. DLS S5—MAR-74 13:57 30180
Outline of steps for COMming JOVIAL Manual

fo document work in progress for IS managers and to ask SRI for a
Little nelp.

Outline of steps for COMming JOVIAL Manual

After a few false starts and some overestimation of my L-10
programming talents, I have hit upon the following scheme for
transforming the JOVIAL Language Specification document from its

carrent ragged form into a thing of beauty. The steps listed below

DLS 5-MAR-74 13:57

seea necessary in light of the requirement for ths document to be as

error free as is humanly possible,

INPUT TYPING

The typing task is not a trivial one, since the text is
sprinkled with "metalinguistic" terms, which must eventually be
set in an italicized font, After some experimention, I became
convincd that the flagging of these terms was best accomplished
during initial input, rather than during later editing. In the
source text, they are either typed in italics, underlined with
a solid line or with a /////// line. After the first few
pages, the typist was able to pick this up with no mistakes by
the second chapter, An t was used to flag these terms since
this symbol is not used in the JOVIAL language. Less
frequently there are instances of examples which must be set in
monospaced font, These are flagged with a . for the same
reasone.

The tables and syntatic equations are being done seperately, by
someone very familiar with tabs etc. on an IMLAC, This task is
almost impossible to do on a TI.

Cne problem, which has increased the burden on the editor,
is missing characters on input, It seems that the typist
goes so fast, that either the TIP or the NLS buffer becomes
full and characters are dropped. "I would be interested in
discovering If anyone else on the ARPANET or at SRI has
experienced similar problems,

INLTIAL EDITING

Initial editing consists of overall structure editing, which is
necessary to translate between NLS structure and the document
structure and to correct any level problems introduced by the
input typist, This can be done very rapidly with the IMLAC and
level viewspecs. Then follows a paragraph-by-paragraph visual
inspection of the text at the IMLAC, Metalinguistic terms are
found fairly easily from context and most typos can be picked
up and corrected on the spot, Minor grammatical editing is
also done at this time,

NEWWORD editing

I have made a copy of the user program INDEX and made some

la

lal

la2

la2a

ib

1bl

lc

DLS 5-MAR-74 13:57

Outline ot steps for COMming JOVIAL Manual

changes to use It as an aid in detecting and correcting
mispelled words., The program is contained in <STONE>NEWWORD.
It includes In its vocabulary, "words" containing —'s, 'S and
's. It excludes words in a list contained in <{STONE>DMASTTTER.
These words are obtained from the result of previous NEWWORD
runs as described below,

The general procedure is to run NEWWORD and at the display,
scroll down through the plex it creates., Mispelled words tend
to stand out like sore thumbs In a sorted plex. ¥hen one is
found, 1 just jump on the link, find the word and correct it,
Jump to Return, copy the link to the correctly spelled word If
it exists and delete the statement, Invariably I will find a
half dozen words which were overloked in the first editing
pass.

The only problem with this approach Iis the list of words
generated is very long..6-800 words on the size chapters I am
dealing with, The next step is designed to reduced the length
of this list, and hence make the NEWWORD list more useful as an
editing aid.

UPDATE NASTER

A List of correctly spelled words is contained in
{STONEDNASTER, My original idea was to have a program that
automatically added words from the edited NEWWORD list to the
MASTER list. I overestimated my L-10 programming ability,
however, and have not been able to make it work yet, However,
I think that this would still be a valid approach, 1f someone
at SRI (Dean maybe, since the program would be similar to the
userprogram INDEX) could handle it. The idea is that as the
document grows, the NEWWORD list would become shorter and
shorter, eventually yilelding a high percentage of misspelled
words.

The tile structure of the list would have to be changed, since
the max statement size would soon be exceeded. I found this to
happen for several letters of the alphabet on the second puass.

The procedure I now use is this:

I create a TEMP file and do an Execute Assimilate of the
edited NEWWORD list to the TEMP file with a content analyzer
patern, [',SPSPT',]; turned on. This picks up only those
words which have occured in 3 or more statements, by virtue
of the fact that the NEWWORD program inserts commas after
each link.

icl

lc2

1c3

id

1d1

1d2

143

DLS S—MAR-74 13:57

Outline of steps for COMming JOVIAL Manual

I then run a program <STONE>FIRSTWORD against the TEMP file,
which strips off the links and leaves me with a word
follewed by a space in each statment,

I then run <USER-PROGS>APPEND and group the words starting
with the same letter into one statement,

I then append the statements in TEMP to those in MASTER.
I have only run three chapters this way, and so far there is

still plenty of room left in each statement in MASTER, 1
haven't kept track of the rate of word acquisition.

CONTENT PROOFING

An ODP is done and an independent person, who is knowledgeable
in the JOVIAL Language Spec area does a final proofing for
content and font indicators., Limi ted experience Indicates that
a two person operation goes smoother. One person reading the
orginal text and the other following the NLS printout, After
this stage is completed and the necessary changes are made, the
content and font indications are considered 100% accurate.

They will not be reviewed again in a systematic manner.

TERN INDEX

This document will be subject to sporadic updates, as new

cons tructs are added to the language and old ones are redefined
or renamend, The process of defining changes is a slow one
involving several committees and levels of coordination within
AF and DOD. To facilitate changing and republishing of the
document, it is desireable to have an index to all occurances
of the "metalinguistic" terms used in the document. The t then
serves a double function of font change indicator and of index
flage. CSTONEDJMINDEX is used to extract the words preceded by
an ? and append links pointing to which NLS statements they
ocurer in. (I might want to change this program slightly, to
reflect the number of times the word ocurrs in each statement,)
The chapter is then Jounaled as the "offical" reference copy
for future updating purposes.

INSERT COM DIRECTIVES

The final fonts, slzes and styles awaits the results of our
first experimental run, where we will be running the same
sample pages with different mixes of fonts, margins, page
Layout etc. I1f the body of the document is all in the same
font, then we can write an L-10 CA program to replace strings
beginning with ! with *string¥*, Likewise the strings beginning

30180

1d43b

1d3c

1d3d

1d4

le

lel

1ir

111

lg

DLS 5-MAR-T74 13:57

Oatline ot steps for COMming JOVIAL Manual

with « will be replaced with .Mono=0On;*string¥*.Mono=0ff;. This
will take care of 90% of the font changes., If it becomes
necessary to change fonts as well as style, we can use the V1,
V2, V3 constructs. There is a problem with this however, in
the cases where a metalinguistic or example term is immediately
followed by a punctuation mark. It might be better to use the
Font construct, I will have to see how often this ocurrs and
make a Jjudgement on how much hand editing is required,

We will probably want to redefine the most commonly used font
directives to make them as compact as possible, since some of
the statements are already near the max. limit, We should also
redefine the directive delimiters, to speed up the ODX process.
It appears that * might be good for this also, Any comments?

The biggest problem comes in inserting the tables and syntatic
equations, So far I have just put in directives to GYES enough
Lines to allow for their manual insertion., I am tempted to
prepare the text of the tables and equations using the system
and copy them Iinto the posliton where they belong. This would
assure a uniform treatement of tables and running text, The
syntatic equations are repeated at the end of the document
anyway, in an appendix used for crossreferencing. If they were
insereted in the text, then the only mannual process would be
to draw in the equation box boundaries and table row and column
division lines by hand. It I go this route I will need to turn
off the Justification before each graphic. In any event, THE
GRAPICS PORTION OF THE JOB SHOULD BE STARTED NOW, since the
approach will determine the size of the graphic, which in turn
determins the values of the directives used, where pagination
ocurrs and the content of the footer directive for each page.

I have a couple of questions, which make a difference even now
in this area:

Can the COM right and left justify a line with different
fonts in it? With different Slizes? With different styles?
With mixes of the above?

How are Tabs treated by COM in Justified mode? Unjustified
mode? Does the Point size of the previous line effect
absolute tabbing distance? ie do I have to explicity reset
size at the beginning of each table? Could
<USER-PROGS>NOTABS be changed easily to pay attention to
IABSTOPS directives?

Similar guestion for GYES, etc...if I have set a default YBS
in the orgin statement will the GYES always give me the same
absolute spacing per line? Some of the tables immediately

follow a section heading which will be set In a larger size

30180

1gl

1g2

1g3

1gla

1g3b

DLS S-MAR-74 13:57

Outline of steps for COMming JOVIAL Manual

than the subparagraphs under it. I'm concerned that the
lines following the headings might be larger than those in
the subparagraphs,

XCOM PRCOF

An ODX run will be made. Some one familiar with the JOVIAL
Manual will have to review this and make decisions on what to
do with tables that are divided on two pages. Should another
statement be brought over and the table put on the next page?
Should the whole table be forced to the next page and the

current page be left partially blank? Several runs per chapter

may be necessary to get the desired placement, At least by
breaking the document up Iinto chapters, an early change will
not effect the entire rest of the document,

The final job under this task will be to put the proper values,

corresponding to the last section number on the page, in the
Footer directive for each page.

COM PRCOFING

A final proof of the COM proofs will have to be made, to see If
we got what we thought we were going to get. A check should be
made to see if the graphics fit properly, Again this will have

to te made by someone outside the NLS team.
CAMERA READY COPY

Once the proofs have ben reviewed and any necessary changes
made, quality copies will be made from the microfilm at DDSI.

Question..can DDSI make camera ready copy from pieces of a
COM run. 1 am thinking of the possibility that a minor
mistake is discovered, which will require rerunning a few
pages out of a chapter., Do we have to rerun the whole

chapter through the process or can they make up camera copy

from pieces of several runs? Extra charge?
INSERTING GRAPHICS

Depending on the route chosen for tables and syntatic
equations, the lines, brackets, braces and other continuation

symbols will have to be inserted or the entire graphic wil have

to be inserted. The art work is a job for the Arts and

Drafting group. If the inserts are to be treated as graphics,

someone will have to retype them to get quality improvements
over what we now have,

30180

1g3c

1h

1hi

1h2

1i

1i1

1j

1j1

1jla

1x

11

DLS S—-MAR-74 13:57 J30180

Outline of steps for COMming JOVIAL Manual

FINAL PAGE PROOF
%11

A final proof, check of footer section numbers, crosscheck of
syntax indexes, etc, will have to be made before sending the

document to the printer. 11
GOTO PRINTER im
Who does the printing? How many coples? Iml
DISTRIHUTION in

To which offices? To individuals? EKeep a list of who has
coplies for revision, updating, ammendments, etc, Good _job for
NL3. inl

Rougn estimates of the amount of time it will take for each task,
pased on our experience to date with the first four chapters (121

typewritten pages). 2
TASK NIN/PAGE SEC/PAGE 2a

(PERSON) (CPU) 2b

INPUT TYPINGesccscocsscsssssscacscssee2l 20 2c
INITIAL EDITINGasssssscccscssscsssscssesll 10 2d
NEWWORD EDITINGeesesscccsssssscsscsssne O 35 2e
UPDATE MASTERcccscsccscccscsccscscscs 1 5 2f
CONTENT PROOFINGescconcsscscasnscssscscse O S5 28
TERM INDEXeceeoesssasccscsecscaccncnnee U 10 2h
INSERT CONM DIRECTIVES .ceesnsascscsss 1 5 21
XCOM PROOFccesscscccs soscssscsccsssesse O 30 25
COM PROOFINGaeesesesssssscsssccssnnsnsnse 2k
CAMERA READY COPYewceavencsnnancscsncas 21
INSERTING GRAPHICScaecs cevsnncsncsssnnas 2m
FINAL PAGE PROOFasses scvcccsccsssnaas 2n

GOTO PRINTERwwesscssssncsccsscssnnnsse 20

DLS S—MAR-74 13:57 30180
Outline ot steps for CONming JOVIAL Manual

DISIRIBUTION G ecsssscacacsscsssscncns 2p
Bstimates above are based on the following factors: 3
2:1 ratio of typewritten pages to CCM pages. Jda
opP--4sec/pagey SENDPRINT--1sec/page 3b
QuX==lUsec/page, SENDPRINT-—4sec/page. dc
INPUT TYPING 3d
Includes time for 1 ODP Jal
INITILAL EDITING Je
NEWWORD EDITING ar

J0 sec/page for run time (16 more if you have to compile). Jr1

. UPDATE MASTER 3g
CUNTENIT PERQOFING 3h
TERM INDEX Ji
runtime of jmindex, Jil
INSERT COM DIRECTIVES 3J

2 ODX runs ., 31

XCOM PRCOF Jk
COM PRCCFING al
CAMERA READY COPY Im
INSERTING GRAPHICS 3n
FLNAL PAGE PROOF 3do
GJUTO PRINTER Jp
DISTRIBUTION 3q
. The overall cost of the project then can be estimated at: 4

PEBOPLE==-1hr/pg X 400pgs X $7.00/he = $2800 4a

. DLS 5-MAR-74 13:57 30180
Outline of steps for COMming JOVIAL Manual

$7.00 is the average of 1 technical and 1 clerk. 4al
COMPUTER==-2min/pg X 400pgs / 60min/hr X $100/hr = $£1300 4b

$100/hr comes from $500K for facility for a year, which

contains S2weeks, 6days/week, l6hrs/day. 461
COM==83.50/pg X 400pgs = $1400 4c

Rough guess at the total then is $6K, which compares with $50K quoted
by one contractor,)

DLS S5—-MAR-74 13:57 J0180

Outline of steps for COMming JOVIAL Manual

(JIDLBO) S-MAR-T74 13:57; Title: Author(s): Duane L. Stone/DLS;
Distributicon: /EJK JLM FJT ARB NDN DVN RJC; Sub-Collections: RADC;
Clerk: DLS3;

JSP 5-MAR-74 14:41 30181
ARPA Users on OFFICE-1

Jim:

I just had a meeting with Connie McLindon regarding ARPA users on
OFFICE~1., We started with the list of ARPA people who had
accounts at ISI, and tried to think of a rationale why they should
NOT have directories at OFFICE-1. I couldn't think of any
compelling reasons, so Connie is asking you to set them all up.
For the immediate future, we're not thinking in terms of moving
all their usage to OFFICE-1; rather, we're just anxious to offer
it as an option for periods when ISI is down or overloaded, I get
the feeling that this is going to upset you, so let me put forward

some reasons: la
l. ARPA is paying the major share of OFFICE-1's costs. In
return, the only visible resource it is getting is the block of
ARPA slots, Simple justice and good management therefore
demands that these slots be used for ARPA's benefit., lal
2. Cf all the uses to which ARPA could put these slots, the
least demanding and disruptive to other users Is the type of

. activity typical of ARPA office use of ISI, i.e. SNDMSG,
READMAIL, RD, etc, la2
Je If ARPA does not take immediate steps to use these slots,
then they will == through the group allocation scheme —-- be
swallowed up by others such as RADC, Bell, NIC, From ARPA's
point of view, any and all of these are of substantially lower
priority than ARPA office use. lad
4. ihe hours of operation of OFFICE-1 coincide with the most
overloaded and frustrating period for ISI. Thus ARPA
management use of OFFICE-1 will be of greater benefit in
relieving network pressure than any single other act I can
think of, In particular, it may enable us to move some
computational users back to ISI rather than having to foist
them on unwilling hosts, lad
Se de want to gradually expand the universe of software used
by AZPA management people to include the fantastic planet of
NL3. Getting them on OFFICE-1 now is a good start, 1as5
6. [SI has been notably unreliable during the primary hours of
ARPA management use, while OFFICE—1 has been rock-solid. It is
therefore highly attractive to open OFFICE-1 as an option for
lab6

these users.,

‘ So we're not kidding; we really do want to make OFFICE-1 available
to the ARPA office right now. There are other issues we'd like
you to address at the same time: ib

JSP S5—-MAR-T74 14:41

ARPA Users on OFFICE-1

) 0 These users are accustomed to using the following services
and systems:

SNDMNSG
READMAIL
RD

TECO

Tnese should be provided so that we can make a smooth
transition to NLS later. (I'm sorry about TECO, but that's the
way it is.).

2. Within this group of users, we really must make some sort
of reasoneble provision for priority use by a sub-group.
Within the cloistered computer science community this no doubt
seems arbitrary, capricious, and profoundly undemocratic. But
it is in fact an inescapable element of any real-world
environment into which you will introduce your technology. So
we mlght as well get used to the idea right now, and let the
ARPA Director's office serve as a model for a broad class of
priority users.

I suggest therefore that arrangements be made that Lukasik and
Tachmindji are never denied access. How this is to be done is
up to you folks, but that's what we'd like to see.

I can well understand that these steps may produce some
apprehension on your part, in that dissatisfaction with OFFICE-1
might produce a halo of dissatisfaction with SRI/ARC. I see
Little cause for fear:

First, reliablility of the hardware is perceived as TYMSHARE's
responsibility, not ARC's.

Second, the users will be employing initially software produced
elsewhere, so that bugs will be firmly related to other
culperits,

Thirdly, the competition is so miserable that even performance
substantially below your usual high standards will look pretty
impressive.

I hope that you'll see these desires as a tribute to the fine
nanagenent and excellent service the OFFICE-1 project has
demonstrated thus far, and not as a callous attempt to wring blocod
out of a stone, We're motivated by a desire to keep moving toward

30181

ibtl

I1bla

iblb

iblc

ibld

Ib2

1b3

1b4

lc

lcl

ic2

1c3

JSP S5-MAR-74 14:41 30181

ARPA Users on OFFICE-1

the goal of a computer—-augmented office and to get ful L
atilization of the expensive resources we've procured with so much
difficulty. We're willing to discuss a lot, but compromise only a
Little.

Sincerely,

John.

JSP S—-MAR-T74 14:41 30181
ARPA Users on OFFICE-1

(J30L31) S—=MAR-74 14:41; Title: Author(s): John S, Perry/JSP;
Distribution: /JCN(action) CKM(fyi) JCRL(fyi) CF(fyi) DCR2(fyi);
Sab=Collections: NIC; Clerk: JSP;

DLS 6—MAKR-74 05:11 30182

JOVIAL Manual-—-Chapter 3

(JJIOL132) 6-NAR-T74 05:113 Title: Author(s): Duane L. Stone/DLS;
Disteibution: /RJC; Sub—-Collections: RADC; Clerk: DLS;
Origin: <PETELL>CJ.NLS;1, 5-MAR-74 11:16 DLS ;

DLS 6—MAR-74 05:11 30182

JOVIAL Manual=-=Chapter 3

edited text, containst! & o

DLS 6-MAR-74 05:11 30182
JOVIAL Manual--Chapter 3

Cnapter J 1
tVARIABLES 2

J.1 Concept of !Variables

A JUOVIAL tprogram:declaration consists of a string of !'statements and
tdeclarations that_specl!y rules for performing computations with
sets of data. The basic elements of data are items, Items are named
to distinguish one from another, Sometimes, a tname applies to a
group of items, requiring indexing to tell one member of the group
from another, Several named groups may be subsumed under another
4roup, which is known as a table and which is itself named. Tables
and items may in turn be collected in another group called a data
olock which, again, is named. Space may be allocated these data
structures either statically at compile time or dynamically at
execution time. 3

.l The value of items and other data can be changed in various

WAYS .. A data element whose value can be changed by means of an
tassignmentistatement is known as a variable, Items, then, are
variables. Table entries can function as variables, as can parts

of items under the influence of the ftprimitives .BIT and +BYTE. Ja

«2 A tvariable is the designation, within a tprogram:declaration,

of a variable to be manipulated within the computer. The two

syntax equations for !variable (above) indicate, first, the type

of data involved, and second, the grammatical form of the

tvariable related to the kind of data structure in which the

variable exists, 3b

d.2 Named:Variable £

A tnamed:variable is a reference to a varlable by means of a 'name
associated with the variable through a tdata:declaration. A
tsimple:variable is a reference (for the purpose of using or

changing its value) to a variable declared to be a simple

variable; one not declared as a constituent of a table. No tindex

is involved in a !'simple:variable because the reference is to a

variable that is one of a kind, not part of a matched set., Use of

the ftpointer:formula is explained in Section 7.8 4a

A ttable:variable is a reference to a variable declared to be part

of a table. A table consists of a collection of entries and there

is an occurrence of each table item in each entry. An

tentry:variable is a reference to the entire entry as a single

varlable. An tindexed:variable (a ttable:ivariable or

tentry:variable) generally includes an tindex to select the

particular occurrence of the variable being referenced. 4b

JOVIAL Manual-=Chapter 3

«2 An tindex is correlated
ttable:declaration contains
namber of dimenslons of the
each ot these dimensions in
tipperibound., (Some of the
omitted; the defaults are e
tindex:component must evalu

DLS 6-MAR-74 05:11

with a tdimension:list, Every

a t'dimension:list which prescribes the
table and the extent of the table in
terms of its tlower:bound and its
detailed specifications can be
xplained elsewhere.) Each
ate to an integer value

(tnumeric: formulas are explained in Sec 5) not less than the
tLower:bound and not greater than the tupperibound in the
corresponding position of the relevant tdimension:list,
relevant tdimension:list is, of course, the one in the
ttable:declaration bearing the !tableiname beginning the
tentryivariable or in the ttablei:declaration containing the
titem:declaration bearing the titeminame starting the
ttable:variable, The rightmost tindex:component selects the
element, of the row selected by the tindex:component second from
the right, from the plane selected by the index:component third
from the right, etc.

The

«d If the tindex iIs omitted from an tindexed:variable, whether or
the meaning is the same as iIf the
complete tindex were present and each tindex:icomponent were equal
a legitimate form of

aot the empty tbrackets remailn,

to its corresponding tloweribound. In fact,
tindexed:variable is to omit one or more tindex:icomponents,

marking their positions of
such a form is the same as
present with a value equal
following example shows an
tentryivariables, all with

«TABLE ALPHA [3:7, 9, 10
~ALPHA [3, 3, 100,0]

«~ALPHA [¢ 34,y 0]

necessary with fcommas. The meaning of
if each missing tindex:component were
to its corresponding tlower:bound. The
fordinary: table:declaration and three
exactly the same meaning:

0:157, 0:50]; NULL;

«~ALPHA [,3]

J.J tLetter:Control:Variable, !'Functional:Variable

A tletter:control:variable is a reference to a variable designated

within a tloop:statement to aid in control of execution of the
tcontrolled:statement and to have meaning only within the
tloop:statement, It is explained In Section 5.8 in conjunction
tlLoop:statements,

ol tFormat:variable is a special form that enables a list of
values to be converted to character type and assembled into a
character value. The details are given in Section 6.1.7

30182

4d

4d1

4d2

4dJ

4d4

Sa

Sal

DLS 6—MAR-74 05:11
JOVIAL Manual=-=Chapter 3

INSEST BOX

«e2 Ihe above construct selects a string, of the characters
denoted by the ftnamedicharacterivariable, to be considered as
the variable to be given a new value, The
tnamed:character:variable can be any f!simple:variable or
tindexed:variable of character type. The bytes of the
tnamed:icharacterivariable are considered to be numbered,
starting with zero at the left., The 'numeric:formula following
the first tcomma is evaluated as an integer and used to select
the byte of the 'named:characterivariable to be considered the
leftzost byte of the !functional:ivariable, If there is no
second tcomma and no second 'numeric:formula, the leftmost byte
of the tfunctional:varliable is its only byte, Otherwise, the
second ftnumeric:formula is evaluated and tells how many bytes
there are including the leftmost byte, in the
tfunctionalivariable,

«3 TIhe 'named:variable in the above metalinguistic formula can
be ol any type. The construct selects a string of bits, from
the bits denoted by the 'named:variable, and treats that string
of bits as a bit variable, The bits of the !'named:variable are
considered to be numbered, starting with zero at the lLeft, The
tnumeric:formula following the first fcomma selects the bit to
ve considered the first bit of the derived variable. The
tnumer ic:formula following the second tcomma (if there is one)
determines the number of bits in the derived string (one bit if
there is no such tnumeric:formula). In signed variables, the
sign bit is blit zero and the leftmost magnitude bit iIs bit one.
In unsigned numeric variables, the leftmost magnitude bit is
bit zero. In entries, the leftmost bit of the first word is
bit zero. In character variables, the number of bits per byte
is system dependent, In floating variables, the sign bits of
the significand and exrad are included in the bit count, but
the arrangement of bits is system dependent.,

J. 4 tFormat:Variable, tBit:Variable, !Character:Variable
tFormat variable is explained in Section 6.1.7.

.1 The construct using -BIT is explained in Section J3.3.3. A
tbit:variable denotes a string of bits without conslideration of
any numeric or other meaning associated with those bits,

Almost all ftnamed:variables carry an implication of some data
type other than "bit", However, an tentry:varliable, if the
ttable:name is not declared so as to imply some specific data
type, denotes only the string of bits constituting the entry.

«2 The construct using -BYTE is explained in Section 3.3.2.

30182

Sa2

5a3

Sad

Sb

Scl

DLS 6-MAR-74 05:11 30182

JOVIAL Manual==Chapter 3

The tnamed:character:variable is a tnamed:variable using a
tname declared to denote a variable (an item or an entry) of
character type. Sc2

J.5 Numeric:Variable S5d

Any !'numeric:variable can be used as a tpointer:variable. The
details of the use of !pointer:variables are given in Chapter 7 in
conjunction with discussion of controlled allocation.
tLetteri:control:variable is explained fully in connection with
tLoop:statements, Without being explicitly declared, it becomes
an tinteger:variable through its usage. All tnames that can be
used as tnemed:variables are declared as explained in Chapter 7.
Some tentry:variables may use 'names not assoclated with any data
type. All other !'named:variables use ftnames that are assoclated
with titemi:descriptions. These titemi:descriptions give the data
type amcng other things (see Section 7.16 for details)., One data
type is "character" as mentioned above In Section J.4.2, Another
data type is "floating". tFloating:variables use 'names declared
to be of floating type. The other descriptive terms in
titem:descriptions denote "signed" and "unsigned", but we are
interested here in other attributes. Signed and unsigned data are
also associated with one or two 'numbers. The first !number
declares the size of the datum, the number of bits In its
magnitude, If this iIs the only !'number in its titem:i:description,
the datum Is an Iinteger value and the !'named:i:variable denoting it
is an tinteger:variable. The second fnumber in the
titem:description for a signed or unsigned value declares the
precision of the value, the number of bits in its magnitude after
the point, If this second tnumber is present, even If iIts value
is zero, the datum is a fixed value and the tnamed:variable
denoting it is a tfixed:variable., Se

PAN 6—-MAR-74 11:24

Sign-on problem

Every time I sign on the system, it asks me for my ident,

Is there

anyway that this could be done automatically - if so, it would be

greatly appreciated,

30183

. PAN 6-MAR-74 11:24 30183
Sign-on problem

(J30133) 6—~MAR-74 11:24; Title: Author(s): Penny A. Napke/PAN;
Disteibution: /FEED IMM PAN; Sub-Collections: NIC; Clerk: PAN;

. HSH 6-MAR-74 13:03 30184

From: HHughes.MAC at NIT-Multics

Date: 03/06/74 1602-edt 1
Title: Abstract — TR S2 thru S5 la
Inplementing Multi-Process Promitives In a Multiplexed Computer
System ib

Rappaport, Robert L, ibl
Novemrber 18968 NAC-55 1b2
AeBeSeTeReAeCaTe 1b2a
In any computer system, primitive functions are needed to
control the actions of processes Iin the system., This thesis
discusses a set of six such process-control primitives which are
safficient to solve many of the problems involved in parallel
processing, as well as iIn efficient multiplexing of system
resoruces among the many processes in a system, In particular,
. the thesis documents the work performed in lmplementing these
perimitives in a particular computer system — the Multics system -
which is being developed at N.I.T.'s Project MAC. ic
Daring the course of work that went into the implementation of
these primitives, design problems were encountered which
caused the overall rpgram design to go through two iterations
be fore program performance was deemed acceptable, The thesis
discusses the way the design of these programs evolved during the
course of this work. 1d
The Graphic Display as an Aid in the Monitoring of A Time.shared
Computer System le
Groctow, Jerrold M. lel
Octoter 1968 MAC-TR-54 AD-688-468 le2
Ao BaSeTeReACuTo le2a

The Graphical pDisplay Monitoring System was developed as a
medium for dynamic observation of the state of a time-shared
computer system. The system is integrated to create graphic
displays, dynamically retrieve data from the Multics"'
Time-Sharing System sSupervisor data bases, and allow on-line
viewing of this data via the graphic displays. On-line and
. simulated experiments were performed with various members of the
Project MAC Multics staff to determine the most relevant data for
dynamic monitoring, the most meaningful display formats, and the

HSH 6-MAR-74 13:03

most desirable sampling rates. The particular relevance of using
a graptic display as an output medium for the monitoring system
is noted.

AS a gulde to other designers, a generalized description of the
priciples involved in the design of this on-line, dynamic
monitoring device includes special mention of those areas of
particular hardware or software system dependence. Several as
yat unsolved problems relating to time-sharing system monitoring,
including those of security and data base protection, are
discussed,

The Flow Graph Schemata Model of Parallel Computation
Slutz, Donald R.
September 1968 MAC-TR-53 AD-683-393
AcBeSeTeReAeCuaTe

Flow Graph Schemata are introduced as uninterpreted models of
parallel algorithms, operating asynchronously and reflecting
physical properties inherent to any imsplementation. Three main
topics are investigated: (1) determinacy, (2) equivalence, and
3) equivalence-preserving transformations on the control
structure of a Flow Graph Schemata., A model is determinate 1Y
the results of a computation depend only on the initial values
and not on any timing constraints withing the model. Equivalence
is undecidable in general, but for a large class of determinate
Flow Graph Schemata which are in a maximum parallel form,
equivalence is shown decidable, In equivalence~-preserving
transformations, sufficient tested conditions for equivalence are
formulated that depend only on the portion of the structure to be
transformed,

Current and future computational systems are evaluated in terms
of results obtalned for Flow Graph Schemata. A number of
interesting extensions of the work are suggested,
Absentee Computations In a Multiple-Access Computer System
Deitel, Harvey M.
August 1968 MAC-TR-52 AD-684-738

AeBeSeTeReACuTe

In multiple—access computer systems, emphasis is placed ﬁpon
servicing serveral Iinteractive users simultaneiously. However,

J0184

1t

lg
1g1
igla
1glb

1glibl

ih

1i

lila

1ilb

1lilbl

. HSH 6-MAR-74 13:03 30184

many cosputations do not require user interaction, and the user
may therefore want to run these computations "absentee" (or, user
not present). A mechansim is presented which provides for the
handling of absentee computations in a multiple~access computer
system. The design is intended to be implementation—indepent.
Some naovel features of the system's design are: a user can switch
computations from interactive to absentee (and vice versa), the

systen can temporarily suspend and then continue absentee
computations to aid in mainteining an efficient
absentee—interactive workload on the system, system

administrative personnel can apportion system resources between
interactive and absentee computations In order to place emphasis
upon a particular mode during certain periods of operation, and
the system's multiple-computation-stream facility which allows
the user to attach priorities to his absentee computations by
placing the computations in ether low—, standard-, or
high-priority streams. 1J

. HSH 6-MAR-74 13:03 30184

(J301834) 6-MAR-74 13:03; Title: Author(s): Herb S. Hughes/HSH;
Distribution: /HSH MAP ; Sub~Collections: NIC; Clerk: HS;

JSP 6-MAR-74 13:48 30185
ARPA Users on OFFICE-1

Jim:

I just had a meeting with Connie NclLindon regarding ARPA users on
OFFICE~1. We started with the list of ARPA people who had
accountis at ISI, and tried to think of a rationale why they should
NOT have directories at OFFICE-1, I couldn't think of any
compelling reasons, so Connie is asking you to set them all up.
For the immediate future, we're not thinking in terms of moving
all their usage to OFFICE-1; rather, we're just anxious to offer
it as an option for periods when ISl iIs down or overloaded. I get
the feeling that this ls going to upset you, so let me put forward

some reasons: la
1. ARPA is paying the major share of OFFICE-1's costs. In
return, the only visible resource it is getting is the block of
ARPA slots, Simple justice and good management therefore
demands that these slots be used for ARPA's benefit, lal
2. Cf all the uses to which ARPA could put these slots, the
least demanding and disruptive to other users is the type of

. activity typical of ARPA office use of ISI, i.e. SNDMSG,
REAUNAIL, RD, etc. la2
Je If ARPA does not take immediate steps to use these slots,
then they will == through the group allocation scheme —-— be
swallowed up by others such as RADC, Bell, NIC, From ARPA's
point of view, any and all of these are of substantially lower
pricrity than ARPA office use. 1a3
4. Ihe hours of operation of OFFICE-1 coincide with the most
overloaded and frustrating period for ISI. Thus ARPA
manasgement use of OFFICE~1 will be of greater bhenefit in
relieving network pressure than any single other act I can
think of, In particular, it may enable us to move some
comgutational users back to ISI rather than having to foist
them on unwilling hosts, lad
Se We want to gradually expand the universe of software used
by ARPA management people to include the fantastic planet of
NLS, Getting them on OFFICE-1 now is a good start, 1a5
6. I{SI has been notably unreliable during the primary hours of
ARPA management use, while OFFICE-1 has been rock-solid. It is
therefore highly attractive to open OFFICE-1 as an option for
lab

these users.

. So we're not kidding; we really do want to make OFFICE-1 available
to the ARPA office right now, There are other Issues we'd like
you to address at the same time: ib

JSP 6-NAR-74 13:48

ARPA Users on OFFICE~-1

1. These users are accustomed to using the following services
and systems:

SNDMSG
READMAIL
&0

TECO

These should be provided so that we can make a smooth
transition to NLS later. (I'm sorry about TECO, but that's the
way it is.).

de Within this group of users, we really must make some sort
of reasonable provision for priority use by a sub—-group.
Within the cloistered computer science community this no doubt
seems arbitrary, capricious, and profoundly undemocratic, But
it is in fact an inescapable element of any real-world
environment into which you will iIntroduce your technology. So
we might as well get used to the idea right now, and let the
ARPA Director's office serve as a model for a broad class of
priority users.

I suggest therefore that arrangements be made that Lukasik and
Tachmind,ji are never denied access, How this 1s to be done is
up te you folks, but that's what we'd like to see.

I can well understand that these steps may produce some
apprehension on your part, in that dissatisfaction with OFFICE~-1
might produce a halo of dissatisfaction with SRI/ARC, I see
lLittle cause for fear:

First, reliability of the hardware is perceived as TYNSHARE's
respensibility, not ARC's.

Second, the users will be employing initially software produced
elsewhere, so that bugs will be firmly related to other
culgrits,

Thirdly, the competition is so miserable that even performance
substantially below your usual high standards will look pretty
impressive.

I hope that you'll see these desires as a tribute to the fine
management and excellent service the OFFICE-1 project has
demonstrated thus far, and not as a callous attempt to wring blood
out of a stone, We're motivated by a desire to keep moving toward

30185

ibl

Ibla

I1blb

iblc

Ibld

1b2

1b3

ib4

lc

1cl

lec2

1c3d

JSP 6-MAR-74 13:48 30185
ARPA Users on OFFICE~-1

the goal of a computer—augmented office and to get full
atilization of the expensive resources we've procured with so much
difficulty, We're willing to discuss a lot, but compromise only a

Little. id
Sincerely, le
11

Johne

. JSP 6—-MAR-74 13:48 30185
ARPA Users on OFFICE-1

(J30135) 6-MAR-74 13:48; Title: Author(s): John S. Perry/JSP;
Disteibuticn: /JCN CKM JCEL; Sub-Collectlions: NIC; Clerk: JSP;
Oeigin: <AKPADARPAUSERS.NLS;1, 6—~NMAR-T74 13:43 JSP ;

JBL 6-MAR-74 19:08 30186
VHEEEEEEE

This is an answer, since I forgot tc mention at work that I got your
test message. 1

JBL 6-MAR-74 19:08
WHEEEEEEE

(J30186) 6—-MAR-74 19:083 Title: Author(s): Joel B. Levin/JBL;
Distribution: /SEJ JBL; Sub~Collections: NIC; Clerk: JBL;

JBP 7-MAR-74 05:41

lyan:

hiy how are things with you and all our friends? i think it may be
spring here, things are warming up. we are moving to richmond, joann
has found a townhouse type 2 bedroom place for us to live in, i
will be staying with somebody in washington 4 days a week then
spending weekends in richmond with joann, it sounds like a real drag,
but it will cut down on the amount of time we spend commuting. also
we should use much less gasoline.,

lynn, could you find a copy of network measurement note 18 and send
it to me? i am also missing network measurement notes 12 13 14 15 17,
if you can get me coplies of those i would be appreciative.

say hello to the dinner night group for us.

-=Jjon.

30187

. JBP 7-MAR-74 05:41 30187

(J30LE7) 7-MAR-T74 05:41; Title: Author(s): Jonathan B. Postel/JBP;
Distributions /LYNN; Sub=Collections: NIC; Clerk: JBP;

HSH 7-MAR-74 07:08

Abstract = TR 52 thru 55

Implementing Multi-Process Promitives in a Multiplexed Computer

Systam
Rappaport, Robert L. la
November 1968 MAC-55 1b
AeBeSeTeReAeCoTae ibl

In any computer system, primitive functions are needed to control

the actions of processes in the system, This thesis discusses a

set of six such process—control primitives which are sufficient to

solve many of the problems involved in parallel processing, as

well as in efficient wmultiplexing of system resoruces among

the many grocesses Iin a system, In particular, the thesis documents

the work performed in implementing these primitives in a

particular computer system — the Multics system - which is being

developed at N.I.T.'s Project MAC, 2

During the course of work that went into the implementation of these
. primitives, design problems were encountered which caused the
aoverall rpgram design to go through two iterations before program
performance was deemed acceptable. The thesis discusses the way
the design of these programs evolved during the course of this work. 3

The Graphic Display as an Aid in the Monitoring of A Time.shared
Compater System -t

gro

. HSH 7-MAR-74 07:08 30188
Absteract = TR 52 thru 55

(J30188) 7T=-NAR-74 07:08; Title: Author(s): Herb S. Hughes/HSH;
Disteibutiaon: /HSH MAP ; Sub-Collections: NIC; Clerk: HS;

HSH 7—MAR-74 07:38
Abstract - TR 52 thru 55

fmplementing Multi-Process Promitives in a Multiplexed Computer
System

Rappaport, Robert L.
November 1968 MAC-S55
AeBeSeTeReACLTo

In any computer system, primitive functions are needed to control
the actions of processes iIin the system, This thesis discusses a
set of six such process-control primitives which are sufficient to
solve many of the problems involved in parallel processing, as
well as in efficient multiplexing of system resoruces among
the many processes in a system, In particular, the thesis documents
the work gerformed in implementing these primitives in a
particular computer system — the Multics system - which is being
developaed at M.I.T.'s Project NAC,

During the course of work that went into the implementation of these
priaitives, design problems were encountered which caused the
overall rpgram design to go through two iterations before program
performance was deemed acceptable, The thesis discusses the way
the design of these programs evolved during the course of this work.

The Graphnic Display as an Ald in the Monitoring of A Time.shared
Computer System

Grochow, Jerrold M.
Jctober 1968 MAC-TR-54 AD—-689-468
AvBeSeTeReACeTo

The Graphical Display Monitoring System was developed as a medium
for dynamic observation of the state of a time-shared computer
sSystem. IThe system is integrated to create graphlc displays,
dynaaically retrieve data from the Multics' Time-Sharing
System supervisor data bases, and allow on-line viewing of this
data via the graphic displays. On-line and simulated
experiments were performed with various members of the Project MAC
dultics staff to determine the most relevant data for dynamic
monitoring, the most meaningful display formats, and the most
desirable sampling rates. The particular relevance of using a
graphic display as an output medium for the monitoring system is
noted.

AS a guide to other designers, a generalized description of the
priciples involved in the design of this on-line, dynamic

30189

la
1b

ibl

4b

4bl

HSH 7-MAR-74 07:38
Abstract - TR 52 thru S5

monitoring device includes speclal mention of those areas of
particular hardware or software system dependence. Several as yet
unsolved problems relating to time—-sharing system monitoring,
including those of security and data base protection, are
discussed.

Fae Flow Graph Schemata Model of Parallel Computation
Slutz, Donald R.
September 1968 MAC-TR-53 AD-683-383
AeBeSeTeReALC.To

Flos# Graph Schemata are introduced as uninterpreted models of
parallel algorithms, operating asynchronously and reflecting
physical properties inherent to any implementation, Three main
topics are investigated: (1) determinacyy, (2) equivalence, and (3)
ejuivalence~preserving transformations on the control structure
of a Flow Graph Schemata, A model is determinate if the results
of & computation depend only on the initial values and not on any
timing constraints withing the model, Eguivalence is undecidable in
general, but for a large class of determinate Flow Graph Schemata
whicn are in a maximum parallel form, equivalence is shown
decidable. In equivalence-preserving transformations, sufficient
tested conditions for equivalence are formulated that depend only on
the portion of the structure to be transformed.

Current and future computational systems are evaluated in terms of
resalts obtained for Flow Graph Schemata. A number of interesting
extensions of the work are suggested.

Absentee Computations in a Multiple-Access Computer System
Deitel, Harvey M.
August 1968 MAC-TR-52 AD-684-738
AeBaSeTeRaAeCoTe

In multiple~access computer systems, emphasis is placed upon
servicing serveral interactive users simultaneiously. However,
many computations do not require user interaction, and the user may
therefore want to run these computations "absentee" (or, user not
present). A mechansim is presented which provides for the handling
of absentee computations in a multiple—~access computer system.

The design is intended to be implementation—indepent, Some novel
features of the system's design are: a user can switch computations
from interactive to absentee (and vice versa), the system can

30189

6a
6al
6a2

6ala

Sal
8a2

Sala

HSH 7-MAR-74 07:38 30189
Abstract - TR 52 thru 55

temporarily suspend and then continue absentee computations

to aid in maintaining an efficient
absentee—interactive workload on the system, system
adainistrative personnel can apportion system resources between
interactive and absentee computations in order to place emphasis
upon a particular mode during certain periods of operation, and the
system's sultiple-computation-stream facility which allows the user
to attach priorities to his absentee computations by placing

the comgutations in ether Low=—, standard-, or high-priority
straams.,

10

. HSH 7—-MAR-74 07:38 30189
Abstract - TR 52 thru 55

(J30139) I=MAR-T74 07:38; Title: Author(s): Herb S. Hughes/HSH;
Distributiaon: /HSH MAP ; Sub-~Collections: NIC; Clerk: HS;

DVN 7-MAR-74 08:57
Sndmessage to Someone with Directories on More Than One Machine

I normally work as a user on SR-ARC, MNost days 1 log in to Office-1
atleast once, but usualy not more often.

Otcourse Jjournal items go to me automatically at SRI-ARC., If you want
to reach me with a sendmessage, however, The chances are I will get
it sooner if you address i to vanNouhuysdoffice—1.

30190

DVN 7-MAR-74 08:57 30180
Snduessage to Someone with Directories on Nore Than One Machline

(J30190) 1-MAR-T74 08:57; Title: Author(s): Dirk H. Van Nouhuys/DVN;
Distribution: /ECW SJM RJ; Sub-Collections: SRI-ARC DEIS; Clerk: DVN;

HSH 7—-MAR-74 089:08 30191

Abstract - TR 52 thru 55

[mplementiog Multi-Process Promitives in a Multiplexed Computer
System

Rappaport, Robert L.
November 1868 MAC-55
AeBeSeTeReACoTo

{n any computer system, primitive functions are needed to control
the actions of processes in the system, This thesis discusses a
set of six such process—control primitives which are sufficient to
solve many of the problems involved in parallel processing, as
well as in efficlent multiplexing of system resoruces among
the many processes in a system, In particular, the thesis documents
the work performed in implementing these primitives in a
particular computer system — the Multics system - which is being
developed at M.I.T.'s Project MAC,

During the course of work that went into the implementation of these
prinitives, design problems were encountered which caused the
overall rpgram design to go through two iterations before program
performance was deemed acceptable., The theslis discusses the way
the design of these programs evolved during the course of this work.

The Graphic Display as an Aid in the Monitoring of A Time.shared
Computer System

Grochow, Jerrold M.
Jctober 1968 MAC-TR-54 AD-689-468
AcBeSeTeReACaTo

The Graphical Display Monitoring System was developed as a medium
for dynamic observation of the state of a time-shared computer
system. Ihe system is integrated to create graphic displays,
dynaaically retrieve data from the Multics' Time-Sharing
System supervisor data bases, and allow on-line viewing of this
data via the graphic displays. On—-line and simulated
axperiments were performed with various members of the Project MAC
Multics staff to determine the most relevant data for dynamic
monitoring, the most meaningful display formats, and the most
desirable sampling rates., The particular relevance of using a
jraphic display as an output medium for the monitoring system is
noted.

A8 a guide to other designers, a generalized description of the
ariciples involved In the design of this on-line, dynamic

la

ib

ibl

4b

4n1

HSH 7-MNAR-74 09:09
Abstract - TR S2 thru 55

sonitoring device includes special mention of those areas of
particular hardware or software system dependence. Several as yet
isolved problems relating to time-sharing system monitoring,
including those of security and data base protection, are

discassed.

fhe Flow Graph Schemata Model of Parallel Computation
Slutz, Donald R.
September 1968 MAC-TR-53 AD-683-393
AeBaSeTeReAeCaTe

Flow Graph Schemata are introduced as uninterpreted models of
parallel algorithms, operating asynchronously and reflecting
physical properties inherent to any implementation. Three main
topics are investigated: (1) determinacy, (2) equivalence, and (3)
ejuivalence-preserving transformatlions on the control structure
of a Flow Graph Schemata, A model is determinate if the results
of & computation depend only on the initial values and not on any
timing coanstraints withing the model. Equivalence is undecidable in
general, out for a large class of determinate Flow Graph Schemata
which are in a maximum parallel form, equivalence is shown
decidable, In equivalence—~preserving transformations, sufficient
tested conditlions for equivalence are formulated that depend only on
the portion of the structure to be transformed.

Current and future computational systems are evaluated Iin terms of
results obtained for Flow Graph Schemata. A number of interesting
extensions of the work are suggested.,

Apsentee Computations in a Multiple—Access Computer System

Deitel, Harvey M.
August 1968 MAC-TR-52 AD-684-738

AeBaSaTeReACoTe

In maltiple~access computer systems, emphasis is placed upon
servicing serveral interactive users simultaneiously. However,
many computations do not require user interaction, and the wuser may
therefore want to run these computations "absentee" (or, user not
present), A mechansim is presented which provides for the handling
of absentee computations in a multiple—access computer system.

The desigo is intended to be implementation-indepent, Some novel
features of the system's design are! a user can switch computations
from interactive to absentee (and vice versa), the system can

HSH 7-MAR-74 09:09
Abstract - TR 52 thru S5

temporarily suspend and then continue absentee computations

to aid in maintaining an efficient
apsentee—-interactive workload on the system, system
administrative personnel can apportion system resources between
interactive and absentee computations in order to place emphasis
upon a particular mode during certain periods of operation, and the
systeam'’s nultiple-computation-stream facility which allows the user
to attach priorities to his absentee computations by placing

the computations in ether low-, standard-, or high-priority
streams.

30191

10

. HSH 7-MAR-74 09:09 30191
Abstract - TR 52 thru 55

(J30191) I=MAR-T74 09:09; Title: Author(s): Herb S. Hughes/HSH;
Distribution: /HSH MAP ; Sub—-Collections: NIC; Clerk: HS;

NJN 7-MAR-74 09:18 30192
New FIP codes

Jon and Ken——
The first version of the new ftp code spec is done. You will find it

in directory <BBN=NET> in both NLS and text form; the former lis
(bbn-net, ftpcodes,0:w) and the latter is <BBN-NET>FTPCODES.TXT.
Please go over the choice of code numbers and text fairly carefully,
to see what I have left out, where I was too ambiguous, or too

verbose. Ihanks, Nancy

. NJN 7-MAR-74 09:18 30192
New FTP codes

(J30192) 7-MAR-74 09:18; Title: Author(s): Nancy J. Neigus/NJIN;
Distribution: /JBP KTP; Sub-Collections: NIC; Clerk: NJN;

. RJC 7—-MAR-74 13:04 30193
Ffickler for week of 11 March - 15 March

oln case, you are interested, Frank Tomalni will be on travel the
week of 13 March (THE WHOLE WEEK)

. RJC 7-MAR-74 13:04 30193
Tickler for week of 11 March - 15 March

(mmd) L1 March - Monday 1
U330 nrs. Branch Chief's Meeting la
(mtJd) 12 darch - Tuesday 2

Dae@ Date — ISIS - Names Submitted for those interested in

attending General Electric IRED Review of Proposed FY-74 Program

to be held 21 March, 2a
(awd) 13 Narch - Wednesday 3

Dae Date - LaForge & Liuzzi - TWX - WWNCCS Standard Software

Impact 3a

ISF Confessions 0830 hrs. 3b

FY-75 DSF Submission = ISIS/D. Nelson — AF Form 111 w/AF Form 725

and RACLC Form 7...due in DORP NLT 15 Mar Jc

. Due Date = ALL DOCUMENTATION CLERKS - Emergency Change to AFM

12-50 3d
(nthd) 14 March - Thursday 4

0330 hrs. Branch Chief's Meeting 4a

Laboratory Acilvlty Reports due today: Bucciero must have them by

1000, [SM must have them by 1100, and DOT must have them by 1600. 4n
(nfd) 15 March - Friday S

FTimecards due today Sa

Bobbie: Travel figures due by noon. Sb

. RIC T-MAR-74 13:04
lickler for week of 11 March - 15 March

(JIVLIVS) T—=NAR-T4 13:04; Title: Author(s): Roberta J. Carrier/RJC;
Disteribution: /RADC; Sub—-Collections: NIC RADC; Clerk: RJC;

30183

JOVIAL Manual=-=Chapter U

‘ contains t & «, structured

DLS 8=MAR=TL 05:36

30194

DLS 8=MAR=TL 05:36

JOVIAL Manual-=Chapter 4

Chapter u
TFORMULAS
L.l Concept of tFormulas

chapter 3 discusses tvariables, the constructs standing for
elements of data whose values may be changed, ftFormulas are
the means for specifying the new values for tvariables.
tFormulas also generally supply values for any purpose==sucn
as comparisons and other selections of courses of action.
since ftconstants and ftvariables denote values they are also
tformulas.

.1 Any tnumeric:formula can be used as a
tpointer:formula, The details of the use of
tpointer:formulas are given in Section 7.8.
tValue:;formulas and tnumeric:value:formulas can occur
only in tloop:controls, The details of their use are
explained in section 5,8.

fConstant:Formula

A tconstant:formula is a tformula whose value can be
determined at compile time, once and for all. That
particular criterion is somewhat system dependent, In
places in this language specification where a tformula is
called for, it is only a matter of efficiency whether a
tconstant:formula is evaluated at compile time or execution
time, A tconstant:formula, however, can be used in places
where this manual calls explicitly for a tconstant. The
tconstant:formula must then be evaluated at the time it 1is
encountered in order properly to compile the
tprogram:declaration, The same consideration applies to a
place where a tnumber is required, but not as part of
another tsymbol such as a ftfloating:constant. When a
tconstant:formula is used to represent a numper, it must
evaluate to an appropriate integer value, In general, paris
of this document which require fconstants or tnumbers do not
reiterate this permission to use tconstant:formulas. A
fconstant:formula is not permitted as part of a tform:list,
which is, after all, a second level syntax equation applied
t0 that which is first the value of a fcharacter:formula.

tConditional:Formula
There is no data type that is intrinsically conditional;

however, any ftformula can be considered a
tconditional:formula in the appropriate setting. A

la

lal

lala

lalal

laz2

laza

DLS &6=MAR=T4 05:36 30154

JOVIAL Manual=-=Chapter L

tconditional:formula is the tformula following any of tne
three tprimitives «IF, ¢WHILE, «UNTIL (see sections 5.7 and
5.8 on tconditional:statements and tloop:statements) or tne
tdirective:key «!TRACE. A ftformula of any type can be used
in these positions. After all operations are performed as
called forth in the tformula =-bit or

byte extraction, shifting, concatenation, function
evaluation, comparisons, arithmetic, logical combination,
attribute quidance, etc.--the rightmost pbit of the result 1is
examined without further conversion. If that rightmost bit
is «0 the tconditional:formula represents the logical
predicate "false". If the rightmost bit is ¢l the
tconditional:formula represents the logical predicate
"true"., This can, of course, lead to machine dependencies
if tconditional:formulas contain any operands other than
unsigned integers except in tcomparisons., For example, a
negative integer as a tconditional:formula will lead to a
result on a one's complement machine opposite to the result
on a two's complement machine. The following table
indicates the action to take, depending on the value of tne
tconditional:formula lasa

Ll tCharacter:Formula lak

tCharacter:constant is explained in Section 2,6.1.
tCharacter:variable is explained in Section 3.4.2.

fCharacter:form is one of the two types of form, explained

in Section L4.17.2. A tfunction:call is the invocation of a

certain kind of tprocedure:declaration as explained in

section L.18. A ftcharacter:function:call is the invocation

of one of these special tprocedure:declarations having its
effective output parameter of character type. One of the
tintrinsic:function:calls (see Section 4.l1l9), the
tbyte:string:function:call, is a tcharacter:function:call. lala

.1 Any ftcharacter:formula represents a value having a
sizZe measured in bytes, For its use in tne
tbyte:string:function:call, the bytes of the
tcharacter:formula (any tcharacter:formula can be used
where indicated as the first tactual:input:parameter in
the metalinguistic equation) are numbered starting with
zero on the left, WwWith respect to this numbering, the
first tnumeric:formula (the seconad
tactualiinput:parameter) tells whicn byte of the statved
tcharacter:formula is to become the first (leftmost) byte
of the derived ftcharacter:formula. The second
tnumeric:formula, if present, tells how many byles
(following consecutively to the right) are to be included
in the derived tcharacter:formula. I1f the second

x DLS 8=MAR=T4 05:36 30194
JOVIAL Manual==Chapter Ui

. tnumeric:;formula is missing, just one byte is used. The
tnumeric:formulas must yield non-negative values. 0Only
the integer parts of these values are used--the fractions
are truncated, The sum of the two values must not exceed
the size ot the first tactual:input:parameter, If the
second tnumeric:formula (the third
tactual:input:parameter) has a value of zZero, then the
tbyte:string:function:call represents a character value
of zero size. Such a value as an operand in
concatenation leaves the other operand unchanged. It can
be appropriately padded in any context in wnich it mignt
occur, For instance, as a tconditional:formula it would
be padded on the left with a single bit of value zero,
which would thus become the rightmost bit of the
tconditional:formula, leading to the logical predicate
"false", As an operand of «AND, OR, etc.,, it would
become a string of bits of value zero to be combined witn

|
|
¢ALPHA = 'OA2CLE6GBI'; laya2 '
|

the bits of the other operand, Example: lajal
«BETA = BYTE (ALPHA,3,5); layas
«GAMMA = BETA <> 'CLE6G'; lajal
. .2 In the above sequence of code, «GAMMA becomes Zero

because «BETA does indeed contain the value «CLE6G. lapas

.3 the tampersand is the only operator that can apply to
tcharacter:formulas, It means concatenation, lajaé
tcharacter:formula & ftcharacter:formula laya?

is a tcharacter:formula. Its value is the concatenation

of the bytes (all the bytes) of its left operand on the

left with the pytes of its right operand on the rignt.

Its size is the sum of the sizes of its operands.

Exanple: layad

«4 A ftcharacter:formula can consist of concatenations.
The ordinary left-to-right rule applies-~the two leftmosi
operands are concatenated first. Then the result 1is
concatenated with the next tcharacter:formula to the
right, ordinarily it really makes no difference 1if
concatenation is done left=to-right or right-to-left, bput
in cases where the resultant size might exceead

s DLS &6=MAR=T74L 05:36 30194
JOVIAL Manual==Chapter U

‘ systen-dependent limits some system-dependent differences
might arise, Example: lauyayg
«(ALPHA & BETA) & (GAMMA & DELTA) layalo

«5 Notice the ftparentheses in the above example. A
parenthesized tcharacter:formula is also a
tcharacter:formula. The utility of the tparentheses is
to change the order of concatenation==operations within
tparentheses are performed before the value of the
parenthesized tformula is used in further operations, in
the above example «ALPHA is concatenated with ¢BETA,
GAMMA is concatenated with «DELTA and then these two
results are concatenated together, A tformula of any
type can be used as a tformula of any other type-=its
value is appropriately transformed. ftParentheses may, at
times, be significant in determining the type of
tformula, lajpall

«6 A thit:formula may be used in a context requiring a
fcharacteriformula. The most obvious such context is as
the first tactual:input:parameter to the

. tbyte:string:function:call. Assignment to a
tcharacter:variable does not make a tbit:formula into a
fcharacter:formula. For the use of a tbit:formula in
assigning a value to a fcharacter:variable see Section
5.,5.1. In concatenation of a tbiv:formula and a
tcharacteriformula the tbit:formula is stronger-=-the
tcharacter:formula is treated as a tbit:formula. In the
tbyte:string:function:call, a tbhit:formula as the first
tactual:input:parameter is padded on the left with
however many bits of value zero are needed to yield an
integral number of bytes in the value., The resulting bit
string is then considered a byte string and the
tnumeric:formulas are used to select the desires byte
string. For example, suppose that in a system in which
bytes consist of eight bits each, there is a
tbyte:string:function:call requiring ¢3 bytes starting
with byte «¢1 (the 2nd byte) of a tbhit:formula of ¢35
pits, The following table illustrates the example and
shows the resultant value of the
tbyte:string:function:call lajal?2

L5 1tTNumeric:Formula las

% DLS 8=MAR=T4 05:36 30194
JOVIAL Manual=~Chapter 4

‘ tNumeric:constant is explained in section 2.8.11.
tNumeric:variable is explained in section 3.5. A
tnuneric:function:call is the invocation of a
tprocedure:declaration (see Section 8,4.) having an implicit
output parameter of numeric type, Several of the
tintrinsic:function;:;calls are tnumeric:formulas (see Section
hel9). laba

«1 A tbit:formula in a context requiring a
tnuneric;:formula is treated as an unsigned integer value,
The string of bits comprising the value of the
tbit:formula is considered, without any change,
conversion or alteration, as the magnitude of a
non=negative integer value, If its size is too great for
the use to which it is being put, leading bits are
truncated to reduce its size to the maximum that can be
used for the arithmetic, conversion, indexing, pointing
or formatting., If its size is unknown at compile time 1t
is given a system~dependent default size (if there 1s any
possibility it could be larger) in which the rightmost
bits are right Jjustified and any extra leading bits at
execution time are zeros. This default size is most
likely to be the largest size of unsigned integer wWitn
which integer arithmetic may be done conveniently. If
. its default size is unknown, but its maximum possiblie
size is known to be less than the default size, the
maxXimum possible size is taken as the size of thne
unsigned integer in the numeric context, lasal

«2 Being in g position to be assigned to a

tnumeric:variable, being an tactual:input:parameter
corresponding to a numeric tformal:inputiparameter, or

being compared with a tnumeric:formula, does not impose

numeric assumptions on a tbit:formula. The contexts

requiring any formula to be treated as a tnumeric:formula

are as follows: lasaz

ae. AS an operand to participate in arithmetic. labaza

b. AS an operand to be converted to a numeric in

accordance
with attribute quidance, laba2p
Cce. AS an tindex:component. lasazce

¥ DLS 8=MAR=T74 05:36 30194
JOVIAL Manual=~Chapter L

. d, As a tpointer:formula, labaza

e. AS an operand to be encoded for "output" in
accordance with a tnumeric:format. labaze

Le6 Arithmetic laé

tArithmeticioperators are used to specify arithmetic
calculation in determining numeric values. The meanings ol

the tarithmetic:ioperators are as follows: lada

-+ Add. laéal

- Subtract, laéaz

“# Multiply. laéa3

. «/ Divide. laday
«\ Determine the residue (modulo). laéab

%% Ralse to the power of (eXponentiation). lagae

«1 The syntax equations permit long sequences of

tplus:minus and tminus:signs before an operand. The

effect of such a sequence can easily be determinea by

counting the tminus:signs and ignoring the Tplus:sSigns.

If there is an even number of tminus:signs, the entire

seguence is equivalent to one tplus:sign. If .there is an

odd number of tminus:signs, the entire sequence 1is

equivalent to one tminus:sign. laéa?

«2 The tminus:sign as a unary operator means to negate
(take the additive inverse of) the following
tnumeric:formula, The tplusisign can be used as a unary
operator, but it has no effect. Multiplication must be
indicated by means of an tasterisk; there is no operation
specified by merely placing tformulas next to one

¥ DLS 8=MAR-TL 05:36 30194
JOVIAL Manual=-=Chapter L

. another, Since there is no provision for vertical
spacing, exponentiation must be shown by means of tne
double tasterisk, The meanings of addition, subtraction,
multiplication, division and exponentiation are well
Known, but it is well to emphasize certain points. The
result of division by a zero value is undefined. Tne
result of exponentiation of a negative base by a
non-integer exponent is undefined. laéas

«3 Determination of a residue, ¢x\y, means finding the
value of the archetypal number to which X is congruent,
modulo «y. 1In the sence that ex#*y is called «"X times
«y", let us refer to ¢x\y as "X modulo ¢y", For a given
value of ¢y, ¢X\y is a sawtooth function of x, For
positive values of ¢y, «0 <= X\y < y, if €0 <= X < y, X\y
= X; otherwise X\y = X = n*y, where en is an integer
value (positive or negative). For negative values of ¢y,
let ¢y = =u; then ¢~=u < x\y <= 0, if ¢=u < x <= 0, X\y =
X; otherwise ¢X\y = X = n#u, where ¢n is a positive or
negative integer value. For ¢y = 0, X\y is undefined.
These relationships are illustrated in the grapnhs of

Figure L4=l. EXxamples: la6a9
. .4 The order of evaluation of a tnumeric:formula is leftu
to right, except that an operator of higher precedence

makes use of an operand lying between it and an operator
of lower precedence, Enclosing a tformula in

tparentheses raises the precedence of all operators

within the tparentheses above that of all operators

outside the tparentheses, Within one parenthesized or
unparenthesized group, exponentiation has the highest

precedence of arithmetic operations;multiplication,

division, and determination of residues have the next

lower precedence; and addition and subtraction (or

negation) have the lowest arithmetic precedence. The

value of «54/6/3 is «3, not «27, because of the

left=to-right rule., Precedence and evaluation order are
discussed in considerable detail with respect to all

possible operations (including arithmetic) in Section

4,15, lasalo

L.7 Default Scaling 1a7

|
The type (integer, fixed, or floating) of a value denoted by
a tnumeric:formula, and its scaling, depend on the

DLS 8=MAR=T7L 05:36
JOVIAL Manual==Chapter L

attributes of its constituent tnumeric:formulas and tne
arithmetic involved, The left-to=-right rule and the
precedence rules determine the order in which the values of
two operands are combined--to form a single value to D€ an
operand in another combination==or for assignment or other
uses, The resultant value has scaling and type attributes
to be taken into account with respect to further processing.

.1 Floating values in some systems have only method of
representation, with a given number of bits in the
significand and a given number in the exrad. Other
systems may provide forms of representation with extra
precision (more bits in the significand), or exira range
(more bits in the exrad), or both,

.2 1If both operands for an arithmetic operation are
floating values, the operation is carried out in floating
form and the result is a floating value. The precision
and range for the operation and of the result are the
maximums, respectively, of the precisicns and ranges of
the two operands,

.3 If one operand is a floating value and the otner is
fixed or an integer, the operation is carried out in
floating form and the result is a floating value. Tne
precision and range for the operation and of the resultv
are those of the floating operand. The fixed or integer
operand must, of course, be converted to floating form
bpefore the operation.

.I Several following sections discuss the scaling in
arithmetic with values that are not floating. We use
codes consisting of one or two characters with the
following meanings:

.5 The number of fraction bits of integers is undefined,
and disregarded in the scaling formulas below. The
number of integer bits of integers is the same as tne
size, The number of integer bits of fixed values is the
size minus the number of fraction bits, (Fraction bpbits
or integer bits, but certainly not both, can be less than
zero in number.) The sizes and fraction bits of items
are determined by their tdeclarations, The sizes and
fraction bits of tconstants are implicit in their values

30194

la7a

la7al

la7az2

la7a3

la7alu

¢ DLS 8=MAR=T7L 05:36 30154
JOVIAL Manual==Chapter L

‘ (no leading zeros are included). For certain ftvariables,
notably tletter:control:variables, there are
system~-dependent sizes, Probably, the size of
tletter:control:variables is the size the system uses for
addresses, The sizes of tintrinsic:function:calls are
stated in Section L4.l9. The sizes and fraction bits of
other tfunction:calls match the sizes and fraction bius
of their implicit output parameters. The sizes of tne
values represented by ftbit:formulas must often be
computed dynamically during execution of a program. 7Thls
is too great a burden to impose, however, in the general
case of scaling tnumeric:formulas. Therefore, the sizes
of tbit;formulas used as tnumeric:formulas are determined
as stated in Section L.5.1l. la'7ab

.6 If both operands for an aritnmetic operation are
integer values, the result is an integer (possible
exception for exponentiation) with the following scaling: la'faé

a. For addition and subtraction: la7a6a

. ¢IR €= minimum (¢Z, €1 + maximum («Il, «I2) la7aéal
b. For multiplication: la7a6b

«IR = minimum (eZ, «Il + 12) laTaéol

c., For division: laT7aec

«IR = IN laT7aeécl

d, For determination of residues: la7aéd

«IR = minimum («IN, €IM) laT7aedl

e. For exponentiation, only if the exponent is a
positive tinteger:constant laTace

* DLS 8=MAR=T4 05:36 3019k
JOVIAL Manual==Chapter L

. «IR = minimum (eZ, ¢VE % IB) la7aéel

.7 For addition and subtraction of an integer value and

a fixed value or of two fixed values: laT7a7
a, ¢IR €= 1 + maximum (eIl, I2) la7a7a
b. ¢AR = minimum («Al, ¢A2) la7a7b

If «IR + AR > Z, convert both operands to floating

values, carry out the operation in floating form, and

keep the result as a floating value, The precision of

the floating form is system dependent, la7af7c

«8 For multiplication of an integer value and a fixed

value or of two fixed values: la7ab
a, ¢IR = Il + I2 laT7aba
' D. *AR = Al + A2 la7aéo

¢, If ¢IR + AR » Z, convert to floating mode as 1in
Section L.T7.7c. laTaéce

.9 For division of an integer numerator by a fixed

denominator: la7a9
a. IR = IN +AD la7a9a
D, «AR 3 2 # ID # AD = 1 la7agp

cs If #IR + AR > Z, convert to floating mode &s in
Section k.7.7cs la7a9c

.10 For division of a fixed numerator by an integer
denominator: 1a7al0

10

DLS 8=MAR=TL 05:36 30194

JOVIAL Manual=-=Chapter U

. a, ¢IR = IN la7alOa
be. *AR = ID #+ AN la'7alob

c, If «IR + AR > Z, convert to floating mode as in

section L.7.7c. la7aloc
.11 For division of two fixed values: la7all
a, ¢IR = IN +AD la7alla
be €¢AR = IR + AN la7allp

Cce If €IR + AR > Z, convert to floating mode as in
Section L.7.7c. la7allc

.12 For determination of the residue of an integer

numerator by a fixed modulus: la7al2 |

® |
|

a. ¢IR = minimum (¢IN, «IM) la7al2a I

|

b, ¢AR = AM la7al2b |

.13 For determination of the residue of a fixed
numerator by a fixed or integer modulus: la7als

a, ¢IR = minimum («IN, ¢IM) la7al3a

b. *«AR = AN la7al3p

.14 For exponentiation by any exponent not an integer
constant value, convert to floating mode as in Secticn
h-7n7C- la7all

3 DLS 6=MAR=T4 05:36 30194
JOVIAL Manual==Chapter 4

' .15 For exponentiation of a fixed base by a positive
tinteger:constant la7alb
a., ¢IR = VE # IB la7alba
De *AR = VE # AB lafalbo

ce If €IR # AR > Z, convert to floating mode as in
Section L.T7.7c. la7albe

.16 For exponentiation of an integer base by a negative
integer constant value: la7ale

as, ¢IR =1 laT7aléa

be ¢©AR = = 2 % VE % IB = 1 (Note that ¢VE is

negative.) la7alép
. ce If «IR + AR > Z, convert to floating mode as in
Section L.T7«TCe la7aléc

.17 For exponentiation of a fixed base by a negative
integer constant value: la7al’

a, ¢IR =1 - VE % AB la7alTa

be «®AR = = VE % (2 # IB + AB) = 1 (Note that «Vbk 1is
negative,) la7al7p

c. If ¢IR + AR > Z, convert to floating mode as in
Section L.7.7cCs la7alTe

4.8 Uniform Rules of Calculation lad

The scaling rules for tformulas used in indexing and
pointing are the same as the rules for all tformulas. Wnen

12

DLS 8=MAR=T4L 05:36 30154

JOVIAL Manual==Chapter i

the value is finally set up to be used as an address (pbase
or increment) it is as if it were being assigned to an
tinteger:variable of the system=dependent size used for

addresses., Certain arithmetic operations are carried out

without explicit direction from the programmer--operations

involved with such activities as calculation of addresses

and the incrementing and testing of fcontrol:variables, lada

«1 All intrinsic numeric quantities have

system=dependent sizes. All calculations carried outv in
response to implicit directions are scaled in accoraance

with the default scaling rules applied to calculations
explicitly directed, System=-dependent documwntation may

make specific exceptions to this rule. lasal

Attripute Guidance lag

A tdescription:attripbute is a numeric titem:description (one
peginning with ¢F, «8, or «U or the tname of an item whose
tdeclaration contains a numeric titemj;description. In any

case its meaning is the same whether the titem:description

is cited directly, or indirectly through the titem:iname. A
character titem:description is not used with

tattripute:association since it woula provide only a

fraction of the power available in the

tbyte:string:function:call, laga

.1 The effect of applying tattribute:association to a
tformula is to first consider the tformula as a
tbiti;formula and then to impose the
tdescription:attribute on this string of bits, causing 1t
to pbe treated as a tnumeric:formula of the stated lype,
size and precision. (tStatus:constants in the
titem:;description are of no effect with regard to tne
type, size, and precision imposed on the tformula.) 1If
the next use of this tnumeric:formula is as a numerator
(for division or residue determination), its maximun
permitted size is increased from ¢Z to «Y (see Section
4.7.4). Usually tparentheses are required to delimit tne
t+formula to which ftattribute:association is applied, but
if the tformula is a tfunction:call, a ftvariable without
an explicit tpointer:formula, or a ftconstant, the
enclosing ftparentheses are not required, Examples: lagal

13

¢ DLS 8=MAR=74 05:36 3019k
JOVIAL Manual==Chapter L

. «(AA + BB) @@ [S,R 17] lagala
«CC @@ (U, SIZE (cC)/ iag9alop
«ALT (P1l) @e [F] lagalc
«7 @& [U,3] iagala
«(DD [I,J,K] @ PNTR) @& (U] lagale
«EE (X,Y¥,Z] @ (FF @e [U]) lagals

.2 In the first example, the rightmost 18 of the bits
representing the sum of «AA and «BB are treated as a
signed, rounded integer, 17 bits in size, Then, the bits
of «0C are treated as an unsigned, fixed value of default
size with all ¢ CC's magnitude bits (however, many there
are) after the point, Then the bits representing tne
value representing the currently active entrance of

. procedure «Pl are treated as a floating value, Then the
bits (three in this case) representing the fconstant 7
are treated as an unsigned, fixed value of adefault size
with three bits after the point (padded with enough
integer pits of value zero to the default size). 1In the
next=to-last example, after the particular instance of
«DD is found it is treated as an unsigned integer of
default size. In the last example, it is «FF that is
first treated as an unsigned integer of default siZe and
then used as a pointer to find an instance of ¢EE. laga2

.3 ftEvaluation:control can be applied, in exactly tne

same manner as tattribute:association, to any tformula.

The effect is somewhat different, however. The value of

the tformula to which tevaluation:control is applied is
converted to the numeric configuration required by the
tdescription:attiribute, Examples: laga3s

«(AA # BB) & [5 30,15] ladasa

«BYTE(CITY[15],J)8(F] laga3p

DLS 8=MAR=T4 05:36 301514

JOVIAL Manual==-Chapter i

‘ . *#AA and ¢BB are multiplied, using the normal scaling
rules, and then the value is converted to the form of a
signed, fixed value of size 30 (not counting the sign)
with 15 pits after the point., It is, of course,
permissible for the compiler to optimize the operation
and avoid, for example, converting «AA and «BB each to
floating form and the result back from floating form. In
the second example, one byte of character data is in a
position calling for a numeric value. S0, according to
the rules, the character datum is considered first a .
tbit:formula, then an unsigned integer, and then it is
converted Lo floating form, lagal

be.l0 Scaling under tEvaluation:Control 1al0

tEvaluation:control, unlike tattripbute:association, can be
applied to a binary tarithmetic:operator as shown at the top
of the pox in Section 4.9 The effect is to require that tine
operation be performed so that the result comes out in the =
form prescrived by the tdescription:attrioute, The r
precedence rules for ftarithmetic:operators are unchanged

when they are followed by tevaluation:control, lalOa

. .1l If the prescripbed form of the result is floating,

both operands are converted to floating form of the .
prescribed precision pefore the operation, and the |
operation is then carried out in the prescriped mode, |
The compiler may, of course, do the operation in a more |
efficient manner if, on the basis of the known attripuies '
of the operands, no accuracy is lost therebpy. laloal |

I

|

«2 For non-floating addition and subtraction, the ‘
maximum allowable size is «Z., If rounding is not |
prescribed, both operands are rescaled with at least as |
many integer bits as «IS and at least as many fraction i
bits as «AS., If rounding is prescribed and «IS + AS = 4,

both operands are rounded to «AS before the operation. |
If rounding is prescribed and «IS + AS < Z, both operanas |
are rescaled with at least «AS + 1 fraction bits, and

rounding is done after the operation., Rescaling of

operands before the operation includes the conversion of

floating operands to fixed form. laloaz

.3 For non=floating multiplication, the scaling must pe

£ DLS 8=MAR=T7L 05:36
JOVIAL Manual==Chapter U

. done after the operation, If both operands are floating,
the multiplication is done in floating form and the
result is converted to the prescribed scaling. If one
operand is floating, it is converted to fixed in
accordance with the following formulas (operand 2 is the
one converted from floating to fixed) before the

multiplication:
a, ¢I2 = IS = Il
De *A2 = AS = A2

.4 In multiplication, if «¢Il + I2 (for integers) or if
«Il + I2 + AL + A2 (for fixed numbers) is not greater
than «Z, it may be that the system can provide a less
expensive multiplication. In any casSe, the prescriped
size, «IS (or «IS + AS must usually be no greater than
«Z., Depending on the system, however, if the next use of
the product is to be treated as a bit string or as tne
numerator in division or determining a residue, the
maXimum permitted size may be Y,

. «5 If even one operand is floating, division must pe
carried out in floating form and the quotient then
converted in accordance with the prescribed scaling. For
fixed or integer operands, divison is carried out with
the prescribed scaling, The programmer guarantees tnat
no machine divide error will occur,

.6 In determining a residue, floating operands are
converted to the prescribed Scaling before the operation.
The operation is carried out with the prescribed scaling.
If a division is involved, the programmer guarantees tnat
no machine divide error will occur.

.7 For non=floating exponentiation, the operation in
accordance with the default rules and then rescaled as
prescribed,

4,11 Calculating, Rounding, Packing, Storing, Retrieving

16

30194

laloa3

l1alOa3a

lalOasb

lalOay

laloabs

lalOaé

laloa’

lall

DLS 8=MAR=T7L 05:36

JOVIAL Manual-=Chapter L

The discussions of scaling above are concerned with
assumptions of what bits are worth saving in performing
numeric calculations, If «IS + AS or «IR + AR turn out less
than «Z, there is no requirement for the compiler to see 0
it that extra bits are scraped off, except as specifically
explained below, before an intermediate result is usea in
further calculation, Most algorithms are insenstive to the
presence of noise bits. In the case of an algorithm that 1s
sensitive to these pbits, the programmer must be
careful--perhaps using shorter statements-=-to insure
cleaning up these bits, 1If a calculation produces extira
bits on the left--beware~--the programmer is responsible, lalla

.1 wWhen a numeric value is rounded in accordance with

the appearance of an «R in an ftitem:description or in a
tdescription:attribute it means that, in terms of

absolute values, a «1 is added to the leftmost noise bit
(perhaps causing a carry into the rightmost signifcant

bit) and then all the noise bits are replaced with oits

of value zero. lallal

.2 "significant pbits" are the bits included in the size
of fixed and integer tvariables and ftformulas included in
the significand of floating ftvariables and tformulas. |
"Noise bits" are any bits to the right of the rightmost
significant bit, representing a value less in absolute J
value than a 1 bit as the rightmost significant bitv.
Noise bits ordinarily arise during the execution of
arithmetic operations=--which often produce bits of no
significance according to the scaling rules or a
tdescriptioniattribute, lallaz
|
|
i

«3 If rounding is not specified, it does not mean to

take any measures to suppress noise bits. When storing a
rounded or unrounded value, the compiler protects items

adjacent to the stored item, in adjacent woras or 1in

adjacent bits in the same word (assuming the
tpacking:specification does not deny sucnh care). lalla3

«i When retrieving a numeric value from storage, tne
compiler avoids retrieving bits from adjacent items, in
adjacent words or in adJjacent bits in the same word. The
compiler is concerned about avoiding the retrieval of
noise pits or bits to the left in the same word as the
retrieved item if and only if those bits are in space

DLS 8=MAR=T4 05:36 30194

JOVIAL Manual=--Chapter L

‘ allocated to other items, Among items with positvioning l

information, dense packed items are, by definition,

adjacent to other data and medium packed items are alone

in the word part defined by the medium packing, but

adjacent word parts are occupied., For compiled packed |

data, the compiler knows what is adjacent. The density |

may be less than the programmer specifies in the

tdeclaration. 1allak I
|
|
|
|
|
|
1
|
|
|

.5 Although specific storage and retrieval methods are

not specified here, the compiler avoids narrow storing

followed by broad retrieval., If "garpage" is retrieved,

it is only because the programmer causes a fvariable 10

be used pefore it is set, sets the tvariable using

legitimate but excess bits developed during a

calculation, or sets something else "overliaid" with the
ftvariable, lallas

k.12 tBitv:iFormula lalz

A tbit:formula is the representation of a string of bits,
without regard to any meaning it might have as a numerac
. value or as a string of bytes, Thus, in a context requiring
a tbit:;formula, a tnumeric:formula or a tcharacter:formula
may be used, and the bit string it represents is utilized
without regard to its numeric or character meaning. lalza

.1 tPattern:constant is explained in Section 2.08.9.
tENtry:variable is explained in Section 3.2.1. tBitiforn

is one of the two types of tform explained in Section

1,17. tFunctionicalls invoking procedures declarea by

the programmer cannot be tbit:formulas since there 18 no

way to specify "bit" as a type for the implicit output
paraneter. Three of the tintrinsic:function:calls,

however, are tbit:formulas. These three are the
t+shift:functionicall, the tsignea:function:call, ana the
tbitistring:function:call. lalz2al

.2 Any tformula, even a tcharacter:formula, represents a
value consisting of a string of bits. For its use in tne
tbitsstring:function:icall, the bits of any tformula used
as the first tactual:input:parameter are numpered,
starting with zero on the left. The leftmost bit of the
leftmost byte of a tcharacter:formula is bit zero. The

18

DLS 8=MAR=TL4 053136 3019k

JOVIAL Manual==Chapter I

. sign bit of signed («S) values is pit zero and the
leftmost magnitude bit is bit one. The leftmost
magnitude bit of unsigned («U) values is bit zero. The
leftmost bit of floating values («F) is bit zero, but 1t
is system depepdent whether this is the sign of tne
significand, the sign of the exrad, a magnitude bit of
the significand, or a magnitude pbit of the exrad. with
respect to this numbering of the bits of the first
factual:input:parameter, the second
factual:input:parameter tells which bit of the stated
tformula is to become the first (leftmost) pit of tne
derived tbit:formula, The third tactual:input:paranmeter,
if it is present, tells how many bits (following
consecutively to the right) are to be included in the
derived tbit:formula, If the third
tactual:input:parameter is missing, Jjust one bit is used.
The tnumeric:formulas must yield non=-negative values,
only the integer parts of these values are used--the
fractions are truncated. The sum of the two values must
not exceed the number of bits represented by the first
tactual:input:parameter., If the third
tactual:input:parameter has a value of zero, then tne
tbit:string:function:call represents a bit string of zero
size, Such a value as an operand in concatenation leaves
the other operand unchanged, lalzaz

.3 The tshift:function:call yields a ftbit:formula

derived from the first factual:input:parameter by

shifting it left or right in accordance with the value of

the second tactual:input:parameter, The specifics of the
shifting are as follows: lalza3

a. The string of bits representing the value of the
cited tpit:formula is considered to be framed by a |
window whose width is the size of the tpit:formula. lal2a3a

be. There are infinite strings of zero bits attacned
to the left and rignht sides of tne tbit:formula and
hidden by the window frame, lal2a3p

¢. The tnumeric:formula is evaluated to an integer,
truncated if necessary. lal2aic

d. The infinite string of bits consisting of those o

DLS 8=MAR=T4 05:36 30154
JOVIAL Manual-=Chapter i

. the left behind the window frame, those within the
window, and those to the right behind the window frane
is shifted left or right with respect to the window oy
the number of bits indicated by the value of the
tnumeric:formula, The shift is to the left past the
window if the tnumeric:formula is positive., The shift
is to the right past the window if the
tnumeric:formula is negative. lalz2a3a

e, The resulting tbit:formula is the same size as lne
original tbit:formula and has the value now appearing
in the window, lal2aje

.4 The following table gives some sample results: lal2al

.5 The tsigned:function:call is a tbit:formula one pit

in size. 1Its value depends only on the type, not the

value, of its tactual:inputiparameter. The value C©f the
tsigned:functionicall is «l1 if its

tactual:input:parameter is floating or signed; otherwise

the value is zero. The sign of a tnumeric:formula

depends on many factors, as follows: lal2ab

a. tTAttribute:association or tevaluationicontrold
overrides all other considerations; otherwise lal2aba

be A thbit:formula treateda as a tnumeric:formula is
unsigned. lal2asp

cs ¢SIGNED «(tfunctionicalle) depends on the
attributes of the implicit output parameter for an
intrinsic or a programmed function, lal2asce

d. If a tformula is floating, none of the below rules
relating to arithmetic apply. lal2abd

e, Any arithmetic operations, other than subtraction,
involving unsigned operands leave the tformula
unsigned. lal2abe

20

DLS 6=MAR=T74 05336

JOVIAL Manual==Chapter 4

£, Exponentiation by an even tconstant yields an
unsigned tformula.

g. Determining a residue with an unsigned modulus
yields an unsigned tformula.

h. In all other cases, the formula is tsigned.

L.,13 1tComparisons and tChain:Comparison

A tcomparison is a tbit:formula one bit in size. A
tcompariscn consists of a left operand, a
trelationali:operator, and a right operand. It has the value
«1 if the left operand stands in the relationsnip stated oy
the trelational:operator with respect to the right operand.
Otherwise, the tcomparison has the value zero, The
trelational:operators, with their meanings, are given in the
boXx above. If both operands are tnumeric:formulas, the
truth or falsity of the tcomparison is based on the numeric
value resulting from the subtraction of one operand from the
other, In performing this subtraction all the rules that
apply to arithmetic between tnumeric:formulas are in force.

.1 If one operand is a tbit:formula, the other operand
becomes a ftbit:formula (if it is not to begin with);
i.e., the bits representing the value are merely
considered as a string of ones and zeros, without furthner
meaning. The truth or falsity of the tcomparison tnen 1s
based on sSubtracting one tobit:formula from the other=-now
considering each to be an unsigned integer, For the
purpose of tcomparison of tbit:formulas, subtractions of
one unsigned integer from another can accommodate
operands of any size, If one tbit:formula is shorter
than the other, the shorter is considered to be eXtended
or padded on the left with bits of value zero before the
subtraction, There is no prescriped method for tne
compiler to implement the ftcomparison. AS long as tne
results are the same, the arithmetic can be done by paris
or backwards or forwards, or the bits can be compared one
py one until the value of the tcomparison is determined.

.2 1If one operand of a tcomparison is a tnumeric:formula

3019k

lal2abf

lal2abg

lal2abn

lal3

lal3a

lal3zal

DLS 8~=MAR=T7L Q5:36 30194

JOVIAL Manual=~=Chapter L

and the other is a ftcharacter:formula, they both becone
tbit:formulas for the purpose of the tcomparison, lalj3az2

«3 If both operands of a tcomparison are

tcharacter:formulas, the truth or falsity of the

tcomparison is determined by considering each operand Lo

be an unsigned integer and then subtracting one from the

other, as in comparing tbit:formulas. However, if one
tcharacter:formula consists of fewer bytes than the

other, the shorter is padded on the right with sSpace

characters to equalize the sizes before the subtraction. lal3a3

.4 A tchain:comparison is a tbit:formula having a size

of one bit and a value of zZero or l. Each

tchain:comparison is nearly equivalent to the logical

product of two or more ftcomparisons. Consider the

following logical product, where each ¢R is a
trelational:operator and each «F is a fTformula (see

Section L.lhk.3 for meaning of «AND): lal3al

¢F R F ANDF R F AND see F R F lal3alua

.5 The effect is nearly the same as the
tchain:comparison lal3as

€F RIVEI PR PER eels B R SE lal3aba

.6 It is nearly the same because in the form with tne
explicit «ANDs, «F to «F each appear twice. If these
t+formulas contain ftfunction:calls requiring an explicit
execution for each explicit appearance, such
t+function:calls would be executed twice, while in the
tchain:comparison they would be executed just once. ¢F
to «F , if they are numeric, may require different
scalings (or worse) in their two tcomparisons.
Nevertheless, they are each evaluated just once. If «F
is a tfixed:formula, it may be seen that not all its
precision is needed for the subtracting in either of its
two fcomparisons, Enough precision must be saved,
nowever, for its more precise ftcomparison. It may bpe
that in one of its tcomparisons it must be converted Lo
floating==or perhaps it will be treated as a

22

DLS 8-MAR=Tu4 05:36

JOVIAL Manual==~Chapter L

tbit:formula, Then all the precision called for by uthe
scaling rules must be saved.

«7 A tchain:comparison requires some fformulas to pe
used twice in effecting tcomparisons. The scaling or
interpretation of a tformula needed in effecting one
tcomparison does not influence the scaling or
interpretation of that same tformula in effecting its
second fcomparison, Consider, for example:

3019k

lal3aé

lal3a7

«BIT (ALPHA,I,J) < GAMMA (BETA) < EPSILON + DELTA lal3a7a

.86 In the above tchain:comparison, the first of the
three tformulas being compared is clearly a ftbit:formula
and the third is clearly a ftnumeric:formula. Let us
suppose the middle tformula is a ftfunction:icall that
returns the factorial of its tactual:input:i:paraneter, a
tnumericiformula, The output of «GAMMA 1s treated as a
tbit:formula for tcomparison with the pit string from
«ALPHA and as a tnumeric:formula for tcomparison with tne
sum of «EPSILON and «DELTA.

L.1lk Operations on tBit:Formulas

tBit:formulas represent strings of bits, each of value zero
or «l1, ftComparisons and fchain:comparisons are
tbit:formulas, in these cases only one bit long, with values
of zero or «1, tBit:formulas can be combined or transiormed
in various ways as indicated below,

«1 When «NOT is applied to a ftbit:formula it produces a
derived tbit:formula in which each ¢l in the value of tne
stated tbit:formula is replaced with zero and each zero
is replaced with «l. The derived ftobit:formula is the
same size as the stated tbit:formula.

.2 Concatenation of two tbit:formulas, indicated by an
tampersand between the two tbit:formulas, yields a
tbit:formula whose size is the sum of the sizes of the
two component tbit:formulas. The value of the resultant
tbitsformula is the bits of the toit:formula on the rignt

23

lal3ad

lallh

lalua

lalhal

DLS 8=MAR=T74 05:36

JOVIAL Manual==Chapter L

appended to the right of the bits of the topit:formula on
the left, Examples:

«3 A tlogical:operator applies to all the pairs of the
bits of the two tformulas to wnich it is applied as an
infix operator. The two bit strings are right Jjustified
and matched bit by bit from right to left, Whichever
tformula is a shorter value is padded out with zero bits
to match the size of the longer value, The size of uthis
longer value is the size of the resulting tbit:formula.
In the table below, «p and «q represent matched bits,
each from a tformula to which tlogicalioperators are
applied., For all values of «p and «q, the correspondaing
values are shown which result from application of tne
operators. («NOT is included in the table, but it only
applies to «p and is not called a flogical:operator in
this manual.)

.i We should take particular note of the way the
tbit:formula rules affect operations with
fcharacter:formulas

a. When two tcharacter:formulas are combined usSing a
tlogical:operator, they each become ftbit:i:formulas
before the operation. If one is shorter than the
other it is padded on the left with zero bits before
the operation,

b. When comparing a ftcharacter:iormula with any
formula not a ftcharacter:formula, they each bpbecome
tbit:formulas before the operation, are right
justified, and are compared as unsigned integers.

c. When assigning a tcharacter:formula to any
tvariable not a tcharacter:variable, it first pecomes
a tbit:formula and is assigned as a bit string, right
justified and truncated on the left or padded on thne
left with zeros if necessary.

.5 A tbit:formula in ftparentheses is also a
tbit:formula. The tparentheses do not change the value

of the enclosed tbit:formyla, but they may be necessary

24

30194

lalyaz

lalja3

laljalu

lalbhaka

lallhalp

lalhaic

k DLS 8=MAR=T74 053136 3015k
JOVIAL Manual==Chapter)

‘ to override the precedence of operations, Precedence 1s
discussed in the next section. lalyab
k.15 Precedence of Operations lals

Precedence applies mainly in determining the values

represented by tformulas, It also applies in assignment of

values, however, and is treated in detail at this point even

though assignment is discussed in later chapters, In

general, operations are performed from left to right, except

as overridden by precedence rules, grouping by means of
tparentheses, and the need to determine a value before a

tvariable can be set (or reset). lalbsa

«1 Basic exceptions to the left to right rule: lalsal

a, The value of a tformula must be determined ocefore
that value can be assigned to a tvariable. Thereifore:

lalbala

(1) The tformula is evaluated first. lalbalal
(2) Any tindex needed to select the tvariable is
evaluated next, lalbala?2
(3) Any tpointer:formula needed to locate tlhe
tvariable is evaluated next. lalbala3
(4) The tvariable is assigned its new value. lalbalal

be In an tassignment:statement all the tformulas to

the right of the tassignment:i:operator are evaluated

from left to right. Then all the tvariables to tne

left of the tassignment:operator are set from leit to

right, the tindex and tpointer:formula for each peing

determined Just before it is set. lalbalb

c. In an texchange:statement the tindex and
tpointer:formula on the left are evaluated, the tindex

25

DLS 8~MAR=TL 05:36 30154

JOVIAL Manual==-Chapter ki

and ftpointer:formula on the right are evaluated, and
then the values of the tvariables are interchanged. lalbalc

d. If a binary operation is indicatea immediately
preceding a unary operation, the unary operation is
completed first. lalbalad

e, Indexing and pointing can only be appliea to
tnamed:variables, not to tformulas and not to
t+functional:variables, The ftindex and the
tpointer:formula applied to a tvariable must both bpe
evaluated before the tvariable is evaluated. The
tindex precedes the tpointer:formula. First, the
tindex:components are evaluated from left to right.
Then the tpointer:formula is evaluated.
t+Index:brackets may be thought of as being replaced by
tparentheses and an indexing operator before the
tleft:parenthesis, If the tindex:component tformulas
and the tpointer:formula contain operations these
operations will have higher precedence than indexing
and pointing because of the tparentheses, lalbale

.2 With due regard to all the above eXceptions, consider
the following list, The basic precedence of each
operation is given in this list: lalbaz

.3 +tParentheses may be considered to raise the
precedence order of enclosed operations. The preceaence
order of every operation is effectively raised by 20 for
every pair of tparentheses that encloses it, The
operands of a tchainicomparison include the results of
operations with precedence order greatver than that of the
trelational:operators forming the cnain, A «NOT before
the leftmost operand of a fchain:comparison is applied to
the result of the entire chain, not merely to the first
tcomparison of the chain. The chain is broken by
operations of lower precedence, but not by the impliead
«AND due to the chaining. An operand and a
trelational:operator are part of an apparent
tchain:comparison unless the meaning is changed by
tparentheses, Consider, for example, three unsigned
integers with the following values (in binary): lalba3s

«Bl 0l lalba3a

26

DLS 8=-MAR=T4 053136 30154

JOVIAL Manual=-=Chapter U

«B2 10 lalba3b
«B3 11 lalba3c

.4 The following two tformulas then have the indicated

values: lalsal
&B1 < BRESK: B3 2 lalbalja
«Bl < (B2 < B3) 0 lalbalp

.5 The diagram and flow chart of Figure j=-2 illustrate

left to right evaluation as modified by precedence.

tParentheses are not shown in the diagram, but precedence

value for each operation is determined in accordance witln

the above list, as modified by the presence of

tparentheses (or tindex brackets). lalsab

.6 Figure 4=3 summarizes all conversions of data fron
one type to another possible in JOVIAL 73. Formulas or
variables represented by «XYZ, and of the five possible
types as indicated at the top of the figure, are
converted as indicated in the pody of the figure unaer
the influence of the operations and the types of the
other operand («ABC) as shown at the left, To determine
the conversion applying to both operands of a given
operation, first consider one and then the other as «XYZ.
whenever an operand of bit type is converted to integer
("Int"), it is to unsigned integer., "Scale" in the
figure means to consult the scaling rules for the detalls
of arithmetic scaling, In some cases, a series of
conversions (at least conceptually) is required. These
are indicated by references to the following notes: lalbaé

Note 1, In arithmetic operations with floating and
character operands, the character string becomes a Ditl
string, then an unsigned integer, then the integer 1s
floated. lalbaéa

Note 2. In arithmetic operations with floating and

27

3 DLS &=MAR=TL 05:36 30194
JOVIAL Manual==Chapter L

‘ bit operands, the bit string becomes an unsigned
integer, which is then floated. lalbaéb

Note 3., In arithmetic operations a character string
pecomes a bit string, then an unsigned integer, then
this integer is scaled appropriately. lalbSaée

Note 4., In arithmetic operations a bit string becomes
an unsigned integer which is then scaled
appropriately, depending on the other operand. lalbaea

Note 5. In comparing two character strings, the

shorter is padded on the right with blanks. Then both

are converted to bit strings and then to unsignead

integers for the comparison, lalbace

Note &, In comparing numeric with bit, character with
bit, or numeric with character, the non-pbit type is
converted (or are converted) to bit type. Then both

are converted to unsigned integer for comparison. lalbaét
. Note 7. A character string used for pointing or
indexing is converted first to a bit string and then
t0 an unsigned integer, lalbaébg
Lelé Short=Ccircuit Evaluation lalé

A JOVIAL tprogram:declaration specifies a number of
tstatements to be executed in a particular order, subject to
dynamic changes involvng fconditional:statenents,
tswitch:statements, tgo:to:statements, and texit:statements.
Wwithin a tstatement, there are ftformulas to be evaluated in
a particular order, subject to fconditional:formulas and
precedence rules. All these requirements are for eifect
only. As long as the computational results are the same,
the compiler is free to rearrange the order of
computations--even to omit some calculations=-=-in the
interests of efficiency. Consider fformulas involving
expressions such as: lalea

«0 * ALPHA laléal

28

DLS O8~MAR=TL 05:36 3019k

JOVIAL Manual-=Chapter 4

be17

«0 AND BETA laleéa2
€l OR GAMMA laleas

.1 In the above examples, the zZeros and the «1 could be

values determined at execution time or known at

compilation time=-=-it could make a difference with regard

to efficiency. In any case, the value of the first

example does not depend on the value of ¢ALPHA, If the

second and third examples are ftconditional:formulas,

their values o not depend on the values of «BETA and

«GAMMA. TheSe are caseS wherein the compiler mignt

choose to avoid evaluating «ALPHA, ¢BETA, and «GAMMA. laléal

.2 The omission and rearrangement of computations are
aspects of optimization, Chapter 11 discusses
optimization and the assumptions the compiler may make
with regard to hidden interactions within a
ftprogramsdeclaration, The torder:directive (Section
11l.7.4) puts the compiler on notice that it must not make
certain assumptions. If the compiler can determine, from
its analysis of the tprogram:declaration and making the
assumptions it is allowed to make, that it would not
impair the accuracy or effect of the compiled program, 1it
may rearrange or delete tformulas or even whole
tstatements. laléabd

«3 There are prograns that can analyze a JOVIAL
tprogram:declaration, delete parts that cannot be

executed, put the remainder in canonical form, and

describe the transformation so the programmer can see

some of his errors of logic. y laléaé

TForm lal’

The tform:declaration (Section 8,9) provides a structure for

the convenient assembly of a l1list of values into a single

bit value or character value, If the tabbreviation «b

follows the tform:name in the tform:declaration, each

reference to the tform:name is a tbit:formula, If the
tabbreviation is «C, each reference to the tforminame 1s a
fcharacter:formula. lal7a

29

DLS &=MAR=T4 05:36 30194

JOVIAL Manual=-=Chapter L

L,18

.1 A tbit:form consists qf the tform:name followed by &
parenthesized list of tbit:formulas, Within the
tparentheses there must be one tbit:formula for each
tfield:width in the corresponding tform:declaration,

Each tformula is converted to its bit value and truncated
from the left or padded with zero bits on the left Lo its
respective tfield:width in bits. The value of the
tbit:form is then the concatenation of all these

truncated or padded bit values, Examples: lal7al
«FORM DUAL B 16,16; lal7ala
«ABC = DUAL (ABCISSA, ORDINATE); lal7alp
«FORM OPWRD B 6,h,h,4,2,16; lal7alc
«0P = OPWRD (CODE,JMOD,AREG,BREG,0,ADDR+4; lal7ald

«2 A tcharacteri;form consists of the tform:name followed
by a parenthesized list of rformulas. Within the
tparentheses there must be one tformula for each
tfield;width in the corresponding ftform:declaration, If
the tformula is a tcharacter:formula with a different
numper of bytes from that specified by the corresponding
tfield:width, it is truncated from the right or padded
with blanks on the right to its respective ftfield:wiath.
If the tformula is other than a fcharacter:formula it 18
treated as a tbit:;formula., The reguired size is then the
corresponding tfield:width times the nunber of bits per
byte in the system, The tbit:formula is then truncatead
from the left or padded cn the left with zero bits to
match this required size. The value of the
tcharacter:form is then the concatenation of all these
truncated or padded values, The fcharacter:form is a
tcharacter:formula whether the parenthesized ftformuias
are tcharacter:formulas, tbit:formulas, or a combination. lal7az2

tFunction:Call lalo

tIntrinsic:functionicalls are discussed in Section L4.l19.
Other tfunction:icalls are very similar to
tprocedure:call:statements, discussed in Section 5.l11l. The

30

L.19

DLS 8=MAR=TL 05:36

JOVIAL Manual==Chapter 4

. tprocedure:name or talternate:entrance:name must pe one
whose tdeclaration associates an titem:description with the
tname., This association of an ftitem:description makes the
procedure or alternate entrance a function, descriopes the
implicit output parameter for the function, and establishes
the tformula type and size for the tfunction:icall,

.1 The use of tactual:inputiparameters in a
tfunction:call is the same a® their use in a
tprocedure:call:statement, with one exception.
ordinarily, if exit from a procedure is effected by a
tgo:to:statement referencing a ftformula:input:iparaneter,
the tactual:output:parameters at the active call are set
pefore (or simultaneously with) the exit., In a similar
situation with regard to a tfunction:icall, there 18
nothing that can be done with the function value, so it
is immaterial if the implied output parameter is "set" or
not in conjunction with this apnormal exit.

.2 Normally, a tfunction:call is the invocation of the
corresponding tprocedure:declaration consisting of firsty,
the setting of the tformali:input:parameters from the
tactual:input:parameters (or estabplishing the
correspondence for those tformal:input:i:parameters tnat
are not tvariables); second, execution of the procedure;
and third, utilization of the value of the implied output
parameter in place of the tfunction:icall.

.3 If the procedure corresponding to the fprocedureinanme
or the talternate:entrance:name is declared to be pointed
to, the tfunction:call must include the tpointer:tformula

to provide a location for the data space of the procedure
during this invocation.

tIntrinsic:Function;Call

t+Format:function:call provides a set or list of values of
various types and sizes to be assigned to a set or 1list of
tvariables, Details are given in Section 6.l.4.
tByte:string:function:call is a tcharacter:formula. Detalls
are given in Section 4.h.l. fTBit:string:function:call is a
tbit:formula, Details are given in Section 4L.12.2.
+Shift:function:call is a tbit:formula, See Section 4.12.3

30194

laloa

laldal

laldaz

laléas

laly

DLS 8=MAR=T7L 05:36 301954

JOVIAL Manual=-=-Chapter)

for details, tSigned:function:call is a tbit:formula one
bit in size, See Section 4,12.5 for details. lalya

«1 The talternate:entrance:function:call is an unsigned
tinteger:formula of default size, Its value is an
unsigned integer that indicates tne entrance of the named
procedure that is active. The tformula is only
meaningful within a tprocedure:declaration, The reason
for citing the tprocedure:name is to be able to
interrogate the status of an outer procedure from wWithin
an inner procedure, If the tprocedure:name is omitted
(the tparentheses are required even so), «ALT proviaes
the active entrance of the innermost
tprocedureideclaration within which the ftfunction:icall 18
issued. This makes it possible to interrogate the status
of this innermost procedure even if its tname has been
redeclared for some other local use within the
tprocedure:declaration, Associated with each possiple
value of the ftalternate:entrance:functionicall citing a
particular tprocedure:name, there is an intrinsic
tstatus:constant, The correlation is illustrated in tne
table below: lalgal

.2 "First alternate", "second alternate", etc.,, Smply
refer to the lexical order of the
talternateientrance:names, the order in which the
talternate:entrance:declarations are written within the
tprocedureideclaration, The tstatus within each
tstatusiconstant in the above list is just the relevant
tname. There is no way to qualify these
tstatus:constants explicitly and the only meaningful use

of such a tstatus:constant is as follows: lalgaz
«ALT (procedure:name «) ftrelaticnal:operator «V(
tprocedure:name
talternate:entrance:name lalgaza

.3 In the above example, the tprocedure:name must pe the

same on both sides (even if the one on the left is only
implied), or the talternate:entrance:namne must be one

associated with the ftprocedure:name on the left (even 1f

it is only implied). lalga3s

32

DLS 6=MAR=TL 05:36 30194

JOVIAL Manual==Chapter I

.4 The tnumpber:of:entries:function:call is an unsigned
tinteger:formula of default size, Its value, if the
tindex:range is omitted, is the product of multiplying

together the extent of the cited table in all its

dimensions, The extent of a table in any dimension is,

for that dimension: lalgal

tupper:bound «+ 1 = tlower:ibound lalyaka

«5 If a table is implicitly pointed to, if its

tpointer:formula is a tfunction:icall, and if its
tallocation:increment indicates less than the entire

table, then its extent in each dimensicn relating to the
tfunction:call is «l1 and the

thumber:of:entries:function:call is the product of the

extent of the allocation submanifold in all its

dimensions. lalgab

«6 If the tindex:range is present (see Section 10.4),
the value of the tnumber:of:entries:function:call is the
product of multiplying together the extents indicated by
each tindex:component:range present (not the
tindex:components). The extent indicated by an

tindex:component:range is: lalgaé
thigh:point tlow:point lalg9aéa

&% 115 lalgaeb

tupper:pound tlower:bound lalSaée

«7 In the above tformula for extent, tupper:bound 1is
used only if thigh:point is missing and tlower:bound is

used only if tlow:point is missing. Examples: lalga?
ENENT: C{HPAB oL 3 s Sn) Al lal%9a7a
€NENT (TAB [3 95, K ¢]) lal9a7p

33

F DLS 6=MAR=T4 05:36 30194
JOVIAL Manual=-=Chapter L

. .8 The value of the tfunction:call in the first example
is the extent of «TAE in the first dimension, times its
extent in the fourth dimension. The value of thne
tfunctionicall in the second example is (J + 1 =
tlower:bound of first dimension) times (tupper:oound of
second dimension «+ 1 = K). lalgasd

.9 The tlocation:function:call is an unsigned
tinteger:formula of default size, Its value is the sunm
of possibly three elements: lalgayg

a. The value of the tpointer:formula or

tpointer:variable pointing to the structure (procedure
instruction space, table, data block) containing the

named entity. If the structure is not pointed to,

this is simply the compiler=-assignea location of the
structure. lalgaya

b. The relative position of the named entity in its
structure=-=item in entry, table in data block,
tstatement in procedure, etc. lal9ag%p

. cs Relative positioning due to the tindex if present.
In a table allocated space by submanifolds, the value
of the tindex can, of course, influence the value of
the primary pointer. lalg9agc

+10 In any citation of a table or item in a pointed=-to
structure, the pointer, whether implicit or explicit,

points to the beginning of the structure. This is not

generally the value of the tlocation:function:call. The
tlocation:function:call is not the inverse of pointinge.

In general, «XX[YY/] @ LOC(XX[(YY]) is a different

tvariable from «XX/YY/. 1al9alo

+11 The tabsolute:function:call is a ftnumeric:formula of

the same size, precision, and type as its tparameter,

except that if the tparameter is not floating the

function is unsigned, The value of the function is the

absolute value of its ftparamever. lal9all

.12 The twords:per:entry:function:call is a signed

3k

) DLS &=MAR=T7u 05:36 30194

k.
{
i

JOVIAL Manual==-Chapter 4

tinteger:constant of the size required to represent the
tconstant value, For a Serial or parallel table it is

the number of words in an entry of the cited table. For

a tight table, it is the negative of the number of

entries in a word of the cited table. lal9al?

.13 The texrad:function:call is a signed
tinteger:formula with a system-dependent size. Itls size
is related to the size of exrads provided by the systen
for floating values, but not necessarily the same. If
the system uses a radix other than 2, the required
relationship between the texrad:functionicall and tne
tsignificand:function:call necessitates a few extra biis,
If the tactual:input:parameter of the
texrad:function:call is floating, it yields the exrad oi
that floating value. If its tparameter is not floating,
the texrad:function:call returns as its value the size of
its tparameter (not including the sign) minus the number
of bits after the point. Remember that the number of
bits after the point can be negative==so the
texrad:function:call can return a value greater than the
size of its tparameter, lal9al3

.14 The tsignificand:function:call is a ftfixed:formula;
unsigned if the tparameter is unsigned, signed otherwise.
If the tparameter is floating, the size and precision of
the tformula is system dependent and its value 1s the
significand of the floating tparameter, 1If the
tparameter is not floating, the size and precision of ihe
t+formula are both the size of the tparameter, and its
value is the value represented by the string of bits
constituting the tparameter with the binary point just to
the left of the leftmost magnitude bit, If &NF 1s any
tnumeric:formula, then: lal9all

«NF = SIG (NF) % 2 ##% XRAD (NF) lal9alka

«15 The ftsignum:functionicall is a signed

tinteger:formula one bit (besides the sign bit) 1in size.

The value of the tsignum:functionicall is zero if 1iis

tparameter is zZero, «+l1 if its tparameter is greater than

zero, and =1 if its tparameter is less than zero. lal%als

.16 The tsize:function:call is an unsigned

35

DLS &~MAR=TL 05:36 30194

JOVIAL Manual-=Chapter i

tinteger:formula of default size. If its fparameter is a
tcharacter:formula, the value of the function is the
number of bytes in the tformula. If the tparameter 1is
floating, the value of the function is the number of pils
in the significand plus the numoer of bits in the exrad,
exclusive of both signs. This is not the numbers
declared for these parts, but the system=dependent sizes
provided to accommodate the declarea sizes. If the
tparameter is a tbit:formula, tinteger:formula, or
tfixed:formula, the value of the tsize:functionicall is
the number of bits in the tparameter, not including the
sign if there is one, 1If the tparameter is a
tdata:block:name, the value of the tsizeifunctionicall 13
the number of words in the cited data btlockK. lal%alé

.17 The ttype:function:call is an unsigned

tinteger:formula three bits in size. 1Its values are

related to the type of its tparameter in accordance wWith

the table below. There is also an intrinsic tstatusilist
associated with the ttype:function:call having thne
t+status:constants also listed in the following table: lalg9al?

.18 The last column above indicates a
tqualified:status:constant that can be used where tne
ungualified tstatus:constant is not permitted (everywhere

not in a tcomparison with the ttype:function:icall). l1al9ale

.19 The tfraction:part:functionicall is a

tnumeric:formula of the same size and type as its

tparameter, 1Its value is the fractional part of its

tparameter, of the same sign as its fparameter and with a

value greater than ¢=1 and less than «l. If NF 1s any
tnumeric:formula, then ¢ABS (FRAC(NF)) = FRAC(ABS(NF)). lalg9aly

+20 The tinteger:part:function:icall is a

tnumeric:formula of the same size and type as itis

tparameter. Its value is the integer part of its

tparameter. If «NF is any tnumeric:formula, then «XF =

INT(NF) +FRAC(NF) . lal9a20

.21 The tinstruction:size:function:call is an unsigned
tinteger:formula of default size, Its value is the
numper of words in the load module for the cited

36

DLS 6=MAR=TL 05:36

JOVIAL Manual==Chapter .

procedure, This may be required for dynamic procedure
loading (see Section 8.6.11).

«22 The tdata:size:functionicall is an unsigned
tinteger:formula of default size. 1ts value is the
number of words in the private or pcinted-to data space
of the cited procedure, if the tprocedure:heading
contains a tdataiallocation:specifier or an
tenvironmental:specifier making the unnamed data space
(and any named data space not individually excepted)
strictly private., This information is needed for
requesting data space for a pointed-to procedure (see
Sections 8.6.6 and 8.6.9).

L.20 Use and Qualification of tStatus:Constants

Each fstatus:constant is given a constant integer value by
means of its position in a tstatus:list (see Section 7.17).
wherever the tstatus:constant is subsequently used (except
in another tstatus:list) it represents that constant integer
value, The meaning of a tstatus:constant may be ambiguous,
however, because it can appear in more than one
tstatus:list--and be defined by each such appearance. The
ambiguity is resolved by context, A ftstatus:iconstant may oe
used, and represents its constant integer value, only in the
contexts descrivbed in Sections L4,20.,1 through 4.20.3.

.1 A tstatus:constant may be used 1O represent its value
as the presetting ftconstant of or in the tconstant:list
of an titem:declaration (or tordinary:table:;heading or
1specified:tabletheading) containing an titem:description
that contains or cites the tstatus:list in which the
tstatus;constant is given its value, EXamples:

«ITEM WEATHER U 2 V(RAINY),V(FAIR),V(SUNNY)=V(SUNNY);
«3TATUS ALPHABET V(A),V(B),V(C),eesVI(Y),V(Z2);

..TABLE -"an

«ITEM LETTER S 5 ALPHABET [0,4]=2(V(A),V(B)),V(Z);

37

30194

lalyazl

lalgaz2

laz20

laz20a

1a20al

la20ala

la20albp

la20alc

laz0ald

DLS 8=MAR=T74 053136 30194

JOVIAL Manual==Chapter)

.2 A tstatusiconstant may be used as the entire
tnumeric;formula providing the value to be assigned Lo an
tinteger:variable by means of a
tsimple:assignment:statement if the titem:description for
that tinteger:variable contains or cites the tstatus:ilist
in which the tstatus:constant is given its value. A
tstatus:constant may be used as the entire
factual:input:parameter corresponding to a
tformal:input:parameter whose titem:description contains
or cites the tstatus:list in which the tstatus:iconstant
is given its value, A ftstatus:constant may be used in tnhe
following context: la20az

tinteger:variable la20aza

trelational:operator
tstatusiconstant 1a20az2p

t+functionicall laz20aZzc

.3 In the above context, the titem:description

associated with the tvariable or the implied output

parameter of the tiunctionicall must contain or cite the
tstatus:list in which the tstatus:constant is given 1ts

value, laz20a3

.IL In other contexts (and even in the contexts describea
above) a ftqualified:status:constant may be used. A
tqualified:status:constant may be considered to consist
of two parts=-=-the tname preceding the tstatus, and the
+status:constant that remains when that ftname and 1ls
following fcolon are deleted. Tne meaning of the
tqualified:status:constant is the same as the meaning of
its corresponding tstatus:constant derived from the
tstatus:1list (contained in or citved in the
titem:description) associated with its corresponding
thame. Example: la20al

«STATUS USDA V(PRIME),V(CHOICE),V(GOOD),V(COMMERCIAL; la20ala

«ITEM SWIFT U 5 USDA; 1a20alkb

ﬁ

JOVIAL Manual==Chapter 1§

> «STEW = ONION + CARROT + V(SWIFT:CHOICE); 1a20aic

39

JOVIAL Manual=-=Chapter i

' (J30194)

Distribution: /RJC; Sub=Collections:

Origin:

8=MAR=T7L4 05:36;

<STONE>CL.NLS;1,

Title:

Author(s):

DLS 8=MAR=TL 05:36 30194

Duane L.

RADC; Clerk: DLS;
8=MAR=T74 05:31 DLS ;

Stone/DLS;

DLS 6=MAR=T4 O5:43 30195
JOVIAL Manual=-=Chapter 1

‘ contains font markers and structure

JOVIAL Ma
. Chapter 1

INTROD

l.1

1.2

1.3

DLS 8=MAR=74 05:43 30195
nual=-=Chapter 1

UCTION la
Purpose of the Manual lal

The purpose of this manual is to describe the 1973 version

of the JOVIAL Computer Programming Language, and to

estapblish standard language specifications upon which the
acquisition of compilers for the language can be based, The

JOVIAL 73 (abbreviated J73) language is Lo be considered a
replacement for the previous standard, JOVIAL (J3), defined

by AIR FORCE MANUAL AFM 100-24, dated 1967 June 15, with

amendments thereto, lala

Scope and Changes laz2

This manual contains the complete set of JOVIAL (J73)
language features, The scope of these language features 1is
designed to provide poth effective support of today's
processing requirements and evolutionary growth as future
system requirements dictate., Implementation of the full J73
language is not intended at this time, A basic set of 3
language features is being identified for standard
implementation by all compiler systems. Methods of
extending the basic set of language features has not yet
peen determined., EXisting J3 programs may not be completely
converted to J73 language because of machine dependencies
and resultant changes in language features, conversion
requirements and aids should pe considered in conjunction
with compiler acquisition for each replacement system,

Using activities are requested to submit recommended
changes, additions, and deletions to the manual in
sufficient detail to permit both a technical and economic
evaluation. AFR 300~-10 prescribes both policy and
procedures for using standard computer programming languages
(i.e,, COBOLK FORTRANK JOVIAL) and for specifying computer
programming language compilers, la2a

overview and Objectives of the Language 1a3

JOVIAL 73 has developed out of nineteen years of study and
experience with regard to appropriate programming languages
for command and control applications. JOVIAL has also been
found to be well suited to the programming of many other
applications including general scientific and engineering
proplems involving numeric computation and logically complex
problems involving symbolic data, Because of its wide
applicability and the optional control it provides over the

DLS &=MAR=T7L 05:43 30195

JOVIAL Manual==Chapter 1

details of storage allocation., JOVIAL is especially

suitable for problems requiring an optimum balance between

data storage and program execution time., The earliest

versions of JOVIAL porrowed heavily from ALGOL 58, This

latest version incorporates features permitting the aesign

and utilization of the most sophisticated data structures,

vet at the same time simplifies the manipulation of

elementary forms--the sort of manipulation that typically

involves over 95% of computation time (Knuth, D.E.,

"Software, Practice and Experience", Vol. 1, pp. 105-133, |
1971, John Wiley & Sons, Ltd.). la3a

.1 The prime motivation for the development of JOVIAL 1s
the desire to have a common, powerful, easily
understandable, and mechanically translatable programming
language, suitable for wide~range applications, Such a
language must be relatively machine independent, with a
power of expression in logical operations and symbol
manipulation as well as numerical computation. A JOVIAL
tprogramsdeclaration describes a particular solution to a
data processing problem, meant to be incorporated by
translation into a machine language program, The 1WO
main elements of this description are: la3al

a. A set of tdata:declarations, describing the aata
to be processed, la3ala

b. A set of tstatements, describing the algoritvanms or
processing rules, These two sets of descriptions are,

to a great extent, mutually independent, so that

changes in one do not necessarily entail changes in

the other. Further, the pertinent characteristics of

an element of data need be declared only once and do

not have to be repetitiously included with each

reference to the data. la3alb

.2 One of the further requisites of a programming
language intended for large=-scale data processing systems
is that it include the capability of designating and
manipulating system data, as contained in a communication
pool (compool), A compool serves as a central source of
data description, communication changes in data design DYy
supplying the compiler (or assembler) witn the current
data description parameters, thus allowing automatic
modification of references to changed data in the machine
language program, Though highly desireaple for any data
processing system, a compool is a vital necessity for
large-scale systems where problems of data design

DLS 8=MAR=T7L 05:43

JOVIAL Manual==Chapter 1

coordination between programmers are apt to be otherwise
unsolvable,

«3 JOVIAL is a readable and concise programming
language, using self-explanatory English words and the
familiar notations of algebra and logic. In addition,
JOVIAL has no format restrictions and, with the ability
to intermix tcomments among the ftsymbols of a program and
to define notational additions to the language, the only
limit to expressiveness is the ingenuity of the
programmer, A JOVIAL program may thus serve largely as
its own documentation, facilitating easy maintenance and
revision by programmers other than the original author.

.4 The convenient subordination of detail without loss
of detail afforded by JOVIAL also contributes to
readability and expedites the task of uniting programs.
one simple JOVIAL tstatement can result in the generation
of scores of machine instructions which might normally
take hours to code in a machine~oriented language. This
reduction in source program size proportionally reduces
the opportunity for purely typographical errors which are
much more obvious when they do occur, due to JOVIAL's
readability. Since many coding errors based on the
idiosyncrasies of computer operations are eliminated,
experience has shown that JOVIAL programs may be written
and tested, even by neophyte programmers, in less time
than previously required with machine-oriented
programming languages.

.5 Computer users are often faced with the necessity of
producing large numbers of computer programs in shortu
periods of time, A readable language such as JOVIAL
alleviates the heavy burden this places on the existing
programming staff, by permitting an augmentation with
relatively inexperienced programmers.

«6 JOVIAL simplifies and expedites the related problems
of training personnel in the design of data processing
systems and the development of computer programs for such
systems, Although JOVIAL was designead primarily as a
tool for professional programmers, its readability makes
it easy for nonprogrammers to learn and use, It also
helps to broaden the base of JOVIAL users pbeyond those
engaged in actual programming,

.7 The objectives of standardizing JOVIAL are as
follows:

30195

la3a2

la3ajs

laizal

la3ab

lajzaé

la3a?7

DLS 8=MAR=T4 05:43
JOVIAL Manual==Chapter 1

a. To attain a greater degree of inter-systenm
compatibility.

be To provide a clear guidance Lo the computer
manufacturing community in the production of
computer=based systems.

c. ToO use existing programs and ease the transition
when upgrading to new computers.

d. To improve the producti&ity of programmers.
e, To establish a base for language improvement,

f. To establish a training requirement on which to
base a comprehensive skill resource development
program.

1.4 The pescriptive Metalanguage for JOVIAL

one purpose of this manual is to specify a language. The
purpose of the language is to specify algorithmic processes
for the solution of computational problems. We must
carefully distinguish between the elements of the JOVIAL
language and other objects, including the objects a JOVIAL
tprogram:declaration discusses. «A, ¢B, «C, ¢B+C, and
«A=B+C are five structures in the JOVIAL language, There
are, however, an infinite number of structures in the JOVIAL
language. In order to speak about them all we need O
classify them, Wwe give names to the classes of JOVIAL
structures and we distinguish them from all other cbjects oy
writing them in italics, The classification scheme ana the
names of classes used in this manual are arbitrary. JOVIAL
73 can be validly described using other classification
schemata and/or class names,

.1 Every class of structures in the JOVIAL language tnat
we discuss in this document is named by a word in italics
or by a phrase in italics with colons (in italics)
petween the words of the phrase, We do not distinguish
between a class and a general element of the class., we
use plurals in italics when we mean several elements of
the class, Italics are used for no other purpose exceptl
also to number the syntax equations in Appendix A. Thus,
tletter is a class (having 26 members) of elements of
JOVIAL. A tletter is also a member of that class, fTName
is a class (having infinitely many mempers) of elements
of JOVIAL. A tname is also a member of that class. Wwe
use the phrase "metalinguistic term" to mean one of lnese

30195

la3a’/a

la3a7p

la3a'le
la3a7d

la3aTe

laza’f

lau

lala

DLS 8=MAR=Tu4 05:43 30195
JOVIAL Manual=-=Chapter 1

. italicized words or phrases, Every metalinguistic ternm
(eXcept tsystem:dependent:character) is defined in terms
of other metalinguistic terms and the 59 elements of the
JOVIAL alphabet, By substitution, every metalinguistic
term is ultimately defined in terms of the 59 elements of
the JOVIAL alphabet (and tsystem:dependenticharacter). lajal

.2 The definition of a metalinguistic term is called a
"syntax equation" or a "metalinguistic equation".

several notational deyices are needed in constructing
syntax equations, The syntax equations occur tnroughout
the document and are all gathered together in Appendix A
in alphavetical order, In fact, Appendix A may bpe
considered the syntactic specification of JOVIAL 73. Iin
Appendix A, each heavily black-bordered box (except one)
contains the definition of a single metalinguistic term.
Each syntax equation is preceded, in its pox, with a
sequential number in italics, followed by a colon,
followed by a list of the numbers of the syntax equations
in which this metalinguistic term is part of the
definition, layaz

.3 Following the metalinguistic term being defined 1s
the definitional operator: layas

‘ 2:s lajay

Following the definitional operator is the definition,
consisting of elements of the JOVIAL alphabet (the tsigns
of JOVIAL), metalinguistic terms, and metalinguistic
sympols indicating choice, repetition, and continuation,
Many definitions contain optional elements or mandatory
choices, Braces ordinarily denote a choice. One
line must be selected from among the lines within the
braces in order to satisfy the definition., If there is
only one line within the braces, it must be chosen==-the
braces then only indicate the extent of application of a
repetition operator, layas

Brackets denote an option or an option and a choice.
The line within the brackets may be included or omitted.
If there is more than one line within brackets, zero or
one of the lines within may be used to satisfy tne
definition, tBrackets are elements of the JOVIAL
alphabet, all of the same sizZe. Brackets are
distinguished from tbrackets by being considerably larger
(and of various sizes), Arrows are used to indicate
continuation of a line, If a line is too long for the
page (or the space available within braces or brackeis)

DLS 8=MAR=T74 05:43 30195

JOVIAL Manual=-=Chapter 1

. an arrow is plaed at the right of the first part of tne
line and is repeated at the left of the continuation
line, 1In one or two places vertical arrows are used
for similar purposes where a column (a stack of lines
within braces) is toc long for the page. There are uwo
repetition symbols. means that the preceding element
of the definition may be repeated an arbitralr'y numoer of
times, means also that the preceding element nay be
repeated, but that tcommas must be inserted between
occurrences of the repeated element. If the repetition
symbol follows a metalinguistic term, it is that one
metalinguistic term that may be repeated. If the
repetition symool follows a right bracket or a rignht
brace, it is the entire structure within the brackeis or
braces that may be repeated. A bracketed structure
followed by a repetition symbol means "use this structure
Zero or more times, choosing any one of the lines herein, g
independently, for each occurrence." A praced structure ,
followed by a repetition symbol means the same except
that "zero or more times" becomes "one or more times," layas

,
|

.4 There is no terminator symbol for a syntactic i

equation, One ends where another begins or where tnere !

is nothing left in the box. 1In a few of the boxes there i

are some anomalies. Syntactic equation lih defines
. tmark. Opposite each tmark is a metalinguistic term.

This association serves to define each of these

metalinguistic terms, as the tmark to its left, Opposite |
tspace is only space, That's the definition of ftspace,
the tmark indicated by not marking the paper, Syntactic |
equation 172 defines ftpattern:digit. It also gives
tabular information involved with the significance of
tpattern:digits. Syntactic equation 190 defines
frelational:operator and gives a phrase for each
trelational:operator indicating its meaning. BOX 23l
defines tsystem:dependenti:character by means of a prose
discussion, Syntactic equations 247 and 248 are in one
boX. Each is a definition of tvariable in terms of
different collections of covering sets. And equations S
and 95, for tformat:list, are in one boX.

.5 Leading and trailing spaces in the definition of a
nmetalinguistic term are of no significance, Spaces
between the tsymbols of a definition may or may not be
significant; the body of this manual clarifies the
issues. Certainly, if there is no space petween elements
of the definition, then no tspace is permitted in tne
corresponding positions in a tprogram:declaration, For

JOVIAL Ma

1.5

DLS 8=MAR=T74 O5:43
nual==Chapter 1

example, «BEGIN must not be rendered as ¢E ¢E «G ¢] N Or
as «BE «GIN. y

.6 The syntax equations are not completely correct.
There are actually limitations on the seeming generality
of the syntax equations. The limitations that must pe
observed to maintain syntactic integrity are stated in
the text. In addition, the text tells what the
programmer can do with the syntax and explains the
meanings of all JOVIAL constructs,

JOVIAL ftCharacters, Examples

Anything in a syntax equation that is not in italics 1s
composed of JOVIAL tsigns, the actual alphabet usea to write
a tprogram:;declaration. These tsigns (and
tsystem:dependent:characters) are useda also in examples
illustrating what may be written in substitution for a
metalinguistic term, Examples and metalinguistic terms are
never hyphenated for the sake of composing the type in thais
document, A metalinguistic term never continues from one
line to the next in a syntax equation. In text, however, a
multiword metalinguistic term may start on one line and
continue on the next. In this situation, the italicizedq
colon at the end of one line is repeated at the peginning of
the next line, ftColon happens to be one of the JOVIAL
tsigns, The JOVIAL fcolon is not in italics and is always
separated by at least one space from any italicizea word.
The metalinguistic colon is closely pressed on both sides by
words in italics,

.1 Metalinguistic terms (the words and phrases in
italics) represent structures that can be understood and
translated by a JOVIAL compiler, or at least they
represent elements of such structures. A
tprogram:declaration can be understood by a compiler and
translated into computer instructions.
tSimple:statements and fttable:declarations are elements
of tprogram:declarations. The translated version of a
tprogram:declaration and the structures it manipulates,
however, are an entirely different class of objects. The
collection of computer instructions is Known as a
"program," The word is not in italics because the thing
it represents does not exist in JOVIAL. JOVIAL can
contain tprogram:declarations; it cannot contain
programs. In a similar manner, a ttaple:declaration,
upen being processed by a compiler, gives rise to a
structure, known as a "table", to be manipulated by a

program.

30195

lapasd

lauayg

lab

laba

lasal

DLS 8~MAR=T74L 05:L43

JOVIAL Manual=-=Chapter 1

.2 ftProgram:declaration and fttable;declaration are
distinguished from program and table poth by the use of
different type fonts and the use of the word

"tdeclaration,” With many terms, the distinction is only

made by means of type fonts because the use of extra

words would make the explanations awkwara, For example,

a tvariable is part of a tprogram:declaration, whereas a
variable is a value that can be set, used and changed DYy

a program at different times., lasaz

Notational Symbols, System=-Dependent Values 1a6

In various parts of this manual, various numeric values that

may change from time to time or that are system dependent

are represented by letters or character combinations after

the manner of algebraic notation, The meanings of these

notational symbols are given where they are used, They have

no pervasive meaning and are to be considered valia only 1in

the local context where they are used, laéa

.1 Knowledge of many of the system=~dependent values 1s

vital to a sufficient understanding of the environment to

enable the programmer to construct valid and useful
tprogram:declarations. Such information is not availaple

at this writing and is not appropriate to this manual.

This information must be made available in other

documentation, lasal

1.7 One=Dimensional Nature of a Progran 1af7

Regardless of the forms used for coding, the input medium,

or the arrangement of the coding on that medium, the

language definition considers a JOVIAL ftprogram:declaration

t0 be a continuous stream of JOVIAL ftsigns. la7a

syntax and Semantics--Illegal, Undefined, Ungrammatical lasd

This manual gives complete specifications for writing

legitimate JOVIAL ftprogram:declarations, except for tnhe

necessary system-dependent values and compiler capacities,

explains in detail how the particular compiler deviates from

these specifications, and lists and explains all error

messages that the compiler may generate, lada

.1 For a ftprogram:declaration to be legitimate, it must
be meaningfully structured in accordance with the
specifications in this manual, If the
tprogram:declaration or any part of it fails to meet tnis

DLS 8~MAK=T4 05:43 30195

JOVIAL Manual=-=Chapter 1

. requirements, it is of small concern whether it is called
illegal, undefined, or ungrammatical. labal

illegal or undefined structures, but compile them

instead, giving results that the progranmer considers
appropriate. It is recommended thatl programmers avoid
exploiting these quirks, since there is no guarantee that

2 new version of the compiler will eXhibit the same
eccentricities, Using such discovered idiosyncrasies

leads to exXtra work in reprogramming when transferring

the work to another computer or when an updated compiler
replaces the old one, laoaz

.2 It often happens that compilers do not reject certain I
I
|

«3 As part of the structure of a JOVIAL ;
tprogrami:declaration, nothing is permitted by unstated |
implication. 1If it is not prescribed by this manual (or
other documentation in the case of system=-dependent

features), it is not legitimate JOVIAL code., 1In tne

matter of exceptions to prescribed forms, nothing is |
pronibited by innuendo, All exceptions are explicitly |
stated. lasas

.4 The document is to be taken as a unit, All seciions,
all figures, the list of syntax equations, and the
‘ index-glossary are interrelated. ladal

DLS 6-MAR=T74L 05:43 30195

JOVIAL Manual==Chapter 1

' (J30195) B8-MAR=ThL O5:L43; Title: Author(s): Duane L. Stone/DLS;
Distribution: /RJC; Sub-Collections: RADC; Obsoletes Document(s):

3016h; Clerk: DLS;
Origin: <STONE>C1,NLS;1l, 8=MAR~TL OL4:52 DLS ;

JOVIAL Manual==Chapter 2

. Contains font markers and structure

DLS 8=MAR=T74 05:52

30196

DLS 8=MAR=-TL 05:52

JOVIAL Manual==Chapter 2

‘ Chapter 2 1
ELEMENTS ia
2.1 Introduction lal

A tprogram:declaration written in JOVIAL consists,
basically, of tstatements and tdeclarations, The
t+statements specify the computations to be performed with
arbitrarily named data, +tSimple:statements can be grouped
together into tcompound:statements in order to help in
specifying the order of computations, Among the
tdeclarations are tdata:declarations and
tprocessing:declarations, The tdata:declarations name and
describe the data on which the program is to operate,
including inputs, intermediate results, and final results.
The tprocessing:declarations generally contain tstatements
and other ftdeclarations, They specify computations, out
they differ from tstatements in that the computations must
pe performed only when the particular
tprocessing:declaration is specifically invoked by Tnane.
In addition to tstatements and tdeclarations, there are
tdirectives which serve various purposes, They designate
externally defined tnames the compiler is exXpected o
recognize, they control selective compilation of various
. tstatements and ftdeclarations, and they provide information
the compiler needs in order to optimize the object code,
The tstatements, tdeclarations, and fdirectives are composed
of tsymbols, which are the words of the JOVIAL language.
These tsymbols are, in turn, composed of the tsigns that
constitute the JOVIAL alphabet, lala

.1l The general order in which the elements of a
tprogramsdeclaration are introduced in the preceding
paragraph represents tne general order in which one lOOKs
up definitions when trying to clear up a question. The
definitions in this manual are introduced, however, in
the opposite order. Such arrangements lead to complaints
that one must "read the book backwards." This comment
arises from the process of looking up a form in the table
of contents, turning then to the late chapter where it 1is
defined in terms of earlier defined forms. These, nore
elementary, forms are then found, via the table of
contents, in an earlier chapter. And so forth.
Nevertheless, the document is arranged for the use of a
reader rather than for reference, Difficult as this may
be for reference use, the opposite arrangement is much
more difficult for a reader. lalal

DLS 8=MAR=Tk4 05:52
JOVIAL Manual-=Chapter 2

An index-glossary is included wnich facilitates
reference., The index=glossary answers many questions
directly. In other cases, it references syntax equations
and sections by number.

.2

2.2 Spaces and ftSpaces

It is important to distinguish between a tspace, an element
of JOVIAL, and a space, an element of our descriptive
language, JOVIAL is written using tsymbols, the words of
the language. The tsymbols are composed of tsigns, the
elements of the JOVIAL alphabet. In general, tsymbols do
not contain ftspaces. The exceptions are pointed out in
section 2.5.2, with respect to tcomment, and in Section
2.8.2, with respect to tcharacter:i:constraints. In general,
tsymbols are separated by tspaces. Again the exceptions are
noted in Section 2.10; however, these exceptions are
permissive; i.e., it is always correct to put tspaces
between tsymbols.

.1 The following example is wrong:

«PLXMPY (1. 375, =« 75, 5 +5 T¢3 t REAL,
IMAG) H
. .2 The following examples are right:
a, ¢BEGIN 1, 3, +5;, =17 END
b, «SLiPLXMPY(1.,375,=.75,5.,7+3:REAL,IMAG);
Coe «SL : PLXMPY (10375 S 075 » 5- » Te3
: REAL , IMAG) ;
.3 In defining and explaining tsigns and tsymbols, any

spaces included in the metalanguage formulas are not
meant to be included in the definition, The phrase
"string of" implies that there are to be no ftspaces
petween the elements strung together. Similarly, phrases
such as "followed by", "enclosed in", and "separated
by", imply that there are to be no tspaces between the
elements concerned. This is the situation (except where
explicitly stated to be different) in this chapter,
Chapter 2. 1In Chapter 3 and beyond, the opposite view 1s
maintained with respect to these phrases.

Elements of the JOVIAL Alphabet

2,3 1tsigns,

(equ)

30196

lalaz2

laz

la2a

la2al

la2ala
lazaz
lazaza

laz2az2p

lazazc

la2a3
la3

la3a

DLS &=MAR=TL 05:52

JOVIAL Manual=~Chapter 2

.1 tSign means a tletter, a ftnumeral or a ftmark,

tlLetter means one of the 26 letters of the English
alphabet, written in the form of a roman capital.
tNumeral means one of the ten arabic numerals:
«0,¢1l,¢2,¢3,¢L,¢5,¢6,¢7,¢8 or «9, (The slash through tine
Zero is only for the purpose of distinguishing it from
the tletter 0 in definitions and examples of JOVIAL.)
tsign, tletter, and tnumeral are defined more formally DYy
means of the syntax equations in the boxes at the head of
this section. 1tMark is most easily defined by the formal
means of the syntax equation in the box above., The boxX
above also contains a metalinguistic term assocliated with
each tmark; this serves to define these ternms,

tSymbols, The Words of JOVIAL

(equ)

.1 The tsymbols or words of the JOVIAL language are
composed of strings of tsigns, in some cases a Ssingie
tsign. Most tsymbols do not contain tspaces. In fact,
tspaces serve to separate tsymbols from one anotner.

t+PRIMITIVE, tldeogram, tDirective:Key, tComment

(equ)

.1 1tPrimitives may be considered the Key words of the
JOVIAL language. They are generally used to give tne
primary meaning of a tstatement or ftdeclaration, although
some are used for second purposes. ftldeograms are
generally used as ftarithmetic:operators, as
trelational:operators, and for purposes such as grouping,
separating, and terminating. tDirective:keys are used to
state the primary meanings of tdirectives, tCommenis can
be used to annotate a tprogram:declaration; explaining to
readers (and often the original programmer) wnat is going
on.

.2 Notice that a ftcomment is delimited by
fquotation:marks, Therefore, tspaces are permitted
within a tcomment, but a tquotationimark is not permitted
within a tcomment, Also, a tsemicolon is not permitted
within a ftfcomment. The reason for this is to permit some
recovery in case a delimiting tquotation:mark is left off
a tcomment, If the tcomment were not then terminatea by
the next tsemicolon, the entire remainder of the
tprogram:declaration would be turned inside out; the
tcomments being interchanged witnh the tstatements and

30196

la3al
lay

lalka

lajal
1lab

laba

lasal

DLS 6=MAR=T4 05:52 30196

JOVIAL Manual==-Chapter 2

. tdeclarations, Even with this rule, failure to terminate
a tcomment can lead to disaster, If an «END is swallowed
up, the entire program structure can be disarrayed. laba2

«3 The tsystem:dependent:characters that can be included

in tcomments (and other structures) are simply those
tcharacters, other than JOVIAL tsigns, that the

particular system and compiler can read and write, lasa3

.4 Notice that tprimitives, tideograms, and
tdirective:keys do not contain tspaces. tSpaces are
significant in a tprogram:declaration; usually in that
they separate tsymbols. ftComments, on the other hand,
may contain tspaces. This permits easier reading and
writing of the commentary. The tquotation:marks
delimiting the ftcomment provide the necessary grouping so

that the tspaces do not cause trouble, labal
2.6 ftAbbreviation, tlLetter:Control:Variable, tName laé
{equ) laéa

.1 tAbbreviations are specific tletters having specific
meanings in specific contexts, usually
tdata:declarations. The specific uses are documented
‘. later on without, usually, calliing the tletter an
tabbreviation, laéal

.2 The tletter:control:variable is a special tvariable

having meaning only within a tloopi:statement and passing

out of existence when the ftloopistatement is not being

executed., It is explained more fully in connection with
explanation of the tloop:statement. lacaz

.3 Regardless of the syntax in the box above, a fname
must not be the same as any ftprimitive. Notice that a
tname must include at least two tsigns. The use of the
tdollar:sign is system dependent. That 1s, it provides a
means whereby a tname can be designated to have sonme
special meaning in relation to the system in which the
compiler is embedded, Such special meanings are outside
the scope of this manual, however, and tnames containing
tdollar:signs are considered the same as other ftnames
herein. ftNames do nct contain tspaces, An embedded
tspace would change a ftname into two ftnames or other
tsymbols, laéas

2.7 TtTNumper, tConstant, tStatus 1a7

DLS 8=MAR=TL 05:52

JOVIAL Manual=-=Chapter 2

(equ)

.1 The above definitions are obviously not complete, 1in
that several kinds of tconstants mentioned in the box are
not yet defined. This discussion is mainly concerned
with the use of tspaces together with tnumbers,
tconstants, and tstatuses as tsymbols,

«2 A tnumber is a string of tnumerals, without ftspacesS.
In some places, a tnumber can stand alone as a fconstant.
In other places, particularly fdata:declarations, 1t
stands alone as a tsymbol but is not considered a
tconstant, In yet other places, a ftnumber is part of
another tsymbol., A case in point is the
tcharacter:constant, defined above, The optional fcount
in a tcharacter:constant is a2 tnumber, (In several
places, tnumbers or other constructs are given new nanes
reminiscent of their uses in those places.)

.3 A ftcharactericonstant is a tsymbol. If it begins
with a tcount, there must be no tspaces between the
fcount and the first tprime, Between the tprimes, tne
string of tcharacters may include tspaces, but these
tspaces are significant. They represent part of the
value represented by the tcharacter:constant, (There are
restrictions on the tcharacters permitted in a
tcharactericonstant, discussed in Section 2,8,2). In a
t+status:constant and a tqualified:status:iconstant, tine
tleft:parenthesis, the tname, the tcolon, the tstatus,
and the tright:parenthesis are all tsymbols, ftSpaces are
permitted between these elements, but not within the
Tname or the ftstatus, ftSpace is not pemitted between «V
and the tleft:parenthesis, All other ftconstants are
tsymbols, not containing ftspaces,

tConstants and Values

(equ)

.1 fCharacter:constants are the means of representing
character values to be manipulated by a Progran.
(tcharacter:variables and ftcharacter:formulas are
indirect means.) The ftcharacters acceptable as character
values are whatever the system will accept from among
those given in the body of Figure 2-1., At least the 59
JOVIAL tsigns must be accepted. Comparison of Figure 2=l
with Section 2 of USAS X3.,4=1968, "USA Standard Code for
Information Interchange", shows the graphic characters 1in
identical positions in the two tables, Figure 2-1

la7a

la7al

la7az

la7a3
lad

lada

DLS 8~MAR=T4 053152 30196

JOVIAL Manual==Chapter 2

‘ includes eight additional columns presently under
consideration by standardization bodies, The positions
of the ftcharacters in the table are the only
correspondence. This manual does not require that
internal representation be in accordance with USAS
X3.4=1968., 1If, however, JOVIAL fprogram:declarations
generate messages for transmission to other systems or
process messages received from other systems, these
messages are required by other directives to conform to
USAS X3.4=1968 in their external representation. ladal

.2 All of the character values indicated in the boay of
Figure 2=1 can be represented in fcharacter:constants
(except for system-dependent limitations). Artifices are
required, however, to represent some of the values. Any
tspaces within the delimiting tprimes, except within a
three-tcharacter code, represent characters of value
"space", tPrimes, tsemicolons, and ftdollar:signs have
special meanings. Therefore, in order to represent a
single occurrence of one of these tsigns, two of thenm are
used in succession. If a succession of tnese tsigns 1is
desired as part of the value represented by a
tcharacter:constant, the entire string is doubled. In
summary: labaz

. «2n tprimes are used Lo represent en tprimes. ladaza
«2n tsemicolons are used to represent ¢n ftsemicolons. ladaZzp

<2n ftdollar:signs are used to represent en
tdollar:signs. ladazce

.3 The reason for doubling the tprimes inside a
tcharacter:constant is that single tprime terminates tne
tconstant. The reason for doubling tsemicolons inside a
tcharacter:constant is the same. Although it is illegal,

a single tsemicolon terminates a ftcharacter:constant; and

for the same reason it terminates a fcomment, to avoid

turning the whole tprogrami:declaration inside out if the

correct terminator is omitted. The reason for douobling
tdollar:signs is that a single tdollar:sign introduces

the codes described in the next two paragraphs. lada3

L Any tcharacter represented in the body of Figure 2-1,
if it is acceptable at all by the system as a character
value, may be represented by a three tcharacter code
beginning with a tdollar:sign. The second fcharacter 1is
a column code from the figure; i.e., any tnumeral Oor one
of the tletters from «A through ¢F, The third fcharacter

DLS &=MAR=T74 05:52

JOVIAL Manual=~Chapter 2

is any tcharacter from the body of the figure that can be
recognized by the compiler, The character specified by
such a code is the one at the intersection of the column
designated by the column code and the row in which the
third tcharacter is found. For example, the percent mark
can be represented by any of several three tcharacter

codes, including these two: laBal
«825 labdala
«82U ladaub

.5 Within a ftcharacter:constant, there is a recognition
mode for tletters. Initially, the mode is "general", 1in
which all fcharacters, including uppercase and lowercase
tletters, and the three=-tfcharacter codes are recognized
as described above. The mode can be changed to
"lowercase", however, by including the two=tfcharacter
mode code consisting of ftdollar:sign followed by
uppercase or lowercase «L. All tletters following such a
mode code in a ftcharactericonstant, regardless of tne
case used, are considered to be in lowercase, Tne
two=tcharacter mode consisting of tdollar:sign followed
by uppercasSe or lowercase «U sets the "uppercase" mode,
in which all tletters are considered uppercase, The
three-fcharacter codes pevail, without changing the mode,
regardless of the mode. Hence, the appropriate case can
be specified for one tletter in a stream of tletiers.

For exanple, here are four fcharactericonstants witn tne

value "De Gaulle": lasas
«'De Gaulle' ladaba
«'DS6E GSO6ASTUS6LESLSGE' ladasb
«'DSLE S$UWLGAULLE' lagabce
«'sud$lesu gslaulle' (none of these are ones) ladabd

.6 If the tcount is present in a fcharacter:constant,

there must be no tspaces between the fcount and the first
tprime, and the fcount gives the number of concatenated
repetitions of the character values represented witnin

the ftprimes. Examples: lagaé

«2'TOM' is equivalent to «'TOMTOM'’ ladasa

«10'#' is equivalent LO «'wxksissns! ladaéb

DLS 8-MAR=TL 05:52 30196

JOVIAL Manual=--Chapter 2

«3' ' is equivalent to ¢! ' ladaée

.7 Notice that it is indeed the values that are

repeated, not the tcharacters making up the tconstant

before evaluation. Thus, «2'TSLOM' is equivalent to

«'TomTom'; it is not eguivalent to «'Tomtom'. laoa?

.8 The system may impose a limit on the number of

characters in strings representable by

tcharacter:constants, tcharacter:variaples, or
tcharacter;formulas, The size of a fcharacter:constant

is the number of characters represented in the value; not

the number of tcharacters between the tprimes, lagdad

.9 tPattern:constants directly represent values
consisting of strings of bits., (various tvariables ana
tformulas also represent bit values.) The tnumeral to
the left of the «B in the tpatterniconstant is the
"order" of the tconstant and controls the possiple
tpattern:digits and affects their meanings, These
relationships are displayed in the boxX above wherein
tpattern:digit is defined. The right column contains the
possible orders., The tpattern:digits are displayed in
the center in braces., The permissible tpattern:digits
are only those on the line with or above the selected
order, For example, if the pattern is of order i, only
«F and the 15 tpattern:digits above «F are permitted as
part of this particular ftpattern:constant, The meaning
of each tpatternidigit is given in the column on the
left, but these are also affected by the order., If the
order is en, then the en rightmost bits of each pattern
represent the meanings of the corresponding
tpattern:digits, The optional fcount gives the numper of
concatenated repetitions of the tpatternidigits enclosead
in tprimes, NO tspaces are permitted anywhere within
this structure, ladayg

.10 The meaning of a ftpattern:constant is the string of

bits resulting from the concatenation of the strings of

bits (as modified by the order) represented by each
tpattern:digit. The size of the tpatterniconstant 1s ine

numper of bits in the string and may be obtained by

multiplying the order times the fcount (assumed L0 De ¢l

if not specified) times the number of tcharacters inside

the tprimes, In the following examples, a

tpatterniconstant on the left is shown with the bit

string it represents on the right: labdalo

«4B'7CFO3' 01111100111100000011 ladalOa

DLS &=MAk=74L 05:i52 30196

JOVIAL Manual==Chapter 2

. «3B'3120' 011001010000 labalop
«1B6'10! 101010101010 laballc
«5B2'R! 1101111011 lab6allad

.11 tNumeric:constants represent numeric values. (There

are also tnumeric:variables and tnumeric:formulas.)

tNuneric:constants, as well as tnumeric:variables and

tnumeric:formulas, are descriped in terms of their tnree

possible modes of representation; as integer values,

fixed values, and floating values. The compiler may

represent constants in modes other than those indicated

by the tprogram:declaration; as long as the overall

effect of the tprogram:declaration is not compromised.

(This principle applies in general; i.e,, the compiler

can do things differently as long as the result is the

same,) Suppose, for example, an ftinteger:constant is I

used in a context that requires it to be converted to a |

floating value. It is far more efficient for that |

conversion to be done once, at compile time, instead of |

each time the code executed ladall i
|
I

.12 An integer value is a numeric value represented as a

whole number without a fractional part, pbut treated as if ‘
‘ it had a fractional part with value zero to infinite |

precision, 1In this manual, precision means the number of i

bits to the right of the point in binary representations |

of numeric values. A thumber used as an =

tinteger:constant represents an unsigned integer value.

The size of an tinteger:constant is the number of bits

needed to represent the value; from the leading one bit

to the units position, inclusive (value zero has size 1l).

NO tspaces are permitted in an tinteger:constant. Tne

system may impose a 1limit on sizes of integer values, ladalz

.13 Floating values ¢V are represented within the |
computer by three parts, the significand s, the radaix
«r, and the exrad e, having the following relationships

(with regard to the absolute value): ladal3
«V = 8 X7r ladalia
«s = 0 Or «n s mxr ladalip

.14 The radix er and the minimum value «m are fixed in
any system, Therefore, only the significand and the

exrad are saved as representations of a floating value.
For a negative value (not a fconstant), a minus sign 1s

DLS 6=MAR=TL 05:52 30196

JOVIAL Manual=-Chapter 2

' also saved with the significand. Regardless of tne
system values of «r and ¢m, We assume that ¢r = 2 and €m
is one~half. The language permits inquiry into the
values of significands and exrads based on radix and
minimum of these values. Therefore, with respect to
value, internal representation of floating values
exhibits (so far as the programmer can see from results)

the relationships: ladaly
«Vy = 8§ X 2 ladallha
€5 = 0 or «1/2 siaL ladalub

.15 4tFloating:constants are written with the assumption
that, externally, «r = 10, and there is no «m. Thus, the
value of a tfloating:constant is given as: ladalb

«y = § X 10 ladalba

.16 A tfloating:constant must not contain any ftspaces.
In the syntactic equation for a ftfloating:i:constant, the
tnumber (or tnumbers) and the tdecimal:point (if present)
give the value of the external significand. The fscale
(with or without its tplusisign or tminus:sign) following
«E gives an exrad (exponent of the radix) to be used as a
. power of ten multiplier. If the exrad is zero, it and
the «E can be omitted, To be a tfloating:constant, the :
tsymbol must contain a tdecimal:point, or a ftscale as \
exrad, or both. It must not contain an €A; that would
make it a tfixed;i;constant, ladalé

.17 A tfloating:constant can contain information
relating to the precision of its internal representation,
The tscale following M gives the minimum number of
magnitude bits in the significand of the internal
representation. In most systems, there are one or two
or, at most, a very few modes of representation of
ficating values, If the tscale following M is greater
than the maximum number of magnitude bits in any of the
system=dependent modes of representing floating values,
the tfloating:constant is in error. Otherwise, the
compiler chooses the mode with the smallest numoer of
magnitude bits in the significand at least as large as
the tscale following ¢M. If there is a choice of exraa
size also, the compiler chooses one that can encompass
the value of the tfloating:constant. These sizes are
based on the numpbers of bits in the actual
representations, not on what may be a fictional
assumption that the radix is 2. 1If the M and its

10

DLS 6=MAkR=T74 05152 30196
JOVIAL Manual-=Chapter 2

‘ following ftscale are omitted, the compiler chooses 1its
normal mode of floating representation or one that can
contain the value, la8al?

.18 A fixed value is an approximate numeric value,

Within the computer, it is represented as a string of

bits with an assummed binary point within or to the left

or right of the string., The numper of bits in the

string, not counting a sign bit if there is one, 1is tnhe

size of the fixed value. The number of bits after the

point (positive or negative, larger or smaller than the

8ize) is the precision of the fixed value. ladalo

«19 A tfixed:constant is seen, in the syntactic equation
above, to be an tinteger:constant or a tfloating:constant
(without an M and its tscale) followed by the tletter «A
and a tscale. The «A and its ftscale are essential to
make the form a tfixed:constant. ftSpaces are not allowead
anywhere within a tfixed:constant. All that precedes the
«A determines the value of the tfixed:constant, All that
precedes the «A determines the value of the
tfixed:constant (which may then be truncated on the
right). The tscale after the ¢A tells how many bits
there are after the point. (If the ftscale is negative,
the bits don't even come as far to the rignt as the

. point). The size of the tconstant is the number of bits
from the leftmost one~bit to the number after the point
as specified by the tscale after «A, inclusive, Here are
some tfixed:constants, their values, theilr sizes, and
their precisions: la8aly

«20 There must pe no tspaces within a tfixed:i:constant.
The system may impose a size limitation on fixed values. 1ladaz0

«21 1tIntegeri:constants, tflocating:constants, and
t+fixed:constants cannot have embedded tspaces and cannot

have negative values, Both of these characteristics are

changed for ftstatus:i:constants and

fqualified:status:constants. In tstatus:constants and
tqualified:status:constants, there must be no tspaces

within the ftstatus, within the qualifying tname, oOr

petween the «V and the tleftiparenthesis. There may be

tspaces elsewhere within such fconstants. ladazl

.22 tStatusi:constants and qualified:status:i:constants
represent constant integer values. How they become
associated with these values and how they may be used are
explained elsewhere. 1In distinction to
tinteger:constants, which can only stand for zero ana

2l

DLS 8-MAR=-T74 05:52 30156

JOVIAL Manual==Chapter 2

positive integer values, tstatus:constants and
qualified:status;constants can also stand for unvarying
negative integer values. lada22

Computer Representation of fconstants and tvariaples la9

JOVIAL is designed to be compatible with binary computers,
machines in which numeric and other values are represented
a8 strings of binary digits, ones and zeros, The bits
(pinary digits) of a computer are organized in a
hierarchical structure. A compiler may impose a different
structure on the computer, but for reasons of efficiency it
usually adopts a sStructure identical to or at least
compatible with the structure of the machine. The Sstructure
discussed in this section is the system structure; i.e., the
structure presented to the programmer by the combination of
a particular computer and a particular JOVIAL compiler that
produces object code for that computer. laya

.1 JOVIAL tprogram:;declarations are not completely
independent of the system, The extent of dependence,
however, 18 related to the use ofi certain language
features, Dependence is increased oy the use of
features, such as tpattern:constants and ¢BIT, that
relate to bit representation or those, such as «LOC, that
relate to system structure. The value of a
tpatterniconstant is completely independent of the
system, but its use implies knowledge of the
representation of other data, It is that knowledge,
puilt into te tprogramideclaration, that is systen
dependent. lag9al |

.2 Even if such deliberate system dependence is avoided,

the programmer must still have knowledge of structure and
representation in his system so that he may know tne

limitations on precision, how his tables must be

structured, and how to avoid gross inefficiencies., For

example, in processing long strings of character data, 1t

is often much faster to examine and manipulate them in
word-=size, instead of byte=~size, hunks, lagaz

«3 A "byte" is a group of bits often used to represent

one character of data. The number of bits in a byte is

system dependent. Although JOVIAL permits some leeway in
positioning bytes, there are usually preferred positions.

Wwhen referring to these preferred positions, we often use

the term "byte boundary". lagas

<4 A "word" is a system~dependent grouping of pits

12

DLS 8=MAR=TL 05:52
JOVIAL Manual==Chapter 2

. convenient for descriping data allocation. Entries and
tables are allocated in terms of words, Data are
overlaid in terms of words. The maximum sizes of numeric
values may, but need not, be related to words., Word
boundaries usually correspond to some of the bytle
boundaries.

.5 The "basic addressable unit" is the group of bits
corresponding to each machine location. In many
machines, the basic addressable unit is the word. In
others, it is the byte. If it is the word, each value of
the location counter refers to a unique word. If tne
basic addressable unit is the byte, each location value
refers to a unique byte. In these latter circumstances,
it often happens that adresses are somewhat restricted.
For instance, it may be permitted to refer to a string of
characters starting in any byte, or to double=-precision
floating values starting only in bytes with locations
divisiple by 8.

.6 Integer and fixed values are represented in binary as
strings of bits. The number of bits used to represent

[the magnitude of a value is known as its size and is (in

l nost cases) under the control of the programmer. The

| position of the binary point is understood and takes up

‘ no space, For signed values, the sign bit is an

additional bit not counted in the size of the value, For

l purposes of the use of «BIT, the sign bit is considered
to lie just to be left of the most significant bit
accounted for by the size of the value, The maximum
permissible size of an integer or fixed value is systen
dependent., The maximum size of a signed integer or fixed
value is one less than this system=dependent size ana the
places where unsigned values of maXimum sSize may D€ used
are restricted; i.e,, they must not be used in
cornjunction with any tarithmetic:operators, nor with tne
four nonsymmetric trelational:operators ¢<, ¢>, «<{z, €>=,
and when used with the symmetric trelational:operators
(e= and «<>) the other operand must not pe signed.

.7 The compiler determines the sizes of ftconstanis. TIhe
programmer usually supplies the sizes of tvariables, The
size does not include the sign bit for signed data., For
unpacked or medium packed data, there may be more pats in
the space allocated for an item than are specified by tne
programnmer, Whether or how these extra Dits are usea is
system dependent, but in any case they are known as
"filler bits". The sign bit, if there is one, and any
filler bits are to the left of the magnitude bits. It

30196

lagal

lagab

lagaé

DLS 6=MAR=T74 05:52 30196
JOVIAL Manual==Chapter 2

‘. depends on the system whether the sign bit is to the left
or right of the filler bits. laga’

.8 The meanings of bit values «0 and ¢l are not

stipulated, but in most implementations ¢0 stands for «0

and «1 for ¢l in positive values. For negative values,

there is considerable variation. All the following are

known and acceptable representations of ¢=12 in an

unpacked, signed, integer item declared to be four bits

long: lagad

«11111111111121111111111111311111311111111111110011 lagada
* 10000000000000000000000000000001100 lajato
* 10100 lagaédc

.9 Floating values are represented by two numbers, botn
signed. The significand contains tne significant digits
of the value and the exrad is the exponent of the
understood radix, Each system has a standard mode of
representing floating values, known as "single
precision", with a specified numper of bits in the
significand and a specified number in the exrad. Many
systems have one or a few additional modes in which there
are more bits in the significand, the exrad, or botn., If
there is more than one mode, the programmer can usually
choose the mode for each floating value, In the apsence
of an indication of such choice, the compiler will
usually choose single precision. The radix is an
implicit constant having a system~-dependent value.

.10 cCharacter values are represented by strings of

bytes, each byte consisting of a string of pits. Tne

number of bits in a byte is system dependent. Tne number

of bytes used to represent a character value is under

control of the programmer, but there is a

system=dependent maximum, 1a5alo

.11 A character item that fits in one word is always

stored in one word, by the compiler. By use of a
tspecifieditablesdeclaration, the programmer may override

this rule. If it is not densely packed, a character item

always starts at a byte boundary. If it crosses a werd
poundary, a character item always starts at a byte

poundary. The programmer must not attempt to override

this rule. ia9all

.12 An entry variable whose relevent fttapleideclaration

DLS 8=-MAR=-T74 05:52

JOVIAL Manual=-=Chapter 2

does not describe it as peing of some other type is a bit
variable, It is merely the string of pits, of a size
corresponding to the number of words in an entry,
representing the entry,

2.10 ftSpaces, rComments

The syntactic structures of all tsymbols have now been
explained, as well as the places where tspaces are pernitted
or prohibited within them, All further structures that go
to make up a ftprogram:declaration are composed of strings of
tsymbols, It is always permitted to place one or more
tspaces between tsympbols, It is sometimes required to put
at least one tspace between tsymbols. The criterion is to
avoid ambiguity. Comments can often replace required
tspaces,

.1 tSpaces are required in many situations to enable the
compiler to detect the end of one tsymbol ana the
beginning of the next, Generally, at least one space 18
required petween two tsymbols of any class except
tideograms, but including the fquotation:mark. The rule
is exhibited in detail in the following table., The IroOwWS
are labelled with the ending tsigns of the left tsymool
of a pair of tsymools, The columns are lapelled with tne
beginning tsigns of the right tsymbol of a pair. "SR" at
the intersection of row and column inaicates that at
least one tspace is required between the pair of
Tsymbols:

.2 A tcomment may occur petween tsymbols. However, it
must not occur within a tdefinition nor within any
tconstant, such as a tstatus:constant or a
tcharacter;constant, A tcomment may be used insteaad of
the required tspace between tsympbols unless use of tne
tcomment would cause the occurrence of two
tquotation:marks in succession. In fact, only the use of
a fcomment can bring about the situation indicated by the
lower right corner of the table above, Introduction of a
tcomment between tsSymbols where & ftspace is permitted buv
not required may then require a ftspace to prevent tne
tcomment from interfering with another tsymbol,

+3 A tcomment must not be used Where the next structure
required or permitted by the syntax is a tdefinition.
That is, a tcomment must not follow the ftdefine:name or a
tright:parenthesis in a tdefine:declaration, And a
tcomment must not follow a tleftiparenthesis or a fcomma
in a tdefinition:invocation., A fcomment, as defined

lalla

laloal

laloaz

DLS 6=MAR=74 05:52 301%6

JOVIAL Manual==-Chapter 2

. above, must not occur in a tdefinition delimited oYy
tquotation:marks, lalOa3

16

DLS &=MAR-TW4 05:52 30196

JOVIAL Manual==Chapter 2

Titlie: Author(s): Duane L, Stone/DLS;

‘ (J30196) 8-MAR=T7L 05:52;
RADC; Obsoletes Document(s):

Distriobution: /RJC; Sub=Collections:

30166; Clerk: DLS;
Origin: <STONE>C2.NLS;1l, 8=MAR=-T7L 05:03 DLS ;

* \ DLS 8=MAK=74L 053158 30197
JOVIAL Manual=-=Chapter 3

‘ Contains font markers and stucture

DLS 8=MAR=T4 05:586 30157

JOVIAL Manual-=Chapter 3

. Chapter 3 1
TVARIABLES la
3.1 Concept of tvariables lal

A JOVIAL ftprogram:declaration consists of a string of
tstatements and tdeclarations that specify rules for
performing computations with sets of data., The basic
elements of data are items, Items are named to distinguisn
one from another, Sometimes, a ftname applies to a group of
itens, requiring indexing to tell one member of the group
from another, Several named groups may be sSubsumed unaer
another group, which is known as a table and which is itself
named, Tables and items may in turn be collected in anotner
group called a data block which, again, 18 named. Space may
be allocated these data structures either statically at
compile time or dynamically at execution tine, lala

.1 The value of items and other data can be changed in

various ways. A data element whose value can be changed

by means of an tassignmenti:statement is Known as a

variable. Items, then, are variables, Table entries can
function as variables, as can parts of items under tune

influence of the tprimitives «BIT and «BYTE. lalal

«2 A tvariable is the designation, within a
tprogram:declaration, of a variable to be manipulated

within the computer. The two syntax equations for

tvariable (above) indicate, first, the type of data

involved, and second, the grammatical form of the

tvariable related to the kind of data structure in which

the variable exists, lala2

3,2 fTNamed:Variable laz

A tnamed:variable is a reference to a variable by means of a

tname associated with the variable through a

tdata:declaration, A tsimple:variable is a reference (for

the purpose of using or changing its value) to a variable

declared to be a simple variable; one not declared as a

constituent of a table. No tindex is involved in a
tsimple:variable because the reference is to a variable that

is one of a kind, not part of a matched set, Use of the
tpointer:formula is explained in Section 7.6 laza

.1 A ttable:variable is a reference to a variable
declared to be part of a table. A table consisis of a
collection of entries and there is an occurrence of each

DLS 8=MAR=T4 05:58

JOVIAL Manual==Chapter 3

3.3

table item in each entry. An tentry:variable is a
reference to the entire entry as a single variable. An
tindexed;variable (a ttable:variable or fentry:variable)
generally includes an tindex to select the particular
occurrence of the variable being referencead.

.2 An tindex is correlated with a ftdimension:list.

Every ttable:declaration contains a taimension:list which
prescribes the number of dimensions of the table and the
extent of the table in each of these dimensions in terms
of its tlower:bound and its tupper:bound, (Some of tne
detailed specifications can be omitted; tne defaults are
explained elsewhere,) Each tindexicomponent must
evaluate to an integer value (tnumeric:formulas are
explained in Sec 5) not less than the tlower:bound and
not greater than the tupper:bound in the corresponding
position of the relevant tdimension:list. The relevant
tdimension:list is, of course, the one in thne
ttable:declaration bearing the fttable:name beginning the
tentry:variable or in the ttable:declaration containing
the titem:declaration bearing the titem:name starting the
ttable;variable, The rightmost tindexicomponent selects
the element, of the row selected by the tindex:component
second from the right, from the plane selected by the
index:component third from the right, etc.

.3 1If the tindex is omitted from an tindexed:variaole,
whether or not the empty tbrackets remain, the meaning 1is
the same as if the complete tindex were present and each
tindex;:component were equal to its corresponding
tlower:bound. In fact, a legitimate form of
tindexed:variable is to omit one or more
tindex:components, marking their positions of necessary
with tcommas. The meaning of such a form is the same as
if each missing tindex:component were present with a
value equal to its corresponding tlower:bound. The
following example shows an fordinary:table;declaration
and three tentry:variables, all with exactly the sane
meaning:

«TABLE ALPHA [3:7, 9, 100:157, 0:50/; NULL;
«ALPHA (3, 3, 100,0]

«ALPHA (, 3,, 0]

«ALPHA [,3]

tLetter:Control:variable, tFunctional:Variable

301597

lazal

lazaz

laza3
laza3a
la2a3o
laza3c
la2a3a

la3

¢ § DLS 8=MAR=TL 05:58 30197
JOVIAL Manual==Chapter 3

. A tletter:control:variapble is a reference to a variavle
designated within a tloop:statement to aid in control of
execution of the tcontrolled:statement and to have meaning
only within the tloop:statement. It is explained in Section
5.8 in conjunction tloop:statements, laja

.1 1tFormat:variable is a special form that enables a

1ist of values to be converted to character typre and

assembled into a character value, The details are given

in Section 6.1.7 la3al

.2 The above construct selects a string, of the
characters denoted by the tnamed:character;variaple, to
be considered as the variable to be given a new value,
The tnamed:character:variable can be any ftsimple:variable
or tindexed:variable of character type, The bytes of lne
tnamed:character:variable are considered to be numbereaq,
starting with zero at the left. The ftnumeric:;formula
following the first fcomma is evaluated as an integer and
used to select the byte of the tnamed:character:variable
to be considered the leftmost byte of the
tfunctional:variable, If there is no second tcomma and
no second tnumeric:formula, the leftmost byte of the
tfunctional:variable is its only byte, Otherwise, the
second tnumeric:formula is evaluated and tells nhow many
. bytes there are including the leftmost byte, in tne
tfunctional:variable, lajzaz

.3 The tnamed:variable in the above metalinguistic
formula can be of any type. The construct selects a
string of bits, from the bits denoted by the
tnamed:variable, and treats that string of bits as a pit
variable, The bits of the tnamed:variable are considered
to be numbered, starting with zero at the left, The
tnumeric:formula following the first tcomma selects tne
bit to be considered the first bit of the derived
variable, The tnumeric:formula following the second
7comma (if there is one) determines the numper of bits in
the derived string (one bit if there is no such
tnumeric:formula). In signed variables, the sign bit 1s
bit zero and the leftmost magnitude bit is bit one. 1In
unsigned numeric variables, the leftmost magnitude bit 15
bit zero. 1In entries, the leftmost bit of the first word
is bit zero. 1In character variables, the number of bits
per byte is system dependent. In floating variaples, tne
sign pits of the significand and exrad are included in
the pit count, but the arrangement of pits is systen
dependent. la3za3

DLS b6=MAR=T4 Q5358
JOVIAL Manual=-=-Chapter 3

3.4 1tFormat:Variable, tBit:Variable, fCharacter:variaole

tFormat variable is explained in Section 6.1.7.

.1 The construct using «BIT is explained in Section
3,3.3, A tbit:variable denotes a string of bits without
consideration of any numeric or other meaning associated
with those pits, Almost all tnamed:variables carry an
implication of some data type other than "bit", However,
an tentry:variable, if the ttable:name is not declared so
as to imply some specific data type, denotes only tne
string of bits constituting the entry.

.2 The construct using ¢BYTE is explained in Section
3.3.2. The tnamed:icharacter:variable is a
tTnamed:variaple using a tname declared to denote a
variable (an item or an entry) of character type.

3.5 Numeric:Variable

Any tnumeric:variable can be used as a ftpointerivariable.
The details of the use of tpointerivariables are given in
Chapter 7 in conjunction with discussion of controlled
allocation, ftLetter:control:variable is explaineda fully in
connection with tloop:statements, Without being explicitly
declared, it becomes an tinteger:variable through its usage.
All tnames that can be used as tnamed:variables are declared
a8 explained in Chapter 7. Some ftentry:variables may use
tnames not associated with any data type, All other
tnamed:variables use tnames that are associated witn
titem:descriptions, These titem:descriptions give the data
type among other things (see Section 7.1l6 for details). One
data type is "character" as mentioned above in Section
3.4.2. Another data type is "floating".

tFloating:variables use tnames declared to be of floating
type. The other descriptive terms in titem:descriptions
denote "signed" and "unsigned", but we are interestead nere
in other attributes, Signed and unsigned data are also
associated with one or two tnumbers. The first tnumber
declares the size of the datum, the number of bits in its
magnitude. If this is the only tnumber in its
titem:description, the datum is an integer value and the
tnamed:variable denoting it is an tinteger:variable. The
second tnumber in the titem:description for a signed or
unsigned value declares the precision of the value, the
number of bits in its magnitude after the peint. If thas
second tnumber is present, even if its value is zero, the
datum is a fixed value and the tnamed:variable denoting it
is a tfixed:variable.

30197

lak

laua

lajal

lajaz

las

labsa

3 ' DLS 8=MAR=T7L 05358 30137
JOVIAL Manual==Chapter 3

. (J30197) B=MAR=TL 05:58; Title: Author(s): Duane L, Stone/DLS;
Distribution: /RJC; Sub=Collections: RADC; Obsoletes Document(s):
30162; Clerk: DLS;

Origin: <STONE>C3.NLS;1l, 8=MAR=T74 05:17 DLS ;

I
DON 8«=MAR=T4 06342 301986 |

GREETING AND TEST

HELLO DLAE., WOULD YOU LET ME KNOW IF YOU GET THIS MESSAGE? 1'M TRYING

TO SEE HOW THE NIC JOURMAL SYSTEM LIKES ME. MY IDENT IS DON AND MX

NET ADRESS IS CANTOR AT MULTICS. COMPUTING IS MY GAME, OR MORE OR

LESS. HOW ARE YOU GETTING ALONG AT CCA? I HEAR YOU ARE CHAIRPERSON OF
THESTERRING COMMITEE, OR SOMETHING., MAYBE YOU ARE TO BUSY TO READ

THIS NOTE, MUCH LESS ANSWER IT. QUR NLM THING IS STILL ALIVE.

MICHAEL STILL WON'T SLEEP THROUGH THE NIGHT, BUT WE LOVE HIM ANYWAX. 1

AAM B=MAR=T4 O07:01 30155
NCC TIP Hardware Work

On Tuesday, March 12, the NCC TIP will be taken down from about 1300
to about 1900 (EDT) for hardware work. We hope this does notu cause
great inconvenience to our users,

‘

NCC TIP Hardware Work

AAM B=MAK=T74L 07:01

. (J30199) 8=MAR=T74 07:01; Title: Author(s): Alex A, McKenzie/AAM;

Distribution: /BBN=-NET BBN=TENEX;
BBN=TENEX; Clerk: AAM;

Sup=Collections:

NIC BBNeNET

30159

EJK 8=MAR=-T74 11:15 30200
Project ADMIN = ROC USAF 17-73 = Administrative Management
Information Systen

This copy is as close as I can get it, Some small liberties have
been taken in format. NOTE: This is several pages long.

EJK 8=MAR=Th4 11:19

Project ADMIN = ROC USAF 17=73 = Administrative Management
Information Systen

COVER LETTER

Required operational Capability for Administration Managenent
Information System (Project Admin) ROC Number: USAF 17-73

Preparing Office: Systems Management and Programming Group
(HQ USAF/DAX)

(Project Officer: Mr. Frank Allen, GS~13, Ext 70L27)
28 December 1973
I. DEFICIENCIES/NEEDS

Administration management at all echelons of the Air Force is
severely hampered by the outmoded and largely manual system for
processing and preparing documentary communications media.
gontinued reliance on ad hoc, after=-the-fact, corrective
management has resulted in slow, inefficient, uneconomic, and all
too often ineffective administration management information
systems.,

The need for a systematic program that will provide efficient
procedures and equipment for creating, reproducing, distributing,
transmitting, storing, retrieving and disposing of documentation
is further underscored by the amount of time spent by large
numbers of Air Force personnel in the information processing and
transfer functions, and by the great quantities of textual
documentation involved, There are, for example, approximately
120,000 military and civil service manpower authorizations
performing the administrative task of creating (typing) documents.

II. REQUIRED OPERATIONAL CAPABILITY

An Administration Management Information System, which proviaes an
enhanced capability for the preparation, timely transmission, anad
recall (cyclic or on demand) of documentary communications witnin
the Air Force and which takes full advantage of the technological
developments in automatic data processing (ADP) and
communications, is required. The system must be designed SO that
equipments obtained and procedures developed can be phased into
Air Force organizations without detrimental interruptions to the
organizations' primary operational horizontal compatibility at all
echelons of the Air Force as well as meeting foreseeable interface
standards with other DOD and Federal agencies.

We. K. Richardson, colonel, USAF

30200

la

lal
la2

la3

3a
3b

EJK 8=MAR=T7L 11:19
Project ADMIN = ROC USAF 17=73 = Administrative Management
Information System

Deputy Director of Administration
2 Attachments;
1, ROC USAF 17=73 Sec III-VIII with attachments
2. Distripution List

III, DETERMINATION OF DEFICIENCIES/NEEDS AND THE REQUIRED
OPERATIONAL CAPABILITY,

1. Over the past few years, the administrative workload within
Alr Force organizations has witnessed a dramatic growth both in
magnitude and complexity. The duplicative and wasteful efforts
accompanying the preparation, transmisssion, and storage of
documentary communications, the untimely delays and errors in
transmission, the unnecessary loss of operational personnel to
support functions and the resultant reductions in mission
effectiveness are no longer tolerable. It is not only desirable
to initiate a program to eliminate these deficiencies, it is
essential.

The following illustrations exemplify the magnitude and
complexity of the administrative workload and indicate the scope
of the effort required to resolve the deficiencies which occur in
every oifice, regardless of functional assignment or
responsibility.

a. OVer 500 million pieces of correspondence and 100 million
copies of messages are processed annually through
administrative communications channels. An average of 30,000
pieces of mail is generated daily by Air Staff members alone at
an estimated cost of 8200,000 each day.

be 700,000 cubic feet of records are being retired annuaily oy
the over 52,000 offices of record. One cubic foot represents
2000 8x10~1/2 inch pages weighing nine pounds. Thus, the Air
Force is retiring 3,000 tons of paper or one billion pages each
year.

c. Between 4O and 50 tons of publications and pblank forms are
received and shipped daily at the Publications Distripution
Center.

d. Over 120,000 manpower positions (military and civil
service) create written documents by some typing effort, as
based on the requirement of having the typing skill as part of
their position description. Attachments 1 and 2 are l1listings

30200

3c
3d
3dl

3a2

4a

Lo

ubl

kb2

Lb3

EJK 8=MAR=T74 11:19
Project ADMIN = ROC USAF 17=73 = Administrative Management
Information Systen

of these authorizations by Air Force Specialty code, title,
typing skill requirements, and numbere.

e. An estimated 12,000 typewriters are purchased annually as
replacement items at a cost of $5 million to provide typists
with basically the same production capability that has been
available for years,

£f. Over one million printed pages form the Departmental
portion of the administrative data file of regulations,
pamphlets, and manuals. This is only a small part of the data
base to which an Air Force manager must have access in order to
efficiently carry out his mission., He must also have access to
the Major command, base, legal, financial, and technical
publications.

A number of studies and analyses have been performed which

relate to this ROC,

a, During the Mission Analysis of Base Communications (BCHMA),
large potential savings were identified by providing a "fully
responsive, integrated, information transfer system" to tne Air
Base., Details of the methodology and results are presented in
Section IV and Appendix 6 of the needs Panel Report of tlhe Base
Communications Mission Analysis. The concept included all
forms of communications: face-to~face conversation, closed
circuit television and mail, as well as the classic telephone
and electrical message systems. The basic actions which people
take to cause information to flow = data entry, address,
signature entry, retrieve or store, etc. = are common to all
modes of information transfer in all places and at all levels
and thus form a baseline from which information transfer needs
can be derived,

The way in which information is transferred today is heavily
influenced by the communications systems which have been made
available, For example, many, if not most, of the methods and
procedures employed for the creation, transfer, storage,
retrieval and delivery of information from writer to reader
were developed with the available information transfer systems
as a governing factor, Remembering that the basic actions are
similar regardless of where they occur, it becomes obvious that
any improvement in the transfer of information at the basic
level could foretell impprovements in the entire spectrum of
information transfer functions,

The information flows identified in Appendix 6 of the Needs
Panel Report were examined with a fully responsive information

30200

Lok

Lb5

Loo

ke

ucl

Lez

EJK 8=MAR=T74 11:19
Project ADMIN = ROC USAF 17-73 = Administrative Management
Information System

transfer system in view and new flows Were developed whicn
assumed the availability of such a system. These flows,
showing the minimal time and actions required, are presented in
Appendix 12 of the Report, A comparison of the current and
minimal flows revealed startling differences in the numper of
actions and the time required to take those actions. Savings
ranged from 24 to 96 percent in the flows that were eXamined.

b. A Study by AFSC/ESD determined that in a mixed
(manual/automatic) typing center, when the typing load is as
low as 20 per cent of the total effort and four darafts are
normally required before final typing, efficiencies and Savings
could accrue tc the organization by replacing manual stations
with automatic typing stations instead of adding additional
manual stations. With a group of two or more typists and typing
workload as low as 20 percent of the total effort, the time and
money Saved in set-up and retyping corrected drafts in an
automatic typing mode ~-magnetic tape cartridge, magnetic card
or on~line computerized text editing == was less than the cost
of hiring additional typists,

Although, not all correspondence requires four drafts prior 10
final draft, the nuumber four is believed an acceptable average
for paperwork going outside of the originating organization.
Additional benefits which accrue are the time saved in
preparing identical correspondence to multiple addressees, tne
ease of producing a final clean copy and the ease of correcting
mistakes,

c. The AFSC/ESD East Coast Study Facility has used the IbM
Magnetic Tape Selectric Typewriter, the IBM Magnetic Card
Selectric Typewriter in conjunction with the Bowne Time Snare
"Word/One" text editor, resident on an IBM 360 computer, and
the Redactron Tape Cartridge system, These systems were used
for the high volume reports required by the Weather 85 and Base
communications Mission Analysees (BCMA). (The report of the
Needs Panel of the BCMA alone was in excess of 1200 pages.
Experience on these systems has shown a marked savings over the
time and personnel required in an equivalent manual environment
to produce such reports,

d, The AFSC/ESD Directorate of Information Systems Technology
has also used an on=line text editor for production of high
volume, high priority reports and correspondence == €.g.
Engineering Plans, Program Management Plans, Procurement
Packages, Command letters, multiple address correspondence,
personnel and manning statistics, and technical reports.
Although only four terminals are in use, the six typists are

30200

Les

Lek

beb

4co

EJK 8=MAR-T4 11:19 30200
Project ADMIN = ROC USAF 17-73 =~ Administrative Management
Information System

able to share the terminals through phasing cf the workload and
control of priorities. be7

e, The Department of Defense study "Mini-Cats",
Miniaturization of Supply Catalogs, was conducted in July 1971.
The report emphasized economies in printing and use of supply
catalogs in microform rather than paper books., Conversion to
microfiche started in January 1973. The impact to the Air

Force is: Lkcd
(1) Annual Printing expense: Lcoa
Before §300,000 Ledal
After 3180,000 Lecoa2
Annual Mail Costs: Lcdbd
Before 8§ 96,000 Lebpl
After $ 5,000 kcBdb2
(3) Impact on User: Leode
Before Lecdel
Shelf Space 10 feet kecbela

Book size 50,000 pages hcéelo
Weight 200 pounds 4céelce

After Lede2
shelf Space 2 inches hcocea

Book size 200 microfiche Lcdc2b
weight 2 pounds Ledcze

The same savings, plus increased user efficiency, 1is

available to the Air Force publication area with a total
administrative system that generates the data via

automatic typing stations, transmits the data

electronically for publishing review and editing, and

then transmits the data electronically to an electronic
microfiche composer for generation of microfiche for
reproduction and distribution, 4ecoc3

EJK 8=MAR=7L 11:19
Project ADMIN = ROC USAF 17=73 = Administrative Management
Information Systenm

£, An Alr Force Indicia Policy Study Group report, completed
for the Director of Administration in July 1972, analyzed tihe
impact of the new United States Postal Service on the annual
Air Force budget requirements for mail, The mail costs are
rising from the FY 1972 12 million dollar annual cost to a
figure in excess of 36 million == an increase at a minimum rate
of 200%, A comparison of paper (225 pages to the pound) to
microfiche (270 pages to 1/7 ounce) dictates a change. A
further comparison to completely electronic distripution (zero
mail cost) underscores the thrust of Project Admin.

IV. SOLUTIONS

1. There are many mechanical aids and technigques which can pe
phased into the Air Force inventory to alleviate major portions of
the cited administrative problems. The solution envisioned
comprises a mix of automatic typewriters/remote terminals for data
generation, rapid digital or micro~image transmission for
distribution, and digital, micro-image, anda video for storage and
retrieval. This solution can best be satisfiea by:

Giving the clerk-typist the capability of preparing various
types of documentary communications with the minimum of human

effort.

Providing a transmission system which can distribute these
documentary communications from the originator to the user wWith
the minimum of human intervention,

Furnishing the user with a storage and retrieval capabilivy
which can recall pertinent documents on demand With the minimunm
of technical knowledge of sophisticated or complicated
procedures,

2., A progression toward the desired capability is proposed as
follows:

A detailed analysis and evaluation of Administration functions
must be performed to estaplish the functional requirements
baseline.

An engineering development plan should be prepared for a
prototype Administration Management Information Systen,
descriping system objectives, the prototype system, cost
factors, resource requirements, schedules, program management,
and other necessary events and milestones leading to prototype
implementation, test and evaluation,

30200

bcy

sa

5al

5az2

5a3

1)

5ol

502

EJK 8=MAR-T4 11:19
Project ADMIN = ROC USAF 17=73 = Administrative Management
Information Systenm

Following prototype test and evaluation a program management
plan should be prepared detailing the desired approach based on

cost, potential benefit and technical feasibility. 503
V. CLASS V MODIFICATIONS Not applicable 6
VI.QUANTITIES INVOLVED 7

One prototype system is envisioned at this time. A combination of
off=the=shelf equipments to provide flexipility in handling

processing tasks, provide for the accomplishment of the functions
described in III above, and provide for future expansion is

required. Only broad estimates may be given on gquantities of

eguipment involved until the prototype test and evaluation 1is

completed. Ta

VII. HARMONIZATION)

Harmonization with other agencies/systems will be determined

concurrent with prototype implementation., However, coordination

will be effected between MAJCOM Headquarters, USAF, and

participating lower echelons in order to exploit standardization
opportunities in the areas of hardware, software, procedures,

skills, man/machine interface and training. ba

. The National Archives and Records Service (NARS) of the General
Services Administration (GSA) indicates that to its knowledge no
other federal agency is contemplating or has undertaken a project
of this scope, The successful design of the Air Force systen
would furnish the guidelines for expansion among other DOD and
federal agencies., The information transfer procedures ana
equipment would, of necessity, have to be designed or acquired
with the capability to interface with other existing and proposed
systens. 14}

VIII. SPECIAL COMMENTS 9

The Directorate of Administration has a Systems Management and
Programning Group which has the responsibility under AFR L=l for
improvements in administration management and the basic backgrouna

in the needs of the Administration function, It does not have the
research facilities or the technical knowledge to cover the entire
spectrum of tasks required to design, develop and procure a

system, However, the Group can be used in support of systien
implementation, ga

The Mission Analysis of Base Communications developed analysis
tools which can be directly applied to this task. Additionally,

s EJK 8=MAR=-TU4 11:19
Project ADMIN = ROC USAF 17-73 = Administrative Management
Information System

concepts developed by that group presumed automated tools having
the capabilities described herein would be required in the 1985
time frame, The concepts in Sections IV, VI and the BCMA have
provided for that requirement,

study of the support of Air Force Automatic examining the computer
capability to support the total Air Force wide needs, including
the administrative needs, (sic)

Initial operational Capability for a pilot system using currently
available technology can be achieved within 18 months, A pilot
operation would be useful to measure actual savings and develop
new methods and techniques of accomplishing Air Force
administrative functions, Selection of location(s) for the pilot
system will pe dependent upon the initial effort prescribed in
Section 1V,

Although potential savings == which can ultimately result in
manpower savings =- are known from past eXxperiences and recent
studies, most notably the BCMA, the definitive manpower Savings
can only be determined through a detailed analysis of a protouiype
system. Therefore, the type, quantity, and the placement Of the
terminal equipments have not been determined. The most noticeable
savings will pe in finished product production time;

transmission, decision and response time; and printing, editing,
publication and distribution tinme.

30200

Yo

9c

ga

ge

EJK O0=MAR=TL4 1l:ly 30200
Project ADMIN = ROC USAF 17-73 = Administrative Management
Information Systenm

(J30200) B-MAR=T74 11:19; Title: Author(s): Edmunda J. Kennedy/EJK;
Distribution: /RADC; Sub=Collections: RADC; Clerk: EJK;

DHC B8-MAR-74
USING idents

What happened to the NETBAGRIPES and NETCCMMENTS idents??7?

17:07

30201

DHC S—=MAR-74 17:07 30201

USING idents

(JJo201) S—MAR-T4 17:07; Title: Author(s): David H. Crocker/DHC;
Distribution: /JAKE BUGS MDK; Sub—Collections: NIC BUGS; Clerk: DHC;

DHC B-MAR-74 17:30

fenex RJS to CCN
ccs FIELDS at BEBN, BURCHFIEL at BBN, HEARN at UTAH-10, BOYNTON - -

(L"a not sure who this letter is specifically intended for. All of
you may find it relevant/interesting).

A major piece of Network software —— the ERJwTenex RJS to CCN program
-= tarns out to be unsupported. It is not currentlypossible to get
bugs fixed in either the Harslem/Fagan Bliss version or the

Hicks Fail version.

We can't even locate the source to the Bliss copy

Dave,

30202

DHC 8—MAR-74 17:30

[enex RJS to CCN

cc: FIELDS at BBN, BURCHFIEL at BBN, HEARN at UTAH-10, BOYNTON - -
(L'a not sure who this letter is specifically intended for. ALl of
you anay find it relevant/interestinag).

(J30202) S3-MAR-74 17:30; Title: Author(s): David H, Crocker/DHC;
Jistributions /DHC; Sub-Collections: NIC; Clerk: DH;

30202

DHC 9-MAR-74 12:47

Documentation

. cc: Lou, rossiter;bin(1200) at UCLA-CCN

Lyna == I want to cerify what documents are currently in the
mill and what you should do as you complete them.

(there is no priority implied in this list, I'm putting them down as
i tnink of them):2

Inree or four NUTS notes on Tenex.

NUTS Notes on 1) document printing, 2) NUSEXDOC,
J) CCNJOB, 4) RJS (NMCRJS)

LTSET

Spencer's write-ups

Tables of contents for MA and NMC Notebooks.

fable of contents for NUTS Notebook will need updating

Various Notes to secretaries (your coplies are marked,
30 you can tell from them).

‘ IL would Like you to take the attitude that they are completely

responsibility (in terms of the care you take in proffing them) and
then lLeave me messages (thru sndmsg to dcrocker at isi) when you feel
a document is ready. Leave a 'clear text' draft in

DOC.LAR:;# (where # differentiates the different documents), 'Clear
text'', you will recall, refers to running the document through
Output Device Printer and Sendprint, as per the Document Printing
docunent,

['LL be checking in Wed though Friday and then the following friday
(and maybe Mondey).

Rots o' rucke

PeS.y Lou == I Jjust remembered that Monday the 25th is a holiday.
I'LlL see you the 26th, then)

Dave.

30204

la

ib
lc
1d
le

1f

lg

DHC 9-MAR-74 12:47

Documentation
cc: Louy rossiter;bin(1200) at UCLA-CCN

Lvyna == [want to cerify what documents are currently in the
2ill and what you should do as you complete them.

(J30204) S—MAR-T4 12:47; Title: Author(s): David H. Crocker/DHC;
Distribution: /LYNN; Sub-Collections: NIC; Clerk: DH;

30204

	30180

	30181-30182

	30183-30185

	30186-30189

	30190-30193

	30194

	30195

	30196

	30197-30199

	30200

	30201-30204

