
Dr. Logo
Newsletter(

I

1

TABLE OF CONTENTS

Editor's Introduction

Initial Response Card Results
Logy, Morph, and Ma Bell
String Art with Dr. Logo
Faster Turtle Graphics in Dr. Logo
Hex
A Cascade of Color
Mine

A Simple 3-D Graphics Package
Presenting-- The Doctor
Logo At Work
TOOLBOX--A Collection of Useful Tools
TOOLBOX--An Example of Tool Usage 6000-1031-001

Dr. Logo Newsletter Dr. Logo Newsletter

EDITOR'SINTRODUCTION RESPONSE CARD RESULTS

Welcome to the first ever Dr. Logo Newsletter! We have worked long and hard to bring

you information I hope will be both useful and enjoyable to you. There is quite a bit of

material here, so don't be surprised if it doesn't all make sense at the first reading (it

didn't all make sense at the first writing). We made the newsletter the same format as all

the other Dr. Logo documentation to help you keep all of your material together.

At the end of December, 1983 we had received back 470 response cards for the free Dr.

Logo Newsletter. This reflects a much higher response rate than for ANY other Digital

Research product (including CP/M). There were some surprises in the numbers we

recorded - most of you are adults or adult & child combinations and Dr. Logo is being

used almost exclusively in the home. The numbers are listed below with percentages

As you read through the articles you will probably notice a slightly more sophisticated

orientation than is usual in Logo materials. This is a reflection of the survey responses

that were derived by dividing the totals by 470. The numbers don't always add up to 470

(100%) because many cards had multiple items checked off. This is who you are:

and my personal tastes, both in Logo and in writing. If you find you need help

penetrating my purple prose I will answer any letters accompanied by a SASE (Self

Addressed Stamped Envelope). My address is:

I use Dr. Logo at

Home 401 (85.3%) School 65 (13.8%) Business 106 (22.6%)

Joseph R. Power
Digital Research
160 Central Ave.
Pacific Grove, CA 93950

Dr. Logo's primary user's age is

() 5- 8 137 (29.1%)
13-1855 (11.7%)

9-12 166 (35.3%)
Adult 312 (66.4%)

By State or Country
I

COPYRIGHT AK 2 .42 % MD 12 2.55 % RI 1 .21 %
Copyright @ 1984 by Digit.' Res"rch. All rightS r'SIn/ld No pen of this AZ 6 1.3 % ME 2 .42 % SC 2 .42 %
public.tioR may ba reproduced, trlnsmined, trln.cribld. .t0f'8d In I r.u!.....1
IVs1.m, Of tr.nll.ted In10 'Ry I.ngu.g. or comput.r I.ngu.g.. In 'RY form CA 113 24.0 % MI 8 1.7 % SD 1 .21 %
or by '"Y ma.ns. 1'letronlC,m.ch.nlCII. m.gn.tic. optical, chemic.l,
menu.1. or otherwls.. without thl prior wrine" permiulon or Olgit., CN 1 .21 % MN 3 .638% TN 3 .638%
Rls.,rch. po.t OfficI Bolt S7S1,Pacific Gro..... C.lltomia. 93950. CO 10 2.1 % MO 7 1.49 % TX 31 6.59 %
Re,d.rs .r. grlnted permissionto includethl 8It.mplaprogr.ms.Ilth,r in

13 2.76 % 1whole or In p.n. in thair own progr.ms. CT MT .21 % UT 2 .42 %

DISCLAIMER
DC 3 .638% NC 6 1.3 % VA 14 2.98 %

Digit.1 R.s..rch m.k.s no r.pr.s.nt.tions or w8fr.nti.s with r.sp.ct toth.
FL 5 1.06 % NE 2 .42 % VT 2 .42 %

contents h.r.ot .nd ,p.clfiC.lly discl.Ims .ny Impli.d w.r,.nti., ot

I

GA 4 .85 % NH 3 .638% WA 11 2.34 %
m.,ch.nt.biltty or fitn.1S tor anv particular purpou Furthar. Digit.1

R.surch r.UN'S the light to r.vI.. this public.tion .nd to make ch.nges HI 22 4.68 % NJ 11 2.34 % WI 8 1.7 %
trom 11fT" to tlm. in th. cont.nt h.r.of whhout oblig.tion Of Diglt.1

I

IA 2 .42 % NM 9 1.91 % WV 1 .21 %
R.s..rch to notify.ny p.rson of suchr.visionor ch.nges

IL 16 3.4 % NV 1 .21 % WY 1 .21 %
TRADEMARKS

I IN 5 1.06 % NY 24 5.1 % CANADA 21 4.47%
D,git.' R.surch .nd its logo ar. r.glst.r.d tr.d.marlts Of DigItal Rn..rCh VInc. Or Logo and th. Or. Logo Ch.r.ct.r .r. tr.d.m.,ks of Digit'l Rn..rCh

I

,
KS 6 1.27 % OH 6 1.3 % COLUMBIA 1 .21%

'"' KY 3 .638% OK 7 1.49 % JAPAN 1 .21%
Th. IlLI.29S! wn printed,n the Unit.dStltlS ot Am.ric.

LA 3 .638% OR 8 1.7 % KOREA 1 .21%
- FirstEdition: April 1984-. MA 29 6.17 % PA 13 2.76 % SWEDEN 1 .21%

Dr.Logo Newsletter

Since this initial survey, the numbers have been changing somewhat, with the kids

(especially the 9-12 age range) starting to overtake the adults. Come on adults, let's get

in there and rally back to the lead. They might be able to demolish us at blinkey-death

video games but in Logo we all start as equals.

LOGY, MORF, AND MA BELL

The Young Person's Logo Association has a special treat for all you Logophiles - a

computer bulletin board system (CBBS for short). A CBBS is a computer that people can

caH and talk to using their own computer and a modem. Your computer must be able to

act like a terminal (usually by running a terminal program like PC-Talk III) and your

modem must be in 'originate' mode at 300 Baud. Once all that is set up, call the Midnight

Turtle (the name of this CBBS) after 7PM CST at (214)-783-7548 and once the two

computers start whistling at each other, you're in!

This bulletin board is a great place to leave messages, ask questions, and answer

someone else's questions if you can. There will be useful information, friendly tips, and

even Logo programs you can download. So give it a try.

Here is a brief summary of the commands available at the CBBS's 'toplevel'. Once you

have chosen one of these commands, other subcommands might be needed. If you are

ever unsure of what to do, simply type HELP or ?

2

(

o ,

u I,

Dr. Logo Newsletter

Command Stands For

B
C
H
I
L
N
R
RN
S
T
U
MR
MS
OFF

Bulletins
Chat
Helpful info
Information
List TP files
Normal info
Recommendation
Reread News
Status
Time info
new User info
Mail Read
Mail Send

get OFF CBBS

Effect

read or send messages to everyone
try to talk to Jim Muller
helpful hints and command summary
information about the CBBS

for up- and down-loading
more information about the CBBS
private message to Jim Muller
retypes the log-in messages
information about your call
info about duration of call
a very good place to start
read messages sent to you
send messages to other users
end session and hang up

unavailable to you.

Unless you are a member of YPLA (which we heartily recommend), some functions are

IfThe system is VERY new and there might be some bugs in it.

something doesn't seem to work right, leave a message for Jim Muller via the R

command.

One word of caution: Ma Bell eats pennies faster than Pac-Man chomps dots, so don't

stay on the system for hours at a time. Also remember that this is a text-only system.

While there might be turtle graphics procedures on the CBBS, there are no finished

drawings to look at.

For more information contact

The Young Peoples' Logo Association
1208 Hillsdale Drive.
Richardson, TX 75081.

3

Dr.Logo Newsletter

STRING ART WITH DR. LOGO

to string :sz :offset :halves
(local "n "0 "p "q)
make "0 pi /108
clean ht make "p pos pu setx xcor + :sz pd
repeat 360 [fd :sz ,. :0 It 1]
pu setpos :p make "n 1
repeat 36 ,. :halves [
pu fd :sz make "q pos
setpos :p seth remainder (5 ,. :n ,. :offset) 360
fd :sz pd setpos :q pu
setpos :p seth remainder (5 ,. (:n - 1» 360
make "n :n + 1]

end

cs pu setpos [40 0]
string 98 2 2

-- -----:.--~-;.-;r,
--- ~:'-:;-"""I_II

'

'-'.-",1'" ,,'.','1
, ' ~.,~",,' I I

'I-- J'8.w' /
' I

..., ,.' I I

I-- ..' I
.,/ l ... ' I

I

...' ,-,-.' f' ,l" ,I I
.'" ' J .- I

I
/' 1

,--' '~'''' I -'
I

.' ." ~ " }
.."'" ~,' I J

I
,,_.' ..." ~.-

/
'

I
I

I
I

I
-,' ..' J' -. ..., '" I I

I
J'''' .- I . r

..J .~ /
' I I I

.' . I

..I I 1 I I, / I I -

, ,I i

4

(

I
I

C~ I

I
I

I

I

(j

,

I

Dr.Logo Newsletter

FASTER TURTLE GRAPHICS IN DR. LOGO

While Dr. Logo currently has the fastest graphics of all the Logos we know about, there

probably isn't anyone who wouldn't like to see even faster graphics. This article presents

a number of techniques for speeding the turtle on its merry way.

We begin with a very simple, but often overlooked one: hide the turtle! When the turtle

is shown, and you move or rotate it. the old turtle is erased, the action is performed, and

the turtle is redrawn at the new position and heading. When the turtle is hidden. all the

overhead of erasing and redrawing it is saved.

than a shown turtle when it is on the screen.

A hidden turtle ALWAYS moves faster

Another technique that helps is the use of setheading (seth) instead of left (It) and right

(rt). Pointing the turtle at absolute headings instead of relative ones generally reduces

the amount of math performed by the Logo interpreter. Thus, if the turtle is pointing

straight up (heading = 0) use seth 90 in preference to rt 90. If the turtle's heading is 315

(after a It 45) use seth 288 instead of It 27 (288 = 315 + -27). The general formula is

New_heading = Old_heading + Angle, which means that the new heading is the sum of the

old heading and the angle to be turned. This angle will be a positive number if the turn

is to the right and a negative number if the turn is to the left. Numbers larger than 360

(or smaller than -360) will work properly (seth's argument is taken modulus 360).

A closely related technique is the use of setpos in lieu of forward (fd) and back (bk).

Here again, absolute positioning requires less math on Logo's part than relative motion

does. One way to make use of these two techniques is to code a procedure with the

normal relative commands originally until it works properly. Then add print statements

that tell what the turtle's heading and/or position are at various points in the program.

Finally, using this information, many of the relative commands can be replaced by moving

the turtle directly to the locations and headings observed in the print statements.

5

Dr.Logo Newsletter

Another appropriate use of setpos and setheading is to go quickly to some fixed position.

Instead of :

fd 60 rt 90 fd 100 bk 100 It 90 bk 60

use:

make "p pos
make "h heading
fd 60 rt 90 fd 100

pu setpos :p seth :h pd

Now before logo purists descend with fire in their eyes at the espousing of such rank

heresies, it must be stressed that all of these techniques should be employed only when

faster graphics are important. Follow the principle of 'make it work, then make it fast'.

The observant reader will have noticed the penup (pu) command in the second example

above. It is plain to see that putting the pen up prevented drawing an unwanted diagonal

line. What is not so plain to see is that the turtle also moves faster with the pen up than

with it down (or erasing or reversing). Why is this?

When the turtle is commanded to move, logo must calculate the new position and draw a

line from where the turtle is to where it will be. When the pen is up, logo can quit right

after figuring out the new position. So whenever possible keep that pen up.

In the discussion of setheading and setpos it was stated that use of those primitives cut

down on the amount of math that logo had to perform. Another trick that cuts down on

the amount of math is to cut down on the precision of the numbers being used.

Whenever possible use integers as these are the easiest for logo. If decimal numbers

are needed, use the fewest digits of precision tolerable. For example, logo says the

expression sqrt 2 is 1.4142135623731 but for most graphics applications 1.4142 is more

than adequate.

6

(

(\

I

Dr. Logo Newsletter

Finally, there is a great deal of overhead when logo enters and exits a procedure and a

smaller, though still noticeable, amount when using repeat loops. Whenever possible,

therefore, unwind loops and expand procedures in-line. As an example of these two try

these procedures:

to design
repeat 36 [square 30 rt 10]

end

to square :sz
repeat 4 [fd :sz rt 90]

end

First, the loop in square is unwound:

to square :sz
fd :sz rt 90 fd :sz rt 90 fd :sz rt 90 fd :sz rt 90

end

Next, expand the square procedure in-line in design:

to design
repeat 36 [fd 30 rt 90 fd 30 rt 90 fd 30 rt 90 fd 30 rt 100]

end

Finally, unwind the loop in design:

to design
fd 30 rt 90 fd 30 rt 90 fd 30 rt 90 fd 30 rt 100 ;repeat

;35
;times

fd 30 rt 90 fd 30 rt 90 fd 30 rt 90 fd 30 ;no final turn
end

This is a great deal less tedious if ~ K and ~ Yare used.

In summary, the primary techniques for making logo graphics run faster are

1. Hide the turtle

2. Use setheading and setpos

7

Dr. Logo Newsletter

3. Use only the required amount of precision

4. Keep the pen up as much as possible

5. Unwind loops and expand procedures in-line

These techniques will work with most versions of Logo, although with varying levels of

speedup. Remember - do it right, then do it fast.

A CASCADE OF COLOR

These three procedures draw a spectacular pattern on the graphics screen. After you

have typed them in and saved them on disk (always save your work on disk) simply type

cascade.

to cascade

make "sqr2 sqrt 2
setbg 16 fullsereen
cs ht pu setpos [-70 -85] pd
make "x xeor make "y yeor
repeat 5 [side] pu setx :x sety :y + 20 seth 45
repeat 5 [top] pu setx :x sety :y + 20 seth 45 fd 20 seth 0
make "x xcor make "y ycor
repeat 4 [side] pu setx :x sety :y + 20 seth 45
repeat 4 [top] pu setx :x sety :y + 20 seth 45 fd 20 seth 0
make "x xcor make "y yeor
repeat 3 [side] pu setx :x sety :y + 20 seth 45
repeat 3 [top] pu setx :x sety :y + 20 seth 45 fd 20 seth 0
make "x xeor make "y ycor
side side pu setx :x sety :y + 20 seth 45
top top pu setx :x sety :y + 20 seth 45 fd 20 seth 0
make "x xcor make "y ycor
side pu setx :x sety :y + 20 seth 45
top
end

8

(,

(

)

Dr.Logo Newsletter

to top
setpc 2
repeat 7 [
pd fd 20 seth 135 fd :sqr2 seth 45
bk 20 pu seth 135 fd :sqr2 seth 45]

fd 20
end

to side

setpc 1
repeat 6 [
pd fd 20 seth 135 fd :sqr2 seth 0
bk 20 seth 135 pu fd :sqr2 seth 0]

pd fd 20 seth 135 fd :sqr2 seth 0 bk 20 pu
setx xeor + 1
setpc 3
repeat 6 [
pd fd 20 seth 45 fd :sqr2 seth 0
bk 20 pu seth 45 fd :sqr2 seth 0]

pd fd 20 seth 45 fd :sqr2 seth 0 bk 20 pu
setx xcor + 1
end

People who frequent video arcades should recognize this pattern.

9

Dr. Logo Newsletter

mine2 20 8

....

to mine :sz
fd 5 * :sz rt 90 fd 3 * :sz rt 90 fd 6 * :sz It 90 fd 4 * :sz It 90
fd 3 * :sz It 90 fd 3 * :sz It 90 fd 6 * :sz rt 90 fd 3 * :sz rt 90
fd 4 * :sz rt 90 fd 4 * :sz rt 90 fd 2 * :sz rt 90 fd 2 * :sz rt 90
fd 1 * :sz It 90 fd 3 * :sz rt 90 fd 1 * :sz bk :sz

end

to mine2 :sz :num

repeat :num [mine :sz rt 360 / :numJ
end

10

(

(

I

Dr.Logo Newsletter

A SIMPLE 3-D GRAPHICS PACKAGE

By now all of you are familiar with the turtle graphics of Dr. logo. Many of you are quite

good at putting fantastic objects on the screen with amazing ease. So, having mastered

this level of difficulty it is time to move up to the next dimension - the third dimension.

That's right, this article is about a three dimensional graphics system written in Dr. logo.

In searching for a system that was small and not too slow I finally chose to abandon the

usual turtle graphics for Cartesian coordinate graphics. This allowed me to use some

simple matrix multiplications to rotate or alter the view of the shape.

In this package the basic unit is the point. defined with the procedure point (oddly

enough). Points have names and [x y z] coordinate lists telling where they are in 3-D

space.

Once you have defined all the points you can construct shapes. The shape procedure

takes the shape name and a list of two-element lists (ex: Ua bJ [a cJ [b g] [g ill). The

two-element lists represent the line segments of the shape, with each element being an

endpoint. You can have as many shapes as you want. but only one at a time can be

manipulated.

Once you've defined your shape you can expand (or contract) it. rotate it. magnify (or

shrink) it. shear it, or restore it to its original state.

To expand a shape use the expand procedure and tell it which shape to expand, which

axis (x, y, or z) the expansion will operate on, and how much to expand it. Amounts

between 1 and 0 will contract rather than expand the shape.

the shape across the center point of the screen.

Negative amounts mirror

Rotation occurs not on an axis, but on a plane (xy, xz, or YZ). Again you specify the

shape. the plane, and the amount to rotate with the rotate procedure.

11

Dr.Logo Newsletter

The procedure magnify is very similar to the expand procedure. You don't specify an

axis, however, because the shape is expanded or decreased in all directions.

Shearing the shape involves tilting it to the left or right or up or down direction. Because

of the way the shapes are displayed, shearing in the z axis has no effect and is therefore

forbidden.

When you want to start all over with a shape (since trnasformations are cumulative) use

the restore procedure.

Believe it or not, that's all there is to it. We strongly suggest you play with these

procedures to get a better feel for how they work. If you want to explore 3-D graphics

further, try the Sept. 1978 issue of BYTE magazine and the Abelson and DiSessa book,

Turtle Geometrv (listed in your Dr. Logo Bibliography).

In addition to providing the listings, we are also providing a simple shape to get you

started. Just type in the following lines and watch what happens.

point "a [0 0 0]
point "b [50 0 0]
point "c [0 60 0]
point "d [0 60 20]
point "e [50 60 20]
point "f [50 60 0]
point "g [0 10 20]
point "h [50 10 20]
point "i [0 10 80]
point "j [0 0 80]
point "k [50 10 80]
point "I [50 0 80]

shape "V [[a b] [a c] [a j] [b f] [b I] [c d]
[c f] [d g] [d e] [e f] [e h] [g iJ [g h] [h k]
[i j] [i k] [j I] [k I]]

rotate "V "xz 45

rotate "V "yz 30

12

Dr. Logo Newsletter

(

>

(

to point :point- name :coords
make :point- name :coords
pprop :point- name "point "TRUE
pprop :point- name "orig :coords

end

Side

d

I I
I I
1 I
1 I

i _19 I
1 I

j

to shape :shape name :Iine pairs
if (gprop :shapi name "point) ="TRUE [

(pr :shape _name [is already a point name.]) stop]
make :shape _name :line _pairs
pprop :shape _name "shape "TRUE
make "shapex (word :shape name" pts)
make :shapex [] make "n9 1- -
repeat count :Iine pairs [
if not memberp first (item :n9 :Iine pairs) thing :shapex [
make :shapex fput first (item :n9 :Iine pairs) thing :shapex]

if not memberp last (item :n9 :Iine paii"s) thing :shapex [
make :shapex fput last (item :n9 :Iine pairs) thing :shapex]

make "n9 :n9 + 1] -
make "matrix [1 0 0 0 1 0 0 0 1] draw :shape name
(pr :shape _name [is now a shape.]) -
end

()

13

c
+y
/1\

I
I
I

\1/
a -Y

Top Side Front
i k d e c f- - -

I I +2 I I +y I 1
I I /1\ I I /1\ 1 I
I 1 I I I I I I
I I I I I I I I
I I I I hi k I I I-

dl - Ie I I I \1/ I- I
I I \1/ b 1 -y a b
I I -2 -X <---> +X-

c f

Dr. Logo Newsletter

to expand :shape :axis :amt
if not memberp :axis [x y z] [

pr [The axis must be "x, "y, or "z.] stop]
if not (gprop :shape "shape) ="TRUE [

(pr :shape [is not a shape.]) stop]
if :axis ="x [make "matrix (list :amt 0 0 0 1 0 0 0 1)]
if :axis ="y [make "matrix (list 1 0 0 0 :amt 0 0 0 1)]
if :axis ="z [make "matrix (list 1 0 0 0 1 0 0 0 :amt»
draw :shape

end

to rotate :shape :axis :amt
if not memberp :axis [XVxz yz] [

pr [The axis must be "xy, "xz, or "yz.] stop]
if not (gprop :shape "shape) ="TRUE [

(pr :shape [is not a shape.]) stop]
if :axis ="xy [

make "matrix (list (cos :amt) 0 - (sin :amt) 0
(sin :amt) (cos :amt) 0
o 0 1)]

if :axis ="xz [
make "matrix (list (cos :amt) 0 0 - (sin :amt)

010

(sin :amt) 0 (cos :amt»]
if :axis ="yz [

make "matrix (list 1 0 0
o (cos :amt) 0 - (sin :amt)
o (sin :amt) (cos :amt)))

draw :shape
end

14

Dr. Logo Newsletter

(to magnify :shape :amt
if not (gprop :shape "shape) ="TRUE [

(pr :shape [is not a shape.]) stop]
make "matrix (list :amt 0 0 0 :amt 0 0 0 :amt)
draw :shape

end

to shear :shape :axis :amt
if not memberp :axis [x y] [

pr [The shear axis must be "x or "y.] stop]
if not (gprop :shape "shape) ="TRUE [

(pr :shape [is not a shape.]) stop]
if :axis ="x [make "matrix (list 1 :amt 0 0 1 0 0 0 1)] [

make "matrix (list 1 0 0 :amt 1 0 0 0 1)]
draw :shape

end

(

to restore :shape
if not (gprop :shape "shape) ="TRUE [

(pr :shape [is not a shape.]) stop]
make "n9 thing (word :shape " pts)
repeat count :n9 [-

make first :n9 gprop (first :n9) "orig
make "n9 bf :n9]

make "matrix [1 0 0 0 1 0 0 0 1]
draw :shape

end

(

15

Dr. Logo Newsletter

PRESENTING-- THE DOCTOR

Here is another set of procedures to astound and confound! Yes, drlogo will display a

grand portrait of the good Doctor himself. The three braid routines (braid, strip, and

corner) have been modified for speed in this collection. The picture gives a monochrome

preview of the results.

16

Dr.Logo Newsletter

(
to braid

(local "sqr2 "hfsq2 "s2 "h2 "s2h2)
make "sqr2 1.4 ;sqrt 2
make "hfsq2 0.7 ;:sqr2 * 0.5
make "s2 8.5 ;:sqr2 * 6
make "h2 4.2 ;:hfsq2 * 6
make "s2h2 12.7 ;:s2 + :h2
pu fd 24 rt 45 fd 4.2 seth 0 pd
strip 13 corner strip 21 corner
strip 13 corner strip 21 corner
end

to circle

repeat 36 [forward 2 right 10]
end

(

to face
make "x xcor make "y ycor
repeat 2 [circle It 90 fd 12 It 90] ht It 180 fd 35 bk 5
It 90 fd 4 rt 90 fd 5 rt 90 fd 20 rt 90 fd 5
rt 90 fd 4 It 90 fd 30 rt 180 fd 35

It 90 fd 6 repeat 10 [fd 3 rt 9]
rt 90 repeat 10 [fd 3 rt 9]
It 90 repeat 10 [fd 3 It 9]
It 90 repeat 10 [fd 3 It 9] pu
It 90 fd 20 rt 90 pd bk 12 fd 65
It 90 fd 20 It 90 fd 20 bk 22 It 90 fd 80
rt 90 fd 2 rt 90 fd 60 bk 38
It 90 fd 65 pu sety :y - 70 setx :x - 6
It 135 pd fd 22 bk 22
It 90 fd 22 pu setx :x - 25 sety :y seth 0
It 90 pd repeat 10 [fd 4 It 20] pu setx :x + 13 sety :y seth 0
rt 90 pd repeat 10 [fd 4 rt 20] ht
end

)

to strip :n
repeat :n [
It 45 fd :h2 rt 45 fd 6 rt 45 fd :s2h2 pu
rt 90 fd :h2 pd rt 90 fd :s2 It 45 fd 6
if pc < 3 [setpc pc + 1] [setpc 1]
pu It 45 fd :s2h2 pd It 135
rt 45 fd :h2 It 45 fd 6 It 45 fd :s2h2 pu
It 90 fd :h2 pd It 90 fd :s2 rt 45 fd 6
pu rt 135 fd :s2h2 rt 45 fd 6 pd]

end

17

Dr.Logo Newsletter

to corner
It 45 fd :h2 rt 45 fd 6
rt 45 fd :s2 rt 45 fd 18
rt 45 fd :s2h2 pu
rt 90 fd :h2 pd rt 90 fd :s2
It 45 fd 18 It 90 fd 6 pu
if pc < 3 [setpc pc + 1] [setpc 1]
It 45 fd :s2 pd It 90 fd 17 pu
rt 90 fd :h2 pd rt 90 fd 17 pu
if pc < 3 [setpc pc + 1] [setpc 1]
rt 45 fd 6 rt 90 fd 12 pd
rt 45 fd :h2 rt 45 fd 6

rt 45 fd :h2 pu rt 90 fd :h2 pd
rt 45 fd 6 pu bk 15 rt 90 fd 9 rt 90 pd
if pc =1 [setpc 3] [if pc =2 [setpc 1] [setpc 2]]
end

to drlogo
(local "y)

setbg 24 setpc 1 textbg 0
cs ht
face
pu setpos [-150 -98] pd ht seth 0
braid
pu setpos [-110 60]
tt [Digital Research presents:]
bk 30 setx xcor + 25 pd seth 0
if pc < 3 [setpc pc + 1] [setpc 1]

; Dr LOGO in turtle graphics

make "y ycor fd 22 rt 90 repeat 18 [fd 2 rt 10]
pu setx xcor + 17 pd seth 0 fd 10 bk 3 rt 22 fd 3 seth 90 fd 5
pu seth 0 sety :y setx xcor + 20 pd fd 22 bk 22 rt 90 fd 15
pu fd 5 seth 0 fd 11 pd circle pu
repeat 9 [fd 2 rt 10] fd 30 rt 180 pd
repeat 27 [fd 2 It 10] It 90 fd 10 pu bk 15 rt 90 pd circle
end

18

(

(

\.

Dr.Logo Newsletter

" hex 20 3

t

I

J
,

,/

to hex :sz :Ievel
repeat 6 [

It 30 fd :sz
if :Ievel > 0 [It 30 hex :sz :Ievel - 1 rt 30]
rt 90]

end

19

-

Dr. Logo Newsletter

Logo At Work

The following program is a modified version of one that will be in a forthcoming Digital

Research product. The picture shows what the end result will look like on your screen.

A worthwhile project might be to plot some of the major cities and show the 6 Australian

states. The larger island is Tasmania and the smaller is King Island. Hats off to the

winners of the 1983 America's Cup!

VL
'r.;:7\../"v"-'"

20

Dr. Logo Newsletter

(to australia :n

(local "p "h)
make "p pos make "h heading pu It 90 fd 8.5 .. :n rt 90 pd
fd 1.5" :n rt 45 fd 1.414 .. :n rt 45 fd 1.5 .. :n It 45
fd 1.414" :n It 45 fd 1.5 .. :n rt 90 fd :n It 90
fd 0.5 .. :n rt 45 fd 0.707 .. :n rt 45 fd 0.5 .. :n rt 90
fd 0.5 .. :n It 90 fd :n It 90 fd 0.5 .. :n rt 45
fd 0.707 .. :n It 45 fd 0.5 .. :n rt 45 fd 0.707 .. :n rt 45
fd 2.5 .. :n rt 90 fd 0.5 .. :n rt 45 fd 0.707 .. :n It 45
fd 0.5 .. :n It 45 fd 2.121 .. :n It 45 fd 0.5 .. :n rt 45
fd 0.707 .. :n It 45 fd 0.5 .. :n It 90 fd 4 .. :n rt 90
fd 0.5 .. :n rt 90 fd :n It 45 fd 0.707 .. :n It 45
fd 0.5 .. :n rt 90 fd 1.5" :n It 45 fd 1.414 .. :n rt 45
fd 0.5 .. :n It 90 fd 0.5 .. :n rt 90 fd :n It 90
fd 0.5 .. :n rt 90 fd 0.5 .. :n It 90 fd 0.5 .. :n rt 45
fd 0.707 .. :n rt 45 fd 3.5 .. :n rt 90 fd 0.5 .. :n It 90
fd :n rt 90 fd 0.5 .. :n It 90 fd :n rt 90
fd 0.5 .. :n It 90 fd :n rt 45 fd 0.707 .. :n rt 45
fd :n It 45 fd 0.707 .. :n rt 90 fd 0.707 .. :n It 90
fd 0.707 .. :n rt 90 fd 0.707 .. :n rt 45 fd 0.5 .. :n It 45
fd 0.707 " :n It 45 fd 0.5 " :n rt 90 fd 1.5 .. :n It 135
fd 1.414" :n rt 90 fd 1.414 .. :n rt 45 fd 0.5" :n It 90
fd 3 " :n It 45 fd 2.121 " :n rt 45 fd :n It 45
fd 1.414 " :n rt 45 fd :n rt 45 fd 0.707 " :n rt 45
fd 0.5 .. :n rt 90 fd 0.5 .. :n It 90 fd 0.5 " :n It 45
fd 0.707 " :n rt 45 fd :n It 45 fd 0.707 .. :n rt 45
fd :n It 45 fd 0.707 .. :n rt 45 pu bk 5 .. :n rt 90 fd 10.5 " :n
pd fd :n rt 135 fd 0.707 " :n rt 90 fd 0.707 .. :n rt 45 pu
bk 1.5 .. :n rt 90 fd 2 .. :n pd fd 2 .. :n rt 90 fd 1.5 .. :n rt 90
fd :n rt 45 fd 0.707 " :n rt 45 fd 0.5 " :n It 45
fd 0.707 " :n rt 45 pu setpos :p seth :h
end

(

t

,

21

Dr.Logo Newsletter

TOOLBOX

Graphics Tools

circle :center :radius
filled.cir :radius
arc.! :center :radius :angle
arc.r :center :radius :angle
pie :center :radius :angle
filled.pie :center :radius :angle

circle [10 30] 40
filled.cir 8
arc.! [1 17] 13 45
arc.r [12 3] 21 7
pie [100 14] 7 32
filled.pie [0 0] 10 15

The procedure circle draws a circle with the given radius centered at the given point.

The turtle's state and color is obeyed. When the circle is complete, the turtle is

positioned at the center point with it's initial heading.

The procedure filled.cir assumes the turtle's current position is the center and draws a

solid circle of the given radius. Again the procedure obeys the current state of the turtle.

The procedures arc.! and arc.r are very similar to circle. but they require you to specify

the number of degrees of arc to draw. The direction of the arc draw (to the left or right

of the current turtle heading) is determined by which procedure is used.

The procedure pie is identical to arc.r except that the endpoints of the arc are connected

to the centerpoint. The procedure filled.pie is to pie what filled.cir is to circle.

Workspace Management Tools

nerase :keeplist
sort.procs
unpkgall :set
verall
uses

nerase [sort.procs verall]
sort.procs
unpkgall proclist
verall
uses

22

(

\

r)

t

Dr. Logo Newsletter

The procedure nerase is. in some ways, the inverse of the primitive erase. Invoking this

procedure will erase all procedures except those listed. This is very useful if you have

many procedures but only want to retain a few. Note that nerase claims to erase buried

procedures but it cannot. Neither can it erase itself.

The procedure sort.procs simply sorts all procedures in the workspace into alphabetical

order. This generally makes it easier to find procedures in the workspace.

The procedure unpkgall takes the specified procedures out of any packages they are in.

The example above, unpkgall proclist, drops all packaging.

The procedure verall inquires, for each procedure in turn. whether you want to erase that

procedure. When finished, verall shows you all the files you have chosen to delete and

reconfirm your choice. This is a very popular procedure.

The procedure uses lists the title line of each procedure in your workspace and. indented

underneath, any procedures that each of those procedures references, including

themselves if recursive. After each procedure, the system waits for a keypress to

continue.

List Manipulation Tools

delete :object :objlist
every :objlist# :predicate#
intersection :set1 :set2
remove :object :objlist
replace :old :new :in
reverse :set

some :objlist# :predicate#
subset :objlist# :predicate#
union :set1 :set2

delete "cat [dog cat pony]
every [1 2 a 3 b] "numberp
intersection [1 2 3] [2 4 6]
remove "cat ["cat "dog "cat]
replace "1 "2 [1 2 3 2 1]
reverse [eat snails everyday]
some [a [1] [2 3]] "wordp
subset [[1] 2 [3 4] 5] "Iistp
union [1 2 3 4] [1 2 a b]

The procedures delete and remove are very similar in function. They both remove an

object from something.

removing all occurrences.

The former removing only the first occurrence, the latter

23

Dr.Logo Newsletter

The procedures every, some, and subset work by applying some test (called a predicate

in Logo) to each element of the list being tested. The procedure every returns "TRUE if

the predicate returns "TRUE when applied to every item in the list. The procedure some

returns 'TRUE if the predicate returns 'TRUE when applied to any element of the list. The

procedure subset returns a list of those elements which the predicate returned "TRUE

when applied to.

The procedures intersection and union compare the membership of two lists. Only

those items in both lists are returned by intersection, while all the items in both lists are

returned by union (with no duplicates in the return list). There is a very special case

under which union returns duplicate items. This occurs when :set2 has more than 2

extra items than :setl and there are duplicates in these extra items. Fixing union would

be a great project in list processing.

The procedure replace changes all occurrences of the first object to the second object in

the list. This is the classic search and replace function. Note that this function is level

sensitive so that no replacement occurs for items in sublists.

The procedure reverse returns a list with the elements in reverse order of the elements

in the list passed to it. It does not reverse the order of elements in sublists.

Mapping Tools

apply :function# :maplist#
map :function# :maplist#
mapc :function# :maplist#
mapfirst :function# :maplist#

apply "print [This is a triangle]
map "xyzzy [2 12 a b]
mapc "random [6 6 6]
mapfirst "sin [0 45 90 -90]

The procedure mapfirst returns a list whose elements are created by applying the

function to each element of the maplist in turn. Note that the function, whether a built-in

primitive or a user-defined function, must return a value or an error occurs.

The procedures map and mapc are similar to mapfirst but instead of having the function

operate on the individual elements of the list. it operates on the whole list and then

24

(

\.

r)

r)

,0

Dr.Logo Newsletter

successive butfirst's of the list. The two forms are provided to give you a chance to

compare how they operate. There might be cases where one would be better to use than

the other. The same restriction on the functions for mapfirst apply to the functions for

both of these as well.

The procedure apply is just like map. except the function you use does NOT need to

output values. Building an applyfirst procedure is left to you.

These procedures are very similar to the mapping functions of Lisp and should prove very

useful in constructing Artificial Intelligence programs.

Flow of Control Tools

cond :condition#

loop :body#
until :cond# :body#
while :cond# :body#

cond [[XV 1] [yz 2] ["TRUE 0]]
loop lop run readline]
until [:n < 10] [make "n :n + 1]
while [not night! [measure light]

The procedure cond works just like the Lisp primitive of the same name--if the first

condition evaluates to "TRUE, cond returns the value from evaluating the first body.

Otherwise it tests the second condition, and so on, until it finds a "TRUE condition or

runs out of possibilities. If the latter case occurs, cond returns [I. Remember that the

evaluated bodies must return a value, so you might need to use the rise function

described below.

The loop procedure repeats forever the evaluation of :body#. It can be exited only by

stop, op, throw "TOPLEVEL, or a ~ G (control-G).

expression 1 / 0 returns +INF, which stands for infinity.

In the actual code for loop, the

The procedures until and while are two useful loop constructs that allow you to express

certain ideas with great clarity. The :cond# list can contain multiple statements, as long

as evaluating it returns a 'TRUE or "FALSE value. In while, the condition is tested and,

while "TRUE, the body is performed. In until the body is performed, then the condition is

checked until the condition becomes 'TRUE.

25

-

Dr. Logo Newsletter

Miscellaneous Tools

ask :question
askyn :question
forget :object
inkey
menu :menulist#

pop :stack
push :value :stack
rise :object#
sink :object

ask [What should I do now?]
askyn [Play again (y/n) ?]
forget "xyzzy
inkey
menu [(on][sw.on][off][sw.off]]
pop "addresses
push 123.3 "rpn
rise [print "xyzzy]
sink rc

The procedures ask and askyn type out the question and wait for a response. The

procedure ask returns the first item of the response, while askyn returns "TRUE if the

response was y (upper- or lowercase) and "FALSE otherwise.

The procedure forget completely eliminates a word from the workspace, erasing any

procedure definition, value, and bound properties. WARNING: This procedure can even

eliminate primitive functions. Use it carefully or you might blow the system away.

The inkey procedure was provided for people familiar with the Basic function of the same

name. If a key is pressed, it is returned, otherwise [] is returned. Unlike readchar, this

function does not wait for a key to be pressed.

The menu procedure allows you to quickly construct a simple selection menu. The

format of :menulist# is [choice 1 action 1 choice2 action2...] where the choices are

objects that are printed out and the actions are the list of statements to be executed if

the associated choice is picked. When printing out the choices, menu numbers each one,

then asks the user to type in the number of the choice he wants to take.

Procedures push and pop implement software stacks. They allow for multiple stacks, so

you must specify the stack name.

26

(

Dr.Logo Newsletter

The procedure sink allows you to throwaway the returned value of a procedure, using it

only for the side-effects. The example above (sink rc) simply waits for a key to be

pressed.

The procedure rise does just the opposite, it allows you to use functions that don't return

a value in places that require values by returning I], In many versions of Logo, procedures

that return a value are called functions, while those that return no value are called

commands. These mirror image procedures allow you to interchange the usage of the

two types of procedures. These two procedures allow Logo to be more Lisp-like (always

a desirable goal).

What the Tools are Made Of

~)

to apply :function# :maplist#
if emptyp :maplist# [stop]
run (list :function# :maplist#)
apply :function# bf :maplist#
end

to arc.1 :center :radius :angle
(local "p "amt)
make "p pen
make "amt :radius * 1.75e-2 ; pi / 180
pu setpos :center
fd :radius It 90
setpen :p
repeat :angle [fd :amt It 1]
end

to arc.r :center :radius :angle
(local "p "amt)
make "p pen
make "amt :radius * 1.75e-2 ; pi / 180
pu setpos :center
fd :radius rt 90
setpen :p
repeat :angle [fd :amt rt1]
end

27

-
Dr.Logo Newsletter

to ask :question
(type :question)
op first readlist
end

to askyn :question
(local "ans)
(type :question)
make "ans Ic rc
(pr :ans)
op :ans ="y
end

to circle :center :radius

(local "p "amt)
make "p (list pen heading)
make "amt :radius * 1.75e-2 ; pi / 180
pu setpos :center setx xcor - :radius seth 0 setpen first :p
repeat 360 [fd :amt rt 1]
pu setpos :center setpen first :p seth first bf :p
end

to cond :condlist#
; format of :condlist# is [test1 result1 test2 result2 ...]
(local "cl#)
if (remainder (count :condlist#) 2) > 0 [

op [condlist unbalanced]]
make "cl# :condlist#
label "Ioopst
if emptyp :cl# [stop]
if run first :cl# [run first bf :cl# stop]
make "cl# bf bf :cl#

go "Ioopst
end

to delete :object :objlist
if not memberp :object :objlist [op :objlist]
if emptyp :objlist [op []]
if :object =first :objlist [op bf :objlist]
op fput first :objlist delete :object bf :objlist
end

28

(

(

\ ()

Dr. Logo Newsletter

to every :objlist# :predicate#
repeat count :objlist# [
if not run (se :predicate# "first (list :objlist#)) [

op "FALSE]
make "objlist# bf :objlist#]

op "TRUE
end

to filled cir :radius

(local "x "p)
make "x pos make "p pen
repeat 360 [fd :radius pu setpos :x rt 1
end

setpen :p]

to filled_pie :center :radius :angle
(local "p)
make "p pen
pu setpos :center setpen :p
repeat :angle [fd :radius pu setpos :center rt 1
end

setpen :p]

to forget :object
if (se :object) =[forget] [stop]
repeat (count plist :object) / 2 [

remprop :object first plist :object]
end

to inkey
if keyp [op rc] [op []]

end

to intersection :set1 :set2

if or (emptyp :set1) (emptyp :set2) [op []]
if memberp (first :set1) :set2 [

op (se (list first :set1) intersection (bf :set1) :set2]
op intersection (bf :set1) :set2

end

to loop :body#
repeat 1 / 0 :body#
end

29

Dr.Logo Newsletter

to map :function# :maplist#
if emptyp :maplist# [op []]
op (se

(run (list :function# :maplist#»
(map :function# bf :maplist#»

end

to mapc :function# :maplist#
repeat count :maplist# [

run Iput :maplist# :function#
make "maplist# bf :maplist#]

end

to mapfirst :function# :maplist#
if emptvp :maplist# lop []]
op (se
(run
(list :function# "first :maplist#»
(mapfirst :function# bf :maplist#»

end

to menu :menulist#
; menulist# format is [choice action ..J
(local "1# "m# "n#)
if emptvp :menulist# [stop]
label "Ioopst
make "1# :menulist#
make "n# 0
pr []
repeat (count :menulist#) / 2 [

make "n# :n# + 1
(pr :n# first :1#)
make "1# bf bf :1#]

pr [] type [Enter choice:]
make "m# first read list

if not numberp :m# [go "Ioopst]
make "m# int :m#
if or (:m# < 1) (:m# > :n#) [go "Ioopst]
run (se item :m# .. 2 :menulist#)
end

30

(

(

~)

Dr. Logo Newsletter

to nerase :keeplist
(local "x "v "z)
make "x sort proclist
if wordp :keeplist [

make "v (list :keeplist)] [make "V :keeplist]
make "V (se :v "nerase)
make "z count :v
repeat :z [

if memberp (first :V) :x [
if where =1 [make "x bf :x] [
if where =count :x [make "x bl :x] [
make "x (se

piece 1 (where - 1) :x
piece (where + 1) (count :x) :x)))

make "V bf :V]]
pr [These procedures will be erased:]
pr []
(pr :x)
pr []
type [Is this what you want (V / n) 7]
if "V =Ic rc [pr [V] erase :x] [pr [n]]
end

to pie :center :radius :angle
(local "p "amt)
make "p pen
make "amt :radius .. 1.75e-2 ; pi / 180
pu setpos :center setpen :p
fd :radius rt 90

repeat :angle [fd :amt rt 1]
rt 90 fd :radius rt 180
end

to pop :stack
local "pop##
if emptyp thing :stack [op []]
make "pop## first thing :stack
make :stack bf thing :stack
op :pop##
end

to push :object :stack
if emptyp (plist :stack) [make :stack []]
make :stack fput :object thing :stack
end

31

-,
I

Dr.Logo Newsletter

to remove :object :objlist
(local "n "m)
if not memberp :object :objlist lop :objlist]
make "n where make "m count :objlist
if :n =1 fop remove :object bf :objlist]
if :n =:m fop bl :objlist]
op remove :object (se

piece 1 (:n - 1) :objlist
piece (:n + 1) :m :objlist)

end

to replace :old :new :in
if emptyp :in fop (]]
if :old =:new fop :in]
if wordp :in [if :old =:in lop :new] lop :in]]
op fput (replace :old :new (first :in))

(replace :old :new (bf :in»
end

to reverse :set
if count :set < 2 fop :set]
op (se (list last :set) reverse bl :set)
end

to rise :object#
(local "y##)
catch "error ({make "y## run (se :object#» op :y##]
op []
end

to sink :object
end

to some :objlist# :predicate#
repeat count :objlist# [
if run (se :predicate# "first (list :objlist#)) lop "TRUE]
make "objlist# bf :objlist#]

op "FALSE
end

32

(

(

()

Dr. Logo Newsletter

to sort.procs
(local "x)
make "x sort proclist
if count :x =1 [stop]
repeat (count :x) - 1 [

(follow (first :x) (first butfirst :x))
make "x butfirst :x]

end

to subset :objlist# :predicate#
(local "x##)
if emptyp :objlist# lop (]]
make "x## []
repeat count :objlist# [

if run (se :predicate# "first (list :objlist#» [
make "x## Iput first :objlist# :x##]
make "objlist# bf :objlist#]

op :x##
end

to union :set1 :set2

if emptyp :set1 lop :set2]
if memberp (first :set1) :set2 fop union bf :set1
op union bf :set1 (se (list first :set1) :set2)

end

:set2]

to unpkgall :set
(local "x)
if emptyp :set [stop]
make "x :set
repeat count :set [remprop first :x ".PAK make "x bf :x]
end

to until :cond# :body#
label "Ioopst
run :body#
if not run :cond# [go "Ioopst]
end

33

Dr.Logo Newsletter

touses
(local"x "y)

make "x sort proclist
repeat count :x [

pocall first :x
make "x bf :x
pr [)
if not emptyp :x [make "y rc pr []]]

end

to verall

(local "x "y)
make "x sort proclist
make "y [)
pr [)
repeat count :x [

type (se [Erase] first :x [\ (y I n) ?\])
if "y =Ic rc [
pr [V] make "y Iput (first :x) :y] [
pr [n]]

make "x bf :x]
pr [) pr [These procedures will be erased;] pr [)
pr ;y pr [)
type [Is this what you want (y I n) ?]
if "y =Ic rc [pr [V] erase :y] [pr [n]l
end

to while :cond# :body#
label "Ioopst

if run :cond# [run ;body#] [stop]
go "Ioopst

end

34

(

I
...

....

,f'-
./

Dr. Logo Newsletter

An Example of Tool Usage

Some people find they can understand something much better if they can see an example

of it in operation. In fact, given Logo's use of familiar objects to express abstract ideas,

many of you using the language should learn this way. Therefore we have included an

example program using a number of these tools. The program play implements the

classic game REVERSE - a simple thinking game. Examine the procedures and you will

see how using the tools makes the code easier to understand.

to ask :question
; returns a user response to a question
(type :question)
op first readlist
end

to askyn :question
; returns TRUE if user answers question yes
(local "ans)
(type :question)
make "ans Ic rc
(pr :ans)
op ;ans ="y
end

to check for win

if not (:b~ard = [0 1 2 3 4 5 6 7 8 9]) [stop]
make "game over "TRUE
pr [) show :board pr [)
(pr [You've done it in only\] :move - 1 [\ moves!])
pr [)
end

to reverse :set

; returns a reversed copy of the input list
if emptyp :set fop []]
op (se (list last :set) reverse bl :set)
end

to loop :body#
; repeat instructions in bOdy (until stop or op).
repeat 1 I 0 :body#
end

35

l Dr. Logo Newsletter

to until :cond# :body#
; perform the body until the condition is true
label "Ioopst
run :body#
if not run :cond# [go "Ioopst]

end

to sink :x
end

to explain_rules
ct

pr [This is the game of REVERSE] pr []
pr [I will give you a scrambled list of 10 numbers and you have to put]
pr [them in order, from the smallest to the largest.] pr []
pr [The tricky part is that the only thing you can do is to reverse]
pr [some or all of the numbers. For example, if you have the list]
pr [] pr [[1 3 2 6 4 9 8 5 0 7))
pr [] pr [and you reverse 5 , the new list will be:]
pr [] pr [[4 6 2 3 1 9 8 5 0 7))
pr [] pr [If you now reverse 3 the list becomes:]
pr [] pr [[2 6 4 3 1 9 8 5 0 7)) pr []
pr [] pr [Now press the RETURN key to begin]
sink rq

end

to init_game
ct

pr [The game of REVERSE]
pr []
make "board shuffle [0 1 2 3 4 5 6 7 8 9]

make "game_over "FALSE
make "move 1

end

36

(

(

\

()

r)"'-

Dr. Logo Newsletter

to move

loop [
(pr [list is:] (list :board) [\ move:\] :move) pr []
make "n ask [How many items to reverse ?]
if not numberp :n [make "n 11]
if :n > 10 [pr [Sorry, I can't do that.)) [stop))

make "move :move + 1
if :n < 2 [stop]
make "board if :n =10 [

reverse :board] [
(se reverse piece 1 :n :board piece (:n + 1) 10 :board»

end

to play
; the game of REVERSE

(local "board "game_over "move "n "m)
explain rules
loop [-

init game
until [:game over] [move check for win]
if not askyn -[Play again (y / n) 1] [stop))

end

37

