DECLARE". The one exception is that LOCAL
declarations can not initialize the variables, 5cl0b

page 48

NLS Programmers' Guide
Part Three: Declarations

&SRI-ARC 18-NOV-75 20:20 33522
ARC 33522 Rev, 22 NOV 75

Examples:

LOCAL var, flag, level [12] ;
LOCAL TEXT POINTER tp, pt, sf ;
LOCAL STRING test[100], OUt[2000] j

When a procedure is called by another procedure, the callinq
procedure may pass one-word parameters. The procedure receives
these values in simple local variables declared in the
PROCEDURE statement's parameter list. For example, two locals
will automat really be declared and set to the passed values
whenever the procedure "procname" is called; SclOc

(procname) PROCEDURE (varl, var2) ;

varl and var? must not be declared again in a LOCAL
statement. They may, however, be REFed by a REF statement,
as discussed above, and used throughout the procedure.

The statement, which calls procname may look like:

procname (locvar, 2) ;

varl will be initialized to the value of the variable
"locvar" and var2 will get the value 2,

Declaring Externals Sell

Externals are declared lust like globals, with one exception,
The word DECLARE must be followed by the word EXTERNAL, E,a. 5clla

SET EXTERNAL one=l, tw0 = 2 ;
DECLARE EXTERNAL a, bllO], c=5 ;
DECLARE EXTERNAL TEXT POINTER exptrl, exptr2 ;
DECLARE EXTERNAL STRING exstrtlOO] ;

REp specifications may not be external to the program, 5cllh

page 49

ARC 33522 Rev. 22 NOV 75
&SRI-ARC 1H-NOV-75 20:20 33522

NLS Programmers' Guide
Part Three: Declarations

Accessinq Reqisters 5cl2

The user way access machine registers (the same length as other
words, i.e. 36 bits) by naming them with the declaration: 5cl2a

REGISTER name = reqnum ;
or

REGISTER namel=regnuml, name2=regnum2 ;

The declared names will then represent the registers to which
they are attached, you may then access or assign values to
their content. On TENEX, the user programmer may use the first
seven registers, reqisters 0 through 6, (Registers 7 through
15 are reserved for system use.) E.g. 5cl2b

REGISTER rO=0t rl=l, r2=2, r3=3, r4=4, r5=5, rh=6 ;

The names used in the above example are used most often by
convention,

Registers must be used very carefully! They are typically used
when calling TENEX JSYS (see section 4). Many L10 constructs
and procedures use the registers; you should assign their
content to a variable immediately after the JSYS call if you
wish to save it, 5cl2c

page 50

N L S P r o g r a m m e r s ' G u i d e
P a r t T h r e e : S t a t e m e n t s

& S R I - A R C 1 8 - N 0 V - 7 5 2 0 : 2 0 3 3 5 2 2
A R C 3 3 5 2 2 R e v , 2 2 N O V 7 5

S e c t i o n 4 : S t a t e m e n t s 5 d

I n t r o d u c t i o n 5 d l

T h i s s e c t i o n w i l l d e s c r i b e s o m e o f t h e t y p e s o f s t a t e m e n t s w i t h
w h i c h o n e c a n b u i l d a p r o c e d u r e , T h e t e r m " e x p r e s s i o n " (o f t e n
a b b r e v i a t e d t o " e x p ") w i l l b e u s e d i n t h i s s e c t i o n , a n d w i l l b e
e x p l a i n e d i n d e t a i l i n S e c t i o n 5 (5 e) „ 5 d l a

A s s i g n m e n t 5 d 2

I n t h e a s s i g n m e n t s t a t e m e n t , t h e e x p r e s s i o n o n t h e r i g h t s i d e
o f t h e i s e v a l u a t e d a n d s t o r e d i n t h e v a r i a b l e o n t h e l e f t
s i d e o f t h e s t a t e m e n t , 5 d 2 a

v a r _ e x p ;

w h e r e v a r = a n y g l o b a l , l o c a l , r e f e r e n c e d o r u n r e f e r e n c e d
v a r i a b l e .

O n e m a y m a k e a s e r i e s o f . a s s i g n m e n t s i n o n e s t a t e m e n t b y
e n c l o s i n g t h e l i s t o f v a r i a b l e s a n d t h e l i s t o f e x p r e s s i o n s i n
p a r e n t h e s e s , T h e o r d e r o f e v a l u a t i o n o f t h e e x p r e s s i o n s i s
l e f t t o r i g h t . T h e e x p r e s s i o n s a r e e v a l u a t e d a n d p r e s s e d o n t o
a s t a c k j a f t e r a l l a r e e v a l u a t e d t h e y a r e p o p p e d f r o m t h e s t a c k
a n d s t o r e d i n t h e v a r i a b l e s , 5 d 2 b

(v a r l # v a r 2 r _ (e x p l » e x p 2 , ;

N a t u r a n y , t h e n u m b e r o f e x p r e s s i o n s m u s t e g u a i t h e n u m b e r
o f v a r i a b l e s .

E x a m p l e :

(a , b) - (c + d , a - b)

T h e e x p r e s s i o n c + d i s e v a l u a t e d a n d s t a c k e d , t h e
e x p r e s s i o n a - b i s e v a l u a t e d a n d s t a c k e d , t h e v a l u e o f a - b
i s p o p p e d f r o m t h e s t a c k a n d s t o r e d i n t o b , a n d f i n a l l y ,
t h e v a l u e o f c + d i s p o p p e d a n d s t o r e d i n t o a . I t i s
e q u i v a l e n t t o :

t e m p i - c + d ;
t e m p 2 _ a - b j
b _ t e m p 2 ;
a „ t e m p i ;

p a g e 5 1

ARC 33522 Rev, 22 NOV 75
&SP I - ARC 18-NOV-75 20:20 33522

NLs Programmers' Guide
Part Three: statements

One may assign a single value to a series of variables by
stringing the assignments together: 5d2c

varl - var2 _ vari — exp ;

The assignment will be made from right to left, vari# var2#
and var3 will all be given the value of the expression.

Example:

a «. b _ 0;

Both a and b win be given the value zero, This type of
statement can be useful in initializing a series of
variables at the beginning of. a procedure,

BUMP Statement 5d3

The BUMP statement win add one to a variable; 5d3a

BUMP var ;

This is equivalent to:

var _ var + 1 ;

BUMP DOWN will subtract one from a variable 5d3b

HUMP DOWN var

This is equivalent to

var _ var - 1 ;

You nay BUMP more than one variable in a single statement 5d 3c

RUMP varl# var2, var3#.,.
or

BUMP DOWN varl, var2, var3

IF Statement 5d4

This form causes execution of a statement if a tested
expression is TRUE, it tqe expression is FALSE and the
optional ELSE part is present# the statement following the ELSE
is executed. Control then passes to the statement immediately
following the IF statement, 5d4a

page 52

•
NLS Programmers' Guide
Part Three; statements

&SR I-ARC 18-NOV-75 20:20 33522
ARC 33522 Rev, 22 NOV 75

IF testexp THEN statement j

IF testexp THEN statement 1 ELSE statement2 ;

The statements within the IF statement can be any statement,
but are not followed by the usual semicolon? the whole IF
statement is treated like one statement and followed by the
semicolon, 5d4b

E.g. 5d4c

IF y=z THEN y-y+i ELSE y.z ;

In some cases, complex nested iFs may be simpler if rewritten
as a CASE statement, 5d4d

CASE Statement 5d5

This form is similar to the IF statement except that it causes
one of a series of statements to be executed depending on the
result of a series of tests, 5d5a

CASE testexp OF
relop exp ; statement ;
r el op exp ; statement ?
relop exp ; statement ;

ENDCASE statement ?

where relop = any relational or interval operator (>=, <, =,
IN, etc,) see Section 5 C5e3c) and (5e3d).

The CASE statement provides a means of executinq one statement
out of many. The expression after the word "CASE" is evaluated
and the result left in a register. This is used as the
left-hand side of the binary relations at the beginning of the
various cases. Each expression is evaluated and compared
according to the relational operator to the CASE expression.
If the relationship is TRUE, the statement is executed. If the
relationship is FALSE, the next expression and reiatonal
operator will be tried, if none of the relations is satisfied,
the statement following the word "ENDCASE" will be executed.
Control then passes to the statement following the CASE
statement 5d5b

Note that the relop and expressions are followed by a colon,
and the statements are terminated with the usual semicolon.

page 53

APC 33522 Rev, 22 NOV 75
&SRI«ARC 18-N0V-75 20:20 33522

NLs Programmers' Guide
Part Three: statements

The w0rd ENDCASE is not f o l l o w e d by a colon. In ENDCASE,
the statement may be left out -- this is the equivalent of
having a NULL statement there; nothing will happen.

Example:

CASE c OF
= a: %executed if c = a%

x - y;
> b: %executed if c > b%

(x, y) __ (x+y, x-y);
ENDCASE %executed otherwise%

V - x;

CASE char OF
a h; %if char = the code for a digit%

char _ ' i;
= UL: %if char = the code for an upper-case letter%

char _ *0;
ENDCASE; %otherwise nothing%

Several relations may be listed at the start of a single case;
they should be separated by commas, The statement will be
executed if any of the relations is satisfied,

CASE testexp OF
relop exp: statement ;
relop exp, relop exp: statement ;
relop exp, relop exp, relop exp: statement ;

5d5c

ENDCASE statement ;

Example: .

CASE c OF
-a, <d • %executed if c=a or c<d%

x _ y;
>b, =d: %executed if Ob or c=d%

(x,y) _ (x+y,x-y);
ENDCASE ^executed otherwise!

Y _ x;

As a point ct style, the conditions of the CASE statement
should be put one level below the CASE statement in the source
(text) file. The statements (if they are more than one line)
may be put one level below the condition, 5d5d

Page 54

•
NLS Programmers* Guide
Part Three: statements

&SRI-ARC 18-N0V-75 20:20 33522
ARC 33522 Rev. 22 NOV 75

LOOP Statement 5d6

The statement following the word "LOOP" is repeatedly pxecuted
until control leaves by means of some transfer instruction
within the loop, 5d6a

LOOP statement;

where statement = any executable L10 statement

Example:

LOOP IF a>=b THEN EXIT LOOP ELSE a - a+1 ?

(It is assumed that a and b have been initialized before
entering the loop.)

The EXIT construction is described below. It is extremely
important to carefully provide tor exiting a loop,

WHILE,,,DO statement 5d7

This statement causes a statement to be repeatedly executed as
long a$ the expression immediately following the word WHILE has
a logical value of TRUE or control has not been passed out of
the DO loop by EXIT LOOP (described below), 5d7a

WHILE exp DO statement ;

exp is evaluated and if TRUE the statement following the word
DO is executed; exp is then reevaluated and the statement
continually executed until exp is FALSE, Then control will
pass to the next statement, 5d7b

por example# if you want to fill out a string with spaces
through the 20th character position# you could;

WHILE str.L < 20 DO *str* _ *str*, SP; %what*s already
there# then a space*

Remember that the first word of every string variable has
two globally defined fields:

L -- actual length of contents of string variable
M -- maximum length of string variable

The WHILE Construct is equivalent to: 5d7c

page 55

ARC 33522 Rev, 22 NOV 75
&SRI-ARC 18-NOV-75 20:20 33522

MLS Programmers* Guide
Part Three: statements

LOOP
IF NOT exp THEN EXIT LOOP
ELSE statement ;

UNTIL,,,DO Statement 5d8

This statement is similar to the WHILE,,,DO statement except
that statement following the DO is executed until exp is TRUE,
As long as exp has a loqical value of FALSE the statement will
be executed repeatedly, 5d8a

UNTIL exp DO statement ;

Example;

UNTIL a>b DO a _ a+5 ;

The UNTIL construct is equivalent to: 5d8b

LOOP
IF exc THEN EXIT LOOP ELSE Statement ;

DO,,,UNTIL/DO,,,WHILE Statement 5d9

These statements are like the precedinq statements? except that
the logical test is made after the statement has been executed
rather than before, 5d9a

DO statement UNTIL exp;

DO statement WHILE exp;

Thus the specified statement is always executed at least once
(the first time, before the test is made). For example, this
DO,.,UNTIL: 5d9b

Do arraytvar] - 0 UNTIL (var := var - 1) = 0 j

and this DO,,.WHILE: 5dgc

DO arraytvar] _ 0 WHILE (var := var - 1) > 0 ;

are both equivalent to: 5d9d

LOOP
BEGIN
arraylvar] _ 0 ;

page 56

NLS Programmers' Guide
Part Three: statements

&SR 1 - ARC 18-NOV-75 20:20 3.3522
ARC 33522 Rev, 22 NOV 75

IF (var :S var - I) = 0 THEN EXIT LOOP .
END J

FOR,,,DO Statement 5dl0

The FOR statement causes the repeated execution of the
statement following "DO" until a specific terminal value is
reached, 5dl0a

FOR var UP UNTIL relop exp DO statement;

CUP win be assumed if left out,)

FOR var DOWN UNTIL relop exp DO statement;

where

var = the variable whose value is incremented or
decremented each time the FOR statement is
executed

relop = any relational operator (described in 5e3c)

exo = when combined with relop, determines whether
or not another iteration of the FOR statement
will be performed. It is recomputed on each

iteration,

E,g, FOR i UP UNTIL > 7 DO a _ a + t[l] ; SdlOb

Optionally, the user m av initialize the variable and maY
increment it by other than the default of one, 5dl0c

FOR var _ exnl ijP exp2 UNTIL relop exp3 DO statement;
FOR var ̂ exnl down exp2 UNTIL relop exp3 DO statement;

where

expl = an optional initial value for var, If expi is not
specified, the current value of var is used,

exp2 = an optional value by which var will be incremented
(if UP specified) or decremented (if DOWN specified), if
exp 2 is not specified, a value of one will be assumed.

Note that exp2 ana exp3 are recomputed on each iteration.

Example:

page 57

&SRI-ARC lB-hQV-15 20:20 33522
ARC 33522 Rev, 22 NOV 7.5 NLs Programmers' Guide

Part Three: statements

FOR k . n UP k/2 UNTIL > m*3 DO X CK] k;

is equivalent to

k n;
LOCP

BEGIN
IF k >m*3 THEN EXIT LOOP?
x Ck 1 _ K;
k - k + k / 2 ;
END;

BEGIN,,,END Statement 5dil

The BEGIN..,END construction enables the user to group several
statements into one syntactic statement entity. A BEGIN...END
const.ruction of any length is valid where one statement is
required, 5dlla

BEGIN statement ; statement ; ... END ;

Example:

IF a >= b*C THEN
BEGIN
a-b;

+ 5;
END

ELSE
BEGIN
a_c;
b_ d +2 !
c»fc*d*7
END ;

Note the use of NLS file structure to clarify the logic and
separate the blocks. Blocks should always be put one level
below the statement of which they are a part,

EXIT Statement 5dl2

The EXIT statement transfers control (forward) out of CASE or
iterative statements. A CASE statement can be left with an
EXIT CASE statement. All of the iterative statements (LOOP,
WHILE, UNTIL, DO, FOR) can be exited by the EXIT LOOP
statement, EXIT and EXIT LOOP have the same meaning, 5di2a

page 58

NLS Programmers' Guide
Part Three; Statements

&SBI-ARC 18"NOV*75 20:20 33522
ARC 33522 Rev, 22 NOV 75

EXIT LOOP num or EXIT nuro
EXIT CASE num

where num is an optional integer. The optional number
(num) specifies the number ot lexical levels of CASE or
iterative statements respectively that are to be exited
(e.g. if loops are nested within loops). If a number is
not given then 1 is assumed,

Examples:

LOOP
BEGIN

IF * test*THEN EXIT;
%the EXIT will branch out of the LOOP%

END;

UNTIL something DO
BEGIN

WHILE test 1 DO
BEGIN

IF tes12 THEN EXIT;
%the EXH will branch out of the WhilE%

END;

END ;

UNTIL something DO
BEGIN

WHILE testl DO
BEGIN

IF test2 THEN EXIT 2;
%the EXiT 2 will branch out of the UNTjl%

• •«•••••
END;

END;

page 59

&SRI-ARC
ARC 33522 Rev, 22 NOV 75 NLS

Part

18-NOV«75 20:20 33522
Programmers' Guide
Three: statements

CASE exp OF
=something:

BEGIN

EXIT CASE;
will branch out of the CASE%

t # • • • • • •

END;

IF test THEN
%the EXIT

REPEAT Statement 5dl3

The REPEAT statement transfers control (backward) to the front
of CASE or iterative statements. The optional number has the
same meaning as in the EXIT statement, REPEAT and REPEAT CASE
have the same meaning, 5dl3a

REPEAT LCOP num

REPEAT CASE n u m (exp) or REPEAT num (exp)

If an expression is given in parentheses with the REPEAT CASE,
then it is evaluated and used in place of the expression given
at the head of the specified CASE statement. If the expression
is not giver, then the one at the head of the CASE statement, is
reevaluated, 5dl3b

Examples; 5dl3c

CASE exp1 OF
=something:

BEGIN
• ••••••#
IF test 1 THEN REPEAT;

^REPEAT with a reevaluated expi%

IF * tes 12 THEN REPEAT(exp2) ;
%REPEAT with exp2%

END;

ENDCASE *;

page 60

&SRI-ARC 18-NOV-75 20:20 33522
NLS Programmers' Guide ARC 33522 Rev. 22 NOV 75
Part Three: Statements

LOOP
BEGIN

IF * test * THEN REPEAT LOOP;
%REPEAT LOOP will go to the top of the LOOP%

END;

DIVIDE Statement 5dl4

The divide statement permits both the quotient and remainder of
an integer division to be saved. The syntax for the divide
statement is as follows: 5dl4a

D1v expl / exp2 , quotient , remainder ;

Quotient and remainder are variable names in which the
respective values will be saved after the division, 5di4b

E.Q,

DIV a / b, a* r ;

a will be set to a/b t.o the greatest integer with r
gettinq the remainder

Floating point calculations are described in Part Five, Section
4, 5dl4c

PROCEDURE CALL Statement 5di5

Procedure calls direct program control to the procedure
specified, A procedure call occurs when the name of the
procedure is followed by parentheses, if the procedure
requires that, arguments he passed, they should be included in
the parentheses, separated by commas, 5dl5a

procname Cexp, exp, ;

where procname = the name of a procedure

exp = any valid LiO expression (explained in Section 5).
The set of expressions separated by commas is the
argument list for the procedure.

The argument list consists of a number of expressions separated
by commas. The number of arguments should equal the number of
formal parameters for the procedure, The argument expressions

page 61

ARC 33522 Rev, 22 NOV 75
&SRI-ARC 18-NOV-75 20:20 33522

MLS Programmers' Guide
Fart Three: statements

are evaluated in order from left to right. Each expression
(parameter) must evaluate to a one-word value. The values will
he assigned to the formal parameters of the called procedure, 5dl5b

To pass an array# text pointer# string# or any multi-word
parameter# the programmer may pass the address of the first
word of the variable, then REF the receiving local in the
called procedure,

For example# one may Pass an stid directly, but to pass a
text pointer, you must pass the address of the text pointer
and REF the receivinq parameter. Remember that a dollar
sign (S) preceding a variable represents the address of that
variable,

The procedure may return one or more values. The first value
is returned as the value of the procedure call. Therefore# if
only one value is returned# one might say: 5dl5c

a « proc (b) ;

in this context, the procedure call is an expression.

If more than one value is returned by the called procedure# one
must specify a list of variables in which to store them. The
list of variables for multiple results is separated from the
list of argument expressions by a colon. The number of
locations fcr results need not equal the number of results
actually returned, if there are more locations than results,
then the extra locations qet an undefined value. If there are
more results than locations, the extra results are simply lost.
The first RETURN value is still tafcen only as the value of the
procedure call, 5dl5d

var - procname (exp# exp# ... : var# var# ;

Example:

If procedure "proc" ends with the statement

RETURN (a # b # c)

then the statement

g _ proc(:r # s);

results in (g,r#s) _ (a#b#c).

pane 62

&SRI-ARC 18-NOV-75 20:20 33522
MLS Programmers' Guide ARC 33522 Rev, 22 NOV 75
Part Three: Statements

A procedure call mav just exist as a statement alone without
returning a value, Not all procedures require parameters, but
the parentheses are mandatory in order to distinguish a
procedure call from other constructs.

K.g. 1da C);

If a block of instructions are used repeatedly, or are
duplicated in different sections of a proaram, it is often wise
to make them a separate procedure and simply call the procedure
when approprlate, 5dl5f

It. is considered good style to "modularize" the functions of
your program as much as possible, where each procedure
represents a function which will be performed no matter
which procedure called it. This implies very limited use of
qlobal variables and careful definition of the procedure
interface.

Procedures should not be made to long, nor have complex
nested loops. Often breakinq the code into a number of
shorter procedures will make the program clearer and easier
to debug,

A procedure may recursively call itself. Each call will have
its own unique set of local variables. This may be useful if a
procedure is built to handle a general case as well as a
specific case or number of cases. The general case may call
that same procedure |or the specific case after some
manipulations, 5dl5q

A great many procedures are part of the NLS system and are
available to your proarams, A list of them is available in the
file <NLS,XPROC S,> or <NLS,SYSGD,>, SVSGD lists links to the
source code, so that you can examine the procedure in detail to
see just what it expects as arguments and what it returns, 5di5h

page 63

ARC 33522 Rev, 22 NOV 75
&SRI-ARC 18-N0V-75 20:20 33522

NLS Programmers* Guide
Part Three; Statements

RETURN Statement 5di6

This statement causes a procedure to return control to the
procedure which called it. Optionally# it may pass the calling
procedure an arbitrary number of results. The order of
evaluation of results is from left to right, 5dl6a

RETURN ;

RETURN (exp, exp, •

E.Q. 5dl6b

RETURN (TRUE# a + b) ;
RETURN (getnmf(stid)) ;

GOTO Statement 5dl7

Any statement may be labeled; one puts the desired label (a
string of lower case letters and digits) in parentheses and
followed by a colon at the beginning of a statement, 5dl7a

(label): statement ;

E,g, 5dJ7b

(there); a - b + c ;

GOTO provides for unconditional transfer of control to a now
location, 5 d17 c

GOTO label ;

e.g. 5dl7d

GOTO there ;

GOTO statements make reading and debugging your program
difficult and are not considered good style; they can usually
be eliminated by use of procedure calls and the iterative
statements. 5dl7e

NULL Statement 5di8

The NULL statement may be used as a convenience to the
programmer * It does nothing, 5 d l 8 a

NULL ;

page 64

&SRI-ARC 18-NQV-75 20:20 33522
NL5 Programmers' Guide ARC 33522 Rev, 22 NOV 75
Part Three: statements

Example:

CASE exp OF
=0, si| NULL:
ENDCASE V-l;

JSYS Cail and Assembly lanquaqe statement 5dl9

The use of these capabilities should be limited to system
programmers, Assembly language code makes user programs
difficult to understand and to maintain as the executive
underlying NLS changes over time, LiO orocedures are available
to accomplish most of the tasks one might want to do with a
JSYS, System programmers should refer to the TENEX JSYS manual
tor a description of the available JSYS's, 5dl9a

Assembly language statements may be included in the L 1 0 code by
Preceding the statement with an exclamation-point (!), E,g, 5di9b

•PUSH s,jfn ;

A TeneX jSyS may be invoked with a
procedure cail statement; the name
by an exclamation-point:

statement similar to the
of the JSYS must be preceded

5di9c

1JSYSNAME cregl, reg2,.f.) ;

The arguments in the parentheses are evaluated and loaded into
the registers before the JSYS is invoked. The first argument
will be put in register one, the second in register two, etc.
Up to eight arguments may D P given. 5di9d

Like a procedure call, multiple results may be received. They
will be taken in order from the registers, (See <13510,3c> for
a description of user JSYS calls, 5di9e

Some JSYS return to the assembly-language line of code (not the
LiO statement) one beyond the normal return location, with
such JsYs, you may use the SKIP construct to test if it has
done so: 5dl9f

IF S K I P JJSYS(argl,•,,) TH E N ... ;

In using SKIP, Y O U may not receive multiple results directly,
but must read the registers into globals (see 5cl2), 5dl9Q

page 65

&SRI-ARC 18-N0V-75 20 s 20 33522
ARC 33522 Rev. 22 NOV 75 NLS Programmers' Guide

part Three: Expressions

Section 5: Expressions 5e

Introduction Se)

This section will describe the composition of the expressions,
which are an integral part of many of the statements described
in Section 4, Sela

Primitives Se2

Primitives are the basic units which are used as the operands
of L10 expressions. There are many types of elements that can
be used as LiO primitives; each type returns a value which is
used in the evaluation of an expression. 5e2a

Each of the following is a valid primitive: 5e2b

a constant (see below)

any valid variable name, referinq to the contents (of the
first word, it not indexed) of that variable

the contents of a string variable, refered to as *var#

a dollar sign (S) followed by a variable name, refering to
the address of the variable

a procedure call which returns at least one value

the first (leftmost) value returned is the value of the
procedure call; other values may be stored in other
variables as described In section 4,

an assignment (see below)

classes cf characters; described in Sections 1 of Part One

M1 n (exp, exp, ,.,) the minimum of the expressions

MAX (exp, exp, ,,.) the maximum of the expressions

TRUE has the value 1

FALSE has the value 0

VALUE (astring) given the address of a string containing a
decimal number, has the value of the number

page 66

NLS Programmers' Guide
Part Three: Expressions

&SRI-ARC 18-NOV-75 20:20 33522
ARC 33522 Rev, 22 NOV 75

VALUE (astririq, num) given the address of a string
containing a number and the base of that number, has the
value of the number Callows other than base-ten numbers)

READC (see below)

CCPOS (see below)

FIND

used t o test text patterns and load text pointers tor use
in string construction (see Section 6); returns the value
TRUE or FALSE depending on whether or not all the string
tests within it succeed,

POS

PCS textpointerl relop textpointer2

may be used to compare two text pointers. If the POS
construction is not used, only the first words of the
pointers (the stid's) will be compared. If a pointer is
before another, it is considered less than the other
pointer.

E, g,

POS pt-1 r pt 2
POS first >= last

Constants 5e2c

A constant may be either a number or a literal constant.

There are several ways in which numeric values may be
represented, A sequence of digits alone (or followed by a
D) is interpreted as base ten. It followed by a B then it
is interpreted as base eight, A scale factor may be given
after the B for octal numbers or after a D for decimal
numbers. The scale factor Is equivalent to adding that many
zeros to the original number,

Examples:

64 = 100R = 1B2

144B = 100 = 1D2

page 67

&SRI-ARC 18-NOV-75 20;20 33522
ARC 33522 Rev, 22 NOV 75 NLS Programmers' Guide

Part Three: Expressions

Literals may be used as constants as they are represented
internaily by numeric values, The following are valid
literal constants:

-any single character preceded by an apostrophe

e.g, 'a represents the code for 141B,

-the following synonyms for commonly used characters:

ENDCHR -- endcharacter as returned by READC
SP -- space
ALT -- Tenex's version of altmode or escape (=33B)
CR -- carriage return
LF -- line feed
EOL -- Tenex EOL character
TAB -- tab
BC -- backspace character
BW -- backspace word
C, -- center dot
CA -- Command Accept
CD -- Command Delete

Assignments 5e2d

An assignment can be used as a value in an expression,

The form a - b has the effect of storing b into a and has
the value of b as the value of the assignment.

Another form of the assignment statement is:

a : s b

This will store b into a, but have the old value of a as
the value of the assignment when used as a primitive in
an expression.

For example,

b - (a := b) ;

The vaiue of b will be put in a, The assignment win
get the old value of a, which is then put in b, This
transposes the values of a and b, (The parentheses
are not really necessary,)

READC - ENDCHR 5e2e

page 68

NLS Programmers' Guide
Part Three: Expressions

&SR t-ARC 1R-NOV-75 20:20 33522
ARC 33522 Rev. 22 NOV 75

The primitive READC is a special construction for reading
characters trom NLS statements or strings,

A character is read from the current character position
in the scan direction set by the last CCPOS statement or
string analysis FIND statement or expression, CCPOS and
FIND are explained in detail in Section fc of this
document,

Attempts to read off the end of a string in either
direction result in a special "endcharacter" being
returned and the character position not beino moved.
This endcharacter is included in the set of characters
for which system mneumonlcs are provided and may be
referenced by the identifier "ENDCHR",

For example* to sequentially process the characters of
a string;

CCPOS #str*;

UNTIL (Char _ READC) = ENDCHR do process(char);

(Note: READC may also be used as a statement it it is
desired to read and simply discard a character),

CCPOS 5e2f

when used as a primitive, CCPOS has as its value the index
of the character to the right of the current character
position. If str = "glarp", then after CCPOS *str*, the
value of CCPOS is 1 and after CCPOS SE(*str*) the value of
CCPOS is 6 Cone greater than the length of the string),

CCPOS is more commonly used as a statement to set the
current character position tor use in text pattern matching.
This is discussed in detail, in Section 6,

CCPOS may be useful as an index to sequentially process the
first n characters of a string (assumed to have at least n
characters),

page 69

&SRI-ARC 18-N0V-75 20:20 33522
ARC 33522 Rev, 22 NOV 75 NLS Programmers' Guide

Part Three: Expressions

Example:

CCPOS SF(*str*);
%CCPOS new has the index value of. one, the front of

the strings
UNTIL CCPOS > n DO process(READC)?

%READC reads the next character and increments
CCFQS%

Operators 5e3

Primitives may be combined with operators to form expressions,
Four types of operators will be described here: arithmetic,
relational, interval, and logical, 5e3a

Arithmetic operators 5e3b

+ (in front of a number) -- positive value

- (in front of a number) -- negative value

+ -- addition

- -- subtraction

* -- multiplication

/ -- integer division (remainder not saved)

MOD -- a MOD b gives the remainder of a / b

,V -- CcP) a ,V b => bit pattern which has l's where either
a or b contains 1, 0 elsewhere

,X -«• (XCP) a ,X b => bit pattern which has l's where either
a holds 1 and b contains 0, or a contains 0 and b contains
lf 0 elsewhere

,A -- (AD) a ,A b => bit pattern which has l's where both a
and b contain 1, 0 elsewhere

Relational Operators 5e3c

A relational operator is used in an expression to compare
one quantity with another. The expression is evaluated for
a logical value, if true, its value is 1? if false, its
value is 0,

page 70

&SRI-ARC 18-NQV«75 20:20 33522
NLS programmers' Guide ARC 33522 Rev, 22 NOV 75
Part Three: Expressions

Operator Meaning Example

s equal to
not equal to
< less than
<= less than or

equal to
> greater than
>= greater than or

equal to

4+1 = 3+2 (TRUE, si)
6#8
h <8

8< = 6
3>R

R > = 6
NOT <other-relational-operator>

(TRUE » =1)
(TRUE» =1)

(FALSE# =0)
(FALSE, =0)

(TRUE, =1)

6 NOT > 8 (TRUE, =1)

Interval Operators

The interval operators permit one to check whether the value
of a primitive falls in or out of a particular interval,

IN (primitive, primitive) IN [primitive, primitive]

The value is tested to see whether or not it lies within a
particular interval, Facn side of the interval may be
"open" or "closed". Thus the values which determine the
boundaries may be included in the interval (by using a
square bracket) or excluded (by using parentheses),

Example:

x IN (1,100)

is the same as

(X > = 1) AND (X < 100)

5 eld

page 71

&SRI-ARC 1.8-NOV-75 20;20 33522
ARC 33522 Rev. 22 NOV 75 NLS Programmers' Guide

Part Threes Expressions

Logical Operators 5e3e

Every numeric value also has a logical value, A numeric
value not equal to zero has a logical value of TRUE; a
numeric value equal to zero has a logical value of FALSE,

OF

a OR b = TRUE if a = TRUE or if b = TRUE
= FALSE if a = FALSE and if b = FALSE

AND

a AND b = TRUE if a = TRUE and if b s TRUE
= FALSE if a = FALSE or if b = FALSE

NOT

NOT a = TRUE if a = FALSE
= FALSE if a= TRUE

Expressions 5e4

introduction 5e4a

Ah expression is any constant* variable* special expression
form* or combination of these joined by operators and
parentheses as necessary to denote the order in which
operations are to be performed,

Examples of assiqninq an expression to a variable;

var - 0;
var _ var + 2 ;
var - POS ptrl >= ptr2 ;
var - Ca > b) OR (a IN [c* d]) ;

Liberal use of parentheses Is highly recommended,

special 1.10 expressions are;

- the FIND expression which is used for string
manipulation* and

- the conditional IF and CASE expressions which may be
used to give alternative values to expressions depending
on tests made in the expressions,

page 72

•
NLS Programmers' Guide
Part Three: Expressions

&SRI-ARC 18-NOV-75 20:20 33522
ARC 33522 Rev, 22 NOV 75

Expressions are used where the syntax requires a value,
while certain of these forms are similar syntactically to
L10 statements, when used as an expression they always have
values (see below).

Order of Operator Execution-- Binding Precedence 5e4b

The order of performing Individual operations within an
equation is determined by the hierarchy of operator
execution (or bindinq precedence) and the use of
parentheses,

operations of the same heirarchy are performed from left to
right in an expression. Operations in parentheses are
performed before operations not in parentheses.

The order of execution of operators (from first to last) is
as follows:

unary -, unary +

.V, ,X

*, /, MOD

+, "

relational tests (e.g., >=» <=, >, <, =, IN, OUT)

NOT relational tests (e.g., NOT >)

NOT

AND

OR

Conditional Expressions 5e4c

The two conditional constructs (IF and CaSE) can be used as
expressions as well as statements, As expressions, they
must return a value,

IF Expressions

IF testexp THEN expl ELSE exp2

page 73

AFC 33522 Rev, 22 NOV 75

&SRI-ARC 1F-NOV-75 20:20 33522
NLs Programmers* Guide

part Three: Expressions

testexp is tested for its logical value. If testexp is
TRUE then expl will oe evaluated. If it is FALSE# then
exp2 is evaluated,

Therefore, the result of this entire expression is EITHER
the result of expl or exp2.

Example:

y _ IF X INt1,3] THEN X ELSE 4f
% i t x = 1, 2, or 3, then y_x; otherwise y_4%

CASE Expression

This form is similar to the above except that it causes
any one of a series of expressions to be evaluated and
used as the result of the entire expression,

CASE testexp OF
reiop exp : exp ?
relop exp : exp :
relop exp : exp ;

*

ENDCASE exp

where relop = any relational or interval operator (>=,
<, =, IN, etc, see above Cbe3c) and (5e4d)

in the above, the testexp is evaluated and used with the
operator reiops and their respective exps to test for a
value of TRUE or FALSE, If TRUE in any instance, the
companion expression to the right of the colon is
executed and taken to be the value of the whole
expression. A value of FALSE tor all tests causes the
next relop in the CASE expression to be tested against
the testexp, If all reiops are FALSE, the ENDCASE
expression is taken to be the value of the whole
expression,

Note that ENDCASE cannot be null? it must have a value.

As with the CASE statement, any number of cases may be
specified, and each case may include more than one reiop
and expression, separated by commas.

page 74

MLS Programmers' Guide
Part Three: Expressions

&SRI-ARC 1B-NOV-75 20:20 33522
ARC 33522 Rev, 22 NOV 75

Example

V - CASE x OF
< 3: x +1 j
=3, =4: x + 2?
= 5: x;
ENDCASE x*2;

Value of X Value of y

2
3
4
5
b

3
5
6
5

1 2

String Expressions 5e4d

L10 also provides several expression forms which are used
for string manipulation and evaluation. These are discussed
in section 6 of this document.. When using string
manipulation statement forms as expressions# parentheses may
be necessary to prevent ambiguities.

page 75

&SRI-ARC 18-NOV-75 20:20 33522
ARC 33522 Rev, 22 Nov 75 NLS Programmers' Guide

Part Three; string Test and Manipulation

Section 6; string Test and Manipulation 5f

Introduction 54:1

This section describes statements which allow complex string
analysis and construction. The three basic elements of string
manipulation discussed here are the Current Character Posit ion
(CCPOS) and text pointers which allow the user to delimit
substrings within a string (or statement), patterns that cause
the system to search the string for specific occurrences of
text and set up pointers to various textual elements, and
actual string construction, 5£la

Current character Position (CCPOS) 5f2

The Current Character Position is similar to the TNLS CM
(Control Marker) in that it specifies the location in the
string at which subsequent operations are to begin. All LlO
string tests start their search from the Current Character
position, in Content Analyzer programs, it is initialized to
the BEGINNING OF EACH NEW STATEMENT. For each new statement,
the scan direction is initialized to LEFT TO RIGHT, It is
moved through the statement or throuqh strings by FIND
expressions, it may be set to a particular position in a
statement or string by the LlO statement: 5f2a

CCPOS pos ;

pos is a position in a statement or string that may be
expressed as any of the following: 5f2b

A previously declared and set text pointer,

If a text pointer is given after CCPOS, then the
character position is set to that location, A text
pointer points between two characters in a string,

e.g. CCPOS pt.1 ?

String Front -- left of the first character

SF(stspec)

when si is specified, CCpos will be set before the first
character of the statement or string variable specified
by stspec.

oage 76

&SRI-ARC 18-NOV-7 5 20;20 33522

•
NLS Programmers' Guide ARC 33522 Rev, 22 NOV 75
Part Three: String Test and Manipulation

stspec is a string specification that may be expressed as

- an stid (e,qf the first computer word of a
previously declared text pointer)* or

- a previously declared string name enclosed in
ast erisks,

Examples:

CCPOS SF(ptl) :
%ptl is a text pointer%

CCPOS SF (stid) ;
%stio is an stid%

CCPOS SF(*str*) ;
%str is a string%

String End -- right of the last character

SECstspec)

When SE is specified scanning will take Place from riqht
to left, and CCPOS will be set after the last character
of the statement or string variable specified by stspec,

A string (*strinqname*) is given after CCPOS. The position
is moved to the beginning of that string,

indexing the stringname (by specifying Cexp]) simply
specifies a particular position within the string. Thus
str r3] puts the Current Character Position between the
second and third characters of the string "str", If the
scan direction is left to right, then the third character
will be read next. If the direction is right to left,
then the second will be read next.

E.g.

CCPOS *str*l3) ;

If no indexing is given, then the position is set to the
left of the first character in the string. This Is
equivalent to an index of 1,

E, g.

CCPOS *str#

page 77

&SRI-ARC 18-NOV-75 20 s 20 33522
ARC 33522 Rev, 22 NOV 75 NLs Programmers' Guide

Part Three: String Test and Manipulation

means the same as
CCFOS SF(«str*);

Setting the current character position with the CCPOS statement
also sets the scan direction to forward (lett-to-right), except
if the SE construct is used, 5f2c

FIND Statement 5f3

The FIND statement specifies a string pattern to be tested
against a statement or string variable, and text pointers to be
manipulated and set, starting from the Current Character
Position, if the test succeeds the character position is moved
past the last character read, if the test fails the character
position is left at the position prior to the FIND statement.
The values cf text pointers set in the statement prior to the
failing element will remain as set; others of course will not
be changed, 5£3a

FIND pattern ;

FINDs may be used as expressions as well as free-standing
elements. If used as an expression, for example in IF
statements, it has the value TRUE if. all pattern elements
within it are true and the value FALSE if any one of the
elements is false, 5f3b

E.g. 5 f 3c

IF FIND pattern THEN ,,, ;

It is good practice to use FIND as an expression with the
appropriate error conditions if the FIND fails, if the FIND
fails, text pointers may not be set as expected, 5f3d

FIND Patterns 5f4

A string pattern may be any valid combination of the following
logical operators, testing arguments, and other non-testing
parameters (note the identity with content Analyzer Patterns): 5f4a

page 78

&SRI-ARC 18-NQV-75 20:20 33522

•
NLS Programmers' Guide ARC 33522 Rev, 22 NOV 75
Part Three: strim Test and Manipulation

Pattern Matching Arguments-- 5f4b

(each of these can be TRUE or FALSE)
s

string constant. e,g, "ABC"

or any character, preceded by an apostrophy

It should be noted that it the scan direction is set
right-to-left the string constant pattern should be
reversed. In the above example, one would have to
search for "CBA".

Any of the system defined mnemonics* as described in
the last section (5e2c)* such as "SP" or "CR"* are
also valid,

character class

lock for a character of a specific class: if found, =
TRUE* otherwise FALSE,

Character classes:

CH -- any character
L -- lowercase or uppercase letter
UL »• uppercase letter
LL -- lowercase letter
D -- diqit
LD -- lowercase or uppercase letter or digit
NLD -- not a letter or digit
ULD -- uppercase letter or digit
LLP -- lowercase letter or digit
PT -- printinq character
NP -- nonprinting character

Example;

char = LD

is TRUE if the variable char contains a value
which is a letter or a digit,

(elements)

look tor an occurrence of the pattern specified by the
elements, If found* = TRUE, otherwise FALSE,
Elements may be any pattern; the parentheses serve to

page 79

ARC 33522 Rev, 22 NOV 75

&SRI-ARC 18-NOV-75 20;20 33522
NLS Programmers' Guide

Part Three; String Test and Manipulation

grcun the elements so as to be treated as a single
element in any of the following elements,

-element

TRUE only if the string constant or character class
element following the dash does not occur,

NOT element

TRUE only if the element or group of elements
following the NOT does not occur.

[elements)

TRUE if the pattern specified by the elements can be
found anywhere in the remainder of the string,
elements may be any pattern; the squarebracKets also
group the elements so as to be treated as a single
element. It first searches from current position. If
the search failed, then the current position is
i ncrettiented by one and the pattern is tried again,
incrementing and searching continues until the end of
the strinq, The value of the search is FALSE if the
testing string entity is not matched before the end of
the strinq is reached,

NUM element

find (exactly) the specified number of occurrences of
the element.

E.g.

3(LD) means three letters or diqits

NUMI s NUM2 element

Tests for a ranqe of occurrences of the element
specified. If the element is found at least NUMI
times and at most NUM2 times, the value of the test is
TRUE,

Either number is optional, The default value for
NUMI is zero. The default, value for NUM2 is 10000,
Thus a construction of the form M$3(CH)" would
search for any number of characters (including
zero) up to and including three.

page 80

•
NLS programmers' Guide
part Three: String Test and Manipulation

S> SRI "ARC 18-NC3V-75 20:20 33522
ARC 33522 Rev, 22 NOV 75

Examples:

2$4(UL) -- from two to four upper-case letters

S10CSPJ -- up to ten spaces

!$(%) -- one or more periods

ID = user-ident
ID # user-ident

It the string beina tested is the text of. an NLS
statement then ident of the user who created or last
edited the statement is tested by this construction;
if CCPQS is in a strinq, you will get the error
"string treated as statement"

FT var

TRUE if the variable holds a Value of TRUE (non-zero).

if the string being tested is the text of an NLS
statement# this test is TRUE if the statement was
created or modified after the date and time (datim #
see below) specified,

BEFORE datim

if the strinq beina tested is the text ot an NLS
statement# this test is TRUE if the statement was
created or modified before the date and time (datim,
see below) specified.

page 81

ARC 33522 Rev, 22 NOV 75
&SRI-ARC 18-NOV-75 20:20 33522

NLs Programmers' Guide
Part Three: String Test and Manipulation

Acceptable dates and times follow the forms permitted
by the TENEX system's I DTI m JSYS described in detail
in the TENEX JSYS manual. It accepts "most any
reasonable date and time syntax,"

Examples of valid dates:

17-APR-70
APR-17-70
APR 57 70
17 APRIL 70
17/5/1970
5/17/70
APRIL 17, 1970

Examples of valid times (zero assumed if time left
out):

l: 12 :13
1234
1234:56
1:56AM
1 :56-EST
1 200N00N
16:30 (4:30 PM)
12:00:00AM (midnight)
11:59:59AM-EST (late morning)
12:00:01AM (early morning)

Examples:

BEFORE (MAR 19# 73 16:49)
SINCE (25-JUL-73 2130:00)

These may not. aPPear in Content Analysis patterns, put are
valid elements in FIND statements in any program:

str irgname

the contents of the string variable

BETWEEN pos pos (element)

Search limited to between positions specified, pos is
a previously set text pointer; the two must be in the
same statement or string, scan character position is
set to first position before the pattern is tested

page 82

•
NLS Programmers * Guide
Part Three: String Test and Manipulation

&SRI-ARC 18-NOV-75 20:20 33522
ARC 33522 Rev, 22 NOV 75

(This is not an unancpored scan unless square brackets
are used within the parentheses,).

E,g

BETWEEN ptl pt 2 (2D t,3 $NP)

Logical operators 5f 4c

These combine and delimit groups of patterns. Each compound
group is considered to be a single pattern with the value
TRUE or FALSE, . The character position will be reset to its
position before encounterng the group before a new group is
tested, if text pointers are set within a test pattern and
the pattern is not TRUE» the values of those text pointers
are reset to the values they had before the test was made,
(See examples below,)

These logical concatenators bind in the order in which
they are listed. I.e.

a / b A N D c
means the same as

(a / b) AND c

Other Elements-- 5f4d

These do not involve tests; rather, they involve some
execution action. They are always TRUE for the purposes of
pattern matching tests.

These may appear in simple content Analysis Patterns:

/

AND
OR

<

set scan direction to the left

In this case, care should be taken to specify
patterns in reverse, that is in the order which the
computer will scan the text.

>

set scan direction to the right

page 83

&SRI-AFC 18-NOV-75 20 s 20 33522
ARC 33522 Rev, 22 NOV 75 NLS Programmers' Guide

Part Three: String Test and Manipulation

TRUE

has no effect; it is generally used at the end of OR
when a value of TRUE is desired even if all tests
fail,

ENDCHP

Attempts to read off the end of a string in either
direction result in a special "endcharacter" being
returned and the character position is not moved.
This endcharacter is included in the set of characters
for which system mneumonics are provided and may be
referenced by the identifier "ENDCHR",

These may not appear in simple Content Analysis Patterns#
but may in FIND statements;

pos

pos is a previously set text pointer# or an SE(pos) or
SF(pos) construction, Set current character position
to this position. If the SE pointer is used# set scan
direction from right to left, If the SF pointer is
used# set scan direction from left to right.

F.g

FIND x; %sets CCPOS to position of previously set
text pointer x%

ID

store current scan position into the textpointer
specified by the identifier

„ [NUN] ID

back U P the specified text pointer by the specified
number CNUM) of characters. Default value for NUM is
one. Backup is in the opposite direction of the
current scan direction,

FS var
F R VAR

FS will set the variable to TRUE (1). FR win reset
the variable to FALSE (0).

page 84

&SRI"ARC 18-NOV-75 20;20 33522
NLS Programmers' Guide ARC 33522 Rev, 22 NOV 75
Part Three: String Test and Manipulation

String Construction 5(5

One may modify an NLS statement or a strinq with the statement: 5£5a

ST pos _ stringlist ;

The whole statement or string in which pos resides will
be replaced by the string list,

ST pos pos - strinqlist ;

The part of the statement or string from the first pos to
the second pos will be replaced by the string list,
"pos" nay be a previously set text pointer or the
SFCpos)/SE(pos) construct ion.

There are two additional ways of modifying the contents of a
strinq variable; 5f5b

ST *strinqname*texn To exp] _ stringlist ;
means the same as

*stringname*fexp TO exp] _ stringlist ;

The string from the first position to the second position
will be replaced by the string list. The
square-bracketed range is entirely optional; if it is
left off* the whole strinq will be replaced,

Note that the "ST" is optional when assigning a
stringlist to the contents of a string variable. The
statement then resembles any simple assignment statement.
I.e.

stringname _ strinalist ;

The string list (stringlist! may be any series of string
designators, separated by commas. The string desianators may
be any of the following: 5f5c

the word NULL

represents a zero lenoth (empty) string

string constant, e.g. "ABC" or 'w

part of any string or statement, denoted either by

page 85

ARC 33522 Rev, 22 NOV 75

&SRI-ARC 18-NQV-75 20:20 33522
NLS programmers' Guide

Part Three: String Test and Manipulation

two text pointers previously set in either a statement or

a string

POS DOS

a string name in asterisks# referinq to the whole string

stringnarre

a string name in asterisks followed by an index, refering
to a character in the string

stringnaire (exp)

(The inaex of the first character is one,)

a string name in asterisks followed by two indices,
refering to a substring of the string

st.r ingname [exp TO exp]

A construction of the form *str*[i TO jj refers to
the substring startinq with the ith character in
the string up and including the jth character,

txamp1es:

str[7 To 10] is the four character substring
starting with the 7th character of str,

#str*li TO str,L] is the string str without the
first i-1 characters, (i is a declared
variable,)

+ substrinq

substring capitalized

- substring

substring in lower case

exp

value of a general LlO expression taken as a character;
i.e,, the character with the ASCII code value (see chart
at end of document) equivalent to the value of the
expression

page 86

&SRI-ARC 1.8-NQV-75 20:20 33522

•
NLS Programmers' Guide ARC 33522 Rev, 22 NOV 75
Part Three: String Test and Manipulation

STRING (expl, exp2);

gives a strinq which represents the value of the
expression expl as a signed decimal number. If the
second expression is present, a number of that base is
produced instead of a decimal number.

E.g.

STRING C3*2) is the same as the string "6"
or

STRING (1.4,8) is the same as the string "16"

Examples: 5f5d

ST pi p2 .. *string*;
does the same as

ST p! - SF(pl) pi, *string*, p2 SE(p2);

assuming pi and p2 have been set somewhere in the same
statement. The latter reads "replace the statement
holding pi with the text from the beginning of the
statement to pi, the contents of string, then the text
from p2 to the end of the statement."

#st*(Iow TO high] _ "string";
does the same as

*st# _ *st* (1 to 1 ow*» 1] , "string", *st*[hiqh + i TO st.L];

assuming low and high are declared simple variables.

Example: 5f6

Let a "word" be defined as an arbitrary number of letters and
digits. The text pointer "t" is set before or after some
character in the word. The two statements in this example
delete the wora which holds the text pointer "t", and if there
is a space on the right, of the word, it is also deleted.
Otherwise, it there is space on the left of the word it is
deleted, 5f6a

The text pointers ptr.1 and ptr2 are used to delimit, the left
and ridht respectively of the string to be deleted, 5f6b

IF (FIND t < $ I'D -ptri > $LD (sP "Ptr2 / *ptr2 ptri < (SP "ptr 1
/ TRUE))) THEN

ST ptrl ptr2 „ NULL; 5f6c

page 87

ARC 33522 Rev, 22 NOV 75

&SRI-ARC 18-NOV-75 20;2Q 33522
NLS Proqrammers' Guide

Part Three: Strlnq Test and Manipulation

The reader should work through this example until it is clear
that it really behaves as advertised, 5f6d

More Than One Change per Statement 5£7

The second word of a text pointer, the character count, stays
the same until the text pointer is again set to some other
position (as does the first word), even though the statement
has been edited. if, for example, you have the statement 5f7a

abode fq

and if you have set a pointer between the "d" and the "e", it
will always point between the fourth and fifth characters in
the statement; the second word of the text pointer holds the
number 5, if you then delete the character "a", your pointer
will be between the "e" and the "f"» 5f7b

bcdefg
/\

For this reason, you probably want to do a series of edits
bealnning with the last one in the statement and working
backwards, 5£7c

Text Pointer comparisons 5f 8

This maY be used to compare two text pointers, 5f8a

POS Ptl = pt2;

>

<
> =

< =

ptl and pt2 are a text pointers,

NOT may preceae any of the relational operators. If the
pointers refer to different statements then all relations
between them are FALSE except "not equal" which is written #
or NOT=, It the pointers refer to the same statement, then
the truth of the relation is decided on the basis of their
location within the statement,

A pointer closer to the front of the statement is "less
than" a pointer closer to the end.

paqe 88

•
> NLS Programmers' Guide
Part Three: Invocation o£ User Filters

&SRT-ARC 18-MOV-75 20:20 33522
ARC 33522 Rev, 22 NOV 75

Section 7: Invocation of User Filters 5g

Introduction 5<3l

The content Analyzer filters described in this document may be
imposed through the NLS PROGRAMS subsystem, 5qla

User-attachable subsystems may be written for more complex
tasks. This type of user program and NLs procedures which
may be accessed by them will be discussed in Part Four,
With such a urogram, however, the user will still make use
of the commands in the NLS PROGRAMS subsystem,

This section describes NLS commands which are used to compile,
institute and execute user programs and filters, 5gib

Compilation--

is the process by which a set of instructions in a
proqram is translated from the LiO language written in an
NLS source file into object code, which the computer can
use to execute those instructions,

Loading--

is the process which copies the compiled instructions
into tn'e user-programs buffer,

Institution--

is the process by which a compiled and loaded Content
Analyzer program is designated as the current Content
Analyzer filter.

This section additionally presents examples of the use of the
LlO programming language. They do not make use of any
constructions not explained so far in this manual, 5glc

Programs Subsystem 5g2

Introduction 5g2a

The PROGRAMS subsystem provides several facilities tor the
processing of user written proqrams and filters, It is
entered by usinq the NLS command:

Goto Programs OK

page 89

&SRI-ARC 18-N0V-75 20:20 33522
ARC 33522 Rev, 22 Nov 75 NLS programmers' Guide

part Three: invocation of User Filters

This subsystem enables the user to compile L10 user programs
as well as Content, Analyzer patterns, control how these are
arranged internally for different uses# define how programs
are used, and to see the status of user programs,

PROGRAMS subsystem commands 5g2b

After entering the PROGRAMS subsystem# you may use one of
the following commands;

show status of programs buffer

This command prints out information concerning active
user programs and filters which have been loaded and/or
instituted:

Show Status (of programs buffer) OK

when this command is executed the system will print:

-- the names of ail the programs in the user programs
buffer, including those generated for simple content
Analysis patterns# startinq with the first program
loaded,

-- the remaining free space in the buffer. The buffer
contains the compiled code for all the current
compiled programs,

-- the current Content Analyzer Program or "None"

-- the current user Sequence Generator program or
"None"

-- the user sort Key program or "None"

Compi 1 e

L10 Program

This command compiles the program specified.

Compile L10 (user program at) ADDRESS OK

ADDRESS is the address of the first statement of the
program,

This command causes the program specified to be

page 90

NLS Programmers' Guide
Part Three: invocation of User Filters

&SRI-ARC 1R-NOV-75 20:20 33522
ARC 33522 Rev, 22 NOV 75

compiled and .loaded into the user program buffer in a
single operation. The program is not instituted.

The name of the program is the visible followinq
the word PROGRAM« ADDRESS points to the PROGRAM
statement,

The program may be instituted by the appropriate
commands,

File

The user program puffer is cleared whenever the user
resets or logs out of the system, if you have a long
program which will be used periodically# you may wish
to save the compiled code in a TENEX file. It can
then be retrieved with the Load Program command, The
command to compile the code into a TENEX file is:

Compile File (at) ADDRESS (using) L10 OK (to file)
FILENAME OK

The FILENAME must be the same as the program name.
The program will then be compiled and stored in the
TENEX file of the given name (with the extension REL#
unless otherwise specified). The user may then load
it at any time.

Before doing this# the programmer must replace the
word PROGRAM at the head of the program with the word
FILE,

Content Analyzer Pattern

This command allows the user to specify a Content
Analyzer pattern as a Content Analyzer filter,

Compile Content (analyzer filter) ADDRESS OK

The pattern must begin with the first visible after
the ADDRESS, or at that point you may type it in, It
will read the pattern up to a semicolon, so be sure to
insert a semicolon where you want it to stop.

When this command is executed, the pattern specified
is compiled into the buffer, AND it is automatically
Instituted as the Content Analyzer filter.

page 91

ARC 33522 Rev, 22 NOV 75
&SRI-ARC tg-NQV-75 20:20 33522

NLS Programmers' Guide
Part Three: invocation of User Filters

Procedure

This command compiles a single procedure.

Compile Procedure (at) ADDRESS OK

ADDRESS is the address of the PROCEDURE statement.

This command causes the procedure specified to be
compiled and loaded into the user program buffer in a
single operation,

If a procedure of the same name has already been
loaded (in the user programs buffer or in the NLS
system), the old procedure will be replaced. I.e.
any calls to that procedure name will invoice the
newly compiled procedure.

Error Message during compilation

"SYNTAX ERROR" messages include the type of error, the
location of the line of assembly code that caused
trouble, and a few characters of the NLS source code.
The last of these characters is the one which caused
the error, in some cases this may be misleading, when
a previous error (e.g. a missing quote or percent
sign) caused trouble later in the compilation,

"ext N local" •- a symbol was used as both an
external or global and a local variable in the
file. It a variable is not declared in the
program, the compiler assumes it is a system
EXTERNAL, If it is later used as a LOCAL, an error
will result,

"field too large" -- a field may not be defined as
more than 36 bits,

"sides not equal" -- in a multiple assignment
statement, the sides must have the same number of
values, e.g. (a,b,c) _ (x,y,z)f

"not. REF or POINTER" -- an ampersand («,) was used
on a variable not REFed or declared as a POINTER
(not described in this document),

"8 aras max" -- you may not pass more than eight
arguments in a JSYS call.

pane 92

NLS Programmers' Guide
Part Three: invocation of User Filters

&SRI-ARC 18»N0V*75 20:20 33522
APC 33522 Rev. 22 NOV 75

"SYSTEM ERROR" messages also include the type of
error, the location of the line of assembly code that
caused trouble, and a few characters of the NLS source
code,

"EOF READ" -- the compiler hit the end of the NLS
file before it read a FINISH statement, (This may
happen if you don't, have viewspecs set to all
lines, all levels.)

"HASH TABLE FULL" -- you have used too many symbols
in the file, Each file is limited to approximately
2000 symbols.

"BACKUP TOO FAR" -- a symbol or a literal string
(text within quotes) has too many characters in it.
They are limited to 148 characters,

"SYMBOL TOO LONG" -- as above, a symbol has too
many characters in it,

"INPUT TOO LONG" -- as above, a literal string has
too many characters in it,

"S,S, FULL," -- as above, a symbol has too many
characters in it.

"I/O ERROR" -- a number has too many digits in it,

"LIT TABLE FULL" -- the file has too many literal
strings and numbers.

"PUSHDOWN OVERFLOW" means that one of the stacks that
the compiler uses overflowed. Look for an L10
statement containing too many parentheses or
particularly complex constructions, You may have to
break some statements into multiple statements,

"Boolean as operand" -- you used an expression as a
parameter or in a RETURN statement. This is NOT an
error# but only a warning of unusual (though in may
cases good) programming practice.

If y°u include the LiO statement

NO.MESS ?

at the beginning of the file, at the same level as

page 93

ARC 33522 Rev, 22 NOV 75

&SRI-ARC 1R-NOV-75 20:20 33522
NLS Programmers' Guide

Part Three: invocation of User Filters

global declarations (i.e. not within a procedure)*
this warning will not be printed. Errors will be
printed as usual.

When the compilation is finished* it will list the
number of errors and wait for a Command Accept to
continue, You should then search for the error in the
NLS source code file* correct it* and recompile before
attempting to use the program.

Errors involving undefined variables will be reported
when you attempt to load the program, Of course any
code using these variables will cause execution
errors,

if you include the L10 statement

LIST ;

anywhere in the code* all the undefined symbols at
that point in the compilation win be printed.

The Compile Procedure command will generate
unoefined variable errors legitimately if the
procedure refers to global variables.

If the addition of your program to the user programs
buffer requires mope than the maximum space allotted
for user programs (either in number of pages or number
of symbols!* you will get a "format error" upon
loading, (if you have any otner Programs loaded, use
the "Delete All" command prior to loading,)

NDDT (described in Part Five* Section 2) will help you
trace run-time errors to errors in the NLS source
code,

Load Program

A pre-compiied proaram existing as a REL file may be
loaded into the proaram buffer with the command:

Load Program FILENAME OK

page 94

NLvS Programmers' Guide
Part Three: invocation of User Filters

&SRI-ARC 18-NOV-75 20:20
ARC 33522 Rev, 22 NOV

If the FILENAME is specified without specifying an
extension name, this command will search the connected
directory, then the <pROGRAMS> directory, for the
following extensions:

RET -- it will simply load the REL file

CA -- it will load the program and institute it as the
current content analyzer program

SK -- it will load the program and institute it as the
current sort Key extractor program

SG -- it will load the program and institute it as the
current sequence generator program

SUPS¥S •- it will load the program and then looK for a
file of the same name with extension CML? if both are
successfully loaded, they will pe treated as a single
program

CML -- it will load the program and then try to attach
it as a subsystem

PRCC-HEP -- it will load the proqram and then try to
replace an existing procedure of the same name as the
TFNEX code file by the first procedure in loaded
program

Sort Key extractor and sequence generator programs are
more complex and are generally limitea to experienced
L10 programmers,

FILENAME is the name of the TFNEX code file, not the name
of the program.

If any variables are undefined, they will be reported
upon loading, The program should not be used until those
variables are declared somewhere.

Delete

All

This command clears all programs from the user program
buffer, All programs are deinstituted and the buffer
is marKed as empty,

page

AFC 33522 Rev, 22 NOV 75
&SRI-ARC 18-N0V-75 20;20 33522

NLs Programmers' Guide
Part Three: invocation of User Filters

Delete All (programs in buffer) OK

The user programs buffer shares memory with data paqes
for files which the user has open, therefore
increasing the size of the user programs buffer
decreases the amount of space available for file data
with a possible slowdown in response for that user.
The buffer size is increased automatically as needed.
This command also resets the buffer size to the
original 8 pages (saving system storage space),

Last

This command deletes the most recently loaded program
in the buffer, The program is deinstituted if
instituted and its space in the buffer marked as free,

Delete Last (program in buffer) OK

Run Program

This command transfers control to the specified program,
This type of program is used very little, having been
substantially replaced by user-attachable subsystems, as
described in Part Four,

Run Program PROGNAME OK
Pun Program NUMBER OK

PROGNAME is the name of a program which had been
previously compiled. That is, PROGNAME must be in the
buffer when this command is executed.

instead of PROGNAME, the user may specify the program to
be run by its number. This first program loaded into the
buffer is number one.

Institute Program

This command enables the user to designate a program in
the buffer as the current Content Analyzer, Sequence
Generator, or Sort Key extractor program,

institute Program PROGNAME OK (as) type OK

where type is one of the following:
Content (analyzer)

page 96

&SRI-ARC 18-NOV-75 2Q;20 33522

•
NLS Programmers' Guide ARC 33522 Rev. 22 NOV 75
Part Three; Invocation of User Filters

Sort (KeY extractor)
Sequence (generator)

If no type is specified, content analyzer will be
assumed #

instead of PROGNAME the user may specify the program
to be instituted oy numb er, The first program loaded
into the buffer is number one.

If a program has already been instituted in that
capacity, it will be deinstituted (but not removed from
the buffer).

Deinstitute Program

This command deactivates the indicated program, but does
not remove it from the buffer. It may be reinstituted at
any time.

Deinstitute type OK

where type is one of the following;
Content (analyzer)
Sort (Key extractor)
Sequence (generator)

Assemble File

Files written in Tree-Meta can be assembled directly from
the NLS source file with the Assemble File command. This
aspect of NLS programming will not be described in this
document,

page 97

S.SRI-ARC 18-N0V-75 20:^0 33522
ARC 33522 Rev, 22 NOV 75 NLS Proarammers' Guide

Part Three: invocation of User Filters

Examples of User Programs 5g3

The following are examples of user programs which selectively
edit statements in an NLS file on the basis of text matched
against the pattern, For examples of L10 programming problems,
you may fine out how the standard NLS commands work by tracing
them through, beginning with <NLS, SYNTAX, 2>, A table of
contents to all the global NLS routines is available to the
user in <NLS, SYSGD, 1>, 5g3a

Example 1 -- Content Analyzer proqram 5g3b

PROGRAM cutname % removes the text and delimiters () of NLS
statement names in parentheses from the beginning of each
statement!

DECLARE TEXT POINTER Sf;
(outname)PROCEDURE;

IF FIND *((')] "sf THEN %found and set pointer after
name%

BEGIN
%reolace stmnt by everything after pointer!

ST sf _ sf SE(sf);
%display statement!

RETURN(TRUE);
END

%otherwise don't display statement%
ELSE RETURN(FALSE);

END,
FINISH

Example 2 -- Content Analyzer program 5g3c

PROGRAM changed %This program checks to see if a statement
was written after a certain date, jf it was, the string
"[CHANGED)" will be put at the front of the statement.%

(changed) PROCEDURE ;
LOCAL TEXT POINTER Pt ;
^remember, CCPOS is initialized to the beginning of
each new statement!
IF FIND "pt SINCE (25-JAN-72 12:00) THEN

!the substring of zero length is replaced with
»[CHANGED]

ST pt pt « "[CHANGED]";
RETURN(FALSE) ;
END,

FINISH

page 98

•
NLS Programmers* Guide
Part Four: introduction

&SRI-ARC 18-N0V-75 20:20 33522
ARC 33522 Rev, 22 NOV 75

PART FOUR: Interactive L10 Programming

Section 1: Introduction

For many programming applications» it is sufficient to accept
statements one at a time from the sequence generator and assume as
an initial character position the beqinninq of the statement (a
Content Analyzer program as described above). For more complex
applications, you may have to write programs which skip around
files, between files, and interact with the user, These are not
called by the sequence generator but "Attached" and then used like
standard NLS subsystems, holding one or more commands. All the
capabilities described above are available to such programs, 6al

There are two parts to every user-attachable subsystem: 6a2

1) the HO execution routines which do the file manipulations,
and 6a2a

2) the command syntax, specified in a language called command
Meta Language (CML)* describing the user interface of each
command in the user attachable subsystem, 6a2b

These two parts are two separate programs* compiled separately
into two PEL files, The two programs are loaded in unison and
together comprise the subsystem, 6a3

Like L10, source programs for the CML compiler are free form NLS
files. Comments may bP used wherever a blank is permitted and the
structure of the source file is ignored by the compiler, CML
source programs are compiled into REL files with the compile File
command in the PROGRAMS subsystem, CML is the compiler name for
the CML compiler,

The REL file name of the cML code should have the extension
"cml". The REL tile name of the corresponding L10 execution
procedures should have the same first name as tne CML. code
file, and should have the extension "subsys," if these
conventions are followed# the Load Program command in tne
PROGRAMS subsystem will automaticaily load both parts of the
user subsystem and attach it, making it available for use. The
user's subsystem mav then be invoked by using the Goto or
Execute commands, 6a4a

The CML program describes the command words# noise words,
selection requests, etc, that make up an NLS command. The CML

page 99

AHC 33522 Rev, 22 NOV 75
&SRI-ARC 18-NOV-75 20:20 33522

NLS Programmers' Guide
part Four: Introduction

6a5

6a5a

6 a 6

code interacts with the user when he enters the subsystem and as
he specifies commands, in the process of interacting with the
user, the CML code may call one or a number of L10 execution
procedures which "do the work,"

CML automatically provides prompting, questionmark* and
<CTRL-S> facilities. The CML syntax specification applies to
both TNLS and DNLS (unless restricted by the programmer to one
or the other)* and will conform to all user options with
respect to prompting and to recognition and completion modes,

The next section will describe CML, and how to desiqn the user
interface, section 3 explains the requirements of the L10
procedures which CML calls. The remainder to part Four discusses
additional LlO capabilities useful in the context of attachable
subsystems,

page 100

NLS Programmers' Guide
Part Four; Command Meta Language (CML)

&SRI-ARC 18-NOV-7S 20:20 33522
ARC 33522 Rev, 22 NOV 75

Introduction

Section 2: Command Meta Lanquaqe (CML) 6 b

6bl

This section describes the command Meta Language (CML), CML
allows the specification of the user interface to commands.
The CML program (the grammar) may call L10 procedures of a
certain type (described in the next section). The programs
written in CML are similar in structure to l!0 programs.
Typically* a CML and an LlQ program are used in unison as a
user attachable subsystem. A more technical presentation of
CML may be found in <20438,>, 6b a

Program Structure 6b2

The basic CML program structure is much lifce that of L10
programs. The program begins with a "FILE" statement (as does
an L10 program) of the form: 6b2a

FILE name

where name is the name of the proqram code (in lowercase
letters and numbers, beginning with a letter): it must be a
unique symbol, different from the FILE name of the Lib code

file.

The program ends with the statement (liKe LlQ): 6b2b

FINISH

within the program, one may nave a series (in any order) of
declarations, rules, and subsystems. 6b?c

AS in LiO, all variables used in the program must be
declared somewhere in the system, other values and
attributes roust also be declared In CML.

Rules are defined sequences of the CML elements described
below. Rule names can oe placed anywhere in a CML command
specification, when a rule is called within a command, it
is almost as if the CML elements represented by that rule
were inserted at that point in the command. This allows the
definition of general interactions that may be of use in a
number of commands or points in a command,

Fach program usually represents one or more subsystems, A
subsystem may include one or more commands. Each command is

page 101

ARC 33522 Rev, 22 NOV 75

&SRI- ARC 18-NOV-75 20:20 33522
NLS Programmers* Guide

Part Four: Command Meta Language (CML)

a rule itself. It may optionally include rules to Pe
performed upon entering or leaving the subsystem, (One
enters a subsystem with toe Goto or Execute commands, and
leaves with the Quit command,) A subsystem may also include
general rules defined throughout the subsystem.

Each of these parts of the CML program will be described
independently. The CML elements which make up rules will also
be described.

Subsystems

A CML program holds declarations, general rules which apply
throughout the program, and subsystems (usually only one).

The subsystem begins with a statement of the form:

fib2d

6b3

fib 3a

fib 3b

SUBSYSTEM name KEYWORD "NAME"

where name is the internal name of the subsystem (primarily
for debugging purposes) and NAME is the name which the user
must specify (in a Goto or Execute command) to access
commands in the subsystem,

These two names may be the same but they must be unique,
different from the FILE names of the CML and L10 files,

A subsystem ends with the statement: 6b3c

END,

within the subsystem# you may have any number of rules,

A rule as described below will be known throughout the
subsystem, but not outside the subsystem,

A rule preceded by the word "COMMAND" will be available as a
command in the subsystem, it should begin with a command
word element. E.g.:

6b 3d

COMMAND zsnow = "SHOW"JL2!
ent „ ("EXAMPLE"/"SAMPLE")
CONFIRM
prcc (ent) ;

A rule preceded by the word "INITIALIZATION" will be
executed whenever the subsystem is entered (either with a
Goto or en Execute command from another subsystem), E,g,:

page 102

&SRI-ARC 18-NOV-75 20520 33522

•
NLS Programmers' Guide ARC 33522 Rev, 22 NOV 75
Part Four: Command Meta Language (CML)

INITIALIZATION example =
prccl (ent)
proc2 C^nt) ;

A rule preceded by the word "TERMINATION" will be executed
whenever the subsystem is left (with a Goto or Quit command
from this subsystem),

A rule preceded by the word "RENTRY" will be executed
whenever the subsystem is reentered (either with a Quit
command from another subsystem, having left this one with a
Goto* or upon completing an Execute of a command in another
subsystem from: this subsystem).

Preceding a rule with the above modifiers does not prevent
calling that rule from within another rule, 6b3e

pules 6b4

A CML rule is a defined series of elements* each of which
represents cne niece of the interaction with the user or system
action, The elements will be described below. The name of a
rule (defined to be the given series of CML elements) may be
used in other rules, when the name of a rule appears in
another rule, the CMI code which it represents will be executed
at that point, 6b4a

A rule takes the form! 6b4b

name = element! element2 element3 ... element ;

where "name" is any unique name (lowercase letters and
numbers* beginning with a letter).

Alternative elements (where the user has a choice) are
indicated by a slash (/) in the expression, Parentheses
should be used to group elements* particularly when
alternative logic and nesting of alternatives is involved.
E.g.

name = (element! / element2 element3) element4 ;

Note that, by use of parentheses, an alternative may
include more than one element.

Elements grouped in square brackets are options* and the
user must type the option character <CTRL-u> to access them,
E, d,

page 103

&SRI-ARC 18-NC1V-75 20:20 33522
ARC 33522 Rev, 22 NOV 75 Programmers' Guide

Part Four: Command Meta Language (CML)

name = eiementl (element2 element3] element 4 j

E,g, 6b4c

zinsert » "INSERT" ent^C"WORD"/"CHARACTER") <"at">
dest-DSEt(ent) xins(dest);

A number of elements mav be included in a single rule, (It you
exceed the maximum, you will get a "stack overflow" error at
run-time,) Elements are NOT separated by any delimiter
character (except by spaces or the source file structure). The
entire rule is terminated toy a semicolon, 6b4d

The return value of elements may be assigned to CML variables
(single-word as in LlO), using a left-arrow C_) in the form: 6b4e

variable _ element

The variable must have been declared, as described below,

A variable must be initialized by such an assignment before its
content is passed to any routine. It must be initialized in
the rule which passes it to a routine (not lust in other rules
called from the given rule, even though other rules may
subsequently set It to another value). (If you fail to do so,
you will get the run-time error "reference to undefined
interpreter variable,")

Names on the left side of an assianment are assumed to be
variables; ether names in CML rules are assumed to be CML
rules,

Declarations

Declarations are used to associate names with their Cml
function, a number of types of names may be used in CML
programs,

Var tables

whenever a procedure is called from CML, CML creates a
ten-word record. The address of the record is passed to the
procedure, which may put information in any of the ten
words. The procedure usually returns the address of its
record,

6b4f

6b4g

6b5

6b5a

6b5b

page 104

NLS Programmers* Guide
Part Four: Command Meta Language (CML)

&SFI-ARC 18-NOV-75 20:20 33522
ARC 33522 Rev. 22 NOV 75

A CML variable is a cell which holds the address of a CMi
record, BV this mechanism, up to ten words of information
mav be handled with a single parameter by passing the
address of the first word of the record, A variable may be
declared with the statement:

DECLARE VARIABLE name ;
or

DECLARE name ?

where "name" Is any unique name (lowercase letters and
numbers* beoinning with a letter).

You may declare any number of variables in a single
statement* i,e,;

DECLARE VARIABLE namel, name2,,.. ;
or

DECLARE namet, name2»... ;

Many CML variables have been declared for use anywhere in
the system* and may be used freely in user attachable
subsystems (without being declared by th e user programmer).
Some commonly used variable names are:

ent
dent
sent
port

namfii
tiest
source
iromwhom

level
f i 11 r e
vs
literal

pararn
param2
param3
param4

External Variables 6b5c

As in L10 * external variables are variables which are made
available to any procedure anywhere in the NLS system,
(Simple variables are only Known in the file in which they
are declared,) one or more may be declared with a statement
of the form:

DECLARE EXTERNAL namel* name2*.., ;

Parsefunctions 6b5d

an L10 function which processes input and supplies a prompt
string is called a "parsefunction," The name of the
procedure must- be declared as a parsefunction for CML to
reauest a prompt string whenever the procedure is called,

DECLARE PARSEFUNCTION namel, name2*,.. :

page 105

ARC 33522 Rev, 22 NOV 75
&SRI-ARC 18-NOV-75 20:20 33522

NLS Programmers' Guide
Part Four: Command Meta Language (CML)

More detailed information about the nature of par setunctions
will be offered below.

Command Words

A command word is a word specified as part of a command
(e,g, "Insert" or "Word" in the Insert Word command); it is
specified in accordance with each user's recognition scheme
(often recognized after the first character), A declaration
may assign a value to a command word, to be passed to an L10
procedure which needs to Know wnich command word was chosen
by the user,

DECLARE COMMAND WORD "WORDl"=100, "W0RD2"=101,,,, ;

The value must be a positive decimal inteqer* less than
511, (This limit may have to be changed to 255 in future
versions of NLS.)

More than one command word may have the same value
(unless of course the L10 procedure must distinguish the
user's choice between the two),

A command word that has not been declared may be included in
the syntax; it will have no value though, only those
command woros which are assigned a value and then passed to
an ll0 procedure must be declared, Many command words have
been declared for use in the NLS system, it is considered
gooo practice to use command words already known to users
when possible, ana to use the same values for those words as
declared in NLS, section 5 offers a set of declarations,
including all the system defined command words; It can be
copied as the foundation for a CML program.

You may not use command words identical to the names of
the LlO or CML files* to the name of the subsystem, nor
to any variable names.

6b5e

CML Elements 6b6

The CML elements described here are the building blocks of
rules, which describe interactions with the user, 6b6a

Command Word Recognition

The appearance of a command word element in a rule means
that the user must specify that (or an alternative command
word) at that point in the command specification,

6b6b

page 106

NLS Programmers' Guide
Part four: Command Meta Language (CML)

&SRI-ARC 18-NOV-75 20:20 33522
ARC 33522 Rev, 22 NOV 75

in the CML description, each command word is represented
bv its full text. The algorithm used to match a user's
typed input against any list of alternative command words
is known as "recognition," Each individual's command
word recognition mode will determine what characters the
user must type to specify the command word, This is
handled automatically oy the command interpreter.

As the user specifies a command, the command words (and
noise words described below) are echoed in a line at the
top of the dnlS screen, or printed in TNLS, This is
called the "command feedback line,"

Command word elements must be uppercase words enclosed in
double-quotes e.q.

"INSEpT"

Command words optionally may be followed by one or more
qualifiers whicn modify the recognition process* separated
by spaces and enclosed in exclamation points. The
qualifiers are:

NOTT -- not available in TNLS

NOTO -- not available in DNLS

1,2 -- second level (some recognition modes differentiate
first from second level command words, e.q, second level
are preceded by a space)

number -- explicit value for command word: supercedes any
value assigned by a DECLARE COMMAND WORD

For example:

"SET" ! L 2 I
"PRINT"JNOTDI
"EXAMPLEWQRD"!L2 1041

page 107

ARC 33522 Rev, 22 NOV 75
&SRI-ARC 18-NOV-75 20:20 33522

NLs Programmers' Guide
Part Four: Command Meta Language (CML)

The address ot records holding declared command word values
may be assigned to CML variables so that subsequent routines
can be passed the user's choice, e fg.

ent _ "CHARACTER"
or

ent _ ("CHARACTER" / "WORD")

then
xprocedure (ent)

Remember that, like all other CML assignments, the
variable receives the address of a record which holds the
information, when the content of this variable (the
address of the record) is passed to a procedure, the
procedure must REF its receiving variable to access the
contents of the record, the value,

This value will be assigned as above even if the command
word is followed by ather CML elements; e,g f

ent - ("CHARACTER" param„FALSE / "WORD" <»at»>
param_LSEL(#"WORD"))

ent will get the value of the command word CHARACTER
or the value of the command word WnRp, The
appropriate actions will happen after the user chooses
the command word.

You may wish to pass this value without forcing the user to
type the command word. This address may be assigned by
preceding the command word by a pound-sign (#),

ent _ #"CHARACTER"

will assign the address of the declared command word
value without forcing the user to type the command word

Selection Recognition 6b6c

Selections are input from users pointing to places in files
or typing in strings of text, The three types of selection
routines available in CML, with their respective command
prompts, are:

DSEL -- destination selection

B/A

page 10r

NLS Programmers' Guide
part Four: Command Meta Language (CML)

&SRI-APC 18*-NOV -75 20:20 33522
ARC 33522 Rev, 22 NOV 75

SSEL -- source selection

B / A / t T]

LSEL -- literal selection

B/T/CA]

where B = bug (not available In TNLS), A = Dynamic
Address Element (any series of NLS addressing elements),
and T = typein from keyboard.

Each of these predefined selection routines prompts the user
and receives the input.

The selection routines must be passed the address of a
record holding the value of a noun command word
(character, word, statement, plex, etc.). The command
word enclosed in double-quotes and preceded by a
pound-sign (#) is equivalent to the address of a record
holding the declared value of that command word, e,g,j

DSFLC#"CHARACTER")

Or you may have assigned the address of the value of a
previously selected command word to a CML variable, then
pass the content of the variable, e,a,;

ent - "CHARACTER"
DSEL(ent)

CML will prompt the user for the appropriate input. If
more than one selection is necessary (e.g. to specify
both ends of a group or string of text), they will prompt
for both automatically, They will delimit the
appropriate entity automatically (e,q. both ends of a
word will be found from a single selection).

The routine will return the address of a CML record
holding two text pointers in the first four words,
delimiting the beginning and end of the entity selected,

for string entitles within statements

words 1-2: txt ptr before first character of string
words 3-4; txt ptr after last character of string

for types "STATEMENT" and "BRANCH"

page 109

&SHI-ARC 18-NQV-75 20:20 33522
ARC 33522 Rev, 22 NOV 75 NLS Programmers' Guide

Part Four; Command Meta Language CCML)

words 1-2: txt ptr before first, character of
statement
words i-4: txt ptr after .last character of
statement

for types "GROUP" and "PLEX"

words 1-2; txt ptr before first character of first
statement
words 3-4; txt ptr before first character of last
statement

for type "WINDOW

word 1: address of display area
word 2: x and y screen coordinates

One usually assigns the returned address of this record
to a CML variable# e,gt;

dest - DSEL(#"STATEMENT")

Other Recognizers 6b6d

Other prespecifiea input routines are available# each
prompting for and receiving a type of input from the user:

VIEWSPE.CS -- takes no argument and returns the address of
a CML record hoidinq:

word 1: updated viewspec word 1
word 2: updated viewspec word 2
words 3-7: used for collecting characters from user

LEVADJ -- takes no argument and returns the address of a
CML record holding:

word 1: level adjust count
(up = +i# same = 0# down = -1# up two levels = +2#

etc,)
woros 2-7: used for collecting characters from user

page 110

&SRI-ARC 1R-N0V-75 20;20 33522

NLS Programmers* C7uide ARC 33522 Rev, 22 NOV 75
Part Four: Command Meta Lanauaqe (CML)

CONFIRM **- wajts tor user to type confirmation character
(a command Accept, insert, or Repeat character); it takes
no argument and returns the address of a CML record
holding the confirmation code in word 1,

These values are rarely used, since subsequent
functions are handled automatica1ly by the command
parser, For reference, they are:

1 s Command Accept
2 = Insert
3 = Repeat

DUMMY -- does nothing but always TRUE; may be used to
allow elements to be sKiped, e,q,;

("OPTION" somprocedure() / DUMMY) CONFIRM

allocs the user to specify "Option" before the
CONFIRM, or skip it and just type a CONFIRM,

6b6e
CML Constants

TRUE -- holds the address of a CML record whose first word
has the value TRUE (i,e. 1)

FALSE -- holds the address of a CML record whose first word
has the value FALSE (i.e, 0)

L10 procedure Calls 6bf,f

1,10 procedures may be called at. any point in the rule by
includina the name of some routine followed by its parameter
list enclosed in parentheses, (The next section describes
the special requirements of 1,10 procedures called from CML,)

E, q,

procecurename (paraml, param'2,,.,)

Parameters may include CML variables (whose content is
passed), the CML elements TRUE, FALSE or NijLL, or th® #
construct (see "selection Recognition") representing the
address of a command word value.

Helpful Procedures in building CML logic;

isdnlsO -- returns TRUE if DNLS, else FALSE

page ill

&SRI-ARC 1.8-N0V-75 20:20 33522
ARC 33522 Rev, 22 NOV 75 NLS Programmers' Guide

Part Four: Command Meta Language (CML)

istnlsC) -- returns TRUE if TNLS, els e FALSE

trueo -- returns TRUE

falser) -- returns FALSE

abort() -- abort command as If user typed a Command
Delete

parsefuncticns 6b6g

Procedures which are declared as PARSEFUNCTIONs examine the
information being typed by the user during command
specification (characters going into the input buffer), CML
places atioitional reguirements on L10 procedures declared as
parsefunctions, as described in the next section. They may
be called from CML like any other LlO procedure, The
following parsefunctions are available as part of the
running system; they of course must be declared as
parse functions in any program which uses them as such:

answ() if the next character in the input buffer is a
CONFIRM, option character, or the letter "y", it reads
the character (out of the input buffer) and returns TRUE;
else it reads the next character and returns FALSE

answerO -- reads next character; like answ, but returns
the address of a CML record whose first word holds either
the value TRUE (1) or the value FALSE(0)

lookanswO -- if next character is a CONFIRM, option
character, or the letter "y", returns TRUE and leaves
next character in buffer; else returns FALSE and reads
character

mylookanswC) -- if next character is a CONFIRM, option
character, or the letter "y", returns TRUE; else returns
FALSE; leaves next character in buffer

readconfirm() -- if next character a CONFIRM character,
reads and returns TRUE; else leaves character in buffer
and returns FALSE

lookconfirm() -- if next character is a CONFIRM, returns
TRUE; else returns FALSE; leaves next character in buffer

readbugt) -- If next character a Command Accept

page 112

NLS Programmers' Guide
Part Four: Command Meta Language (Cml)

&SRI-ARC 1S-NOV-75 20:20 33522
AHC 33522 Rev, 22 NOV 75

character, reads and returns TRUE; else leaves character
in buffer and returns FALSE

lookbugO -- if next character is a Command Accept,
returns TRUE; else returns FALSE; leaves next character
in buffer

notcaO -- it next character NOT a Command Accept
character, reads and returns TRUE; else leaves Command
Accept character in buffer and returns FALSE

readoptionO -- if next character an option character,
reads and returns TRUE; else leaves character in buffer
and returns FALSE

readrepeatO -» if next character a repeat character,
reads and returns TRUE; else leaves character in buffer
and returns FALSE

lookrptO -- if next character is a REPEAT, returns TRUE;
else returns FALSE; leaves next character in buffer

snC) -- if next character a space, reads and returns
TRUE; else leaves character in buffer and returns FALSE

lookback!) -- if next character is a back-arrow (_),
returns TRUE; ej.se returns FALSE; leaves next character
in buffer

looknum() -- it next character is a digit, returns TRUE;
else returns f^LSe* leaves next character in buffer

page 113

ARC 33522 Rev, 22 NOV 75
&SRI-A.RC 18-NGV-75 20:20 33522

NLS Programmers' Guide
Part Four: Command Meta Language (CML)

parsetunctions may appear as alternatives to recognizers,
However, they must precede any non-tailing recognizers in
the list of alternatives, E»g««

(lookconf irnr () / "APPEND" / "FILE") CONFIRM

-- this example either will accept a CONFIRM or will
accept a specification of the command word APPEND or FILE
followed by a CONFIRM,

Feedback 6b6h

Noise words between command words are very helpful to the
user .learning a new command, Any string of text may be
added to the command feedback line by enclosing the text in
parentheses and within angle-brackets in a rule. E.g.

<"Text of noise words">

The last noise word string on the command feedback line (in
DNLS) may be replaced with a new string by placing three
dots before the first double-quote, e.g.:

<,,,"new noise words">

The last noise word string can be erased (in DNLS) with the
procedure call:

clearname()

The entire command feedback line can be cleared (in DNLS)
with the CML element:

CLEAR

A few characters of the noise word will follow the command
word in the system's response to a questionmark If:

1) the noise word immediately follows the command word,
and

2) the command word is not being assigned to a variable
(it may however be part of a list of alternatives being
assigned),

E,g, the noise words in the CML below will show in the
systems response to a questionmark:

ent _ ("FILE" <"name«> / "STATEMENT" <"at">)

page 114

&SRI-ARC 18-NOV-75 20:20 33522

•
NLS programmers* Guide ARC 33522 Rev, 22 NOV 75
Part Four: Command Meta Language (CML)

Loops 6bftt

A looping facility permits repetition of a different rule
until an exit condition is met. The rule is evaluated and
then the expression following the UNTIL keyword is
evaluated, if the expression returns TRUE, then the loop is
exited and the next element of the rule is evaluated, If
the expression returns FALSE, then the named rule is invoked
once again.

PERFORM rulename UNTIL (exo)

where rulename is the name of the rule to be repeatedly
executed and exp is an expression of CML elements which
evaluates to TRUE or FALSE,

E.g.

PERFORM rulename UNTIL C <"Finished?"> answ())

Nested loons (loops within rules called by a PERFORM
element) are not currently allowed. Backspacing through
executed loops requires special treatment not described
here,

page 115

&SRI-ARC 18-N0V-75 20:20 33522
AFC 33522 Rev, 22 NOV 75 NLS Programmers' Guide

Part Four: Command Meta Language (CML)

Sample CML program

The followirq sample program should help illustrate the use of
the CML language for describing NLS commands. For more
exhaustive examples* look at the CML specification for the
standard NLS commands* in <NLS*SYNTAX*>, An example of a
problem treatment can often be found by thinking of an NLS
command which is similar* 6b7a

File sampleprogram % <CML*> to <sampie,rel*> % 6b7b
DECLARE what, whom, where j
DECLARE COMMAND WORD

"GLUE" = 1*
"PASTE" = 2,
"CRAYONS" = 3*
"PENS" = 4*
"PENCILS" = 5 ;

SUBSYSTEM sample KEYWORD "SAMPLE"
objects =

"GLUE"
/ "PASTE"
/ writingthings •

writingthings =
"CRAYONS"

/ "PENS"
/ "PENCILS"IL2 I ;

COMMAND zuse = "USE"
what «_ writingthings
CLEAR
<"to draw a pretty"> whom „
("PICTURE" <"of Aunt Mary">
/ "SKETCH" <"of your dog">
)

CONFIRM
% call execution routine process the USE command %

xuse(what* whom) ;
COMMAND Ztake = "TAKE"

what - objects
C'cut of your">

where _ ("EARS" Ml / "NOSE" 121 / "MOUTH" 131)
< "PLEASE 11">

CONFIRM
xtake (what* where) ;

END,
FINISH

Given this sample CML, the user might specify the command: 6b7c

page lib

&SRI"ARC 18-NOV-75 20:20 33522
NLS Programmers* Guide ARC 33522 Rev, 22 NDV 75
Part Four: Command Meta Language (CML)

"Use Pens
(to draw pretty) Sketch (of your dog) <0K>"

"Take Crayons (out of your) Mouth (PLEASE! 1) <<JK>"

The execution routines called from CML typically have names
beginning with the letter "x", 6b7d

page 117

ARC 33522 Rev, 22 NOV 75
&SRI-ARC 1&-NOV-75 20:20 33522

NLs Programmers' Guide
Part Four: L10 Execution Procedures

Section 3; L10 Execution Procedures 6c

The CHL program interacts with the user and gathers information:
it subsequently calls one or more 110 procedures. The procedure
CML calls must meet certain requirements, described in this
section. Because of these requirements, typically the execution
routine is written as an interface to a number of other L10
procedures performing the actual functions, This way the function
routines can be written independent of which command or procedure
calls them. This section will describe the requirements of
procedures called from CML, The next section offers additional
L10 capabilities in this environment, 6cl

CML can be in one of four states as it parses a command based on
the syntax described in your C^L program (Known as the
"parsemode"): 6c2

1) parsing: recognition state where input text is compared
with grammatical constructs in CML program 6c2a

2) backup: the user has typed a backspace, or a procedure call
has returned false; CML backs up through previously specified
elements of the CML code, calling each in backup mode, to
before the last CML alternative (not necessarily equivalent to
user input element; maybe through the entire command, aborting
the command) 6c2b

3) cleanup: the user has typed a Command Delete, or the
command has been completed (including any execution procedure
calls); CML backs up through all previously specified elements
of the CML code; each procedure is again called, this time in
"cleanup" ircde 6c2c

4) parsehelp: (used only with parsefunctions) before calling
a parsefunction in "parsing" mode, the procedure is called in
"parsehelp" mode to solicit a user prompt string, 6c2d

5) parseqmark; (used only with parsefunctions) when the user
types a guestionmark> the procedure is called in "parseqmark"
mode to solicit a questionmark string, 6c2e

When CML calls a procedure, it automatically passes two extra
implicit parameters before the parameters the proorammmer
specifies; 6c3

The first parameter is the address of a CML record reserved for
use by that procedure. The record is Initially empty (or

page 118

•
NLS Programmers' Guide
Part tour: L10 Execution Procedures

&SRI-ARC 18-NOV-75 20;20 33522
ARC 33522 Rev, 22 NOV 75

tilled with garhaqe). The execution procedure may fill the ten
words of the record by receiving the address in a REFed
parameter variable and then indexing into the array, 6c3a

CML considers the procedure to have returned TRUE if it
returns the address of the CML record; otherwise the return
is considered FALSE, When a procedure returns FALSE, CML
will pack up, calling that and previous procedures in
"backup" mode, until anotner branch in the command syntax
logic is found or until the entire command has been aborted.

The second parameter is a value (not an address of a record)
representing the parse mode. Whenever CML encounters a
procedure call in the syntax (in any mode) it calls the
procedure* passing it the value of the parsemode, 6c3b

Typically, the execution routine should only perform its
primarv function in the parsemode "parsing", in "backup"
and "cleanup", it may reset any globals or state information
it may have affected while in the parsemode "parsing," The
names of the modes (see above) are globals to which you may
compare the value received in the second parameter. An
execution routine typically consists of a large CASE
statement, e.g.

CASE parsemode qf

= parsing:
BEGIN

END;

= backup, = cleanup:
BEGIN

t

END;

ENDCASE ;

Calls on procedures declared as parsefunctions pass a third
implicit parameter, the address of a string in which to put the
prompt. They are called in the parsemode "parsehelp" tor the
string before being called in the parsemode "parsing", or in
parsemode "parseqmark" when the user types a questionmark. 6c3c

CML passes the parameters specified in the call after the two

page 119

ARC 33522 Rev. 22 NOV 75
&SRI-ARC 18-NOV-75 20:20 33522

NLS Programmers' Guide
part Four: L10 Execution Procedures

or three system supplied parameters. Remember that these
parameters will always be the address of a record holding the
information, so the receiving variable must be REFed, The
format of the record itself is determined by the routine that
filled it, 6c3d

For example, if the CML procedure call looked as follows: 6c4

xprocedure (paraml, Param2) 6c4a

then the L10 execution procedure would receive parameters as
follows: 6C5

(xprocedure) PRqCfDUFe (result, parsemode, parameter!,
parameter2) : 6c5a

All parameters except the parsemode should be REFed in the
execution procedure, 6c5b

page 120

NLS Programmers' Guide
Part Four: Additional 110 Capabilities

&SRI-ARC 18-N0V-75 20:20 33522
ABC 33522 Rev, 22 NOV 75

Section 4: Additional MO Capabilities

6dt
Introduction

The attachable subsystems have access to the full capabilities
of the NLS environment. This section will describe some
capabilities not discussed In the context of Content Analyzer
p r o g r a m s t F u r t h e r c a p a b i l i t i e s w i l l b e d i s c u s s e d i n P a r t f i v •

6 d 2
Moving Around within NLS Files

Generally, at least one simple variable or a text pointer
have to be declared to hold the statement identifier (stid) of
the current statement, CThe first word of a text pointer is an
stid,) Assume the simple variable with the name stid has
been declared for the purpose of the following discussi «

in the NLS file system, two basic pointers are Kept with each
statement" to the substatement and to the successor.

If there is no substatement, the substatement-pointer will
point to the statement itself.

The procedure getsuh returns the stid of the
substatement, To do something to the substatement it
there is one:

IF (stid := aetsub(stid)) # stid THEN something.,:

stid is given tne value of the substatement-pointer,
then tne old value of stid is compared to the new. If
they are the same, then there Is no substructure, if
they are different, you have the stid of tne
substatement and can operate on it.

If there is no successor (at the tail of a plex), the
successor-pointer will point to the statement UP from the
statement (i«e, the statement to which the current statement

is a sub!,

The procedure getsuc returns the stid of the successor
(or UP),

To move to the successor:

stid - qetsuc(stid);

page 121

&SRI-ARC 18-N0V-75 20:20 33522
ARC 33522 Rev, 22 NOV 75 NLS Programmers' Guide

Part Four: Additional L10 Capabilities

Given these two basic procedures, a number of other procedures
have been written and are part of the NLS system. All of the
following procedures take an stid as their only parameter, and
do nothinq but return a value, usually a stid, If the end of
the file is encountered, these procedures return the global
value "endfil", fed2c

qetup(stid) -- returns the stid of the up

qetprd(stid) -- returns stid of the predecessor

getnxt(stid) -- returns stid of next statement or endfil

getbck(stid) -- returns the stid of the back or endfil

gethed(stid) -- returns stid of the head of the Plex

getail(stid) -- returns stid of the tail of the plex

getendfstid) -- returns the stid of the end of the tail of
the plex

getftl(stid) -- returns TRUE if stid is tail of plex, else
FALSE

aetiev(stid) -- returns level of statement

Once you have the stid of a statement, you may operate on it as
in content analyzer programs. E.g. 6d2d

FIND SF(stid) $np "ptr,,.

Another common operation is to access the statement (file) in
which the CR (©r bug) was at the time of the last Command
Accept (or ether command terminator), This is stored in the
system, and can be accessed with the following procedure call: fed2e

stid _ lccspO ;

Then, if you wish to set the stpsid to the origin of that
file, you could say:

stid,stpsid _ origin ; ^origin is a global with the
stpsid of the origin statement in it%

The following procedures may also assist you in moving around
files: 6d2f

page 122

&SRI-ARC 18-N0V-75 20:20 33522

•
NL5 Programmers' Guide ARC 33522 Rev, 22 NOV 75
Part Four: Additional L10 Capabilities

caddexpCaptri,aptr2 fda,startptr) -- given the addresses of
two text pointers surrounding an NLS address expression, the
address of a display area, and the address of a text pointer
representing the starting position: caddexp will evaluate
the address expression with respect to the startinq
position, and update the start pointer to the new location,

This procedure will follow file returns, links, etc,,
opening tiles as necessary, Remember to close any open
files when you are done with them (see 6d4 below).

The procedure lda() returns the address of the display
area which held the bug at the time of the last Command
Accept; it may be used as the third parameter of caddexp.
E.g.

caddexp($ptr1, $ptr2, lda(), $sptr) ;

naminqrp(stidl,stid2,astrinq,levels) -- given two stids
representing a group, the address of a string holding the
name, and a number representing levels of depth below the
stids': returns stid of the statement with the given name in
the drouo specified by the stids. Only searches through
given number of levels below stid level, (If the stids are
the same, will search the branch,)

page 123

&SRJ-ARC 18"NOV»75 20:20 33522
ARC 33522 Rev, 22 NOV 75 NLS Programmers' Guide

Part Four: Additional L1Q Capabilities

lookup(ptr,string,type) -- given the address of a text
pointer, the address of a string, and a type, will do a
variety cf searches (in the process destroys string and
changes pointer), type tray be one of the following:

nametyp -- non-sequential search for statement of name
given in string; returns stid and sets pointer to stid or
else returns endfil in both places

nxtname -- like name, also a non-sequential search, but
starts from place in file ring to which ptr points

seqname -- starting with the statement following the one
refered to by the ptr, does a sequential search of the
file for the given name; returns stid or endfil in
pointer

contnt -- does a sequential search of the tile, beginning
with the character following tne pointer, for a statement
with the content of the string; returns stid or endfil In
pointer

contls -* same as contnt, but looks only in statement
holding pointer

wordtyp -- same as contnt, but looks for word given in
string

sid -- pass an SID instead of the address of the string;
searches for statement with that SID and returns in
pointer and as procedure value the stid or endfil

Calling NLS commands 6d3

A program may execute any of the standard NLS commands by
caning the same procedure that the system execution routines
call for each command,, These procedures are called the "core"
procedures. They are listed in <NLS,XPROCS,> and in
<NLS*SYSGD,>, Their names begin with the letter "c", generally
followed by three initials of each command word, e,g, insert
Statement could be executed by calling the procedure "cinssta", 6d3a

Usually the required arguments can be discovered bY knowing the
command ana by looking at XPROCS and/or SYSGD, For example,
the formal parameters to the procedure "cinssta" are
(stid,rlevcrt,tpl,tp2). As one might guess from the command
syntax, the procedure wants a target stid, the value of level
adjustment (up = +1, same - 0, down » -1, etc), and the address

page 124

NLS Programmers' Guide
Part Four: Additional 110 Capabilities

&SRI"ARC 18-NQV-7S 20:20 33522
ARC 33522 Rev, 22 NOV 75

of two text pointers surrounding the string of text to be
inserted, 6d3b

Much can be learned by looking at the code of the core
procedure, You can see what procedures it in turn calls to
discover how the command is actually performed. But most
importantly* you can find out what the procedure returns. The
RETURN statement for "clnssta" look like: 6d3c

RETURN(Stid)J

from which it can be inferred that the procedure returns the
stid of the newiy created statement. 6d3d

When you are not. sure what the arguments mean* a good way to
find out is to see where the command parser picks up the
information, You can follow through the parsing of a command
by beginning with <NLS,SYNTAX,>, the actual NLS CML code, 6d3e

Tracing a command from <NLS,SYNTAX,> is also valuable in
finding out how the system performs an operation which you
would like your program to do. For example, if you wish to
parse a link and open the given file, you might learn how to do
it by following the Jump to Link command through, 6d3f

Opening Files 6d4

When you ask the user for an address or bud, you don't have to
open the file: yoy have a handle on it with the stid the user
gives you, There may be times, however, when you wish your
program to open a file not specified by the user, There Is a
procedure which does this: 6d4a

open (1fr , astring);

You should pass zero as the jfn, and the address of a string
containing the name of the file to astrinq. This procedure
will return the file number, If the file is not already open,
it will open it, it will also fill out the string with the
complete file name if you do not specify the directory or
version number, 6d4b

If the file does not exist, open calls the procedure "err",
which generates a signal of the value "errsig." Signals are
discussed in Part Five,

The usual sequence of steps to open a file is as follows: 6d4c

page 125

&SRI-ARC 18«»N0V-75 20:20 33522
ARC 33522 Rev, 22 NOV 75 NLS Programmers' Guide

part Four: Additional L10 Capabilities

%"stid" has been declared as a simple variable or text
pointer*

stid _ orgstid; %orgstid is a global with all zeros except
in the stpsid field# where it has the stpsid of the origin
statement (the same for every £ile) %

str ̂ "<dirname>£ilename,nis"; %str is of course a
declared string variabie%

stid.stfile _ open (0,Sstr);

Note that the procedure "open" requires a TENtX file name. The
procedure "Inbtls" converts links to TENEX file names; 6d4d

lnbfls (linkstr # linkparseblock, filenamestr)

Pass tne address of the string holding the link as the first
parameter# zero tor the second parameter (used if link
already parsed), and the address of a string to receive the
filename as the third parameter.

The procedure returns the host number in case the link
includes a site name, This value might be compared to the
following globals:

ihostn -- the number of the local host

utilhcst -- the number of Office-l

archost -- the number of the ARC machine (BRN-TENEX-B)

For example# you night use the procedure as follows:

CASE lnbfls(&linkstr#0#Sfilename) OF

= ihostn: NULL:

ENDCASE err(notyet) :

At the end cf your program, you should close any files that you
have opened. Use the procedure: 6d4e

close (filnum) ;

E,a,
Close (stid.stfile);

pace)2b

•
N L S P r o g r a m m e r s ' G u i d e
P a r t F o u r : A d d i t i o n a l L 1 0 C a p a b i l i t i e s

& S R I - A R C 1 8 - N O V - 7 5 2 0 : 2 0 3 3 5 2 2
A R C 3 3 5 2 2 R e v , 2 2 N O V 7 5

D i s p l a y i n g M e s s a g e s 6 d 5

T h e f o l l o w i n g p r o c e d u r e s m a y b e o f u s e i n d i s p l a y i n g m e s s a g e s ,
i n a l l c a s e s # t h e a p p r o p r i a t e a c t i o n s w i l l o c c u r i n T N L S a s
w e l l a s D N l S , a l t h o u g h t h e s e d e s c r i p t i o n s a r e o r i e n t e d t o D N L S , 6 d 5 a

d i s m e s (t y p e # a s t r i n g) - - t e l e t y p e w i n d o w

w h e r e t y p e i s o n e o f t h e f o l l o w i n g :

0 - - c l e a r t e l e t y p e w i n d o w (n o a d d r e s s n e e d b e p a s s e d)
1 - - a d o t e x t i n s t r i n g w h o s e a d d r e s s i s p a s s e d a s a
n e w l i n e i n t h e t e l e t y p e w i n d o w
2 « - a d d t e x t i n s t r i n g w h o s e a d d r e s s i s p a s s e d a s a
n e w l i n e i n t h e t e l e t y p e w i n d o w f o r a b o u t 3 s e c o n d s #
t h e n c l e a r w i n d o w
n - - a n y n u m b e r > = 1 0 0 0 r e p r e s e n t s t h e n u m b e r o f
m i l l i s e c o n d s t h e m e s s a g e i s t o b e d i s p l a y e d b e f o r e t h e
t e l e t y p e w i n d o w i s c l e a r e d ,

i n T n t S # t y p e = 1 # 2 # a n d > = 1 0 0 0 a l l s i m p l y p r i n t t h e
s t r i n g s t a r t i n g o n a n e w l i n e ,

f b e t 1 (t y p e # a s t r i n g) - - l i t e r a l d i s p l a y w i n d o w

w h e r e t y p e i s o n e o f t h e f o l l o w i n g :

t y p e n u l l l i t - - b e g i n e m p t y l i t e r a l d i s p l a y (r e p l a c i n g
f i l e w i n d o w) # n o s t r i n g a d d r e s s p a s s e d

f b a d d i i t - - a d d s t r i n g w h o s e a d d r e s s i s p a s s e d t o
c u r r e n t l i t e r a l d i s p l a y

a d d c a l i t - - a d d " T y p e < C A > t o c o n t i n u e , " t o c u r r e n t
l i t e r a l d i s p l a y # t h e n w a i t f o r < C A > o r < C D > # t h e n
r e s t o r e f i l e w i n d o w

t y p e l i t - - s t a r t l i t e r a l d i s p l a y w i t h s t r i n g , t h e n
w a i t f o r u s e r i n p u t # t h e n r e s t o r e f i l e w i n d o w

f b e n d l i t - - a d d s t r i n g t o c u r r e n t l i t e r a l d i s p l a y #
t h e n w a i t f o r u s e r i n p u t , t h e n r e s t o r e f i l e w i n d o w

t y p e c a l i t - • s t a r t l i t e r a l d i s p l a y w i t h s t r i n g # a d d
" T y p e < C A > t o c o n t i n u e , " # t h e n w a i t f o r < C A > o r < C D > #
t h e n r e s t o r e f i l e w i n d o w

T h e l i t e r a l d i s p l a y r e p l a c e s t h e f i l e w i n d o w o n t h e

p a g e 1 2 7

AFC 33522 FeV, 22 NOV 75

&,SHI-ARC 18-NOV-75 20i20 33522
NLS Programmers' Guide

part Four: Additional LlQ Capabilities

screen, or is simply printed in TMLS, For example, it is
used by the Show File Status command,

dn(astring) -- name display

add string whose address is passed to command feedback:
line, enclosed in quotes

Setting UP for Display Refreshing 6D6

The command parser calls the procedure "cmdtinish" after
completing and cleaning up every command, if certain
parameters are set properly, "cmdfinish" will automatically
update the user's screen (primarily of concern in DNLS), You
may also move a different statement to the top of the window
(i,e, jump) before updating the screen, 6d6a

To refresh the screen after editing a file: 6d6b

The procedure "dpset" sets up parameters tor refreshing the
screen aft er a command. If "dpset" is properly used, the
screen will automatically be refreshed after the command
(i.e. CRL will call "recred" if necessary!. One should looK
for the most efficient way to make the proper changes,

The procedure "dpset" must be called BEFORE any changes
are made in the file. This is so that the display
reformatter will have something with which to compare
when looking to see what has been changed.

The procedure call should look as follows:

dpset (tyne, stidl, stid2, stopstid) j

There are a number of globals which may be passed for
"type":

dsprfmt -- rewrite the content of one or two
sta tements

stidl -- the stid of the statement that has been
changed

stid2 -- the stid of another statement that has
been changed, or "endfil"

stopstid -- ignored, pass it "endfil"

page 12B

NLS Programmers* Guide
Part Four: Additional 110 Capabilities

&5BI-ARC I8-N0V-75 20:20 33522
ARC 33522 Rev, 22 NOV 75

dspstrc -- if file restructuring occured beginning at
at one or two places? doesn't rewrite content of.
statements; will add new statements in a structure

stidl -- the stid of the statement where a
structural change begins

stid2 -- the stid of where another structural
change begins, or "endfil"

stopstid -- the stid of the statement after which
it can stop changing tne screen (whether change
began with stidl or stid2); the procedure "dpstp"
may be of service here; if you cannot figure out
where it should stop, pass it "endfil" (go till end
of window)

dsprfst -- rewrites content of one or two statements,
then IOOKS for structural changes thereafter

stidl -- the stid of the statement where a set of
changes begins

stid2 -- the stid of where another set of changes
begins, or "endfil"

stopstid -- the stid of the statement after which
if can stop changing the screen (whether chanqe
began with stidl or stid2); the procedure "dpstp"
may be of service here; if you cannot figure out
where it should stop, pass it "endfil" (go till end
of window)

dspjpf -- jump command in one window only, no editing

stidl -- the stid of the statement to be at the top
of the screen; see below for other oarameters which
must be set

stid2 --"endfil"

stopstid -- "endfil"

page 129

ARC 33522 Rev. 22 NOV 75

&SRI-ARC 18-NOV-75 20:20 33522
NLS Programmers* Guide

Part Four: Additional L10 Capabilities

dspyes -- completely refresh all windows holding one
or either of two files specified

stidl -- the stid of a statement in the file where
changes will he made

sti.d2 -- the stid of a statement in the file where
another set of changes will be made, or "endfil"

stonstid -- "endfil"

dspno -- do no display refreshing

stidl -- "endfil"

stid2 -- "endfil"

stopstid -- "endfil"

dspallf -- refresh the entire screen

stidl -- "endfil"

stid2 -- "endfil"

stopstid -- "endfil"

The procedure "dpstp", when passed an stid, returns the stid
of the next statement in the file at the same or a higher
level. This can be used as the stopstid in "dpset" if
structural changes are occuring such that you don't Know a
priori what the last statement changed will be,

To change the position of a window (jump): 6d6c

The global "cspupdate" should be set to the address of the
display area oescriptor for the window you want changed,

in TNLS» it is always the address contained in the global
"tda",

If you wish to change the view in the window which held
the hug at the time of the last CONFIRM, you may use the
statement;

cspupdate _ lda();

This also works for TNLS,

page 1 3 0

&SRI-ARC 18-N0V-75 20:20 33522
NLS Programmers' Guide ABC 33522 Rev, 22 NOV 75
Part Four: Additional L10 Capabilities

once cspupdate is set, any of the globals described below
will replace the appropriate field in the display area
descriptor upon completion of the command,

The global "curmkr" is a text pointer pointing to the
statement at the top of a window in DNLS, or the CM in TNLS,

The first word of "curmkr" should be set to the stid of
the statement you want, at the top of the window (in TNLS
the statement which you want to hold the CM).

The second word of "curmkr% i.e. curmkrUJr should hold
the character position for the CM, (in DNLS it is
usually 1,1

The global "cspvs" is a two word array which should hold two
viewspec words for the new view,

The global stdvsp is a two work array holding the NLS
standard viewspecs (i.e. the ones in effect when you
first enter NLS),

The current viewspec words may be gotten from the display
area descriptor. If you have REFed a variable called
"da", for example, you may assign the address of the
display area which held the cursor at the time of the
last command Accept with the statement:

&da - lda() ; %return address of display area
descriptor%

You may then refer to fields within the display area
descriptor,

davspec -- holds the first viewspec word

davspc2 -- holds the second viewspec word

You may change individual fields within viewspec words.
The following fields apply to viewspec words:

vslev -- lowest level to be displayed

vsrlev -- if set to TRUE, the level of the current
statement will be added to vslev

vslevct -«• if set to TRUE and vsrlev is TRUE, the

page 131

ARC 3 3522 Rev f 22 NOV 75
&SRI-ARC 18-N0V-75 20:20 33522

NLs programmers' Guide
Part Four: Additional L10 capabilities

current level will be subtracted from rather than
added to vslev

vstrnc »- number of lines of each statement to be
displayed

vscapf -- if TRUE* content analyzer on (viewspec i):
takes precedence over vscakf

vscakf -- if TRUE* content analyzer on until one
statement passes (viewspec i)

vsusqf -- if TRUE* user sequence generator on
(viewspec 0)

vsfcrof — if TRUE# branch only on (viewspec g): takes
precedence over vspixf

vsplxf -- it TRUE* plex only on (viewspec 1)

vsblkf -- if TRUE# blank lines on (viewspec y)

vsindf -- if TRUE# indenting on (viewspec A: on by
default 1

vsrind -- if TRUE# indenting relative to first
statement in display (viewspec 0)

vsnamf -- if TRUE, statement names on (viewspec c: on
by default)

vsstnf -- it TRUE, statement numbers or SIDs on
(viewspec m)

vsstnr -- if TRUE# statement numbers/SIDs put on right
(viewsnec G)

vssidt -- if TRUE# SIDS replace statement numbers
(viewspec I)

vsidtt -- it TRUE# statement signatures on (viewspec
K)

vsfrzf -- if TRUE# frozen statements on (viewspec o)

vspagf -- if TRUE# pagination on in TNLS (viewspec E:
on by default)

page 132

&SRI-ARC 18-NOV-75 20:20 33522
NLS programmers" Guide ARC 33522 Rev, 22 NOV 75
Part Four: Additional LI0 Capabilities

vsdaft -« if TRUE, don't deter display recreation in
DNLS (viewspec u; on bv default)

If you wish, you may set the variable "cspcacod" to the
address ot a user content analyzer procedure, and/or the
variable "cspusqcod" to the address of a user sequence
generator procedure; they will be instituted before the
window is updated.

The following fields in the display area descriptor may
be useful:

dacacode -« holds address of currently instituted
Content Analyzer procedure

dausqcod -- holds address of currently instituted user
Sequence Generator procedure

If you have a REFed variable called "da", have not edited
the file, and do not wjsh to change the viewspecs, you might
use the following sequence of commands:

%address of last display area?
&ca _ cspupdate _ lda();

%stid of stmnt to be put at top of window%
curmfcr _ stid ;
curmkrfll _ 1 ;

%two current viewspec words%
cspvs _ da,davspec;
cspvstl] _ da,davspc2j

%t:urn on Content Analyzer%
• C S P V S ,vscapf .. TRUE;

%institut-e the procedure "fiIterproc" as Content
Analyzer%

cspcacod _ sfilterproc;
%set up tor display recreation%

dpset (tispjpf, curmkr, endfil, endfil);

if you have edited the file, use the type "dspyes" instead
of "dspjpt" in your call on "dpset".

Other Useful Procedures 6d7

astruccastr ing) -- given the address of a string, sets the
string to upper case, 6d7a

technoCstid»astring) — given an stid, appends the statement
number string to the string variable whose address is passed, 6d7b

ARC 33522 Rev, 22 NOV 75
&SPI-ARC 18-NGV-75 20:20 33522

NLS Programmers' Guide
Part Four: Additional L10 Capabilities

getsid(stid) -- given an stid, returns value of SID (don't
forget to add zero to front if converting to a string) 6d7c

fechsig(stic'#astrinq) -- given an stid# appends the statement
signature to the string variable whose address is passed, 6d7d

getdat(astring) -- given the address of a strinq# appends date
and time to string, 6d7e

grptst(stlcl#stid2) -- checks that two stid's specify a legal
group: returns them ordered or else an "Illegal group" signal
is generated, 6d7f

plxset(stid) — given an stid# returns the stid of the head and
of the tail of the plex of which the passed stid is a member;
e,g, first _ plxsetfstid : last) ; 6d7d

resetf(fileno) -- given the file number of and open file#
deletes all contents of the file leaving only origin statement#
resets date and ident in origin statement (leaves file locked) 6d7h

fIlnamffilnc#astrinq) -- given the file number# appends the
tile name (in link format surrounded by anale-brackets <>) to
string whose address is passed 6d7i

pause(mi11iseconds) -- waits the given number of milliseconds#
then returns fcd?)

settimer(milliseconds,aproc,paraml#param2#param3#param4) --
calls procedure whose address is passed# passinq up to four
parameters to that procedure# after given number of
mi1Jiseconcs; other code will be executed in the mean time 6d7k

Globals of interest: 6d8

•initsr* -- is the login ident of the person currently using
the program, 6d8a

inptrf -- is incremented every time the user types a <CTRL-o>;
this can be used as a user program interrupt mechanism; 1,e,
you can set it to 0 at the beginning of the program and then
check it at the start of each loop of your program to see if
the user has typed a <CTRL-o>, i.e, wishes to abort the
command, 6d8b

inpstp -- is incremented every time the user types a <CTRL-S>, 6d8c

page 134

&.SRI-ARC J8-N0V-75 2^:20 33522

•
NLS programmers' Guide ARC 33S22 Rev, 22 NOV 75
Part Four: Creating ano Using Attachable subsystems

Section 5; Creating and using Attachable Subsystems be

In summary/ the programmer must write two programs to build a user
attachable subsystem; the CML and the tio support procedures,
Each of these programs is comoiied separately (by their respective
compilers) intc separate RF:L files. The Load program command (in
the PROGRAMS subystem) will load both at once if the extension on
the filename holding the CML- code is "cml" and the extension on
the l10 code file is "subsys". Once loaded, the user may use
commands in the subsystem as he does commands in any of the
standard subsystems. be 1

You may find it convenient to begin writing a program by copying
the following skelton (plex) from this NLS file
<USfc;RGUlDES,L10-GUlDEf6e2a>, It can then be modified to fit the
needs of your program, (The comments in the FILE statements allow
you to quickly bug the information reguired by the Compile File
command, All the CMI, declarations that are used in the NLS system
are included only to contribute to consistent use of command words
and values, The CML rules have been left blank; they must be
filled in or removed. All file, procedure, subsystem, and rule
names are only exemplary. The last three parameters in the LlO
procedure are only exemplary,)

FILE cname % (CML.SAV,) TO (cname,cm 1,) %
% DECLARATIONS %

DECLARE PARSEFUNCTION
a n s w,
answer,
sp,
readconfirm,
reaabuq,
readoption,
readrepeat,
lookansw,
1ockconfirm,
lockbug,
looknum,
clearname,
notca;

DECLARE COMMAND
"BRANCH" = 1
"GROUP" = 2 ,
"PLEX" = 3 ,
"STATEMENT" =
"CHARACTER" =
"CCNTROLCHAR"

% reads answer construct %
for questions - returns
reads next char, TRUE if
reads next char if ca %
reads next char if BUG %

0/1 %
space

% TRUE
% TRUE:
% TRUE
% TRUE
% TRUE
% TRUF

if next char is optchar %
if next char is repeat %
if next char is Y/CA %
if next char is CA/REPEAT/INSERT %
if next char is BUG %
if next char is a number %

% clears the name area %
% reads next char, TRUE if not CA char %
i*ORD

4 t
5 ,
= 6

6e2
6e2a

page 135

&SRI-ARC 18-NUV-75 20:20 33522
APC 33522 Rev 22 NOV 75 NLs Programmers' Guide

part Four: creating and Using Attachable subsystems

"INVISIBLE" = 7 ,
"LINK" = 8 ,
"DIRECTORY" = 9 ,
"PASSWORD" = 10 ,
"NUMBER" = 11 ,
"TEXT" = 12 ,
"VISIBLE" : 13 ,
"WORD" = 14 ,
"FILE" = 15 ,
"NEWFILELINK" =16.
"QLDFILELINK" = 17 ,
"NAME" = 18 ,
"IDENT" = 19 ,
"IDENTLIST" s 20 ,
"EDGE" =21 #
"MARKER" = 22 ,
"NIS" = 23 ,
"ITEM" = 24 ,
"17 EM N0V S " = 25 ,
"SUCCESSOR" = 26 ,
"PREDECESSOR" = 27 ,
"UP" = 28 ,
"DOWN" = 29 ,
"HEAD" = 30 ,
"TAIL" = 31 ,
"END" = 32 ,
"BACK" = 33 ,
"NEXT" = 34 ,
"ORIGIN" = 35 ,
"FILERETURN" = 36 #
"RETURN" : 37 ,
"FILENAME" = 38 ,
"FIRSTNAME" = 39 »
"NEXTNAME" = 40 ,
"EX T NAM E" = 41 ,
"FIRSTCONTENT" = 42 ,
"NEXTCONTFNT" = 43 ,
"FIRSTWORD" = 44 ,
"NFXTWORD" = 45 ,
"DETACHED" = 46 ,
"TTY" = 47 .
"AUTO" = 48 ,
"CONTINUE" = 49 ,
"ON" = 50 ,
"RECOVER" = 51 ,
"SLINKER" = 52 ,
"UPDATE" =53 ,
"CI EAR" = 54 ,

&SRI-ARC I8-N0V»75 20:20 33522
NLS Programmers' Guide ARC 33522 Rev, 22 NOV 75
Part Four; Creating and Using Attachable Subsystems

IDENTS" = 55 ,
FILES" = 56 ,
DELETE" = 57 ,
DEFERRED" = 58 ,
IMMEDIATE" = 59 ,
NCT" = 60 ,
PREVENT" s 61 ,
RESET" s 62 ,
ARCHIVE" = 63 #
SEQUENTIAL" = 64 ,
TWO" = 65 ,
JUSTIFIED" = 66 ,
ASSEMBLER" = 67 ,
BOTH" = 68 ,
UNDELETE" = 69 ,
FCR" = 70 ,
STATUS" =71 ,
TAPE" = 72 ,
ACCOUNT" = 73 ,
NC" = 74 ,
VERSIONS" = 75 ,
EXTENSION" = 76 ,
DATE" = 77 ,
CREATION" = 78 ,
LAST" = 79 ,
FIRST" = 80 ,
READ" = 81 ,
WRITE" = 82 ,
DUMP" = 83 ,
EVERYTHING" = 84 ,
LENGTH" = 85 ,
MISCELLANEOUS" = 86 ,
ACCESSES" = 87 ,
PROTECT" = 88 ,
SIZE" = 89 ,
TIME" = 90 ,
VERBOSE" = 91 ,
SORT" = 92 ,
BYTESIZE" = 93 ,
ARCHIVED" = 94 ,
AIL" = 95 ,
MODIFICATIONS" = 96 ,
UPPER" = 97 ,
LOWER" = 98 ,
MODE" = 99 ,
SENDMAIL" = 100 ,
BUSY" = 101 ,
QUICKPRINT" = 102 ,

page 137

NSRI-ARC 18-NOV-75 20:20 33522
ARC 33522 Rev, 22 NOV 75 NLS Programmers' Guide

Part Four: Creating and Using Attachable Subsystems

JOURNAL" = 103 ,
PRINTER" s 104 ,
COM" s 105 #
TERMINAL" = 106 ,
REMOTE" x 107 ,
REST" = 108 ,
CASE" = 109 ,
CONTENT" =110 ,
TEMPORARY" = 111 ,
VIEWSPECS" = 112 ,
EXTERNAL" = 113 ,
TO" = 114 ,
PRIVATE" =115 ,
PUBLIC" = 116 ,
TENEX" a U7 ,
ALLOW" = 118 »
EXECUTE" =119 ,
APPEND" = 120 ,
LIST" = 121 ,
SET" = 122 ,
SELF" = 123 ,
FORBID" a 124 f

DISK" = 125 ,
DEFAULT" = 126 ,
OLD" = 127 ,
NEw" = 128 ,
COMPACT" = 129 ,
RENAME" = 130 ,
ADD" = 131 ,
SUBTRACT" = 132 ,
MULTIPLY" = 133 »
DIVIDE" = 134 ,
RIGHT" = 135 ,
LEFT" = 136 ,
ACTION" s 137 ,
AUTHORS" =138 ,
COMMENT" = 139 ,
EXPEDITE" = 140 ,
HARDCOPY" = 141 ,
INFORMATION" = J 42 ,
INSERT" = 143 ,
KEYWORDS" =144 ,
CB50LETES" = 145 #
RFC" a 146 f
SUBCOLLECTIONS" = 147 ,
TITLE" z 148 ,
UNRECORDED" = 149 ,
L10" = ISO ,

page 138

N S R I - A R C 1 8 - N O V - 7 5 2 0 : 2 0 3 3 5 2 2
N L S P r o g r a m m e r s ' G u i d e A R C 3 3 5 2 2 R e v , 2 2 N O V 7 5
P a r t F o u r : C r e a t i n g a n d U s i n g A t t a c h a b l e S u b s y s t e m s

P R O C E D U R E " = 1 5 1 ,
S E G G E N E R A T Q P " = 1 5 2 ,
B U F F E R " = 1 5 3 ,
N D D T " = 1 5 4 ,
P A R S E R U L E " = 1 5 5 ,
C A " = 1 5 6 ,
C D " = 1 5 7 ,
R F T " = 1 5 8 ,
E C " = 1 5 9 ,
B N " = 1 6 0 ,
B S " a 1 6 1 ,
L X T E S C " = 1 6 2 ,
I G N O R E " = 1 6 3 ,
S C " = 1 6 4 ,
S W " = 1 6 5 ,
T A B " = 1 6 6 ,
I M L A C " = 1 6 7 ,
T I " = 1 6 8 ,
N V T " = 1 6 9 ,
E X E C U p O R T " = 1 7 0 ,
M E N U " = 1 7 1 ,
D N L S " = 1 7 2 ,
T N L S " = 1 7 3 ,
C O M M A N D " = 1 7 4 ,
R U L E " = 1 . 7 5 ,
S U B S Y S T E M " = 1 7 6 ,
D I S P L A Y " = 1 7 7 ,
F R O Z E N " = 1 7 8 ,
H L P C O M " = 1 7 9 ,
P R O G R A M " = 1 8 0 ,
T E R S E " = 1 8 1 ,
I N D E N T I N G " = 1 8 2 ,
U N I V E R S A L " = 1 8 3 ,
E N T R Y " = 1 8 4 ,
I N C L U D E " = 1 8 5 ,
B O T T O M " = 1 8 6 ,
P A G E " = 1 8 7 ,
O F F " = 1 8 8 ,
F U L L " = 1 8 9 ,
P A R T I A L " = 1 9 0 ,
A N T I C I P A T O R Y " = 1 9 1 ,
D E M A N D " = 1 9 2 ,
F I X E D " = 1 9 3 ,
C O N T R O L " = 1 9 4 ,
C U R R E N T C G N T E X T " = 1 9 5 ,
F E E D B A C K " = 1 9 6 ,
H E R A L D " = 1 9 7 ,
P F I N T Q P T I O N S " = 1 9 8 ,

&SRI-ARC 18-N0V-75 20;20 3352
ARC 33522 Rev, 22 NOV 75 MLS Programmers' Guide

Part Fouri Creating and Using Attachable Subsystems

"PROMPT" s 199 ,
"RECOGNITION" = 200 ,
"STARTUP" = 201 ,
"L E V EL A D J U S T" = 2 02 ,
"REVERSE" = 203 ,
"TEST" = 204 ,
"TASKER" = 205 ,
"I. I ME PROCESSOR " = 206 ,
"CENTER" = 207 ,
"CNTLQ" = 208 ;

% COMMON RULES %
% ENTITY DEFINITIONS %

editentity = textent / structure;
% TEXT ENTITY DEFINITIONS %

textent = textl / "TEXT" / "LINK"?
textl = "CHARACTER" / "WORD" / "VISIBLE" / "INVISIBLE"
/ "NUMBER";

% STRUCTURE ENTITY DEFINITIONS %
structure = "STATEMENT" / notstatement;
notstatement s "GROUP" / "BRANCH" / "PLEX" ;

SUBSYSTEM name KEYWORD "NAME"
INITIALIZATION fnamel =

COMMAND Fname2 = "COMMANDWORD"

TERMINATION tname 3 =

END,
FINISH

FILE Iname ? (L1Q,SAV,) TO CIname,subsys,) % 6e2b
% giobais %
(xnamei PROCEDURE % execution procedure %

%Formal Parameters?.
(result# %result record%
parsemode, %parsing, backup, cleanup%
paraml, %your first parameter
param2, %ot course you may have,,,%
param3); %0 to 7 of your own parameters?:

%Locals%
REF result, paraml, param2, param3;

CASE parsemode OF
= parsing:

BEGIN
END;

= backup, = cleanup:
BEGIN
END;

ENDCASE;

page 140

&SRI-ARC 18-NOV-75 20:20 33522
NLS Programmers' Guide ARC 33522 Rev, 22 NOV /5
Part Four: Creating and Using Attachable Subsystems

RETURN Uresult);
end,

FINISH

page 141

&SRI-ARC 18-NOV-75 20: 2,0 33522
AHC 33522 Rev. 22 NOV 75 XLS Programmers" Guide

Part Five: Error Handling -- SIGNALS

page 142

NLS Programmers' Guide
Part Five: Error Handling -- SIGNALS

&SRI-ARC 18-NQV-75 20:20 33522
ARC 33522 Rev, 22 NOV 75

PART FIVE; Advanced Programming Topics 7

Section l: Error Handling -- SIGNALS 7a

Introduction 7al

When an NLS system procedure fails to perform properly* it may
generate an error signal. Every signal has a value. When a
signal is generated# control is Passed back to the last signal
trap in effect. If no explicit program control statement te.q.
RETURN* GOTC) is given in that signal trap, a new signal will
be generated, if the error is not dealt with, the signal will
eventually bubble all the way back to the execution routine.
The execution routine should always trap a signal, 7ala

You may trap signals and regain control by setting up the
response in advance, 7alb

Trapping Signals 7a2

To trap error signals of any error value: 7a2a

ON SIGNAL ELSE statement ;

E,g, 7a2b

ON SIGNAL ELSE
BEGIN
dismes(2#sstring);
RETURN;
END?

It is a good idea to set up a signal response before calling
any NLS system procedures, 7a2c

Once the signal response is set# it remains in effect through
the end of the procedure or until it is changed# and will be
executed whenever a signal is received by that procedure. Any
subsequent ON SIGNAL statements will at that point change the
signal response (i.e, only one signal response can be in effect
at any point during procedure execution), 7a2d

Only signals generated by procedures below (e,g, called by)
your procedure will be trapped by your procedure's siqnal trap,
It will not trap signals generated in the same procedure, 7a2e

page 143

&SRI-ARC 18-N0V-75 20S20 33522
ARC 33522 Rev, 22 NOV 75 NLS Programmers* Guide

Part Five; Error Handling SIGNALS

The signal response fray be «ny (block of) L10 statement (s), It
will be executed# then 7a2f

- if you have an explicit program control statement (RETURN#
GOTO# EXIT LOOP)# control will be passed accordingly and the
signal will stop there# or

- if the signal trap includes no explicit program control
statement# another signal of the same value will be
generated# and control will pass upward through the stack of
procedures called until it encounters another signal trap,

A RETURN will return control to the procedure which called the
one which intercepted the signal (not the one which generated
it), 7a2q

Thus# if you wish to resume control in the current procedure#
the signal trap will have to end with a GOTO statement pointing
to an appropriately labeled statement. This is one of the few
Places where a GOTO is really necessary, 7a2h

If the signal trap applies to a loop# an EXIT LOOP or REPEAT
LOOP is a valid signal program control statement, 7a2i

Trapping Signals in Execution Routines

if a signal bubbles up through the execution routine to the
command parser (in a command in an attachable subsystem), the
results may be unpredictable. Execution routines should always
include signal traps, 'a*a

A RETURN(FALSE) will Shift CML into backup mode, it will back
up to before the last set of CML alternatives (not necessarily
equivalent to the last user input element)# and then shift back,
into parsing mode, (This may imply backing all the way through
the command# i,e» abortino the command,) 7a3b

The procedure "abortsubsystem" may be useful in this context.
It will shift, the command parser into backup mode and abort the
current command. Then it will execute a Quit (from the current
subsystem) and return the user to the previously used
subsystem, it should be passed the address of an error string
to be displayed. E.g. 7a3c

ON STGNAL ELSE abortsubsystem(S"Error in xprocedure..,") ;
or

ON SIGNAL ELSE aborTsubsysTem(sysmsG) ;

page 144

&SRI-AHC 18-N0V-75 20:20 33522

•
NLS Proqrammers' Guide ARC 33522 Rev. 22 NOV 75
Part Five: Error Handling -- SIGNALS

(see "Specific Signals")

Cancelling signal Traps 7a4

After program execution sets up a signal response, the
following statement will cancel it so that thereafter a signal
will just bubble on ups 7a4a

ON SIGNAT ELSE NULL J
or just

ON SIGNAL ELSE ;

It may be subsequently reset by execution of another ON SIGNAL
statement, 7a4b

Specific Signals 7a5

When a signal is generated, the NLS system global variable
"sysgnl" is given a specific value (the value of the signal),
Each value represents a certain type of error. Also the system
global variable "sysmsg" is given the address of a string which
holds an error message, 7a5a

The above constructions react to any signal, no matter what its
value may be, The ON SIGNAL statement can be used much lifce a
CASE statement (comparing cases to the global sysgnl) if yog
wish to trap specific signals; 7a5b

ON SIGNAL
=constant; statement;
^constant: statement;

• , ,

ELSE statement;

E,g, 7a5c

ON SIGNAL
sofiierr; %open file error%

BEGIN
IF sysmsg THEN dismes(2,sysmsg);
RETURNj
END J

ELSE %any other error signal!
BEGIN
dismes(2,$"Error");
RETURN;

i END;

page 145

AFC 33522 Rev. 22 NOV 75

&SRI-ARC 18-N0V-75 20;20 33522
MLS Programmers' Guide

Part Five: Error Handling -- SIGNALS

The current signal constants can be found in <NLS,BCONST»>.
The common reason for using this specific signal treatment is
when you call a procedure which you know will generate a
certain signal value under certain conditions, In such a case,
you can learn the signal constant of concern from the SIGNAL
statement which generates it, 7a5d

Generating Signals 7 a 6

You may generate a SIGNAL in a procedure by the statement; 7a6a

SIGNAL (value, astring) ;

where value Is the value of the signal (perhaps a system
qlobal) and astring is the address of a string holding the
error message. If the second parameter is omitted, it will be
assumed to be zero and no message will be printed, The first
parameter is mandatory; every signal must have a value, 7a6b

Examples:

SIGNAL (ofilerr, $"couldn't open your file,") ;
SIGNAL (2) ;

Another way to generate a SIGNAL is by calling the procedure 7a6c

err(errno)

It will generate a SIGNAL of the value "errsig" (a system
global) and will set up a message depending on the value you
pass for errno, errno may be any of the following:

1 -- "File cooy fails";
2 — "Open scratch fails";
3 -- "Cannot load proaram";
4 -- "I/O Error";
5 -- "Exceed capacity";
6 -- "Bad file block";
7 -- "Not implemented"

If you pass it the address of a string as the error
number, it will signal using that address for sysmsq, and
that string will be printed.

By allowing err to generate all the signals, you will find
it easy to freeze execution upon an error condition while
debugging using NDDT, as described in the next section (by
setting a breakpoint at err),

page 146

NLS programmers' Guide
part Five: Frrcr Handling -- SIGNALS

&SRT-ARC 18-N0V-75 20j20 33522
ARC 33522 Rev. 22 NOV 75

Be careful not to call err and then trap its SIGNAL in that
same procedure. You might say:

ON SIGNAL
= e r r sig; NULL;
ELSE ...

page 147

ARC 33522 Rev, 22 NOV 75

&SRI-ARC 18-NOV-75 20:20 33522
MLS Programmers' Guide

Part Live; NDDT Debugging

Section 2: MDDT Debugging 7 b

Introduction

Debugging is the process ot finding the errors in a program.
Once the problem is located* you may correct it in the source
code (NLS file) and recompile,

MLS includes a debugging tool called MDDT* for "NLS Dynamic
Debugging Technique," NDDT allows you to examine the state of
your program during or after running it (i,e, usinq the command
or filter), This section describes the capabilities of NDDT,

Accessing NDDT

To make NDDT available from NLS* you must execute the command
in the PROGRAMS subsystem:

Set Nddt Ccont.ro.l-h) OK

This adds the program NDDT to your user programs buffer.
Thereafter, whenever you type a <CTRL-h>, NLS will immediately
be interrupted (be it in a waiting or running state) and you
will enter NDDT, NDDT will respond with its command hearald, a
right anqle-Dracket (>), indicating that NDDT is ready to
accept, a command,

NDDT commands are specified by typing the first character of
the command word,

You may continue with NLS (from the point where it was
interrupted) with the NDDT command:

Continue OK

You may continue NLS from a specific instruction address with
the NDDT command:

Goto ADDRESS OK

NDDT Address Expressions

7b 1

7b la

7blb

7b2

7 b 2a

7b2b

7b2c

7b2d

7 b 3

Everything stored in the machine (instructions and variables)
has an address* its location within the computer's memory. An
address is an octal (base-eight) number, 7b3a

The name of a procedure or of a named LiO statement may be used

page 148

•
NLS Programmers' Guide
Part Five: NDDT Debugging

&SRI-ARC 18-NOV-75 20:20 33522
ARC 33522 Rev, 22 NOV 75

instead of a number, it represents the octal location of the
named statement or of the first instruction of the procedure, 7b3b

Addresses (symbols or numbers) may be combined, to evaluate to
some location, An expression concatenated with the following
operators will be evaluated from left to riqht (no hierarchical
ordering) to a single value: 7b3c

<SP> same as +

/

Thus, a symbol may be followed by a space (or plus-sign) and
then an octal number. The number is added to the location
represented by the symbol, 7b3d

Single-Word Variables 7b4

Often, programmers wish to examine or modify the contents of a
single word at a given location. The NDDT show command prints
the contents of the word at that address, 7b4a

Show Location ADDBESS OK

where adcress is an address expression as defined above or
one of the following:

* -- preceding entity

<LF> -- next entity

Next -- next entity

<TAB> -- entity whose address is the content of current
location

NDDT maintains some address as your current location, and the
Show command sets this location to the one it examines. If you
oo not specify an address in a show command, the current
location is assumed, 7b4b

NDDT can print the contents in three ways: as a symbol followed
by a number (to be added to the symbol location), as a single
number, or as text, The default printout mode is symbolic.
The printout mode may optionally be changed in a show command,
The new printout mode remains in effect until subsequently
changed, 7b4c

page 149

ABC 33522 Rev, 22 NOV 75

&SRI-ARC 18-NOV-75 20:20 33522
NLS Programmers* Guide

part Five: NDDT Debugging

Show Location ADDRESS <CTRL-b> PRINTMODE OK

where PRINTMODE is one of the following:
Numeric
Symbolic
Text

A fast way to do the same thing is provided with the value
command: 7b4d

Value Of ADDRESS OK
or

value Of ADDRESS <CTRL-b> PRINTMODE OK

You may print ano then replace the value in a word with the
Show command: 7b4e

Show Location ADDRESS _ EXP GK
or

Show Location ADDRESS <CTKL-b> PRINTMODE _ EXP OK

where EXP is an expression whose value will replace the old
value of the given location, In addition to the address
expressions discussed above, you may use the form:

valuel»#value2

where "value!" is a standard expression which will be put
in the left half of tpe word, ana "vaiue2" is an
expression which will be put in the right half.

String Variables 7b5

The contents of a string variable may be examined and modified
as wen as simple variables, using the command: 7b5a

Show string ADDRESS OK

Strings are always printed in text printout mode, 7b5b

You may print and then replace the string with the Show
command: 7b5c

Show String ADDRESS - STR OK

where SIR Is a literal string which you type in,

page 150

•
NLS Programmers * Guide
part Five: NDDT Debugging

&SPI-ARC 18-NOV-75 20:20 33522
APC 33522 Rev, 22 NOV 75

Records 7b6

To work with LlO records# you must first set. the NDDT record
pointer to the first word of an 1.10 record definition, with the
command: 7b6a

Record pointer set to: SYMBOL OK

where SYMBOL is the name of some L10 record. Note that it
may be necessary to use the mark command (described below)
to make local, records known to the NDDT system,

This is equivalent to the command: 7b6b

Show Location RP - SYMBOL OK

You may then examine all the fields of any record with the
command: 7b6c

Show Record ADDRESS OK
or

Show Record ADDRESS <CTRL-b> PRINTMODE OK

You may examine and optionally change a single field within a
record with the show Location command, substituting
ADDRESS,FIELD for ADDRESS, 7b6d

You may replace each field in a record with the command: 7b6e

Show Record ADDRESS -

The name of each field is then printed and a new value may
be typed in, terminated by a Command Accept, Typing only a
Command Accept will advance to the next field of the record
without modifying the last field.

Built in NDDT symbols 7b7

A number of symbols are built in to NDDT and may be used in
address expressions, when they are used, PRINTMODE wm be
ignored, since the printout mode is predefined tor each of
these symbols, 7b7a

Built in Locations# Registers 7b7b

A1 -- register Ai
A2 -- register A2
A3 -- register A3

page 151

ARC 33522 Rev, 22 NOV 75
&SRI-ARC 18-NOV-75 20:20 33522

WLs Programmers' Guide
part Five: NDDT Debugging

A4 -- register A4
R1 -- register Rt
R2 -- register R2
R3 -- register P3
R4 -- register R4

Built in Locations, Frame 7b7c

when a procedure is called, a "frame" is added to the stack.
It includes a word (holding the return location of that
procedure in the right naif) followed by all the parameters,
then all the locals, some predefined symbols allow you
access the current or any previous frames and the
information in them.

M -- contains address of current frame
MARK -- contains address of previous frame
RET -- return location in current frame
RP -- address of record definition of last field used
S -- contains address of top of stack (last LOCAL word, or
whatever)
SIG -- current frame signal location

Built in Records 7b7d

BASF: -- first frame in procedure stack
FRAME -- current frame description
F -- same as FRAME
LOCALS -- current frame LOCALS
L -- same as LOCALS
RECP -- description of current record
R -- same as RECP
FARMS -- current frame parameters
p -- same as PA.PMS
TUP -- description of top frame in procedure stack

Control Switches 7b7e

FX" -- Current symbol escape character (;)
RNAMES -- If FALSE suppresses printing of record field names
SF -- If FALSE disables these NDDT built in symbols

Special character commands 7b 8

The special character commands are provided for commonly used
functions. All but = are essentially subcommands of the SHOW
command and are processed exactly as if they had been preceded
by the command word Show, 7btta

page 152

NLS Programmers' Guide
Part Five: NDDT Debugging

&SRI-ARC 1B-NOV-75 20:20 33522
ARC 33522 Rev. 22 NOV 75

= -- Show current location in numeric typout without
changing the current printing mode

_ -- Assign a value to current location

* -- Show previous location

LF -- Show next location

TAB -- Show location addressed by current location

Traces and Breakpoints 7b9

If you set. a "trace" at a location, the system will print that
address every time that instruction is executed. Execution
will not be Interrupted, you may set a trace with the command: 7b9a

Trace location ADDRESS OK

If y0u set a breakpoint at a location, a <CTRL-h> will
automatically be executed just before the given instruction
(causing you to interrupt execution and enter NDDT). This
allows you to interrupt execution of your program at. a given
point and examine and change the state of the system, A
breakpoint, may be set with the command: 7b9b

Breakpoint Set ADDRESS OK

Each, trace and breakpoint is assigned a number, beginning with
zero, when it is set, you may cancel a trace or breakpoint
using this number or using tne address to which it is set: 7b9c

Breakpoint Clear number OK
or

Breakpoint Clear ADDRESS OK

you may cancel all traces and breakpoints that you have set
with the command: 7b9d

Breakpoint Clear All OK

You m>ay list a trace 0r breakpoint of a given number and the
location to which it is set with the command: 7b9e

Breakpoint Print NUMBER OK

You may list all traces and breakpoints, their numbers, and
their locations with the command: 7b9f

ARC 33522 Rev, 22 NOV 75

&SRI-ARC 18-N0V-75 20:20 33522
NLs Programmers' Guide

part Five: NDDT Debugging

Breakpoint Print OK

A breakpoint may replace a previous trace or breakpoint (new
address* same number) with the command:

Breakpoint Set ADDRESS <CTRL-b> Replaces breakpoint NUMBER

OK

A breakpoint may be set so that it only interrupts if a
comparison between location and a given constant is true, with
the following command:

Breakpoint Set ADDRESS <CTPL",b> Test ADDRESS ReLOP CONSTANT

OK

where ADDRESS is the location of the word to be compared,
R E L O P i s o n e o f t h f e f o l l o w i n g : = # < > < = > =
CONSTANT is an expression with a value,

A breakpoint may be set so that it only interrupts if a
procedure is called and returns true, with the following
command:

Breakpoint Set ADDRESS <CTRL-b> Call PROCEDURENAME OK.

Ll0 Procedures

You may call an L10 procedure from NDDT with the command:

Procedure Call PROCEDURENAME OK

If the procedure requires parameters, you must list them in
parentheses, separated by commas, after the name of the
procedure:

Procedure Call PROCEDURENAME Cparaml, param2, ,,,) OK

One string, enclosed in quotes, may be included in the
parameter list, e,g,:

Procedure Call PROCEDURENAME ("literal", param2, ..,) OK

The return value(s) of a procedure call will be typed out,

NDDT allows you to replace an existing procedure with a new
procedure, whenever the old procedure is called anywhere in
the system, the new procedure will be called instead. The new

7b9g

7b9h

7b9i

7b 10

7b 1 Oa

7b 1 Ob

7b IOC

page 154

&SRI-ARC 18-N0V-75 20:20 33522

•
NLS programmers' Guide ARC 33522 Rev, 22 NOV 75
Part Five: NDDT Debugging

procedure will be passed the same parameters as were passed to
the old, This replacement can be done with the command: 7bl0d

Procedure Replace OLDNAME OK NEWNAME OK

The name pi the procedure which was replaced is saved so that
it may be restored. The replacement may be cancelled with the
command: 7bl0e

Procedure Back U D to OLDNAME OK

Symbols 7bll

The system maintains a table of symbol names and the addresses
which they represent, when a user program is loaded, its
symbols are added to the symbol table. Thus, (in addition to
system giobals) the table is composed of blocks, one for each
proaram, 7blla

Each block is refered to by tne (unique) name of the
program, (This is why the CMD and SUBSYS parts of a user
attachable subsystem must have different names in the FIDE
statement,) The list of olocks (programs) is called the
"mark stack," Locals as well as giobals are recognized by
NDDT for only those user proorams in the mark stack.

You may list the names of the blocks currently in the mark
stack with the command: 7bllb

Mark symbol table: Print contents of stack OK

A block may be deleted from the mark stack (the symbols remain
in the symbol tabie, but they are not recognized by NDDT) with
the command; 7bllc

Mark symbol table: clear block PROGRAMNAME OK

A block may be reinstated to the mark stack with the command; 7blld

Mark symbol table: Set at PROGRAMNAME OK

A new (empty) block may be added to the mark stack with the
command: 7blle

Mark symbol table; set at NEWBLOCKNAMF, OK

page 155

ARC 33522 Rev, 22 NOV 75

&SRI-ARC 18-NOV-75 20:20 33522
NLs Programmer s ' Guide

part Five: NDDT Debugging

7b 11 g

If there is at least one block in the mark stack, a new symbol
representing some address may be created with the command: 7bllf.

Define New SYMBOLNAME OK ADDRESS OK

Symbols defined with this command have a global scope, and
may be used to satisfy external references in LlO user
programs subsequently compiled,,

Any symbol within a block listed in the mark stack may be
redefined tc represent a different address with the command:

Define Old SYMBOLNAME OK ADDRESS OK

If you wish to replace an existing routine by a new version of
the same routine, some method of distinguishing between new and
old occurrences of the same symbol is required. Any symbol
preceded by a semicolon (;) refers to the old occurrence of the
symbol, (The semicolon has the effect of disabling the symbol
table marking mechanism for the given symbol, causing it to be
identified in the "old" section of the symbol table,)

For example, suppose an existing routine named TEST is to be
replaced Dy a new version of the same routine which you have
just compiled (hence is in the mark stack), The NDDT
Procedure Replace command can be used as follows:

7bl lh

Procedure Replace ;TEST OK TEST OK

Scanning tor Content 7bl2

You may search a set of words for a specific content with the
command: 7b12a

Find content: CONTENT OK masked by; OK lower address:
START ADDRESS OK upper address: ENDADDRESS OK OK

The content of every word in the specified range will be
compared to CONTENT, CONTENT may be of the form of an address
or a PDP10 machine instruction. The address and content of
each word which matches will be printed, (Note that the
"masked by" field was ignored,)

If you wish only to compare certain bits in each word to
corresponding bits in CONTENT, you may specify a mask, A mask
is a number (of the address form), only those bit positions in
which the mask has a one will be compared, (If the mask is not

SSF.I-ARC 18-N0V-75 20:20 33522

•
NLS Programmers' Guide ARC 33522 Rev, 22 NOV 75
Part Five: NDD1 Debugging

be assumed and the entire word will be
7b 12c

OK masked by: MASK OK lower address:
address: ENDADDRESS OK QK

ither the ADDRESS form or the PDP10

7bl2d

specified, all. ones will
compared,)

Find content: CONTENT
STAFTADDFESS OK upper

MASK may also be of e
instruction form.

page 157

APC 33522 Rev, 22 NOV 75

&SPI-ARC 18-N0V-75 20:20 33522
NLS programmers' Guide

Part Five: writing CML Parsetunctions

Section 3: writing CML Parsefunctions

Parsetunctions C1

Functions which are declared with the PARSEFUNCTION attribute
in CML are assumed to be LiO procedures which are designed to
be parsing functions. They are used to examine the user's
input. They are called in "parsehelp" mode before being called
in "parsing" mode. When so called, they are passed the address
of a string as a third implicit argument. The parsefunction
routine should fill that string with the appropriate prompt
characters which tell what the parsing function is looking for, 7cia

When the user is faced with alternatives which include a
parsefuncticn, the parsefunction will be called in parsemode
"parseqmark" for the string to include in the questionmark
display. This string must be no greater tnan 24 characters, 7clb

Sample Interpreter Parsefunction Routine 7c2

Assume that in some command we want the typeln of a number to
appear as an alternative to some set of keywords. We can
accomplish this by defining a parsefunction (call it looknum)
which looks at the next input character and succeeds if the
next character is a diqit and fails otherwise. If we write
this function as the first alternative in some command, then
control will pass from the interpreter to the parsefunction
before it passes to the keyword interpreter, 7c2a

Suppose our command looks like: 7c2b

COMMAND sample = "INSERT"
(looknumt) <"number"> ent #"NUMBEp"
/ ent _ ("TEXT"/"LINK"))
% entity now contains an entity type (NUMBER, TEXT, or
LINK), we now use the LSEL function to get a selection
of this type %

source _ LSEL(ent)
CONFIRM
xinsert (ent, source) ;

page 158

&SRI-ARC 18-NOV-75 20:20 33522
NL5 Programmers' Guide ARC 33522 Rev, 22 NOV 75
Part Five: Nritinq CML parsefunctions

The parsef unction looknum .which is called by the interpreter
both when prompting the user and also during the actual parse
of the command, 7c2c

(looknum) PROCEDURE % looks at the next input character* if
it. is a digit* then return TRUE* else return FALSE %

% FORMAL ARGUMENTS %
(result* % address of the result record %
parsemode* % parsing mode of the interpreter %
string); % address of prompting string %

REF result, string;
CASE parsemooe OF

= parsing:
CASE lookcC) OF %value of next character in input
butferl

IN CO* *9]: NULL ;
ENDCASE RETURN(FALSE) ?

= parsehelp: %supply string tor prompt%
st ring _ "NIJM : " ;

= parseqmark: %supply string for questionmark%
string _ "Number" ;

ENDCASE;
RETURN (S.result);
END,

page 159

ARC 33522 Rev. 22 NOV 75

&SRI-ARC 18-NOV-75 20:20 33522
NLS Programmers' Guide

Part Five* Calculator Capabilities

Section 4: Calculator Capabilities 7 d

Introduction

L10 arithmetic can only work with integers. The CALCULATOR
subsystem holds a numbers of procedures which the user
programmer may call to do double-precision floating point
arithmetic. Floating point numbers are stored in two-word
arrays, whicn the user programmer must declare. All CALCULATOR
routines work with these two word arrays.

Converting String to Double-Precision Floating Point

A number in a string variable may be converted to a floating
point array with the procedure:

nfloat (astring, awordl, aword2)

w h e r e astring is t h e address of a string holding the number,
awordl is the address of the first word of the array,

and
aword2 is the address of the second word of the array.

The number In the string may hold a decimal point, and may be
preceded by a minus-sign (-), Other characters (e,g, a dollar
sign) may precede the first character of the number (a digit,
minus sign, or decimal); they will be ignored.

Converting Floating Point to String

The two word array may be converted back to a string with the
procedure:

of loutp (avart astring, format)

where

avar is the address of the (first word of the) array
holding the floating point number, and

astring is the address of a string variable in which the
text of the number is to be placed;

the third parameter is Iqnored, so just pass zero.

The format ct the string is dictated by the global variable

7d 1

7d t a

7d2

7d2a

7d2b

7d3

7d3a

page 160

NLS Programmers' Guide
Part Five: Calculator Capabilities

&SRI-ARC 18-NOV-75 20;20 33522
ARC 33522 Rev, 22 NOV 75

"dfoutm," The following fields apply to this qlobal [default
values are in square brackets]: 7d3b

fldl -- characters to the left of the decimal [10]

fld2 -- characters to the right of the decimal [2]

f 1 d3 -- characters in exponent field [0]

round -- number of significant digits to round to [12] round
must be less than or equal to tl.bl + fld2 fldl + fld2 must
be less than or equal to 12

oflo -- qo to exponent notation it lett-of-decimal too big
[0]

exsign -- it a positive exponent, use first character of
exponent field for: [0]

0 -- first digit of exponent
1 -- " + •'
2 -- a space

exp2 -- prefix on exponent: [0]
0 -- no exponent
1 -- «E"
2 — "D"
3 -- » #i0 * M

dpt -- print decimal point switch (0=0ff, i=0n) tl]

dig -- print at least one digit to left of decimal (0 if
necessary) (0=nff, l=on) 11]

just -- justify number within space of three fields: Ci]
0 -- right justify by adding spaces to left

you must also set the
global "calflg" to TRUE

1 -- right justify by adding «0»s
2 -- right justify by adding »*«s
3 -- left justify by adding spaces to right

you must also set the
global "calflg" to FALSE

sign -- if a positive number, use first character of field 1
for: [0]

0 -- first digit of number
1 -- a space
2 -- " + •*

ARC 33522 Rev, 22 NOV 75

&SRI-ARC 18-N0V-75 20S20 33522
NLS Programmers' Guide

Part Five; Calculator Capabilities

Additionally# if the global "cacilg" is TRUE# the number will
be formatted with commas.

Calculations with Foating Point

The following procedures do floating point calculations on the
two-word arrays described above. All of the following
procedures require as parameters the address of the (first word
of the) arrays,

qcadd (a #fc) — a a + b

qcsub(a#b) -- a „ a - b

qcmult(a#b) -- a - a * b

gcdiv(a,b) -- a _ a / b

qcdivw(a,b#c) -- c _ a / b

qcneg(a) -- a „ -a

page 162

•
NLS Programmer s * Guide
Part Five: Fields and Records

&SRI-ARC 18-NQV-75 20:20 33522
APC 33522 Rev, 22 NOV 75

section 5: fields and Records 7e

Introduction 7el

A set of bits within a word can be used without affecting the
rest of the word, (On the PDP-10# words are 36-bits lonq,) A
contiguous set of bits within a word is called a field, Fields
allow more efficient use of storage, 7ela

once a field is defined# you may apply it to any word
(variable), it will refer to the defined set of bits in
that word (e,g. the field "RH" refers to the right-most. 18
bits of whatever word It modifies).

You may assiqn a number to or from a field by following the
variable narre with a period (.)# tpen the name of the field: 7e!b

var .field

E.g. stic.stpsid „ oriqin ;

Many fields are defined in the NLS system, and may be used by
user programmers, some have been mentioned in preceding
sections; others may be found in the NLS source code, 7elc

Declaring Records 7e2

Records are always defined globally. Record definitions are,
like global declarations# put outside of procedures within LlQ
files, 7e2a

A record definition defines a series of fields* with the length
(number of bits) specified for each field: 7e2b

RECORD fieldltlength], field2[length]# •

The fields are allocated from right to left within the word, 7e2c

E,q, the record definition:

RECORD right[18], left.[17] ;

would define two fields. The field "right" refers to the
right-most 18 bits of the word, The field "left" refers to
the next 17 bits to the left of the field "right," (The
left-most bit is not used in this example,)

page 163

&SRI-ARC 18-NOV-75 20:20 33522

•
ARC 33522 Rev, 22 NOV 75 NtS Programmers' Guide

Part Five: Fields and Records

A RECORD definition may specify any number of fields. If a
field is defined to be too large to fit in the remaining bits
of the current word, it is automatically defined to represent
the first field in the next word. I.e. this and subsequent
fields are defined from the right of the next word. This can
extend through any number of words, 7e2d

F,q, the RECORD definition;

RECORD fieldHlS], field2110], field3fl8], field4C36] :

would define the fields as follows:

field -- right half of word
field? -- right-most 10 bits in left half of word
field3 -- right half of next word
field4 *- entire third word (i,e, wordt2])

Of course when using fields that refer to subsequent words,
you must be sure that you are operating on arrays of the
appropriate size,

Declaring Fields

Although you can declare single fields as describee here, the
Practice is limited, (It is useful in manipulating byte
pointers.) User programmers should use RECORD definitions
instead,

A single field may be defined with the declaration:

DECLARE FIELD name = (address* size : position] }

7e3

7e3a

7e3b

where

address is the address of the word to which the field
refers,

size is the number of bits in the field, and

position is the number of bits left to the right of the
field,

in an assignment, the address of the word referenced is kept in
a register, named "rp," it may be used as an index by placing
it in parentheses. Thus a FIELD declaration refering to the
right half of a word Is: 7e3c

page 164

NLS Programmers' Guide
Part Fivej Fields and Records

&SRI-ARC 18-NQV-75 20:20 33522
AFC 33522 Rev. 22 NOV 75

DECLARE FIELD right=[(rp), 18:0] ;

The left, half of the next word could be defined: 7e3d

DECLARE FIELD left=L1(rp), 19:181 ;

The address is held in the right half of a byte pointer. You
may declare a field with zero as the address, then assign the
field definition plus an address to set up a byte pointer: 7e3e

DECLARE FIELD riqht=[0, 18:01 ;
then

bytepointer _ right + $variable ;

A FIELD declaration may be external as well as global: 7e3f

DECLARE EXTERNAL FIELD name = [address, size : position] ;

page 165

ARC 33522 Rev, 22 NOV 75
&SPI-ARC 18-NOV-75 20:20 33522

NLS Programmers# Guide
Part Five: stacks and Rings

Section 6; Stacks and Rings 7f

Declaring Stacks and Rings 7*1

Stacks and rings are allocated series of words of storage, A
stack or ring is defined to hold a given number of records:
each record may be a single or a defined number of words, You
may "push" records onto the stack or ring and then "pop" them
off, as described here. 7fla

A stack may be declared Cat the global level) with the L10
declaration: 7 fib

DECLARE STACK stackname[size] ;

where size is the number of one»word records in the stack,

you nay work with records of more than one word with the stack
declaration: 7£lc

DECLARE STACK Stacknametsize,recsizel ;

where recsize is the number of words in each record, All
records in a stack must be the same size.

Like other declarations# any number of stacks may be declared
with the same statement: 7fld

DECLARE STACK Stackname[size], stacknameLsize#recsize]#

Stacks may be declared as external to the program* 7fie

DECLARE EXTERNAL STACK stackname[size,recsize], ,,,;

Ring declarations are identical, with the word "RING"
substituted for "STACK," E.g.: 7flf

DECLARE RING ringname[size], rinqname[size,recsize], ,,, ;
DECLARE EXTERNAL RING r i ngname [s i ze , r ecs ize] ,

Initializing stacks and Rings 7f2

Before it is used, a stack or ring must be initialized (i.e.
cleaned up)# with the HO statement: 7f2a

RESET stackname ;

page 166

NLS Programmers' Guide
Part Five: Stacks and Pinqs

&SRI-ARC 18-N0V-75 20:20 33522
ARC 33522 Rev, 22 NOV 75

or
RESET rirgname ;

The storaqe can then be considered empty. The RESET statement
can be used whenever you wish to clean up the stack or ring, 7 f 2b

Using stacks and Rings 7f3

You may add a record to the top of the stack or rinq with the
LI0 statement: 7f3a

PUSH address ON stackname ;

where address is the address of the first word (perhaps the
single wcrd) of the record to be added to the stack,

-If you try to add more elements than the stack can hold, a
SIGNAL will be generated,

-if you try to add more elements than the ring can hold,
records will be replaced, starting from the bottom (the
first record pushed on).

You may remove a record from the stack or ring, and optionally
assign it to a record variable (a simple variable or array of
the appropriate size) with the L10 statement: 7f3b

POP stackname ;
or

POP stackname TO address ;

where address is the address of the first word (perhaps the
single word) of the record to receive the record from the
stack.

-If you try to remove more elements than the stack currently
holds, a SIGNAL win be generated,

-If you try to remove more elements than the ring currently
holds, records will be reread, starting from the top. This
should be avoided. If you did not previously fill the ring,
this top record will hold garbage.

You may read the first word of the record at the top of the
stack or ring (without affecting the stack or ring) as an
expression by enclosing the name in square-brackets: 7f3c

[stackname]

page 167

ARC 33522 Rev. 22 NOV 75
&SRI-ARC 18-N0V-75 20S20 33522

NI.S Programmers' Gutde
Part Five; Stacks and Rings

The second word (the one below that one the stack) may be
read as (stackname - 1], and so on.

E.g. 7 f 3d

var _ [stackname) •

To use stacks and rings, one usually must keep track of how
many records are currently on the storage. Thus, you probably
will need to maintain a count in a simple variable in parallel
to use of the stack or rind, 7f3e

page 1.68

&SFI-ARC 18-NOV"75 20:20 33522

•
NLS Programmers' Guide ARC 33522 Revf 22 NOV 75
Part Five: Using the sequence Generator

Section 7: Using the Sequence Generator 7g

Introduction 7ql

The Sequence Generator is used by a number of NLS commands
which require a series of statements from an NLS file, A
Procedure may open a sequence holding a number of statements;
the Sequence Generator then passes those statements back* one
at a time* every time it is called, 7gla

The sequence Generator considers viewspecs in choosing which
statements to return, e,g. level truncation, if viewspec i or
k is on, it may call a Content Analyzer program before
returning the statement. This allows a great deal of
flexibility in working with a series of statements, 7glb

Co-Routine Effect 7g2

Once the Sequence Generator decides to return a statement (or
string)* it calls a mechanism which returns control to the
procedure that called the sequence Generator, Thus control
will return directly to that calling procedure* even from other
procedures the sequence Generator has called, i,e„ even if the
return mechanism was called from a procedure called by the
Sequence Generator, 7g2a

khen the Sequence Generator Is called the next time, it passes
control to the instruction after the one which called the
return mechanism, I,e, it continues right where it left off, 7g2b

Thus* the Sequence Generator may call a content Analyzer
Program which may return control directly to the procedure
which called the Sequence Generator, The next time the
Sequence Generator is called, execution will begin in the
middle of that content Analyzer program (which may later return
through the normal RETURN statement to the sequence Generator),
(Thus, the sequence Generator is behaving like a co-routine to
the calling procedure,) 7q2c

page 169

ARC 33522 Rev. 22 NOV 75

&SRI-ARC 18-NQV-7 5 20:20 33522
NLS programmers' Guide

part Five: Using the Sequence Generator

Calling Procedure sequence Generator Content Analyzer 7g2d

? . / « • *

3 seggen(&sw) >>-> 1
2 ...
3 CA filter »

4 ...
5 ...
3 seqgen(&sw) >>

-> 1
2

« 3 return mechanism
• • *

4 ... < «
5 ...

<< 6 return mechanism

-> 4
<< 6 normal return

7 <

Sequence Work; Area

When a Content Analyzer program is called by the sequence
Generator, one parameter is passed, the address of an array
called the "sequence work area," This array, although ignored
by most Content Analyzer programs, holds a great deal of useful
information. If the Content. Analyzer procedure receives this
address as a parameter, and then REFs it, it may refer to the
following fields in the sequence work area (see
<nLS,BRFCORDS,seqr> tor entire record declaration): 7g3a

swstid -- stid of current statement or string in sequence

swcstid -- stid of current real STATEMENT in sequence (even
if swstid points to a string)

swibstid -- stid of statement headinq last branch In
sequence

swclvl -- level of current statement In sequence

swsivj -- level of first statement in sequence

swvspec -- first word of viewspecs for sequence

swvsp2 -- second word of viewspecs for sequence

swusqcod -- address of user Sequence Generator procedure for
sequence

swcacode -- address of Content Analyzer orocedure for
sequence

page 170

&SRI-ARC 18-NOV-75 20 5 20 33522
NLS Programmers' Guide ARC 33522 Rev. 22 NOV 75
Part Five: Using the sequence Generator

swkflg -- FALSE when sequence is opened, TRUE once something
has been returned by sequence

Displaying Strings 7g4

You may call the return mechanism from Content Analyzer
programs while causing the Sequence Generator to inject a
string in the sequence, under tne normal circumstance, where
the sequence is being used to put. up a display or print a file
or to do filtered editing, this allows you to inject a string
into the output, Thus you may receive a statement, reformat it
into a string (without edltinq the statement itself), and then
display the string, 7q4a

Tne following procedure injects a string in the sequence, then
returns to the procedure that called the Sequence Generator: 7g4b

send (sw, astring) ;

where sw is the address of the sequence work area, and
astrinq is the address of the string, (Remember, if you
REFed the parameter holding the address of the sequence work
area, use the ampersand (&) construct when passing it to
send,)

Note tnat the co-routine effect will cause execution to pick up
right where it left off when the Sequence Generator is called
for the next statement. Thus# execution will begin just after
the send, if you then RETURN a value of TRUE, the statement
itself will AlSq be displayed, Most applications of send will
RETURN(FALSE) Immediately after the call on send, 7g4c

An example of a Content Analyzer program using send() to show
only the first line of each statement: 7g4d

(firstline) PRoCeDIJRe (sw) ; ^content analyzer filter to
display only first lines!

LOCAL TEXT POINTER ptr ;
REF sw •

%to hold address of sequence work area%
%set pointer at end of first line%

CASE READC OF
= ENDCHRJ FIND "ptr ;
S EOL: FIND "Ptr _ptr ;
ENDCASE REPEAT CASE;

%put_ first line in global string!
•dspstr* _ SF(ptr) ptr ;

%inject string into sequence!

ARC 33522 Rev, 22 NOV 75

&SRI-ARC
NLS

part Fives Using the

18-NOV*75 20:20 33522
Programmers' Guide
Sequence Generator

send (&sw, sdspstr) ?
%so statement won't also be displayed%

RETURN (FALSE) J
END.

Using sequences

You may open and use your own sequences in attachable
subsystems, This may be useful when you wish to process a
series of statements* perhaps only those passing certain
requirements (e,g, level or a Content Analyzer filter).

To open a sequence* you should have declared and REFed a
variable to hold the address of the sequence work: area that
will be reserved for your sequence. The procedure which opens
the sequence returns this address,

&sw _ openseqCstidl, stld2, vspecl, vspec2, seqproc,

caproc):

where

stidl ana stid2 are two stids deliniating a group in an
NLS file that will be the source of the statements in the
sequence. They may be the same (for a branch). The
Sequence Generator ignores the branch only and plex only
viewspecs,

To get stid2* the procedure "seqend" may be useful.
Given stidl and the two viewspec words* it checks the
branch-onlv and plex-only viewspecs and returns the
appropriate stid for stid2. E.g.!

&sw „ openseq (stidl* seqendCstidl*vspecl*vspec2) *
vspecl, vspec2* seqproc* caproc);

vspecl and vspec2 are two words holding the viewspecs for
the sequence. There a a number of predefined fields
which allow you to set bits within these words, (See
part Four, section 4,) Of particular interest to the
sequence Generator are the level truncation (not the line
truncation) and the content Analyzer viewspecs,

seqproc is the address of the Sequence Generator routine
to be used, it you pass zero, the NLS standard Sequence
Generator will be used, (User Sequence Generators are
not described here,)

page 172

&SRI-ARC 18-N0V-75 20:20 33522
NLS programmers' Guide ARC 33522 Rev, 22 NOV 75
Part Five: Using the Sequence Generator

caproc is the address of a Content Analyzer procedure to
be used if needed by the sequence (as specified in the
viewspecsl. If none is needed, you may pass zero.
Passing the address of a sequence is in effect
instituting that procedure for that sequence, The
address of the currently instituted procedure may be
gotten from the display area descriptor, as described in
part Four, Section 4,

A call on the procedure "seqgen" will increment the fields in
the sequence work area to the next statement (or string) in the
sequence; it win return the first statement in the sequence
the first time it is called, you must pass it the address of a
sequence work area, e,g,: 7g5c

seqgen (&sw) ;

seqgen returns the new swstid field of the sequence, or
endtil if there are no more statements in the sequence.

You may then refer to the fields in the sequence work area
for information about that statement, e,g,j

sw,swstid -- stid of current item in sequence

sw.swclvl -- level of current item in sequence

When you are done with a sequence, you must close it by calling
the procedure "closeseq" with the adddress of the sequence work
area; e.q,: 7q5d

closeseq(&$w)

ARC 33522 Rev, 22 NOV 75

&SRI-ARC 18-NOV-75 20;20 33b22
NLS Programmers' Guide

Part Fives Using the Sequence Generator

A typical use of the sequence Generator might be as follows;

% set up sequence %
% set up viewspecs %

%get adress of display area descriptor; da is RLF-ed
simple variable*

Sda „ Ida() ;
%get current viewspecs; vspec is LOCAL two-word array-s

vspec _ da.davspec ;
vspecCI] - da,davspc2 ;

%turn on Content Analyzer for this sequence*
vspec,vscapf _ TRUE ;

%ooensea with "proc" as Content Analyzer filter, returns
the address of sequence work area; sw is REFed simple
variable*

&sw _ openseq(sourcestid, sourcestld, vspec, vspecfl],
da.dausqcod, sproc);

ON SIGNAL ELSE closeseqC&sw) ;
% loop through sequence %

%reset control-o flaq%
inptrf - 0 ;

LOOP
BEGIN
TF inptrf THEN %user typed a control-o%

BEGIN
dismes (1, $"User terminated process") ;
EXIT LOOP ;
END;

%increment to next statement in branch you are
processing which passed filter "proc"; or else exit*

IF seqgen(&sw) = endfil THEN EXIT LOOP ;
%call some procedure to process current stid (could as
well have been any block of code)*

process(sw.swstid) ;
END;

% close sequence %
ON SIGNAL ELSE ;
closeseq (& s w) •

7g5e

NLS Programmers' Guide
Part Five: Conditional Compiling

&SRI-ARC 18-NOV-75 20:20 33522
ARC 33522 Rev, 22 NOV 75

Section 8- conditional Compiling 7h

You may delimit blocks of code within procedures that will only be
compiled if a constant is TRUE or FALSE, If the code is not.
compiled, of course it will not be part of the code file and will
not be executed, 7hl

First a constant must be defined with the SET construct Cat the
beginning of the file) as either zero (FALSE) or non-zero
(TRUE), 7hla

Then, code delimited by the string: 7hib

%+name%

where name is the SET constant

will only be compiled if the constant is SET to a TRUE
value.

Similarly* code delimited by the string: 7hlc

%-name%

will only be compiled if the constant is set to zero
(FALSE),

ARC 33522 Rev, 22 NOV 75

&SRI-ARC 18-NOV-75 20:20 33522
NL5 Programmers' Guide

Part Five: Conditional Compiling

For example# 7h2

if the following statement appears at the beginning of the
program: 7h2a

SET testsOj

then a procedure in the program might include code delimited by
this construct# e.g,: 7h2b

L10 statement ; %normal code# always compiled?,

t

t

LlO statement ; %normal code, always compiled?
%»test%

LlO statement ; %this statement WILL be compiled?;

*

LlO statement ; %this statement WILL be compiled%
%-test%

%+test%
LiO statement ? %this statement will NOT be compiled?;

t

LlO statement ; %this statement will NOT be compiled?;
% +1 e s t %

LiO statement : ̂normal code# always compiled?;

page 176

•
MLS Programmers* Guide
ASCII 7-bit Character Codes

&SRI-ARC 18-NOV-75 20;20 33522
ARC 33522 Rev. 22 NOV 75

ASCII 7-BT r CHARACTER CODES

Char ASCII Char ASCII Char ASCI I Char ASCII

"A 001 i 041 A 101 a 141
"B 002 it 042 B 102 b 142
*C 003 # 043 C 103 c 143
*D 004 $ 044 D 104 d 144
"E 005 % 045 E 105 e 145
~F 006 6 046 F 106 f 146
Bell 007 # 047 G 107 g 147
BS 010 C 050 H 110 h 150
Tab Oil) 051 I 111 i 151
LF 012 * 052 J 112 j 152
VT 013 + 053 K 113 X 153
FormFeed 014 » 054 L 114 i 154
CR 015 - 055 M 115 m 155
**N 016 • 056 N 116 N 156
"0 017 / 057 0 117 0 157
~P 020 0 060 P 120 P 160
"Q 021 1 061 Q 121 g 161
~F 022 2 062 R 122 r 162
"S 023 3 063 S 123 s 163
•T 024 4 064 T 124 t 164
~U 025 5 065 U 125 u 165
*V 026 6 066 V 126 V 166
*W 027 7 067 w 127 w 167
*x 030 8 070 X 130 X 170
" Y 031 9 071 Y 131 y 171
"Z 032 • 072 Z 132 z 172
ESC 033 * 073 t 133

< 074 \ 1 34
= 075] 135
> 076 " 136

077 _ 137 DEL 177
SP 040 & 1Q0

page 177

& S R I - A R C 1 8 - N 0 V - 7 5 2 0 ; 2 0 3 3 5 2 2
3 3 5 2 2

p a q e 1 7 8

ARC 33522 Rev, 22 NOV 75
&SRI-ARC 18-NOV-75 20:20 33522

NLs Programmers' Guide

(J33522) 18-NCV-75 20:20;;;; Title: Author(s): Stanford Research
institute /&SRI-ARC? Distribution: /NDM(l INFO-ONLY]) JHBC [
INFO-ONLY J) FEED(t INFO-ONLY]) LJM([INFO-ONLY]) ; Keywords: 110
cml nddt proqrarr content analyzer pattern; Sub-Collections: NIC;
nbsoletes Docurrent (s): 33461 ; cierK: NDM; Origin: < USERGUIDES,
L10-GUIDE,NLS?428, >, 1B-NOV-75 19:32 NDM ;;;;

page

33522 Distribution
fj. Dean Meyer, James H, Hair, Special Jhb Feedback, Laura J, Metzger,

/

D L S 2 2 - S E P - 7 5 1 4 S 3 7 3 3 5 2 3
A n n o u n c i n g F O R M A T T E R , A S u b s y s t e m t o F o r m a t C o m m o n R A D C
C o r r e s p o n d a n c e

< S T O N E , D 0 C - F C R M A T T E H , N L S ; 2 , > , 2 2 - S E P - 7 5 1 4 : 3 3 D L S ; ; ; ; 1

DLS 22-SEP-75 14:37 33523
FORMATTER

A NEW NIS SUBSYSTEM

In principle it has been possible at RADC (ever since we got
the TYCGMs) to prepare correspondence in NLS files and have it
printed directly by the TYCOM on letterhead paper. In practice
this has not happened on a wide scale, since one must:

learn the output Processor directives (and their
interactions),

master the idiosyncracies of the TYCOM and

understand the requlatory* adminsitrative and secretarial
procedures governinq the format of correspondence,

A subsystem has been created under NLS to deal with the
formatting and printing of correspondence on tpe TYCOM, This
subsystem has two major objectives:

to eliminate the need for learning Output Processor
directives

to eliminate the need for learning the "correct" form and
format of correspondence.

The subsystem is called FORMATTER and one obtains It by typing
EF or GF, i,e, Execute/Goto Formatter, It has one
command,,,INSERT with options for:

Evaluators (memo in file at)

Letter (format in file at)

Memo (format in file at)

outline (for workstatement or solesource)

Soiesource (format in tile at)

Workstatement (format in file at)

Each of the options prompts the user for inputs it needs
to complete the correspondence, ief ident, subject,
routing list, etc,

FORMATTER obeys the standard command language structure of NLS,
It will respond to the <"S> and ? in the normal fashion. The
help feature is not implemented at this time, but. will be once
the bugs have been ironed out.

la

lal

lal a

1 al b

laic

la2

la2a

la2b

la3

1 a 3a

la3b

ta3c

la3d

1 a3e

la3f

1 a3f 1

1 a4

1

DLS 22-SEP-75 14:37 33b23
FORMATTER

in all cases (except for the Evaiuators and Outline commands)
FORMATTEF expects a file containing the content of the
correspondence, structured as appropriate to the subject
material, NO paragraph numbers, leading spaces, directives,
subject, distribution list, signature blocks, etc, la5

In the case of the Evaiuators and outline commands, the
subsystem expects only a BLANK file, la5a

Evaiuators creates the entire "List of Evaluator's and
Evaluation Criteria" memo. Outline creates the standard
paragraph headings, i,e. Objective, scope,
Background,. .etc, required for Work and solesource
statements, iabal

FORMATTER prompts the user for information need to complete the
correspondence, For example, lets take the Insert Memo
command, la6

The user types EF and enters the FORMATTER Subsystem, He then
types IM (insert Memo) and is prompted as follows: la7

(format in file at) A: la7a

(Author's ident / <"U> if login ident:) OPT/T/CA1: la7b

(Subject:) T/[A]: ta7c

(Addressee:) T/CA]: la7d

(Any Attachments?) Y/N: la7e

if the user types Y# then the prompt: la7el

(Attachments (seperate with commas):) T/tA): la7eia

otherwise it does it and displays/types the message: Ia7e2

Inserting Memo Format,,, la7f

Inputs obtained from the user are inserted in their proper
place» the file is formatted, directives inserted, and ready
for printing on the TYCOM, ia8

2

DLS 22-SEP-75 14:37 33523
FORMATTER

PROCEDURES FOR USING FORMATTER

Create a tile, insert, the body of the letter# memo etc. Edit
it to your sat isfact 1 on and Update the file. Then either;

print it on the line printer or TTY # annotate with subject#
distribution# attachments and take it to the PSO for
s p e l l i n g c h e c k s # f o r m a t t i n g a n d p r i n t i n g o n t h e T Y C O M , o r

Execute Formatter yourself# Output Remote or Terminal and
take it to the PSO,

(Execute Formatter is preferred over Goto Formatter if
you only have one memo to format# since it automatically
returns to BASE when completed,)

Depending on the nature of the memo and your individual tiling
schemes, once it is printed you can;

Do nothing

A good idea until the chain of command has signed off on

it;

Delete the File

Update the File

Delete Modifications

This throws away the changes made in the file by
FORMATTER and leaves you with the "guts" of the memo that
you initially typed, You can then;

move it to a named branch in your procurement file
(for example) or

journal using SENDMAIL•

If minor mistakes are made and discovered while typing in under
any of the prompts you can <*H> backspace character or <~W>
backspace word and retype. You CANNOT backspace through the
chain of prompts, however. If# for example, you discover a
mistake in the title while you are typing in the attachments#
it is best to complete the sequence and edit manually after
FORMATTER has done its thing, If there are major mistakes, you
can of course type <*x> and start over again.

lb

1 b 1

lb la

ibib

lblbl

1 b2

1 b2a

1 b2a 1

lb2b

1 b2c

lb2d

1 b2d i

lb2d1 a

ib2dlb

1 b 3

LIMITATIONS# QUIRKS AND ASSORTED GOODIES 1 C

3

DLS 22-SEP-75 14:37 33523
FORMATTER

There are some unexpected things that happen when using
formatter in its present state (i Sept 75),

First the baddies:

1c J

Icla

The automatic numbering of statements in a memo only
works down to four levels. That is, the fifth level will
default to the 1,2,3.4,5 type of numbering. This is
because I could not determine, by looking at the regs,
what the numbering should be like below the 4th level, Iclal

Since the signiture block is keyed to the author's ident,
one currently has to type the ident for Krutz (RDK) if he
has a memo or letter that needs to be signed by him, lcla2

The Insert Workstatement command win not work unless you
have at least 4 branches at the 1st level. This can be
frustrating, but at the same time is a reminder that you
do not have all the required major headings, lcla3

I suggest that you use the insert Outline command to
set up the major headings of a workstatement, insert
N/A if not applicable; then it should work fine, lcla3a

When asked for the ident of a person, you should be able
to use the ,lastname approach if you don't know his
ident. This works some of the time, but not always, 1
have no explaination for this, lcla4

Now for the qoodies; 1C2

FORMATTER will automatically capitalize in those instances
where secretarial practice or rules of correspondence
dictate that one should, lc2a

This means that one does not have to capitalize when
typing in the title of a workstatement or distribution
list on a memo for example, lc2al

However, in the case of the subject of a memo, where
only the user can determine which words need to be
capitalized, he must do it himself, lc2ala

This means that the string of characters "rog lemke",
will be translated Into the "official" form for the
addressee of (p, Lemke), Ic2a2

FORMATTER asks for the ident of the author in many cases.
This causes a number of things to "automagically" appear in

4

DLS 22-SEP-75 14:37 33523
FORMATTER

the correspondencef While checking the Ident of the user*
his full name* telephone number and symbol are also looKed
up (if necessary) and inserted in the appropriate place in
the correspondence, lc2b

PROBLEMS WITH FORMATTER ld

The PSO should compensate for all the limitations of the
author's knowledge and tor system inadequacies, One should
expect a perfect final product, If he doesn't get one, I and
the PSO would like to know about it, PLEASE send bugs,
suggestions for improvements, etc, to STONE and CARRIER, ldl

(Those received in memo form on letterhead paper win get
priority attention!) ldla

5

D L S 2 2 - S E P - 7 5 1 4 : 3 7 3 3 5 2 3
A n n o u n c i n g F O R M A T T E R , A S u b s y s t e m t o F o r m a t c o m m o n R A D C
C o r r e s p o n d e n c e

(J 3 3 5 2 3) 2 2 - S E P - 7 5 1 4 : 3 7 : ; : ; T i t l e : A u t h o r C s) : D u a n e L , S t o n e / D L S ;
D i s t r i b u t i o n : / R A D C (I I N F O - O N L Y]) J H B ([I N F O - O N L Y 3) ;
S u b - C o l l e c t i o n s : R A D C ; C l e r k : D L S ;

•4

^ 33S23 Distribution
Rocco F, luorno, Thomas J, Rucciero, Roger B, Panara, John L.
McNamara, Joseph P, Cavano, Duane L, Stone, Marceile D, Petell,
Thomas F, Lawrence, James Ht Bair,
Wolt-Hasso Kaubisch, Kim Cynthia Carter, Samuel Lt Ruple, Stephen P,
Sutkowski, Richard Calicchia, William N, Patterson, Francis J.
Hilbing, Robert K, Walker, Frank P, Sliwa, Joe F, Feraia, Roger W,
Weber, Melville j, Draper, Robert D, Krutz, James W, Hyde, David T.
Craig, Fred N, Dimaggio, Robert E. Doane, Richard Nelson, William F,
Stinson, Daniel Rt Loreto, John B, McLean, Murray L, Kesselrran,
Edward F, LaForge, Agatha C, Deconde, Alan R. Barnum, Larry M,
Lombardo, Roberta J, Carrier, Richard H, Thayer, Frank J. Tomaini,
Mike A, Wingfieid, Edmund J, Kennedy, Raymond A, Liuzzi, Donald
VanAlstine, Deane F„ Bergstrom, Frank S, LaMonica, William E„ Rzepka

•L

J L M 2 2 - S E P - 7 5 1 3 : 4 6 3 3 5 2 4
t e c h n o l g y t r a n s f e r

M e e t i n g w i t h D S t i n s o n , F M o r r e a l e , T D i M i n c o o n t h e r m e e t w i t h M C I o n
t h e T e c h n o l o g y T r a n s f e r 1

B i l l G a v e a b r i e f s u m m a r y o f M C I » s p i t c h o n w h o t h e y a r e e t c , I
h a v e a c o p y o f t h e r b r i e f i n g c h a r t s i n m y f i l e , l a

T h e y t h e n g a v e a p i t c h o f t h e i r v i e w o f t h e 6 , 4 p r o g r a m w h i c h t h e y
l o o k u p o n a s t h e i r b a b y , I t s e e m s a s t h o u g h i t w i n b e o u r t a s k t o
c o n v i n c e t h e m w e w i l l p r o v i d e t h e m w i t h a t e c h n o l o g y b a s e a s w e l l
a s M i t r e , a n d i n f a c t a b r o a d e r b a s e d u e t o o u r f u n d i n g
f l e x a h i l i t y , l b

T h e y d i d i n r i e c a t e a w i l l i g n e s s t o w o r k w i t h u s o n t h e c o n c e p t o f a
s p e c a n d a s k e d u s t o r e v i e w t h e h a n d b o o k s d o n e b y M i t r e 1 c

A c t i o n i t e m s I d

T h e y h a v e a g r e e d t o m e e t a g a i n d o w n t h e r t h e 6 t h o f O c t o b e r t o
d i s c u s s t h e 6 , 4 p r o g r a m . S t i n s o n w a n t s o u r i n p u t s a n d m a y b e e v e n
a c c o m p a n y h i m w i t h t h e m o n t h e p r o g r a m , ! G u e s s o u r p o s i t i o n
s h o u l d b e w o r k e d o u t b y y o u , I a n d D i c k a s t o w h a t w e w a n t t o
h a n d l e e t c , l d l

T h e y w a n t a f u l l s c a l e b r i e f i n g t o a l a r g e n u m b e r o f M C I t y p e s
d o w n t h e r e , T h e y a r e g o i n g t o c o n t a c t u s o n a d a t e , 1 6 2

i s l d 3

w a n t t o s e n d t h e r e t w o g u y s UP h e r e o n t h e l a n g u a g e
f a c i l i t y , s i n c e t h e r e a r e o n l y t w o , D a t e n o t e s t a b l i s h e d , ! d 4

W a n t a n y i d e a s w e h a v e o n h o w w e c a n w o r k w i t y M C I p r i o r t o t h e
6 t h o f O c t o b e r i d e a l l y , l d 5

C o m m e n t s o n t h e i r g u i d e b o o k s l d 6

1

technolgy transfer

JLM 22-SEP-75 13:46 33524

(J33524) 22-SEP-75 13:46;? ? p Title: Author(s): John L, McNamara/JLM;
Distribution: /FJT(f ACTION J) DFB([INFO-ONLY]) J Sub-Collections:
RADC; clerk: JLMf origin: < MCNAMARA, TT.NLSjl, >, 22-SEP-75

13:26 JLM

3 3 5 2 4 D i s t r i b u t i o n
F r a n k J . T o r r a i n i , D e a n e F , B e r g s t r o r c ,

	33522
	33523-33524

