
---- - -

93065JOHNSB09 0

BY~ON JOHNSON
356 LAGUNA TERR
SIMI VALLEY. CA 93065

---,... ... ---- - -- -

2239

I

SUBMITTING ITEMS FOR PUBLICATION

LABEL everything please, your name, address and the date;
tapes mould also include the program name, language and
system.

TYPE text if at all possible. double·spaced, on 8% x 11 inch
white paper.

DRAWINGS should be as clear and neat as possible in black
ink on white paper.

LISTINGS are hard to reproduce clearly, so please note:
• Use a new ribbon on plain white paper when making a

listing; we prefer roll paper or fan· fold paper.
• Send copies of one or more RUNs of your program, to

verify that it runs and to provide a sense of how things
work - and to motivate more of us to read the code.
RUNs should illustrate the main purpose and operation of
your program as clearly as possible. Bells. whistles and
$pedal features should just be described in the documen·
tation unless they're particularly relevant.

• Make $Ure your code is well documented - use a separate
sheet of paper. Refer to portions of code by line number or
label or address please, not by page number. When writing
documentation, keep in mind that readers will include
beginners and people who may be relatively inexperienced
with the language you're using. Helpful documentation!
annotation can make your code useful to more people.
Documentation should discuss just which cases are covered
and which aren't.

• If you send us a program to publish, we reserve the right to
annotate it (don't worry, we won't publish it if we don't
like it).

• Last but not least. please try to limit the width of your
listings: 50·60 characters is ideal. Narrow widths mean less
reduction, better readability and better use of space.

LETTERS are always welcome; we assume it's OK to publish
them unless you ask us not to. Upon request we will withhold
your name from a published letter, but we will not publish
correspondence sent to us anonymously, We reserve the right
to edit letters for purposes of clarity and brevity.

Cover photo CQUrtesv of Visualscope.

.... -. ., -.-
v -

SUBSCRIPTIONS

U. S. Subscriptions
o sa/yr. (6 issues)
o $15/2 yrs. (12 issues)
o Retaining subscription @$25

($17 tax deductible)
o Sustaining subscription@$100+

($92+ tax deductible)

Foreign Surface Mail
o add $4/yr. for Canada
o add $5/yr, elsewhere

Foreign AI RMAI L
o add $S/yr. for Canada
o add $11!yr. for Europe
o add S14/yr. elsewhere

Payment must be in U.S. dollars
drawn on a U.S. bank.

These back issues are available at Sl.50 each:
Vol 5, No 6
Vol 6, Nos " 2, 3, 4, 5

Foreign Distributors of People's Computers

Vincent Coen
LP Enterprises
313 Kingston Road
II ford IG 1 1 PJ
Essex, UK

Rudi Hoess
Electronic Concepts PTY Ltd
Ground Floor Cambridge House
52·58 Clarence St
Sydney NSW 2000

ASCII Publishing
305 HI TORIO
5·6· 7 Minami Aoyama
Minato·Ku, Tokyo 107
JAPAN

Home Computer Club
1070·57 Yamaguchi
Tokorozawa, Saitama,
JAPAN

Kougakusha Publ. Co., Ltd
Haneda Biru 403, 5·1
2·Chome, Yoyogi
Shibuya·Ku, Tokyo 151
JAPAN

Computer Age Co .. Ltd
Kasumigaseki Building
3·2·5 Kasumigaseki
Chiyoda·Ku, Tokyo 100
JAPAN

People'sCompurers is published bimonthly by People's Computer Company: 1263 EI C.amino Real, B~x E, Menlo Park, C~ 94025.
People's Computer Company is a tax ·exempt, independent, non·proflt corporation, and donations are tax·deductlble.

Second ctass postage paid at Menlo Park, California, and additional entry points.
Copyright © 1978 by People's Computer Company, Menlo Park, California

2 PEOPLE'S COMPUTERS

STAFF

EDITOR
Phyllis Cole
ASSISTANT EDITOR
Tom Williams
ART DI RECTOR
Meredith Ittner
PRODUCTION
Donna Lee Wood
ARTISTS
Maria Kent
Ann Miya
Judith Wasserman
TYPISTS
Barbara Rymsza
Sara Werry
BOOKSTORE
Dan Rosset
PROMOTION
Dwight McCabe
Andrea Nasher
CIRCULATION
Bill 8runeau
BULK SALES
Christine Botelho
DRAGON EMERITUS
Bob Albrecht

RETAINING SUBSCRIBERS

David R. Dick
Mark Elgin
John 8. Fried
Scott Guthery, Computer Recreations
W. A. Kelley
John C. Lilly
Frank Otsuka
Bernice Pantell
Larry Press
Shelter Institute

SUSTAINING SUBSCRIBERS

Algorithmics Inc, Bruce Cichowlas
Don L. Behm
8YTE Publications, Carl Helmers,

Virginia Peschke, Manfred Peschke
Paul, Lori and Tom Calhoun
Bill Godbout Electronics
Dick Heiser, The Computer Store

,-

VOL6 N06
MAY ·JUNE 1978

MICRO STUFF

7 HEATH'S H·B

14 APPLE II

15 VIDEO BRAIN

40 SPOT: The Society of PET Owners and Trainers

54 TRS·80 TALK

ARTICLES

16 CASINO: A Small System Simulator
Btjirge Christensen constructs a simulation of a roulette game

27 SKETCHCODE
Todd Voros' discusses his metaprogramming technique

34 TINY LANGUAGE TALK
Sam Hills shares his ideas

48 IN DEFENSE OF THE COMPUTER ESTABLISHMENT
Warner Mach takes issue with Jaques Vallee

59 APL WANTS YOU!
Mokurai Cherlin is a true believer

OTHER STUFF

11 SPR W-RS
Mark Pelczarski's game is a challenge

24 A FAIRE VIEW
As seen by Jef Raskin

26 COMPUTERS AND THE HANDICAPPED
A photo essay

45 TINY BLACKJACK
A powerful Tiny BASIC game from Milan Chepko

51 BASIC5 STRINGS
Fr Thomas McGahee's added strings to his SOL 20

57 DRAGONSMOKE
Dragon Emeritus Bob Albrecht provides sources for fantasy games

58 EDUCATION SOFTWARE: A Call for Distributors
From Phyllis Cole

REGULAR STUn

4 EDITOR'S COMMENTS & LETTERS

32 FORTRAN MAN

43 REVIEWS

62 ANNOUNCEMENTS

MAV·JUNE 3

4

EDITOR'S NOTES

This will be my last issue as editor.
Future plans are not yet firm but
they'll definitely include home
computers. (No, I won't be working
for Commodore . .. J Do not despair
PET fans-SPOT will continue to
appear in these pages.

People's Computers' new editor will
be Bob Kahn, a long-time friend of
People's Computer Company and,
until taking on the editorship, a
member of PCC's board of direc
tors. When a junior in high school,
back in 1962, Bob was first intro
duced to computers by none other
than our Dragon Emeritus. He
worked his way through college as a
programmer and data analyst and
spent a couple of years as a com·
puter education consultant here in
the San Francisco Bay Area. For
the past 6 years, Bob has been the
Director of the ComputerEducation
Project at the University of Califor
nia's Lawrence Hall of Science in
Berkeley. A t the same time, he has
been working toward a Ph D in
education at Berkeley. In addition
to science museums and computers,
Bob is very fond of kids, toasted
almond ice cream, High Speed
Ektachrome, and Renaissance
dance music-not to mention
The Dragons of Eden.

I'm looking forward to the fresh
perspective Bob Kahn will bring
People's Computers- it's sure to be
enjoyable.

PhylliS Cole

PEOPLE'S COMPUTERS

LETTERS
I would like to say a few tltings about
Pascal and Tiny Languages. All the
good things said about Pascal are true.
I have used a very powerful version
of BASIC (BASIC·PLUS on the PDP· II)
which could well be the best BASIC
sold, but it is not as good as Pascal.
However, Pascal is not usually inter·
active, and interactive languages have a
lot of advantages over noninteractive
ones.

Compared to other very powerful
languages Pascal is small, but it is not
tiny. I am helping to design and build
a Pascal machine using the l·80 (in
contrast to putting Pascal on a l·80), and
find that according to our designs we can
probably run a real·time disk operating
system and Pascal compiler in 32K bytes.
This is not tiny. Nevertheless we feel the
power of Pascal is worth it since memory
IS not now expensive and wilt soon be
even cheaper.

Pascal is vel)' well designed. I wrote a
compiler for Pascal before I ever wrote
a program in Pascal and was surprised
at how simple it was. I read books on
parsing and compiler wriling 10 prepare
myself and then used a very primitive
parsing algorithm, since the language is
in a sense primitive. If a Tiny Language
is similarly well designed then il can be
powerful yet simple, but Pascal was never
meant to be tiny, only small.

Pascal is as large as it is because it has
many different data types and Slate
ments. A Tiny Language that has only
one elementary data type. strings, as well
as structured types, would be smaller.
A simpler set of statements could stilt
be used, such as aSSignment, a combina·
tion of the IF and CASE statements,
and a looping statement. The simpler
syntax would also make it easier to make
the Tiny Language interactive yet still
have free fonn.

Many people do not like to declare
variables, but this is the essence of good
programming style. BASIC's weakest
feature is not its lack of structured
control statements but its poor sub·
routine handling and lack of local

variables. All variables should be declared,
though defaults could be provided for
beginning and lazy programmers.

An idea I have had for some time is to
treat floating point numbers as fractions
rather than as decimals. This would be
very well suited to the string fonnat
and would also be easy for kids, as well
as eliminating roundoff error.

Structured data types are even more
important than structured control state
ments in my opinion, since powerful
subroutine capabilities can reduce the
need for powerful control statements.
One of the problems with Pascal is that
all array sizes are fixed at compile time.
Dynamic arrays would be vel)' nice.
Records are also very useful in making
programs easier to understand. Possibly
all variables (simple, array, record and
pOinter), could be looked on as special
cases of one variable type. Each variable
could have some information indicating
its size and pointers to its component
strings. Since strings are of variable size
there is really no difference from the
implementer's point of view between
a record and an array: both consist of a
heading describing the variable and a
string of pointers to the component
strings. Referencing a field from a record
would be exactly the same as referencing
a component of an array.

Perhaps we are all guilty of cultural near
sightedness. All languages mentioned here
are members of the Fortran/Algol family,
which is what we have all been trained
to progranJ in. Rumor has it that some
highly successful children's languages,
such as Smalltalk, are entire ly different.
I wouldn'l know, since no one has yet
answered my requests for names of
publications or ordering infonnation.
Since you seem to be in the know, how
about reprinting relevant infonnation?
It would be a shanIc to develop a
language that was outdated before it
was even implemented.

My copies of Pascal News have just
arrived. Anyone interested in Pascal
should subscribe by sending $4.00 to
Pascal User's Group. c/o Andy Mickel,

I

I

University Computer Center: 227 EX,
208 SE Union Street, University of
Minnesota, Minneapolis, MN 55455. One
interesting bit of news was the announce
ment of Pascal implementations for
microprocessors.

The University of California at San Diego
has a Pascal system designed for Computer
Aided Instruction written for the LSI - II,
the 8080, the Z-8O, and plan on having
it run on the 6800 and the 6502, also.
l! requires at least 48K of memory,
maybe more, and a certain number of
floppy disks. The 8080 and Z·80 soft
ware uses the I/O drivers from CP/M,
so if your system runs CP/M and has
enough memory it should run UCSD
Pascal. For more infonnation write
Pascal Group, Institute for Infonnation
Systems, UCSD Mailcode C-021,
La Jolla, CA 92093.

A Pascal system for the 6800 was
mentioned that requires 32K of memory
and some high speed mass storage device
such as a floppy disk or tape. The cost
is around $100 and ordering infonnation
can be had from Computer Depot, 3515
West 70th Street,Minneapolis, MN 55435.

Both of the above systems come with
complete source listings as well as othe r
documentation . The UCSD system has a
BASIC interpreter written in Pascal,
CAl programs, text editors, and graphics
capability.

The usual way to implement Pascal is to
invent a hypothetical Pascal Machine
which the compiler compiles. A small
interpreter is written in the machine
language of the computer to interpret
the code of che Pascal Machine . To move
the compiler to another machine it is
only necessary to rewrite the interpreter,
which is usually 4K to 8K. Thus most
Pascal systems are very portable. The
most popular series of compilers is the
one started by Niklaus Wirth , called
PI, P2, P3 and P4. The 6800 system is
implemented using a variant of P2. UCSD
seems to have invented theirs from
scratch, although I could be wrong.
I am using Per Brinck Hansen's Sequen tial
Pascal/Concurrent Pascal pair of
compile rs because I am interested in real-

time applications. 11 is possible for
anyone to use one of the standard
compilers to implement their own system
in a few months. The best way to start
is to subscribe to Pascal News.

Ralph Johnson
Galesburg,IL

In our Nov-Dec issue (Vol 6 No 3) we
published references to Smalltalk (Alan
Kay's article in the Sept 1977 Scientific
American; Kay alld Goldberg's Small
talk lnstruction Manual from Xerox
PARe, Palo Alto. CA). Our Jan-Feb
issue (Vol 6 No 4) refers to Springer
Verlag books on Pascal (Pascal User
Manual and Report by Jensen and Wirth;
Ken Bowles' Introduction to Computer
Science). Bowles'status repon has been
published in the March, 1978 issue of
Dr. Dobb's Journal (Vol 3 No 3). Thanks
for the other sources.

I've met PASCAL recently and generally
agree with David Mundie that it is a much
beller language than BASIC. However,
there are a few problems that should not
be ignored:

1. Character strings are not a basic vari
able type - the best that can be done is
an array of individual characters. My
mental processes work more easily with
strings arid substrings than with individual
characters: I'd rather check for 'yes' than
'y' and 'E' and'S'.

2. Perhaps the problem is with the manual
rather than the language, but I'm not sure
exactly what can be read and written. I'm
under the impression that only single
characters can be read and written; appar·
ently an internal number fonnatter was
added as an afterthought (which does not
inspire confidence).

3. Semicolons are required between every
pair of statements-well almost every
pair. I predict tlIat users will find the mis
use of sem icolons to be the most persis
tant syntax problem. The only use I can
see for semicolons is for separating several
statements on the same line.

4. This may be nit'picking, but I don't
consider the use of ':=' to be particularly
clear. In addition it is unnecessarily
clumsy to have to type two symbols for

the most common operation. It seems to
me that che use of a left-arrow for assign.
ment would be a great improvement. If
you can use an up-arrow in 'INPUTt'
(whatever that means) you can just as
easily use a left arrow for assignment
it can't be that big a change.

5. Not only must statement labels be
numbers instead of names (ugh), but each
label must be declared in a LABEL state·
ment (YUK!). Considering that PASCAL
is nice enough to let me name my proce
dure, I fail to understand why r can't name
my statemen ts or why I must declare my
labels before I use them. (For the fanatics
who wish 10 eliminate GOTOs from the
face of the earth, I refuse to make do
without them simply because they can
simplify an algorithm every once in a
While.) In spite of my complaints, I still
think PASCAL is a better language than
BASIC.

For David Mundie: Please tell us the dif
ference between an 'array' and a 'packed
array'; and can you give a simpler
example of a CASE statement? (Maybe
I'm slow, but its use in your sample pro
gram was a bit shy of being crystalline).

For Bob Albrecht and Dennis Allison in
particular: Before going much further
with your tiny languages, I'd like to have
some idea of the age group you are con
sidering. (Would a six year old have any
use for recursion or IF ... THEN ...
ELSE?)

A similar question for graphicS: are they
to be controlled from the keyboard or
from a user written program? An alter·
native to keyboard control would be
special control knobs (e.g. for di rection
control) or a joy stick or something like
that.

Occasionally I find myself deep in the
middle of a bunch of REPEAT ... UNTIL,
WHILE, IF ... THEN . .. ELSE, with 'it
GOTO EXIT the only thing to be done at
that point. Setting error flags and
working my way out of all that logic to
accomplish nothing more than that is
unnecessarily complicated. Does that
make me a poor programmer? That's my
problem, not the language designer's.

Leigh Janes
East Lansing, M I

MAY-JUNE 5

Dennis Allison has some comments for
you, Leigh. 'On point 4, I agree. ASCII
is, however, standard, and does not lJave
enough graphics. J prefer = = for the
assigTlment operator and = for compari
sons. On point 5, the problem is histor
ical, and comes from using labels in case
statements. Further, lexical scoping and Q

desire to compute in one pass caused
the 'teed for dec/aratiotlS. '

I'm wri ting in direct reply to David Mun
die's article in your January issue, and to
comment indirectly on the spate of
letters from the structured programming
freaks. My feelings have graduaUy shifted
from generally sympathetic to thoroughly
annoyed, and I feel it's time to raise a few
pertinent points.

If affordable general purpose computers
are to become a commonplace, they must
be purchased not by professional
programmers nor by hobbyists, but by
users with speCialized non-trivial appli
cations. The programs written by these
users will not be widely distributed , nor
will they be written for the love of intel
lectual exercise . They will be written to
make one computer do something useful
as quickly as possible. If this group of
user-programmers fails to materialize, the
'computer revolution' is likely to
produce only idiot-proof, preprogram
med appliance computers. I maintain that
the user-programmer's first requirement
is for fast convenient program develop
ment with a fully interactive editor·
interpreter. Those people helping to
shape the evolution of our programming
languages ought to pay more attention to:
A. TIle difference be tween compiled and

interpreted versions of any language.
B. The importance of the co-resident

text editor in the design of any inter
preter. (Could it be that many of the
structured programming freaks are still
'editing' on keypunch machines?)

C. The degree to which any language is
machine dependent, and pa rticularly
the influence of the ubiquitous tele
type on the evolution of present inter·
preted languages.

Mr Mundie does not mention what sys
tem he used for 'BANBASIC', but he
seems to be comparing a fairly powerful
compiler with a severely restricted BASIC
in terpreter. Benchmarking the best of

6 PEOPLE 'S COMPUTERS

--------- ----- - --

Hewlett-Packard's BASIC compilers
against the first of the homebrew
PASCAL interpreters would produce
similar lopsided results. I believe it 's time
to forge t about languages and talk about
features.

line numbers represent an economical
means of implementing a text editor.
Text editors will have to get much more
powerful before we can afford to dispose
of line numbers. [jne numbers are also a
convenient means of flaggi ng errors. In a
system without line numbers, the com·
puter issuing an error message ought to
display a sizable block of text and under·
line or highlight the offending section of
code. Finally, line numbers label sections
of code for an interpreter without requir
ing the interpreter to maintain a separate
symbol table for entry pOints. Let me say
here that an operating system with fully
compatible interpreter and compiler, and
a very good text editor, would remove
most of my objections to the proposals
of the structured programming people. I
do not believe Ihat such a system is feas
ible with our current crop of hardware.

The 'IF (condition) THEN (line number),
statement is the one that seems to annoy
the S.P.F.'s the most. nus has been
almost universally replaced with the state
ment , 'IF (cond) (statement){(statement)
{(statement),. There is no particular
reason why this line cannot be extended
10 as many characters as desired, and
listed back in the form,

IF (cond)
THEN,

statement
statement
statement

People should not waste time 'pretty
printing' while a computer which can do
the same job more easily waits for them
to finish! An 'ELSE' clause could be
added in the same way, but should be
optional. 'ELSE CONTINUE' is still
the most common usage.

TIle unconditional 'GOTO' is obviously
conditional in the construction above.
It is also used in direCI execution to
test blocks of code without running an
entire program. Furthermore , many
existing editors do not permit renumbering
or resequencing in any fashion-without
the 'COTO' many of us would spend
more time retyping than programming.
Best of all, it is cheap to implement.
Use it or don't use it, but leave it in!

Multi-character variable names are a
useful feature, but costly to implement
in an interpreter. The business user will
want them, but the engineering user
might prefer faster lookup during run
time. Also, it is simply not true that
meaningful variable names make a
program easier to read-to be readily
intelligible, an arithmetic expression
must be physically compact. Try writing
the general solution to a quadratic in
linear fonn with 'meaningful' 8-character
names for all constants and variables! In
an arithmetic expression of any size, it
is good practice to use very short variable
names and describe those names in
commen t lines. TItis issue more than any
other points up the difference between
'business' and 'scientific'languages. It will
be difficult to please both groups of users
with any single implementation of any
language. I feel that BASIC clearly falls
into the 'scientific' group of languages,
and that we badly need a language doing
for COBO L what BASIC did for
FORTRAN. In the meantime, let's not
'refonn' away BASIC's value as an
easily implemented scientific language
for very small machines.

Finally, Mr. Mundie says that BASIC
encourages sloppy thinking. To this I
say, deleted! Any language written for
mass distribution must be extremely
tolerant of sloppy thinking. The value of
a computer is its ability to deal analytically
with huge masses of rigorously structured
data . The human mind is at its best
while drawing loose analogies or
metaphors, extracting patterns that
cannot be demonstrated algorithmically.
A computer should help people to order
their thoughts - not require them to.
The explicit declaration of all variables,
the inability to branch freely in and out
of procedural blocks, mandatory 'ELSE'
and 'ENDI F' statements-all of these
features will encourage 'logical thinking'
and 'clean code'. They will also drive
beginning users from the marke tplace
in droves .

Computers are to use, not to program!

David J. Beard
Newmanstown, PA

More letters, page 10

Heathkit's H-8 Computer
System

In 1975, pioneers trekked into the new
world of personal computing which had
been opened by the MITS Altair 8080.
Most were hardy electronics hobbyists of
the sort who haoJ previously found their
outlet in amateur radio. Since then, the
proliferation of personal computing has
created two classes of users - the hobby
ists and the consumer.

The hobbyist is interested in the comput
er and the consumer is interested in the
uses for the computer. The hobbyist
enjoys tinkering with the hardware and!
or software of his system in order to
make it do all the 'neat' things he can
think up for it, while the computer COII

sumer is interested in buying a pre
assembled and tested machine with its
operating software in ROM and as much
preprogrammed applications software as
possible.

HOMEWORK

Heathkit's H-8 system is all S080-based
computer aimed at the hobbyist, but with
a difference: it is designed in such a way
that new hobbyists are created out of
some of the people who might not other
wise venture into hobbydom . However,
Heath seems to be aware of the pitfalls of
shattered expectations: the president's
message in the 1977 quistmas catalog
cautions that computers are not for
everyone . In addition, notes packed in
shipping cartons encourage the buyer to
examine the manuals carefully before
unpacking. Credit on a refund is offered
if the customer decides he's bitten off
more than he can chew or the system
does not suit his needs.

There is no electron ic kit of any sophis
tication that can be assembled by the
complete novice. Most kits do not require
a knowledge of electronics although some
assume familiarity with components and
procedures (such as the polarity of diodes
and electrolytic capacitors). Heath has
learned from experience not to take
things for granted; I don 't recommend

BY TOM WI LLiAMS

that a totally inexperienced enthusiast
attempt a com puter kit and neither does
Heathkit. Far better to cut your teeth on
a stereo receiver or some such first.

A rudimentary knowledge of electricity
is important both in building a kit as
complex as a computer and in appre
ciating in some measure what is going on.
Heath has built ·in intennediate tests
along the way which help you catch and
isolate possible problems before you wind
up confronting an inert mass of circuitry
without knowing where to begin. Owning
and knowing how to use a volt-ohmetcr
to measure voltage and resistance will
help a great deal.

The H·8 computer system I constructed
was a good sized task , requiring about
4S hours spread over a month and a half.
I have previously constructed a number
of Heath and other electronic kits ranging
in complexity from multimeters to color
televisions.

CONSTR UCTI ON

The system I built is advertised by Heath
as 'System Two' and it consists of the
H-8 computer, 16K of RAM, serial I/O
and cassette board, audio cassette record
er and the H-9 video temlinal. The

assembly manual breaks down the impos
ing array of parts to manageable segrneniS
with a very clearly worded and illustrated
set of instructions. The philosophy of the
manuals seems to be that paper is cheap
and mistakes are expensive. Manual
changes and updates are included on sep
arate sheets and you are instructed to
collate these updates before starting con
struction.

Shortly before I started in on the H·9
terminal, I received a letter from Heathkit
which contained not only the latest
manual update, but also the piece of wire
I would need to perfonn the required
step!

For a person with some experience and
confidence, constructing the various com
ponents is a straightforward task requir.
ing little but care and patience. However,
for those who either feel a bit uncertain
or run into trouble , Heath maintains two
islands of refuge. There are fifty Heath
Electronic Centers located throughout
the country. Each has factory-trained
people who specialize in different areas of
Heath products. Twice I had occasion to
visit the store in Redwood City, CA and
found the manager, Don Filmore, and his
computer service technician, Dick
DeCosta , both helpful and knowledgeable.

Of course, not everyone lives within easy
distance of a Heathkit store and Heath
has done what it can to help out here too.
They maintain a telephone number in
Benton Harbor, Michigan with technical
advisers answering whatever desperate
questions may come in from the hinter
lands. I tried this number on four
~casions-twice with real questions and
twice with questions I had manufactured
(naugllty me). It was occasionally diffi·
cult to get through, but when I did, the
woman who answered asked me how long
I had been trying to reach them. Heath is
responsive to the problem and is attempt
ting to establish the proper size staff to
handle telephone inquiries about their
new product line.

MAY-JUNE 7

The technician I talked to had the
manual, schematjcs and answers at his
fingertips. The only nasty problem I had
was a strange display on the H·9 tenninal.
The technician in Benton Harbor immedi·
ately recognized the area of the problem,
and rattled off pairs of Ie's for me to
swap around to try to isolate it. When
that didn't help I turned to the folks at
the local store, who ultimately discovered
a bad socket, a bad Ie and (oops) a single
solder bridge I had missed. Just as editors
shouldn't proofread their own copy, so
you should have someone else check over
your soldering if you suspect a problem.

THE SYSTEM

The completed H·8 computer looks dif·
ferent from some of the other 8080·
based systems on the market-Ule front
panel, for example. Whereas other sys·
terns have single LED's to represent
address and data infonnation, the H·8
has a nine·digit octal display. [n the
'memory' mode, the first six digits
display the address and the last three
the contents of that address. Any address
in memory can be selected from the front
keypad and its contents examined and
altered.

In the 'register' mode there is direct
access to the internal CPU registers; you
can examine them or alter their contents
as you wish. TIle eight·bit registers are
displayed in pairs and the sixteen · bit
registers (stack pointer and program
counter) are displayed individually.

A significant feature of the mainframe
unit is the absence of a cooling fan. Each
board has its voltage regulator IC's
mounted to a heat sinking bracket on one
end. This bracket is in tum secured to the
chassis on the bottom and to a tie bracket
on the top so thaI heat is dissipated both
into the whole frame of the unit, and
through vents in the top and bottom.

" '-' , 1-' :J ILI::l
II_'L 1 __ I -l II_II

AlIORla DU I GOS" R

DiwliV 01 eonllnu of In addre$$ in memory

'=1
I, 1 II 12 dE 1

, UU
-.ou.,s. OA IGOS" R

Display of contents of D and E CPU registers

8 PEOPLE'S COMPUTERS

There arc two controversial features of
the H·8. First, Heathkit has designed a
completely new bus structure which it
calls the Benton Harbor bus. It consists of
50 lines, all but seven of which have been
pennanently designated ... and Heath
tells you which ones it reserves the right
10 change. Heath has defended its choice
of a new bus design on the grounds of
better electronic characteristics and cost
factors. It has been claimed that Heath,
by having a unique bus structure, wanted
to force the user to buy only Heath
boards, but this argument doesn't hold
up. It is to a manufacturer's advantage to
have accessories generally available to the
market. Even the biggest company can't
produce everythi ng at once and Heath's
Director of Computer Products, Lou
Frenzel, told me at the recent West Coast
Computer Faire Utat they are hoping
other small manufacturers do start
producing boards compatible with the
Benton Harbor bus. Also, a new bus
structure cannot be marketed by just any
company. The manufacturer has to be
willing and able to wait for it to 'catch
on' which can mean relatively slow initial
sales. Thus, it looks as if Heath's decision
to introduce the Benton Harbor bus was
not made lightly and is a testimony to
their faith in their design.

Secondly, there have been many discus·
sions as to whether octal or hexidecimal
notation is intrinSically better. Those who
have chosen one or the other seem
unshakable in their belief and this can get
to be a pretty personal matter. I was
weaned on hexadecimal and prefer it for
a number of arbitrary reasons. However,
my experience has been that it is easy
enough to learn to operate within another
number system. The only problem is that
the majority of published software for
microcomputers is in hexadecimal, so try·
ing to work between the two systems can
be tiresome. For this reason alone I wish
Headl had chosen a hexadecim3l displ3y.

THE TERMINAL

The H·9 video tenninal sharply and solid·
Iy displays twelve lines of eighty charac·
ters, upper case only . Most comparably
priced tenninals display more than twelve
lines; evidently there was a tradeoff in
order to obtain the 80 characters per line.
As it turns out. twelve lines is sufficient
for most purposes and the eighty column
display can be quite handy.

The H·9 has three different display
modes: the standard 12 x 80 (mentioned
above), a short fonn which gives four 10
ch3racter columns, and a plot mode
which puts a line across the middle of the
screen and allows the display of simple
graphs - that's graphs, /lot graphics. In
addition. there is a full cursor control and
a baud rate SWitch, which allows the user
to choose between 300 baud and one
other preselected speed from 110 to 9600
baud. One somewhat annoying aspect is
that the 'return' key is the same size as
all the others as well as being located next
to the 'tiTlC feed' and 'scroll' keys. TIlis,
and the absence of lower case, are my
only rcservations on what otherwise
appears to be an excellent terminal.

SOFTWARE

TIle H·8 is the first kit·fonn mainframe
system to include a complete sytems soft·
ware package in the price of the basic
unit. In the past, computer kits would be
sold wi th such things as IC sockets and
all software at additional cost. With the
H.8, all these are included, so there are
no 'hidden costs.' A brief overview of the
software follows:
PAM·8: This front panel ROM monitor

allows control of the system through
the front panel keypad. In addition to
the display features described earlier,

PAM·8 enables you to load or to
dump from any desired port, to single
step through a program using the
single instruction key, and to reset the
system logic. Heath's documentation
also provides a complete listing of the
monitor.

BUC·8: This console debugger allows
entering and debugging machine
language programs from a console
tenninal, displa·ying and altering

memory and register contents, single
instruction program execution, and
tape load and dump routines.

TEO·8: This text editor program allows
writing source code for assembly
language programming and configuring
and editing text material for other
purposes. TEO·8 allows searching for
a given string, editing it throughout
the test or in specified lines.

HASL·8: This 8K assembler translates
source code listings (provided by using
TED·8) into absolute binary format
which can be executed by the com
puter. HASL-8 can handle approxi·
mately 250 user· defined symbols.

Benton Harbor BASIC: This 8K BASIC
comes with the system; the extended
version of it is discussed briefly below.

For $20.00 Heath has available all
extended version of Benton Harbor
BASIC, written by Wintek Corporation.
At first I was a bit skeptical about the
label 'extended' since this BASIC resides
in just a little over 9K of RAM, but after
looking at the features, I find it quite sat·
isfactory for its size. True, it is not as
'extended' as some 12K versions insofar
as it does not have extensive editing and
tracing features. It does, however, allow a
number of operations not found in other
BASICs of this size and certaillly not at
this price. The main improvements of the

extended BASIC over that supplied with
the computer are use of string functions,
expanded math funtions, access to the
real time clock, and a variety of
CONTROL commands.

The FREE command leUs not only how
many bytes are free, but also how many
are allocated for text, symbol table, FOR
loops, COSUB's, strings, and workspace.
The STEP command will execute a pro·
gram one line or a few lines at a time, and
can be used as a primitive TRACE func·
tion. There is also a PORT command that
will output the results of a PRINT state·
ment to a port other tllan the console's
port.

CONTROL commands arc used to con·
figure the size of the print zone, set up
the front panel display to monitor a
memory location or register during pro·
gram execution, or to execute a specified
COSUB from the keyboard.

Both versions of Heath's BASIC repre·
sent numbers internally in floating point
and are accurate to 6 digits. I found a
noticeably weak point in exponentiation.

Raising a number (even an integer) to a
power using the t will not give a precise
result because BASIC executes this com·
mand by multiplying the natural loga·
rithm and then raising e to that power.
11m" (X t Y) = EXP (Y' (LOG(X»
I talked to the people at Heath about this
and they admitted it was a flaw. It is not
a bug, but a tradeoff in the interest of
memory space.

There is, however, one annoying aspect of
all Heath software - 'command comple·
tion.' Command completion means that
as soon as the computer recognizes a
command as unique, it automatically
completes printing ule rest of the com·
mand. TIlis may be a convenience for
those who type by the Columbus method
(discover it and land on it) but in general
it is a pain. If you type 'RU' the com·
puter supplies the final 'N' but, more
likely, a person will type the whole word
and end up with 'RUN N' on the screen.
Heath should be urged to supply software
patches to make this feature optional.

Considering the features that are available
in this extended BASIC for the size and
price, I must say it's an exceptional
value. In addition, the most recent
version (which I haven't seen yet) also
includes file capabilities-and its price lag
is still $20.

DOCUMENTATION

The highest praise is justly reserved for
last. I have already mentioned the assem·
bly manuals. The operation manuals
contain full schematiCS, limIng diagrams,
options for configuring 1/0 , instructions
011 the function of all keys, and detailed
troubleshooting flowcharts. The electron·

H·8 PERIPHERALS

Heathkit will be introducing more accessories later
know of so far include:

assembled
H·17 Disk unit with 1 drive $675 (.June, 1978)

extra drive $295
H·8·16 16K static Ram $395 (Aug, 1978)
H·8· 7 breadboard for prototyping

in 1978. The ones we

kit
$575 (Fall, 1978)

$95 (Aug. 1978)

We have also heard of other peripherals soon to be available from various
manufacturers, such as an 5· 100 adapter. We will report on these in the
Accouncements section when we receive more information on them.

MAY.JUNE 9

icaUy - interested Usef is able to study the
theory of operation and circuit descrip
tion sections to the extent of his interest.

The Software Reference Manual contains
a detailed description of all the available
software as well as a complete listing of
the monitor and several BASIC utility
routines. One of the most striking things
about this documentation is this: it was
prepared before the computer was
actually marketed.

CONCLUSION

The combined quality of the hardware,
the software and the documentation
suggests thaI the H·8 system is an excel ·
lent learning device. The documentation
is rich in detail and organized to help any
reader find his own level, whether he is
interested primarily in hardware or in
software. The assembly procedures make
kitbuilding accessible to tJlOSC with limited
to moderate experience. TIle organization
of the front panel makes it possible to
demonstrate clearly the machine's opera·
tion. The front panel should 1I0t be
ignored by the beginner as something
esoteric to be reserved for the advanced
hacker, since it provides insight into the
logic of the software and the structure of
the machine.

With the H-8 system Heath has lived up
to the reputation it has already establish
ed for quality in other kinds of electron
ic kits. The company's long experience in
hi-fi , amateur radio and color television
has given it tJle expertise required to
produce a first-class piece of hardware.
Engineering talent coupled with financial
stability have given Heath tJle confidence
to introduce design innovations. There is
room for improvement in the software
and Lou Frenzel is well aware of the need
for more systems and applications soft
ware as well as the necessity of education
tJIe customers. At a recent convention in
San Francisco he stated, 'The computer
itself can be used as a te;tching tool to
help educate those people interested in
computers. The idea is to provide com
puter aided instruction programs that
individuals can use on their own comput
er to learn how to solve problems and
program." With this sort of awareness in
the top management, I feel we can
expect great things from Heath.

o
10 PEOPLE'S COMPUTERS

More LETTERS
The Computer Club at Coloma High
School wants to act as a clearinghouse for
microcomputer software for schools. This
would give schools a chance to exchange
programs and ideas, and to help other
schools just getting started by sending
them already working programs such as
games, memory tests, grading programs
and other such material. We are willing to
act as a center to publish computer pro
grams for schools willing to share in
this idea and trade programs. Any in ter
ested hobbyists who have programs to
share with schools would be welcomed.

In our center we have eight different
microcomputer systems plus a 3M model
5500 test scorer. We can provide pro·
grams to share in 4 BASICs: the Poly
extended version ADO, 1m sal CPM system
BASIC-E version 1.33, Altair 8K BASIC
version 4, and North Star BASIC. The
storage systems we usc are tJle Poly 88
Byte Base Cassette recording system,
Imsai Dual Floppy Disk system witJl
CPM, Tarbell Cassette recording system,
North Star Mini Floppy Disk, and stan
dard paper tape.

Terri Leamer
Coloma Computer Club
Coloma High School ~ ~
Coloma, M149038 ~ ~

In the last issue of People's Computers
(Vol 6 No 5, page 6) J im Day made
a commen t about the game TEASER
which I would like to dispute.

First , there are in facl exactly 102
possible positiOns in the game of
TEASER (excluding rotations and
reflections). At least, that is the answer
I got and I've done tJIe analysis three
times.

Second, there are in fact two errors in
the diagram as published in What to Do
After You Hit Return and in the
September '74 People's Computer
Company. If you examine the diagram
you can see that the second board down
(from the top) in the third column
(counting from the left) and the fifth
board down in tJle fifth column are

continued from page 6.

identical. Likewise, the eighth and the
eleventh boards up (from the boltom)
in the fifth column (from the left) are
identical. The first-mentioned board in
each case should be replaced by Figures
I and 2 respectively.

Figure 1

column 3 #2

Eryk Vershen
Palo Alto, CA

Figure 2

~
.

•• •
column 5 #8

Do you remember the Digi-Comp I?
It was an extremely simple mechanical
computer made of plastic sliders, metal
rods, and rubber bands, and it included
a three (binary!) digit readout. The Digi·
Comp was cycled with a manual clock
and programmed by the placement of
pins of various lengths along the sliders.
Pins on one slider would activate or
dc-activate the rods, which pushed the
pillS on other sliders and changed the
display. A later model, the Digi-Comp lJ,
used balls rolling down a ramp and
tripping flip-flops.

I believe the Digi-Comp was my intro
duction to the world of programming and
logic. I never had tJle advanced model.
Does anyone still have one? I can't help
but think that today's kids of all ages
might enjoy puzzling out how it works
and trying to make it count from 0 to 7,

Kent Johnson
138 Hyde SI. #19
San Francisco, CA 94102 o

******* ••• * •• ***.* ••• *.** •••• *************.**********.*

~ :f!.*
T* *

********************.*** •• ** •• ********

•• *
..* ** •••• *.**.
BY MAR K PELCZARSKI

The movie STAR WARS suggesls
numerous game ideas for use with
a compuler. The real-time element
of Ihis a/lack on Death Slar makes it
particularly fim because, afler all,
Ihe fate of Ihe Galaxy is at stake. This
game is by Mark Pelczarsld, a teacher
at Sycamore High School in Sycamore,
fIIinois. In additioll to programmillg
games, Mark has dOlle a major project
and thesis all CAl and ComplIler
MafUlged lnstmcriOfl at the University
offllinois.

My 'Star Wars' game is written for
an HP2000 Access System (time
shared) computer. The statements
which may have to be changed on
other systems are the ENTER and
computed GOTO statements. Lines
680 and 1870 are the critical ENTER
statements (the others are just used
as pauses). The statement 'ENTER
L, N, M' will give the user L seconds
to reply and put his/her reply in
M (as INPUT M would). N is the
amount of time allowed for a
response-it is only used here to check
jf the reply was not answered quick
enough, in which case N is negative
(-256).

The statement '730 GOTO E OF 650,
1970, 740' takes the place of the
following string of 'IF' statements:

IF E '" I THEN 650
IF E '" 2 THEN 1970
IF E'" 3 THEN 740

Likewise, line '1370 GOTO M OF
1380, 1410, 1440, 1470, 1730,
1950, 1490' could be replaced with
seven (or six) IF statements.

The program as it is in this version
takes 2388 16-bit words on the
HP2000. If you delete the rather
lengthy instructions (lines 90 ·570)
the length is cut down to 1193 words.
Of course, some instructions should
be kept in, bUi they can be much
shorter.

This version of the game has 3 Tie
Fighters. One is programmed to track
you, the other two move around
randomly and are a general nuisance.
After the torpedo is chopped, you
have to pull out or else you'll crash
into the tower in front of you and
never know what happened-whether
you hit or missed.

This version is more challenging than
my last one. I could beat it consistently
before (however it was beaten only
once at the I- second interval). It took
3 or 4 serious runs at novice level
(with a 5-second time limit) to
produce the 'winning run' that starts
on this page.

THI S PROGRAM WORKS BEST ON A CNf
WITH THE 40/80 SWITCH ON 40 (IF
·rHERE I S ONE), DO YOU IOANT INSTRUCTIONS"!'
(' Y ' DR ' N'l7Y

S TAR

, .10 A R S

THE OBJECT. OF COURSE. IS TO DROP A
PROTON TORPEDO DOWN THE EXHAUST SHAFT
IN THE DEATH STAR . YOU WILL STARf OUT
SPEEDING THROUGH THE CANYON , HOPING
THAT NO TIE FIGHfERS FIND YOU. THEY
WILL. YOU ARE TO TRY TO AVOID THEM BY
MANEUVERING BACK AND FGRTH, UP AND DOWN .
UNTIL YOU SPOT THE SHAFf -- THEN FIREI

YOU WILL BE SHOWN fWD VIEWS -- ONE
FORW·ARD (YOU'LL SEE AN 'X' WHERE YOU
ARE LOCATED) IN WHICH YOU'LL WATCH FOR
fHE SHAFT. AND ONE BEHIND YOU. IN WHICH
YOU'LL LOOK FOR THE TIE FIGHTER (MARKED
AS AN ' W). BOTH VIEWS ARE LOOKING
STRAIGHf THROUGH THE CANYON, WITH THE
WALLS Af YOUR SIDES AND THE CANYON FLOOR
BELOW. THE SHAFT WILL FIRST APPEAR ON
THE CANYON FLOOR AS A '. ' I BUT YOU
WON'T FIRE UNfIL YOU SEE IT AS A '0'.
YOU MUST BE DIREcrLY ABOVE IT AND AS LOW
AS POSSIBLE. DON'T FORGET TO PULL OUT
WHEN YOU SEE THE TOIOER.

MAY-JUNE "

(;?*~ ?t.* *" • **01)
• WINNING RUN I~

YOUR COMMANDS ARE: ~
1) LEFT
2) UP
:5) FIRE

4) RIGHT
J) DO~N

6) PULL OUT

BE SURE TO PRESS RETURN AS SOON AS YOU
GIVE YOUR COMMAND . OR IT ~ON ' T BE
RECOGNIZED. GOOD LUCI(,

THE NUMBER YOU PICK FOR YOUR LEVEL WILL
BE YOUR TIME LIMIT (IN SECONDS) BETWEEN
MOVES .

YOUR LEVEL? (1 - EXPERT , 2 - VERY GOOD.
3 - 0000. 4 - FAIR. 5 - NQVr CE .
20- SUPER NOVI CE) 15

,
, ,
1-------1
COMMAND? ,
, , , ,
!-------I
COMMAND? ,
, , ,
1------- 1
COMMAND? ,

, ,
1-------1
COHHANO? ,

, , ,
1-------1

!-------I

! - - -----!

, , ,
1-------1

,
" , ,

1-------)
CO/UlAND? ,

, , " 1-------1
COI1HAND?
1

, , , X ,
1-------1
COMMAND? ,
, ,

" ! -------1
COMMAND?
1

1-------1

, ,
! -------1

" '" " !-------!

" '" '" 1---- --- !

.**.*********** •• **** ••••• *******.*******.* •••• **

10
20
30

" 5 0
60
70
80

" 100

110

120

130

1<0

158

10'

1 70

,"0

'" 200
210

'" 230

'" 25'
' 60
270
2"
290
300

'" '20
330

'" '" '" '" '" '" <0,

'" '"
12

STAR WARS LI STING

REM STAR ~ARS -- 1977 -- HARK ~, PELCZARSK I
DIM H[4]
PR INT 'TH IS PROGRAM ~ORKS BEST ON A CRT'
PRINT ' ~ ITH THE 4 0/80 S~ I TCH ON 40 (IF'
PRINT ' THERE IS ONE) , 00 YOU WANT I NSTRUCTIONS? '
PRINT '('1" OR ' W) ';
INPUT AS
I F AS~ 'N' THEN 550
PRINT "

PRINT

PRINT

PRINT

PRINT S TAR ..
' .

PR l NT ,101 A R S

PR I NT

PRINT

. 1
PRINT "

ENTER
PRINT
PRI NT
PRINT
PRINT
PRI NT
PRI NT
PRINT
PR I NT
PR IN T
ENTER
PRINT
PRINT
PR I NT
PRINT
PRI NT
PRINT
PR INT
PRINT
PR INT
PRINT
PRINT
PRINT
PR I NT
PRINT

~G1_ .. s.,, <~

'THE OBJECT , OF COURSE, IS TO DROP A'
'PROTON TORPEDO DOWN THE EXHAUST SHAFT'
'IN THE DEATH STAR , YOU WILL START OUT'
'SPEED ING THROUGH THE CANYON . HOPING'
'THAT NO TI E FIGHTERS FIND YOU , THEY'
'~I LL. YOU ARE TO TRY TO AVO I D THEM liY'
'MANEUVERING BACK AND FORTH . UP AND DOWN, '
' UNTIL YOU SPOT THE SHAFT -- THEN FIRE "
10.N ,H
' YOU WILL BE SHO WN T~O VI E~S -- ONE '
'FORWARD (YOU'LL SEE AN 'X ' WHERE YOU'
' ARE LOCATED) IN WHICH YOU'LL WArCH FOR '
'THE SHAFT, AND ONE BEHIND YOU, IN WHICH'
'YOU'LL LOOK FOR THE TIE FIGHTER (MAR~ED'
'AS AN 'W) . Boni VU:lJS ARE LOOKING'
'STRAIGHT THROUGH THE CANYON, ~nH IHE '
' WALLS AT YOUR S I DES AND TH~ CANl'ON FLOOK'
'BELOW . THE SHAFT ~ILL FIRS1 APPEAR ON'
' THE CANYON FLOOR AS A',' • BUT YOU'
' WON'T FIRE UNTI L YOU SEE n AS A '0 ' . '
'YOU MUST BE DIRECTLY ABOVE If AND AS LOW'
'AS POSSIBLE . DON ' T FORGE'T TO ~'ULL our '
'WHEN YOU SEE THE TOIoIER.'

PEOPLE'S COMPUTERS

'" '" '" <60

'" '" '" 500
510
520
530

"" 550
560
m
580

'" 600
010
02'

'" '" ;so

'" '" 6eo

'" '700
no
no
730
740

'" '" no
'" '" '" '10

'" '30

'" '" 86'

'" "" "" '" '" '" n,
'" 9::10

10.N , H
'YOUR COMMANDS ARE :'

1) LEFT
2) UP
5) FIRE

4) RIGHT '
3l DO WN '
6) PULL OUT'

'SE SURE TO PRESS RETURN AS SOON AS YOU'
' GIVE YOUR COMMAND , OR If ~ON ' T DE '
'RECOGNIZED . GOOD LUCK .

ENTER
PRINT
PRI NT
PRINT
F'IUNT
PRINT
PRINT
PRINT
PRINT
PRI NT
PRI NT
PR I NT
PRINT
PRINT
PRINT
INPUT L

' THE NUMBER YOU P I CK FOR YOUR LEVEL WILL'
'BE YOUR TI Hl LI HIT (I N SECONDS) liEiW(EN
'HOVES. '
'YOUR LEVEL? 11-EXPER1 , 2-VE~Y GOOD,"

3- GOOO. 'I-FAIR , ::i-NOVICE , '
20- 5UPER r-IOVlCi) ';

LET P~INT(RND(O)*13+8)
LET r u INT (RND(OJ*4+2)
LET Xl " E"'Cl "' l
LET X2"' 4
LET Hl~HZ~C2-Tl_S~0
LET C"- l
GOSUll 780
PRINT 'COMMAND? ' ;
PR I NT
ENTER L,N,M
PRINT
If N)O I HeN 720
LET 11-"7
GaSUl> 1280
GO TO E UF "~O, 1 970,/40
PRINr '~OULD YOU LIKE ANOHI!::R RUN ("," OR 'N ') ' j

INPUT A.
IF AS~'Y' THI:.N 590
GOTO 2000
REM - PRIN T SCREEN
LET C=C+1
PRINT" _ <.If"" "uu."
FOR B"'l TO 3
GOSUIt 890
NEXl II
IF C<P 1 HEN 870
GOSU!l l~lO

RETURN
PRINI '! ------ !
RETURN
REH - PRINT ROIoI
PRINT'! ' j

IF Xl B THEN 910
Lf.T A.~ ·X'

LET 14")(2
GOSU<o 11:':0
PRINT 'I I';

! ---. -·-- 1 •

, , , ,
1-------1
COHHAND?
1

X
I-------!
COMMAND?
1

X
1--- . ---1
CO /'IMAND ?
1

X
!--- . ---!

COM MAND? ,

,
"
, ,

"
,

'"
,

1-------1

" " , " ! -------1

" " "
,

1-------1

" " ,
" j ------- 1

X
)---0---1
COMMAND? ,
! W~~WWWW!

I W IoIW ~WW~ I
! ~IoI W~WW~ !
! - ------I

COMMAND?

" ! -------!

" " " ! -------I

YOU'VE DONE IT - - A PERFECT SHOTIII
CDNGRATULAT IONS!
~OULD YOU LIKE TO "fRY AGAIN ('Y' OR

..
() ... ~
.~.*~.

' N') 7N

*** •• *.* * **********.********.****.******************* • •
95'

'" '" '"' '" 1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
131 0
1 3 20
1330
1340
1 350
1360
1370
1380
1390
14 00
1 41 0
1420
1430
14 40
1 4 50
1 460
1470

PRINT 'I
GOTO 980
PRINT
LET AS='H'

, .. . ,
, .. . ,

IF Hl <> B THEN 1040
LET A=H2
GOSUS 1120
PRINT 'I '
RETURN
IF Hl ~O THEN 1100
LET HeCI t2J .:. I<
LET A"INT(RND(0)*7+1)
LET HCCIJ"A
LET Cl "'C1tl
GOTO 1010
PRINT' !'
RETURN
REM - LOCATE AND PRINT SHIP -
FOR 1= 1 TO 14-1
PRINT • ';
NEXT I
PR I NT A"
FOR 1"'1 TO 7-14
PR I NT ';
NEXT I
RETURN
REM - LOCATE SHAFT -
LET C2"'C- PI-l
GOTO C2 OF 12400124 0.1260
PRINT '!-- - . -- -I ! - ------I'
RETURN
PRINT' ! -- -O-- -I ! ------- !'
RETURN
REM - !'lOVE -
IF C2<3 THEN 1370
I F M < > ::; THEN 13::;0
IF Xl <> 3 THEN I~QO

IF XZ <> .; THE"" 1800
L ET S=1
GOTO 1800
PRINT 'YOU PASSED THE TARGET.
LET TI "' 1
GOTO Ii OF 1360.14 10.144001470,1 730,1950,1490
LET X2"'X2-1
IF X2·0 THEN 1750
GOTO 1490
LET X l "'XI-1
IF Xl ~O THEN 1780
GOTO 14 90
LET XI-XIH
IF XI"4 THEN 1750
GOTO 1490
LET XZ=X2+1

1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
18 40
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
19!i0
1960
1970
1980
1990
2000

IF X2.,8 THEN 1150
IF H2~0 THEN 1620
FOR 1"' 1 TO 2
IF X2 <> HEIJ THEN 1530
IF XI",HCI+2J THEN 1570
NEXT I
LET CI"'1
IF X2 <> H2 THEN 1620
IF XI .;;:- HI THEN 1::;90
PRINT 'YOU ' VE BEEN SHOT OOIolN,'
GOTO 17 60
IF 11:1 THEN 1800
LET HI"XI
RETURN
IF 11"' 1 THEN 1800
IF HZ < > 0 THEN 1680
IF C<T THEN 1670
LET Hl "' l
LET H2" 4
RETURN
IF H2< X2 THEN 17 10
LET H2" H2-1
RETURN
LET H2"H2+1
RETURN
PRINT 'YOU MISSED.'
GOTO 1490
PRINT ' YOU'RE GOING TO CRASH*'
LET E .. 2
RETURN
PRINT ' YOU'RE OUT OF RANGE. MOVE DOWNI'
RETURN
PRI NT " WIJIJ ~ ~IoIU I I '
PRI NT ' I wwuwwwu I I'
PRI NT 'I UIJ~WW UIol! H H H !'
PRI NT ' ! ---- ---! ! ----- --! •
PRI NT
PRINT ' COMMANI.l?';
PRINT
ENTER L, N .M
I F Ii <> 6 THEN' 1750
IF 5"0 THEN 1940
PRINT ' YOU'VE DONE IT A PERFECT SHOT!I! '
PRINT ' CONGRATULATIONSI'
LET E= 2
RETURN
PR I NT 'YOU MISSED YOUR TARGET,'
LET E" 3
RETURN
PR I NT ' I.IOULD YOU LIKE TO TRY AGAIN ('Y' OR
INPUT AS
IF A'~ 'Y ' THEN 550

'"'
MAY,JUNE

' N ') ' ;

o
13

APPLE II
BY PHYLLI S COLE

Probably many of you are aware of the
Apple-at both Computer Faires held so
far their systems were showstoppers,
though many winced at the price. The
Apple II minimum configuration costs
$1298 (without the color TV or cassette
recorder).

Just what do you gel for that? WelJ, the
Apple" minimum configuration consists
of a 6502·based system with a standard
ASCII keyboard built into a lightweight
(I I pound) housing that attaches to a
home color (or black and white) TV. It
comes with 8K of ROM (3 6K integer
BASIC and a 2K monitor), 4K RAM, fast
(1200 bps) interface for a standard cas
sette, and documentation. Despite
Apple Irs small size, there's room on
board for two 2K socketed ROMs, up to
48K of RAM, and slots for 8 boards for
peripherals.

Apple has announced 2 boards for intel
ligent peripherals. Their 'Intelligent Com
munications Lnterface' can be connected
to any device which will accept a stan
dard RS-232 interface, including the
103A-IYpe modems. Features of the
'Intelligent Printer Interface' include the
capability for printing up to 255 charac
ters/line at 5000 characters/second, and
an 8-bit parallel output port. No external
power is required. Each board retails for

14 PEOPLE'S COMPUTERS

$180. As of June, Apple expects to be
shipping mini-floppy Shugart drives with
an interface board that can support 2
floppy drives; no price had been
announced as of mid-March. At the same
time a revised Applesoft BASIC (10K or
12K, they're still squeezing the code
down) will be available in ROM ($100)
or on cassette tape ($15).

The Apple II uses Microsoft BASIC
(which is rapidly becoming a de facto
standard by virtue of its availability 011 so
many systems-e.g. OSI Challenger,
Commodore PET, Tandy TRS-80) and a
screen editor. I didn't much like having to
use 2 keys for cursor control (Le. it takes
2 keystrokes to make the cursor move
one space), but I suppose that's one of
the prices you pay for having a standard
keyboard. LII text mode, the screen con
tains up to 24 lines of 40 characters each.
No lower case letters can be displayed (a
limitation left over from teletype days)
which limits usefulness ill educational
environments and excludes word proces
sing applications.

Two graphics modes are available. The
'normal' mode allows you to plot on a
grid 40 cells wide and 48 cells high. In
'high resolution' mode a 280 wide and
192 high cell display is available. All
optional 4 lines of text may be displayed

at the bottom of the screen in either
mode, thereby reducing grid size to 40 by
40 and 2BO by 160, respectively. I saw
high resolution mode (which requires a
minimum of 16K of RAM) demonstrated
in graphing a Bessel function. The plot
ting was impressively rapid, despite the
fact that the BASIC program calculated
in real time the location of each point.

Special BASIC commands allow you to
select a colO! (15 are available in normal
graphics mode, 4 in the high resolution
mode); read the screen color at a given
location; plot points, horizontal and
vertical lines; read the game paddles.

A User software bank is being establish
ed by Apple; software for the system is
also often available through computer
magazines (e.g. Kilobaud, Jan & Feb,
1978). Software as now available for the
system looks similar to that found on
other comparable systems-disappointing.
Apple has announced plans to remedy the
program in part by field teUing all soft
ware and documentation as one way of
making sure only high quality materials
are released. That's certainly a commend
able first step, and one by which consum
ers will benefit. (t's definitely time for
manufacturers of consumer systems to
turn more time, attention, and money to
the problems of producing software and
documentation.

Last bUI not least, a comment one one of
Apple's recent ads. It joins a growing
collection (alas) that should have died
out long ago, picturing hubby in the
kitchen with his computer, while proudly
beaming housewife in the background
washes dishes (or pares vegetables or per
fonns other similar stereotypical tasks).
Hey, how bout some reverse discrimin
ation? If you insist on putting the
computer ill the kitchen, let's at least
get the woman using it (no, not for the
recipes-how about some fancy graphics
program instead?) and let the husband do
the dishes for a change! D

Video
The current enthusiasm about home com
puters began in many garages and work
shops across the country, as hundreds of
electronics fans patiently wired together
bits and pieces. At the time, it was the
only way to obtain a reasonably priced
home computer system; and only those
with some hardware experience were like
ly to own a home system. Gradually the
trend has been more and more towards
home computers as consumer items. To
date, the Video Brain comes closest to
presenting a computer as a consumer
'appliance', as evidenced by the fact that
it's being carried in such slores as Macy's.
The consumer does not program the
machine, but merely inserts programs on
ROM cartridges and then uses the
minimal keyboard and up to 4 joysticks
to provide input to pre-programmed
games or the built-in function.

The VideoBrain sells for S499.95, which
includes a keyboard console, 2 plug-in
joysticks, an AC power adaptor, TV
hookup cord and antenna switchbox, an
owner's manual, and two introductory
cartridge progranl packs, Music Teacher I
and Wordwise I. The F-8 based system
plugs into your home color (or black and
white) TV. In addition to using ROM
cartridge programs, the system may be
used as a calculator. The user may also
type, edit, store and retrieve a brief mes
sage and set an alarm.

Video Brain is the name of the product by
VideoBrain Computer Company, a sub
sidiary of Umtech, Inc, a Sunnyvale,
Califomia Company. Distribution of the
system began early in 1978; there are
plans to make additional programs avail
able on a monthly basis. As of April,
about a dozen such cartridges were avail
able, ranging in price from S20 (Black
jact, Pinball, Wordwise II) to $30
(Gladiator, Math Tutor I, Dr Samuel's
Checkers, Video Artist) to $50 (Financier)
and $60 (Money Manager). Program size
is generally reflected in the price; pro
grams now available vary from 2K to BK.

BY PHYLLIS CO LE

YideoBrain plans to provide programs in
three main areas: entertainment, educa
tion, and home management. Of the pro
grams I saw, by far the most sophisticated
and interesting were those in the enter
tainment category. Gladiator, for
example, is a 2-joystick, search-and
destroy type of game. But on the
Gladiator cartridge there are 384 varia
tions of the game with combinations of
features such as bouncing Objects, guided
objects, fast objects, obstacle removal,
speed control, and number of players.
Last but not least, an overture and a
fmale played over your TV's speaker
accompany the Gladiator package. The
objects used in the game are created using
a bit map display, and so the gladiators,
lions, space ships, etc, are easily recog
nizable detailed pictures.

The Video Brain is not well designed to
support educational and home manage
ment programs. In particular, the limited
amount of text that can be displayed, the
lack of lower case characters, and the

restricted keyboard are severe handicaps.
Hopefully future versions of the system
will be designed to better accomodate
non-video games.

Some consumers may dislike having to
rely on VideoBrain, at least for now, for
pre-packaged programs. No software
swaps are pOSSible, since you're dealing
with ROM cartridges. Even if you pur
chase the cassette recorder peripherals
offered by the company, you're still
faced with obtaining software in F-8
assembly language, and to date applica
tions software for the F-8 is pretty much
non-existent.

The concept underlying the VideoBrain is
intriguing and attractive to the video
game buff who likes the idea of having a
system flexible enough to also be used for
other purposes, but who has no interest
in programming. If will be interesting to
see what changes will occur in the
product based on in-the-home
experiences of consumers. D

In Music Teacher I. 8S you tVpe in notes Ihey're displayed on the acreen's staff
and played over Ihe TV's speaker.

MAY-JUNE 15

, , , , , , , , , , , , , , , :.; , , , , ;:: , , , , , , , , , , , , , , , , , :.: , , , , , , , , , , , , :: , :;

111 our Jail-Feb issue (VoI6, No 4) 8,rge Olristensen reported
on COMAL, sometimes called 'Slmctllred BASIC', COMAL is
a programming laJlguage delle/oped by am's/ense" Gild his
associates at DA TO, Q Teacher Training College ill Tonder.
Denmark. The language uses PASCAL·like control SIn/clUres;
Data General 's Extended BASIC is a subset of CO MAL.

11lis article is a lUlon"olon writing a simulator-Ihe example
wed is a casino. The clear style alld 'stepwise refinement'
approach enable eJlen /Ion-programmers to understalld the
design o/such a simulation.

Simulation is a problem-solving process, in which 'the actual
system' or 'the problem system' is mapped onto a model,
which most often takes the shape of a computer programme.
Mathematical models answer questions such as 'What should I
do under such and such circumstances?'. Unlike mathematical
models, simulators answer to questions such as: ' If 1 act this
way, how shall I expect the system to react?" ('If you push
buttons A and C, will it pour out a Carlsberg for you or wash
you away?').

Since simulation docs not imply that the model is solvable in
a mathematical sen5C, its applicability for practical purposes is
much broader than pure mathematical techniques. Simulators
have been designed to explain biological. psychological, socio
logical, economical, and other phenomena of the real world.
Simulation has also been used to analyse systems in order to
plan and explain them better. You might say that the
simulator is built as a kind of 'exercise' to reveal the basic
features of the actual system. As you design the simulator, you
are forced to recognize what qualities of the different compon·

,. PEOPLE'S COMPUTERS

.' '.

ents are very important to the system as a whole, and how
they interact with each other in it. In this article I'm going to
describe a simulator of this last type.

I've chosen to simulate an imaginary casino. The reason for
using such a fancy system is that I may thus keep it reasonably
small and have some fun with the simuJator afterwards. I was
inspired to design it by reading about a similar system in
Edwin R Sage's book. Fun and Games with the Computer (a
very fine book; pity though that the author doesn't have a
belief language than BASIC as a vehicle to guide his bright
thinking).

The description will fall in three parts: First, a general specifi
cation of the system is given; then as a second step, algorithms
for the different parts of the simulator are developed by ·step·
wise refincmen t', and finally the running program is presented.

In the following general specifications of lhe system, I have
adopted a method developed by Lars Mathiassen of the
University of Aarhus in Denmark. This method has been
applied in setting up several Simulators, one of which was used
to analyse a large system employed by Danish hospitals for
maintaining case records, including working conditions for the
personnel attached to the system. My system is of course a
humble one compared to that, but the description should
nevertheless givc you an impression of a method otherwise
found extremely efficient.

CASINO system:
CROUPIER componetll:

dolo stmctllre: is standing at the WHEEL facing the

-
GAMBLER. May talk to the GAMBLER and spin the
WHEEL.
action pattern: asks the GAMBLER to make his guess
and then spins the WHEEL. The CROUPIER does so for
each new game.

end CROUPIER.

WHEEL component:
data stmcture: the WHEEL is about 2 m diameter and is
divided into 15 equal sectors. Five sectors are blue, four
are green, three are yellow, two are black, and one is red.
action pauern: the WHEEL is spun by the CROUPIER
and stops by itself after a few turns. When it has
stopped, one of the fifteen sectors is opposite the point
er. The colour on that sector indicates the result of the
game.

end WHEEL.

GAMBLER component:
data strncture: the GAMBLER brings with him a certain
amount of money, which he wants to stake hoping to
win. The GAMBLER can see the WHEEL, see and hear
the CROUPIER and the BANKER.
action patrem: the GAMBLER pays money to the
BANKER, who opens an account for the GAMBLER.
When the CROUPIER asks the GAMBLER to make his
guess, he may pick out one of the colours on the
WHEEL or he may quit the game. If he has selected a
colour and thus indicated he wants to play on, he must
make a bet with the BANKER. If the GAMBLER wants
to leave, the BANKER will pay him the amount of
money that remains in his accounl. If the GAMBLER
doesn't behave properly he will be taken care of by the
BOUNCER.

end GAMBLER.

BANKER component:
data Jlmcture: during the whole of the game the
BANKER keeps up the GAMBLER's account. He can
see the WHEEL and therefore knows the outcome of
each game. He also knows the colour which the
GAMBLER has picked out and the amount of money
staked. He may activate the BELL and he may summon
the BOUNCER.
action patrem: receives money from the GAMBLER
and puts it down to his account when the GAMBLER
arrives, and also if the GAMBLER has emptied his
account during the games, but wants to continue. Before
each game the BANKER records the GAMBLER's bet.
If this bet exceeds the amount of money in the account,
the BANKER will ask the GAMBLER to pay an
amo!!nt into his account or make a less ambitious bet.
If the GAMBLER refuses to do one or the other, the
BANKER will ask him to leave. The BANKER will only
accept a bet in whole dollar amounts.

When the WHEEL has stopped and the outcome of the
game is available, the BANKER will subtract the bet
from the GAMBLER's account if he has lost, or add the
winnings to the account in case he has won. The win·
nings are calculated by the BANKER according to these

rules: If blue wins, the BANKER pays 1 to 1 or 'even
money',

if green wins, the BANKER pays 2 to I,
if yellow wins, the BANKER pays 3 to I,
if black wins, the BANKER pays 5 to 1, and
if red wins, the BANKER pays 12 to 1.

After updating, the BANKER informs the GAMBLER of
the status of his account. If the GAMBLER wants to
leave, the BANKER will normally thank him and invite
him to come again soon. If the GAMBLER breaks a rule
of the game, he is warned by the BANKER, and if the
GAMBLER has received four such warnings, the
BANKER will turn him over to the BOUNCER, who will
take proper retaliatory measures. In this case, the
BANKER will not thank the GAMBLER. An attempt
from the side of the GAMBLER to overdraw his account
will only be tolerated once; if he does so the BANKER
gives him a special warning and in case of subsequent
offence, the GAMBLER will be thrown out at once at
the request of the BANKER.

end BANKER.

BOUNCER component:
data Stnicture: very strong man, with good manners,
though, and a persuasive bearing.
action pattem: on the BANKER's request he will ask the
GAMBLER to leave the house without making further
trouble.

BELL component:
data stnicture: electric bell. Is connected to a push but·
ton, which the BANKER alone may activate.
action patten!: rings each time the BANKER pushes the
button.

end BELL
end CASINO system.

We shall now design algorithms for the different components,
and for tJlis purpose I'll apply a method known as 'stepwise
refinement'. In this method you start by setting up a survey of
the general structure of each component of the simulator.
Many details are suppressed in the primary description and
these details are then gradually introduced by refining the
algorithms. It all ends up with a program of the simulator,
which ought to answer the primary description of the system.

The component to look at firit will be the GAMBLER. This
is the active object of the system, it has a ce rtain liberty
whereas tJle other components are in fact restricted to reacting
accordingly. Our first reflections shall therefore be dedicated
to this component. We'll set up a catalogue of his activities:

he may get mstmctions for the game
he may put money iffto an account
he may guess a colour
he may make a bet
he may watch the outcome of the game

and have his account updated afterwards
he may leave the casino (one way orallother).

MAY-JUNE 17

Most of these activities are cO/lditional; they are only carried
oul on certain assumptions. Let's look al them onc by ?ne:
The GAMBLER should only gct instructions fOf the game Ifhe
wants to. Maybe he's been to the CASINO before and kn~ws
all about the rules. Then he woo't like to listen ~o delall~d
and - to him -bonng explanations of the CASINO s favo~nte
peculiarities. We therefore modify the first statement mto:

lue of trne) if the GAMBLER is leaving, and re~t (has a
::Iue of [a/se) ifhe's not. After having introduced thl~ flag.the
GAMBLER's activities may with minor verbal modIfications

be stated like this:

jf he wants then instruct him on tile game

To be recognized as a GAMBLER, you must put money into
an account. This is inevitable, so we le,ave the second state
ment as it is. Ouring the negotiations with the BANKER con
cerning the opening of an account, the GAMBLER ma~
become so unpopular with this impor~ant person tJ:tat ~e IS

scnt out. We shall have to modify the thud statement mto.

jJ he's not going to leave Iller! lie may guess a colour

,
During this part of the game the GAMBLER may -according
to the rulcs -choose to leave the CASINO. TIle fourth state·

ment is changed to:

11 he's not going to leave tllen he may make a bet

While making a bet the GAMBLER may again come 10 blows
with the BANKER over the rules; but if.he makes an accept
able bet the two next activities are carned through. We thus

may write:

jJ lie's not going to leave then
have the wheel spun and
have the account updated

endi!

Thus the prerequisitc of the above mcn.tioned activities is: ~e
GAM BLER is not leaving. Correspondmgly the prc:onditlOn

for leaving is that he wallIS to or that h~ mllst. A~ thIS level of
description we shall be content with haVIng estabhshed that he
is leaving - for some reason or other:

jJ he's leavi'lg then let him (one way or ano ther)

Whether the GAMBLER is leaving or not is seen. t~ ~e of
crucial importance in all the cases we have set up. !hIS In Itself
is not so peculiar - if there is no GAMBLER there IS no game
but note that this precondition is in fact the only OtiC we have
to know about at this level. I therefor~ choose ~o represent
that the GAMBLER is in a state of leaVl~g-?n hiS wa~ out
by a flag (a Boolean variable): OUT, which IS set (assIgned a

18 PEOPLE'S COMPUTERS

!1 the gambler wonts ;nsmlction then instruct him
allow him to pUI money inlo an accollnt
jJ not Ollt tllen have him guess a colOllr
jJ not out then have /Jim make a bel

jJ nol out ~
have Ihe wheel spun
have his account Ilpdated

endi!
f1 Ollt then take leave ofhim (olle way or allother).

Finally we note that some of the above mentioned act!vities
are repeated as long as the game is runni?g-(un~11 the
GAMBLER leaves) and so we program the various achons as
procedures to get this final algorithm:

!1 the gambler wonts illStnlction then ~ instruction

exec account
repeat II game is nmlling II

jf not out tlren ~ guess
jJ 1I0t out thell g§f bet
jJ not Ollt tllen
~wlleel
~accoullt

elldi[
JJOllt then fE1f exit

illlti!.. 011 t

The running progranl is part of this artide. In Jines 280-390
you'l] find the algorithm just designed in the shape of an
actual running section of the program. As you can see 1 ha~~

referred to let this section of the program ~rve as mam
Pro ram (or monitor), since it represents the ~alll component
flh: GAMBLER) and al1 his doings. Also nouce that the flag
OUT is reset from thc start (line 170).

Before wc go on looking at the various procedures, it ~lay.be
convenient to put forward some general principles of thiS kmd
of program. When programming a simula~or :,e shall have to
represe1l1 the states alld qualltilies appeanng III the actual ;rs.
tem in such a way that our computer may.~andle them. ou
also have to represent the possible. t.ransltlOns between the
states of the system and the cOlldmons that control ~~ese

. . One n.,·"'lt say that the actiollS and deCISIOns transItions. & .
must be mapped into the computer envtTonment.

Wc also have to take into consideration that the simulator
doesn't have the same physical limitations as the actual sys·
tem Thus it would not be possible in the real system for a
g.lIl1·bler to bet on a colour not found on the wheel, b~t the
operator al the tenninal might very well enter an illegal
response to one of the guess-requests of the simulator by some
mistake or to provoke the program.

-
The first procedure to design would be accounl (instruction
will simply print out a lot of text). A first approximation
would be as simple as this:

proc account
ask the gambler to invest
put his money into his account

endproc acCOllnt

But man is a fraU creature, so there is a good chance that it
won't be that easy. We shall have to foresee some of the nasty
tricks the gambler might try with the BANKER, either because
he misunderstood the rules of the CASINO or because he is
tricky. First, the BANKER should not accept an investment of
less than one whole dollar. Since the smallest legal bet is one
whole dollar, it would not be suitable if the game allowed the
GAMBLER to start with an inadequate amount -of say 65
cents. For another thing, there may be something wrong with
the money the GAMBLER brings in: perhaps the currency is
from some unknown country or has been made in the
GAMBLER's own private works. All that and maybe more has
to be looked after by the BANKER.

Since we are working with a sinlUlator t our system does not
accept real money as input (it would not be of much use to let
our CRT try to swallow a $5 bill), but then again we have
other problems. Imagine, say, some wise guy trying to type in
a negative number, when asked to input the investment! (This
is another example of the simulator nol having the same
physical limitations as the real system). What we must do, is
of course to interpret the various possibilities in a proper way .
and I've chosen to look al different intervals of the input to
represent some possible situations in the real system. Using the
variable invest to hold the input, I look at the following cases:

;: ::; .
..

:]:
..

.. ::: ..

.. :: :::
.. ~ ~

..
..

..

::: :j:
..

..
.. ..

..

inpest
tell the gambler his money is false; warn him
illvest is zero
tell the gambler to be seriOlls; want him
invest is positive. but less than one
ask the gambler to come up with reol money;
waf}J him

whell invest is not w"ole, but greDter than one accept it,
but regard Ihe fractional part as representing tips
and only Pllt the integer pari into his accoullt

otherwise

accept the investment QJld pur;t inlo his accou1lt

Now, the BANKER will not have the GAMBLER sent out just
because of a single mistake. He11 give him a chance to re
invest, until his investment is legal or he's finally had enough
of him, i.e. he has given him at least four warnings. Thus we
shall have to represent whether or not the investmen t is legal
(the state of the investment) and the number of warnings given
(a quantity). To represent the legitimacy of the investment,
I've introduced another flag: OK, which is set, if the invest
ment is acceptable, and reset, if it is not. To count thc number
of warnings, I use a numeric variable: WARNINGS. Although
the number of warnings is a quantity, it is fmally used to
decide whether or not the GAMBLER is in a slate of leaving.
This state has already been represented by the flag OUT, and
the transformation of the quantity WARNINGS into the state
OUT may be done by using a statement like this:

!f warnings> =4 then 0111: = true

This transfonnation may , however, also be executed by a
Boolean [Unction. Since it may be that the reader has not seen
such a device lately, I shal1 use it in this case, and define the
Boolean function t by:

t(x) .. =(x>=4)

If the argument x is greater than or equal to 4, the function
will output a value of true, and for all other arguments, t will
output a value of false. Finally the procedure looks like lhis:

proc account
repeat / I get investment I /

ok: = false
ask Ihe gambler to invest
cases of im'est:
when invesl < 0

tell the gambler his money ;s [alse
wamings: = wamings + 1

when inpest = 0
te/lthe gambler to be seriOliS
wamiJlgs: = wamings + }

when inpest < I
ask the gambler to use real money
wantings::: lVamings+}

when inpest <> int (in pest)
cents are tips, dol/art are el/tered illto account
ok::tme

olherwise
ok:'" true

endcase
OUI: = t (wan/ings)

until ok Q! oul
endproc aCCOll1If

The procedure is found as PROC ACCOUNT (Hnes 740·1030)
in the program. It should be added that in the actual progranl
the so-called 'otherwise case' is found between the CASE .. OF
statement (line 790) and the first WHEN statement (\ine 820).
The function FNT is defined in line 140 and used in line 1010.

MAY.JUNE 19

I've se l up the rest of the procedures using the same method as
for PROC ACCOUNT, and J shall not go through them in
detail, but rather restrict myself to a few remarks. I've tried to
be very careful with variable·names and tests to make it
possible fo r the reader, who has become fam iliar with the 'flag
representation' technique used in the MAINPROGRAM and
in PROC ACCOUNT, to read the program.

Another flag, REALBAD, is introduced in PROC BADBET
(subprocedure of BET) to represenl the event thai the
GAMBLER has tried to overdraw rus account. This flag is set
in line 2010 at the same time as BET is being cancelled as 100
ambitious.

In line 380 you fmd the statement (mentioned above):

IF OUT THEN EXEC EXIT

We have already seen that OUT may be set for two reasons:
the GAMBLER wants to leave or he is forced 10 leave because
he has broken the rules of the game too often. In PROC
EXIT we therefore have to examine why he got there. This is
done in the statement in line 1080:

IF NOT FNT (WARNINGS) THEN

which is equivalent to 'If the GAMBLER did not come here
because of too many warnings then .. .'. Thus the BOUNCER
will only get hold of the GAM BLER jfhe has to leave because
of four warnings or more Oine 1140).

The flags OUT and REALBAD and the numeric variables
WARNINGS, BET and ACCOUNT are also called the attn
bUieS of the GAMBLER, since between them they carry
around the information necessary to offer this component a
fair treatment. OUT and REALBAD are global flags, taking
information from one procedure to another, whereas OK is a
local flag, used for procedure-internal purposes only.

In this simulator one of the componen ts- the GAMBLER
is stimulated from the world outside the computer. The per
son silting at the terminal is an essen tial part of the
GAMBLER, if not the gambler himself. Of course you can't
control the outcome of the game, but anything else is up to
you.

A differem kind of simulator is the so-called autonomous
one, wh ich once slarted will run on controlled by its own
internal structure only, This is a far more important class of
simulator than the one presented in this article, bUI such
simulators usually are marc com plicated too. In my next
article I shall demonstrate how one can sim ulate some queue
problems of a small supermarket by using the principles of
autonomous components, controlled by random numbers only,

20 PEOPLE'S COMPUTERS

DO lOU III1U IMSfRUCTIOMS Of THE G_IlEUO

HOII ftUCH ftONEY DO YOU II_NT TO lNVUT! 4"
IIHH COLOUR DO lOU IIAU 10 lET on
BLUEI6REU/YEllO~/ILACK/REP ILUE

HOII /lUCH DO YOU ~UT TO I(n 4'
YELLOW

SORRY! lOU HAVE LOSI YOUR .n, IIHICH 11.5 , U
.nTER lUC~ MEXT TI~E!
YOU _Oil HAn. 1" liT YOUR DISPOSAL.

IIHAt COLOUR 00 YOU II.NT Ta JET aNT
nUE I&REEIt/ YELLOII/ ILIICVRU IlUE'" 'GREEH

,., ,
'LH

SOUl! lOU HAVE LOST YOUR 1(1 , IIUCH II.S • ~t

BETTER LUC~ ~En TI NEt
YOU ~OU HAUE • 1" A' YOUR DISPOUL.

SORRY! YOU HAVE Lon YOUR lET , IIHltH liAS. ~I
JETTER LUCK HEXI 'I~Ef
fOU ~OY HAUt • If U YOUR DISPOSAL.

r -w
w

" •

1ID
E

" •

;ill
w ~ U
Z , •
g 0

c
'j;
U

z • • ,
~~ ~f- -uJ ~

• £
'0 , • z , a

r 810-- • 2 u

'" <
to

~~ " w < • • t;
~

,

-

UHU COLOUR liD YOU UAM' 10 .£1 OM?
IlUEI6UU/YElLOUlllACK/UO RED

Hall ~ UCH DO YOU IIAn TO tEn 2 ,
............ ,
SOUl! Y~U HAVE lOST YOUR lET , II Hl ell liAS' !
'(TTEII lUCk _EXT II ~(I

YDU ~ nll HAV(I 8 .T YOUR DISPOS_L.

!'HAl COLOUR 00 IOU UAIIT T~ lET 0111
JlUE/6UU/YEllO~/ IlACK/RE' RE.

HOH HUCH ~O TOU III1U 10 1(1' 2 ,.
'"

...... u

COH6RATUUlIOHS'
TOU H.VE 11011 t 24 AHD YOU ~OU HVE
• 31 At YOUR DISPOSAL.

IIHAT COLOUR 00 IOU WAHT 10 ~(1 o~r
.tUE/GIIE£H/YEllOW/ HACK / RED ILUE

Hall HUCH DO YOU IIAHI TO lET' ~.
YDU HAVH ' T GOT THAT "UCII ~OHn!
no TOU WUI 10 IH UESI 50"E EXIRA ~OHEn YES

:

HOW HUCII ~o~n . 0 YOII WANI n I~V£$T' Ilf

........ ,u.u

.lUE

-. •• £0 , •••••

COH6R.Tut.nJO~S I
YOU H~VE liON' I II A~O YOU ~Oll HAVE
, 232 n YOUR JISPOSAL.

IIHAT COLOUR DO YOU IIA~I 10 BEl O~.
JlU£ /HElH/HllO~flL.C~/~ED RED

••• .. • u .. ~,u.

ILUE

...... u.n ... ~.u.u

SnRRlO TOU HAVE LDST YOUR lET, YHl CH II.S , ~.
'(TTER lllCK ~EAI IhE '
TOU _all HAVE . 1112 'U YOUR IISPOSAl.

IIMAT tOLOUR DO TaU 11._, 10 'f! 011'
JlUE / HE£NITElLOWilLACK/ RED IElLOII

~ u ••••••

ILUE

.. u

-, • •

SOUT f YOU HAVE LOST YOUR In. HIIlCII liAS t ,.
IETTH lUCK NEXT ""£1
YOII NOV HAUE • 132 AT TOUR D!SPOUL.

UIIU COLOUR 00 JOU IIAIIT TO JET ON!
ILUE/GR(Un£LLOW/Il.C~/RlD 'LUE

HOII ftUCH 00 YOU IIA~T 10 In! 2,.
YOU II.V_' T Gar THAt ~UCH HOHH'
DO TOil IIUI 10 III,I£SI SOftE EXTli_ ~OH£y! NO

lNH YOU ' ll HAVE 10 JEI lESS,
lOU on Y HAYE , 132 III THE lANK
DOlt " TRY TO OVU.RAU YGUR _CCOUIII.
IHIS IS U ULIIHU£ VIIRNINIiI

HOW HUCH 00 YOU IIAIIT TO iEH fit

~ u~, , ..

IlUE

COIIG~II T UlA! I OM$ 1
nu UVE WOII t 211 AIID YOII 11011 HAV(
, ll2 AT YOU~ DISPOSAl.

IIHU COLOUR 10 YOU 11.111 TO lET OM!
JLUE /GR£UIlEllD~/IlIICk/RED GREEN

Hl!U /lIICH 110 YOU 11./11 TO .En ~II

YOIIR PRESEIICE IN THE CASIHO IS IIOT UAIiTED
PtUSE LUH IHIS HOUSE ""HOU' AllY TlOU'LE.

THE (OMf£HTS Of TOUR IICCOUNI, nUL , 3J2
IS InURII£) fRO" rHE 'EU AT THE UTR_IICE.

MAY-JUNE 21

I

I
I
I
I
I
I
I

, ,
,

-, • w

" ,
•• -~~ -• _w

w' •
• 0 ... ••

· • •

• ,
0-
W • w_
.w ..• .. -,
w' eo_ -,
--.. ,
0" w. w_ ,0

-. _... ,
~-.:': ~~

'" "'''' "'.., ~ ~~ti ;! ~~

!'; \:l~: f:j ;!: 3=
:I i~~ ~ C ~:
'i: :-;:-0 :0 ;: r;-

~ - ~- ::: g- __ "''''=-''' < .. "."l<"" "'0__ u ___

• w • •

-.--..
- 0 • ..
wO .w
S:i -. ,0 o.
"" _0

•• w ,'w
00.
tW
000 u>u:::: ... -.:"''''~''' ... ''''_cO<''' .. _C>

... 0.._ "' ""'" -'..... "'... .., ...
... ..t_ "'''''"'0-............... ... "''''''' -.-~-... -.. ~----------.-------.--.------.-.-.. ---- -_ ... _.---_ .. _N~~~~~~~ __ N~~~~~m~ __ N~.~~~=~._Nn.~.~m~ __ N~_~~~=~ __ N~_~~~_~ __ N~_~~~

~~~~~.~~~~~~~~~~~~~mm=m=mmmmm~~~~~~~~~~ ______ ._~ ______ _____ NNNNNNNN -------.-----------------------------------------------------------
22 PEOPLE'S COMPUTERS 

. • , 
. • 

, 
~ , , , , 

MAY·JUNE 

o 

· o • • 

23 



The first Faire was in the year of the CPU. 
The second Faire brought in the year of 
the Floppy. Will next year be the year 
of the Software? 

One thing remains the same: three days 
of Faire is murder on feet. Last year 
I went as a reporter and a speaker, this 
year as an exhibitor. The view was pretty 
much the same from any of these 
perspectives-not enough room for all 
those people. The hall at San Jose, from 
its ironwood floor to its steel beam 
ceiling, was smaller than last year's Site, 
and the auxiliary rooms were fewer, if 
easier to find. Since I belonged in a booth 
most of the time, I picked up only a few 
presentations. They were well presented 
and well attended. In one of them two 
out of three speakers hadn't shown up, 
and I ended up filling in with an 
impromptu lecture. 

BY JEF RASKIN 

I can't say much about the hot dogs. I 
had one, and never went back. 

The exhibitors were mostly familiar 
faces. A few had obviously grown and 
prospered, some have maintained them
selves, others have withered. Some old 
friends are gone forever. 

The packaged, ready-to'-fly systems have 
come a long way. Pet and the TRS-80, 
which were only rumors and a few hand
made prototypes a year ago, are now real. 
Apple grew from a garage operation to 
a large, prestigious-image company: you 
know -stark white and rich teak. Apple 
even had a disk or two to show (but not 
10 sell). MITS (now Pertec), our 
progenitor, didn't bother to show up. 
IMSAI made a weak showing, and seems 
to be looking at the business market and 
forgetting the personal computer crowd. 

Polymorphic Systems had the neat disk 
system they've been advertising, and 
North Star had what looked to be a very 
similar product. Cromemco, which always 
has a solid product, had their quad disk 
system with large floppies. TIlere were a 
lot of companies which proved that they 
could make a motherboard, a power 
supply and a box that would hold and 
power S- I00 boards. There were fewer 
new boards this year-at least fewer 
radical ones. There seemed to be more 
memories, and there were more bits per 
memory board. SWTP kept their line 
going. Heath was there, and they had 
floppies too. Everyone had, or was 
promising, floppies. Most gross thing 
at the show? AT-shirt, worn by a young 
woman, which advertised in large letters: 
'I have dual floppies.' Funniest thing 
at show? Jim Warren announcing that the 
exhibits were to close in five minutes. 

Gordon French, Adam Osborne, & Jim Warren-Friday banquet Dave Caulkins, Mike Wilbur, Be Ron Crene - PCNET session 

24 PEOPLE'S COMPUTERS 

A lightlv ettended exhibit erea 

For the second time. And then, in a faint 
voice (with the mike still live), 'That was 
.the second time, wasn't it?' Biggest 
surprise? The good food at the banquet 
at the Holiday Inn. Best computer? The 
Terak machine displayed by Dr Bowles 
of UCSD. Its $7K price tag will keep 
it out of most of our hands for a while. 
Neatest packaging? Split it' between 
OAE's EPROM burner and their paper 
tape reader. Best teclmical achievement? 
Apple's extraordinary simplification of 
the Shugan electronics. Most omni
present person? John Craig of Kilobaud 
and his camera. Headiest thing about 
Faire? Meeting all those people that you 
usuaJly just read about. They were almost 
all there. 

I had a good time wilh the ALF music 
synthesizer by joining Car! Helmers at 
the keyboard for a moment of Mozart. 

An under.ettended conference session 

Southwest Techn ical Products Booth 

The PAIA string synthesizer gave me an 
hour of pleasure as I tried to sound like 
a Baroque string orchestra. It did a 
creditable job. I wasn't bad myself. 

Last year we were all debating whether 
the 8080 was better than the 6800 or the 
6502 or if the Z80 would rule the world. 
This year the 16 bitters (sounds like a 
drink) loom just over the edge of the 
world. But our sophistication has grown. 
We now know the utility of hard copy, 
and there are a rash of clever litlle 
printers. We know that we need mass 
storage, and the Shugart drives spread like 
Tribbles. This year's software vendors 
look like some of last year's hardware 
vendors. Mimeographed sheets, sloppy 
documentation (with some earning a 
hearty 'good try there, old chap'), and 
products scattered like rice at a wedding. 

During this coming year software vendors 
will continue their growth and a few 
serious personal computing software 
houses will become prominent in the 
industry. Meanwhile the manufacturers, 
having learned for the most part how to 
manufacture and sell computers, will 
be trying to learn how to manufacture 
and sell software. And a few will even 
tum out some documentation that can be 
read by people other than the insiders 
at whom this report is directed. 

Apologies in advance to all those exhibi
tors I haven't mentioned. If this report 
seems a bit diZZY, it's because that's 
the way the Faire was. It was every bit 
a fair, not a conven tion or scholarly 
meeting. It was a happy event and a kind 
of celebration. My compliments to Jim, 
Bob, and Rick for doing it again. 0 

Mills College's computer music demonstration 

MAY·JUNE 25 



COMPUT~RS 

and the 
Handicapped 

26 PEOPLE'S COMPUTERS 

.. 

HAROWARE & SOFTWARE HELP SOUGHT 
in developing a pOrtable communications 
systvrn (e keyboard and '·line displavl for 8 
pe~n who can', speak. 

Steve Gensler 
'620 Thousaod Oaks Blvd 
Berkelev, CA 94702 
!4151524-6162 

.. .. 
AI the left Robin, 8 cerebral palsy patlsnt, II 
shown using her Poly ·88 based communications 
l'(lIem. The Sy$1em is controlled by 8 knee 
switch; it can be mounted on Robin's wheel· 
chair. Robin can build messages on the CRT 
either by selecting words from I 1200 word 
Yocabulary or by spelling them aut. 11'1 our last 
issue we published the software and necessary 
hardware mOdifications for Robin'slyuem. 

Robin's synem was developed by Tim Scully. 
shown below at McNeil Island Penintentiary. 
Tim is now building 8 similar system for 
Federal Prison Industries. He is interested in 
hearing from people working on micro
computer communication JYUems for the 
handicapped. His mailing address is Tim Scully. 
35267-136 SH, PO BOll 1000, Steilacoom, WA 
98388. ... 

Stevie Wonder was a wrprise visitor to Michigan State Univer1ity's 
'talking computer' center recently. visiting with 'J J' Jackson, a systems 
analvn at the MSU Anilicial Languq Laboratory. Wonder came to 
celebrate the 28th birthday of his friend and former classmate lit the 
Michiglln School for the Blind in Lansing. MSU's 'talking computer' 
has been programmed by John Eulenberg and Moneu Rahlmi, profes· 
sors of computer science, as a speaking-and sometimes singing-voice 
for handicappers with $lltlt and other physical difflctJltiel. 

A Documentation Technique for Computer 
Hobbyists and Programmers 

BY TOOD L VOROS 

Does Ihe name Todd Voros ring a bell? II should, if you're a 
fan of good of' Fortran Mall. When nOI working with Lee 
Schneider 10 create more adventures for F-Motl, Todd Ct1ll 
often be found under the title Systems Software Specialist at 
A.O Smith Corporation in New Berlin, Wisconsin. 

A computer, in order to perfonn a useful function, needs to be 
told what to do. This can be done by a 'canned' pre-written 
program which one may have purchased, or it can be done by 
a program which the system user has written himself. If a 
'canned' program is unavailable, the user will be forced to 
write the program himself. The purpose of this article is to 
illustrate a technique which can help minimize errors in one's 
programs and help simplify the process of 'debugging' (that is, 
correcting) a program after it has been written. 

The technique is called Sketchcode; it is based on concepts 
defined in metaprogramming and structured programming. 
Metaprogramming involves having the user write his program's 
now of control in an individualistic, stylistic pseudo-language 
and then translating that pseudo-language into an actual com
puler program, which will be executed by his compuler 
system. Struclured programming is a programming method
ology that helps guide us in defining metaprogramming 'con
slructs' such as IF -THEN.ELSE, DO WHI LE, CASE OF, and 
defines how they are pennitted to be combined. Structured 
programming has occasionally been called 'GOTO-Iess' pro
gramming_ The structured programming concep ts contained in 
this article were firs t defined by E. W. Dijkstra and Niklaus 
Wirth. 

Programming erron and debugging time are minimized when 
we have a firm grasp on exactly what II is our program is sup
posed to be doing when it executes. One weU known method 
of doing this is flowcharting: illustrating the now of control in 
a program with a pictorial diagram. 

A 'structured program' attempts to illustrate the now ofcon
lrol in the actual source of the program itself, and lhe form 

and synlax of the actual source program (and what the com
piler or system interpreter will accept) play an important role 
in the fomlation of this type of program. The advantage lies in 
the fact that when one is debugging the program, the source 
listing may be used to detennine directly the now of control 
intended by the author of the program at any given point 
with in the program, without reference to flowcharts. 

Unfortunately , structured programming does not lend itself 
very well to progranlS written in assembly language because of 
restrictions imposed upon the programmer by most assemb
lers. For example , indenlation of source statements in a pro
gram which utilizes structured programming concepts is often 
significant and the assembler may not pennit this, or lengths 
of label operands may make writing an indented statement 
impOSSible. 

nle concepts of structured programming and meta program
ming, however, apply regardless of the language being used. 
Since the aim is to docume1/t ,he flolV of coll1rol within a 
program, it would be nice if there were some intennediary 
compromise available. Such a compromise would have 10 satis
fy the requirements of both high-level (BASIC, FORTRAN, 
etc) users and low-level language (assembler) users. It should 
help document the flow of control , and be easy to learn and 
usc. 

Sketchcode is a metaprogramming pseudo -language intended 
to satisfy these goals·, and is intended to complement, not 
replace, nowcharting. It is always better 10 have too much 
documentation (if such a thing is possible) than too little , 
especially when a malfunctioning program must be corrected 
several years after it has been writlen or when correcting a 
program you did not write. The use of the metaprogramming 
philosophy in designing programs can save time and effort 
when onc is coding in any computer language. Sketchcode 
suggests one of the many possible ways in which this philos
ophy of programming may be utilized. 

MAY·JUNE 27 



To get a clear idea of what Sketchcode does, let us first see 
exactly what programs are made of. A program is an imple
mentation of one or more algorithms intended to solve a 
problem expressed in a machine digestible fonn. The algorithms 
can be composed of processes that do not require decisions 
and those that do. 

Many programmers are familiar with the concept of 
documenting algorithms by flowcharting: A diamond shape 
represents a decision, a rectangular box a process not involving 
a decision. Unes and arrows connect these and other 
geometric fonns together and show the flow of control that 
takes place when the algorithm is executed by the computer. 
Sketchcode also has basic components just as flowcharting 
has. To show the relationship between flowchart representa
tion of an algOrithm and its Sketchcode equivalent, the 
following examples will show both the flowchart and Sketch
code representation of the same logical structure. 

One of the basic ideas in structured programming is that 
logical levels of control are illustrated by indentation of 
language statements. Sketchcode, being based on this 
philosophy, also indents statements. One of the reasons we 
indent statements is to show where the majority of a 
program's execution time is spent, and under what conditions 
cerlain sections of code can be executed. 

Most computer programs have loops. A loop can be expressed 
in Sketchcode as follows: 

DO WHILE (an expression); 
PROCESSING 

ENDj 

Note that PROCESSING is indented two spaces to the right. 
All other sketchcode processing within that loop will be 
indented two spaces to the right. 

Here's a flow chart fo r a loop: 

I, 
expre-uion 

TRUE? 

NO 

YES 

The (an expression) part of the loop may contain any number 
of variables; the evaluation of the expression resulls in the 
assignment of a TRUE or a FALSE condition. While the 
condition remains true, we will execute statements contained 
inside the loop. If the condition is false, we do not execute 
any statemen ts in the loop; it is as if we had 'fallen through' 
the loop without stopping to examine anything within it. 

28 PEOPLE'S COMPUTERS 

We will simply begin executing statements after the END; 
which signals us where the loop ends_ This is why it is not 
indented two columns to the right like PROCESSING. 

We can get out of a Sketchcode 00 loop by having 
PROCESSING within the loop alter the value of one or more 
variables contained within (an expression). For example, to 
execute some process 10 times we can write: 

COUNT • 1 
DO WHILE (COUNT less than 11); 

PROCESS 
COUNT • COUNT + 1 

END; 

Naturally, the expression that is tested for TRUE or FALSE 
could be much more complex, e.g. 00 WHILE (I :: A+2 OR 
B :: C-D). In addition, we can put a loop within a loop, 
always making sure to indent two spaces to the right when 
appropriate: 

DO WHILE (I less than 10); 
PROCESS 
00 WHILE (J less than 5); 

MORE PROCESSING 
END; 

END; 

and observe that each DO has its own closing END statement. 

This way of representing the logical flow of control of a 
program allows you to clearly and concisely express some 
fairly complex situations involving loops. Note that the inner 
00 loop was indented two columns to the right and processing 
perfonned under its control was itself indented two columns 
to the right. Thus the deeper a loop (ie the more nested it 
is in the logical flow of control of the program), the further 
to the right it will appear in the program's Skctchcode 
representation. Code that is indented farthesl to the right will 
also probably be executed more of len than other portions of 
the program, so if you have written a Sketchcode representa
lion of you r program you should concentrate any optimizing 
efforts on innennost loops first. However, programs are not 
composed just of loops, and we must consider other elements 
of a computer program. 

Decisions are also of prime importance in direcling the flow 
of control within a program. In Sketchcode. a decision is 
always represented by a structure of the following fonn: 

I F (express ion) 
THEN DO; 

PROCESSING performed if expression 
is TRUE 

ELSE; 
PROCESSING performed if expression 

is FALSE 

'1 

which is how Sketchcode implements the IF-THEN-ELSE 
construct. The flowchart equivalent is: 

NO 

PROCESSING 
fo, 
FALSE 
condition 

" YES 

PROCESSING 
fo, 
TRUE 
condition 

Notice that for readability the THEN 00; and the ELSE; are 
indented two columns to the right and their corresponding 
processing is itself indented two columns to the right. Since 
a Sketchcode expression is required to be TRUE or FALSE 
either the processing under the THEN 00; will be executed 
and the processing under the ELSE; will be skipped, or the 
processing under the THEN DO; will be ignored and the 
processing under the ELSE; will be executed. 

There exist two special cases of the Sketch code constructs 
discussed so far. These are when we wish to do nothing based 
on some condition and when we wish to do something forever 
(a never-ending loop). We can 'do nothing' in an IF-THEN
ELSE if we omit the ELSE; which penni!s us to execute 
some processing only if some condition defined by (an 
expression) is true and to do nothing otherwise: 

IF (an expression) 
THEN DO; 

PROCESSINr, 
OTHER SKETCHCODE STATEMENTS 

Here's the equivalent flowchart: 

Is YES 
e-xpffl$sion >-;.;c,-~ 

TRUE? 

NO 

PROCESSING 
fo, 
TRUE 
e-xpre-s.sion 

and to solve the problem of the never-ending loop we intro
duce the Sketchcode word FOREVER: 

DO FOREVER; 
PROCESS 

ENO; 

And the flowchart: 

( START 

t 

PROCESSING 

An exanlple where we may wish to employ the DO FOREVER 
construct is in documenting a program which once loaded 
into our machine will request input from the user, process 
it, print OUI a result, and await further input in a never-ending 
cycle. 

Finally, Sketchcode allows for the use of subroutines. A sub
routine in Sketchcode representation is invoked by a CALL 
statement. A subroutine in Sketchcode is defined by giving 
the subroutine a name followed by a colon, and indenting 
all statements in that subroutine two columns to the right 
under the label. A subroutine ends with a RETURN; statement. 
The RETURN; statement aligns with the label giving a name to 
the subroutine. In Skctchcode only one RETURN; may appear 
in a subroutine. A subroutine may have one and only one 
entry point and olle and only one exit point. This may seem 
to be a severe restriction but it will enforce a top-to-bottom 
now of control within a subroutine. For example, to invoke 
a subroutine to retum the larger of two numbers we could 
write: 

CALL BIGGER (A,B,BIGGEST) 

and at some point define BIGGER: 

BIGGER, (A,B, BIGGEST) 
BIGGEST = A 
IF (B IS GREATER THAN A) 

THEN 00; 
BIGGEST = B 

RETURN 

In Sketchcode you can either assume all variables are known 
to all subroutines (all variables are global) or you can pass 
variables to a subroutine explicitly by pUlling them in a 
list enclosed within parentheses after the call statement 
and having a corresponding list after the label defining the 
name of a subroutine. It is a good idea when writing 
Sketchcode subroutines to start them on a fresh piece of paper 
rather than mix them in with other Sketchcode. 

MAY.JUNE 29 

., 



The Structures we have defmed are completely adequate for 
the expression of any problem capable of implementation on 
a home hobbyist computer system. But, you may ask, 
'WHERE ARE THE GOTO STATEMENTS?' (or jumps, or 
branches if you prefer). The answer is there aren't any in 
Sketchcode. Program logic always flows from top to bottom, 
through various levels of indentation on the way, and program 
loops are always clearly documented. Sketchcode forces you 
to provide a clear, concise definition of what you wish your 
program to do, but still allows you to express yourself in an 
individualistic style. (Our own examples certainly aren't part 
of any 'legal' programming language.) When you have written 
your program's logic in Sketchcode you will find it easier 
to follow for both yourself and others and if you have defined 
the logic (not the actual coding of your program) you can 
write your program for a different computer with much less 
effort. And last, but not least, if you really want to make 
your programs self·documenting, include your Sketchcode 
representation of the program as part of the COMMENTS 
in the assembly language version of your program (show what 
each Sketchcode statement expands into in actuaJ machine 
instructions). However, no matter what the language, Sketch· 
code should assist you in providing beller documentation 
and insight into your program's operation. 

Here are a few hints on the use and writing of Sketchcode 
based on two years of working with it: 
• If you find yourself writing a lot of IF·THEN·ELSE, 

IF· THEN· ELSE clustered closely together in your Sketch· 
code, ask yourself the question: 'Is this really a DO in 
disguise?' 

• Remember that searches through tables, lists and arrays 
are usuaJly implemented by DO's. 

• Don't forget to indent when going to a deeper level of 
control. 

• Remember that all IF's do not necessarily require an ELSE! 
• If possible, break up large numbers of sequential Sketch

code statements into subroutines. Try to make a subroutine 
fit on one page of paper, if possible, decomposing it into 
two or more deeper subroutines if necessary. 
Example: 

INITIALIZE A, S, 
CALLA CALLAl PROCESS 
CALL B PROCESS RETURN 
CALLC CALL A2 
STOP RETURN 

Page 1 Page 2 Page 3 

and so forth ... 

30 PEOPLE'S COMPUTERS 

Processing performed under the legs of an IF (the THEN DO 
and ElSE) can be switched by negating the results of the 
expression you're testing. Thus, 

Thus, IF (X-D) 
THEN DO; 

A-B 
ELSE; 

A=B+B 

is the same as 

IF (X not equal to 0) 
THEN DO; 

A=B+B 
ELSE; 

A-B 

The following point is somewhat tricky, but worth considera· 
tion if your Sketchcode doesn't 'seem right': If the ELSE 
condition of the IF can be reached by code prior to the IF 
test, then it is "ot an ELSE condition. Remove the ELSE 
and the indentation of the code under the ELSE. 

Ask othl\l rs to review the Sketchcode representation of your 
program. This can help detect errors you have not caught yet. 

Be/ore you begin to write down the very first machine or 
assembly language statement of your program, have the 
completed Sketchcode representation of your program in 
front of you and code your actual program from the Sketch· 
code directly. 

On the opposite page we demonstrate how the same Sketch
code listing (the metaprogram representation of the solution 
to the problem) can be used to document programs for two 
quite different machines, one in 8080 code and the other in 
6502 assembly code. 

Here's an example of how Sketchcode can be applied to solve 
a problem. 

The problem: Detennine the largest and smallest numbers 
stored in an array in memory. The smallest 
number possible will be 7-cro, the largest 
will be the maximum the machine can repre
sent. 

Assumptions: 

I. Array is in sequential location (nol scattered over memory). 

2. The array consists of N elements. 
ARRAY(I) retrieves the first element of the array. 
ARRAY(N) retrieves the last element of the array. 
ARRAY(5) retrieves the fifth element of the array, and so 
forth. 

3. INITIALIZE sets up our machine specific environment 
necessary to operate. (Clears registers, for exanlple,) 

o 

INDEX: 

DO: 

TI: 

T2: 

ENOOO: 

HALT: 

BIG: 
SMALL: 

ASIZE: 

MOOR: 
ARRAY: 

STACK: 

A SICETCHCODE SOLUTION 
8080 CODE 

ORG 1000H 
EQU 0 

SKETCHCODE 

LXI SP,STACK INITIALIZE 

MVI A,0 BIG" 
STA BIG 

MVI A,7FH SHALL-BIGGEST NUMBER 
STA SMALL 

MVI A,50 ARRAYSIZE - SIZE OF ARRAY 
STA ASIZE 

MVI INOEX,0 INDEX-1 
MV I C, 1 

LOA 
CMP 
JC 

LHLO 
DAD 
MOV 
LOA 
CMP 
JC 
JZ 
MOV 
STA 

LOA 
CMP 
JNC 
MOV 
STA 

INX 

JMP 

CALL 
OW 
OW 

HLT 
JMP 

OS 
OS 

OS 

OW 
OS 

OS 
OS 
END 

ASIZE 
C 
ENOOO 

AAOOR 
INDEX 
E,M 
SMALL 
E 
T1 
TI 
A,E 
SMALL 

BIG 
E 
T2 
A,E 
BIG 

INDEX 

DO 

PRI NT 
BIG 
SMALL 

HALT 

ARRAY-1 
S0 

100 
0H 

00 WHilE (INDEX<-ARRAYSIZE), 

IF (ARRAY(INOEX)<SHAll) 

TIIEN DO, 

SHALl-ARRAY(INDEX) 

IF (ARRAY(INDEX»BIG) 
THEN 00, 

BIG-ARRAY(lNDEX) 

INoEX-INDEX+1 

END 00, 

PRINT BIG,SHALl 

STOP 

6502 CODE 

LOX #STA CK 
TXS 

LOA #0 
STA BIG 

LOA #7F 
STA SMALL 

LOX-0 

DO: CPX #AS IZE 
BEQ ENOOO 

LOA ARRAY,X 
CMP SMALL 

BPL Tl 

STA SMALL 

T1 : CMP BI G 
BMI T2 

STA BIG 

T2: INX 

JMP 00 

ENOOO: JSR 

HALT: JMP HALT 

MAY.JUNE 31 



.... --------------------------------------------------------------------------------------------

32 PEOPLE'S COMPUTERS 

In our 11$1 episode. Our lIero had just ~Iumed 
from I!.iuisilloth. 'Old Country' ofTmuisloril. 
Findin'l little 4·[cUed mi~ro·bel$tie runninl 
abOllI his reside/\! loc.tion, F·ldsn attempts to 
communicate .... ith it ... but the differences in 
their rodin, m~k. direct trlnalatlon imposaible! 

F·M.n CAlu in his you.., p."~r in crime
lillllllli. Billy Bas;c. 10 It I III inWpll'ler ... and 
with Dilly's aid h. is al lut able to Ind out IlK 
mew._ which II ... been d ...... tly conc;e.led in. 
ROM buill into the micro-benlJe. 

The messaF cOm •• from Microprocc$$O' Land
otherwise know" as the land of the Little 
People - where I nef~rious yill,ln caUin, himself 
tile GlilChmuler has , tolen Ih. 1.0;1;0111 Mon
'Ier from ill rilhlful Ownfrli in Clln Mel nl.!. 
Wilh the mon'ter unde, his con trol, the Glitch· 
mUIU lias mall • .,ro 10 cu t orr IU I/O from tile 
IIond, and i,enll now seldin,down 10 rule iI! 

The Und ..... ound Rnistancc Move!lM:nl. ltd by 
Gent ... l Wircwound. i5 >llcmptin, valiantly to 
OVerCOme Ihe GHlchmutcr, but it II I losin, 
blute. They have PUI out I call tor help ... a 
CALL which Fortran Man cannot liIlore1 

, 
I mere propmnml", loops and • 

Vtnfy latu, Billyanel"Fwlth a pllin. unmarlctd 
chip carrie r under his Inn .•. 

,,' 

Micro Lmd 500 ,,_ 
CHeCK YOUR CLOCK speEO 

r"y).L --rr-----' ,ti(·. 

II II nOI • short trip. but Ihe hl.gh-s~td bi
direction.1 bu. takes considtrlbly teUllme Ihan 
the low·spetd Chin nels whioh run 10 Olh.r peri
phenl lind •. An .. a numbe, ot brief $lops (or 
dlta uehan .. at v:""'us bus conl"l«tion points. 
they It last approadl lhe u.nd of lite linle: 
Peoplt. 

I 
I 

I 
I 

'"C 
CUSTOMS 

AI Micro land the bus lint. Is tennin.ltd •• nd ~] 
dall is unloadtd. Billy join. the lines .wallin, 
the usual cheek Ihroush Ih. interf.~ losie 
before b¢in, .Uowed 10 tn tt •... nOlm, thalth. 
I/O channel Ilso ends hrre, w;lh dltl from both 
KlulttS belnt shared throuJlt on. Interf.~ 
lennlnol. .. 

I mOllH'nl. 
Billy U«ule anOlher 

Well, then .•• you shouldn't mind 
if I jill! ml'" sure wid! thi, 
ULTRAVIOLET LIGHT, IIIouId youl 

And moments laler. pOOr Billy is urod r r Iheir 
I'OWH. held finnly by the con trollinc •. 

But II")' u he miJllt. litUt Billy Buic cannot 
outrun the fu~r-eltCcutinJ; data RCUrity 
routines. •. and within a few cycles h. il 
.u~nded upon by the .... Msi They struglc: ... 
and In the oscillations tIw: chip urricr does an 
uncontrolled uncondition~ brandt OUI of hil 

""" 

the final END for FOr1ran Man1 Will Billy 
evcr be r"", 10 RUN .pin? WIJlthc Glitch

mutcr tnuml'h in hisdominllionofMocro u.nd! 

MAY-JUNE 33 



BY SAM HILLS 

Reader Hills' suggestions are of sufficient 
length and depth that we're publishing 
them as an entire article on Tiny Lan
guages. Also in this issue is 8 'Tiny 
Language FeedbllCk' in which readers 
raise questions and comment on 
suggestions previously published. 

Here are some sU9!lestions for your new 
games language. 

1. VARIABLE NAMES 
One of the most serious shortcomings of 
BASIC is its one - and two-character vari
able names. Actual experience with a 
variety of languages has shown that 8 char
acters is the absolute minimum for read
able programs, and sometimes even more 
would be helpful. For example: which 
of the following would you prefer to see 
in a program you were trying to under
stand: 

S - S+N 
or SCORE: - SCORE+NEW_ PIECES 

71??17 
Some languages go overboard in allowing 
long variable names (such as COBOL, 

34 PEOPLE'S COMPUTERS 

wh ich allows up to 30 characters in a 
variable name). and this eats up valuable 
memory space in a hurry, The best 
suggestion I have seen is to allow 
unlimited-length identifiers in the source 
code, but only retain the first 8 or 10 
characters in the symbol table. (This is 
what PASCAL does.) This allows identi· 
fiers which are descriptive of what they 
identify, yet it keeps memory usage 
reasonable. 

Another point while on the subject of 
identifiers: be $lire to allow for 
hyphenated identifiers I I would much 
rather read a program with the identifier 

NUMBER _OF_PLAYERS 
than NUMBEROFPLAYERS 
wouldn't you? The PASCAL compiler 
which I am currently using allows the 
underscore as the hyphen; this is far 
superior to COBOL's minus sign ! (In 
COBOL 

MY-NAME 
is not the same as 

MY-NAME! 
The former is a single identifier, the 

latter is an expression involving the 
subtraction operator!) 

Should consecutive hyphens, or identi· 
fiers ending in hyphens, be permitted? 
(Sure, YOUR_NAME_looks awkward, 
but it takes extra code in the scanner 
to trap it, and it doesn't really hurt 
anything.) 

2. LINE NUMBERS 
Line numbers have no place in the pro· 
gramming language-they should be used 
ONL Y to specify which line to edit when 
editing the program!!!11 

3. STANDARD TYPES 
Limiting the language to strings places an 
unnecessary burden on the interpreter 
when doing arithmetic. You need numeric 
variables too. Whether to have both 
INTEGER and REAL or simply type 
NUMER IC should be up to the program
mer; let the younger kids use NUMERIC, 
and aher they learn more about numbers 
and begin to write bigger programs they 
can advaf"ICe to INTEGER and REAL, in 
order to save execution time and perhaps 
memory space too. 

In addition, you need type BOOLEAN 
(although I prefer the FORTRAN name 
LOGICAL to BOOLEAN -more people 
know about logic than about Boolel 
or maybe we should call it BINARY; 
that's what it is, really) so as to avoid 
the absurdity of having to assign either 
of two numbers to a variable, when we 
really wanted to express a TRUE/FALSE 
condition. 

Since the language will be used to draw 
pictures, we need the standard type 
COLOR. With a black and white TVT, 
COLOR would be defined as TYPE 
COLOR (BLACK, WHITE);. For 
a color CRT, such as the Cromemco 
DAZZLER or the COMPUCOLOR, we 
could define: 

TYPE COLOR :: (BLACK, RED, 
BLUE, GREEN, YELLOW, 
MAGENTA, CYAN, WHITE) 

(Some people may object to MAGENTA 
and CYAN; they could substitute the 
less accurate names VIOLET and AQUA 
or PURPLE and BLUE_GREEN.) 
Naturally, 'arithmetic'could be performed 
on colors: 

n 

RED + GREEN-+YELLOW 
MAGENTA - RED-+BLUE 
YELLOW + BLUE-+WHITE 
GREEN -GR EEN -+ BLACK 
etc. 

In a system where colors may have several 
different intensities, the color constants 
would represent fully saturated colors, 
while pastel tints could be produced 
by multiplying the appropriate constant 
by a number between 0 and 1. For 
instance, RED + 0.5 • CYAN would pro· 
duce pink, while RED + 0.5 • GREEN 
would produce orange! (Note that the 
above system of performing 'arithmetic' 
on colors is a good way to teach kids 
about primary and secondary colors, 
and how they mix!) 

4. CONTROL STRUCTURES 
The absolute minimum set of control 
structures required is: 

LOOP 

EXIT IF 

REPEAT; 
(This will adequately take the place of 
WHILE and UNTIL control structures, 
although you may want to include them 
anyway.) 

FOR ... STEP stepsize ... NEXT; 
(STEP is optional, assumed to be 
+1 if omitted.) 

IF ... TH EN IF .. THEN 

ELSE ENDIF ; 

ENDIF ; 
(ENDIF is necessary to show where the 
predicate ends. The other alternative is 
to require the predicate to be enclosed in 
BEGIN ... END brackets. Personally, I 
prefer ENDIF.l 

CASE expression OF 
expression: statements; 
expression: statements; 

ENDCASE; 

Here again, ENDCASE is needed to show 
where the last limb of the case ends. You 
may argue that the CASE statement isn't 
really necessary. It isn't, really, but it sure 
is a lot easier to understand than an awk· 
ward string of ELSE IF's! 

The syntax of the CASE statement must 
allow for an OTHERS limb, to prevent 
cluttering up the program with an IF to 
test whether or not the case expression 
can be satisfied. A point of discussion: 
what should happen if none of the case 
labels satisfies the case, and there isn't 
an OTHERS label? Should the program 
just continue with the first statement 
after EN DCASE, or should this cause an 
error condition? 

Please note that the above I ist of control 
structures does NOT contain a single 
GOTOII I With the above set of control 
structures, GOTO's not only aren't 
needed, they actually hurt mattersl!!! I 

The above control structures may be 
nested to any depth desired, in any 
combination desired. (A practical limit 
might be until the stack starts to grow 
down and eat into the data area or some 
other constraint based on memory limits.) 

The above control structures are adequate 
to express any algorithm, no matter how 
complex. And what's more, they force 
one to think algorithmically I 

5. PROCEDURE (SUBROUTINE) CALLS 
Procedures must be callable by name, 
and must include the abili ty to pass 
parameters. (This is one of BASIC's 
most serious shortcomings.) Arguments 
should be checked for type compati. 
bifity, preferably before execution begins. 
This would be simple in a compiler; in 
an interpreter it would require a pre
execution error .checking scan, which 
would be a good idea anyway-a lot of 
obscure errors (the kind that don't always 
show up every time the program is run) 
could be detected this way. 

The language should also allow for 
procedures defined external to the 
program. This would include pre-defined 
functions such as RANDOM (which 
returns a number between a and its 
argument) and SQUARE_ROOT (guess 
what this one does?). ANSWER prints 
its (STR ING ) argument on the terminal 
and waits for a 'yes' or 'no' answer, 
(looping and re-prompting if anything 
else is typedO, and returns the 
BOOLEAN value TRUE or FALSE 
depending on the answer). We'll also 
want to permit user-defined subroutines 
and functions. The latter would be stored 
on disks in systems which have disks, 
or could be loaded from tape when disks 
were not available. 

I imagine a tvpical dialogue between the 
user and the monitor in a tape-based 
environment would go something like 
this: 

NEW 

LOAD 

LOAD 
RUN 

SAVE 

(Resets the load pointer to 
the beginning of the free 
memory.) 
(User now loads tape can· 
taining a subroutine he wrote 
last week. This program seg
ment is loaded into the space 
following the previous one 
because he didn't give a NEW 
command.) 
(Another subroutine, etc.) 
(Check the program for 
missing procedures, incom
patible argument types, 
undeclared identifiers, etc, 
and if everything's OK, 
execute the program.) 
(Save the whole program, 
including the subroutines 
loaded from the second, 
third, ... tapes on one tape. 
(This'll save a lot of time on 
subsequent loadsl)) 

MAY.JUNE 35 

.., 



SAVE DRAW_SQUARE, 
DRAW_CIRCLE 

(This command saves only the 
subroutines DRAW.....sQUARE 
and DRAW_CIRCLE on tape 
(so they can be loaded onto 
the end of another program, 
if desired.).) 

Subroutines SAVEd with a single $AVE 
command would be saved as a single file; 
subroutines saved with separate SAVE 
commands would be saved as separate 
files, just like when you save several 
BASIC programs on the same tape. 

6. LOCAL VARIABLES AND 
SUBROUTINES 

These are virtually a necessity with the 
above: can you imagine the difficulty of 
having to check all of the pre· recorded 
subroutines that you intend to use to 
make sure you haven't used any identifier 
in one of them that you want to use in 
your main program???? 

36 PEOPLE'S COMPUTERS 

7. RECURSION 
Of course we want recursion! And it's not 
at all difficult to implement on any pro' 
cessor which uses a stack. 

8. COMMENTS 
We must include a method for putting 
comments into a source program. The 
method I like best is the one used by 
PASCAL: everything enclosed between 
'comment braces' (the symbols (. and·) 
in PASCAL) is considered to be a com· 
ment, and is ignored by the compiler or 
interpreter, no matter where it appears in 
the statement. For example: 

GAMEfOVER 

9. INITIAlIZATIONS & CONSTANTS 
I have never seen a worse initialization 
scheme than BASIC's READ .. DATA 
construct. FORTRAN's DATA statement 
is better, but PASCAL's CONST declara· 
tion is the best yet. In PASCAL, one 
can say: 

CONST (4 declare constants·) 
LINE_LENGTH: '" ao; 
GUESS_MAX: = 10 (-limit of 10 

guesses per player·); 

In some versions of PASCAL (such as the 
DEC· l0 version), one can also have an 
INITPROCEDURE which initializes 
variables: 

INITPROCEDURE; 
BEGIN 

BOARD [0 .. a, 0 .. a1 : = 0; 
END; 

This acts just like the FORTRAN state· 
ment: 

DATA aOARD /64 - 0./ 

10. MORE STANDARD TYPES 
In more advanced versions of the language, 
you may want to copy some of PASCAL's 
other standard types: SET, RECORD, 
POINTER and SCALAR. Sure, the little 
kids won't know what to do with these 
concepts, but who says that a kid has to 
learn the WHOLE language in his first 
lesson??? For instance, in all the 
FORTRAN programs I have written, I 
have never needed the COMPLEX or 
DOUBLE PRECISION data types, except 
for a couple of rather trivial class assign· 
ments. However, my programs were never 
adversely affected by the fact that those 
types were available if needed. 

By including these more advanced types 
in the language definition, older kids (and 
adult game· writers, too) can use them 
when they learn how. Actually, the stand· 
ard type TURTLE is just a special type 
RECORD, and the standard type COLOR 
is just a speCial type of SCALARI 

11. SUBRANGESOF ARRAYS 
It would be nice to allow a subrange of an 
array to be assigned into a subrange of 
another array, rather than just requiring 
whole arrays to be assigned. For example, 
given the following declarations: 

ABC: ARRAY (D •• 10) OF INTEGER; 
DEF: ARRAY (0 .. 10) OF INTEGER; 
one could obviously write 

ABC: '" DEF; 
to copy the entire contents of array 
DEF into array ABC. It would also be 
nice if it were possible to write 

ABC (3 .. 5): = DEF (7 . 9); 
to copy elements 7 thru 9 of DEF into 
elements 3 thru 5 of ABC. 

12. CONCATENATION OF STRINGS 
Obviously, we need a way to concatenate 
strings. But do we allow 

STORY; = STORY + 'The end:; 
or do we use a standard procedure to do 
this? 

STORY: = JOIN (STORY, 'The end:); 
Whichever method is chosen should be 
consistent with the method used to 
implement substrings. 

13. INPUT ERROR RECOVERY 
Nothing is more maddening than to have a 
program crash because you typed a non· 
numeric character to a numeric· input 
routine! Our input routines must be writ· 
ten to check for the right kind of input, 
and, on an error, to simply re·prompt 
and try again. 

A typical dialogue might go like this, 
with the computer typing in upper case, 
the user in lower. 

DO YOU WANT TO PLAY AGAIN? 
surel 
SORRY, I DON'T UNDERSTAND 

SUREI PLEASE ANSWER YES 
OR NO. 

DO YOU WANT TO PLAY AGAIN? 

Y" 
HOW MANY PLAYERS? 
two 
SORRY, I NEED A NUMBER. 
HOW MANY PLAYERS? 
2 

In systems where memory is limited, you 
may want to eliminate the SORRY, ... 
message, and merely repeat the prompt, 
however, under NO conditions whatso· 
ever, should ANY possible input cause 
the program to crash with a message like 

ERROR 25 IN LINE 645; INVALID 
INPUT STRING TO NUMERIC 
INPUT 

This will require the input function to 
check what type of response is required, 
and generate the appropriate re·prompt 
when needed. One alternative would be 
to have 3 separate input functions: 

FUNCTION ANSWER: BOOLEAN; 
(* only accepts YES or NO·) 

FUNCTION GET_ NUMBER: 
NUMERIC; (. only accepts 
numbers -) 

FUNCTION INPUT: STRING; 
(. accepts any string·) 

All 3 of these functions would accept a 
STRING argument which is printed as the 
prompt, much like the INPUT of BASIC. 

The other alternative would be to have 
only one standard proC1!dure INPUT, in 
which case the interpreter would have to 
check to see what type of variable the 
result was being assigned to (BOOLEAN, 
NUMERIC or STRING). This latter 
approach, while (maybe) being a little bit 
harder to implement would be much 
easier for young programmers to grasp. 

14. AUTOMATIC STRING/NUMERIC 
CONVERSION 

Perhaps we should include automatic 
string/numeric conversion, just like we 
have automatic integer/real conversion. 
For example, suppose NUM were 
declared NUMERIC and STR were de· 
clared STR I NG: I t should be OK to write 

STR: = 'The answer is' + NUM; and 
NUM: = 25 - STR; 

In the latter case, STR must contain the 
string representation of a number. (If not, 
what should happen? Should this be a 
run· time error, or should the string·to · 
numeric conversion routine ignore any· 
thing that isn't a digit? Or should we just 
forget the whole matter and only allow 
NUMERIC to STRING conversion???) 

15. DECLARATION OF VARIABLES 
Should we require all variables to be de· 
clared, or only those special types like 
COLOR or arrays? I admit it gets to be a 
hassle to have to declare every variable, 
but it sure catches a lot of misspellings! 
I'd much rather have to declare every· 
thing than to have the compiler generate 
a new variable on account of a spelling 
error in a section of code which gets 
executed only once in a blue moon! 

16. PRETTY OUTPUT 
Of course, our interpreter should have a 
'prettyprinter' to format the source code 
to highlight the block structure. (See any 
of Mac Oglesby's game listings for an 
example of this.) Such a program would 
make it very easy to spot errors in block 
structure; for example, a missing ENDIF 
or NEXT would cause the listing to fail 
to close up the left margin at the final 
END. 

An easy way to implement this in the in· 
ternal representation of the object code 
without taking up a lot of memory space 
with blanks is as follows: 

first two bytes: tine number (for 
EDITING purposesONLY!!!) 

3rd byte: length of this line (I.e., a 

pointer to the beginning of the next 
line) 

4th byte: number of spaces to indent 
this line in the source listing; 

5th thru nth byte: the actual source 
line, 

(n + 1) th byte; carriage return. 

This format requires much less memory 
than storing all those leading blanks, and 
it makes life much easier for the format
ter, because it now has only to change the 
indentation count, rather than actually 
add or remove spaces every time the pro· 
gram is edited. With this system, leading 
blanks in the source statements would be 
stripped off before the lines were stored, 
so as not to waste memory space (and 
cause extra work for the formatter). 

17. MINIMUM EDITING STANDARDS 
No one should ever be forced to retype 
an entire line just to change one letter! 
The absolute minimum set of editing com· 
mands should contain the following: 

Insert a new line. 
Delete a line. 
Delete a line, and replace it with a new 

line. 
Move a line, or group of lines, to a new 

spot in the program. 
Split a line into two lines. 
Step thru a line, one character at a 

time, in e ither direction. 
Insert and delete single characters 

from within a line. 

LINED An editor on the DEC· l0 uses 
ctrl·A step forward thru a line, and 
RUaOUT to delete characters. Insertion 
of characters is accomplished simply by 

typing the new characters in where 
desired. (Ctrl -A can be used to reach the 
desired point to insert.) LINED also has 
some more sophisticated features, such as 
ctrl·S to step thru a line until a specified 
character is found, and ctrl·F to search 
for a specified string of characters. How· 
ever, these features aren't really absolute· 
Iy necessary in a minimal·features editor. 
I also suggest the use of BACKSPACE to 
stl!P backwards thru a line; LINED 
doesn't have this, but it would sure be 
nice to have, and would only require 
maybe a half· dozen bytes of code to im
plement. 

Also needed is a control character to step 
thru the entire remainder of the line 
when no further changes are to be made 
on that line. LINED uses ctrl·E to step to 
the end of the line and stop (for instance, 

MAY·JUNE 37 

- -==""""I 



to add something on to the end of the 
line), and ctrl·R to release the remainder 
of the line (i.e., no further changes to be 
made to the current line). 

And INe need a way to insert blank lines 
into the listing to separate code dealing 
with separate parts of the problem-e.g., 
the input routines, the init ializat ion 
rout ines, the computational routines, the 
graphic routines, etc. One possible way 
of doing this: typing a line number, fol · 
10lNed by a carriage return inserts a blank 
line, while typing D foHowed by a line 
number deletes the specified line. 

18. STRING · TO- NUMERI C 
CONVER SION 

What happens when you try to add 
'25' + '25'? Does it convert the two 
strings to numbers, yielding 50 1 Or does 
it concatenate the strings, yielding 
'2525'? Th is is a problem only if you use 
the + sign to denote string concatenation, 
and you allow automatic string-to· 
numeric conversion. One way out of this 
dilemma would be not to allow automatic 
string·to·numeric conversion, but to pro· 
vide the standard funct ion VA LUE: 

38 PEOP LE'S COMPUTERS 

VALUE ('25') -+ 25 
The other alternative would be to require 
the standard function JO IN be used to 
concatenate strings. 

19. STANDA RD FUNCT IONS AND 
PROCEDUR ES 

Several standard functions/procedures 
have been mentioned already; RAN DOM, 
INPUT, ANSWER , SQUA RE _ ROOT, 
VA LUE, DRAW, TU RN, etc. We'll also 
need the trig fu nctions SIN and COS. Do 
we really need TAN? After all, TAN(X):: 
= SIN(X)/COS(X). And we can also con· 
struct ARCSIN and ARCCOS. We'll need 
ASC II (which returns the ASCII value of 
its string argument) and CHR (retu rns the 
string specified by its ASC II -valued argu· 
ment). We'll need EXP and LOG too. 
(The little kids won't understand it, but 
we should have them for the older kids 
and adult game·writers.) And INT, MOD, 
SIGN and ABS. 

If we have the standard type CO LOR, 
we'll probably need some way to convert 
strings to colors, and vice·versa. If the 
INPUT function is required to return the 
value of a color, it can loop and reo 
prompt, just like with any other invalid 
input, but what if string·to·color con· 
version occurs somewhere else in the pro· 
gram? For instance, if a string argument is 
supplied to the standard procedure 
DRAW? 

20. DYNAM IC TYPES 
Snobol and some other languages allow 
dynamic types: the type of a variable is 
determined by the last value aSSigned to 
it. This would eliminate the need to pre· 
declare all variables (except arrays-we 
still have to specify the number of sub
scripts, and their upper and lower 
bounds). But it would lead to a lot of 
errors not being detected unti l ru n·time 
that could be detected at compile· t ime 
otherwise. Consider this example: using 
a variable containing a CO LOR as the 
condition in an IF. 

XYZ: - RED; 
IF XYZ TH EN .... 

The above situation wou ld cause a run· 
t[me error with dynam ic·variable types, 
and a compile·time error with predeclared 
types. 

And should the tYpe of a dynamic vari
able be changeable once it has been 
assigned, or should it remain the same for 
the remainder of execution? The latter 

would reduce the tendency to use the 
same variable for two different, unrelated 
things in different parts of the same pro· 
gram. 
21. STRING MATCHES AND 

SUBSTITUTIONS 
Of course, we'll want some sort of string 
matching test-probably a BOOLEAN 
function which will work analogous to 
PILOT's M command: the first (string) 
argument is compared with the parts of 
the second argument, looking for a 
match. But, unlike PILOT, we should 
supply the test string in an argument, 
rather than limit ourselves to the latest 
input string-this permits much greater 
flexibilitY in the programs. We'll also 
want a string substitution procedure: 
search a target string for a given substring, 
and replace it with a given replacement 
substring. These are both quite useful in a 
conversational·type environment. 

22. CALCU LATOR MODE 
When in Ca1culator mode, the keyboard 
should respond EXACTLY like a calcu· 
lator, not like BASIC which requires a 
leading PR INT rather than a trailing 
equals sign to do immediate calculations! 

23. JOYSTICKS 
In any language used fOr games, we'll 
want a way to input the position of joy· 
sticks. This could be done with a standard 
procedure which takes 3 parameters: the 
first would be the number of the joystick, 
and the other two would return its posi· 
tion. Alternately, if RECORD is a permit· 
ted type, the JOYST ICK routine could be 
a FUNCTION, returning as its value a 
record containing the X and Y coordin· 
ates of the joystick. Yet another alterna· 
tive would be to number the joysticks by 
even numbers, so JOYSTI CK (2· N) 
would return the X·coordinate of joy· 
stick N, and JOYSTICK (2*N+1) would 
return its Y,coordinate. 

A simple routine is shown below which 
would allow a child to use a joystick to 
guide a turtle over the CRT screen: 

LOOP; 
PLOT (WH ITE, JOYSTICK (1), 

JOYSTICK (2)); 
REPEAT; 
END. 

Without an EXIT IF instruction, this pro· 
gram would repeat forever, until interrup· 
ted by ctrl·C, continually reading the 
position of the joystick and plotting a 
white point (the turtle) on the CRT. 

-

24. MACH INE· LANGUAGE 
SUBROUTINES 

We should also provide for machine· 
language subroutines. Two possible ways 
are: 1) use a special keyword, such as 
CALL, preceding a machine ·language 
subroutine name, to indicate to the inter· 
preter that this is a machine· language 
subroutine; and 2) begin each machine
language subroutine with a special key· 
word, and call it just like any other sub
routine in the source program, i.e., by 
simply invoking it by name. 
Example 1: 

ABC; 
CALL XYZ; 

PROCEDURE ABC; 
(source· language subroutine) 
PROCEDURE XYZ; 
(machine·language subroutine) 

Example 2: 
ABC; 
XYZ; 

PROCEDURE ABC; 
(source· language subroutine) 
ML PROCEDURE XYZ; 
(machine · language subroutine) 

Parameter passing to machine· language 
subroutines will present no problem when 
all procedures are computer generated, 
since they can follow standard conven
tions with the machine·language subrou· 
tines. Perhaps the best procedure is to 
pass a pointer (in a register, such as HL or 
IX) which points to a list of parameters. 
This table would contain, for each para· 
meter, its type (REAL, INTEGER, 
COLOR, ARRAY of ... , etc), whether it 
passes data into the procedure only or 
both into and out of the procedure, a 
pointer to where the variable is stored (or 
where the first element is stored, if an 
array or string), and, if it's a one·way 
parameter, where the procedure stores 
its local (changeable) copy of the variable. 

If you don't think you need both one· 
way and two·way parameters, consider 
the following program segment: 

VAR A: INTEGER; 
PROCEDURE INCREMENT 

(I: INTEGER, VAR J: INTEGER); 
BEGIN; 

END: 

I: = I + 1; 
J: = 1+1; 

BEGIN; 

END; 

INCREMENT (6, A); 
PR INT (A); 

In the above program segment, if para· 
meter I is not one·way, execution of 
1: - 1 + 1; will cause the value of the con
stant 6 to be botched but if parameter J 
is not two·way, its value will never be in· 
serted in variable AliI 

While the above example may seem to 
have a trivial solution in this particular 
case (just make the subroutine a func· 
tion). the problem is nor trivial for the 
general case where a subroutine may have 
to return MANY values! In fact, my pro· 
grams usually contain several evaluative 
functions which return both the desired 
result and a BOO LEAN value which tells 
whether or not the required operation 
could be performed I Such a program seg· 
ment usually looks like this: 

IF EVALUATE (A, B, C) THEN ... 
ELSE WRITE ('ERROR .. .'); 

Such functions return the actual value as 
one of its parameters, with the function 
value itself being used as an error flag 
(most of the time). This form is especial· 
Iy useful when the evaluation is to be per· 

formed on user · typed input. In such a 
case, the IF is usually the EX IT of a 
LOOP which, if not exited, re·prompts 
and requests revised input. Remember, I 
firmly believe that NO possible user input 
should EVER cause a program to crash 
with an obscure error message! 

CONCLUSION 
From the preceding, you can see that I 
envision the creation of not just a TINY 
language, but a full·blown, general. 
purpose games and graphics language suit· 
able for both tiny kids and adult game
writers. While younger kids will not be 
able to appreciate (or even understand) 
some of the more advanced features of 
the language, there is no reason they have 
to be taught the whole language at onel 
They can be started out with some of the 
simpler control structures and standard 
procedures, such as LOQP, IF, DRAW, 
and PRINT; and later on, introduced to 
the more advanced concepts. 

Similarly, implementers with small sys
tems (8K or so) may want to implement 
only the more basic features of the Ian· 
guage, while those with larger systems 
may want to implement the whole Ian· 
guage. Hopefully , some sort of standards 
could be set up specifying which parts to 
implement first, which parts second, etc., 
so that if someone advertises a program 
for Level 2 DRAGONSQUEAK, for in· 
stance, then ANYONE having Level 2 or 
higher, will be able to run the program 
with only minimal (mostly hardware
dependent) modifications, and not have 
to worry about structures, subroutines or 
features omitted from his Level 4 version 
(say) but present in someone else's Level 
2 version. 

Also, from the above examples, one can 
easily guess what my favorite language isl 
And while PASCAL mayor may not be 
the ideal language on which to base a new 
language for kids (If anyone has a better 
idea, please speak up ... that's what this 
whole thing is all about), it's certainly a 
good starting point ... After all, when our 
kids outgrow DRAGONSQUEAK and are 
ready for something bigger and better (or 
are ready to go out into the real world of 
Incredible Bi9 Monsters and Darned 
Expensive Computers), what would we 
rather they be using??? An anachronism 
like FORTRAN? An ungainly monster 
like COBOL? A kludge like BASIC??? Or 
a beautiful, natural, structured language 
like PASCALI II 0 

MAY·JUNE 39 

, 



SPO 
Society of PET Owners and T";.",,,!. 

Photo courte$Y of Visualscope. 

PET SOCIETIES & NEWSLETTERS 

Here's additional information about PET 
users' groups and newsletters. In the San 
Francisco Bay area, those interested in 
the East Bay's SPHINX society should 
contact Neil Bussey (415) 451·6364. 
Those in the San Jose·San Francisco area 
should call the Palo Alto Mr Calculator 
store at (415) 328-0740 for details on 
the next local users' group meeting. 

Great news: the newsletter from the Bay 
Area groups is now available. It's packed 
with info that's available nowhere else . 
The most recent issue, fo r example, con
tained articles on a simple way to add a 
standard keyboard to the PET (while 
retaining PET graphics), an article on 
using the PET's 8-bit parallel I/O port, 
info on the PET's character set, m~mory 
map, and lots more, including announce· 
ments of many PET · related products. 
The two back issues are available at $.75 
each ; $4.50 will get the monthly news
letter fo r the next six months. Sen'd 
orders to Pete Rowe, Lawrence Hall of 
Science, U.C. Berkeley, Berkeley, CA 
94720 . 

THE PET PAPER is being published by 
Terry Laude reau, fonnerly Software 
coordinator fo r Commodore, and Rick 
Simpson, KIM Product Manager al MaS 
Technology, a Commodore company. It 's 
scheduled to include articles to interest 

40 PEOPLE'S COMPUT ERS 

both beginners and experts, news of User 
Groups, software reviews, and hardware 
how-Io's. For a year's subscription (num· 
ber of issues not specified) send S 15 10 
THE PET PAPER, PO Box 43, Audubon , 
PA 19407. 

o 
SOFTWARE 

See our PET software review under 
'Reviews'. Many distributors of PET soft
ware are springing up. Most offer royalty 
contracts for programs running from 2% 
of wholesale to 20% of retail. Many deal 
in both TRS·80 and PET programs. As of 
early April, these companies are market
ing software: 
Don Alan Enterprises, PO Box 401, 

Marlton, N J 08053. 
Pen insula School Computer Project, Peninsula 

Way, Men lo Park, CA 94025. 
Personal Softw are, POBox 136·B4, 

Cambridge, MA 02183; (6H) 7B3·0694. 
Silver State Enterprises, PO Box Z7 ' 1 1, 

Lakew ood, CO B0227. 
The PET Paper, PO Box 43, Audubon, PA 

19407. 

As of early April, these companies are 
gearing up to sell PET software: 
Commodore, go 1 CalifornillAve, Palo Alto, CA; 

(415) 326·4000, ContaCl Adrian Byr<rn. 
Creative Computing, PO Box 789·M, 

Morristown, N J 07960; (201) 540·0445. 
Kilobaud, Paterborough, N H; (603) 924·3873. 
Mind 's Eve Personal Software, PO Box 354, 

Palo A l to, CA 94301 ;(415) 326·4039. (Run 
by Greg Yob, formerlv of Commodore). 

TEACHE RS' (& KIDS') PET 

We would like to communicate with 
other schools who are using the 
Commodore PET for educational pur· 
poses. We are a small K· iO school. We 
are currently leaching BASIC to some 7· 
iO graders and they are using the Ian· 
guage to develop programs for their math· 
ematics classes. We would be interested in 
sharing methods and programs with other 
schools who are attempting the same sort 
of thing. 

Olarles Eberl 
The Midwestern Academy of 

the New Church 
73 Park Drive 
Glenview , IL 60025 0 

o 
LI STI NG CONVENTI ONS 0 
Program listings employ the following 
conventions to represent characters that 
are difficult to print on a standard printer: 
Whenever square brackets appear in the 
listing, neither the brackets nor the text 
they enclose should be typed literally. 
Instead , the text between the brackets 
should be translated to keystrokes. For 
example, [CLR] means type the CLR 
key, [3 DOWN} means [DOWN, DOWN, 
DOWN} ie press the first CRSR key three 
times. 

500 REAn OSS,ISS,LUS,LOS,RUS,ROS,LAS,LMS,RAS,RMS,AOS 
510 OATA "I", ""', "!", "0", , ... ", "f", "A", "Z", ")", "P" ,":" 
515 Z3:32168:Z4: 40 0 
520 XO:5:Xl:35 
530 VO~2:Vl:19 
540 LO=INT{{VO.Vl )/2)- 2:L 1 =LO.4 

550 ,O"O",.,,,OM.O PONG f th PET 0 
560 PRINT"[CLR]"; or e 
570 V2=Vl _1 :Z2:99 
580 FORX2=XOTOX1:GOSUB900,NEXTX2 • 0 
590 V2=VO- l :Z2=100 
600 FORX2:XOTOX1:GOSUB900,NEXTX2 
620 X2=X:Vl=V 
630 XP=X2:VP,V2 
640 GOSUB3000:00SUB31 00 
650 LN,O,RN=O 
6600X=1.5:0V , 0 
670 PRINT"[HOME)",:FORI: 1 TOVl .2 :PRINT"[OOWN]"; :NEXTI 
680 PRINT"SP[ED INCREASE, DECREASE, ";ISS;OSS 
690 PRINT"LEFT UP, ~OWN, flUTO, MANUAL = ";LUS;LOS;LAS;LM$ 
700 PRINT"RIGHT UP, DOWN, AUTO, MANUAL. " ;RUS;ROS;RAS;RMS 
710 PRINT"HESTART POINT. ";AGS; 
790 LA,O:RJ\~O 
890 GOT02400 
900 REM PUT Z2 AT (Xl,Vl) 
910 POKEZ4·V2.XhZ3,Zl 
920 RETURN 
950 REM WAIT TJ SEC 
960 TJ,TI.60· TJ 
965 IFTI<T JGOT0965 
970 RETURN 
1000 REM TOP OF LOOP 
1005 ZB,81:REM STANDARD BALL 
1010 xx,X :VV=V,X=X.OX:V :V+DV 
10201FX<XOGOT01200 
10301FX>X1GOT01300 
1040IFV<VOGOTOI400 
10501FV)V1GOT01500 
1060 REM TeST FOR KEV HIT 
1070 GETCS IFLCN{CS»OGOT02000 
1080IFLAANODX<OOOT01800 
1090 IFRflANDOX)OGOTOI900 
1100 REM OISPLAV AT{X,V) 
1120 xa:xp,vo=vp 
1130 XP=INT(X) :VP~INT(V) 
1140 ZO=Z4·VP . XP.Z3 
1170 IFZROZOTlIENPOKEZR,32:ZR:za 
1180 POKEza,zn 
1190 GOTO 1000 
1200 REM liT LEFT 
1210 V:V-OV'(X-XO)/OX 
1220 DX=-OX.X'XO:ZB~97 

'230 IF{V<VO)OA(Y>V1 )GOT01 040 
1240 IF{V(LO-.75)OR(V>L 1 • . 75)GOTOllOO 
1290 GOT01600 
1300 REM AT RIGHT 
1310 V:V-OV'(X-Xll/DX 
1320 OX=-OX:X=X 1 :ZO,225 
1330IF(V<VO)OR(Y>Vl)OOTQ1040 
1340 IF(V(RO-. 75 )OR{V)R 1 •. 75)00T02300 
1390 GOTO 1 600 
1400 REM AT TOP 
1410 X,X-OX·CV-VO)/DV 
1420 DV,-OV'V:VO:ZB:226 
143000T01530 
1500 REM AT BOTTOM 
1510 X,X-OX·(V-vll/ov 
15200V,-DV,V,Vl:ZB,96 
1530IFX<XOTIfI:NX:XO 
1540IFX)X1TH[NX:Xl 
1550 GOT01060 
1600 RCM MAKE BOUNCE FUNNV 
1610 NLhNO.l.IFNO(5COT0 1040 
1630 OO=SOR(OX ·[}X. OV·OV) 
1640 OX=DX·( 15·RNO' 1)_ .5) 
1644 AfhAIIS(DVOX) 
16-15 IFA0>20AAn( 2TIICNOV:OX· (RNO(1) •. 5) 
1650 rW,OV·«(2-S ' NO)·IlNn( 1» .7) 
1660 OIl=OD son{ox'ox.ov·nv) 
16700X,OX·OO 
16800V=f)v"OO 
1690 GOTO I 040 
1000 Rt'M AU ro I.rFT 

To indicate motion in this photo we modified the program $0 the ball, shown 
as a white dot would leave a trail of 'hollow' dots. The 'trail' is not part of the 

program listed here. 

Martin Cohen, of Technology Service Corpora· 
tion in Santa Monica, CA, has written a rrne 
PONG game for the PET. The ball actually 
squashes when it hits a paddle or the 'floor' or 
'ceiling' of the game 100m. You can increase or 
decrease the speed of the game to suit yourself. 
Since each paddle may be set either to automa
tic or manual mode you can vary the nwnber of 
players from 0 to 2. Thanks, Martin! 

1810IFV(LOTHENDM: -2:GOSUB3000:GOT01100 
1820 IFY>L lTHENOM:l,GOSUB3000:GOTO l 100 
1830 00T011 00 
1900 RfM AUTO RIGHT 
1910 IFV(ROTHENOM= -2 :GOSUB31 00;GOT01 1 00 
1920 IFV)R 1 TlIENOM , 2,GOSUB31 00:GOT0 11 00 
1930 GOTOll00 
2000 REM KEV l ilT 
2030 IFCS=OSSTHENOX=OX/l .5:0V=OV 11.5:00T0 1 1 00 
2040 IFCS:ISSTI![NOX:OX· l .5:0V:OV · t .5:GOTOll 00 
2050 IFCS:RUSTHENDM, _3,GOSUB3100:GOT0 11 00 
2060IFCS:ROSTIIENDM=3,GOSUB3100:GOT01 100 
2070 IFCS=LUSTHENOM: -3:GOSUD3000:GOTO 11 00 
2080 IFCS=LOSTlIENOM =3:COSUB3000:GOTO 11 00 
2090 IFCS:RASTHENRA: 1 ,aOTO 11 00 
2095IFCS=RMSTI IfNRA=0:GOTOll00 
2100IfCS=LASTHENLA:l:GOT01100 
2105IfCS=LMSTHENLA=0:00T01100 
21101FCS:AGSGOT02400 
219000T0 1100 
2200 REM PASSED LEFT 
2210 RN,RN+ l 
2220 GOT02350 
2300 REM PASSED RIOHT 
2310 LN:LN.l 
2350 REM SHOW WHERE SCORED 
2360 X2=XP:Vl:VP:Z2,32:00SUB900 
2370 X 2 :INT{ X ):V2 ~INT(Y ):Z 2,42 :GOSUB900:T J_TI +60 
23801FTI(TJGOT02360 
2390 Z2=32:GOSUD900:GOT02420 
2400 REM A SCOR[ _ OISPLAV AND START A POINT 
2410 X2 . XP:V2:VP:Z2 : 32:00SU0900 
2420 PRINT"[HOME]SCORE: LEFT. "+STRS{LN)+", 

RlGi-n • ".STRS(RN)+"[3 SPACE]"; 
2425 DO,SORIDX·DX.OV · OV) 
2440 R,RNO{ 1 ):S:RNO{ 1 )+,5:0V.RNO{ 1) 
2450 IFR) .5THENX:XO:OX.S:V={UhL 1 )Il 
2460 IFR(:.5THENX eX 1 :OX,-S;Vc(RO.R 1 )/2 
2470 XP,INT(X):VP:INT(V): 
2480 ZO:81 
2490 OO:DD/SOR{OX·OX.OV·DV) 
2500 OX,DX·DO,OV,OV·OO 
2510 NO~O 
2520 ZR,999 
2540 T J, 1 :GOSU0950 
2550 X2,XP,V2=VP:Z2=ZB:GOSU0900 
2560 TJ,1:GOSU0950 
259000TOll00 
3000 REM MOVE LEFT PADDLE OM 
3010 X2,XO-l:ZP=103 
3020 VA=LO:VO:L 1 :GOSU03200 
3030 LO,VA:L 1 :VO 
3040 RETURN 
3100 REM MOVE RIGtIT PADDLE OM 
3110 X2:Xl. 1:ZP:l0l 
3120 V A=RO:YO,R 1 :GOSUB3200 
3130 RO,VA:R1,VB 
3140 RETURN 
3200 REM MOVE A PAOOLE 
3210 Z2=32:V8,Z4 ' VA .X2 .Z3·V9:V8+Z4 ·(VB-VA) 
3220 FOflV2, V OTOV9$TEPZ4; POKEY 2.Z2 .NEXTV l 
3230 VA~VA_OM : Y8,V8+0M 

3240 IFVA<VOTHENVO,VO. VO-VA-VA,VO 
3250 lFVB)V \ TIIENVA:V A_ V 1 -VO:V8=Vl 
3260 Z2 :ZP,V8,Z4 ·VA+X2 .Z3,V!hV8.Z4 '(VO-VA) 
3270 FORV2 ,V8TOV9S1 EPZ4,POKEY2,Zl;NEXTV2 
3200 RETURN 
9000 REM LlNEARITV CHECK 
9010 PRINT"(CLn, RVSJ"; 
9020 FORI: 1 T0999 
9030 PRINT"[akiI1LonACK]"; 
g040 NEXTI 
9050 00T09050 

MAY.JUNE 41 

1 



-
o 

Kaleidoscope is 3 simple program that 
runs continuously while drawing interest
ing pallems on the screen of a Conuno
dore PET computer. It is adapted from a 
program written by Rod Holt on a differ
ent computer. 

You will probably want to try each of the 
two variations of the program. As origin
ally wrillen, you may see 'glitches' flash
ing on the screen while the program 
executes. You can gel rid of these 
'glitches' with 3 variation of this program 
provided by Larry Tesler. By replacing 
the POKEs with COSUBs. as indicated, 
the program will slow down considerably, 
but the picture will be cleaner. I person
ally prefer the visual effects of motion 
thai appear in the original , fas ter version. 

You will notice that there 3rc no PRINT 
statements ill the program: instead, the 
program POKEs the ASCII equivalent of 
the graphic characters into the area of 

Tiny GRAPHICS 
My children have enjoyed runn ing the 
attached graphic programs on my PET. I 
am orfering them in the hope others may 
enjoy them. 

M C Hofheinz 
Stockton, CA 

42 PEOPLE'S COMPUTERS 

4 ZC=0:C~0:ZO~S94S6:ZW~32 
5 PRINT "[CLR]": 
6 CLCO):ASCC" "). 128 
7 CU l)aASCC"[?/")_64 
8 cU7hASCC" " 
9 CU3J:ASC("[@)" )_128 
10 CU4);ASC{"!~iUlllRACKl")-128 
11 CUS)dSCC" &uIIRDRACK ")-128 
12 CL(2).ASCC" "]"}-64 · 
13 CL(6):ASCC":") 
18 Nl:32 760: N2:40 : N33.62S: N4:39.9999 
20 FOR W~l TO 50 
30 FOH 1:1 TO 19 
40 FOR J.O TO 19 
50 Kgl.J 
60 C.Cl((J "l/(l.3hl"W/12) AND 7) 
70 Yl .Nl.N2'INT{N3·1) 
60 Y2:Nl.N2'INT(N3'K) 
90 Y3.Nl,N2"INT(Nl "(N4.1J) 
100 V4 .~J1'N2'INT(N3- (N4_K)) 
110 POK[I.V2 .C: POKEK.Yl.C: POKEN2-I.V4,C 
120 POKEN2 -K. Y3.C: POKEK.Yl,C: POKEN2-J .. V2.C 
130 POKEI.Y4,C; POKEN2-K.Yl.C 
140 NEXT J 
l S0 NEXT I 
160 NEXT v: 
170 GOTO 20 

Cho"ge, Ihol p.evenl Iwinkling. b",t slow down display ... 

2 GOTO 4 
3 WAITZO ZW:WAITZO.2W.ZW,POKElC.C:RETURN 
11 0 ZC:"Y2:GOSU03 ZC .K.Y I GOSUtl3: ZC:N2-hV4:GOSUD3 
120 ZC3N2-K.V3 GO:>U83_ ZC:K.V3,GOSU03: ZC:N2-I.V2'GOSUB3 
130 ZC.I"Y4 GO$OO::; ZC. N2-K.YLGOSUD3 

memory where the PET stores its current 
picture display. This area starts at mem
ory location 32768. The first 40 locations 
of this area are for the first row of char
acte rs on the screen. The next 40 loca
tions are for the next row, and so on. 

lines 6· 13 with your own graphics charac
ters. 

If you want to change the shapes of the 
patterns created, replace 

"J *3/(1+3)+I *W/ 12" 

The built·in function, ASC, does not 
quite give you the numbers you need for 
doing POKEs instead of PRINTs. If you 
are interested in experimenting with 
different graphics characters, the follow· 
ing statement, when executed , will tell 
you the integer that needs to be added or 
subtracted from the value ASC computes: 

[eLR] ? - ASC("x ")+ PEEK (32775) 
To assure that this statement will work, 
be sure not to include any spaces after 

in line 60 with anything you please, and 
see what happens. 

If you are interested ill experimen ting fur· 
ther, you can change PET's character set 
by executing POKE 59468, 14. To restore 
the regular character sel, POKE 59468, 12. 
While the alternate character set is in 
effect, the characters ge nerated by 
shift - ) and shift - +- make ror interesting 
kaleidoscope patterns. 

you press the CLR key. Try difrerent Dave Offen 
graphics characters in place of the x Menlo Park , CA 
above. You are now prepared to "".",," __ 

A 10 POKE (32768+ l000 " RND(lIl, 
2SS0RND(1I 

20 GOTO 10 
10. substitute any number frQrn 1 to 
255 for the expreuion after the comma.) 

B 10 FOR X - I to25S 
20 FOR Y-l to 1000 
30 POKE (32, 76HY), X 
40 NEXT Y 
50 NEXT X 

C 20 FOR X - I 10255 
30 PRINT X: POKE (3276HX). X 
40 NEXT X 

(8est to hold RVS during this one) 

D 20 FOR Y-I to 1000 
30 POKE t32767+Y); INT (Y/4+1l 
40 NEXT Y 

E Add to any of the above 
5 POKE 32768, 14 

HAM PET OWNERS 

Would you like to take part in experi· 
ments to transmit programs, etc by Ham 
Radio? Please get in touch with the 
undersigned. To arrange a schedule give 
frequency, time, date , and call letters and 
perhaps a lelephone number. 

REVIEWS 

Orin K Batesole-W6HJE 
150 Shady lane 
Walnut Creek, CA 94596 
Telephone (415) 934-866 1 .0 o 
PET PRINTERS 

A rumor of interest to all PET owners 
who have access to a Versatec printer: We 
hear that for $ 100 Versatec (Santa Clara, 
CA) will sen a Versatec printertpET 
interface. 

Commodore's $595 printer will allow you 
to print oul graphic characters as they 
appear on the screen. It sure will be nice 
10 be able to print graphics, but listings 
will still be confusing if a graphic character 
prints when cursor control is done in 
print strings. A sample of the print quality 
is shown below. 

RBC[)EFGH I.TI(L~It<OPQRSTUV'lX 
RBCDEFGH I .TI(LmlOPQRSTUVWl' 
A8(:[)EFGHI_TKL~II,OPQRSTUVWX 

o 

o 
DRAW UPDATE 

1) A bug got into our last version: lines 
7000 and 7040 should read 

7000 PRINT "ICLA, DOWN]" 
7040 PR INT "(HOMEI ";: NEW 

2) A number of readers found line 5535 
puzzling: 

5535 : : V - C > BY : IF V - AV GOTO 5545 

The leading colons are to force an inden· 

PET SOFTWARE REVIEW 
Don Alan Enterprises 
P.O. Box 401 , Marlton, NJ 08053 
JO programs on a cassette, $19.95 

Don Alan Enterprises is selling a PET cas· 
sette containing ten programs for $19.95. 
I am generally disappointed with the 
quality of these programs. However, since 
there is not yet available a wide selection 
of programs for the PET, there undoubt
edly will be those of you who would 
rather play with these programs, than 
stare at the '7167 BYTES FREE'message 
displayed before you on the screen. 

tation to make structure clearer. 'C> BY ' ~~.'lT..-' 
is a Boolean condition. If C is greater 

If you're a computer hobbyist who is just 
learning to program, and you are un
familiar with the capabilities of small 
computers, you might appreciate this 
product. Most of the programs included 
are short. They provide readable examples 
of working programs writttn in the PET's 
particular dialect of BASIC. 

than BY then the expression is TRUE, 
and so evaluates to - I : therefore V is set 
equal 10 -1. If C is not greater than BY, 

then the expression is false, and evaluates 
to 0: so V is set equal to O. In the second 
command of the line, V is compared to 
RV in the usual manner. 

o 

Among the supplied programs are two 
requiring no intervention once they are 
sta rted. One program transfonns the com
puter into a digital clock with a large 
numerical display. The other, called 
WORM , draws a delightful criss-crossed 
maze of lines all over PET's display screen. 

The remaining eight programs on the tape 
are interactive games. I find none of the 
games particularly inspiring. In addition, 
the authors do not devote nearly enough 
attention to the needs of the game ·player. 
To me, this is a serious fl aw because an 
important test of any good computer 
game is that it should be easy to interact 
with and pleasant to use. 

In particular, the math practice program 
has no facility for letting you detennine 
the. difficulty level of the problems. How 
much value can there be in practicing on 
problems that may be either too easy or 
too difficult for you? Also, when you 
provide an invalid response to the initial 
question, the program prints out a con
fused and inappropriate message. This 
indicates a sloppy programmingjoh. 

I found shortcomings with some of the 
other programs as well. Some of the 
games unnecessarily require the player to 
press the return key after each single 
leiter response. Why should the program
mer require that you press two keys when 
one is adequate? Other games would be 
considerably improved if they were to 
automatically repeat when a key is held 
down, rather than requiring twenty or 
thirty keystrokes on the same key. 

The creators of this package of programs 
adverlise that their product should be 
used to 'house·break your PET'. Unfor
tunately, you may discover that jf you 
have an interest in moving beyond the 
toilet training stage, the Don Alan pro
grams are not for you. 

Reviewed by Dave Offen 
Computer Software Consultant 
Merno Park, CA 

MAY·JUNE 43 



STIMULATING SlMULATIONS 
60 pp, $5.00 
THE DEVlL'S DUNGEON 
15 pp, $3.50 
by C William Engel 
Box 16612, Tampa, FL 33687 

At school or at home, what do you do 
with your personal computer? Why, you 
write programs to make it do things, of 
course. But what things? One approach is 
to tackle problems directly related to 
school or work. You can learn a powerful 
lot of programming skills by developing 
software to multiply matrices or balanc· 
ing end-of-month checking account 
statements. But this applications 
approach is less than edifying to the 
developing programmer who lacks mean
ingful applications !ruitable to his/her 
level of skill. An often overlooked alter
native is the game-simulation. If the 
objective is learning to program, why not 
have fun doing it? TIlere are lots of game
simulations available to be copied. i01 
Computer Games, edited by David Ahl, 
comes to mind. But this is a canned 
approach which emphasizes the recrea· 
tional aspect of personal computing 
rather than skill development. C Willian\ 
Engel, in writing Stimulating Simulations 
has done a nice job of getting away from 
the copy-a·game approach. In this book· 
let, he offers ten game-simulations of 
varying difOculty. Judging from the 
accompanying scenarios, they are all 
exceedingly interesting. Dr Engel's con
tribution is to fully document each pro· 
gram with a scenario, a sample run, a 
very readable flow chart, a listing, and 
suggestions for minor and major changes. 
So what's new? Well, these programs are 
understandable. They can be decoded and 
modified by the leamer.programmer. 
They can be rewritten for different sys
tems or to do different things. In short, 
they teach ! 

nle De1'il's Dungeon is a more sophisti
cated game-simulation of the same genre 
as Stimulating Simulations. The game 
seems to be a variation of Caves. The 
objective of the game is to obtain a maxi· 
mum amount of gold from the dungeon 
in the face of many hazards including 
monsters, and poisonous gas. It appears 
to have a high potential for interest and 
challenge. I can't say the Devil's Dungeon 
is in the same league as Star Trek, nor can 
I say that it isn't. What makes a computer 
game popular is often obscure. A reading 
of the scenario, however, and the high 

44 PEOPLE'S COMPUTERS 

quality documentation more than war· 
rants putting the DelJil's Dungeon high on 
your things-to-try list. 

Reviewed by Peter S Grimes 
Curriculum Supervisor 
San Jose Unified School District 

Personal Soft .... -are, (PO Box 136·84, 
Olmbridge MA 021B3) offers Stimulating 
Simulations 0/1 tape with Engel's book 
for SJ4.95. 011 one side of the tape are 
PET programs, on the other side TRS-80 
programs. 

THE LITTLE BOOK OF 
BASIC STYLE 
by John M Nevison 
Addison· Wesley, 1978 
147 pp, $5.95 

There are numerous books out on pro· 
gramming style. Why should you read this 
one? Two reasons. One, this book is 
about style in BASIC programming. This 
is somewhat unique: most other books on 
style deal with more hospitable languages. 
Two, this book is specific. While most of 
the rules are generalities, the text is not. 
The au thor makes specific suggestions
indent this many spaces, put blank lines 
here-and so on. 

I have one complaint-l don't like the 
author's programming style. A number 
of his suggestions do not agree with my 
(admittedly prejudiced) notions or style. 
However, you may not think so. As the 
author puts it, 'The person who cares 
enough about a program's style to argue 
with these rules probably has little need 
of them. On the otJler hand, an argument 
against a m le should be advanced for the 
same reason the rule itself was suggested: 
because there is a better way to make the 
program read: I agree. 

Reviewed by Eryk Vershen. 

'&Q.6.()A..Q.6.()A..Q.6.Q.6.Q.6.Q.6.OAOA().&()Io.O.&O 

8080A/808S, ASSEMBLY LANGUAGE 
PROGRAMMING 
by Lance A Leventhal 
Osborne & Associates, Inc., 1978 
400 pp, $7.50 

111is book comes as highly recommended 
as did Osborne and Associates' An 
introduction toAficrocomputen, Volume 
0: The Beginner's Book (see Tom 
Williams' review in the March·April 
1978 issue). 

BOBOA/BOB5 is written in the same 
style as Volume 0, and it is everything 
I had hoped for in an instructional text 
on assembly language, as well as on how 
to use assembly language to program a 
microcomputer. It begins with a brief 
discussion of the meaning or instructions 
-the programming problem (program 
understandability, debuggability, entry 
speed, readability, and length), using 
octal versus hexidecimal, instruction code 
mnemonics, and advantages and dis
advantages of high·level (as well as 
assembly) language. Next, there is a 
'basic·literacy· discussion of assemblers 
and loaders, followed by thorough and 
concise definitions, descrip tions, and 
examples of each instruction of the 
entire 8080A and 8085 instruction sets. 

BOBOA/B085 goes one step further than 
Volume 0 in that not only is it a primer, 
ill the classical sense, full of examples 
and samples, but it is also an excellent 
reference manual, with sample macros, 
programs (one's complement, 8- and 
16·bit addition/subtraction, word dis/ 
assembly. sum of squares, and more), 
simple program loops, character· coded 
data, code converSion, arithmetic 
problems, tables and lists, subroutines, 
I/O devices and programs, interrupts
the list goes on and on. Chapters 14 and 
15, on debugging, testing,documentation, 
and fe·design, are, in themselves, worth 
the price of the book. 

If you have (or plan to have) an 8080 
microprocessor,and you want to program 
it in assembly language. B080A/B085 
is written especially for you. In short, 
the first twelve chapters concentrate on 
the writing of short programs; the res t 
describes how to formulate tasks as 
programs and how to put short programs 
together to form a working system. 

Reviewed by Vicki Parish. 0 
'&o.t.c::r..&OAo.t.()A..Q.6.OAO.&OAo.t.o.t.o.&OAO 

Ouring a college computer programming 
course about 12 years ago,l wrote a very 
primitive Blackjack routine in PIL/L, 
a Basic-like language for a 360/50. 
Taking over 180 lines, it dealt the cards 
from a deck of 52, allowed the player 
to draw or stand, drew cards for the 
'dealer', and then detemlined the winner. 
Over 10 years have passed, but I ne~er 
forgot the hours of pleasure, sweatmg 
over a hot terminal while that magnificent 
beast sat in air·conditioned comfort 
down the hall! 

Then about a year ago, I discovered that 
computers had shrunk both in size and 
price, and I started planning for o~e. of 
my own (actually, it began as a dlgltal 
clock for the office, but things got a 
little out of hand!). I settled on the 
8080-A 'front pane\' by Morrow's 
Micro.S working into 8K of RAM , , 
with a VDM·} and Morrow s cassette 
board handling the I/O. Incidentally, 
I was very impressed with the quality 
and the performance of George Morrow's 
boards-they go together easily, work 
reliably, and I have only begun to tap 
their capabilities. 

After 4 months of planning, building, 
and debugging hardware, I started playing 
with machine language and getting used 
to the 8080's instruction set by writing 
short subroutines. Eventually I came 
across Denver Tiny Basic by Fred Greeb 
(Dr. Dobb's Journal, M~rch. 76). The 
listing was in octal (essential, smce I only 
had the octal pad provided by the front 

•• ~ If' So . 
-ow 

BY MILAN CHEPKO 

panel at the time), started at 000 000 (so 
no extensive re-write was needed), and 
included such features as a random 
number generator, multiple state~ents 
per line and single. dimensioned vanables. 
All thi; in less than 3K! Even with the 
VDM driver and some 1/0 routines, 

any cards of that type remain in the shoe, 
subtracts one, and returns to the ca1ling 
program. 

I still have over 4K left for programs 
in Tiny Basic. 

All the Blackjack programs I've come 
acroSS seem to require large amounts of 
memory, and generally leave out one 
or more functions that make the real 
game so in teresting. This versi.on allows 
splitting pairs and doubl~ng.down, 
handles all belling, and even mcludes a 
small subroutine that lets the player see 
how many cards or each value remain 
in the shoe (equivalent to what players 
call 'casing the deck'). The listing totals 
138 Jines and just under 3400 bytes. 

Most of the subroutines are self·explana· 
tory, but there are a few feature.s that 
could cause some confusion. FITS!, I 
found that nothing is gained by 
displaying the suits (spade, heart, 
diamond, club) since they don't affect 
the point value of the cards. The refore 
each deck contains 4 aces, 4 deuces ... 
4 kings. Lines 22-27 set up a 'shoe' 
containing the desired number of decks 
by establishing array SO, where. e.a~h 
of the 13 elements contains an Initial 
number of cards equal to 4 times the 
number of decks used. A card selection 
routine at line 160 then gene.ates random 
numbers from I to 13, checks to see if 

The insurance routine (line 70) is 
activated when the dealer shows an ace 
at the beginning of play. This is an 
opportunity to protect your bet against 
the chance of the dealer having a Black
jack, although many players consider this 
to be a bad bet in general. 

Standing, drawing, and doubling·down 
(doubling your initial bet in exchan.ge 
for only drawing one card) ar~ qUite 
straightforward, but splitting paus can 
get a little tricky. Basically (no pun 
intended!), you are turning one hand 
of 2 cards into two hands of one card 
each, then playing each hand separatelr 
from that point on. The program IS 
written to allow 'nesting' hands 10 deep 
but I doubt you will ever have more than 
3 or 4 hands in play. To simplify things, 
I arranged to play the highest· numbered 
hand to completion first, then the next· 
lower hand, until all hands are completed 
and it becomes the dealer's tum to draw. 
Since you can have another pair occur 
after splitting one pair, I had to use a 
flag to let the 'deale r' know when a hand 
was completed and prevent fe · playing it. 
Therefore, at the end or each hand. 1000 
is added to the total and stored for use 
later. The dealer knows that a hand is 
finished if the total exceeds 1000. This 
flag is subtracted to re·create the actual 
total for that hand. 

MAY-JUNE 45 



Print instructions 
input "bankroU" 
input #01 decks 

.L 
I Set up shoe 

j, 
Input "bet" I.. 

1 I END I 
Deal 2 cards to 
dealer, one card 
to player's hand 

I. 
Deat second card 
to player's hand 

.I. I Displav player's cards 
end dealer', face card 

J. 
.~'","~~, ~ subroutine 

1 
Player', options 

.I. I. 
I Split pair , I Double.dow~ I I Stand I I Draw I 

.L J, 
~ Create the I I InCrl!8te I Check for I,Oeal one I 

second hand b,,, Blackjack can::! 

L .I .I. 
Deal one 

Close hand I ~:'~:rd t more card 

See if all 
hands have 
been closed 

Draw olltit 
dealer> 17 

rl Check against I 
ellth player hand 

J, 
I Display winner I 

Y Calculate new r( I 
bankroll display 

Tiny Blackjack Structure 

46 PEOPLE'S COMPUTERS 

Blackjack is paid off differently than 21, 
and I needed a special flag to show when 
a Blackjack had occured. If all the 
conditions for Blackjack are met, line 131 
converts the total to 100, then the 1000 
is added as discussed above to close that 
hand. Later, after removing the 1000, a 
hand equal to 100 is identified as a Black
jack, 

Casing the deck is an interesting 
subroutine. I! doesn't really exist in 
casino play, unless you are blessed with 
a memory that can retain the cards as 
they are played. I included it for experi
mental purposes, bul it could be left 
out without detracting from the game. 

I noticed that the RND(O) funct ion 
produces the same sequence of numbers 
when the game is started for the first 
time after being loaded into memory, 
so I included lines 14 · 16 10 randomize 
this function. While any number up to 
the limit of Tiny Basic could be entered, 
large numbers produce excessive delays, 
and for practical purposes I use numbers 
up to 200 or 300, This could be likened 
to having the dealer open a new deck 
when you sit down al his table. 

One note on debugging: to check out 
your version for typographical errors, 
I suggest you replace the random number 
generator at line 160 with IN X, .. this 
will allow you to set up hands of your 
choice, and then see how your program 
handles the situation. 0 

::::::::---- .., 
<t::E ii~uu;!t oz _-z Il. 0 I- X 

.. ---------------------------------- ~----------------~,~ 

I , 
l 

H H h iffi .: .: '"'l o 0 o 0 0 .. '. "'" •• -g,q; , • 0 .< 
~. H 0_ . - .22 ",:s:;::e >. , , 1 ~ - ,: i -} . ' H d • 0-

~(5 ~! o 1: " 
~ 

-. ! -i" 
, 

" -1 • f ! h , 
" , 

• c • 

11 ; i -; 
if • 0 • • " -. 0 

I • • I • 
~ i , 

c 
z • 

·'S.!hi~~!l": 
~i~j~,,],i 
tp~E:I:@1 
~~i OI!o'tl 

'0 §~~~:!i!= -U--'! ~ !o~ 0 1 'i' i-~-~ .! ei'; 
i'~ ¥:;ID 
i~ 't ';:;ii:~ 

, 
0 

'; 
0 • , 
0 

~ 
• • i c 

MAY-JUNE 

. ...: o. 
j~ 
,§ 
1: Wi 
j 

47 

I 
I 
I 

I 



We're pleased that reader Mach has taken 
up the challenges raised by Jacques 
Vallee in a rece'" article. Mr Mach is Sy~ 
terns Analyst/Teclmical Mallager at the 
Detroit Board of Education, and cu"ellt· 
Iy finishing requirements for a Master's 
Degree in Computer &ience at Wayne 
State University. 

I read Mr Vallee's article (Nov·Dec 1977 
issue of People's Computers), 'There 
Ain't No User Scicnce', which was billed 
as a 'tongue·in·check' discussion of diffi· 
culties on computer nets caused by pro· 
grammers and other computer types. The 
discussion seemed less 'tongue.in·cheek' 
than a straightforward list of complain ts. 

Since 1 am a (gasp) Systems Programmer 
on a (booo) IBM machine and have 
worked a number of years in the educa· 

48 PEOPLE'S COMPUTERS 

BY WARNER MACH 

tional environment 1 would like to defend 
the BAD GUYS. I would also like to con· 
fess that I am also a longtime (BA - Be· 
fore Altair) subscriber to People's Com· 
puter Co./People's Computers and have 
my own KIM (so I am not totally mind· 
lessly dedicated to the intimidating .l!ad 
Machine). 

I would like to rebut some of the specific 
notions in the article, but even more I 
would like to expose a sort of curious at· 
titude on the part of certain elements of 
the hobbyist/educational fraternity con· 
cerning the motives of the establishment 
computer people. 

MAINTAINING THE POWER 

TIlis curious attitude is well expressed by 
Mr Vallee and by Ted Nelson (Computer 

Lib / Dream Machilles). The general no· 
tion is based on the following presump· 
tiollS: 
I. Computers are basically simple. 
2. There is a group of people who are de· 

liberately making it difficult for the 
Poor Suffering User (hereafter known 
as PSU) to use the computer. 

This is being done because: 
A. The Establishment Priesthood (here· 

after known as EP) wants the ego grato 
ification of forcing the users to come 
to them for answers. 

B. The EP enjoys the power and control 
which comes of being the only ones 
who know what is going on. 

C, TIle EP is afraid they will lose their 
jobs if the masses learn to fare for 
themselves. 

D. For some reason the EP attracts a par· 
ticularly noxious type of person who 

f enjoys forcing PSU's to perform un
natural and inhuman tasks. 

Control is maintained by: 
A. Inventing secret languages full of 

'Computercrud' (Nelson) and 'Obfus· 
cation' (Vallee). 

B. Creating artificial barriers to easy 
machine access. 

C. Imposing ill·fitting systems. 
D. Being non·responsive and obstinate 

when facing user requests. 

FI NDING THE VILLA INS 

In looking at these charges, we first have 
to determine who comprises the PSU's 
and who is the EP. If I am the Systems 
Programmer on an IBM machine then am 
I really part of the EP because I delight in 
torturing the students and teachers who 
are my PSU's? Or am I really a PSU my· 
self since I am under the Ultimate EP: 
IBM? How much secret lore do 1 have to 
ingest before I cross the border between 
PSU and EP? And how about Mr Vallee 
... does he not sometimes find hinlself in 
the role of EP as he explains, for exam
ple , how to put paper in a tenninal? 

Let's assume for a minute that, in fact, in 
the course of a computer·associated ca· 
reer that a person will likely find himself 
at various times on one side or the other 
of the fence. Let's go even one step fur· 
ther and pretend, for the sake of argu· 
ment, that computers work pretty much 
like everything else in our experience; 
other pieces of machinery like, for exam· 
pie, cars. 

FACING REA LIT Y 

1. Reliability is a function of experience. 
In the early days of cars if you wanted 
to go any distance you anticipated lots 
of flat tires and breakdowns (sort of 
like system crashes). As more experi
ence was gained, cars became more re· 
liable. 

2. Economics detennines what is possible. 
It is particu larly astonishing to me that 
much of the villainy ascribed to the EP 
is s.imply a matter of economics. In 
addit ion to the direct economic aspect 
(how many programmers are we will· 
ing to hire and what kind of resources 
are we willing to devote), economics 
appears, directly or subtly, in almost 
anything that does or does not get 
done on a computer. 

The other day I saw a PLATO tenninal 
for the first time ... an incredible ter· 
minal with incredible software sup· 
port. Of what use is it for me to com
pare that $6QOO·$10Cl00 tenninal tied 
to a $iOOO·a·month network with my 
ADM·3A tied to a $IOO·a·month 
network? 

For some reason the same people who 
buy a Ford and don't expect it to act 
like a Fiat expect that all software 
should be able to do anything . . . 
perhaps this is because (a) products of 
thOUght are somehow 'less real' than 
manufactured items and (b) it is 
'theoretically' possible for any soft· 
ware to emulate any other. 

3. Programs are made by people. 
If you have to 'list' your file when you 
are not under the editor and you have 
to 'print' your file when you are under 
the editor there are two possible ways 
this might have come about: 
A. Conspiracy theory: 

'OK folks, how can we confuse the 
user and maintain our position in 
the EP .. .' 

B. Project management not as tight as 
it should be: 
Joe Epsidic of the Editor Team talks 
to his superior: 'Hey Pete ... What 
command should I use to type oul 
the file?' 'I don't give a danm ... Use 
"print" ... When you gonna finish 
that routine?' 

Larry ASCii, of the File·Control 
Team, is simultaneously talking to 
the programmer across the desk ... 
'What you think we should say to 
type out the statements?' 'How a· 
bout "list" ... it's easy to remem· 
ber.' 

4. Humans are bad prophets and have 
access to limited infonnation. 
The IBM 360/370 ope rating systems, 
for example, were ve/}' large software 
projects. In order to accomplish the 
task, each programmer (as in any large 
programming task) was given a small 
portion of the code to work on, along 
with infonnation as to the parameters 
which would be passed to him and the 
parameters which he should pass out 
of his program. A programmer work· 
ing in such an environment codes 
things like error messages in such a 
way as to make them meaningful with· 
in his portion of a larger project. Not 

having a broad overview of the system 
as a whole, he has no way of predict· 
ing exactly how his coded message will 
appear to the end user, and indeed no 
precise idea what it will ultimately 
come to mean! Under these circum· 
stances the best the systems program· 
mer can do is to document in detail 
the conditions that may cause the 
message to appear while avoiding over· 
Simplifications that may well be mis
leading. 

ANTICIPATING 
USER FRUSTRATIONS 

But enough of defending the coders of 
operating systems. Let's move on to how 
to 'anticipate' user frustrations. 

According to the article: 'Never start im· 
plementing a system until the end users 
have been identified and given easy access 
to the designer.; . . .' This is a sort of 
motherhood-and·apple·pie statement, but 
what does it mean? The implication is 
that the EP is in the habit of arbitrarily 
designing (or mis-designing) systems 
which it then forces down the throats of 
the PSU's. As anyone who has designed a 
system knows, one of the very most diffi· 
cult things to detennine is what the end
user needs. The reason this is difficult to 
determine is 1101 (generally) because the 
EP prefers to misdirect its energies as 
opposed to meeting the needs of the PSU, 
but rather because the user simply 
doesn't know what he needs and what the 
computer can and cannot do for him. 

'Aha!' I hear someone exclaim. 'Spoken 
as a true patronizing member of the EP.' 
But it's true, and there is a large amount 
of literature devoted to the slippery prob· 
lem of how to achieve a reasonable inter
face between the user and the computer. 
It is fair to say that, far from resenting 
the intrusion of the user, a systems ana· 
Iyst of any competence would probably 
bathe in oil (wann) the feet of a PSU who 
would come to him with an accurate 
documentation of the system in a fonn 
which could be readily implemented on 
the computer (said user presumably 
having ironed out all political problems 
which, often as not, are the biggest diffi
culty). 

In Vallee's article he was talking about a 
computer net. If this net is to be available 
to anyone with the money and inclina 

MAY·JUNE 49 

i 
I 



tion to sign up for the service (as opposed 
to a net initially financed by a specific 
group or groups for a specific purpose) 
then how are the end users to be identi
fied in advance of the several-year imple
mentation effort? .. _ Once the service is 
available then the clients will appear. To 
ask them to appear in advance is some
what trickier than trying to talk to the 
drivers who will be using a proposed free 
way_It almost sounds as though Mr 
Vallee bought into a net after it was al
ready in operation and was irritated be
cause he wasn't consulted in its design! 

Another user frustration indicated is ex
cessive non-<:omprehensible typing which 
is required_ I am inclined to agree that a 
user should only type what is necessary 
(does anyone disagree?). The interactive 
systems I am familiar with (VM, MTS, 
TECHNOTEC) require the user identifi
cation and password, which is a mini
mum. I think there are a lot of systems 
like this_ 

I somewhat disagree with the notion of 
'. __ never give him (the PSU) an output 
that is outside the task context .. .'_ I dis
agree because in many instances a precise 
explanation of the problem is required 
for a solution, and a more precise state· 
ment for the sake of the EP may be less 
Wlderstandable to the PSU. The question 
is whether the more precise statement is 
eventually to the PSU's benefit. 

Generally a conversation with a PSU runs 
something like this (on the phone): 
PSU: It doesn't work. 
EP: What doesn't work? 
PSU: The computer. 
EP: What are you running? 
PSU: Not running anything ... It doesn't 

work. 
EP: I mean, were you trying to run 

BASIC or send a job to the batch 
machine, or what? 

PSU: I just dialed this number glued on 
the lenninal and it doesn't work ... 

EP: Did you hear a high-pitched tone 
when you dialed? 

Etc. 

Believe me, even though an output may 
mean nothing to the user it very frequent. 
Iy means a whole lot to the EP represen
tative who, hopefully, is trying to help (it 
may very likely be the only scrap of con
crete infonnation around). There may be, 
perhaps, other ways of getting this infor
mation to the EP than have the PSU con-

50 PEOPLE'S COMPUTERS 

vey it verbaUy from his tenninal printout, 
but this is, by far, the easiest and the 
quickest. I wonder, too, if a more precise 
explanation of a problem may be irritat
ing to the PSU initially but might be ap
preciated as he gains more experience 
with the system. 

Another issue raised by Mr Vallee is the 
so-<:aUed 'wide angle faUacy'. I find this 
notion rather at variance with the other 
things he has said. Evidently his group 
arbitrarily and non-democratically decid
ed to restrict the commands available to 
the PSU's for-their-own-good (I doubt if 
they consulted with the PSl.l's about this 
... The usual inclination of PSU's is to 
ask for everything they ever heard of). 
Apparently, a determination was made of 
the most frequently used commands and 
only those pages of the manual were 
passed out 10 the PSU's ... He seems to 
regard this as a major accomplishment. 
Except for. presumably, a little disk space 
did it hurt that the additional, unused 
commands were available? Is it possible 
that more experienced users of the net 
did use the additional commands? 

Users generally pass through three stages: 
I. Need help stage: At this stage many 

prompting and 'help' facilities should 
be available to the user. Commands 
should be few and simple. 

2. Experienced stage: At this stage the 
prompting should be infrequent. The 
user should be provided with abbrevi· 
ated commands and shortculS. Special· 
ized commands can be introduced. 

3. Super whiz: User is familiar with 
whole baltery of specialized com
mands. Uses abbreviations for all com
mon commands. Perhaps provided 
with an 'extensible' facility that allows 
him to tailor his own commands. 

The stage reached by a user is determined 
by the amoun t of experience in tenllS of 
the number of hours logged and frequen
cy of use. Professional users of the net 
(who most likely would be catered to -
economics again) would be dissatisfied 
with a restricted subset of commands. 

THE CASE OF THE 
INDIFFERENT EP MANAGER 

I was amused by the dialog between a 
PSU who wanted to change the message 
given to the user during an interrupted 
session and the manager of the network 
facility. Mr Vallee presents this as though 

the EP manager, in the perverse manner 
of EP people everywhere, saw it as his 
duty to mold the PSU into an unnatural 
shape. Since I have been on the opposite 
side of the table from a PSU from tinle' 
to-time, I know what was going through 
the head of the manager: 
1. There are X (units, tens, hundreds) of 

PSU's out there in user land, all of 
whom have at least one idea of how 
the system should be changed. If the 
Ooodgates were 'opened, with our pre
sent staff we would be programming 
and documenting to the year 3000. 

2. Any programming change, no matter 
how small, endangers Ihe whole net. Is 
it worth endangering the nel for this 
request? (Remember from Me Vallee's 
survey that system crashes are the 
thing that disturbs PSU's the most. .. ) 
It doesn't lake long for a programmer 
to develop the general philosophY of 
'If it works don'l change it'. 

3. It is difficult to predict how long it 
will take to make a programming 
change (even a simple one). There will 
be the expense (economics again) of 
the programmers' salaries, plus docu
mentation costs, plus documentation 
distribution costs. 

4. This change may be important to this 
user but how 'visible' is it? (It may be 
better to ask for major enhancements 
to the system than minor improve
ments that can't be used to sell any
thing ... ) Maybe other users will be 
unhappy with the change. 

I've got to say that the manager's PR 
technique needs improvement. My tech
nique is to pull out my 'list of things that 
need doing' ... I then say, 'That's a good 
idea, but I don't know how soon we'll get 
to it' as I add the new entry to the bot
tom of the list. (This is a real list, by the 
way. It is conceivable, though unlikely, 
that all entries will eventually be pro
cessed). 

Has there ever been a PSU who said, 'We 
think that this change is so important 
that we will pay any costs associated with 
implementing it and we will not complain 
if the system crashes as a consequence of 
trying to put it in?' 

THE TALE (OR TAIL) OF THE CRASH 

Another feature of the article which was 
sort of anmsing was the account of the 
system crash. At first J was a little puz
zled why the discussion of what trans-

Continued on page 53. 

BASICS strlnos 
BY FR. THOMAS MCGAHEE 

HII IIHAT'S YOUR NAME?1 MARVIN GOLO'-UH 
NICE TO MEET YOU. MAR~IN GOLDFISH 
00 YOU HA~E IWY H088U:S?? WHAT ARE THEY??? 
SWIMMING LNOEHIIATER 
REALLY III I KNEll A GUY WHO LIKED SIIIM"'IH6 ~DERWATER 
auT HE WASH'T TOO GOOD AT DOING Al'4YTHING. 
WHO t S YOUR K$T '-RIEND? .JOHNNY FLOI.JHI)£R 
00£$ JDHHNY rLOUNOER LIKE SWIHHING tMOEAWATER l.11(£ YOU? 
WEl.L. MARVIN GClLOFISK IT'S BEtN HICE TALI(ING TO you. 
I HOPE YOU CO"'E SAO< AHD TALI( WITH ME AGAIN SOMETIME. 
BRING YOUR 'RI[NO. ,JOHNNY FLOLWOER WITH YOU. 

18 GOSUS 3,e00t REM" CLEAR STRING STORAGE AREA 
28 P RINT "HII WHAT'S YOUR NN'lE1? "'1 GOSUB 1110B01 N-Z 
2S PRINT 
3(1 PRINT "NICE to MEEl YOU. "It Z_Nl GOSUB 28'B' 
35 PRIHT 
.. PRINT "00 YOU HAVE /MY HOBBIES?? WHAT ARE THEn,," 
5' GOSU8 I"eeel H-Z 
55 PRINT 
68 PRINT "REAt.l.YIII 1 KNEW A GUY WHO LIKED "11 7._Hl GOSUB 2Beee 
65 PRINT 
T8 PRINT "SUT HE WASH'T TOO GOOD AT !lOING ANYTHING." 
!I' PRINT "WHO t 5 YOUR BEST FRIEND? ", 1 GOSUB • e81'1B I F-Z 
!IS PRINT 
9' PAINT "OOES "II Z_FI GOSUS 2BBelt PRIHT ,. LIKE ", 
95 Z_HI GOSUB 288'Bl PRINT" LI KE YOU'" 
te. PAINT "WEl.l.. "" Z-NI GOSUB 2808e 
11' PRINT" IT'S SEEN NICE TALI(ING TO YOU." 
12. PRINT "t HOPE YOU COME SAO< MID TALI( WITH ME AGAIN SOMETIME." 
13' PRINT "8RING YOUR FRtENO. "" z.,-, GOSU8 2gAeA, PRINT •• WITH YOU." 
'..-8 PRINT. [NO 
11'188" Z-CN..L( 163(1"- >1 RETU" 
29988 Z-ARGCZ>, Z-CALLI16 •• 21, RETURN 
Je8e~ Z_CALLCI6.3">1 RETUAN 

Many SOL 20 owners have suffered along 
without string capabilities while waiting 
delivery of Processor Tech:S- 8K BASIC 
But Father McGahee found time to write 
a string liandler for BASIC5, so as to give 
"is studellts capabilities for conversa
tional- type programs such as the one 
illustrated on this page. 

Our school recently purchased a SOL 20 
from Processor Tech. I assembled it, and 
we are now using it in our computer 
course here at Don Bosco Tech. We have 
the 8K BASIC on order, but while we are 
waiting for that we have been happily 
programming away using BASICS. One of 
the thin~ that BASICS is missing is 
strings. Too bad, 'cause strings are lots of 
fun to use in programs to provide a more 
conversational feedback and 'penonal' 
sounding program. 

I finally had a few free moments the 
other day (I teach electronics and com· 
puter programming at Don Bosco, and am 
kept fairly busy!!), and I wrote up this 
short Siring-handier which makes use of 
the machine language CALL instruction 
in BASICS. It is by no means an optimum 
implementation, but provides a reason
able flexibility. I will be doing up a more 
useful version soon, but in the meantime 
I figured maybe the guys and gals at PCC 
might be interested in this first version. 
I guess there are a lot of SOls out there 
with BASICS, and not 311 of the usen are 
capable of doing Up their own string 
handlen ... so they might like to try this 
one out until something better comes 
along. 

I assembled my particular version starting 
at 4000 hex (16384 decimal). The 
assembler used was the ALS·8 from Pro
cessor Tech. I tried to keep things simple. 
To input an ASCII string the user does a 
CALL to ASCIN. This routine starts star· 
age at the next available location in the 
text storage area, which is pOinted to by 
LAST. It duplicates this address in BEG 
(for BEGINNING) for later use in setting 
the- BC registers prior to a return to 
BASIC. ( use the SOLOS input routine at 
oeOI F to get keyboard input, then I strip 
off the MSB (parity bit) since otherwise 
rrvs might give us codes different from 
some keyboards. The ASCII is then 
stored in memory and the current address 
updated to point to the next available 
location. At this time (before any 
echoing), a check is done to see if the 

MAY-JUNE 51 



ASCII character was a Une Feed (LF). I 
use the line feed as a terminator rather 
than CaLriage Return (CR), because this 
allows the user to input extremely long 
strings, sud> as entire poems and the 
like!! If it was not a LF then the charac· 
ter is placed in the B register and echoed 
using the SOLOS routine at OCOI9. Since 
the echo causes the A register to be 
changed, but B still has the ASCII code, 
we copy B into A so we can perfonn 
comparisons. A CR will result in a CR, 
LF, and one NULL being sent out. If the 
user has made a mistake, he may type in 
a DELETE, which will cause the program 
to back up the memory to the proper 
place. Input continues uninterrupted 
until a Line Feed is fmally typed. 

When input is done, the present address 
(next empty location) is stored in LAST 
so the next time ASCIN is used it will start 
off at the right place. The ORIGINAL 
BEGINNING of the present text string is 

then recovered from BEG and transferred 
to the Band C registers, since the BASIC 
CALL instruction uses these registers for 
transferring data between BASICS and 
the machine language routines. Then 
there is a RETurn to BAS ICS. You will 
notice that there is a special entry point 
labeled INIT. Upon entry here the DONE 
ponion of ASCIN is used to reset the 
address pointers to the beginning of the 
text storage area. This entry point can be 
used at the beginning of a BASIC pro· 
gram to 'clear' the string storage area. 
(Notice that it does not erase anything ... 
it merely allows us to recycle storage 
space to conserve memory.) 

The ASCII output routine operates by 
taking the address found in the B and C 
registers and setting that up as the current 
address for memory. (The B and C regis· 
ters are loaded with the address prior to 
the BASIC CALL using the ARC instruc· 
tion ... see sample program for details). 
The program now starts extracting ASCII 
characters one at a time and printing 
them. A CR will again result in a CR, LF, 
and NULL, using the same subroutine 
used during input. When a Line Feed is 
finally encountered, there is a RETurn to 
BASICS. The Une Feed is NOT printed. 

52 PEOPLE'S COMPUTERS 

"Ieee 
"Ieee 
"11'11'11'1 
"11'11'18 .... 
"IAI'I0 .... 
"11'100 " " .. "11'11'13 " so ., 
"101'16 " " " .. " CA " .. "I110C " " "I0eE " <leeF " "11'111'1 " ,. .. " CA " .. .. " ., "1016 " " co 
"Ie 19 '" "181.11 " eo 
"IeiC co " ., "IIHF " " .021 " .. ., "182 • .. .. 
"Ie26 " " " "1"'29 " '11'12.11 " .. " OJ " .. .. " .. " " " .. 
.1'131 .. " 22 5A .. 
"1"'3"1 2A 5C .. .. " .. 
.1'138 .. .. " " .. " .. " '103A 60 
"1038 69 
"'83C 7t 
.ltft30 "17 

.ote3E FE 1'101\ 
40"18 CI!I 
.8.1 CO 19 Cit 
ol9"1. 23 
"11'1"15 18 
.1'1"16 FE 80 
."'''111 CC "IE 41'1 "".8 C3 3C "II! 
"II'I.E 06 eA 
"I05e co 19 C8 
... 053 e6 ee 
.055 co 19 ce .. " "11'159 
"Ie5A 
"IeSA 
.. SA 
"I85C .. " "Ie5F .. " • 1'161 
• 1'162 
.063 

ASCIH 
ASCIO ,." 
" DO" 

" " 
63 ., 
" •• .. .. .. .. 
•• .. 

·I'I8A 
.83A 
"Iesc 
48.E 
.e31 
402E 
.886 

." .. T .. , 
LAST 
ou, 
", 

"11'1510 
"Ie3C 
"11'163 

"II!Ie0. 2A SA 
.811'1. FE eA 
.028' 7F C2 
.831'1' "18 22 
40"1e, CB co 
"II!IS8' co 19 
"11!1681 9a ae 

.. 
CA 

" SA 

" c, .. 
.. 
" •• ., 
" " .. 

8111'1 
0155 
8128 

81'118 
81'128 
0025 
I'IA31'1 
1'1035 
81'1 ... 8 
81"'8 
011'15 
8110 
1'1 11 5 
1'1120 
1'112P. 
8125 
1'1126 
1'1127 
1'1 128 
1'1138 
8135 
81.8 
1'1158 
1'1155 
0178 
0175 
''II 85 
AI98 
1'1192 
8193 
1'1195 
8197 
8ft'AA ... , 
1!285 
1'121A 
0215 
1'1229 
8225 
0221 
8231'1 
9235 

• "ACHt~E LANGUAGE IIOUTHU:S TO ADO STRINGS 
• TO BAStCS VIA "CALL'· INSTAucTlnNS. 
• WRitTEN BY FR. THOMAS MCGAHEI: 
• ELECTRONICS PHD CO"PUTER INSTRUCTOR 
• DON 8'JSCO TECH. PATERSON. NEW JERSEY 87502 
• .... ASCII INI"UT WitH ECHO. 
ASCIN LHLD LAST RECOVER ADDIIESS 

STORE FOR LATER USE 
GEl A CHARACTER 

CHED< STATUS 'N' 

• 
INI I 
• 
"'N' 

• 

SHLD SEG 
CALL I'ICAIFH 
.IZ IHP 
ANI lFH 
MflV ... A 
INI( H 
CPI AAH 
Jl DONE . " CALL 
'0' 
'" " ceo 
J" 

'" CALC ,C< ,C< 
J" 

'" 

s •• 
eC81':rH 
•• s .... 
" "" .. , 
lI.elH 
eC819H 

" " , .. 
H. TXT 

.. A5I< PARI TY RI T 
STORE IN "E"'(lRY 
UPOATE CURRENT AODkESS 
IF A LINE FEED • .• 
••• PREPARE TO RETURN 
PUT IT HI 8 FOR SOLOS .•• 
... so I T CAN ECIfD IT 

IN "A" FOIi CO"pARES 
IF A CARRIAGE RETUIW ••• 
••• THEN DO LF AND NlA..L 
"DELETE" NEEDS HELP 
BACH FOR MOREl 
...8 HAS RIIoC-CSP.CE ••• 
• .• PRINT A 8"CWSPACE ... 

DOUBLE DECRE"ENT ••• 
••• CLEARS BAD DIIoTA 
... AND GEl "ORE I 

SHLD LASI 
'EO 

SAVE FOR N£I(T ""[ 
CO<.O ," 
"" REI 

S., GEl '"OIlIGINAL" ADDII£SS •• 
••• NII) StORE I .. B.C 

C.L ••• FOR A.f\SIC5 L'f\lI(AGE 
BYE- 8Y£ I 

."RQU1INI: '0 OUTPUT StOI<EO ASC II SliHN(;S 
ASCIO 

92"18 
1'12"15 OUT 
0250 
0255 
1)261'1 
92~5 

A27'" 
027!> 
8288 
9285 
0291'1 
"'29S CR 
0399 
8305 
1'1310 
e321'1 
0325 
8326 • 

"" ." ." ." 
'" " CALL .. , 
'" '" C' 
J" 

'" CALC 

'" C"'C ." 
'" 

H. 8 TRAI'ISFEfi ADDI1ESS ••• 
L. C .. oIN R.C Tn H.L 
A.M GET STORED CM .. RACTER 
9 • .11 STOl<E IN B FOR HOW 
BAH LF NOT PI<INTED 
LF MEANS GO "O"E I 
0C01Q" PAI'" CH.f\RACTER 
H SET 'fEW ADDRESS 
A.B NEED IT IN "A'" 
ADH CR NEEDS "ELP 
CR 51') HANDLE I T WI TH CAPE 
OUT GO FOR MORE: OUTPUT 
H.eA" WITH A Cfl YOU GET ••• 
0C019H ••• /I FREE L1 .'fE FEED ... 
8."''''H • •• AI'ID A FREE NULL.·. 
eC8!9H ... TO ALL"" CLEIIH II" 
011.8 NO lRASN. PLEASE 
THAT'S ALL. FnLI(SI 

83ft'1 • STORAGE AREA FOLLOWS 
A3~ LAST OW 1)(T S10RAGE 
8335 BEG OW TXT STORAGE 
83"10 HOP FREE LOCA11ON 
83"15 NOP FIoIEE LOCAT10N 
8358 NOP FREE LOCATION 
1'1355 NOP FREE LOCATlOi'f 
8369 NOP FREE LOCAlI OH 
8365 l)(T DB 98H TEXT STI')RAGE 

1'1210 
A2f15 

8128 8 i1S 9!95 
1'1105 821'15 
0290 
921'11'1 9330 B335 

" .. 
" ,. 
" .. 

"1& CD IF ce CA 1'16 <10 
"17 CD 19 ce 78 FE BD 
81 CD 19 C9 2B 2B C3 
5C .1'1 "1<1 .0 C9 61'1 69 
78 FE 1'10 CC "IE "11'1 C3 
CD 19 ce 18 C9 63 "Ie 

" co 

" " 3C 
63 

" " 23 

" .. " .. " " ., 
" .. ., " 'A •• .. .. 

r 
The NOPs ill the storage area are not 
necessary. I had them there to aHow for 
quick 'patches' should the need arise. It 
also preven IS destruction of the program 
should too many DELETES be accident· 
ally entered. One of the changes that I am 
making in the new version is a check to 
make sure the user does not delete 
beyond the BEGinning of the current 
string being input!! 

The BASICS sample program listing 
shows one way of implementing strings 
using this machine language program and 
CALLs. The user must first load this 
string handler using SOLOS. What I anI 
doing at present is have my students 
write three short subroutines in BASIC 
up at the high end, say at 10000,20000, 
and 30000. TIlese subroutines contain the 
necessary CALL and ARC statements 10 

access the string handler. This way , 
instead of trying to remember the 
addresses needed for the CALL state· 
ments, all the student need remember is 

• • • 

that GOSUB 10000 inputs a string, 
GOSUB 20000 extracts a string, and 
GOSUB 30000 resets the string storage 
area. 

I have further chosen to arbitrarily use Z 
as the variable name under which all ARC 
and CALL transfers take place. This 
simplifies writing BASIC programs using 
the string handler, since there is only one 
variable name to be remembered. For 
example, to input a string which is to 
store a person's J1ame, you can simply 
say: GOSUB 10000: N=Z. This inputs the 
string and stores the address of the string 
in variable N. To recover this specific 
string, simply: LET Z=N: GOSUB 20000 
and the string is printed out! 

One caution: no leading and trailing 
spaces are imbedded into the string unless 
the user enters them himself. What this 
means is that if you do not provide such 

~ ~ 
Continued from page 50. 

pired during a system crash. I was puzzled 
until I remembered that the basis of the 
article was the notion that the EP en· 
joyed torturing the PSU. It seems that the 
EP enjoys this so much that it is willing 
to put itself through a great deal of 
trouble for such a tasty morsel. 

What made this doubly curious is the de· 
scription (with a picture yel!) of the 
strange garbage that the terminal prints 
when the system goes down ... Here is 
the evidence folks! ... Look what they 
do to us! 

Mr Vallee is under the impression that we 
EP types have a great deal more control 
over what the computer does when the 
system crashes than I have ever witnessed. 
What to me is a disaster akin to a car ac· 
cident is, to him, just EP sport. Evidently 
the computer should at least have the de· 
cency to type out, 'So sorry. Bit ill here. 
Be back presently.' as smoke curls up 
from the CPU or the read·write head digs 
a furrow through the disk. 

SIMPLICITY REFUTED 

I think that it is important to point out 
that computers are not Simple. There is 

no conspiracy to make them seem com· 
plicated; they are complicated. The con· 
spiracy is to make them seem simple to 
the tenninal user. This illusion holds as 
long 3S everything works OK Gust like 
your car). As soon as something goes 
wrong (the occasions Mr Vallee concen· 
trates on) however, the thin veneer goes 
out the window and the tenninal user 
may be dragged helter·skelter in to the 
underlying reality. 

THE AMERICAN WA Y 

Another notion expressed in the article is 
that the people in charge of satisfying the 
needs of the PSU are failing in their func· 
tion to the extent that they fail to pro· 
vide everything that the end user needs. 
This rather quaint idea is rooted in the 
notion of how American Capitalism is 
supposcd to work. But is it the way that 
it does work or do you have to take your 
car to shop x to get the radio fixed, shop 
y to get the fender bumped out, shop z to 
get the wheels balanced? 

It may be profitable to have someone 
check on individual tenninal users and 
keep them supplied or it may be more 

spaces yourself inside the BASIC PRINT 
statements that may surround the output 
strings, you may find that the siring is 
printed with no intervening spaces, and 
that looks messy. If you find this a 
bother. then modify the program to add 
such spaces automatically. On the other 
hand, I use the fact that there are no 
spaces to good advantage in a game where 
the user puts in a bunch of technical 
words, and then the program combines 
them in various ways to fonn some long 
technical·looking, mind·bending words. 

In any case, the program is simple enough 
to be easily expanded. I can't wait to get 
my hands on Processor Tech's 8K BASIC, 
but in the meantime at least I have a 
limited string capability to play around 
with. Incidentally, I find the string 
handler useful for programs other than 
BASIC. As with anything, the uses are as 
broad as the user's imagination! So 
imagine to your heart's content, and have 
fun! 0 

-
profitable to let them fare for themselves 
and accept a few dropouts from the net. 
If, in fact , people shouldn't be dealt with 
in this manner then the problem should 
be addressed to the political and econom· 
ic machinery rather than computer pro· 
fessionals. 

LET'S BE FAIR 

I realize that it was Mr Vallee's intent to 
deliberately present a one·sided tenninal· 
user view of computers. but I wonder if, 
in moving the article from the original 
journal to People's Computers (which has 
a lot of readers whose contact with the 
computer is only through a tenninal) a 
disservice hasn't been done ... I don't 
know that further 'evidence' of EP evil 
dOil!8S presented to current tenninai users 
in a Simplistic manner serves any purpose. 

It seems to me, also, that Mr Vallee's ar· 
rows are misdirected. Most of the things 
he complains about have more to do with 
economics, hardware failure, human falli· 
bility, and the well·known difficulty of 
managing large software systems than 
'programming·, 'user science', sadists, or 
deliberate attempts at 'obfuscation'. 0 

MAY.JUNE 53 



-

As you can see from this article, tlte 
TRS·80 luzs plenty o/Ioya/ fans as well as 
a [a;r share of eritia. 

• 

"ON • 

-, , . ..•.. 
,;0' .... 

., ," .. , ......... 

o 

3 

o 
, 

0 , , 
0,>( LOST , , . • 

, 
.. -;( , .. e 

Many thanks to Oyde Farrell {or his 
TRS·80 Wumpus program. The Wumpus 
listing and run and the Tic-Tac- Toe game 
at the right were printed on Radio 
Shack's $599 TRS-80 screen printer at 
the recent Computer Faire in San Jose, 
ct. You press a bunan and whatever is 
shown on the video screen is printed 
(sideways) on a 4-inch wide strip of 
aluminum-colored electrostatic paper at Q 

rate of 2200 characters per second. 

PET ,(OU LOSE 

The system shown at the Fa;re still had Q 

few hardware glitches which caused dots 
10 be randomly printed on the QUtpllt; we 
'cleaned up' the listings /0 improve 
readJJbility. 

In perusing the TRS-80 Catalog I noticed 
one ad that excessively annoyed me; 
unfortunately it's characteristic 0/ many 
Tandy Computer ads. For $1 198 you can 
buy the 4K 'Educator' System, 'which 
is nothing more than the standard 
TRS·80 with 4K RAM, Level I BASIC, 
video display, recorder and the screen 
printer described above. Wllat I object to 
is tile sentence ' ... the "Educator" is 
ideally suited for computer·assisted 
instruction programs: As one who has 
been writing computer-assisted programs 
for 14 years, I can assure you that this is 
not the case. Level I BASIC supports 
little of wIIat most people associate with 
computer·assisted instruction, given its 
almost non-existent stroIK handlingcapa
bi/ities and lack of file system. Such mis· 

54 PEOPLE'S COMPUTERS 

leading advertising claims tarnish Radio 
Shack 's image and are a disservice to 
those misled by them. 

Phyllis Cole, Editor 

In response to your call ror reports on 
the TRS-80, and also due to several 
'negative ' commments in your Jan· 
Feb issue , I am motivated to rally to 
Radio ;:,..iack's derense. 

First, in Mr McCarthy's report, he 
mentions a $100 down payment required 
for a pig- in -a-poke machine. Perhaps 
the Radio Shack dealer he spoke with 
was ill-infonned , but I was told that 
because there was not much informa· 
tion available on the TRS·80 at the 
time (about as much as there was on 
PET) a $100 deposit was requested 
that would be completely refundable 
if I was not happy with the product 
when it arrived (is this caveat emptor?). 

Secondly . I ordered my TRS·80 with 
4K of RAM but soon decided that 16K 
would be more to my liking. I changed 
my order (no problem!) and received 
my 16K machine at an increased cost 
of only $289 (are you listening Commo
dore?). 

I have had my TRS·80 about a month 
now and have found that although Level 
I Basic appears to be limited at first 
glance, it has some 'hidden' capabilities 
that make it more attractive than a simple 
overview might reveal. Still , I am anxious 
to see what Level II can do for us. 

Finally, I think it is commendable of 
both Radio Shack and Commodore that 
they have made the best (least expensive) 
contributions yet to providing computers 
for the average man. Bravo!! 1 look 
forward to seeing TRS-80 programs 
in the pages of People's Compllters and 
would be delighted to submit a few 
myself. And than ks fo r yOllr many 
contributions, long may they continue. 

Clyde R Farrell 
Walnut Creek , CA 

r 
WUMPUS 

I I'EEL A r.;~"FT 
~,:,I.' HF'F. II-: {~VE 17 
TliUltl'LS lEAL TO CfI"ES"} 16 11;'1 
C.') o;Or,£TI-'IHr.?S 
f H'~E t,ll'IBEJ;''> I e. 
N I :080'1 

'! M'RI)\J~ Lff T 
IJ:t FI,RTltOUAIiE *1:* 
'(OU ",,"E It, CAVE P 
OOFS. \'OU JU~T I"ELL INTO AtJ llNOERr.r.:OUtlO POOL 
OROf'H;tI AR~aWs , 

3 ~FFO~$ LOST 6 ~RRnW& LffT 
11't;IIEL~ LE~O TO tAI,£S 7 16 t8 
00 50H£THIHC"_ 

The o bjec t of WUMPUS is to descend into a labyrinth of 
caves to hunt a WUMPUS and re turn to the surface with 
your celch, while coping wilh Ihe mWlY hazards Ihat 
befall you during your adventure. In th is Wlnion, each 
turn you may 
, . Proceed ... to a new cave . 
2. $hOOt ... into a connecting cave. 
3 . Count ... the number of arrows that you have. 
4 . Exit . .. from the caves i(you are in the exit cave. 

leVEll I BASIC leu you assign 8 valu8 to 8 variable and 
Ihen lite r U!le that variable as e numerical input . This is 
why you can respond with 'P' for Proceed instead of typo 
ing '1', as ' P' W8S 8$$igned 8 value of ' " in line 2475. This 
makes the game more enjoyable because YOU don't need 
10 remember what number means what comlT\8ol'ldl 

Level I BASIC does not suppon 2-d imen$ionat arreys but 
I've ' simulated' them using the l -dimensionat array i~ mv 
WUMPUS game. I calculate the correct inde)( for Ihe 
l ·dimensional array by using thll S/IICond parameter of the 
" ray as a multiplie r f~ the first parameter, and then 
adding the second parameter back In. For example, if an 
array in a program is dimensioned as A!20,3) end you 
were looking for the data contained in A(J, K), you would 
look in AI3·J+KI. So A/4, 2) is A!3·4+2) orA/14),in 
oor single dimension array. This idea is further exempli
fied in line 70 where our 'two-dimensional' "ray is filled 
with the requi red data. 

Line 4210 shows Level I BASIC's method of using 
Boole8lllogic ; .+' means 'OR', '.' means 'AND'. 

AI'Ol) i, the cave '1'00 are in. 
A!I02) is wheAl the WUMPUS is hiding. 
AI103) and All 04) are caves wilh bottomless pits. 
A! 1 05) end All 06) are caves containing wperbats. 
A!107) is a blocked cave. 
AllOB) is the exit cave. 

Level I abbreviations used in the lining are: 
RET. - RETURN IN. - INPUT N.- NEXT G.-GOTO 
GOS. - GOSUB P.-PRINT F.- FOR T. - THEN 
Also, spaces have been delell.'d 10 conserve memory. 

WUMPUS and o the r programs, ir'IC luding STAR TREK, 
are lIVaiiable for LEVEL I users Ihrough 

Farrell Enterprises 
PO Bo)( 4392 
Wainul Creek, CA 94596 

, .. Cts 

" ,. P ·WELCOME TO 'HUNT THE WUMPUS'- P 
Y_I M .. a 

'" '" ". 
F.J-IT02a F K-tT03·READA(3*J+K)'H K M J 
OATA~, .5,8,1,3, la,2, 4, 12,3,:5,14,1,4,6 
OATA5,),I:5,6,8,17,I,7,9,6,10,18,2,9.11 

'" 24D 
290 

'" '" , 
'" 4S~ 
Ze0~ 
20~a 
2966 
2eea 
2l0e 
210:5 
21la 
214e 
2 1.58 
22e8 
22 1e 
2228 
2239 
2240 
2;':::;11 
2448 
<'''S0 
24?~ 

2480 
«'5ae 
~5Se 

2560 
2~7e 
25ge 
'Jeae. 
'Je18 
'Je28 
3 138 
313!i 
J 140 
3150 
3213 
3220 
3370 
13:'H~ 

336'5 
3425 
'Ieee 
'lose. 
4128 
4218 

'.i2l3 
4220 
4260 
4265 
4<::70 
42ge 
429'O 
Hea , 
4418 

e 
4~8a 

4::lle 
4.52a 
SDeD 
'580:5 
!ie l e. 
S£';<'O 
';e30 
51)40 
59t'l0 
:591(1 
:!Inll 
'!iSl3l 
6HI(l 
6U,",1 
7730 
8S8e 
8Se~ 
6810 
8S I .5 
ee2e 
9aDa 

OArAle, 12,19,3,11, I), 12,14.29, 4 .13, 1:5,0:;, 14, 16 
tlA TA ~ :5, 17,28,7,16, 18,9,17, I 9, II, IS, eo, 1),16,19 
w .. a F_W "'''W'L'' 19 0 ,F .J><.no, A(L+J)-RHO(e9)'N J 
f J- IT07 F .K-JT07 IFJ"KT 330 . 
IF A(L+J}-A(L +K)THEHC: '1 0 
1'1 I(' H .J A-:5'A(L-+8)_A<L+l) P ,P."ENTRANCE IS tN CA\'e:-",A(L<8 

IF~HD( 1 9})4COS 3370 
tFRHO(Ie.O)(8GOS 5&0e 
p F' K"IT03 F J"'2'!'OE;'IFO'<((A(te!>:t3)+KH>A(L+J')T 211e 
ONJ-1C.2066,26BO,28S8,2Ieo,210e 
P "I SMELL A YU~PUS·'C ?110 
P ., FEEL A ORAFT",C 211& 
P "BATS NEAR8y",e.2110 
P " I SEE DAYLIGHT!!" 
H l'N K'P "YOU AI<E II I CAV("J;(L+l) 
J- t Hi( RNO( 8 )'40) I F< ,1"'0)+( J}, )THEI-I2440 
ONJCOS.2cBo,e21B,222&,2220,2230 ~24~,2e~6 G 2446 
P "AHAI .IoIU~PUS TRACKS! I" RET 
P "AHAI FOllHO Atl OLO ARROW, LUCKY YOU" 'AwA+l 'R£T 
P "OOPS, SLI PPED ON SO~IE LOOSE GRAVEL" C :590e 
P."OOPS. YOU JUST fELL IHTO A-H UNOERCROutm POOL"'G 5900 
P "TH I S L OOKS LIKE A NIC E CAVE, LET'S STOP FOR LUNCH" RET 
P : T .. K£ CARE WI TH THAT FLI<SHLIC.HT! I" PET 
r TUNHELS LeAO T(I (;AVI::$·; F Q-IT03'P A(A(lBi "3+Q); M Q 
trJ·3eTHENQ"'A<le::;)·c 4269 
S-"(:_2 P-3.E_4 ,., 
"'''111'' 1 P Ht ·00 SI)II[£THII-IC'jQ IF(I-SrHEN3aetl 
I F'Q-CTHEHJ220 
I F( "'-E )t.( A( le.I )"A< 1(HOI) )THfHMe0 
IFO-PTHEH48ae 
C 2:5eO 
iFA<IP."WHA T ~lTH? OUI'lNY" C 390 
IN. ·CAVE fiUMBER"; Q. F K_ t T03 IFA( A( 101 )n+K ~"Q"HEH3130 
H K'P ~HOT POSSIBLE" G 30Hl 
A~A-I'IF'A<0THEHA .. e'G 3220 
I FQ()A( I 02)THEHP "10SSEO" C 3215 
IFRHO(IC,(7T P "YOU COT THE WUl'ltl'S' F"F'I A{IO;?)"O'f, 4.10~ 
p ·YOU WOUHOfO THE Io/UI'lPUS· 
GOS .3:<'0 
P A, "ARROWS LEFT" G 39£1 
IFl~-ITHEMIH le2)~& J;'ET 
A( 11)2).A«A( !ei!:H:3)+~tlO( )) 
1f(1'« leI hAC 18::!:)h(A( I 92)_.:t( I"::-»T 33S0'flET 
'ET 
I H "WHE~E TO-;Q'f.K-IT03 IFA(A(tel)t3+k'_CTHEN412e. 
".K Ir(l()A(IOI)T.P -~O~ POSSIBLE" G 40ee 
IFO-A(102'P."00fSI BU"PEO A WU~PUSI" C 1500 
IF(Q-A(193»"(Q_A(184,)I' "YVYI1IIEEE FELL lllTO PI'!'" C; 4 

I FQ-A( 107)I' "CAVE ENTRAHCE IS BLOCK!::O' C;OS 5S00'G 3')0 
IF(""J;(te:5»'(il"A(h!6»~ "ZAP SUPERB AT f,HATCH' 'G 42f10 
lHI"'A( 10e)p "E;.;IT "'£ARE>~'" 
Ae 10 1 ,-O'G 39\i 
""'F HO( 20)' IF'( Q",A( IIH )hell"!'!( I filS) he O .. A( 101;» )THEH4ZS8 
('.08 :590a r. 41~a 

JF~HO(Ie.Oh7~; "SE\lAFE OF IT'S A~TE"~ ...0"2 GOS 6100 C 322 

W-I P "HEE HEE HfE. THE 1,!!J~"us· L GET YOU tlEl'.T TI joIE· C. 39 

1I'I,HOe lea)(75C()S 337a cos ~990 G 4,70 
P "TSI<: T8r TSI( THE WU"PU~ GOT YOU· 
P ·j.(A I-'A HA ,(OU LOOSE" C 881e 
P "SU EA~THQUAKE u,," F J-3TO' GOS 61e0 :LJ,GOS :590e. 
A( 182)-R"I0(28) I F(A< 131 )"'A( 162»oo.(H( 182)"A(107»T 5e0S 
1 neliO( 10 \}l T . RET 
(\( l flS)"PHO(20J'F Jz3TI);;> 
lFA(le!l)"M<L~J)T A(100)- RNO<Z8' r. 5030 
H.J'R£T. 
J ... ~1I0< 10)-1 I F(J,,Ai+(,,''0)T PET 
F' "OROPf'EO AF':POWS!!" If'J"SP "ALL AHROli$ FOUNO" 1'<t:T 
A""·-J.F' J "AI<:ROl,I$ LOST",A'""'RROY5 IErT" 
RET . 

IH L ~-' )"PHD( 28, I Fe k( L+..! )"A( 101 ) -". A< L +J , .. flC 108»T 6l aa 
PET 

I' "OR IF YOU RETU~H TO THE ENTJ;:Af4tE CAYE \'OU l4ILL EE." 
P 'OUT OF THE CAVES "" IFF)",P ·GOOl'! HUNTItIC" 
W-F'loee.'M P "YOUR RATINC IS-IW 
!FF"'ep "eETTER LUCK M£XT TII'l(" 
Y"'I "'-a IH "WOULD '(OU LIKE TO TRY ACAIN" ,0 
IF Q-V T CLS G E40 
'"0 

MAY·JUNE 55 

• 



- -
The January-February issue of your 
publication indicates you've had some 
bad experiences with the Radio Shack 
TRS-80 and solicits users' comments. 
Well, here's mine. I've been enjoying my 
TRS-80 for several months, and the 
one time I needed it, got excellent service 
at the Radio Shack repair center in 
Belmont, CA. The current software 
is unbelievably primitive compared to the 
PET's, but with the new software 
announced this week, that situation will 
probably be changed. 

As a learning machine I find the TRS-80 
excellen!. I still haven't fmished writing 
all the possible programs and I'm sure I 
won't by the time the Level II BASIC 
arrives. TIle book leaves a lot to be 
desired. But that can and should be 
remedied by someone (you? me?) writing 
a better book. 

As a start, I am contacting anyone 
anywhere who advertises a users' group 
for the TRS·80. I will probably attempt 
to start a group soon myself, if my busy 
schedule allows the time. And I'll soon 
have programs available, with complete 
printed instructions and documentation, 
at about the same price as Radio Shack. 
I can now offer documentation on the 
Radio Shack BASIC programs I have. 

The neighborhood kids call and almost 
literally stand in line for a chance to use 
the TRS-80, and I find it a lot easier 
to use with its almost standard type
writer keyboard layout than the PET 
with its small keys. My youngest 
operator-programmer is only 7, and 
smart enough to use the level I BASIC. As 
and when I can get a PILOT assembler 
or enough BASIC to try the BASIC 
PILOT in one of your issues, I'll have 
even more of the younger set around, 
I'm sure. 

All in all, I find my 16K system (with no 
heat problems by the way, as the 4K 
version has) a very good buy for the 
money, a very good chance for the 
average ' beginner to get into micro
computen, and a lot of fun. The graphics, 
even in the Level II, are not as good as 
the PET's, but I need a usable keyboard 
much more than fancy graphics. (Any 
truth to the rumor heard today that PET 
is no longer being distributed?) 

Jeff Lasman 
San Mateo, CA 

56 PEOPLE'S COMPUTERS 

8K PET's are alive and well and even 
available off-the-shelf in some Northern 
California stores. Production of 4K 
systems has been discontinued, at least 
for now. 

The fite system for the TRS-80 Level 
II BASIC is improved over the first 
version; it is no longer necessary to 
unplug cables to rewind tape. All tape 
positioning controls (tape start, stop, 
rewind, etc) are under manual control. 
Named ftle s can be written and read 
from tape without manually positioning 
to the beginning of the tape with one 
curious exception: when a new tape is 
put into the cassette drive, it must be 
manually positioned so that no leader 
is showing. The Radio Shack salesperson 
at the Faire said that Radio Shack was 
going to put out a line of leaderless 
tapes. This is plainly the wrong fix for 
the problcm; it gives the poor user the 
choice between non·standard tapes or the 
manual operation. The right fix is to 
redesign the cassette controller so that 
it works with unmodified audio cassettes. 

The bad news is that the names of the 
named mes are limited to one character; 
the universe of available names is thus 
quite small. File read/write status is 
indicated by a blinking/stationary 
asterisk notation in the upper right 
comer of the screen. The single 
character flIe name also appears, but 
apparently only while the file is being 
written or read. No history of files 
previously encountered is preserved 
on the screen. This is unnecessarily 
cryptic and clumsy regard for human 
factors, especially in a machine intended 
for naive users. 

Dave Caulkins 
Los Altos, CA 

I have a number of comments about the 
TRS-80. These are based on a few weeks 
of intensive fiddling around with the 
same maclline that People's Computers 
used for their review. However, before it 
got to me the transfonner blew and it 
went back to the factory for repairs. 

Hardware: The keyboard is fme. It lacks 
rollover, but being only a fast hunt & 
peck typist I wasn't really bothered. I 
liked having the keyboard separate from 
the CRT but I found aU the power cords 
a nuisance. The CRT was adequate. 
I had no trouble with the cassette 
recorder at all: not a single error in 
several dozen LOAD and SAVE's. 

System Software: Mediocre. Also rather 
slow. As a test, I ran the benclunarks that 
Feldman & Rugg used for their Kilobaud 
article (issue No 10, Oct '77, pages 
20-25) on timing comparisons. The times 
were in seconds: 2.5, 18.0, 34.0, 39.0, 
45.5,67.0, 110.0. That puts the TRS-80 
with Level I BASIC number 25.5 on their 
list. A bad showing fo r a Z-80 machine. 

As with many machines, the advertised 
amount of memory is not the usable 
amount. The 4K version of the TRS-80 
has only 3~K for the user (3583 bytes). 
This is good for about 100 lines of BASIC 
depending on how much array space 
you need, how much you use multiple 
lines, and whether you use abbreviations. 

Interestingly enougll, the BASIC looks 
like good old Palo Alto Tiny Basic with 
a few belts and whistles. The string 
capabilities aren't worth two cents as 
far as I'm concerned. It does allow 
point plolting but Ihis feature is as slow 
as the rest, if nol slower. 

Documentation: No real comment here. 
For anyone who already knows BASIC 
it shouldn't take more than half an hour 
to extract everything you need from the 
manual. 

In General: I wouldn't recommend the 
TRS-80. While it does work and is 
reliable, I don't consider that sufficient. 
The system software is mediocre-a 
bad mark for a machine intended to be 
self-contained. Overall, I could find 
nothing exceptional about it. It doesn't 
do anything better than other machines 
and it really doesn't do as much. 

Eryk Vershen 
Palo Alto, CA 

~~:\ 
,-..;;.. ,\ .... ~ .. " 

" ••• :>, .~~.;.~" '::':::;-' .. -_." 
-.~~ 
~~~ '.......-

,-= ...
't~.~!' .. ::
I, -.-" ,.,1; ,." ,::,;",} ... ,.,.,

,::;~, ,;':-~
t· I• .. ·'.}' '~~1; -- ~{;;.'

,r~· -It~:~~ ---~ .~

v

I have owned a TRS-80 for a month and
am convinced the product as a whole is
superior to anything else on the market.
I can think of four reasons right away.
First. Radio Shack is indeed delivering
their TRS-80, as advertised, and is
already following through with a goodly
number of upgrading products. The
company doesn't demand cash-in
advance and it doesn't go seeking
publicity until it is ready to fulfill the
expectations it raises. I care strongly
about this: I waited four and a half
months on a Commodore PET order
and received nothing but a defensive
letter from a marketing vice-president.
Radio Shack is actually fulfilling the
promise their competition has made: an
affordable computer mass-produced for
personal use.

Second, the TRS·80 has the most
extensive dealership network of any
microcomputer. The typical Radio Shack
dealer knows little about the product he's
selling, but he's courteous and willing to
help in any way he can. He's available,
and few micro dealers have his resources.

Third , the machine itself works very
reliably in my experience. It's been quite
a capable system from the moment I
plugged it in. Certainly Level I BASIC
is not a business language, and 111 get
Level II ASAP, but it's sure got the edge
over machine language and the Tiny
BASIC of last year. With all the hardware
and software products already announced,
I feel very well supported.

Fourth, Radio Shack's user's manual
is excellent! It takes a novice owner
step-by-step through a pretty good
first programming course, and does it
gently and pleasantly. All too many
people think of computers as difficuh
and intimidating, and this author reveals
the fun and simpliCity that is the
essential core of all learning.

So, with reasonable delivcry, so many
dealers, a complete and reliable system,
and sllch a good instruction manual, why
do you people have such long faces?
In my opinion the TRS·80 is no less
than revolutionary!

Mark R Johnson
St Louis, MO o

The Dragon, sometimes known as Bob
Albrecht, was the founder of this period
ical way back in 1972. He also edited it
for its first fOllr years lilltil yours truly
took over with Volume 5, Number 3. Bob
has spent the last few yean working with
kids, computers, and calculators in
schools. He's gotten very interested lately
in fantasy games, alld wiJJ continue to
shaTe ideas aboUl them in [ulUre issues.

. fJS:\ ~ PhyllIS Cole ~ _

So! Last issue you read 'Epic Computer
Games' by Dennis Allison and Lee Hoevel.
You are hooked-you want to play or
perhaps even write an epic game. In case
you dOIl't already know where to collect
infonllation on role-playing fantasy
adventure games, here are some info
sources.

rffj, ({'JjP
TSR Hobbies, Inc. 4)
P.O. Box 756 """, A«', ..
Lake Geneva, WI 53147 l//J

.. ~.;..y

TSR invented Dungeom and Dragons.
Try one or more of the following.

• DUNGEONS AND DRAGONS. The
basic game-dungeon geomorphs, mon
Siers, treasure, polyhedra dice and the
0& 0 rule book for levels I to 3. $9.95 +
$ 1.00 postage and handling.

• DUNGEONS. A highJy-simplified
board game version of 0 & 0 for 1 to 12
players. I've played it with kids, 8 years
old and up. $10.00 + $1.00 postage and
handling.

THE CHAOSIUM
P.O. Box 6302
Albany, CA 94706 • • WHITE BEAR AND RED MOON. A
board game in which you are the ruler of
a legendary anny during the battle of
Dragon Pass. $9.95

• ALL THE 'WORLD'S MONSTERS,
edited by Jeff Pimper and Steve Perrin. A
compendium of monsters to populate
your fantasy adventure worlds. Two vol
umes -350 monsters in Volume 1,250
monsters in Volume 2. $7.95 each.

METAGAMIN~·
Box 15346 .
Au,tin , TX 78761 (l,!) Q \$I
• MELEE. A folio game of man-to-man
combat with archaic weapons. $2.95

• WIZARD ... the magical combat sys
tem, a game of magical duels for two or
more players. $3.95

• MONSTERS! MONSTERS] A fantasy
game for the bad guys, in which monslers
get equal time. $7.

GS
For more infonnation, find a hobby shop
that specializes in fantasy games. I col
lected the stuff on this page at:

Outpost Hobbies
224 California Drive
Burlingame, CA 94010

And-watch DRAGONSMOKE for more
Dragon Data.

• THE DRAGON. TSR's magazine of':. o
swords and sorcery, fantasy, and science
Action gaming. Monthly, S 18/year.

MAY-JUNE 57

•

BY PHYLLIS COLE

EDUCATIONAL SOFTWARE
Recently I've gotlen involved in distrib
uling software (as a volunteer) for an
increasing number of hours per week.
So I'm looking at potential distributors
who will distribute the materials in
exchange for paying a royalty to the
school that holds the copyright on the
materials. Many would-be distributors of
software for home computers showed up
at the recent Computer Faire in San Jose.
They all had Olle thillg in common:
they realized thallhe field W3spotcIllially
a lucrative one, but had few ideas about
how to go about exploiting it. Most
potential distributors had some sort of
vague proposition to make, immediately
followed by 'How does thai sound?
What do you suggest?' Those questions
led me to try to concretize my ideas
about what I, as a freelance author of
software, would like to see offered by
a distributor.

My concerns are biased towards educa
tional software, in part because that's
the field in which I expect to be writing.
However, I also believe it is in the area of
educational software that the potential
of personal computers may truly be
realized. By the way, I define education
as broadly as possible - many video games
are educational.

Our educational system is simply not
doing the job that many of us want it
to; more and more parents and students
are finding that the majority of learning
takes place not in the traditional class
room, but in more informal ways, such
as building electronics kits, parttime jobs,
etc. With this realization has come a
hunger for personalized educational
materials both for the classroom and the
family room. And the image of the home

computer as a potential private tutor
comes to mind.

Possible goals for a distributor of educa
tional software might include:
• developing the company's reputation

of having a 'seal of good educational
software' on all its products

• provid ing classroom -tested programs
and classroom-support materials at
reasonable prices

Products would consist of one or more
educational programs available on cassette
tape. Several differing support packages
could be offered-one minimal one,
another for the 'family room educator'
and a third for typical classroom use. The
programs should cover topics suitable
for students of all ages - adult education
is an area that looks particularly
interesting. Nor should materials for very
young children be ignored; systems with
graphics capabilities can be used to pro
duce a variety of pre-math and pre
reading picture-oriented games and
exercises.

Products initially should be developed
for systems whose projected sales are
on the order of 50,000-100,000 systems
per year. Marketing should be directed
at both home and school. Evidence that
owners of home systems are interested
in educational software comes from
results of a recent readership survey for
People'S Computers: about 33% of those
responding to the survey identified them
selves as educators, but 76% of those
replying expressed a desire for educational
software.

Already educational publishers are
distributing reading programs based on

cassette tapes supported by workbooks,
etc. Royalty payments are already
established in the field as a way to attract
and reimburse authors. Various companies
are tooling up to mass produce computer
software on cassette tapes, with the
needed quality control.

PriCing should take into account that
reasonably priced programs have the best
chance of not being ripped off. Another
way to avoid the rip-off problem is to
make documentation so useful that the
purchaser is inclined to buy the
reasonably-priced and easily available
product rather than go to the trouble
of reproducing the documentation.

Reasonable royalty payment to authors
of software are essential if high quality
programs are to be produced on an
on-going basis. For thoroughly docu
mented programs, the standard 10· J 5%
of retail price traditionally offered as
a royalty by textbook publishers seems
fair.

The key to the future of the home/
school computer rests on the quality
of the software and documentation
tha t will be produced for the systems.
The hardware problems are being solved
at a pace far exceeding tl1at of software
problems. It remains to be seen whether
quality programs and documentation that
appeal to consumers can be produced
and distributed. The potential is there:
computers can help fill the demands
heard from all segments of society for
beller education and re-education for
people of all ages. Authors are beginning
to appear with some very interesting
materials; hopefully the kind of soft
ware distributors we need will soon
materialize. 0

A Call for Distributors
58 PEOPLE'S COMPUTERS

RClierend Mokurai Orer/in is a Buddhist
Priesl who moonlighu as a programmer
for his father's company. APL Business
Col/sultallts, Inc. He hilS dOl/e all his
programming so far on (III Amdahl
470 and hopes to gel on all IBM 5100
sometime, and on any microcomputer
that has APL as soon as it comes Ollf.
II should be clearly undentood by all
that he has 110 intention of writing ally
thing called Zen and the Art of Computer
Programming.

With the recently released FORTRAN IV
compiler and the forthcoming APL
interpreter for micrpcomputers, both
from Microsoft, it can be said (again!)
that real computing power is now, if

not in the hands of the people, at least
available to them. Soon it should be
possible to buy a real full.power com
puter off the shelf with the capabilities
of the IBM 5100 portable computer and
a price tag under $1500. The 5100,
priced at S9000, has built-in cartridge
I/O, about lOOK of memory, and a few
other goodies. The $1500 machine will
provide about the same capabilities
at one -sixth the cost of the 5100.

THIS MEANS YOU

To many of you, news of APL for micros
does not seem exciting or even interesting,
because APL has unfairly gotten the
reputation of being difficak to under
stand , usable only by mathematical

,
--rill

wizards, and expensive in tenns of
memory and time - and it makes Bob
Albrecht's teeth rattle. Experience has
shown that tllese opinions are greatly
exaggerated. The experience of IBM itself
is the clearest case. APL was developed
by mathematician Ken Iverson. When
APL was first implemented in the late
60's, IBM did not think they would be
able to sell APL to anyone. IBM did
im'plement APL on their machines for
use in experiments on various aspects
of their operating systems. In order
to get meaningful results, they had to
have a nonnal user load of real work,
so they let their employees use the APL
system as much as they liked, for every
thing from one·line calculations to hours
of number crunching.

MAY-JUNE ••

---- - -

The results amazed rBM and made them
release APL as a program product:
thousands of they- programmers switched
over to APL and wouldn't go back. Even
morc amazing, thousands of people who
couldn't or wouldn't learn programming
before picked up APL and loved it.
Many of them wrote significant appliea.
lions in the first week, even those who had
never done any programming before.

Now one may well ask what can make
a language so attractive that it makes
converts of people who have resisted
IBM's best efforts to interest them in
programming. What arc morc than
15,000 people using at IBM that we
don't have? Why don't we all know about
this, we who 3TC so eager, perhaps even
desperate, for tools which will lei us
bring computers to the masses?

We don't have it simply because it has
been 100 expensive for us, with time·
sharing at S20/hour or more. TIle new
interpreter rrom Microsort will go a long
way toward bridging that gap, since it
will run on any 8080 or Z-80 based
system with 24K ror the interpreter and
8KAOK to work in. The reason we don't
know about it also results rrom the
expense incurred by needing a minimum
or32K or memory.

From the outside, APL can be intimi·
dating; it only reveals its power and
convenience in actual use, as IBM round
out. Just to list the reatures or APL
would take more room than I have, and
would still not give the real reel or the
language. There is no substitute ror
getting on-line and messing around with
it.

USER ORIENTATION

The particular virtue or APL rrom the
point or view or the rrustrated learner
or teacher is the ract that one can get
on the system and play with it , learning
by dOing, without having to know any
more than how to sign on and orr and
how to load wodapaces. A workspace is
like a page in a notebook. Workspaces
can be named and loaded selectively;
some are public, others are private.

There is no known way to make the
system crash; any attempt to go beyond
the limits or the system results in an
error message, and the user can then try
something else. When an error is found
in the middle of a runction such that

60 PEOPLE'S COMPUTERS

execution cannot proceed, the state as
of the last completed statement is saved,
and the location and nature or the error
are printed out. The user can then exanline
variables, run diagnostics, rewrite the
function, and either continue from where
he left off, run the program over again
from the beginning, try any other
program, or force an exit from the
suspended program.

Most accounts of APL power concentrate
on the built ·in functions and the ability
to do vector, matrix, and higher
dimensional array operations directly
without program loops. For many users
this is the most impressive part or APL
power, and anyone who has had occasion
to invert a matrix will appreciate having
a function that perfonns this operation
with one symbol, ' 8 '. People who have
had to give up a project or not start one
because such a function was lacking
will appreciate it even more.

But this is not all that makes APL
desirable, especially to those with no
interest in mathematical applications.
(l don't want to minimize the importance
of powerrul mathematical functions,
eithcr. Until you have a convenient fonn
or some tool, you may not know how
much you have always wanted it.) The
value to the non-specialist comes
particularly from the conven ience or
knowing immediately how you are doing,
and having understandable help in doing
something about it. The literature or
learning has pointed out in great detail
the iIllportance of immediate feedback,
and every teachcr has seen all too often
the ill efrects of frustration and delay on
students' interest and ability to learn.

No one should suppose lhat APL will
correct all mistakes itself or give them
cleaner white teeth. What it will do, to
a greater extent than othe r languages,
is let the user get to work. There is no
problem with duplicating variable names
in subroutines, since variables outside
the runction can be shielded. It is not
necessary to keep track of numerous
parameters because so much looping is
eliminated; subroutines required in other
languages can frequently be replaced
by pmmtlve APL functions. Much
larger and more complicated problems
can be tackled because APL programs
are commonly one· tenth the length
and complcxity of FORTRAN or BASIC
programs for the same amount of
processing (yes! you can write short

readable lines of APL). In short, you
can get on with solving the problem
and spend less time coding and keeping
track or trivia, by letting the computer
take care of much or the drudgery
for you. Computers do all that much
better anyway.

To explain APL in any detail requires a
book. Anyone who is interested in
reading about the language should get
either A Programming Language, by
Kenneth Iverson, the original source of
the language and the acronym, or
APL: An Il1teractive Approf1Ch, by
Gilman (IBM) and Rose (Scientific Time
Sharing Corporation-STSC). The latter
is a textbook which guides the learner
through the language on·line, and
can be used off· line since all examples
are illustrated with actual lenninal
printouts. Both are available rrom STSC
and many computer stores.

FEATURES

One of the prominent features of APL
is the variety of input modes: immediate
execution, function definition, evaluated
input and string input. In the immediate
execution mode, whatever is typed is
carried out when you press carriage
return. These examples show some uses
of APL in immediate execution mode.

APL looks quite conventional when
we perfonn a sinlple addition:

2+2
4

However 3·2+4 evaluates to 18, since
evaluation is right to left without
precedencc. We can perfonn a decimal
to octal conversion by typing '888 T '
followed by the decimal number to be
converted; APL responds with the octal
number.

s :::: 8 T 76
1 f 4

Similarly, we can convert from octal
to decimal. Type 8..1. (ie the inverse
of 888 T) then the octal number to
be converted . APL prints 76, the decimal
equivalent in this example.

8.1114
,- '=,

Here's the type of response APL gives
when you try to perfomt an illegal

operation-in this case, dividing by O.
Note that in the fourth line the • 1\ '

indicates the + operand is the source of
the problem.

5~O
I)OMA I N ERROR

5~O

Function definition mode allows functions
to be written for later execution, or
rewritten at any time. The del character,

'V , is the signal to enter or to leave
function definition mode. Here's an
example or a one·line function for
octal to decimal conversion.

f function name)

-?R.,.CONV X

Next we try out our runction, CONV.
And we find it works-I 14 octal is 76
decimal.

CONV 1 1 4
76

The quad character, 0 ,allows numeric
and character input and output in the
middle of execution, as shown below.

,=ot>lV x..,.O
D:

1 1 4
76

The computer requests data input, and
then executes the remainder of the
line. Quad input is evaluated before
being handed to the functions which
will operate on it; it can therefore be
entered in any legal APL expression:
numbers in any format, function calls,
variable names, and file references among
them.

We can edit CONY and replace the
argument X by a quad. Here's what
happens when our re·defmed CONY
is called.

CDt>lV

D:
1 1 4

76

TI,e quad accepts any APL expression as
input, so in the above example, we could

write 100 + 14 as input and get the same
resuJl.

Quote-quad, rn. accepts a character
string in a manner similar to quad but
without evaluating it. Quote·quad
rejects illegal characters with a request
to try again. Quad will accept a character
string with quotes around it as data,
and quote ·quad will accept a string
without quotes so that one can simply
type the appropriate word, statement
or what have you without bothering
about fonnat.

Next we demonstrate using more than
one statement on a single line. A diamond,
¢" is used to separate statements

which will be executed in sequence. The
first sta tement, 'X:' enters X: as a
character string in immediate mode,
which causes the string to be typed out.
The second statement is ¢ [) ; the
quote-quad accepts our string input,
and the runction ¢ reverses the input
string.

x :
DLLEH
HELLO

'X:' ¢- 4'~

The structure of the APL system provides
capabilities that must be seen to be
appreciated. There are many powerrul
operators and many system fUnctions
which allow for extreme flexibility
in operation. Character data can be
converted to functions and executed,
the character array can be brought in
from any available source; input can be
through quad (nwnbers or expressions)
or quote-quad characters, mes, variables,
and function values. A function can
define another runction or edit one
already defined, then convert it to
character form and store it in a me or
use it as a variable. It can tum a stored
runction into an active one and call it,
and so on and on.

This is where the real power of APL
resides. A set of functions stored in a file
as character strings or matrices can be
called up and executed in tum under
program cont rol, even though only one
or them may fit in the workspace at a
time. The same effect can be produced
in another way by put ting each function
in a different workspace, so that each
workspace can call its own function,
store its results in the rue, and call
the next workspace.

One of the features which makes this pos·
sible is called the latent expression. A
workspace can be stored with anyone
line expression set to execute immediate
ly as soon as the workspace is loaded. The
latent expression can print instructions
and call the main function in a tutorial
program, so that the user need only know
how to sign on and load the workspace.

There are many features of APL that
have not mentioned at all, or have only
barely touched on, such as security pro·
visions, output fonnatting, and the com·
pound operators whose argumen ts are
pnmJllve APL functions and whose
results are other powerrul functions. But
perhaps there will be another opportunity
to write on these and others.

SHORTCOMINGS

By now it should be clear that I am a true
believer. Nevertheless, I am aware of
shortcomings in APL. The error diagnos·
tics could be made much more infonna·
tive; editing facilities could be expanded;
some improvements in the debugging
facilities could also be made. The chief
difficulty with APL is space. The inter
preter is large by current micro standards;
a workspace with nothing in it takes up
4K for stacks and tables. The price of
memory is still tumbling down at 30 to
40% a year, and lots of bright and indus·
trious people are busy writing improve·
ments and enhancements for APL all the
time, so relief is in sight in 311 of these
matters.

GO TO IT

I don't expect to make believers of all
who read these words. There is no ques·
tion that APL is fOnllidable when first
approached. If I have gotten you interest·
ed, I urge you to find an APL system and
get some experience with it yourself. IBM
is happy to demonstrate the 5100 and
5110 to anyone who looks like a
customer, even if only for cartridges or
paper. STSC is equally eager to show off
its APL ·PLUS ® system to anyone who
might be interested in buying time, pro
grams or books rrom litem. They also
sponsor free courses and workshops for
actual and potential users. See your near·
est big city phone book under 'data pro
cessing' for offices of both. When Micro·
soft's interpreter gets into the computer
stores there should be no trouble getting
a demonstration and a tryout. So get on
and get hooked! 0

MAY·JUNE 61

--_._ ----------- --

ANNOUNCEMENTS
16 PORT SERIAL BOARD

Ohio Scientific announces its 16 port serial
I/O board. This board is available for use
on any Ohio Scientific computer system. It
comes fully assembled as CAIO·X where X
specifies number of serial pons on the
board from 2 to J 6. The board featu res
RS232 and high speed synchronous inter
faces which can be mixed in any combina
tion. The communicat ions transfer rate of
each serial port is jumper selectable from
7S to 19, 200 baud asynchronous or 250
to 599 Kbits in a synchronous mode. Each
port is based on a fully programmable
ACIA which is capablc of running both the
asynchronous or fully synchronous. The
interface board is available as a CAiO·X
for $200 retail for the first two ports plus
$50 additional for each extra pori up to
16. Contact Ohio Scientific Industries,
1333 Chillicothe Rd, Aurora, OH 44202;
(216) 562·3101.

FULL ASCU KEYBOARD

The Model 756 rull ASCII Keyboard pro
vides encoding ror all 128 ASCII characters
and confr'ol runctions. The 756'5 line or
accessories includes a numeric pad, custom
cables and connectors. The interrace allows
user selection or parity, positive or negative
logic data and strobe outputs, alpha lock
operation and both D.C. level and pulse
strobe signals. A latching shirt lock key is
included , and all outputs are TIL·DTL·
MOS compatible. TIle 756 is available in
either kit rorm or assembled and tested.
Retail price ror the Model 756 kit is
$64.95, and assembled and tested ror
$75.95. Contact George Risk Industries,
Inc, G.R.I. Plaz.a , Kimball , Nebraska 69145 ;
(308) 235·4645.

62 PEOPLE'S COMPUTERS

PET -488 BUS CONNECTOR

The PICKLES & TROUT PET ·488 cable
assembly makes your PET Computer plug
compatible with any IEEE·488 device.
The inexpensive PET Computer can thus
become the controller ror a wide variety
or electronic test equipment and computer
peripherals that can talk to the IEEE·488
bus. The cable itselr meets all specs ror
shielding and cross·talk and is 18 inches
(.4501) long. Price is $30. Contact
PICKLES & TROlIT , PO Box 1206,
Goleta, CA 93017.

..t.Q..t.O&o..t.o..t.o..t.o..t.o..t.o..t.oAQ.A.Q..t.o..t.o..t.o

MAILING LIST SOFTWARE

This modular mailing list package sorts on
zip code or title address, merges files or
extracts sub·files, and prints envelopes and
multiple·column labels. The complete sort·
ware is $75 on a single density CP/M disk·
e tte, in either Microsoft BASIC or Com·
mercial BASIC. Contact the Center ror the
Siudy or the Future, 41 10 N.E. Alameda,
Portland , OR 97212; (503) 282·5835.

MAILING LIST PACKAGE

The ComprehenSive Mailing u st Package
#ML-INS enables the user to start and
errectively maintain one or more mailing
lists. Operations in clude: Add , Delete ,
Search, Sort, Auto ·Sort, and Sequential
Printout. Features include: user-selec·
table deraults ror ease or entry, user·
selectable number or labels across page
ror dirrerent printers and label shee ts, and
user· selectable 3 or 4 line add ress ror each
independent entry. The program set is
written ror convenience and ease or use.
Available with complete documentation
and North Star diskette ror only $25 PPO.
Delivery is rrom stock. Documentation
package only is $4.50 PPO, rully rerund
able with order for diskette. A SWTPC
disk version will be available soon. Order
rrom: Williams Radio and TV , Inc,
Computer Division , 2062 u berty Street,
PO Box 3314, Jacksonville , Florida,
32206.

FLOPPY FILE SYSTEM

KSAM is a file management system
designed specifically ror floppy disk
microcomputer systems. Random storage
and retrieval or records is based on the
contents or a user·defined data field
within the record which is called the key.
The system supports sequent ial access or
records starting at any pOint within a fil e,
random access by partial key and random
access by relative record number. Sequen·
tial and random access commands can be
intemlixed freely.

Space is automatically allocated to the
file when records are added, and
reclaimed when records are deleted.
KSAM80's burrering techniques make the
average retrieval tinle ror any record sig·
nificantly less than the time required to
perrorm the same access by track and
sector address. A number or utility pro
grams are available as part or the
KSAM80 package.

KSAMBO was originally developed under
Zilog's ZSO OS 2.0 but can be easily im·
plemented in many existing microcom·
puter operating systems. For additional
inrormation or personal demonstration
contact EMS, 3645 Grand Ave, Suite 304,
Oakland , Calirornia 94610; (41 5) 834·
4944.
Ao..t.o..t.o..t.o..t.o..t.o..t.o4o..t.o..t.o4().A.()6.o..t.o

BUSINESS SOFTWARE

This business package includes a General
Ledger package, an Accounts Receivable ,
Accounts Payable, and Payroll package, an
Inventory and Manuracturing package, and
a Mailing list package. Features include
the ability to print a variety or checks,
invoices, purchase orders, and mailing
labels. Required equipment includes a line
printer (Okidata 22 prererred), a ternImal
(Soroe 10 120 prererred), Dual North Star
disk drive system with North Star BASIC
and 32K memory. The $295 package is
available rrom Aaron Associates, PO Box
1720A, Garden Grove, CA 92640; (714)
539·0735.

STAR WARS SIMULATION

The Star Wars program rrom Objective
Design is a true, real time simulation.
Under player control, ships move in three
dimensions to create a realistic simulation
or actual space flight. Objects increase in
size as the ships approach and diminish as
they pass. Weapons, deflector screens,
and a directional control joystick are
implemented in each ship. True to the
original storyline, ships or the Rebel
rorces must pass through Imperial defen·
ses and Tie·fighters to enler a channel on
the Death Slar. Ir they can avoid a crash
into the channel wall and avoid the gun·
sights or pursuing ships, they have a
chance to destroy the Death Star.

The game requires the high density graph
ics display provided by Objective Design's
Programmable Charactcr Generator. This
S· 100 card can be used with the Proces·
sor Tech VOM or SOL, Polymorphic
Systems VTI, Solid State Music Video
Board, and other video boards using the
Motorola ramily or 9 x 7 matrix gener
ators, and sells ror S169.95 kit, and
$2 15.95 assembled. Written in 14K or
8080 assembly language, the program
code is being offered on Tarbell and
CUTS tape. Game rules and instructions
ror assembling the reqUired ship control
boxes arc included in the total price or
$7.50. Contact Objective DeSign, Inc.,
PO Box 20325, Tallah assee, FL 32304;
(904) :!24·5545.

APPLE GOES TO SEED

The 'Apple Core' is the new San Francisco
Apple users' group. To qualiry as a memo
ber or 'The Apple Core' you must own or
regularly use an Apple in any memory
configuration. You must also pay dues,
the amount or which is yet to be estab·
lished.

Sorry to make the membership require
ments so tough, but we gotta keep the
rirr·raff out some way (would you want
an Altair to move in next to you?).
Contact Scot Kamins, SF Apple Users'
Group, Box 4816, Main Post Offi t;e, San
Francisco, CA 94101.

TRS·80 USERS GROUP

The TRS·80 Uscrs Group or Eastern
Massachusetts expects to be a popular
and userul clearinghouse and generator or
activi ties concerning errective use of the
TRS·80. It solicits inrormation on all
TRS·80·compslible hardware and sort·
ware. Interested TRS-80 users are invited
to attend mectings, held 7:30 p.m. on the
second Wednesday or each month.
Contact TRS·80 Users Group of Eastern
Mass., c/o Miller, 6 1 Lake Shore Road,
Natick, MA 01760; (617) 653·6 136.

JUNE 6·8
ANAHElM ,CA

The 1978 National Computer Conrerence
will reature a Personal Computing Festival
to take place June 6·8 at the Disneyland
Hotel complex in Anaheim, CA. Both
one-day and three-day registrations will
be available ror the Festival. Inrormation
on NCC 78 may be obtained rrom AFIPS
Headquarters, 210 Summit Ave,Montvale,
NJ 07645 or by calling (201) 391-9810.

.o..t.o..t.O.6.ClAOA~()A.O.6.()AO

JUNE 23-25
OETROIT,MI

The MACC Computerrest '78 will be held
at the Detroit Plaza Hotel June 23-25,
1978. Conrerence Chairperson is J im
Rarus. Write to PO Box 9578 North End
Station, De troit, MI ; (313) 775·5320.

.().6.Cl4.~o..t.o..t.0.6.0.6.ClAo..t.o.6.0.6.Q.6.0.6.0

JULY 22·23
ARLINGTON, VA

Several thousand people are expected to
attend Amateur Computing 78, a July 22·
23 microcomputer restival to be held at
the Sheraton National Motor HOlel in
Arlington, VA. nus event is being spon·
sored by AMRAO, a technically oriented
club or radio amateurs and computerists ·
in the Washington, 0 C Area. For rurther
inrormation, wrile AMRAD, Box 682,
Mclean, VA 22101.

AUG 22·25
BELLAIRE, MI

The Intemational Conrerence on Parallel
Processing, sponsored by IEEE Computer
Society and Wayne State University, will
be held August 22 · 25 in Bellaire, Michi.
gan. Contact Proressor GJ. Upouski,
Deptartment or Electrical Engineering,
University of Texas, Austin, TX 78712.

OCT 10-12
sAN FRANCISCO, CA

The third USA·Japan Computer Conrer·
ence will be held October 10·12, 1978 in
San Francisco. This marks the first time
this gathering is to be held on American
soil. Contact Proressor Edward J .
McCluskey, Digital System Laboratory,
Stanford Un iversity, Stanrord , CA 94305.

MAY-JUNE 63

