
Future Directions in
DBMS Research

edited by

Erich Neuhold and
Michael Stonebraker

TR-88-01
May, 1988

INTERNATIONAL COMPUTER SCIENCE INSTITUTE
1947 Center Street, Suite 600

Berkeley, California 94704-1105

Future Directions in
DBMS Research

edited by

Erich Neuhold and
Michael Stonebraker

TR-88-01
May, 1988

May 2, 1988

FUTURE DIRECTIONS IN DBMS RESEARCH

The Laguna Beach Participants*

Abstract
On February 4-5, 1988, the International Computer Science Institute sponsored a two day

workshop at which 16 senior members of the data base research community discussed future
research topics in the DBMS area. This paper summarizes the discussion which took place.

1. INTRODUCTION
A computer science research laboratory has been set up at the University of California,

Berkeley called the International Computer Science Institute (ICSI). ICSI has been sponsored and
has received its initial support through the German National Research Center for Computer Sci-
ence (Gesellschaft fuer Mathematik und Datenverarbeitung - GMD). In addition to pursuing a
research program in fundamental computer science, ICSI has the mandate to promote the inter-
change of ideas and the collaboration between computer scientists in the US and in other parts of
the world. As such, ICSI sponsored a two day workshop in Laguna Beach, California, attended by
7 senior DBMS researchers from Germany and 9 from the USA. This workshop was organized
by Erich Neuhold of GMD and Michael Stonebraker of Berkeley.

The purpose of the workshop was to discuss what DBMS topics deserve research attention
in the future. During the first day, each participant presented four topics that he was not working
on that he thought were important and that he would like to investigate. In addition, each partici-
pant was asked to present two topics that others were working on, which he thought were unlikely
to yield significant research progress. All participants then cast five votes in support of research
topics proposed by others. They were also given two votes to indicate agreement with overrated
topics. In addition to the voting, time on the first day was devoted to "war stories", i.e. experi-
ences of the participants in working on very hard real-world data base problems. The second day
of the workshop was devoted to 40 minute discussions on a collection of specified controversial
topics.

The discussion was far reaching and significant agreement was present on a number of
issues. For example, the participants were nearly unaminous on the importance of research on
user interfaces, active data bases and parallelism. All other topics received noticeably less sup-
port. The participants were unaminously negative on the prospective research contribution of
hardware data base machines, general recursive query processing, and interfaces between a
DBMS and Prolog. On other issues such as the importance of research into data base tool kits,
the participants held divergent positions.

This report summarizes the discussion which took place. All participants contributed to its
preparation and have approved its content.

The remainder of the report is organized as follows. Section 2 discusses the applications
that the participants thought would drive future requirements of DBMSs. Then, Section 3 consid-
ers the hardware environment in which DBMSs will be required to run in the future and discusses
the viability of hardware data base machines. In Section 4 the relationship of a DBMS with other
system software including the operating system and language processors is treated. Section 5

The Laguna Beach Participants were Philip A. Bemsiein, Umeshwar Dayal. David J. DcWiu. Dieter Gawlick, Jim Gray,
Matthias Jake, B m a G. Lindsay, Peter C. Lockemam. David Maier. Erich J. Neuhold. Andreas Rwter. Lawrence A. Rowe. Hans J.
Schek. Joachirn W. Schmidt, Michael Schrefl, and Michael Stonebraker.

turns to mechanisms for DBMS extensions including so-called object-oriented data bases. Active
data base management systems are treated in Section 6 along with the attitude of the participants
toward rule systems in general. Research in end user interfaces and application development
tools is the subject of Section 7. Future research in techniques for implementing single-site
DBMSs is considered in Section 8, while Section 9 turns to distributed data base management
systems. Lastly, Section 10 consists of a collection of topics which did not fit well into one of the
previous sections.

2. FUTURE APPLICATIONS
Several participants suggested investigating the needs of a specific application area as a

fruitful research endeavor. Others used new application areas as examples to motivate the discus-
sion of specific research topics or in exploring specific issues. Lastly, many of the war stories
concerned new application areas. This section summarizes the themes that emerged.

2.1. CASE
Several participants pointed to Computer Aided Software Engineering (CASE) as a

significant new application area for DBMS technology. Basically, all information associated
with a computer program (source code, documentation, program design, etc.) should go into a
data base. The participants thought that the needs of clients in this area were similar to many
other engineering applications (e.g. versions, complex objects, inheritance, etc). Some current
commercial systems are using data base management systems to manage CASE data while others
are building custom DBMSs with needed capabilities. There was substantial agreement that
CASE is an important application areas with meaty problems worthy of investigation. For exam-
ple, a good way to build a generalized "make" facility (i.e one which would automatically
recompile appropriate software modules when changes occur) would be to support a powerfid
trigger facility. As noted above, research on active data bases received nearly unaminous support
from the participants.

2.2. CIM
A smaller number of participants pointed to Computer Integrated Manufacturing (CIM) as a

significant new application area. Here, data on all phases of plant operation would be stored in a
data base system (e.g. code for machine tools, test results, production schedules, etc.) Partici-
pants pointed to new data base capabilities that were needed to support applications in this area
such as alerters and triggers. Considerable support for working on the problems in this area also
emerged.

2.3. Images
Two of the participants pointed to image applications such as found in medical diagnosis,

natural resource management (e.g. satellite data) as an important research area. The discussion
pointed out the need for storing large (several megabyte) bit strings of images in a DBMS.
Beyond storing large objects, the participants felt there was a substantial pattern recognition
problem in tliis area that should be addressed by others. Nobody thought it was hard to put very
large but relatively unstructured objects efficiently into data bases.

2.4. Spatial Data Bases
Several participants used spatial examples as hard applications. These were typically geo-

graphical data bases containing encoded information currently found on maps. The problems
varied from providing urban services (e.g. how do I get from X to Y efficiently on public tran-
sportation) to conducting a military operation to environmental information systems integrating
all kinds of data from under, on, and over the earth surface. There was widespread support for the
importance of such applications, and the participants generally thought that this was a very good
application area for extendible DBMSs.

One participant thought it was important to investigate the needs of information retrieval
applications. Basically, he thought that text would be a component in many data base applica-
tions and that the key-word oriented searching prevalent in todays' text and infomation retrieval
applications should be reconsidered. The objective would be to efficiently support the needs of
clients in this area with semantic and object oriented models so that IR systems would not have to
be written as "one-off' applications and the power of generalized DBMSs would come to bear in
this field. Some interest for this point of view emerged.

3. THE FUTURE HARDWARE ENVIRONMENT

3.1. The Revolution
Several participants pointed out the there appears to be a "knee of technology" that is

occumng. Specifically, individual high end CPUs have increased in speed from about 1 MIP to
about 15 MIPS in the last two decades at a consistent rate of about a factor of two every five
years. For the next several years RISC technology will allow CPUs to get faster at about a factor
of two every 1-2 years. This factor of 2 112 - 5 acceleration in the growth rate of CPU technology
is likely to have a dramatic impact on the the way we think about DBMSs, operating systems and
user interfaces. The participants discussed the machine of 1991 as having 50 MIPS and a giga-
byte of main memory, selling for $100,000 or less. Semi-serious comments were bandied about
such as ''if your data base doesn't fit in main memory, wait a few months and it will."

There was a wide-ranging discussion on whether the application needs of clients would
increase at least as fast as the price of resources (CPUs, memory, disks) will be driven down over
the next several years. The cost of an application with a constant need for resources will decrease
by something approaching a factor of two per year for the next several years as noted above.
Clearly, a client with a constant application will solve it with ever cheaper hardware, and perfor-
mance will become uninteresting sooner or later. In order for data base management systems to
continue as a vital research area it is necessary for the needs of clients to increase at least as fast
as the hardware is getting cheaper.

There was substantial agreement that DBMS clients have large unmet needs that can take
full advantage of cheaper resources. Several participants reported that decision support applica-
tions were frequently not being done because they were currently too expensive. Clearly, cheaper
hardware will enable this class of applications. Others pointed out that clients justify substan-
tially increased resource consumption on the grounds of human productivity. For example, they
would use additional hardware to create real time responses to user interactions rather than in
batch. Several participants pointed out that real world data bases are currently growing at 30-50
percent per year and the growth rate shows no signs of decreasing. Hence, space consumption is
increasing at about the rate that disks are declining in price. Another participant noted the DBMS
functionality would increase by at least the rate of decrease of hardware costs, and therefore per-
formance of the DBMS will continue to be an issue. Lastly, one participant pointed to the
scientific community who will consume any amount of available resources to refine the granular-
ity at which they keep information.

The conclusion was that carefully managing resources applied to accessing data would be a
significant problem for the forseeable future. The only impediment to this scenario would be the
inability of the DBMS community or their clients to write new software for enhanced function
and new applications fast enough.

3.2. Data Base Machines
There was overwhelming sentiment that research on hardware data base machines was

unlikely to produce significant results. Some people put it more strongly and said they did not
want to read any more papers on hardware filtering or hardware sorting. The basic point they
made was that general purpose CPUs are falling in price so fast that one should do DBMS func-
tions in software on a general purpose machine rather than on custom designed hardware. Put
differently, nobody was optimistic that custom hardware could compete with general purpose
CPUs any time in the near future.

4. THE FUTURE SOFTWARE ENVIRONMENT

4.1. Operating Systems
Operating systems are much maligned by data base researchers for providing the wrong

kinds of services, especially in the area of file management. The informed consensus of the parti-
cipants was that this problem is not likely to go away any time soon. It was felt that operating
system designers would have their hands full for the next several years with networking software
and substantial kernel modifications caused by the large increase in CPU speed and amount of
memory that will be present in future machines. These new communication protocols will
include IS0 and special purpose protocols such as NFS. In addition, fast restart, non-stop opera-
tion, failure management and restructuring the operating system to have a small kernel and a lay-
ered collection of services on top of it are likely to consume the attention of the operating system
designers for the forseeable future.

Any hope that OSs will get more responsive to the needs of the DBMS are probably
optimistic. The only area where there is hope is in transaction management. Several participants
pointed out the need for transactions which spanned subsystems (e.g. two different data managers
or the data manager and the network manager). Such needs can only be addressed by transaction
support built into the kernel or at least kept outside the DBMS. A minority position was that this
class of problems is naturally addressed as a heterogeneous distributed data base system problem.
This solution clearly is only acceptable if all need for transaction behaviour can be kept inside the
DBMS environment.

Several people pointed out that OS support for data bases was an important research topic.
One participant discussed an application which required 10 mbyte per second access to his data.
Such performance is only attainable by striping data over a number of disks and reading them in
parallel. There was support for additional research on high performance file systems for DBMS
applications.

The discussion also focused on whether current operating system interfaces (e.g. MVS)
would be preserved. Everybody thought that we were stuck with current interfaces for a long
time, just as our clients are stuck with SQL.

4.2. Programming Language Interfaces
There was a discussion of the difficulty of interfacing current DBMSs to current program-

ming languages. Some participants felt that it was important to clean up the current pretty awful
SQL interface for both embedded and dynamic queries. Others said that most users would be
coding in application development languages (4GLs) and that this level would be hidden, and
thereby it would be less important. The consensus was that there would be a lot of programs
written in normal programming languages that made calls on data base services, and that a better
interface would be a worthwhile area of investigation. Moreover, somebody has to write the 4GL
interpreters and compilers and this person should see a cleaner interface.

The possibility of a standard 4GL was briefly discussed. Nobody expressed any interest on
working on this essentially political problem. Any 4GL standard is expected to be many years
away.

4.3. Prolog
There is considerable current research activity in interfacing Prolog to a DBMS. Many par-

ticipants pointed to this area as one unlikely to have a significant impact. They felt that too many
research groups were doing essentially the same thing. Moreover, most felt that the real problem
was to integrate some portions of logic and rules systems into a data manager. As such figuring
out efficient "glue" to interface an external rule manager to a DBMS is not very interesting.
Many participants expressed strong sentiment to stop funding research projects in this area.

5. EXTENDIBLE DATA MANAGERS
Topics in this area were revisited many times during the two day workshop. The partici-

pants pointed out that CASE, CIM and spatial applications need new kinds of objects. Moreover,

there is no agreement in these areas on a small set of primitive object types, and extendible
DBMSs seem the only solution to these application needs. The discussion naturally divided into
extension architectures and object-oriented data bases, and we treat each area in turn.

5.1. Extension Architectures
There was substantial controversy in this area. Some favored building a complete DBMS

containing a parser, query optimizer, access methods, transaction management, etc. and then sup-
porting user extensions within the context of a full-function DBMS. This approach is being
taken, for example, in POSTGRES, PROBE, STARBURST, and VODAK. Others favored a tool
kit approach where an erector set of modules would be provided to allow a sophisticated applica-
tion designer to put together a custom system. This approach is being investigated, for example,
by DASDB, GENESIS, and EXODUS. The discussion was heated between these options and we
summarize some of the points below.

The advocates of the tool kit approach stressed that a sophisticated user could install his
own concurrency control or recovery modules from perhaps several that were available in the tool
kit. In this way, a tailored transaction manager could be built. They also pointed to application
areas like CASE where a "lean and mean" system could be built containing only required capa-
bilities.

The advocates of extendible systems argued that transaction management code is among the
hardest to make fast and bug free. Hence, it should be done once by the DBMS super-wizard,
and it is unrealistic for even sophisticated users to expect to do better than the super-wizard can
do. Moreover, performance knobs on the transaction manager should be installed by the super-
wizard if they are needed. The second point argued by the advocates of extendible systems was
that most applications seemed to require a full-function system with a query language, optimizer
and general purpose run-time system. If a user needs a full-function system, then the tool kit
approach is not appropriate.

The participants were about equally divided between the merits of these two points of view.
Moreover, one participant pointed out that there is a spectrum of extensions, and that the tool kit
and extendible systems are merely at different places in a continuum of possibilities. For e r m -
ple, extendible systems disallow replacing the query language with a different one while allc ; ing
the inclusion or replacement of data types. The tool kit approach. on the other hand, offers both
kinds of customization. Consequently, the tool kit offers a superset of the extension possibilities
of extendible systems.

Clearly, the architecture of extendible systems is a good research area. Moreover, several
participants discussed the importance of research in optimizing extendible data base systems.
Hence, research on query optirnizers and run time systems which do not have hard coded
knowledge of the low-level access paths or join algorithms was widely believed to be important.
Several participants pointed at the advantage of a distinction between the design environment,
e.g. for configuring the extendible DBMS, for evaluating schemas and for turning performance
knobs, and the usage environment where the complexities of the extendible systems are compiled
and optimized away. Both environments, however, should be reflected in a single architecture and
system.

5.2. Object-Oriented Data Bases
There was a long discussion on this topic. Some of the participants thought this whole area

was misguided, while others thought it was a highly significant research area. In fact, virtually all
participants held a strong opinion one way or the other on this research area. About half thought
it held no promise of significant results while the other half thought it was a area where major
results could be expected. This seeming contradiction can be explained by the fact that the pro-
ponents and detractors invariably discovered they were talking about different capabilities when
they used the words "object-oriented data base" (OODB).

Hence, it is clear that the term OODB does not have a common definition to the research
community. The participants lamented the fact that there does not seem to be a visible spok-
esperson who can coerce the researchers in this area into using a common set of terms and
defining a common goal that they are hoping to achieve. This situation was contrasted with the

early 1970s when Ted Codd defined the relational model nearly singlehandedly.
The proponents of OODB research made two major points. First, they argued that an

OODB was an appropriate framework in which to construct an extendible DBMS. Researchers in
this area are constructing systems which allow a user to write his own types and operations using
the data language of the OODB itself. One goal of the OODB community is thereby similar to the
goal of the extendible data management advocates. However, in these databases extensions are
frequently accomplished through writing new data types and operations in the implementation
language of the OODB and not in its data language. Some of the OODB proponents, however,
pointed out that a OODB should be capable of invoking and linking to procedures written in a
variety of programming languages making it again more similar to extendible data managers. In
addition it can be argued that the object-oriented paradigm provides a framework were con-
straints on the defined operations can be enforced and managed. This will avoid all the problems
that arise when extendible systems allow uncontrolled operational specifications.

The second major point was that inheritance is considered central to an OODB. A discus-
sion of inheritance centered around the question of why it has to be so complex. It was felt that a
good idea was needed to coalesce inheritance into something understandable to an average appli-
cation programmer. Today different kinds of inheritance are frequently defined only via examples
and have to be expressed using the same specification mechanics of the data language. In multi-
person systems this leads to all kinds of semantic confusion and handling errors.

The opponents of OODB research made two points. Fit, they said that many decision s u p
port applications are largely built around the paradigm of browsing data collections constructed
in ad-hoc ways. Hence, it is important to be able to easily do unstructured joins between
disparate objects on any conditions that might be of interest. Systems which do not allow value-
based joins between all types of objects are thereby uninteresting for decision support. Conse-
quently, most (but not all) systems currently advertised as OODBs are uninteresting because they
do not allow ad-hoc joins.

The second point made by the detractors is that many researchers use the term OODB to
mean a storage manager which supports the notion of objects that can have fields which contain
identifiers of other objects and which performs the following tasks:

given an object-identifier, fetch the object instance
given an object instance, find any field in the object

This level of interface requires a programmer to obtain an object identifier and then "navigate"
to other objects by obtaining object identifiers that are fields in the object. This reminded several
participants of CODASYL systems, whose severe problems were discussed at great length in the
mid 1970s. This class of interfaces was consequently seen by some as a throw back to the 1970s
and a misguided effort.

These positions are not really in conflict with each other. Most of the proponents of
object-oriented data bases did not defend record-at-a-time navigation. Only a couple of partici-
pants felt there were application areas where this interface might be appropriate. All thought that
an OODB should have a query language with value-based joins or other means of set-at-a time
linking operations along with a substantial data manager to process such queries. The OODB
opponents generally thought inheritance was a good idea, and everybody was in favor of exten-
sions.

Hence, the real problem is that "object-oriented" means too many different things. Until
the terminology stabilizes and some coherency of system goals emerges, we fear that others will
consume much discussion time, as we did, in realizing that we didn't have a common meaning of
the terns.

6. ACTIVE DATA BASES AND RULE SYSTEMS
Many participants pointed out the need for so-called active data bases. Hence, triggers,

alerters, constraints, etc. should be supported by the DBMS as services. This capability was one
of the needs most frequently mentioned as a requirement of future applications of data bases.
There was extremely strong consensus that this was a femle research area and that providing this
service would be a major win in future systems.

Several participants noted that current commercial systems are installing procedures as data
base objects which can be executed under DBMS conuol. In many cases such procedures are
directly invoked by an application program. It is only marginally more complex to allow such
procedures to be invoked as a result of conditions in the data base. Hence, active procedures and
active data bases should probably be considered together as a single service. The participants
noted a clear need for researchers to take the lead in defining better syntax for procedures,
because current commercial systems seem to do a poor job of syntax and semantics in this area.

There was also unaminity that an active data base system should have a fairly simple rules
system that would have extremely high performance. Questions normally addressed by A1
researchers under the rubric of expert systems, (e.g. implementing a theorem prover to prove
safety of a rule or mutual consistency of a rule set) should be completely avoided. One partici-
pant pointed out that a DBMS could simply fire rules at will and remember DBMS states as rules
were activated. If the run time system ever returned to the same state again, then inconsistency or
unsafety was present. In such a case the DBMS need only abort the current transaction to back
out of the situation. Simple solutions such as this were universally preferred by the participants
to attempts at theorem provers.

There is substantial current research activity in efficiently solving general recursive queries
that might be posed by a user or result from activating a recursive rule. The participants felt that
there are a number of clients with parts explosion or other transitive closure queries. There are
also a number of clients with linear recursive queries such as shortest path problems in graphs.
However, none of the participants had seen an application that was best solved by coding a gen-
eral rule set and then optimizing it. As such, it is not clear that there is a client for solutions to
general recursive queries. The overwhelming sentiment of the majority of participants is that
they did not want to see any more papers in this area. Moreover, they complained that current
conferences were accepting too many papers on recursive query processing.

A . analogy was drawn to dependency theory which was explored at length a few years ago
primarily by the theoretical research community. Most participants felt that little of practical
significance had been contributed by this lengthy research beyond the original introduction of the
theory, and that general recursive query processing would meet the same fate.

One participant noted that knowledge acquisition was a central and difficult problem in rule
based applications. The sentiment of the workshop was that this task is extremely difficult. A
small number of participants felt that significant advances would result from research in this area.

7. END USER INTERFACES
The participants noted that there are virtually no researchers investigating better end user

interfaces to data bases or better database application development tools. In the last few years
there have been only a scattering of papers published in this area. Moreover, there was universal
consensus that this was an extremely important area, and it received more support from the parti-
cipants than any other m a . In addition, several participants noted that major advances have been
made in non-database related user interfaces in the last decade. They noted that spreadsheets,
WYSIWYG interfaces, Hypercard, etc. have caused a complete revolution in human interfaces.

The discussion turned to the obvious question "Why has major progress been made in a
vitally important area with no participation from the database research community and what can
be done to change the situation?" Several points emerged from the discussion. First, it was noted
that publishing papers on user interfaces is inherently difficult. As one participant noted "The
best user interface requires no manual." Hence, how can one write papers that capture the
essence of such interfaces? A second point was that the academic community (especially pro-
gram committees) is hostile to user interface papers because they typically have no equations or
"hard intellectual" content. A third point was that user interface contributions must be built to
assess their merits. One participant advocated "demo or die" to prove an idea. However, to
build real systems there is a mamrnouth amount of low level support code which must be con-
structed before the actual interface can be built. This "infrastructure" has only recently become
available in the form of toolkits such as X11.

The participants noted that because of the last point it is now easier to work on user inter-
faces and there may be more work in this m a in the future. Almost one-third of them said they

were working on end-user interfaces of one sort or another. A constructive comment which
emerged from the discussion was that international meetings such as SIGMOD and VLDB should
set up a video track, through which researchers could contribute an idea in video rather than
paper form. Such a stream with its own program committee would clearly be oriented to user
interface contributions and has been used sucessfully by recent OOPSLA conferences. Collec-
tively, we would strongly encourage the organizers of such meetings to implement this sugges-
tion.

8. SINGLE SITE DBMS TECHNOLOGY
The undertone of discussions on this topic was that technology is in the process of changing

the rules. Contributing factors are the imminent anival of increasingly high performance cheap
processors sometimes in shared memory configurations, gigabytes of main memory, and large
arrays of 3 112" or 5 114" drives. This technology will require rethinking the query optimizer,
execution techniques and xun time system for the new environment.

A second point made by several participants was the need for high availability and much
better failure management. Nobody thought that problems in this area would be easy because
significant results might entail considerable low level ''nuts and bolts" engineering.

There was widespread consensus that no more concurrency control papers should be written
for the traditional database transaction model. Most participants felt that papers in this area
tended to be "epsilon variants" on previous work, and future research on algorithms in this area
should be discouraged. On the other hand, there was p a t enthusiasm for work on new transac-
tion models. The standard notion of transactions as serializable and atomic has not changed in 15
years. There have been occasional wrinkles such as nested transactions and sagas. However, the
sense of the meeting was that new application areas such as CASE and CIM would benefit from a
more comprehensive transaction model. Such a model might encompass

1) check-in check-out protocols with version control,
2) weaker semantics than serializability or
3) transactions which can be UNDONE after commiting

There was no consensus on what the model would look like, just that it was needed. The partici-
pants were vocal in their support for research in this area.

Strong support was also voiced for research on parallelism. Basically, this amounts to run-
ning multiple query plans for a single query language command. This tactic is valuable in a sin-
gle CPU system in order to keep multiple disks busy. In a shared memory system it is desirable
to utilize the multiple processors that are present, and obviously it is a central idea in tightly cou-
pled distributed systems. The big benefit from research in this area is the ability to give a user the
illusion of real time response as well as the ability to hold locks for shorter periods of time. Next
to user interface research and active data bases, this topic received the most support.

There was some interest in research on tricks to achieve better performance. Work on
removing hot spots, caching the answers to queries, and precomputed joins of one sort or another
were mentioned as interesting areas. Each achieved some interest but was considered a limited
scope idea, (i.e. something that a few people should probably look into).

Lastly, there were participants who were very hostile to access method research. They sug-
gested that they had seen enough variants on B-trees and extendible hashing and were not
interested in further papers in this area. The sentiment was that the recent papers are exploiting
the same collection of themes, and that only a 10-20 percent increase in performance is likely to
result from such ideas. A couple of participants noted that several commercial vendors have
rewritten their data base systems in recent years and have not installed extendible hashing or
enhanced B-tree schemes. The apparent reason is that they do not see the cost-benefit of writing
code in this area. However, some participants noted that research on new access methods to sup-
port new classes of objects (e.g. spatial ones) is needed.

9. DISTRIBUTED DBMS
The participants felt that distributed data base management systems had been investigated

at length by the research community over the last ten years. Now there is intense commercial

activity in this area, and several vendors are hard at work on heterogeneous (or federated) distri-
buted DBMSs. Moreover, the really hard problems in this area center around system adrninistra-
tion of a large (say 50,000 terminal) distributed computing system. Managing this environment
(e.g. installing new updates of modules, new users) is a major nightmare on current systems. It
was felt that researchers probably have little to contribute to the solution to this problem because
one must have experience with the needs in this area in order to make a contribution. Few
researchers are in a position to closely study large complex systems of this sort.

The one area of distributed data bases that evoked support was the problem of scale.
Clearly, data bases will be set up which involve hundreds or even thousands of nodes. CIM
environments will have large numbers of nodes as well as environments where workstation data
bases are present. There was support for rethinking algorithms for query processing, copies, tran-
saction management, and crash recovery from the point of view of scalability to large numbers of
nodes. However, detractors thought this might be a waste of time because commercial companies
will make progress in this area faster than the research community.

10. MISCELLANEOUS TOPICS

10.1. Physical Data Base Design
There was a consensus that researchers should build automatic physical data base design

tools that would choose a physical schema and then monitor the performance of the schema mak-
ing changes as necessary. This would include adding and dropping indexes, load balancing arm
activity across a substantial number of disk arms, etc. Hence, tuning knobs should be removed
from the domain of the data base administrator and manipulated by a system demon. There was
widespread support for this idea, and most people thought it was only a moderately hard problem.

10.2. Design Tools
Several participants noted that current data base design tools are merely graphical drawing

systems. Moreover, there are a large variety of such products commercially available at the
present time. As such, they have little research appeal. A couple of participants expressed
interest in enhanced design tools that include methodological concepts for objects, operations and
constraints.

10.3. Real Time Data Bases
The needs of applications which must run in real time was discussed at some length. Moni-

toring applications typically input a continuous smam of data into a data base. Often they dis-
card data once it is no longer timely. Many times there are deadlines to deal with (i.e the DBMS
must respond by the time the part goes by the robot arm on the assembly line). The notion of a
transaction in this environment is unclear, and the need for triggers is apparent. There was sup-
port for research in this area to look at this class of issues.

10.4. Data Models
There was no support for any more data models. The participants universally felt we had

enough already. There was also little support for an attempt to standardize on a common "next
generation" data model. This was felt to be an exercise in frustration as well as merely the
invention of yet another data model. It was, however, pointed out that OODB's and active data-
bases in a way provide their own data model. In contrast to traditional models these data models
will not be fixed but dynamically changeable through the definitional capabilities of the respec-
tive data languages.

10.5. Data Translation
The problem of data translation in a heterogeneous computing environment was raised by

one participant. This area was discussed and most people believed it to be a solved research
problem. The literature of the early 1970s contains appropriate architectures and real world data
translation systems have been deployed in the field for quite a number of years.

10.6. Information Exchange Via Data Bases
A couple of participants raised the problem of information exchange and collaborative

work. They argued that there are many application areas where the different end-user participants
must utilize various tools which should run on a common representation In CAD, simulation,
and document applications, the absence of a common representation is seen as a severe drawback.
There was support for information interchange via a data base in these areas in preference to the
current techniques as this would provide automatically features like synchnisation, con-
currency, recovery, versioning, and security. This approach would also naturally lead to more
sophisticated data dictionary systems represented through the schemas of those DBMSs.

	international_computer_science_institute.future_directions_dbms_research.1988.062304363.fc.src.tif
	international_computer_science_institute.future_directions_dbms_research.1988.062304363.p01.src.tif
	international_computer_science_institute.future_directions_dbms_research.1988.062304363.p02.src.tif
	international_computer_science_institute.future_directions_dbms_research.1988.062304363.p03.src.tif
	international_computer_science_institute.future_directions_dbms_research.1988.062304363.p04.src.tif
	international_computer_science_institute.future_directions_dbms_research.1988.062304363.p05.src.tif
	international_computer_science_institute.future_directions_dbms_research.1988.062304363.p06.src.tif
	international_computer_science_institute.future_directions_dbms_research.1988.062304363.p07.src.tif
	international_computer_science_institute.future_directions_dbms_research.1988.062304363.p08.src.tif
	international_computer_science_institute.future_directions_dbms_research.1988.062304363.p09.src.tif
	international_computer_science_institute.future_directions_dbms_research.1988.062304363.p10.src.tif
	international_computer_science_institute.future_directions_dbms_research.1988.062304363.p11.src.tif
	international_computer_science_institute.future_directions_dbms_research.1988.062304363.bc.src.tif

