
m
ov

em
en

t

	�	

��
���
���������
�
�
���	�	�	�
�
�
�	����
����

���
	�����
�����������
�����������

	�������	�
�����������
�����
	����
�	���������

	����	����
����
������

����������

����������
�����������
�����������

	����	��
�


���������

	����	��
�

����������

	����	����
������
����
�	��	������


��
����	�
����	����	�

	����	����
������
����
�	���������


�������	�
���������
�


���������

	����	����
����
����
�


���	�����
�����������
�����������


���	�����
�����������
����
����
�


���	�����
�����������
�����������


���	�����
�����������
�
�
�
�
 

m
ot

he
r

da
ug

ht
er

em
pt

y
ra

nd
om

 
en

vi
ro

nm
en

t

1960 – the first 
artificial universe

complex artificial life in a 
Darwinian world

Frederick G. Stahl

March 2013
fred@fredstahl.com
www.fredstahl.com



 

1960 – the first 
artificial universe

complex artificial life in a Darwinian world

Frederick G. Stahl

March 2013
fred@fredstahl.com
www.fredstahl.com

2



 1 

the first operational artificial universe 
complex artificial life in a Darwinian world 

In 1960, I created an artificial universe inside a digital computer. It had 
numeric creatures that moved through the universe eating numbers. If they 
found another creature, they would eat it. They could reproduce and did. 
Mutation was possible and did happen. And the creatures could observe the 
world around them and could calculate and make decisions based on what 
they saw, and they did. It was the first operational artificial universe with 
complex artificial life. 

the first design 
John von Neumann’s brilliant mind is a 20th century legend. Beginning in 1922, at the age 
19, until his death in 1957, he made significant theoretical contributions to mathematics, 
quantum physics, computer science, mathematical economics, and more. In 1931 he 
became a member of the faculty of Princeton University. Two years later he was among 
the first six professors of mathematics appointed to the newly formed Institute for 
Advanced Study in Princeton, a position he held until the end of his life.  

Von Neumann’s interest in theoretical hydrodynamics drew him into the American 
war effort and eventually into the Manhattan Project and the development of the atomic 
bomb. Numerical methods for solving the differential equations describing the interactions 
of shock waves in nuclear detonations required enormous calculations. Von Neumann 
helped the bomb builders improve computational efficiencies, which in turn involved him 
with early computers. He was a consultant to a university team that in 1945 came up with 
the revolutionary computer architecture that placed both data and instructions in the same 
addressable high-speed memory, an architecture that became the standard. 

At about the same time, von Neumann became interested in the theoretical limits of 
self-reproducing machines compared to the human brain. To make the problem 
theoretically tractable, von Neumann discarded the paradigm of a physical machine in a 
field of parts in favor of a conceptual machine in a cellular world. He lectured about self-
reproducing automata in the late 1940s and early ‘50s. While some notes from von 
Neumann’s lectures had circulated privately, none appeared in print until 1955. It was then 
that Scientific American published an article written by John Kemeny that summarized his 
1951 lecture notes taken when he was new faculty member at Princeton.1 

According to Kemeny, von Neumann explored the question what is the essential 
difference between a man and a machine? by conceiving of a self-reproducing machine. 
The machine in von Neumann’s conceptual design assembles raw material from its 
environs to build another machine. Each machine contains a digital code that directs the 
fabrication process and thereby implicitly specifies its design. After completing assembly 
of an offspring machine, the mother copies the construction instructions from herself into 
her daughter and activates the offspring. Duplication of the construction instructions into 
the offspring is analogous to inheriting genetic material from a parent in the natural world. 
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Under control of its own code, the daughter then searches for “food” and builds another 
machine guided by the construction instruction specified in its inherited “genetic” code.  

Could such machines evolve? Von Neumann noted that random changes introduced 
during the process of copying the genetic code from the mother to the daughter are like 
mutations. The grandchildren are built according to, and carry, the mutated code. By 
design, a component of one machine looks like raw material to another machine. A 
machine could “eat,” and thereby kill, another machine. Consequently, limiting available 
resources in the environment would increase competition among the machines and 
intensify evolutionary pressures. 

Von Neumann embedded his machines in an unbounded, two-dimensional space of 
cubical cells, each of which, if not empty, contains either raw material or a cell of another 
machine. There are four classes of cells. Muscle cells effect changes in the external 
environment. Neuron cells are organized to read construction instructions and transmit 
control orders to muscle cells through communication cells. In von Neumann’s blueprint, 
the basic body of the machine consists of 32,000 cells in a rectangular box 80 by 400 
squares. The genetic code resides in a linear tail of memory cells attached to the body. The 
tail is one cell wide and 150,000 cells long. It can be thought of as a rigid binary tape that 
can be read by the structure of neurons. The following graphic shows the four kinds of 
cells in a notional diagram of von Neumann’s machine. 

 
Notional diagram of the arrangement of 

cells in von Neumann’s machine
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FGS after Kemeny in Scientific American

Arrows indicate streams of instructions from 
the tail to the brain for processing, which in 
turn sends signals to a muscle cell 
instructing it to act on its surroundings. 
“Tadpole” symbol represents commanded 
action on an adjacent external cell. The 
machine is sending out an “arm” to the left, 
which it will use to build its offspring.

Muscle cell

 Neuron cells of the "brain"

 Communication cell

Tail consisting of binary 
memory cells encoding 
construction instructions
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Not until 1966 was a comprehensive collection of von Neumann’s work on the 
theory of self-reproducing automata edited and completed by Arthur W. Burks.2 Burks, 
who had worked with von Neumann in 1946, writes that von Neumann’s interest in the 
complexities of self-reproducing machines was the first step in his search for a theory of 
automata that would lead to the design of extraordinarily powerful computers based on 
logic that will “strongly resemble and interconnect with probability theory, 
thermodynamics, and information theory.” Tragically, von Neumann’s untimely death at 
the age of 53 ended his journey of discovery. Part of the material Burks assembled into the 
book was written by von Neumann while in the hospital before his death. 

creating an operational universe in a computer 

I had an early interest in computer architecture. In 1954, at the age of 15, I wrote a paper 
describing my original (though hardly new) designs using electro-mechanical relays to do 
binary arithmetic. It won third place in the Michigan Westinghouse Science Contest. I first 
learned of von Neumann in early 1955, when I wrote a high school essay on game theory. 
It was only when I read Kemeny’s article in Scientific American in the summer of that year 
that I understood von Neumann’s central role in the emerging science of digital computers. 
But the idea of trying to functionally simulate von Neumann’s machines with a digital 
computer did not occur to me then.  

In the fall of 1956, the beginning of my second undergraduate year as a math major 
at Wayne State University, I began working as a part-time programmer at the university’s 
Computation Laboratory to pay my college expenses. The Lab had two vacuum-tube 
computers: a new IBM Type 650 and the UDEC, an earlier, one-of-a-kind machine built 
by Burroughs. When the computers were idle, we students working at the Lab could use 
them for personal research projects. I had a interest in artificial intelligence. I built a 
program that learned how to play the game of Hex by watching the moves of its human 
opponents. 

Only after I returned to the Lab after a year at the University of Munich did the idea 
of a digital simulation of von Neumann’s creatures occur to me. In the fall of 1959, just 
before I began my first year of graduate school, I read a piece on self-reproducing 
machines written by Lionel Penrose, a British psychiatrist, medical geneticist, and 
mathematician (and father of Roger Penrose, the now-renowned English mathematical 
physicist). In an otherwise unremarkable article in the June, 1959 issue of Scientific 
American, the senior Penrose included a paragraph summarizing von Neumann’s concept 
of a self-replicating machine:  

The [general] theory [of self-reproduction] has two aspects, which can be called the 
logical and mechanical. The logical part was first investigated by late John von 
Neumann of the Institute for Advanced Study in Princeton, N. J. He decided in 1951 
that it must be possible to build an engine that would have the property of self-
reproduction. The method would be to construct a machine that is capable of building 
any describable machine. It would follow logically that such a machine would be able 
to build another machine just like itself. Each machine would carry a sort of tail 
bearing a code describing how to make the body of the machine and also how to reprint 
the code. . . . The machine would assemble these parts from raw material in its 
environment, organize them and transform them into a new replica of itself.3 
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I immediately thought of the 1955 piece by Kemeny and the graphic of the notional von 
Neumann machine much like that presented above. I envisaged a digital simulation of an 
extended concept of von Neumann’s notional machine. If I could make my creatures 
mobile in a digital universe with others of its species then I might have lethal competition. 
If, as von Neumann had conceived, I included digital mutation in reproduction and if the 
digital entities could kill and eat each other then I would have survival of the fittest. “Life” 
in the universe would be Darwinian. With luck I might even observe a little evolution.  

I realized immediately that my vision was completely impractical. Simulation of 
even one of von Neumann’s machines was clearly beyond the capabilities of the computers 
at hand. The main memory of the larger of the two machines at the Lab, the IBM 650, had 
only 2,000 “words” of ten-digits each. If each digit represented one cell then only 20,000 
cells were available, even with no allowance for the memory needed to host the 
supervisory code. Complexities of von Neumann’s automata, with its ten and hundreds of 
thousands of components, were orders of magnitude beyond available memories of 
computers of the day, let alone the modest capacity of the 650.  

My strongest memory from that time was deep disappointment. The structure of 
digital creatures in any universe I might be able to build would have to be radically 
different than von Neumann’s. That picture of von Neumann’s boxy machine with an arm 
and a tape memory has always remained with me—so conceptually close but then 
technically so far in the future.4 

In thinking about an alternative approach, I hit upon the concept of computer 
programs as a “living” entities. Its components would be the complete machine-level 
instruction set of the IBM machine, with the addition of a couple of extra instructions for 
mutation, giving birth (activation), and locomotion. While such creatures would have no 
analog in the physical world, I knew that they could, at least in principle, be able compute 
anything. Since each inhabitant was a general-purpose computer, and since any general-
purpose computer can emulate a Turing machine, and since a Turing machine can compute 
any algorithm then my creatures could compute any algorithm.  

Genetic codes presented another problem. Designs, encoded as construction 
instructions, are a central feature of John von Neumann’s machines. The digital blueprints 
that control construction of offspring and are copied into each daughter as part of the 
reproduction process. I saw no way in my design of making a compact genetic code 
integral to one of my digital entities. In a purely digital universe, a machine’s genetic 
design would be too bulky since it could not have fewer degrees of freedom than the 
digital entity itself. 

My solution was to use the digital instantiation of the mother to guide construction 
of its daughter. In other words, reproduction would be simply making a copy of the mother 
creature’s machine language code. I could still simulate simple mutation. An external 
parameter m would control rate of mutation using random numbers. During reproduction, 
each decimal digit of the daughter entity had an average rate one per ten to the power m of 
being replaced by a random digit rather than by the value of the respective digit of its 
mother. Each creature in my universe could in principle construct a creature of any design. 
I limited replication to self-reproduction.  
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implementation  
As built, the universe was 1,350 ten-digit words logically connected in a circle. 
Each entity consisted of sixty machine language instruction occupying 32 
words of memory. See the appendix of my 1961 paper (following) for the 
detailed operational design of the first creature. There too will be found the 
extensions of the IBM 650’s native numeric operation codes added to operate 
the universe.  

The Right Hand of God, the supervisory program for the physics of the 
universe, occupied 650 words. It moved time forward by sequentially 
executing instructions in the computer program of each “living” entity. When 
more than one entity was alive, the Right Hand of God would time-share 
execution of their programs. Like a primitive multi-tasking operating system, 
the control program would cycle through all living creatures, executing one 
instruction from each entity in each cycle.  

The IBM Type 650 had no operating system and no provision for 
multitasking—like hardware interrupts or software breakpoints. To retain 
control over the execution of an entity’s code, the Right Hand of God executed 
all creature code interpretatively. I believe that the Right Hand of God was 
among the first multi-tasking operating system.  

In operation, the digital creatures moved themselves through this 
circular linear universe consuming food (non-zero memory cells) leaving 
behind them empty cells. (Digital creatures were indistinguishable from food.) 
When an entity had accumulated a quantity of food equal to its size, it would 
begin to build a copy of itself as it crawled forward. Each time the creature 
moved forward one space, it would put a copy (possibly with mutations) of 
one word of its program in the space just vacated behind it. When replication 
was complete, the mother would notify the Right Hand of God that her 
daughter was ready to begin living as an independent creature.  

The graphic to the right show a mother (bold) creating a daughter 
(italics). With every step the mother leaves behind another cell of the daughter, 
a total of six so far in this graphic. The aborning daughter is stationary until 
replication is complete. The spaces behind the daughter are empty since the 
mother ate any food that was there.  

what happened? 

In February of 1960 I completed debugging the software and creature code  
and made the first and only production run of my artificial universe—with 
disappointing results (see “On Artificial Universes” following).  

A shortly after that, I brought my work to the attention of Prof. Walter 
Hoffman, head of the Computation Laboratory. He arranged for us to meet 
over a college cafeteria lunch with one of the younger and more visionary 
professors in the Biology Department. We explained the experiment. We 
talked about its innovations and its limitations. We asked him about his 
interest in working with us. He was decidedly uninterested.  
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I set the project aside. I put the deck of IBM punch cards containing the software 
for the artificial universe on a high shelf in my office and turned to other efforts. 

the first artificial universe? 
In 1953, Nils Aall Barricelli simulated the emergence of simple, life-like genetic structures 
from inert particles using an electronic computer at the Princeton Institute for Advanced 
Study. His goal was to study whether symbiotic association of simple particles could 
evolve into improbably complex structures, much as living, self-reproducing cells with 
genetic codes might have emerged from a soup of organic compounds in the real world.5  

Barricelli’s computer world was 512 bytes of machine memory organized into a flat 
matrix (imagine 16x32) of cubicles. The software that operated the universe connected 
each edge of the matrix of cubicles to the opposite edge, making the world topologically 
finite but unbounded. Each cubicle contained either a zero, which meant empty, or was 
occupied by one of 15 different particles (or “genes”) identified by a number between 1 
and 15. Each particle in Barricelli’s universe had only two characteristics: its type (one of 
the 15) and its location.  

The operating logic and the “physics” of his world were encoded into simple 
external rules of engagement. The operating software in Barricelli’s world would use the 
rules to determine dynamically the results of symbiotic and parasitic interactions among 
particles. To begin a run, Barricelli strewed some random numbers into the cubicles. Then, 
the operating software moved time forward in computational cycles or “generations.” In 
each generation, the operating software applied the rules of engagement to compute the 
location of each gene in the next generation. For example, a gene could shift to a new 
location only if certain other kinds of genes were adjacent. Other rules specified the 
outcome of conflicts, as when two genes were directed to the same cubicle. Reproduction 
rules allowed replication of a gene only when genes of certain kinds were present. Certain 
collisions among groups of genes produced mutations.  

Barricelli’s experiments involved thousands of generations, some in larger matrices 
of cubicles. After some adjustments to the rules, certain combinations of genes achieved 
persistent reproductive success and came to dominate Barricelli’s world. But evolution 
always stalled after achieving only modest levels of complexity. Perhaps more complex 
rules and maybe more kinds of particles would have released evolution to higher levels of 
complexity.  

Barricelli’s achievement was conceiving and operating a universe in which 
elementary non-reproducing particles evolved into “symbioorganisms,” as he called them, 
that under some set of rules were self-reproducing structures. He held that the inhabitants 
of his universe were not simulacra; they were the “life-like” structures.  

Barricelli’s is a microscopic cellular world. Mine, like von Neumann’s, is 
macroscopic. Particles versus machines. Von Neumann started with a requirement that the 
machines be “constructively universal,” which means they can in principle build any 
computing machine. That criterion is present only to guarantee that his machines can self-
reproduce. The machines in my universe can and did build copies of themselves, and in 
principle can do so no matter how complex they are. They are therefore also “universal 
machines.” Consequently, my machines had all the essential features and potential 
complexity von Neumann required of the machines. Here is how Bruce Damer, a leading 
researcher of artificial life, compares Barricelli’s and my universes: 
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Fred Stahl implemented one of the first von Neumann inspired self-reproducing 
cellular automata (CA) systems on an IBM 650 mainframe. . . . Stahl’s universe 
went beyond Barricelli’s in terms of complexity. . . . [I]t featured an 
implementation . . . of a universal machine . . . for each of his simulated creatures 
using the computer’s instruction set. . . . [It] featured food and competing creatures 
capable of reproducing and mutation.6 
 

I believe therefore that my 1960 project was the first ever operational artificial universe 
with complex artificial life in a Darwinian world.  

the first computer virus? 
Some people believe that the code for my creatures is the first computer virus. The 
following appears in the archeology section of www.securelist.com, a website specializing 
in Internet security:7 

Historians are still debating when the first computer virus really appeared. We do 
know a few things for certain, however: the first computer, which is generally 
considered to have been invented by Charles Babbage, did not have any viruses. By 
the mid-1970s, Univac 1108 and IBM 360/370 did. 

Nevertheless, the idea for computer viruses actually appeared much earlier. Many 
consider the starting point to be the work of John von Neumann in his studies on 
self-reproducing mathematical automata, famous in the 1940s. By 1951, Neumann 
had already proposed methods for demonstrating how to create such automata. 

In 1959, the British mathematician Lionel Penrose presented [von Neumann’s] 
view on automated self-replication in his Scientific American article ‘Self-
Reproducing Machines’. . . . Penrose described a simple two-dimensional model of 
this structure that could be activated, multiply, mutate and attack. Shortly after 
Penrose’s article appeared, Frederick G. Stahl reproduced this model in machine 
code on an IBM 650. 

It should be noted that these studies were never intended to providing a basis for 
the future development of computer viruses. On the contrary, these scientists were 
striving to perfect this world and make it more suitable for human life. And it was 
these works that laid the foundation for many later studies on robotics and artificial 
intelligence. 

The final sentence puts my work in proper perspective. 

my 1961 paper describing the experiment 
In early 1961 I wrote a description of my artificial universe and its artificial life. Entitled 
“On Artificial Universes,” it describes the concept, design, and operation of the universe 
and its creatures. It gives details of the results of the production run. It presents my 
conclusions and wraps up with what I thought were relevant philosophical and moral 
issues.  
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“On Artificial Universes” went unpublished. A short summary of my digital 
universe and its artificial life did however appear in print in 1985. A year earlier, A.K. 
Dewdney described battling computer programs in his “Computer Recreations” column in 
Scientific American. I responded with a letter to him describing my 1960 artificial universe 
project. I wrote that my universe enabled reproduction with mutation, unlike the software 
entities his earlier column discussed. With my 1984 letter I enclosed a copy of my 1961 
paper. Dewdney published a brief description of my work in his column in the March 1985 
issue of Scientific American.  

My copies of “On Artificial Universes” were lost decades ago. Or so I thought until 
recently when I discovered a paper copy. It is reproduced on the following pages.  

additional material in this package 
“On artificial Universes.” Unpublished paper by Frederick G. Stahl. 1961. 
Annex A – Description of my artificial universe in Scientific American 1985.  
Annex B – Digital Computers at the Wayne State University Computation Laboratory 

1960.  

notes 
                                                
1 John G. Kemeny. “Man Viewed As a Machine.” Scientific American April 1955: 58-67.  
2 John von Neumann. Theory of Self-Reproducing Automata. Edited and completed by 
Arthur W. Burks. (University of Illinois Press, 1966). 
3 Lionel S. Penrose. “Self-Reproducing Machines.” Scientific American. June 1959: 105–
114. 
4 Renato Nobili and Umberto Pesavento. “An Implementation of von Neumann’s Self-
Reproducing Machine,” Artificial Life 2 (1995) no. 4: 337–354. 
5 The description of Barricelli’s work draw’s on a presentation by George Dyson: “Darwin 
Among the Machines; or, the Origins of Artificial Life,” sponsored by Edge, July 8, 1997. 
(www.edge.org) 
6 Bruce F. Damer. The EVOGRID: An Approach to Computational Origins of Life 
Endeavours. Ph.D. thesis, University College Dublin, May 2011. P. 30.  
7 http://www.securelist.com/en/threats/detect?chapter=105. 
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Paper was written in 1961. In 1984, the paper was copyedited to correct grammatical, 
syntactical, and typographical errors before submission to Scientific American. 

Following is a scan of the typewritten 1984 version.



ON ARTIFICIAL UNIVERSES 

by Frederick G. Stahl 

In February of 1960, I conceived, built and set into operation my 
personal universe To inhabit my universe I created some crude little creatures 
that lived, ate, reproduced, killed and died according to a set of specially 
designed physical laws. Reproduction was imperfect; that is, mutation was 
allowed. Evolution was therefore theoretically possible in this universe. The 
creatures were cannabalistic because they could not in their initial form 
distinguish whether material 
(food) was or was not part of the body of another creature. Thus were the 
creatures subject to selective pressure. 

This paper discusses the details of this little universe, its crea- tures, and their 
collective fate. The paper closes with some general evaluative and philosopical 
remarks. 

THE UNIVERSE 

The universe and the creatures therein were realized in the memory of a digital 
computer. The memory was divided into two parts: that 
occupied by the universe and that occupied by the program called the Right 
Hand of God that operated the universe. 

The universe was quantized into 1350 spaces. Each space was equi-  
valent to one word of memory. The IBM Type 650 was used in which each 
word of memory is ten decimal digits and a sign. The spaces were 
arranged in a closed, linear fashion making the universe topologically 
equivalent to a circle. 

Physical matter was defined as a nonzero space; that is, if the com-
puter word had at least one nonzero digit, then the entire space was 
considered occupied by a chunk of matter. 

Energy had no representation in the universe. 

THE CREATURES 

A creature was initially a set of pieces of matter occupying 32 
sequential spaces represented by 32 ten digit numbers. These numbers 
were coded to represent the detailed life functions of the creature. 

It was these codes composing each creature which were interpreted by 
the Right Hand of God program that operated the universe. In a unit 
of time, the Right Hand of God program would sequentially interpret a 
fixed number of those codes and execute the corresponding functions. 
As such, the Right Hand of God program embodied the physics of the 
universe. 
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The codes of the original creature were programmed by me to cause the 
creature to execute the following functions: 

o Lurch forward one space 

o If the space directly in front of the creature contained 
matter(wa5~.nonzero), then increment the count of units of 
matter encountered before movement. 

o If the creature had accumulated enough pieces of matter to 
equal its size, it would iteratively copy one space of 
itself onto the space directly behind itself before every 
movement. 

Unless reproducing, the creature would leave empty spaces behind it. 
Matter in spaces before the creature disappeared as the creature 
successively occupied those spaces. 

The effect was of a creature crawling along, looking for and accumu-
lating food until it had saved enough to construct an offspring. Then 
as it vacated spaces while crawling, a copy of itself would be left 
behind. Meanwhile, the creature would be accumulating more food for 
yet another offspring. 

Once copying of an offspring was complete, the creature would start 
the offspring living, which was done by notifying the Right Hand of 
God program of the offspring's location. The Right Hand of God pro-
gram would then have another creature to operate, more or less simul-
taneously with any other. 

Copying of an offspring creature had two important features: 

o The copy was direct. It was not based on a description of 
the creature (as von Neumann conceived of self-reproducing 
automata) but rather the copy was a space-by-space duplica-
tion of the actual structure of the parent. 

o The copy was imperfect. Random variations were introduced 
in the digits of the copy at the average rate of one per 
ten to the power X, where X was an input number. 

The first feature implies that acquired as well as inhereted charac-
teristics are passed on to offspring. The second feature provides for 
mutations. Combined with a competitive environment, such genetic 
shifts combined with survival of the fittest should in theory lead to 
development of more efficient or vicious strains. 

Once an offspring is complete and it has been registered as a birth, 
the Right Hand of God program delays initiation of its life. This 
wait gives the parent time to crawl away. Otherwise the offspring 
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might gobble up its parent. This is a possibility because a feeding 
creature crawls more slowly than one not eating. The average rates 
are: 

Spaces Crawled per 
Activity Unit Time 

Nothing 4 

Eating 2 

Reproducing 1 1/3 

Eating and Reproducing 1 

The parent is running into random food; the offspring finds nothing 
ahead of its since the parent leaves no food behind it, at least for a 
while after the birth of the offspring. 

THE RIGHT HAND OF GOD PROGRAM 

The principal functions of the Right Hand of God program are apparent 
from the preceding discussion. Death decision has not been touched on 
yet. 

The Right Hand of God program operates by executing interpretively 
computer-like code which compose each creature. The functions used to 
define the creature are essentially equivalent to the operation codes 
of the host computer augmented by an imperfect STORE operation and a 
special birth operation. Otherwise almost all of the arithmetic, 
logical, control and input-output (via punch cards) operations are 
included. (The table look-up function is excluded as are a couple of 
other redundant operations.) While the IBM Type 650 is a two address 
machine, the pseudocode used for the creatures is a single address 
system. All addresses are relative to the base address of the crea-
ture. The appendix shows the pseudocode program for the initial 
creature. 

With that background, the death criteria can be defined: 

o In executing the pseudocode of a creature, the Right Hand of 
God program encounters a zero. 

o In executing the pseudocode of a creature, the Right Hand of 
God program encounters an operation code that is undefined. 

If the Right Hand of God program detects either of these conditions, 
no further operation codes are interpreted for that creature--it is. left 
to be eaten by others. A creature X takes a bite of creature Y by 
moving itself space by space over the tail of Y. The nose and tail of 
every creature are bounded by a zero space, a potential danger because 
an attempt to interpret that zero would lead to death. Therefore, if 
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X bites V, then one of the above conditions may result in ViS death, X 
may be ripped in half by ViS movement, causing V to die, or both may 
die. 

The Right Hand of God program recognizes a larger set of operation 
codes than the creatures use. In fact, a subset of the creature 
pseudocodes is equivalent to the order set of the IBM Type 650. An 
implication of this is that there is no reason to rule out evolution 
of a creature to do any function a general purpose digital computer 
can be programmed to do. If computers are capable of thinking then 
these creatures can potentially evolve into thinking entities, given 
enough time and space. Whether or not such evolution would take 
place, even if there were sufficient time and space, is another 
question. 

The Right Hand of God program performs a number of simple bookkeeping 
tasks such as keeping track of where all the living creatures are in 
the universe and issuing birth and death notices to the world outside 
the computer. It also puts out data on crawling progress and whether 
each creature is eating or reproducing. [The output of the 650 was 
solely punched cards which were listed offline on a IBM Type 407 
tabulating machine.] 

FATE OF THE UNIVERSE 

Initially the universe was filled with material randomly dispersed 
with a average density of 0.5. One creature was placed in the mileau 
and the Right Hand of God program was started. Herels what happened. 

Creature #1 started crawling and eating. 

Soon came the announcement of the birth of Creature #2. 

After a while, the reports showed that both creatures were crawl-
ing and eating. That meant that if Creature #2 was a mutant, it 
was a viable mutant. 

Soon Creature #2 was eating the half-formed progeny of Creature 
#1. 

Finally, the obituary for Creature #1 came. Creature #2 had 
taken a lethal bite of Creature #1. 

Creature #2 was the only living entity, but it never did anything 
but eat and crawl--it was a viable but sterile mutant! 
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POST-MORTEM 

By the time the codes for the Right Hand of God program and the 
creature were debugged and tested, enough of the faults of the uni-
verse were apparent to make further runs pointless. Among the obvious 
improvements needed were: 

o A larger universe. The memory size of the IBM Type 650 was 
2000 words. The Right Hand of God program occupied 650, 
leaving 1350 for the universe. It is doubtful that too much 
evolution could take place in such a restricted space. 
Ideally a space larger by a factor of ten to the twentieth 
or thirtieth would be preferred, but even a universe on a 
scale of tens of thousands of spaces might be interesting. 
At the same time a two dimensional universe might relieve 
the intensity of the immediate competition and allow more 
ingenious solutions to the problem of survival. A chimpan-
zee in a telephone booth with a tiger will not evolve. The 
universe modeled in this experiment was a telephone booth. 
A forest is needed. 

o More creatures initially. That "lOuld immediately provide a 
larger population base and therefore greater probability of 
developing a large, viable, dynamic population. 

o A larger, faster computer. Measures of the basic operation 
speeds of the IBM Type 650 are in terms of milliseconds. 
The single run of the universe reported here required 
approximately one and a half hours. On a modern machine, 
only six seconds would be required for an equivalent run. 
Nevertheless, much more time--probably orders of magnitude 
more--might be required for the long term effects of natural 
selection and hence interesting evolution to become 
apparent. 

o Optimum mutation rate. Three key attributes of descendent 
creatures are determined by their structure: whether each is 
mutated, viable, or sterile. The exact structure of the 
original creature is known so that the expected proportions 
of offspring possessing each of the eight combinations of 
these binary attributes can be closely estimated as a func-
tion of the mutation rate. An optimum rate is defined as 
that which produces the most viable, mutated and non-sterile 
offspring in the first generation. For the design of crea-
tures used here, that rate is about two digits per thousand. 
In other words the probability of replacing anyone digit 
beinq cO-,oieg with a rand()l11ly drCiwn di_gi~_ i~ 0.002 •. 
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o Conservation of matter. This law should be enforced to 
prevent creatures from destroying or creating matter. This 
change would entail drastic restructuring of the physics of 
the universe and would appear to move the basic operations 
away from using almost a computer operation code set to 
something more like physical functions. 

OTHER SYSTEMS 

At least two other systems of self-reproducing entities have been 
designed. In American Scientist (liOn Models of Reproduction", date and issue 
identification unknown), Homer Jacobson reported on a hard- ware system he 
built and operated. He used toy trains and railroad track. Two kinds of train 
cars were the basic building blocks, and an entity was a pair--one each of the 
two kinds. One entity placed on the track would organize uncoupled basic units 
on adjacent tracks into pairs constituting new entities. While ingeniously done, 
the system was genetically static. Further, there was no lethal competition 
among entites. 

John von Neumann produced a design for reproducing automata. While only 
limited information is available [as of the original writing of this paper], it 
appears that after placing an initial creature in a two-dimensional universe 
containing unorganized material, the creature will move about selecting 
appropriate pieces of equipment which it organizes into a replica of itself 
according to a set of instructions (an analog to a genetic code) which is stored 
internally. While the creatures move only in a two-dimensional surface, they 
are essentially three-dimensional in that their functions make direct use of the 
physical laws of the our universe. The genetic code could, for 
example, be a tape recording. 

Von Neumann's creatures are more sophisticated than mine because they have 
distinct genetic coding. It is not clear how von Neumann's 
creatures can do much sophisticated information processing which is the 
potential of my creatures. These differences reflect the under- lying purposes. 
Von Neumann sought to prove by demonstration that 
artificial but self-reproducing automata were possible. My objective was to try 
some evolution. 

AN APPLICATION 

[This section is omitted. In the original pape, it suggested evolu- tion in 
specialized, problem-oriented en o develop designs for intelligent automata.] 

PHILOSOPHICAL REMARKS 

This experiment with an artificial universe provides an interesting 
framework for thinking about certain problems. 
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By common useage of the word, I am the god of such an artificial 
universe as I may create and set into motion. Consider: 

o Its creation was my achievement. 

o Continued existence of the universe is dependent on my will. 

o Relative to the artificial universe, I would be omniscient 
and omnipotent, for I could stop the universe at any time, 
examine any part of it in detail, change any part of it, and 
restart it. If the universe was large enough and evolution 
had produced intelligence to a degree that the concept of 
an observer inside the universe would make any sense, then 
the consequences of the above sequence would transpire 
instantaneously. I can therefore perform miracles at will. 

Such concepts put an interesting light on some theological questions. 
How do we communicate with the inhabitants of such a universe, if we 
should want to? Can they, the inhabitants of the universe, conceive 
of our existence? Not too likely. And we could not demonstrate 
directly our existence because we could not get into their universe. 
Nor can they leave theirs to operate in ours. 

If we do in fact create a universe that has the potential for evolving 
into intelligent life, what are our moral obligations? Once created 
what are our responsibilities to such a universe? Is it entitled to 
continued existence or can we pull the plug on it without guilt? 
Consider if apparently intelligent entities evolved in such a digital 
universe. What rights do they have according our moral laws? Do they 
even exist? 
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APPENDIX 

CODE OF THE INITIAL CREATURE 
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CREATURE CODE 

Relative Code 
Location Op Addr Op Addr 

0000 0000000000 
0001 0003300000 
0002 65 008 24 015 
0003 21 000 24 010 
0004 24 011 65 012 
0005 15 001 20 014 
0006 65 013 15 001 
0007 20 026 00 014 
0008 90 001 00 014 
0009 90 001 00 021 
0010 0000000000 
0011 0000000000 
0012 65 000 45 016 
0013 99 000 00 014 
0014 65 033 45 016 
0015 90 001 00 014 
0016 65 010 15 031 
0017 20 010 16 001 
0018 45 015 21 010 
0019 69 009 24 015 
0020 00 015 00 015 
0021 65 all 15 031 
0022 20 011 16 001 
0023 45 027 21 011 
0024 69 008 24 015 
0025 20 000 00 026 
0026 99 000 00 014 
0027 65 011 15 032 
0028 20 029 00 029 
0029 69 000 54 000 
0030 00 014 00 014 
0031 00 001 00 000 
0032 69 000 54 000 
0033 0000000000 
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00 TAIL 
01 SIZE 
02 INIT 
03 
04 
05 
06 

SYMBOLIC CODE FOR 
CREATURE 

00 000 00 000 
00 033 00 000 
RAL K1 STD r~OVE 
STU TAIL STD TUM 
STO INDEX RAL K3 
ALa SIZE STL SENSE 
RAL K4 ALO SIZE 

Image left when crawling. 
Length - 1. 
Initialize vector to not reproduce. 
Zero aft image and stomach. 
Initialize index for copy loop. 
Initialize vector to not feed. 
Initialize vector to go back to SENSE 
after birth. 

07 STL BIRTH TRA SENSE 

08 K1 
09 K2 
10 TUM 
11 INDEX 
12 K3 
13 K4 

14 SENSE 
15 MOVE 
16 FEED 
17 
18 
19 
20 
21 REPRO 
22 
23 
24 
25 
26 BIRTH 
27 COpy 
28 
29 r~UTAT 
30 
31 ONE 
32 K5 
33 NOSE 

CRW 1 
CRW 1 
00 000 
00 000 
RAL 000 
BIR 000 

TRA SENSE 
TRA REPRO 
00 000 
00 000 
NZA FEED 
TRA SENSE 

(RAL 033 NZA FEED) 
(CRW 1 TRA SENSE) 

RAL TUM ALa ONE 
STL TUM SLO SIZE 
NZA MOVE STU TUM 
LDD K2 STD MOVE 
TRA MOVE (Unused) 
RAL INDEX ALO ONE 
STL INDEX SLO SIZE 
NZA COpy STU INDEX 
LDD K1 STD MOVE 
STL TAIL TRA BIRTH 

(BIR 033 TRA SENSE) 
RAL INDEX ALa K5 
STL MUTAT TRA MUTAT 

(LDD xxx MUT TAIL ) 
TRA SENSE (Unused) 
00 001 00 000 
LDD 000 MUT 000 
00 000 00 000 

Vectors for instruction at MOVE. 

Stomach counts food eaten. 
Index for copy loop. 
For construction of SENSE instruction. 
For construction of BIRTH instruction. 

Go tro FEED if chunk of matter at nose. 
Crawl 1 space. Go to SENSE or FEED. 
Increment stomach. 

If stock not = size then go to MOVE. 
Otherwise, zero STOMACH, set vector to 
reproduce, and then go to MOVE. 
Increment copy index and check for 
completion of copy. 
Go to COPY if not done. Otherwise 
zero INDEX, reset vector at MOVE, zero 
aft image and go to give birth. 
Bear, then re-enter main loop. 
Set up copy instructions. 

Special mutation copy of a word to aft 
image. 

For construction of MUTAT instruction. 
Forward sensing area. 
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SCHEMA OF RELEVANT 650 ARITHMETIC-LOGICAL UNIT ARCHITECTURE 

Upper Lower 
Accumulator Accumulator 

Distributor 

D 
Memory 

OPERATION CODES USED IN INITIAL CREATURE 

RAL 65 XXX Reset entire accumulator to zero and load a copy of memory 
location XXX into the lower accumulator, leaving an image 
of the value in the disributor. Here as elsewhere, XXX 
is an address relative to the base address of the 
creature being executed. 

ALO 15 XXX Add the contents of memory location XXX to the lower 
accumulator, leaving a copy of the value from memory 

in the distributor. 

SLO 16 XXX Subtract the contents of memory location XXX from the 
lower accumulator. Distributor is left with a copy 

of the word from memory. 

STL 20 XXX Store a copy of the contents of the lower accumulator in 
memory location XXX. Disributor is left with a copy of 
the word stored. 
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STU 21 XXX The upper accumulator is stored in memory. 

LOO 69 XXX The distributor is loaded with a copy of the word at mem-
ory location XXX. 

STO 24 XXX The contents of the distributor are copied into memory 
location XXX. 

NZA 45 XXX If the accumulator is not zero then controlis transferred 
to the instruction at memory location XXX. 

Non-650 instructions 

TRA 00 XXX Control is transferred to the instruction at memory 
location XXX. 

CRW 90 XXX Crawl XXX spaces. 

BIR 99 XXX Notify Left Hand of God program of birth of a new crea-
ture with base location at XXX relative to base location 
of creature currently being executed. 

MUT 54 XXX Store the lower accumulator at address XXX with a random 
mutation according to an input fixed rate. 
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annex A
description of the artificial universe 

in Scientific American in 1985



description of artificial universe 
in Scientific American 19851 

 
Inspired by a June 1959 Scientific American article on self-reproducing 
mechanisms by L. S. Penrose, Frederick G. Stahl of Chesterfield, Mo., 
created a miniature linear universe in which humble creatures lived, moved 
and (after a fashion) lived out their destinies. Stahl writes: 
“Like Core War, I set aside a closed, linear segment of main memory in 
which a creature was simulated by modified machine language. The 
machine was an IBM Type 650 with drum memory. The creature was 
programmed to crawl through its universe eating food (nonzero words) and 
creating a duplicate of itself when enough food was accumulated. Like Core 
War, I had an executive program which kept track of who was alive and 
allocated execution time among the living creatures. I called it the “Left 
Hand of God.” Stahl goes on to discuss his program’s ability to reproduce. 
He also describes an interesting mutation mechanism; a program being 
copied might experience a small number of random changes in its code. 
However, Stahl reports, “I abandoned this line of work after one production 
run in which a sterile mutant ate and killed the only fertile creature in the 
universe. It was apparent that extraordinarily large memories and long 
computer runs would be needed to achieve any interesting results.” 

 
                                                
1 A.K. Dewdney, “Bestiary of viruses, worms and other threats to computer memories,” 
Computer Recreations, Scientific American, March 1985. The column with others was 
republished in A. K. Dewdney. Armchair Universes: An Exploration of Computer Worlds. 
(W.H. Freeman, 1987). 
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digital computers at the 
Wayne State University  
Computation Laboratory  

1960 
 
 

The Wayne State University Computation Laboratory was among the earliest 
computer research facilities in the United States with large-scale computers. The 
Lab was organized in 1949 under the auspices of the Industrial Mathematics 
Society (IMS) as a joint effort between the university and local industry. The 
Computation Laboratory performed three basic functions: 1) to provide service to 
industry and business, 2) to conduct academic research, 3) to provide training in 
computer operations.   
Initially, the laboratory had a 1930-era Bush Differential Analyzer donated by the 
Massachusetts Institute of Technology. When it first began operation, the Lab 
focused on solving engineering problems for the automobile industry. A Unitized 
Digital Electronic Computer (UDEC) was purchased from the Burroughs 
Corporation and put into operation in December of 1953. Increasing demand for 
computer services led to the purchase an IBM 650 computer in the spring of 
1956. 
UDEC 
The UDEC was one of only a couple of 
machines special-built by the Burroughs 
Corporation. With 31 racks of 
electronics hidden behind large panels, 
the machine looked like a locker room. 
The electronic components behind each 
door were enormous by today’s 
standards. Each flip-flop, for example, 
consisted of four big, hot vacuum tubes 
and their attendant resisters and 
capacitors, all mounted behind a 
roughly 6-inch-by-18-inch machined 
aluminum panel, complete with pilot 
lights to show its status—on or off. You 
would need an electron microscope to see the functionally equivalent component 
on a modern integrated computer chip.  
IBM 650 
The UDEC was obsolete almost from the day it was delivered to the Lab. It had a 
mean operating time without an error of six hours. The workhorse machine at the 
Lab was the IBM 650, the “Magnetic Drum Data-Processing Machine Type 650.” 
It too was a vacuum machine but much more compact. The electronics were 
housed in three large boxes, each mounted on castors: console unit, power 
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supply, and card read-punch unit. 
Console unit, which also contained 
the CPU, was six feet high, five feet 
long, and three feet wide. It weighed 
2,000 lbs. The power supply was in 
a similar box and weighed 3,000 lbs. 
The card reader and punch unit was 
smaller and lighter at 1,200 lbs. All 
units had removable side panels for 
maintenance. Contemporary 
photographs of the system seldom 
show big exhaust hoods over the 
console and power units to dissipate 
the heat generated by thousands of 
vacuum tubes. 
The 650 was the first mass production computer. Two thousand were sold. At the 
time, I thought it was a relatively good machine to program. It was reliable and 
had a clean architecture. But it had its drawbacks. For example, debugging 
software involved laborious manual stepping through program instructions and 
observing the contents of CPU registers displayed on console lights. Input/output 
was another awkward process. The only input was via decks of IBM punch cards 
fed through the card reader/punch card unit. The machine had no connected 
printer. All output had to be first punched into cards and then printed on an IBM 
402 tabulating machine, originally designed for standalone accounting 
applications.  
The organization of the 650 random access memory is seldom seen today. 
Instead of addressable bytes, the memory was organized into 2,000 addressable 
words, each of which consisted of ten decimal digits and an arithmetic sign. As a 
benchmark, the 650’s main memory would be equivalent to about 20 Kilobytes. 
The IBM 650 was a “two-address” computer. Each machine-language instruction 
was organized into a two-digit operation code and two four-digit addresses. For 
example, the “STD” instruction  

+24 1733 0324 
would cause the CPU to store a copy of the ten digits and sign contained in the 
register called the “distributor” into word 1733 in the rotating drum memory. Then 
the CPU would take its next instruction from memory location 0324. 
The machine could execute 44 different operation codes including: load a 
register from contents of a memory location, store contents of a register into a 
memory location, add, subtract, multiply, divide, shift, and branch. Typical 
execution times were 5 milliseconds per instruction.  
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