
m
ov

em
en

t

	�	

��
���
���������
�
�
���	�	�	�
�
�
�	����
����

���
	�����
�����������
�����������

	�������	�
�����������
�����
	����
�	���������

	����	����
����
������

����������

����������
�����������
�����������

	����	��
�

���������

	����	��
�

����������

	����	����
������
����
�	��	������

��
����	�
����	����	�

	����	����
������
����
�	���������

�������	�
���������
�

���������

	����	����
����
����
�

���	�����
�����������
�����������

���	�����
�����������
����
����
�

���	�����
�����������
�����������

���	�����
�����������
�
�
�
�

m
ot

he
r

da
ug

ht
er

em
pt

y
ra

nd
om

en

vi
ro

nm
en

t

1960 – the first
artificial universe

complex artificial life in a
Darwinian world

Frederick G. Stahl

March 2013
fred@fredstahl.com
www.fredstahl.com

1960 – the first
artificial universe

complex artificial life in a Darwinian world

Frederick G. Stahl

March 2013
fred@fredstahl.com
www.fredstahl.com

2

 1

the first operational artificial universe
complex artificial life in a Darwinian world

In 1960, I created an artificial universe inside a digital computer. It had
numeric creatures that moved through the universe eating numbers. If they
found another creature, they would eat it. They could reproduce and did.
Mutation was possible and did happen. And the creatures could observe the
world around them and could calculate and make decisions based on what
they saw, and they did. It was the first operational artificial universe with
complex artificial life.

the first design
John von Neumann’s brilliant mind is a 20th century legend. Beginning in 1922, at the age
19, until his death in 1957, he made significant theoretical contributions to mathematics,
quantum physics, computer science, mathematical economics, and more. In 1931 he
became a member of the faculty of Princeton University. Two years later he was among
the first six professors of mathematics appointed to the newly formed Institute for
Advanced Study in Princeton, a position he held until the end of his life.

Von Neumann’s interest in theoretical hydrodynamics drew him into the American
war effort and eventually into the Manhattan Project and the development of the atomic
bomb. Numerical methods for solving the differential equations describing the interactions
of shock waves in nuclear detonations required enormous calculations. Von Neumann
helped the bomb builders improve computational efficiencies, which in turn involved him
with early computers. He was a consultant to a university team that in 1945 came up with
the revolutionary computer architecture that placed both data and instructions in the same
addressable high-speed memory, an architecture that became the standard.

At about the same time, von Neumann became interested in the theoretical limits of
self-reproducing machines compared to the human brain. To make the problem
theoretically tractable, von Neumann discarded the paradigm of a physical machine in a
field of parts in favor of a conceptual machine in a cellular world. He lectured about self-
reproducing automata in the late 1940s and early ‘50s. While some notes from von
Neumann’s lectures had circulated privately, none appeared in print until 1955. It was then
that Scientific American published an article written by John Kemeny that summarized his
1951 lecture notes taken when he was new faculty member at Princeton.1

According to Kemeny, von Neumann explored the question what is the essential
difference between a man and a machine? by conceiving of a self-reproducing machine.
The machine in von Neumann’s conceptual design assembles raw material from its
environs to build another machine. Each machine contains a digital code that directs the
fabrication process and thereby implicitly specifies its design. After completing assembly
of an offspring machine, the mother copies the construction instructions from herself into
her daughter and activates the offspring. Duplication of the construction instructions into
the offspring is analogous to inheriting genetic material from a parent in the natural world.

 2

Under control of its own code, the daughter then searches for “food” and builds another
machine guided by the construction instruction specified in its inherited “genetic” code.

Could such machines evolve? Von Neumann noted that random changes introduced
during the process of copying the genetic code from the mother to the daughter are like
mutations. The grandchildren are built according to, and carry, the mutated code. By
design, a component of one machine looks like raw material to another machine. A
machine could “eat,” and thereby kill, another machine. Consequently, limiting available
resources in the environment would increase competition among the machines and
intensify evolutionary pressures.

Von Neumann embedded his machines in an unbounded, two-dimensional space of
cubical cells, each of which, if not empty, contains either raw material or a cell of another
machine. There are four classes of cells. Muscle cells effect changes in the external
environment. Neuron cells are organized to read construction instructions and transmit
control orders to muscle cells through communication cells. In von Neumann’s blueprint,
the basic body of the machine consists of 32,000 cells in a rectangular box 80 by 400
squares. The genetic code resides in a linear tail of memory cells attached to the body. The
tail is one cell wide and 150,000 cells long. It can be thought of as a rigid binary tape that
can be read by the structure of neurons. The following graphic shows the four kinds of
cells in a notional diagram of von Neumann’s machine.

Notional diagram of the arrangement of

cells in von Neumann’s machine

0

1
1

1

1
0

Arm

FGS after Kemeny in Scientific American

Arrows indicate streams of instructions from
the tail to the brain for processing, which in
turn sends signals to a muscle cell
instructing it to act on its surroundings.
“Tadpole” symbol represents commanded
action on an adjacent external cell. The
machine is sending out an “arm” to the left,
which it will use to build its offspring.

Muscle cell

 Neuron cells of the "brain"

 Communication cell

Tail consisting of binary
memory cells encoding
construction instructions

 3

Not until 1966 was a comprehensive collection of von Neumann’s work on the
theory of self-reproducing automata edited and completed by Arthur W. Burks.2 Burks,
who had worked with von Neumann in 1946, writes that von Neumann’s interest in the
complexities of self-reproducing machines was the first step in his search for a theory of
automata that would lead to the design of extraordinarily powerful computers based on
logic that will “strongly resemble and interconnect with probability theory,
thermodynamics, and information theory.” Tragically, von Neumann’s untimely death at
the age of 53 ended his journey of discovery. Part of the material Burks assembled into the
book was written by von Neumann while in the hospital before his death.

creating an operational universe in a computer

I had an early interest in computer architecture. In 1954, at the age of 15, I wrote a paper
describing my original (though hardly new) designs using electro-mechanical relays to do
binary arithmetic. It won third place in the Michigan Westinghouse Science Contest. I first
learned of von Neumann in early 1955, when I wrote a high school essay on game theory.
It was only when I read Kemeny’s article in Scientific American in the summer of that year
that I understood von Neumann’s central role in the emerging science of digital computers.
But the idea of trying to functionally simulate von Neumann’s machines with a digital
computer did not occur to me then.

In the fall of 1956, the beginning of my second undergraduate year as a math major
at Wayne State University, I began working as a part-time programmer at the university’s
Computation Laboratory to pay my college expenses. The Lab had two vacuum-tube
computers: a new IBM Type 650 and the UDEC, an earlier, one-of-a-kind machine built
by Burroughs. When the computers were idle, we students working at the Lab could use
them for personal research projects. I had a interest in artificial intelligence. I built a
program that learned how to play the game of Hex by watching the moves of its human
opponents.

Only after I returned to the Lab after a year at the University of Munich did the idea
of a digital simulation of von Neumann’s creatures occur to me. In the fall of 1959, just
before I began my first year of graduate school, I read a piece on self-reproducing
machines written by Lionel Penrose, a British psychiatrist, medical geneticist, and
mathematician (and father of Roger Penrose, the now-renowned English mathematical
physicist). In an otherwise unremarkable article in the June, 1959 issue of Scientific
American, the senior Penrose included a paragraph summarizing von Neumann’s concept
of a self-replicating machine:

The [general] theory [of self-reproduction] has two aspects, which can be called the
logical and mechanical. The logical part was first investigated by late John von
Neumann of the Institute for Advanced Study in Princeton, N. J. He decided in 1951
that it must be possible to build an engine that would have the property of self-
reproduction. The method would be to construct a machine that is capable of building
any describable machine. It would follow logically that such a machine would be able
to build another machine just like itself. Each machine would carry a sort of tail
bearing a code describing how to make the body of the machine and also how to reprint
the code. . . . The machine would assemble these parts from raw material in its
environment, organize them and transform them into a new replica of itself.3

 4

I immediately thought of the 1955 piece by Kemeny and the graphic of the notional von
Neumann machine much like that presented above. I envisaged a digital simulation of an
extended concept of von Neumann’s notional machine. If I could make my creatures
mobile in a digital universe with others of its species then I might have lethal competition.
If, as von Neumann had conceived, I included digital mutation in reproduction and if the
digital entities could kill and eat each other then I would have survival of the fittest. “Life”
in the universe would be Darwinian. With luck I might even observe a little evolution.

I realized immediately that my vision was completely impractical. Simulation of
even one of von Neumann’s machines was clearly beyond the capabilities of the computers
at hand. The main memory of the larger of the two machines at the Lab, the IBM 650, had
only 2,000 “words” of ten-digits each. If each digit represented one cell then only 20,000
cells were available, even with no allowance for the memory needed to host the
supervisory code. Complexities of von Neumann’s automata, with its ten and hundreds of
thousands of components, were orders of magnitude beyond available memories of
computers of the day, let alone the modest capacity of the 650.

My strongest memory from that time was deep disappointment. The structure of
digital creatures in any universe I might be able to build would have to be radically
different than von Neumann’s. That picture of von Neumann’s boxy machine with an arm
and a tape memory has always remained with me—so conceptually close but then
technically so far in the future.4

In thinking about an alternative approach, I hit upon the concept of computer
programs as a “living” entities. Its components would be the complete machine-level
instruction set of the IBM machine, with the addition of a couple of extra instructions for
mutation, giving birth (activation), and locomotion. While such creatures would have no
analog in the physical world, I knew that they could, at least in principle, be able compute
anything. Since each inhabitant was a general-purpose computer, and since any general-
purpose computer can emulate a Turing machine, and since a Turing machine can compute
any algorithm then my creatures could compute any algorithm.

Genetic codes presented another problem. Designs, encoded as construction
instructions, are a central feature of John von Neumann’s machines. The digital blueprints
that control construction of offspring and are copied into each daughter as part of the
reproduction process. I saw no way in my design of making a compact genetic code
integral to one of my digital entities. In a purely digital universe, a machine’s genetic
design would be too bulky since it could not have fewer degrees of freedom than the
digital entity itself.

My solution was to use the digital instantiation of the mother to guide construction
of its daughter. In other words, reproduction would be simply making a copy of the mother
creature’s machine language code. I could still simulate simple mutation. An external
parameter m would control rate of mutation using random numbers. During reproduction,
each decimal digit of the daughter entity had an average rate one per ten to the power m of
being replaced by a random digit rather than by the value of the respective digit of its
mother. Each creature in my universe could in principle construct a creature of any design.
I limited replication to self-reproduction.

 5

implementation
As built, the universe was 1,350 ten-digit words logically connected in a circle.
Each entity consisted of sixty machine language instruction occupying 32
words of memory. See the appendix of my 1961 paper (following) for the
detailed operational design of the first creature. There too will be found the
extensions of the IBM 650’s native numeric operation codes added to operate
the universe.

The Right Hand of God, the supervisory program for the physics of the
universe, occupied 650 words. It moved time forward by sequentially
executing instructions in the computer program of each “living” entity. When
more than one entity was alive, the Right Hand of God would time-share
execution of their programs. Like a primitive multi-tasking operating system,
the control program would cycle through all living creatures, executing one
instruction from each entity in each cycle.

The IBM Type 650 had no operating system and no provision for
multitasking—like hardware interrupts or software breakpoints. To retain
control over the execution of an entity’s code, the Right Hand of God executed
all creature code interpretatively. I believe that the Right Hand of God was
among the first multi-tasking operating system.

In operation, the digital creatures moved themselves through this
circular linear universe consuming food (non-zero memory cells) leaving
behind them empty cells. (Digital creatures were indistinguishable from food.)
When an entity had accumulated a quantity of food equal to its size, it would
begin to build a copy of itself as it crawled forward. Each time the creature
moved forward one space, it would put a copy (possibly with mutations) of
one word of its program in the space just vacated behind it. When replication
was complete, the mother would notify the Right Hand of God that her
daughter was ready to begin living as an independent creature.

The graphic to the right show a mother (bold) creating a daughter
(italics). With every step the mother leaves behind another cell of the daughter,
a total of six so far in this graphic. The aborning daughter is stationary until
replication is complete. The spaces behind the daughter are empty since the
mother ate any food that was there.

what happened?

In February of 1960 I completed debugging the software and creature code
and made the first and only production run of my artificial universe—with
disappointing results (see “On Artificial Universes” following).

A shortly after that, I brought my work to the attention of Prof. Walter
Hoffman, head of the Computation Laboratory. He arranged for us to meet
over a college cafeteria lunch with one of the younger and more visionary
professors in the Biology Department. We explained the experiment. We
talked about its innovations and its limitations. We asked him about his
interest in working with us. He was decidedly uninterested.

m
ov

em
en

t

	�	

��
���
���������
�
�����������
���	�	�	�
�
�����������
�	����
����

���
	�����
�����������
�����������

	�������	�
�����������
�����
	����
�	���������

	����	����
����
������

����������

����������
�����������
�����������

	����	��
�

���������

	����	��
�

����������

	����	����
������
����
�	��	������

��
����	�
����	����	�

	����	����
������
����
�	���������

�������	�
���������
�

���������

	����	����
����
����
�

���	�����
�����������
�����������

���	�����
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

da
ug

ht
er

em
pt

y
m

ot
he

r
ra

nd
om

 fo
od

 6

I set the project aside. I put the deck of IBM punch cards containing the software
for the artificial universe on a high shelf in my office and turned to other efforts.

the first artificial universe?
In 1953, Nils Aall Barricelli simulated the emergence of simple, life-like genetic structures
from inert particles using an electronic computer at the Princeton Institute for Advanced
Study. His goal was to study whether symbiotic association of simple particles could
evolve into improbably complex structures, much as living, self-reproducing cells with
genetic codes might have emerged from a soup of organic compounds in the real world.5

Barricelli’s computer world was 512 bytes of machine memory organized into a flat
matrix (imagine 16x32) of cubicles. The software that operated the universe connected
each edge of the matrix of cubicles to the opposite edge, making the world topologically
finite but unbounded. Each cubicle contained either a zero, which meant empty, or was
occupied by one of 15 different particles (or “genes”) identified by a number between 1
and 15. Each particle in Barricelli’s universe had only two characteristics: its type (one of
the 15) and its location.

The operating logic and the “physics” of his world were encoded into simple
external rules of engagement. The operating software in Barricelli’s world would use the
rules to determine dynamically the results of symbiotic and parasitic interactions among
particles. To begin a run, Barricelli strewed some random numbers into the cubicles. Then,
the operating software moved time forward in computational cycles or “generations.” In
each generation, the operating software applied the rules of engagement to compute the
location of each gene in the next generation. For example, a gene could shift to a new
location only if certain other kinds of genes were adjacent. Other rules specified the
outcome of conflicts, as when two genes were directed to the same cubicle. Reproduction
rules allowed replication of a gene only when genes of certain kinds were present. Certain
collisions among groups of genes produced mutations.

Barricelli’s experiments involved thousands of generations, some in larger matrices
of cubicles. After some adjustments to the rules, certain combinations of genes achieved
persistent reproductive success and came to dominate Barricelli’s world. But evolution
always stalled after achieving only modest levels of complexity. Perhaps more complex
rules and maybe more kinds of particles would have released evolution to higher levels of
complexity.

Barricelli’s achievement was conceiving and operating a universe in which
elementary non-reproducing particles evolved into “symbioorganisms,” as he called them,
that under some set of rules were self-reproducing structures. He held that the inhabitants
of his universe were not simulacra; they were the “life-like” structures.

Barricelli’s is a microscopic cellular world. Mine, like von Neumann’s, is
macroscopic. Particles versus machines. Von Neumann started with a requirement that the
machines be “constructively universal,” which means they can in principle build any
computing machine. That criterion is present only to guarantee that his machines can self-
reproduce. The machines in my universe can and did build copies of themselves, and in
principle can do so no matter how complex they are. They are therefore also “universal
machines.” Consequently, my machines had all the essential features and potential
complexity von Neumann required of the machines. Here is how Bruce Damer, a leading
researcher of artificial life, compares Barricelli’s and my universes:

 7

Fred Stahl implemented one of the first von Neumann inspired self-reproducing
cellular automata (CA) systems on an IBM 650 mainframe. . . . Stahl’s universe
went beyond Barricelli’s in terms of complexity. . . . [I]t featured an
implementation . . . of a universal machine . . . for each of his simulated creatures
using the computer’s instruction set. . . . [It] featured food and competing creatures
capable of reproducing and mutation.6

I believe therefore that my 1960 project was the first ever operational artificial universe
with complex artificial life in a Darwinian world.

the first computer virus?
Some people believe that the code for my creatures is the first computer virus. The
following appears in the archeology section of www.securelist.com, a website specializing
in Internet security:7

Historians are still debating when the first computer virus really appeared. We do
know a few things for certain, however: the first computer, which is generally
considered to have been invented by Charles Babbage, did not have any viruses. By
the mid-1970s, Univac 1108 and IBM 360/370 did.

Nevertheless, the idea for computer viruses actually appeared much earlier. Many
consider the starting point to be the work of John von Neumann in his studies on
self-reproducing mathematical automata, famous in the 1940s. By 1951, Neumann
had already proposed methods for demonstrating how to create such automata.

In 1959, the British mathematician Lionel Penrose presented [von Neumann’s]
view on automated self-replication in his Scientific American article ‘Self-
Reproducing Machines’. . . . Penrose described a simple two-dimensional model of
this structure that could be activated, multiply, mutate and attack. Shortly after
Penrose’s article appeared, Frederick G. Stahl reproduced this model in machine
code on an IBM 650.

It should be noted that these studies were never intended to providing a basis for
the future development of computer viruses. On the contrary, these scientists were
striving to perfect this world and make it more suitable for human life. And it was
these works that laid the foundation for many later studies on robotics and artificial
intelligence.

The final sentence puts my work in proper perspective.

my 1961 paper describing the experiment
In early 1961 I wrote a description of my artificial universe and its artificial life. Entitled
“On Artificial Universes,” it describes the concept, design, and operation of the universe
and its creatures. It gives details of the results of the production run. It presents my
conclusions and wraps up with what I thought were relevant philosophical and moral
issues.

 8

“On Artificial Universes” went unpublished. A short summary of my digital
universe and its artificial life did however appear in print in 1985. A year earlier, A.K.
Dewdney described battling computer programs in his “Computer Recreations” column in
Scientific American. I responded with a letter to him describing my 1960 artificial universe
project. I wrote that my universe enabled reproduction with mutation, unlike the software
entities his earlier column discussed. With my 1984 letter I enclosed a copy of my 1961
paper. Dewdney published a brief description of my work in his column in the March 1985
issue of Scientific American.

My copies of “On Artificial Universes” were lost decades ago. Or so I thought until
recently when I discovered a paper copy. It is reproduced on the following pages.

additional material in this package
“On artificial Universes.” Unpublished paper by Frederick G. Stahl. 1961.
Annex A – Description of my artificial universe in Scientific American 1985.
Annex B – Digital Computers at the Wayne State University Computation Laboratory

1960.

notes

1 John G. Kemeny. “Man Viewed As a Machine.” Scientific American April 1955: 58-67.
2 John von Neumann. Theory of Self-Reproducing Automata. Edited and completed by
Arthur W. Burks. (University of Illinois Press, 1966).
3 Lionel S. Penrose. “Self-Reproducing Machines.” Scientific American. June 1959: 105–
114.
4 Renato Nobili and Umberto Pesavento. “An Implementation of von Neumann’s Self-
Reproducing Machine,” Artificial Life 2 (1995) no. 4: 337–354.
5 The description of Barricelli’s work draw’s on a presentation by George Dyson: “Darwin
Among the Machines; or, the Origins of Artificial Life,” sponsored by Edge, July 8, 1997.
(www.edge.org)
6 Bruce F. Damer. The EVOGRID: An Approach to Computational Origins of Life
Endeavours. Ph.D. thesis, University College Dublin, May 2011. P. 30.
7 http://www.securelist.com/en/threats/detect?chapter=105.

On Artifical Universes
by

Frederick G. Stahl
1961

Paper was written in 1961. In 1984, the paper was copyedited to correct grammatical,
syntactical, and typographical errors before submission to Scientific American.

Following is a scan of the typewritten 1984 version.

ON ARTIFICIAL UNIVERSES

by Frederick G. Stahl

In February of 1960, I conceived, built and set into operation my
personal universe To inhabit my universe I created some crude little creatures
that lived, ate, reproduced, killed and died according to a set of specially
designed physical laws. Reproduction was imperfect; that is, mutation was
allowed. Evolution was therefore theoretically possible in this universe. The
creatures were cannabalistic because they could not in their initial form
distinguish whether material
(food) was or was not part of the body of another creature. Thus were the
creatures subject to selective pressure.

This paper discusses the details of this little universe, its crea- tures, and their
collective fate. The paper closes with some general evaluative and philosopical
remarks.

THE UNIVERSE

The universe and the creatures therein were realized in the memory of a digital
computer. The memory was divided into two parts: that
occupied by the universe and that occupied by the program called the Right
Hand of God that operated the universe.

The universe was quantized into 1350 spaces. Each space was equi-
valent to one word of memory. The IBM Type 650 was used in which each
word of memory is ten decimal digits and a sign. The spaces were
arranged in a closed, linear fashion making the universe topologically
equivalent to a circle.

Physical matter was defined as a nonzero space; that is, if the com-
puter word had at least one nonzero digit, then the entire space was
considered occupied by a chunk of matter.

Energy had no representation in the universe.

THE CREATURES

A creature was initially a set of pieces of matter occupying 32
sequential spaces represented by 32 ten digit numbers. These numbers
were coded to represent the detailed life functions of the creature.

It was these codes composing each creature which were interpreted by
the Right Hand of God program that operated the universe. In a unit
of time, the Right Hand of God program would sequentially interpret a
fixed number of those codes and execute the corresponding functions.
As such, the Right Hand of God program embodied the physics of the
universe.

1

The codes of the original creature were programmed by me to cause the
creature to execute the following functions:

o Lurch forward one space

o If the space directly in front of the creature contained
matter(wa5~.nonzero), then increment the count of units of
matter encountered before movement.

o If the creature had accumulated enough pieces of matter to
equal its size, it would iteratively copy one space of
itself onto the space directly behind itself before every
movement.

Unless reproducing, the creature would leave empty spaces behind it.
Matter in spaces before the creature disappeared as the creature
successively occupied those spaces.

The effect was of a creature crawling along, looking for and accumu-
lating food until it had saved enough to construct an offspring. Then
as it vacated spaces while crawling, a copy of itself would be left
behind. Meanwhile, the creature would be accumulating more food for
yet another offspring.

Once copying of an offspring was complete, the creature would start
the offspring living, which was done by notifying the Right Hand of
God program of the offspring's location. The Right Hand of God pro-
gram would then have another creature to operate, more or less simul-
taneously with any other.

Copying of an offspring creature had two important features:

o The copy was direct. It was not based on a description of
the creature (as von Neumann conceived of self-reproducing
automata) but rather the copy was a space-by-space duplica-
tion of the actual structure of the parent.

o The copy was imperfect. Random variations were introduced
in the digits of the copy at the average rate of one per
ten to the power X, where X was an input number.

The first feature implies that acquired as well as inhereted charac-
teristics are passed on to offspring. The second feature provides for
mutations. Combined with a competitive environment, such genetic
shifts combined with survival of the fittest should in theory lead to
development of more efficient or vicious strains.

Once an offspring is complete and it has been registered as a birth,
the Right Hand of God program delays initiation of its life. This
wait gives the parent time to crawl away. Otherwise the offspring

2

might gobble up its parent. This is a possibility because a feeding
creature crawls more slowly than one not eating. The average rates
are:

Spaces Crawled per
Activity Unit Time

Nothing 4

Eating 2

Reproducing 1 1/3

Eating and Reproducing 1

The parent is running into random food; the offspring finds nothing
ahead of its since the parent leaves no food behind it, at least for a
while after the birth of the offspring.

THE RIGHT HAND OF GOD PROGRAM

The principal functions of the Right Hand of God program are apparent
from the preceding discussion. Death decision has not been touched on
yet.

The Right Hand of God program operates by executing interpretively
computer-like code which compose each creature. The functions used to
define the creature are essentially equivalent to the operation codes
of the host computer augmented by an imperfect STORE operation and a
special birth operation. Otherwise almost all of the arithmetic,
logical, control and input-output (via punch cards) operations are
included. (The table look-up function is excluded as are a couple of
other redundant operations.) While the IBM Type 650 is a two address
machine, the pseudocode used for the creatures is a single address
system. All addresses are relative to the base address of the crea-
ture. The appendix shows the pseudocode program for the initial
creature.

With that background, the death criteria can be defined:

o In executing the pseudocode of a creature, the Right Hand of
God program encounters a zero.

o In executing the pseudocode of a creature, the Right Hand of
God program encounters an operation code that is undefined.

If the Right Hand of God program detects either of these conditions,
no further operation codes are interpreted for that creature--it is. left
to be eaten by others. A creature X takes a bite of creature Y by
moving itself space by space over the tail of Y. The nose and tail of
every creature are bounded by a zero space, a potential danger because
an attempt to interpret that zero would lead to death. Therefore, if

3

X bites V, then one of the above conditions may result in ViS death, X
may be ripped in half by ViS movement, causing V to die, or both may
die.

The Right Hand of God program recognizes a larger set of operation
codes than the creatures use. In fact, a subset of the creature
pseudocodes is equivalent to the order set of the IBM Type 650. An
implication of this is that there is no reason to rule out evolution
of a creature to do any function a general purpose digital computer
can be programmed to do. If computers are capable of thinking then
these creatures can potentially evolve into thinking entities, given
enough time and space. Whether or not such evolution would take
place, even if there were sufficient time and space, is another
question.

The Right Hand of God program performs a number of simple bookkeeping
tasks such as keeping track of where all the living creatures are in
the universe and issuing birth and death notices to the world outside
the computer. It also puts out data on crawling progress and whether
each creature is eating or reproducing. [The output of the 650 was
solely punched cards which were listed offline on a IBM Type 407
tabulating machine.]

FATE OF THE UNIVERSE

Initially the universe was filled with material randomly dispersed
with a average density of 0.5. One creature was placed in the mileau
and the Right Hand of God program was started. Herels what happened.

Creature #1 started crawling and eating.

Soon came the announcement of the birth of Creature #2.

After a while, the reports showed that both creatures were crawl-
ing and eating. That meant that if Creature #2 was a mutant, it
was a viable mutant.

Soon Creature #2 was eating the half-formed progeny of Creature
#1.

Finally, the obituary for Creature #1 came. Creature #2 had
taken a lethal bite of Creature #1.

Creature #2 was the only living entity, but it never did anything
but eat and crawl--it was a viable but sterile mutant!

4

POST-MORTEM

By the time the codes for the Right Hand of God program and the
creature were debugged and tested, enough of the faults of the uni-
verse were apparent to make further runs pointless. Among the obvious
improvements needed were:

o A larger universe. The memory size of the IBM Type 650 was
2000 words. The Right Hand of God program occupied 650,
leaving 1350 for the universe. It is doubtful that too much
evolution could take place in such a restricted space.
Ideally a space larger by a factor of ten to the twentieth
or thirtieth would be preferred, but even a universe on a
scale of tens of thousands of spaces might be interesting.
At the same time a two dimensional universe might relieve
the intensity of the immediate competition and allow more
ingenious solutions to the problem of survival. A chimpan-
zee in a telephone booth with a tiger will not evolve. The
universe modeled in this experiment was a telephone booth.
A forest is needed.

o More creatures initially. That "lOuld immediately provide a
larger population base and therefore greater probability of
developing a large, viable, dynamic population.

o A larger, faster computer. Measures of the basic operation
speeds of the IBM Type 650 are in terms of milliseconds.
The single run of the universe reported here required
approximately one and a half hours. On a modern machine,
only six seconds would be required for an equivalent run.
Nevertheless, much more time--probably orders of magnitude
more--might be required for the long term effects of natural
selection and hence interesting evolution to become
apparent.

o Optimum mutation rate. Three key attributes of descendent
creatures are determined by their structure: whether each is
mutated, viable, or sterile. The exact structure of the
original creature is known so that the expected proportions
of offspring possessing each of the eight combinations of
these binary attributes can be closely estimated as a func-
tion of the mutation rate. An optimum rate is defined as
that which produces the most viable, mutated and non-sterile
offspring in the first generation. For the design of crea-
tures used here, that rate is about two digits per thousand.
In other words the probability of replacing anyone digit
beinq cO-,oieg with a rand()l11ly drCiwn di_gi~_ i~ 0.002 •.

5

o Conservation of matter. This law should be enforced to
prevent creatures from destroying or creating matter. This
change would entail drastic restructuring of the physics of
the universe and would appear to move the basic operations
away from using almost a computer operation code set to
something more like physical functions.

OTHER SYSTEMS

At least two other systems of self-reproducing entities have been
designed. In American Scientist (liOn Models of Reproduction", date and issue
identification unknown), Homer Jacobson reported on a hard- ware system he
built and operated. He used toy trains and railroad track. Two kinds of train
cars were the basic building blocks, and an entity was a pair--one each of the
two kinds. One entity placed on the track would organize uncoupled basic units
on adjacent tracks into pairs constituting new entities. While ingeniously done,
the system was genetically static. Further, there was no lethal competition
among entites.

John von Neumann produced a design for reproducing automata. While only
limited information is available [as of the original writing of this paper], it
appears that after placing an initial creature in a two-dimensional universe
containing unorganized material, the creature will move about selecting
appropriate pieces of equipment which it organizes into a replica of itself
according to a set of instructions (an analog to a genetic code) which is stored
internally. While the creatures move only in a two-dimensional surface, they
are essentially three-dimensional in that their functions make direct use of the
physical laws of the our universe. The genetic code could, for
example, be a tape recording.

Von Neumann's creatures are more sophisticated than mine because they have
distinct genetic coding. It is not clear how von Neumann's
creatures can do much sophisticated information processing which is the
potential of my creatures. These differences reflect the under- lying purposes.
Von Neumann sought to prove by demonstration that
artificial but self-reproducing automata were possible. My objective was to try
some evolution.

AN APPLICATION

[This section is omitted. In the original pape, it suggested evolu- tion in
specialized, problem-oriented en o develop designs for intelligent automata.]

PHILOSOPHICAL REMARKS

This experiment with an artificial universe provides an interesting
framework for thinking about certain problems.

6

By common useage of the word, I am the god of such an artificial
universe as I may create and set into motion. Consider:

o Its creation was my achievement.

o Continued existence of the universe is dependent on my will.

o Relative to the artificial universe, I would be omniscient
and omnipotent, for I could stop the universe at any time,
examine any part of it in detail, change any part of it, and
restart it. If the universe was large enough and evolution
had produced intelligence to a degree that the concept of
an observer inside the universe would make any sense, then
the consequences of the above sequence would transpire
instantaneously. I can therefore perform miracles at will.

Such concepts put an interesting light on some theological questions.
How do we communicate with the inhabitants of such a universe, if we
should want to? Can they, the inhabitants of the universe, conceive
of our existence? Not too likely. And we could not demonstrate
directly our existence because we could not get into their universe.
Nor can they leave theirs to operate in ours.

If we do in fact create a universe that has the potential for evolving
into intelligent life, what are our moral obligations? Once created
what are our responsibilities to such a universe? Is it entitled to
continued existence or can we pull the plug on it without guilt?
Consider if apparently intelligent entities evolved in such a digital
universe. What rights do they have according our moral laws? Do they
even exist?

7

APPENDIX

CODE OF THE INITIAL CREATURE

8

CREATURE CODE

Relative Code
Location Op Addr Op Addr

0000 0000000000
0001 0003300000
0002 65 008 24 015
0003 21 000 24 010
0004 24 011 65 012
0005 15 001 20 014
0006 65 013 15 001
0007 20 026 00 014
0008 90 001 00 014
0009 90 001 00 021
0010 0000000000
0011 0000000000
0012 65 000 45 016
0013 99 000 00 014
0014 65 033 45 016
0015 90 001 00 014
0016 65 010 15 031
0017 20 010 16 001
0018 45 015 21 010
0019 69 009 24 015
0020 00 015 00 015
0021 65 all 15 031
0022 20 011 16 001
0023 45 027 21 011
0024 69 008 24 015
0025 20 000 00 026
0026 99 000 00 014
0027 65 011 15 032
0028 20 029 00 029
0029 69 000 54 000
0030 00 014 00 014
0031 00 001 00 000
0032 69 000 54 000
0033 0000000000

9

00 TAIL
01 SIZE
02 INIT
03
04
05
06

SYMBOLIC CODE FOR
CREATURE

00 000 00 000
00 033 00 000
RAL K1 STD r~OVE
STU TAIL STD TUM
STO INDEX RAL K3
ALa SIZE STL SENSE
RAL K4 ALO SIZE

Image left when crawling.
Length - 1.
Initialize vector to not reproduce.
Zero aft image and stomach.
Initialize index for copy loop.
Initialize vector to not feed.
Initialize vector to go back to SENSE
after birth.

07 STL BIRTH TRA SENSE

08 K1
09 K2
10 TUM
11 INDEX
12 K3
13 K4

14 SENSE
15 MOVE
16 FEED
17
18
19
20
21 REPRO
22
23
24
25
26 BIRTH
27 COpy
28
29 r~UTAT
30
31 ONE
32 K5
33 NOSE

CRW 1
CRW 1
00 000
00 000
RAL 000
BIR 000

TRA SENSE
TRA REPRO
00 000
00 000
NZA FEED
TRA SENSE

(RAL 033 NZA FEED)
(CRW 1 TRA SENSE)

RAL TUM ALa ONE
STL TUM SLO SIZE
NZA MOVE STU TUM
LDD K2 STD MOVE
TRA MOVE (Unused)
RAL INDEX ALO ONE
STL INDEX SLO SIZE
NZA COpy STU INDEX
LDD K1 STD MOVE
STL TAIL TRA BIRTH

(BIR 033 TRA SENSE)
RAL INDEX ALa K5
STL MUTAT TRA MUTAT

(LDD xxx MUT TAIL)
TRA SENSE (Unused)
00 001 00 000
LDD 000 MUT 000
00 000 00 000

Vectors for instruction at MOVE.

Stomach counts food eaten.
Index for copy loop.
For construction of SENSE instruction.
For construction of BIRTH instruction.

Go tro FEED if chunk of matter at nose.
Crawl 1 space. Go to SENSE or FEED.
Increment stomach.

If stock not = size then go to MOVE.
Otherwise, zero STOMACH, set vector to
reproduce, and then go to MOVE.
Increment copy index and check for
completion of copy.
Go to COPY if not done. Otherwise
zero INDEX, reset vector at MOVE, zero
aft image and go to give birth.
Bear, then re-enter main loop.
Set up copy instructions.

Special mutation copy of a word to aft
image.

For construction of MUTAT instruction.
Forward sensing area.

10

SCHEMA OF RELEVANT 650 ARITHMETIC-LOGICAL UNIT ARCHITECTURE

Upper Lower
Accumulator Accumulator

Distributor

D
Memory

OPERATION CODES USED IN INITIAL CREATURE

RAL 65 XXX Reset entire accumulator to zero and load a copy of memory
location XXX into the lower accumulator, leaving an image
of the value in the disributor. Here as elsewhere, XXX
is an address relative to the base address of the
creature being executed.

ALO 15 XXX Add the contents of memory location XXX to the lower
accumulator, leaving a copy of the value from memory

in the distributor.

SLO 16 XXX Subtract the contents of memory location XXX from the
lower accumulator. Distributor is left with a copy

of the word from memory.

STL 20 XXX Store a copy of the contents of the lower accumulator in
memory location XXX. Disributor is left with a copy of
the word stored.

11

STU 21 XXX The upper accumulator is stored in memory.

LOO 69 XXX The distributor is loaded with a copy of the word at mem-
ory location XXX.

STO 24 XXX The contents of the distributor are copied into memory
location XXX.

NZA 45 XXX If the accumulator is not zero then controlis transferred
to the instruction at memory location XXX.

Non-650 instructions

TRA 00 XXX Control is transferred to the instruction at memory
location XXX.

CRW 90 XXX Crawl XXX spaces.

BIR 99 XXX Notify Left Hand of God program of birth of a new crea-
ture with base location at XXX relative to base location
of creature currently being executed.

MUT 54 XXX Store the lower accumulator at address XXX with a random
mutation according to an input fixed rate.

12

annex A
description of the artificial universe

in Scientific American in 1985

description of artificial universe
in Scientific American 19851

Inspired by a June 1959 Scientific American article on self-reproducing
mechanisms by L. S. Penrose, Frederick G. Stahl of Chesterfield, Mo.,
created a miniature linear universe in which humble creatures lived, moved
and (after a fashion) lived out their destinies. Stahl writes:
“Like Core War, I set aside a closed, linear segment of main memory in
which a creature was simulated by modified machine language. The
machine was an IBM Type 650 with drum memory. The creature was
programmed to crawl through its universe eating food (nonzero words) and
creating a duplicate of itself when enough food was accumulated. Like Core
War, I had an executive program which kept track of who was alive and
allocated execution time among the living creatures. I called it the “Left
Hand of God.” Stahl goes on to discuss his program’s ability to reproduce.
He also describes an interesting mutation mechanism; a program being
copied might experience a small number of random changes in its code.
However, Stahl reports, “I abandoned this line of work after one production
run in which a sterile mutant ate and killed the only fertile creature in the
universe. It was apparent that extraordinarily large memories and long
computer runs would be needed to achieve any interesting results.”

1 A.K. Dewdney, “Bestiary of viruses, worms and other threats to computer memories,”
Computer Recreations, Scientific American, March 1985. The column with others was
republished in A. K. Dewdney. Armchair Universes: An Exploration of Computer Worlds.
(W.H. Freeman, 1987).

annex B
digital computers at the Wayne
State University Computation

Laboratory in 1960

 1

digital computers at the
Wayne State University
Computation Laboratory

1960

The Wayne State University Computation Laboratory was among the earliest
computer research facilities in the United States with large-scale computers. The
Lab was organized in 1949 under the auspices of the Industrial Mathematics
Society (IMS) as a joint effort between the university and local industry. The
Computation Laboratory performed three basic functions: 1) to provide service to
industry and business, 2) to conduct academic research, 3) to provide training in
computer operations.
Initially, the laboratory had a 1930-era Bush Differential Analyzer donated by the
Massachusetts Institute of Technology. When it first began operation, the Lab
focused on solving engineering problems for the automobile industry. A Unitized
Digital Electronic Computer (UDEC) was purchased from the Burroughs
Corporation and put into operation in December of 1953. Increasing demand for
computer services led to the purchase an IBM 650 computer in the spring of
1956.
UDEC
The UDEC was one of only a couple of
machines special-built by the Burroughs
Corporation. With 31 racks of
electronics hidden behind large panels,
the machine looked like a locker room.
The electronic components behind each
door were enormous by today’s
standards. Each flip-flop, for example,
consisted of four big, hot vacuum tubes
and their attendant resisters and
capacitors, all mounted behind a
roughly 6-inch-by-18-inch machined
aluminum panel, complete with pilot
lights to show its status—on or off. You
would need an electron microscope to see the functionally equivalent component
on a modern integrated computer chip.
IBM 650
The UDEC was obsolete almost from the day it was delivered to the Lab. It had a
mean operating time without an error of six hours. The workhorse machine at the
Lab was the IBM 650, the “Magnetic Drum Data-Processing Machine Type 650.”
It too was a vacuum machine but much more compact. The electronics were
housed in three large boxes, each mounted on castors: console unit, power

 2

supply, and card read-punch unit.
Console unit, which also contained
the CPU, was six feet high, five feet
long, and three feet wide. It weighed
2,000 lbs. The power supply was in
a similar box and weighed 3,000 lbs.
The card reader and punch unit was
smaller and lighter at 1,200 lbs. All
units had removable side panels for
maintenance. Contemporary
photographs of the system seldom
show big exhaust hoods over the
console and power units to dissipate
the heat generated by thousands of
vacuum tubes.
The 650 was the first mass production computer. Two thousand were sold. At the
time, I thought it was a relatively good machine to program. It was reliable and
had a clean architecture. But it had its drawbacks. For example, debugging
software involved laborious manual stepping through program instructions and
observing the contents of CPU registers displayed on console lights. Input/output
was another awkward process. The only input was via decks of IBM punch cards
fed through the card reader/punch card unit. The machine had no connected
printer. All output had to be first punched into cards and then printed on an IBM
402 tabulating machine, originally designed for standalone accounting
applications.
The organization of the 650 random access memory is seldom seen today.
Instead of addressable bytes, the memory was organized into 2,000 addressable
words, each of which consisted of ten decimal digits and an arithmetic sign. As a
benchmark, the 650’s main memory would be equivalent to about 20 Kilobytes.
The IBM 650 was a “two-address” computer. Each machine-language instruction
was organized into a two-digit operation code and two four-digit addresses. For
example, the “STD” instruction

+24 1733 0324
would cause the CPU to store a copy of the ten digits and sign contained in the
register called the “distributor” into word 1733 in the rotating drum memory. Then
the CPU would take its next instruction from memory location 0324.
The machine could execute 44 different operation codes including: load a
register from contents of a memory location, store contents of a register into a
memory location, add, subtract, multiply, divide, shift, and branch. Typical
execution times were 5 milliseconds per instruction.

	COVER-paper
	Title-20130303••••
	Preface - On Artificial Universes - 25FEB2013•••••
	Section Title 1961 paper scan
	On Artificial Universes draft 1985[scan]copyedit-2013•••••
	Section Title SciAmer
	Scientific American annex
	Ltr to Sci Amer 1984 OCR
	Section Title Comp Lab
	Annex B - WSU Computers - 1960

