
Post Office Box 579, Pacific Grove, California 93950, (408) 649-3896

CP 1M 2 INTERF ACE GUIDE

Copyright (c) 1979

DIGITAL RESEARCH

~----

Copyright (c) 1979 by Digital Research. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into
any languag(! or computer language, in any form or by any
means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of
Digital Research, Post Office Box 579, Pacific Grove,
California 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any parti-
cular purpose. Further, Digital Research reserves the right
to revise this publication and to make changes from time to
time in the content hereof without obligation of Digital
Research to notify any person of such revision or changes.

.

8

o

CP1M 2 INTERPACE GUIDE

Copyright (c) 1979
Digital Research, Box 579
Pacific Grove, California

1.

2.

3.

Introduction. . 1. .

. 3

. 29
Operating System Call Conventions

A Sample File-to-File Copy Program

A Sample File Dump utility 344.

5.

. . . .

. 37A Sample Random Access Program

6. System Function Summary 46.

1. INTRODUCTION.

~~ This manual describes CP/M, release 2, system organization
including the structure of memory and system entry points. The
intentionis to provide the necessary information required to write
programs which operate under CP/M, and which use the peripheraland
disk I/O facilities of the system.

CP/M is logically divided into four parts, called the Basic I/O
System (BIOS), the Basic Disk Operating System (BDOS), the Console
command processor (CCP), and the Transient Program Area (TPA). The
BIOS is a hardware-dependent module which defines the exact low level
interface to a particular computer system which is necessary for
peripheral device I/O. Although a standard BIOS is supplied by
Digital Research, explicit instructions are provided for field
reconfiguration of the BIOS to match nearly any hardware environment
(see the Digital Research manual entitled "CP/M Alteration Guide") .

The BIOS and BDOS are logicallycombined into a singlemodule with a
common entry point, and referred to as the FDOS. The CCP is a
distinct pr'ogramwhich uses the FDOS to provide a human-oriented
interface to the information which is cataloged on the backup storage
device. The TPA is an area of memory (i.e., the portion which is not
used by the FDOS and CCP) where various non-resident operating system
commands and user programs are executed. The lower portion of memory
is reserved for system information and is detailed later sections.
Memory organization of the CP/M system in shown below:

The exact memory addresses corresponding to BOOT, TBASE, CBASE, and
FBASE vary from version to version, and are describedfully in the
"CP/M Alteration Guide.II All standard CP/M versions, however, assume
BOOT = 9999H, which is the base of random access memory. The machine
code found at location BOOT performs a system "warm start" which loads~ and initializes the programs and variables necessary to return control
to the CCP. Thus, transient programs need only jump to location BOOT

(All Information Contained Herein is Proprietary to Digital Research.)

1

I ---------------------------
high I I

memory I I

I FDOS (BDOS+BIOS) I

FBASE: I I---------------------------
I I

I CCP I

CBASE: I I---------------------------
I I

I I

I I

I TPA I

I I

TBASE: I I---------------------------
I system parameters

BOOT: I---------------------------

to return control to CP/M at the command level. Further, the standard
versions assume TBASE = BOOT+0l00H which is normally location 0l00H.

The principal entry point to the FDOS is at location BOOT+000,
(normally 0005H) where a jump to FBASE is found. The address field ~
BOOT+0006H (normally 0006H) contains the value of FBASE and can be
used to determine the size of ' available memory, assuming the CCP is
being overlayed by a transient program.

Transient
follows. The
lines following
forms:

programs are loaded into the TPA and executed as
operator communicateswith the CCP by typing command
each prompt. Each command line takes one of the

command
command filel
command filel file2

where "command" is either a built-in function such as DIR or TYPE, or
the name of a transient command or program. If the command is a
,built-in function of CP/M, it is executed immediately. Otherwise, the
CCP searches the currently addressed disk for a file by the name

command. COM

If the file is found, it is assumed to be a memory image of a program
which executes in the TPA, and thus implicitly originates at TBASE in
memory. The CCP loads the COM file from the disk into memory starting
at TBASE and possibly extending up to CBASE.

0), ~i

If the command is followed by one or two file specifications,
the CCP prepares one or two file control block (FCB) names in the
system parameter area. These optional FCB's are in the form necessary
to access files through the FDOS, and are described in the next
section.

The transient program receives control from the CCP and begins
execution, perhaps using the I/O facilities of the FDOS. The
transient program is "called" from the CCP, and thus can simply return
to the CCP upon completion of its processing, or can jump to BOOT to
pass control back to CP/M. In the first case, the transient program
must not use memory above CBASE, while in the latter case, memory up
through FBASE-l is free.

The transient program may use the CP/M I/O facilities to
communicate with the operator's console and peripheral devices,
including the disk subsystem. The I/O system is accessed by passing a
"functionnumber" and an "informationaddress" to CP/M through the
FDOS entry point at BOOT+0005H. In the case of a disk read, for
example, the transientprogram sends the number corresponding to a
disk read, along with the address of an FCB to the CP/M FDOS. The
FDOS, in turn, performs the operationand returnswith either a disk
read completionindicationor an error number indicatingthat the disk
read was unsuccessful. The functionnumbers and error indicatorsare
given in below.

(All Information Contained Herein is Proprietary to Digital Research.)

2

2. OPERATING SYSTEM CALL CONVENTIONS.

8 The purpose of this section is to provide detailed information
for performing direct operating system calls from user programs. Many
of the functions listed below, however, are more simply accessed
through the I/O macro library provided with the MAC macro assembler,
and listed in the Digital Research manual entitled "MAC Macro
Assembler: Language Manual and Appl ications Guide. II

CP/M facilitieswhich are available for access by transient
programs fall into two general categories: simple device I/O, and
disk file I/O. The simple device operations include:

Read a Console Character
Write a Console Character
Read a Sequential Tape Character
Write a Sequential Tape Character
Write a List Device Character
Get or Set I/O Status
Print Console Buffer
Read Console Buffer
Interrogate Console Ready

The FDOS operations which perform disk Input/Output are

8

Disk System Reset
Drive Selection
File Creation
File Open
File Close
Directory Search
File Delete
File Rename
Random or Sequential Read
Random or Sequential Write
Interrogate Available Disks
Interrogate Selected Disk
Set DMA Address
Set/Reset File Indicators

As mentioned above, access to the FDOS functions is accomplished
by passing a function number and information address through the
primary entry point at location BOOT+0005H. In general, the function
number is passed in register C with the information address in the
double byte pair DE. Single byte values are returned in register A,
with double byte values returned in HL (a zero value is returned when
the function number is out of range). For reasons of compatibility,
register A = L and register B = H upon return in all cases. Note that
the register passing conventions of CP/M agree with those of Intel's
PL/M systems programming language. The list of CP/M function numbers
is given below.

(All Information Contained Herein is Proprietary to Digital Research.)

3

(Functions 28 and 32 should be avoided in
maintain upward compatibility with MP/M.)

application programs to

Upon entry to a transient program, the CCP leaves the stack
pointer set to an eight level stack area with the CCP return address
pushed onto the stack, leaving seven levels before overflow occurs.
Although this stack is usually not used by a transient program (i.e.,
most transients return to the CCP though a jump to location 0000H), iR\
is sufficientlylarge to make CP/M system calls since the FDO~!
switches to a local stack at system entry. The following assembly
language program segment, for example, reads characters continuously
until an asterisk is encountered, at which time control returns to the
CCP (assuming a standard CP/M system with BOOT = 0000H):

CP/M implements a named file structure on each disk, providing a
logical organization which allows any particular file to contain any
number of records from completely empty, to the full capacity of the
drive. Each drive is logically distinct with a disk directory and
file data area. The disk file names are in three parts: the drive
select code, the file name consisting of one to eight non-blank
characters, and the file type consisting of zero to three non-blank
characters. The file type names the generic category of a particular

file, while the file name distinguishes individual files in eac~1
category. The file types listed below name a few generic categorie~J,

(All Information Contained Herein is Proprietary to Digital Research.)

4

o System Reset 19 Delete File
1 Console Input 20 Read Sequential
2 Console Output 21 Wr ite Sequential V3 Reader Input 22 Make File
4 Punch Output 23 Rename File
5 List Output 24 Return Login Vector
6 Direct Console I/O 25 Return Current Disk
7 Get I/O Byte 26 Set DMA Address
8 Set I/O Byte 27 Get Addr (Alloc)
9 Pr int Str ing 28 Write Protect Disk
10 Read Console Buffer 29 Get R/O Vector
11 Get Console Status 30 Set File Attributes
12 Return Version Number 31 Get Addr(Disk Parms)
13 Reset Disk System 32 Set/Get User Code
14 Select Disk 33 Read Random
15 Open File 34 Write Random
16 Close File 35 Compute File Size
17 Search for First 36 Set Random Record
18 Search for Next

BDOS EQU 0 0 (05H iSTANDARD CP/M ENTRY
CONIN EQU 1 iCONSOLE INPUT FUNCTION
i

ORG 0100H iBASE OF TPA
N EXTC: MVI C,CONIN iREAD NEXT CHARACTER

CALL BDOS iRETURN CHARACTER IN <A>
CPI I *I iEND OF PROCESSING?
JNZ NEXTC iLOOP IF NOT
RET iRE'rURN TO CCP
END

which have been established, although they are generally arbitrary:

ASM
PRN
HEX
BAS
INT
COM

Assembler Source
Printer Listing
Hex Machine Code
Basic Source File
Intermediate Code
CCP Command File

PLI
REL
TEX
BAK
SYM
$$$

PL/I Source File
Relocatable Module
TEX Formatter Source
ED Source Backup
SID Symbol File
Temporary File

Source files are treated as a sequence of ASCII characters, where each
"line" of the source file is followed by a carriage-return line-feed
sequence (0DH followed by 0AH). Thus one 128 byte CP/M record could
contain several lines of source text. The end of an ASCII file is
denoted by a control-Z character (lAH) or a real end of file, returned
by the CP/M read operation. Control-Z characters embedded within
machine code files (e.g., COM files) are ignored, however, and the end
of file condition returned by CP/M is used to terminate read
operations.

Files in CP/M can be thought of as a sequence of up to 65536
records of 128 bytes each, numbered from 0 through 65535, thus
allowing a maximum of 8 megabytes per file. Note, however, that
although the records may be consideredlogicallycontiguous,they may
not be physicallycontiguousin the disk data area. Internally, all
files are broken into l6K byte segments called logical extents, so
that counters are easily maintainedas 8-bit values. Although the
decomposition into extents is discussed in the paragraphswhich
follow, they are of no particularconsequenceto the programmer since
each extent is automaticallyaccessed in both sequentialand random
access modes.

In the file operations starting with function number 15, DE
usually addresses a file control block (FCB). Transient programs
often use the default file control block area reserved by CP/M at
location BOOT+005CH (normally 005CH) for simple file operations. The
basic unit of file information is a 128 byte record used for all file
operations, thus a default location for disk I/O is provided by CP/M
at location BOOT+0080H (normally 0080H) which is the initial default
DMA address (see function 26). All directory operations take place in
a reserved area which does not affect write buffers as was the case in
release 1, with the exception of Search First and Search Next, where
compatibility is required.

The File Control Block (FCB) data area consists of
33 bytes for sequential access and a series of 36 bytes
that the file is accessed randomly. The default file
normally located at 005CH can be used for random access
the three bytes starting at BOOT+007DH are availabl~ for
The FCB format is shown with the following fields:

a sequence of
in the case
control block
files, since
this purpose.

8
(All Information Contained Herein is Proprietary to Digital Research.)

5

--

Idrlfllf21/ /lf8Itllt2It3Iexlslls2Ircld01/ /ldnlcrlr0lr1lr21
--

00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35

where

dr

fl...f8

tl,t2,t3

ex

sl

s2

rc

d0...dn

cr

r0,rl,r2

drive code (0 - 16)
o => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,

16=> auto disk select drive P.

contain the file name in ASCII
upper case, with high bit = 0

contain the file type in ASCII
upper case, with high bit = 0
tll, t21, and t31 denote the
bit of these positions,
tll = 1 => Read/Only file,
t21 = 1 => SYS file, no DIR list

contains the current extent number,
normally set to 00 by the user, but
in range 0 - 31 during file I/O

reserved for internal system use

reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

o

record count for extent "ex,"
takes on values from 0 - 128

filled-in by CP/M, reserved for
system use

current record to read or write in

a sequential file operation, normally
set to zero by user

optional random record number in the
range 0-65535, with overflow to r2,
r0,rl constitute a 16-bit value with
low byte r0, and high byte rl

Each file being accessed through CP/M must have a corresponding
FCB which provides the name and allocation information for all
subsequent file operations. When accessing files, it is the
programmer IS responsibility to fill the lower sixteen bytes of the FCB
and initialize the "cr" field. Normally, bytes 1 through 11 are set
to the ASCII character values for the file name and file type, while
all other fields are zero.

(All Information Contained Herein is Proprietary to Digital Research.)

6

FCB's are stored in a directory area of the disk, and are
brought into central memory before proceedingwith file operations

It (seethe OPEN and MAKE functions). The memory copy of the FCB is
updated as file operationstake place and later recordedpermanently
on disk at the termination of the file operation (see the CLOSE
command) .

The CCP constructs the first sixteen bytes of two optional FCB's
for a transient by scanning the remainder of the line following the
transient name, denoted by "filel" and "file2" in the prototype
command line described above, with unspecified fields set to ASCII
blanks. The first FCB is constructed at location BOOT+005CH, and can
be used as-is for subsequent file operations. The second FCB occupies
the d0 ... dn portion of the first FCB, and must be moved to another
area of memory before use. If, for example, the operator types

PROGNAME B:X.ZOT Y.ZAP

the file PROGNAME.COM is loaded into the TPA, and the default FCB at
BOOT+005CH is initialized to drive code 2, file name "X" and file type
"ZOT". The second drive code takes the default value 0, which is
placed at BOOT+006CH, with the file name "Y" placed into location
BOOT+006DH and file type "ZAP" located 8 bytes later at BOOT+0075H.
All r em a in ing fie 1ds t h r ou g h "c r" are set to ze r o. Not e a g a in t hat it
is the programmer's responsibility to move this second file name and
type to another area, usually a separate file control block, before
opening the file which begins at BOOT+005CH, due to the fact that the

8 open operation will overwrite the second name and type.
If no file names are specified in the original command, then the

fields beginning at BOOT+005DH and BOOT+006DH contain blanks. In all
cases, the CCP translates lower case alphabetics to upper case to be
consistent with the CP/M file naming conventions.

As an added convenience,the default buffer area at location
BOOT+0080H is initialized to the command line tail typed by the
operator following the program name. The first position contains the
number of characters, with the charactersthemselvesfollowingthe
character count. Given the above command line, the area beginning at
BOOT+0080H is initialized as follows:

BOOT+0080H:
+00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +10 +11 +12 +13 +14
14 .. II .~B.. ": II IIXII II. n ItZit.. 0II "T.. U II h YII If. II IIZ" ..A II 'tP II

where the characters are translated to upper case ASCII with
uninitializedmemory followingthe last valid character. Again, it is
the responsibilityof the programmerto extract the information from
this buffer before any file operations are performed,unless the
default DMA address is explicitly changed.

The individual functions are described in detail
which follow.

in the pages

(All Information Contained Herein is Proprietary to Digital Research.)

7

* *

* FUNCTION~: System Reset ** *

* Entry Parameters: *
* Register C: ~~H *

The system reset function returns control to the CP/M operating
system at the CCP level. The CCP re-initializes the disk subsystem by
selecting and logging-indisk drive A. This function has exactly the
same effect as a jump to location BOOT.

* *

* FUNCTION 1: CONSOLE INPUT *
* *

* Entry Parameters: *
* Register C: 01H ** *
* Returned Value: *
* Register A: ASCII Character*

The console input function reads the next console character to
O

.

register A. Graphic characters, along with carriage return, line .1
feed, and backspace (ctl-H) are echoed to the console. Tab characters
(ctl-I) are expanded in columns of eight characters. A check is made
for start/stop scroll (ctl-S) and start/stop printer echo (ctl-P).
The FDOS does not return to the calling program until a character has
been typed, thus suspending execution if a character is not ready.

* *
* FUNCTION2: CONSOLEOUTPUT *
* *

* Entry Parameters: *
* Register C: ~2H *
* Register E: ASCII Character ** *

The ASCII characterfrom register E is sent to the console
device. Similar to function 1, tabs are expanded and checks are made
for start/stopscroll and printer echo.

~)

(All Information Contained Herein is Proprietary to Digital Research.)

8

* *
* FUNCTION 3: READER INPUT *
* *

* Entry Parameters: *
* Register C: t33H ** *
* Returned Value: *
* Register A: ASCII Character**

The Reader Input function reads the next character from the
logical reader into registerA (see the IOBYTE definitionin the "CP/M
Alteration Guide"). Control does not return until the characterhas
been read.

* *
* FUNCTION 4: PUNCH OUTPUT *
* *

* Entry Parameters: *
* Register C: t34H *
* Register E: ASCII Character ** *

The Punch Output function sends the character from register E to
the logical punch device.

* *
* FUNCTION5: LISTOUTPUT *
* *

* Entry Parameters: *
* Register C: t35H *
* Register E: ASCII Character ** *

The List Output function sends the ASCII character in register E
to the logical listing device.

(All Information Contained Herein is Proprietary to Digital Research.)

9

-

* *

* FUNCTION 6: DIRECT CONSOLE I/O ** *

* Entry Parameters: *
* Register C: 06H *
* Register E: 0FFH (input)or *
* char (output) ** *
* Returned Value: *
* Register A: char or status *

(no value) *

Direct console I/O is supported under CP/M for those specialized
applications where unadorned console input and output is required.
Use of this function should, in general, be avoided since it bypasses
all of CP/M's normal control character functions (e.g., control-S and
control-P). Programs which perform direct I/O through the BIOS under
previous releases of CP/M, however, should be changed to use direct
I/O under BDOS so that they can be fully supported under future
releases of MP/M and CP/M.

Upon entry to function 6, register E either contains hexadecimal
FF, denoting a console input request, or register E contains an ASCII
character. If the input value is FF, then function 6 returns A = 00
if no character is ready, otherwise A contains the next console input
character.

If the input value in E is not FF, then function 6 assumes
E contains a valid ASCII character which is sent to the console.

that

(All Information Contained Herein is Proprietary to Digital Research.)

10

* *
* FUNCTION 7: GET I/O BYTE *
* *

* Entry Parameters: *
* Register C: 87H ** *
* Returned Value: *
* Register A: I/O Byte Value **

The Get I/O Byte function returns the current value of IOBYTE in
register A. See the "CP/M Alteration Guide" for IOBYTE definition.

* *

* FUNCTION 8: SET I/O BYTE ** *

* Entry Parameters: *
* Register C: 88H *
* Register E: I/O Byte Value ** *

8 The Set I/O Byte function changes the
that given in register E.

system IOBYTE value to

* *
*
*

FUNCTION 9: PRINT STRING *
*

* Entry Parameters: *
* Register C: 89H *
* RegistersDE: String Address ** *

The Print String function sends the character string stored in
memory at the location given by DE to the console device, until a "$"
is encountered in the string. Tabs are expanded as in function 2, and
checks are made for start/stop scroll and printer echo.

(All Information Contained Herein is Proprietary to Digital Research.)

11

* *
* FUNCTION 10: READ CONSOLE BUFFER *
* *

* Entry Parameters: *
* Register C: 0AH *
* RegistersDE: Buffer Address ** *
* Returned Value: *
* Console Charactersin Buffer *

The Read Buffer function reads a line of edited console input
into a buffer addressedby registersDE. Console input is terminated
when either the input buffer overflows. The Read Buffer takes the
form:

DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 . . . +n

Imxlnclcllc21c31c41c51c61c71 . . . I??I

where "mx" is the maximum number of characters which the buffer will

hold (1 to 255), "nc" is the number of characters read (set by FDOS
upon return), followed by the characters read from the console. if nc
< mx, then uninitialized positions follow the last character, denoted

by "??" in the above figure. A number of control functionsareA
recognized during line editing: 't:.~

rub/del
ctl-C
ctl-E
ctl-H
ctl-J
ctl-M
ctl-R
ctl-U
ctl-x

removes and echoes the last character
reboots when at the beginning of line
causes physical end of line
backspaces one character position
(line feed) terminates input line
(return) terminates input line
retypes the current line after new line
removes currnt line after new line
backspaces to beginning of current line

Note also that certain functionswhich return the carriage to the
leftmost position (e.g., ctl-X) do so only to the column position
where the prompt ended (in earlier releases,the carriage returned to
the extreme left margin). This conventionmakes operatordata input
and line correctionmore legible.

(All Information Contained Herein is Proprietary to Digital Research.)

12

* *
* FUNCTION 11: GET CONSOLE STATUS *
* *

* Entry Parameters: *
* Register C: 0BH ** *
* Returned Value: *
* Register A: Console Status *

The Console Status function checks to see if a character has
been typed at the console. If a character is ready, the value 0FFH is
returned in register A. Otherwise a 00H value is returned.

* *
* FUNCTION 12: RETURN VERSION NUMBER *
* *

* Entry Parameters: *
* Register C: 0CH ** *
* Returned Value: *
* RegistersHL: Version Number **

8
Function 12 provides information which allows version

independentprogramming. A two-bytevalue is returned,with H = 00
designating the CP/M release (H = 01 for MP/M), and L = 00 for all
releasesprevious to 2.0. CP/M 2.0 returns a hexadecimal 20 in
register L, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. Using function 12, for example, you can
write application programs which provide both sequentialand random
access functions,with 'randomaccess disabled when operating under
early releases of CP/M.

8
(All Information Contained Herein is Proprietary to Digital Research.)

13

* *
* FUNCTION13: RESET DISK SYSTEM *
* *

* Entry Parameters: *
* Register C: 0DH *
* *

The Reset Disk Function is used to programmaticallyrestore the
file system to a reset state where all disks are set to read/write
(seefunctions28 and 29), only disk drive A is selected, and the
default DMA address is reset to BOOT+0080H. This function can be
used, for example, by an applicationprogram which requires a disk
change without a system reboot.

* *
* FUNCTION 14: SELECT DISK *
* *

* Entry Parameters: *
* Register C: 0EH *
* Register E: SelectedDisk ** *

tJ

The Select Disk function designates the disk drive named in
register E as the default disk for subsequent file operations, with E
= 0 for drive A, 1 for drive B, and so-forth through 15 corresponding
to drive P in a full sixteen drive system. The drive is placed in an
"on-line" status which, in particular, activates its directory until
the next cold start, warm start, or disk system reset operation. If
the disk media is changed while it is on-line, the drive automatically
goes to a read/only status in a standard CP/M environment (see
function 28). FCB's which specify drive code zero (dr = 00H)
automatically reference the currently selected default drive. Drive
code values between 1 and 16, however, ignore the selected default
drive and directly reference drives A through P.

Q~

(All Information Contained Herein is Proprietary to Digital Research.)

14

I

* *
* FUNCTION 15: OPEN FILE *
* *

* Entry Parameters: *
* Register C: 0FH *
* RegistersDE: FCB Address *
* *
* Returned Value: *
* Register A: DirectoryCode **

The Open File operation is used to activate a file which
currently exists in the disk directoryfor the currentlyactive user
number. The FDOS scans the referenceddisk directoryfor a match in
positions 1 through 14 of the FCB referenced by DE (bytesl is
automatically zeroed), where an ASCII question mark (3FH) matches any
directory character in any of these positions. Normally, no question
marks are included and, further, bytes "ex" and "s2" of the FCB are
zero.

If a directory element is matched, the relevant directory
information is copied into bytes d0 through dn of the FCB, thus
allowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed until a
sucessfulopen operationis completed. Upon return, the open function
returns a "directorycode" with the value 0 through 3 if the open was
successful, or 0FFH (255 decimal) if the file cannot be found. If
question marks occur in the FCB then the first matching FCB is
act~ated. Note that the current record ("cr")must be zeroed by the
program if the file is to be accessed sequentially from the first
record.

~
(All Information Contained Herein is Proprietary to Digital Research.)

15

..

* *
* FUNCTION 16: CLOSE FILE *
* *

* Entry Parameters: *
* Register C: l0H *
* RegistersDE: FCB Address ** *
* Returned Value: *
* Register A: DirectoryCode *

The Close File functionperforms the inverseof the open file
function. Given that the FCB addressedby DE has been previously
activated through .anopen or make function (see functions 15 and 22),
the close function permanently records the new FCB in the referenced
disk directory. The FCB matching process for the close is identical
to the open function. The directory code returned for a successful
close operation is 0, 1, 2, or 3, while a 0FFH (255 decimal) is
returned if the file name cannot be found in the directory. A file
need not be closed if only read operations have taken place. If write
operations have occurred, however, the close operation is necessary to
permanently record the new directory information.

, ,

(All Information Contained Herein is Propriet~ry to Digital Research.)

16

t

* *
* FUNCTION 17: SEARCH FOR FIRST *
* *

* Entry Parameters: *
* Register C: IlH *
* RegistersDE: FCB Address ** *
* Returned Value: *
* Register A: DirectoryCode *

Search First scans the directory for a match with the file given
by the FCB addressed by DE. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise 0, 1, 2, or 3 is returned
indicating the file is present. In the case that the file is found,
the current DMA address is filled with the record containing the
directory entry, and the relative starting position is A * 32 (i.e.,
rotate the A register left 5 bits, or ADD A five times). Although not
normally required for application programs, the directory information
can be extracted from the buffer at this position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from IIfl"through "ex" matches the corresponding field of any
directory entry on the default or auto-selected disk drive. If the
"dr" field contains an ASCII question mark, then the auto disk select
function is disabled, the default disk is searched, with the search
function returning any matched entry, allocated or free, belonging to
any user number. This latter function is not normally used by
application programs, but does allow complete flexibility to scan all
current directory values. If the "dr" field is not a question mark,
the "s2" byte is automatically zeroed.

* *
* FUNCTION18: SEARCHFOR NEXT *
* *

* Entry Parameters: *
: Register C: 12H :

* Returned Value: *
* Register A: DirectoryCode *
****************~**********************

The Search Next function is similar to the Search First
function, except that the directory scan continuesfrom the last
matched entry. Similar to function 17, function 18 returns the
decimal value 255 in A when no more directory items match.

(All Information Contained Herein is Proprietary to Digital Research.)

17

* *
* FUNCTION19: DELETE FILE *
* *

* Entry Parameters: *
* Register C: 13H *
* RegistersDE: FCB Address ** *
* Returned Value: *
* Register A: DirectoryCode *

The Delete File function removes files which match the FCB
addressed by DE. The filename and type may contain ambiguous
references (i.e.,questionmarks in various positions),but the drive
select code cannot be ambiguous, as in the Search and Search Next
functions.

Function 19 returns a decimal 255
files cannot be found, otherwise a
returned.

if the referenced file or
value in the range 0 to 3 is

* *
* FUNCTION20: READSEQUENTIAL ** *

* Entry Parameters: *
* Register C: 14H *
* RegistersDE: FCB Address *
* *
* Returned Value: *
* Register A: DirectoryCode **

Given that the FCB addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Read Sequential
function reads the next 128 byte record from the file into memory at
the current DMA address. the record is read from position "cr" of the
extent, and the "cr" field is automatically incrernented to the next
record position. If the "cr" field overflows then the next logical
extent is automatically opened and the "cr" field is reset to zero in
preparation for the next read operation. The value 00H is returned in
the A register if the read operation was successful, while a non-zero
value is returned if no data exists at the next record position (e.g.,
end of file occurs).

(All Information£ontained Herein is Proprietary to Digital Research.)

18

t

)

)

* *
* FUNCTION 21: WRITE SEQUENTIAL ** *

* Entry Parameters: *
* Register C: 15H *
* RegistersDE: FCB Address ** *
* Returned Value: *
* Register A: DirectoryCode **

Given that the FCb addressed by DE has been activated through an
open or make function (numbers 15 and 22), the Write Sequential
function writes the 128 byte data record at the current DMA address to
the file named by the FCB. the record is placed at position "cr" of
the file, and the IIcr"field is automatically incremented to the next
record position. If the "cr" field overflows then the next logical
extent is automatically opened and the "cr" field is reset to zero in
preparation for the next write operation. Write operations can take
place into an existing file, in which case newly written records
overlay those which already exist in the file. Register A = 00H upon
return from a successful write operation, while a non-zero value
indicatesan unsuccessfulwrite due to a full disk.

* *
* FUNCTION 22: MAKE FILE *
* *

* Entry Parameters: *
* Register C: 16H *
* RegistersDE: FCB Address *
* *
* Returned Value: *
* Register A: DirectoryCode *

The Make File operation is similar to the open file operation
except that the FCB must name a file which does not exist in the
currently referenceddisk directory (i.e.,the one named explicitlyby
a non-zero "dr" code, or the default disk if "dr" is zero). The FDOS
creates the file and initializesboth the directoryand main memory
value to an empty file. The programmermust ensure that no duplicate
file names occur, and a precedingdelete operationis sufficientif
there is any possibilityof duplication. Upon return, registerA = 0,
1, 2, or 3 if the operationwas successfuland 0FFH (255 decimal) if
no more directory space is available. The make functionhas the
side-effectof activatingthe FCB and thus a subsequent open is not
necessary.

(All Information Contained Herein is Proprietary to Digital Research.)

19

* *
* FUNCTION 23: RENAME FILE *
* *

* Entry Parameters: *
* Register C: l7H *
* RegistersDE: FCB Address *
* *
* Returned Value: *
* Register A: DirectoryCode **

(

The Rename function uses the FCB addressed by DE to change all
occurrences of the file named in the first 16 bytes to the file named
in the second 16 bytes. The drive code "dr" at position 0 is used to
select the drive, while the drive code for the new file name at
position 16 of the FCB is assumed to be zero. Upon return, register A
is set to a value between 0 and 3 if the rename was successful, and
0FFH (255 decimal) if the first file name could not be found in the
directory scan.

* *
* FUNCTION 24: RETURN LOGIN VECTOR *
* *

*
*
*

Entry Parameters:
Register C: 18H

*
*
*

* Returned Value: *
* RegistersHL: Login Vector **

The login vector value returned by CP/M is a l6-bit vaiue in HL,
where the least significant bit of L corresponds to the first drive A,
and the high order bit of H corresponds to the sixteenth drive,
labelled P. A "0" bit indicates that the drive is not on-line, while
a "I" bit marks an drive that is actively on-line due to an explicit
disk drive selection, or an implicitdrive select caused by a file
operation which specified a non-zero "dr" field. Note that
compatibilityis maintainedwith earlier releases,since registers A
and L contain the same values upon return.

(All Information Contained Herein is Proprietary to Digital Research.)

20

* *

* FUNCTION25: RETURN CURRENT DISK *
* *

* Entry Parameters: *
* Register C: 19H ** *
* Returned Value: *
* Register A: Current Disk *

Function 25 returns the currently selected default disk number
in register A. The disk numbers range from 0 through 15 corresponding
to drives A through P.

* *
* FUNCTION 26: SET DMA ADDRESS *
* *

* Entry Parameters: *
* Register C: lAH *
* RegistersDE: DMA Address *
* *

)
"DMA" is an acronym for Direct Memory Address, which is often

used in connection with disk controllerswhich directly access the
memory of the mainframecomputer to transferdata to and from the disk
subsystem. Although many computer systems use non-DMA access (i.e.,
the data is transfered through programmedI/O op~rations),the DMA
address has, in CP/M, come to mean the address at which the 128 byte
data record residesbefore a disk write and after a disk read. Upon
cold start, warm start, or disk system reset, the DMA address is
automatically set to BOOT+0080H. The Set DMA function,however, can
be used to change this default value to address another area of memory
where the data records reside. Thus, the DMA address becomes the
value specified by DE until it is changed by a subsequentSet DMA
function,coldstart,warm start,or disk systemreset. .

(All Information Contained Herein is Proprietary to Digital Research.)

21

* *

* FUNCTION27: GET ADDR(ALLOC) *
* *

*
* Entry Parameters:

Register C: IBH
*
*

* *
* Returned Value: *
* RegistersHL: ALLOC Address *

An "allocationvector" is maintainedin main memory for each
on-line disk drive. Various system programs use the information
provided by the allocationvector to determinethe amount of remaining
storage (see the STAT program). Function 27 returnsthe base address
of the allocationvector for the currentlyselecteddisk drive. The
allocationinformationmay, however, be invalid if the selected disk
has been marked read/only. Although this function is not normally
used by applicationprograms, additional details of the allocation
vector are found in the "CP/MAlterationGuide."

* *

* FUNCTION 28: WRITE PROTECT DISK *
* *

*
*
*

Entry Parameters:
Register C: ICH

*
*
*

«

The
protection
the disk,
message

disk write protect function provides temporary write
for the currentlyselecteddisk. Any attempt to write to
before the next cold or warm start operationproduces the

Bdos Err on d: R/O

(All Information Contained Herein is Proprietary to Digital Research.) (

22

* *
*
* FUNCTION 29: GET READ/ONLY VECTOR *

*

* Entry Parameters: *
* Register C: lDH ** *
* Returned Value: *
* RegistersHL: R/O Vector Value**

Function 29 returns a bit vector in register pair HL which
indicates drives which have the temporary read/only bit set. Similar
to function 24, the least significant bit corresponds to drive A,
while the most significant bit corresponds to drive P. The R/O bit is
set either by an explicitcall to function28, or by the automatic
softwaremechanismswithin CP/M which detect changed disks.

* *
* FUNCTION 30: SET FILE ATTRIBUTES *

)

* *

* Entry Parameters: *
* Register C: lEH *
* RegistersDE: FCB Address ** *
* Returned Value: *
* Register A: DirectoryCode *

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. In
particular, the R/O and System attributes (tl' and t2') can be set or
reset. The DE pair addresses an unambiguous file name with the
appropriate attributes set or reset. Function 30 searches for a
match, and changes the matched directory entry to contain the selected
indicators. Indicators fl' through f4' are not presently used, but
may be useful for applications programs, since they are not involved
in the matching process during file open and close operations.
Indicators fS' through f8' and t3' are reserved for future system
expansion.

}
(All Information Contained Herein is Proprietary to Digital Research.)

23

* *
* FUNCTION31: GET ADDR(DISKPARMS) *
* *
********~******************************
* Entry Parameters: *
* Register C: IFH *
* *

r-
r
J
I
.

* Returned Value: *
* RegistersHL: DPB Address **

The address of the BIOS resident disk parameter block is
returned in HL as a result of this function call. This address can be
used for either of two purposes. First, the disk parameter values can
be extracted for display and space computation purposes, or transient
programs can dynamically change the values of current disk parameters
when the disk environment changes, if required. Normally, application
programs will not require this facility.

* *
* FUNCTION 32: SET/GET USER CODE *
* *

* Entry Parameters: *
* Register C: 20H *
* Register E: 0FFH (get)or *
* User Code (set)*

J
* *

* Returned Value: *
* Register A: Current Code or *
* (no value) *
~********************************

An application program can change or interrogate the currently
active user number by calling function 32. If register E = 0FFH, then
the value of the current user number is r~turned in register A, where
the value is in the range 0 to 31. If register E is not 0FFH, then
the current user number is changed to the value of E (modulo 32).

(All Information Contained Herein is Proprietary to Digital Research.)

24

*

~: FUNCTION33: READ RANDOM *
* *

* Entry Parameters: *
* Register C: 2lH *
* RegistersDE: FCB Address *
* *
* Returned Value: *
* Register A: Return Code *

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions r0 'at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits is stored with least significantbyte first (r0),middle
byte next (rl), and high byte last (r2). CP/M does not reference byte
r2, except in computing the size of a file (function 35). Byte r2
must be zero, however, since a non-zero value indicates overflow past
the end of file.

Thus, the r0,rl byte pair is treated as a double-byte, or "word"
value, which contains the record to read. This value ranges from 0 to
65535, providing access to any particular record of the 8 megabyte

.~ file. In order to,process a file using random access, the base extent
(extent 0) must flrst be opened. Although the base extent mayor may
not contain any allocated data, this ensures that the file is properly
recorded in the directory, and is visible in DIR requests. The
selected record number is then stored into the random record field
(r0,rl), and the BDOS is called to read the record. Upon return from
the call, register A either contains an error code, as listed below,
or the value 00 indicating the operation was successful. In the
latter case, the current DMA address contains the randomly accessed
record. Note that contrary to the sequential read operation, the
record number is not advanced. Thus, subsequent random read
operations continue to read the same record.

Upon each random read operation,the logical extent and current
record values are automatically set. Thus, the file can be
sequentially read or written, starting from the current randomly
accessedposition. Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode to
sequential read, and the last recordwill be re-writtenas you switch
to a sequentialwrite operation. You can, of course~ simply advance
the random record position following each random read or write to
obtain the effect of a sequentialI/O operation.

Error codes returned in register A following a random
listed below.

read are

(All Information Contained Herein is Proprietary to Digital Research.)

25

01
02
03
04
05
06

reading unwritten data
(not returned in random mode)
cannot close current extent
seek to unwritten extent
(not returned in read mode)
seek past physical end of disk

Error code 01 and 04 occur when a random read operation accesses a
data block which has not been previously written, or an extent which
has not been created, which are equivalent conditions. Error 3 does
not normally occur under proper system operation, but can be cleared
by simply re-reading, or re-opening extent zero as long as the disk is
not physically write protected. Error code 06 occurs whenever byte r2
is non-zero under the current 2.0 release. Normally, non-zero return
codes can be treated as missing data, with zero return codes
indicating operation complete.

(

(All Information Contained Herein is Proprietary to Digital Research.)

26

*
* FUNCTION 34: WRITE RANDGi

*
*

* *

* Entry Parameters: *
* Register C: 22H *
* RegistersDE: FCB Address *
* *
* Returned Value: *
* Register A: Return Code *

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the current
DMA address. Further, if the disk extent or data block which is the
target of the write has not yet been allocated, the allocation is
performed before the write operation continues. As in the Read Random
operation, the random record number is not changed as a result of the
write. The logical extent number and current record positions of the
file control block are set to correspond to the random record which is
being written. Again, sequential read or write operations can
commence following a random write, with the notation that the
currently addressed record is either read or rewritten again as the
sequential operation begins. You can also simply advance the random
record position following each write to get the effect of a sequential
write operation. Note that in particular, reading or writing the last
record of an extent in random mode does not cause an automatic extent
switch as it does in sequential mode.

The error codes returned
random read operation with
indicatesthat a new extent
overflow.

by a randomwrite are identicalto the
the addition of error code 05, which
cannot be created due to directory

(All Information Contained Herein is Proprietary to Digital Research.)

27

* *
* FUNCTION35: COMPUTE FILE SIZE *
* *

* Entry Parameters: *
* Register C: 23H *
* RegistersDE: FCB Address ** *
* Returned Value: *
* Random Record Field Set *

(

When computing the size of a file, the DE register pair
addresses an FCB in random mode format (bytesr0, rl, and r2 are
present). The FCB contains an unambiguousfile name which is used in
the directoryscan. Upon return, the random record bytes contain the
"virtual"file size which is, in effect, the record address of the
record following the end of the file. if, followinga call to
function 35, the high record byte r2 is 01, then the file contains the
maximum record count 65536. Otherwise,bytes r0 and rl constitute a
l6-bit value (r0 is the least significantbyte, as before) which is
the file size.

Data can be appended to the end of an existing file by simply
calling function 35 to set the random recordposition to the end of
file, then performinga sequence of random writes starting at the
preset record address.

The virtual size of a file corresponds to the physical size when
the file is written sequentially. If, instead, the file was created
in random mode and "holes" exist in the allocation, then the file may
in fact contain fewer records than the size indicates. If, for
example, only the last record of an eight megabyte file is written in
random mode (i.e., record number 65535), then the virtual size is
65536 records, although only one block of data is actually allocated.

(All Information Contained Herein is Proprietary to Digital Research.)

28

* *
* FUNCTION 36: SET RANDOM RECORD *
* *

* Entry Parameters: *
* Register C: 24H *
* RegistersDE: FCB Address *
* *
* Returned Value: *
* Random Record Field Set *

The Set Random Record function causes the
produce the random record position from a file
written sequentially to a particular point.
useful in two ways.

BDOS to automatically
which has been read or
The function can be

First, it is often necessary to initially read and scan a
sequential file to extract the positionsof various "key" fields. As
each key is encountered,function 36 is called to compute the random
record position for the data correspondingto this key. If the data
unit size is 128 bytes, the resultingrecordposition is placed into a
table with the key for later retrieval. After scanning the entire
file and tabularizingthe keys and their record numbers,you can move
instantlyto a particularkeyed record by performing a random read
using the correspondingrandom record number which was saved earlier.
The scheme is easily generalized when variable record lengths are
involved since the program need only store the buffer-relativebyte
position along with the key and record number in order to find the
exact startingposition of the keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentiallyaccessed to a particularpoint in the file, function 36
is called which sets the record number, and subsequentrandom read and
write operationscontinue from the selectedpoint in the file.

(All Information Contained Herein is Proprietary to Digital Research.)

29

3. A SAMPLE FILE-TO-FILE COPY PROGRAM.

The program shown below provides a relatively simple example of
file operations. The program source file is created as COPY.ASM using
the CP/M ED program and then assembled using ASM or MAC, resulting in
a "HEXIIfile. The LOAD program is the used to produce a COPY.COM file
which executes directly under the CCP. The program begins by setting
the stack pointer to a local area, and then proceeds to move the
second name from the default area at 006CH to a 33-byte file control
block called DFCB. The DFCB is then prepared for file operations by
clearing the current record field. At this point, the source and
destination FCB's are ready for processing since the SFCB at 005CH is
properly set-up by the CCP upon entry to the COpy program. That is,
the first name is placed into the default fcb, with the proper fields
zeroed, including the current record field at 007CH. The program
continues by opening the source file, deleting any exising destination
file, and then creating the destination file. If all this is
successful, the program loops at the label COpy until each record has
been read from the source file and placed into the destination file.
Upon completion of the data transfer, the destination file is closed
and the program returns to the CCP command level by jumping to BOOT.

0000=
0005 =
005c =
005c =
006c =
0080 =
0100 =

0009 =
o00f =
0010 =
0013 =
0014 =
0015 =
0016 =

0100
o 100 3llb02

0103 0e10

."

., sample file-to-file copy program

.,
at the ccp level, the command

copy a:x.y b:u.v
(

.,

;
;

copies the file named x.y from drive
a to a file named u.v on drive b.

.,
boot
bdos
fcbl
sfcb
fcb2
dbuff
tpa

equ
equ
equ
equ
equ
equ
equ

0000h
0005h
005ch
fcbl
006ch
0080h
0l00h

9
15
16
19
20
21
22

; system reboot
; bdos entry point
; first file name
; source fcb
; second file name
; default buffer
; beginning of tpa

; print buffer func.
; open file func.
; close file func.
; delete file func.
; sequential read
; sequential write
; make file func.

tpa ; beginning of tpa
sp,stack; local stack

.,
; move second file name to dfcb

mvi c,16 ; half an fcb (

- -

(All Information Contained Herein is Proprietary to bigital Research.)

;

printf equ
openf equ
closef equ
deletef equ
readf equ
writef equ
makef equ
;

org
lxi

30

0105
0108
010b
010c
010d
010e
010f
0110

116c00
21da01
la
13
77
23
0d
c20b01

0113 af
0114 32fa01

0117
011a
011d
0120
0121

115c00
cd6901
118701
3c
cc6101

0124 Ilda01
0127 cd7301

012a
012d
0130
0133
0134

0137
013a
013d
013e

0141
0144
0147
014a
014b
014e

Ilda01
cd8201
119601
3c
cc6HH

115c00
cd7801
b7
c25101

Ilda01
cd7d01
lla901
b7
c46101
c33701

0151 Ilda01
0154 cd6e01
0157 21bb01
o 15a 3 c

015b cc6101

mfcb:

.,

.,

.,

.,

copy:

;
eofile:

.,

.,

lxi
lxi
Idax
inx
mov
inx
dcr
jnz

d,fcb2
h,dfcb
d
d
m,a
h

; source of move
; destination fcb
; source fcb
; ready next
; dest fcb
; ready next
; count 16...0
; loop 16 t im e s

c
mfcb

name has been moved, zero cr
xra a ; a = 00h
sta dfcbcr; current rec = 0

source and destination fcb's ready

d,sfcb ; sourcefile
open; error if 255
d,nofile;ready message
a ; 255 becomes 0
finis; done if no file

source file open, prep destination
lxi d,dfcb; destination
call delete; remove if present

d,dfcb ; destination
make; create the file
d,nodir ; ready message
a ; 255 becomes 0
finis; done if no dir space

lxi
call
lxi
inr
cz

lxi
call
lxi
inr
cz

source file open, dest file open
copy until end of file on source

lxi
call
ora
jnz

not end
lxi
call
lxi
ora
cnz
jmp

; end
lxi
call
lxi
inr
cz

d, s fc b

read
a
eofile

; source
; read next record
; end of file?

skip write if so

of file, write the record
d,dfcb ; destination
write; write record
d,space ; ready message
a ; 00 if write ok
finis; end if so
copy; loop until eof

of file, close destination
d,dfcb ; destination
close; 255 if error
h,wrprot; ready message
a ; 255 becomes 00
finis; shouldn't happen

copy operation complete, end

(All Information Contained Herein is Proprietary to Digital Research.)

31

~15e llcc~l
;
finis:

~161 ~e~9
~163 cd~5~~
~166 c3~~~~

.,
;

~169 ~e~f
016b c3~5~~

open:

~16e ~el~
017~ c3~500

0173 0e13
0175 c305~~

;
close:

lxi

; write
mvi
call
jmp

d,normal; ready message

message given by de, reboot
c,printf
bdos ; write message
boot; reboot system

(

system interface subroutines
(all return directly from bdos)

mvi
jrnp

mvi

jmp
.,
delete: mvi

jmp

0178 ~e14
017a c3~50~

017d 0e15
017f c3~500

;
read:

.,
wr i te:

0182 ~e16
0184 c3~5~0

.,
make:

;

0187
0196
01a9
01bb
01cc

6e6f2 0fnof ile:

6e6f2~9nodir:
6 f7 57 4f space:

7772695wrprot:
636f7~0normal:

01da
01fa =

.,
dfcb:
dfcbcr
;

01fb

021b
stack:

mvi
jmp

mvi
jmp

mvi
jmp

console
db
db
db
db
db

c,openf
bdos

c,closef
bdos

c,deletef
bdos

c, readf
bdos

c,writef
bdos

c,makef
bdos

messages
'no source file$'
'no directory space$'
'out of data space$'
'write protected?$'
'copy complete$'

)~

data areas
ds 33 ; destination fcb
equ dfcb+32 ; current record

32 ; 16 level stackds

end

Note that there are several simplifications in this particular
program. First, there are no checks for invalid file names which
could, for example, contain ambiguous references. This situation
could be detected by scanning the 32 byte default area starting at
location 005CH for ASCII questionmarks. A check should also be made
to ensure that the file names have, in fact, been included (check
locations005DH and 006DH for non-blankASCII characters). Finally, a
check should be made to ensure that the source and destination file
names are different. A speed improvementcould be made by buffering
more data on each read operation. One could, for example, determine

(All Information Contained Herein is Proprietary to Digital Research.)

32

the size of memory by fetching FBASE from location 0006H and use the
entire remaining portion of memory for a data buffer. In this case,
the programmer simply resets the DMA address to the next successive
128 byte area before each read. Upon writing to the destination file,
the DMA address is reset to the beginning of the buffer and
incrernented by 128 bytes to the end as each record is transferred to
the destination file.

(All Information Contained Herein is Proprietary to Digital Research.)

33

4. I
I

~

!

A SAMPLE FILE DUMP UTILITY.

The file dump program shown below is slightly more complex than
the simple copy program given in the previous section. The dump
program reads an input file, specified in the CCP command line, and
displays the content of each record in hexadecimal format at the
console. Note that the dump program saves the CCp's stack upon entry,
resets the stack to a local area, and restores the CCp's stack before
returning directly to the CCP. Thus, the dump program does not
perform and warm start at the end of processing.

i DUMP program reads input file and displays hex data

0100
0005 =
0001 =
0002 =
0009 =
000b =
o 00f =
0014 =

bdos
cons
typef
prlntf
brkf
openf
readf

005c =
0080 =

.,
fcb
buff

000d=
000a=

005c=
o05d =
0065=
0068=
o 0 6b =

007c=
o07d =

org
equ
equ
equ
equ
equ
equ
equ

equ
equ

100h
o 0 0 5h

1
2
9
11
15
20

idos entry point
iread console
itype function
ibuffer print entry
ibreak key function
ifile open
iread function

(true if char

5ch
80h

ifile control block address
iinput disk buffer address

non graphic characters
equ 0dh icarriagereturn
equ 0ah iline feed

file
equ
equ
equ
equ
equ
equ
equ

control block definitions
fcb+0 idisk name
fcb+l ifile name
fcb+9 idisk file type (3 characters)
fcb+12 ifile's current reel number
fcb+15 ifile's record count (0 to 128)
fcb+32 icurrent (next) record number (0
fcb+33 ifcb length

set up stack
lxi h,0
dad sp
entry stack pointer in hI from the ccp
shld oldsp
set sp to local stack area (restoredat
lxi sp,stktop
read and print successivebuffers
call setup iset up input file
cpi 255 i255 if file not present
jnz openok iskip if open is ok

file
lxi
call
j~

finis)

not there, give
d,opnmsg
err
finis

error message and return

ito return

(All Information Contained Herein is Proprietary to Digital Research.)

- -
34

cr
If
.,
.,
fcbdn
fcbfn
fcbft
fcbrl
fcbrc
fcbcr
fcbln
.,
i

0100 210000
0103 39

i
0104 221502

.,
0107 315702

.,
o 10a cd c101
010d f e f f

010f c21b01
.,
i

0112 Ilf301
0115 cd9c01
0118 c35101

;open operation
mvi a,80h
sta ibp
hI contains
lxi h/0

push
call
pop
jc
mov
print
check
mov
ani
jnz
print
call

check
call
accum
rrc
jc

mov
call
mov
call

inx
mvi
call
mov
call
jmp

ok, set buffer index to end

;set buffer pointer to 80h
next address to print

;start with 0000

h
gnb
h
finis
b,a

hex values
for line fold
a,1
0fh
nonum

line number
crlf

;save line position

;recall line position
;carry set by gnb if end file

;check low 4 bits

for break key
break

Isb = 1 if character ready
; into carry
;don't print anyfinis more

a,h
phex
a,l
phex

h
a I' ,
pchar
a,b
phex
9loop

;to next line number

end of dump, return to ccp
(note that a jmp to 0000h reboots)
call crIf
Ihld oldsp
sphl .

stack pointer containsccp's stack location
ret ;to the ccp

subroutines

;check break key (actually any key will do)
push h! push d! push b; environment saved
mvi c,brkf
call bdos
pop b! pop d! pop h; environment restored

(All Information Contained Herein is Proprietary to Digital Research.)

35

openok:
011b 3e80

8 0 lId 321302 .,
0120 210000

;

gloop:
0123 e5
0124 cda201
0127 el
0128 da5101
0 12b 4 7

.,
;

0 12c 7d
012d e60f
0 1 2f c 2 4 4 0 1

;

0132 cd7201
.,
.,

0135 cd5901
.,

0138 0f
0139 da5101

.,
013c 7c
013d cd8f01

't 0140 7d0141 cd8f01
nonum:

0144 23
0145 3e20
0147 cd6501
0 14a 78
014b cd8f01
0 14e c 3 2 3 01

.,
finis:
.,
.,

0151 cd7 201
0154 2a1502
0157 f9

.,
0158 c9

;
.,
;

.,
break:

0159 e5d5c5
015c 0e0b
015e cd0500

(t
0161 cldlel

ret

;printa character
push h! push d! push b; saved
mvi c,typef
mov e,a
call bdos
pop b! pop d! pop h; restored
ret

mvi
call
mvi
call
ret

a,cr
pchar
a,lf
pchar

a

(All Information Contained Herein is Proprietary to Digital Research.)

nibble
0fh
10
p10

than or
101

prn

;print
ani
cpi
jnc
less
adi
jmp

in reg a
;low 4 bits

equal to 9

greater
adi
call
ret

or equal to 10
lal - 10
pchar

;print
push
rrc
rrc
rrc
rrc
call
pop
call
ret

hex char in reg a
psw

pnib
psw
pnib

;print nibble

;pr int er ror message
d,e addressesmessage
mvi c,printf
call bdos
ret

ending with "$"
;print buffer function

;get
Ida
cpi
jnz
read

next byte
ibp
80h
g0

another buffer

36

--

0164 c9
.,
pc h a r :

0165 e5d5c5
0168 0e02
016a Sf
016b cd0500
016e cldlel
0171 c9

.,
c r If :

0172 3e0d
0174 cd6501
0177 3e0a
0179 cd6501
017c c9

.,

.,
pnib:

017d e60f
01 7f f e0 a

0181 d28901
;

0184 c630

0 18 6 c 3 8 b01

;
.,

0189 c637 p10:
018b cd6501 prn:
018e c9

;
phex:

018f f5
0190 0f
0191 0f
0192 0f
0193 0f
0194 cd7d01
0197 f1
0198 cd7d01
019b c9

;
err:
;

019c 0e09
01ge cd0500
0 la 1 c 9

;

;

gnb:
01a2 3a1302
0 la 5 f e 8 0

01a7 c2b301

01aa cdce01
01ad b 7

01ae cab301

01bl 37 .

01b2 c9

01b3
01b4
01b6
01b7

Sf
1600
3c
321302

01ba 218000
01bd 19

01be 7e

01bf b 7

01c0 c 9

01cl af
01c2 327c00

01c5 115c00
01c8 0e0f
01ca cd0500

01cd c 9

01ce
01dl
01d4
01d6
01d9
01dc

e5d5c5
115c00
0e14
cd0500
cldlel
c9

.,

.,

.,
g0:

.,
i

i

setup:
i

.,

.,
d i s kr :

i

call
ora
jz
end of
stc
ret

d i s kr

a
g0
data,

izero value if read ok
ifor another byte

return with carry set for eof

iread the byte at buff+reg a
mov e,a ils byte of buffer index
mvi d,0 idouble precision index to de
inr a iindex=index+l
sta ibp iback to memory
pointer is incremented
save the current file address
lxi h,buff
dad d
absolute character address is in hI
mov a,m
byte is in the accumulator
ora a ireset carry bit
ret

iset
open
xra
sta

up file
the file

a
fcbcr

for input
izero to accum
iclear current record

lxi
mvi
call
255 in
ret

d,fcb
c,openf
bdos
accum if open error

iread disk file record
push h! push d! push b
lxi d,fcb
mvi c.,r.eadf
call bdos
pop b! pop d! pop h
ret

i fixedmessagearea
01dd 46494c0signon:db 'filedump version 2.0$1
01f3 0d0a4e0opnmsg:db cr,lf,'noinput file present on disk$'

0213
0215

0217

0257

.,
ibp:
01 ds p:

i
.,

stktop:
i

variable area
ds 2
ds 2

iinput buffer pointer
ientry sp value from ccp

stack area
ds 64 ireserve 32 level stack

end

(All Information Contained Herein is Proprietary to Digital Research.)

37

5. A SAMPLE RANDOM ACCESS PROGRAM.

This manual is concluded with a rather extensive, but complete
example of random access operation. The program listed below performs
the simple function of reading or writing random records upon command
from the terminal. Given that the program has been created,
assembled, and placed into a file labelled RANDOM.COM, the CCP level
command:

(

RANDOM X.DAT

starts the test program. The program looks for a file by the name
X.DAT (in this particular case) and, if found, proceeds to prompt the
console for input. If not found, the file is created before the
prompt is given. Each prompt takes the form

next command?

and is followed by operator input, terminated by
The input commands take the form

a carriage return.

nW nR Q

where n is an integer value in the range 0 to 65535, and W, R, and Q
are simple command characters corresponding to random write, random
read, and quit processing, respectively. If the W command is issued,
the RANDOM program issues the prompt

type data:

The operator then responds by typing up to 127 characters, followed by
a carriage return. RANDOM then writes the character string into the
X.DAT file at record n. If the R command is issued, RANDOM reads
record number n and displays the string value at the console. If the
Q command is issued, the X.DAT file is closed, and the program returns
to the console command processor. In the interest of brevity, the
only error message is

error, try again

The program begins with an initialization section where the
input file is opened or created, followedby a continuousloop at the
label" ready" where the individual commands are interpreted. The
default file control block at 005CH and the default buffer at 0080H
are used in all disk operations. The utility subroutinesthen follow,
which contain the principal input line processor, called "readc."
This particular program shows the elements of random access
processing, and can be used as the basis for further program
development.

(All Information Contained Herein is Proprietary to Digital Research.)

38

0100 31bc0

0103
0105
0108
010a

0e0c
cd050
fe20
d2160

010d Illb0
0110 cdda0
0113 c3000

0116
0118
011b
011e
011f

0e0f
115c0
cd050
3c
c2370

;***
.* *,
;* sample random access program for cp/m 2.0
.*
,

.***,
org

;

reboot
bdos

equ
equ

100h

o 0 0 0h

o 0 0 5h

1
2
9
10
12
15
16
22
33
34

005ch
fcb+33
fcb+35
o 0 8 0h

0dh
0ah

s p ,s tack

version
c,openf
d,fcb
bdos
a
ready

*
*

;base of tpa

;system reboot
;bdos entry point

;console input function
;console output function
;print string until '$'

;read console buffer
;return version number
;file open function
;close function
;make file function
;read random
;write random

;default file control block
;random record position
;high order (overflow) byte
; buffer address

;carriage return
;line feed

.,

.***,

.* *,
;* load SP, set-up file for random access *
.* *,
.***,

version
mvi
call
cpi
jnc
bad
lxi
call
jmp

2.0?
c,version
bdos
20h
ve r sok

version, message
d,badver
print
reboot

;version 2.0 or better?

and go back

for random access
;open default fcb

;err 255 becomes zero

cannot open file, so create it

(All Information Contained Herein is Proprietary to Digital Research.)

coninp egu
conout equ
pstr ing equ
rstring equ
version equ
openf equ
closef equ
makef equ
readr equ
writer equ
;

fcb
ranrec
ranovf
buff

equ
equ
equ
equ

cr
If

equ
equ

lxi

versok:
correct
mvi
lxi
call
inr
jnz

39

I
0100

0000 =
0005 =
0001 =
0002 =
0009 =
o00a =
000c =
o00f =
0010 =
0016 =
0021 =
0022 =
005c =
007d =
o07f =
"080 =

000d =
000a =

t

.,

.***
,

.* *,
;* end of quit command, process write *
.* *,
.***,
notq:
., not the quit command, random write?

cpi IWI
jnz notw

0156 fe57
0158 c2890

rloop:

this is
lxi
call
mvi
lxi
; read
push
push
call
pop

a random write, fill buffer until cr
d,datrnsg

print ;data prompt
c,127 ;up to 127 characters
h,buff ;destination

next character to buff
b ;save counter
h ;next destination
getchr ;character to a
h ;restore counter OJ}

0l5b 114d0
0l5e cdda0
0161 0e7f
0163 21800

0166
0167
0168
016b

c5
e5
cdc20
el

(All Information Contained Herein is Proprietary to Digital Research.)

40

0122 0e16 mvi c,makef
0124 l15c0 lxi d,fcb
0127 cd050 call bdos
0l2a 3c inr a ;err 255 becomes zero
0 l2b c 2 3 7 0 jnz ready

.,
; cannot create file, directory full

0 l2e l13a 0 lxi d,nospace
0131 cdda0 call print
0134 c3000 jmp reboot ; back to ccp

.,

.***,

. * *
,
. * loop back to "ready" after each command

*
,
. * *
,
.***,
;

ready:
; file is ready for processing
;

0 13 7 cd e5 0 call readcom ;read next command
0l3a 22 7d0 shld ranrec ;store input record#
0 l3d 2l7f0 lxi h, ranovf

0140 3600 mvi m,0 ;clear high byte if set
0142 fe51 cpi IQI ;quit?
0144 c2560 jnz notq

quit processing, close file
0147 0e10 mvi c,closef
fiH49 115c0 lxi d,fcb
014c cd050 call bdos
014f 3c inr a ;err 255 becomes 0
0 150 c a b9 0 jz error ; err or me ssag e, retry
0153 c30e0 jmp reboot ; back to ccp

(All Information Contained Herein is Proprietary to Digital Research.)

41

016c cl pop b irestorenext to fill

- 016d fe0d cpi cr iend of line?
o 16f c a 7 8 0 jz erloop

i not end, store character
0172 77 mov m,a
0173 23 inx h inext to fill
0174 0d dcr c icounter goes down
0175 c2660 jnz rloop iend of buffer?

e r loop:
. end of read loop, store 00,

0178 3600 mvi m,0
.,
i write the record to selected record number

017a 0e22 mvi c,writer
017c 115c0 lxi d,fcb
017f cd050 call bdos
0182 b7 ora a ierror code zero?
0183 c2b90 jnz error imessage if not
0186 c3370 jmp ready ifor another record

.,
i***
.* *,
i* end of write command, process read *
. * *,
.***,
notw:
. not a write command, read record?,

0189 fe52 cpi IRI

018b c2b90 jnz error iskip if not
i
. read random record,

018e 0e21 mvi c ,read r
0190 115c0 lxi d,fcb
0193 cd050 call bdos
0196 b7 ora a ireturn code 00?
0197 c2b90 jnz error

i
i read was successful, write to console

019a cdcf0 call crlf inew line
019d 0e80 mvi c,128 imax 128 characters
019f 21800 lxi h,buff inext to get

wloop:
01a 2 7e mov a,m inext character
0 la 3 2 3 inx h inext to get
01a4 e67f ani 7fh imask par ity
01a6 ca370 jz ready ifor another comand if 00
01a 9 c 5 push b isave counter
0 la a e 5 push h isave next to get
01ab fe20 cpi I I

igraphic?
01ad d4c80 cnc pu tch r iskip output if not
0 Ib0 e 1 pop h
01bl cl pop b
01b2 0d dcr c icount=count-l
01b3 c2a20 jnz wloop
01b6 c3370 jmp ready

i
i***
.* *
,

i* end of read command, all errors end-up here
. *,
i***

*
*

error:
01b9 11590
01bc cddaf2J

01bf c3370

lxi
call
jmp

d ,e r rmsg

print
ready

.,
i***
.* *,
i* utility subroutines for console i/o *
.* *,
.***
,

print:

01da
f2Jldb
01de
01df
01el
01e4

d5
cdcf0
dl
f2Je09
cd05f2J

c9

iprint
push
call
pop
mvi
call
ret

the buffer addressedby de until $
d
crIf
d inew line
c , pst ring

bdos iprintthe string

01e5
01e8
01eb
f2Jled
01ff2J

116b0
cddaf2J

0e0a
117af2J
cd05f2J

read com :

iread
lxi
call
mvi
lxi
call
command

the next command line to the conbuf
d ,prompt
print icommand?
c, rstring
d, conbuf
bdos ireadcommand line
line is present, scan it

(All Information Contained Herein is Proprietary to Digital Research.)

42

getchr:
iread next console character to a

01c2 0e01 mvi c,coninp
01c4 cdf2J50 call bdos
f2Jlc7 c 9 ret

.,
putchr:

iwrite character from a to console
01c8 0e02 mvi c ,con ou t

01ca 5f mov e,a icharacter to send
f2Jlcbcd050 call bdos isend character

(01ce c9 ret
i
crIf:

isend carriage return line feed
01cf 3e0d mvi a,cr icarriage return
01dl cdc80 call putchr
0ld4 3ef2Ja mvi a,lf iline feed
01d6 cdc80 call putchr
0ld9 c9 ret

(8

01f3
elf6
01f9
01fa
01fb
01fc

21000
117c0
la
13
b7
c8

read c :

i
01fd d630
fZUff fe0a
0201 d2130

0204 29
0205 40
102106 44
0207 29
0208 29
10209 09
o 2 0a 8 5
o 20b 6f
020c d2f90
o 2 ef 2 4
0210 c3f90

i

endrd:

0213 c630
0215 fe61
0217 d8

0218 e65f
1021a c9

021b

o 23a

1024d

0259

026b

i
.***,
.* *,
i* string data area for console messages. *,
.***,
baover:

536f79 db
nospace:

4e6f29 db
da trnsg :

547970
e r rmsg :

457272

prompt:
4e6570

lxi
lxi
Idax
inx
ora
rz
not
sui
cpi
jnc
add-in
dad
mov
mov
dad
dad
dad
add
mov
jnc
inr
jmp

end of
adi
cpi
rc
lower
ani
ret

db

db

db

h,0 istart with 0000
d,conlinicommand line
d inext command character
d ito next command position
a icannot be end of command

zero, numeric?
'0 '
10
endrd

next digit
h i*2
c,l
b,h
h
h
b
1
1,a
read c
h
read c

icarry if numeric

ibc = value * 2
i*4
i*8
i*2 + *8 = *110
i+digit

ifor another char
i ove r fl ow
ifor another char

read, restore value in a
'0' icommand
'a' itranslate case?

case, mask lower case bits
lel$llllb

*
*

'sorry, you need cp/m version 2$'

'no directory space$'

, type d a t a : $'

'error, try again.$'

'next command? $'

(All Information Contained Herein is Proprietary to Digital Research.)

43

.***,

.* *,
;* fixed and variable data area
. *
,

.***,

*
* <

027a 21
027b
027c
0021 =

conbu f: db

cons iz: ds
conlin: ds
conlen equ

conlen ;lengthof
1 ;resulting
32 ;length 32
$-consiz

console buffer
size after read
buffer

029c ds 32 ; 16 1 eve 1 s tack
stack :

02bc end

Again, major improvements could be made to this particular
program to enhance its operation. In fact, with some work, this
program could evolve into a simple data base managementsystem. One
could, for example, assume a standard record size of 128 bytes,
consistingof arbitrary fieldswithin the record. A program, called
GETKEY, could be developed which first reads a sequentialfile and
extracts a specific field defined by the operator. For example, the
command

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract
the IiLASTNAMEIi field from each record, startingat position 10 and
ending at character 20. GETKEY builds a table in memory consisting of
each particular LASTNAME field, along with its l6-bit record number
location within the file. The GETKEY program then sorts this list,
and writes a new file, called LASTNAME.KEY, which is an alphabetical
list of LASTNAME fields with their corresponding record numbers.
(This list is called an "inverted index" in information retrieval
parlance.)

Rename the program shown above as QUERY, and massage it a bit so
that it reads a sorted key file into memory. The command line might
appear as:

QUERY NAMES.DAT LASTNAME.KEY

Instead of reading a number, the QUERY program reads an alphanumeric
string which is a particular key to find in the NAMES.DAT data base.
Since the LASTNAME.KEY list is sorted, you can find a particular entry
quite rapidly by performing a "binary search," similar to looking up a
name in the telephone book. That is, starting at both ends of the
list, you examine the entry halfway in between and, if not matched,
split either the upper half or the lower half for the next search.
YOu'11 quickly reach the item you're looking for (in 10g2(n) steps)
where you'11 find the corresponding record number. Fetch and display
this record at the console, just as we have done in the program shown
above.

(All Information Contained Herein is Proprietary to Digital Research.)

44

..

At this point you're just getting started. with a little more
IiIh work, you can allow a fixed grouping size which differs from the 128
~ byte record shown above. This is accomplished by keeping track of the

record number as well as the byte offset within the record. Knowing
the group size, you randomly access the record containing the proper
group, offset to the beginning of the group within the record read
sequentially until the group size has been exhausted.

Finally, you can improve QUERY considerably by allowing boolean
expressions which compute the set of records which satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL, and an AGE
less than 45. Display all the records which fit this description.
Finally, if your lists are getting too big to fit into memory,
randomly access your key files from the disk as well. One note of
consolation after all this work: if you make it through the project,
you'll have no more need for this manual!

~

(All Information Contained Herein is Proprietary to Digital Research.)

45
.

6. SYSTEM FUNCTION SUMMARY.

FUNC FUNCTION NAME

o

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

System Reset
Console Input
Console Output
Reader Input
Punch Output
List Output
Direct Console I/O
Get I/O Byte
Set I/O Byte
pr int Str ing
Read Console Buffer
Get Console Status
Return Version Number
Reset Disk System
Select Disk
Open File
Close File
Search for First
Search for Next
Delete File
Read Sequential
Wr i te Seque n t ial
Make File
Rename File
Return Login Vector
Return Current Disk
Set DMA Address
Get Addr (Alloc)
Write Protect Disk
Get R/O Vector
Set File Attributes
Get Addr(disk parms)
Set/Get User Code
Read Random
Wr ite Random

Compute File Size
Set Random Record

INPUT PARAMETERS

none
none
E = char
none
E = char
E = char
see def
none
E = IOBYTE

DE = . Buffer
DE = . Buffer
none
none
none
E = Disk Number
DE = .FCB
DE = .FCB
DE = .FCB
none
DE = .FCB
DE = .FCB
DE = .FCB
DE = .FCB
DE = .FCB
none
none
DE = .DMA
none
none
none
DE = .FCB
none
see def
DE = .FCB
DE = .FCB
DE = .FCB
DE = .FCB

* Note that A = L, and B = H upon return

OUTPUT RESULTS--------------
none
A = char
none
A = char
none
none
see def
A = IOBYTE
none
none
see def
A = 00/FF
HL= Version*
see def
see def
A = Dir Code
A = Dir Code
A = Dir Code
A = Dir Code
A = Dir Code
A = Err Code
A = Err Code
A = Dir Code
A = Dir Code
HL= Login Vect*
A = Cur Disk#
none
HL= .Alloc
see def
HL= R/O Vect*
see def
HL= .DPB
see def
A = Err
A = Err
r0, rl,
r0, rl,

Code
Code
r2
r2

(All Information Contained Herein is Proprietary to Digital Research.)

46
- --

