







BRANCH		WEIGHT FORMULA	R = -10 S = -10	R = +10 S = -10	R = +10 S = +10
1	WAIT	10 - SEEROB	20	0	0
2	TRY	60 + 5 SEEROB	10	110	110
3	ADV	110 + SEEROB + 10 SEESHR	0	20	220

Cunningham & Walsh Inc. Public Relations Department . 260 Madison Ave., New York 16. MUrray Hill 3-4900

From: Joe Quinn

Released for: American Machine & Foundry Company 261 Madison Avenue New York 16, N. Y.

FOR IMMEDIATE RELEASE

CAN MACHINES REALLY THINK? WHAT DO SCIENTISTS WHO MAKE THE MACHINES THINK ABOUT THIS?

"The Thinking Machine", an intriguing and informative hour of television, will be seen from 10 to 11 P.M., Wednesday, October 26, over the CBS Television network.

It will be presented by American Machine & Foundry Company.

"The Thinking Machine" will delve into the workings of man's brain. It will show how man thinks and illustrate what machines do that looks like "thinking".

The show was produced by CBS News in association with the Massachusetts Institute of Technology, which soon will mark its hundredth anniversary.

MIT scientists who will appear in "The Thinking Machine" are agreed that there is "no black magic" in computers that "think." But they split into divergent camps on the question:

"Can Machines Really Think?"

Dr. Claude Shannon, Donner Professor of Science at MIT and a world authority on information theory, opens "The Thinking Machine" by expressing Page 2 - Scientists

confident expectation that "within a matter of ten or 15 years something will emerge from the laboratory which is not too far from the robot of science fiction fame."

Then Dr. Jerome B. Wiesner, director of the Research Laboratory of Electronics at MIT, spends the better part of an hour illustrating to David Wayne, Broadway and Hollywood star, the things machines can do that look like "thinking."

Throughout the program, Wayne is impressed and keeps pressing Dr. Wiesner for an answer: "Do Machines really think?"

Dr. Wiesner leaves part of the answer to his colleagues.

Dr. Patrick Wall, associate professor of biology and executive officer of the Department of Biology at MIT, says flatly:

"I'm not at all convinced yet that machines can think. I spend my life trying to analyze real brains and, of course, I'm very impressed with people who are building artificial brains...But can these machines produce anything new?

"I don't yet see in these machines any possibility of them stepping over man-made rules which have been built into them. I believe in fact that before we begin to ask this question -- can machines think? -- we have to find out a great deal more about what we mean by our own thinking."

On the other hand, Professor Oliver Selfridge of the Lincoln Laboratory at MIT, says emphatically during "The Thinking Machine":

"I am convinced that machines can and will think. I'm not worried about the behavior of machines. I don't believe that we'll ever find it hard to distinguish between a man and a robot. And I'm not worried about my daughter marrying a computer....

(more)

"Now machines can't write good poetry or produce deathless music -yet -- but I don't see any stumbling block in the line of progress which will enable them to in the long run. I'm convinced that machines can and will think in our lifetime."

Toward the close of the program, Dr. Shannon sums up the remarkable accomplishments of machines that translate from one language to another to a certain extent, machines that prove mathematical theorems and even play checkers, in some cases, better than the men who designed the machines.

"These, however, were projects aimed at specific mental tasks," Dr. Shannon says. "What we would like to see in the future is a more general computing system capable of learning by experience and forming inductive and deductive thoughts. This would probably consist in three main parts:

"1. Sense organs akin to the human eye or ear whereby the machine can take cognizance of events in its environment.

"2. A large, general-purpose flexible computer programmed to learn from experience, to form concepts and capable of doing logic.

"3. Output devices in the nature of the human hand, capable of allowing the machine to make use of the thoughts that it had, of the cognizant processes in order to actually affect the environment.

"Work is going on in all of these fronts simultaneously and rapid progress is being made. I confidently expect that within a matter of 10 or 15 years, something will emerge from the laboratory which is not too far short from the robot of science fiction fame. In any case, this is certainly one of the most exciting and challenging branches of modern science."

"The Thinking Machine" promises to be one of the most intriguing and informative shows of the television season.

#

Cunningham & Walsh Inc.

From: Joe Quinn

Released for: American Machine & Foundry Company 261 Madison Avenue New York 16, N. Y.

FOR IMMEDIATE RELEASE

TX-O DIGITAL COMPUTER DEVELOPED AT MIT WRITES WESTERN DRAMA TO BE SEEN ON CES-TV FROM 10 TO 11 P.M. (EDT) WEDNESDAY, OCT. 26

How does a computer write a Western drama for television?

The answer will be seen in an intriguing and informative hour of television from 10 to 11 P.M. (EDT) Wednesday, October 26, on the CBS TV Network. It will be presented by American Machine & Foundry Company.

But in the meantime, Douglas T. Ross, computer scientist at the Massachusetts Institute of Technology, gives us an insight into the creative life of a computer-playwright.

Ross and several MIT colleagues "coached" the computer to write a TV drama for "The Thinking Machine." It obliged by writing not one, but two Westerns.

And in the doing, the computer -- MIT's TX-O digital Computer -- injected a note of originality. In the first computer-written Western, the robber dies in accepted Western tradition.

But in another version, the computer permits the robber to kill the sheriff -- hardly the triumph of justice, but it is a new twist to an old tale.

Ross, 30-year-old head of the Computer Applications Group in the Electronics Systems Laboratory at MIT, said the computer, like its human counterpart, builds a Western drama according to a certain set of rules -- thus providing a demonstration of what scientists call artificial intelligence.

"But it is not a demonstration that authors are being pushed into oblivion," Ross said. "The chances of ever creating an electronic Euripedes or a transistorized Tolstoy are infinitely negligible.

"But interestingly enough, many of the new techniques we developed in the program will prove very useful in more serious programming problems."

Ross said the MIT scientists designed a program for the computer's debut in playwriting after CBS producer-author Tom Wolf inquired if the computer could write a Western.

Ross' immediate answer was "yes." He said there were three principal and serious problems encountered in what he termed an "interesting study".

"We wanted to demonstrate in a simple way that, first, intelligent behavior is rule-obeying behavior," Ross said. "If appropriate general rules are not obeyed, unintelligent behavior will result.

"Secondly, we wanted to show that a computer can be made to perform supposedly creative tasks.

"And thirdly, we wanted to emphasize that there is no black magic about computers. Given a problem that a layman can follow, he can get a reasonable understanding of computer programming."

To achieve these objectives, the computer's "coaches" had to consider every basic aspect of the problem and/or plot.

The scientists gave the computer a group of things, telling it what properties they had, and gave the computer suggested rules for ways in which they could be put together. This essentially is what a human author does, Ross said.

(more)

The scientists also gave the computer's "play" a beginning (the robber enters and puts down the money) and an ending (the survivor, if any, walks out with the money and closes the door). The survivor might be either the sheriff or the robber.

Ross emphasized that the computer had to be told <u>how</u> to be intelligent. He said "we could have forced the computer to be intelligent by forcing the weight balance to yield particular choices."

"But we didn't want to," Ross said. "Everybody has the prerogative of not acting intelligently even when it knows better -- and we wanted the computer to have it, too.

"We also wanted to experiment with a situation that might lead the computer to break the rules of intelligent behavior, but break them in a natural way. This led to the introduction of the inebriation factor.

"Every time the sheriff or the robber takes a drink -- and we programmed opportunities for doing this -- the inebriation factor is increased, making intelligent actions a little <u>less</u> probable and unintelligent actions a little <u>more</u> probable."

After a few drinks, a man takes longer to do things. After the computer's robber has had several drinks, instead of aiming only once to fire, he often aims three times before firing, Ross said.

Ross said the probability of the robber's not completing an action also increased with the more he drank. He said that in experiments the MIT scientists several times send the robber off into an electronic stupor of muddled over-andover-again action.

The young MIT scientist said his group spent a month in planning and about two weeks in cleaning up the program before they began to get the results they wanted -- and which the viewer will see on his television screen October 26.

"Once everything was running smoothly," Ross said, "the computer produced a three or four-page Western in about two minutes. Moreover, it turned out dozens of plays, and although these varied, justice usually triumphed.

"This resulted because probability weights which specified the marksmanship of the robber and the sheriff were identical except for one thing -the inebriation factor of the robber.

"The wages of 'sin' were that the robber lost three-to-one to the sober sheriff."

The sheriff didn't imbibe until after the battle, Ross concluded.

#

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Electronic Systems Laboratory Department of Electrical Engineering Cambridge 39, Massachusetts

MEMORANDUM 8436-M-29

TO: D.T. Ross

FROM: H.R. Morse

SUBJECT: Preliminary Operating Notes for SAGA II

DATE: October 19, 1960

This memorandum presents, in condensed form, the features of the control and operating program for SAGA II, the TV script-writing program. The control routine permits modification, printing and punching of "switch" values; tracing the operation of SAGA at several levels of detail; and examination and modification of certain desired quantities, all under control of the on-line Flexowriter. No program details are given in this brief memorandum. A complete description of the design and programming of SAGA II will be issued later as a Technical Memorandum.

Starting Procedure:

Upon read-in, control is automatically transferred to the control routine.

Typing the character r followed by a carriage return ()) will reset and start SAGA.

The run number typed is the contents of the random number generator at the start of the play, and may be examined and modified by typing r=. Starting SAGA with the same switch settings, and the same number in the random number generator will reproduce a play.

The timing number initially controls the length of time until the sheriff arrives. If it is positive the sheriff will arrive immediately after the robber; the more negative the timing number, the longer until the sheriff arrives. This timing number may be examined and modified by typing t=, and is initially set to -1000.

Switches

A "switch" is a probability branching device which controls the sequencing of action in SAGA. The state of the action is represented by 16 "state variables" which are multiplied by weights (a-values) to determine the probability of taking any given branch of a switch. Considering switch n, the value for branch k is

 $P_{n,k} = a_{n,k,0} + \sum_{j=1}^{16} (a_{n,k,j}) \cdot (b_j)$ where the b's are the state

variables

The P's are scaled, by a simple procedure, to be fractions representing the probabilities for the respective branches.

Probabilities are calculated each time a switch is entered, since the state variable can change at any time, after which a random number is generated, and used to choose a branch. A list of state variables is given in Appendix 1.

A flow chart which explains the use of each switch can be found in the TX-0 computer room.

The "character" of the program is controlled by the switches, so by changing the a-values of a given switch, one may make the robber an excellent shot, or a lousy one; make the sheriff a fast actor and the robber a slow one; make the robber a good shot when drunk; or make the sheriff a brave man; to give a few examples. Examples of changing switches will be given later.

Switch Examination and Modification

- sN; selects switch N.
- <u>sNr</u> will reset switch N, and ask for the number of branches. Switch N may then be defined or redefined.
- <u>sNp</u> selects switch N and prints the a-values for each branch, with the exception of most zero a-values.

After a switch has been selected, an a-value may be examined by typing <u>aI,J=</u>, where I is the branch number, and J the number of the associated state variable. The a-value may then be modified by typing the new value followed by a carriage return (a), or left as is by just typing a carriage return. After modifying an a-value in a branch, other a-values in the same branch may be referred to by typing <u>aJ=</u> where J refers to the associated state variable. Switch numbers, branch numbers, and state variable numbers are in decimal, while the a-values are taken as octal, and should be typed as such. The value of A for any brancy may be full range

-2¹⁷ A₀ +2¹⁷,

while all other a-values are taken modulo 2³.

Error Indications Possible When Modifying A-values

nbrThere exists no such branchadoThe switch cannot accomodate another
a-value at present. Redefining switch
N by sNr will eliminate the problemnrmMeans the a-table is full. Uncorrectable.

If a modified a-table produces good plays, it may be punched out by typing <u>ap</u>, and read into SAGA when desired. Switch 42 has been reserved for identification purposes; $a_{1,0}$ containing the octal date, and $a_{2,0}$ containing the number of the a-table punched on that date (first, second, etc.).

An Example of Modifying A Switch

SWITCH 26 br1 a0 = 10 a12 = 30 br2 a0 = 60 a5 = 1 br3 a0 = 110 a1 = -10 a5 = 3

Switch 26 controls whether the sheriff hits (branch 1), nicks (branch 2) or misses (branch 3) the robber when he shoots.

So if the sheriff is not using his last bullet, sees the robber, and has not been nicked, then the probabilities are

p1 = 10	(hit)	
p2 = 60	(nick)	(1)
p3 = 10	(miss	

i.e. he is 6 times more likely to nick the robber then miss or hit him.

The sheriff could be made a good shot by setting $a_{1,0} = 60$ and $a_{2,0} = 10$. Then the probabilities for the above case become

p1	-	60	(hit)
p2	-	10	(nick)
p3	==	10	(miss)

-4-

Or he could be made a lousy shot by setting $a_{3,0} = 60$ and $a_{2,0} = 10$. Then we have

p1 = 10	(hit)
p2 = 10	(nick)
p3 = 60	(miss)

Also, it can easily be seen how changes in the state of the program would affect the probabilities on the branches, i.e. - if the sheriff were nicked (b5 = 10) then (1) would become

pl = 10	(hit)
p2 = 70	(nick)
p3 = 40	(miss)

The a-values may be minus, but if a final branch-probability is minus, then the probability is set to zero. Notice also that there is no state variable zero. A is used purely to balance the branch, and is treated as if⁰state variable zero were always 1.

Program Interruptions and Tracing

The remaining part of the control program will be mentioned only briefly here, as it was designed mainly for debugging purposes.

The program may be interrupted at any time by changing the position of TAC, which should be 0 upon read-in. SAGA will break at the next switch, and transfer to the control program. Any of the control operations may be performed, and the play continued by typing a period (.).

Tracing features:

- Typing <u>p</u> will cause each switch number to be printed as it is used, followed by the probabilities calculated for each branch, and the play continued.
 - <u>n</u> will cause just the switch numbers to be printed, and the play continued.
 - b will cause the program to wait for a command from the flexo at each switch, and may be used in conjunction with p and n.

- 1

e will cause p,b,n to be erased.

- . will always continue the interrupted play after a break.
- sNb may be preceeded by <u>p</u> or <u>n</u>, and followed by <u>b</u>, all having the same effect as above when switch N is used. As many as 8 switch break points may be active at once.
- sb erases all switch break points.

3

No.	Condition	Va	alue
1	shf sees rob	Yes +10	
2	rob sees shf	+10	-10
3	sheriff is coming	+10	0
4	rob is aiming	+10	0
5	sheriff nicked	+10	0
6	robber nicked	+10	0
7	sheriff hit	+10	0
8	robber hit	+10	0
9	inebriation factor		starts at zero, stepped by +10 for every drink from glass, +20 for every drink from bottle that rob takes.
10	sequence	•	Stepped in varying units of +10 if rob acting, by -10 if shf acting.
11	robber's last bullet	+10	0
12	sheriff's last bullet	+10	0
13	door open	+10	0
14	sheriff inside	+10	0
15	robber inside	+10	0
16	drink full	+10	0

STATE VARIABLES

3

October 19, 1960

SUMMARY OF COMMANDS

Typed Command	Effect
r_	reset and restart SAGA
Ľ.	examine contents of random number generator
£=	examine initial setting of timing number
sNd	select switch N
sNr	reset switch N
sNp	select and print switch N
sp	print all switches
aI,J=	examine aJ for branch I of switch N
aj=	examine aJ for last branch examined of switch N
ap	punch entire a-table
ь	break at each switch entered
	continue after break
р	print switch numbers and branch pro- babilities as used and continue play (unless command followed by <u>b</u>)
n	as p, except print just switch numbers
aNb	break only at switch N. (this may be preceeded by <u>p</u> or <u>n</u> , or followed by <u>b</u> , with the expected results). As many as 8 breaks may be used at once.
sb	erase all switch break points
e	erase all of the break commands
TAC	changing TAC will cause SAGA to break at the next switch used. This is a "one shot" break. As usual (.) will continue the play.

NEW YORK TIMES Sunday, October 2, 1960

NEWS OF TV AND RADIO: GADGETRY

By VAL ADAMS

MACHINE-written Westsheriff and a bandit have a gun duel, will be televised this month by the Columbia Broadcasting System. The machine, an electronic com-puter called TX-O, was developed by the Massachusetts In-tical script twice. The good man stitute of Technology. Now that killed the bad man about three C. B. S. is in the act, TX-O may times out of four. In some cases become the Zane Grey of com- TX-O went on a real six-gun puters and enjoy many happy toot and let each kill the other. residuals.

he presented on Tomorrow, victorious, Then just to demon-a new science series. It begins strate that TX-O's reasoning a new science series at begins strate that TX-O's reasoning on Oct. 26 at 10 P. M. with a can go off the beam, another one-hour trogram tilled "The script will show the sheriff Thinking Machine" David putting his gun in the robber's Wayne, the actor, will be seen holster, pouring whiskey into visiting M. I. T. and talking to a glass but drinking from the scientists about machines that bottle, seem capable of reasoning. After Mr. Wayne watches TX-O

type out an "original" Western, of one of the Western dramas the script, which is without dia. as it was typed out by TX-O: logue, is performed by two ac- SHERIFF: The sheriff is at tors.

No Hands! Computer to act, I'll break its back." tern playlet, in which a Writes a TV Western For C.B.S.-Items

C. B. S. will show one ver-

The two-minute playlet will show here the sheriff wins and another where the robber is

The following is the last part the window. Go to door. Wait. The idea of asking M. I. T. for Open door. Sees robber. Sees

The insa of asking M. I. T. for over, user, sees rouner. Sees a machine-written script orgi-nated with Thomas H. Wolf ex-RORBER: Take gun from ecutive producer of "Tomorrow," holster with right hand. Aim. TX-O was provided with a dra- SHERIFF: Aim, Fire, Robber matic situation in which a rob- hit. Blow out barrel. Put gun ber with newly-stolen money in holster.

enters a hideout shack and is ROBBER: Fire, Missed, Drop overtaken there by the sheriff, gun. Go to table, Robber dies. The machine, which was "told" SHERIFF: Go to corner Pick that objects in the shack in- up money with right hand. Go cluded money, a table, a glass to door. Go through door. Close and a bottle of whiskey, then door. Curtain.

typed out the chain of action C. B. S. has not provided and arrived at its own denoue- equal time for real-life writers ment. to appear on the program in

In a series of test runs, TX-O rebuttal of TX-0. But Mr Wayne was programed with the "shoot- warns an M. I. T. scientist:

WED OCT 26 10-PM CHANNEL 7

"If the computer ever learns

run 112263

the gun is in the right hand the money is in the left hand the glass is on the table the bottle is on the table the holster is on the robber the sheriffs gun is in the sheriffs right hand the sheriffs holster is on the sheriff

9-3

ROBBER:

the robber is at the window

go to door open door go thru door close door

go to corner

put money down at corner check gun

put gun in holster

go to table

pick up bottle with right hand

put bottle on table

pick up glass with right hand empty

take glass from right hand with left hand

pick up bottle with right hand

put bottle on table

take glass from left hand with right hand take a drink from glass

take glass from right hand with left hand

pick up bottle with right hand pour

put bottle on table sit and fidgit

take gun from holster with right hand

go to corner

```
put gun in holster
count money
 take gun from holster with right hand
check gun
go to table
 put gun on table
 take glass from left hand with right hand
take a drink from glass
 take glass from right hand with left hand
 pick up bottle with right hand
pour
the sheriff is at the window
sees robber
sees sheriff
 go to door
put bottle on table
 pick up gun with right hand
check gun
 put gun in holster
 go to window
 take gun from holster with right hand
check gun
 put gun down at window
wait
weit
wait
open door
sees robber
sees sheriff
pick up gun with right hand
aim
fire
MISSED
go to door
```

```
go thru door
   aim
2
  aim
  fire
  SHERIFF HIT
  fire
   put gun in holster
   take glass from robbers left hand with right hand
   take a drink from glass
   go to table
   put glass on table
    pick up bottle with right hand
   pour
   ROBBER:
   put gun in holster
    go to corner
    pick up money with right hand
   sheriff dies
   ROBBER:
   go to door
   go thru door
   close door
   curtain
```

r=675530 714234 r=714234 run 714234 the gun is in the holster the money is in the left hand the glass is on the left hand the glass is on the table the bottle is on the table the holster is on the robber the sheriffs gun is in the sheriffs holster the sheriffs holster is on the sheriff

ROBBER:

the robber is at the window go to door open door go thru door close door go to corner put money down at corner go to table pick up bottle with right hand put bottle on table pick up glass with right hand empty take glass from right hand with left hand pick up bottle with right hand pour put bottle on table take glass from left hand with right hand take a drink from the glass

go to cornergo to table put glass on table sit and fidgit sit and fidgit go to window go to table pick up bottle with right hand put bottle on table pick up glass with right hand empty take glass from right hand with left hand pick up bottle with right hand pour put bottle on table take glass from left hand with right hand take a drink from the glass go to corner put glass down at corner go to table pick up bottle with right hand take a drink from the bottle SHERIFF: the sheriff is at the window sheriff sees robber robber sees sheriff wait go to door wait open door sheriff sees robber robber sees sheriff

```
ROBBER:

put bottle on table

take gun from holster with right hand

aim

fire

SHERIFF HIT

blow out barrel

put gun on table

go to corner

pick up money with right hand

SHERIFF:
```

go thru door

go to window

drop gun

go to table sheriff dies

ROBBER:

go to door go thru door close door CURTAIN

2 Your number is 01 Rating 00 First move by player Your move is 450 r run 0 the gun is in the holster the money is in the left hand the glass is on the table the bottle is on the table the holster is on the robber the sheriffs gun is in the sheriffs holster the sheriffs holster is on the sheriff ROBBER: the robber is at the window go to door open door go thru door close door go to corner put money down at corner gloat over money gloat over money go to table sit at table go to corner count money go to table

```
pick up bottle with right hand
3
    put bottle on table
    pick up glass with right hand
    empty
    put glass on table
     pick up bottle with right hand
     pour
     put bottle on table
     pick up glass with right hand
     take a drink from the glass
     go to corner
     take glass from right hand with left hand
     take gun from holster with right hand
     check gun
     put gun in holster
     go to table
     sit at table
     go to corner
     gloat over money
    SHERIFF:
    the sheriff is at the window
     wait
     wait
    ROBBER:
    take glass from left hand with right hand
     empty
     put glass down at corner
     go to table
     pick up bottle with right hand
    SHERIFF:
    go to door
```

```
open door
 .
     sheriff sees robber
     robber sees sheriff
     wait
     ROBBER:
     put bottle on table
     take gun from holster with right hand
     nim
     fire
     MISSED
     SHERIFF:
     go thru door
     take gun from holster with right hand
     ROBBER:
     go to window
     go to door
    SHERIFF:
     aim
     fire
     ROBBER NICKED
    ROBBER:
     aim
     aim
     fire
     SHERIFF NICKED
    SHERIFF:
    go to window
    aim
,
    fire
    ROBBER NICKED
)
```

	ROBBER:
3	
	aim
2	fire
	SHERIFF HIT
	blow out barrel
•	put gun down at door
	SHERIFF:
	drop gun
	go to door
-	go to window
	go to table
-	ROBBER:
	go to corner
•	pick up glass with right hand
-	empty
	put glass down at corner
•	go to table
	pick up bottle with right hand
•	SHERIFF:
	go to window
	pick up gun with right hand
	aim sheriff dies
	ROBBER:
	go to corner
	pour
•	take a drink from the bottle
	take a drink from the bottle
	put bottle down at corner
	pick up glass with right hand
	take a drink from the glass
	the second s

put glass down at corner

.

- pick up bottle with right hand pour 0 put bottle down at corner go to door pick up gun with right hand put gun in holster go to corner pick up bottle with right hand . put bottle down at corner 3 pick up glass with right hand take a drink from the glass Э put glass down at corner pick up money with right hand
- put money down at corner pick up glass with right hand empty
- go to table
- put glass on table
- go to corner
- pick up bottle with right hand take a drink from the bottle
-) put bottle down at corner
- pick up money with right hand
 put money down at corner
 go to table
-) pick up glass with right hand empty
-) put glass on table
-) go to corner
- pick up bottle with right hand
- take a drink from the bottle
- put bottle down at corner

pick up money with right name 0 put money down at corner pick up bottle with right hand 3 put bottle down at corner 3 go to table pick up glass with right hand empty . put glass on table go to corner Э pick up bottle with right hand Э take a drink from the bottle go to table Э put bottle on table Э go to corner pick up money with right hand 0 put money down at corner Э go to table pick up bottle with right hand 2 take a drink from the bottle 0 put bottle on table go to corner pick up money with right hand ۲ put money down at corner go to table pick up glass with right hand 3 empty put glass on table pick up bottle with right hand 0 take a drink from the bottle put bottle on table go to corner pick up money with right hand go to door 3

go cura acor.

close door

CURTAIN

۲

۲