
//
t L)~ L CO /t-» -c-ot^ '•^7 •7

''/oc.

17

£<JCUL. <**
0

G / — -

<1-̂ JL"C-aS7~/7 ^ Zm^ab* *A*.

/.
i s f j * i s f j *

„/
- f 9* ^ ^ < C M f

< lifi -«^0< 0 \ (T /

"2__ <*- ̂
-x

C£<Ĵ A

'A-r

& . . - ,

0

r

• c4^ g t.M

...

4^

/ tre£+* 'o** t/i/'/'CK" '

- t~*&S US~+**-*fst* f-OL-Ajt"*"' *

&3sf, 2>~*S/y MP y £"~S" J.

• ^Ui fa> t*J-fi4 / ŷ -e ^*«*-*i ~"

* <su*y uts***/t/ /vwru.'<^<

*A./tJ- ŷ y

y*^r -*£<£< £J>4'/a

. is*v#'^zz5) j

•«»—I.

»// «««^/? ^ «•

— /W 2^" ^,,/tS *> r »•••

'" ' /* **+x

-Lpl

'A i/»n &&**++ i

A74"1 y—

I ^t£u.iA.J — 4^r~ /^ xt/y^-f

^***^* * { Sy^-^/ huji ^ Z/S y

JJa/ ..>y) (£Uyj'et.jjA/L£< -?>'/•*. Jjiffay+i.}

I |Uy"/̂ \ -£'/+ '^•j/fn-

| I ^ * » k ' J t r i i . * i . .

A •*4v ̂ 4* "***•

!" 1

-J*4? ••*• - -^y-/

I ^"Ji XCiuMjt l/m*.

?iq«^ <ic^ m > ^ ' ••• ^i Sr̂ n̂

^<u/ I

s£l&+L_

/ *
f i / •

si £mJ /im « s <uU~

-~9« ̂-&0ce) id> th r̂L** -~9« ̂
•»«^* «».

SI

/U 4̂-~4-&y

£UJI i

~-T ̂Iŝ JL *•»< «a4 /
7

/U 4̂-~4-&y

£UJI i U.u*A

/}JCA.Mst,' tosw

tX*K 4A*J

-2, , ̂•«- <& "L̂ l_ —= to cA*̂ ~ ̂•«-

f̂ T. it ^ • .̂ L.r~

ŝ +y&i <£-*1L* .-IX / ̂ s +y&i

•7 S-«

«7

/** £~
"2 iOl *> 4- T*.

sAcUL**.. '/im <*-t

&c •»*»/^

fst- ̂ ''® * X t-7 CJP̂ f + H t-7

z$/> --< €~>£t-

-' C4y*sf~

? A ̂ -^/ C***y*
/

.

1
f
i

U
j

Subj: First Dallas Fax Number
Date: 11/22/2000 1:39:09 PM Eastern Standard Time
From: jl@fdlimited.com
To: jackerman@freshdirect.com, p_barber@4gnetwork.com, james_baker@painewebber.com, dblanton@vortexpartners.com,
ibonner@us.ibm.com, mboucher@candw.ky, bray@monarchpartners.com, wadeb@connect.net, rbuchel@jonesday.com,
BCarroll@clbn.com, jcordes@e2communications.com, john.cracken@rocketlogix.com, larrydantzler@familyclick.com,
john@globalesp.com, James@VE-Group.Com, sdunayer@interserv.com, ghellis@swbell.net,
jfarris@e2communications.com, mforman@1urmanselz.com, MGirtz@MUNSCH.com, pgoldean@jonesday.com,
burtgrad@aol.com, Mike@GlobalESP.Com (Harold, Mike), aghilliii@hotmail.com, Leo@globalcenter.net,
chris.hipp@rocketlogix.com, rhogsed@criticaldevices.com, ahoover@corp.sbc.com, tjenn@texas.net, sjosset@clbn.com,
jkiser@iycoenergy.com, mackcrest@aol.com, mcguire_mike@emc.com, jtmccafferty@jonesday.com, rusty@vline.net,
mmurphy@clbn.com, menorton@jonesday.com, mrachesky@prodigy.net, eric.rasmussen@rocketlogix.com,
TR@familyclick.com, lschaufe@lehman.com, Vic_Schmerbeck@htst.com, peter@antennasoftware.com, sherbn@aol.com,
Aaron@clbn.com, lang@ve-group.com, grant@clbn.com

Please make note of First Dallas's new fax number below...

Thanks you,

James W. Lincoln
Managing Director
First Dallas, Ltd

300 Cresgent-Geurt-^
Suite 1000
Dallas, Texas 75201 j
T: 214.880.4100 J
F: 214.880.4175 S

Headers
Return-Path: <jl@fdlimited.com>
Received: from rly-za03.mx.aol.com (rly-za03.mail.aol.com [172.31.36.99]) by air-za04.mail.aol.com (v77.14) with ESMTP;
Wed, 22 Nov 2000 13:39:08 -0500
Received: from htstnt001.htst.com (htstnt001.highland-wealth.com [208.206.19.15]) by rly-za03.mx.aol.com (v76_r1.19) with
ESMTP; Wed, 22 Nov2000 13:38:39 -0500
Subject: First Dallas Fax Number
To: jackerman@ffeshdirect.com, p_barber@4gnetwork.com,

james_baker@painewebber.com, dblanton@vortexpartners.com,
ibonner@us.ibm.com, mboucher@candw.ky, bray@monarchpartners.com,
wadeb@connect.net, rbuchel@jonesday.com, BCarroll@clbn.com,
jcordes@e2communications.com, john.cracken@rocketlogix.com,
larrydantzler@familyclick.com, john@globalesp.com, James@VE-Group.Com,
sdunayer@interserv.com, ghellis@swbell.net,
jfams@e2communications.com, mforman@furmanselz.com,
MGirtz@MUNSCH.com, pgoldean@jonesday.com, burtgrad@aol.com,
"Harold, Mike" <Mike@GlobalESP.Com>, aghilliii@hotmail.com,
Leo@globalcenter. net, chris. hipp@rocketlogix. com,
rhogsed@criticaldevices.com, ahoover@corp.sbc.com, tjenn@texas.net,
sjosset@clbn.com, jkiser@lycoenergy.com, mackcrest@aol.com,
mcguire_mike@emc.com, jtmccafferty@jonesday.com, msty@vline.net,
mmurphy@clbn.com, menorton@jonesday.com, mrachesky@prodigy.net,
eric.rasmussen@rocketlogix.com, TR@familyclick.com,
lschaufe@lehman.com, Vic_Schmerbeck@htst.com,
peter@antennasoftware.com, sherbn@aol.com, Aaron@clbn.com,

Thursday, November 23, 2000 America Online: Guest Page: 1

BURTON GRAD ASSOCIATES, INC.
7 WHITNEY STREET EXTENSION
WESTPORT, CONNECTICUT 06880
(203) 222-87 I 8
(203) 222-8728 FAX
BURTGRAD@AOL.COM

November 8, 2000

Mr. Jim Lincoln
First Dallas Ltd.
300 Crescent Court, Suite 100
Dallas, TX 75201

Dear Jim:

Burton Grad Associates, Inc. (BGAI) proposes to perform the additional requested technical and
business due diligence review of Transfmity for First Dallas Ltd. (FDL).

Objectives

First Dallas wants to have a further independent technical and business due diligence study performed
prior to determining whether it wishes to complete an initial investment in Transfinity. This additional
study will focus on the specific market directions which Transfinity proposes to pursue. BGAI will
assess these plans to be sure that there are no serious market, development, technical or financial
issues which would significantly affect estimates of current value or projections of future profits from
Transfinity. FDL will separately perform the legal and financial due diligence work it needs as well
as determine the effectiveness of Transfinity's organization.

BGAI, an independent consulting firm with extensive experience in due diligence and valuation
studies for computer software and services companies, is pleased to perform this additional due
diligence study so that FDL can proceed with its planned investment.

Work Plan

1. BGAI will examine the current Transfinity business plan and market planning materials.

2. BGAI will conduct telephone interviews with technical and business executives of Transfinity and
review all relevant materials describing the market opportunities, proposed technical
requirements, pricing and offering plans, and competitive positions.

3. BGAI will prepare an additional due diligence report for FDL on its findings and
recommendations about Transfinity without disclosing any Transfinity-identified confidential
program technical information.

As agreed, BGAI will deal with the markets and attempt to answer the questions described in
Appendix A.

CONSULTANTS ON SOFTWARE

Mr. Jim Lincoln
Page 2
November 8, 2000

BURTON GRAD ASSOCIATES, INC.

Staffing

The project will be managed by Burton Grad, president of BGAI, with BGAI Associate Sidney J.
Dunayer as the principal consultant.

FDL and Transfmity will designate liaisons to work with BGAI.

Schedule

The interviews will be scheduled for November 8-13 based on mutual availability.

A summary report covering the BGAI additional findings and recommendations will be delivered to
FDL on November 15, 2000, if all materials can be obtained and analyzed in a timely fashion.

Confidentiality

All information received and work performed will be treated as fully confidential and not disclosed
to any third party without prior written consent from FDL.

BGAI will sign a letter with FDL agreeing to observe the rules of its non-disclosure understandings
with Transfinity. Separately, BGAI and its employees and consultants will be bound by a special non­
disclosure agreement between BGAI and Transfinity.

Costs and Payments

The due diligence work will be done on a time and expense basis. The following are the BGAI
consultant fees:

Burton Grad $2,800/day
Sid Dunayer $l,500/day

Based on the information about Transfinity available to us at this time and the information requests
from FDL, we estimate that the project will require two to three days for Dunayer and around one
and one-half days for Grad. Therefore, the consulting fees for BGAI should not exceed $9,000 unless
FDL requests additional analysis, reports or extensive personal debriefings.

There are not expected to be any invoiced expenses for this project.

Payment will be invoiced on completion of the due diligence project.

Mr. Jim Lincoln BURTON GRAD ASSOCIATES, INC.
Page 3
November 8, 2000

Payment is due within 15 days of FDL receiving the invoice. If the project is extended beyond
November 30, 2000, then BGAI will invoice monthly for its services.

If the above description is satisfactory, please sign below to authorize BGAI to initiate work on this
project.

Sincerely, Accepted for First Dallas, Ltd.

Burton Grad, President

by
Signature Date

Enclosures
BG: 5400.PRO

Name

Title

Subj: Transfinity Market Focus
Date: 11/8/2000 10:16:02 AM Eastern Standard Time
From: jl@fdlimited.com
To: burtgrad@aol.com
CC: sdunayer@interserv.com

Gentlemen:

Just as idea to ponder, I know if you dont like it you will inform me
quickly.

Instead of looking at this from a 30,000 foot level market approach, why
dont we just start from the bottom up. Think about the likely candidates
who need it now and will pay. Then broaden that market focus based upon
that customer.

This seems it might make sense, since we are not going to be building an
'Industry specific product' just license a solution to a customer.

"Jl see the counter that with this approach you are starting with a
tremendous number of variables vs. the market refinement approach and
starting with ten variables and focusing on candidates within that market.

Your thoughts?

jl

James W. Lincoln
Managing Director
First Dallas, Ltd

300 Crescent Court
Suite 1000
Dallas, Texas 75201
T: 214.880.4100
F: 214.880.4062

^•0

Headers
Return-Path: <jl@fcllimited.com>
Received: from rly-xa05.mx.aol.com (rly-xa05.mail.aol.com [172.20.105.74]) by air-xa03.mail.aol.com (v76_r1.23) with
ESMTP; Wed, 08 Nov2000 10:16:02 1900
Received: from htstnt001.htst.com (htstnt001.highland-wealth.com [208.206.19.15]) by rly-xa05.mx.aol.com (v76_r1.19) with
ESMTP; Wed, 08 Nov2000 1 0:15:44 -0400
Subject: Transfinity Market Focus
To: burtgrad@aol.com
Cc: sdunayer@interserv.com
X-Mailer: Lotus Notes Release 5.0.2c February 2, 2000
Message-ID: <OF826873FA.7D3F87C9-ON86256991.0052D188@htst.com>
From: jl@1dlimited.com
Date: Wed, 8 Nov 2000 09:10:57 -0600
X-MIMETrack: Serialize by Router on htstnt001/htst(Release 5.0.3 |March 21, 2000) at 11/08/2000
09:11:03 AM

MIME-Version: 1.0

Wednesday, November 08, 2000 America Online: Guest Page: 1

Subj: Tfny
Date: 11/7/2000 5:25:01 PM Eastern Standard Time
From: jl@fdlimited.com
To: burtgrad@aol.com
CC: sdunayer@interserv.com, lang@ve-group.com

or add any major players that might warrant selecting them out before
finding them through market selection (IBM v EMC)

Thanks,

jl

James W. Lincoln
Managing Director
First Dallas, Ltd

300 Crescent Court
Suite 1000
Dallas, Texas 75201
T: 214.880.4100
F: 214.880.4062

Return-Path: <jl@1dlimited.com>
Received: from rly-zc02.mx.aol.com (rly-zc02.mail.aol.com [172.31.33.2]) by air-zc05.mail.aol.com (v76_r1.23) with ESM7P;
Tue, 07 Nov 2000 17:25:01 1900
Received: from htstnt001.htst.com (htstnt001.highland-wealth.com [208.206.19.15]) by rly-zc02.mx.aol.com (v76_r1.19) with
ESMTP; Tue, 07 Nov 2000 17:24:47 -0500
Subject: Tfny
To: burtgrad@aol.com
Cc: sdunayer@interserv.com, lang@ve-group.com
X-Mailer: Lotus Notes Release 5.0.2c February 2, 2000
Message-ID: <OF7E44DF2F,CB6A3D8D-ON86256990.007A2996@htst.com>
From: jl@fdlimited.com
Date: Tue, 7 Nov 2000 16:20:02 -0600
X-MIMETrack: Serialize by Router on htstnt001/htst(Release 5.0.3 |March 21, 2000) at 11/07/2000
04:20:07 PM

MIME-Version: 1.0
Content-type: text/plain; charset=us-ascii

Burt,

Sounds like you have sketched a good plan for the first scope of this
project.

Just as a reminder - please think of how the following companies might be
attacked:
RealNetworks
AOL - Netscape vs. MSFT - Explorer

Headers

Wednesday, November 08, 2000 America Online: Guest Page: 1

11/08/00 WED 16:13 FAX 214 880 4062 001

iyr. urn .Lincoln
r»ge3

November 8,2000
J[Burton Gft*o A<
T

Payment is due wifhin i <
November JO ?nnn receiVuig the invoice. If the i3 ^ . .

' ' Wm wui invoice monthly for its s«vk™ ^naea oeyond

If the abnw Aa nf-Zm.*: }. .
project ™'"WU " Please **" below to authodze BGAI to _ p i »»»«. ro initiate work on this

President

Enclosures
B3: 5400.PRO

Accepts^ faf piISi^

rfgnature ' "

. N a m e ~ ~ " "

- f~jlWMa*1(xr. LJi
Title

BURTON GRAD ASSOCIATES, INC.
5 SAINT JOHN PLACE
WESTPORT, CONNECTICUT O688O
(203) 222-87 1 8
(203) 222-8728 FAX
BURTGRAD@AOL.COM

First Dallas Ltd. Invoice #2998
300 Crescent Court
Suite 1000 November 27, 2000
Dallas, Texas 75201

Project: #278-7
Attention: Mr. James Lincoln II

INVOICE

Project: Additional Technical Due Diligence of Transfinity

Consulting Services: November 1-17, 2000

Burton Grad 1 day @ $2,800/day $2,800.00
Sidney J. Dunayer 3 days @ $l,500/day 4.500.00

Total Invoice $7,300.00

Payment is Due Within 15 Days of Receipt of This Invoice

CONSULTANTS ON SOFTWARE

SIDNEY J. DUNAYER, INC
418 Tenth Street

Brooklyn, New York 71215-4009

(718) 768-9089

20 November 2000

Mr. Burton Grad
Burton Grad Associates, Inc.
5 St. John Place
Westport, Connecticut 06880

Dear Burt:

For services rendered:

First Dallas - Additional technical review
Of Transfinity {3 days) $4,500.00
Less Advance (1,500.00)

Total Due $3,000.00

Payment is expected within 15 days from the date of this invoice.

Our tax I.D. number is 11-2666620.

If you have any questions about this invoice, please feel free
to call me.

Sincerely Yours,

Sidney J.\ Dunayer
President

Id WblS:80 0002 T2 °AON Z8£P-89L 8X2 : 'ON XtfJ IOCS : WOdd

BURTON GRAD ASSOCIATES, INC.
5 SAINT JOHN PLACE

WESTPORT, CONNECTICUT O688O
(203)222-87 18 FAX: (203) 222-8728

E-MAIL: BURTGRAD@AOL.COM

Date: November 20, 2000

To: Jim Lincoln

From: Burton Grad

Subject: Possible executive and management people for various FDL investments

At your request, I have listed the names of some of the people I worked with at Sterling Software
and Sterling Commerce who I felt were strong executives or technical managers. I do not know
whether these people are still with the companies or what they are currently doing.

Sterling Software

John Mecke (Dallas)
Jim Johnson (?)
Rick Bodson (Dallas)
JefFBingaman (Reston)
Dave Hodgson (Reston)

Sterling Commerce

Neil Baker (Dublin)
Chris Clothier (Dublin)
Greg Dietz (Dallas)
Pat Davis (Ann Arbor)
Randy Harvey (Dublin)
Paul Olson (Dublin)
Dave Pond (Dublin)
Ed Hafiier (Dublin)
Clark Woodford (Dublin)
Mary Trick (UK)
Morgan Crew (Dublin)

Ac, /
XV Y - - z ? ' F o

. 1

/̂<U* C4s<-< ̂ 2*2/ '~c)
1

?Ci Ce?o/»'« ̂ c. 1
/

?Ci Ce?o/»'« ̂ c.

/

Yc,9- 7J7 - Y^-y-.

\ \
/ 1 1 "

\A~f-±,

• /\7
—

Subj: TFNY
Date: 11/18/2000 12:53:19 AM Eastern Standard Time
From: jl@fdlimited.com
To: burtgrad@aol.com

Burt,

Got the report, much appreciated.

Going forward on TFNY:

We discussed a couple of times people who might be valuable. Who you spend
a little time and make me a list and send it over to me.

We will be working with them over the next two weeks digesting more DD and
valuing the opportunity.

I will keep you informed.

jl

James W. Lincoln
Managing Director
First Dallas, Ltd

300 Crescent Court
Suite 1000
Dallas, Texas 75201
T: 214.880.4100
F: 214.880.4062

Headers
Return-Path: <jl@fcllimited.com>
Received: from rly-ye03.mx.aol.com (rly-ye03.mail.aol.com [172.18.151.200]) by air-ye03.mail.aol.com (v77.14) with ESMTP;
Sat, 18 Nov 2000 00:53:19 -0500
Received: from htstnt001.htst.com (htstnt001.highland-wealth.com [208.206.19.15]) by rly-ye03.mx.aol.com (v76_r1.19) with
ESMTP; Sat, 18 Nov2000 00:52:59 -0500
Subject: TFNY
To: burtgrad@aol.com
X-Mailer: Lotus Notes Release 5.0.2c February 2, 2000
Message-ID: <OFDF9D3563.E327D241-ON8625699B.001FADDB@htst.com>
From: jl@1dlimited.com
Date: Fri, 17 Nov 2000 23:48:07 -0600
X-MIMETrack: Serialize by Router on htstnt001/htst(Release 5.0.3 |March 21, 2000) at 11/17/2000
11:48:13 PM

MIME-Version: 1.0
Content-type: text/plain; charset=us-ascii

Saturday, November 18, 2000 America Online: Guest Page: 1

BURTON GRAD ASSOCIATES, INC.
7 WHITNEY STREET EXTENSION
WESTPORT, CONNECTICUT O688O
(203) 222-87 I 8
(203) 222-8728 FAX
BURTGRAD@AOL.COM

November 17, 2000

Mr. Jim Lincoln
First Dallas Ltd.
300 Crescent Court, Suite 100
Dallas, TX 75201

Dear Jim:

At your request, BGAI has performed further technical and business analyses regarding Transfinity.
The focus has been on the applicability of Transfinity's patented compression algorithms to various
specific markets from functional, technical and business value standpoints.

Transfinity claims that it has exclusive patents to a new, dramatically better compression technique
which can significantly reduce the amount of space needed for information that needs to be stored
on transmitted. Transfinity has successfully demonstrated the use of these patented algorithms for
graphic and image files which were previously compressed using either the GIF or JPEG industry
standards. In these cases, Transfinity has shown more than a 50-55% further compression.

Many web sites and other business and institutional files contain a substantial amount of graphic and
image material which accounts for a very large percentage of the actual storage and transmission
requirements.

In addition, Transfinity claims that its patented algorithms will significantly reduce the storage and
transmission requirements for audio and video files. If this can be demonstrated, then there are
substantial opportunities for its use in the entertainment and educational markets.

Based on these claims, four particular market opportunities which were identified by Transfinity are
being reviewed in this report:

Market Sample Companies

A. ISP for consumers: AOL, Earthlink, Telcos

B. Web Hosting/Delivery: Akamai, Inktomi, Verio, Exodus

C. Corporate Intranet: GE, GM, IBM

D. Streaming media and Video-on-demand: Cable, ATT, RealNetworks, Microsoft

CONSULTANTS ON SOFTWARE

Mr. Jim Lincoln
Page 2
November 17, 2000

BURTON GRAD ASSOCIATES, INC.

For each of these opportunities, BGAI examined the following questions:

1. How could Transfinity's compression technology be used in this market?

2. What would need to be done technically by Transfmity to make its compression technology
usable in this market?

3. What would be the financial benefit to customers in this market from use of Transfinity's
compression technology?

4. What are BGAI's conclusions, concerns and recommendations for this market?

The remainder of this report consists of an analysis of each of the market opportunities plus an overall
summary and business analysis followed by specific action recommendations.

A. ISP for Consumers

Transfinity has initially concentrated on developing and delivering a software solution to be used
by ISPs to provide their customers with faster delivery of web-based materials. Because of the
current performance of the compression software, Transfinity believes that it will be necessary
for the ISP to set up a multi-level caching system in order to produce faster delivery in response
to customer web requests. Transfinity proposes to charge the ISP one dollar per month per
signed up customer for use of the Transfinity software.

1. Functional Assessment: The ISP would need to use a proxy server to handle the web requests
from signed-up customers. This server would obtain the web material, expand it to its
original form, compress it using Transfinity software and then deliver the results to the
customer. At the customer site, the information would be decompressed, using Transfinity
software, for normal viewing.

By using compression, the ISP could potentially deliver graphics oriented web pages at a
faster transfer rate over low speed, 28.8K and 56K, lines. This effectively increases the
bandwidth of the low speed connection. In order to make this work, the ISP would need to
do some form of page caching for the compressed data. The caching functions would most
likely be implemented within an HTTP proxy server.

Since it is not expected that the expansion and compression process can presently be done in
real time (with no apparent delay to the customer), the ISP would need to set up both central
and distributed caching for frequently used material. This, of course, raises issues regarding
selecting what materials to cache, maintaining currency on cached materials, managing the
multi-level caching system, etc.

CONSULTANTS ON SOFTWARE

Mr. Jim Lincoln
Page 3
November 17, 2000

BURTON GRAD ASSOCIATES, INC.

2. Technical Assessment: We believe that the technical problems needed for performing the
compression and decompression can be readily solved. However, unless customers can see
much faster response to their web requests, this approach will not be beneficial to the ISPs
from a marketing standpoint. This means that performance must not only be real time, but
must actually be considerably faster than what can be achieved from normal web requests and
delivery. Failing faster compression, then the only other solution would be a high level of
cached material on a centralized/decentralized basis.

Transfinity already has the necessary components to make the technology usable for ISPs.
However, they have not yet proven the scalability of their solution. As the number of web
pages that require caching increases, there is a proportional increase in resources, i.e., disk
storage and CPU cycles, required to store and deliver the compressed content. In the
Transfinity solution, the workload is distributed over many servers. Since the servers
communicate with each other, they should be able to make their combined caches appear as
one big logical cache. There is no empirical data available that would allow us to determine
the scalability limits of the Transfinity solution.

While Transfinity has proposed providing a comprehensive compression and caching system,
we believe that this would not be a successful strategy for this marketplace. Effective,
competitive ISPs will have to implement their own multi-level caching system if they are
going to provide competitive delivery speed regardless of whether the ISP is using the normal
web compression (GIF or JPEG for graphic/image materials) or whether they are using the
Transfinity algorithms. Therefore, the technical effort required to produce a caching system
and the marketing effort required to sell it, along with the consulting effort needed to install
and support it would be a serious personnel and financial burden.

3. Value Assessment: The ISP might be willing to pay for the use of the Transfinity software,
without charge to its customers, if it would reduce the ISP's transmission costs or give the
ISP a competitive advantage. Alternatively, the ISP could try to charge its customers for the
use of this higher speed delivery mode in the belief that many of its customers would pay an
extra two dollars per month for the improved performance.

For large ISPs, such as Earthlink and AOL, the number of web pages that would need to be
cached might be so voluminous as to cause performance degradation within the caching
system itself. This could nullify any benefit derived from compression and caching.

For smaller ISPs, the number of web pages that are cached would be many times smaller than
for the larger ISPs. The compression and caching would provide some performance
improvement to the end user. There might be some additional benefit to the ISP itself in that
they would reduce inbound traffic from the Internet when the pages are in the cache. Note
that in any case, the ISP would have to invest in more hardware (servers and caches) and in
the Transfinity software.

CONSULTANTS ON SOFTWARE

Mr. Jim Lincoln
Page 4
November 17, 2000

BURTON GRAD ASSOCIATES, INC.

It is hard to believe that either large or small ISPs would be willing to pay per customer unless
they could charge for this premium service. This would be viewed by the ISP as somewhat
of an adverse selection process. Those customers who wanted higher speed service might
well pay for DSL or cable connections. Those who didn't "need" higher speed service might
be reluctant to pay any premium price. In our opinion, the value projections in Transfinity's
ISP financial plans don't hang together.

As an alternative marketing approach, Transfinity could:

• charge an initial licensing fee, based on the number of subscribers for an ISP
charge for the technical work required to design, program, test and install the system
for that ISP
charge an annual licensing and support fee adjusted to the number of subscribers.

This approach leaves the decision of whether or not to charge customers or simply benefit
from any operational savings entirely to the ISP. In most cases, we believe, the ISP would
provide all customers with the decompression software without charge and selectively use the
Transfinity compression software when and where it makes economic sense in terms of which
web sites were accessed from which locations and the calculations for transmission cost
reductions. Since no commitment would be made in terms of improved performance, there
would not be any customer complaints if delivery was not faster.

4. Conclusions. Concerns and Recommendations: Determining a specific cost benefit for an ISP
would require an analysis of the reduction in bandwidth achieved versus the costs of
establishing additional compression servers and centralized caches. This would in turn require
an analysis for each ISP as to the mix of requests that it services in terms of graphics/images
vs text, frequency of revisiting same sites, frequency of site modifications, compression
performance (speed and reduction), etc.

The best way to work out whether the Transfinity compression is marketable to a number of
ISPs would be to select one of moderate size and proceed to go through the cost benefit
analysis. This should lead to a value per 1000 customers and hence a projection as to the
minimum size target ISP and a basic pricing plan.

If there is not an annual saving of at least $200,000-$300,000 per 100,000 subscribers, then
this will not be a feasible market to pursue. Note that we assume that each installation will
need to be custom designed and built, not so much for the compression and decompression
capabilities, but rather to handle the particular hardware, systems software, internal protocols
and interfaces that each ISP uses.

CONSULTANTS ON SOFTWARE

Mr. Jim Lincoln
Page 5
November 17, 2000

BURTON GRAD ASSOCIATES, INC.

B. Web Hosting/Delivery

Companies which provide outsourced web content hosting and companies which provide cached
content delivery services can benefit by using Transfmity compression to reduce their storage
requirements. In addition, the content deliverers can significantly reduce the transmission
bandwidth they need by delivering the Transfmity compressed files close to the user before
decompression.

1. Functional Assessment: The need for compression is quite obvious for web host sites (or
actually for any content storage site). Since most stored content does not change rapidly or
even frequently, compression can take place in an asynchronous fashion with little or no real
time requirement. Also, since the nature and form of the content is determinable and
consistent, very sophisticated multi-step compression processes can be applied in order to
achieve greater reductions in storage space required. Applying the Transfmity compression
techniques to various forms of content (text, graphics/images, audio and video) would be
practical and economical since the decompression programs do not need to be modified for
the different compression processes used.

Similarly, those content host organizations which also provide cached delivery can
immediately reduce the transmission bandwidth needed through sending the compressed files
to the local caching points where decompression can take place just prior to delivery to the
users.

Since a web host is the delivery source for a website, they would compress the content before
hand and then store and transmit the compressed data, eliminating the need for any special
caching. The web host would only require software to compress the graphics images and to
edit the HTML pages so that they refer to the compressed images.

2. Technical Assessment:

Transfinity already has developed software to do compression and to edit the HTML pages.
The current implementations were designed to work with the Transfinity caching solution.
Only a minimal effort should be required to modify the existing software to a form more
suitable to the web host requirements.

3. Value Assessment: The most obvious benefit to the web host is the reduced requirements for
disk storage and outbound bandwidth. For larger web hosts, this savings might be significant.
Web hosts typically use graduated pricing plans that provide a fixed amount of disk storage
and monthly bandwidth for some cost, with any additional usage being charged an additional
fee. Any solution that decreases the amount of disk storage required by a website or that
increases the effective bandwidth provides a direct benefit to the website publisher. Because
of this, it is likely that the web host would charge the web publishers a fee for this benefit.

CONSULTANTS ON SOFTWARE

Mr. Jim Lincoln
Page 6
November 17, 2000

BURTON GRAD ASSOCIATES, INC.

If the fee isn't outrageous and the software is easy to use, then the web publishers would
likely embrace the solution. This market might also be expanded to include those web
publishers that also provide their own hosting and delivery facilities.

Web hosts like Akamai and Inktomi make multiple copies of the web site dispersed over many
servers that are geographically situated so as to improve performance. For these web hosts,
the savings might be very significant not only in the disk storage saved, but also in the
transmission time necessary to synchronize all the servers.

4. Conclusions. Concerns and Recommendations:

Web hosting has become a popular business while cached content delivery has become quite
large, but with only a few significant players. In both cases, these companies should find the
Transfinity compression techniques of real value with clear, measurable savings on storage
and transmission for both. The cached delivery companies would have the larger savings
because of their multiple cache storage sites and their greater transmission requirements (to
the last mile). The web hosting companies would save some on transmission by reducing the
first mile transmission bandwidth.

While we don't know what the operations costs are for either of these two markets, it would
not be surprising if storage and transmission accounted for 25% or more of their operations
costs. Even with the hardware needed for compression, a cost reduction of 40% would seem
feasible, hence a total reduction of cost by 10%, which would move directly to the profit line,
less of course whatever Transfinity charged for its software license, professional services and
support/maintenance.

License pricing should probably be based on the amount of stored content with a different rate
for the two kinds of customers.

Again, we would recommend finding sample companies, first in the web hosting area and then
in the cached content delivery area to determine their precise technical requirements, analyze
their potential savings and construct an appropriate pricing model.

C. Corporate Intranet

All large corporations have set up substantial internal storage/communications systems to permit
all of their business units to share commonly needed information and provide timely updates and
additions. For security reasons, many of these organizations manage their own intranets and
content storage facilities. The information being stored has now expanded beyond straight­
forward text and financial files to include graphics and images as well as some audio and video
materials. Potentially, large corporations and other institutions (education, health service,
government) would be able to reduce costs and improve internal content delivery performance
by utilizing Transfinity's compression algorithms.

CONSULTANTS ON SOFTWARE

Mr. Jim Lincoln
Page 7
November 17, 2000

BURTON GRAD ASSOCIATES, INC.

1. Functional Assessment: Since the corporation has known internal content and a limited
number of internal requestors, the ability to compress the largest and most used files would
significantly reduce both storage requirements and delivery bandwidth needed. This
application does not depend on the corporation marketing or charging for a service, but
would be a simple cost reduction analysis.

2. Technical Assessment: If one views a corporation as a combination content publisher, content
host provider and internal content deliverer, then the technical requirements are quite basic.
The compression algorithms can be honed to provide maximum reduction in the storage space
required which, in turn, would produce the largest savings in transmission time. Caching
would be optional for the corporation depending upon the frequency of change and use of the
materials. All employees would have the decompression program.

3. Value Assessment: As noted earlier, this would be a straightforward determination of cost
savings to the corporation versus the packaging and pricing formula from Transfinity. A
simple annual licensing scheme with a front-end sign-up plus custom development and
implementation charges would provide Transfinity with good initial cash flow and a strong
recurring revenue stream. The pricing formula should recognize corporate size in terms of
amount of content and the number of employees with system access.

4. Conclusions. Concerns and Recommendations: This seems like the easiest market to address
both from a technical and value standpoint. One question is whether the internal content will
have as high a ratio of image files as would commercial web sites. Therefore, the savings may
depend more on the ability to compress text and financial files rather than the graphics/images
reductions. There would probably be little use of stored audio or video materials (except for
entertainment companies).

Therefore, the approach would be to select a few corporations, representing different
industries, and determine the applicability and benefit to the customer of using the Transfinity
compression techniques. This would identify what characteristics would qualify a prospect
and whether the potential savings would be attractive to the company and whether the
potential revenues would be attractive to Transfinity.

This is obviously an area where a marketing partnership would be desirable. The major
consulting organizations would be potential partners as well as the various professional
service companies who help design and install corporate networks. Some of the Telcos might
also be interesting partners (as well as being themselves intranet customers).

D. Streaming Media and Video-on-Demand

Video on Demand refers to an interactive delivery mechanism where the consumer can request
a video at any time, with full controls that are similar to a VCR. Special purpose high end

CONSULTANTS ON SOFTWARE

Mr. Jim Lincoln
Page 8
November 17, 2000

BURTON GRAD ASSOCIATES, INC.

servers, usually built using Sun Sparc processors with very high speed disk hardware, are utilized
to handle the load. Currently, a typical server would handle about 200 concurrent sessions.

Video on Demand can be delivered in two ways: pre-cached and streamed. In the pre-cached
method, several videos are downloaded to a device such as a set-top box and the playback occurs
locally. In the streamed approach, a continuous stream of data is pushed at software that can then
render the data stream. There are several competing standards for streaming: RealNetworks,
Apple QuickTime and MPEG4. Both RealNetworks and Apple QuickTime support "plug-in"
compressors/decompressors

This market potentially would benefit most from the ability to reduce the bandwidth required for
delivery of audio and video material. The current "standards" for compressing audio and video
material are all "lossy" to different extents. Critical to determining the opportunities for
Transfinity in this market will be whether they can make significant reductions in the bandwidth
required without any greater loss of detail. The needs and values will differ between streaming
media (real time source compression and delivery) and video-on-demand (stored files,
decompressed at user delivery in real time).

1. Functional Assessment: Video data can be very large, say in the hundreds of megabytes for
a full length picture. The more you can compress this data, the less storage space it takes and
the less time it takes to transmit it. The speed of the decompressor is critical if we wish to
present a smooth picture. Currently, there are a number of video compression systems
available. One of the more popular ones is known as Sorenson Video Compression. This
method has shown excellent compression ratios with little noticeable image quality loss.
Transfinity has not demonstrated the ability to compress large video streams and even if they
do, they may not achieve results better than current competitors.

2. Technical Assessment: Transfinity would need to create a compressor/decompressor that was
tailored for streaming video. This would then need to be packaged to be used as a plug-in
for the target system, RealNetworks or QuickTime. Since the primary method for creating
QuickTime movies is Mac based software, this code would need to be ported to Mac OS.

3. Value Assessment Obvious benefits are increased storage density and reduced bandwidth.
With significant data stream reduction, a server might also be able to handle more concurrent
sessions. Since this is an evolving market, it is quite difficult to establish any parameters for
prospective pricing, revenue or profits.

4. Conclusions. Concerns and Recommendations: This is potentially a high payoff area, but it
is quite specialized and very competitive in terms of compression techniques. Exploring this
opportunity from both a technical and marketing standpoint would be relatively costly and
may require months of work. This should be put aside for now and reexamined at a later
time.

CONSULTANTS ON SOFTWARE

Mr. Jim Lincoln
Page 9
November 17, 2000

BURTON GRAD ASSOCIATES, INC.

E. Summary and Business Analysis

Of the four market areas analyzed above, two seem to be technically quite feasible and of significant
customer value (web hosting/delivery and corporate intranet). One other is technically feasible, but
may be of limited or questionable customer value (ISP for consumers). The fourth area is potentially
quite valuable, but one part is technically very difficult (streaming media) and the other part, while
it may be feasible, is unproven (video-on-demand).

Other potential markets include document imaging, storage device manufacturers, interactive game
companies, value added networks and wireless communication providers. We're sure that there are
many more potential market opportunities.

We have conceived of Transfinity as primarily a technology licensing company with sufficient design,
implementation and maintenance skills to satisfy its customers' installation and support requirements.
This suggests that the following are the business foundations on which Transfinity's future success
should be built:

1. Transfinity's technology must be wholly owned and exclusively proprietary for any
applications of potential interest (not just the four analyzed above, but others of economic
significance).

2. Transfinity's technology must be demonstrably substantially better than the industry standards
for each application opportunity (graphics, images, audio, video, etc.).

3. Transfinity's implementations should be fast enough in each application area to provide
demand-driven response rates either through real time compression or through appropriate
pre-compression and storage.

4. Transfinity's offers and prices should encourage smaller prospects to become customers while
providing substantially greater revenue from larger customers. The marketing structure and
strategy should also ensure reasonable profit on initial licensing and installation with high
profits on the recurring revenue from continuing license and support renewals.

5. Transfinity should carefully focus its marketing and technical efforts on the easier target areas
and not be distracted (technically or financially) by high cost, high risk opportunities.

6. While marketing partnerships seem attractive in certain marketplaces, these partnerships may
cost Transfinity too much effort for the likely payback and may require too much management
time so that other strategic opportunities would be neglected.

7. Transfinity is currently under-managed and lacks proper strategic focus. It needs dedicated
executive, marketing and technical staffing with clearly defined financial resources. It needs

CONSULTANTS ON SOFTWARE

Mr. Jim Lincoln
Page 10
November 17, 2000

BURTON GRAD ASSOCIATES, INC.

a practical short term business plan. The longer term business plan should evolve after some
initial technical and marketing achievements.

F. Recommendations

Given this statement of the foundations on which we believe Transfinity should be built, we
recommend that FDL work with Transfinity to carry out the following steps:

1. Thoroughly assess the ownership and scope of the Transfinity patents and any other
Transfinity technical assets (programs, trade secrets, knowledge).

2. Spell out the precise financial resources to be devoted to Transfinity and set up clearly
independent books and plans, not overlapping with VE Group or Global ESP.

3. Define the business relations between Transfinity and all other related entities (VE Group,
Global ESP, Gemini, Mike Harold, Joe Morgan, etc.).

4. Conduct initial market opportunity studies on two of the four initially defined areas plus two
other high potential markets. Based on these studies, set strong priorities on technical and
marketing investments, excluding secondary or difficult markets for the next 12 months.

5. Recruit executive management and key marketing and technical personnel.

6. Prepare a well thought through short term business plan reflecting the market/technical
priorities and avoiding excessive ambition in the short term.

We still believe that Transfinity could be a very successful company and that an early limited
investment by FDL with opportunities for further investments at attractive prices would be desirable.

Sincerely,

cc: Sid Dunayer
5400.RPT

CONSULTANTS ON SOFTWARE

\T* d*e.o - c-* ~ cb HAOtA*.e(

7I x*P Ccft\l0u4 |g</*S ~r T^<-o ̂

2-̂) UJ-c. lo /UtZ ĵ j/g^e„/«U*ixy -

 ̂ do spo x*A X&X-htAK. t~

veL,>/

1/2 f'%Oj Ex»J<4*

6&,

 ̂ ^ZAJ PLx-a^cXoT" ̂

v y^nr. ' -*
/) A/m^J ...C ̂ sdc*j£c*tx> "*rf-c.
T y T ^ . V V 7

2-) 1<J£c4J~
J^W <Zcoe^e ̂

j ~ZeA/ti* G ̂ ax]f~y

I— • -j4» A
2:) ut£c«j- ux+^&X AT t̂ su*t£*A. ^<TAAA

>7- • ~r > r
A'DC ,̂ 1*>(,,M.+ A<.f~ ĉ-ĉ -c

*c**/-y£ y^*y^*^uxr

[4. - - // '/i/£c

7
~~3 /--I ^ 7~"
/ y*1 ^ 2.S"

yA .̂,
r/ y /Jo

"S. j — t ?4-

y 7'
c.c^ <a«.

(
—r ^ 1-+C*LS

o/~ J

 ̂ Z7A :•-, •
detectj*u2 ,̂ A~

X/Lott-u-lc

"3f ^tj /tL4-—t- '. X-_
- d—

A*, VC«_®_*p^'/'~
A-»-/ '2^j4v^ev>^4, A-

X*f Isr
—_

X*f Isr C^IAJUWA

/tCS-fw^ •lav-* -U. -U.

/fcP »;

J

Cy&\>-1 f»lA<l,fc 3 /<LicC
!

JF

"

'

—

Subj: Market Assessment
Date: 11/6/2000 4:21:19 PM Eastern Standard Time
From: jl@fdlimited.com
To: lang@ve-group.com
CC: burtgrad@aol.com

Lang,

I have asked Burt to give us a preliminary assessment of potential markets
forTransfinity (Tfny).

He will need access to any materials that might speed up this process, such
as:

Research reports- Gartner, etc
Internal research
Etc

Burt will be getting back to us in terms of cost and scope of project in
the next few days.

Remind me when we talk next and we can discuss the proposal and payment for
BGAI's services.

jl

James W. Lincoln
Managing Director
First Dallas, Ltd

300 Crescent Court
Suite 1000
Dallas, Texas 75201
T: 214.880.4100
F: 214.880.4062

Headers —*
Return-Path: <jl@1dlimited.com>
Received: from rly-yd02.mx.aol.com (rly-yd02.mail.aol.com [172.18.150.2]) by air-yd01.mail.aol.com (v76_r1.19) with ESMTP;
Mon, 06 Nov 2000 16:21:19 -0500
Received: from htstnt001.htst.com (htstnt001.highland-wealth.com [208.206.19.15]) by rly-yd02.mx.aol.com (v76_r1.19) with
ESMTP; Mon, 06 Nov2000 16:21:03 -0400
Subject: Market Assessment
To: lang@ve-group.com
Cc: burtgrad@aol.com
X-Mailer: Lotus Notes Release 5.0.2c February 2, 2000
Message-ID: <OFOAE7F531.2E48EAA4-ON8625698F.0061 CB9D@htst.com>
From: jl@fdlimited.com
Date: Mon, 6 Nov 2000 15:16:23 -0600
X-MIMETrack: Serialize by Router on htstnt001/htst(Release 5.0.3 |March 21, 2000) at 11/06/2000
03:16:24 PM

MIME-Version: 1.0
Content-type: text/plain; charset=us-ascii

Tuesday, November 07, 2000 America Online: Guest Page: 1

Subj: Transflnity Business Plan
Date: 11/6/2000 12:26:50 PM Eastern Standard Time
From: jl@fdlimited.com
To: burtgrad@aol.com

File: Transflnity BusPlan 092700.pdf (136040 bytes)
DLTime (50666 bps): < 1 minute

FYI

James W. Lincoln
Managing Director
First Dallas, Ltd

300 Crescent Court
Suite 1000
Dallas, Texas 75201
T: 214.880.4100
F: 214.880.4062

— Forwarded by Jim Lincoln/htst on 11/06/00 11:26 AM —

"Wedgeworth,
Lang" To: "Jim Lincoln (E-mail)" <jl@fdlimited.com>
<Lang@VE-Grou cc:
p.Com> Subject: Transflnity Business Plan

10/18/00
03:51 PM

Lang Wedgeworth

T:972.550.1133 ext. 100 1231 Greenway Drive, Suite 300
F:972.753.4407 Irving, Texas 75038
«Transfinity BusPlan 092700.pdf>>

(See attached file: Transflnity BusPlan 092700.pd1)

Headers
Return-Path: <jl@fdlimited.com>
Received: from rly-yh02.mx.aol.com (rly-yh02.mail.aol.com [172.18.147.34]) by air-yh02.mail.aol.com (v76_r1.23) with
ESMTP; Mon, 06 Nov2000 12:26:49 -0500
Received: from htstnt001.htst.com (htstnt001.highland-wealth.com [208.206.19.15]) by rly-yh02.mx.aol.com (v76_r1.19) with
ESMTP; Mon, 06 Nov2000 12:25:42 -0400
Subject: Transflnity Business Plan
To: burtgrad@aol.com
X-Mailer: Lotus Notes Release 5.0.2c February 2, 2000
Message-ID: <OF697372CE.5F22FD10-ON8625698F.005F498C@htst.com>
From: jl@fcllimited.com

Tuesday, November 07, 2000 America Online: Guest Page: 1

Subj: Transfinity Power Point Presentation
Date: 11/6/2000 12:25:47 PM Eastern Standard Time
From: jl@fdlimited.com
To: burtgrad@aoi.com

File: Transfinity Edgewidth.ppt (275968 bytes)
DLTime (50666 bps): < 1 minute

FYI

James W. Lincoln
Managing Director
First Dallas, Ltd

300 Crescent Court
Suite 1000
Dallas, Texas 75201
T: 214.880.4100
F: 214.880.4062

— Forwarded by Jim Lincoln/htst on 11/06/00 11:24 AM —

"Wedgeworth,
Lang" To: "Jim Lincoln (E-mail)" <jl@fdlimited.com>
<Lang@VE-Grou cc:
p.Com> Subject: Transfinity Power Point Presentation

11/05/00
02:37 PM

Jim:

Attached is a copy of the captioned file.

Lang Wedgeworth

T:972.550.1133 ext. 100 1231 Greenway Drive, Suite 300
F:972.753.4407 Irving, Texas 75038
«Transfinity Edgewidth.ppt»

(See attached file: Transfinity Edgewidth.ppt)

Headers —
Return-Path: <jl@1dlimited.com>
Received: from riy-zc01.mx.aol.com (rly-zc01.mail.aol.com [172.31.33.1]) by air-zc03.mail.aol.com (v76_r1.23) with ESMTP;
Mon, 06 Nov 2000 1 2:25:47 -0500
Received: from htstnt001.htst.com (htstnt001.highland-wealth.com [208.206.19.15]) by rly-zc01.mx.aol.com (v76_r1.19) with
ESMTP; Mon, 06 Nov2000 12:23:53 -0500
Subject: Transfinity Power Point Presentation
To: burtgrad@aol.com
X-Mailer: Lotus Notes Release 5.0.2c February 2, 2000

Tuesday, November 07, 2000 America Online: Guest Page: 1

Les~6-*f ^ st-JL&!*

^-/j Z5^ tA*y»'«j

«» «*»'<^H..«C ^

uX'tÂ '/ly **2 7^<

f ^ /«X

JLĉ cCX-,

3J â u*. Ŝ t

/: , , /
AA, <5P«« **t«.K. ^Mn-,

_ -V^i 6»* ^L' cX ^ 2c^

•-<*'v --^r ?

-*-^" rf c,* •.»

Lo-4L*^f~ ' •? ^*. ^ *t c. * f£«

£̂ 4*44,/̂ ** ' Ẑju*um

•5^) l*d-4vf~ ^Lt#A

'^f <«y(

/- s

/

ca. e*. UL'4^

\/* (̂ Lcav QÛ ZS —

"^P<jJ td>

gf-t+si e-

Ẑ>-£ Co

cCf HJLJ>1 ̂
^-*<v

- ̂C&L*<*XAS> I

wa n g » ii n ... y-g

/ '
y<

/ •

•/-

•*

/
y

r < P ^
I JV<

VP1
ruA

l«^

Cr>.t̂ (̂ UstJzi*.' C£.£?J li.o±~t~ —

(j&dLz

cZ«4-«^v». ^2> f>f)>*oa-c£\

-kjtJLuX- CjL̂ y*- -*~

•£* ']Ce..,

A ' "«• J 4-w-r

a. A J -r tsOo~v. n.

/A l̂ i /CX. /~/-AlsU 0 / */

7'tt~ 2>*

Aj. ̂ / »' »-l M /H.

f̂ bL/ J/tz

S0,

 ̂<e m tstsu<* »* y'

S= £>L-

zf* </ ^ *y ̂ /̂ t/y

/X.

jUfrs
sl-j-/0^

Afaj

I" — </CV •«£? •W'

pA-eoeZSL ~

//taV PL

PiL&)CLj ̂- rtf -> ~^P -̂0 ct) J. f ~ _

l?-~au«_«£ 1zJvw-W *y C~t~Z£ A)
- *> ' «J ; 4rL ĉjt_Jt_ - 7t-/ £**s~~S ±_

f̂ĵ t'4 ^Cyucu/ |̂Q»W

-*3> 6*"j \̂ »-«.y c ~

Z7 ŷucS

,̂ -Z * - " — ' « < . ' / U ^ g

ddXf

As>-<~o-i+ a-Z-C /£-a i*. fa*

A-e. c_ auw.̂ -̂ "g i j

ft '̂/is5 ' /*'t4<* - *Js*-
fa" tA*

<&**<-* *-ci

Date: 11/13/2000 6:41:58 PM Eastern Standard "Time
From: Mike@GlobalESP.Com (Harold, Mike)
To: burtgrad@aol.com Cburtgrad@aol.com')
CC: jl@fdlimited.com Cjl@fcllimited.com'), Lang@VE-Group.Com (Wedgeworth, Lang)

Burt,

Thanks for your call. I left several messages on your cell. Sorry I missed
you. Please call me on my cell at 972-342-7694 or send me an email to set a
date and time. I understand from Lang that you want to talk about market
opportunities.

Initially I thought that 1) media distribution, 2) video on demand and 3)
storage should be the markets and the sequence. Several of the dominant
ISPs, caching/web hosting companies and ASPs (as well as one of the world's
largest content companies) have told us a different story.

Even though broadband is readily available, these companies are experiencing
a great deal of pain in both the storage and communication of data. Some of
the data is their customers'. A lot of the data is their own. We now
understand that the ability to reduce the cost of both storing and
communicating log files, billing information, provsioning information, etc.
could make the difference between profitability and loss for many of these
companies. They are drowning in data.

We also now know that the "last mile" is on the radar screen for many
companies. The greater the back office bandwidth becomes, the more
embarrassing their inability to increase the speed of content delivery to
their customers' customers.

I still think Transfinity needs to focus on last mile solutions as a
priority. But I now believe that compression for storage and network
communications represents as great an opportunity. For the time being, video
on demand is less important.

These comments are not at all intended as conclusions. I would very much
like to hear your thoughts on the matter and look forward to hearing from
you.

Mike

Headers
Return-Path: <Mike@GlobalESP.Com>
Received: from rly-zc02.mx.aol.com (rly-zc02.mail.aol.com [172.31.33.2]) by air-zc04.mail.aol.com (v76_r1.23) with ESMTP;
Mon, 13 Nov 2000 18:41:58 -0500
Received: from Enterprise.VE-Group.Com (dsl2-5.onlinetoday.com [205.242.60.5]) by rly-zc02.mx.aol.com (v76_r1.19) with
ESMTP; Mon, 13 Nov2000 18:41:28 -0500
Received: by enterprise.ve-group.com with Internet Mail Service (5.5.2650.21)

id <V9M1F8KQ>; Mon, 13 Nov 2000 17:41:24-0600
Message-ID: <9680D30D92EBD311 B58000A0C9E3D98778BF@enterprise.ve-group.com>
From: "Harold, Mike" <Mike@GlobalESP.Com>
To: "'burtgrad@aol.com'" <burtgrad@aol.com>
Cc: "'jl@fdlimited.com'" <jl@fcllimited.com>,

"Wedgeworth, Lang"
<Lang@VE-Group.Com>

Monday, November 13, 2000 America Online: Guest Page: 1

Business Plan

1. Executive Summary

2. Market Opportunities

3. Management and Development Team

4. Financial Projections

5. Appendix: Transfinity's N-Bit Compression
Technology

Contact: James Dodd, CFO

972.550.1133 Ext. 101
214.674.7222 Mobile

james@transfinity.com

The information contained herein is confidential.
Recipients shall not disclose such information to
third parties or copy the materials.

October 2000

This business plan does not constitute an offer to sell or solicitation of an offer to buy any
securities, nor does it constitute an offer to sell or solicitation of an offer to buy from any person
in any state or other jurisdiction in which an offer would be unlawful.

Transfinity Corporation

1 Executive Summary

Transfinity Corporation is an early stage technology company that has developed and
patented a compression technology that compresses previously compressed files.
This capability represents a significant technological advance and creates a panoply
of market opportunities in the Internet infrastructure as well as more traditional
Telco spaces.

Transfinity's compression creates value in a multitude of markets. Because of the pervasiveness
of the Internet, and the seemingly insatiable demand for faster delivery of content, Transfinity
will first address several markets associated with Internet content delivery and Internet access.
Transfinity's technology increases apparent data transfer speed for the most common file types
by a factor of approximately 3X. The technology is complementary to all data transfer media,
including twisted pair telephone (POTS), ISDN, DSL, cable, fibre, and wireless. As a result, our
technology provides not only for the intelligent and faster distribution of Internet content, but
also has multiple applications in the bandwidth and storage markets. Transfinity is also targeting
the visual media markets. We are currently developing the capability to convert video and
streaming media files into a file type proprietary to Transfinity. By applying our compression and
encryption technologies to these files, we believe we can speed the transmission and enhance
the security of video and streaming media content. With additional resources, each of these
applications can be migrated to the wireless environment.

Technologists now realize that the Internet itself is a computer. The same solutions that are
required to manage data communications inside a PC, (i.e. synchronization, caching, memory
access, data management, etc.) are also required to run the computer that is the Internet. This
new computing paradigm will require technologies that intelligently distribute data to the point of
access closest to the user and deliver it on demand through any connection type. Transfinity has
developed compression and caching solutions that reduce latency time, shorten the path
between content providers and users, and increase the bandwidth and storage capacity of the
network at every point of access.

Transfinity's software turns the network into a computer by distributing the processing, storage,
and communication of Internet content. Transfinity's software is both componentized and
distributed and can be placed anywhere on the network. This means that content can be
compressed at any point in the network and stored at many points in the network. This
approach allows everyone involved - users, service providers, and content providers - to benefit
from the dramatic increases in throughput that result from the combination of our proprietary
compression, caching, and content routing.

Technology Overview

Transfinity's core technology is its compression. In brief. Transfinity's technology can compress
compressed files. And when used to compress uncompressed files. Transfinity's compression
provides order of magnitude improvements over other methods. In addition, Transfinity has
developed compression capabilities that support and significantly increase the compression ratios
of "lossy" compression methods such as JPEG. Transfinity's technology is intended to enhance,
rather than replace, existing hardware and software storage and bandwidth standards and
practices. Our solution does not require costly hardware additions. Rather, Transfinity
compression is effected primarily via software that is transparent to the end user. In addition,
the footprint for our decompression software is small (approximately 300 Kb"). This

Transfinity Executive Summary
©Transfinity Corporation, 2000

1 Confidential

accommodates an easily installed browser plug-in for the end user. Importantly for the wireless
market, it also allows the software to reside on hand held telephones. PDAs, and other
communications devices.

Transfinity's software dramatically increases content delivery speed to the end user via an
automatically installed browser plug-in at the end-user's PC. As a result, a browser running
through a 28K modem will perform as if it is running at 90K. A browser running through a 56K
modem will run faster than an ISDN connection. A DSL or 3G wireless connection will triple in
speed and support full-screen, high-definition video. Although broadband is being widely
deployed, no one has solved the last mile problem. The majority of users currently do not
connect to the Internet via broadband, and cost considerations seem to ensure this will be the
case for some time to come. And although third generation wireless is fast, it's not fast enough
to support the growing demand for rich content. Transfinitv significantly improves the
performance of anv last mile transmission medium with minimal additional capital cost. The
number of potential users of the Transfinity solution is enormous. We believe there are
immediate and substantial opportunities in the Internet Service Provider (ISPj and Telco markets
to provide low cost, easily installed, faster Internet connections via Transfinitv technology.

We believe that Transfinity's technology can enhance the transmission speed and security of
visual media distributed over the Internet. Transfinity's unique solution combines encryption with
its proprietary image formats so that images are only viewed inside the browser. Visual media
protected by Transfinity technology could then be viewed only by those authorized by the
content provider. This capability requires no additional hardware for the end user. Transfinity
technology currently supports animation, and we have demonstrated full motion video via a 56K
modem in a controlled environment. Our product development team will next focus on
provisioning streaming video over dial-up and DSL.

Transfinity's compression technology also increases the effective bandwidth and/or storage
capacity of any data medium by a factor of approximately 2X. This means that service providers
can support twice as many users or twice as much content with their current bandwidth
infrastructure. For example, in the cable television market, Transfinity compression can reduce
the bandwidth usage of downloaded content by a factor of 2, and thereby allow the cable
operator to support twice as many subscribers with a single downstream DOCSIS channel.

Market Opportunities

The data transfer and storage markets that appear most receptive to near term deployments of
Transfinity technology include:

• Internet service providers- ISP dial- up

• Internet content delivery intermediaries

• Application service providers- ASP
• Internet content delivery (caching) providers
• Web hosting companies

• Large corporate users of LAN, WAN, and e-mail systems

• Video and streaming media enablers

• Telcos seeking inexpensive bandwidth enhancements for existing systems

Transfinity Executive Summary
©Transfinity Corporation, 2000

2 Confidential

The Transfinity solution is robust, scalable, low cost, readily installed, and applicable to numerous
data transmission, bandwidth, and storage markets. Transfinity will soon deploy its technology
as an Internet access and content distribution solution for the ISP dial-up market. Alpha testing
in the controlled environment of Company headquarters is complete. Further testing will begin
shortly by offering selected individuals Transfinity compression-enabled Internet access accounts.
Beta testing will occur at a Tier 2 or Tier 3 ISP. This will, at a relatively minimal capital expense
to Transfinity, demonstrate to target licensees such as Tier 1 ISPs and Telcos the practical
application and potential value of this new technology.

Given the similarities in design architectures, once our technology has been successfully deployed
as an ISP and Telco solution, we should require minimal additional market testing prior to formal
rollout of our product offerings into the ASP, caching, web hosting, and large corporate markets.
Deployment into the corporate network and ASP e-mail market will require an additional six man-
months to develop a PC client compress/decompress program applicable to the various protocols
emanating from the web. We believe our streaming media and video enhancements will be
ready for market within nine months. With sufficient resources, we believe we can develop
similar applications for the wireless environment within 15 months.

Company Overview

Transfinity Corporation is positioned as an enabling technology research and development
company. Our revenue model is licensing. We will license our technology to selected leaders in
the content delivery, data transfer, bandwidth, and streaming media markets. Our headquarters
are located in Irving, Texas, a suburb of Dallas. Our technology is protected by issued patents
and patents pending.

Transfinity currently has 9 employees. Nearly all have technical backgrounds, specifically in
software architecture and development. Our Senior Vice President of Technology was formerly
the chief architect for the Logistics, Electronic Commerce, and Catalog Division of FedEx. He
holds patents and patents pending in the fields of compression, encryption, arbitrary precision
mathematics, virtual machine architectures, distributed computing, and media distribution.

Transfinity Executive Summary
©Transfinity Corporation, 2000

3 Confidential

2 Initial Market Opportunities

The Internet's potential to deliver content to anyone, anywhere, at anytime is becoming more
and more a reality. Multiple fibre optic backbones now connect all metropolitan areas in the U.S.
The rapid deployment of DSL and cable modems promises to provide higher bandwidth to many
households. And 3G wireless communications will soon provide "wire line" users with bandwidth
comparable to "land line."

But despite these advances, serious issues remain. The bottleneck at the delivery point of the
Internet into the typical household is perhaps the most frustrating. Approximately 90% of U.S.
households still use plain old telephone service or POTS over 28K and 56K modems. It will be
years before higher bandwidth connections such as DSL predominate. And even then, rural
communities, which represent 25% of potential U. S. Internet users, will not have access to these
higher bandwidth connections. No matter how fast the fibre optic backbone becomes, the
Internet is only as fast as the connection to the ultimate content consumer- the end user.
Transfinity addresses this and other problems associated with Internet access and content
delivery.

Transfinity has identified several key user markets that offer high potential for near term
licensing arrangements: 1) the ISP dial UP market where our compression and caching solution
can increase browser speeds by approximately three fold; 2) the ASP market that would benefit
from significant reductions in communications and storage costs and an increase in transmission
speed for clients; 3) the Internet caching and web hosting markets where our technology can
increase content transmission speed, improve content security, and reduce data storage costs;
and 4) the large corporate market where communications costs and bandwidth requirements can
be substantially improved with Transfinity technology; and 5) video and streaming media
enablers that currently suffer from severe bandwidth constraints.

With additional resources, we expect to a) develop the final enhancements required to compress
all common file types associated with e-mail attachments, b) continue ongoing development of
our streaming media and video enhancements, and c) continue research and development of
wireless compatible versions of our core technology. We expect to market to the large corporate
WAN and e-mail market within six months, the streaming media market within nine months, and
the wireless infrastructure community by first quarter 2002.

2a ISP Dial-UP Market

The explosive growth of the World Wide Web has created an insatiable demand for bandwidth.
In response, companies such as Nortel, MCI Worldcom, Global Crossing, Enron, Level3, and
others have constructed broadband infrastructures that transmit data from the content provider
to the content consumer. However, this infrastructure encounters a significant bottleneck when
it typically shifts at a distribution node from high bandwidth, optical fibers to the "twisted-pair"
copper wire that connects most end-users to the network.

Transfinity Executive Summary
©Transfinity Corporation, 2000

4 Confidential

Content
Provider ISP

(T3 Commercial OC192 Backbone in«n (
/

/ / Residential
User "POTS" Network

Provider

The Last Mile "Bottleneck'

Transfinity's low cost, high-speed data compression and caching will dramatically reduce the
delays inherent in the traditional "last mile" bottleneck. We see multiple opportunities.

New distribution vehicles and technologies are being deployed that attempt to deliver broadband
to the end-user. Each has its respective technical advantages and disadvantages. (Refer to the
table on page 7 for a comparison of the technical pros and cons.)

For the foreseeable future the majority of Internet users will continue to use POTS dial-up
service. According to eMarketer, in 1999, 54.8 million (94.5%) of Internet users in the United
States accessed the Internet through POTS. Because of the overall growth in Internet access,
eMarketer estimates that even with growth in broadband services, POTS users will still number
55 million in 2003, or 70% of total Internet users.

DSL and cable modems will be the first of the broadband technologies to be deployed. Goldman
Sachs estimates that by 2003, 80% of houses in the United States will be DSL-ready, whereas

(~ OC192 Backbone

Network
Provider

Transfinity's Initial
Opportunity

Transfinity's Additional
Opportunities

/

Transfinity Executive Summary
©Transfinity Corporation, 2000

5 Confidential

72% of households will be cable modem-ready. At that point the real test for broadband will
come-- when given the option of using any of these services, will end users choose high-speed
access, notwithstanding the additional costs? A recent study by Jupiter Communications
indicated that end-users would not choose these services if they cost significantly more than
POTS dial-up service. 52% of people surveyed said that they would not be willing to pay more
than they are currently paying their ISP.

The significant disadvantage for each of these new technologies is the time and cost of
deployment. While slow, the current distribution system via "plain old telephone service"
("POTS") - an investment of over $100 billion by the phone companies - is in place and fully
amortized. Conversely, each of the newer technologies is not yet widely deployed and will
require a huge capital investment that must be recouped. Where the new distribution pipes are
deployed, in some instances the actual performance is below expectations.

We have drawn two conclusions: 1) When overlaid onto POTS. Transfinitv's compression solution
has near-to-intermediate term advantages over these other developing distribution pipes,
certainly in terms of cost to deploy and cost to the end user, but also in many cases in terms of
performance. For example, a POTS/Transfinity user running a browser on a 56K modem will
experience performance roughly equivalent to that of ISDN without Transfinity compression. A
browser running through a DSL line using Transfinity's compression will approximate a T-l
connection without Transfinity compression. 2) These alternative broadband connections are not
necessarily technological threats to Transfinitv's compression, but instead represent additional
market opportunities. Transfinity's technology applies equally to any type of connection, whether
POTS, ISDN, DSL, cable modem, fibre, or wireless. Our technology will significantly improve the
performance of each of these alternative distribution media.

Transfinity's compression technology can increase Internet access speed by a factor of
approximately 3X, irrespective of transmission medium. Transfinity will demonstrate its
technology by targeting first the 55 million Internet users in the United States who use and will
continue to use POTS dial-up access. Our solution is transparent to the user and simple and
relatively inexpensive for an ISP or Telco to implement.

Transfinity's business plan includes the following steps to demonstrate the value of its
compression technology in the ISP sector:

• Partner with a Tier 2 or Tier 3 ISP to provide a full-scale demonstration of our
technology's capabilities.

• Based upon the pricing sensitivities uncovered in the demonstration project, refine
the pricing schedules for our licensing business.

• License our software to domestic and international Tier 1 ISPs and Telcos.

Transfinity Executive Summary
©Transfinity Corporation, 2000

6 Confidential

Last Mile Technology Comparison

TECHNOLOGY HOW IT WORKS CAPACITY
(KBU/Sec)

ADVANTAGE LIMITATIONS/
DISADVANTAGES

POTS
(Plain Old
telephone Service)

Transmits data on phone
lines.

28 analog
56 digital

In place; no
deployment costs.

• Slow: Current
maximum rate is 56k

DSL
(Digital subscriber
line)

Transmits digital data on
phone lines at frequencies
higher than those used for
voice. Frequencies are
separated at the home.
Individual homes get
dedicated lines.

Downstream: up
to 1500
Upstream: 600-800

Can use existing
phone lines

• Requires more
infrastructure

• Service limited to 5.5
km from phone
switching node

• Top speeds possible
only on short lines

• Not available for all
phone customers.

Cable modem Data travels to home on TV
(coaxial) cable in a frequency
band used for video channel.
Upstream transmission is at a
lower frequency or on phone
wires.

Downstream:
~1000
Upstream: typically
50-100

Uses existing
coaxial cable

• Individual data rate
drops with number
of users

• Poor security
• Not available on all

cable systems

Wireless
(terrestrial)

Local antenna broadcasts
microwaves, picked up by
home antenna. Broadcasts
video signals and can
transmit data.

Comparable to DSL Mobile. No
buildout to user

• Multipath
interference from
buildings

• Trees, terrain, and
rain can block signals

• Interference possible
from other cells

• Signals travel limited
distance (like cell
phones)

Wireless
(satellite)

Satellite broadcasts data
signals to individual receivers.
Might be added to direct
broadcast satellite service, or
to mobile low-earth-orbit
service such asTeledesic.

To be defined No cable, no local
broadcast
antennas

• Better suited to
broadcasting because
of large satellite
coverage area

• Limited data rates
likely

Fibre to the home Fibre carries data to homes.
Could also carry broadcast
video, either in same signal
or other wavelengths.

200,000 to
1,000,000

Highest speed • Cost of construction

Transfinity Executive Summary
©Transfinity Corporation, 2000

7 Confidential

2b Application Service Providers

The ASP market is expected to grow dramatically over the next few years as businesses seek to
gain efficiencies by outsourcing IT services. The outsourced messaging, or e-mail, industry is the
fastest growing segment of the ASP market space and the one most easily outsourced. The
Yankee Group estimates that outsourced messaging market revenues will increase from $1.2
billion in 1999 to over $5.4 billion by the year 2003.

Transfinity provides key benefits to providers and users of outsourced mailboxes. The Transfinity
solution differentiates ASP services in terms of performance and cost. Our ability to compress
mail attachments will greatly improve both upload and download times. Where connections are
priced by the minute, faster transfer times for mail messages and their attachments will decrease
communications costs. In addition to images, the Transfinity solution will be extended to support
other common file types such as Microsoft Office files, .pdf files, and Lotus Notes files.

Importantly, Transfinity's technology is compatible with existing messaging systems. Transfinity's
software compresses e-mails and their attachments before they are sent to the service provider
and decompresses them before the user sees them. As a result, the software is transparent to
the user. Clients use their systems the way they normally do, without having to compress or
decompress the mail messages or their attachments. By being non-invasive, Transfinity's
software remains compatible with existing messaging systems such as Lotus Notes and MS
Exchange.

2c Internet Caching and Web Hosting Providers

As demand for faster Internet content delivery has grown, so has the Content Delivery Service
Provider (CDSP) or commercial caching market. Typically, CDSPs use a combination of proxy
servers and caching strategies to store static information closer to the source of an information
request. When also using compression and high-speed storage techniques such as memory or
disk caching, caching providers can dramatically improve the response time for a given request.
According to the Yankee Group, the market for caching hardware and software is expected to
grow from $180 million in 1999 to $1.7 billion in 2003. CDSPs receive the majority of their
revenues from content providers. In a related development, many companies and content
providers have decided to outsource the management of their Internet sites and the hosting of
their mission critical web servers. Storage and bandwidth requirements are critical elements of
the business models for web hosting companies.

Transfinity does not view these companies as competitors. Rather, they are potential channel
partners. All of them are sensitive to data transmission and storage costs, and none of them
offer a last mile solution for their clients' end users. In other words, CDSPs and web hosting
providers can lower their costs and improve performance to their ultimate end users by
incorporating Transfinity technology. Transfinity compression and caching could be offered as a
premium service or as a distinguishing feature versus the competition. In addition, Transfinity
offers a security feature that should be valued by this channel's content provider customers.
Transfinity encryption uses digital certificate and public key technology. The content is secure as
it travels from the content provider (caching provider or web host) to the consumer. Once the
content is made available to the typical end user, he could see it in the browser and yet be
unable to copy or save it without extraordinary measures.

Transfinity Executive Summary
©Transfinity Corporation, 2000

8 Confidential

2d Large Corporate Users

The rapid growth of the Internet has greatly increased the value of data. With the convergence
of voice and data over both local and wide area networks, the volume of data traffic is increasing
at an exponential rate. In order to meet the growing requirement for voice, text, images, and
video-on-demand, networks must have access to high bandwidth communications. The majority
of LANs are built on TCP/IP and Ethernet protocols. Ethernet has advanced to support one-
gigabit transmission rates. In the corporate LAN environment, video conferencing and media
distribution drives the requirement for bandwidth and storage. For the time being, WANs
(interconnected LANs) continue to rely on traditional leased line connections using protocols such
as ISDN and Tl. The need to support rich data types such as images and audio has made the
use of these transport mechanisms increasingly expensive. For this reason, many companies
have begun to introduce compression-based networking devices and integrated circuits in an
effort to add bandwidth to existing communication infrastructures.

Transfinity believes there can be a substantial opportunity to market its compression and caching
technologies directly to large corporates whose communications costs are substantial and whose
employees require expanded bandwidth. Transfinity could dedicate its compression solution into
the corporate's LAN and WAN networks, as opposed to third party service providers, and charge
in essence a corporate wholesale rate.

2e Streaming Media and Video-on-Demand Market

The promises of streaming media and video-on-demand remain largely unfulfilled. This is largely
due to security issues and the bandwidth constraints associated with the delivery of video to the
home.. The Transfinity security design encrypts the content and prevents the user from viewing
it outside of the browser. The content would remain both compressed and encrypted except
when in memory. And even in memory, it would remain in Transfinity's proprietary format.
This security applies equally well to streaming media and video.

Transfinity is also developing solutions for the bandwidth constraints associated with streaming
media and video. The presentation of streaming media requires a reliable connection with a
display rate of between 12-24 frames per second. The presentation of video requires a reliable
connection with a display rate of between 24-30 frames per second. Using its compression
technologies, Transfinity can demonstrate the delivery of streaming media at a rate of 15-20
frames per second over a 56k dial-up connection without the requirement for a media server on
the part of the service provider. Transfinity is also researching the distribution of full-screen
video-on-demand through DSL, cable, and 3G wireless at a rate of 24 frames per second.
Providing consumers the ability to view any movie, television episode, or video at any time
represents one of Transfinity's biggest opportunities.

Transfinity Executive Summary
©Transfinity Corporation, 2000

9 Confidential

3 Management and Development Team

Transfinity currently has 9 employees. Nearly all have technical backgrounds, specifically in
software architecture and development. Employees hold equity or option interests representing,
in total, approximately 20% ownership of the Company.

Lang Wedgeworth
Co-Founder and President

Mr. Wedgeworth is responsible for managing Transfinity's business affairs, including its
intellectual property portfolio. Prior to joining Transfinity, Mr. Wedgeworth spent over twenty-
two years in the private practice of law, with his primary focus upon transactional and business
law. Mr. Wedgeworth holds a JD from the University of Texas and a BA from Southern Methodist
University.

Mike Harold
Co-Founder and Senior Vice President of Technology

Mr. Harold has over twenty years experience in the computing industry. An expert in distributed
computing, systems integration, operating systems, and database design, he has implemented
solutions in a wide range of industries including Transportation, Health Care, Logistics, Finance
and Education. Mr. Harold is responsible for the technical vision and architectural direction of the
Company. Prior to founding Transfinity, he was the chief architect for the Logistics, Electronic
Commerce, and Catalog division of FedEx. Mr. Harold has patents and patents pending in the
fields of encryption, compression, arbitrary precision mathematics, virtual machine architectures,
distributed computing, media distribution, and various business processes.

James Dodd
Chief Financial Officer

Mr. Dodd brings seventeen years of experience in investment banking, corporate finance, and
institutional investment management, with particular expertise in raising capital for high growth
companies. Prior to joining Transfinity, Mr. Dodd was responsible for international financial
institution marketing at Chesapeake Capital, a $1 billion hedge fund. Previously, Mr. Dodd was a
Managing Director in the corporate finance department of Hoak, Breedlove, Wesneski, a Dallas-
based investment and merchant bank. Earlier in his career, Mr. Dodd was Senior Managing
Director of the investment banking operations of Signet Banking Corporation and a Senior
Director in the capital markets group of Continental Bank, where he focused on the capital needs
of communications and media companies. Mr. Dodd holds an MBA from the University of
Chicago and an AB from Cornell University.

Dennis Tucker
Chief Technology Officer

Mr. Tucker holds a BS in Computer Science from the University of North Texas and an AS in
Machine Tool Technology. Mr. Tucker has been working with computers of various forms for
over twenty years. Mr. Tucker has owned several businesses in the past, including an ISP. Mr.
Tucker also has held positions with other companies as a project manager, supervisor, software
engineer, and consultant. Mr. Tucker has been working in the field of compression and
multimedia for over seven years. He is responsible for the design and direction of the Transfinity
development effort.

Transfinity Executive Summary
©Transfinity Corporation, 2000

10 Confidential

Shin-Ping Liu
Chief Scientist and Project Manager

Ms Liu brings over ten years of experience in Information Technology, including compression
technology, streaming video, distributed computing, and e-commerce. Ms. Liu is responsible for
the R&D direction and project management of Transfinity. Prior to joining Transfinity, she was a
multimedia Web designer in streaming video, audio, and synchronized multimedia presentation
for a university special education institute. Ms Liu holds a patent and patent pending in the fields
of compression implementation and content delivery systems. Ms Liu holds an MS in Computer
Science from the University of North Texas (UNT) and a BBA from Tunghai University in Taiwan.
She is a Ph.D. candidate in Information Science at the University of North Texas.

Robert Dempsey
Senior Software Engineer

Mr. Dempsey has 14 years software development experience in such diverse and technically
challenging areas as message processing and high-reliability image archiving. At Transfinity, Mr.
Dempsey has responsibility for the design and implementation of the Control Server, the
Distribution Server, and the Compression Server front-end. He also maintains much of the
development infrastructure such as the source code control system, problem tracking system,
and the baseline OS installation and performance tuning of the Control and Distribution Servers.
Prior to joining Transfinity, Mr. Dempsey was the development manager for medial image
archives at Eastman Kodak Company where he had overall product development responsibility for
a $1MM+ product line. Mr. Dempsey holds an electrical engineering degree from the University
of Notre Dame and is a member of the IEEE and American Mensa Association.

Transfinity Executive Summary
©Transfinity Corporation, 2000

11 Confidential

4 Financial Projections

Transfinity Executive Summary Confidential
©Transfinity Corporation, 2000

Financial Summary

Q4-2000 Ql-2001 Q2-2001 Q3-2001 Q4-2001 Ql-2002 Q2-2002 Q3-2002 Q4-2002
Total Revenue $1,171,875 $2,343,750 $3,515,625 $4,687,500 $5,859,375 $7,031,250 $8,203,125 $9,375,000

$1,171,875 $3,515,625 $7,031,250 $11,718,750 $17,578,125 $24,609,375 $32,812,500 $42,187,500

Total Expense $ 1,132,628 $ 2,079,973 $ 2,055,243 $ 2,140,705 $ 2,276,933 $ 2,922,844 $ 2,805,603 $ 3,109,819 $ 3,500,078
fxgense . $ 1,132,628 $ 3,212,600 $ 5,267,843 $ 7,408,548 $ 9,685,480 $ 12,608,324 $ 15,413,926 $ 18,523,745 $ 22,023,823

Gross Profit/Loss $ (1,132,628) $ (908,098) $ 288,508 $ 1,374,920 $ 2,410,568 $ 2,936,531 $ 4,225,648 $ 5,093,306 $ 5,874,923
Cum mutative Profit/ $ (1,132,623) $ <2,040,725} $ (1,752,218) $ (377,29$) $ 2,033,370 $ 4,969,301 $ 9,195,449 $ $4,288,755' $20,163,678

License Revenue for Transfinity

94-2000 0 $ "
Ql-2001 mmsii ^ 390,625
Q2-2001 390,625 781,250
Q3-200M mmmm 1,171,875
Q4-2001 390,625 1,562,500
Q1 Qjn: 390,625 mmmm
Q2-2002 390,625 2,343,750
Q3 2002 390,625 2,734,375:
Q4-2002 390,625 3,125,000

2001
Q1 Revenue Q2 Revenue

$ 2,343,750
: .$3,515,625'

$ 4,687,500

2002
Q1 Revenue

$ 5,659,375

Q2 Revenue

$o
$o

$1,171,875
$1,171,875

$2,343,750
$3,515,625

$3,515,625
$7,031,250

$4,687,500
$11,718,750

$5,859,375
$17,578,125

$7,031,250
$24,609,375

Q3 Revenue

i 5,203,125

Q4 Revenue

$8,203,125
$32,812,500

Total Cross Revenue per Quarter
Cummulathre Revenue

Assumptions:
1) Projections

Fiscal year equals calendar year
Projections are $ based, not accrual based

2) User Fees are based upon a license fee of $1.00 per month per Internet user.
No income assumed from content delivery entities; only from ISPs or ASPs.
Constant number of active U.S. Internet users at 125 million of which 75% are users at home (ISP) and 25% are users at work (ASP).

Transfinity captures 0.3125% of that market per quarter beginning Ql-2001 with a total of 2.5% of the active U.S. users at the end of Q4-2002.

$9,375,000
$42,187,500

Transfinity Corporation
Total Operational Expenses

04-2000 Q1-2001 Q2-2001 Q3-2001 Q4-2001 01-2002 02-2002 03-2002 Q4-2002
Current Employees 9 17 23 34 39 41 42 42 42
New Employees 8 6 11 5 2 1 0 0 0
Total Employees 17 23 34 39 41 42 42 42 42
Current Employee Salary $ 350,000 $ 572,500 $ 722,500 $ 985,000 $ 1,115,000 $ 1,170,000 $ 1,374,250 $ 1,374,250 $ 1,374,250
New Employee Salary $ 222,500 $ 150,000 $ 262,500 $ 130,000 $ 55,000 $ 204,250
Total Employee Salary $ 572,500 $ 722,500 $ 985,000 $ 1,115,000 $ 1,170,000 $ 1,374,250 $ 1,374,250 $ 1,374,250 $ 1,374,250

Staffing
Headhunter/Other Recruiting Costs (1) $ 48,500 $ 33,000 $ 58,000 $ 28,500 $ 12,000 $ 41,350
Moving (2) $ 8,000 $ 6,000 $ 11,000 $ 5,000 $ 2,000 $ 1,000
Signing Bonus (3) $ 66,750 $ 45,000 $ 145,500 $ 84,000 $ 95,250 $ 100,275 $ 16,500 $ 61,275

Staffing Total $ 123,250 $ 84,000 $ 214,500 $ 117,500 $ 109,250 $ 142,625 $ 16,500 $ 61,275

Salaries and Benefits
Health Insurance (4) $ 22,950 $ 31,050 $ 45,900 $ 52,650 $ 55,350 $ 56,700 $ 56,700 $ 56,700 $ 56,700
Life Insurance (5) $ 2,040 $ 2,760 $ 4,080 $ 4,680 $ 4,920 $ 5,040 $ 5,040 $ 5,040 $ 5,040
Payroll Tax and Other expenses (6) $ 95,888 $ 115,125 $ 169,575 $ 179,850 $ 189,788 $ 221,179 $ 208,613 $ 215,329 $ 206,138
Salaries (7) $ 572,500 $ 722,500 $ 985,000 $ 1,115,000 $ 1,170,000 $ 1,374,250 $ 1,374,250 $ 1,374,250 $ 1,374,250
Cell Phone (8) $ 6,225 $ 6,975 $ 10,950 $ 10,275 $ 9,825 $ 9,750 $ 9,450 $ 9,450 $ 9,450
Seminar and Continuing Ed (9) $ 8,500 $ 11,500 $ 17,000 $ 19,500 $ 20,500 $ 21,000 $ 21,000 $ 21,000 $ 21,000
Texas Work mens Comp (10) $ 4,250 $ 5,750 $ 8,500 $ 9,750 $ 10,250 $ 10,500 $ 10,500 $ 10,500 $ 10,500

Salaries and Benefits Total $ 712,353 $ 895,660 $ 1,241,005 $ 1,391,705 $ 1,460,633 $ 1,698,419 $ 1,685,553 $ 1,692,269 $ 1,683,078

Cost of Goods
Server Hosting Expense (11) $ $ $ $
License Fees (13) $ $ $ $
Decision Software & Support (14) $ 600,000 * * $ 100,000

Cost of Goods Total $ 600,000 $ $ $ $ 100,000

Overhead
Marketing (18) $ 20,438 $ 34,063 $ 40,875 $ 40,875 $ 43,125 $ 71,875 $ 86,250 $ 86,250
Market Research (16) $ 40,000 $ 10,000 $ 4,000 $ $ 44,000 $ 10,000 $ 4,000
Accounting (19) $ 19,000 $ 9,000 $ 9,000 $ 9,000 $ 19,000 $ 9,000 $ 9,000 $ 9,000 $ 19,000
Banking (20) $ 300 $ 300 $ 300 $ 300 $ 300 $ 300 $ 300 $ 300 $ 300
Customer Support (21) $ 225 $ 450 $ 675 $ 675 $ 1,350 $ 2,250 $ 2,700 $ 2,925
Delivery Charges (22) $ 300 $ 300 $ 300 $ 300 $ 300 $ 300 $ 300 $ 300 $ 300
Human Resources (23) $ 1,500 $ 1,500 $ 1,500 $ 1,500 $ 1,500 $ 1,500 $ 1,500 $ 1,500 $ 1,500
Legal (24) $ 15,000 $ 15,000 $ 15,000 $ 15,000 $ 15,000 $ 15,000 $ 15,000 $ 15,000 $ 15,000
Liability/Property Insurance (25) $ 1,650 $ 1,650 $ 1,650 $ 1,650 $ 1,650 $ 1,650 $ 1,650 $ 1,650 $ 1,650
Online Ad Serving (26) $ $ $ $
Ffostage (27) $ 150 $ 150 $ 150 $ 150 $ 150 $ 150 $ 150 $ 150 $ 150
Subscriptions, Dues and Books (28) $ 1/275 $ 1,725 $ 2,550 $ 2,925 $ 3,075 $ 3,150 $ 3,150 $ 3,150 $ 3,150
Supplies (29) $ 1/275 $ 1,725 $ 2,550 $ 2,925 $ 3,075 $ 3,150 $ 3,150 $ 3,150 $ 3,150
Travel (30) $ 153,000 $ 261,000 $ 315,000 $ 396,000 $ 481,500 $ 720,000 $ 859,500 $ 1,102,500 $ 1,557,000

Overhead Total $ 193,450 $ 353,013 $ 392,513 $ 475,300 $ 567,100 $ 842,675 $ 977,825 $ 1,229,650 $ 1,690,375

Office Expense (32)
Office Space Rent $ 15,000 $ 77,175 $ 77,175 $ 77,175 $ 77,175 $ 77,175 $ 77,175 $ 77,175 $ 77,175
Workstations $ 40,000 $ 30,000 $ 55,000 $ 25,000 $ 10,000 $ 5,000
Servers $ 1,000 $ 11,000 $ 1,000 $ 1,000 % 1,000 $ 1,000 $ 1,000 $ 1,000
Phone System $ 4,075 $ 2,725 $ 3,550 $ 4 PIS $ 4,475 $ 4,550 $ 4,550 $ 4,550 $ 4,550
Network $ 6,000 $ $ 1,500 $ $ 1,500
Misc. $ 38,500 $ 36,400 $ 59,000 $ 49,000 $ 45,800 $ 51,400 $ 43,000 $ 43,900 $ 43,900

Office Expense Total $ 103,575 $ 147,300 $ 207,225 $ 156,200 $ 139,950 $ 139,125 $ 125,725 $ 126,625 $ 126,625

Total Quarterly Expenses $ 1,132,628 $ 2,079,973 $ 2,055,243 $ 2,140,705 $ 2,276,933 $ 2,922,844 $ 2,805,603 $ 3,109,819 $ 3,500,078
Cummulative Expenses $ 1,132,628 $ 3,212,600 $ 5,267,843 $ 7,408,548 $ 9,685,480 $ 12,608,324 $ 15,413,926 $ 18,523,745 $ 22,023,823

Assumptions:
(1) tecruiting Expense

Other recruiting costs include advert

tecruiting Expense

Other recruiting costs include advert

of personnel use headhunter and cost is
tecruiting Expense

Other recruiting costs include advert
ligS&ofsalary |

tecruiting Expense

Other recruiting costs include advert sing, online posting, job (air, etc and are

Moving Expense

Signing Bonus Expense

1*88 per New Employee

(2) Moving Expense

Signing Bonus Expense

1*88
1 Moving Expense

Signing Bonus Expense

for every employee requiring relocation
Moving Expense

Signing Bonus Expense
of employees require relocation

(3)

Moving Expense

Signing Bonus Expense
W6&

1

Moving Expense

Signing Bonus Expense
W6& of New Employee Salaries (50% paid at signing, 50% deferred 6 months)

Transfinity Corporation
Total Operational Expenses

Q4-2000 Q1-2001 Q2-2001 Q3-2001 Q4-2001 Q1-2002 Q2-2002 Q3-2002 Q4-2002

Current Employees 9 17 23 34 39 41 42 42 42

New Employees 8 6 11 5 2 1 0 0 0

Total Employees 17 23 34 39 41 42 42 42 42

Current Employee Salary $ 350,000 $ 572,500 $ 722,500 $ 985,000 $ 1,115,000 $ 1,170,000 $ 1,374,250 $ 1,374,250 $ 1,374,250

New Employee Salary $ 222,500 $ 150,000 $ 262,500 $ 130,000 $ 55,000 $ 204,250

Total Employee Salary $ 572,500 $ 722,500 $ 985,000 $ 1,115,000 $ 1,170,000 $ 1,374,250 $ 1,374,250 $ 1,374,250 $ 1,374,250

Staffing
Headhunter/Other Recruiting Costs (1) $ 48,500 $ 33,000 $ 58,000 $ 28,500 $ 12,000 $ 41,350

Moving (2) $ 8,000 $ 6,000 $ 11,000 $ 5,000 $ 2,000 $ 1,000

Signing Bonus (3) $ 66,750 $ 45,000 $ 145,500 $ 84,000 $ 95,250 $ 100,275 $ 16,500 $ 61,275

Staffing Total $ 123,250 $ 84,000 $ 214,500 $ 117,500 $ 109,250 $ 142,625 $ 16,500 $ 61,275

Salaries and Benefits
Health Insurance (4) $ 22,950 $ 31,050 $ 45,900 $ 52,650 $ 55,350 $ 56,700 $ 56,700 $ 56,700 $ 56,700

Life Insurance (5) $ 2,040 $ 2,760 $ 4,080 $ 4,680 $ 4,920 $ 5,040 $ 5,040 $ 5,040 $ 5,040

Payroll-Tax and Other expenses (6) $ 95,888 $ 115,125 $ 169,575 $ 179,850 $ 189,788 $ 221,179 $ 208,613 $ 215,329 $ 206,138

Salaries (7) $ 572,500 $ 722,500 $ 985,000 $ 1,115,000 $ 1,170,000 $ 1,374,250 $ 1,374,250 $ 1,374,250 $ 1,374,250

Cell Phone (8) $ 6/225 $ 6,975 $ 10,950 $ 10,275 $ 9,825 $ 9,750 $ 9,450 $ 9,450 $ 9,450

Seminar and Continuing Ed (9) $ 8,500 $ 11,500 $ 17,000 $ 19,500 $ 20,500 $ 21,000 $ 21,000 $ 21,000 $ 21,000

Texas Work mens Comp (10) $ 4,250 $ 5,750 $ 8,500 $ 9,750 $ 10,250 $ 10,500 $ 10,500 $ 10,500 $ 10,500

Salaries and Benefits Total $ 712,353 $ 895,660 $ 1,241,005 $ 1,391,705 $ 1,460,633 $ 1,698,419 $ 1,685,553 $ 1,692,269 $ 1,683,078

Cost of Goods
Server Hosting Expense (11) $
License Fees (13) $
Decision Software & Support (14) $ 600,000 $ 100,000

Cost of Goods Total $ 600,000 $ $ 100,000

Overhead
Marketing (18) $ 20,438 $ 34,063 $ 40,875 $ 40,875 $ 43,125 $ 71,875 $ 86,250 $ 86,250

Market Research (16) $ 40,000 $ 10,000 $ 4,000 $ 44,000 $ 10,000 $ 4,000

Accounting (19) $ 19,000 $ 9,000 $ 9,000 $ 9,000 $ 19,000 $ 9,000 $ 9,000 $ 9,000 $ 19,000

Banking (20) $ 300 $ 300 $ 300 $ 300 $ 300 $ 300 $ 300 $ 300 $ 300

Customer Support (21) $ 225 $ 450 $ 675 $ 675 $ 1,350 $ 2,250 $ 2,700 $ 2,925

Delivery Charges (22) $ 300 $ 300 $ 300 $ 300 $ 300 $ M0 $ 300 $ 300 $ 300

Human Resources (23) $ 1,500 $ 1,500 $ 1,500 $ 1,500 $ 1,500 $ 1,500 $ 1,500 $ 1,500 $ 1,500

Legal (24) $ 15,000 $ 15,000 $ 15,000 $ 15,000 $ 15,000 $ 15,000 $ 15,000 $ 15,000 $ 15,000

Liability/Property Insurance (25) $ 1,650 $ 1,650 $ 1,650 $ 1,650 $ 1,650 $ 1,650 $ 1,650 $ 1,650 $ 1,650

Online Ad Serving (26) $
Ftostage (27) $ 150 $ 150 $ 150 $ 150 $ 150 $ 150 $ 150 $ 150 $ 150

Subscriptions, Dues and Books (28) $ 1/275 $ 1,725 $ 2,550 $ 2,925 $ 3,075 $ 3,150 $ 3,150 $ 3,150 $ 3,150

Supplies (29) $ 1,275 $ 1,725 $ 2,550 $ 2,925 $ 3,075 $ 3,150 $ 3,150 $ 3,150 $ 3,150

Travel (30) $ 153,000 $ 261,000 $ 315,000 $ 396,000 $ 481,500 $ 720,000 $ 859,500 $ 1,102,500 $ 1,557,000

Overhead Total $ 193,450 $ 353,013 $ 392,513 $ 475,300 $ 567,100 $ 842,675 $ 977,825 $ 1,229,650 $ 1,690,375

Office Expense (32)
Office Space Rent $ 15,000 $ 77,175 $ 77,175 $ 77,175 $ 77,175 $ 77,175 $ 77,175 $ 77,175 $ 77,175

Workstations $ 40,000 $ 30,000 $ 55,000 $ 25,000 $ 10,000 $ 5,000

Servers $ 1,000 $ 11,000 $ 1,000 $ 1,000 $ 1,000 $ 1,000 $ 1,000 $ 1,000

Phone System $ 4,075 $ 2,725 $ 3,550 $ 4,025 $ 4,475 $ 4,550 $ 4,550 $ 4,550 $ 4,550

Network $ 6,000 $ 1,500 $ 1,500

Misc. $ 38,500 $ 36,400 $ 59,000 $ 49,000 $ 45,800 $ 51,400 $ 43,000 $ 43,900 $ 43,900

Office Expense Total $ 103,575 $ 147,300 $ 207,225 $ 156,200 $ 139,950 $ 139,125 $ 125,725 $ 126,625 $ 126,625

Total Quarterly Expenses $ 1,132,628 $ 2,079,973 $ 2,055,243 $ 2,140,705 $ 2,276,933 $ 2,922,844 $ 2,805,603 $ 3,109,819 $ 3,500,078

Cummulative Expenses $ 1,132,628 $ 3,212,600 $ 5,267,843 $ 7,408,548 $ 9,685,480 $ 12,608,324 $ 15,413,926 $ 18,523,745 $ 22,023,823

Assumptions:
(1) Recruiting Expe

'torn
Recruiting Expe

'torn of personnel use headhunter and cost is

Other recruiting costs include advertising, o
of salary

Other recruiting costs include advertising, o nline posting, job fair, etc and are

t s» per New Employee

(2) Moving Expense
* ijlSM

8»
Signing Bonus Expense

1 Moving Expense
* ijlSM

8»
Signing Bonus Expense

for every employee requiring relocation
Moving Expense
* ijlSM

8»
Signing Bonus Expense

of employees require relocation

(3)

Moving Expense
* ijlSM

8»
Signing Bonus Expense 1

Moving Expense
* ijlSM

8»
Signing Bonus Expense

of New Employee Salaries (50% paid at signing, 50% deferred 6 months)

Transfinity Corporation
Total Operational Expenses

(4) 1 Health Insurance Expense

* lis
•:&»

m. per person per month * lis
•:&»

m.
of premium is subsidized by company

(5) Life Insurance Ex pen 1 1

Payrol Tax and Other Expenses
per person per month

(6) | Payrol Tax and Other Expenses 1 m xSiSxiS:: m fife:of Salaries Expense

XI Phone Expense

lii
* 11 M III £f per month per person

j
lii
* 11 M III £f

per new employee
eminars and Continuing Educatior

lie IS
I eminars and Continuing Educatior

lie IS per person per year
(10) [workman's Compensation

nil m nil
1

See Server Hosting Expense Worksheet for detail. This is a placeholder only

This is a placeholder only

Decisio Software & upport

!•
Software & upport

!•
One-time purchase of decision software with support

Software & upport

!• annual maintenance cost

(16) I Market Research 1
*

111

Purchase of outside studies (I.e. Forrester) per year *
111 «»»

per Focus Group |
*

111 «»» per Usability Test

1
per transaction accrued for Online Marketing

Mariceting
of Total Revenue (Trade Mag Ads, Trade Shows, etc.)

Accounting Expense 1 I

m 5«S0
Spifc

Outsorted Accounting Expense per month m 5«S0
Spifc Yearly Audit Expense

t to* per month
Customer Support Expense
$ 75 per user for ASP license per month

users equal # personnel in Customer Support
See Call Center Expense Worksheet for detail. This is a placeholder only

Sii fexper month

Human Resources
$ m Outsourced portions of Human Resources per month (e.g. payroll, benefits mgmt, etc.)

Legal Expense
* i per quarter

iranc
per month

Online Ad Serving Expense
See Online Ad Serving Expense Worksheet for detail. This is a placeholder only

per month
Subscription. Dues and Books

* »# per person per year

1
* M per person per month

Travel Expense

&
$•

trips per month for "management"

&
$•

per trip average cost &
$• *

..1&0.
trips per month per "traveler" (e.g. sales, professional services, etc.)

P
*

..1&0. per trip average cost P See "Salaries Expense" for managemtnt/traveler designation

(32) Office Expense l l I 1

Transfinity Corporation
Salary Projactions

lllilll
m

I

...
m

?
...

m

! ?

...v....

1

j

ffiSoiW

mim

J

«s w
l_H Qs m m

mmm L 1 i 1 1 I i
j !: I 4 s i l l . I

isaooo

1 I I. 1

'''''$50,600

[< 1.
j 1 I i 111

$54500

1:1:':
1 1 I I j.

isVioo
Sf. * r.

toiijwi"'
£9,°®
$4S,000
$20,000

:::::::! d
£0,000

! j^X-99?

$0
' o

...Jra?99 ...VKJOOO
$0

....
..IS £0,000

l! $45,000
"is $20,00)

1: $12,500

9
$45,000
$20,000
$12,500

_i ...4...
....J??,???
....$45,009

$20,666
$12,500

J57t500

$23,660
$14,375

"V
....?51:2S0

$14^75

::"
is'isoo
$51,750
$23,000
$14^75

""il""

rasa
isi^
$23,000
$14,375

:::!
rasa
151,7®
$23,000
$14,375

yP^Salw^Mirkeonj

forii'siu'sAMwef T/

$40,0)0
.WJ9P.
$30,000
$20,000

:::[1; $40^000

k...?: *
o: jo
2: $57,SCO

• ;
:::i

5
..|i45,ooq

"'$40/)6O
.AIZ&P.

$30,000
. , *>

$87,500

:::>

...s; |}^|Soo

'""it $40/x»
...Ai. il?«sq?

3j_ $90,000
_ji jeaeep.

$: $167,500

dp : •

AWJ99.

717ra|p
d zE:

...XIPJ99.

"$46."oaj
W.&9.

$26,060
$227,500

«MJS

™7!J
$2pA25
$34,500

Zj£2® :::i ;""j23/XX)'
d

...A?PW».

'"$46466

""raj*B
}261,625

z|z d

A204tl25

"$46,003

$172,500
raqoo

$261,625

d A

AWA*

.t»A»
$172,500
ra®°

$261,625

roji:

Content DrHvtry System Teem
Project r>4anag<f

*5/300
$40,000

$35,000
JRM5P.
$25,000

",m&P9.
:::::?

:::»
1 C.J«/W>

i: $40,000

1- $35,000
_..4».|l»g»

lj* $25,000

d
...A

l.'j^OO?

$35,000
..$180,000
" $25,000

"ijS'ooo

; i| *40.000
...o:...?:

: I: $35,000
3: __9: f??9<999

"7"*$T $25,000

*36o;ooo

it $3oioo6

1-

1!

177ra°®

$35,000
|WX).OpO

$25,000 z
.....

z

™J&99?
$40,000 Z'.mm
$35,000

$300/100
$25.<X»

"'"'$So6o

$30.00)

777J§W»
$46,000

$40,250
JgftMO
$».?50
$?4y500

P4,500

3z ::1
....e^ppp.
....A28.-.7?.
.....»4,5Cp.

$448.S»'

::;i

.....

... ra7̂ ?
... A345<PPP.

$446,500

"".rasoo

d

$46,000
ra7®

-A345^-

ZZZ.&&9.
.t^!5R?.

'"""."rasa

—- :»

;5

iEEIEra?®
$46,000
ra7®

$40,250
_$345,000

i»,250

$448,500

Ell--ra«o

fip?r?!!H».

$25,000

$20,666
ZJIisffl?

$10,000

::::::•
:::?

$0
..eo^ooo

75
$0

:::•:

$25,000
...£5/9®

;;;$^.?oo
ins*®

2; 3| $75,000
2; 4: $105,00)

""; il $20,000'

"i: $2S.obb"

3j 2
...4S...2

$125,000
......_flS5,000

$2O]666
77".j«,goo

$25.<XC

$180,000

""$2O]666
7jjs,ooo

$10,000

ft3t250

ZZEra®?
$28,750

$201,250
...J?3S,?50

' *"$23;666 5

$201,250

;;!!;??34O6
!l?i?so

$28,7S0

z|z :::!

$201,250

*$23466
ra?»
$11,S00 —|

~zzz&&>
ra?»
$11^00
$28,7S0

$20,000 $0 $20/X)0 $23,000 $46,000 2 $46,000 $46,000 $46,000
...? ..ra®.° ...? $80,000 - ...54. f*>«0® A'.'.q-ppp. ...• • ..$110000 $.103.500^ Aj... P ..A $128 500 ...? ...p. ...» A 1.2 6,5.00 ...P ...»

J*??1. ^ r!n Mln • ...» $572,500 ...» $72?,SO)
iViwioo"

JJJ__34J $985,000
... _ j-jgoQ^

.30
$3,395,000

...»? - ..$1,170,000
"$4 56*5.0*66

-Alj—5-S
$S939 25oj

—-°-
"" ..$1,374250 $.'3'4,250

*"" $8,687,750 ---

Transfriity Projactions 092600

Transfinity Corporation
Office Expense

Q4-2000 Q1-2001 Q2-2001 Q3-2001 Q4-2001 Q1-2002 Q2-2002 Q3-2002 Q4-2002

Current Employees 9 17 23 34 39 41 42 42 42

New Employees 8 6 11 5 2 1 0 0 0

Total Employees 17 23 34 39 41 42 42 42 42

iiiiii® i5,ooo 77,175 77,175 77,175 77,175 77,175 77,175 77,175 77,175

Workstation* (2) 8 6 11 5 2 1 0 0 0

Workstation Expense 24,000 18,000 33,000 15,000 6,000 3,000 0 0 0

Upgrades (HW & SW) 8,000 6,000 11,000 5,000 2,000 1,000 0 0 0

Maintenance (HW & SW) 8,000 6,000 11,000 5,000 2,000 1,000 0 0 0

Worksation Total 40,000 30,000 55,000 25,000 10,000 5,000 0 0 0

0 1 0 0 0 0 0 0

Server Expense 10,000

Upgrades (HW & SW) - 333 333 333 333 333 333 333 333

Maintenance (HW & SW) - 667 667 667 667 667 667 667 667

Server Total - 1,000 11,000 1,000 1,000 1,000 1,000 1,000 1,000

System (.4$
Phone switch (leased) 2,500 700 700 700 900 900 900 900 900

Lines (Local) 300 300 300 400 500 500 500 500 500

Lines (Long Distance) 1,275 1,725 2,550 2,925 3,075 3,150 3,150 3,150 3,150

Phone System Total 4,075 2,725 3,550 4,025 4,475 4,550 4,550 4,550 4,550

6,000 1,500 1,500 - -

Network Total 6,000 1,500 1,500 -

MaceJaMOiu feuMiiMa-
Furniture (7) $16,000 $12,000 $22,000 $10,000 $4,000 $2,000 $0 $0 $0

Printers $0 $1,000 $3,000 $0 $300 $1,000 $1,000 $1,000 $1,000

Copy machine (8) $5,500 $0 $0 $0 $500 $5,500 $0 $0 $500

Fax Machine (9) $0 $0 $0 $0 $0 $0 $0 $0 $0

Scanner(10) $0 $0 $0 $0 $0 $0 $0 $0 $0

Refrigerator (11) $0 $0 $0 $0 $0 $500 $0 $500 $0

Microwave (12) $0 $400 $0 $0 $0 $400 $0 $400 $400

Other (13) $17,000 $23,000 $34,000 $39,000 $41,000 $42,000 $42,000 $42,000 $42,000

Miscellaneous Total $38,500 $36,400 $59,000 $49,000 $45,800 $51,400 $43,000 $43,900 $43,900

Subtotal by quarter $103,575 $147,300 $207,225 $156,200 $139,950 $139,125 $125,725 $126,625 $126,625

Running total $103,575 $250,875 $458,100 $614,300 $754,250 $893,375 $1,019,100 $1,145,725 $1,272,350

Assumptions:
(1) Office Space Rent Expense

Office space - Original space requirements based on needs at after Quarter 9

350: Amount of Square Footage required for each employee

23 Cost per square foot per year

9th Quarter Employee Total

(2) Work Stations Expense
i 3,000 | Cost of workstations per employee

Stjfl; Hardware & Software Upgrades cost as a percentage of Workstation cost
Hardware & Software Maintenance cost as a percentage of Workstation cost

(3) Office & Development Server Expense

Average cost per server
3^1; Hardware & Software Upgrades cost as a percentage of Server cost

Hardware & Software Maintenance cost as a percentage of Server cost

Quarters to amortise Upgrade & Maintenance Expense|

Minimum server requirement for Office - 20 employee capacity

jjjjjjjl Minimum server requirement for Development

Employees per server after minimum

(4) Cost of Phone System

Transfinity Corporation
Office Expense

4
$ SCO
* *>Q

$ WO
5 LOD

Phone Switch Installation (capacity 20 employees) 4
$ SCO
* *>Q

$ WO
5 LOD

Phone Switch Per Quarter Usage
4
$ SCO
* *>Q

$ WO
5 LOD

Phone Switch System Upgrade every 20 employees

4
$ SCO
* *>Q

$ WO
5 LOD

Local Lines Usage Per Quarter

4
$ SCO
* *>Q

$ WO
5 LOD Local Lines Additional Usage Charge Per 20 Employees

4
$ SCO
* *>Q

$ WO
5 LOD

Long Distance Charges Per Quarter per Employee

4
$ SCO
* *>Q

$ WO
5 LOD

(5) Cost of Local Area Network

* wmmmmmmmm® 3,000

111
LAN Installation (16-Port Hub, Cable Plant) for 10 employees * wmmmmmmmm® 3,000

111 Additional LAN installation for each 10 employees (Will base installation cost off of Q9 employee total)

(6) Cost of Wide Area Network

1111
.

*50

3,000

I 000
ill!

Labor Cost for Installation of Wide Area Network

1111
.

*50

3,000

I 000
ill!

Hardware (Routers, etc.) for each 5 employees 1111
.

*50

3,000

I 000
ill!

Upgrade system after every 30 employees
1111

.

*50

3,000

I 000
ill! DSL & ISDN Connections per month

1
Miscellaneous Expenses

wmmm Wm (7) Cost of furniture per set

Printers
30 Number of non-management employees per printer

1000 Cost per printer for non-management

1 Number of senior management employees per printer (exec + VP)

300 Cost per printer per management

3000 Cost of color printer for Marketing Department

(8) Copy Machine
-K

V 5. WO

MO
36 months

$ 50,000

Number of employee per copy machine -K

V 5. WO

MO
36 months

$ 50,000

Cost per copy machine

-K

V 5. WO

MO
36 months

$ 50,000

Maintenance per year for copy machine

-K

V 5. WO

MO
36 months

$ 50,000

Life of copy machine

-K

V 5. WO

MO
36 months

$ 50,000 Cost of Color copier for Marketing Department

1
(9) Fax Machine

IS

iptlli|ltiil
MO

Number of employees per fax machine

IS

iptlli|ltiil
MO Cost per fax machine

IS

iptlli|ltiil
MO

Life of fax machine

(10) Scanner (one scanner for office)

* 500 Cost per scanner * 500
Life of scanner

(11) Refrigerator

;il

so

34 months

Number of employees per refrigerator

;il

so

34 months

Cost per refrigerator
;il

so

34 months Life of refrigerator

1
(12) Microwave

*
34

iiisi
440

Number of employees per microwave

*
34

iiisi
440 Cost per microwave *

34

iiisi
440

Life of microwave

1
* l,0PO (13) Other Miscellaneous Expenses per employee

Appendix: Transfinity's N-Bit Compression Technology

Transfinity's compression technology differs from all other compression technologies in its ability
to compress previously compressed data. The possibility that previously compressed data can be
compressed again and again is greeted by most computer scientists with incredulity. How is it
possible that information theory is wrong in its fundamental assumption that there is a calculable
value that represents the absolute lower limit of a message's meaning as measured in bits?
Information science has been based on the implicit assumption that the primary unit of
information is the byte (i.e. eight bits). Transfinity's technology is based on the assumption that
the primary unit of information is not the bvte. but rather the binary digit or bit. This simple
assumption has allowed Transfinity to make major advances in numerous areas within computing
including encryption, compression, and arbitrary precision mathematics.

Transfinity's compression is protected by issued patents and patents pending. N-bit compression
provides significant increases in compression over other lossless compression methods.
Representative examples of compression ratios obtained by Transfinity with its technologies are
as follows:

Lossless Compression Lossy Compression Lossless & Lossy Compression
DICOM 62% JPEG(Our Algorithm) 71% Special Medical Image 88%
AVI 60%
GIF 30%
ZIP 18%

AVERAGE 42.5%

There are numerous compression standards in the telecommunications, networking, and Internet
communities. Organizations such as the Internet Engineering Task Force (IETF), the
International Telecommunications Union (ITU), the International Telegraph and Telephone
Consultative Committee (CCITT), the International Standards Organization (ISO), and the World
Wide Web Consortium (W3C) support many compression practices and standards. Any
encryption and/or compression products introduced into the market must accommodate both
existing and emerging standards.

Transfinity N-bit™ compression is not intended to replace or compete with existing standards. It
is not a new standard. It is a breakthrough technology that will have wide-ranging effects across
multiple commercial markets and industry segments. It has applications related to both
bandwidth and storage. It can be implemented in hardware using both conventional RISC and
DSP processor architectures. It can be implemented as software. N-bit™ compression has
application in areas as diverse as telecommunications, networking, content and file management,
and disk and tape storage.

A1 N-bit™ Compression- Theoretical Background

Information theory states that there is a limit to the degree to which data can be compressed
based upon its entropy. The assumption is that the content or meaning of the data is somehow
contained within the digital representation of the data. A bit string has little or no meaning in
and of itself. Very little of the meaning of any data is contained within its binary representation.
The large majority of its meaning is extrinsic. By transferring more and more meaning or content
to the external source or model that represents the data, greater and greater lossless
compression is possible.

The entropy of a given data set may be changed in several ways. One way is to vary the length
in bits of the input symbols to the model. This, in effect, changes the model for each symbol

Transfinity Executive Summary
©Transfinity Corporation, 2000

Confidential

length. So, in practice, the model can be varied until desired entropy is obtained. Changing the
model to find the desired entropy allows data that was previously uncompressible to be
compressed. Data compressed at some symbol size will reach an entropy limit and converge at
the calculated probabilities for that data set. To change the entropy limit and the calculated
probabilities, one has only to change the model.

The frequency with which the symbols occur in a given symbol set may also be changed by
applying one or more rules that modify the binary values of the input symbols prior to
compression. A binary grammar may be defined to describe those data transformations that may
be used to manipulate bit values within or between symbols.

The general method used to enable re-iterative N-bit™ lossless compression consists of the
following steps:

1. The statistical analysis of the input source to determine optimal symbol size, the method
or methods to be used to explicitly change the values of the symbols prior to
compression, and the method or methods to be used to change the total number of
symbols included in a compression pass.

2. The optimization of the compression process in terms of speed and efficiency based on
the results of Step 1.

3. The compression of the data using one or more lossless compression methods that use
variable bit length words to describe the symbols.

4. Repeat the process by using the output of the previous compression effort as input to
the next.

In summary, since the entropy of a symbol is defined as the negative logarithm of the probability
of its occurrence in a given symbol string, the base size of the binary-symbol set, the number of
unique symbols, and the total number of symbols in the symbol string may be modified to
optimize the compressibility of any source of binary input, regardless of whether that source of
input is also the output of a previous compression process.

A2 The Core Product

Transfinity's content distribution technology is designed to increase bandwidth and storage
capabilities and to decrease communication time on all networks using existing network
hardware. This goal will be achieved by utilizing a combination of compression, proxy, firewall
caching, and intelligent distribution servers.

Transfinity's Optimal™ Content Distribution System (TOCDS) consists of the following
components:

• The Compression Server to manage compression tasks

• The Distribution Server to distribute the content

• The Control Server to manage the distribution servers

• Multiple sub-systems to manage caching, security, etc.

Transfinity Executive Summary
©Transfinity Corporation, 2000

Confidential

• Various plug-ins, applets, and applications to support the viewing and editing of
specific media formats

The Compression Server and Compression Libraries are used in conjunction with any or all of
Transfinity's other servers. The system is designed to intercept content on the network at a
designated point and to compress and cache the content. The system also has the ability to
intelligently distribute the content.

The general concept underlying TOCDS is to intercept content on the network at some point,
compress, and cache the content. The intercept point may be the source or anywhere along the
path, including the destination. The servers are all part of TOCDS, and all servers share all public
content through the Control Server.

A diagram of the Internet without the TOCDS solution is provided in Figure 1 below:

Figure 1

here

Internet users

ISPs, LANs, or WANs

Content

Large bandwidth required

Slow speed here

Transfinity Executive Summary
©Transfinity Corporation, 2000

Confidential

A diagram of the Internet using the TOCDS solution is shown in Figure 2 below:

Figure 2

Less bandwidth required here

Internet users

Transfinity Executive Summary
©Transfinity Corporation, 2000

Confidential

A diagram of theTOCDS general solution is provided in Figure 3 below:

Figure 3

Web
Server

Web
Server

Compressed

Less bandwidth
required here

Less bandwidth
required here

Compressed

Less bandwidth
required here

User

Transfinity Executive Summary
©Transfinity Corporation, 2000

Confidential

The Compression Server contains Transfinity's patented and patent pending technology and is a
core component of the product. The Compression Server's job is to compress the content
captured by the servers. The Compression Server is intended to be treated as a "Black Box" by
other programs and processes. The Compression Server can compress any type of content using
any combination of lossy and lossless compression methods. The Compression Server can use
various compression methods to adapt to changing content and new compression libraries can be
plugged into the existing architecture when upgrades are required.

Interface

Black Box

ComDressor 1

ComDressor 2

Comoressor n

The Compression Server manages compression tasks from the other servers. Compression
requests are made through RMI or TCP/IP, so that the servers may reside on different machines
and networks if desired. The Compression Server manages the Compression Libraries through a
native interface. It is the Compression Server's job to interpret compression requests, pass
parameters to the Black Box Compressor, interpret the output from the compressor and reply to
the requesting server.

The Compression Libraries are plug-and-play software components that provide different types of
compression capabilities to the Compression Server. The Compression Libraries implement
Transfinity's patented N-Bit ™ compression technology as well as other compression methods.

Compression Libraries will include:

• N-bit lossless compression
• JPEG, MPEG and fractal lossy compression
• Industry specific file compression (e.g. DICOM)
• Streaming media compression
• File conversion routines (e.g. converting .gif files to JPEG format)

The Compression Libraries will support both real-time, packet level compression in hardware as
well as content specific compression in software.

From the users viewpoint, about a 50% increase in bandwidth will be possible through the use of
compression technology, and about a 75% increase in speed will be possible through the use of
compression and caching technology, with a small reduction in visual quality on some content.
From the Service Providers viewpoint, large reductions in incoming network traffic due to the
caching nature of TOCDS will result in large bandwidth savings. Their customers will experience
increased apparent transmission speed and bandwidth.

Transfinity Executive Summary
©Transfinity Corporation, 2000

Confidential

Transfinity - Confidential November 2000

Edgewidth Solutions for the
Internet

18 9 W1
IP mm IP

• "Last Mile" Internet users

• Video on Demand

• Tape and Disk Storage

Transfinity is an Internet infrastructure company that is using its
patented technologies to target Internet Edgewidth opportunities
that include:

Transfinity- Confidential November2000

The core technology creates multiple
revenue opportunities:

Transfinity - Confidential November 2000

Content Delivery ~ The Internet's "last mile"
bottleneck . . .

Content Provider

/
T3 (44.7
Mbps)

Fiber Optic Backbone (10
Gbps)

/
Network
Provider

NETWORKS

AAOL.COM
Internet Service

Provider

A
)T3(H xi (1.5

Mbps)

Residential User
TOTS" (28.8 and 56

^li&har

Goes from 10 billion bits per second down to 28 thousand bits per
second for most users. t m J& M «lf i M S * 9

Transfinity - Confidential November 2000

"Plain Old Telephone Service" (POTS)
represents the majority of U.S. Internet
users: , ,

B&lrmisd ww&Mm spagds of U S. Infemsf

* wwamVMspsp 128Kb ISDN: m> 14.4Kb a; Slower 3%
tfewnfead speeds *1Msm * 11? s&c

Gilder Technology Report

y ; « & m # J* * M % t w

Transfinity- Confidential November 2000

Download latencies represent millions of
lost dollars

Transfinity - Confidential November 2000

Gilder Technology Report

ASPs, Hosting Services and wireless
mCommerce represent additional
opportunities:
• Over half of America's networked businesses intend to

implement an ASP solution in the next 12 months (Information

Technology Association of America). This translates to millions of
Internet users

• Wireless users

- The number of wireless portal users in the U.S. will grow
to nearly 25 million in the next five years (The Strategis Group)

- Global wireless users could exceed 500 million by 2001
and the number could reach 1 billion by 2004 (Philadelphia
Stock Exchange)

- Nearly 50% of all e-commerce will be mobile (Wireless
Developer Network)

Transfinity - Confidential November 2000

Transfinity's solution reaches from the ISP,
ASP, Hosting Provider and Corporate Lan to
the edge of the mobile Internet.

Transfinity - Confidential November 2000

Video on Demand offers another major
market opportunity for Transfinity's
technolo*"*

2005

2004

2003
ft

2002

2001

2000

1933

0 5 10 15 20 25

Subscribers (it* m sport®)
Source: Cahn&m fn-Si&t

VideG ftver-OSi subscriber prejeeltans.

sr a & m «1 sr

Transfinity - Confidential November 2000

* m si sr m

Edgewidth Solutions
Internet

for the

Transfinity - Confidential November 2000

Transfinity's
Optimal Content Distribution System (TOCDS)

for ISPs and Content Providers

June, 2000

Copyright © 2000 Transfinity Corporation

CONFIDENTIAL

TRANSFINITY'S OPTIMAL™ CONTENT DISTRIBUTION SYSTEM (TOCDS)

BUSINESS SUMMARY

Transfinity Corporation, a technology firm located in Dallas, can provide an Internet Service
Provider ("ISP") with the ability to increase its customers' browser speed by 300 percent,
regardless of whether access is via POTS dial-up, DSL, cable modem or wireless. A browser
running through a 28K modem will look like it is running at 90K A browser running
through a 56K modem will run faster than an ISDN connection. This is not a costly
hardware solution. Transfinity does this using software that is transparent to the customer
and simple to implement on the part of the ISP.

Transfinity's solution will increase an ISP's customer base by providing its customers with a faster
response time than they can get from any other ISP or content provider. This enhanced
performance/service, fully implemented through software, can be made available to all of an
ISP's subscribers at no additional cost. Alternately, an ISP may want to create a "premium"
service, where for a nominal month fee users can achieve a significant improvement in speed
without a significant increase in costs.

The Technology

A number of new Internet companies are gaining global attention by trying to deliver on the
Internet's promise to provide information instantly to anyone, anywhere at anytime. These
companies are using a variety of technologies that include intelligent routing, caching and proxy
servers to improve performance and reduce response time for Internet information consumers.
Transfinity is positioned to enter this market with a solution that not only provides for the
intelligent distribution of Internet media, but also greatly increases bandwidth and
storage capacity through the use of a revolutionary new compression technology.

Transfinity has developed compression methods that offer a 50% improvement over all other
compression methods. Transfinity has the only compression technology capable of losslessly
compressing previously compressed data. In addition, Transfinity has developed compression
capabilities that support and significantly increase the compression ratios of "lossy" compression
methods such as JPEG and MPEG. Transfinity's technology is not intended to replace existing
standards, but is designed for use in conjunction with other hardware and software storage and
bandwidth standards, practices and technologies. Transfinity's compression takes the form of a
browser plug-in that requires no additional resources on the part of the user's CPU.

Transfinity's technology is protected by patents and patents pending.

Conclusion

In the United States, nearly 90% of Internet households still use Plain Old Telephone Service
(POTS) with their 28K or 56K modems. A lot of time and money has been spent in the last few
years on broadband technologies such as fiber optic, cable and DSL. These technologies are
expensive. Unless and until they are low-cost and easy to implement, most Internet households
will not use them. It does not matter how much bandwidth there is if it does not reach the end
customer.

-1-

CONFIDENTIAL

TECHNICAL SUMMARY

The Core Product

Transfinity's content distribution technology is designed to increase bandwidth and storage
capabilities and to decrease communication time on all networks using existing network
hardware. This goal is achieved by utilizing a combination of compression, proxy, firewall caching
and intelligent distribution servers. Users of this technology will include operators and users of
ISPs, Content Providers, Local and Wide Area Networks (LANs and WANs), Virtual Private
Networks (VPNs) and Application Service Providers (ASPs).

Transfinity's content distribution technology is based upon its intellectual property. This
intellectual property consists of:

• Patents
• Patents pending
• Trade secrets and
• Copyrights

Transfinity's Optimal™ Content Distribution System (TOCDS) consists of the following
components:

1. The Compression Server to manage compression tasks
2. The Distribution Server to distribute the content
3. The Control Server to manage the distribution servers
4. Multiple sub-systems to manage caching, security, etc.
5. Various plug-ins, applets and applications to support the viewing and editing of specific

media formats.

The Compression Server and Compression Libraries are used in conjunction with any or all of
Transfinity's other servers. The system is designed to intercept content on the network at a
designated point and to compress and cache the content. The system also has the ability to
intelligently distribute the content.

General Description

The general concept underlying TOCDS is to intercept content on the network at some point,
compress and cache the content. The intercept point may be the source or anywhere along the
path including the destination. The servers are all part of TOCDS and all servers share all public
content through the Control Server.

A diagram of the Internet without the TOCDS solution is provided in Figure 1.

A diagram of the Internet using the TOCDS solution is provided in Figure 2.

A diagram of the TOCDS general solution is provided in Figure 3.

CONFIDENTIAL

Less bandwidth required here

-3-

CONFIDENTIAL

-4-

CONFIDENTIAL

The Compression Server

The Compression Server contains Transfinity's patented and patent pending technology and is a
core component of the product. The Compression Server's job is to compress the content
captured by the servers. The Compression Server is intended to be treated as a "Black Box" by
other programs and processes. The Compression Server can compress any type of content using
any combination of lossy and lossless compression methods. The Compression Server can use
various compression methods to adapt to changing content and new compression libraries can be
plugged into the existing architecture when upgrades are required.

Interface

Black Box

ComDressor 1

Conwessor 2

ComDressor n

The Compression Server manages compression tasks from the other servers. Compression
requests are made through RMI or TCP/IP, so that the servers may reside on different machines
and networks if desired. The Compression Server manages the Compression Libraries through a
native interface. It is the Compression Server's job to interpret compression requests, pass
parameters to the Black Box Compressor, interpret the output from the compressor and reply to
the requesting server.

The Compression Libraries

The Compression Libraries are plug-and-play software components that provide different types of
compression capabilities to the Compression Server. The Compression Libraries implement
Transfinity's patented N-Bit ™ compression technology as well as other compression methods.

Compression Libraries will include:

• N-bit lossless compression
• N-bit lossy compression
• Conversion from standard image types to Transfinity images
• Conversion from standard streams to Transfinity streams
• Conversion from standard file types to Transfinity file types

The Compression Libraries will eventually support both real-time, packet level compression in
hardware as well as content specific compression in software.

TOCDS Benefits

From the user's viewpoint, a 50% increase in bandwidth will be possible through the use of
compression technology and a 300% increase in speed will be possible through the use of
compression and caching technology with a small reduction in visual quality on some content.

-5-

CONFIDENTIAL

From the Service Provider's viewpoint, large reductions in incoming network traffic due to the
caching nature of TOCDS will result in large bandwidth savings.

TOCDS Applications

TOCDS are part of a network of Distribution Servers that provide increased bandwidth and speed
anywhere that server technology can be applied. TOCDS can be configured in a variety of ways
to perform various tasks. One possible configuration would be a proxy; caching and compressing
content for an ISP or LAN. Another possibility would be as a firewall, interpreting requests and
serving up compressed content from an inner network of e-commerce VPNs and standard web
servers.

The Theory Behind Transfinity's Lossless Compression

Transfinity's lossless compression is based on patents and patents pending. The theory
underlying these patents is based on a change in our understanding of binary data. From
Transfinity's viewpoint, the bit, not the byte, should provide the basis for all computing systems
and methods.

A description of the theory follows:

For any ordered set (i.e. class) S of symbols there exists a class Q (called Omega) of N (i.e.
variable) length symbol strings similar to the set of natural numbers {1, 2, 3, . . .} where Q. is
further defined as the class of all ordered combinations of N length symbol strings where:

N = { 1, 2, 3,...}

For example, where

S = {0, 1, 2}

Q = {0, 1, 2, 00, 01, 02, 10, 11, 12, 20, 21, 22, 000, . . .}

Or where

S = {a, b, c}

Q = (a, b, c, aa, ab, ac, ba, bb, be, ca, cb, cc, aaa, . . .}

Furthermore, the class Q is equivalent for all S.

The Class Q of N-bits

The class Q in binary form would be represented as:

{0, 1, 00, 01, 10, 11, 000, . . .}

This is the class Q of AAbits.

Furthermore, the binary representation of members of the class Q of Ambits does not require that
any member be interpreted as a number value. A member of the class Q may be identified with a
member of any type (of class). As a result the class Q. is capable of defining any number of types
as subclasses.

CONFIDENTIAL

The class of bytes is defined as a subclass of the class Q:

{00000000, 00000001, 00000010, . . 11111111}

By definition, the class Q of /V-bits is the parent class of all classes whose members may be
represented as binary symbol strings. A member of Q (e.g. 10010101010) does not represent a
specific object or number value. The member is nothing more than a binary symbol string - an
abstract, virtual symbol over which the "template" or "idea" of the object is placed.

By specifying the length in bits and the binary values of members of the class Q as a subclass, it
is possible to define classes of any type commonly used in computing. Subclasses of the class Q
include the natural and real number systems, microprocessor instruction sets, virtual machine
instruction sets and objects of any type (including state models, state machines, texts, images,
sounds, etc.). Simply stated, the class Q of /V-bits provides a means whereby all classes,
attributes and relations representable in binary or digital form may be defined as members of Q
or its subclasses.

Entropy and Compression

The term entropy as it is used in information theory is a measure of how much information is
contained or encoded in a message. A message in turn is defined as a string of symbols. The
higher the entropy of a message, the greater is its information content. Data compression is to
information theory what set theory is to higher mathematics and as such becomes the means by
which we understand the fundamental nature of information. The lower the entropy, the smaller
is its information content. Information theory states that there is a limit to the degree to which
data can be compressed based upon its entropy.

The assumption is that the content or meaning of the data is somehow contained within the
digital representation of the data. This is not so. A string of bits has little or no meaning in and of
itself. Very little of the meaning of any data is contained within its binary representation. The
large majority of its meaning is extrinsic. By transferring more and more meaning or content to
the external source or model that represents the data, greater and greater lossless compression
is possible. Lossless compression means that data, once compressed, can be returned to its
original state without the loss of a single bit.

Lossless compression has followed an evolutionary path beginning with the work of Claude
Shannon in the late 1940's. Lossless compression methods that have resulted from this work
include:

1. The Shannon-Fano algorithm developed simultaneously by Shannon at Bell Labs and
R.M. Fano at MIT uses a simple method to identify binary codes for symbols in a given
symbol string and to create a binary tree to organize the resulting codes.

2. Huffman coding uses unique prefixes to describe the variable length binary codes that
result from the compression process. First described in 1952 by D.A. Huffman, this
coding algorithm is believed to be the most efficient method of generating variable
length binary codes when provided with a table of probabilities for a given symbol set.

3. Adaptive Coding may be applied to any lossless compression method that uses statistics
to create a tree or table to describe the data it is compressing. Compression methods
originally used fixed or static models to contain the relations between the original
symbols and the resulting encoded values. These trees or dictionaries are transmitted

-7-

CONFIDENTIAL

along with the data and may result in significant decreases in compression ratios.
Adaptive coding modifies the model as the data is processed. The result is greater
compression.

4. Lempel-Ziv compression uses a dictionary to describe the relations between the data that
appears in a fixed or sliding window and the data (i.e. symbols or symbol phrases) that
have occurred in previously seen text. First described by Jacob Ziv in 1977 and Abraham
Lemple in 1978, these methods are useful in compressing data in devices such as
modems, tape drives and network devices that see a constant stream of symbols.

5. Arithmetic coding uses the entire symbol string to create a single floating point number
greater than or equal to 0 and less than 1. Although the entropy associated with a
symbol in a given symbol string may be fractional, methods such as Huffman coding
describe the coded symbols in terms of whole bits. Arithmetic coding allows the resulting
binary values to be described in fractional terms. The result is a more efficient
compression process than is available with Huffman coding.

The class Q of /V-bits provides a means whereby the entropy of a given data set may be
increased or decreased at will regardless of the original content of the message.

This is done by varying the length in bits of the input symbols to the model. This, in effect,
changes the model for each symbol length. So, in practice, the model can be varied until desired
entropy is obtained. Changing the model to find the desired entropy allows data that was
previously uncompressible to be compressed. Data compressed at some symbol size will reach an
entropy limit and converge at the calculated probabilities for that data set. To change the entropy
limit and the calculated probabilities, one has only to change the model.

The entropy of a given symbol in a symbol string is defined as the negative logarithm of the
probability of its occurrence in the string. The entropy of a symbol string (i.e. message) is
defined as the sum of the entropy for all the symbols in the string. The formula for determining
the entropy of a given symbol in a binary message is:

Entropy (i.e. number of bits) = - Log base 2 (number of like symbols/total symbols in message)

As an example, the binary value 01000010 is a standard representation of the letter "B" using the
American Standard Code for Information Interchange (i.e. ASCII). The binary value 01000010
means "B" only because it was decided years ago to represent the English alphabet using eight
bits and 01000010 was designated the letter "B".

By changing the length in bits of the input the entropy for the letter "B" can be made to vary:

Symbol Probability Entropy

01000010 1/1 Q
Total 0

0100 1/2 1
0010 1/2 1

Total 2

01 1/4 2
00 2/4 1
10 1/4 2

CONFIDENTIAL

Total = 5

The base size of the binary symbol set may be modified to optimize the compressibility of any
source of binary input regardless of whether that source of input is also the output of a previous
compression process. As a result, the theoretical limit to the number of times a symbol string
may be repeatedly compressed remains undetermined.

BURTON GRAD ASSOCIATES, INC.
7 WHITNEY STREET EXTENSION
WESTPORT, CONNECTICUT 06880
(203) 222-87 1 8
(203) 222-8728 FAX
BURTORAD@AOL.COM

September 28, 2000

Mr. Jim Lincoln
First Dallas Ltd.
300 Crescent Court
Suite 100
Dallas, TX 75201

Dear Jim:
Technical Due Diligence Report on VE Group. LLC

The following are BGAI's findings, conclusions and recommendations about VE Group's
technologies, programs and planned product directions. Both Sid Dunayer and I are available for
futher discussions by telephone. We have separated the findings and conclusions by the two business
units: Transfinity and GlobalESP. The summary and recommendations have been combined for the
two businesses. Enclosed as attachments are A-l and A-2: Burton Grad and Sid Dunayer
professional profiles; B-l: Information Request List; B-2: Interviewees; C: Technical Review of VE
Group, LLC by Sid Dunayer; and D: Interview Notes by Burton Grad.

Findings: Transfinity

• Transfinity has built a program which uses its patented algorithms and proprietary logic to
provide the ability to compress the transmission bandwidth required for certain image files by
10% to 68%.

• The compression technology is well done, using a creative new mathematical bit level
approach which is quite different from the other known byte level compression techniques.

• Transfinity plans to produce and license the compression and decompression programs to
ISPs and Telcoms so that they can reduce the bandwidth (hence time and resources) needed
to transmit Internet content requested by users' browsers.

• The programs constructed so far deal only with GIF and JPEG images, but the technology
should be applicable to other image files as well as to voice and text/data files, although with
somewhat different compression results.

• The system is designed around the idea of using a proxy server by the ISP to actually obtain
the requested Internet files; these files are then put through the compression process,
transmitted to the user, and then decompressed for user viewing.

CONSULTANTS ON SOFTWARE

Mr. Jim Lincoln
Page 2
September 28, 2000

BURTON GRAD ASSOCIATES, INC.

• Dennis Tucker who produced the programs, in conjunction with Shingting Liu and Robert
Dempsey, believes the programs are very complicated. He also believes that if images are
compressed under one operating system (like NT), then they must be decompressed under
the same operating system.

• The actual code was not reviewed since Dunayer felt that the current implementation was
really a proof of concept, not a deliverable product. He did review demos using the system
against both canned files and also against certain files which Dunayer gave them. The demos
were successful with over 50% reductions.

• The decompression program is data driven, so it should not require reprogramming in order
to handle different mathematical models used during the compression process.

• There was no business case or market study available for BGAI to look at for the Transfinity
business, although we were told that one was in process and would be ready shortly.

Statements were made by Lang Wedgeworth and Michael Harold that sole rights to the
patents and proprietary materials were owned by VE Group (Transfinity) through various
legal documents involving Michael Harold, Joe Morgan, FedEx and Gemini Systems.

• The programming work has been performed using a mixture of C, C++, Java, JavaScript and
HTML.

• An intermediate image format is created which is used for transmission and is the input to the
decompression process.

• The stored image is first decompressed and then compressed into the Transfinity image
format.

• Version 1 compresses GIF and JPEG files.

• Version 2 will compress "everything" else.

• Version 3 will provide "real-time" compression without necessarily requiring a cache.

Findings; QlQbalESP

GlobalESP has built a B2B product to demonstrate the capabilities of using the proprietary
development tools and technologies which they designed and implemented.

CONSULTANTS ON SOFTWARE

Mr. Jim Lincoln
Page 3
September 28, 2000

BURTON GRAD ASSOCIATES, INC.

• Proposals have been made to at least two prospective buyers where GlobalESP would partner
with Answerthink to use these tools to build B2B-type systems.

• The tools and technologies can be used for constructing networks to interface a wide range
of distributed applications which were built using heterogeneous technologies.

• GlobalESP plans to work with various system integrators to propose and implement
application systems.

• VE Group (GlobalESP) has applied for a patent covering their distributed virtual machine
concept.

• GlobalESP has constructed a transactional directory services capability which they believe to
be of high value.

Conclusions: Transfinitv

• The n-bit compression technology is of very substantial value, and it seems likely that the
patents should be valid.

• This technology can make a real major difference in reducing the size of both storage and
transmission of images, voice and text/data.

• The current Transfinity application for browser use through ISPs and Telcoms seems
awkward and may not be effectively marketable or profitable.

• The content Web managers may be a far more valuable target since it makes more sense to
store the content in compressed form for both storage and transmission savings. The issue
of decompression would need to be addressed.

• This is a natural business for licensing the technology usage to providers and customers with
some kind of per-unit usage fee.

• Investing any large amount of time in programming applications is probably not productive.

Conclusions: GlobalESP

• The capability of building distributed virtual machines is of great significance and should be
of substantial market value.

CONSULTANTS ON SOFTWARE

Mr. Jim Lincoln
Page 4
September 28, 2000

BURTON GRAD ASSOCIATES, INC.

• Because the tools are programmed entirely in Java, they are fully portable to operate on any
actual machine (Unix, NT, etc.).

• The services provided include capability for:
• translating objects from host to virtual machines
• connection services for host to participate in any network
• workflow services

• The programs are professionally written

• The current B2B implementation is of little value and does not effectively show the
capabilities of the unique tools and concepts.

The potential for cross-platform distributed computer networks is large.

Exploiting this technology advance will be quite difficult for a startup company.

Summary and Recommendations: VF, GROUP

1. There is significant technology:

• n-bit compression for more efficient storage and transmission of images, voice and data/text
• Distributed heterogeneous Web-based applications system development tools

2. The specific current packaging and marketing direction for these technologies is weak and
probably misdirected:

• Browser-oriented reduction of bandwidth for ISPs
• E-commerce retail-oriented applications

3. Neither of these business cases looks profitable since each requires substantial investment and
significant marketing power to succeed, neither of which VE Group has now nor can get easily.

4. What is the company worth at its present stage?

Must be viewed in terms of what someone would pay for exclusive rights to each technology,
rather than what the business value would be for the proposed applications and markets.

• There is extra value because of the quality of certain of the people and their knowledge

CONSULTANTS ON SOFTWARE

Mr. Jim Lincoln
Page 5
September 28, 2000

BURTON GRAD ASSOCIATES, INC.

5. A set of questions need to be asked:

• Who are the potential technology buyers?
• Will they license on a non-exclusive basis?
• Are the big consulting firms the right partners for GlobalESP?
• How do the technologies make money for their users and for their suppliers?
• Are there any analogous companies which are technology rich but marketing poor?
• Who are the real competitors?

6. In our preliminary opinion, both businesses are worth an initial investment, not to productize and
market what has been done, but rather to determine the appropriate markets, the proper way to
reach these markets, how to package and price the offerings and how to organize and manage a
technologically focused company.

7. The technologies are of profound value and FDL should find a way to become a participant at a
reasonable price and then determine how to ensure that each business rethinks its technical,
marketing and financial plans.

Very truly yours,

Burton Grad

BG:5319
cc: Sidney J. Dunayer

CONSULTANTS ON SOFTWARE

Sid Dunayer Attachment A-2

Professional Profile
Communications and Network Related Projects

Major International Chemical Manufacturer

Requirements analysis and design of the global network connecting the various product design
centers worldwide. The network is currently implemented using Token-Ring and Ethernet local
area networks connected via private TI/T3 service, Fiber links, Asynchronous and Synchronous
dial connections, X.25 packet connections and SAA connections to the mainframes. Through this
network, the chemists worldwide can share data and work together on new creations. The actual
mechanism used to route any given "transaction" is dependent on the required response time for
that transaction. Those that are "urgent" or require a timely response are routed via an appropriate
network connection. The lower priority data replication messages are batched and sent using a
cheaper network route.

Software Products Company

As part of a strategic planning study, analyzed various current and proposed message/document
interchange models to establish requirements for an integrated messaging system, including
analysis of transport mechanisms and use of available communications software packages.

Major Software Products and Services Company

As part of a study to determine whether to centralize company development and processing
services, prepared requirements statement for installing an integrated communications network to
cover development, processing services and corporate administration as well as telephone and fax
services.

Network Services Provider

As part of a technical due diligence for an acquisition, performed an analysis to determine possible
methods for connecting the newly acquired customers to the client's VAN. Analysis included the
possibility of connecting the VAN to the packet network used by these customers. In this way,
the packet service could reroute the customer transactions to the VAN. As customers were
migrated from the packet network to the VAN, service on the packet network would decrease and
eventually would cease, at which time the connection to the packet network would no longer be
required.

Major Financial Institution

Designed and implemented a corporate-wide customer service network including the use of small
computers (replacing mainframes), leased lines, dial-in backup units and other interconnect
facilities for regional processing centers.

CONSULTANTS ON SOFTWARE

Attachment B-l

Information Request List

A. Development

1. Organization and training of development people
2. Development methodology
3. Scheduled enhancements/customer commitments
4. Current maintenance activities
5. Current development activities
6. Testing and quality assurance procedures
7. Effort and cost records for development
8. Program update procedures
9. Installation procedures

10. Availability and procedures for international usability and service
11. Use of third party developers
12. Detailed review of schedule and progress for new program completion

B. Technical Review

1. Supported platforms and systems for the technologies
2. Major features of the technologies:

• functions performed
• ease of installation and use
• maintainability
• audits and controls
• security

3. Development languages and special tools used
4. Number of modules per program and lines of code
5. Provenance of all program modules (where did design and code come from)
6. Inclusion of proprietary notices in source and object modules, both current and previous

versions
7. Method of change control
8. Volume and magnitude of change history
9. Architecture of the programs

10. Internal system documentation level and updates
11. Documentation of specifications and design
12. Prerequisites for running the programs
13. Examination of source code
14. Review of usage/demo of operational code
15. Unit and system test cases
16. Relevant patents and patents applied for

5319

Attachment B-2

Interviewees

John Dean

Bob Dempsey

James Dodd

Mike Harold

Shinting Liu

Dennis Tucker

Ramesh Venkataramaiah

Lang Wedgeworth

Attachment C
Page 1

Technical Review of VE Group. LLC
Sid Dunayer - 26 September 2000

People Interviewed; Mike Harold, Dennis Tucker, Shinting Liu, Bob Dempsey, Ramesh
Venkataramaiah, Lang Wedgeworth and James Dodd.

Technical Review (Transfinity)

1. Prerequisites for running the products
The system presented required some server components to run under Linux and others to run
under Windows/NT.

2. Maior features of the products
The primary feature of the product is the compression of certain types of Internet content so
as to decrease the bandwidth needed to transmit that content.

3. Development languages and special tools
The system is written in a combination of C, C++, Java, Javascript and HTML.

4. Number of programs and lines of code
As I felt that the product demonstrated was not of commercial quality, I did not ask for this
data.

5. Provenance of all program modules
All code was reportedly written at Transfinity.

6. Inclusion of proprietary notices in source and object modules
As source code was not reviewed, I was not able to determine if the necessary notices were
in place.

7. Method of change control and change records to date
There does not appear to be any formal change control in place. I did not ask for data on
change records.

8. Architecture of the system
The system is designed using a front-end Proxy Server, to field requests from a Web browser
and one or more back-end servers to provide compression and control of the entire process.

9. Internal system documentation level
Transfinity has no formal internal documentation. Dennis Tucker feels that the source code
is the documentation.

5319

Attachment C
Page 2

10. Documentation of specifications and design
Transfinity only has high-level design documents. Dennis Tucker indicated that this is the
method in which they work and that the programmers are expected to work from the
high-level design material.

11. Review of the source code
As I felt that the system demonstrated was only a proof of concept, I did not review the
source code.

12. Demo of operational code
Transfinity demonstrated the code using data of their choosing. I then asked that they use
data from a web site that I supplied. The demo did not go smoothly and the software had
problems with the Web site I supplied. They were able to fix this later on.

13. Unit and system test cases
Transfinity has some data files that they use for demos and minimal system testing.

14. Relevant patents and patents applied for
Patent numbers 5,893,084 and 5,600,726 cover the methods used to implement the
compression algorithms. Both of these patents are assigned to Gemini Systems, Inc.

Technical Review fClohalFSPi

1. Prerequisites for running the products
The tools can be used on any platform that supports JAVA.

2. Maior features of the product
The GlobalESP tools provide the necessary components for developing distributed computing
applications that may run on different operating environments and utilize standard Internet
protocols for communications.

3. Development languages and special tools
The tools are written entirely in pure JAVA.

4. Number of programs and lines of code
There are approximately 50 modules and about 750K lines of code.

5. Provenance of all program modules
GloablESP reportedly wrote all programs.

6. Inclusion of proprietary notices in source and object modules
There were some copyright notices in the code, but there were many places where the notices
were missing.

5319

Attachment C
Page 3

7. Method of change control and change records to date
Change control is performed using MKS. As this is a new product, there are no records of
changes made to date.

8. Architecture of the system
The architecture is too complex to be described here, but it is well described in the patent
application for this process.

9. Internal system documentation level
Internal system documentation is created using JavaDoc. This is probably adequate to define
programming interfaces, but there is still a need for more detailed system flows.

10. Documentation of specifications and design
GlobalESP has good design specifications and notes.

11. Review of the source code
A review of the source code found that it was well-structured, easy to read, but only sparsely
commented.

12. Demo of operational code
GlobalESP demonstrated an E-Commerce application written using the tools. The demo
went smoothly.

13. Unit and system test cases
GlobalESP has a limited test library.

14. Relevant natents and patents applied for
Mike Harold has applied for a patent covering the methods used to implement the tools. The
patent application lists Mike Harold as the inventor and does not assign the patent to any
other entity.

Observations

• The Transfinity compression algorithm appears to do extremely well with content they are
focusing on, JPEGs and GIFs. In a test on data I provided, the Transfinity compressor shrunk
the image I provided by 68%, i.e., to about one-third its original size. Due to the nature of
the algorithm used, it is very likely that they will also do well with other types of Internet
content, such as audio and video.

• The current Transfinity offering is aimed at ISPs. It promises to reduce the bandwidth
required to deliver Internet content to end-users. Transfinity claims that smaller ISPs would
not run their own compression servers, but rather, would buy the service from Transfinity.

5319

Attachment C
Page 4

The system, as implemented, is very complex and requires the end user to configure his
browser to talk to the proxy server. As the ISP cannot force the user to use the proxy server,
those that do not reconfigure will completely bypass the Transfinity system.

Transfinity has apparently not done any type of study to determine the market for the product.

Dennis Tucker appeared difficult to work with. He repeatedly criticized a member of his staff
during the demo when problems arose. He further made statements that made no sense. For
example, when I inquired as to why the compression server had to run on Windows/NT, he
stated that when you compress data on one platform and decompress it on another, there are
sometimes problems. The statement is utter nonsense.

The lack of any formal documentation will make it difficult for others to understand what
Transfinity has implemented. The lack of a formal development methodology makes it
difficult to determine project progress and status.

GlobalESP has implemented a professional set of tools to aid in the development of
distributed computing applications. These applications may be traditional software
applications or they may be applications built around the functionality of network appliances.
The tools are written in a portable language, JAVA, and utilize standard industry protocols
and specifications, TCP/IP, XML and UML.

GlobalESP has been unable to demonstrate the power of the tools to date. In an attempt to
remedy this, they utilized the tools to create an e-commerce application. While the application
runs well, it hardly shows the true power of the tools. Furthermore, it tries to position the
tools as a B2B solution when indeed that is not really the case.

I found the GlobalESP team very professional. They have good documentation and internal
communication, and the code was better than I would have expected for a new product.

Appendix D
Page 1

VE Group Interview Notes

Lang Wedgeworth fVE Group)

1996 Started patent process
Had option to buy 50% of Gemini Systems LLC; bought in for $200,000

1997-5/98 Mike Harold went to work at FedEx to produce a virtual outsourcing company
Employment agreement excluded patents for: encryption, compression, any to any
translation, precision math
Raised $500,000 - Global ESP

5/99 Brought in Gemini and PNG Investments = $2.1 million

New company was VE Group: 45% Gemini, 35% PNG, 20% employees
Hired 5-6 people from FedEx
Global ESP was primary project

70%-80% of cost
Approached EY Consulting
Used grocery ordering as an application to build and use tools

1/00 Presented to British American Tobacco with EY

4/00 EY then used i2 and cut out Global ESP

9/99 Dennis Tucker and Shinting Liu worked on compression and produced proof of concept

1/00 Hired Bob Dempsey
Worked on server side

5/00 Raised $1.2 million — same sources

8/00 Hired John Dean for market knowledge

5319

Appendix D
Page 2

John Dean (GlohalESPt

• Wanted to develop common set of tools for Answerthink (which acquired Relational
Technologies)

• Relation negotiations with Answerthink (channel for sales and implementation of software)
• 5-8 people on implementation team (from consultant)
• 1-3 people from GlobalESP
• Pricing model: per project area

• Put up Web site
• No "go to market" plan
• No real alliances

• Use of Java for language and operating environment
• Team core had been together

Customers
• Shaw Group, Stone and Webster Construction

In final run-off; Houston
Software $400k
Consulting 500k (3.5 people)
Tech Solutions 1.5 m
Phase I 2.4 m Operating System
4 months integration schedule

• Dallas Market Center (Trammell-Crowe owns buildings)
Partnership with Answerthink

• Can do rapid application development
Functionality
100% Java
XML built-in

• $5 million needed in next year

• Invest in: consulting arm, Support, R&D (not many) and Sales and Marketing aimed at
integrators

5319

Ramesh Venkataramaiah tGinhalFSPl

1996 FedEx project engineer, network oriented, integration

1998 Network Centric systems, multi-level, replace packet transmission

1999 Work flows only worked with a particular data model
Built interfaces or protocols
Created two teams: application services, system infrastructure services
Vertical markets, to some extent, determine application specs

2000 Responsible for grocery chain implementation; will go live early 10/00
Requirements: 15-30 days to produce specs
High-level design
Detail design/programming
QA: Ed O'Brien
Hired trainer

Mike Harold tGlohalESPl

• Interested in math and linguistics
• Describe a "grammar" for a broad problem; worked with Joe Morgan
• Variable word length (not byte restricted)
• Applied to encryption, arbitrary precision math, compression
• Distributed virtual machine, patent pending
• Transactional Directory Services
• Tucker brought in to work on security for Global ESP
• Considered use in storage devices; then low level communications
• Media distribution system
• Problem with receiver side (narrow bandwidth)
• Browser plug-in
• Receiver end hardware (pda's, cell phones)

Mike Harold (Transfinitvl

• n-bit technology additional user
• Storage applications
• Indexing of specific items
• Pattern matching
• Encryption

5319

Appendix D
Page 4

Dennis Tucker nVanafinitv)

• Finished proof of concept 9/99
• System to apply/demo on Internet
• Overall system design
• Hired two other programmers for compression plug-in and server
• C, C++, Java, JavaScript, HTML
• Design documents
• Project plans; task lists
• Browser interfaces (IE, Netscape) have caused some problems
• Transfinity image format
• Compression plug-in for each "data type"
• For GIFs and JPEGs can get 50-55% average compression
• Decompress first, then compress with Transfinity techniques

• VI: compresses GIFs and JPEGs to Transfinity images
• V2: compresses everything else: Zip, etc.
• V3: Real-time compression; may eliminate cache

5319

11/07/00 TUE 13:12 FAX 214 880 4062 @001

* fo «i -<• *, ^ ^

5 0 £ P 11 k
FIRST DALLAS, LTD.

300 Crescent Court, Suite 1000
Dallas, Texas 75201

Trans finity Corporation
1231 Greenway Drive
Suite 300
Irving, Texas 75038

November 4, 2000

Re: Proposal to Purchase Securities

Gentlemen:

This letter is intended to summarize the principal terms of a proposal being considered by
First Dallas, Ltd. (the "Investor") regarding a possible investment by it (or a partnership of which
it is a general partner) in Transfinity Corporation (the "Company" and, together with the
Investor, the "Parties"), in the form of a purchase of convertible preferred stock and warrants for
the p xrchase of common stock of the Company.

The Parties intend to commence negotiating a mutually agreeable written definitive
agreement providing for the possible investment (a "Definitive Agreement"), which will be
prep<red by the Investor's counsel. The execution of any such Definitive Agreement, however,
is subject to the satisfactory completion of the Investor's ongoing due diligence investigation of
the Company and its business. Based on the information regarding the Company and its business
provided to the Investor as of the date of this letter, the parties expect that the Definitive
Agreement will reflect the following terms:

1.1 General. At the closing of the possible investment (the "Closing"), the Company
would issue and sell to the Investor, and the Investor would purchase from the Company,
assuroing 1,000 shares currently issued and outstanding, preferred stock convertible into 111.11
shares of common stock (the "Common Stock") of the Company and having an aggregate par
amount of $2,000,000 (the "Preferred Stock") and warrants (the "Warrants"), in each case having
the terms set forth in Annex I hereto. The aggregate purchase price of the Preferred Stock and
Warrants will be $2,000,000.

1.2 Registration Rishts. The Investor would receive usual and customary demand
and piggyback registration rights with respect to the Preferred Stock and Warrants and any
shares of Common Stock issuable upon conversion or exercise thereof.

PARTI

Dt-ll; 8446v4.doc

11/07/00 TUE 13:12 FAX 214 880 4062 0002

Transfinity Corporation

"November 4, 2000
Page 2

1.3 Right to Participate in Future Financings. In the event that the Company issues
and sells Common Stock or securities convertible into or exchangeable for Common Stock (other
than uhares of Common Stock reserved for issuance to employees, shares of Common Stock
issua ble upon exercise of the Company's outstanding options or warrants or shares of Common
Stock issued in connection with a public offering), the Investor would be given the opportunity
to paiticipate in such transaction, on the same terms as those given to the other purchasers in
such transaction, to the extent necessary to enable the Investor to maintain its percentage
ownership of Common Stock, computed on a fully diluted basis. This right would terminate
upon the Company's initial public offering of Common Stock.

1.4 Representations, Warranties and Indemnities. The Company and each of the
Company's stockholders would make comprehensive representations and warranties to the
Investor regarding the Company and its business, and would provide indemnities and other
appropriate protections for the benefit of the Investor.

1.5 Closing. Barring unforeseen circumstances, it is anticipated that the Closing
would occur on or before the date that is 60 calendar days following the date hereof.

PART II

2.1 Due Diligence Investigation. Subject to the terms of a mutually agreeable non­
disclosure agreement to be signed by the Parties concurrently with the execution of this term
sheet the Company will (a) afford to the officers, directors, employees, agents, partners,
stockholders and other representatives, including without limitation consultants, accountants and
attorneys (collectively, "Representatives"), of the Investor full access during normal business
hours to the facilities, personnel and books and records of the Company so as to afford the
Investor an opportunity to make such review, examination and investigation of the business,
assets, liabilities, condition (financial or otherwise), results of operations and prospects of the
Company as the Investor may desire to make and (b) keep the Investor fully apprised and
informed of all significant developments relating to the business, assets, liabilities, condition
(financial or otherwise), results of operations and prospects of the Company.

2.2 Parties Obligations. Unless and until the Definitive Agreement has been so
executed and delivered, neither the Investor, the Company, nor any of their respective
Representatives will have any legal obligation to the Company with respect to any possible
invesment, except to the extent specifically set forth in this Part II.

2.3 Costs. If the proposed transaction closes, each Party will be responsible for and
bear all of its own costs and expenses (including any broker's or finder's fee) incurred at any time
in connection with the possible investment described herein; provided however, the Company
will reimburse the Investor for its reasonable out of pocket expenses and reasonable third-party
expenses, including attorney's fees and expenses, incurred in connection with the proposed
transaction not to exceed $75,000.00, upon the occurrence of both of the following two
conditions (a) prior to the Termination Date (herein defined) the Company fails to sign a

DL-U3H446v4.doc

11/07/00 TUE 13:13 FAX 214 880 4062 @003

Transfmity Corporation

November 4, 2000
Page 3

Definitive agreement, and (b) at any time during the period commencing upon the date of this
Term Sheet and ending on the Termination Date, the Company enters into a binding agreement
with i third party with respect to an investment in the Company, Such reimbursement shall be
made by wire transfer within fifteen business days of the delivery by Investor to the Company a
written demand for such reimbursement together with supporting documentation for such
reasonable out-of-pocket and reasonable third party expenses.

2.4 Waivers. No failure or delay in exercising any right hereunder will operate as a
waiver thereof, nor will any single or partial exercise thereof preclude any other or further
exercise of any other right.

2.5 Binding Provisions. The provisions of this Part II will be binding on and inure to
the benefit of the Parties and their respective successors and assigns.

2.6 Remedies. The Parties acknowledge that money damages would not be a
sufficient remedy for any violation of the provisions of this Part II and, accordingly, the Parties
will te entitled to specific performance and injunctive relief as remedies for any violation
thereof, in addition to all other remedies available at law or equity.

2.7 Governing Law. The provisions of this Part II will be governed by and construed
in accordance with the laws of the State of Texas, without giving effect to the principles of
conflict of laws thereof.

2.8 Jurisdiction. Each of the Parties hereby consents to personal jurisdiction in any
actior brought in any federal or state court within the State of Texas having subject matter
jurisdiction in this matter for purposes of actions arising out of the provisions of this Part II.

2.9 Termination. The provisions of this Part II and all obligations thereunder will
terminate 60calendar days after the date hereof the "Termination Date", unless extended
pursuant to a written instrument executed and delivered by the Parties,

2.10 Certain Obligations of the Company. The Company will cause each of its
officers, directors and stockholders to comply with the provisions of this Part II as if each of
them were a party hereto.

2.11 Counterparts. This letter may be executed in one or more counterparts, each of
which will be deemed to be an original copy of this letter and all of which, when taken together,
will be deemed to constitute one and the same instrument.

Please indicate your agreement with the provisions set forth in this letter by signing the
enclosed copy hereof and returning it to the undersigned no later than 3 days after the date
hereof.

DL-1138M6v4.doc

11/07/00 THE 13:13 FAX 214 880 4062 @004

Trail sfinity Corporation

November 4, 2000
Page 4

Very truly yours,

FIRST DALLAS, LTD.

Accepted and agreed as of
the d ite first above written:

TRANSFINITY CORPORATION

By: j
NamlP7

Title: Fxes/oeAjr-

DL-1138446v4.doc

11/07/00 TUE 13:14 FAX 214 880 4062 @005

ANNEXI

FIRST DALLAS, LTD.

Summary of Terms

Issutr Transfmity Corporation (the "Company").

Initial Purchasers First Dallas, Ltd. (the "Investor").

Secu rities Convertible preferred stock (the "Preferred Stock") and
to be Purchased warrants (the "Warrants").

Preferred Stock and Warrants $2,000,000 aggregate par amount.

Dividend The Preferred Stock will have no preferential dividend
rights.

Conversion The holders of the Preferred Stock may convert the
Preferred Stock, at any time, in whole or in part, into
shares of the Company's Common Stock ("Common
Stock").

The number of shares into which Preferred Stock may be
converted will be determined by dividing the sum of the
aggregate par amount of the Preferred Stock to be
converted by a specified dollar amount (the "Conversion
Price"). The initial Conversion Price will be $18,000.

The Preferred Stock will be automatically converted into
shares of Common Stock upon an initial public offering
of Common Stock; provided, however, that if the price
per share in the public offering (the "IPO Price") is less
than $36,000 (subject to adjustment in the event of
dividends, stock splits and such other events), then the
Conversion Price will be equal to 50% of the IPO Price.

DL-U38446v4.doc

11/07/00 TUE 13:14 FAX 214 880 4062 @ 0 0 6

Warrants

Anti- Dilution Provisions

Board of Directors

Tag A long Rights

Restrictive Covenants

Warrants exercisable in whole or in part on or before
December 1,2001 for the purchase of 3.86% of the
Company on a fully diluted basis, taking into account as
granted all options authorized under any Company plan
(S25mm Pre-money Valuation; $1,000,000.00 proceeds
to the Company). The Warrants are transferable subject
to restrictions of applicable securities laws.

The Conversion Price will be subject to customary
adjustments in the event of (i) stock dividends, stock
splits and similar events and (ii) the issuance of Common
Stock or other securities convertible or exchangeable into
Common Stock at a price per share less than the
then-existing Conversion Price.

First Dallas will have the right to elect two members of
the board of directors and any executive committee (Pro
forma six member board). Compensation commits
(independent majority i.e. excluding any member
receiving compensation) will approve executive
compensation.

Investor will have Tag Along rights to participate with
VE Group in any sale of stock of the Company.

The Preferred Stock will contain restrictive covenants
usual and customary for instruments of this type,
including without limitation on: significant acquisitions
or dispositions of assets, mergers, payment of dividends,
transactions with affiliates, incurrence of indebtedness,
issuance of securities senior to Investor's. Prior to
closing, the Company and Investor will agree upon
market applications for the Company's technology the
Company will pursue, and the Company will agree not to
change the Company's market direction without
Investor's approval.

DL-U3844iv4.doc 2

11/07/00 TUE 13:14 FAX 214 880 4062 @007

Affirmative Covenants The Preferred Stock will contain affirmative covenants
usual and customary for instruments of this type,
including access to management and detailed financial
and operating information. The Definitive Agreement
will provide for notice and time to cure by the Company
for non-material breaches of Affirmative Covenants.

Even ts of Default and Redemption In the event of default by the Company on indebtedness
Provision for borrowed money, or bankruptcy of the Company or

breach of the Preferred Stock covenants, holders of the
Preferred Stock voting as a class will be entitled to elect
all members of the Board of Directors of the Company,
provided the Company will have 30 days in which to
redeem the Preferred Stock at par value following notice
by the Investor that it is declaring an event of default.

Pre-dosing Actions Prior to issuance of the Preferred Stock and Warrants, all
intellectual property and other assets necessary for the
conduct of Company's business will have been
transferred to the Company and the Company will have
adopted an employee incentive option plan authorizing
the issuance of options for the purchase of 15% of the
Company's Common Stock computed on a fully diluted
basis.

DH138146v4.doc 3

United States Patent [icq
Morgan et al.

US005893084A

[ii] Patent Number:
[45] Date of Patent:

5,893,084
*Apr. 6, 1999

[54] METHOD FOR CREATING SPECIFIC
PURPOSE RULE-BASED N-BIT VIRTUAL
MACHINES

[75] Inventors: Joseph M. Morgan. Amarillo, Tex.;
Michael D. Harold. Shreveport. La.

[73] Assignee: Gemini Systems, Inc.. Shreveport. La.

[*] Notice: The term of this patent shall not extend
beyond the expiration date of Pat. No.
5.600.726.

[21] Appl. No.: 725,249

[22] Filed: Oct 4, 1996

Related U.S. Application Data

[62] Division of Ser. No. 419,001, Apr. 7, 1995, Pat. No. 5,600,
726.

[51] Int. CI.6 G06F 17/00
[52] U.S. CI 706/50: 706/45; 341/67;

341/95
[58] Field of Search 341/51. 95. 67.

341/50; 395/54. 406; 706/45. 47. 50; 707/101

[56] References Cited

U.S. PATENT DOCUMENTS

5,587,725 12/1996 Sakanishi et al 345/195

OTHER PUBLICATIONS

Hwang et al. "Optical Arithmetic Using High-Radix Sym­
bolic Substitution Rules." Computer Arithmetic Sympo­
sium. 1989. pp. 226-232.

Primary Examiner—Tariq R. Hafiz
Assistant Examiner—lason W. Rhodes
Attorney, Agent, or Firm—Jones, Day. Reavis & Pogue

[57] ABSTRACT

A system and method for implementing one or more specific
purpose rule-based n-bit virtual processing machines. Spe­
cific purposes include, but are not limited to. encryption,
compression, and arbitrary precision arithmetic. Each virtual
machine consists of a command processor, a rule-base, and
an interface between the command processor and the rule-
base. Each of the elements of a specific purpose rule-based
n-bit virtual machine—the command processor, the rule-
base, and the rule-base interface—is preferably imple­
mented as software. In the preferred embodiment, the sys­
tem uses a stored rule-base as its instruction set and provides
for input and output in the form of variable length bit strings
of length n where n is any number greater than zero. Each
of the rules within the rule-base performs one or more binary
string operations against one or more variable length n-bit
strings. The function of the rule-base is to provide a set of
application specific rules that allows the machine to perform
a particular task such as encryption, data compression, or
arbitrary precision arithmetic. The system includes a method
for providing a software interface to the rule-base. This
interface may be a separate program or may be contained
within the command processor. The command processor
receives input in the form of one or more n-bit data types,
performs rule-based operations on the data, and returns
output in the form of one or more n-bit data types. Specific
system and methods for performing data encryption, data
compression, and arbitrary precision arithmetic using the
invention are described.

16 Claims, 2 Drawing Sheets

c INITIALIZE PROCESS

P0I NT TO DATA

s\—" 80

-82

f COMPLETE
I PROCESSJ

^96

U.S. Patent Apr. 6, 1999 Sheet 1 of 2 5,893,084

C O M M A N D S

I N P U T S O U R C E
N O O F I N P U T D A T A T Y P E S

S I Z E I N B I T S * -
- R U L E B A S E R U L E I D

N P U T D A T A !

~ 4 4

V R U L E - B A S E
R U L E

N O .
N E X T R U L E
R U L E D E F I N I T I O N

0 1 E X I T
2 S W A P

2 0 I N T E R L E A V E

U.S. Patent Apr. 6, 1999 Sheet 2 of 2 5,893,084

F I G . 4

5.8!
1

METHOD FOR CREATING SPECIFIC
PURPOSE RULE-BASED N-BIT VIRTUAL

MACHINES

This is divisional of application Ser. No. 08/419.001 filed
on Apr. 7. 1995. now U.S. Pat. No. 5.600.726.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure as it appears in the Patent and Trademark Office
file or records, but otherwise reserves all copyright rights
whatsoever.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates generally to computer sys­

tems and more particularly to a software architecture for
implementing specific purpose rule-based n-bit virtual
machines to accomplish such tasks as data typing,
encryption, compression, arbitrary precision arithmetic, pat­
tern recognition, data conversion, artificial intelligence,
device drivers, data storage and retrieval and digital com­
munications.

2. Description of the Related Art
Existing systems designed to process data vary widely in

their specific implementations. However, few are designed
for the utilization of a rule-base and there are no others
known that use, as their primary data type, an arbitrary X
number of bits as input, and an arbitrary Y number of bits as
output, where X may or may not be equal to Y.

With respect to virtual software machines, of specific
mention is U.S. Pat. No. 4.961.133 filed Oct. 2, 1990.
wherein Talati et al. disclose a "Virtual Execution Environ­
ment on a Target Computer Using a Virtual Software
Machine". This invention deals with preprocessing and
compiling source program code in such a way as to be
operating system independent and to enable the code to
execute across heterogeneous computers via a virtual inter­
face system. Though the invention disclosed by Talati et al.
involves providing a virtual software machine, it does not
address the problem of directly manipulating machine
instructions of any given n-bit length via a rule-base to
machine instructions of any target n-bit length on a target
machine.

With respect to data encryption, most systems apply some
form of mathematical operation or bit-wise operation, such
as exclusive-or (or XOR) against the input data to be
processed based upon an encryption key or password.
Normally, the encryption process is highly specialized,
encrypting the data in the same theoretical manner from the
beginning to the end of the data stream. These methods lend
themselves to differential crypto-analysis. a method capable,
through analytical means, of deciphering the encrypted
message.

Of specific mention is Matasuzaki et al. U.S. Pat. No.
5.351.299 filed Sep. 27. 1994. whose encryption process is
very difficult or impractical to break with more standard
analytical methods. This method utilizes the standard idea of
XORing data together by use of manipulation of a user-
provided password. To decrypt, one XORs the encrypted
data again, in reverse order, with the same manipulation of
the same user-provided password.

53.084
2

Though Matasuzaki et al. break data up into N blocks of
M-bit data, the specified Embodiment I states that "each bit
outputted from hash function unit is dependent on all the bits
inputted thereto." It also states in the embodiments that the

5 primary input blocks are blocks of multiples of 8 bits, and
further broken down into blocks of M bits, defined in 8 bits
or multiples of 8 bits. This method severely limits introduc­
tion of arbitrary block encryption rules and does not allow
for a prime number of bits, such as 11 or 13.

to The U.S. Pat. No. 5285.497 to Thatcher Jr. filed Feb. 8.
1994. specifies encoding variable length Huffman encoded
bits in a unique way. However, it does not address the bits
as a data type arbitrarily, but in a form having a meaning
directed by the Huffman compression means. The invention

15 also requires the use of a specialized microprocessor, a fixed
number of specialized encryption rules, and is specific to
compressed, digital data streams.

Another unique encryption means as stated in U.S. Pat.
No. 5.097.504 to Camion et al. identifies a signature based

20 encryption means where the signature is recorded with the
encrypted message and the encryption keys are stored on
another, preferably inviolable, medium. This system applies
a highly mathematical and specific encryption means,
introducing, again, the problem and limitation of not having

25 a flexible and rather arbitrary rule-base that is easily change­
able and modifiable.

In U.S. Pat. No. 5321,749. Virga presents an extremely
unique encryption means that converts the input data into a
bitmap and encrypts the bitmap to be targeted for decryption
in an optical scanning device. The embodiment specifies
XORing randomly generated bits produced from a user-
specified password with the encoded bitmap. The bitmap is
then converted to specific visual alphabet that can be easily
recognized by a receiving scanning device. This method,
however, allows an analytical hashing means to decipher the
seed(s) generated from the user-specified password with a
relatively small amount of time.

With respect to compression, there are many means of
40 compression, all of them having the primary objective of

locating the most common occurring data types and encod­
ing them, on average, with a data type of a smaller size.

As an example, suppose the input data is comprised of the
characters "ABCAB". A compression means may locate the

45 most commonly occurring character pair. "AB", and
encodes them with a single character "Z". thereby reducing
the input data to ZCZ.

Though the above is an extremely simple example, the
many compression means in existence today vary widely

50 and have many implementations in hardware and software.
However varying these compression means may be. a pri­
mary limitation exists for all of them. The limitation is that
when compression has been achieved by use of the desired
compression means, the data can no longer be compressed.

55 This is due to the fact that the compressed output of the data
results in a distribution of the input data type such that there
is no longer a character or set of characters that occurs more
frequently than another character or set of characters.
Therefore, further compression is not possible or practical

60 and some compression means will actually explode the size
of the input data if the distribution of the characters of the
input data type is relatively constant

With respect to arbitrary precision arithmetic, many algo­
rithms have been written to overcome the limitations of a

65 computer to provide very high levels of precision in math­
ematical calculations. Though these methods can and do
provide any desired precision with mathematical

5.893.084
3

calculations, the calculations are performed algorithmically
with the requirement to overcome the internal 8. 16. 32. or
64-bit limitations of the computer's hardware and internal
memory mapping. These algorithms require a very high
CPU load, demanding much of the computer's internal
resources.

With respect to pattern recognition and data conversion,
the invention disclosed herein provides enhancement to
existing means of the same, introducing arbitrary data typing
and a user-defined rule-base, the combination of which is
absent in current systems.

In U.S. Pat. No. 5321.606 filed Jun. 14.1994. Kuruma et
al. describe a user-defined set of transformation rules that
define the nature of the grammar of the input data to be
converted. The invention solves the problem of writing a
specific parser or compiler where the limitations rely upon
a specific grammar existent in the input data and a specific
output term in the output data. Yet. this invention specifies
that the output involves "structures of output terms in
association with terminal symbols and nonterminal sym­
bols".

In U.S. Pat. No. 4.890.240 filed Dec. 26.1989. Loeb et al.
describe a rule-based, artificial intelligence system where
the rules are specifically defined in two parts, a left-hand
side and a right-hand side; whereas, the left-hand side is
considered an "if' statement and the right-hand side is
considered a "then" statement. This invention is specific to
overcoming prior problems in RETE processing and not to
arbitrary pattern matching and identification with an exter­
nally provided rule-base.

U.S. Pat. No. 5.038396 filed Aug. 6. 1991. U.S. Pat. No.
5.084.813 filed Ian. 28. 1992. and U.S. Pat. No. 5.101.491
filed Mar. 31. 1992 all refer to rule-based systems for
generating program code. Though one of the objectives of
the present invention is data transformation of program code
from one n-bit machine instruction via an externally pro­
vided rule-base to a different n-bit machine instruction, it is
not directed at code generation and the invention disclosed
herein is not limited as such.

SUMMARY OF THE INVENTION
The present rule-based n-bit virtual machine, or

processor, may be implemented in software and/or hard­
ware. When implemented as software, a rule-based n-bit
virtual machine converts a general purpose computer into a
machine that performs an application specific function.

Further, a virtual processor may execute its instructions
either in batch mode or interactively.

It is. therefore, a primary object of this invention to
provide a means by which one or more of a data type of n-bit
size is selected or received as input, processed by a rule or
rules designed for processing one or more of a data type of
n-bit size, and outputting or transmitting one or more of the
processed data type of an n-bit size. In all data-type cases,
the value of n is any number greater than zero. The size, in
bits, and number of the input data type do not necessarily
have to correspond with the size, in bits, and number of the
output data type. Also, any given rule designed to process
n-bit data types may or may not be specifically designed to
work on an n-bit data type of a particular size in bits.

It is yet another object of the present invention to provide
an architecture for creating a specific purpose virtual
machine using software that manipulates n-bit data types
and rule-based instruction sets.

It is another object to create a command processor con­
trolled by a program and that accepts input in the form of one

4
or more n-bit data types and outputs data in the form of one
or more n-bit data types where n is any number greater than
zero. The upper value of n is limited only by the physical or
virtual address space of the computer.

It is still another object to create an interface program
between the command processor and the rule-base called the
rule-base interface. Separating the command processor from
the rule-base allows the rule-base to be stored in different
forms such as. but not limited to. a relational database table,
a C or C++ language header file, an object class library, a
dynamic link library, an EPROM assembly language
subroutine, or a microcode instruction set.

It is a further object of the invention to provide a new
method for creating applications relating to various fields
within computing including, but not limited to, data typing,
data encryption, data compression, arbitrary precision
arithmetic, pattern recognition, data conversion, artificial
intelligence, data storage and retrieval, and digital commu­
nications.

It is yet a further object of the present invention to
demonstrate the advantages of the method by describing in
detail specific implementations of the invention related to
data encryption, data compression, and arbitrary precision
arithmetic.

In accordance with one aspect of the invention, a subsid­
iary object is to provide a new method and system of data
encryption. This new method of encryption will employ a
command processor and a rule-base and will input and
output data as variable length n-bit data types.

In accordance with one aspect of the invention, a further
subsidiary object is to provide a new system of data com­
pression. This concept involves, but is not limited to. the
implicit redistribution of n-bit data-type frequencies by the
explicit compression of data using n-bit data types as input
and output This concept allows the data to be compressed
reiteratively.

In accordance with another aspect of the invention, a
further subsidiary object is to provide a new system of
arbitrary precision arithmetic. This new system of arithmetic
will employ a command processor and a rule-base and will
input and output data as variable length n-bit words.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of the present invention will be
more fully disclosed when taken in conjunction with the
following DETAILED DESCRIPTION OF THE PRE­
FERRED EMBODIMENTS in which like numerals repre­
sent like elements and in which:

FIG. 1 is a diagram illustrating the organization of a
system identifying the principal elements and processes
associated with the present invention;

FIG. 2 is a block diagram further illustrating the interre­
lation of the elements of the invention;

FIG. 3 is a diagram illustrating an implementation of the
invention as a data encryption system;

FIG. 4 is a process flow chart illustrating an implemen­
tation of the invention as a loss-less data compression
method; and

FIG. 5 is a diagram illustrating an implementation of the
invention as an arbitrary precision arithmetic method.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

With reference now to the drawings. FIG. 1 shows the
organization of the principal elements used in the novel

5

to

15

20

25

30

35

40

45

50

55

60

65

5,8!
5

processes of a system and method for implementing a
specific purpose rule-based n-bit virtual software driven data
processing machine. A program used by the command
processor 12 receives, as input, one or more commands
identifying the input data source 14 and the instructions
and/or arguments 10 which will be used in accessing the
rule-base 18. Once a command is received by the command
processor 12. data is input to the command processor in the
form of one or more n-bit streams or strings from the data
source 14. The data is passed to the rule-base interface 16 by
the command processor 12. The rule-base interface 16 in
turn uses the data to identify and select the rule or rules that
are to be used in processing the data. The data is dispatched
as one or more arguments to the selected rule within the
rule-base 18 and the rule is applied. After the data has been
modified in accordance with the specified rule or rules, the
modified data is returned to the rule-base interface 16 along
with any arguments appended by the last rule applied. These
arguments may be used by the rule-base interface 16 to
determine the next rule or rules to be applied to the data.
These arguments may also consist of key words or messages
identifying the current state of the data conversion process.
The rule-base interface 16 may iteratively submit the data to
one or more rules within the rule-base 18 based on the value
or values, if any. of the arguments returned by the previous
rule or rules. Once the conditions for the modification of the
data by the rule-base have been satisfied, the data is returned
as one or more n-bit streams to the command processor 12.
The command processor 12 then outputs the data as one or
more n-bit streams 20. The size in bits and number of n-bit
streams output by the command processor 12 is not required
to correspond to the size in bits and number of n-bit streams
which were originally input.

A simple example of the process is shown in FIG. 2.
Command line input 22 generates data that identifies the
source 24 of the input data, the number of input data types
26. the size of the input data type 28 and the rule-based rule
ID 30 that is to be applied to the data. The command line
data is processed by the command processor 32 after which
the input from data source 34 is read and a rule pointer 38
is generated from the rule ID 30. The n-bit input data 36 and
the rule pointer 38 are passed to the rule-base interface 40.
The rule-base interface 40 in turn uses the rule pointer 38 to
identify the rule 42 to be applied to the data and passes the
data to the appropriate identified rule 42 within the rule-base
44. The data is modified by the rule-base 44 and the modified
data is returned to the rule-base interface 40. The rule-base
interface 40 in turn passes the data to the command proces­
sor 32 which outputs the data as one or more n-bit data types
48. The objects of the invention are achieved by the novel
application of the rule-base and the use of n-bit data types
for input, processing, and output functions. This method,
when applied to specific applications, may result in major
improvements in the performance and capabilities of exist­
ing software application driven processing machines.
Furthermore, the use of variable length n-bit data types
provides numerous opportunities to create new, specific
purpose virtual computing environments which are capable
of performing tasks that are not possible using eight bit
technologies.

For example, and not by way of limitation, the following
description illustrates one method of implementing a virtual
machine or computer capable of performing rule-based n-bit
encryption:

Rule-based n-Bit Encryption (RNE) encrypts data as a
string of binary digits using a command processor, a rule-
base interface, and a rule-base. In order to fully realize the

J3.084
6

benefits of RNE. it is important to realize that all of the data
elements of the method, including the data processed by the
command processor, the rule-base, and the data itself, are
perceived as one or more strings of binary data.

5 In RNE the bit is the primary data structure. Any or all of
the elements of the RNE virtual machine may be input,
processed, and output as data. The binary representation of
the elements of the RNE virtual machine or processor is a bit
stream composed of one or more n-bit data types and is not

to organized as bytes except where the physical and/or system
limitations of the computer require it.

As described in FIG. 3. RNE consists of four principal
elements: an encode/decode command processor 50. a rule-
base interface program 52. a rule-base 54. the input data or

15 message 56. and the encrypted data or message 58.
The rule-base 54 is composed of one or more rules 60.

Each rule 60 may contain variable data and literal data. Each
rule 60 may. but is not required to. receive one or more
arguments as input. Each rule may. but is not required to.

20 output one or more arguments. The encrypted message is the
result of the RNE process. The command processor 50 rules
and/or the rules of the rule-base 54 may or may not be
contained in the encrypted message 58 at the time transmis­
sion occurs.

25 The command processor 50 is used to access the rule-base
54 and to manage the actual encryption/decryption process.
One or more rules 62 may be contained within the command
processor 50 to uniquely identify the command processor 50
and/or provide an index or offset into the rule-base 54.

30 For example, one of the rules 62 contained in the com­
mand processor 50 might implement a hashing rule that
would use input data 56 to select an encryption key to
generate a pointer into the rule-base 54. This would allow
any number of public and private encryption keys to imple­
ment unique encode/decode rule sets within a single rule-
base 54. This would also allow encryption keys to be
implicitly user-defined within the command processor 50.
Only matched command processors 50 could decode each
other's messages. Neither encryption nor decryption is
dependent upon an explicit encryption key. a specific
encode/decode rule, or a specified data type. However, any
encryption key may be defined either implicitly or explicitly.

The command processor 50 may also be used to parse a
45 password or access code in the input data and to pass the

resulting values as arguments to one or more rules 60 or rule
sets 61 within the rule-base 54.

As an example, an encryption key might be constructed
having 3 bytes or 24 bits. Each of the bytes would represent

50 a rule set. Each bit within a byte would represent the
application of a specific rule or rule set within a rule set. The
bytes 10010101. 11100011 and 00101010 (identified as rule
sets 1. 2. and 3.respectively) might be used by the first
element of RNE. the command processor 50. to apply the

55 following rules or rule sets:
For rule set number 1, rules or rule sets 1. 4. 6. and 8

would apply.
For rule set number 2. rules or rule sets 1. 2. 3. 7, and 8

would apply.
60 For rule set number 3. rules or rule sets 3. 5. and 7 would

apply.
The total number of combinations for any given imple­

mentation using a key having 24 bits is 16.777.216. Because
RNE is based on bit string manipulation, there is no upper

65 limit on the length of the encryption key.
The second element of RNE. the rule-base 54, is a set of

rules 64 used by the command processor 50 to decode or

5.893.084

encode binary strings of data. The rules 64 may be used
individually, or as a set to decode or encode data.

The rule-base 54 is not defined as a specific type of data
structure. The rule-base 54 may, for example, be stored as a
secure table in a relational database, as a C or C++ language 5

header file, as an object class library, as a dynamic link
library, or as an EPROM assembly language subroutine, or
as a microcode component within a microprocessor.

In addition, access to the rules 64 within a rule-base 54
may be accomplished by the command processor 50 using 10

one or more data structures including, but not limited to.
linked lists, tree structures, relational tables, object class
libraries, hash tables, or hyper-link stacks.

Following are examples of n-bit binary string operations 15

which may be used to encrypt the input data. Consider, first,
examples of vector rules and their explanation.

Examples of Vector Rules

The following rules provide simple examples of the ways
bit strings may be manipulated. The number and combina­
tion of possible rules is infinite.
Inversion

Invert the following n bits:

Where n=7 1011100 becomes 0100011
Transposition

Transpose the following n pairs of bits:

Where n=3 10 11 10 becomes 01 11 01
Interleaving

Interleave with a ratio 1:1 the following pair of n bits:

Where n=4 1011 1001 becomes 1100 1011
Shift Left

Shift the following n bits x bits to the left:

Where n=5. x=l 11011 becomes 10111
Shift Right

Shift the following n bits x bits to the right:
Where n=5. x=l 11011 becomes 11101
Consider, next, examples of matrix or two-dimensional

rules and an explanation of their use.

Examples of Matrix Rules

For each of the following examples, the bit stream 0110
0010 1110 0101 1100 will be the input stream.
Rule 1

Step 1. Enter bits from left to right, top to bottom, into a
matrix with 5 rows and 4 columns.

Step 3. Write the bits from left to right, top to bottom
Result: 0001 0111 0010 1110 0101

Original: 0110 0010 1110 0101 1100
Note: This is equivalent to a reverse interleave of X. n-bit

data types, where X=5. n=4. The larger the values of X
and n, the larger the adjacency displacement.

Rule 2
Step 1. Enter the bits from left to right, top to bottom, into

a matrix with 4 rows and 5 columns.

Step 2. Rotate the matrix 180 degrees.

40 Step 3. Invert the bits.

Step 2. Rotate the matrix 90 degrees to the left resulting
in a matrix with 4 rows and 5 columns.

50 Step 4. Write the bytes from left to right, top to bottom.
Result: 1100 0101 1000 1011 1001
Original: 0110 0010 1110 0101 1100

Rule 3
It is possible to use multiple arrays to encrypt bit streams

55 and to combine vector rules with array operations. The
following rule uses three matrices. The first matrix (a) is 3
rows by 4 columns. The second matrix (b) is 2 rows by 3
columns. The third matrix (c) is 1 row by 2 columns.

Step 1. Read the first 12 bits of the input stream into 3
4-bit data types.
0110 0010 1110

Step 2. Treating each data type individually, shift each bit
1 bit to the left.

65 1100 0100 1101
Step 3. Fill matrix (a) entering each data type into each of

the three rows.

5.893.084

(a)

10
-continued

(b)

Step 4. Enter the remaining bits from left to right, top to
bottom, into matrices (b) and (c).

Step 5. Swap matrices (b) and (c).

(<0 20

(b)

Step 6. Rotate all three matrices 90 degrees to the left.

(a)

(c)

Step 7. Write the bits from left to right, top to bottom.
io Result: 0010 0001 1110 1110 1001

Original: 0110 0010 1110 0101 1100
Additional rules may be created for any n-dimensional

data representation. There is no upper limit on the number of
15 possible rules or the manner or order in which they are

implemented.
The use of public and/or private specific purpose keys

such as encryption keys is optional. The encryption and
decryption of data is not dependent on an explicit encryption
key. a specific encode/decode rule or a specific data type. An
uncountable number of encryption keys may be applied
against a single implementation of RNE each one of which
enforces a unique rule-set. each set containing unique

25 encode/decode rules, in a unique order. Each encryption key
may be explicitly or implicitly defined. Thus by providing
multiple encryption keys to a single encrypted message,
parts of the message will be available only to some users and
not others when the message is distributed across multiple

30 machines for multiple users.
The successful encryption or decryption of the data is not

dependent on the size of the encryption key or the speed of
capacity of the processor. Without access to the encryption

35 key. the command processor rules, and the rule-base, it is
impossible to establish a correspondence between the origi­
nal data and the encrypted data.

For example, and not by way of limitation, the following
representative program listing in C details a second example
implementation of Rule-based n-Bit Encryption (RNE).

11
5.893.084

12

21

/ »

BME.C Binary Matrix Encryption
An Example Implementation of Rule-Based n-Bit Encryption.

10
Program Development Log:

Release of Version 1.10

' /
15

#include <stdio.h>
#include <io.h>
#include <malloc.h>
#include <conio.h>

20 #include <math.h>
#include < graph.h>
#include <string.h>
#include <mstring.h>
#include < stdlib.h >

25 #include <mstdlib.h>

#define YES 1
#define NO 0

30 #define IN ' 1 '

#define OUT 'O'
#define OFF 0
#define ON 1

35 #define FULL 0
#define NOTFULL 1

DI.MAIN Doc: 123386.1

13
5.893,084

14

22

I*

Matrix Definition
' /

typedef struct matrixTAG { unsigned int x, y;
unsigned long size;
char 'matrix; } MATRIX;

/ '

Function Definitions
• /

char AddBvteToMatrixf unsigned char);
void AllocateBuffers(void);
void AllocateLargestMatrix(void);
void CleanUp(char *);
void ClearMatrix(void);
void ClearBitCan(void)
void DefineMatrix(void);
void DisplayProgress(void);
void DisplayTitle(void);
int FillMatrix(void);
void FlushOutBuffer(void);
unsigned char GetBitStrVal(char *);
int GetNextByte(void):
void GetOptimalScale(void);
void InvertMatrix(void);
void NoArguments(void);
void OpenInFile(char *);
void OpenOutFile(void);
void PutNextByte(int);
void SendBitAtXY(long, long, unsigned int);
void SetEncryptionMethod(char *);
void SetInversionFreq(char ');
void SetMode(char);
void SetNextMethod(void);
void SetPassWord(char *)
void SwapScale(void);
int TimeToInvert(void);
void WriteBit(char);

DLMA1N Doc: 123386.1

5.893.084
15 16

23

void WriteReverse(void);

/ '

Matra Encryption Functions

The following matrix encryption functions arc the most simplistic variations on
arbitrarily approaching the matrix. Even so, these functions confuse the data
so much that no one could, with any degree of certainty decipher even one of
the rules contained here.

There are ways to make and process three-dimensional matrices, and virtually
any 2D or 3D shape would work. There are no means possible to figure out
the total number of rules that can be applied to this method, since, of course,
another bit could always be added, the shape or size changed, or some other
variations utilized like adding an arbitrary bit every X number of bits. Thus,
one would not know from where all the bits came, or to where they should go.

The number of rules is really the limit of the imagination's ability to create
them.

V

#define NUM RULES 7 /"There are actually 8 rules*/
/"butTopRightDown */
/"doesn't do anything. */

void BottomLeftUp(void);
void BottomRightUp(void);
void BottomUpLeft(void);
void BottomUpRight(void);
void TopDownLeft(void);
void TopDownRight(void);
void TopLeftDown(void);

File Pointers and File Names
' /

FILE "InFile, "OutFile;
char OutFileName[L_tmpnam];

DI.MAIN Doc: 123386.1

17
5.893.084

18

Global Variables
5 •/

#define MAX BUFFER 16384

unsigned char 'InBuffer, *OutBuffer;
1(1 int OutByteCount = 0;

MATRIX Matrix;
unsigned long MatrixCount = 0L;

15 char *PassWord;
unsigned PassWordLen = 0

char BitCan[9];
unsigned char LeftOver[9];

20

The following data type is an array of pointers to the various encryption rules.
25 It acts as the rule-base interface. Since the rules are set up as an array of

function pointers, not only can rules be added or subtracted with great ease,
they can be reordered. In other words, this particular example program can
be compiled as shown to produce an encryption engine. Then the rule order
can be changed in the pointer array defined below. Then the program can be

30 recompiled to create another encryption engine. The two resulting encryption
engines would be theoretically identical, but the first would not be able to
decode a data stream encoded by the second, and vice-versa. With enough
rules, therefore, as many unique encryption engines could be created as
desired. Each one of those unique encryption engines would have hundreds

35 of billions of password-method implementations

Also, because the rules are set in an internal data-array, it would be easy to
add rule-order rules, so that an operation like the checksum of the incoming
data would trigger a rule that reorders the rule pointers on the fly. In other

40 words, not only does the end-user have some control over the encryption, but
the data itself would be a player in the total scheme of things. Thus, one who

DLMAIN Doc: 123386.1

19
5.893.084

20

25

is uninformed would have to know beforehand the unencrypted version of the
data before attempting to decrypt it.

" /

void (*Rule[NUM_RULES](void) = {BottomUpLeft, BottomUpRight,
BottomLeftUp, BottomRightUp,
TopLeftDown, TopDownLeft,
TopDownRight };

int 'EncryptionMethod;
unsigned RulelD = 0;
char Mode = IN

unsigned long FileSize = (JL;
unsigned long TotalBytesRead = 0L;

/ '

User Definable Switches

unsigned char Inversion = OFF;
unsigned long InversionFreq = OL;

/ *

Program Code Follows

BME mode filename password 1 password2 {/i = x}

mode is either I or O.
filename is the file to encrypt.
password 1 defines the sizes of the matrices. This way, the matrices
vary in size as the file is encrypted. Therefore if a hacker were to
experience some miracle of guessing the correct matrix size, the
correct method, and whether it had been inverted, the rest of the
file would still be junk to him. Pass it twice, and he would never
know that he got it right in the first place!
password2 defines the way that the rules are used. Each letter of
password 2 represents, rather arbitrarily (see later) a rule to use for

DLMAIN Doc: 123386.1

21
5.893.084

22

26

20

30

encryption/decryption. That way, the rules to use for each matrix
are randomly selected by the use of password2. This is very
helpful. Because the command processor can rotate through
password 1 and password2, a given matrix size is most likely going
to be encrypted different ways each time it is used.
For this implementation and just to complicate matters, the /i=x
switch was added to provide the requirement that for each
frequency of X matrices, invert the Xth matrix. This way. the
uninformed would not even know the original value ot any given bit
in the file! So a ' 1'is present. Was it originally' 1'or'0'? There
is no way to know without knowing who encrypted the file.

7

void mainfint argc, char *argv[])
{

char lastbit = 0;

DisplayTitleQ;

if (argc <5)
NoArguments();

AllocateBuffers();

SetMode(argv[l][0]);

OpenInFile(argv[2]);
OpenOutFile();

SetPassWord(argv[3]);

DefineMatrix();

SetEncryptionMethod(argv[4]);

switch (argc) {
case 6:

SetlnversionFreq(argv[5]);
>
while (FillMatrix() !=EOF) {

DLMAIN Doc: 1ZH8A.I

23
5.893.084

24

27

+ + MatrixCount;

DisplayProgress();

if(TimeToInvert() == YES)
InvertMatrix();

(*Rule[RuleID])();

DefineMatrix();

SetNextMcthod();

>

if(strlen(Matrix.matrix)) {
if(strlen(Matrix.matrix) ! = Matrix.size) {

Matrix.size = strlen(Matrix.matrix);
GetOptimalScale();

if (Matrix.size = = 0) {

lastbit = '(Matrix.matrix + Matrix.size -
—Matrix.size;

*(Matrix.matrix + Matrix.size) = '\0';

GetOptimalScale();
}

}

(* Rule[RuleID])();

if(lastbit)
WriteBit(lastbit);

}

CIeanUp(argv[2]);
exit(0);

}

5.893.084
25 26

28

These functions are involved in setup and shutdown.
V

/ *

III SetMode - This is where from the command line, either a'I' or a'O' is used.
It really doesn't matter which is used as long as the opposite letter is used to
decrypt as was done to encrypt. In other words, if I is used to encrypt, O is
used for the decrypt, and vice-versa.

* /
15

void SetMode(char mode)
{ •

Mode = toupper((int)mode);

20 if(Mode !=IN && Mode !=OUT) {
printfC\nInvalid Mode: [%c]. Use IN or OUT\n",Mode);
exit(l);

}

30

/*.

Buffer the input and output.

void AllocateBuffers(void)

InBuffer = (unsigned char *)malloc(MAX_BUFFER
sizeof(unsigned char));
OutBuffer - (unsigned char *)malloc(MAX_BUFFER
sizeof(unsigned char));

if (InBuffer = = NULL || OutBuffer = = NULL) {
putsf\nNot Enough Memory\n");
exit(l);

}

DLMAIN Doc: 123.W>.I

27
5.893.084

28

29

Open the file to encrypt or decrypt.
' /

void OpenlnFilefchar *fname)
{

if((lnFile = fopen(fname, "rb")) == (FILE *)NULL {
printf("\nCan't Open %s for Input\n", fname);
exit(l);

}

FileSize = filelength(fileno(InFile));

/ ' —

Open a file in which to write the encrypted/decrypted data. A temporary
name is used here for example only.

' /

void OpenOutFile(void)
{

tmpnam(OutFileName);

if((OutFile = fopen(OutFileName, "wb")) = = (FILE *)NULL) {
printf("\nCan't Open %s for Output\n", OutFileName):

exit(l);
}

}

/ '

This is the user's first password argument derived from the fourth command
line argument. If there is not an even number of characters, one character is
added so that an even number of characters is used for the matrices. It does

DLMAIN Dae: 123386.1

29
5.893.084

30

30

not have to be done this way. It could be done any number of ways in this
particular application. Here, the first password is used to define the matrix
sizes. It is made to be an even number of characters so there is a V for every
X. If a new character is not added to bring the first password length to an
even number of characters, that new character is simply assigned the same
value as the first character of the password. That, too, is arbitrary and can
actually be done any number of ways.

Here, the ASCII decimal value of the character is used as the matrix axis
value. For example, suppose the password is 'ABCD'. The ASCII decimal
values for A, B, C, and D are 65, 66, 67, and 68, respectively. The first matrix
axes are defined using A and B. The size of the matrix, therefore, is 65 bits
by 66 bits = 4290 bits. The next matrix axes are defined using C and D, thus
it's size is 67 by 68 bits. Since, in this example, there are no more characters,
simply begin again at the beginning of the password with A and B. Since the
password is case-sensitive, all 256 ASCII characters are usable.

* /

void SetPassWord(char 'passwordarg)
{

unsigned int len, size;

size = len = strlen(passwordarg);

if(len % 2)
+ +size;

PassWord = (char *)mailoc((size + 2) * sizeof(char));

if(PassWord = = NULL) {
puts("\nOut of Memory\n");
exit(l);

}

strcpy(PassWord, passwordarg);

if(len !=size) {
'(PassWord + len) = 'passwordarg;
'(PassWord + size) = '\0';

}

PassWordLen = size;

DLMAIN Doc: 12338f,.l

31
5.893.084

32

31

5 Here, the second password provided by the user is used as a tool to decide
which rule to use.

The ASCII character set is implicitly divided into blocks, each the size in
characters as the number of rules available. Then the relative position of each

III password2 character within its block is found. That position is one of the
numbers 0 to NUM RULES - 1. This points, then, to a rule in the rule-base.

This is a good way to do it since, at any time, the number or order of rules in
the rule-base can be changed. If the order or number of rules is changed, then

15 this code does not have to be changed.
* /

void SetEncryptionMethod(char "method)
{

20 unsigned int len, val, x;
int *eptr;

len = strlen(method) + 1;

25 EncryptionMethod = (int *)malloc(len * sizeof(int));

for(eptr = EncryptionMethod; "method !='\0'; method++,
eptr+ +) {

30 val = ("method / NUM_RULES) * NUM RULES;

for (x = 0; x <NUM_RULES; x + +)
if ((val + x) = = "method)

"eptr = x;
35 }

"eptr = -1;

RulelD = "EncryptionMethod;

DL.WA1N Doc: 123386.1

33
5.893.084

34

/ «

This code takes the optional command line switch and parses it for inversion
frequency. The program then inverts each Xth matrix before encrypting it.

5
Consider an example. Suppose the user enters the following command line:

BME I filename ABC 12345 /i=3

10 The first password 'ABC" is lengthened to 'ABCA' so that it will contain an
even number of characters. The letters are then converted to the ASCII
decimal equivalents (65, 66, 67, 65) and used, alternately, as X and Y matrix
axis values. The second password ' 12345', by application, translates to rule
pointers 0, 1, 2, 3, and 4. respectively. The'/' =3' sets the inversion frequency

15 to 3, telling the program to invert every third matrix prior to. its alteration by
its assigned rule.

The following table describes each matrix size, which rule is use, and whether
or not the matrix is inverted.

20

Matrix Size in Bits Rule Used Inverted? # Bytes

X Y Size 0 to Total Y or N Accum.

65 66 4290 0 N 536 1/4

67 65 4355 1 N 1080 5/8

65 66 4290 2 Y 1616 7/8

67 65 4355 3 N 2161 1/4

65 66 4290 4 N 2697 1/2

67 65 4355 0 Y 3241 7/8

65 66 4290 1 N 3778 1/8

67 65 4355 2 N 4322 1/2

65 66 4290 3 Y 4858 3/4

67 65 4355 4 N 5403 1/8

DLMAIN Doc: 1233S6.I

35
5.893.084

36

33

...and so on to 30 different entries before it begins to repeat.

If the command line is symbolized as:

BME mode filename PI P2 /i=F,

the way to calculate the number of table entries is:

Chars in PI (rounded up to the nearest even number)
Divided by 2
Multiplied by # Chars in P2
Multiplied by F(if defined)

Therefore, this example is:

PI = 'ABC', P2 = '12345', F = 3

The number of characters in PI = 3, rounded up to the nearest even number
equals 4. The number of characters in P2 = 5. Therefore, the number of
table entries for this example is:

(4/2) * 5 * 3 = 2 * 5 * 3 = 30
* /

void SetInversionFreq(char *freq)
{

freq + =3;

InversionFreq = atol(freq);
if (InversionFrcq <1L)

InversionFreq = 0L;
else

Inversion = ON;
}

/*

This function writes out all remaining data, closes files, deletes the original
file, renames the encrypted temporary file to the name of the original file, and
then cleans up all allocated memory.

' /

D1 MAIN Dor: 123386.1

37
5.893.084

38

34

void CleanUp(char *fname)
{

FJushOutBuffer();

fclose(InFiie);
fclose(OutFile);

unlink(fname);
rename(OutFileName, fname):

DispiayProgress();

free(Matrix.matrix);
free(InBuffer);
free(OutBuffer);
free(PassWord);
free(EncrvptionMethod);

Provide instructions if procedures not correctly followed.
• /

void NoArguments(void)
{

puts("\nBME mode infile password method {/i = n}\n");
puts ("Modes are: IN | OUT");
exit(l);

/•

Other Functions

* /

void Display Title(void)
<

puts("\nBME - Binary Matrix Encryption");
puts(" Version 1.0 - Release 09.94");

DLMAIN Doc: 123386.1

39
5.893.084

40

35

puts("(c) 1994: Michael D. Harold & Joseph M. Morgan\n");
}

void Display Progress(void)
{

printf("\rProcessing: (%6.2f%c)", ((float)TotalBvtesRead /
(float)FileSize * 100., 37);

}

/ *

I 'u following functions handle the matrix.
' /

/*

I his function manages the rotation through password 1 using adjacent
characters to set the matrix size. Note that this implementation forces a matrix
axis to be at least 2.

V

void DefineMatrix(void)
{

static unsigned int PassWordPtr = 0;
static char MatrixDefined = NO;

if (MatrixDefined == NO)
AllocateLargestMatrix();

Matrix.x = (long)*(PassWord + PassWordPtr+ +);
Matrix.y = (long)'(PassWord + PassWordPtr++);

if (PassWordPtr = = PassWordlxn)
PassWordPtr = 0;

if (Matrix.x <2)
Matrix.x = 2;

if (Matrix.y <2)

OLMAIN Doc: 123386.1

41
5.893.084

42

36

Matrix.y = 2;

Maxtrix.size = Matrix.x * Matrix.y;

MatrixDefined = YES;
}

Instead of allocating and freeing memory as the matrices shift their size, the
largest matrix is allocated and that space used.

void AllocateLargestMatrix(void)
{

unsigned size, MaxSize = 0, x, y;
char "ptr = PassWord;

while (*ptr ! ='\0') {
x = *ptr+ +;
y = *ptr + +;

size = x * y;
if (size > MaxSize)

MaxSize = size;
}

Matrix.matrix = (char *)malloc((MaxSize +1) * sizeof(char));

if (Matrix.matrix = = (char *)NULL) {
puts("\nOut of Memory\n");
exit(l);

}
}

/ *

This function manages the conversion from byte-based reading to bit-based
reading. Note that a matrix is simply an n-Bit word. So, an n-Bit word ot

DLMAIN Doc: 123386.1

43
5.893.084

44

21)

30

matrix size is filled with bits from the input. To optimize the process (and it
could be better), bits are added to the matrix 8-at-a-time.

' /

int FillMatrix (void)
r i

int c;

ClearMatrixQ;

if (strlen(LeftOver)) {
strcpy(Matrix.matrix, Leftover);
Leftover [0] = '\0';

}

if (strlen(Matrix.matrix) == Matrix.size)
return 1;

while ((c = GetNextByte()) !=EOF) {

TotalBytesRead+ +;

if (AddByteToMatrix((unsigned char)c) = = FULL) break;
}

if (c = = EOF && !(feof(InFile))) {
puts("\nUnexpected EOF");
exit(l):

}

return c;

/*

To keep things neat, even though unnecessary, the following program sets the
matrix to NULL.

' /

void ClearMatrix(void)

1)1.MAIN Dor: 123386.1

45
5.893.084

46

38

unsigned long x;

for (x = 0: x < = Matrix.size; x + +)
*(Matrix.matrix + x) = '\0';

}

This function adds bits to the matrix, up to 8-at-a-time. If it is unable to add
all 8 bits to the matrix, it copies the remaining bits to a holding bin called
LeftOver. Note its use above in FillMatrix.

V

char AddBvteToMatrixfunsigned char bvte)
{

char bytestr[9];
int nbits;

chartobinstr(byte, bytestr);

nbits = (Matrix.size - strlen(Malrix.matrix));
nbits = (nbits > 8) ? 8 : nbits;

strncat(Matrix.matrix, bytestr, nbits);

if (nbits < 8)
strcpy(LeftOver, (bytestr + nbits));

return (strlen(Matrix.matrix) = = Matrix.size) ? FULL
NOTFULL;

/ '

This next three functions control the physical input and output of data via two
16K. buffers.

• /

int GetNextByte(void)
}

01.MAIN Doc: 12.1386.1

47
5.893.084

48

39

static int BytePtr = 0;
static int BytesInBuffer = 0;

if (BytePtr = = BytesInBuffer) {
BytesInBuffer = fread(InBuffer, sizeof(unsignetl char),
MAXBUFFER - 1, InFile);

if (BytesInBuffer = = 0)
return EOF;

BvtePtr = 0;
>

return '(InBuffer + BytePtr++);
}

void PutNextBvte(int c)
{

'(OutBuffer + OutByteCount) = c;

if (++OutByteCount == MAX_BUFFER - 1) {
fwrite(OutBuffer,sizeof(unsigned char), MAX_BUFFER - I,
OutFile);
OutByteCount = 0;

}
}

void FlushOutBuffer(void)
{

fwrite(OutBuffer. sizeof(unsigned char), OutBvteCount, OutFile);
}

/*

This function handles the output of single bits. It accumulates bits, for
example only, into an 8-bit buffer to translate back into bytes to accommodate
the architecture. Once 8 bits are accumulated, it is converted into a real byte
and sent to the output buffer.

• /
void WriteBit(char bit)

DLMAIN Doc: 123386.1

49
5.893.084

50

40

{
static int BitCanPtr = 0;
BitCan[BitCanPtr+ +] = bit;

if (BitCanPtr = = 8) {
PutNextByte(GetBitStrVal(BitCan));
BitCanPtr = 0;
ClearBitCanQ;

}
>

void ClearBitCan(void)
{

int x;

for (,\ = 0; x < 8; x+ +)
BitCanfx] = '\0';

}

/*

The following function receives a bit stream and converts it into an actual
unsigned character value.

* /

unsigned char GetBitStrVal(char *bitstr)
{

unsigned char value, x;

for (x = 128, value =0; "bitstr !='\0'; bitstr+ +, x /- 2)
if (*bitstr = = ' T)

value + = x;

return value;
}

Dl.MAIN Doc: 123386.1

51
5.893.084

52

41

/ '

The following function determines when it is time to invert the matrix.
Returns YES or NO.

* /

int TimeToInvert(void)
{

if (Inversion = = OFF || MatrixCount < InversionFreq ||
UnversionFreq)

return NO;

if (!(MatrixCount % InversionFreq))
return YES;

return NO;

}

/*

Following are various rules by which to encrypt the matrix. Envision the X
axis as vertical and the Y axis as horizontal.

' !

/ '

The following rule writes bits beginning from the bottom right corner of the
matrix, moving left through that row, then moving up one row to the end and
continuing in that manner until the matrix is completely written out.

* /

void BottomLeftUp(void)
{

register long x, y;
unsigned int Sen;

len = strlen(Matrix.matrix);

for (x = Matrix.x - 1; x>=0; x—)

DLMAIN Doc: 123386.1

53
5.893.084

54

42

for (y = Matrix.y - 1; y> =0; y—)
SendBitAtXY(x. y, len);

}

/*

1 he following rule starts at the bottom left corner, moves right through the
row, moves up one row to the beginning and continues until the matrix is
written out.

* /

void BottomRightUp(void)
{

register long x. y:
unsigned int len:

len = strlen(Matrix.matrix);

for (x = Matrix.x - 1; x> =0; x~)
for (y = 0; y < Matrix.y: y + +)

Send Bit AtXY(x, y, len);
}

/ •

The next rule starts at the bottom right corner, moves up through the column,
then moves left one column at the bottom, and continues.

void BottomUpLeft(void)
{

register long x, y;
unsigned int len;

if (Mode = = OUT)
SwapScale();

len = strlen(Matrix.matrix);

for (y = Matrix.y - 1; y > =0L; y~)

DLMAIN Doc: 1233S6.1

55
5.893.084

56

43

for (x = Matrix.x - 1; x > =0L; x—)
SendBitAtXY(x, y, len);

This rule starts at the bottom left corner, moves up through the column, moves
right to the bottom of the next column, and continues.

void BottomUpRight(void)
{

register long x, y;
unsigned int len:

if (Mode = = OUT) {
strrev(Matrix.matrix);
SwapScale();

}

len = strlen(Matrix.matrix);

for (y = OL; y < Matrix.y; y + +)
for (x = Matrix.x - 1; x > =0; x~)

SendBitAtXY(x, y, len);
}

r
This rule starts at the top right corner, moves down through the column,
moves left to the bottom of the next column, and continues.

' /

void TopDownLeft(void)
{

register long x, y:
unsigned int len;

if (Mode = = OUT) {

DOMAIN Doc: 123386.1

5.893.084
57 58

44

strrev(Matrix.matrix);
SwapScale();

}

len = strlen(Matrix.matrix);

for (y = Matrix.y - 1; y > =0; y~)
for (x = OL; x < Matrix.x; x + +)

SendBitAtXY(x, y, len);

/ '

The next rule starts at the top left corner, moves down through the column,
then right to the top of the next column, and continues in like manner.

V

20 void TopDownRight(void)
{

register long x, y;
unsigned int len;

30

}

if (Mode = = OUT) {
SwapScale();

}

len = strlen(Matrix.matrix);

for (y = OL; y < Matrix.y; y + +)
for (x = OL; x <Matrix.x; x + +)

SendBitAtXY(x, y, len);

/•.

40 The next rule starts at the top right corner, moves left through the row, down
and to the end of the next row, and continues in like manner.

V

DLMAIN Doc: 123386.1

5.893.084
59 60

45

void TopLeftDown(void)
{

register long x, y;
unsigned int len;

5
len = strlen(Matrix.matrix);

for (x = 0; x < Matrix.x; x + +)
for (y = Matrix.y-1; y > = 0; y—)

1(1 SendBitAtXY(x, y, len);
}

/ *
15

This rule starts at the top left corner, moves right through the row, down and
to the beginning of the next row, and so on. Since this is exactly the way the
matrix is constructed, it doesn't actually perform any encryption. It is put here
to complete the rule set, but this implementation does not use it.

- (l * /

void TopRightDown(void)
{

register long x, y;
25 unsigned int len;

len = strlen(Matrix.matrix);

for (x = 0; x < Matrix.x; x + +)
30 for (y = 0; y < Matrix.y; y+ +)

SendBitAtXY(x, y, len);

These are functions common to the matrix conversion rules.
V

DLMAIN Dnc: 123386.1

61
5.893.084

62

46

This function is required to decrypt certain rules. The matrix axes have to be
swapped to properly recover the data.

V

void SwapScale(void)
{

unsigned long n;

n = Matrix.x;
Matrix.x = Matrix.y;
Matrix.y = n;

/ • —

This function inverts the matrix, turning every T bit to a '0', and every '0'
bit to a ' 1'.

' /

void lnvertMatrix(void)
{

char *ptr;

for (ptr = Matrix.matrix; *ptr !='\0'; ptr++)
*ptr = (*ptr=='r)?0':T;

}

/ '

This function manages the rotation through the rule pointers defined by
password2.

' /

void SetNextMethod(void)
{

static int MethodPtr = 1;

DLMAIN Doc; 123386.1

63
5.893,084

64

47

RulelD = '(EncryptionMethod + Method Ptr++)

if ("(EncryptionMethod + MethodPtr) == -1)
MethodPtr = 0:

}

/*.

This function locates the bit in the matrix at x, y and writes it to the output
stream.

void SendBitAtXY(long x, long y, unsigned int len)
{

unsigned long offset;

offset = (x * Matrix.y) + y;

if (offset < (long)len)
WriteBit(*(Matrix, matrix + offset));

}

/*

This function defines the scale by the number of bits in the n-bit data type.
Very few files will divide up evenly into the shifting matrix series. Therefore,
there will usually be an incomplete matrix at the end. These rules won't
properly encrypt/decrypt a partial matrix. Therefore, this function resets the
matrix scale to an optimal axis based upon the number of remaining bits.
However, if the length of the remaining n-bit word is prime, the last bit is held
and removed from the matrix, and then the optimal axis is calculated. Once
the new matrix is encrypted, if there is a remaining bit, it gets written out.

V

void GetOptimalScale(void)
{

unsigned ResultNumber;
unsigned HighLimit;
unsigned x;

DLMAIN Doc: 123386.1

65
5.893.084

66

48

HighLimit = Matrix.size;

Matrix.x = Matrix.y =0;

for (x = 2; x < HighLimit; x + +) {

if (Matrix.size % x)
continue;

ResultNumber = HighLimit = Matrix.size / x;

Matrix.x = x;
Matrix.y = ResultNumber;

}

Matrix.size = Matrix.x * Matrix.y;
}

/* End of program code */

DLMAIN Doc: 123386.1

5.893,084
67

FIG. 4 illustrates, by example, the elemental steps of data
compression. Compression is begun by the initiation process
step 80 which includes such items as the declaration and
initialization of variables, the allocation of memory, and
parsing user input. The next step 82 involves pointing to the
input data, output data, and other support data needed by the
compression method(s) at step 86.

From there, the process begins by reading in an imple­
mentation of a defined amount of data. It is specific to this
invention that the data is read as one or more n-bit data types
at step 84 consistent and parallel with any given implemen­
tation. The data is then processed by the compression
method(s) at step 86. The resulting data, now in compressed
form, is written to output data at step 88.

It is then determined at step 90 whether or not compres­
sion has been completed. If not. it is determined if the end
of the input data has been reached at step 92. If not. the
process forks backs to the read process at step 84. otherwise
it forks to the application of the compression method(s) at
step 86.

If it has been determined by the implementation that
compression has been completed at step 90. then the nec­
essary data is released at step 94. and the process is
completed at step 96.

For example, and not by way of limitation, the following
description illustrates one method of implementing an n-bit
virtual software machine capable of performing reiterative
loss-less data compression.

Most methods of loss-less data compression are based on
a method in which repetitive patterns or symbols within a
data file are first identified and then replaced with symbols
which occupy, on average, less space in memory than the
original symbols. Examples of loss-less data compression
techniques include Huffman Coding. Arithmetic Coding.
Dictionary-Based Compression and Lempel-Ziv Coding.
Each of these methods relies on the substitution of a smaller
binary string for a larger binary string based on one or more
repetitive patterns of symbols or symbol patterns, or the
frequency of bytes or patterns within the uncompressed data.
The desired result of this process is a file which is smaller
than the original.

In order for compression to occur, an uneven frequency
distribution of symbols or symbol patterns must be present
in the uncompressed file. The greater the unevenness of the
frequencies of the symbols or symbol patterns in the original
data, the greater the compression.

Currently, all known methods of loss-less data compres­
sion result in an even distribution of symbols in the com­
pressed file. Because loss-less data compression methods
rely upon the uneven distribution of symbols or symbol
patterns, the even frequency distribution makes further com­
pression undesirable or impossible.

With this invention, the concept of Reiterative n-Bit
Compression (RNC) uses variable length n-bit data types to
explicitly or implicitly redistribute the frequency with which
symbols occur within the data. After one iteration, the
frequency distribution of the symbol set representing the
data may be modified explicitly by changing the size in bits
of the input and/or output data type. This explicit frequency
redistribution of the symbol set allows the data to be
compressed reiteratively.

The following table illustrates the differences in the
resulting distribution of some 8-bit characters following
compression with different sized n-bit data types.

68

Characters Space A E I O U

Original Distribution Count of Each of the
Above Characters

Data Type 4376 498 749 836 352 283
Size in Bits

Distribution Count Following Compression
4 143 114 114 112 46 33
6 217 122 117 138 59 48
8 139 42 59 42 25 29

10 260 107 120 129 40 42
12 161 64 64 61 13 6

The first row of the above table lists the characters being
evaluated for their frequency within the original file. The
third row shows each character's distribution in the original
input file prior to its compression. Rows 5 through 9 list each
character's distribution following compression of the origi­
nal file using input data types of varying bit lengths. The first
column lists the length, in bits, of the input n-bit data type.

Referring to the table, the "space" character appears 4376
times in the original file. After compressing the file using a
4-bit data type, the "space" appears 143 times. In contrast,
after the file is compressed using a 10-bit data type, the
"space" appears 260 times. When the file is compressed
using a 6-bit data type, the character 'U' appears 48 times,
compared with only 6 times following compression using a
12-bit data type.

By forcing the redistribution of bits, the compression ratio
can be forced to vary, thereby permitting optimization of the
next compression pass. The following table shows an
example of compression results of data. The first column
lists the size, in bytes, of the file before a given compression
pass. The second column lists the size of the n-bit data type.
The third column lists the number of the actual compression
pass. The fourth column lists the size of the file, in bytes,
following the compression pass.

Some compression passes have been attempted more than
once with varying sized input data types. This allows for
selection of the best compression ratio for a given n-bit data
type. Compression attempts that do not result in compres­
sion are italicized. The compression pass that achieved the
most compression is boldfaced.

Comp.
Size Nbits Pass Size

18119 10 1 14174
14174 10 2 14157
14157 10 3 14156

9 3 14136
8 3 13900
7 3 14091
6 3 14059
5 3 14558

13900 8 4 13832
7 4 13900
6 4 13907
9 4 13897

10 4 13894
11 4 13911

It should also be noted that frequency redistribution can
be achieved by implementing such data conversion algo­
rithms as alternating block-based inversion, bit-shifting, or
exclusive OR operations tailored for the target, or a multiple
of the target data type.

As another example, and not by way of limitation, the

5

to

15

20

25

30

35

40

45

50

55

60

65

5.893,084
69 70

following description illustrates one method of implement­
ing a virtual machine or computer capable of performing
rule-based n-bit arbitrary precision arithmetic: Rule-based
n-Bit Arithmetic (RNA) performs binary arithmetic opera­
tions on fixed or floating point data of arbitrary precision
where such precision is limited only by the real or virtual
address space of the computer. Arithmetic operations
include, but are not limited to. binary addition, subtraction,
multiplication, and division.

As part of its method, RNA contains two new data types
whose notations are unique and are not described in any
previously existing data types or data notations. One of these
notations represents integer values. The other notation rep­
resents floating point values.

The majority of computers and computer languages now
conforms to the following internal representation of integer
values:

1. The left-most bit. the sign bit ("S"). is used to contain
the sign of the number, with the usual interpretation that
0 means positive or plus and 1 means negative or
minus.

2. The "decimal" or radix point is assumed to be affixed
at the left or right end of the number.

3. The remaining bits represent the binary values ("B") of
the number.

A standard signed 16-bit value would be stored as fol­
lows:

S (1 bit) B (15 bits)

With regard to floating point numbers, the following
specific notation endorsed by the IEEE (Institute of Electri­
cal and Electronic Engineers) is the standard:

1. The left-most bit is the sign bit ("S").
2. The next eight bits are the exponent ("E"). The expo­

nent is interpreted as an integer in excess-127 code.
Excess-127 code allows the exponent to represent
numbers from -127 through 128.

3. The remaining bits are the mantissa ("M"). The value
of the mantissa is normally defined as 1 plus the value
of "M" treated as a binary fraction with the radix at the
left end.

A standard signed, single precision floating point value
would be stored as follows:

S (1 bit) • bits) M (23 bits)

This data type has an upper limit of 64 bits (double
precision) and 128 bits (quadruple precision).

The following data types represent RNA integer and
floating point values.

RNA integer values are represented as follows:
1. The left-most bit, the sign bit ("S"). is used to contain

the sign of the number with the interpretation that 0
means positive and 1 means negative.

2. The first n-Bit value to the right of the sign bit identifies
the length in bits ("L") of the binary representation of
the number. The size and limit of this value is imple­
mentation specific.

3. The second n-Bit value to the right of the sign bit
represents the binary values ("B") of the number begin­

ning with the least significant digit (LSD) and extend­
ing to the most significant digit (MSD).

A signed n-Bit integer value would be stored as follows:

S (1 bit) B (L bits)

For example, any binary integer value from 1 to 16,777,
216 significant digits in length could be stored with the

to following n-Bit data type:

S (1 bit) L (24 bits) B (L bits)

RNA floating point values are represented as follows:
1. The left-most bit. the sign bit ("S"). is used to contain

the sign of the number with the interpretation that 0
means positive and 1 means negative.

2. The first n-Bit value to the right of the sign bit identifies
the length in bits ("L") of the binary representation of
the number. The size and limit of this value is imple­
mentation specific.

3. The second n-Bit value to the right of the sign bit
identifies the radix point of the number ("R"). The size
in bits of this field is identical to the size of the previous
n-Bit field. (L).

4. The third n-Bit value to the right of the sign bit
represents the binary values ("B") of the number begin­
ning with the least significant bit (LSB) and extending
to the most significant bit (MSB).

A signed n-Bit floating-point number would be stored as
follows:

S (1 bit) L (n bits) R (n bits) B (L bits)

For example, any binary floating-point value from 1 to
16,777.216 significant digits in length could be stored with
the following n-Bit data type:

S (1 bit) L (24 bits) R (24 bits) B (L bits)

45 Binary addition, subtraction, multiplication, and division
are accomplished with n-Bit data types using standard
methods. Addition may be performed using binary adders.
Subtraction may be performed by using "true complement"
notation and adding the minuend to the complemented

50 subtrahend. Multiplication is the result of repeated binary
addition. Division is the result of repeated binary subtrac­
tion.

To add the following two n-Bit floating-point numbers:

11.001
11.001

L = 0101
1.011011
L = 0111

11.001
1.011011

(LSB) 100.100011 (MSB) =
S = 0 L = 1001 R = 0011

B= 11001

B = 1011011

B = 100100011

Negative numbers may be stored in complemented form
to facilitate the ease of substraction. By using "true comple­
ment" notation (i.e., reversing the value of each binary digit

5.8'
71

in the representation of the number), a binary adder may be
used to accomplish binary addition, subtraction,
multiplication, and division. This means that RNA may be
implemented in microcode or at the level of hardware
circuitry. At this level. RNA may be implemented as a
microprocessor function or as a specific purpose hardware
component of a general purpose computer.

FIG. 5 describes an example of an Arithmetic Logic Unit
(ALU) which implements Rule-based n-Bit Arithmetic
(RNA). One or more n-Bit values are retrieved from
memory 100 by the command processor 110. The command
processor 110 interprets the values as data or instructions,
depending on their locations in memory 100. and submits
them to the rule-base interface 120.

If the instruction is a logic instruction, the data and the
instruction are submitted to the logic rule-base 130. Logic
rules include, but are not limited to. AND. OR. NOT.
NAND, and NOR logic functions. Once the appropriate rule
has been applied to the data, the result is returned to the
rule-base interface 120. Additional logic and/or arithmetic
rules may be applied to the data before it is returned to
memory 100.

If the instruction is an arithmetic instruction, the data and
instruction are submitted by the rule-base interface 120 to
the arithmetic rule-base 140. Arithmetic rules include, but
are not limited to ADDITION. SUBTRACTION,
MULTIPLICATION, and DIVISION. Once the arithmetic
rule 140 has been applied to the data, the result is returned
to the rule-base interface 120. Additional arithmetic and/or
logic rules may be applied to the data before it is returned to
memory 100.

The advantages of RNA are:
1. It provides greater precision than any other arbitrary

precision arithmetic method.
2. The size of the numbers used in RNA is limited only by

the real or virtual address space of the computer.
3. RNA may be implemented in hardware of software.
4. RNA is processor independent.
5. RNA provides faster calculations of very large arbitrary

precision numbers.
A specific purpose RULE-BASED n-BIT VIRTUAL

SOFTWARE MACHINE, as uniquely described by this
invention, is any specific purpose virtual software machine
which uses a rule-base as an instruction set to perform binary
string operations on n-bit data types.

The COMMAND PROCESSOR is a machine that uses a
program which receives n-bit data types and command
language instructions as input and performs operations upon
the input using one or more rules. Each rule is a type of
processor instruction which performs a binary string opera­
tion upon one or more n-bit data types. After the input data
has been processed, the command processor outputs data in
the form of one or more n-bit data types.

An n-bit data type is defined as a data type consisting of
n bits (or binary digits) where n is any number greater than
zero. There is no inherent upper limit on n-bit data types.
Variable length n-bit data types are used as standard input
and output and are maintained and managed by the inven­
tion.

The RULE-BASE INTERFACE is defined as a method of
transferring data between the command processor and the
rule-base. The data in the form of one or more n-bit data
types is passed to the rule-base interface by the command
processor. The rule-base interface, in turn, identifies the rule
or rules that are to be used in processing the data. The data
is dispatched as one or more arguments to the selected rule

23.084
72

within the rule-base and the rule is applied. After the data has
been modified in accordance with the specified rule or rules,
the modified data is returned to the rule-base interface. The
rule-base interface may iteratively submit the data to one or

5 more rules. Once the conditions for the modification of the
data by the rule-base have been satisfied, the data is returned
as one or more n-bit data types to the command processor.
The command processor then outputs the data.

The RULE-BASE INTERFACE manages access to the
10 rules within the rule-base using any access method

including, but not limited to. linked lists, tree structures,
relational database tables, and hyper-link stacks.

The RULE-BASE is a collection or set of rules. Each rule
15 applies a binary string operation to the input data. A

BINARY STRING OPERATION is any operation which
performs bit level operations on one or more binary strings
representing n-bit data types. A binary string operation may
emulate processor instructions such as binary ANDs, ORs,

20 XORs. and COMPLEMENT operations. Combinations of
these operations may emulate processor instruction sets with
the additional advantage of providing virtual n-bit data and
instruction registers within the virtual machine in which to
perform these operations. Binary string operations may also

25 emulate more complex operations such as addition,
subtraction, multiplication, division, vector, and matrix
operations. These operations are implemented in such a way
that there is no inherent upper limit on the length of the n-bit
data types used as input or output.

30 The types of data structures which may be used to
implement the rule-base as it is defined in the invention
include, but are not limited to. the following: relational
database tables. C or C++ language header files, any gen­
eration computer language function(s) or subroutine(s).

35 object class libraries, and EPROM assembly language
subroutines, and microcode instruction sets.

Although the invention and several of its preferred
embodiments have been described and illustrated in detail,
the same is by way of example only and should not be taken

40 by way of limitation. The spirit and scope of the present
invention are limited only to the terms of the appended
claims.

What is claimed is:
1. A method for compressing information data from a data

45 source comprising the steps of:

coupling at least one n-bit data string of input data as
variable length n-bit data types where n is all integers
greater than 0 and includes both odd and even numbers
and is limited only by the physical address space of the

50 computer and contains bits representing said informa­
tion data and including control bits to a virtual com­
mand processor;

storing a plurality of data compression rules in a rule-base
memory for processing the n-bit data string;

coupling a rule-base interface between said virtual com­
mand processor and said rule-base memory for identi­
fying specific data compression rules stored in said
rule-base memory according to said control bits in said

^ n-bit input data string received from said virtual com­
mand processor;

modifying the n-bit data string according to the identified
compression rules in the rule-base to compress the
information data bits; and

65 transferring said compressed information data bits to said
virtual command processor for output as variable
length n-bit data types.

5.893.084
73 74

2. A method as In claim 1 further comprising the steps of:
identifying said data source with said control bits in said

n-bit data string; and
including bits in said control bits that represent at least

one argument to be used when accessing said rule-base. 5
3. A method as in claim 2 further comprising the steps of:
coupling one or more of said arguments to said identified

rule within said rule-base; and
applying the identified rule to the n-bit information data to

modify said information data and to perform said data to
compression.

4. A method as in claim 3 further including the steps of:
appending additional arguments, as needed, to said modi­

fied information according to said identified rule in said
rule-base; and 15

returning the modified information data to said rule-base
interface along with said needed arguments.

5. A method as in claim 4 further including the steps of:
iteratively submitting said modified data to at least

another one of said rules stored in said rule-base in 2o
accordance with said arguments appended by said
identified rule for further modification until said data
modification satisfies all of said arguments; and

returning said satisfied modification data to said virtual
command processor as one or more n-bit data strings 25
that are not required to correspond to the n-bit size and
number of n-bit input data strings coupled to said
virtual command processor from said data source.

6. A method as in claim 1 further comprising the steps of:
storing said rules in a memory in said rule-base: and 30
defining said rules as binary string operations.
7. A method for creating a specific purpose virtual pro­

cessor comprising the steps of:
coupling at least one n-bit data string of input data as

variable length n-bit data types where n is all integers 35

greater than 0 and includes both odd and even numbers
and is limited only by the physical address space of the
processor and contains bits representing said specific
purpose and including control bits to a virtual com­
mand processor; 40

storing a plurality of rules for said specific purpose in a
rule-base memory for processing the n-bit data string;

coupling a rule-base interface between said virtual com­
mand processor and said rule-base memory for identi­
fying specific ones of said specific purpose rules stored 45

in said rule-base memory according to said control bits
in said n-bit input data string received from said virtual
command processor;

modifying the n-bit data string according to the identified ^
specific purpose rules in the rule-base to create a
specific purpose application; and

transferring said modified n-bit data string representing
said specific purpose application to said virtual com­
mand processor for output as variable length n-bit data 55

types.
8. A method as in claim 7 further comprising the steps of:
identifying said data source with said control bits in said

n-bit data string; and
including bits in said control bits that represent at least go

one argument to be used when accessing said rule-base.
9. A method as in claim 8 further comprising the steps of:
coupling one or more of said arguments to said identified

rule within said rule-base; and
applying the identified rule to the n-bit information data to 65

modify said information data to perform said specific
purpose.

10. A method as in claim 9 further including the steps of:
appending additional arguments, as needed, to said modi­

fied information according to said identified rule in said
rule-base; and

returning the modified information data to said rule-base
interface along with said needed arguments.

11. A method as in claim 10 further including the steps of:
iteratively submitting said modified data to at least

another one of said rules stored in said rule-base in
accordance with said arguments appended by said
identified rule for further modification until said data
modification satisfies all of said arguments; and

returning said satisfied modification data to said command
processor as one or more n-bit data strings that are not
required to correspond to the n-bit size and number of
n-bit input data strings coupled to said virtual command
processor from said data source.

12. A method as in claim 10 further including the step of
manipulating said information data with rules from said
rule-base such that accomplishment of said specific purpose
is not dependent upon an explicit key. a specific purpose
rule, or a specified data type.

13. A method as in claim 10 further comprising the step
of user-defining the implementation of said specific purpose
since no single algorithm or rule must be defined.

14. A method as in claim 7 further comprising the steps of:
storing said rules in a memory in said rule-base; and
defining said stored rules as binary string operations.
15. A virtual software processor for defining an n-bit data

type in terms of a desired output where the value of n is all
integers greater than 0 and includes both odd and even
numbers and is limited only by the physical address space of
the processor, said machine comprising:

an input means for receiving, as input, one or more of said
n-bit data types as Y variable length n-bit words where
Y>0;

a storage means for storing user-defined rules in a rule-
base,

processing means coupled to said input means and said
storage means for performing operations on said input
n-bit data types using one or more of the user-defined
rules of said rule-base to define said input n-bit data
types in terms of said desired output; and

output means coupled to said processing means for out-
putting sad desired output as variable length n-bit
words that do not necessarily hag to correspond with
the size, in bits, and number. Y, of the variable length
n-bit input words.

16. A method of implementing a virtual processor capable
of performing rule-based n-bit arbitrary precision arithmetic
logic functions comprising the steps of:

coupling at least one n-bit data string of input data as
variable length n-bit data types where n is all integers
greater than 0 and includes both odd and even numbers
and is limited only by the physical address space of the
processor and contains bits representing a desired arith­
metic logic function and including control bits to a
virtual command processor;

storing a plurality of arithmetic operations in a rule-base
memory for processing the n-bit data string;

5.893.084
75

coupling a rule-base interface between said virtual com­
mand processor and said rule-base memory for identi­
fying specific arithmetic logic functions stored in said
rule-base memory according to said control bits in said
n-bit input data string received from said virtual com­
mand processor;

modifying the n-bit data string in accordance with the
identified arithmetic operations in the rule-base to

76
perform said desired arbitrary precision arithmetic
operations; and

transferring said performed arithmetic operations to said
virtual command processor for output as variable
length n-bit data types.

United States Patent [i9]
Morgan et al.

I l l l l
US005600726A

[11] Patent Number:
[45] Date of Patent:

5,600,726
Feb. 4, 1997

[54] METHOD FOR CREATING SPECIFIC
PURPOSE RULE-BASED N-BIT VIRTUAL
MACHINES

[75] Inventors: Joseph M. Morgan, Amarillo, Tex.;
Michael D. Harold, Shreveport, La.

[73] Assignee: Gemini Systems, L.L.C., Shreveport,
La.

[21] Appl. No.: 419,001

[22] Filed: Apr. 7, 1995

[51] Int. CI.6 H04L9/00
[52] U.S. CI 380/49; 380/4; 380/25
[58] Field of Search 380/4, 23-25,

380/28-30, 49, 18

[56] References Cited

U.S. PATENT DOCUMENTS

4,386,416 5/1983 Giltner et al. .
4,454,575 6/1984 Bushaw et al. .
4,697,243 9/1987 Moore et al. .
4,788,543 11/1988 Rubin .
4,890,240 12/1989 Loeb et al. .
4,893,339 1/1990 Bright et al 380/28
4,961,133 10/1990 Talati et al. .
4,961,225
5,009,833

10/1990 Hisano 380/28 4,961,225
5,009,833 4/1991 Takeuchi et al. .
5,031,215 7/1991 Pastor 380/30
5,038,296 8/1991 Sano .
5,084,813 1/1992 Ono .
5,097,504 3/1992 Camion et al 380/30
5,101,491 3/1992 Katzeff.
5,121,496 6/1992 Harper .
5,131,087 7/1992 Warr .
5,150,410 9/1992 Bertrand .
5,153,918 10/1992 Tuai 380/25
5,212,768 5/1993 Itsuki et al. .
5,228,116 7/1993 Harris et al. .
5,255,386 10/1993 Prager .
5,276,855 1/1994 Kitahara .
5,278,901 1/1994 Shieh et al 380/25

5,285,497 2/1994 Thatcher, Jr. 380/28
5,305,384 4/1994 Ashby et al 380/28
5,315,655 5/1994 Chaplin 380/25
5,321,606 6/1994 Kuruma et al. .
5,321,749 6/1994 Virga 380/18
5,351,299 9/1994 Matsuzaki et al 380/29
5,384,846 1/1995 Berson et al 380/23

Primary Examiner—Salvatore Cangialosi
Attorney, Agent, or Firm—Jones, Day, Reavis & Pogue

[57] ABSTRACT

A system and method for implementing one or more specific
purpose rule-based n-bit virtual processing machines. Spe­
cific purposes include, but are not limited to, encryption,
compression, and arbitrary precision arithmetic. Each virtual
machine consists of a command processor, a rule-base, and
an interface between the command processor and the rule-
base. Each of the elements of a specific purpose rule-based
n-bit virtual machine—the command processor, the rule-
base, and the rule-base interface—is preferably imple­
mented as software. In the preferred embodiment, the sys­
tem uses a stored rule-base as its instruction set and provides
for input and output in the form of variable length bit strings
of length n where n is any number greater than zero. Each
of the rules within the rule-base performs one or more binary
string operations against one or more variable length n-bit
strings. The function of the rule-base is to provide a set of
application specific rules that allows the machine to perform
a particular task such as encryption, data compression, or
arbitrary precision arithmetic. The system includes a method
for providing a software interface to the rule-base. This
interface may be a separate program or may be contained
within the command processor. The command processor
receives input in the form of one or more n-bit data types,
performs rule-based operations on the data, and returns
output in the form of one or more n-bit data types. Specific
system and methods for performing data encryption, data
compression, and arbitrary precision arithmetic using the
invention are described.

12 Claims, 2 Drawing Sheets

56. Z 52-

INPUT DATA RULE-BASE
INTERFACE

Z 50

ENCODE/DECODE COMMAND PROCESSOR

COMMAND PROCESSOR RULES

RULE H—^
RULE 2 62

RULE n

ENCRYPTED
DATA

54-

60 RULE-BASE

/*• RULE I
RULE 2

64 i RULE 4
RULE 5-Z

» RULE n

U.S. Patent Feb. 4, 1997 Sheet 1 of 2

COMMANDS
INPUT SOURCE

NO. OF INPUT DATA TYPES
SIZE IN BITS*-.

RULE BASE RULE ID \

INPUT DATA!

V RULE- BASE
RULE NEXT RULE

NO. RULE DEFINITION
0 - EXIT 1 2 SWAP
2 0 1NTERLEAVE

-

ENCODE/DECODE COMMAND PROCESSOR

COMMAND PROCESSOR RULES

RULE I *
RULE 2

RULE n

"62

ENCRYPTED
DATA

RULE-BASE

RULE I
RULE 2«\

A RULE I J6 '
RULE 5^

VRULE n

-56
F I G . 3

U.S. Patent Feb. 4, 1997 Sheet 2 of 2 5,600,726

5,600,
1

METHOD FOR CREATING SPECIFIC
PURPOSE RULE-BASED N-BIT VIRTUAL

MACHINES

BACKGROUND OF THE INVENTION 5

1. Field of the Invention
The present invention relates generally to computer sys­

tems and more particularly to a software architecture for
implementing specific purpose rule-based n-bit virtual 10
machines to accomplish such tasks as data typing, encryp­
tion, compression, arbitrary precision arithmetic, pattern
recognition, data conversion, artificial intelligence, device
drivers, data storage and retrieval and digital communica­
tions. 15

2. Description of the Related Art
Existing systems designed to process data vary widely in

their specific implementations. However, few are designed
for the utilization of a rule-base and there are no others
known that use, as their primary data type, an arbitrary X 20
number of bits as input, and an arbitrary Y number of bits as
output, where X may or may not be equal to Y.

With respect to virtual software machines, of specific
mention is U.S. Pat. No. 4,961,133 filed Oct. 2, 1990,
wherein Talati et al. disclose a "Virtual Execution Environ- 25

ment on a Target Computer Using a Virtual Software
Machine". This invention deals with preprocessing and
compiling source program code in such a way as to be
operating system independent and to enable the code to
execute across heterogeneous computers via a virtual inter- 30

face system. Though the invention disclosed by Talati et al.
involves providing a virtual software machine, it does not
address the problem of directly manipulating machine
instructions of any given n-bit length via a rule-base to
machine instructions of any target n-bit length on a target 35

machine.
With respect to data encryption, most systems apply some

form of mathematical operation or bit-wise operation, such
as exclusive-or (or XOR) against the input data to be
processed based upon an encryption key or password. Nor- 40

mally, the encryption process is highly specialized, encrypt­
ing the data in the same theoretical manner from the begin­
ning to the end of the data stream. These methods lend
themselves to differential crypto-analysis, a method capable,
through analytical means, of deciphering the encrypted 45

message.
Of specific mention is Matasuzaki et al. U.S. Pat. No.

5,351,299 filed Sep. 27, 1994, whose encryption process is
very difficult or impractical to break with more standard 5Q
analytical methods. This method utilizes the standard idea of
XORing data together by use of manipulation of a user-
provided password. To decrypt, one XORs the encrypted
data again, in reverse order, with the same manipulation of
the same user-provided password. 55

Though Matasuzaki et al. break data up into N blocks of
M-bit data, the specified Embodiment I states that "each bit
outputted from hash function unit is dependent on all the bits
inputted thereto." It also states in the embodiments that the
primary input blocks are blocks of multiples of 8 bits, and go
further broken down into blocks of M bits, defined in 8 bits
or multiples of 8 bits. This method severely limits introduc­
tion of arbitrary block encryption rules and does not allow
for a prime number of bits, such as 11 or 13.

The U.S. Pat. No. 5,285,497 to Thatcher, Jr. filed Feb. 8, 65
1994, specifies encoding variable length Huffman encoded
bits in a unique way. However, it does not address the bits

726
2

as a data type arbitrarily, but in a form having a meaning
directed by the Huffman compression means. The invention
also requires the use of a specialized microprocessor, a fixed
number of specialized encryption mles, and is specific to
compressed, digital data streams.

Another unique encryption means as stated in U.S. Pat.
5,097,504 to Camion et al. identifies a signature based
encryption means where the signature is recorded with the
encrypted message and the encryption keys are stored on
another, preferably inviolable, medium. This system applies
a highly mathematical and specific encryption means, intro­
ducing, again, the problem and limitation of not having a
flexible and rather arbitrary rule-base that is easily change­
able and modifiable.

In U.S. Pat. No. 5,321,749, Virga presents an extremely
unique encryption means that converts the input data into a
bitmap and encrypts the bitmap to be targeted for decryption
in an optical scanning device. The embodiment specifies
XORing randomly generated bits produced from a user-
specified password with the encoded bitmap. The bitmap is
then converted to specific visual alphabet that can be easily
recognized by a receiving scanning device. This method,
however, allows an analytical hashing means to decipher the
seed(s) generated from the user-specified password with a
relatively small amount of time.

With respect to compression, there are many means of
compression, all of them having the primary objective of
locating the most common occurring data types and encod­
ing them, on average, with a data type of a smaller size.

As an example, suppose the input data is comprised of the
characters "ABCAB". A compression means may locate the
most commonly occurring character pair, "AB", and
encodes them with a single character "Z", thereby reducing
the input data to ZCZ.

Though the above is an extremely simple example, the
many compression means in existence today vary widely
and have many implementations in hardware and software.
However varying these compression means may be, a pri­
mary limitation exists for all of them. The limitation is that
when compression has been achieved by use of the desired
compression means, the data can no longer be compressed.
This is due to the fact that the compressed output of the data
results in a distribution of the input data type such that there
is no longer a character or set of characters that occurs more
frequently than another character or set of characters. There­
fore, further compression is not possible or practical and
some compression means will actually explode the size of
the input data if the distribution of the characters of the input
data type is relatively constant.

With respect to arbitrary precision arithmetic, many algo­
rithms have been written to overcome the limitations of a
computer to provide very high levels of precision in math­
ematical calculations. Though these methods can and do
provide any desired precision with mathematical calcula­
tions, the calculations are performed algorithmically with
the requirement to overcome the internal 8, 16, 32, or 64-bit
limitations of the computer's hardware and internal memory
mapping. These algorithms require a very high CPU load,
demanding much of the computer's internal resources.

With respect to pattern recognition and data conversion,
the invention disclosed herein provides enhancement to
existing means of the same, introducing arbitrary data typing
and a user-defined rule-base, the combination of which is
absent in current systems.

In U.S. Pat. No. 5,321,606 filed Jun. 14,1994, Kuruma et
al. describe a user-defined set of transformation mles that

5,600,726

define the nature of the grammar of the input data to be
converted. The invention solves the problem of writing a
specific parser or compiler where the limitations rely upon
a specific grammar existent in the input data and a specific
output term in the output data. Yet, this invention specifies 5
that the output involves "structures of output terms in
association with terminal symbols and nonterminal sym­
bols".

In U.S. Pat. No. 4,890,240 filed Dec. 26,1989, Loeb et al.
describe a rule-based, artificial intelligence system where 10

the rules are specifically defined in two parts, a left-hand
side and a right-hand side; whereas, the left-hand side is
considered an "if' statement and the right-hand side is
considered a "then" statement. This invention is specific to
overcoming prior problems in RETE processing and not to 15

arbitrary pattern matching and identification with an exter­
nally provided rule-base.

U.S. Pat. Nos. 5,038,296 filed Aug. 6, 1991, 5,084,813
filed Jan. 28, 1992, and 5,101,491 filed Mar. 31, 1992 all 2q

refer to rule-based systems for generating program code.
Though one of the objectives of the present invention is data
transformation of program code from one n-bit machine
instruction via an externally provided mle-base to a different
n-bit machine instruction, it is not directed at code genera- ^
tion and the invention disclosed herein is not limited as such.

SUMMARY OF THE INVENTION

The present rule-based n-bit virtual machine, or proces- 30
sor, may be implemented in software and/or hardware.
When implemented as software, a rule-based n-bit virtual
machine converts a general purpose computer into a
machine that performs an application specific function.

Further, a virtual processor may execute its instmctions 35

either in batch mode or interactively.
It is, therefore, a primary object of this invention to

provide a means by which one or more of a data type of n-bit
size is selected or received as input, processed by a rule or
rules designed for processing one or more of a data type of
n-bit size, and outputting or transmitting one or more of the
processed data type of an n-bit size. In all data-type cases,
the value of N is any number greater than zero. The size, in
bits, and number of the input data type do not necessarily ^
have to correspond with the size, in bits, and number of the
output data type. Also, any given rule designed to process
n-bit data types may or may not be specifically designed to
work on an n-bit data type of a particular size in bits.

It is yet another object of the present invention to provide 5Q

an architecture for creating a specific purpose virtual
machine using software that manipulates n-bit data types
and rule-based instruction sets.

It is another object to create a command processor con­
trolled by a program and that accepts input in the form of one 55

or more n-bit data types and outputs data in the form of one
or more n-bit data types where n is any number greater than
zero. The upper value of n is limited only by the physical or
virtual address space of the computer.

It is still another object to create an interface program 60
between the command processor and the mle-base called the
mle-base interface. Separating the command processor from
the mle-base allows the mle-base to be stored in different
forms such as, but not limited to, a relational database table,
a C or C++ language header file, an object class library, a 65
dynamic link library, an EPROM assembly language sub­
routine, or a microcode instruction set.

It is a further object of the invention to provide a new
method for creating applications relating to various fields
within computing including, but not limited to, data typing,
data encryption, data compression, arbitrary precision arith­
metic, pattern recognition, data conversion, artificial intel­
ligence, data storage and retrieval, and digital communica­
tions.

It is yet a further object of the present invention to
demonstrate the advantages of the method by describing in
detail specific implementations of the invention related to
data encryption, data compression, and arbitrary precision
arithmetic.

In accordance with one aspect of the invention, a subsid­
iary object is to provide a new method and system of data
encryption. This new method of encryption will employ a
command processor and a mle-base and will input and
output data as variable length n-bit data types.

In accordance with one aspect of the invention, a further
subsidiary object is to provide a new system of data com­
pression. This concept involves, but is not limited to, the
implicit redistribution of n-bit data-type frequencies by the
explicit compression of data using n-bit data types as input
and output. This concept allows the data to be compressed
reiteratively.

In accordance with another aspect of the invention, a
further subsidiary object is to provide a .new system of
arbitrary precision arithmetic. This new system of arithmetic
will employ a command processor and a mle-base and will
input and output data as variable length n-bit words.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of the present invention will be
more fully disclosed when taken in conjunction with the
following DETAILED DESCRIPTION OF THE PRE­
FERRED EMBODIMENTS in which like numerals repre­
sent like elements and in which:

FIG. 1 is a diagram illustrating the organization of a
system identifying the principal elements and processes
associated with the present invention;

FTG. 2 is a block diagram further illustrating the interre­
lation of the elements of the invention;

FTG. 3 is a diagram illustrating an implementation of the
invention as a data encryption system;

FIG. 4 is a process flow chart illustrating an implemen­
tation of the invention as a loss-less data compression
method; and

FIG. 5 is a diagram illustrating an implementation of the
invention as an arbitrary precision arithmetic method.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

With reference now to the drawings, FIG. 1 shows the
organization of the principal elements used in the novel
processes of a system and method for implementing a
specific purpose mle-based n-bit virtual software driven data
processing machine. A program used by the command
processor 12 receives, as input, one or more commands
identifying the input data source 14 and the instructions
and/or arguments 10 which will be used in accessing the
rule-base 18. Once a command is received by the command
processor 12, data is input to the command processor in the
form of one or more n-bit streams from the data source 14.
The data is passed to the mle-base interface 16 by the
command processor 12. The mle-base interface 16 in turn

5,600,
5

uses the data to identify and select the rule or rules that are
to be used in processing the data. The data is dispatched as
one or more arguments to the selected rule within the
rule-base 18 and the rule is applied. After the data has been
modified in accordance with the specified rule or rules, the 5
modified data is returned to the rule-base interface 16 along
with any arguments appended by the last rule applied. These
arguments may be used by the rule-base interface 16 to
determine the next rule or rules to be applied to the data.
These arguments may also consist of key words or messages
identifying the current state of the data conversion process.
The rule-base interface 16 may iteratively submit the data to
one or more rules within the rule-base 18 based on the value
or values, if any, of the arguments returned by the previous
rule or rules. Once the conditions for the modification of the
data by the rule-base have been satisfied, the data is returned 15

as one or more n-bit streams to the command processor 12.
The command processor 12 then outputs the data as one or
more n-bit streams 20. The size in bits and number of n-bit
streams output by the command processor 12 is not required
to correspond to the size in bits and number of n-bit streams 20

which were originally input.
A simple example of the process is shown in FIG. 2.

Command line input 22 generates data that identifies the
source 24 of the input data, the number of input data types
26, the size of the input data type 28 and the rule-based rule 25

ID 30 that is to be applied to the data. The command line
data is processed by the command processor 32 after which
the input from data source 34 is read and a rule pointer 38
is generated from the rule ID 30. The n-bit input data 36 and
the rule pointer 38 are passed to the rule-base interface 40. 30

The rule-base interface 40 in turn uses the rule pointer 38 to
identify the rule 42 to be applied to the data and passes the
data to the appropriate identified rule 42 within the rule-base
44. The data is modified by the rule-base 44 and the modified
data is returned to the rule-base interface 40. The rule-base 35

interface 40 in turn passes the data to the command proces­
sor 32 which outputs the data as one or more n-bit data types
48. The objects of the invention are achieved by the novel
application of the rule-base and the use of n-bit data types
for input, processing, and output functions. This method, 40

when applied to specific applications, may result in major
improvements in the performance and capabilities of exist­
ing software application driven processing machines. Fur­
thermore, the use of variable length n-bit data types provides
numerous opportunities to create new, specific purpose 45

virtual computing environments which are capable of per­
forming tasks that are not possible using eight bit technolo­
gies.

For example, and not by way of limitation, the following 5Q

description illustrates one method of implementing a virtual
machine or computer capable of performing rule-based n-bit
encryption:

Rule-based n-Bit Encryption (RNE) encrypts data as a
string of binary digits using a command processor, a rule- 55

base interface, and a rule-base. In order to fully realize the
benefits of RNE, it is important to realize that all of the data
elements of the method, including the data processed by the
command processor, the mle-base, and the data itself, are
perceived as one or more strings of binary data. go

In RNE the bit is the primary data structure. Any or all of
the elements of the RNE virtual machine may be input,
processed, and output as data. The binary representation of
the elements of the RNE virtual machine or processor is a bit
stream composed of one or more n-bit data types and is not 65
organized as bytes except where the physical and/or system
limitations of the computer require it.

726
6

As described in FIG. 3, RNE consists of four principal
elements: an encode/decode command processor 50, a rule-
base interface program 52, a rule-base 54, the input data or
message 56, and the encrypted data or message 58.

The rule-base 54 is composed of one or more rules 60.
Each rule 60 may contain variable data and literal data. Each
rule 60 may, but is not required to, receive one or more
arguments as input. Each rule may, but is not required to,
output one or more arguments. The encrypted message is the
result of the RNE process. The command processor 50 rules
and/or the rules of the rule-base 54 may or may not be
contained in the encrypted message 58 at the time transmis­
sion occurs.

The command processor 50 is used to access the rule-base
54 and to manage the actual encryption/decryption process.
One or more rules 62 may be contained within the command
processor 50 to uniquely identify the command processor 50
and/or provide an index or offset into the rule-base 54.

For example, one of the rules 62 contained in the com­
mand processor 50 might implement a hashing rule that
would use input data 56 to select an encryption key to
generate a pointer into the rule-base 54. This would allow
any number of public and private encryption keys to imple­
ment unique encode/decode rule sets within a single rule-
base 54. This would also allow encryption keys to be
implicitly user-defined within the command processor 50.
Only matched command processors 50 could decode each
other's messages. Neither encryption nor decryption is
dependent upon an explicit encryption key, a specific
encode/decode mle, or a specified data type. However, any
encryption key may be defined either implicitly or explicitly.

The command processor 50 may also be used to parse a
password or access code in the input data and to pass the
resulting values as arguments to one or more rules 60 or rule
sets 61 within the rule-base 54.

As an example, an encryption key might be constructed
having 3 bytes or 24 bits. Each of the bytes would represent
a mle set. Each bit within a byte would represent the
application of a specific mle or mle set within a mle set. The
bytes 10010101, 11100011 and 00101010 (identified as mle
sets 1, 2, and 3, respectively) might be used by the first
element of RNE, the command processor 50, to apply the
following mles or mle sets:

For mle set number 1, mles or mle sets 1, 4, 6, and 8
would apply.

For mle set number 2, mles or mle sets 1, 2, 3, 7, and 8
would apply.

For mle set number 3, mles or mle sets 3, 5, and 7 would
apply.

The total number of combinations for any given imple­
mentation using a key having 24 bits is 16,777,216. Because
RNE is based on bit string manipulation, there is no upper
limit on the length of the encryption key.

The second element of RNE, the mle-base 54, is a set of
mles 64 used by the command processor 50 to decode or
encode binary strings of data. The mles 64 may be used
individually, or as a set to decode or encode data.

The mle-base 54 is not defined as a specific type of data
structure. The mle-base 54 may, for example, be stored as a
secure table in a relational database, as a C or C++ language
header file, as an object class library, as a dynamic link
library, or as an EPROM assembly language subroutine, or
as a microcode component within a microprocessor.

In addition, access to the mles 64 within a mle-base 54
may be accomplished by the command processor 50 using
one or more data structures including, but not limited to,

5,600,726
7 8

linked lists, tree structures, relational tables, object class Step 1. Enter the bits from left to right, top to bottom, into
libraries, hash tables, or hyper-link stacks. a matrix with 4 rows and 5 columns.

Following are examples of n-bit binary string operations
which may be used to encrypt the input data. Consider, first,
examples of vector rules and their explanation. 5

Examples of Vector Rules

The following rules provide simple examples of the ways
bit strings may 15 be manipulated. The number and com- to
bination of possible rules is infinite.

Step 2. Rotate the matrix 180 degrees.

0 10 11

t o o t o

Inversion
Invert the following n bits:

Where n = 7 1011100 becomes
Transposition

Transpose the following n pairs of bits:
Where n = 3 10 11 10 becomes

Interleaving
Interleave with a ratio 1:1 the following pair of n bits:

Where n = 4 1011 1001 becomes
Shift lift

Shift the following n bits x bits to the left:
Where n = 5, x = 1 11011 becomes

Shift Right
Shift the following n bits x bits to the right:

Where n = 5, x = 1 11011 becomes

Consider, next, examples of matrix or two-dimensional
rules and an explanation of their use.

Step 3. Invert the bits.

Examples of Matrix Rules

For each of the following examples, the bit stream 0110
0010 1110 0101 1100 will be the input stream.
Rule 1

Step 1. Enter bits from left to right, top to bottom, into a 35

matrix with 5 rows and 4 columns.

40

45

Step 2. Rotate the matrix 90 degrees to the left resulting
in a matrix with 4 rows and 5 columns.

50

Step 4. Write the bytes from left to right, top to bottom.

Result: 1100 0101 1000 1011 1001
Original: 0110 0010 1110 0101 1100

Rule 3
It is possible to use multiple arrays to encrypt bit streams

and to combine vector rules with array operations. The
following rule uses three matrices. The first matrix (a) is 3
rows by 4 columns. The second matrix (b) is 2 rows by 3
columns. The third matrix (c) is 1 row by 2 columns.

Step 1. Read the first 12 bits of the input stream into 3
4-bit data types.
0110 0010 1110

Step 2. Treating each data type individually, shift each bit
1 bit to the left.
1100 0100 1101

Step 3. Fill matrix (a) entering each data type into each of
the three rows.

(a)

0 0 1 0

1 1 1 0

0 1 0 1

1 1 0 0

0 1 0 0

1 1 0 1

\

Step 3. Write the bits from left to right, top to bottom Step 4. Enter the remaining bits from left to right, top to
bottom, into matrices (b) and (c).

Result:
Original:

0001 0111 0010 1110 0101
0110 0010 1110 0101 1100

Note: This is equivalent to a reverse interleave of X, n-bit
data types, where X=5, n=4. The larger the values of X 65
and n, the larger the adjacency displacement.

Rule 2

(b)

9
Step 5. Swap matrices (b) and (c).

5,600,726
10

Step 7. Write the bits from left to right, top to bottom.

(b)

Step 6. Rotate all three matrices 90 degrees to the left.

(b)

Result:
Original:

0010 0001 1110 1110 1001
0110 0010 1110 0101 1100

Additional rules may be created for any n-dimensional
data representation. There is no upper limit on the number of
possible rules or the manner or order in which they are
implemented.

10 The use of public and/or private specific purpose keys
such as encryption keys is optional. The encryption and
decryption of data is not dependent on an explicit encryption
key, a specific encode/decode rule or a specific data type. An
uncountable number of encryption keys may be applied

15 against a single implementation of RNE each one of which
enforces a unique rule-set, each set containing unique
encode/decode rules, in a unique order. Each encryption key
may be explicitly or implicitly defined. Thus by providing
multiple encryption keys to a single encrypted message,

20 parts of the message will be available only to some users and
not others when the message is distributed across multiple
machines for multiple users.

The successful encryption or decryption of the data is not
dependent on the size of the encryption key or the speed of
capacity of the processor. Without access to the encryption

25 key, the command processor rules, and the rule-base, it is
impossible to establish a correspondence between the origi­
nal data and the encrypted data.

For example, and not by way of limitation, the following
representative program listing in C details a second example
implementation of Rule-based n-Bit Encryption (RNE).

11
5,600,726

12

21

rule-base, it is impossible to establish a correspondence between the original

data and the encrypted data.

For example, and not by way of limitation, the following representative

program listing in C details a second example implementation of Rule-based

n-Bit Encryption (RNE).

BME.C Binary Matrix Encryption
An Example Implementation of Rule-Based n-Bit Encryption.

Program Development Log:

Release of Version 1.10
7

#include <stdio.h>
#include <io.h>
#include <malloc.h>
#include <conio.h>
#include <math.h>
#include <graph.h>
#include <string.h>
#include <mstring.h>
#include < stdlib.h >
#include <mstdlib.h>

#define YES 1
#define NO 0

#define IN 'I*
#define OUT 'O'
#define OFF 0
#define ON 1

#define FULL 0
#define NOTFULL 1

DLMAIN Doc: 123386.1

13
5,600,726

14

22

Matrix Definition
7

typedef struct matrixTAG { unsigned int x, y;
unsigned long size;
char "matrix; } MATRIX;

Function Definitions
7

char AddByteToMatrix(unsigned char);
void AIIocateBuffers(void);
void AllocateLargestMatrix(void);
void CleanUp(char *);
void ClearMatrix(void);
void ClearBitCan(void)
void DefineMatrix(void);
void DisplayProgress(void);
void DisplayTitle(void);
int FillMatrix(void);
void FlushOutBuffer(void);
unsigned char GetBitStrVal(char *);
int GetNextByte(void);
void GetOptimalScale(void);
void InvertMatrix(void);
void NoArguments(void);
void OpenInFile(char *);
void OpenOutFile(void);
void PutNextByte(int);
void SendBitAtXY(long, long, unsigned int);
void SetEncryptionMethod(char *);
void SetInversionFreq(char *);
void SetMode(char);
void SetNextMethod(void);
void SetPassWord(char *)
void SwapScale(void);
int TimeToInvert(void);
void WriteBit(char);

DLMAIN Doc: 123386.1

15
5,600,726

16

23

void WriteReverse(void);

/ '
5

Matrix Encryption Functions

The following matrix encryption functions are the most simplistic variations on
arbitrarily approaching the matrix. Even so, these functions confuse the data

10 so much that no one could, with any degree of certainty decipher even one of
the rules contained here.

There are ways to make and process three-dimensional matrices, and virtually
any 2D or 3D shape would work. There are no means possible to figure out

15 the total number of rules that can be applied to this method, since, of course,
another bit could always be added, the shape or size changed, or some other
variations utilized like adding an arbitrary bit every X number of bits. Thus,
one would not know from where all the bits came, or to where they should go.

20 The number of rules is really the limit of the imagination's ability to create
them.

V

/'There are actually 8 rales*/
/•butTopRightDown */
/'doesn't do anything. */

35
/*

File Pointers and File Names
7

40
FILE 'InFile, *OutFile;
char OutFileName[L_tmpnam];

DLMAIN Doc: 123386.1

#define NUM_RULES 7
25

void BottomLeftUp(void);
void BottomRightUp(void);
void BottomUpLeft(void);

30 void BottomUpRight(void);
void TopDownLeft(void);
void TopDownRight(void);
void TopLeftDown(void);

17
5,600,726

18

24

/*

Global Variables
5 7

#define MAXBUFFER 16384

unsigned char "InBuffer, 'OutBuffer;
10 int OutByteCount = 0;

MATRIX Matrix;
unsigned long MatrixCount = 0L;

15 char 'PassWord;
unsigned PassWordLen = 0

char BitCan[9];
unsigned char LeftOver[9];

20

The following data type is an array of pointers to the various encryption rules.
25 It acts as the rule-base interface. Since the rules are set up as an array of

function pointers, not only can rules be added or subtracted with great ease,
they can be reordered. In other words, this particular example program can
be compiled as shown to produce an encryption engine. Then the rule order
can be changed in the pointer array defined below. Then the program can be

30 recompiled to create another encryption engine. The two resulting encryption
engines would be theoretically identical, but the first would not be able to
decode a data stream encoded by the second, and vice-versa. With enough
rules, therefore, as many unique encryption engines could be created as
desired. Each one of those unique encryption engines would have hundreds

35 of billions of password-method implementations

Also, because the rules are set in an internal data-array, it would be easy to
add rule-order rules, so that an operation like the checksum of the incoming
data would trigger a rule that reorders the rule pointers on the fly. In other

40 words, not only does the end-user have some control over the encryption, but
the data itself would be a player in the total scheme of things. Thus, one who

DLMAIN Doc: 123386.1

5,600,726
19 20

25

is uninformed would have to know beforehand the unencrypted version of the
data before attempting to decrypt it.
. _ 7

5 void (*Rule[NUM_RULES](void) = {BottomUpLeft, BottomUpRight,
BottomLeftUp, BottomRightUp,
TopLeftDown, TopDownLeft,
TopDownRight };

10 int 'EncryptionMethod;
unsigned RulelD = 0;
char Mode = IN

unsigned long FileSize = 0L;
15 unsigned long TotalBytesRead = 0L;

/'

20 User Definable Switches

unsigned char Inversion = OFF;
unsigned long InversionFreq = 0L;

25

/*,

Program Code Follows
30

BME mode filename passwordl password2 {/i=x}

mode is either I or O.
filename is the file to encrypt.

35 - passwordl defines the sizes of the matrices. This way, the matrices
vary in size as the file is encrypted. Therefore if a hacker were to
experience some miracle of guessing the correct matrix size, the
correct method, and whether it had been inverted, the rest of the
file would still be junk to him. Pass it twice, and he would never

40 know that he got it right in the first place!
password2 defines the way that the rules are used. Each letter of
password 2 represents, rather arbitrarily (see later) a rule to use for

DLMAIN Doc: 123386.1

21
5,600,726

22

26

encryption/decryption. That way, the rules to use for each matrix
are randomly selected by the use of password2. This is very
helpful. Because the command processor can rotate through
passwordl and password2, a given matrix size is most likely going

5 to be encrypted different ways each time it is used.
For this implementation and just to complicate matters, the /i =x
switch was added to provide the requirement that for each
frequency of X matrices, invert the Xth matrix. This way, the
uninformed would not even know the original value of any given bit

10 in the file! So a *1' is present. Was it originally '1' or '0'? There
is no way to know without knowing who encrypted the file.

15 void main(int argc, char *argv[])
{

char lastbit = 0;

,7

20

25

30

DisplayTitle();

if (argc <5)
NoArguments();

AllocateBuffers();

SetMode(argv[l][0]);

OpenInFile(argv[2]);
OpenOutFileQ;

SetPassWord(argv[3]);

DefineMatrix();

35 SetEncryptionMethod(argv[4]);

switch (argc) {
case 6:

SetInversionFreq(argv[5]);
40 }

while (FillMatrix() !=EOF) {

DLMAIN Doc: 123386.1

23
5,600,726

24

27

+ + MatrixCount;

DisplayProgress ();

5 if(TimeToInvert() = = YES)
lnvertMatrix();

(*Rule[RuleID])();

10 DefineMatrixO;

SetNextMethod();

}
15 if(strlen(Matrix.matrix)) {

if(strlen(Matrix.matrix) ! = Matrix.size) {

Matrix.size = strlen(Matrix.matrix);
GetOptimalScale();

if (Matrix.size = = 0) {

lastbit = "(Matrix.matrix + Matrix.size - 1);
-Matrix.size;

•(Matrix.matrix + Matrix.size) = *\0';

GetOptimalScale ();

20

25

}
30 }

(* Rule [RulelD]) ();

if(lastbit)
35 WriteBit(lastbit);

40

CleanUp(argv[2]);
exit(0);

DLMAIN Doc: 123384.1

25
5,600,726

26

28

25

/* -

These functions are involved in setup and shutdown.
.7

10

15

20

'*

SetMode - This is where from the command line, either a T or a 'O' is used.
It really doesn't matter which is used as long as the opposite letter is used to
decrypt as was done to encrypt. In other words, if I is used to encrypt, O is
used for the decrypt, and vice-versa.

,7

void SetMode(char mode)
{

Mode = toupper((int)mode);

if(Mode !=IN && Mode !=OUT) {
printf("\nlnvalid Mode: [%c]. Use IN or OUT\n",Mode);
exit(l);

}

30

35

40

/*.

Buffer the input and output.
*/

void AllocateBuffers(void)

InBuffer = (unsigned char *)malloc(MAX_BUFFER
sizeof(unsigned char));
OutBuffer - (unsigned char *)malloc(MAX_BUFFER
sizeof(unsigned char));

if (InBuffer = = NULL || OutBuffer = = NULL) {
puts("\nNot Enough Memory\n");
exit(l);

}

DLMAIN Doc 123386.1

5,600,726
27 28

29

}

Open the file to encrypt or decrypt.
_7

void OpenInFile(char *fname)
10 {

if((InFile = fopen(fname, *rb")) = = (FILE *)NULL {
printf("\nCan't Open %s for Input\n", fname);
exit(l);

}
15

FileSize = filelength(fileno(InFile));
}

20

Open a file in which to write the encrypted/decrypted data. A temporary
name is used here for example only.

25 */

void OpenOutFile(void)
{

tmpnam(OutFileName);
30

if((OutFile = fopen(OutFileName, "wb")) = = (FILE *)NULL) {
printf("\nCan't Open %s for Output\n", OutFileName);

exit(l);
}

35 }

40 This is the user's first password argument derived from the fourth command
line argument. If there is not an even number of characters, one character is
added so that an even number of characters is used for the matrices. It does

DLMAIN Doc: 123386.1

29
5,600,726

30

30

not have to be done this way. It could be done any number of ways in this
particular application. Here, the first password is used to define the matrix
sizes. It is made to be an even number of characters so there is a Y for every
X. If a new character is not added to bring the first password length to an

5 even number of characters, that new character is simply assigned the same
value as the first character of the password. That, too, is arbitrary and can
actually be done any number of ways.

Here, the ASCII decimal value of the character is used as the matrix axis
10 value. For example, suppose the password is 'ABCD'. The ASCII decimal

values for A, B, C, and D are 65, 66, 67, and 68, respectively. The first matrix
axes are defined using A and B. The size of the matrix, therefore, is 65 bits
by 66 bits = 4290 bits. The next matrix axes are defined using C and D, thus
it's size is 67 by 68 bits. Since, in this example, there are no more characters,

15 simply begin again at the beginning of the password with A and B. Since the
password is case-sensitive, all 256 ASCII characters are usable.

void SetPassWord(char 'passwordarg)
20 {

unsigned int len, size;

size = len = strlen(passwordarg);

25 if(len % 2)
+ + size;

PassWord = (char *)malloc((size + 2) * sizeof(char));

30 if(PassWord == NULL) {
puts("\nOut of Memory\n");
exit(l);

}

35 strcpy(PassWord, passwordarg);

if(len !=size) {
'(PassWord + len) = 'passwordarg;
'(PassWord + size) = '\0';

40 }

PassWordLen = size;

DLMAIN Doc 123386.1

31
5,600,726

32

31

5 Here, the second password provided by the user is used as a tool to decide
which rule to use.

The ASCII character set is implicitly divided into blocks, each the size in
characters as the number of rules available. Then the relative position of each

10 password2 character within its block is found. That position is one of the
numbers 0 to NUM RULES -1. This points, then, to a rule in the rule-base.

This is a good way to do it since, at any time, the number or order of rules in
the rule-base can be changed. If the order or number of rules is changed, then

15 this code does not have to be changed.
*/

void SetEncryptionMethod(char 'method)
{

20 unsigned int len, val, x;
int 'eptr;

len = strlen(method) + 1;

25 EncryptionMethod = (int *)malloc(len * sizeof(int));

for(eptr = EncryptionMethod; 'method ! = '\0'; method++,
eptr+ +) {

30 val = ('method / NUM_RULES) * NUM_RULES;

for (x = 0; x <NUM_RULES; x+ +)
if ((val + x) = = 'method)

'eptr = x;
35 }

'eptr = -1;

40

RulelD = 'EncryptionMethod;

DLMA1N Doc: 123386.1

33
5,600,726

34

32

r -——

This code takes the optional command line switch and parses it for inversion
frequency. The program then inverts each Xth matrix before encrypting it.

5
Consider an example. Suppose the user enters the following command line:

BME I filename ABC 12345 /i=3

10 The first password 'ABC' is lengthened to 'ABCA' so that it will contain an
even number of characters. The letters are then converted to the ASCII
decimal equivalents (65, 66, 67, 65) and used, alternately, as X and Y matrix
axis values. The second password '12345', by application, translates to rule
pointers 0, 1, 2, 3, and 4, respectively. The '/i=3' sets the inversion frequency

15 to 3, telling the program to invert every third matrix prior to its alteration by
its assigned rule.

The following table describes each matrix size, which rule is use, and whether
or not the matrix is inverted.

20

25

30

Matrix Size in Bits Rule Used Inverted? # Bytes

X Y Size 0 to Total Y o r N Accum.

65 66 4290 0 N 536 1/4

67 65 4355 1 N 1080 5/8

65 66 4290 2 Y 1616 7/8

67 65 4355 3 N 2161 1/4

65 66 4290 4 N 2697 1/2

67 65 4355 0 Y 3241 7/8

65 66 4290 1 N 3778 1/8

67 65 4355 2 N 4322 1/2

65 66 4290 3 Y 4858 3/4

67 65 4355 4 N 5403 1/8

DLMAIN Doc: 123386.1

5,600,726
35 36

33

...and so on to 30 different entries before it begins to repeat.

If the command line is symbolized as:

5 BME mode filename PI P2 /i=F,

the way to calculate the number of table entries is:

Chars in PI (rounded up to the nearest even number)
10 Divided by 2

Multiplied by # Chars in P2
Multiplied by F(if defined)

15

35

Therefore, this example is:

PI = 'ABC', P2 = '12345', F=3

The number of characters in PI = 3, rounded up to the nearest even number
equals 4. The number of characters in P2 = 5. Therefore, the number of

20 table entries for this example is:

(4/2) *5*3 = 2*5*3 = 30
.7

25 void SetInversionFreq(char *freq)
{

freq + =3;

InversionFreq = atol(freq);
30 if (InversionFreq < 1L)

InversionFreq = 0L;
else

Inversion = ON;

This function writes out all remaining data, closes files, deletes the original
40 file, renames the encrypted temporary file to the name of the original file, and

then cleans up all allocated memory.
V

DLMAIN Doc: 123386.1

5,600,726
37 38

34

void CleanUp(char *fname)
{

FlushOutBuffer();

fclose(InFile);
fclose(OutFile);

unlink(fname);
rename(OutFiIeName, fname);

DisplayProgress();

£ree(Matrix.matrix);
free(InBuffer);
free(OutBuffer);
free(PassWord);
free(EncryptionMethod);

/* -

Provide instructions if procedures not correctly followed.

void NoArguments(void)
{

puts("\nBME mode infile password method {/i=n}\n");
puts ("Modes are: IN | OUT");
exit(l);

}

/ '

Other Functions
V

void Display Title(void)
{

puts("\nBME - Binary Matrix Encryption");
puts("Version 1.0 - Release 09.94");

DLMAIN Doc: 123386.1

39
5,600,726

40

35

puts("(c) 1994: Michael D. Harold & Joseph M. Morgan\n");
}

void Display Progress(void)
{

printf(*\rProcessing: (%6.2f%c)", ((float)TotalBytesRead /
(float)FileSize * 100., 37);

}

/*

The following functions handle the matrix.

/*

This function manages the rotation through password 1 using adjacent
characters to set the matrix size. Note that this implementation forces a matrix
axis to be at least 2.

* /

void DefineMatrix(void)
{

static unsigned int PassWordPtr = 0;
static char MatrixDefined = NO;

if (MatrixDefined = = NO)
AllocateLargestMatrix();

Matrix.x = (long)* (Password + PassWordPtr ++);
Matrix.y = (long)*(PassWord + PassWordPtr ++);

if (PassWordPtr = = PassWordLen)
PassWordPtr = 0;

if (Matrix.x <2)
Matrix.x = 2;

if (Matrix.y <2)

DLMAIN Doc: 123384.1

5,600,726
41 42

36

Matrix.y = 2;

Maxtrix.size = Matrix.x * Matrix.y;

5 MatrixDefined = YES;
}

10

30

/*_

Instead of allocating and freeing memory as the matrices shift their size, the
largest matrix is allocated and that space used.

.7

15 void AllocateLargestMatrix(void)
{

unsigned size, MaxSize = 0, x, y;
char *ptr = PassWord;

20 while (*ptr ! = '\0') {
x = *ptr+ + ;
y = *ptr+ + ;

size = x * y;
25 if (size > MaxSize)

MaxSize = size;
}
Matrix.matrix = (char *)malloc((MaxSize +1) * sizeof(char));

if (Matrix.matrix = = (char *)NULL) {
puts("\nOut of Memory\n");
exit(l);

}
35

40 This function manages the conversion from byte-based reading to bit-based
reading. Note that a matrix is simply an n-Bit word. So, an n-Bit word of

DLMAIN Doc: 123386.1

43
5,600,726

44

37

matrix size is filled with bits from the input. To optimize the process (and it
could be better), bits are added to the matrix 8-at-a-time.

V

5 int FillMatrix (void)
{

int c;

ClearMatrix();
10

if (strlen(LeftOver)) {
strcpy(Matrix.matrix, Leftover);
Leftover [0] = '\0';

}
15

if (strlen(Matrix.matrix) = = Matrix.size)
return 1;

while ((c = GetNextByte()) !=EOF) {
20

TotalBytesRead + +;

if (AddByteToMatrix((unsigned char)c) = = FULL) break;
}

25
if (c = = EOF && !(feof(InFile))) {

puts("\nUnexpected EOF");
exit(l);

}
30

return c;
}

35 /*

To keep things neat, even though unnecessary, the following program sets the
matrix to NULL.

__ '/
40

void ClearMatrix(void)
{

DLMAIN Doc: 123386.1

45
5,600,726

46

38

40

unsigned long x;

for (x = 0; x < = Matrix.size; x+ +)
'(Matrix.matrix + x) = '\0';

/*

This function adds bits to the matrix, up to 8-at-a-time. If it is unable to add
all 8 bits to the matrix, it copies the remaining bits to a holding bin called
Leftover. Note its use above in FillMatrix.

.7

char AddByteToMatrix(unsigned char byte)
{

char bytestr[9];
int nbits;

chartobinstr(byte, bytestr);

nbits = (Matrix.size - strlen(Matrix.matrix));
nbits = (nbits > 8) ? 8 : nbits;

strncat(Matrix.matrix, bytestr, nbits);

if (nbits < 8)
strcpy(LeftOver, (bytestr + nbits));

return (strlen(Matrix.matrix) = = Matrix.size) ? FULL :
NOTFULL;

35 /*_

This next three functions control the physical input and output of data via two
16K buffers.

* /

int GetNextByte(void)
}

DLMAIN Doc: 123386.1

47
5,600,726

48

39

static int BytePtr = 0;
static int BytesInBuffer = 0;

if (BytePtr = = BytesInBuffer) {
BytesInBuffer = fread(InBuffer, sizeof(unsigned char),
MAXBUFFER - 1, InFile);

if (BytesInBuffer = = 0)
return EOF;

BytePtr = 0;
}

return '(InBuffer + BytePtr++);
}

void PutNextByte(int c)
{

'(Out Buffer + OutByteCount) = c;

if (+ + OutByteCount = = MAX BUFFER - 1) {
fwrite(OutBuffer,sizeof(unsigned char), MAX_BUFFER - 1,
OutFile);
OutByteCount = 0;

}
}

void FlushOutBuffer(void)
{

fwrite(OutBuffer, sizeof(unsigned char), OutByteCount, OutFile);
}

/' _____

This function handles the output of single bits. It accumulates bits, for
example only, into an 8-bit buffer to translate back into bytes to accommodate
the architecture. Once 8 bits are accumulated, it is converted into a real byte
and sent to the output buffer.

V

void WriteBit(char bit)

DLMAIN Doc: 123386.1

5,600,726
49 50

40

10 }

20

30

{
static int BitCanPtr = 0;
BitCan[BitCanPtr++] = bit;

if (BitCanPtr = = 8) {
PutNextByte(GetBitStrVal(BitCan));
BitCanPtr = 0;
ClearBitCan();

}

void ClearBitCan(void)
{

int x;

for (x = 0; x < 8; x+ +)
BitCan[x] = '\0';

}

/'

The following function receives a bit stream and converts it into an actual
unsigned character value.

unsigned char GetBitStrVal(char *bitstr)
{

unsigned char value, x;

for (x = 128, value =0; 'bitstr ! = '\0'; bitstr + +, x 1 = 2)
if ('bitstr = = '1')

value + = x;

35 return value;

DOMAIN Doc: 123386.1

51
5,600,726

52

41

/ '

The following function determines when it is time to invert the matrix.
Returns YES or NO.

5 '/

int TimeToInvert(void)

if (Inversion = = OFF || MatrixCount < InversionFreq ||
10 [InversionFreq)

return NO;

15

}

20 /*

25

if ([(MatrixCount % InversionFreq))
return YES;

return NO;

Following are various rules by which to encrypt the matrix. Envision the X
axis as vertical and the Y axis as horizontal.

V

/\

30 The following rule writes bits beginning from the bottom right corner of the
matrix, moving left through that row, then moving up one row to the end and
continuing in that manner until the matrix is completely written out.

V

35 void BottomLeftUp(void)
{

register long x, y;
unsigned int len;

40 len = strlen(Matrix.matrix);

for (x = Matrix.x - 1; x> = 0; x~)

DLMA1N Doc: 123386.1

53
5,600,726

54

42

25

for (y = Matrix.y - 1; y> =0; y~)
SendBitAtXY(x, y, len);

/*_

The following rule starts at the bottom left corner, moves right through the
row, moves up one row to the beginning and continues until the matrix is

10 written out.
V

void BottomRightUp(void)
{

15 register long x, y;
unsigned int len;

len = strlen(Matrix.matrix);

20 for (x = Matrixjf - 1; x> = 0; x—)
for (y = 0; y < Matrix.y; y + +)

SendBitAtXY(x, y, len);

/'

The next rule starts at the bottom right corner, moves up through the column,
then moves left one column at the bottom, and continues.

30 7

void BottomUpLeft(void)
{

register long x, y;
35 unsigned int len;

if (Mode == OUT)
SwapScale();

40 len = strlen(Matrix.matrix);

for (y = Matrix.y - 1; y > =0L; y~)

DLMAIN Doc: 123386.1

55
5,600,726

56

43

35

for (x = Matrix jc - 1; x > =0L; x—)
SendBitAtXY(x, y, len);

/*.

This rule starts at the bottom left corner, moves up through the column, moves
right to the bottom of the next column, and continues.

10 '/

void BottomUpRight(void)
{

register long x, y;
15 unsigned int len;

if (Mode = = OUT) {
strrev(Matrix.matrix);
SwapScale();

20 }

len = strlen(Matrix.matrix);

for (y = OL; y < Matrix.y; y + +)
25 for (x = Matrix.x - 1; x > = 0; x-)

SendBitAtXY(x, y, len);

30 /\

This rule starts at the top right corner, moves down through the column,
moves left to the bottom of the next column, and continues.

7

void TopDownLeft(void)
{

register long x, y;
40 unsigned int len;

if (Mode = = OUT) {

DLMAIN Doc: 123386.1

5,600,726
57 58

44

strrev(Matrix.matrix);
SwapScale();

}

len = strlen(Matrix.matrix);

for (y = Matrix.y - 1; y > =0; y—)
for (x = 0L; x < Matrix.x; x + +)

SendBitAtXY(x, y, len);
10 }

/*.

15 The next rule starts at the top left corner, moves down through the column,
then right to the top of the next column, and continues in like manner.

20 void TopDownRight(void)
{

register long x, y;
unsigned int len;

25 if (Mode = = OUT) {
SwapScale();

}

30

35
}

/*

len = strlen(Matrix.matrix);

for (y = 0L; y < Matrix.y; y + +)
for (x = 0L; x < Matrixjc; x+ +)

SendBitAtXY(x, y, len);

40 The next rule starts at the top right corner, moves left through the row, down
and to the end of the next row, and continues in like manner.

7

DLMA1N Doc 123386.1

5,600,726
59 60

45

void TopLeftDown(void)
{

register long x, y;
unsigned int len;

5
len = strlen(Matrix.matrix);

for (x = 0; x < Matrix.x; x++)
for (y = Matrix.y-1; y > =0; y--)

10 SendBitAtXY(x, y, len);
}

/'.
15

This rule starts at the top left corner, moves right through the row, down and
to the beginning of the next row, and so on. Since this is exactly the way the
matrix is constructed, it doesn't actually perform any encryption. It is put here
to complete the rule set, but this implementation does not use it.

20 7

void TopRightDown(void)
{

register long x, y;
25 unsigned int len;

len = strlen(Matrix.matrix);

for (x = 0; x < Matrix.x; x+ +)
30 for (y = 0; y < Matrix.y; y + +)

SendBitAtXY(x, y, len);

35 /*

These are functions common to the matrix conversion rules.
V

40

DLMAIN Doc: 123386.1

5,600,726
61 62

46

/' —

This function is required to decrypt certain rules. The matrix axes have to be
swapped to properly recover the data.

5 */

void SwapScale(void)
{

10 unsigned long n;

n = Matrixjc;
Matrix j(= Matrix.y;
Matrix.y = n;

15 }

r
20 This function inverts the matrix, turning every '1' bit to a *0', and every '0'

bit to a T'.
V

void InvertMatrix(void)
25 {

char *ptr;

for (ptr = Matrix.matrix; *ptr !='\0'; ptr+ +)
*ptr = (*ptr= =T')?'0':'T;

30 }

35 This function manages the rotation through the rule pointers defined by
password2.

V

40 void SetNextMethod(void)
{

static int MethodPtr = 1;

DLMAIN Doc: 123386.1

63
5,600,726

64

47

20

25

RulelD = *(EncryptionMethod + Method Ptr++)

if ('(EncryptionMethod + MethodPtr) = = -1)
MethodPtr = 0;

}

/•

10 This function locates the bit in the matrix at x, y and writes it to the output
stream.

*/

15 void SendBitAtXY(long x, long y, unsigned int len)
{

unsigned long offset;

offset = (x * Matrix.y) + y;

if (offset < (long)len)
WriteBit(*(Matrix.matrix + offset));

}

r
This function defines the scale by the number of bits in the n-bit data type.
Very few files will divide up evenly into the shifting matrix series. Therefore,

30 there will usually be an incomplete matrix at the end. These rules won't
properly encrypt/decrypt a partial matrix. Therefore, this function resets the
matrix scale to an optimal axis based upon the number of remaining bits.
However, if the length of the remaining n-bit word is prime, the last bit is held
and removed from the matrix, and then the optimal axis is calculated. Once

35 the new matrix is encrypted, if there is a remaining bit, it gets written out.
* /

void GetOptimalScale(void)
{

40 unsigned ResultNumber;
unsigned HighLimit;
unsigned x;

DLMAIN Doc: 123386.1

65
5,600,726

66

48

HighLimit = Matrix.size;

Matrix jc = Matrix.y =0;

5 for (x = 2; x < HighLimit; x+ +) {

if (Matrix.size % x)
continue;

10 ResultNumber = HighLimit = Matrix.size / x;

Matrix.x = x;
Matrix.y = ResultNumber;

}
15

Matrix.size = Matrixj(* Matrix.y;
}

/* End of program code */
20

FIG. 4 illustrates, by example, the elemental steps of data compression.

Compression is begun by the initiation process step 80 which includes such

items as the declaration and initialization of variables, the allocation of

25 memory, and parsing user input. The next step 82 involves pointing to the

input data, output data, and other support data needed by the compression

method(s) at step 86.

From there, the process begins by reading in an implementation of a

defined amount of data. It is specific to this invention that the data is read as

30 one or more n-bit data types at step 84 consistent and parallel with any given

implementation. The data is then processed by the compression method(s) at

step 86. The resulting data, now in compressed form, is written to output data

at step 88.

It is then determined at step 90 whether or not compression has been

35 completed. If not, it is determined if the end of the input data has been

DLMAIN Doc 123386.1

5,61
67

FIG. 4 illustrates, by example, the elemental steps of data
compression. Compression is begun by the initiation process
step 80 which includes such items as the declaration and
initialization of variables, the allocation of memory, and
parsing user input. The next step 82 involves pointing to the
input data, output data, and other support data needed by the;
compression method(s) at step 86.

From there, the process begins by reading in an imple­
mentation of a defined amount of data. It is specific to this
invention that the data is read as one or more n-bit data types
at step 84 consistent and parallel with any given implemen­
tation. The data is then processed by the compression
method(s) at step 86. The resulting data, now in compressed
form, is written to output data at step 88.

It is then determined at step 90 whether or not compres­
sion has been completed. If not, it is determined if the end
of the input data has been reached at step 92. If not, the
process forks backs to the read process at step 84, otherwise

10,726
68

pressed file. Because loss-less data compression methods
rely upon the uneven distribution of symbols or symbol
patterns, the even frequency distribution makes further com-

s pression undesirable or impossible.

With this invention, the concept of Reiterative n-Bit
Compression (RNC) uses variable length n-bit data types to
explicitly or implicitly redistribute the frequency with which
symbols occur within the data. After one iteration, the

10 frequency distribution of the symbol set representing the
data may be modified explicitly by changing the size in bits
of the input and/or output data type. This explicit frequency
redistribution of the symbol set allows the data to be

15 compressed reiteratively.
The following table illustrates the differences in the

resulting distribution of some 8-bit characters following
compression with different sized n-bit data types.

Characters Space A E I O U

Data Type

Size in Bits

Original Distribution Count of Each of the Above Characters
Data Type

Size in Bits
4376 498 749 836 352 283

Data Type

Size in Bits
Distribution Count Following Compression

4 143 114 114 112 46 33

6 217 122 117 138 59 48

8 139 42 59 42 25 29

10 260 107 120 129 40 42

12 161 64 64 61 13 6

it forks to the application of the compression method(s) at
step 86.

If it has been determined by the implementation that
compression has been completed at step 90, then the nec- 40

essary data is released at step 94, and the process is
completed at step 96.

For example, and not by way of limitation, the following
description illustrates one method of implementing an n-bit
virtual software machine capable of performing reiterative 45

loss-less data compression.
Most methods of loss-less data compression are based on

a method in which repetitive patterns or symbols within a
data file are first identified and then replaced with symbols 5Q

which occupy, on average, less space in memory than the
original symbols. Examples of loss-less data compression
techniques include Huffman Coding, Arithmetic Coding,
Dictionary-Based Compression and Lempel-Ziv Coding.
Each of these methods relies on the substitution of a smaller 55

binary string for a larger binary string based on one or more
repetitive patterns of symbols or symbol patterns, or the
frequency of bytes or patterns within the uncompressed data.
The desired result of this process is a file which is smaller
than the original. 60

In order for compression to occur, an uneven frequency
distribution of symbols or symbol patterns must be present
in the uncompressed file. The greater the unevenness of the *
frequencies of the symbols or symbol patterns in the original
data, the greater the compression. 55

Currently, all known methods of loss-less data compres­
sion result in an even distribution of symbols in the com-

The first row of the above table lists the characters being
evaluated for their frequency within the original file. The
third row shows each character's distribution in the original
input file prior to its compression. Rows 5 through list each
character's distribution following compression of the origi­
nal file using input data types of varying bit lengths. The first
column lists the length, in bits, of the input n-bit data type.

Referring to the table, the "space" character appears 4376
times in the original file. After compressing the file using a
4-bit data type, the "space" appears 143 times. In contrast,
after the file is compressed using a 10-bit data type, the
"space" appears 260 times. When the file is compressed
using a 6-bit data type, the character 'U' appears 48 times,
compared with only 6 times following compression using a
12-bit data type.

By forcing the redistribution of bits, the compression ratio
can be forced to vary, thereby permitting optimization of the
next compression pass. The following table shows an
example of compression results of data. The first column
lists the size, in bytes, of the file before a given compression
pass. The second column lists the size of the n-bit data type.
The third column lists the number of the actual compression
pass. The fourth column lists the size of the file, in bytes,
following the compression pass.

Some compression passes have been attempted more than
once with varying sized input data types. This allows for
selection of the best compression ratio for a given n-bit data
type. Compression attempts that do not result in compres­
sion are italicized. The compression pass that achieved the
most compression is boldfaced.

5,600,726
69

Size Nbits Pass Comp.
Size

18119 10 1 14174

14174 10 2 14157

14157 10 3 14156

9 3 14136

8 3 13900

7 3 14091

6 3 14059

5 3 14558

13900 8 4 13832

7 4 13900

6 4 13907

9 4 13897

10 4 13894

11 4 13911

It should also be noted that frequency redistribution can
be achieved by implementing such data conversion algo-
rithms as alternating block-based inversion, bit-shifting, or
exclusive OR operations tailored for the target, or a multiple
of the target data type.

As another example, and not by way of limitation, the
following description illustrates one method of implement- 35

ing a virtual machine or computer capable of performing
rule-based n-bit arbitrary precision arithmetic:

Rule-based n-Bit Arithmetic (RNA) performs binary
arithmetic operations on fixed or floating point data of
arbitrary precision where such precision is limited only by 40
the real or virtual address space of the computer. Arithmetic
operations include, but are not limited to, binary addition,
subtraction, multiplication, and division.

As part of its method, RNA contains two new data types
whose notations are unique and are not described in any 45
previously existing data types or data notations. One of these
notations represents integer values. The other notation rep­
resents floating point values.

The majority of computers and computer languages now
conforms to the following internal representation of integer 50

values:
1. The left-most bit, the sign bit ("S"), is used to contain

the sign of the number, with the usual interpretation that
0 means positive or plus and 1 means negative or
minus. 55

2. The "decimal" or radix point is assumed to be affixed
at the left or right end of the number.

3. The remaining bits represent the binary values ("B") of
the number. ^

A standard signed 16-bit value would be stored as fol­
lows:

B (15 bits)

70
With regard to floating point numbers, the following

specific notation endorsed by the IEEE (Institute of Electri­
cal and Electronic Engineers) is the standard:

1. The left-most bit is the sign bit ("S").
2. The next eight bits are the exponent ("E"). The expo­

nent is interpreted as an integer in excess-127 code.
Excess-127 code allows the exponent to represent
numbers from -127 through 128.

3. The remaining bits are the mantissa ("M"). The value
of the mantissa is normally defined as 1 plus the value
of "M" treated as a binary fraction with the radix at the
left end.

A standard signed, single precision floating point value
would be stored as follows:

S (1 bit)

This data type has an upper limit of 64 bits (double
precision) and 128 bits (quadruple precision).

The following data types represent RNA integer and
floating point values.

RNA integer values are represented as follows:
The left-most bit, the sign bit ("S"), is used to contain the

sign of the number with the interpretation that 0 means
positive and 1 means negative.

The first n-Bit value to the right of the sign bit identifies
the length in bits ("L") of the binary representation of
the number. The size and limit of this value is imple­
mentation specific.

The second n-Bit value to the right of the sign bit
represents the binary values ("B") of the number begin­
ning with the least significant digit (LSD) and extend­
ing to the most significant digit (MSD).

A signed n-Bit integer value would be stored as follows:

L (n bits) J (L bits)

For example, any binary integer value from 1 to 16,777,
216 significant digits in length could be stored with the
following n-Bit data type:

S (1 bit) L (24 bits) B (L bits)

RNA floating point values are represented as follows:
1. The left-most bit, the sign bit ("S"), is used to contain

the sign of the number with the interpretation that 0
means positive and 1 means negative.

2. The first n-Bit value to the right of the sign bit identifies
the length in bits ("L") of the binary representation of
the number. The size and limit of this value is imple­
mentation specific.

3. The second n-Bit value to the right of the sign bit
identifies the radix point of the number ("B"). The size
in bits of this field is identical to the size of the previous
n-Bit field, (L).

4. The third n-Bit value to the right of the sign bit
represents the binary values ("B") of the number begin­
ning with the least significant bit (LSB) and extending
to the most significant bit (MSB).

A signed n-Bit floating-point number would be stored as
follows:

5,600,726
71 72

S (1 bit) L (n bits) R (n bits) B (L bits)

For example, any binary floating-point value from 1 to 5
16,777,216 significant digits in length could be stored with
the following n-Bit data type:

S (1 bit) L (24 bits) R (24 bits) B (L bits)

Binary addition, subtraction, multiplication, and division
are accomplished with n-Bit data types using standard
methods. Addition may be performed using binary adders.
Subtraction may be performed by using "true complement"
notation and adding the minuend to the complemented
subtrahend. Multiplication is the result of repeated binary
addition. Division is the result of repeated binary subtrac­
tion.

To add the following two n-Bit floating-point numbers:

11.001 + 1.011011

11.001 =

O
 II L = 0101 R = 0010 B =11001

1.011011

s = o L = 0111 R = 0001 B = 1011011

11.001
+ 1.011011

(LSB) 100.100011 (MSB) =

S = 0 L= 1001 R-0011 B = 100100011

Negative numbers may be stored in complemented form
to facilitate the ease of subtraction. By using "true comple­
ment" notation (i.e., reversing the value of each binary digit
in the representation of the number), a binary adder may be 40
used to accomplish binary addition, subtraction, multiplica­
tion, and division. This means that RNA may be imple­
mented in microcode or at the level of hardware circuitry. At
this level, RNA may be implemented as a microprocessor
function or as a specific purpose hardware component of a 45
general purpose computer.

FIG. 5 describes an example of an Arithmetic Logic Unit
(ALU) which implements Rule-based n-Bit Arithmetic
(RNA). One or more n-Bit values are retrieved from
memory 100 by the command processor 110. The command 50
processor 110 interprets the values as data or instructions,
depending on their locations in memory 100, and submits
them to the rule-base interface 120.

If the instruction is a logic instruction, the data and the
instruction are submitted to the logic rule-base 130. Logic 55
rules include, but are not limited to, AND, OR, NOT,
NAND, and NOR logic functions. Once the appropriate rule
has been applied to the data, the result is returned to the
rule-base interface 120. Additional logic and/or arithmetic
rules may be applied to the data before it is returned to 60
memory 100.

If the instruction is an arithmetic instruction, the data and
instruction are submitted by the rule-base interface 120 to
the arithmetic rule-base 140. Arithmetic rules include, but
are not limited to ADDITION, SUBTRACTION, MULTl- 65
PLICATION, and DIVISION. Once the arithmetic rule 140
has been applied to the data, the result is returned to the

rule-base interface 120. Additional arithmetic and/or logic
rules may be applied to the data before it is returned to
memory 100.

The advantages of RNA are:
1. It provides greater precision than any other arbitrary

precision arithmetic method.
2. The size of the numbers used in RNA is limited only by

the real or virtual address space of the computer.
3. RNA may be implemented in hardware of software.
4. RNA is processor independent.
5. RNA provides faster calculations of very large arbitrary

precision numbers.
A specific purpose RULE-BASED n-BIT VIRTUAL

SOFTWARE MACHINE, as uniquely described by this
invention, is any specific purpose virtual software machine
which uses a rule-base as an instruction set to perform binary
string operations on n-bit data types.

The COMMAND PROCESSOR is a machine that uses a
program which receives n-bit data types and command
language instructions as input and performs operations upon
the input using one or more rules. Each mle is a type of
processor instruction which performs a binary string opera­
tion upon one or more n-bit data types. After the input data
has been processed, the command processor outputs data in
the form of one or more n-bit data types.

An n-bit data type is defined as a data type consisting of
n bits (or binary digits) where n is any number greater than
zero. There is no inherent upper limit on n-bit data types.
Variable length n-bit data types are used as standard input
and output and are maintained and managed by the inven­
tion.

The RULE-BASE INTERFACE is defined as a method of
transferring data between the command processor and the
rule-base. The data in the form of one or more n-bit data
types is passed to the rule-base interface by the command
processor. The rule-base interface, in turn, identifies the rule
or rules that are to be used in processing the data. The data
is dispatched as one or more arguments to the selected rule
within the rale-base and the rale is applied. After the data has
been modified in accordance with the specified rule or rules,
the modified data is returned to the rale-base interface. The
rale-base interface may iteratively submit the data to one or
more rales. Once the conditions for the modification of the
data by the rale-base have been satisfied, the data is returned
as one or more n-bit data types to the command processor.
The command processor then outputs the data.

The RULE-BASE INTERFACE manages access to the
rales within the rale-base using any access method includ­
ing, but not limited to, linked lists, tree structures, relational
database tables, and hyper-link stacks.

The RULE-BASE is a collection or set of rales. Each rule
applies a binary string operation to the input data. A
BINARY STRING OPERATION is any operation which
performs bit level operations on one or more binary strings
representing n-bit data types. A binary string operation may
emulate processor instructions such as binary ANDs, ORs,
XORs, and COMPLEMENT operations. Combinations of
these operations may emulate processor instruction sets with
the additional advantage of providing virtual n-bit data and
instruction registers within the virtual machine in which to
perform these operations. Binary string operations may also
emulate more complex operations such as addition, subtrac­
tion, multiplication, division, vector, and matrix operations.
These operations are implemented in such a way that there
is no inherent upper limit on the length of the n-bit data types
used as input or output.

5,600/
73

The types of data structures which may be used to
implement the rule-base as it is defined in the invention
include, but are not limited to, the following: relational
database tables, C or C++ language header files, any gen­
eration computer language function(s) or subroutine(s), 5
object class libraries, and EPROM assembly language sub­
routines, and microcode instruction sets.

Although the invention and several of its preferred
embodiments have been described and illustrated in detail,
the same is by way of example only and should not be taken 10
by way of limitation. The spirit and scope of the present
invention are limited only to the terms of the appended
claims.

We claim:
1. A method for encrypting information data from a data 15

source comprising the steps of:
coupling at least one n-bit data suing of input data as

variable length n-bit data types containing bits repre­
senting said information data and including control bits
to a command processor; 20

storing a plurality of encryption rules in a rule-base
memory for processing the n-bit data string;

coupling a rule-base interface between said command
processor and said rule-base memory for identifying 25

specific encryption rules stored in said rule-base
memory according to said control bits in said n-bit
input data string received from said command proces­
sor;

modifying the n-bit data string in the rule-base in accor- 30

dance with the identified encryption rules to encrypt
said information data bits; and

transferring said encrypted data to said command proces­
sor for output as variable length n-bit data types.

2. A method as in claim 1 further including the steps of: 35

identifying said data source with said control bits in said
n-bit data string; and

including bits in said control bits that represent at least
one argument to be used when accessing said rule-base. ^

3. A method as in claim 1 further comprising the steps of:
storing said rules in a memory in said rule-base; and
defining said rules as binary string operations.
4. A method as in claim 2 further comprising the steps of:
coupling one or more of said arguments to said identified 45

rule within said rule-base; and

74
applying the identified rule to the n-bit information data to

modify said information data and to perform said
encryption.

5. A method as in claim 4 further including the steps of:
appending additional arguments, as needed, to said modi­

fied information according to said identified rule in said
rule-base; and

returning the modified information data to said rule-base
interface along with said needed arguments.

6. A method as in claim 5 further including the steps of:
iteratively submitting said modified data to at least

another one of said rules stored in said rule-base in
accordance with said arguments appended by said
identified rule for further modification until said data
modification satisfies all of said arguments; and

returning said satisfied modification data to said command
processor as one or more n-bit data strings that are not
required to correspond to the n-bit size and number of
n-bit input data strings coupled to said command pro­
cessor from said data source.

7. A method as in claim 5 further including the step of
encrypting said information data to prevent the determina­
tion of the original position of any bit in the bit stream of the
input information data based upon the position of any bit in
the encrypted bit stream.

8. A method as in claim 7 further including the step of
encrypting and decrypting said information data with said
rule-base such that neither encryption nor decryption is
dependent upon an explicit encryption key, a specific
encode/decode rule, or a specified data type.

9. A method as in claim 5 further comprising the step of
user-defining the implementation of said encryption/decryp­
tion since no single algorithm or rule must be defined.

10. A method as in claim 1 further including the steps of:
providing multiple encryption keys to a single encrypted

message such that parts of an encrypted message are
accessible only to some users and not others; and

distributing the encryption/decryption of a message
across multiple machines for multiple users.

11. A method as in claim 10 further including the step of
defining any encryption key explicitly.

12. A method as in claim 10 further including the step of
defining any encryption key implicitly.

* * * * *

