
DL.S 5—MAR—74 13:57 30180
Outline of steps for COMming JOVIAL Manual

To document work in progress for IS managers and to ask SKI for a
little nelp.

DLS 5—MAR—74 13:57 30180

Outline of steps for COMming JOVIAL Manual

After a few false starts and some overestima11 on of my L—10
programming talents, I have hit upon the following scheme for
trans forning the. JOVIAL Language Specification document from its
current ragged form into a thing of beauty. The steps listed below
see a necessary in light of the requirement for ths document to be as
error free as is humanly possible. 1

INPUT TYPING la

The typing task is not a trivial one, since the text is
sprinkled with "metalinguistic" terms, which must eventually be
set in an italicized font. After some experiwention, I became
coavincd that the flagging of these terms was best accomplished
during initial input, rather than during later editing. In the
source text, they are either typed in italics, underlined with
a solid line or with a /////// line. After the first few
pages, the typist was able to pick this up with no mistakes by
the second chapter. An 1 was used to flag these terms since
this symbol is not used in the JOVIAL language. Less
frequently there are instances of examples which must be set in
monospaced font. These are flagged with a for the same
reason• I a 1

The tables and syntatic equations are being done seperately, by
someone very familiar with tabs etc. on an IS1LAC. This task is
almost impossible to do on a TI. ia.2

One problem, which has increased the burden on the editor,
is missing characters on input. It seems that the typist
goes so fast, that either the TIP or the NLS buffer becomes
full and characters are dropped. I would be interested In
discovering if anyone else on the ARPANET or at SRI has
experienced similar problems.

INITIAL EDITING

initial editing consists of overall structure editing, which is
necessary to translate between NLS structure and the document
structure and to correct any level problems introduced by the
input typist. This can be done very rapidly with the IMLAC and
level viewspecs. Then follows a paragraph-by-paragraph visual
inspection of the text at the IMLAC. Metalinguistic terms are
found fairly easily from context and most typos can be picked
up and corrected on the spot. Minor grammatical editing is
also done at fhis time.

NEWWO3D editing

I nave made a copy of the user program INDEX and made some

1

DLS 5—MAR—74 13:57 30180

Outline of steps for COHaing JOVIAL Manual

changes to use it as an aid in detecting and correcting
mispelled words. The program is contained in <3TONE>NEWWORD.
It includes in its vocabulary, "words" containing —*s, :*S and
»s. It excludes words in a list contained in <STONE>MASTTTER•
These words are obtained from the result of previous NEWWGRD
runs as described below. lcl

The general procedure is to run NEWWORD and at the display,
scroll down through the plex it creates. Mispelled words tend
to stand out like sore thumbs in a sorted plex. When one is
found f I .just Jump on the link, find the word and correct it,
Jump to Return, copy the link to the correctly spelled word if
it exists and delete the statement. Invariably I will find a
half dozen words which were overloked in the first editing
pas s . Ic2

The only problem with this approach is the list of words
generated is very long..6—800 words on the size chapters I am
dealing with. The next step is designed to reduced the length
of this list, and hence make the NEWWORD list more useful as an
editing aid. Ic3

UPDATE MASTER Id

A List of correctly spelled words is contained in
<ST€NE>MASTER• My original idea was to have a program that
automatically added words from the edited NEWWORD list to the
MASIE& list. I overestimated my L—10 programming ability,
however, and have not been able to make it work yet. However,
£ think that this would still be a valid approach, if someone
at SRI (Dean maybe, since the program would be similar to the
user program INDEX) could handle it. The idea is that as the
document grows, the NEWWORD list would become shorter and
shorter, eventually yielding a high percentage of misspelled
words. 1d1

The lile structure of the list would have to be changed, since
the max statement size would soon be exceeded, I found this to
happen for several letters of the alphabet on the second pass. Id2

The procedure I now use is this: ld3

I create a TEMP file and do an Execute Assimilate of the
edited NEWWORD list to the TEMP file with a content analyzer
patern, f •, SPJBPT * ,]| turned on. This picks up only those
words which have occured in 3 or more statements, by virtue
of the fact that the NEWWORD program inserts commas after
each link, ld3a

2

Oat line of steps for COMming JCVIAL Manual

DLS 5—MAR—74 13:57 30180

I then run a program <STONE>FIRSTWORD against the TEMP file,
which strips off the links and leaves me with a word
followed toy a space in each statment.

I then run <USER-PROGS>APPEND and group the words starting
with ttoe same letter into one statement.

I then append the statements in TEMP to those in MASTER.

I have only run three chapters this way, and so far there is
still plenty of room left in each statement in MASTER. I
haver1t kept track of the rate of word acquisition.

CONTENT PROOFING

An ODP is done and an independent person, who is knowledgeable
in the JOVIAL Language Spec area does a final proofing for
content and font indicators. Limited experience indicates that
a two person operation goes smoother. One person reading the
ordinal text and the other following the NLS printout. After
this stage is completed and the necessary changes are made, the
content and font indications are considered 100% accurate.
They will not toe reviewed again in a systematic manner.

TERM INDEX

This document will toe subject to sporadic updates, as new
constructs are added to the language and old ones are redefined
or renamend. The process of defining changes is a slow one
involving several committees and levels of coordination within
AF and DOD. To facilitate changing and republishing of the
document, it is desireable to have an index to all occurances
of the "metalinguistic" terms used in the document. The t then
serves a double function of font change indicator and of index
flag. <STQNE>JMINDEX is used to extract the words preceded by
an t and append links pointing to which NLS statements they
ocurr in. (I might want to change this program slightly, to
reflect the number of tiroes the word ocurrs in each statement.)
Tne chapter is then Jounaled as the "offical" reference copy
for future updating purposes.

Id3b

lel

If

INSERT COM DIRECTIVES

The final fonts, sixes and styles awaits the results of our
first experimental run, where we will toe running the same
sample pages with different mixes of fonts, margins, page
layout etc. If the body of the document is all in the same
font, then we can write an L-10 CA program to replace strings
beginning with t with ^string*. Likewise the strings beginning

3

DLS 5—MAR—74 13:57 30180
Oatiine of steps for COMming JOVIAL Manual

with • will be replaced with ,Mono=On;*s tring* > Mono=Oif 5. This
will take care of 90% of the font changes. If it becomes
necessary to change fonts as well as style, we can use the Yl,
V2, V3 constructs. There is a problem with this however, in
the cases where a metalinguistic or example term is immediately
followed by a punctuation mark. It might be better to use the
Font construct. I will have to see how often this ocurrs and
make a judgement on how much hand editing is required. lgl

We will probably want to redefine the most commonly used font
directives to make them as compact as possible, since some of
the statements are already near the max. limit. We should also
redefine the directive delimiters, to speed up the ODX process.
It appears that t might be good for this also. Any comments? Ig2

The biggest problem comes in inserting the tables and syntatic
equations. So fur I have just put in directives to GYES enough
lines to allow for their manual insertion. I am tempted to
prepare the text of the tables and equations using the system
and copy them into the positon where they belong. This would
assure a uniform treatenent of tables and running text. The
syntatic equations are repeated at the end of the document
anyway, in an appendix used for crossreferencing. If they were
insereted in the text, then the only mannual process would be
to draw in the equation box boundaries and table row and column
division lines by hand. If I go this route I will need to turn
off the Justification before each graphic. In any event, THE
GRAF ICS PORTION OF THE JOB SHOULD BE STARTED NOW, since the
approach will determine the size of the graphic, which in turn
detennins the values of the directives used, where pagination
ocurrs and the content of the footer directive for each page.
I have a couple of questions, which make a difference even now
in this area: lg3

Can the COM right and left justify a line with different
fonts in it? With different Sizes? With different styles?
With mixes of the above? I&3a

How are Tabs treated by COM in Justified mode? Unjustified
mode? Does the Point size of the previous line effect
absolute tabbing distance? ie do I have to explicity reset
size at the beginning of each fable? Could
<USER—PROGS>NOTABS be changed easily to pay attention to
I ABSTOPS directives? Ig3b

Similar guest ion for GYES, etc...if I have set a default YBS
in the orgin statement will the GYES always give me the same
absolute spacing per line? Some of the tables immediately
follow a section heading which will be set in a larger size

4

DLS S—MAR—74 13:57 30180

Outline of steps for COMming JOVIAL Manual

than the subparagraphs under it. I *m concerned that the
Lines following the headings might be larger than those in
the subparagraphs.

JCCOM PROOF

An GDX run will be made. Some one familiar with the JOVIAL
Manual will have to review this and make decisions on what to
do with tables that are divided on two pages. Should another
statement be brought over and the table put on the next page?
Should the whole table be forced to the next page and the
current page be left partially blank? Several runs per chapter
may he necessary to get the desired placement. At least by
breaking the document \ip into chapters, an early change will
not effect the entire rest of the document. lhl

The final job under this task will be to put the proper values,
corresponding to the last section number on the page, in the
Footer directive for each page. 152

COM PROOFING li

A final proof of the COM proofs will have to be made, to see if
we got what we thought we were going to get. A check should be
made to see if the graphics fit properly. Again this will have
to fce made by someone outside the NLS team. Ill

CAMERA READY COPY AJ

Once the proofs have ben reviewed and any necessary changes
made, ctuaiity copies will be made from the microfilm at DDSI. tj 1

Question..can DDSI make camera ready copy from pieces of a
COM run. I am thinking of the possibility that a minor
mistake is discovered, which will require rerunning a few
pages out of a chapter. Do we have to rerun the whole
chapter through the process or can they make up camera copy
from pieces of several runs? Extra charge? ljla

INSERTING GRAPHICS *k

Depending on the route chosen for tables and syntatlc
equations, the lines, brackets, braces and other continuation
symbols will have to be inserted or the entire graphic wil have
to be inserted. The art work is a Job for the Arts and
Drafting group. If the inserts are to be treated as graphics,
someone will have to retype them to get quality improvements
over what we now have.

5

DLS 5-MAK-74 13:57 30180
Outline of steps for COMming JOVIAL Manual

FINAL PAGE PROOF
**ll

A final proof, check of footer section numbers, crosscheck of
syntax indexes, etc. will have to be made before sending the
document to the printer.

SJTO PS INTER

Who does the printing? How many copies?

DISTRIBUTION

To which offices? To individuals? Keep a list of who has
copies for revision, updating, ammendments, etc. Good job for
NL3.

gougn estimates of the amount of time it will take for each task,
bused on our experience to date with the first four chapters (121
typewritten pages).

TASK DIN/PAGE SEC/PAGE

(PERSON) (CPU)

INPUT IfPING... ..20 20

INITIAL EDITING10 10

NBWWORO EDITING........ 5 35

UPDATE MASTER.... 1 5

CONTENT PROOFING 5 5

TERM INDEX.. 0 10

INSERT COM DIRECTIVES 1 5

XCOM PROOF. 5 30

COM PROOFING

CAMERA HEADY COPY.....

INSERTING GRAPHICS...

FIN AL PAGE PROOF,.................. .

Ill

lm

lml

In

In I

2

2a

2b

2c

2d

2e

2f

2g

2h

21

2 j

2k

21

2m

2n

GOTO PRINTER 2o

6

DLS 5—MAR—74 13:57 30180
Outline of steps for COMming JOVIAL Manual

DISIRiBUTION.. 2*>

Estimates above are based on the following factors: 3

2:1 ratio of typewritten pages to COM pages. 3a

OOP— 4sec/page , SENDER INT—Isec/page 3b

OOX tOsec/page, SENDPRINT—4sec/page. 3c

INPUT IYPING 3d

Includes time for I ODP 3dl

INITIAL EDITING 3e

NEWWORD EDITING 3f

30 sec/page for run time (16 more if you have to compile). 3fl

UPDATE MASTER 3g

CONTEN £ PROOFING 3h

TERM INDEX 3i

runtime of jmindex. 3il

INSERT COM DIRECTIVES 3j

2 ODX runs . 3j1

XCOM PROOF 3k

COM PROOFING 31

CAMERA READY COPY 3m

INSERTING GRAPHICS 3n

FINAL PAGE PROOF 3o

GOTO PRINTER 3p

DISTRIBUTION 3q

The overall cost of the project then can be estimated at: 4

PEOPLE—1hr/pg X 400pgs X $7.00/hr = $2800 4a

7

DLS 5—MAR—74 13:57 30180
Outline of steps for COMraing JOVIAL Manual

$7.00 Is the average of 1 technical and 1 clerk. 4al

COMPLfSfi 2«in/p4C X 400pgs / 60min/hr X $100/hr = $1300 4b

$100/hr comes from S500X for facility for a year, which
contains 52weeks» 6daya/week, 16hrs/day. 4bl

OOM—$3.50/p« X 400p«s = $1400 4c

Rough guess at the total then is $6KV which compares with S50K quoted
toy one contractor. 5

Outline of steps for COMminft JOVIAL Manual
DLS 5—MAR—74 13:57 30180

(JJ0180) 5—MAR—7 4 13:57; Title:
Distribution: /EJK JLM FJT ARB NDM
CI era: DLSJ

Author! s): Duane L. Stone/OLS;
DVN RJC; Sub-Collections: RADC»

JSP 5—MAR—74 14:41 30181

ARPA Users on OFFICE—1

Jira:

I just had a meeting with Connie McLlndon regarding ARPA users on
OFFICE-1. We started with the list of ARPA people who had
accounts at ISI, and tried to think of a rationale why they should
MOT have directories at OFFICE-1. I couldn't think of any
compelling reasons* so Connie is asking you to set them all up.
For the immediate future, we're not thinking in terms of moving
aLl their usage to OFFICE—I; rather, we're just anxious to offer
it as an option for periods when ISI is down or overloaded. I get
the feeling that this is going to upset you, so let me put forward
some reasons: ^a

1. ARPA is paying the major share of OFFICE—l's costs. In
return, the only visible resource it is getting is the block of
ARPA slots. Simple justice and good management therefore
demands that these slots be used for ARPA's benefit. lal

2. Of all the uses to which ARPA could put these slots, the
least demanding and disruptive to other users is the type of
activity typical of ARPA office use of ISI, i.e. SNDMSG,
READ MAIL, RD, etc. Ia2

3. If ARPA does not take immediate steps to use these slots,
then they will — through the group allocation scheme — be
swallowed up by others such as RADC, Bell, NIC. From ARPA's
point of view, any and all of these are of substantially lower
priority than ARPA office use. Ia3

4. the hours of operation of OFFICE-1 coincide with the most
overloaded and frustrating period for ISI. Thus ARPA
management use of OFFICE-1 will be of greater benefit In
relieving network pressure than any single other act I can
think of. In particular, it may enable us to move some
computational users back to ISI rather than having to foist
then on unwilliitg hosts. Ia4

5. le want to gradually expand the universe of software used
by ARPA management people to include the fantastic planet of
NI.3. Getting them on OFFICE-1 now is a good start. Ia5

6. ISI lias been notably unreliable during the primary hours of
ARPA management use, while OFFICE—I has been rock—solid. It is
therefore highly attractive to open OFFICE—1 as an option for
these users.

So we're not kidding? we really do want to make OFFICE—1 available
to the ARPA office right now. There are other issues we'd like
you to address at the same time: lb

1

JSP 5—MAR—74 14:41 30181
AWPA Users on OFFICE-1

1, these users are accustomed to using the following services
and systems:

3NDMSC

HEADMAIL

SB

TfiCO

Tnese should be provided so that we can make a smooth
transition to NLS later. (I'm sorry about TECO, but that's the
way it is.). Ib2

2. Within this group of users, we really must make some sort
of reasonable provision for priority use by a sub-group.
Within the cloistered computer science community this no doubt
seems arbitrary, capricious, and profoundly undemocratic. But
it is in fact an inescapable element of any real—world
environment into which you will introduce your technology. So
we might as well get used to the idea right now, and let the
ARPA Director's office serve as a model for a broad class of
priority users. Ib3

i suggest therefore that arrangements be made that Lukasik and
Tactualndji are never denied access. How this is to be done is
up to you folks, but that's what we'd like to see. Ib4

£ can well understand that these steps may produce some
apprehension on your part, in that dissatisfaction with OFFICE—1
night produce a halo of dissatisfaction with SRI/ARC. I see
littLe cause for fear:

First, reliability of the hardware is perceived as TYMSHAHE's
responsibility, not ARC's. lcl

Second, the users will be employing initially software produced
elsewhere, so that bugs will be firmly related to other
cuLprits. tc2

Thirdly, the competition is so miserable that even performance
substantially below your usual high standards will look pretty
impressive.

I hope that you'll see these desires as a tribute to the fine
management and excellent service the OFFICE—1 project has
demonstrated thus far, and not as a callous attempt to wring blood
out of a stone. We're motivated by a desire to keep moving toward

2

JSP 5— MAk—74 14:41 30181

AJPA Users on OFFICE—1

the goal of a computer—augmented office and to get full
utilization of the expensive resources we *ve procured with so much
difficulty. We're willing to discuss a lot, but compromise only a
little.

Sincerely,

John.

JSP 5—MAK—74 14:41 30181
AStPA Jserd on OFFICE—1

(J30181) a—J4AR-74 14:41; Title: Author! s): John S. Perry/JSP*
Distribution: /JCN(action) CKM(fyi > JCKL! fyi) CF< fyi) DCR2(fyi);
Sub—Coliections: MIC; Clerk: JSP;

DLS 6—MAS—74 05:11 30182
JOVIAL Manual—Chapter 3

(J30132) 6—MAR—74 05:11; Title: Author!s): Duane L. Stone/DLS;
Distribution: /KJC; Sub—Collections: SADC; Clerk: DLS;
Origin: <PETELL>C3.NLS;1, 5-MAR-74 11:16 DLS ;

DLS 6—MAR—74 05:11 30182

JOVIAL Manual Chapter 3

edited text» contains! & »-

DLS 6—MAR—74 05:11 30182

JOVIAL. Manual—Chapter 3

Cnapter 3 *

(VARIABLES 2

3. 1 Concept of (Variables
A JOVIAL fprograra:declarution consists of a string of (statements and
tdeciarations that specify rules for performing computations with
sets of data. The basic elements of data are items. Items are named
to distinguish one from another. Sometimes, a tname applies to a
group of items, requiring indexing to tell one member of the group
from another. Several named groups may be subsumed under another
group, which is known as a table and which is itself named. Tables
and items lay in turn be collected in another group called a data
olock which, again, is named. Space may be allocated these data
structures either statically at compile time or dynamically at
execution time. 3

.1 The value of items and other data can be changed in various
ways. A data element whose value can be changed by means of an
(assignment:statement is known as a variable. Items, then, are
variables. Table entries can function as variables, as can parts
of items under the influence of the (primitives .-BIT and .-BYTE. via

.2 A tvariable is the designation, within a (program:declaration,
of a variable to be manipulated within the computer. The two
syntax equations for fvariable (above) indicate, first, the type
of data involved, and second, the grammatical form of the
(variable related to the kind of data structure in which the
variable exists. 3b

3.2 Named: Variable 4

A tnamed:variable is a reference to a variable by means of a tname
associated with the variable through a tdata:declaration. A
tsimple:variable is a reference (for the purpose of using or
changing its value) to a variable declared to be a simple
variable; one not declared as a constituent of a table. No (index
is involved in a tsimple:variable because the reference Is to a
variabLe that is one of a kind, not part of a matched set. Use of
the tpointer:formula is explained in Section 7.8 4a

A ttable:variable is a reference to a variable declared to be part
of a table. A table consists of a collection of entries and there
is an occurrence of each table item in each entry. An
tentry:variable is a reference to the entire entry as a single
variable. An tindexed:variable (a ttable:variable or
tentry:variable) generally includes an (index to select the
particular occurrence of the variable being referenced. 4b

1

DLS 6—MAR—74 05:11 30182
JOVIAL Manual—Chapter 3

.2 An (index is correlated with a fdimension:list. Every
ftable:declaration contains a tdimension:I1st which prescribes the
number of dimensions of the table and the extent of the table in
each of these dimensions in terms of its tlowerfbound and its
f upper-bound. (Some of the detailed specifications can be
omitted; the defaults are explained elsewhere.) Each
(index:component must evaluate to an integer value
(tnuaeric:formulas are explained in Sec 5) not less than the
(tower:bound and not greater than the (upperfbound in the
corresponding position of the relevant tdimension:list. The
relevant tdimension:list is, of course, the one in the
ttable declaration bearing the ttableJname beginning the
tentry:variable or in the ttable:declaration containing the
titem:declaration bearing the (itern:name starting the
ttable:variable. The rightmost (index:component selects the
element, of the row selected by the tindex:component second from
the right, from the plane selected by the index!component third
from the right, etc.

,3 If the tindex is omitted from an tindexed:variabIe, whether or
not the empty (brackets remain, the meaning is the same as if the
complete (index were present and each (index!component were equal
to its corresponding •Lowerfbound. In fact, a legitimate form of
tindexei:variable is to omit one or more (index:components,
marking their positions of necessary with (commas. The meaning of
such a form is the same as if each missing (index:component were
present with a value equal to its corresponding (lowerIbound. The
following example shows an (ordinary:tableldeclaration and three
tentry:variables, all with exactly the same meaning:

•-TABLE ALPHA [3:7, 9, 100:157, 0:50]; NOLL;

•-ALPHA [3, 3, 100,0]

-ALPHA [, 3,, 0]

-ALPHA f,3]

3.3 (Letter:Control:Variable, (Functional:Variable

A (letter:control:variable is a reference to a variable designated
within a (loop:statement to aid in control of execution of the
t e antrolled:st at ement and to have meaning only within the
tloop:statement. it is explained in Section 5.8 in conjunction
1 loop:statements. 5a

•1 (Format:variable Is a special form that enables a list of
values to be converted to character type and assembled into a
character value. The details are given in Section 6.1.7 5al

2

DLS 6—MAR—74 05:11 30182
JOVIAL Manua I—Chapter 3

INSE8T BOX 5u2

.2 Ihe above construct selects a string, of the characters
denoted by the tnamed:character!variable, to be considered as
the variable to be given a new value. The
tnamed:character:variable can be any (simple:variable or
(indexed:variable of character type. The bytes of the
(named:eharacter:variable are considered to be numbered,
starting with zero at the left. The (numeric:formula following
the first (comma is evaluated as an integer and used to select
the byte of the (named:charac te r: variable to be considered the
leftmost byte of the •functional:variable. If there is no
second tcomma and no second tnumeric:formula, the leftmost byte
of the (functional:variable is its only byte. Otherwise, the
second tnumeric:formula is evaluated and tells how many bytes
there are including the leftmost byte, in the
tfunctional:vartable. 5a3

.3 Ihe tnamed:variable in the above metalinguistic formula can
be of any type. The construct selects a string of bits, from
the bits denoted by the tnamed:variable, and treats that string
of bits as a bit variable. The bits of the tnamed:variable are
considered to be numbered, starting with zero at the left. The
tnuaeric:formula following the first tcomma selects the bit to
be considered the first bit of the derived variable. The
tnumeric:formula following the second tcomma (if there is one)
determines the number of hits in the derived string (one bit if
there is no such tnumeric:formula)• In signed variables, the
sign bit is bit zero and the leftmost magnitude bit is bit one.
in unsigned numeric variables, the leftmost magnitude bit is
bit zero. In entries, the leftmost bit of the first word is
bit zero. In character variables, the number of bits per byte
is system dependent. In floating variables, the sign bits of
the significand and exrad are included in the bit count, but
the arrangement of bits is system dependent. 5a4

3.4 (Format:Variable, tBit:Variable, (Character:Variable 5b

(Format variable is explained in Section 6.1.7* 5c

• 1 Ihe construct using •.BIT is explained in Section 3.3.3. A
(bitIvariable denotes a string of bits without consideration of
any numeric or other meaning associated with those bits.
Almost all (named:variables carry an implication of some data
type other than "bit". However, an (entry:variable, if the
(tabletname is not declared so as to imply some specific data
type, denotes only the string of bits constituting the entry. 5c 1

.2 Ihe construct using •BYTE is explained in Section 3.3.2.

3

DLS 6—MAR—74 05:11 30182
JOVIAL Manual—Chapter 3

The (named:character:variable is a tnaoed! variable using a
(name declared to denote a variable (an item or an entry) of
character type.

3.5 Nuaeric:Variable

Any tnumer ic:variable can be used as a tpointer!variable. The
details of the use of tpointer:variables are given in Chapter 7 in
conjunction with discussion of controlled allocation,
tLetter:ccntroI:variable is explained fully in connection with
(loop:statements. Without being explicitly declared, it becomes
an tinteger:variable through its usage. All (names that can be
used as tnamed:variables are declared as explained in Chapter 7.
Some tentry:variables may use (names not associated with any data
type. All other (named:variables use (names that are associated
with (item:descriptions. These (itemidescriptions give the data
type among other things (see Section 7.16 for details). One data
type is "character" as mentioned above In Section 3.4.2. Another
data type is "floating". (Floating:variables use (names declared
to be of floating type. The other descriptive terms in
(item:descriptions denote "signed" and "unsigned", but we are
interested here in other attributes. Signed and unsigned data are
also associated with one or two (numbers. The first (number
declares the size of the datum, the number of bits in its
magnitude, if this is the only (number in its (item:description,
the datum is an integer value and the (named:variable denoting it
is an (integer:variable. The second (number in the
(item:description for a signed or unsigned value declares the
precisian of the value, the number of bits in its magnitude after
the point. If this second (number is present, even if its value
is zero, the datum is a fixed value and the (named:variable
deuoting it is a (fixed:variable.

PAN 6—MAR—74 11:24 30183
Sign-on problem

E/ery time I sign on the system, it asks me for my ident. Is there
anyway that this could be done automatically — if so, it would be
greatly appreciated.

S i g n - o n p r o b l e m
P A N 6 — M A R — 7 4 1 1 : 2 4 3 0 1 8 3

(1 3 0 1 8 3) 6 — M A R — 7 4 1 1 : 2 4 ; T i t l e : A u t h o r ! s) : P e n n y A . N a p k e / P A N J
D i s t r i b u t i o n : / F E E D I M M P A N ; S u b — C o l l e c t i o n s : N I C ; C l e r k : P A N ;

HSH 6-MAR-74 13:03 30184

From: HHughes.MAC at MIT-Multics
Date: 03/06/74 1602-e<tt

Title: Abstract - TR 52 thru 55

Implementing Multi-Process Promitives in a Multiplexed Computer
System

Rappaport, Robert L. H>1

November 1968 MAC-55 lb2

A.B.-S.-T-R.-A.-C.-T.- lb2a

In any computer system, primitive functions are needed to
control the actions of processes in the system. This thesis
discusses a set of six such process-control primitives which are
sufficient to solve many of the problems involved in parallel
processing! as well as in efficient multiplexing of system
rasoruces among the many processes in a system. In particular!
the thesis documents the work performed in implementing these
primitives in a particular computer system — the Multics system -
which is being developed at M.X.T.*s Project MAC. lc

During the course of work that went into the implementation of
these primitives, design problems were encountered which
caused the overall rpgram design to go through two iterations
before program performance was deemed acceptable. The thesis
discusses the way the design of these programs evolved during the
course of this work. 16

The Graphic Display as an Aid in the Monitoring of A Tiae.shared
Computer System le

Grochow, Jerrold M. lel

October 1968 MAC-TR-54 AD-689-468 le2

A.B̂ S»T̂ R»A-Ĉ T̂ 1«2a

The Graphical Display Monitoring System was developed as a
medium lor dynamic observation of the state of a time—shared
computer system. The system is integrated to create graphic
displays, dynamically retrieve data from the Multics*
Time—Sharing System supervisor data bases, and allow on-line
viewing of this data via the graphic displays. On—line and
simulated experiments were performed with various members of the
Project MAC Multics staff to determine the most relevant data for
dynamic monitoring, the most meaningful display formats, and the

1

HSH 6—MAR—74 13:03 30184

most desirable sampling rates. The particular relevance of using
a graphic display as an output medium tor the monitoring system
is noted.

As a guide to other designers* a generalized description of the
priciples involved in the design of this on-line, dynamic
monitoring device includes special mention of those areas of
particular hardware or software system dependence. Several as
yet unsolved problems relating to time-sharing system monitoring,
including those of security and data base protection, are
discussed. Is

The Flow Graph Schemata Model of Parallel Computation lgl

Slutz, Donald R.

September 1968 MAC-TR-53 AD-683-393 Iglb

A^B-S^T-R-A^C^T^ lglbl

Flow Graph Schemata are introduced as uninterpreted models of
parallel algorithms, operating asynchronously and reflecting
physical properties inherent to any iwplementation• Three main
topics are investigated: <11 determinacy» (2) equivalence, and
<3) equivalence—preserving transformations on the control
structure of a Flow Graph Schemata. A model is determinate If
the results of a computation depend only on the initial values
and not on any timing constraints withing the model. Equivalence
is undecidable in general, hut for a large class of determinate
Flow Graph Schemata which are in a maximum parallel form,
equivalence is shown decidable. In equivalence-preserving
trans format!ons, sufficient tested conditions for equivalence are
formula fed that depend only on the portion of the structure to be
transforued.

Current and future computational systems are evaluated in terms
of results obtained for Flow Graph Schemata. A number of
interesting extensions of the work are suggested. li

Absentee Computations in a Multiple-Access Computer System 111

Oeitel, Harvey M. lila

August 1968 MAC—TR—52 AD-684-738 lilb

A_B.-S.-T.-R»A^C»T*- liltol

In multiple-access computer systems, emphasis is placed upon
servicing serveral interactive users simultaneiously. However,

2

HSH 6—MAR—74 13:0.3 30184

many cosputations do not require user interaction* and the user
may therefore want to run these computations "absentee" (or, user
not present). A mechansim is presented which provides lor the
handling of absentee computations in a multiple-access computer
system. The design is intended to be Iraplementatlon-lndepent.
Some novel features of the system's design are: a user can switch
computations from interactive to absentee (and vice versa), the
system can temporarily suspend and then continue absentee
computations to aid in maintaining an efficient
absentee —interactive workload on the system, system
administrative personnel can apportion system resources between
interactive and absentee computations in order to place emphasis
upon a particular mode during certain periods of operation, and
the system's multiple—computation—stream facility which allows
the user to attach priorities to his absentee computations by
placing the computations in ether low—, standard—, or
high-priority streams.

HSH 6—MAR—74 13:03 30184

{ 130184) 6-MAR-74 13:03; Title: Author(s): Herb S. Hughes/HSHJ
Distribution: /HSH MAP ; Sub-Collections: NIC; Clerk: HS?

JSP 6-MAR—74 13:48 30185

ARPA Users on OFFICE—1

Jim:

I just had a meeting with Connie McLindon regarding AEPA users on
OF FICE—1 * We started with the list of ARPA people who had
accounts at 1SI, and tried to think of a rationale why they should
NOT have directories at OFFICE-1. I couldn't think of any
compelling reasons* so Connie is asking you to set them ail up.
For the immediate future* we're not thinking in terms of moving
all their usage to OFFICE-1; rather, we're just anxious to offer
it as an option for periods when ISI is down or overloaded. I get
the feeling that this is going to upset you, so let me put forward
some reasons:

1. A8PA is paying the major share of OFFICE—l*s costs. In
return* the only visible resource it is getting is the block of
ARPA slots. Simple justice and good management therefore
demands that these slots he used for ARPA's benefit. lal

2. Cf all the uses to which ARPA could put these slots, the
least demanding and disruptive to other users is the type of
activity typical of ARPA office use of ISI* i.e. SNDMSG*
REACNAIL, RD, etc. 1*2

3. If ARPA does not take immediate steps to use these slots,
then they will through the group allocation scheme — be
swallowed up by others such as RADC* Bell* NIC. From A8PA*s
point of view, any and all of these are of substantially lower
priority than ARPA office use. la3

4. the hours of operation of OFFICE—I coincide with the most
overloaded and frustrating period for ISI. Thus ARPA
management use of OFFICE-1 will be of greater benefit in
relieving network pressure than any single other act I can
think of. In particular, it may enable us to move some
computational users back to ISI rather than having to foist
them on unwilling hosts. 1**4

5. We want to gradually expand the universe of software used
by A SPA management people to include the fantastic planet of
NLS. Getting them on OFFICE-1 now is a good start. Ia5

6. ISI has been notably unreliable during the primary hours of
ASPA management use, while OFFICE—1 has been rock—solid. It Is
therefore highly attractive to open OFFICE—1 as an option for
these users. Ia6

So we're not kidding; we really do want to make OFFICE-1 available
to the ARPA office right now. There are other issues we'd like
you to address at the same time: lb

1

JSP 6—MAK—74 13:48
44PA Users on OFFICE-1

1. These users are accustoned to using the following services
and systems:

Sli C MSG

9EADMAIL

SC

IE CO

These should he provided so that we can make a smooth
transition to NLS later,
way it is,).

{I'm sorry about TECOt hut that's the

2, tithin this group of users, we really must make some sort
of reasonable provision for priority use by a sub-group.
Within the cloistered computer science community this no doubt
seems arbitrary* capricious, and profoundly undemocratic. But
it is in fact an inescapable element of any real-world
environment into which you will introduce your technology. So
we might as well get used to the idea right now* and let the
ASP A Director's office serve as a model for a broad class of
priority users.

I suggest therefore that arrangements be made that Lukasik and
Tachmindji are never denied access. How this is to be done is
up to you folks* but that's what we'd like to see.

I can well understand that these steps may produce some
apprehension on your part* in that dissatisfaction with OFFICE—1
might produce a halo of dissatisfaction with SRI/ARC. I see
little cause for fear:

First* reliability of the hardware Is perceived as TYMSHAEE's
responsibility, not AKC's.

Second* the users will be employing Initially software produced
elsewhere* so that bugs will be firmly related to other
culprits.

Thirdly, the competition is so miserable that even performance
substantially below your usual high standards will look pretty
impressive.

I hope that you'll see these desires as a tribute to the fine
management and excellent service the OFFICE-1 project has
demonstrated thus far, and not as a callous attempt to wring blood
out of a stone. We're motivated by a desire to keep moving toward

2

JSP 6—MAR—74 13:48 30185
A3PA Users on OFFICE-1

the goal of a computer-augmented office and to get full
utilization of the expensive resources we've procured with so much
difficulty. We're willing to discuss a lot, tout compromise only a
little. Id

Sincerely. le

John. If

ARPA Users on OFFICE-1

JSP 6—MAR—74 13:48 30185

(J30185) 6 —MAR—74 13:48; Title: Author!s): John S. Perry/JSP;
Distribution: /JCN CKM JCRLJ Sub-Collections: NIC; Clerk: JSP;
Origin: <A8PA>ARPAUSERS.NLS;1, 6-MAR-74 13:43 JSP ;

JUL 6—MAR—74 19:08 30186
WtfEKEEfiEE

This is an answer» since I forgot tc mention at work that I got your
test message.

J B L 6 — M A R — 7 4 1 9 : 0 8 3 0 1 8 6

W H K E E E E E E

(J 3 0 1 8 6) 6 7 M A K - 7 4 1 9 : 0 8 ; T i t l e ! A u t h o r ! s) : J o e l B . L e v i n / J B L ;

D i s t r i b u t i o n : / S E J J B L ; S u b - C o l l e c t i o n s : N I C ; C l e r k : J B L ;

f

JBP 7—MAR—74 05:41 30187

lynn:
hi, how are things with you and all our friends? i think It may be
spring here, things are warming up. we are moving to richmond, joann
has found a townhouse type 2 bedroom place for us to live in, i
will be staying with somebody in Washington 4 days a week then
spending weekends in richmond with joann, it sounds like a real drag,
but it will cut down on the amount of time we spend commuting, also
we should use much less gasoline.
lynn, could you find a copy of network measurement note 18 and send
it to ine? i am also missing network measurement notes 12 13 14 15 17,
if you can get me copies of those i would be appreciative,
say hello to the dinner night group for us.
—jon .

JBP 7—MAR—74 05:41 30187

(JJ0187) 7—MAR—74 05:41; TitLe: Author!s): Jonathan B. Postel/JBP;
Distribution: /LYNN; Sub-Collections: NIC; Clerk: JBP;

HSH 7—MAR—74 07:08 30188
Abstract - TK 52 thru 55

Implementing Multi-Process Promi t i. ves in a Multiplexed Computer
System 1

Rappaport, Robert L. la

November 1968 MAC—55 lb

A».B» X-R-A _C^TV Ibl

In any computer system, primitive functions are needed to control
the actions of processes in the system. This thesis discusses a
set of six such process—control primitives which are sufficient to
solve many of the problems involved in parallel processing, as
well as in efficient multiplexing of system resoruces among
the aany processes in a system. In particular, the thesis documents
the work performed in implementing these primitives in a
particular computer system — the Multics system — which is being
developed at M.l.T.'s Project MAC. 2

During the course of work that went into the implementation of these
primitives, design problems were encountered which caused the
overall rpgram design to go through two iterations before program
performance was deemed acceptable. The thesis discusses the way
the design of these programs evolved during the course of this work. 3

The draphic Display as an Aid in the Monitoring of A Tiue.shared
Computer System 4

3ro 4a

HSH 7—MAR—74 07:08 30188
Abstract - TR 52 thru 55

(130188) 7—MAR—74 07:08; Title: Author!s): Herb S. Hughes/HSH;
Distribution: /HSH MAP ; Sub-Collections: NIC; Clerk: HS;

HSH 7-MAR-74 07:38 30189
Abstract - TR 52 thru 55

Impl eraent lng Mul t i— P rocess Promitives in a Multiplexed Computer
System 1

Rappaport, Robert L. la-

November 1968 MAC—55 16

A«-B»S-»T»R»-A»-C«.T». ibl

In any computer system* primitive functions are needed to control
the actions of processes in the system. This thesis discusses a
set of six such process—control primitives which are sufficient to
solve many of the problems involved in parallel processing* as
well as in efficient multiplexing of system resoruces among
tne many processes in a system. In particular, the thesis documents
tine work performed in implementing these primitives in a
particular computer system — the Multics system — which is being
developed at M.I.T.'s Project MAC. 2

During the course of work that went into the implementation of these
priaitives, design problems were encountered which caused the
overall rpgran design to go through two iterations before program
performance was deemed acceptable. The thesis discusses the way
the design of these programs evolved during the course of this work. 3

The Graphic Display as an Aid in the Monitoring of A Time^shared
Computer System 4

3rochow, Jerrold M. 4a

.October 1968 MAC-TR-54 AD-689-468 4b

A^a^5^T»R-A^C».T- 4b I

The Graphical Display Monitoring System was developed as a medium
for dynamic observation of the state of a time—shared computer
system. The system is integrated to create graphic displays,
dynamically retrieve data from the Multics* Time—Sharing
System supervisor data bases, and allow on-line viewing of this
data via the graphic displays. On-line and simulated
experiments were performed with various members of the Project MAC
Multics staff to determine the most relevant data for dynamic
monitoring, the most meaningful display formats, and the most
desirable sampling rates. The particular relevance of using a
graphic display as an output medium for the monitoring system is
noted. 5

As a guida to other designers, a generalized description of, the
priciplea involved in the design of this on—line, dynamic

1 1
HSU 7—MAR—74 07:38 30189

Abstract — TR 52 thru 55

monitoring device includes special mention of those areas of
particular hardware or software system dependence. Several as yet
unsolved problems relating to time-sharing system monitoring*
including those of security and data base protection* are
discussed. 6

T«e Flow Graph Schemata Model of Parallel Computation 6a.

Slutz* Donald R. 6al

September 1968 MAC-TR-53 AD-683-393 6a2

A»B^S»T^R^A^C^T^ 6a2a

Flo# Graph Schemata are introduced as uninterpreted models of
parallel algorithms, operating asynchronously and reflecting
physical properties inherent to any implementation. Three main
topics are investigated: (I) determinacy, (2) equivalence, and (3)
equivalence—preserving transformations on the control structure
of a Flow Graph Schemata. A model is determinate if the results
of a computation depend only on the initial values and not on any
timing constraints withing the model. Equivalence is undecidable in
general* but for a large class of determinate Flow Graph Schemata
mix icq are In a maximum parallel form, equivalence is shown
decidable. In equivalence—preserving transformations, sufficient
tested conditions for equivalence are formulated that depend only on
the portion of the structure to be transformed. 7

Current and future computational systems are evaluated in terms of
resslts obtained for Flow Graph Schemata. A number of interesting
extensions of the work are suggested. 8

Absentee Computations in a Multiple-Access Computer System 8a

Deitel* Harvey M. 8a1

August 1868 MAC—TR—52 AD-684-738 8a2

A»fl»S»T».R^A^C^T- 8a2a

In multiple-access computer systems, emphasis is placed upon
servicing serveral interactive users simultaneiously. However,
many computations do not require user interaction, and the user may
therefore want to run these computations "absentee" (or, user not
present). A mechansim is presented which provides for the handling
of absentee computations in a multiple—access computer system.
The design is intended to be i jrplementa tion— i ndepen t. Some novel
features of the system's design are: a user can switch computations
from interactive to absentee (and vice versa), the system can

2

HSH 7— MAR—74 07:38 30189
Aastract - TR 52 thru 55

tempararily suspend and then continue absentee computations
to aid in maintaining an efficient
absentee—interactive workload on the system, system
administrative personnel can apportion system resources between
Interactive and absentee computations in order to place emphasis
upon a particular mode during certain periods of operation, and the
system's «uItipie—computation—stream facility which allows the user
to attach priorities to his absentee computations by placing
the computations in ether low—, standard—, or high—priority
straams. ®

10

Abstract - TH 52 thru 55

HSH 7—MAR—74 07:38 3018,9

(J30139) 1—MAR—74 07:38? Title: Author(s): Herb S. Hughes/HSHJ
Oistribution! /HSH MAP ; Sub-Collections: NICJ Clerk: HS»

DVN 7—MAR—74 08:57 30190
indaessags to Someone with Directories on More Than One Machine

I normally work as a user on SR—ARC, Most days I log in to Otfiee—1
at least once» but usualy not more of ten.

Ofcourse journal
to reach me with
it sooner if you

items go to me automatically at SRI
a sendmessage, however, The chances
address i to vanNouhuysSoffice—1.

—ARC. If you want
are I will get

2

1
DVN 7—MAR—74 08:57 30190

Sndaessiage to Someone with Directories on More Than One Machine

(J3J190) 7—MAR—74 08:57; TltLe: Author(s): Dirk H* Van Nouhuys/DVNJ
Distribution: /ECW SJM RJ; Sub-Collections: SRi-ARC DEIS; Clerk: DVN;

HSH 7-MAR-74 09:09 30191
iostPdCt - Tfi 52 thru 55

Imp Lenient i ng Mult i—Process Promitives In a Multiplexed Computer
System

Rappaport, Robert L.

November 1S68 MAC—55

A^a.S^T-R^A-C^T-

Cn any computer system, primitive functions are needed to control
the actions of processes in the system. This thesis discusses a
set of six such process—control primitives which are sufficient to
solve many of the problems involved in parallel processing, as
well as in efficient multiplexing of system resoruces among
the idny processes in a system. In particular, the thesis documents
the work performed in implementing these primitives in a
particular computer system — the Multics system — which Is being
developed at M.I.T.'s Project MAC.

During the course of work that went into the implementation of these
prinitives, design problems were encountered which caused the
overall rpgram design to go through two iterations before program
performance was deemed acceptable. The thesis discusses the way
the design of these programs evolved during the course of this work.

Itie Graphic Display as an Aid in the Monitoring of A Tiae.shared
Computer system

Srochov, Jerrold M.

ictobar 1968 MAC-TR-54 AD-689-468

A_a.3_T_R.-A..C.-T.-

The Graphical Display Monitoring System was developed as a medium
for dynamic observation of the state of a time—shared computer
system. Ihe system is integrated to create graphic displays,
dyna&icalLy retrieve data from the Multics* Time—Sharing
System supervisor data bases, and allow on-line viewing of this
data via the graphic displays. On-line and simulated
experiments were performed with various members of the Project MAC
Multics staff to determine the most relevant data for dynamic
monitoring, the most meaningful display formats, and the most
desirable sampling rates. The particular relevance of using a
graphic display as an output medium for the monitoring system is
noted.

1

1 a

lb

lbl

2

3

4

4a

4b

4b 1

5

As a juida to other designers, a generalized description of the
ariciples involved in the design of this on-line, dynamic

1

HSH 7—MAR—74 09:09 30191
Aiistpact - TR 52 thru 55

monitoring device includes special mention of those areas of
particular hardware or software system dependence. Several as yet
unsolved problems relating to time-sharing system monitoring,
including those of security and data base protection, are
discussed.

The Flow Graph Schemata Model of Parallel Computation 6a

Slutz, Donald R. 6al

September 1968 MAC-TR-53 AD-683-393 6a2

A»B«-S«.T*.R«-A*-C».T«- 6a2a

Flow Graph Schemata are introduced as uninterpreted models of
paralLel algorithms, operating asynchronously and reflecting
physical properties inherent to any implementation. Three main
topics are investigated: CI) determinacy, (2) equivalence, and (3)
equivalence-preserving transformations on the control structure
of a Flow Graph Schemata. A model is determinate if the results
of a computation depend only on the initial values and not on any
timing constraints withing the model. Equivalence is undecidable in
general, out for a large class of determinate Flow Graph Schemata
which are in a maximum parallel form, equivalence is shown
decidable. In equivalence—preserving transformations, sufficient
tested conditions for equivalence are formulated that depend only on
the portion of the structure to be transformed. 7

Current and future computational systems are evaluated in terms of
results obtained for Flow Graph Schemata. A number of interesting
extensions of the work are suggested. 8

Aosentee Computations in a Multiple-Access Computer System 8a

Oeitelt Harvey M. Sal

August 1968 MAC—TR—52 AD-684-738 8a2

A * B.»S*-T*-R«>A*-C*-T*- 8a2a

In mu It ipla— access computer systems, emphasis is placed upon
servicing serveral interactive users simultaneiously. However,
manr computations do not require user Interaction, and the user may
therefore want to run these computations "absentee" (or, user not
present). A mechansim is presented which provides for the handling
of absentee computations in a multiple—access computer system.
The design is intended to be iupleraentatIon—indepent• Some novel
features »f the systen's design are: a user can switch computations
from interactive to absentee (and vice versa), the system can

2

HSH 7—MAR—74 09:09 30191
Abstract — T8 52 thru 55

temporarily suspend and then continue absentee computations
to aid in maintaining an efficient
aosentee—interactive workload on the system* system
administrative personnel can apportion system resources between
interactive and absentee computations in order to place emphasis
upon a particular mode during certain periods of operation* and the
system's au Itiple— computation—s tream facility which allows the user
to attach priorities to his absentee computations by placing
the computations in ether low—, standard-* or high-priority
streams. 9

10

HSH 7-MAK-74 09:09 30191
Abstract - TR 52 thru 55

(J30191) J-MAK-74 09:09; Title: Author(s): Herb S. Hughes/HSHJ
Distribution: /HSH MAP ; Sub-Collections: NIC; Clerk: HS;

(

lew FTP codes
NJN 7—MAR—74 09:18 30192

Jon and. Ken—
The first version of the new ftp code spec is done. You will find it
in directory <BBN—NET> in tooth NLS and text form; the former is
(bbn-net* ftpcodes,0:w> and the latter is <BBN-NET>FTP€ODES.TXT.
Plane go over the choice of code numbers and text fairly carefully*
to see what i have left out* where I was too ambiguous* or too
verbose. Thanks* Nancy

NJN 7—MAR—74 09:18 30192

New P TP codes

(J30192) 7—MAR—74 09:18; TitLe: Author(s): Nancy J. Neigus/NJN?
Distribution: /JBP KTPJ Sub-Collections: NIC; Clerk: NJN;

RJC 7—MAR—74 13:04 30193
Tickler far week oJE 11 March — 15 March

»In case you are interested, Frank Toraaini will be on travel the
week of 13 March (THE WHOLE WEEK)

RJC 7—MAR—74 13:04 30193
Tickler far week of 11 March — 15 March

(mi»3) 11 March - Monday 1

3830 Mrs. Branch Chief's Meeting la

(rat31 12 March — Tuesday 2

Dae Date — ISIS — Names Submitted for those interested in
attending General Electric IRSD Review of Proposed FY—74 Program
to be held 21 March. 2a

(«w3) 13 March - Wednesday 3

Dae Date — LaForge 0 Liuzzi - TWX - WWMCCS Standard Software
Impact 3a

ISF Confessions 0830 hrs. 3b

FY—75 0SF Submission — ISIS/D. Nelson — AF Form 111 w/AF Form 725
and 8ACC Form 7...due In DORP NLT 15 Mar 3c

Dae Date - ALL DOCUMENTATION CLERKS - Emergency Change to AFM
12-50 3d

(*th3 1 14 March - Thursday 4

1)330 hrs. Branch Chief's Meeting 4a

Laboratory Activity Reports due today: Bucclero must have them by
1000t ISM must have them by 1100» and DOT must have them by 1600. 4b

(iifj) 15 March — Friday 5

Titnecards due today 5a

Bobbie: Travel figures due by noon. 5b

RJC 7-MAR-74 13:04
licKler for week of 11 March - 15 March

(J30133) 7—MAS—74 13:04; Title: Author! s): Roberta J. Carrier/RJC
Distribution: /RADC; Sub—Collections: NIC RADC; Clerk: R3C;

DLS t t -MAR-7i l . 05 :36 3om
JOVIAL Manual—Chapter k

Conta ins t &. s t ruc tured

DLS 8-MAR-7H 03:36 30131;
JOVIAL Manual--Chapter 1;

Chapter i; 1

TFORMULAS la

lul Concept of TFormulas lal

Chapter 3 discusses Tvariables, the constructs standing for
elements of data whose values may be changed. tFormulas are
the means for specifying the new values for Tvariables.
TFormulas also generally supply values for any purpose--sucn
as comparisons and other selections of courses of action.
Since rconstants and tvariables denote values they are also
fformulas. lala

.1 Any tnumericjformula can be used as a
tpointer{formula. The details of the use of
Tpointeriformulas are given in Section 7.8.
TVslue:formulas and tnumerlc:value:formulas can occur
only in tloop:controls. The details of their use are
explained in section 5.8. lalal

It. 2 TConstant:Formula la2

A tconstant:formula is a Tformula whose value can be
determined at compile time, once and for all. That
particular criterion is somewhat system dependent, in
places in this language specification where a Tformula is
called for, it is only a matter of efficiency whether a
Tconstantiformula is evaluated at compile time or execution
time, A Tconstantiformula, however, can be used in places
where this manual calls explicitly for a Tconstant. The
Tconstantiformula must then be evaluated at tne time it is
encountered in order properly to compile the
Tprogramideclaration. The same consideration applies to a
place where a tnumber is required, but not as part of
another Tsymbol such as a Tfloatingiconstant. When a
Tconstantiformula is used to represent a number, it must
evaluate to an appropriate integer value, in general, parts
of this document which require Tconstants or Tnumbers do not
reiterate this permission to use Tconstantiformulas. A
Tconstantiformula is not permitted as part of a Tformiiist,
which is, after all, a second level syntax equation applied
to that which is first the value of a Tcharacteriformula. Ia2a

1;.3 TConditionaliFormula la3

There is no data type that is intrinsically conditional;
however, any Tformula can be considered a
Tconditionaliformula in the appropriate setting. A

1

DLS 6-MAR-74 05:36 30191
JOVIAL Manuai--Chapter it.

tconditional:formula is the tformula following any of tne
three tprimitives <-IF, «-WHILE, <-UNTIL (see sections 5.7 and
5.6 on tconditional:statements and tloop:statements) or the
fdirectivetkey *- 1 TRACE. A tformula of any type can be used
in these positions. After all operations are performed as
called forth in the tformula --bit or
byte extraction, shifting, concatenation, function
evaluation, comparisons, arithmetic, logical combination,
attribute quidance, etc.--the rightmost bit of the result is
examined without further conversion. If that rightmost bit
is «-0 the tconditional:formula represents the logical
predicate "false". If the rightmost bit is <-1 the
tconditionaHformula represents the logical predicate
"true". This can, of course, lead to machine dependencies
if tconditional;formulas contain any operands other than
unsigned integers except in tcomparisons. For example, a
negative integer as a tconditionalsformula will lead to a
result on a one's complement machine opposite to the result
on a two's complement machine. The following table
indicates the action to take, depending on the value of the
tconditionalsformula la3a

J1.i1 tCharacter sFormula

tCharactersconstant is explained in Section 2.6.1.
tCharacter:variable is explained in Section 3.1.2.
tCharactersform is one of the two types of form, explained
in Section 1.17.2, A tfunctionscall is the invocation of a
certain kind of tproceaure{declaration as explained in
Section J;.18. A tcharacter:function:call is the invocation
of one of these special tproceduresdeclarations having its
effective output parameter of character type. One of the
tintrinsic:functionscalls (see Section 1.19), the
tbyte:string:function:call, is a tcharacter:function:call. lala

.1 Any tcharacter:formula represents a value having a
size measured in bytes. For its use in tne
tbyte:string:function:call, the bytes of the
tcharacter{formula (any tcharacter{formula can oe used
where indicated as the first tactual{input{parameter in
the metalinguistic equation) are numbered starting with
zero on the left. With respect to this numbering, the
first tnumeric{formula (the second
tactual{input{parameter) tells which byte of the stated
Tcharacter{formula is to become the first (leftmost) byte
of the derived tcharacter{formula. The second
tnumeric{formula, if present, tells how many bytes
(following consecutively to the right) are to be included
in the derived tcharacter{formula. If the second

2

DLS 8-MAR-74 05:36 30194
JOVIAL Manual — Chapter it

tnumericjformula is missing, just one byte is usecu The
tnumeric:formulas must yield non-negative values, only
the integer parts of these values are used--the fractions
are truncated. The sum of the two values must not exceed
the size ot the first factual:input:parameter. If the
second tnumeric:formula (the third
tactual:input:parameter) has a value of zero, tnen the
tbyte:string:function:call represents a character value
of zero size, such a value as an operand in
concatenation leaves the other operand unchanged. It can
be appropriately padded in any context in which it might
occur. For instance, as a tconditional:formula it would
be padued on the left with a single bit of value zero,
which would thus become the rightmost bit of the
tconditionaliformula, leading to the logical predicate
"false". As an operand of *AND, OR, etc., it would
become a string of cits of value zero to be comoined witn
the bits of the other operand. Example:

••ALPHA s ' OA2C4E6G8I ' j

••BETA = BYTE (ALPHA, 3, 5) J

•-GAMMA s BETA <> 'CliE6G' ;

.2 In the above sequence of code, ••GAMMA becomes zero
because ••BETA does indeed contain the value •-C446&.

.3 the tampersand is the only operator that can apply to
tcharacteriformulas. it means concatenation.

tcharacter:formula +& tcharacterjformula

laEal

laij.a2

laia3

laaaE

la^a5

laaab

laaa7

is a tcharacterjformula. Its value is the concatenation
of the bytes (all the bytes) of its left operand on the
left with the bytes of its right operand on the right.
Its size is the sum of the sizes of its operands.
Example: laUab

.4 A tcharacterjformula can consist of concatenations.
The ordinary left-to-right rule applies--the two leftmost
operands are concatenated first. Then the result is
concatenated with the next tcharacterjformula to the
right, ordinarily it really makes no difference if
concatenation is done left-to-right or right-to-left, out
in cases where the resultant size might exceed

3

JOVIAL Manuai--Chapter It
DLS a-MAR-74 05:36 3013E

system-dependent limits some system-dependent differences
might arise. Example; laiia?

••(ALPHA & BETA) & (GAMMA * DELTA) laitalO

.5 Notice the tparentheses in the above example. A
parenthesized Tcharacter{formula is also a
?character:formula. The utility of the tparentheses is
to change the order of concatenation--operations within
tparentheses are performed before the value of the
parenthesized tformula is used in further operations, in
the above example ••ALPHA is concatenated with ••BETA,
GAMMA is concatenated with •-DELTA and then these two
results are concatenated together. A tformula of any
type can be used as a tformula of any other type--its
value is appropriately transformed, tparentheses may, at
times, be significant in determining the type of

.6 A tbitrformula may be used in a context requiring a
tcharacter{formula. The most obvious such context is as
the first tactualsinput{parameter to the
tbyte;string;function;call. Assignment to a
tcharacter;variable does not make a tbit;formula into a
tcharacter;formula. For the use of a tbit;formula in
assigning a value to a tcharacter{variable see Section
5,5.1. In concatenation of a tbiu;formula and a
tcharacter;formula the tbit;formula is stronger--the
tcharacter;formula is treated as a tbit;formula. In the
tbyte;string;function;call, a tbit;formula as the first
tactual:input;parameter is padded on the left with
however many bits of value zero are needed to yield an
integral number of bytes in the value. The resulting bit
string is then considered a byte string and the
tnumeric{formulas are used to select the desires byte
string. For example, suppose that in a system in which
bytes consist of eight bits each, there is a
tbyte;string;function;call requiring *3 bytes starting
with byte «-l (the 2nd byte) of a tbit;formula of ••35
bits. The following table illustrates the example and
shows the resultant value of the
tbyte;string{function;call laEal2

lw5 TNumeric; Formula la5

tformula iaaall

U

DLS 8-MAR-74 08S36 30194
JOVIAL Manual--Chapter 4

tNumeric:constant is explained in section 2.8.11.
tnumeric:variable is explained in section 3.5. A
tnumericrfunctionscall is the invocation of a
tprocedure:declaration (see section 8,4.) having an implicit
output parameter of numeric type. Several of the
tintrinsic:function:calls are tnumeric:formulas (see section
4.19). Ia3a

.1 A tbit:formula in a context requiring a
tnumeric{formula is treated as an unsigned integer value.
The string of bits comprising the value of the
tbitsformula is considered, without any change,
conversion or alteration, as tne magnitude of a
non-negative integer value, if its size is too great for
the use to which it is being put, leading bits are
truncated to reduce its size to the maximum that can be
used for the arithmetic, conversion, indexing, pointing
or formatting, if its size is unknown at compile time it
is given a system-dependent default size (if there is any
possibility it could be larger) in which the rightmost
bits are right justified and any extra leading bits at
execution time are zeros. This default size is most
likely to be the largest size of unsigned integer with
which integer arithmetic may be done conveniently. If
its default size is unknown, but its maximum possible
size is known to be less than the default size, the
maximum possible size is taken as the size of tne
unsigned integer in the numeric context, laSal

.2 Being in a position to be assigned to a
tnumericjvariable, being an tactual:input:parameter
corresponding to a numeric tformal:input{parameter, or
being compared with a tnumeric{formula, does not impose
numeric assumptions on a tbitiformula. The contexts
requiring any formula to be treated as a tnumeric{formula
are as follows{ Ia8a2

a. As an operand to participate in arithmetic. Ia3a2a

b. As an operand to be converted to a numeric in
accordance

with attribute quidance. Ia5a2b

c. As an tindex{component. Ia5a2c

5

JOVIAL Manuai--Chapter 1
DLo 6-MAR-7ii 05:36 3019a

d. As a fpointer{formula. Ia5a2d

e, AS an operand to be encoded for "output" in
accordance with a tnumeric{format. Ia5a2e

ii. 6 Arithmetic lab

tArithmetic:operators are used to specify arithmetic
calculation in determining numeric values. The meanings of
the tarithmetic{operators are as follows.' Ia6a

<-+ Add. Ia6al

<•«* Subtract. Ia6a2

«-# Multiply. Iaba3

«-/ Divide. iabaa

«-\ Determine the residue (modulo) . Ia6aj?

«-** Raise to the power of (exponentiation) . Ia6a6

.1 The syntax equations permit long sequences of
tplus{minus and tminus{signs before an operand. The
effect of such a sequence can easily be determined oy
counting the tminus{signs and ignoring tne tplus{signs.
If there is an even number of tminus{signs, the entire
sequence is equivalent to one tplus{sign. if there is an
odd number of tminus{signs, the entire sequence is
equivalent to one tminus{sign. Ia6a7

.2 The tminus{sign as a unary operator means to negate
(take the additive inverse of) the following
tnumeric{formula. The tplus{sign can be used as a unary
operator, but it has no effect. Multiplication must be
indicated by means of an tasteriskj there is no operation
specified by merely placing tformulas next to one

6

DLS 8-MAR-7U 05:36 3019E
JOVIAL Manual—Chapter U

another. Since there is no provision for vertical
spacing, exponentiation must be shown by means of the
double tasterisk, The meanings of addition, subtraction,
multiplication, division and exponentiation are well
known, but it is well to emphasize certain points. The
result of division by a aero value is undefined. Tne
result of exponentiation of a negative base by a
non-integer exponent is undefined. labao

.3 Determination of a residue, «-x\y, means finding the
value of the archetypal number to which <-x is congruent,
modulo «-y, in the sence that *-x#y is called «-"x times
••y", let us refer to «-x\y as «-"x modulo <-y". For a given
value of *-y, <-x\y is a sawtooth function of *-x. For
positive values of <-y, <-0 <« x\y < y, if «-0 <= x < y, x\y
= x; otherwise x\y = x - n*y, where *n is an integer
value (positive or negative). For negative values of «-y,
let <-y = -uj then «--u < x\y <= 0, if <--u < x <= 0, x\y =
x; otherwise <-x\y = x - n*u, where *-r\ is a positive or
negative integer value. For «-y = 0, x\y is undefined.
These relationships are illustrated in the graphs of
Figure E-l. Examples: laba?

.E The order of evaluation of a tnumeric:formula is left
to right, except that an operator of higher precedence
makes use of an operand lying between it and an operator
of lower precedence. Enclosing a tformula in
tparentheses raises the precedence of all operators
within the tparentheses above that of all operators
outside the tparentheses. within one parenthesized or
unparenthesized group, exponentiation has the highest
precedence of arithmetic operations{multiplication,
division, and determination of residues have the next
lower precedence; and addition and subtraction (or
negation) have the lowest arithmetic precedence. The
value of *-5b/6/3 is <-3, not *-21, because of the
left-to-right rule, precedence and evaluation order are
discussed in considerable detail with respect to all
possible operations (including arithmetic) in section
It.15. labalO

It.7 Default scaling la?

Tne type (integer, fixed, or floating) of a value denoted by
a tnumeric:formula, ana its scaling, depend on the

7

DLS d-MAR-74 05:36 30194
JOVIAL Manual — Chapter k

attributes of its constituent tnumeric:formulas and tne
arithmetic involved. The left-to-right rule and the
precedence rules determine the order in which the values of
two operands are combined--to form a single value to be an
operand in another combination--or for assignment or other
uses. The resultant value has scaling and type attributes
to be taken into account with respect to further processing. la?a

.1 Floating values in some systems have only method of
representation, with a given number of bits in the
significand and a given number in the exrad. Other
systems may provide forms of representation with extra
precision (more bits in the significand), or extra range
(more bits in the exrad), or both. la?al

.2 If both operands for an arithmetic operation are
floating values, the operation is carried out in floating
form and the result is a floating value. The precision
and range for the operation and of the result are the
maximums, respectively, of the precisions and ranges of
the two operands, Ia7a2

.3 if one operand is a floating value and the other is
fixed or an integer, the operation is carried out in
floating form ana the result is a floating value. Tne
precision and range for the operation and of the result
are those of the floating operand. The fixed or integer
operand must, of course, be converted to floating form
before the operation. Ia7a3

• It. several following sections discuss the scaling in
arithmetic with values that are not floating, we use
codes consisting of one or two characters with the
following meanings: Ia7a4

.5 The number of fraction bits of integers is undefined,
and disregarded in the scaling formulas below. The
number of integer bits of integers is the same as tne
size. The number of integer bits of fixed values is the
size minus the number of fraction bits. (Fraction bits
or integer bits, but certainly not both, can be less than
zero in number.) The sizes and fraction bits of items
are determined by their tdeclarations, The sizes and
fraction bits of tconstants are implicit in their values

6

DLS 6-MAR-7& 05:36 3019a
JOVIAL Manual—Chapter L

(no leading zeros are included). For certain tvariables,
notably tletter:control:variables, there are
system-dependent sizes. Probably, the size of
Tlettericontrol;variables is the size the system uses for
addresses. The sizes of tintrinsic:function:calls are
stated in Section A.19. The sizes and fraction bits of
other Tfunctionscalls match the sizes and fraction bits
of their implicit output parameters. The sizes of the
values represented by tbit:formulas must often be
computed dynamically during execution of a program. This
is too great a burden to impose, however, in the general
case of scaling tnumericjformulas. Therefore, the sizes
of Tbitzformulas used as tnumericjformulas are determined
as stated in section A.5.1. la?aj>

.6 If both operands for an aritnmetic operation are
integer values, the result is an integer (possible
exception for exponentiation) with the following scaling: laya6

a. For addition and subtraction: la?a6a

*-IR *-= minimum («-Z, «-l + maximum (*-11, <-I2) Ia7a6ai

b. For multiplication: Ia7a6b

<-IR s minimum (<-z, «-Il + 12) Ia7a6bl

c. For division: la7aoc

«-IR = IN la7a6ci

d. For determination of residues: Ia7a6d

IR s minimum (-lN, «-IM) la7aedl

e. For exponentiation, only if the exponent is a
positive tinteger:constant Ia7a6e

JOVIAL Manual—Chapter It
DLS 8-MAR-74 05:36 3Q19it

«-IR = minimum («-Z, +VE * IB) la?a6el

.7 For addition and subtraction of an integer value and
a fixed value or of two fixed values: Ia7a7

a. «-IR «• = 1 + maximum («-Il, 12) Ia7a7a

b, +-AR = minimum (+A1, +A2) Ia7a7b

If «-IR + AR > Z, convert both operands to floating
values, carry out the operation in floating form, ana
Keep the result as a floating value. The precision of
the floating form is system dependent, Ia7a7c

.6 For multiplication of an integer value and a fixed
value or of two fixed values: la7att

«-IR = 11 + 12 la7aba

b, +AR = A1 + A2 la7ado

c. If «-IR + AR > Z, convert to floating mode as in
Section It,7.7c. la7abc

.9 For division of an integer numerator by a fixed
denominator: Ia7a9

a. «-IR = IN +AD Ia7a9a

b. +-AR = 2 # ID + AD - 1 la7a9b

c. If +IR + AR > Z, convert to floating mode as in
Section li.7-7c• la?a9c

.10 For division of a fixed numerator by an integer
denominator: la7alG

10

DLS 6-MAR-7k 05:36 3015k
JOVIAL Manual—Chapter k

a. «-lR = IN

b. *-AR = ID + AN

la?alOa

Ia7al0b

c. If «-IK + AR > Z, convert to floating mode as in
Section k.7.7c. Ia7al0c

,11 For division of two fixed values:

a, <-IR = IN +AD

la7all

la7alia

b. <-AR = IR + AN la7allb

c. If «-IR + AR > Z, convert to floating mode as in
Section A.7.7c. Ia7allc

.12 For determination of the residue of an integer
numerator by a fixed modulus:

a. *-IR = minimum (*IN, <-IM)

b. <-AR = AM

Ia7al2

Ia7al2a

Ia7al2b

.13 For determination of the residue of a fixed
numerator by a fixed or integer modulus:

a. «*IR = minimum («-lN, ••IM)

b. *-AR = AN

la?al3

Ia7al3a

Ia7al3b

.Ik For exponentiation by any exponent not an integer
constant value, convert to floating mode as in Section
k.7,7c. la7alk

11

DLS 6-MAR-7K OSiJo 3019k
JOVIAL Manual—Chapter ii

.15 For exponentiation of a fixed base by a positive
tinteger{constant la?al5

a. *IR = VE * IB la?al5a

b. <-AR = VE * AB la?al5b

c. If *IR + Aft > Z, convert to floating node as in
Section lw7.7c. Ia7al>c

.16 For exponentiation of an integer base by a negative
integer constant value; Ia7al6

a. «-lR = 1 Ia7al6a

b. «-AR = - 2 * VE * IB - 1 (Note that <-VE is
negative.) Ia7al6b

c. If «-IR + AR > z, convert to floating node as in
Section U.7•7c. Ia7al6c

.17 For exponentiation of a fixed base by a negative
integer constant value: la?al7

a. <-IR = l - VE * AB la7al?a

b. «-AR a - VE * (2 * IB + AB) - 1 (Note that +V& is
negative.) Ia7al7t>

c. If <-IR + AR > z, convert to floating mode as in
Section it.7.7c. Ia7al7c

lu8 Uniform Rules of Calculation lab

The scaling rules for tformulas used in indexing and
pointing are the same as the rules for all tformulas. When

12

DLS 6-MAR-7A 05:36 30m
JOVIAL Manual--Chapter lj.

the value is finally set up to be used as an address (base
or increment) it is as if it were being assigned to an
tinteger:variable of the system-dependent size used for
addresses. Certain arithmetic operations are carried out
without explicit direction from the programmer--operations
involved with such activities as calculation of addresses
ana the incrementing and testing of tcontrol:variables, laea

.1 All intrinsic numeric quantities have
system-dependent sizes. All calculations carried out xn
response to implicit directions are scaled in accoruance
with the default scaling rules applied to calculations
explicitly directed, system-dependent documwntation may
make specific exceptions to this rule. labal

ij.,9 Attribute Guidance 1&9

A tdescriptionjattribute is a numeric titemsdescription (one
beginning with «-F, *-S, or <-U or the tname of an item whose
tdeclaration contains a numeric titemjdescription. in any
case its meaning is the same whether tne titemsdescription
is cited directly, or indirectly through the titemsname. A
character titemsdescription is not used with
tattributesassociation since it would provide only a
fraction of the power available in the
tbytesstring sfunctions call. Ia9a

.1 The effect of applying tattributesassociation to a
tformula is to first consider the tformula as a
tbitsformula and then to impose the
tdescriptionsattribute on this string of bits, causxng it
to be treated as a tnumericsformula of the stated type,
size and precision. (tStatussconstants in the
titemsdescription are of no effect with regard to tne
type, size, ana precision imposed on the tformula.) If
the next use of this tnumericsformula is as a numerator
(for division or residue determination), its maximum
permitted size is increased from *-z to «-Y (see section
lu7.1(). Usually tparentheses are required to delimit tne
tformula to which tattributesassociation is applied, but
if the tformula is a tfunctionscall, a tvariable without
an explicit tpointer:formula, or a tconstant, the
enclosing tparentheses are not required. Exampless la^ai

13

JOVIAL Manual—Chapter 1;
DLS 8-MAR-74 05:3b 3019A

*• (AA + BB) [S,H 17] ia9ala

«-cc m [u, SIZE (co; la9alo

«-ALT (PI) @@ [F] la9alc

<-7 @@ fU t3J ia9ala

+• (DD FI,J,K] i PNTR) m [M] la9ale

<-EE [X,Y,Z] 9 (FF m [V]) la9aJL£

.2 In the first example, the rightmost 18 of the bits
representing the sum of eAA and «-BB are treated as a
signed, rounded integer, 17 bits in size. Then, the Dits
of 4-cc are treated as an unsigned, fixed value of default
size with all «• CC • s magnitude bits (however, many there
are) after the point. Then the bits representing the
value representing the currently active entrance of
procedure «-pi are treated as a floating value. Then the
bits (three in this case) representing the tconstant «-7
are treated as an unsigned, fixed value of default size
with three bits after the point (padded with enough
integer bits of value zero to the default size). In the
next-to-last example, after the particular instance of
•-DD is found it is treated as an unsigned integer of
default size. In the last example, it is «-FF that is
first treated as an unsigned integer of default size and
then used as a pointer to find an instance of «-EE. Ia9a2

.3 tEvaluation:control can be applied, in exactly the
same manner as tattribute:association, to any tformula.
The effect is somewhat different, however. The value of
the tformula to which tevaluation:control is applied is
converted to the numeric configuration required by the
Tdescription:attribute, Examples: Ia9a3

*• (AA * BB) 9 [S 30,IS; la9a>a

«-BYTE(CITY/"15;,J)®/t; Ia9a3b

U

DL3 6-MAK-7^ 05:^e 30194
JOVIAL Manual—Chapter k

.1 «-AA and «-BB are multiplied, using the normal scaling
rules, and then the value is converted to the form of a
signed, fixed value of size 30 (not counting the sign)
with 15 bits after the point. It is, of course,
permissible for the compiler to optimize the operation
and avoid, for example, converting <-AA and «-33 eacn to
floating form and the result back from floating form, in
the second example, one byte of character data is in a
position calling for a numeric value, so, according to
the rules, the character datum is considered first a
tbitsforraula, then an unsigned integer, and then it is
converted to floating form. ia^ai

U.10 Scaling under tsvaluation;Control laio

tEvaluationscontrol, unlike tattribute:association, can be
applied to a binary tarithmetic:operator as shown at the top
of the box in section 4.9 The effect is to require that the
operation be performed so that the result comes out in the
form prescribed by the tdescription:attribute. The
precedence rules for tarithmetic:operators are unchanged
when they are followed by tevaluation:control. lalQa

.1 if the prescribed form of the result is floating,
both operands are converted to floating form of the
prescribed precision before the operation, and the
•operation is then carried out in the prescribed mode.
The compiler may, of course, do the operation in a more
efficient manner if, on the basis of the known attributes
of the operands, no accuracy is lost thereby. iaioai

.2 for non-floating addition and subtraction, the
maximum allowable size is «-z. If rounding is not
prescribed, both operands are rescaled with at least as
many integer bits as «-is and at least as many fraction
bits as *-AS. If rounding is prescribed and «-lS + AS = Z,
both operands are rounded to ••AS before the operation.
If rounding is prescribed and ^-IS + AS < Z, both operands
are rescaled with at least +AS + 1 fraction bits, and
rounding is done after the operation, Rescaling of
operands before the operation includes the conversion of
floating operands to fixed form. laigaz

.3 For non-floating multiplication, the scaling must be

DLS 6-MAR-71 05:36 30151
JOVIAL Manual—Chapter 1;

done after the operation, if both operands are floating,
the multiplication is done in floating form and the
result is converted to the prescribed scaling. If one
operand is floating, it is converted to fixed in
accordance with the following formulas (operand 2 is the
one converted from floating to fixed) before the
multiplication: laloa3

*-12 = IS - II Ial0a3a

•-A2 AS - A2 Ial0a3b

.1 In multiplication, if *11 + 12 (for integers) or if
*11 + 12 + A1 + A2 (for fixed numbers) is not greater
than *Z, it may be that the system can provide a less
expensive multiplication, in any case, the prescribed
size, *IS (or *is + AS must usually be no greater than
*-Z. Depending on the system, however, if the next use of
the product is to be treated as a bit string or as tne
numerator in division or determining a residue, the
maximum permitted size may be *Y. laioaa

.$ if even one operand is floating, division must be
carried out in floating form and the quotient then
converted in accordance with the prescribed scaling. For
fixed or integer operands, divison is carried out with
the prescribed scaling. The programmer guarantees that
no machine divide error will occur. laloa5

.6 in determining a residue, floating operands are
converted to the prescribed scaling before the operation.
The operation is carried out with the prescribed scaling.
If a division is involved, the programmer guarantees tnat
no machine divide error will occur. Ial0a6

.7 For non-floating exponentiation, the operation in
accordance with the default rules and then rescaled as
prescribed, laloa7

lull Calculating, Rounding, Packing, Storing, Retrieving lall

16

DLS 0-MAk-7ii 03!,Jb J019H
JOVIAL Manuai--Chapter li

The discussions of scaling above are concerned with
assumptions of what Dits are worth saving in performing
numeric calculations, If «-IS + AS or <-IK + AR turn out less
than «-z, there is no requirement for tne compiler to see to
it that extra bits are scraped off, except as specifically
explained below, before an intermediate result is used in
further calculation. Most algorithms are insenstive to the
presence of noise bits, in the case of an algorithm that is
sensitive to these bits, the programmer must be
careful--perhaps using shorter statements--to insure
cleaning up these bits, if a calculation produces extra
bits on the left--beware--the programmer is responsible. lalla

.1 when a numeric value is rounded in accordance with
the appearance of an <-R in an titemsdescription or in a
tdescription:attribute it means that, in terms of
absolute values, a «-l is added to the leftmost noise bit
(perhaps causing a carry into the rightmost signifcant
bit) and then all the noise bits are replaced with bits
of value zero. lallal

.2 "significant bits" are the bits included in the size
of fixed and integer tvariables and tformulas included in
the significand of floating tvariables and tformulas.
"Noise bits" are any bits to the right of the rightmost
significant bit, representing a value less in absolute
value than a 1 bit as the rightmost significant bit.
Noise bits ordinarily arise during the execution of
arithmetic operations--which often produce bits of no
significance according to the scaling rules or a
Tdescription;attribute. ialia2

•3 If rounding is not specified, it does not mean to
take any measures to suppress noise bits. When storing a
rounded or unrounded value, the compiler protects items
adjacent to the stored item, in adjacent words or in
adjacent bits in the same word (assuming the
tpacking:specification does not deny such care). ialla3

.ii when retrieving a numeric value from storage, the
compiler avoids retrieving bits from adjacent items, in
adjacent words or in adjacent bits in the same word. The
compiler is concerned about avoiding the retrieval of
noise bits or bits to the left in the same word as the
retrieved item if and only if those bits are in space

17

DLS 6-MAK-71 05:^6 3019U
JOVIAL Manual — Chapter It

allocated to other items. Among items with positioning
information, dense packed items are, by definition,
adjacent to other data and medium packed items are alone
in the word part defined by the medium packing, but
adjacent word parts are occupied. For compiled pacKed
data, the compiler knows what is adjacent. The density
may be less than the programmer specifies in the
tdeclaration.

.5 Although specific storage and retrieval methods are
not specified here, the compiler avoids narrow storing
followed by broad retrieval. If "garbage" is retrieved,
it is only because the programmer causes a tvariable to
be used before it is set, sets the tvariable using
legitimate but excess bits developed during a
calculation, or sets something else "overlaid" with the
tvariable. lalla^

4.12 tBit:Formula

A tbitiformula is the representation of a string of bits,
without regard to any meaning it might have as a numeric
value or as a string of bytes. Thus, in a context requiring
a tbitiformula, a tnumericiformula or a tcnaracteriformula
may be used, and the bit string it represents is utilized
without regard to its numeric or character meaning. Ial2a

.1 tPatterniconstant is explained in section 2.a.9.
tEntry:variable is explained in section 3.2,1. tdit:form
is one of the two types of tform explained in section
lj.,17, tFunctiontcalls invoking procedures declared by
the programmer cannot be tbitiformulas since there is no
way to specify "bit" as a type for the implicit output
parameter. Three of the tintrinsic:functionicalls,
however, are tbittformulas. These three are the
tshiftifunctionicall, the tsigned:function:call, ana the
tbit:string:function 1 call.

.2 Any tformula, even a tcharacter:formula, represents a
value consisting of a string of bits. For its use in tne
tbitistring:function 1 call, the bits of any tformula used
as the first tactual:input:parameter are numbered,
starting with zero on the left. The leftmost bit of the
leftmost byte of a tcharacter:formula is oit zero. The

18

JOVIAL Manual — Chapter It
DLS 6-MAR-7A 05:36 3019k

sign bit of signed («*S) values is bit zero and the
leftmost magnitude bit is bit one. The leftmost
magnitude bit of unsigned (*-U) values is Dit zero. The
leftmost bit of floating values («-F) is bit zero, but it
is system depepdent whether this is the sign of tne
significand, the sign of the exrao, a magnitude bit of
the significand, or a magnitude bit of the exrad. with
respect to this numbering of the bits of the first
tactual:input:parameter, the second
Tactual:input:parameter tells which bit of the stated
Tformula is to become the first (leftmost) bit of the
derived tbitsformula. The third tactualsinputrparameter,
if it is present, tells how many bits (following
consecutively to the right) are to be included in the
derived tbittformula. If the third
tactual:input:parameter is missing, just one bit is usea.
The tnumeric:formulas must yield non-negative values.
Only the integer parts of these values are used--the
fractions are truncated. The sum of tne two values must
not exceed the number of bits represented by the first
tactual:input:parameter. If the third
tactual:input:parameter has a value of zero, then tne
tbit:string:function:call represents a bit string of zero
size. Such a value as an operand in concatenation leaves
the other operand unchanged. Ial2a2

.3 The tshiit;function:call yields a tbit:formula
derived from the first tactual:input:parameter by
shifting it left or right in accordance with the value of
the second tactual:input:parameter. The specifics of the
shifting are as follows: Ial2a3

a. The string of bits representing the value of the
cited tbit:formula is considered to be framed by a
window whose width is the size of the tbit:formula. Ial2a3a

b. There are infinite strings of zero bits attached
to the left and right sides of tne tbitsformula and
hidden by the window frame. Ial2a3b

c. The tnumeric:formula is evaluated to an integer,
truncated if necessary. Ial2a3c

d. The infinite string of bits consisting of those to

19

DLS 6-MAk-7J* 05:36 3019U
JOVIAL Manual—Chapter k

the left behind the window frame, those within the
window, and those to the right behind the window frame
is shifted left or right with respect to the window oy
the number of bits indicated by the value of the
tnumeric:formula. The shift is to the left past the
window if the tnumeric:formula is positive. The shift
is to the right past the window if the
tnumeric:formula is negative. Ial2a3d

e. The resulting tbitjformula is the same size as tne
original tbitjformula and has the value now appearing
in the window. Ial2a3e

•U The following table gives some sample results: lal2ai

.5 The tsigned:functionicall is a Tbit:formula one bit
in size. Its value depends only on the type, not the
value, of its tactual:input:parameter. The value of the
tsigned:function:call is <-1 if its
tactual:input:parameter is floating or signed; otherwise
the value is zero. The sign of a tnumericiformula
depends on many factors, as follows: Ial2a5

a* tAttribute:association or tevaluation:controi
overrides all other considerations; otherwise Ial2a3a

b. A tbitjformula treated as a tnumeric:formula is
unsigned. Ial2a5b

c. «-sIGNED <- (tfunctiontcall*-) depends on the
attributes of the implicit output parameter for an
intrinsic or a programmed function. Ial2a3c

d. If a tformula is floating, none of the below rules
relating to arithmetic apply. Ial2a3d

e. Any arithmetic operations, other than subtraction,
involving unsigned operands leave the tformula
unsigned. Ial2a5e

20

DLS tt-MAR-74 0^:36
JOVIAL Manual—Chapter U

f. Exponentiation by an even tconstant yields an
unsigned tformula. Ial2ai?f

g. Determining a residue with an unsigned modulus
yields an unsigned tformula. Ial2a>g

h. In all other cases, the formula is tsigned lal2a>h

U.13 tComparisons and tChainsComparison Iai3

A tcomparison is a tbitsformula one bit in size, A
tcomparison consists of a left operand, a
treiationalsoperator, and a right operand. It has the value
••1 if the left operand stands in the relationsnip stated by
the trelational:operator with respect to the right operand.
Otherwise, the tcomparison has the value zero. The
trelationalsoperators, with their meanings, are given in the
box above. If both operands are tnumeric:formulas, the
truth or falsity of the tcomparison is based on the numeric
value resulting from the subtraction of one operand from the
other, in performing this subtraction all the rules that
abply to arithmetic between tnumeric{formulas are in force. Ial3a

.1 if one operand is a tbitsformula, the other operand
becomes a tbitsformula (if it is not to begin with);
i.e., the bits representing the value are merely
considered as a string of ones and zeros, without further
meaning. The truth or falsity of the tcomparison then is
based on subtracting one tbitsformula from the other--now
considering each to be an unsigned integer. For the
purpose of tcomparison of tbitsformulas, subtractions of
one unsigned integer from another can accommodate
operands of any size. If one tbitsformula is shorter
than the other, the shorter is considered to be extended
or padded on the left with bits of value zero before the
subtraction. There is no prescribed method for tne
compiler to implement the tcomparison. As long as the
results are the same, the arithmetic can be done by parts
or backwards or forwards, or the bits can be compared one
by one until the value of the tcomparison is determined, iai3al

.2 if one operand of a tcomparison is a tnumericsformuia

21

DLS 8-MAR-74 03:36 30194
JOVIAL Manual—Chapter 4

and the other is a tcharacter:formula, tney both become
Tbit{formulas for the purpose of the tcomparison. Ial3a2

.3 if both operands of a tcomparison are
tcharacter{formulas, the truth or falsity of the
tcomparison is determined by considering each operand to
be an unsigned integer and then subtracting one from the
other, as in comparing tbit:formulas. However, if one
tcharacter:formula consists of fewer bytes than the
other, the shorter is padded on the right with space
characters to equalize the sizes before the subtraction. Ial3a3

.4 A tchain:comparison is a tbit:formula having a size
of one bit and a value of zero or 1. Each
tchain:comparison is nearly equivalent to the logical
product of two or more tcomparisons. Consider the
following logical product, where each «-R is a
trelational:operator and each *-F is a tformula (see
Section 4.14.3 for meaning of <-AND) : lai3a4

*F R F AND FRF AND ... F R F Ial3a4a

.5 The effect is nearly the same as the
tchain:comparison lal3a>

< - F R F R F R . . . F R F Iai3a3a

.6 it is nearly the same because in the form with tne
explicit *ANDs, *-F to «-f each appear twice. If these
Tformulas contain tfunction:calls requiring an explicit
execution for each explicit appearance, such
tfunction:calls would be executed twice, while in the
fchain:comparison they would be executed just once. <-F
to «-F , if they are numeric, may require different
scalings (or worse) in their two tcomparisons.
Nevertheless, they are each evaluated just once. If «-F
is a tfixed{formula, it may be seen that not all its
precision is needed for the subtracting in either of its
two tcomparisons. Enough precision must be saved,
however, for its more precise tcomparison. It may De
that in one of its tcomparisons it must be converted to
floating — or perhaps it will be treated as a

2 2

DLS 8-MAR-7U 03:36 3019k
JOVIAL Manual--Chapter 4

tbitjformula. Then all the precision called for by the
scaling rules must be saved. lal3a6

.7 A tchainrcomparison requires some tformulas to oe
used twice in effecting tcomparisons. The scaling or
interpretation of a tformula needed in effecting one
tcomparison does not influence the scaling or
interpretation of that sane tformula in effecting its
second rcomparison. consider, for example: Ial3a7

•-BIT (ALPHA, I, J) < GAMMA (BETA) < EP3IL0N + DELTA Ial3a7a

.8 In the above tchainrcomparison, the first of the
three tformulas being compared is clearly a tbitrformuia
and the third is clearly a tnumeric:formula. Let us
suppose the middle tformula is a tfunction:call that
returns the factorial of its tactual:inputrparameter, a
tnumeric:formula• The output of •-GAMMA is treated as a
tbitrformula for tcomparison with the pit string from
••ALPHA and as a tnumeric: formula for tcomparison with tne
sum of •-EPSIL0N and •-DELTA. Ial3ad

lula Operations on tBit:Formulas lalii

tBit;formulas represent strings of bits, each of value zero
or •"!. tcomparisons and tcnainicomparisons are
tbitjformulas, in these cases only one bit long, with values
of zero or *1, tBitsformulas can be combined or transformed
in various ways as indicated below. lalla

.1 When ••NOT is applied to a tbitjformula it produces a
derived tbit:formula in which each *1 in the value of the
stated tbitrformula is replaced with zero and each zero
is replaced with *1. The derived tbit:formula is the
same size as the stated tbit:formula. laliul

.2 Concatenation of two tbitjformulas, indicated by an
tampersand between the two tbitjformulas, yields a
tbitjformula whose size is the sum of the sizes of the
two component tbitjformulas. The value of the resultant
tbitjformula is the bits of the tbitrformula on the right

23

DLS 6-MAR-71^ 05:36 30154
JOVIAL Manual—Chapter li

appended to the right of the bits of the tbitsformula on
the left. Examples: iaiaa2

.3 A tlogicaljoperator applies to all the pairs of the
bits of the two tformulas to which it is applied as an
infix operator. The two bit strings are right justified
and matched bit by bit from right to left, whichever
tformula is a shorter value is padded out with zero bits
to match the size of the longer value. The size of this
longer value is the size of the resulting tbitsformula.
In the table below, «-p and «-q represent matched bits,
each from a tformula to which tlogicalsoperators are
applied. For all values of *p and *q, the corresponding
values are shown which result from application of tne
operators. («-NQT is included in the table, but it only
applies to «-p and is not called a tlogical:operator in
this manual.) Ial4a3

.li we should take particular note of the way the
Tbit:formula rules affect operations with
tcharacterjformulas lal4.au.

a. When two tcharacter:formulas are combined using a
tlogical:operator, they each become tbit:formulas
before the operation. If one is shorter than the
other it is padded on the left with zero bits before
the operation. Ial4a4a

b. When comparing a tcnaracterjformula with any
formula not a tcharacter:formula, they each become
tbit:formulas before the operation, are right
justified, and are compared as unsigned integers. lalliaEo

c. When assigning a tcharacterjformula to any
tvariable not a tcharacter:variable, it first becomes
a tbitsformula and is assigned as a bit string, right
justified and truncated on the left or padaeo on the
left with zeros if necessary. Ial4a4c

.5 A tbitsformula in tparentheses is also a
tbitsformula. The tparentheses do not change the value
of the enclosed tbitsformula, but they may be necessary

24

DLS 8-MAR-7I1, 0^:36 3019U
JOVIAL Manuai--Chapter it.

to override the precedence of operations, precedence is
discussed in the next section. lali*as>

li.15 Precedence of Operations la!5

precedence applies mainly in determining the values
represented by tformulas. it also applies in assignment of
values, however, and is treated in detail at this point even
though assignment is discussed in later chapters, in
general, operations are performed from left to right, except
as overridden by precedence rules, grouping by means of
tparentheses, and the need to determine a value before a
tvariable can be set (or reset). lalia

.1 basic exceptions to the left to right rule: laical

a. The value of a tformula must be determined oefore
that value can be assigned to a tvariable. Therefore:

lal5ala

(1) The tformula is evaluated first. Ial5alal

(2) Any tindex needed to select the tvariable is
evaluated next. Ial3ala2

(3) Any tpointer:formuia needed to locate the
tvariable is evaluated next. Ial5ala3

(It) The tvariable is assigned its new value. lalSalalt

b. In an tassignment:statement all the tformulas to
the right of the tassignment:operator are evaluated
from left to right. Then all the tvariables to the
left of the tassignment:operator are set from left to
right, the tindex and tpointer:formula for eacn oeing
determined just before it is set. Ial5alb

c. In an texchange:statement the tindex and
tpointer:formula on the left are evaluated, the tindex

23

JOVIAL Manuai--Chapter It.
DLS 6-HAR-7Ji 05:36 3015A

and tpointer:formula on the right are evaluated, and
then the values of the tvariaoles are interchanged. iali>alc

d. If a binary operation is indicated immediately
preceding a unary operation, the unary operation is
completed first. Ial5ald

e. Indexing and pointing can only be applied to
tnamed:variables, not to tformulas and not to
tfunctionalsvariables. The tindex ana the
tpointer:formula applied to a tvariable must both be
evaluated before the tvariable is evaluated. The
tindex precedes the tpointer:formula. First, the
tindex:components are evaluated from left to right.
Then the tpointersformula is evaluated.
Tlndex:brackets may be thought of as being replaced by
tparentheses and an indexing operator before the
tleft:parenthesis. If the tindexrcomponent tformulas
and the tpointer:formula contain operations these
operations will have higher precedence than indexing
and pointing because of the tparentheses. Ial5aie

.2 With due regard to all the above exceptions, consider
the following list. The basic precedence of each
operation is given in this list: Ial5a2

.3 tparentheses may be considered to raise the
precedence order of enclosed operations. The precedence
order of every operation is effectively raised by 20 for
every pair of tparentheses that encloses it. The
operands of a tchain:comparison include the results of
operations with precedence order greater than that of the
trelational:operators forming the cnain. A «-hOT before
the leftmost operand of a tchainicoroparison is applied to
the result of the entire chain, not merely to the first
tcomparison of the chain. The chain is broken by
operations of lower precedence, out not by the implied
••AND due to the chaining. An operand and a
trelational:operator are part of an apparent
tchainrcomparison unless the meaning is changed by
Tparentheses. consider, for example, three unsigned
integers with the following values (in binary): Iai5a3

•B1 01 Ial3a3a

26

JOVIAL Manual—Chapter k
DLS 8-MAR-7JI 05:36 3Q191)

«-B2 10 Ial5a3b

<-B3 11 Ial3a3c

. ll. The following two tformulas then have the indicated
values: laical*

*B1 < B2 < B3 1 lai>aia

*B1 < (B2 < B3) 0 lalSaio

.5 The diagram and flow chart of Figure k-2 illustrate
left to right evaluation as modified by precedence.
TParentheses are not shown in the diagram, but precedence
value for each operation is determined in accordance with
the above list, as modified by the presence of
tparentheses (or tindex brackets). Ial5a5

.6 Figure li-3 summarizes all conversions of data from
one type to another possible in JOVIAL 73. Formulas or
variables represented by «-XYZ, and of the five possible
types as indicated at the top of the figure, are
converted as indicated in the body of tne figure under
the influence of the operations and the types of the
other operand (••ABC) as shown at the left. To determine
the conversion applying to both operands of a given
operation, first consider one and then the other as «-XYZ.
Whenever an operand of bit type is converted to integer
("Int"), it is to unsigned integer. "Scale" in the
figure means to consult the scaling rules for the details
of arithmetic scaling. In some cases, a series of
conversions (at least conceptually) is required. These
are indicated by references to the following notes: Iai5a6

Note 1. in arithmetic operations with floating and
character operands, the character string becomes a bit
string, then an unsigned integer, then the integer is
floated. Ial£>a6a

Note 2. In arithmetic operations with floating and

27

JOVIAL Manual — Chapter ii
DLS 8-MAR-71* 05:36 3019it

bit operands, the bit string becomes an unsigned
integer, which is then floated. laI5abb

Note 3. In arithmetic operations a character string
becomes a bit string, then an unsigned integer, then
this integer is scaled appropriately. Ial5a6c

Note ii. In arithmetic operations a bit string becomes
an unsigned integer which is then scaled
appropriately, depending on the other operand. laljiaoo

Note 5. in comparing two character strings, the
shorter is padded on the right with blanks. Then both
are converted to bit strings and then to unsigned
integers for the comparison. laijjabe

Note 6. in comparing numeric with bit, character with
bit, or numeric with character, the non-bit type is
converted (or are converted) to bit type. Then both
are converted to unsigned integer for comparison. Ial5abf

Note 7. A character string used for pointing or
indexing is converted first to a bit string and then
to an unsigned integer, Ial3a6g

i•16 Short-circuit Evaluation lal6

A JOVIAL tprogramsdeclaration specifies a numper of
tstatements to be executed in a particular order, subject to
dynamic changes involvng tconditional:statements,
tswitch:statements, tgo:to:statements, and texit:statements,
within a tstatement, there are fformulas to be evaluated in
a particular order, subject to tconditional:formulas and
precedence rules. All these requirements are for effect
only. As long as the computational results are the same,
the compiler is free to rearrange the order of
computations--even to omit some calculations--in the
interests of efficiency. Consider tformulas involving
expressions such as: laloa

<-0 * ALPHA Xal6al

28

DLS 8-MAR-7U. 05:36 3019k
JOVIAL Manual—Chapter E

•-0 AND BETA Ial6a2

*•1 OR GAMMA iaioa3

.1 in the above examples, the zeros and the «-l could be
values determined at execution time or Known at
compilation time--it could make a difference with regard
to efficiency, in any case, the value of the first
example does not depend on the value of «-ALPHA, If the
second and third examples are tconditionalsformulas,
their values o not depend on the values of «*BETA and
<-GAMMA. These are cases wherein the compiler might
choose to avoid evaluating «-ALPHA, <-BETA, and «-GAMMA. ial6aij.

.2 The omission and rearrangement of computations are
aspects of optimization. Chapter 11 discusses
optimization and the assumptions the compiler may make
with regard to hidden interactions within a
tprogramsdeclaration. The tordersdirective (Section
11.7.U puts the compiler on notice that it must not make
certain assumptions. If the compiler can determine, from
its analysis of the tprogramsdeclaration and making the
assumptions it is allowed to make, that it would not
impair the accuracy or effect of the compiled program, it
may rearrange or delete tformulas or even whole
tstatements. Iai6a5

.5 There are programs that can analyze a JOVIAL
tprogramsdeclaration, delete parts that cannot be
executed, put the remainder in canonical form, and
describe the transformation so the programmer can see
some of his errors of logic. Ial6a6

iwl7 TForm lal7

The tformsdeclaration (section 8.9) provides a structure for
the convenient assembly of a list of values into a single
bit value or character value, if the tabbreviation «-B
follows the tformsname in the tformsdeclaration, each
reference to the tformsname is a tbitsformula. If the
tabbreviation is *c, each reference to the tformsname is a
tcharactersformula. Iai7a

29

DLS ti-MAK-7k 05:36 3019k
JOVIAL Manuai--Chapter k

.1 A tbitsform consists qf the tformjname followed by a
parenthesized list of tbitjformulas. within the
tparentheses there must be one fbit:formula for each
tfield:width in the corresponding tformjdeclaration.
Each Tformula is converted to its bit value and truncated
from the left or padded with zero bits on the left to its
respective tfield:width in bits. The value of the
tbit;form is then the concatenation of all these
truncated or padded bit values. Examples: lal7al

•-FORM DUAL B 16,16; la!7ala

•-ABC = DUAL (ABCISSA, ORDINATE); lal7alb

••FORM OPWRD B 6,k,k,k,2,16; lal7alc

••OP = OPWRD (CODE,JMOD,AREG,BREG,0,ADDR+ki ial7ald

.2 A tcharacter;form consists of the tformjname followed
by a parenthesized list of tformulas. within the
tparentheses there must be one tformula for each
tfieldjwidth in the corresponding tform:declaration. If
the tformula is a tcharactersformula with a different
number of bytes from that specified by the corresponding
tfield:width, it is truncated from the right or padded
with blanks on the right to its respective tfield;width.
If the tformula is other than a tcharacterjformula it is
treated as a tbit:formula. The required size is then the
corresponding tfieldjwidth times the number of bits per
byte in the system. The tbitjformuia is then truncated
from the left or padded on the left with zero bits to
match this required size. The value of the
tcharacter;form is then the concatenation of all these
truncated or padded values. The tcharacter:form is a
tcharacter:formula whether the parenthesized tformuias
are tcharacterjformulas, tbitjformulas, or a combination. Ial7a2

k.18 tFunction:Call laid

tlntrinsic:function:calls are discussed in Section k*19«
Other tfunction:calls are very similar to
tprocedure:call:statements, discussed in Section 5.11. The

30

DLS 6-MAR-7J; 03:36 3019a
JOVIAL Manual—Chapter It

tprocedure:name or talternate:entrance:name must be one
whose tdeclaration associates an titem:description with the
tname. This association of an titem:description makes the
procedure or alternate entrance a function, describes the
implicit output parameter for the function, and establishes
the tformula type and size for the tfunctiomcall, laloa

.1 The use of tactual:input:parameters in a
tfunction:call is the same as their use in a
tprocedure:call:statement, with one exception.
ordinarily, if exit from a procedure is effected by a
Tgo:to:statement referencing a tformula:input:parameter,
the tactual:output:parameter3 at the active call are set
before (or simultaneously with) the exit. In a similar
situation with regard to a ffunction:call, there is
nothing that can be done with the function value, so it
is immaterial if the implied output parameter is "set" or
not in conjunction with this abnormal exit. laltial

.2 Normally, a tfunction:call is the invocation of the
corresponding tprocedure:declaration consisting of first,
the setting of the tformal:input:parameters from the
Tactual:input:pararaeters (or establishing the
correspondence for those tformai:input:pararoeters that
are not tvariables); second, execution of the procedure;
and third, utilization of the value of the implied output
parameter in place of the tfunction:call. Ialtta2

.3 If the procedure corresponding to the tprocedure:name
or the talternate:entrance:name is declared to be pointed
to, the Tfunction:call must include tne tpomter:formula
to provide a location for the data space of the procedure
during this invocation. Iai6a3

A. 19 tintrinsic :Function;Call lal^

fformat:function:call provides a set or list of values of
various types ana sizes to be assigned to a set or list of
tvariables. Details are given in Section 6.1.a.
tbyte:string:function;call is a tcnaracter:formula. Details
are given in Section A.A.I. TBit:string:function:call is a
tbit:formula. Details are given in Section A.12.2.
tShift:function:call is a tbit:formula. See section A.12.3

31

DLS 8-MAR-7i| 05:36 3019k
JOVIAL Manual—Chapter b

for details, tsigned:function:call is a tbitsformula one
bit in size. See Section 1^.12.5 for details. laiya

.1 The talternate:entrance:function:call is an unsigned
tinteger:formula of default size, its value is an
unsigned integer that indicates tne entrance of the named
procedure that is active. The fforraula is only
meaningful within a tprocedure:declaration. The reason
for citing the tprocedure:name is to be able to
interrogate the status of an outer procedure from within
an inner procedure, if the tprocedure:name is omitted
(the tparentheses are required even so), ••ALT provides
the active entrance of tne innermost
tprocedure:declaration within which the tfunction:call is
issued. This makes it possible to interrogate the status
of this innermost procedure even if its tname has been
redeclared for some other local use within the
fprocedurejdeclaration. Associated with each possible
value of the talternate:entrance;function:call citing a
particular tprocedure:name, there is an intrinsic
tstatus:constant. The correlation is illustrated in tne
table below: laical

.2 "First alternate", "second alternate", etc.* smply
refer to the lexical order of the
talternate .-entrance; names, the order in which the
talternate:entrance:declarations are written within the
tprocedurejdeclaration. The tstatus within each
tstatus:constant in the above list is just the relevant
tname. There is no way to qualify these
tstatusiconstants explicitly and the only meaningful use
of such a tstatus:constant is as follows; lal£a2

•-ALT (procedure:name ••) trelationalioperator *-V (
tprocedure:name

talternate:entrance:name Ial9a2a

• 3 in the above example, the tprocedure:name must be the
same on both sides (even if the one on the left is only
implied), or the talternate:entrance:name must be one
associated with the tprocedure:name on the left (even if
it is only implied). Ial9a3

32

JOVIAL Manual--Chapter U
ULS 5-MAH-7A QS:36 3019L

.li The tnumbersofsentriessfunctionscall is an unsigned
tinteger:formula of default size. Its value, if the
findex:range is omitted, is the product of multiplying
together the extent of the cited table in all its
dimensions. The extent of a table in any dimension is,
for that dimension: lai^ai

tupperjbound «-+ l - flower: bound lal9aia

.5 If a table is implicitly pointed to, if its
Tpointer:formula is a tfunctionscall, and if its
tallocationsincrement indicates less than the entire
table, then its extent in each dimension relating to the
tfunction:call is *-1 and the
tnumbersofsentries:function:call is the product of the
extent of the allocation submanifold in all its
dimensions. lai9a£>

.6 If the tindexsrange is present (see Section 10.a)$
the value of tne tnumber:of:entries:function:call is the
product of multiplying together the extents indicated by
each tindex;component:range present (not the
tindexicomponents). The extent indicated by an
tindexscomponent:range is: Ial9a6

thighspoint tlowspoint Ial9a6a

••+ 1 lal9abb

Tupper:bound flower:bound Ial9a6c

.7 In the above fformula for extent, fuppersbound is
used only if thighspoint is missing and tlowersbound is
used only if tlowspoint is missing. Examples: Ial9a7

«-NENT (TAB [; i : ; Ial9a7a

4-NENT { TAB (: J, K : ;) lal9a7o

33

JOVIAL Manuai--Chapter li
DLS 6"MAR"7k 05:36 3GI9H.

.8 The value of the tfunction:call in the first example
is the extent of <-TAB in the first dimension, times its
extent in the fourth dimension. The value of tne
tfunction:call in the second example is (J + 1 -
tlower:bound of first dimension) times (tupper:oouna of
second dimension «•* 1 - K) . Ial9att

.9 The tlocation:functionscall is an unsigned
tinteger:formula of default size. Its value is the sum
of possibly three elements: Ial9a9

a. The value of the tpointer:formula or
tpointer:variable pointing to the structure (procedure
instruction space, table, data block) containing the
named entity. If the structure is not pointed to,
this is simply the compiler-assignea location of the
structure. laiyaya

b. The relative position of the named entity in its
structure--item in entry, table in data block,
tstatement in procedure, etc. laiyayo

c. Relative positioning due to the Tindex if present.
In a table allocated space by submanifolds, the value
of the tindex can, of course, influence the value of
the primary pointer. Ial9a9c

.10 in any citation of a table or item in a pointed-to
structure, the pointer, whether implicit or explicit,
points to the beginning of the structure. This is not
generally the value of the tlocation:function:call. The
tlocation:function:call is not the inverse of pointing.
In general, «-XXfYY] @ L0C(XXfYY7) is a different
tvariable from *-XX[YY]. laiyalO

.11 The tabsolute:function:call is a tnumeric:formula of
the same size, precision, and type as its tparameter,
except that if the tparameter is not floating the
function is unsigned. The value of the function is the
absolute value of its tparameter. Ial9all

.12 The tworas:per:entry:function:call is a signed

3U

JOVIAL Manual—Chapter It
JJLS 6-MAR-7A 05:36 30191

tinteger:constant of the size required to represent the
tconstant value. For a serial or parallel table it is
the number of words in an entry of the cited table. For
a tight table, it is the negative of the number of
entries in a word of the cited table. Ial9al2

.13 The texrad:function:call is a signed
tintegerjformula with a system-dependent size. Its size
is related to the size of exrads provided by the system
for floating values, but not necessarily tne same. If
the system uses a radix other than 2, the required
relationship between the texrad;function:calI and the
tsignificand:function:call necessitates a few extra bits.
If the tactual:input:parameter of the
texrad:functionscall is floating, it yields the exrad of
that floating value. If its tparameter is not floating,
the texrad:function:call returns as its value the size of
its tparameter (not including the sign) minus the number
of bits after the point. Remember that the number of
bits after the point can be negative--so the
texrad:functionscall can return a value greater than the
size of its tparameter. Ial9al3

.11 The tsignificand:function:call is a tfixed:formula;
unsigned if the tparameter is unsigned, signed otherwise.
If the tparameter is floating, the size and precision of
the tformula is system dependent and its value is the
significant! of the floating tparameter. If the
tparameter is not floating, the size and precision of the
tformula are both the size of the tparameter, and its
value is the value represented by the string of bits
constituting the tparameter with the binary point just to
the left of the leftmost magnitude bit. If «-NF is any
tnumeric:formula, then: lal9all

<-NF = SIG (NF) * 2 ** XRAD (NF) lal9ali*a

.15 The tsignum:function:call is a signed
tinteger:formula one bit (besides the sign bit) in size.
The value of the tsignum:function:call is zero if its
tparameter is zero, «•+! if its tparameter is greater than
zero, and <--1 if its tparameter is less than zero. Ial9al5

.16 The tsize:function:call is an unsigned

35

DLS 8-MAk-7i 05:36 3019k
JOVIAL Manual--Chapter k

tintegerzformula of default size, if its tpararneter is a
tcharacterzformula, the value of the function is the
number of bytes in the tformula. If the tpararneter is
floating, the value of the function is the number of oits
in the significance plus the number of bits in the exrad,
exclusive of both signs. This is not the numbers
declared for these parts, but the system-dependent sizes
provided to accommodate the declared sizes. If the
tpararneter is a tbitzformula, tinteger:formula, or
tfixedzformula, the value of the tsize:function:call is
the number of bits in the tpararneter, not including the
sign if there is one. If the tpararneter is a
tdata:block:name, the value of the tsize:function:call is
the number of words in the cited data block. Ial9al6

.17 The ttype:function:call is an unsigned
tinteger:formula three bits in size. Its values are
related to the type of its tpararneter in accordance with
the table below. There is also an intrinsic tstatuszlist
associated with the ttype:function:call having the
tstatus:constants also listed in the following table: Ial9al7

.18 The last column above indicates a
tqualified:status:constant that can be used where the
unqualified tstatus:constant is not permitted (everywhere
not in a tcomparison with the ttype:function:call). ia!9alc

.19 The tfraction:part:function:call is a
tnumeric:formula of the same size and type as its
tpararneter. Its value is the fractional part of its
tpararneter, of the same sign as its tpararneter and witn a
value greater than «--l and less than *-1. If *-NF is any
tnumeric;formula, then <-ABS (FRAC(NF)) = FRAC (ABS (NF)). Ial9al9

.20 The tinteger:part:function:call is a
tnumericzformula of the same size and type as its
tpararneter. Its value is the integer part of its
tpararneter. If <-NF is any tnumeric zformula, then «-XF =
INT(NF)+FRAC(NF). Ial9a20

.21 The tinstruction:size:function:call is an unsigned
tintegerzformula of default size. Its value is the
number of words in the load module for the cited

36

DLS 6-MAR-7U G5:3o 3019k
JOVIAL Manuai--Chapter k

procedure. This may he required for dynamic procedure
loading (see Section 6.6.11). Ial9a21

.22 The tdata:sise:function:calI is an unsigned
tinteger:formula of default size. its value is the
number of words in the private or pointed-to data space
of the cited procedure, if the tprocedure:heading
contains a tdata:allocation:specifier or an
tenvironmental:specifier making the unnamed data space
(and any named data space not individually excepted)
strictly private. This information is needed for
requesting data space for a pointed-to procedure (see
Sections 6.6.6 and 8.6.9). Ial9a22

k • 20 use and Qualification of tstatus:Constants la2u

Each tstatus:constant is given a constant integer value by
means of its position in a tstatusslist (see section 7.17)•
Wherever the tstatus:constant is subsequently used (except
in another tstatus:list) it represents that constant integer
value. The meaning of a tstatus:constant may be ambiguous,
however, because it can appear in more than one
tstatus:list--and be defined by each such appearance. The
ambiguity is resolved by context, A t3tatus;constant may be
used, and represents its constant integer value, only in the
contexts described in sections k.20.1 through k.20.3. Ia20a

.1 A tstatussconstant may be used to represent its value
as the presetting tconstant of or in the tconstant:list
of an titemideclaration (or tordinary:table:heading or
tspecified;table:heading) containing an titem:description
that contains or cites the tstatus:list in which the
tstatus:constant is given its value. Examples: la20al

••ITEM WEATHER U 2 V (RAINY) , V (FAIR) , V (SUNNY) =V (SUNNY) }
la20ala

••STATUS ALPHABET V (A) , V (B) , V (C) ,. .. V (Y) , V (Z) ; la20alb

••TABLE la20alc

•-ITEM LETTER S S ALPHABET [0, k) =2 (V (A) , V (B)) , V (L) J la20ald

37

JOVIAL Manual—Chapter k
DLS a-MAk-74 0>i36 30m

.2 A tstatusiconstant may be used as the entire
tnumericiformula providing the value to be assigned to an
Tinteger:variable by means of a
tsimple:assignment:statement if the titem:description for
that tinteger:variable contains or cites the tstatusjlist
in which the tstatus:constant is given its value. A
tstatusiconstant may be used as the entire
tactualiinputiparameter corresponding to a
tformal:input:parameter whose titemidescription contains
or cites the tstatuszlist in which the tstatusiconstant
is given its value. A tstatusiconstant may be used in the
following contexti Ia20a2

tintegerivariable Ia20a2a

tstatusiconstant
trelationalioperator

Ia20a2b

tfunctionicall Ia20a2c

.3 In the above context, the titemzdescription
associated with the tvariable or the implied output
parameter of the tfunctionicall must contain or cite tne
tstatusilist in which the tstatusiconstant is given its
value. Ia20a3

in other contexts (and even in the contexts described
above) a tqualifiedistatusiconstant may be used. A
tqualifiedistatusiconstant may be considered to consist
of two parts—the tname preceding the tstatus, and tne
tstatusiconstant that remains when that tname and its
following tcclon are deleted. The meaning of the
tqualifiedistatusiconstant is the same as the meaning of
its corresponding tstatusiconstant derived from the
tstatusilist (contained in or cited in the
titemidescription) associated with its corresponding
tname. Example i la20aii

••STATUS USDA V (PRIME) , V (CHOICE) , V (GOOD) , V (COMMERCIAL; la20a)4.a

••ITEM SWIFT U 5 USDA; la20alib

36

DlS 8-MAR-7ii 05536 301?it
JOVIAL Manuai--Chapter k

•-STEW = ONION + CARROT + V<SWIFT:CHOICE); Ia20aae

39

JOVIAL Manual--Chapter k
DLS 6-MAR-71* 0>:36 3om

(J30191).) 8-MAR-7L 05:36; Title: Author(s): Duane L. Stone/DLS;
Distribution: /RJC; Sub-Collections: RADC; Clerk: DLS;
Origin: <STONE>ClwNLS;l, 8-MAR-74 05:31 DLS ;

JOVIAL Manuai--Chapter 1

Contains font Markers and structure

DLS 8-MAR-7JJ. 05U3 30195

JOVIAL Manual—Chapter 1
DLS O-MAR-74 Q5U3 30193

Chapter 1 1

INTRODUCTION la

1.1 Purpose of the Manual lal

The purpose of this manual is to describe tne 1973 version
of the JOVIAL computer Programming Language, and to
establish standard language specifications upon which the
acquisition of compilers for the language can be based. The
JOVIAL 73 (abbreviated J73) language is to be considered a
replacement for the previous standard, JOVIAL (J3)> defined
by AIR FORCE MANUAL AFM 100-2E, dated 1967 June IS, with
amendments thereto. laia

1.2 Scope and Changes la2

This manual contains the complete set of JOVIAL (J73)
language features. The scope of these language features is
designed to provide both effective support of today's
processing requirements and evolutionary growth as future
system requirements dictate, implementation of the full J73
language is not intended at this time. A basic set of 3
language features is being identified for standard
implementation by all compiler systems. Methods of
extending the basic set of language features has not yet
been determined. Existing J3 programs may not be completely
converted to J73 language because of machine dependencies
and resultant changes in language features, conversion
requirements and aids should oe considered in conjunction
with compiler acquisition for each replacement system,
using activities are requested to submit recommended
changes, additions, and deletions to the manual in
sufficient detail to permit both a technical and economic
evaluation. AFR 300-10 prescribes both policy and
procedures for using standard computer programming languages
(i.e., C0B0L< F0RTRAN< JOVIAL) and for specifying computer
programming language compilers. ia2a

1.3 overview and Objectives of the Language la3

JOVIAL 73 has developed out of nineteen years of study and
experience with regard to appropriate programming languages
for command and control applications. JOVIAL has also been
found to be well suited to the programming of many other
applications including general scientific and engineering
problems involving numeric computation and logically complex
problems involving symbolic data. Because of its wide
applicability and the optional control it provides over the

1

DLS b-MAK-71* 05:^3 30153
JOVIAL Manuai--Chapter 1

details of storage allocation. JOVIAL is especially
suitable for problems requiring an optimum balance between
data storage and program execution time. The earliest
versions of JOVIAL borrowed heavily from ALGOL 58. This
latest version incorporates features permitting the design
and utilization of the most sophisticated data structures,
yet at the same time simplifies the manipulation of
elementary forms--the sort of manipulation that typically
involves over 95% of computation time (Knuth, D.E.,
"Software, practice and Experience", Vol. 1, pp. 105-133#
1971, John Wiley & Sons, Ltd.). Ia3a

.1 The prime motivation for the development of JOVIAL is
the desire to have a common, powerful, easily
understandable, and mechanically translatable programming
language, suitable for wide-range applications, such a
language must be relatively machine independent, with a
power of expression in logical operations and symbol
manipulation as well as numerical computation. A JOVIAL
tprogram:declaration describes a particular solution to a
data processing problem, meant to be incorporated by
translation into a machine language program. The two
main elements of this description are: la3al

a. A set of tdata:declarations, describing the data
to be processed. Ia3ala

b. A set of tstatements, describing the algorithms or
processing rules. These two sets of descriptions are,
to a great extent, mutually independent, so that
changes in one do not necessarily entail changes in
the other. Further, the pertinent characteristics of
an element of data need be declared only once ana do
not have to be repetitiously included with each
reference to the data. la3alb

.2 one of the further requisites of a programming
language intended for large-scale data processing systems
is that it include the capability of designating ana
manipulating system data, as contained in a communication
pool (compool). A compool serves as a central source of
data description, communication changes in data design by
supplying the compiler (or assembler) with the current
data description parameters, thus allowing automatic
modification of references to changed data in the machine
language program. Though highly desireable for any data
processing system, a compool is a vital necessity for
large-scale systems where problems of data design

2

DL3 6-MAR-74 05:43 30195
JOVIAL Manuai--Chapter 1

coordination between programmers are apt to be otnerwise
unsolvable. Ia3a2

.3 JOVIAL is a readable and concise programming
language, using self-explanatory English words and the
familiar notations of algebra and logic, in addition,
JOVIAL has no format restrictions and, with the ability
to intermix tcomments among the tsymbols of a program and
to define notational additions to the language, the only
limit to expressiveness is the ingenuity of the
programmer. A JOVIAL program may thus serve largely as
its own documentation, facilitating easy maintenance ana
revision by programmers other than the original author. Ia3a3

•L The convenient subordination of detail without loss
of detail afforded by JOVIAL also contributes to
readability and expedites the task of uniting programs.
One simple JOVIAL tstatement can result in the generation
of scores of machine instructions which might normally
take hours to code in a machine-oriented language. This
reduction in source program size proportionally reduces
the opportunity for purely typographical errors which are
much more obvious when they do occur, due to JOVIAL's
readability, since many coding errors based on the
idiosyncrasies of computer operations are eliminated,
experience has shown that JOVIAL programs may be written
and tested, even by neophyte programmers, in less time
than previously required with machine-oriented
programming languages. Ia3aij.

.5 computer users are often faced with the necessity of
producing large numbers of computer programs in snort
periods of time. A readable language such as JOVIAL
alleviates the heavy burden this places on the existing
programming staff, by permitting an augmentation with
relatively inexperienced programmers. Ia3a5

.6 JOVIAL simplifies and expedites the related problems
of training personnel in the design of data processing
systems and the development of computer programs for such
systems. Although JOVIAL was designed primarily as a
tool for professional programmers, its readability makes
it easy for nonprogrammers to learn and use. It also
helps to broaden the base of JOVIAL users beyond those
engaged in actual programming. Ia3a6

.7 The objectives of standardizing JOVIAL are as
follows: Ia3a7

3

DL3 8-MAR-7it 03:A3 30193
JOVIAL Manuai--Chapter 1

a. To attain
compatibility.

To attain a greater degree of inter-system
la3a?a

b. To provide a clear guidance to the computer
manufacturing community in the production of
computer-based systems. Ia3a7b

c. To use existing programs and ease the transition
when upgrading to new computers. Ia3a7c

d. To improve the productivity of programmers. Ia3a7d

e. To establish a base for language improvement. Ia3a?e

f. To establish a training requirement on which to
base a comprehensive skill resource development
program. Ia3a7f

l.Jj, The Descriptive Metalanguage for JOVIAL laij.

one purpose of this manual is to specify a language. The
purpose of the language is to specify algorithmic processes
for the solution of computational problems. We must
carefully distinguish between the elements of the JOVIAL
language and other objects, including the objects a JOVIAL
tprogram:declaration discusses. «-A, <-B, <-C, «-8+C, ana
<-A = B + C are five structures in the JOVIAL language. There
are, however, an infinite number of structures in tne JOVIAL
language. In order to speak about them all we need to
classify them, we give names to the classes of JOVIAL
structures and we distinguish them from all other objects py
writing them in italics. The classification scheme ana the
names of classes used in this manual are arbitrary. JOVIAL
73 can be validly described using other classification
schemata and/or class names. lai;a

.1 Every class of structures in the JOVIAL language tnat
we discuss in this document is named by a word xn italics
or by a phrase in italics with colons (in italics)
between the words of the phrase, we do not distinguish
between a class and a general element of the class, we
use plurals in italics when we mean several elements of
the class, italics are used for no other purpose except
also to number the syntax equations in Appendix A. Thus,
tletter is a class (having 26 members) of elements of
JOVIAL. A tletter is also a member of that class. TName
is a class (having infinitely many members) of elements
of JOVIAL. A tname is also a member of tnat class, we
use the phrase "metalinguistic term" to mean one of these

JOVIAL Manual — Chapter 1
DLS 8-MAR-74 05:43 30155

italicized words or phrases. Every metalinguistic term
(except fsystemzdependentzcharacter) is defined in terms
of other metalinguistic terms and the 59 elements of the
JOVIAL alphabet. By substitution, every metalinguistic
term is ultimately defined in terms of the 59 elements of
the JOVIAL alphabet (and tsystemzdependentzcharacter). Ia4al

.2 The definition of a metalinguistic term is called a
"syntax equation" or a "metalinguistic equation".
Several notational devices are needed in constructing
syntax equations. The syntax equations occur tnroughout
the document and are all gathered together in Appendix A
in alphabetical order, in fact, Appendix A may be
considered the syntactic specification of JOVIAL 73. X"
Appendix A, each heavily clack-bordered box (except one)
contains the definition of a single metalinguistic terra.
Each syntax equation is preceded, in its box, with a
sequential number in italics, followed by a colon,
followed by a list of the numbers of the syntax equations
in which this metalinguistic terra is part of the
definition. Iaaa2

.3 Following the metalinguistic terra being defined is
the definitional operatorz laaa-3

Ia4a4

Following the definitional operator is the definition,
consisting of elements of the JOVIAL alphabet (the tsigns
of JOVIAL), metalinguistic terms, and metalinguistic
symbols indicating choice, repetition, and continuation.
Many definitions contain optional elements or mandatory
choices. Braces ordinarily denote a choice. One
line must, be selected from among the lines within the
braces in order to satisfy the definition, if there is
only one line within the braces, it must be chosen--the
braces then only indicate the extent of application of a
repetition operator.

Brackets denote an option or an option and a choice.
The line within the brackets may be included or omitted.
If there is more than one line within brackets, zero or
one of the lines within may be used to satisfy the
definition, tBrackets are elements of the JOVIAL
alphabet, all of the same size. Bracxets are
distinguished from tbrackets by being considerably larger
(and of various sizes). Arrows are used to indicate
continuation of a line. If a line is too long for the
page (or the space available within braces or brackets)

la4aj>

5

DLS 6-MAR-74 05:43 30153
JOVIAL Manuai--Chapter 1

an arrow is plaed at the right of the first part of tne
line and is repeated at the left of the continuation
line, in one or two places vertical arrows are used
for similar purposes where a column (a stack of lines
within braces) is too long for the page. There are two
repetition symbols, means that the preceding element
of the definition may be repeated an arbitrary number of
times. means also that the preceding element may be
repeated, but that tcommas must be inserted between
occurrences of the repeated element. If the repetition
symbol follows a metalinguistic term, it is that one
metalinguistic term that may be repeated. If the
repetition symbol follows a right bracket or a right
brace, it is the entire structure within the brackets or
braces that may be repeated, A bracketed structure
followed by a repetition symbol means "use this structure
zero or more times, choosing any one of the lines herein,
independently, for each occurrence." A braced structure
followed by a repetition symbol means the same except
that "zero or more times" becomes "one or more times," laua6

,li There is no terminator symbol for a syntactic
equation, one ends where another begins or where tnere
is nothing left in the box. in a few of the boxes there
are some anomalies, syntactic equation 14k defines
tmark. opposite each tmark is a metalinguistic term.
This association serves to define each of these
metalinguistic terms, as the tmark to its left, opposite
tspace is only space. That's the definition of tspace,
the tmark indicated by not marking the paper, syntactic
equation 172 defines tpattern:digit. It also gives
tabular information involved with the significance of
tpattern:digits. Syntactic equation 190 defines
trelational:operator and gives a phrase for each
trelationaljoperator indicating its meaning. Box 234
defines tsystem;dependent:character by means of a prose
discussion, syntactic equations 247 and 24# are in one
box. Each is a definition of tvariable in terms of
different collections of covering sets. And equations 94
and 95, for tformat:list, are in one box. Ia4a?

.5 Leading and trailing spaces in the definition of a
metalinguistic term are of no significance, spaces
between the tsymbols of a definition may or may not be
significant; the body of this manual clarifies the
issues. Certainly, if there is no space between elements
of the definition, then no tspace is permitted in tne
corresponding positions in a tprogramjdeclaration. For

6

JOVIAL Manual--Chapter 1
DLS 8-MAR-71; 05:43 3019b

example, «-BEGlN must not pe rendered as «-B «-E ••G <-I <-N or
as «-BE *-GIN.

.6 The syntax equations are not completely correct.
There are actually limitations on the seeming generality
of the syntax equations. The limitations that must be
observed to maintain syntactic integrity are stated in
the text, in addition, the text tells what the
programmer can do with the syntax and explains the
meanings of all JOVIAL constructs.

1.5 JOVIAL tCharacters, Examples

Anything in a syntax equation that is not in italics is
composed of JOVIAL tsigns, the actual alphabet used to write
a tprogramideclaration. These tsigns (and
tsystem:dependent;characters) are usea also in examples
illustrating what may be written in substitution for a
metalinguistic term. Examples and metalinguistic terms are
never hyphenated for the saKe of composing the type in this
document. A metalinguistic term never continues from one
line to the next in a syntax equation. In text, however, a
multiword metalinguistic term may start on one line and
continue on the next, in this situation, the italicized
colon at the end of one line is repeated at the beginning of
the next line, tcolon happens to be one of the JOVIAL
tsigns. The JOVIAL Tcolon is not in italics and is always
separated by at least one space from any italicized word.
The metalinguistic colon is closely pressed on both sides by
words in italics.

.1 Metalinguistic terms (the words and phrases in
italics) represent structures that can be understood and
translated by a JOVIAL compiler, or at least they
represent elements of such structures. A
tprogramideclaration can be understood by a compiler and
translated into computer instructions.
tsimple:statements and ttable:declaration3 are elements
of tprogramideclarations. The translated version of a
tprogramideclaration and the structures it manipulates,
however, are an entirely different class of objects. The
collection of computer instructions is Known as a
"program." The word is not in italics because the thing
it represents does not exist in JOVIAL. JOVIAL can
contain tprogramideclarations; it cannot contain
programs, in a similar manner, a ttableideclaration,
upon being processed by a compiler, gives rise to a
structure, Known as a "table", to be manipulated by a
program.

Ia4a6

laaa 9

la5

lai>a

laSal

7

DLS 8-MAB-71*. 0S:Ji3 301*3
JOVIAL Manual—Chapter 1

.2 tProgramsdeclaration and Ttable:declaration are
distinguished from program and table both by the use of
different type fonts and the use of the word
"Tdeclaration." with many terms, tne distinction is only
made by means of type fonts because the use of extra
words would make the explanations awkwara. For example,
a tvariable is part of a TProgramsdeclaration, whereas a
variable is a value that can be set, used and cnanged oy
a program at different times. Ia>a2

1.6 Notational Symbols, system-Dependent Values la6

in various parts of this manual, various numeric values that
may change from time to time or that are system dependent
are represented by letters or character combinations after
tne manner of algebraic notation. The meanings of these
notational symbols are given where they are used. They have
no pervasive meaning and are to be considered valid only in
the local context where they are used. Ia6a

.1 Knowledge of many of the system-dependent values is
vital to a sufficient understanding of the environment to
enable the programmer to construct valid and useful
tprogram:declarations. such information is not available
at this writing and is not appropriate to this manual.
This information must be made available in other
documentation. laoal

1.7 one-Dimensional Nature of a program la?

Regardless of the forms used for coding, the input medium,
or the arrangement of the coding on that medium, the
language definition considers a JOVIAL Tprogram:declaration
to be a continuous stream of JOVIAL fsigns. Ia7a

1.8 syntax and semantics--illegal, undefined, Ungrammatical lad

This manual gives complete specifications for writing
legitimate JOVIAL Tprogram:declarations, except for the
necessary system-dependent values and compiler capacities,
explains in detail how the particular compiler deviates from
these specifications, and lists and explains all error
messages that the compiler may generate. lada

.1 For a Tprogramideclaration to be legitimate, it must
be meaningfully structured in accordance with the
specifications in this manual. If the
Tprogram:declaration or any part of it fails to meet tnis

8

JOVIAL Manual--Chapter 1
DLS 8-MAH-74 OS; A3 30193

requirements, it is of small concern whether it is called
illegal, undefined, or ungrammatical. labai

.2 It often happens that compilers do not reject certain
illegal or undefined structures, but compile them
instead, giving results that the programmer considers
appropriate, it is recommended that programmers avoid
exploiting these quirks, since there is no guarantee that
a new version of the compiler will exhibit the same
eccentricities, using such discovered idiosyncrasies
leads to extra work in reprogramming when transferring
the work to another computer or when an updated compiler
replaces the old one. Iaba2

.3 As part of the structure of a JOVIAL
tprogramjdeclaration, nothing is permitted by unstated
implication. If it is not prescribed by this manual (or
other documentation in the case of system-dependent
features), it is not legitimate JOVIAL code, in tne
matter of exceptions to prescribed forms, nothing is
prohibited by innuendo. All exceptions are explicitly
stated. Iaba3

.1* The document is to be taken as a unit. All sections,
all figures, the list of syntax equations, and the
index-glossary are interrelated. labal;

9

JOVIAL Manual--cnapter 1
DLS tt-MAR-74 05:A3

(J30195) 8-MAR-7A 0S:A3; Title: Authorls): Duane L. Stone/DLS;
Distribution: /RJC; Sub-Collections: RADC; Oosoletes Document(s):
3016A; Clerk: DLS;
Origin: <ST0NE>C1.NLS;1, 8-MAR-7A Oil:52 DLS ;

JOVIAL Manual—Chapter 2

Contains font markers and structure

DLS a-MAR-74 0S:j?2 301*6

DLS 6-MAR-7E 05S 3 0 1 9 6
JOVIAL Manual--Chapter 2

Chapter 2 1

ELEMENTS Aa

2.1 introduction lal

A tprogram:declaration written in JOVIAL consists,
basically, of tstatements and tdeclarations, The
tstatements specify the computations to be performed with
arbitrarily named data, tsimple:statements can be grouped
together into tcompound:statements in order to help in
specifying the order of computations. Among the
tdeclarations are tdata:declarations and
tprocessing:declarations. The tdata:declarations name and
describe the data on which the program is to operate,
including inputs, intermediate results, and final results.
The tprocessing:declarations generally contain tstatements
and other tdeclarations. They specify computations, out
they differ from tstatements in that the computations must
be performed only when the particular
tprocessingsdeclaration is specifically invoked by tname.
in addition to tstatements and tdeclarations, there are
tdirectives which serve various purposes. They designate
externally defined tnames tne compiler is expected to
recognize, they control selective compilation of various
tstatements and tdeclarations, and they provide information
the compiler needs in order to optimize the object code.
The tstatements, tdeclarations, and tdirectives are composed
of tsymbols, which are the words of the JOVIAL language.
These tsymbols are, in turn, composed of the tsigns that
constitute the JOVIAL alphabet, lala

.1 The general order in which the elements of a
tprogramjdeclaration are introduced in the preceding
paragraph represents tne general order in which one LOOKS
up definitions when trying to clear up a question. The
definitions in this manual are introduced, however, in
the opposite order, such arrangements lead to complaints
that one must "read the book backwards," This comment
arises from the process of looking up a form in the table
of contents, turning then to the late chapter where it is
defined in terms of earlier defined forms. These, more
elementary, forms are then found, via the table of
contents, in an earlier chapter. And so forth.
Nevertheless, the document is arranged for the use of a
reader rather than for reference. Difficult as this may
be for reference use, the opposite arrangement is much
more difficult for a reader. lalal

1

JOVIAL Manual—Chapter 2
DLS 8-MAR-74 05:>2 301*6

.2 An index-glossary is included wnich facilitates
reference. The index-glossary answers many questions
directly, in other cases, it references syntax equations
and sections by number.

2.2 Spaces and TSpaces

It is important to distinguish between a tspace, an element
of JOVIAL, ana a space, an element of our descriptive
language. JOVIAL is written using tsymbols, the words of
the language. The tsymbols are composed of fsigns, the
elements of the JOVIAL alphabet, in general, tsymbols do
not contain tspaces. The exceptions are pointed out in
Section 2.5.2, with resoect to tcomment, ana in section
2,8.2, with respect to tcharacter:constraints. in general,
tsymbols are separated by tspaces. Again the exceptions are
noted in Section 2.10; however, these exceptions are
permissive; i.e., it is always correct to put tspaces
between tsymbols.

lala2

la2

.1 The following example is wrong:

•-PLXMPY
IMAG)

(1. 375, 75, 5

.2 The following examples are right:

7.3 REAL,

a, ••BEGIN 1, 3, +5, - 7 END

b, «-SL:PLXMPY (1,375,-.75,5., 7.3: REAL, I MAG);

c, <-SL : PLXMPY (1.375 , - .75 , 5.
: REAL , IMAG) ;

7.3

la2a

la2al

la2ala

Ia2a2

Ia2a2a

Ia2a2b

Ia2a2c

.3 in defining and explaining tsigns and tsymbols, any
spaces included in the metalanguage formulas are not
meant to be included in the definition. The phrase
"string of" implies that there are to be no tspaces
between the elements strung together, similarly, pnrases
such as "followed by", "enclosed in", and "separated
by", imply that there are to be no tspaces between the
elements concerned. This is the situation (except where
explicitly stated to be different) in this chapter,
Chapter 2. In Chapter 3 and beyond, the opposite view is
maintained with respect to these phrases.

2,3 tSigns, Elements of the JOVIAL Alphabet

(equ)

Ia2a3

la3

la3a

2

DLS 6-MAR-7E 05:32 30136
JOVIAL Manual—Chapter 2

.1 tsign means a tletter, a tnumeral or a tmarK.
tLetter means one of the 26 letters of the English
alphabet, written in the form of a roman capital.
tNumeral means one of the ten arabic numerals:
••0,*l,*-2,<-3,*-l;,«-5,«-6,«-7,«-8 or *9. (The slash through the
zero is only for the purpose of distinguishing it from
the tletter 0 in definitions and examples of JOVIAL.)
tsign, tletter, and tnumeral are defined more formally by
means of the syntax equations in the boxes at the head of
this section. tMark is most easily defined by the formal
means of the syntax equation in the box apove. The box
above also contains a metalinguistic term associated with
each tmarK; this serves to define these terms.

2.1; tsymbols, The Words of JOVIAL

(equ)

.1 The tsymbols or words of the JOVIAL language are
composed of strings of tsigns, in some cases a single
tsign. Most tsymbols do not contain tspaces. In fact,
tspaces serve to separate tsymbols from one another.

2.5 tPRlMlTlVE, tldeogram, tDirective:Key, tComment

(equ)

.1 tPrimitives may be considered tne Key words of the
JOVIAL language. They are generally used to give tne
primary meaning of a tstatement or tdeclaration, although
some are used for second purposes, tldeograms are
generally used as tarithmetic:operators, as
trelationalroperators, and for purposes such as grouping,
separating, and terminating. tDirective:Keys are used to
state the primary meanings of tdirectives, tcomments can
be used to annotate a tprogram:declaration; explaining to
readers (and often the original programmer) what is going
on.

Ia3al

laa

laaa

laial

la3

la5a

la>al

.2 Notice that a tcomment is delimited by
tquotation:marks, Therefore, tspaces are permitted

but a tquotation:mark is not permitted
Also, a tsemicolon is not permitted
The reason for this is to permit some

delimiting tquotationjmark is left off
a tcomment, if the tcomment were not then terminated by
the next tsemicolon, the entire remainder of the
tprogram;declaration would be turned inside out; the
tcomments being interchanged with tne tstatements and

within a tcomment,
within a tcomment.
within a tcomment.
recovery in case a

3

JOVIAL Manual—Chapter 2
DLd 8-MAR-74 05:^2 30196

tdeclarations. Even with this rule, failure to terminate
a tcomment can lead to disaster. If an ••END is swallowed
up, the entire program structure can be disarrayed.

.3 The tsystem:dependent:characters that can be included
in tcomments (and other structures) are simply those
tcharacters, other than JOVIAL tsigns, that the
particular system and compiler can read and write.

.U Notice that tprimitives, tideograms, and
tdirective;keys do not contain tspaces. tspaces are
significant in a tprogram:declaration; usually in that
they separate tsymbols. tComments, on the other hand,
may contain tspaces. This permits easier reading and
writing of the commentary. The tquotation:marks
delimiting the tcomment provide the necessary grouping so
that the tspaces do not cause trouble,

2.6 tAbbreviation, tLetter:Control:variable, tName

(equ)

.1 tAbbreviations are specific tletters having specific
meanings in specific contexts, usually
tdata:declarations. The specific uses are documented
later on without, usually, calling the tletter an
tabbreviation.

.2 The tletter:control:variable is a special tvariable
having meaning only within a tloop:statement and passing
out of existence when the tloop:statement is not being
executed. It is explained more fully in connection with
explanation of the tloop:statement.

.3 Regardless of the syntax in the box above, a tname
must not be the same as any tprimitive. Notice that a
tname must include at least two tsigns. The use of the
tdollar:sign is system dependent. That is, it provides ;
means whereby a tname can be designated to have some
special meaning in relation to the system in which the
compiler is embedded, such special meanings are outside
the scope of this manual, however, and tnames containing
tdollar:signs are considered the same as other tnames
herein. tNames do not contain tspaces. An embedded
tspace would change a tname into two tnames or other
tsymbols.

Ia3a2

lai>a3

laSaa

la6

la6a

la6al

laoa 2

Ia6a3

2.7 tNumoer, tconstant, tStatus ia7

U

DLS 6-MAR-7J+ 05:52 30X56
JOVIAL Manual--Chapter 2

(equ) laYa

.1 The above definitions are obviously not complete, xn
that several Kinds of tconstants mentioned in the box are
not yet defined. This discussion is mainly concerned
with the use of tspaces together with Tnumbers,
tconstants, and tstatuses as tsymbols. laYal

.2 A tnumber is a string of tnumerals, without tspaces.
in some places, a tnumber can stand alone as a tconstant.
In other places, particularly taata:declarations, xt
stands alone as a tsymbol but is not consxdered a
tconstant. in yet other places, a tnumber xs part of
another tsymbol. A case in point is the
tcharacter:constant, defined above. The optional tcount
in a tcharacter:constant is a tnumber. (In several
places, tnumbers or other constructs are given new names
reminiscent of their uses in those places.) Ia7a2

.3 A tcharacter{constant is a tsymbol. If it begxns
with a tcount, there must be no tspaces between the
tcount and the first tprime. Between the tprimes, the
string of tcharacters may include tspaces, but these
tspaces are significant. They represent part of the
value represented by the tcharacter{constant. (There are
restrictions on the tcharacters permitted in a
tcharacter{constant, discussed in section 2.6.2). in a
tstatus{constant and a tqualified{status{constant, the
tleft{parenthesis, the tname, the tcolon, the tstatus,
and the tright{parenthesis are all tsymbols. tspaces are
permitted between these elements, but not within the
tname or the tstatus. tspace is not pemitted between *V
and the tleft{parenthesis. All other tconstants are
tsymbols, not containing tspaces. Ia'7a3

2.6 tconstants and Values lat*

(equ) la»a

.1 tcharacter{constants are the means of representxng
character values to be manipulated by a program.
(tcharacter{variables and tcharacter{formulas are
indirect means.) The tcharacters acceptable as character
values are whatever the system will accept from among
those given in the body of Figure 2-1. At least the 55
JOVIAL tsigns must be accepted. Comparison of Figure 2-1
with section 2 of USAS X3.L-1968, "USA Standard Code for
Information interchange", snows the graphic characters xn
identical positions in the two tables. Figure 2-1

5

DLS 8-MAR-7D 03:32 30196
JOVIAL Manual--Chapter 2

includes eight additional columns presently under
consideration by standardization bodies. The positions
of the tcharacters in the table are the only
correspondence. This manual does not require that
internal representation be in accordance with USA3
X3.ii-1968, If, however, JOVIAL tprogram:declarations
generate messages for transmission to other systems or
process messages received from other systems, these
messages are required by other directives to conform to
USAS X3.Ji-1968 in their external representation. ladal

.2 All of the character values indicated in the boay of
Figure 2-1 can be represented in tcharacterjconstants
(except for system-dependent limitations). Artifices are
required, however, to represent some of the values. Any
tspaces within the delimiting tprimes, except within a
three-tcharacter code, represent characters of value
"space", tprimes, tsemicolons, and tdollar:signs have
special meanings. Therefore, in order to represent a
single occurrence of one of these tsigns, two of tnem are
used in succession. If a succession of these tsigns is
desired as part of the value represented by a
tcharacter:constant, the entire string is doubled, in
summary: Ia6a2

«-2n tprimes are used to represent «-n tprimes. lada2a

«-2n tsemicolons are used to represent «-n tsemicolons. lada2b

<2n tdollar:signs are used to represent en
tdollar:signs. laoa2c

.3 The reason for doubling the tprimes inside a
tcharacter:constant is that single tprime terminates the
tconstant. The reason for doubling tsemicolons inside a
tcharacter:constant is the same. Although it is illegal,
a single tsemicolon terminates a tcharacter:constant; and
for the same reason it terminates a tcomment, to avoid
turning the whole tprogram:declaration inside out if the
correct terminator is omitted. The reason for doubling
tdollar:signs is that a single taollar:sign introduces
the codes described in the next two paragraphs, Ia6a3

. li Any tcharacter represented in the body of Figure 2-1,
if it is acceptable at all by the system as a character
value, may be represented by a three tcharacter code
beginning with a tdollar:sign. The second tcharacter is
a column code from the figure; i.e., any tnumeral or one
of the tletters from «-A through <-F. The third tcharacter

6

DLS 8-MAR-7^ 05:32 301*6
JOVIAL Manuai--Chapter 2

is any tcharacter from the body of the figure that can be
recognized by the compiler. The character specified by
such a code is the one at the intersection of the column
designated by the column code and the row in which the
third tcnaracter is found. For example, the percent marie
can be represented by any of several three tcharacter
codes, including these two:

*$25

*S2U

.5 Within a tcharacterrconstant, there is a recognition
mode for tletters. initially, tne mode is "general", in
which all tcharacters, including uppercase and lowercase
tletters, ana the three-tcharacter codes are recognized
as described above. The mode can be changed to
"lowercase", however, by including the two-tcharacter
mode code consisting of tdollar:sign followed by
uppercase or lowercase «-L. All tletters following such a
mode code in a tcharacter:constant, regardless of tne
case used, are considered to be in lowercase. The
two-tcharacter mode consisting of tdollar:sign followed
by uppercase or lowercase *U sets the "uppercase" mode,
in which all tletters are considered uppercase. The
three-tcharacter codes pevail, without changing the mode,
regardless of the mode. Hence, the appropriate case can
be specified for one tletter in a stream of tletters.
For example, here are four tcharactersconstants with the
value "De Gaulle":

*'De Gaulle'

«-'D$6E G$6A$7U$6L$6L$6E'

*' D$LE $!iGAULLE<

*'udle$u g$laulle• (none of these are ones)

.6 If the tcount is present in a tcharacter:constant,
there must be no tspaces between the tcount and the first
tprime, and the tcount gives the number of concatenated
repetitions of the character values represented within
the tprimes. Examples:

*2'TOM' is equivalent to *'TOMTOM'

<-10'*' is equivalent to *'**********1

lattali

ladaua

labaiib

lafca3

labaSa

ladajpb

laba3c

laSa3d

laba6

lababa

lattabb

7

JOVIAL Manual—Chapter 2
DLS a-MAR-74 05:32 30196

*•3' ' is equivalent to ' lababc

.7 Notice that it is indeed the values that are
repeated, not the tcharacters making up the tconstant
before evaluation. Thus, «-2,T$L0Ml is equivalent to
•-•TomTom'j it is not equivalent to ••'Tomtom1. laoa7

.6 The system may impose a limit on the number of
characters in strings representable by
tcharacter.-constants, tcharactersvariables, or
Tcharacter:formulas. The size of a tcharacterjconstant
is the number of characters represented in the value; not
the number of tcharacters between the tprimes. labad

.9 tPatternsconstants directly represent values
consisting of strings of bits. (various tvariables and
tformulas also represent bit values.) The tnumeral to
the left of the «-B in the tpatternsconstant is the
"order" of the tconstant and controls the possible
tpatternrdigits and affects their meanings. These
relationships are displayed in the box above wherein
tpattern:digit is defined. The right column contains the
possible orders. The tpattern:digits are displayed in
the center in braces. The permissible tpattern:digits
are only those on the line with or above tne selected
order. For example, if the pattern is of order ••a, only
«-F and the IS tpattern:digits above *F are permitted as
part of this particular tpatternsconstant. The meaning
of each tpatternjdigit is given in the column on the
left, but these are also affected by the order. If the
order is «-n, then the «-n rightmost bits of each pattern
represent the meanings of the corresponding
tpatternjdigits. The optional tcount gives the number of
concatenated repetitions of the tpatternjdigits enclosed
in tprimes. No tspaces are permitted anywhere within
this structure. Ia6a9

.10 The meaning of a tpatternjconstant is the string of
bits resulting from the concatenation of the strings of
bits (as modified by the order) represented by eacn
tpatternjdigit. The size of the tpatternsconstant is tne
number of bits in the string and may be obtained by
multiplying the order times the tcount (assumed to pe «-l
if not specified) times the number of tcharacters inside
the tprimes. in the following examples, a
tpatternrconstant on the left is shown with the bit
string it represents on the right; ladalO

it B' 7CF03' 01111100111100000011 labaioa

6

DLS b-MAk-71 03:32 30196
JOVIAL Manual—Chapter 2

+-3B' 3120 1 011001010000 labalOb

«-lB6 110' 101010101010 labalQc

<-SB2 ' R' 1101111011 laoalou

.11 TNumericconstants represent numeric values. (There
are also tnumeric:variables and tnumericsformulas,)
TNumeric:constants, as well as tnumeric:variables and
Tnumeric:formulas, are described in terms of their three
possible modes of representation; as integer values,
fixed values, and floating values. The compiler may
represent constants in modes other than those indicated
by the tprogram;declaration; as long as the overall
effect of the tprogramsaeclaration is not compromised.
(This principle applies in general; i.e., the compiler
can do things differently as long as the result is the
same.) suppose, for example, an Tinteger:constant is
used in a context that requires it to be converted to a
floating value. It is far more efficient for that
conversion to be done once, at compile time, instead of
each time the code executed laball

.12 An integer value is a numeric value represented as a
whole number without a fractional part, but treated as if
it had a fractional part with value zero to infinite
precision, in this manual, precision means the number of
bits to the right of the point in binary representations
of numeric values. A tnumber used as an
Tinteger:constant represents an unsigned integer value.
The size of an Tinteger:constant is the number of bits
needed to represent the value; from the leading one bit
to the units position, inclusive (value zero has size 1).
No Tspaces are permitted in an tinteger:constant. The
system may impose a limit on sizes of integer values. Iaflal2

.13 Floating values <-v are represented within the
computer by three parts, the significand «-s, the radix
<-r, and the exrad «-e, having the following relationships
(with regard to the absolute value); labal3

«-v = s x r labal3a

«-s = 0 or *-m s m x r ladal3b

.11; The radix *-r and the minimum value <*m are fixed in
any system. Therefore, only the significand and the
exrad are saved as representations of a floating value.
For a negative value (not a Tconstant), a minus sign is

9

DLS 8-MAR-7A 05:52 30156
JOVIAL Manual—Chapter 2

also saved with the significance Regardless of the
system values of «-r and «-m, we assume that <-r = 2 and *m
is one-half. The language permits inquiry into the
values of significances and exrads based on radix and
minimum of these values. Therefore, with respect to
value, internal representation of floating values
exhibits (so far as the programmer can see from results)
the relationships: labala

+-v = s x 2 ladaX^a

«-s = 0 or *-1/2 s 1 labamb

.15 tFloatingzconstants are written with the assumption
that, externally, <-r = 10, and there is no *m. Thus, the
value of a tfloating:constant is given as: labalb

<-v = s x 10 labalSa

.16 A tfloatingzconstant must not contain any tspaces.
in the syntactic equation for a tfloating:constant, the
tnumber (or tnumbers) and the tdecimal:point (if present)
give the value of the external significand. The tscale
(with or without its tpluszsign or tminus:sign) following
<-E gives an exrad (exponent of the radix) to be used as a
power of ten multiplier. If the exrad is zero, it and
the «-E can be omitted. To be a tfloatingzconstant, tne
tsymbol must contain a tdecimal:point, or a tscale as
exrad, or both. It must not contain an «-A; that would
make it a tfixed:constant. labalb

.17 A tfloatingzconstant can contain information
relating to the precision of its internal representation.
The tscale following «-M gives the minimum number of
magnitude bits in the significand of the internal
representation, in most systems, there are one or two
or, at most, a very few modes of representation of
floating values. If the tscale following *-M is greater
than the maximum number of magnitude bits in any of the
system-dependent modes of representing floating values,
the tfloatingzconstant is in error, otherwise, the
compiler chooses the mode with the smallest numDer of
magnitude bits in the significand at least as large as
the tscale following «-M. If there is a cnoice of exrao
size also, the compiler chooses one that can encompass
the value of the tfloatingzconstant. These sizes are
based on the numbers of bits in the actual
representations, not on what may be a fictional
assumption that the radix is 2. If the <-M and its

10

DLS 6-MAk-YJi 05!i»2 30156
JOVIAL Manual—cnapter 2

following tscale are omitted, the compiler chooses xts
normal mode of floating representation or one that can
contain the value. lafla!7

.18 A fixed value is an approximate numeric value.
Within the computer, it is represented as a string of
bits with an assummed binary point within or to the left
or right of the string. The numoer of bits in the
string, not counting a sign bit if there is one, is the
size of the fixed value. The number of bits after the
point (positive or negative, larger or smaller than the
size) is the precision of the fixed value. ladalb

.19 A tfixedsconstant is seen, in the syntactic equation
above, to be an tinteger{constant or a tfloating{constant
(without an <-M and its tscale) followed by the tletter <-A
and a tscale. The *-A and its tscale are essential to
make the form a tfixed{constant. tspaces are not allowed
anywhere within a tfixed.'constant. All that precedes the
«-A determines the value of the tfixed{constant. All that
precedes the <-A determines the value of the
tfixed{constant (which may then oe truncated on the
right) . The tscale after the <-A tells how many bits
there are after the point. (If the tscale is negative,
the bits don't even come as far to the right as the
point). The size of the tconstant is the number of bits
from the leftmost one-bit to the number after the point
as specified by the tscale after <-A, inclusive. Here are
some tfixed{constants, their values, their sizes, and
their precisions{ Ia8al9

.20 There must be no tspaces within a tfixed{constant.
The system may impose a size limitation on fixed values. lada20

.21 tlnteger{constants, tfloating{constants, and
tfixed{constants cannot have embedded tspaces and cannot
have negative values. Both of these characteristics are
changed for tstatus{constants and
tqualified{status{constants. In tstatus{constants and
tqualifiedistatus{constants, there must be no tspaces
within the tstatus, within the qualifying tname, or
between the «-v and the tleft {parenthesis. There may be
tspaces elsewhere within such tconstants. Iada21

.22 tstatus{constants and qualified{status{constants
represent constant integer values. How they become
associated with these values and now they may be used are
explained elsewhere, in distinction to
tinteger{constants, which can only stand for zero and

11

DLS a-MAR-74 05:i>2 30196
JOVIAL Manual—Chapter 2

positive integer values, tstatus:constants and
quallfied:status:constants can also stand for unvarying
negative integer values. lada22

2.9 Computer Representation of tconstants and tVariaDles la9

JOVIAL is designed to be compatible with binary computers,
machines in which numeric and other values are represented
as strings of binary digits, ones and zeros. The bits
(binary digits) of a computer are organized in a
hierarchical structure. A compiler may impose a different
structure on the computer, but for reasons of efficiency it
usually adopts a structure identical to or at least
compatible with the structure of the machine. The structure
discussed in this section is the system structure; i.e., the
structure presented to the programmer by the combination of
a particular computer and a particular JOVIAL compiler that
produces object code for that computer. Ia9a

.1 JOVIAL tprogramideclarations are not completely
independent of the system. The extent of dependence,
however, is related to the use of certain language
features. Dependence is increased oy the use of
features, such as tpatternrconstants and «-BIT, that
relate to bit representation or those, such as «-LOC, that
relate to system structure. The value of a
tpattern:constant is completely independent of the
system, but its use implies knowledge of the
representation of other data. It is that Knowledge,
built into te tprogramjdeclaration, that is system
dependent. Ia9al

.2 Even if such deliberate system dependence is avoided,
the programmer must still have knowledge of structure ana
representation in his system so that he may know tne
limitations on precision, now his tables must be
structured, and how to avoid gross inefficiencies. For
example, in processing long strings of character data, it
is often much faster to examine and manipulate them in
word-size, instead of byte-size, hunks, laya2

.3 A "byte" is a group of bits often used to represent
one character of data. The number of bits in a byte is
system dependent. Altnough JOVIAL permits some leeway in
positioning bytes, there are usually preferred positions.
When referring to these preferred positions, we often use
the term "byte boundary". laya3

.E A "word" is a system-dependent grouping of bits

12

DLS 8-MAK-7U 05:52 301*6
JOVIAL Manual—Chapter 2

convenient for describing data allocation. Entries and
tables are allocated in terms of words. Data are
overlaid in terms of words. The maximum sizes of numeric
values may, but need not, be related to words, word
boundaries usually correspond to some of the byte
boundaries. la*aA

.5 The "basic addressable unit" is the group of bits
corresponding to each machine location, in many
machines, the basic addressable unit is the word, in
others, it is the byte, if it is the word, each value of
the location counter refers to a unique word. If the
basic addressable unit is the byte, each location value
refers to a unique byte. In these latter circumstances,
it often happens that adresses are somewhat restricted.
For instance, it may be permitted to refer to a string of
characters starting in any byte, or to double-precision
floating values starting only in bytes with locations
divisible by 8. Ia*a5

.6 integer and fixed values are represented in binary as
strings of bits. The number of bits used to represent
the magnitude of a value is Known as its size and is (in
most cases) under the control of the programmer. The
position of the binary point is understood and taxes up
no space. For signed values, the sign bit is an
additional bit not counted in the size of the value. For
purposes of the use of ••BIT, the sign bit is considered
to lie just to be left of the most significant bit
accounted for by the size of the value. The maximum
permissible size of an integer or fixed value is system
dependent. The maximum size of a signed integer or fixed
value is one less than this system-dependent size and the
places where unsigned values of maximum size may oe used
are restricted; i.e., they must not be used in
conjunction with any tarithroetic:operators, nor with tne
four nonsymmetric trelational:operators *•<, ••>, <-< = , *•>=,
and when used with the symmetric trelational:operators
(••= and ••<>) the other operand must not be signed. Ia*a6

.7 The compiler determines the sizes of tconstants. The
programmer usually supplies the sizes of tvariables. The
size does not include the sign bit for signed data. For
unpacked or medium packed data, there may be more bits in
the space allocated for an item than are specified oy the
programmer. Whether or how these extra bits are used is
system dependent, but in any case they are known as
"filler bits". The sign bit, if there is one, and any
filler bits are to the left of the magnitude bits. It

13

JOVIAL Manual--Chapter 2
DLS 6-MAR-7k 0>:j?2 3019b

depends on the system whether the sign bit is to the left
or right of the filler bits. Ia9a?

.8 The meanings of bit values <-0 and <-1 are not
stipulated, but in most implementations «-o stands for *0
and *1 for <-i in positive values. For negative values,
there is considerable variation. All the following are
known and acceptable representations of *--12 in an
unpacked, signed, integer item declared to be four bits
long: la^ad

<-110011 ia?aba

«- 10000000000000000000000000000001100 la^abb

«. 10100 la9abc

.9 Floating values are represented by two numbers, both
signed. The significand contains tne significant digits
of the value and the exrad is the exponent of tne
understood radix. Each system nas a standard mode of
representing floating values, known as "single
precision", with a specified number of bits in the
significand and a specified number in the exrad. Many
systems have one or a few additional modes in which there
are more bits in the significand, the exrad, or botn. if
there is more than one mode, the programmer can usually
choose the mode for each floating value. in the aDsence
of an indication of such choice, the compiler will
usually choose single precision. The radix is an
implicit constant having a system-dependent value. Ia9a9

.10 character values are represented by strings of
bytes, each byte consisting of a string of bits. The
number of bits in a byte is system dependent. Tne number
of bytes used to represent a character value is unaer
control of the programmer, but there is a
system-dependent maximum. Ia9al0

.11 A character item that fits in one word is always
stored in one word, by the compiler. By use of a
tspecified;table{declaration, the programmer may override
this rule. If it is not densely packed, a character item
always starts at a byte boundary. If it crosses a word
boundary, a character item always starts at a byte
boundary. The programmer must not attempt to override
this rule. Ia9all

.12 An entry variable whose relevent ttablesdeclaration

lk

DLS 8-MAR-7it. 05:32 301*6
JOVIAL Manual—Chapter 2

lalOa

does not describe it as being of some other type is a bit
variable, it is merely the string of cits, of a size
corresponding to the number of words in an entry,
representing the entry. Ia<?al2

2.10 tspaces, tComments lalO

The syntactic structures of all tsymbols have now been
explained, as well as the places where tspaces are permitted
or prohibited within them. All further structures that go
to make up a tprogram;declaration are composed of strings of
tsymbols. it is always permitted to place one or more
tspaces between tsymbols. It is sometimes required to put
at least one tspace between tsymbols. The criterion is to
avoid ambiguity. Comments can often replace required
tspaces.

.1 tspaces are required in many situations to enable the
compiler to detect the end of one tsymbol and the
beginning of the next. Generally, at least one space is
required between two tsymbols of any class except
tideograms, but including the tquotatiommark. The rule
is exhibited in detail in the following table. The rows
are labelled with the ending tsigns of the left tsymool
of a pair of tsymools. The columns are labelled witn the
beginning tsigns of the right tsymbol of a pair. "SR" at
the intersection of row and column indicates that at
least one tspace is required between the pair of
tsymbols: laioal

.2 A tcomment may occur between tsymbols. However, it
must not occur within a tdefinition nor within any
tconstant, such as a tstatusrconstant or a
tcharacter:constant, A tcomment may be used instead of
the required tspace between tsymools unless use of the
tcomment would cause the occurrence of two
tquotation:marks in succession. In fact, only the use of
a tcomment can bring about the situation indicated oy the
lower right corner of the table above, introduction of a
tcomment between tsymbols where a tspace is permitted out
not required may then require a tspace to prevent tne
tcomment from interfering with another tsymbol. laioa2

•3 A tcomment must not be used where the next structure
required or permitted by the syntax is a tdefinition.
That is, a tcomment must not follow the tdefinername or a
trignt:parenthesis in a tdefine:declaration. And a
tcomment must not follow a tleft:parenthesis or a tcomma
in a tdefinition:invocation. A tcomment, as defined

15

DLS tt-MAR-74 05:>2 30196
JOVIAL Manual—Chapter 2

above, must not occur in a rdefinition delimiteu Dy
tquotation:marks, Ial0a3

16

JOVIAL Manual--Chapter 2
DLS S-MAR-7A 05532 30196

(J30196) 8-MAR-7I1 05:52; Title: Author(s): Duane L. stone/DLS;
Distribution: /RJC; Sub-Collections: RADC; Obsoletes Document(s):
30166; Clerk: DLS;
Origin: <ST0NE>C2.NLS;1, 8-MAR-7L 05:03 DLS ;

JOVIAL Manual--Chapter 3

Contains font markers and stucture

DL3 8-MAR-7J* 30197

DLS tt-MAR-71i 05:30157
JOVIAL Manual—Chapter 3

Chapter 3

tVARIABLES

3.1 Concept of tvariables

A JOVIAL tprogram:declaration consists of a string ox
tstatements and rdeclarations that specify rules for
performing computations with sets of data. The basic
elements of data are items, items are named to distinguish
one from another, sometimes, a tname applies to a group of
items, requiring indexing to tell one member of the group
from another. Several named groups may be subsumed under
another group, which is known as a table and which is itself
named. Tables and items may in turn be collected in another
group called a data block which, again, is named. Space may
be allocated these data structures either statically at
compile time or dynamically at execution time.

.1 The value of items and other data can be changed in
various ways. A data element whose value can be changed
by means of an fassignment:statement is known as a
variable. Items, then, are variables. Table entries can
function as variables, as can parts of items under the
influence of the tprimitives <-BIT and +-BYTE.

.2 A invariable is the designation, within a
tprogram:declaration, of a variable to be manipulated
within the computer. The two syntax equations for
tvariable (above) indicate, first, the type of data
involved, and second, the grammatical form of the
tvariable related to tne kind of data structure in which
the variable exists.

3.2 tNamed:Variable

A tnamed:variable is a reference to a variable by means ox a
tname associated with the variable through a
tdatasdeclaration. A tsimple:variable is a reference (for
the purpose of using or changing its value) to a variable
declared to be a simple variable; one not declared as a
constituent of a table. No tindex is involved in a
tsimple:variable because the reference is to a variable that
is one of a kind, not part of a matched set. use of tne
tpointeriformula is explained in Section 7,b

.1 A ttable:variable is a reference to a variable
declared to be part of a table. A table consists of a
collection of entries and there is an occurrence of each

1

la

lal

lala

lalal

lala2

la 2

la2a

1

JOVIAL Manual--Chapter 3
DLS 8-MAH-7A 03:38 30137

table item in each entry. An tentry:variable is a
reference to the entire entry as a single variable. An
Tindexed:variable (a ttable:variable or tentry:variable)
generally includes an tindex to select the particular
occurrence of the variable being referenced. Ia2al

.2 An tindex is correlated with a tdimension:list.
Every ttable:declaration contains a tdimension:list which
prescribes the number of dimensions of the table and the
extent of the table in each of these dimensions in terms
of its tlower:bound and its tupper:bound. (Some of tne
detailed specifications can be omitted; the defaults are
explained elsewhere.) Each tindex:component must
evaluate to an integer value (tnumeric:formulas are
explained in Sec 5) not less than the tlower:bound and
not greater than the tupper:bound in the corresponding
position of the relevant tdimension:list. The relevant
tdimension:list is, of course, the one in tne
ttable:declaration bearing the ttable:name beginning the
tentry:variable or in the ttable:declaration containing
the titem:declaration bearing the titem:name starting the
ttable:variable. The rightmost tindex:component selects
the element, of the row selected by the tindex;component
second from the right, from the plane selected by the
index;component third from the right, etc. Ia2a2

.3 If the tindex is omitted from an tindexed:variable,
whether or not the empty tbrackets remain, the meaning is
the same as if the complete Tindex were present and eacn
Tindex;coJiiponent were equal to its corresponding
Tlower:bound. In fact, a legitimate form of
Tindexed;variable is to omit one or more
tindex:components, marking their positions of necessary
with tcommas. The meaning of such a form is the same as
if each missing tindexjcomponent were present with a
value equal to its corresponding Tlower:bound. The
following example shows an fordinary:table:declaration
and three Tentry:variables, all with exactly the same
meaning: Ia2a3

••TABLE ALPHA (3:7, 9, 100:157, 0:507; NULL; Ia2a3a

•-ALPHA [3, 3, 100,07 Ia2a3b

••ALPHA [, 3,, 07 la2a3c

••ALPHA [,3l Ia2a3u

3.3 TLetter:Control:Variable, TFunctional:Variable la3

2

DLo 6-MAK-7U 30197
JOVIAL Manuai--Chapter 3

A fietter:control:variable is a reference to a variable
designated within a tloop:statement to aid in control of
execution of the tcontrolled:statement and to have meaning
only within the tloop:statement. It is explained in section
3.6 in conjunction tloop;statements, la3a

.1 tFormat:variable is a special form that enables a
list of values to be converted to cnaracter type ana
assembled into a character value. The details are given
in section 6.1.7 la3al

.2 The above construct selects a string, of the
characters denoted by the tnamedtcharacter:variable, to
be considered as the variable to be given a new value.
The tnamea:character:variabie can be any tsimple:variable
or tindexed:variable of character type. The bytes of tne
tnamed:character:variable are considered to be numbered,
starting with zero at the left. The tnumericiformuia
following the first tcomma is evaluated as an integer and
used to select the byte of the tnamed:character:vanable
to be considered the leftmost byte of the
Tfunctional:variable. If there is no second tcomma and
no second tnumeric:formula, the leftmost byte of the
tfunctional:variable is its only byte, otherwise, the
second tnumeric:formula is evaluated and tells how many
bytes there are including the leftmost byte, in tne
tfunctional:variable. Ia3a2

.3 The tnamed:variable in the above metalinguistic
formula can be of any type. The construct selects a
string of bits, from the bits denoted by the
tnamed:variable, and treats that string of cits as a bit
variable. The bits of the tnamed:variable are considered
to be numbered, starting with zero at the left. The
tnumeric:formula following the first, tcomma selects tne
bit to be considered the first bit of the derived
variable. The tnumeric:formula following the second
tcomma (if there is one) determines the number of bits in
the derived string (one bit if there is no such
tnumeric:formula). In signed variables, the sign bit is
bit zero and the leftmost magnitude bit is bit one. in
unsigned numeric variables, the leftmost magnitude bit is
bit zero, in entries, the leftmost bit of the first word
is bit zero. In character variables, the number of bits
per byte is system dependent, in floating variables, tne
sign bits of the significand and exrad are included in
the bit count, but the arrangement of bits is system
dependent. ia3a3

3

JOVIAL Manual—Chapter 3
DLS 6-MAR-74 30197

3.1). TFormat:Variable, tBit:Variable, tCharacter:Variable lali.

tFormat variable is explained in Section 6.1.7. * laia

.1 The construct using «-BIT is explained in section
3.3.3. A tbit:variable denotes a string of bits witnout
consideration of any numeric or other meaning associated
with those bits. Almost all Tnamed:variables carry an
implication of some data type other than "bit". However,
an tentry:variable, if the ttable:name is not declared so
as to imply some specific data type, denotes only the
string of bits constituting the entry. laial

.2 The construct using «-8YTE is explained in section
3.3.2. The tnamed:character:variable is a
Tnamed:variable using a tname declared to denote a
variable (an item or an entry) of character type. Ial^a2

3.S Numeric: Variable laj?

Any tnumeric:variable can be used as a tpointer:variable.
The details of the use of tpointer:variables are given in
Chapter 7 in conjunction with discussion of controlled
allocation. tLetterscontrol:variable is explained fully in
connection with tloop:statements, witnout being explicitly
declared, it becomes an tinteger:variable through its usage.
All tnames that can be used as tnamed:variables are declared
as explained in chapter 7. Some tentry:variables may use
tnames not associated with any data type. All other
tnamed;variables use tnames that are associated with
titem descriptions. These titem:descriptions give the data
type among other things (see Section 7.16 for details), one
data type is "character" as mentioned above in Section
3.E.2. Another data type is "floating".
TFloating:variables use tnames declared to be of floating
type. The other descriptive terms in titemsdescriptions
denote "signed" and "unsigned", but we are interested here
in other attributes, signed and unsigned data are also
associated with one or two tnumbers. The first tnumber
declares the size of the datum, the number of bits in its
magnitude. If this is the only tnumber in its
Titem:description, the datum is an integer value and the
tnamed:variable denoting it is an tintegerivariable. The
second tnumber in the titem;description for a signed or
unsigned value declares the precision of the value, the
number of bits in its magnitude after the point. If this
second tnumber is present, even if its value is zero, the
datum is a fixed value and the tnamed:variable denoting it
is a tfixed:variable. Ia3a

JOVIAL Manual—Chapter 3
DLS 8-MAR-7A 03:38 30137

(J30197) 8-MAR-71j. 05:58; Title: Author(s): Duane L. Stone/DLS;
Distribution: /RJC; sub-Collections: RADC; Qbsoletes Document(s):
301S2; ClerK: DLS;
Origin: <ST0NE>C3.NLS;1, 8-MAR-74 05:17 DLS ;

GREETING AND TEST
DON 8-MAR-7E 06:^2 30196

HELLO DLAE. WOULD YOU LET ME KNOW IF YOU GET THIS MESSAGE? I'M TRYING
TO SEE HOW THE NIC JOURMAL SYSTEM LIKES ME. MY IDENT IS DON AND MY
NET ADRESS IS CANTOR AT MULTICS. COMPUTING IS MY GAME, OR MORE OR
LESS. HOW ARE YOU GETTING ALONG AT CCA? I HEAR YOU ARE CHAIRPERSON OF
THESTERRING COMMITEE, OR SOMETHING. MAYBE YOU ARE TO BUSY TO READ
THIS NOTE, MUCH LESS ANSWER IT. OUR NLM THING IS STILL ALIVE.
MICHAEL STILL WON'T SLEEP THROUGH THE NIGHT, BUT WE LOVE HIM ANYWAY. 1

1

NCC TIP Hardware Work
AAM 8-MAR-7U 07:01 j0199

On Tuesday, March 12, the NCC TIP will be taken down from about itiOO
to about 1900 (EDT) for hardware work. We hope this does not cause
great inconvenience to our users.

1

NCC TIP Hardware Work
AAM 8-MAR-7& 07:01 30199

(J30199) a-MAR-71^ 07:01; Title: Author(s): Alex A. McKenzie/AAM;
Distrioution: /BBN-NET BBN-TENEX; Sub-Collections: NIC BBN-NET
BBN-TENEX; Clerk: AAM;

EJK 8-MAR-7E 11:19 30200
Project ADMIN - ROC USAF 17-73 - Administrative Management
Information System

This copy is as close as I can get it. Some small liberties have
been taken in format. NOTE: This is several pages long.

EJK 6-MAR-74 11:19
Project ADMIN - ROC USAF 17-73 - Administrative Management
Information System

30200

COVER LETTER

Required operational Capability for Administration Management
Information system (Project Admin) ROC Number: USAF 17~73

Preparing Office: Systems Management and Programming Group
(HQ USAF/DAX)

(Project Officer: Mr. Frank Allen, GS-13, Ext 70L27)

28 December 1973

I. DEFICIENCIES/NEEDS

Administration management at all echelons of the Air Force is
severely hampered by the outmoded and largely manual system for
processing and preparing documentary communications media.
Continued reliance on ad hoc, after-the-fact, corrective
management has resulted in slow, inefficient, uneconomic, ana all
too often ineffective administration management information
systems.

The need for a systematic program that will provide efficient
procedures and equipment for creating, reproducing, distributing,
transmitting, storing, retrieving and disposing of documentation
is further underscored by the amount of time spent by large
numbers of Air Force personnel in the information processing and
transfer functions, and by the great quantities of textual
documentation involved. There are, for example, approximately
120,000 military and civil service manpower authorizations
performing the administrative task of creating (typing) documents,

II. REQUIRED OPERATIONAL CAPABILITY

An Administration Management information System, which provides an
enhanced capability for the preparation, timely transmission, ana
recall (cyclic or on demand) of documentary communications within
the Air Force and which takes full advantage of the technological
developments in automatic data processing (ADP) and
communications, is required. The system must be designed so that
equipments obtained and procedures developea can be phased into
Air Force organizations without detrimental interruptions to the
organizations' primary operational horizontal compatibility at all
echelons of the Air Force as well as meeting foreseeable interface
standards with other DOD and Federal agencies.

W, K. Ricnarason, colonel, USAF

la

lal

la2

la3

2

2a

2b

3

3a

3b

1

EJK 8-MAR-7k 11:19
Project ADMIN - ROC USAF 17-73 - Administrative Management
Information System

Deputy Director of Administration

2 Attachments;

1. ROC USAF 17-73 Sec III-VIII with attachments

2. Distribution List

III. DETERMINATION OF DEFICIENCIES/NEEDS AND THE REQUIRED
OPERATIONAL CAPABILITY.

1. over the past few years, the administrative workload within
Air Force organizations has witnessed a dramatic growth both in
magnitude and complexity. The duplicative and wasteful efforts
accompanying the preparation, transmission, and storage of
documentary communications, the untimely delays and errors in
transmission, the unnecessary loss of operational personnel to
support functions and the resultant reductions in mission
effectiveness are no longer tolerable. It is not only desirable
to initiate a program to eliminate these deficiencies, it is
essential.

The following illustrations exemplify the magnitude and
complexity of the administrative workload and indicate the scope
of the effort required to resolve the deficiencies which occur in
every office, regardless of functional assignment or
responsibility.

a. over 500 million pieces of correspondence and 100 million
copies of messages are processed annually through
administrative communications channels. An average of 30,000
pieces of mail is generated daily by Air Staff members alone at
an estimated cost of $200,000 each day.

b. 700,000 cubic feet of records are being retired annually oy
the over 52,000 offices of record, one cubic foot represents
2000 6x10-1/2 inch pages weighing nine pounds. Thus, the Air
Force is retiring 3,000 tons of paper or one billion pages eacn
year.

c. Between kO and 50 tons of publications and blank forms are
received and shipped daily at the Publications Distribution
Center.

d. Over 120,000 manpower positions (military and civil
service) create written documents by some typing effort, as
based on the requirement of having the typing skill as part of
their position description. Attachments 1 and 2 are listings

30200

3c

3d

3dl

3d2

k

If a.

kb

4bl

kb2

k&3

2

EJK tt-MAR-74 11:1? 30200
Project ADMIN - ROC USAF 17-73 - Administrative Management
Information System

of these authorizations by Air Force Specialty code, title,
typing skill requirements, and number. fcbfc

e. An estimated 12,000 typewriters are purchased annually as
replacement items at a cost of $5 million to provide typists
with basically the same production capability that has been
available for years.

f. over one million printed pages form the Departmental
portion of the administrative data file of regulations,
pamphlets, and manuals. This is only a small part of the data
base to which an Air Force manager must have access in order to
efficiently carry out his mission. He must also have access to
the Major command, base, legal, financial, and technical
publications. kt>6

2. A number of studies and analyses have been performed which
relate to this ROC.

a. During the Mission Analysis of Base communications (BCMA),
large potential savings were identified by providing a "fully
responsive, integrated, information transfer system" to tne Air
Base. Details of the methodology and results are presented in
Section IV and Appendix 6 of the needs panel Report of the Base
Communications "Mission Analysis. The concept included all
forms of communications: face-to-face conversation, closed
circuit television and mail, as well as the classic telephone
and electrical message systems. The basic actions which people
take to cause information to flow - data entry, address,
signature entry, retrieve or store, etc. - are common to all
modes of information transfer in all places and at all levels
and thus form a baseline from which information transfer needs
can be derived. acl

The way in which information is transferred today is heavily
influenced by the communications systems which have been made
available. For example, many, if not most, of the methods and
procedures employed for the creation, transfer, storage,
retrieval and delivery of information from writer to reader
were developed with the available information transfer systems
as a governing factor. Remembering that the basic actions are
similar regardless of where they occur, it becomes obvious that
any improvement in the transfer of information at the basic
level could foretell impprovements in the entire spectrum of
information transfer functions. 4C2

The information flows identified in Appendix 6 of the Needs
Panel Report were examined with a fully responsive information

3

EJK tt-MAR-71^ 11:19
Project ADMIN - ROC USAF 17-73 - Administrative Management
Information System

transfer system in view and new flows were developed which
assumed the availability of such a system. These flows,
showing the minimal time and actions required, are presented in
Appendix 12 of the Report. A comparison of the current and
minimal flows revealed startling differences in the number of
actions and the time required to take those actions. Savings
ranged from 2k to 96 percent in the flows that were examined.

b. A study by AFSC/ESD determined that in a mixed
(manual/automatic) typing center, when the typing load is as
low as 20 per cent of the total effort and four drafts are
normally required before final typing, efficiencies and savings
could accrue to the organization oy replacing manual stations
with automatic typing stations instead of adding additional
manual stations, with a group of two or more typists and typing
workload as low as 20 percent of the total effort, the time and
money saved in set-up and retyping corrected drafts in an
automatic typing mode --magnetic tape cartridge, magnetic card
or on-line computerized text editing -- was less than the cost
of hiring additional typists.

Although, not all correspondence requires four drafts prior to
final draft, the nuumber four is believed an acceptable average
for paperwork going outside of the originating organization.
Additional benefits which accrue are the time saved in
preparing identical correspondence to multiple addressees, the
ease of producing a final clean copy and the ease of correcting
mistakes.

c. The AFSC/ESD East Coast study Facility has used the IBM
Magnetic Tape Selectric Typewriter, the IBM Magnetic Card
Seiectric Typewriter in conjunction with the Bowne Time Snare
"Word/One" text editor, resident on an IBM 360 computer, and
the Redactron Tape cartridge system. These systems were used
for the high volume reports required by the Weather 8S and Base
Communications Mission Analysees (3CMA). (The report of the
Needs Panel of the BCMA alone was in excess of 1200 pages.
Experience on these systems has shown a marked savings over tne
time and personnel required in an equivalent manual environment
to produce such reports.

d. The AFSC/ESD Directorate of information systems Technology
has also used an on-line text editor for production of high
volume, high priority reports and correspondence -- e.g.
Engineering plans, program Management Plans, procurement
Packages, command letters, multiple address correspondence,
personnel and manning statistics, and technical reports.
Although only four terminals are in use, the six typists are

30200

1C3

k c b

kCb

EJK 6-MAR-7E 11:19 30200
Pro.iect ADMIN - ROC USAF 17-73 - Administrative Management
Information System

able to share the terminals through phasing of the workload and
control of priorities. Jic7

e. The Department of Defense study "Mini-Cats",
Miniaturization of supply catalogs, was conducted in July 1971*
The report emphasized economies in printing ana use of supply
catalogs in microform rather than paper books, conversion to
microfiche started in January 1973. The impact to the Air
Force is:

(1) Annual Printing expense: kcda

Before §300,000 Uctial

After §130,000 ^c3a2

Annual Mail Costs: iicbb

Before $ 96,000 iicbbl

After § 5,000 Ec8b2

(3) Impact on User: ^cec

Before Ucocl

Shelf Space 10 feet licdcla

Book size 50,000 pages Ecbclb

Weight 200 pounds Ucdclc

After ^8c2

Shelf Space 2 inches i*cbc2a

Book size 200 microfiche iicbc2b

Weight 2 pounds li.cbc2c

The same savings, plus increased user efficiency, is
available to the Air Force publication area with a total
administrative system that generates the data via
automatic typing stations, transmits the data
electronically for publishing review and editing, and
then transmits the data electronically to an electronic
microfiche composer for generation of microfiche for
reproduction and distribution. 4cbc3

5

EJK d-MAR-74 11:19 30200
Project ADMIN - ROC USAF 17-73 - Administrative Management
Information System

f. An Air Force indicia Policy Study Group report, completed
for the Director of Administration in July 1972, analyzed the
impact of the new united states postal service on the annual
Air Force budget requirements for mail. The mail costs are
rising from the FY 1972 12 million dollar annual cost to a
figure in excess of 36 million -- an increase at a minimum rate
of 200%, A comparison of paper (225 pages to the pound) to
microfiche (270 pages to 1/7 ounce) dictates a change. A
further comparison to completely electronic distribution (zero
mail cost) underscores the thrust of Project Admin. Lc9

IV. SOLUTIONS >

1. There are many mechanical aids and techniques which can be
phased into the Air Force inventory to alleviate major portions of
the cited administrative problems. The solution envisioned
comprises a mix of automatic typewriters/remote terminals for data
generation, rapid digital or micro-image transmission for
distribution, and digital, micro-image, and video for storage and
retrieval. This solution can best be satisfied by: 3a

Giving the clerk-typist the capability of preparing various
types of documentary communications with the minimum of human
effort.

providing a transmission system which can distribute these
documentary communications from the originator to the user with
the minimum of human intervention. 3a2

Furnishing the user with a storage and retrieval capability
which can recall pertinent documents on demand with the minimum
of technical knowledge of sophisticated or complicated
procedures. 3a3

2. A progression toward the desired capability is proposed as
follows: 3d

A detailed analysis and evaluation of Administration functions
must be performed to establish the functional requirements
baseline. 501

An engineering development plan should be prepared for a
prototype Administration Management information system,
describing system objectives, the prototype system, cost
factors, resource requirements, schedules, program management,
and other necessary events and milestones leading to prototype
implementation, test and evaluation. 302

6

EJK 8-MAR-74 11:1? 30200
Pro.iect ADMIN - ROC USAF 17-73 - Administrative Management
information System

Following prototype test and evaluation a program management
plan should be prepared detailing the desired approach based on
cost, potential benefit and technical feasibility. 5D3

V. CLASS V MODIFICATIONS Not applicable 6

VI.QUANTITIES INVOLVED 7

One prototype system is envisioned at this time. A combination of
off-the-shelf equipments to provide flexibility in handling
processing tasks, provide for the accomplishment of the functions
described in III above, and provide for future expansion is
required, only broad estimates may be given on quantities of
equipment involved until the prototype test and evaluation is
completed. 7a

VII. HARMONIZATION 6

Harmonization with other agencies/systems will be determined
concurrent with prototype implementation. However, coordination
will be effected between MAJC0M Headquarters, USAF, and
participating lower echelons in order to exploit standardization
opportunities in the areas of hardware, software, procedures,
skills, man/machine interface and training. oa

The National Archives and Records service (NARS) of the General
Services Administration (GSA) indicates that to its knowledge no
other federal agency is contemplating or has undertaken a project
of this scope. The successful design of the Air Force system
would furnish the guidelines for expansion among other DOD and
federal agencies. The information transfer procedures and
equipment would, of necessity, have to be designed or acquired
with the capability to interface with other existing and proposed
systems. &D

VIII. SPECIAL COMMENTS S

The Directorate of Administration has a systems Management and
Programming Group which has the responsibility under AFR 4-1 for
improvements in administration management and the Dasic background
in the needs of the Administration function. It does not have the
research facilities or the technical knowledge to cover the entire
spectrum of tasks required to design, develop and procure a
system. However, the Group can be used in support of system
implementation. ?a

The Mission Analysis of Base Communications developed analysis
tools which can be directly applied to this task. Additionally,

7

EJK 6-MAR-7U 11:19 30200
Project ADMIN - ROC U3AF 17-73 - Administrative Management
Information System

concepts developed by that group presumed automated tools having
the capabilities described herein would be required in the 1953
time frame. The concepts in sections IV, VI and the BCMA have
provided for that requirement. 9b

Study of the support of Air Force Automatic examining the computer
capability to support the total Air Force wide needs, including
the administrative needs. (sic) 9c

initial operational capability for a pilot system using currently
available technology can be achieved within 15 months. A pilot
operation would be useful to measure actual savings and develop
new methods and techniques of accomplishing Air Force
administrative functions, selection of location(s) for the pilot
system will be dependent upon the initial effort prescribed in
Section IV.

Although potential savings -- which can ultimately result in
manpower savings — are known from past experiences and recent
studies, most notably the BCMA, the definitive manpower savings
can only be determined through a detailed analysis of a prototype
system. Therefore, the type, quantity, and the placement of the
terminal equipments have not been determined. The most noticeable
savings will be in finished product production time;
transmission, decision and response time; and printing, editing,
publication and distribution time. 9e

6

EJK tt-MAK-71l 11:1? 30200
Pro.-ject ADMIN - ROC USAF 17-73 - Administrative Management
Information System

(J30200) 8-MAR-71* 11:19; Title: Author(s): Edmund J. Kennedy/EJK;
Distribution: /RADC; Sub-collections: RADC; Cleric: EJK;

DHC 8—MAR—74 17:07 30201
US1 NGr 1 den t s

What happened to the NETBAGRIPES and NETCCMMENTS idents???

1

DHC 8—MAR—74 17:07 30201
JSiNJ idents

(JJJ201) 8—MAR-14 17:07; Title: Author!s): David H. Crocker/DHC;
Distribution: /JAKE BUGS MDK; Sub-Collections: NIC BUGS; Clerk: DHC;

DHC 8—MAR—74 17:30 30202

Tenex RJS to CCN
cc: FIBhDS at BBN, BURCHFI EL at BBN, HEARN at UTAH-10, BOYNTON - -

(I* a not sure who this Letter Is specifically Intended for. AIL of
you way find it relevant/interesting)•

A major piece of Network software — the BRJwTenex RJS to CCN program
— tarns out to be unsupported. It is not currentlypossible to get
bass fixed in either the Harslem/Fagan Bliss version or the
Uicks Fail version. 1

We can't even locate the source to the Bliss copy 2

Dave.

1

I

DHC 8—MAR—74 17:30 30202
tenex RJ3 to CCN'
cc: FIfiLDS at BBN, BURCHFIEL at BBN, HEARN at UTAH-10, BCYNTCN - -

(1 * J# not 3ore who this letter is specifically intended for. All of
you nay find it relevant/ Inte rest ingt) •

(J30202 I 8—MAR—74 17:30; Title: Author!s): David H. Crocker/DHC;
Distribution: /DHC; Sub—Collections: NIC; Clerk: DH;

DHC 9-MAK-74 12:47 30204

Dotiaaentation
cc! lout rossiterjbinf1200) at UCLA—CCN

Lynn — 1 want to eerily what documents are currently In the
mill and what you should do as you complete them.

(there is no priority implied in this list. I'm putting them down as
i think oi them): *

Three or four NUTS notes on Tenex. 1a

NUTS Notes on 1) document printing) 2) NUSEXDOC*
J) CCNJOB, 4) 8JS (NMCRJS)

Rots o' ruck.

P.s.* Lou — I Just remembered that Monday the 25th is a holiday.
I • 11 see you the 26th» then)

Dave.

lc

Id

LTSET

Spencer's write-ups

TaoIes of contents for MA and NMC Notebooks.

Table oi contents for NUTS Notebook will need updating If

Various Notes to secretaries (your copies are marked*
so you can tell from them).

I would Like you to take the attitude that they are completely
responsibility (in terms of the care you take in proffing them) and
then leave me messages (thru sndnsg to dcrocker at isi) when you feel
a document Is ready. Leave a 'clear text* draft in
DDC.LAR,;# (where # differentiates the different documents). 'Clear
text1'* you will recall* refers to running the document through
Output device Printer and Sendprint* as per the Document Printing
document. ~

I'll be checking in Wed though Friday and then the following friday
(and maybe Monday). ^

4

1

DHC 9—MAR—74 12:47 30204
Documentation
cc: lout rossiter«bin(1200) at UCLA—CCN

Lvna — I want to eerily what documents are currently in the
aill and what you should do as you complete them.

(J30204 J 3—MAR—74 12:47; Title: Author(s): David H. Crocker/DHC;
Distribution: /LYNN; Sub—Collections: NIC; Clerk: DH?

	30180

	30181-30182

	30183-30185

	30186-30189

	30190-30193

	30194

	30195

	30196

	30197-30199

	30200

	30201-30204

