
ELECTRONICS RESEARCH LABORATORY
College of Engineering
Univerrity of California, Bmrkeley, CA 94720

THE DESIGN OF POSTGRESS

by

M ichae l S tonebraker and Lawrence A. Rowe

Memorandum No. UCB/ERL 85/95

15 November 1985

ELECTRONICS RESEARCH LABORATORY

Col 1 ege o f Engi n e e r i ng
U n i v e r s i t y o f C a l i f o r n i a , B e r k e l e y

94720

Research sponsored by the A i r Force O f f i c e o f S c i e n t i f i c Research Grant
83-0254, Defense Advanced Research P ro jec t s Agency under c o n t r a c t
N39-82-0235, and Nat iona l Science Foundation Grant DMC-85-04633

THE DESIGN OF POSTGRES

Michael Stonebmker and Lawrence A. Rowe

Department of Electrical Engineering
and Computer Sciences
University of California

Berkeley, CA 94720

Abstract
This paper presents the preliminary design of a new database management

system, called POSTGRES, that is the successor to the INGRES relational database
system. The main design goals of the new system are to:

1) provide better support for complex objects,

2) provide user extendibility for data types, operators and access methods,

3) provide facilities for active databases (i.e., alerters and triggers) and
inferencing including forward- and backward-chaining,

4) simplify the DBMS code for crash recovery,

5) produce a design that can take advantage of optical disks, workstations
composed of multiple tightly-coupled processors, and custom designed VLSI
chips, and

6) make a s few changes as possible (preferably none) to the relational model.

The paper describes the query language, programming lan ge interface, system
architecture, query processing strategy, and storage system new system.

1. INTRODUCTION
The INGRES relational database management system (DBMS) was

implemented during 1975-1977 a t the Univerisity of California. Since 1978 various
prototype extensions have been made to support distributed databases [STON83al,
ordered relations [STON83b], abstract data types [STON83c], and QUEL as a data
type [STON84al. In addition, we proposed but never prototyped a new application
program interface [STON84b]. The University of California version of INGRES has
been "hacked up enough" to make the inclusion of substantial new function
extremely difficult. Another problem with continuing to extend the existing system
is that many of our proposed ideas would be difficult to integrate into that system
because of earlier design decisions. Consequently, we are building a new database
system, called POSTGRES (POST inGRES).

This paper describes the design rationale, the features of POSTGRES, and our
proposed implementation for the system. The next section discusses the design
goals for the system. Sections 3 and 4 presents the query language and
programming language interface, respectively, to the system. Section 5 describes
the system architecture including the process structure, query processing
strategies, and storage system.

2. DISCUSSION OF DESIGN GOALS
The relational data model has proven very succeseful at solving most business

data processing problems. Many commercial systems are being marketed that are
based on the relational model and in time these systems will replace older
technology DBMS's. However, there are many engineering applications (e.g., CAD
systems, programming environments, geographic data, and graphics) for which a
conventional relational system is not suitable. We have embarked on the design
and implementation of a new generation of DBMS's, based on the relational model,
tha t will provide the facilities required by these applications. This section
describes the major design goals for this new system.

The first goal is to support complex objects [LORISS, STON83cJ. Engineering
data, in contrast to business data, is more complex and dynamic. Although the
required data types can be simulated on a relational system, the performance of the
applications is unacceptable. Consider the following simple example. The objective
is to store a collection of geographic objects in a database (e.g., polygons, lines, and
circles). In a conventional relational DBMS, a relation for each type of object with
appropriate fields would be created:

POLYGON (id, other fields)
CIRCLE (id, other fields)
LINE (id, other fields)

To display these objects on the screen would require additional information that
represented display characteristics for each object (e.g., color, position, scaling
factor, etc.). Because this information is the same for all objects, i t can be stored in
a single relation:

DISPLAY(color, position, scaling, obj-type, object-id)

The "object-id" field is the identifier of a tuple in a relation identified by the "obj-
type" field (i.e., POLYGON, CIRCLE, or LINE). Given this representation, the
following commands would have to be executed to produce a display:

foreach OBJ in {POLYGON, CIRCLE, LINE) do
range of 0 is OBJ
range of D is DISPLAY
retrieve (D.all, O.all)
where D.object-id = O.id
and D.obj-type = OBJ

Unfortunately, this collection of commands will not be executed fast enough by any
relational system to "paint the screen" in real time (i.e., one or two seconds). The
problem is that regardless of how fast your DBMS is there are too many queries
that have to be executed to fetch the data for the object. The feature that is needed
i s the ability to store the object in a field in DISPLAY so that only one query is

required to fetch it. Consequently, our first goal is to correct this deficiency.

The second goal for POSTGRES is to make i t easier to extend the DBMS so
that i t can be used in new application domains. A conventional DBMS has a small
set of built-in data types and access methods. Many applications require
specialized data types (e.g., geometic data types for CADICAM or a latitude and
longitude position data type for mapping applications). While these data types can
be simulated on the built-in data types, the resulting queries are verbose and
confusing and the performance can be poor. A simple example using boxes is
presented elsewhere [STON86]. Such applications would be best served by the
ability to add new data types and new operators to a DBMS. Moreover, B-trees are
only appropriate for certain kinds of data, and new access methods are often
required for some data types. For example, K-D-B trees [ROB1811 and R-trees
[GUTM84] are appropriate access methods for point and polygon data, respectively.

Consequently, our second goal is to allow new data types, new operators and
new access methods to be included in the DBMS. Moreover, i t is crucial that they
be implementable by non-experts which means easy-to-use interfaces shouId be
preserved for any code that will be written by a user. Other researchers are
pursuing a similar goal [DEWI851.

The third goal for POSTGRES is to support active databases and rules. Many
applications are most easily programmed using alerters and triggers. For example,
form-flow applications such as a bug reporting system require active forms that are
passed from one user to another [TSIC82, ROWE821. In a bug report application,
the manager of the program maintenance group should be notified if a high priority
bug that has been assigned to a programmer has not been fixed by a specified date.
A database alerter is needed that will send a message to the manager calling his
attention to the problem. Triggers can be used to propagate updates in the
database to maintain consistency. For example, deleting a department tuple in the
DEPT relation might trigger an update to delete all employees in that department
in the EMP relation.

In addition, many expert system applications operate on data that is more
easily described as rules rather than as data values. For example, the teaching load
of professors in the EECS department can be described by the following rules:

1) The normal load is 8 contact hours per year

2) The scheduling officer gets a 25 percent reduction

3) The chairman does not have to teach

4) Faculty on research leave receive a reduction proportional to their leave
fraction

5) Courses with less than 10 students generate credit a t 0.1 contact hours per
student

6) Courses with more than 50 students generate EXTRA contact hours a t a
rate of 0.01 per student in excess of 50

7) Faculty can have a credit balance or a deficit of up to 2 contact hours

These rules are subject to frequent change. The leave status, course assignments,

and administrative assignments (e,g., chairman and scheduling officer) all change
frequently. It would be most natural to store the above rules in a DBMS and then
infer the actual teaching load of individual faculty rather than storing teaching
load as ordinary data and then attempting to enforce the above rules by a
collection of complex integrity constraints. Consequently, our third goal is to
support alerters, triggers, and general rule processing.

The fourth goal for POSTGRES is to reduce the amount of code in the DBMS
written to support crash recovery. Most DBMS's have a large amount of crash
recovery code that is tricky to write, full of special cases, and very difficult to test
and debug. Because one of our goals is to allow user-defined access methods, it is
imperative that the model for crash recovery be as simple as possible and easily
extendible. Our proposed approach is to treat the log as normal data managed by
the DBMS which will simplify the recovery code and simultaneously provide
support for access to the historical data.

Our next goal is to make use of new technologies whenever possible. Optical
disks (even writable optical disks) are becoming available in the commercial
marketplace. Although they have slower access characteristics, their price-
performance and reliability may prove attractive. A system design that includes
optical disks in the storage hierarchy will have an advantage. Another technology
that we forsee is workstation-sized processors with several CPU's. We want to
design POSTGRES in such way as to take advantage of these CPU resources.
Lastly, a design that could utilize special purpose hardware effectively might make
a convincing case for designing and implementing custom designed VLSI chips.
Our fifth goal, then, is to investigate a design that can effectively utilize an optical
disk, several tightly coupled processors and custom designed VLSI chips.

The last goal for POSTGRES is to make as few changes to the relational
model as possible. First, many users in the business data processing world will
become familiar with relational concepts and this framework should be preserved if
possible. Second, we believe the original "spartan simplicity" argument made by
Codd [CODD'IO] is as true today as in 1970. Lastly, there are many semantic data
models but there does not appear to be a small model that will solve everyone's
problem. For example, a generalization hierarchy will not solve the problem of
structuring CAD data and the design models developed by the CAD community
will not handle generalization hierarchies. Rather than building a system that is
based on a large, complex data model, we believe a new system should be built on a
small, simple model that is extendible. We believe that we can accomplish our
goals while preserving the relational model. Other researchers are striving for
similar goals but they are using different approaches [AFSA85, ATKI84, COPE84,
DERR85, LORI83, LUM851

The remainder of the paper describes the design of POSTGRES and the basic
system architecture we propose to use to implement the system.

3. POSTQUEL
This section describes the query language supported by POSTGRES. The

relational model as described in the original definition by Codd [CODD701 has been
preserved. A database is composed of a collection of relations that contain tuples
with the same fields defined, and the values in a field have the same data type.

The query language is based on the INGRES query language QUEL rHELD751.
Several extensions and changes have been made to QUEL eo the new language is
called POSTQUEL to distinguish i t from the original language and other QUEL
extensions described elsewhere [STONSSa, KUNG841.

Most of QUEL is left intact. The following commands are included in
POSTQUEL without any changes: Create Relation, Destroy Relation, Append,
Delete, Replace, Retrieve, Retrieve into Result, Define View, Define Integrity, and
Define Protection. The Modify command which specified the storage structure for a
relation has been omitted because all relations are stored in a particular structure
designed to support historical data. The Index command is retained so that other
access paths to the data can be defined.

Although the basic structure of POSTQUEL is very similar to QUEL,
numerous extensions have been made to support complex objects, user-defined data
types and access methods, time varying data (i.e., versions, snapshots, and
historical data), iteration queries, alerters, triggers, and rules. These changes are
described in the subsections that follow.

3.1. Data Definition
The following built-in data types are provided;

1) integers,

2) floating point,

3) fixed length character strings,

4) unbounded varying length arrays of fixed types with an arbitrary number
of dimensions,

5) POSTQUEL, and

6) procedure.

Scalar type fields (e.g., integer, floating point, and fixed length character strings)
are referenced by the conventional dot notation (e.g., EMP.name).

Variable length arrays are provided for applications that need to store large
homogenous sequences of data (e.g., signal processing data, image, or voice). Fields
of this type are referenced in the standard way (e.g., EMP.picture(i1 refers to the i-
th element of the picture array). A special case of arrays is the text data type
which is a one-dimensional array of characters. Note that arrays can be extended
dynamically. ,

Fields of type POSTQUEL contain a sequence of data manipulation
commands. They are referenced by the conventional dot notation. However, if a
POSTQUEL field contains a retrieve command, the data specified by that command
can be impIicitIy referenced by a multiple dot notation (e.g.,
EMP.hobbies.battingavg) as proposed elsewhere [STON84a] and first suggested by
Zaniola in GEM [ZAN183].

Fields of type procedure contain procedures written in a general purpose
programming language with embedded data manipulation commands (e.g., EQUEL

[ALLM76] or Rigel [ROWE79]). Fields of type procedure and POSTQUEL can be
executed using the Execute command. Suppose we are given a relation with the
following definition

EMP(name, age, salary, hobbies, dept)

in which the "hobbies" field is of type POSTQUEL. That is, "hobbies" contains
queries that retrieve data about the employee's hobbies from other relations. The
following command will execute the queries in that field:

execute (EMP.hobbies)
where EMP.name = "Smith"

The value returned by this command can be a sequence of tuples with varying
types because the field can contain more than one retrieve command and different
commands can return different types of records. Consequently, the programming
language interface must provide facilities to determine the type of the returned
records and to access the fields dynamically.

Fields of type POSTQUEL and procedure can be used to represent complex
objects with shared subobjects and to support multiple representations of data.
Examples are given in the next section on complex objects.

In addition to these built-in data types, userdefined data types can be defined
using an interface similar to the one developed for ADT-INGRES [STON83c,
STON861. New data types and operators can be defined with the user-defined data
type facility.

3.2. Complex Objects
This section describes how fields of type POSTQUEL and procedure can be

used to represent shared complex objects and to support multiple representations of
data.

Shared complex objects can be represented by a field of type POSTQUEL that
contains a sequence of commands to retrieve data from other relations that
represent the subobjects. For example, given the relations POLYGON, CIRCLE,
and LINE defined above, a n object relation can be defined that represents complex
objects composed of polygons, circles, and lines. The definition of the object relation
would be:

create OBJECT (name = char[lO], obj = postquel)

The table in figure 1 shows sample values for this relation. The relation contains
the description of two complex objects named "apple" and "orange." The object
"apple" is composed of a polygon and a circle and the object "orange" is composed of
a line and a polygon. Notice that both objects share the polygon with id equal to
10.

Multiple representations of data are useful for caching data in a data
structure that is better suited to a particular use while still retaining the ease of
access via a relational representation. Many examples of this use are found in
database systems (e.g., main memory relation descriptors) and forms systems
EROWE851. Multiple representations can be supported by defining a procedure that
translates one representation (e.g., a relational representation) to another
representation (e.g., a display list suitable for a graphics display). The translation

Name
apple

orange

OBJ
retrieve (POLY CON.al1)
where POLYGON.id = 10
retrieve (CIRCLE.al1)
where CIRCLE.id = 40
retrieve (LINE.al1)
where LINE.id = 17
retrieve (POLYGON.al1)
where POLYGON.id = 10

Figure 1. Example of an OBJECT relation.

procedure is stored in the database. Continuing with our complex object example,
the OBJECT relation would have an additional field, named "display," that would
contain a procedure that creates a display list for an object stored in POLYGON,
CIRCLE, and LINE:

create OBJECT(name =char[lO], obj = postquel, display =cproc)

The value stored in the display field is a procedure written in C that queries the
database to fetch the subobjects that make up the object and that creates the
display list representation for the object.

This solution has two problems: the code is repeated in every OBJECT tuple
and the C procedure replicates the queries stored in the object field to retrieve the
subobjects. These problems can be solved by storing the procedure in a separate
relation (i.e., normalizing the database design) and by passing the object to the
procedure as an argument. The definition of the relation in which the procedures
will be stored is:

create OBJPROC(name=chad 121, proc =cproc)
append to OBJPROC(name = "display-list", proc ="...source code...")

Now, the entry in the display field for the "apple" object is

execute (OBJPROC .proc)
with ("apple")
where 0BJPROC.name = "display-list"

This command executes the procedure to create the alternative representation and
passes to i t the name of the object. Notice that the "display" field can be changed
to a value of type POSTQUEL because we are not storing the procedure in
OBJECT, only a command to execute the procedure. At this point, the procedure
can execute a command to fetch the data. Because the procedure was passed the
name of the object it can execute the following command to fetch its value:

execute (0BJECT.obj)
where 0BJECT.name =argument

This solution is somewhat complex but i t stores only one copy of the procedure's
source code in the database and it stores only one copy of the commands to fetch
the data that represents the object.

Fields of type POSTQUEL and procedure can be efficiently supported through
a combination of compilation and precomputation described in sections 4 and 5.

3.3. Time Varying Data
POSTQUEL allows users to save and query historical data and versions

[KAT285, WOOD831. By default, data in a relation is never deleted or updated.
Conventional retrievals always access the current tuples in the relation. Historical
data can be accessed by indicating the desired time when defining a tuple variable.
For example, to access historical employee data a user writes

retrieve (E.all)
from E in EMP["7 January 1985"l

which retrieves all records for employees that worked for the company on 7
January 1985. The From-clause which is similar to the SQL mechanism to define
tuple variables [ASTR76], replaces the QUEL Range command. The Range
command was removed from the query language because i t defined a tuple variable
for the duration of the current user program. Because queries can be stored as the
value of a field, the scope of tuple variable definitions must be constrained. The
From-clause makes the scope of the definition the current query.

This bracket notation for accessing historical data implicitly defines a
snapshot [ADIBSO]. The implementation of queries that access this snapshot,
described in detail in section 5, searches back through the history of the relation to
find the appropriate tuples. The user can materialize the snapshot by executing a
Retrieve-into command that will make a copy of the data in another relation.

Applications that do not want to save historical data can specify a cutoff point
for a relation. Data that is older than the cutoff point is deleted from the database.
Cutoff points are defined by the Discard command. The command

discard EMP before "1 week"

deletes data in the EMP relation that is more than 1 week old. The commands

discard EMP before "now"

and

discard EMP

retain only the current data in EMP.
It is also possible to write queries that reference data which is valid between

two dates. The notation

specifies the relation containing all tuples that were in the relation a t some time
between date1 and date2. Either or both of these dates can be omitted to specify
all data in the relation from the time it was created until a fixed date (i.e.,
relation-name[,date]), all data in the relation from a fixed date to the present (i.e.,

relation-nameEdate,]), or all data that was every in the relation (i.e., relation-
name[I). For example, the query

retrieve (E .all)
from E in EMR I
where E.name = "Smithn

returns all information on employees named Smith who worked for the company a t
any time.

POSTQUEL has a three level memory hierarchy: 1) main memory, 2)
secondary memory (magnetic disk), and 3) tertiary memory (optical disk). Current
data is stored in secondary memory and historical data migrates to tertiary
memory. However, users can query the data without having to know where the
data is stored.

Finally, POSTGRES provides support for versions. A version can be created
from a relation or a snapshot. Updates to a version do not modify the underlying
relation and updates to the underlying relation will be visible through the version
unless the value has been modified in the version. Versions are defined by the
Newversion command. The command

newversion EMPTEST from EMP
creates a version named EMPTEST that is derived from the EMP relation. If the
user wants to create a version that is not changed by subsequent updates to the
underlying relation as in most source code control systems [TICH82], he can create
a version off a snapshot.

A Merge command is provided that will merge the changes made in a version
back into the underlying relation. An example of a Merge command is

merge EMPTEST into EMP

The Merge command will use a semi-automatic procedure to resolve updates to the
underlying relation and the version that conflict IGARC841.

This section described POSTGRES support for time varying data. The
strategy for implementing these features is described below in the section on
system architecture.

3.4. Iteration Queries, Alerters, Triggers, and Rules
This section describes the POSTQUEL commands for specifying iterative

execution of queries, alerters [BUNE79], triggers [ASTR761, and rules.

Iterative queries are requried to support transitive closure [GUTM84
KUNG841. Iteration is specified by appending an asterisk ("*") to a command that
should be repetitively executed. For example, to construct a relation that includes
all people managed by someone either directly or indirectly a Retrieve*-into
command is used. Suppose one is given an employee relation with a name and
manager field:

create EMP(name =cbar[20], ..., mgr =char[201, ...I
The following query creates a relation that conatins all employees who work for
Jones:

retrieve* into SUBORDWATES(E .name, E .mgr)
from E in EMP, S in SUBORDINATES
where E.name ="Jonesw

This command continues to execute the Retrieve-into command until there are no
changes made to the SUBORDINATES relation.

The "*' modifier can be appended to any of the POSTQUEL data manipulation
commands: Append, Delete, Execute, Replace, Retrieve, and Retzieve-into.
Complex iterations, like the A-* heuristic search algorithm, can be specified using
sequences of these iteration queries [STON85b].

Alerters and triggers are specified by adding the keyword "always" to a query.
For example, an alerter i s specified by a Retrieve command such as

retrieve always (EMP.all)
where EMP.name = "Bill"

This command returns data to the application program that issued it whenever
Bill's employee record is changed.' A trigger is an update query (i.e., Append,
Replace, or Delete command) with an "always" keyword. For example, the
command

delete always DEPT
where count(EMP.name by DEPT.dname

where EMP.dept = DEPT.dname) = 0

defines a trigger that will delete DEPT records for departments with no employees.

Iteration queries differ from alerters and triggers in that iteration queries run
until they cease to have an effect while alerters and triggers run indefinitely. An
efficient mechanism to awaken "always" commands is described in the system
architecture section.

"Always" commands support a forward-chaining control structure in which an
update wakes up a collection of alerters and triggers that can wake up other
commands. This process terminates when no new commands are awakened.
POSTGRES also provides support for a backward-chaining control structure.

The conventional approach to supporting inference is to extend the view
mechanism (or something equivalent) with additional capabilities (e.g. IULLM85,
WONG84, JARK851). The canonical example is the definition of the ANCESTOR
relation based on a stored relation PARENT:

PARENT (paren t-of, offspring)

Ancestor can then be defined by the following commands:

' Strictly speaking the data is returned to the program through a portal which is
defined in section 4.

range of P is PARENT
range of A is ANCESTOR
define view ANCESTOR (P.all)
define view* ANCESTOR (A.parentof, P.offspring)

where A.offspring = P.parentof

Notice that the ANCESTOR view is defined by multiple commands that may
involve recursion. A query such as:

retrieve (ANCESTOR. parent00
where ANCESTOR.offspring = "Bill"

is processed by extensions to a standard query modification algorithm [STON751 to
generate a recursive command or a sequence of commands on stored relations. To
support this mechanism, the query optimizer must be extended to handle these
commands.

This approach works well when there are only a few commands which define a
particular view and when the commands do not generate conflicting answers. This
approach is less successful if either of these conditions is violated a s in the
following example:

define view DESK-EMP (EMP.al1, desk = "steel") where EMP.age < 40
define view DESK-EMP (EMP.al1, desk = "wood" where EMP.age > = 40
define view DESK-EMP (EMP.al1, desk = "wood") where EMP.name = "hotshot"
define view DESK-EMP (EMP.al1, desk = "steel") where EMP.name = "bigshot"

In this example, employees over 40 get a wood desk, those under 40 get a steel
desk. However, "hotshotJ' and "bigshot" are exceptions to these rules. "Hotshot" is
given a wood desk and "bigshof' is given a steel desk, regardless of their ages. In
this case, the query:

retrieve (DESK-EMP.desk) where DESK-EMP.name = "bigshot"

will require 4 separate commands to be optimized and run. Moreover, both the
second and the fourth definitions produce an answer to the query that is different.
In the case that a larger number of view definitions is used in the specification of
an object, then the important performance parameter will be isolating the view
definitions which are actually useful. Moreover, when there are conflicting view
definitions (e.g. the general rule and then exceptional cases), one requires a priority
scheme to decide which of conflicting definitions to utilize. The scheme described
below works well in such situations.

POSTGRES supports backward-chaining rules by virtual columns (i.e.,
columns for which no value is stored). Data in such columns is inferred on demand
from rules and cannot be directly updated, except by adding or dropping rules.
Rules are specified by adding the keyword "demand" to a query. Hence, for the
DESK-EMP example, the EMP relation would have a virtual field, named "desk,"
that would be defined by four rules:

replace demand EMP (desk = "steel") where EMP.age < 40
replace demand EMP (desk = "wood" where EMP.age > = 40
replace demand EMP (desk = "wood") where EMP.name = "hotshot"
replace demand EMP (desk = "steel") where EMP.name = "bigshot"

The third and fourth commands would be defined a t a higher priority than the first

and eecond. A query that accessed the desk field would cause the "demand"
commands to be processed to determine the appropriate desk value for each EMP
tuple retrieved.

This subsection has described a collection of facilities provided in POSTQUEL
to support complex queries (e.g., iteration) and active databases (e.g., alerters,
triggers, and rules). Efficient techniques for implementing these facilities are
given in section 5.

4. PROGRAMMING LANGUAGE INTERFACE
This section describes the programming language interface (HITCHING

POST) to POSTGRES. We had three objectives when designing the HITCHING
POST and POSTGRES facilities. First, we wanted to design and implement a
mechanism that would simplify the development of browsing style applications.
Second, we wanted HITCHING POST to be powerful enough that all programs that
need to access the database including the ad hoc terminal monitor and any
preprocessors for embedded query languages could be written with the interface.
And lastly, we wanted to provide facilities that would allow an application
developer to tune the performance of his program (i.e., to trade flexibility and
reliability for performance).

Any POSTQUEL command can be executed in a program. In addition, a
mechanism, called a "portal," is provided that allows the program to retrieve data
from the database. A portal is similar to a cursor [ASTR76], except that it allows
random access to the data specified by the query and the program can fetch more
than one record a t a time. The portal mechanism described here is different than
the one we previously designed [STON84bl, but the goal is still the same. The
following subsections describe the commands for defining portals and accessing
data through them and the facilities for improving the performance of query
execution (i.e., compiIation and fast-path).

4.1. Portals
A portal is defined by a Retrieve-portal or Execute-portal command. For

example, the following command defines a portal named P:

retrieve portal P(EMP.al1)
where EMP.age < 40

This command is passed to the backend process which generates a query plan to
fetch the data. The program can now issue commands to fetch data from the
backend process to the frontend process or to change the "current position" of the
portal. The portal can be thought of as a query plan in execution in the DBMS
process and a buffer containing fetched data in the application process.

The program fetches data from the backend into the buffer by executing a
Fetch command. For example, the command

fetch 20 into P

fetches the first twenty records in the portal into the frontend program. These
records can be accessed by subscript and field references on P. For example, P(i]
refers to the i-th record returned by the last Fetch command and P[i].name refers
to the "name" field in the i-th record. Subsequent fetches replace the previously

fetched data in the frontend program buffer.

The concept of a portal is that the data in the buffer is the data currently
being displayed by the browser. Commands entered by the user a t the terminal
are translated into database commands that change the data in the buffer which is
then redisplayed. Suppose, for example, the user entered a command to scroll
forward half a screen. This command would be translated by the frontend program
(i.e., the browser) into a Move command followed by a Fetch command. The
following two commands would fetch data into the buffer which when redisplayed
would appear to scroll the data forward by one half screen:

move P forward 10
fetch 20 into P

The Move command repositions the "current position" to point to the 11-th tuple in
the portal and the Fetch command fetches tuples 11 through 30 in the ordering
established by executing the query plan. The "current position" of the portal is the
first tuple returned by the last Fetch command. If Move commands have been
executed since the last Fetch command, the "current position" is the first tuple that
would be returned by a Fetch command if i t were executed.

The Move command has other variations that simplify the implementation of
other browsing commands. Variations exist that allow the portal postion to be
moved forward or backward, to an absolute position, or to the first tuple that
satisfies a predicate. For example, to scroll backwards one half screen, the
following commands are issued:

move P backward 10
fetch 20 into P

In addition to keeping track of the "current position," the backend process also
keeps track of the sequence number of the current tuple so that the program can
move to a n absolute position. For example, to scroll forward to the 63-rd tuple the
program executes the command:

move P forward to 63

Lastly, a Move command is provided that will search forward or backward to
the first tuple that satisfies a predicate as illustrated by the following command
that moves forward to the first employee whose salary is greater than $25,000:

move P forward to salary > 25K

This command positions the portal on the first qualifying tuple. A Fetch command
will fetch this tuple and the ones immediately following i t which may not satisfy
the predicate. To fetch only tuples that satisfy the predicate, the Fetch command is
used as follows:

fetch 20 into P where salary > 25K

The backend process will continue to execute the query plan until 20 tuples have
been found that satisfy the predicate or until the portal data is exhausted.

Portals differ significantly from cursors in the way data is updated. Once a
cursor is positioned on a record, i t can be modified or deleted (i.e., updated directly).
Data in a portal cannot be updated directly. It is updated by Delete or Replace
commands on the relations from which the portal data is taken. Suppose the user

entered commands to a browser that change Smith's salary. Assuming that
Smith's record is already in the buffer, the browser would translate this request
into the following sequence of commands:

replace E MP(sa1ary = NewSalary)
where EMP.name = "Smith"
fetch 20 into P

The Replace command modifies Smith's tuple in the EMP relation and the Fetch
command synchronizes the buffer in the browser with the data in the database.
We chose this indirect approach to updating the data because i t makes sense for
the model of a portal as a query plan. In our previous formulation [STON841, a
portal was treated as a n ordered view and updates to the portal vyere treated as
view updates. We believe both models are viable, although the query plan model
requires less code to be written.

In addition to the Retrieve-portal command, portals can be defined by an
Execute command. For example, suppose the EMP relation had a field of type
POSTQUEL named "hobbies"

EMP (name, salary, age, hobbies)

that contained commands to retrieve a person's hobbies from the following
relations:

SOFTBALL (name, position, batting-avg)
COMPUTERS (name, isowner, brand, interest)

An application program can define a portal that will range over the tuples
describing a person's hobbies as follows:

execute portal H(EMP.hobbies)
where EMP.name = "Smithn

This command defines a portal, named "H," that is bound to Smith's hobby records.
Since a person can have several hobbies, represented by more than on Retrieve
command in the "hobbies" field, the records in the buffer may have different types.
Consequently, HITCHING POST must provide routines that allow the program to
determine the number of fields, and the type, name, and value of each field in each
record fetched into the buffer.

4.2. Compilation and Fast-Path
This subsection describes facilities to improve the performance of query

execution. Two facilities are provided: query compilation and fastcpath. Any
POSTQUEL command, including portal commands, can take advantage of these
facilities.

POSTGRES has a system catalog in which application programs can store
queries that are to be compiled. The catalog is named "CODE" and has the
following structure:

CODE(id, owner, command)

The "id" and "owner" fields form a unique identifier for each stored command. The
"command" field holds the command that is to be compiled. Suppose the
programmer of the relation browser described above wanted to compile the Replace

command that was used to update the employee's salary field. The program could
append the command, with suitable parameters, to the CODE catalog a s follows:

append to CODE(id = 1, owner = "browser",
command ="replace EMP(aa1ary = $1) where EMP.name = $2")

"$1" and "$2" denote the arguments to the command. Now, to execute the Replace
command that updates Smith's salary shown above, the program executes the
following command:

execute (CODE.comrnand)
with (NewSalary, "Smith")
where CODE.id = 1 and CODE.owner ="browsern

This command executes the Replace command after substituting the arguments.

Executing commands stored in the CODE catalog does not by itself make the
command run any faster. However, a compilation demon is always executing that
examines the entries in the CODE catalog in every database and compiles the
queries. Assuming the compilation demon has compiled the Replace command in
CODE, the query should run substantially faster because the time to parse and
optimize the query is avoided. Section 5 describes a general purpose mechanism
for invalidating compiled queries when the schema changes.

Compiled queries are faster than queries that are parsed and optimized a t
run-time but for some applications, even they are not fast enough. The problem is
that the Execute command that invokes the compiled query still must be processed.
Consequently, a fast-path facility is provided that avoids this overhead. In the
Execute command above, the only variability is the argument list and the unique
identifier that selects the query to be run. HITCHING POST has a run-time
routine that allows this information to be passed to the backend in a binary format.
For example, the following function call invokes the Replace command described
above:

exec-fp(1, "browser", NewSalary, "Smith")

This function sends a message to the backend that includes only the information
needed to determine where each value is located. The backend retrieves the
compiled plan (possibly from the buffer pool), substitutes the parameters without
type checking, and invokes the query plan. This path through the backend is
hand-optimized to be very fast so the overhead to invoke a compiled query plan is
minimal.

This subsection has described facilities that allow an application programmer
to improve the performance of a program by compiling queries or by using a special
fast-path facility.

5. SYSTEM ARCHITECTURE
This section describes how we propose to implement POSTGRES. The first

subsection describes the process structure. The second subsection describes how
query processing will be implemented, including fields of type POSTQUEL,
procedure, and user-defined data type. The third subsection describes how alerters,
triggers, and rules will be implemented. And finally, the fourth subsection
describes the storage system for implementing time varying data.

5.1. Process Structure
DBMS code must run as a sparate process from the application programs that

access the database in order to provide data protection. The process structure can
use one DBMS process per application program (i.e., a process-per-user model
[STONOl]) or one DBMS process for all application programs (i.e., a server model).
The server model has many performance benefits (e.g., sharing of open file
descriptors and buffers and optimized task s ~ t c h i n g and message sending
overhead) in a large machine environment in which high performance is critical.
However, this approach requires that a fairly complete special-purpose operating
system be built. In constrast, the process-per-user model is simpler to implement
but will not perform as well on most conventional operating systems. We decided
after much soul searching to implement POSTGRES using a process-per-user model
architecture because of our limited programming resources. POSTGRES is an
ambitious undertaking and we believe the additional complexity introduced by the
server architecture was not worth the additional risk of not getting the system
running. Our current plan then is to implement POSTGRES as a process-per-user
model on Unix 4.3 BSD.

The process structure for POSTGRES is shown in figure 3. The
POSTMASTER will contain the lock manager (since there are no shared segments
in 4.3 BSD) and will control the demons that will perform various database
s e ~ c e s (such as asynchronously compiling user commands). There will be one
POSTMASTER process per machine, and i t will be started at "sysgen" time.

The POSTGRES run-time system executes commands on behalf of one
application program. However, a program can have several commands executing
a t the same time. The message protocol between the program and backend will use
a simple request-answer model. The request message will have a command
designator and a sequence of bytes that contain the arguments. The answer
message format will include a response code and any other data requested by the
command. Notice that in contrast to INGRES [STON761 the backend will not "load

Figure 3. POSTGRES process structure.

deman
processej

1

POSTM4S TE4

,

B

POsTCRGS
f u n - t i m e

~ y ~ t e m
L

.
U s e r

pro~~ar r)

w

up" the communication channel with data. The frontend requests a bounded
amount of data with each command.

5.2. Query Processing
This section describes the query processing strategies that will be

implemented in POSTGRES. We plan to implement a conventional query
optimizer. However, three extensions are required to support POSTQUEL. First,
the query optimizer must be able to take advantage of userdefined access methods.
Second, a general-purpose, efficient mechanism is needed to support fields of type
POSTQUEL and procedure. And third, an efficient mechanism is required to
support triggers and rules. This section describes our proposed implementation of
these mechanisms.

5.2.1. Support for New Types
As noted elsewhere [STONSGI, existing access methods must be usable for new

data types, new access methods must be definable, and query processing heuristics
must be able to optimize plans for which new data types and new access methods
are present. The basic idea is that an access method can support fast access for a
specific collection of operators. In the case of B-trees, these operators are {<, =,
>, > =, < =). Moreover, these operators obey a collection of rules. Again for B-
trees, the rules obeyed by the above set of operators is:

P1) key-1 < key-2 and key-2 < key-3 then key-1 < key-3
P2) key-1 < key-2 implies not key-2 < key-1
P3) key-1 < key-2 or key-2 < key-1 or key-1 = key-2
P4) key-1 < = key-2 if key-1 < key-2 or key-1 = key-2
P5) key-1 = key-2 implies key-2 = key-1
P6) key-1 > key-2 if key-2 < key-1
P7) key-1 > = key-2 if key-2 < = key-1

A B-tree access method will work for any collection of operators that obey the
above rules. The protocol for defining new operators will be similar to the one
described for ADT-INGRES [STON83c]. Then, a user need simply declare the
collection of operators that are to be utilized when he builds an index, and a
detailed syntax is presented in [STONSG].

In addition, the query optimizer must be told the performance of the various
access paths. Following [SELI79], the required information will be the number of
pages touched and the number of tuples examined when processing a clause of the
form:

relation.column OPR value

These two values can be included with the definition of each operator, OPR. The
other information required is the join selectivity for each operator that can
participate in a join, and what join processing strategies are feasible. In particular,
nested iteration is always a feasible strategy, however both merge-join and hash-
join work only in restrictive cases. For each operator, the optimizer' must know
whether merge-join is usable and, if so, what operator to use to sort each relation,
and whether hash-join is usable. Our proposed protocol includes this information
with the definition of each operator.

Consequently, a table-driven query optimizer will be implemented. Whenever
a user defines new operators, the necessary information for the optimizer will be
placed in the system catalogs which can be accessed by the optimzier. For further
details, the reader is refered elsewhere [STON861.

5.2.2. Support for Procedural Data
The main performance tactic which we will utilize is precomputing and

caching the result of procedural data. This precomputation has two steps:

1) compiling an access plan for POSTQUEL commands
2) executing the access plan to produce the answer

When a collection of POSTQUEL commands is executed both of the above steps
must be performed. Current systems drop the answer on the floor after obtaining
it, and have special code to invalidate and recompute access plans (e.g. lASTR761).
On the other hand, we expect to cache both the plan and the answer. For small
answers, we expect to place the cached value in the field itself. For larger answers,
we expect to put the answer in a relation created for the purpose and then put the
name of the relation in the field itself where i t will serve the role of a pointer.

Moreover, we expect to have a demon which will run in background mode and
compile plans utilizing otherwise idle time or idle processors. Whenever a value of
type procedure is inserted into the database, the run-time system will also insert
the identity of the user submitting the command. Compilation entails checking the
protection status of the command, and this will be done on behalf of the submitting
user. Whenever, a procedural field is executed, the run-time system will ensure
that the user is authorized to do so. In the case of "fastrpath," the run-time system
will require that the executing user and defining user are the same, so no run-time
access to the system catalogs is required. This same demon will also precompute
answers. In the most fortunate of cases, access to procedural data is instantaneous
because the value of the procedure is cached. In most cases, a previous access plan
should be valid sparing the overhead of this step.

Both the compiled plan and the answer must be invalidated if necessary. The
plan must be invalidated if the schema changes inappropriately, while the answer
must be invalidated if data that i t accesses has been changed. We now show that
this invalidation can be efficiently supported by an extended form of locks. In a
recent paper [STON854 we have analyzed other alternate implementations which
can support needed capabilities, and the one we will now present was found to be
attractive in many situations.

We propose to support a new kind of lock, called an I lock. The compatibility
matrix for I locks is shown in figure 4. When a command is compiled or the answer
precomputed, POSTGRES will set I locks on all database objects accessed during
compilation or execution. These I locks must be persistent (i.e. survive crashes), of
fine granularity (i.e. on tuples or even fields), escalatable to coarser granularity,
and correctly detect "phantoms" [ESWA75]. In [STON85a], it is suggested that the
best way to satisfy these goals is to place I locks in data records themselves.

The * in the table in figure 4 indicates that a write lock placed on an object
containing one or more I locks will simply cause the precomputed objects holding
the I locks to be invalidated. Consequently, they are called "invalidate-me" locks.

R W I

Figure 4. Compatibility modes for I locks.

A user can issue a command:

retrieve (re1ation.I) where qualification

which will return the identifiers of commands having I locks on tuples in question.
In this way a user can see the consequences of a proposed update.

Fields of type POSTQUEL can be compiled and POSTQUEL fields with no
update statements can be precomputed. Fields of type procedure can be compiled
and procedures that do not do inputloutput and do not update the database can be
precomputed.

5.2.3. Alerters, Triggers, and Inference
This section describes the tactic we will use to implement alerters, triggers,

and inference.

Alerters and triggers are specified by including the keyword "alwaysn on the
command. The propaed implementation of "always" commands is to run the
command until it ceases to have an effect. Then, it should be run once more and
another special kind of lock set on all objects which the commands will read or
write. These T locks have the compatibility matrix shown in figure 5. Whenever a
transaction writes a data object on which a T-lock has been set, the lock manager
simply wakes-up the corresponding "always" command. Dormant "always"

R W I T

Figure 5. Compatibility modes for T locks.

commands are stored in a system relation in a field of type POSTQUEL. As with I
locks, T locks must be persistent, of fine granularity and escalatable. Moreover, the
identity of commands holding T locks can be obtained through the special field, T
added to all relations.

Recall that inferencing will be support by virtual fields (i.e., "demand"
commands). "Demand" commands will be implemented similar to the way
"always" commands are implemented. Each "demand" command would be run
until the collection of objects which it proposes to write are isolated. Then a D lock
is set on each such object and the command placed in a POSTQUEL field in the
system catalogs. The compatibility matrix for D locks is shown in figure 6. The
"&" indicates that when a command attempts to read an object on which a D lock
has been set, the "demand" command must be substituted into the command being
executed using an algorithm similar to query modification to produce a new
command to execute. This new command represents a subgoal which the
POSTGRES system attempts to satisfy. If another D lock is encountered, a new
subgoal will result, and the process will only terminate when a subgoal runs to
completion and generates an answer. Moreover, this answer can be cached in the
field and invalidated when necessary, if the intermediate goal commands set I locks
as they run. This process is a database version of PROLOG style unification
[CLOCSlI, and supports a backward chaining control flow. The algorithm details
appear in (STON85bI along with a proposal for a priority scheme.

5.3. Storage System
The database will be partly stored on a magnetic disk and partly on an

archival medium such as an optical disk. Data on magnetic disk includes all
secondary indexes and recent database tuples. The optical disk is reserved as an
archival store containing historical tuples. There will be a demon which
"vacuums" tuples from magnetic disk to optical disk as a background process. Data
on magnetic disk will be stored using the normal UNIX file system with one
relation per file. The optical disk will be organized as one large repository with
tuples from various relations intermixed.

R W I T D

Figure 6. Compatibility modes for D locks.

All relations will be stored as heaps (as in [ASTR76]) with an optional
collection of secondary indexes. In addition relations can be declared "nearly
ordered," and POSTGRES will attempt to keep tuples close to sort sequence on
some column. Lastly, secondary indexes can be defined, which consist of two
separate physical indexes one for the magnetic disk tuples and one for the optical
disk tuples, each in a separate UNIX file on magnetic disk. Moreover, a secondary
index on will automatically be provided for all relations on a unique identifier field
which is described in the next subsection. This index will allow any relation to be
sequentially scanned.

5.3.1. Data Format
Every tuple has an immutable unique identifier (IID) that is assigned a t tuple

creation time and never changes. This is a 64 bit quantity assigned internally by
POSTGRES. Moreover, each transaction has a unique 64 bit transaction identifier
(XACTID) assigned by POSTGRES. Lastly, there is a call to a system clock which
can return timestamps on demand. Loosely, these are the current time-of-day.

Tuples will have all non-null fields stored adjacently in a physical record.
Moreover, there will be a tuple prefix containing the following extra fields:

mD : immutable id of this tuple
tmin : the timestamp a t which this tuple becomes valid
BXID : the transaction identifier that assigned tmin
tmax : the timestamp a t which this tuple ceases to be valid
EXID : the transaction identifier that assigned tmax
v-IID : the immutable id of a tuple in this or some other version
descriptor : descriptor on the front of a tuple

The descriptor contains the offset a t which each non-null field starts, and is similar
to the data structure attached to System R tuples [ASTR76]. The first transaction
identifier and timestamp correspond to the timestamp and identifier of the creator
of this tuple. When the tuple is updated, it is not overwritten; rather the identifier
and timestamp of the updating transaction are recorded in the second (timestamp,
transaction identifier) slot and a new tuple is constructed in the database. The
update rules are described in the following subsection while the details of version
management are deferred to later in the section.

5.3.2. Update and Access Rules
On an insert of a new tuple into a relation, tmin is marked with the

timestamp of the inserting transaction and its identity is recorded in BXID. When
a tuple is deleted, tmax is marked with the timestamp of the deleting transaction
and its identity is recorded in EXID. An update to a tuple is modelled as an insert
followed by a delete.

To find all the record which have the qualification, QUAL a t time T the run
time system must find all magnetic disk records such that:

1) tmin < T < tmax and BXID and EXID are committed and QUAL
2) tmin < T and tmax = null and BXID is committed and QUAL
3) tmin < T and BXID = committed and EXID = not-committed and QUAL

Then it must find all optical disk records satisfying 1). A special transaction log is

described below that allows the DBMS to determine quickly whether a particular
transaction has committed.

5.3.3. The POSTGRES Log and Accelerator
A new XACTID is assigned sequentially to each new transaction. When a

transaction wishes to commit, all data pages which i t has written must be forced
out of memory (or a t least onto stable storage). Then a single bit is written into
the POSTGRES log and an optional transaction accelerator.

Consider three transaction identifiers; T1 which is the "youngest" transaction
identifier which has been assigned, T2 which is a "young" transaction but
guaranteed to be older than the oldest active transaction, and T3 which is a
"young" transaction that is older than the oldest committed transaction which
wrote data which is still on magnetic disk. Assume that T1-T3 are recorded in
"secure main memory" to be presently described.

For any transaction with a n identifier between T1 and T2, we need to know
which of three states i t is in:

0 = aborted
1 = committed
2 = in-progress

For any transaction with an identifier between T2 and T3, a "2" is impossible and
the log can be compressed to 1 bit per transaction. For any transaction older than
T3, the vacuum process has written all records to archival storage. During this
vacuuming, the updates to all aborted transactions can be discarded, and hence all
archival records correspond to committed transactions. No log need be kept for
transactions older than T3.

The proposed log structure is an ordered relation, LOG as follows:

line-id: the access method supplied ordering field
bit1[10001: a bit vector
bit-2[1000]: a second bit vector

The status of xact number i is recorded in bit (remainder of i divided by 1000) of
line-id number iJ1000.

We assume that several thousand bits (say 1K-1OK bytes) of "secure main
memory" are available for 10-100 blocks comprising the "tailn of the log. Such main
memory is duplexed or triplexed and supported by an uninterruptable power
supply. The assumed hardware structure for this memory is the following.
Assume a circular "block pool" of n blocks each of size 2000 bits. When more space
is needed, the oldest block is reused. The hardware maintains a pointer which
indicates the current largest xact identifier (TI - the high water mark) and which
bit i t will use. i t also has a second pointer which is the current oldest transaction
in the buffer (the low water mark) and which bit i t points to. When high-water
approaches low-water, a block of the log must be "reliably" pushed to disk and joins
previously pushed blocks. Then low-water is advanced by 1000. High-water is
advanced every time a new transaction is started. The operations available on the
hardware structure are:

advance the high-water (i.e. begin a xact)
push a block and update low-water
abort a transaction
commit a transaction

Hopefully, the block pool is big enough to allow all transactions in the block to
be committed or aborted before the block is "pushed." In this case, the block will
never be updated on disk. If there are long running transactions, then blocks may
be forced to disk before all transactions are committed or aborted. In this case, the
subsequent commits or aborts will require an update to a disk-based block and will
be much slower. Such disk operations on the LOG relation must be done by a
special transaction (transaction zero) and will follow the normal update rules
described above.

A trigger will be used to periodically advance T2 and replace bit-2 with nulls
(which don't consume space) for any log records that correspond to transactions now
older than T2.

At 5 transactions per second, the LOG relation will require about 20 Mbytes
per year. Although we expect a substantial amount of buffer space to be available,
i t is clear that high transaction rate systems will not be able to keep all relevant
portions of the XACT relation in main memory. In this case, the NU-time cost to
check whether individual transactions have been committed will be prohibitive.
Hence, an optional transaction accelerator which we now describe will be a
advantageous addition to POSTGRES.

We expect that virtually all of the transaction between T2 and T3 will be
committed transactions. Consequently, we will use a second XACT relation as a
bloom filter [SEVR76] to detect aborted transactions as follows. XACT will have
tuples of the form:

line-id : the access method supplied ordering field
bitmap(M1 : a bit map of size M

For any aborted transaction with a XACTID between T2 and T3, the following
update must be performed. Let N be the number of transactions allocated to each
XACT record and let LOW be T3 - remainder (T3/N).

replace XACT (bitmap[i] = 1)
where XACT.line-id = (XACTID - L0W)modulo N
and i = hash (remainder ((XACTID - LOW) 1 N))

The vacuum process advances T3 periodically and deletes tuples from XACT that
correspond to transactions now older than T3. A second trigger will run
periodically and advance T2 performing the above update for all aborted
transactions now older than T2.

Consequently, whenever the run-time system wishes to check whether a
candidate transaction, C-XACTID between T2 and T3 committed or aborted, it
examines

bitmap[hash (reaminder((C-XACTID - LOW) / N))]
If a zero is observed, then C-XACTID must have committed, otherwise C-XACTID
may have committed or aborted, and LOG must be examined to discover the true
outcome.

The following analysis explores the performance of the transaction accelerator.

5.3.4. Analysis of the Accelerator
Suppose B bits of main memory buffer space are available and that M = 1000.

These B bits can either hold some (or all) of LOG or they can hold some (or all) of
XACT. Moreover, suppose transactions have a failure probability of F, and N is
chosen so that X bits in bitmap are set on the average. Hence, N = X / F. In this
case, a collection of Q transactions will require Q bits in LOG and

Q* F * 1000 1 X
bits in the accelerator. If this quantity is greater than Q, the accelerator is useless
because it takes up more space than LOG. Hence, assume that F * 1000 I X < <
1. In this case, checking the disposition of a transaction in LOG will cause a page
fault with probability:

FAULT (LOG) = 1 - [B 1 Ql

On the other hand, checking the disposition of a transaction in the accelerator will
cause a page fault with probability:

P(XACT) = 1 - (B * X) / (Q * F * 1000)

With probability

X I 1000

a "1" will be observed in the accelerator data structure. If
B < Q * F * 1000/X

then all available buffer space is consumed by the accelerator and a page fault will
be assuredly generated to check in LOG if the transaction committed or aborted.
Hence:

FAULT (XACT) = P(XACT) + X I 1000

If B is a larger value, then part of the buffer space can be used for LOG, and
FAULT decreases.

The difference in fault probability between the log and the accelerator

delta = FAULT (LOG) - FAULT (XACT)
is maximized by choosing:

X = 1000 * square-root (F)
Figure 7 plots the expected number of faults in both systems for various buffer
sizes with this value for X. As can be seen, the accelerator loses only when there is
a miniscule amount of buffer space or when there is nearly enough to hold the
whole log. Moreover

size (XACT) = square-root (F) * size (LOG)

and if

B = size (XACT)

then the fault probability is lowered from

FAULT (LOG) = 1 - square-root (F)

Figure 7. Expected number of faults versus buffer size.

FAULT (XACT) = square-root (F)

If F = -01, then buffer requirements are reduced by a factor of 10 and FAULT from
.9 to .I. Even when F = .l, XACT requires only one-third the buffer space, and
cuts the fault probability in half.

5.3.5. Transaction Management
If a crash is observed for which the disk-based database is intact, then all the

recovery system must do is advance T2 to be equal to T1 marking all transactions
in progress a t the time of the crash "aborted." After this step, normal processing
can commence. It is expected that recovery from "soft" crashes will be essentially
instantaneous.

Protection from the perils of "hard" crashes, i.e. ones for which the disk is not
intact will be provided by mirroring database files on magnetic disk either on a
volume by volume basis in hardware or on a file by file basis in software.

We envison a conventional two phase lock manager handling read and write
locks along with I, T and D locks. It is expected that R and W locks will be placed
in a conventional main memory lock table, while other locks will reside in data
records. The only extension which we expect to implement is "object locking." In
this situation, a user can declare that his stored procedures are to be executed with
no locking a t all. Of course, if two uses attempt to execute a stored procedure a t
the same time, one will be blocked because the first executor will place a write lock
on the executed tuple. In this way, if a collection of users is willing to guarantee
that there are no "blind" accesses to the pieces of objects (by someone directly
accessing relations containing them), then they can be guaranteed consistency by
the placement of normal read and write locks on procedural objects and no locks a t

all on the component objects.

5.3.6. Access Methods
We expect to implement both B-tree and OB-tree [STON83b] secondary

indexes. Moreover, our ADT facility supports an arbitrary collection of user
defined indexes. Each such index is, in reality, a pair of indexes one for magnetic
disk records and one for archival records. The first index is of the form

index-relation (user-key-or-keys, pointer-to-tuple)

and uses the same structure as current ZNGRES eecondary indexes. The second
index will have pointers to archival tuples and will add "tmin" and "tmax" to
whatever user keys are declared. With this structure, records satisfying the
qualification:

where relation.key = value

will be interpreted to mean:

where (relation["now"].key = value)

and will require searching only the magnetic disk index. General queries of the
form:

where relation[T].key = value

will require searching both the magnetic disk and the archival index. Both indexes
need only search for records with qualifying keys; moreover the archival index can
further restrict the search using tmax and tmin.

Any POSTQUEL replace command will insert a new data record with an
appropriate BXID and tmin, and then insert a record into all key indexes which
are defined, and lastly change tmax on the record to be updated. A POSTQUEL
append will only perform the first and third steps while a delete only perfurms the
second step. Providing a pointer from the old tuple to the new tuple would allow
POSTGRES to insert records only into indexes for keys that are modified. This
optimization saves many disk writes a t some expense in run-time complexity. We
plan to implement this optimization.

The implementor of a new access method structure need only keep in mind
that the new data record must be forced from main memory before any index
records (or the index record will point to garbage) and that multiple index updates
(e.g. page splits) must be forced in the correct order (i.e. from leaf to root). This is
easily accomplished with a single low level command to the buffer manager:

order pa gel, page2

Inopportune crashes may leave an access method which consists of a multi-level
tree with dangling index pages (i.e. pages that are not pointed two from anywhere
else in the tree). Such crashes may also leave the heap with uncommitted data
records that cannot be reached from some indexes. Such dangling tuples will be
garbage collected by the vacuum process because they will have EXID equal to not
committed. Unfortunately if dangling data records are not recorded in any index,
then a sweep of memory will be periodicaly required to find them. Dangling index
pages must be garbage collected by conventional techniques. e

Ordered relations pose a special problem in our environment, and we propose
to change OB trees slightly to cope with the situation. In particular, each place
there is a counter in the original proposal [STON83bl indicating the number of
descendent tuple-identifiers, the counter must be replaced by the following:

counter- 1 : same as counter
flag : the danger bit

Any inserter or deleter in an OB tree will set the danger flag whenever he updates
counter-1. Any OB tree accessor who reads a data item with the danger flag set
must interrupt the algorithm and recompute counter-1 (by descending the tree).
Then he reascends updating counter-1 and resetting the flag. After this interlude,
he continues with his computation. In this way the next transaction "fixes up" the
structure left dangling by the previous inserter or deleter, and OB-trees now work
correctly.

5.3.7. Vacuuming the Disk
Any record with BXZD and EXID of committed can be written to an optical

disk or other long term repository. Moreover, any records with an BXID or EXID
corresponding to an aborted transaction can be discarded. The job of a "vacuum"
demon is to perform these two tasks. Consequently, the number of magnetic disk
records is nearly equal to the number with EXlD equal to nu11 (i.e. the magnetic

'

disk holds the current "state" of the database). The archival store holds historical
records, and the vacuum demon can ensure that A U archival records are valid.
Hence, the run-time POSTGRES system need never check for the validity of
archived records.

The vacuum process will first write a historical record to the archival store,
then insert a record in the IID archival index, then insert a record in any archival
key indexes, then delete the record from magnetic disk storage, and finaly delete
the record from any magnetic disk indexes. If a crash occurs, the vacuum process
can simply begin a t the start of the sequence again.

If the vacuum process promptly archives historical records, then one requires
disk space for the currently valid records plus a small portion of the historical
records (perhaps about 1.2 times the size of the currently valid database)
Additionally, one should be able to maintain good physical clustering on the
attribute for which ordering is being attempted on the magnetic disk data set
because there is constant turnover of records.

Some users may wish recently updated records to remain on magnetic disk To
accomplish this tuning, we propose to allow a user to instruct the vacuum as
follows:

vacuum rel-name where QUAL
A reasonable qualification might be:

vacuum rel-name where rel-name.tmax < now - 20 days

In-this case, the vacuum demon would not remove records from the magnetic disk
representation of rel-name until the qualification became true.

6.3.8. Version Management
Versions will be implemented by allocating a differential file [SEVR76] for

each separate version. The differential file will contain the tuples added to or
subtracted from the base relation. Secondary indexes will be built on versions to
correspond to those on the base relation from which the version is constructed.

The algorithm to process POSTQUEL commands on versions is to begin with
the differential relation corresponding to the version itself. For any tuple which
satisfies the qualification, the v-IID of the inspected tuple must be remembered on
a list of "seen Ws" [WOOD83]. If a tuple with an IID on the "seen-id" list is
encountered, then i t is discarded. As long as tuples can be inspected in reverse
chronological order, one will always notice the latest version of a tuple first, and
then know to discard earlier tuples. If the version is built on top of another
version, then continue processing in the differential file of the next version.
Ultimately, a base relation will be reached and the process will stop.

If a tuple in a version is modified in the current version, then i t is treated as a
normal update. If an update to the current version modifies a tuple in a previous
version or the base relation, then the IIl3 of the replaced tuple will be placed in the
v-IID field and an appropriate tuple inserted into the differential file for the
version. Deletes are handled in a similar fashion.

To merge a version into a parent version then one must perform the following
steps for each record in the new version valid a t time T:

1) if i t is an insert, then insert record into older version
2) if i t is a delete, then delete the record in the older version
3) if i t is a replace, then do an insert and a delete

There is a conflict if one attempts to delete an already deleted record. Such cases
must be handled external to the algorithm. The tactics in (GARC841 may be
helpful in reconciling these conflicts.

An older version can be rolled forward into a newer version by performing the
above operations and then renaming the older version.

6. SUMMARY
POSTGRES proposes to support complex objects by supporting an extendible

type system for defining new columns for relations, new operators on these
columns, and new access methods. This facility is appropriate for fairly "simple"
complex objects. More complex objects, especially those with shared subobjects or
multiple levels of nesting, should use POSTGRES procedures as their definition
mechanism. Procedures will be optimized by caching compiled plans and even
answers for retrieval commands.

Triggers and rules are supported as commands with "always" and "demand"
modifiers. They are efficiently supported by extensions to the locking system. Both
forward chaining and backward chaining control structures are provided within the
data manager using these mechanisms. Our rules system should prove attractive
when there are multiple rules which might apply in any given situation. -

Crash recovery is simplified by not overwriting data and then vacuuming
tuples to an archive store. The new storage system is greatly simplified from
current technology and supports time-oriented access and versions with little
difficulty. The major cost of the storage system is the requirement to push dirty
pages of data to stable storage a t commit time.

An optical disk is used effectively as an archival medium, and POSTGRES has
a collection of demons running in the background. These can effectively utilize
otherwise idle processors. Custom hardware could effectively provide stable main
memory, support for the LOG relation, and support for run-time checking of tuple
validity .

Lastly, these goals are accomplished with no changes to the relational model
a t all. At the current time coding of POSTGRES is just beginning. We hope to
have a prototype running in about a year.

REFERENCES
Adiba, M.E. and Lindsay, B.G., "Database Snapshots," IBM
San Jose Res. Tech. Rep. RJ-2772, March 1980.

Afasarmanesh, H., et. al., "An Extensible ObjectOriented
Approach to Database for VLSYCAD," Roc. 1985 Very Large
Data Base Conference, Stockholm, Sweden, August 1985.

Allman, E., et. al., "Embedding a Relational Data
Sublanguage in a General Purpose Programming Language,"
Roc 1976 ACM-SIGPLAN-SIGMOD Conference on Data, Salt
Lake City, Utah, March 1976.

Astrhan, M. et. al., "System R: A Relational Approach to
Data," ACM-TODS, June 1976.

Atkinson, M.P. et. al., "Progress with Persistent
Programming," in Database, Role and Structure (ed. P.
Stacker), Cambridge Univeristy of Press, 1984.

Bunemann, P. and Clemons, E., "Efficiently Monitoring
Relational Data Bases," ACM-TODS, Sept. 1979.

Clocksin, W. and Mellish, C., "Programming in Prolog,"
Springer-Verlag, Berlin, Germany, 1981.

Codd, E., "A Relational Model of Data for Large Shared Data
Bases," CACM, June 1970.

Copeland, G. and D. Maier, "Making Smalltalk a Database
System," Proc. 1984 ACM-SIGMOD Conference on
Management of Data, Boston, Mass. June 1984.

Derritt, N., Personal Communication, HP Laboratories,
October 1985.

DeWitt, D.J. and Carey, M.J., "Extensible Database Systems,"
Proc. 1st International Workshop on Expert Data Bases,
Kiowah, S.C., Oct 1984.

Eswaren, K., "A General Purpose Trigger Subsystem and Its
Inclusion in a Relational Data Base System," IBM Research,
San Jose, Ca., RJ 1833, July 1976.

Garcia-Molina, H., et. al., "Data-Patch: Integrating
Inconsistent copies of a Database after a Partition," Tech.
Rep. TRX 304, Dept. Elec. Eng. and Comp. Sci., Princeton
Univ., 1984.

Held, G. et. al., "INGRES: A Relational Data Base System,"
Proc 1975 National Computer Conference, Anaheim, Ca.,
June 1975.

Gutman, A., "R-trees: A Dynamic Index Structure for Spatial
Searching," Proc. 1984 ACM-SIGMOD Conference on
M-anagement of Data, Boston, Mass. June 1984.

Jarke, M. et. al., "Data Constructors: On the Integration of
Rules and Relations," Proc. 1985 Very Large Data Base
Conference, Stockholm, Sweden, August 1985.

Katz, R.H., Information Management for Engineering Design,
Springer-Verlag, 1985.

Kung, R. et. al., "Heuristic Search in Database Systems,"
ROC. 1st International Workshop on Expert Data Bases,
Kiowah, S.C., Oct 1984.

Lorie, R., and Plouffe, W., "Complex Objects and Their Use in
Desing Transactions," Proc. Eng. Design Applications of
ACM-IEEE Data Base Week, San Jose, CA, May 1983.

Lum, V., et. al., "Design of an Integrated DBMS to Support
Advanced AppIications," Proc. Int. Conf. on Foundations of
Data Org., Kyoto Univ., Japan, May 1985.

Robinson, J., ' m e K-D-B Tree: A Search Structure for Large
Multidimensional Indexes," Roc. 1981 ACM-SIGMOD
Conference on Management of Data, Ann Arbor, Mich., May
1981.

Rowe, L.A. and Shoens, K., "Data Abstraction, Views, and
Updates in Rigel," Proc. 1979 ACM-SIGMOD Conference on
Management of Data, Boston, MA, May 1979.

Rowe, L.A. and Shoens, K. "FADS - A Forms Application
Development System," Proc. 1982 ACM-SIGMOD Conference
on Management of Data, Orlando, FL, June 1982.

Rowe, L., "Fill-in-the-Form Programming," Roc. 1985 Very
Large Data Base Conference, Stockholm, Sweden, August
1985.

Selinger, P. et. al., "Access Path Selection in a Relational
Data Base System," Proc 1979 ACM-SIGMOD Conference on
Management of Data, Boston, Mass., June 1979.

Severence, D., and Lohman, G., "Differential Files: Their
Application to the Maintenance of large Databases," ACM-
TODS, June 1976.

Stonebraker, M., "Implementation of Integrity Constraints
and Views by Query Modification," Proc. 1975 ACM-SIGMOD
Conference, San Jose, Ca., May 1975.

Stonebraker, M., et. al. "The Design and Implementation of
INGRES," ACM-TODS, September 1976.

Stonebraker, M., "Operating System Support for Database
Management," CACM, July 1981.

Stonebraker, M., et. al., "Performance Analysis of a
Distributed Data Base System," Proc. 3th Symposium on
Reliability in Distributed Software and Data Base Systems,
Clearwater, Fla, Oct. 1983

Stonebraker, M., "Document Processing in a Relational
Database System," ACM TOOIS, April 1983.

Stonebraker, M., et. al., "Application of Abstract Data Types
and Abstract Indexes to CAD Data," Roc. Engineering
Applications Stream of 1983 Data Base Week, San Jose, Ca.,
May 1983.

Stonebraker, M. et. al., "QUEL as a Data m," Proc. 1984
ACM-SIGMOD Conference on Management of Data, Boston,
Mass., June 1984.

Stonebraker, M. and Rowe, LA., "PORTALS: A New
Application Program Interface," Roc. 1984 VLDB Conference,
Singapore, Sept 1984.

Stonebraker, M., "Extending a Data Base System with
Procedures," (submitted for publication).

Stonebraker, M., 'Triggers and Inference in Data Base
Systems," Roc. Islamoora Conference on Expert Data Bases,
Islamoora, Fla., Feb 1985, to appear as a Springer-Verlag
book.

Stonebraker, M. et. al., "An Analysis of Rule Indexing
Implementations in Data Base Systems," (submitted for
publication)

Stonebraker, M., "Inclusion of New Types in Relational Data
Base Systems," Roc. Second International Conference on
Data Base Engineering, Los Angeles, Ca., Feb. 1986.

Tichy, W.F., "Design, Implementation, and Evaluation of a
Revision Control System, Proc. 6th Int. Conf. on Soft. Eng.,
Sept 1982.

Tsichritzis, D.C. "Form Management," CACM 25, July 1982.

Ullman, J., "Implementation of Logical Query Languages for
Data Bases," Proceedings of the 1985 ACM-SIGMOD
International Conference on Management of Data, Austin,
TX, May 1985.

Wong, E., et al., "Enhancing INGRES with Deductive Power,"
Proceedings of the 1st International Workshop on Expert Data
Base Systems, Kiowah SC, October 1984.

Woodfill, J. and Stonebraker, M., "An Implementation of
Hypothetical Relations," Roc. 9th VLDB Confernece,
Florence, Italy, Dec. 1983.

Zaniola, C., "The Database Language GEM," Proc. 1983
ACM-SIGMOD Conference on Management of Data, San Jose,
Ca., May 1983.

	electronics_research_lab.design_postgres.1985.062304362.fc.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p01.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p02.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p03.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p04.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p05.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p06.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p07.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p08.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p09.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p10.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p11.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p12.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p13.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p14.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p15.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p16.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p17.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p18.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p19.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p20.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p21.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p22.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p23.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p24.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p25.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p26.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p27.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p28.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p29.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p30.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p31.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p32.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p33.src.tif
	electronics_research_lab.design_postgres.1985.062304362.p34.src.tif
	electronics_research_lab.design_postgres.1985.062304362.bc.src.tif

