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Abstract 
This paper presents the preliminary design of a new database management 

system, called POSTGRES, that is the successor to the INGRES relational database 
system. The main design goals of the new system are to: 

1) provide better support for complex objects, 

2) provide user extendibility for data types, operators and access methods, 

3) provide facilities for active databases (i.e., alerters and triggers) and 
inferencing including forward- and backward-chaining, 

4) simplify the DBMS code for crash recovery, 

5) produce a design that can take advantage of optical disks, workstations 
composed of multiple tightly-coupled processors, and custom designed VLSI 
chips, and 

6) make a s  few changes as possible (preferably none) to the relational model. 

The paper describes the query language, programming lan ge interface, system 
architecture, query processing strategy, and storage system new system. 

1. INTRODUCTION 
The INGRES relational database management system (DBMS) was 

implemented during 1975-1977 a t  the Univerisity of California. Since 1978 various 
prototype extensions have been made to support distributed databases [STON83al, 
ordered relations [STON83b], abstract data types [STON83c], and QUEL as a data 
type [STON84al. In addition, we proposed but never prototyped a new application 
program interface [STON84b]. The University of California version of INGRES has 
been "hacked up enough" to make the inclusion of substantial new function 
extremely difficult. Another problem with continuing to extend the existing system 
is that many of our proposed ideas would be difficult to integrate into that system 
because of earlier design decisions. Consequently, we are building a new database 
system, called POSTGRES (POST inGRES). 



This paper describes the design rationale, the features of POSTGRES, and our 
proposed implementation for the system. The next section discusses the design 
goals for the system. Sections 3 and 4 presents the query language and 
programming language interface, respectively, to the system. Section 5 describes 
the system architecture including the process structure, query processing 
strategies, and storage system. 

2. DISCUSSION OF DESIGN GOALS 
The relational data model has proven very succeseful at  solving most business 

data processing problems. Many commercial systems are being marketed that are 
based on the relational model and in time these systems will replace older 
technology DBMS's. However, there are  many engineering applications (e.g., CAD 
systems, programming environments, geographic data, and graphics) for which a 
conventional relational system is not suitable. We have embarked on the design 
and implementation of a new generation of DBMS's, based on the relational model, 
tha t  will provide the facilities required by these applications. This section 
describes the major design goals for this new system. 

The first goal is to support complex objects [LORISS, STON83cJ. Engineering 
data, in contrast to business data, is  more complex and dynamic. Although the 
required data types can be simulated on a relational system, the performance of the 
applications is unacceptable. Consider the following simple example. The objective 
is to store a collection of geographic objects in a database (e.g., polygons, lines, and 
circles). In a conventional relational DBMS, a relation for each type of object with 
appropriate fields would be created: 

POLYGON (id, other fields) 
CIRCLE (id, other fields) 
LINE (id, other fields) 

To display these objects on the screen would require additional information that 
represented display characteristics for each object (e.g., color, position, scaling 
factor, etc.). Because this information is the same for all objects, i t  can be stored in 
a single relation: 

DISPLAY( color, position, scaling, obj-type, object-id) 

The "object-id" field is the identifier of a tuple in a relation identified by the "obj- 
type" field (i.e., POLYGON, CIRCLE, or LINE). Given this representation, the 
following commands would have to be executed to produce a display: 

foreach OBJ in {POLYGON, CIRCLE, LINE) do 
range of 0 is OBJ 
range of D is DISPLAY 
retrieve (D.all, O.all) 
where D.object-id = O.id 
and D.obj-type = OBJ 

Unfortunately, this collection of commands will not be executed fast enough by any 
relational system to "paint the screen" in real time (i.e., one or two seconds). The 
problem is that regardless of how fast your DBMS is there are too many queries 
that  have to be executed to fetch the data for the object. The feature that is needed 
i s  the ability to store the object in a field in DISPLAY so that only one query is 



required to fetch it. Consequently, our first goal is to correct this deficiency. 

The second goal for POSTGRES is to make i t  easier to extend the DBMS so 
that i t  can be used in new application domains. A conventional DBMS has a small 
set of built-in data types and access methods. Many applications require 
specialized data types (e.g., geometic data types for CADICAM or a latitude and 
longitude position data type for mapping applications). While these data types can 
be simulated on the built-in data types, the resulting queries are verbose and 
confusing and the performance can be poor. A simple example using boxes is 
presented elsewhere [STON86]. Such applications would be best served by the 
ability to add new data types and new operators to a DBMS. Moreover, B-trees are 
only appropriate for certain kinds of data, and new access methods are  often 
required for some data types. For example, K-D-B trees [ROB1811 and R-trees 
[GUTM84] are appropriate access methods for point and polygon data, respectively. 

Consequently, our second goal is to allow new data types, new operators and 
new access methods to be included in the DBMS. Moreover, i t  is crucial that they 
be implementable by non-experts which means easy-to-use interfaces shouId be 
preserved for any code that  will be written by a user. Other researchers are 
pursuing a similar goal [DEWI851. 

The third goal for POSTGRES is to support active databases and rules. Many 
applications are most easily programmed using alerters and triggers. For example, 
form-flow applications such as a bug reporting system require active forms that are 
passed from one user to another [TSIC82, ROWE821. In a bug report application, 
the manager of the program maintenance group should be notified if a high priority 
bug that has been assigned to a programmer has not been fixed by a specified date. 
A database alerter is needed that will send a message to the manager calling his 
attention to the problem. Triggers can be used to propagate updates in the 
database to maintain consistency. For example, deleting a department tuple in the 
DEPT relation might trigger an  update to delete all employees in that department 
in the EMP relation. 

In addition, many expert system applications operate on data that is more 
easily described as rules rather than as data values. For example, the teaching load 
of professors in the EECS department can be described by the following rules: 

1) The normal load is 8 contact hours per year 

2) The scheduling officer gets a 25 percent reduction 

3) The chairman does not have to teach 

4) Faculty on research leave receive a reduction proportional to their leave 
fraction 

5) Courses with less than 10 students generate credit a t  0.1 contact hours per 
student 

6) Courses with more than 50 students generate EXTRA contact hours a t  a 
rate of 0.01 per student in excess of 50 

7) Faculty can have a credit balance or a deficit of up to 2 contact hours 

These rules are  subject to frequent change. The leave status, course assignments, 



and administrative assignments (e,g., chairman and scheduling officer) all change 
frequently. It would be most natural to store the above rules in a DBMS and then 
infer the actual teaching load of individual faculty rather than storing teaching 
load as  ordinary data and then attempting to enforce the above rules by a 
collection of complex integrity constraints. Consequently, our third goal is to 
support alerters, triggers, and general rule processing. 

The fourth goal for POSTGRES is  to reduce the amount of code in the DBMS 
written to support crash recovery. Most DBMS's have a large amount of crash 
recovery code that is tricky to write, full of special cases, and very difficult to test 
and debug. Because one of our goals is to allow user-defined access methods, it is 
imperative that the model for crash recovery be as  simple as  possible and easily 
extendible. Our proposed approach is to treat the log as normal data managed by 
the DBMS which will simplify the recovery code and simultaneously provide 
support for access to the historical data. 

Our next goal is to make use of new technologies whenever possible. Optical 
disks (even writable optical disks) are  becoming available in the commercial 
marketplace. Although they have slower access characteristics, their price- 
performance and reliability may prove attractive. A system design that includes 
optical disks in the storage hierarchy will have an  advantage. Another technology 
that  we forsee is workstation-sized processors with several CPU's. We want to 
design POSTGRES in such way as to take advantage of these CPU resources. 
Lastly, a design that could utilize special purpose hardware effectively might make 
a convincing case for designing and implementing custom designed VLSI chips. 
Our fifth goal, then, is to investigate a design that can effectively utilize an  optical 
disk, several tightly coupled processors and custom designed VLSI chips. 

The last goal for POSTGRES is to make as few changes to the relational 
model as possible. First, many users in the business data processing world will 
become familiar with relational concepts and this framework should be preserved if 
possible. Second, we believe the original "spartan simplicity" argument made by 
Codd [CODD'IO] is as true today as in 1970. Lastly, there are many semantic data 
models but there does not appear to be a small model that will solve everyone's 
problem. For example, a generalization hierarchy will not solve the problem of 
structuring CAD data and the design models developed by the CAD community 
will not handle generalization hierarchies. Rather than building a system that is 
based on a large, complex data model, we believe a new system should be built on a 
small, simple model that is extendible. We believe that we can accomplish our 
goals while preserving the relational model. Other researchers are  striving for 
similar goals but they are  using different approaches [AFSA85, ATKI84, COPE84, 
DERR85, LORI83, LUM851 

The remainder of the paper describes the design of POSTGRES and the basic 
system architecture we propose to use to implement the system. 

3. POSTQUEL 
This section describes the query language supported by POSTGRES. The 

relational model as described in the original definition by Codd [CODD701 has been 
preserved. A database is composed of a collection of relations that  contain tuples 
with the same fields defined, and the values in a field have the same data type. 



The query language is based on the INGRES query language QUEL rHELD751. 
Several extensions and changes have been made to QUEL eo the new language is 
called POSTQUEL to distinguish i t  from the original language and other QUEL 
extensions described elsewhere [STONSSa, KUNG841. 

Most of QUEL is left intact. The following commands are included in 
POSTQUEL without any changes: Create Relation, Destroy Relation, Append, 
Delete, Replace, Retrieve, Retrieve into Result, Define View, Define Integrity, and 
Define Protection. The Modify command which specified the storage structure for a 
relation has been omitted because all relations are stored in a particular structure 
designed to support historical data. The Index command is retained so that other 
access paths to the data can be defined. 

Although the basic structure of POSTQUEL is very similar to QUEL, 
numerous extensions have been made to support complex objects, user-defined data 
types and access methods, time varying data (i.e., versions, snapshots, and 
historical data), iteration queries, alerters, triggers, and rules. These changes are 
described in the subsections that follow. 

3.1. Data Definition 
The following built-in data types are provided; 

1) integers, 

2) floating point, 

3) fixed length character strings, 

4) unbounded varying length arrays of fixed types with an arbitrary number 
of dimensions, 

5) POSTQUEL, and 

6) procedure. 

Scalar type fields (e.g., integer, floating point, and fixed length character strings) 
are referenced by the conventional dot notation (e.g., EMP.name). 

Variable length arrays are provided for applications that need to store large 
homogenous sequences of data (e.g., signal processing data, image, or voice). Fields 
of this type are referenced in the standard way (e.g., EMP.picture(i1 refers to the i- 
th element of the picture array). A special case of arrays is the text data type 
which is a one-dimensional array of characters. Note that arrays can be extended 
dynamically. , 

Fields of type POSTQUEL contain a sequence of data manipulation 
commands. They are referenced by the conventional dot notation. However, if a 
POSTQUEL field contains a retrieve command, the data specified by that command 
can be impIicitIy referenced by a multiple dot notation (e.g., 
EMP.hobbies.battingavg) as proposed elsewhere [STON84a] and first suggested by 
Zaniola in GEM [ZAN183]. 

Fields of type procedure contain procedures written in a general purpose 
programming language with embedded data manipulation commands (e.g., EQUEL 



[ALLM76] or Rigel [ROWE79]). Fields of type procedure and POSTQUEL can be 
executed using the Execute command. Suppose we are given a relation with the 
following definition 

EMP(name, age, salary, hobbies, dept) 

in  which the "hobbies" field is of type POSTQUEL. That is, "hobbies" contains 
queries that retrieve data about the employee's hobbies from other relations. The 
following command will execute the queries in that field: 

execute (EMP.hobbies) 
where EMP.name = "Smith" 

The value returned by this command can be a sequence of tuples with varying 
types because the field can contain more than one retrieve command and different 
commands can return different types of records. Consequently, the programming 
language interface must provide facilities to determine the type of the returned 
records and to access the fields dynamically. 

Fields of type POSTQUEL and procedure can be used to represent complex 
objects with shared subobjects and to support multiple representations of data. 
Examples are  given in the next section on complex objects. 

In addition to these built-in data types, userdefined data types can be defined 
using an interface similar to the one developed for ADT-INGRES [STON83c, 
STON861. New data types and operators can be defined with the user-defined data 
type facility. 

3.2. Complex Objects 
This section describes how fields of type POSTQUEL and procedure can be 

used to represent shared complex objects and to support multiple representations of 
data. 

Shared complex objects can be represented by a field of type POSTQUEL that 
contains a sequence of commands to retrieve data from other relations that 
represent the subobjects. For example, given the relations POLYGON, CIRCLE, 
and LINE defined above, a n  object relation can be defined that represents complex 
objects composed of polygons, circles, and lines. The definition of the object relation 
would be: 

create OBJECT (name = char[lO], obj = postquel) 

The table in figure 1 shows sample values for this relation. The relation contains 
the description of two complex objects named "apple" and "orange." The object 
"apple" is composed of a polygon and a circle and the object "orange" is composed of 
a line and a polygon. Notice that both objects share the polygon with id equal to 
10. 

Multiple representations of data are useful for caching data in a data 
structure that  is better suited to a particular use while still retaining the ease of 
access via a relational representation. Many examples of this use are found in 
database systems (e.g., main memory relation descriptors) and forms systems 
EROWE851. Multiple representations can be supported by defining a procedure that 
translates one representation (e.g., a relational representation) to another 
representation (e.g., a display list suitable for a graphics display). The translation 



Name 
apple 

orange 

OBJ 
retrieve (POLY CON.al1) 
where POLYGON.id = 10 
retrieve (CIRCLE.al1) 
where CIRCLE.id = 40 
retrieve (LINE.al1) 
where LINE.id = 17 
retrieve (POLYGON.al1) 
where POLYGON.id = 10 

Figure 1. Example of an  OBJECT relation. 

procedure is stored in the database. Continuing with our complex object example, 
the OBJECT relation would have an additional field, named "display," that would 
contain a procedure that  creates a display list for an object stored in POLYGON, 
CIRCLE, and LINE: 

create OBJECT(name =char[lO], obj = postquel, display =cproc) 

The value stored in the display field is a procedure written in C that queries the 
database to fetch the subobjects that make up the object and that creates the 
display list representation for the object. 

This solution has two problems: the code is repeated in every OBJECT tuple 
and the C procedure replicates the queries stored in the object field to retrieve the 
subobjects. These problems can be solved by storing the procedure in a separate 
relation (i.e., normalizing the database design) and by passing the object to the 
procedure as  an argument. The definition of the relation in which the procedures 
will be stored is: 

create OBJPROC(name=chad 121, proc =cproc) 
append to OBJPROC(name = "display-list", proc ="...source code...") 

Now, the entry in the display field for the "apple" object is 

execute (OBJPROC .proc) 
with ("apple") 
where 0BJPROC.name = "display-list" 

This command executes the procedure to create the alternative representation and 
passes to i t  the name of the object. Notice that the "display" field can be changed 
to a value of type POSTQUEL because we are not storing the procedure in 
OBJECT, only a command to execute the procedure. At this point, the procedure 
can execute a command to fetch the data. Because the procedure was passed the 
name of the object it can execute the following command to fetch its value: 



execute (0BJECT.obj) 
where 0BJECT.name =argument 

This solution is somewhat complex but i t  stores only one copy of the procedure's 
source code in the database and it stores only one copy of the commands to fetch 
the data that represents the object. 

Fields of type POSTQUEL and procedure can be efficiently supported through 
a combination of compilation and precomputation described in sections 4 and 5. 

3.3. Time Varying Data 
POSTQUEL allows users to save and query historical data and versions 

[KAT285, WOOD831. By default, data in a relation is never deleted or updated. 
Conventional retrievals always access the current tuples in the relation. Historical 
data can be accessed by indicating the desired time when defining a tuple variable. 
For example, to access historical employee data a user writes 

retrieve (E.all) 
from E in EMP["7 January 1985"l 

which retrieves all records for employees that worked for the company on 7 
January 1985. The From-clause which is similar to the SQL mechanism to define 
tuple variables [ASTR76], replaces the QUEL Range command. The Range 
command was removed from the query language because i t  defined a tuple variable 
for the duration of the current user program. Because queries can be stored as the 
value of a field, the scope of tuple variable definitions must be constrained. The 
From-clause makes the scope of the definition the current query. 

This bracket notation for accessing historical data implicitly defines a 
snapshot [ADIBSO]. The implementation of queries that access this snapshot, 
described in detail in section 5, searches back through the history of the relation to 
find the appropriate tuples. The user can materialize the snapshot by executing a 
Retrieve-into command that will make a copy of the data in another relation. 

Applications that do not want to save historical data can specify a cutoff point 
for a relation. Data that is older than the cutoff point is deleted from the database. 
Cutoff points are defined by the Discard command. The command 

discard EMP before "1 week" 

deletes data in the EMP relation that is more than 1 week old. The commands 

discard EMP before "now" 

and 

discard EMP 

retain only the current data in EMP. 
It is also possible to write queries that reference data which is valid between 

two dates. The notation 

specifies the relation containing all tuples that were in the relation a t  some time 
between date1 and date2. Either or both of these dates can be omitted to specify 
all data in the relation from the time it was created until a fixed date (i.e., 
relation-name[,date]), all data in the relation from a fixed date to the present (i.e., 



relation-nameEdate,]), or all data that was every in the relation (i.e., relation- 
name[ I). For example, the query 

retrieve (E .all) 
from E in EMR I 
where E.name = "Smithn 

returns all information on employees named Smith who worked for the company a t  
any time. 

POSTQUEL has a three level memory hierarchy: 1) main memory, 2) 
secondary memory (magnetic disk), and 3) tertiary memory (optical disk). Current 
data is stored in secondary memory and historical data migrates to tertiary 
memory. However, users can query the data without having to know where the 
data is stored. 

Finally, POSTGRES provides support for versions. A version can be created 
from a relation or a snapshot. Updates to a version do not modify the underlying 
relation and updates to the underlying relation will be visible through the version 
unless the value has been modified in the version. Versions are defined by the 
Newversion command. The command 

newversion EMPTEST from EMP 
creates a version named EMPTEST that is derived from the EMP relation. If the 
user wants to create a version that is not changed by subsequent updates to the 
underlying relation as  in most source code control systems [TICH82], he can create 
a version off a snapshot. 

A Merge command is provided that will merge the changes made in a version 
back into the underlying relation. An example of a Merge command is 

merge EMPTEST into EMP 

The Merge command will use a semi-automatic procedure to resolve updates to the 
underlying relation and the version that conflict IGARC841. 

This section described POSTGRES support for time varying data. The 
strategy for implementing these features is described below in the section on 
system architecture. 

3.4. Iteration Queries, Alerters, Triggers, and Rules 
This section describes the POSTQUEL commands for specifying iterative 

execution of queries, alerters [BUNE79], triggers [ASTR761, and rules. 

Iterative queries are requried to support transitive closure [GUTM84 
KUNG841. Iteration is specified by appending an  asterisk ("*") to a command that 
should be repetitively executed. For example, to construct a relation that includes 
all people managed by someone either directly or indirectly a Retrieve*-into 
command is used. Suppose one is given an employee relation with a name and 
manager field: 

create EMP(name =cbar[20], ..., mgr =char[201, ...I 
The following query creates a relation that conatins all employees who work for 
Jones: 



retrieve* into SUBORDWATES(E .name, E .mgr) 
from E in EMP, S in SUBORDINATES 
where E.name ="Jonesw 

This command continues to execute the Retrieve-into command until there are no 
changes made to the SUBORDINATES relation. 

The "*' modifier can be appended to any of the POSTQUEL data manipulation 
commands: Append, Delete, Execute, Replace, Retrieve, and Retzieve-into. 
Complex iterations, like the A-* heuristic search algorithm, can be specified using 
sequences of these iteration queries [STON85b]. 

Alerters and triggers are specified by adding the keyword "always" to a query. 
For example, an alerter i s  specified by a Retrieve command such as 

retrieve always (EMP.all) 
where EMP.name = "Bill" 

This command returns data to the application program that issued it whenever 
Bill's employee record is changed.' A trigger is an update query (i.e., Append, 
Replace, or Delete command) with an "always" keyword. For example, the 
command 

delete always DEPT 
where count(EMP.name by DEPT.dname 

where EMP.dept = DEPT.dname) = 0 

defines a trigger that will delete DEPT records for departments with no employees. 

Iteration queries differ from alerters and triggers in that iteration queries run 
until they cease to have an effect while alerters and triggers run indefinitely. An 
efficient mechanism to awaken "always" commands is described in the system 
architecture section. 

"Always" commands support a forward-chaining control structure in which an 
update wakes up a collection of alerters and triggers that can wake up other 
commands. This process terminates when no new commands are awakened. 
POSTGRES also provides support for a backward-chaining control structure. 

The conventional approach to supporting inference is to extend the view 
mechanism (or something equivalent) with additional capabilities (e.g. IULLM85, 
WONG84, JARK851). The canonical example is the definition of the ANCESTOR 
relation based on a stored relation PARENT: 

PARENT (paren t-of, offspring) 

Ancestor can then be defined by the following commands: 

' Strictly speaking the data is returned to the program through a portal which is 
defined in section 4. 



range of P is  PARENT 
range of A is ANCESTOR 
define view ANCESTOR (P.all) 
define view* ANCESTOR (A.parentof, P.offspring) 

where A.offspring = P.parentof 

Notice that  the ANCESTOR view is defined by multiple commands that  may 
involve recursion. A query such as: 

retrieve (ANCESTOR. parent00 
where ANCESTOR.offspring = "Bill" 

is processed by extensions to a standard query modification algorithm [STON751 to 
generate a recursive command or a sequence of commands on stored relations. To 
support this mechanism, the query optimizer must be extended to handle these 
commands. 

This approach works well when there are  only a few commands which define a 
particular view and when the commands do not generate conflicting answers. This 
approach is less successful if either of these conditions is violated a s  in the 
following example: 

define view DESK-EMP (EMP.al1, desk = "steel") where EMP.age < 40 
define view DESK-EMP (EMP.al1, desk = "wood" where EMP.age > = 40 
define view DESK-EMP (EMP.al1, desk = "wood") where EMP.name = "hotshot" 
define view DESK-EMP (EMP.al1, desk = "steel") where EMP.name = "bigshot" 

In this example, employees over 40 get a wood desk, those under 40 get a steel 
desk. However, "hotshotJ' and "bigshot" are exceptions to these rules. "Hotshot" is 
given a wood desk and "bigshof' is given a steel desk, regardless of their ages. In 
this case, the query: 

retrieve (DESK-EMP.desk) where DESK-EMP.name = "bigshot" 

will require 4 separate commands to be optimized and run. Moreover, both the 
second and the fourth definitions produce an answer to the query that is different. 
In the case that a larger number of view definitions is used in the specification of 
an  object, then the important performance parameter will be isolating the view 
definitions which are actually useful. Moreover, when there are conflicting view 
definitions (e.g. the general rule and then exceptional cases), one requires a priority 
scheme to decide which of conflicting definitions to utilize. The scheme described 
below works well in such situations. 

POSTGRES supports backward-chaining rules by virtual columns (i.e., 
columns for which no value is stored). Data in such columns is inferred on demand 
from rules and cannot be directly updated, except by adding or dropping rules. 
Rules are specified by adding the keyword "demand" to a query. Hence, for the 
DESK-EMP example, the EMP relation would have a virtual field, named "desk," 
that would be defined by four rules: 

replace demand EMP (desk = "steel") where EMP.age < 40 
replace demand EMP (desk = "wood" where EMP.age > = 40 
replace demand EMP (desk = "wood") where EMP.name = "hotshot" 
replace demand EMP (desk = "steel") where EMP.name = "bigshot" 

The third and fourth commands would be defined a t  a higher priority than the first 



and eecond. A query that accessed the desk field would cause the "demand" 
commands to be processed to determine the appropriate desk value for each EMP 
tuple retrieved. 

This subsection has described a collection of facilities provided in POSTQUEL 
to support complex queries (e.g., iteration) and active databases (e.g., alerters, 
triggers, and rules). Efficient techniques for implementing these facilities are 
given in  section 5. 

4. PROGRAMMING LANGUAGE INTERFACE 
This section describes the programming language interface (HITCHING 

POST) to POSTGRES. We had three objectives when designing the HITCHING 
POST and POSTGRES facilities. First, we wanted to design and implement a 
mechanism that  would simplify the development of browsing style applications. 
Second, we wanted HITCHING POST to be powerful enough that all programs that 
need to access the database including the ad hoc terminal monitor and any 
preprocessors for embedded query languages could be written with the interface. 
And lastly, we wanted to provide facilities that  would allow an application 
developer to tune the performance of his program (i.e., to trade flexibility and 
reliability for performance). 

Any POSTQUEL command can be executed in a program. In addition, a 
mechanism, called a "portal," is provided that allows the program to retrieve data 
from the database. A portal is  similar to a cursor [ASTR76], except that it allows 
random access to the data specified by the query and the program can fetch more 
than one record a t  a time. The portal mechanism described here is different than 
the one we previously designed [STON84bl, but the goal is still the same. The 
following subsections describe the commands for defining portals and accessing 
data through them and the facilities for improving the performance of query 
execution (i.e., compiIation and fast-path). 

4.1. Portals 
A portal is  defined by a Retrieve-portal or Execute-portal command. For 

example, the following command defines a portal named P: 

retrieve portal P(EMP.al1) 
where EMP.age < 40 

This command is passed to the backend process which generates a query plan to 
fetch the data. The program can now issue commands to fetch data from the 
backend process to the frontend process or to change the "current position" of the 
portal. The portal can be thought of as a query plan in execution in the DBMS 
process and a buffer containing fetched data in the application process. 

The program fetches data from the backend into the buffer by executing a 
Fetch command. For example, the command 

fetch 20 into P 

fetches the first twenty records in the portal into the frontend program. These 
records can be accessed by subscript and field references on P. For example, P(i] 
refers to the i-th record returned by the last Fetch command and P[i].name refers 
to the "name" field in the i-th record. Subsequent fetches replace the previously 



fetched data in the frontend program buffer. 

The concept of a portal is  that the data in the buffer is  the data currently 
being displayed by the browser. Commands entered by the user a t  the terminal 
are  translated into database commands that  change the data in the buffer which is 
then redisplayed. Suppose, for example, the user entered a command to scroll 
forward half a screen. This command would be translated by the frontend program 
(i.e., the browser) into a Move command followed by a Fetch command. The 
following two commands would fetch data into the buffer which when redisplayed 
would appear to scroll the data forward by one half screen: 

move P forward 10 
fetch 20 into P 

The Move command repositions the "current position" to point to the 11-th tuple in 
the portal and the Fetch command fetches tuples 11 through 30 in the ordering 
established by executing the query plan. The "current position" of the portal is the 
first tuple returned by the last Fetch command. If Move commands have been 
executed since the last  Fetch command, the "current position" is the first tuple that 
would be returned by a Fetch command if i t  were executed. 

The Move command has other variations that simplify the implementation of 
other browsing commands. Variations exist that allow the portal postion to be 
moved forward or backward, to an absolute position, or to the first tuple that 
satisfies a predicate. For example, to scroll backwards one half screen, the 
following commands are issued: 

move P backward 10 
fetch 20 into P 

In addition to keeping track of the "current position," the backend process also 
keeps track of the sequence number of the current tuple so that the program can 
move to a n  absolute position. For example, to scroll forward to the 63-rd tuple the 
program executes the command: 

move P forward to 63 

Lastly, a Move command is provided that will search forward or backward to 
the first tuple that satisfies a predicate as illustrated by the following command 
that moves forward to the first employee whose salary is greater than $25,000: 

move P forward to salary > 25K 

This command positions the portal on the first qualifying tuple. A Fetch command 
will fetch this tuple and the ones immediately following i t  which may not satisfy 
the predicate. To fetch only tuples that satisfy the predicate, the Fetch command is 
used as follows: 

fetch 20 into P where salary > 25K 

The backend process will continue to execute the query plan until 20 tuples have 
been found that satisfy the predicate or until the portal data is exhausted. 

Portals differ significantly from cursors in the way data is updated. Once a 
cursor is positioned on a record, i t  can be modified or deleted (i.e., updated directly). 
Data in a portal cannot be updated directly. It is updated by Delete or Replace 
commands on the relations from which the portal data is taken. Suppose the user 



entered commands to a browser that change Smith's salary. Assuming that 
Smith's record is already in the buffer, the browser would translate this request 
into the following sequence of commands: 

replace E MP(sa1ary = NewSalary) 
where EMP.name = "Smith" 
fetch 20 into P 

The Replace command modifies Smith's tuple in the EMP relation and the Fetch 
command synchronizes the buffer in the browser with the data in the database. 
We chose this indirect approach to updating the data because i t  makes sense for 
the model of a portal as a query plan. In our previous formulation [STON841, a 
portal was treated as a n  ordered view and updates to the portal vyere treated as  
view updates. We believe both models are viable, although the query plan model 
requires less code to be written. 

In addition to the Retrieve-portal command, portals can be defined by an  
Execute command. For example, suppose the EMP relation had a field of type 
POSTQUEL named "hobbies" 

EMP (name, salary, age, hobbies) 

that  contained commands to retrieve a person's hobbies from the following 
relations: 

SOFTBALL (name, position, batting-avg) 
COMPUTERS (name, isowner, brand, interest) 

An application program can define a portal that will range over the tuples 
describing a person's hobbies as follows: 

execute portal H(EMP.hobbies) 
where EMP.name = "Smithn 

This command defines a portal, named "H," that is bound to Smith's hobby records. 
Since a person can have several hobbies, represented by more than on Retrieve 
command in the "hobbies" field, the records in the buffer may have different types. 
Consequently, HITCHING POST must provide routines that allow the program to 
determine the number of fields, and the type, name, and value of each field in each 
record fetched into the buffer. 

4.2. Compilation and Fast-Path 
This subsection describes facilities to improve the performance of query 

execution. Two facilities are provided: query compilation and fastcpath. Any 
POSTQUEL command, including portal commands, can take advantage of these 
facilities. 

POSTGRES has a system catalog in which application programs can store 
queries that are to be compiled. The catalog is named "CODE" and has the 
following structure: 

CODE(id, owner, command) 

The "id" and "owner" fields form a unique identifier for each stored command. The 
"command" field holds the command that is to be compiled. Suppose the 
programmer of the relation browser described above wanted to compile the Replace 



command that was used to update the employee's salary field. The program could 
append the command, with suitable parameters, to the CODE catalog a s  follows: 

append to CODE(id = 1, owner = "browser", 
command ="replace EMP(aa1ary = $1) where EMP.name = $2") 

"$1" and "$2" denote the arguments to the command. Now, to execute the Replace 
command that updates Smith's salary shown above, the program executes the 
following command: 

execute (CODE.comrnand) 
with (NewSalary, "Smith") 
where CODE.id = 1 and CODE.owner ="browsern 

This command executes the Replace command after substituting the arguments. 

Executing commands stored in the CODE catalog does not by itself make the 
command run any faster. However, a compilation demon is always executing that 
examines the entries in the CODE catalog in every database and compiles the 
queries. Assuming the compilation demon has compiled the Replace command in 
CODE, the query should run substantially faster because the time to parse and 
optimize the query is avoided. Section 5 describes a general purpose mechanism 
for invalidating compiled queries when the schema changes. 

Compiled queries are  faster than queries that are parsed and optimized a t  
run-time but for some applications, even they are not fast enough. The problem is 
that  the Execute command that invokes the compiled query still must be processed. 
Consequently, a fast-path facility is provided that avoids this overhead. In the 
Execute command above, the only variability is the argument list and the unique 
identifier that selects the query to be run. HITCHING POST has a run-time 
routine that allows this information to be passed to the backend in a binary format. 
For example, the following function call invokes the Replace command described 
above: 

exec-fp( 1, "browser", NewSalary, "Smith") 

This function sends a message to the backend that includes only the information 
needed to determine where each value is located. The backend retrieves the 
compiled plan (possibly from the buffer pool), substitutes the parameters without 
type checking, and invokes the query plan. This path through the backend is 
hand-optimized to be very fast so the overhead to invoke a compiled query plan is 
minimal. 

This subsection has described facilities that allow an application programmer 
to improve the performance of a program by compiling queries or by using a special 
fast-path facility. 

5. SYSTEM ARCHITECTURE 
This section describes how we propose to implement POSTGRES. The first 

subsection describes the process structure. The second subsection describes how 
query processing will be implemented, including fields of type POSTQUEL, 
procedure, and user-defined data type. The third subsection describes how alerters, 
triggers, and rules will be implemented. And finally, the fourth subsection 
describes the storage system for implementing time varying data. 



5.1. Process Structure 
DBMS code must run as a sparate process from the application programs that 

access the database in order to provide data protection. The process structure can 
use one DBMS process per application program (i.e., a process-per-user model 
[STONOl]) or one DBMS process for all application programs (i.e., a server model). 
The server model has many performance benefits (e.g., sharing of open file 
descriptors and buffers and optimized task s ~ t c h i n g  and message sending 
overhead) in a large machine environment in which high performance is critical. 
However, this approach requires that a fairly complete special-purpose operating 
system be built. In constrast, the process-per-user model is simpler to implement 
but will not perform as well on most conventional operating systems. We decided 
after much soul searching to implement POSTGRES using a process-per-user model 
architecture because of our limited programming resources. POSTGRES is an 
ambitious undertaking and we believe the additional complexity introduced by the 
server architecture was not worth the additional risk of not getting the system 
running. Our current plan then is to implement POSTGRES as a process-per-user 
model on Unix 4.3 BSD. 

The process structure for POSTGRES is shown in figure 3. The 
POSTMASTER will contain the lock manager (since there are no shared segments 
in 4.3 BSD) and will control the demons that will perform various database 
s e ~ c e s  (such as asynchronously compiling user commands). There will be one 
POSTMASTER process per machine, and i t  will be started at  "sysgen" time. 

The POSTGRES run-time system executes commands on behalf of one 
application program. However, a program can have several commands executing 
a t  the same time. The message protocol between the program and backend will use 
a simple request-answer model. The request message will have a command 
designator and a sequence of bytes that contain the arguments. The answer 
message format will include a response code and any other data requested by the 
command. Notice that in contrast to INGRES [STON761 the backend will not "load 

Figure 3. POSTGRES process structure. 
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up" the communication channel with data. The frontend requests a bounded 
amount of data with each command. 

5.2. Query Processing 
This section describes the query processing strategies that will be 

implemented in POSTGRES. We plan to implement a conventional query 
optimizer. However, three extensions are required to support POSTQUEL. First, 
the query optimizer must be able to take advantage of userdefined access methods. 
Second, a general-purpose, efficient mechanism is needed to support fields of type 
POSTQUEL and procedure. And third, an efficient mechanism is required to 
support triggers and rules. This section describes our proposed implementation of 
these mechanisms. 

5.2.1. Support for New Types 
As noted elsewhere [STONSGI, existing access methods must be usable for new 

data types, new access methods must be definable, and query processing heuristics 
must be able to optimize plans for which new data types and new access methods 
are  present. The basic idea is that an access method can support fast access for a 
specific collection of operators. In the case of B-trees, these operators are {<, =, 
>, > =, < =). Moreover, these operators obey a collection of rules. Again for B- 
trees, the rules obeyed by the above set of operators is: 

P1) key-1 < key-2 and key-2 < key-3 then key-1 < key-3 
P2) key-1 < key-2 implies not key-2 < key-1 
P3) key-1 < key-2 or key-2 < key-1 or key-1 = key-2 
P4) key-1 < = key-2 if key-1 < key-2 or key-1 = key-2 
P5) key-1 = key-2 implies key-2 = key-1 
P6) key-1 > key-2 if key-2 < key-1 
P7) key-1 > = key-2 if key-2 < = key-1 

A B-tree access method will work for any collection of operators that obey the 
above rules. The protocol for defining new operators will be similar to the one 
described for ADT-INGRES [STON83c]. Then, a user need simply declare the 
collection of operators that are to be utilized when he builds an index, and a 
detailed syntax is  presented in [STONSG]. 

In addition, the query optimizer must be told the performance of the various 
access paths. Following [SELI79], the required information will be the number of 
pages touched and the number of tuples examined when processing a clause of the 
form: 

relation.column OPR value 

These two values can be included with the definition of each operator, OPR. The 
other information required is the join selectivity for each operator that can 
participate in a join, and what join processing strategies are feasible. In particular, 
nested iteration is always a feasible strategy, however both merge-join and hash- 
join work only in restrictive cases. For each operator, the optimizer' must know 
whether merge-join is  usable and, if so, what operator to use to sort each relation, 
and whether hash-join is usable. Our proposed protocol includes this information 
with the definition of each operator. 



Consequently, a table-driven query optimizer will be implemented. Whenever 
a user defines new operators, the necessary information for the optimizer will be 
placed in the system catalogs which can be accessed by the optimzier. For further 
details, the reader is refered elsewhere [STON861. 

5.2.2. Support for Procedural Data 
The main performance tactic which we will utilize is precomputing and 

caching the result of procedural data. This precomputation has two steps: 

1) compiling an access plan for POSTQUEL commands 
2) executing the access plan to produce the answer 

When a collection of POSTQUEL commands is executed both of the above steps 
must be performed. Current systems drop the answer on the floor after obtaining 
it, and have special code to invalidate and recompute access plans (e.g. lASTR761). 
On the other hand, we expect to cache both the plan and the answer. For small 
answers, we expect to place the cached value in the field itself. For larger answers, 
we expect to put the answer in a relation created for the purpose and then put the 
name of the relation in the field itself where i t  will serve the role of a pointer. 

Moreover, we expect to have a demon which will run in background mode and 
compile plans utilizing otherwise idle time or idle processors. Whenever a value of 
type procedure is inserted into the database, the run-time system will also insert 
the identity of the user submitting the command. Compilation entails checking the 
protection status of the command, and this will be done on behalf of the submitting 
user. Whenever, a procedural field is executed, the run-time system will ensure 
that the user is authorized to do so. In the case of "fastrpath," the run-time system 
will require that the executing user and defining user are the same, so no run-time 
access to the system catalogs is required. This same demon will also precompute 
answers. In the most fortunate of cases, access to procedural data is instantaneous 
because the value of the procedure is cached. In most cases, a previous access plan 
should be valid sparing the overhead of this step. 

Both the compiled plan and the answer must be invalidated if necessary. The 
plan must be invalidated if the schema changes inappropriately, while the answer 
must be invalidated if data that i t  accesses has been changed. We now show that 
this invalidation can be efficiently supported by an extended form of locks. In a 
recent paper [STON854 we have analyzed other alternate implementations which 
can support needed capabilities, and the one we will now present was found to be 
attractive in many situations. 

We propose to support a new kind of lock, called an I lock. The compatibility 
matrix for I locks is shown in figure 4. When a command is compiled or the answer 
precomputed, POSTGRES will set I locks on all database objects accessed during 
compilation or execution. These I locks must be persistent (i.e. survive crashes), of 
fine granularity (i.e. on tuples or even fields), escalatable to coarser granularity, 
and correctly detect "phantoms" [ESWA75]. In [STON85a], it is suggested that the 
best way to satisfy these goals is to place I locks in data records themselves. 

The * in the table in figure 4 indicates that a write lock placed on an object 
containing one or more I locks will simply cause the precomputed objects holding 
the I locks to be invalidated. Consequently, they are called "invalidate-me" locks. 



R W I  

Figure 4. Compatibility modes for I locks. 

A user can issue a command: 

retrieve (re1ation.I) where qualification 

which will return the identifiers of commands having I locks on tuples in question. 
In this way a user can see the consequences of a proposed update. 

Fields of type POSTQUEL can be compiled and POSTQUEL fields with no 
update statements can be precomputed. Fields of type procedure can be compiled 
and procedures that do not do inputloutput and do not update the database can be 
precomputed. 

5.2.3. Alerters, Triggers, and Inference 
This section describes the tactic we will use to implement alerters, triggers, 

and inference. 

Alerters and triggers are specified by including the keyword "alwaysn on the 
command. The propaed implementation of "always" commands is to run the 
command until it  ceases to have an effect. Then, it should be run once more and 
another special kind of lock set on all objects which the commands will read or 
write. These T locks have the compatibility matrix shown in figure 5. Whenever a 
transaction writes a data object on which a T-lock has been set, the lock manager 
simply wakes-up the corresponding "always" command. Dormant "always" 
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Figure 5. Compatibility modes for T locks. 



commands are stored in a system relation in a field of type POSTQUEL. As with I 
locks, T locks must be persistent, of fine granularity and escalatable. Moreover, the 
identity of commands holding T locks can be obtained through the special field, T 
added to all relations. 

Recall that inferencing will be support by virtual fields (i.e., "demand" 
commands). "Demand" commands will be implemented similar to the way 
"always" commands are implemented. Each "demand" command would be run 
until the collection of objects which it proposes to write are isolated. Then a D lock 
is set on each such object and the command placed in a POSTQUEL field in the 
system catalogs. The compatibility matrix for D locks is shown in figure 6. The 
"&" indicates that when a command attempts to read an object on which a D lock 
has been set, the "demand" command must be substituted into the command being 
executed using an algorithm similar to query modification to produce a new 
command to execute. This new command represents a subgoal which the 
POSTGRES system attempts to satisfy. If another D lock is encountered, a new 
subgoal will result, and the process will only terminate when a subgoal runs to 
completion and generates an answer. Moreover, this answer can be cached in the 
field and invalidated when necessary, if the intermediate goal commands set I locks 
as they run. This process is a database version of PROLOG style unification 
[CLOCSlI, and supports a backward chaining control flow. The algorithm details 
appear in (STON85bI along with a proposal for a priority scheme. 

5.3. Storage System 
The database will be partly stored on a magnetic disk and partly on an 

archival medium such as an optical disk. Data on magnetic disk includes all 
secondary indexes and recent database tuples. The optical disk is reserved as an 
archival store containing historical tuples. There will be a demon which 
"vacuums" tuples from magnetic disk to optical disk as a background process. Data 
on magnetic disk will be stored using the normal UNIX file system with one 
relation per file. The optical disk will be organized as  one large repository with 
tuples from various relations intermixed. 

R W I T D  

Figure 6. Compatibility modes for D locks. 



All relations will be stored as heaps (as in [ASTR76]) with an optional 
collection of secondary indexes. In addition relations can be declared "nearly 
ordered," and POSTGRES will attempt to keep tuples close to sort sequence on 
some column. Lastly, secondary indexes can be defined, which consist of two 
separate physical indexes one for the magnetic disk tuples and one for the optical 
disk tuples, each in a separate UNIX file on magnetic disk. Moreover, a secondary 
index on will automatically be provided for all relations on a unique identifier field 
which is described in the next subsection. This index will allow any relation to be 
sequentially scanned. 

5.3.1. Data Format 
Every tuple has an immutable unique identifier (IID) that is assigned a t  tuple 

creation time and never changes. This is a 64 bit quantity assigned internally by 
POSTGRES. Moreover, each transaction has a unique 64 bit transaction identifier 
(XACTID) assigned by POSTGRES. Lastly, there is a call to a system clock which 
can return timestamps on demand. Loosely, these are the current time-of-day. 

Tuples will have all non-null fields stored adjacently in a physical record. 
Moreover, there will be a tuple prefix containing the following extra fields: 

mD : immutable id of this tuple 
tmin : the timestamp a t  which this tuple becomes valid 
BXID : the transaction identifier that assigned tmin 
tmax : the timestamp a t  which this tuple ceases to be valid 
EXID : the transaction identifier that assigned tmax 
v-IID : the immutable id of a tuple in this or some other version 
descriptor : descriptor on the front of a tuple 

The descriptor contains the offset a t  which each non-null field starts, and is similar 
to the data structure attached to System R tuples [ASTR76]. The first transaction 
identifier and timestamp correspond to the timestamp and identifier of the creator 
of this tuple. When the tuple is updated, it is not overwritten; rather the identifier 
and timestamp of the updating transaction are recorded in the second (timestamp, 
transaction identifier) slot and a new tuple is constructed in the database. The 
update rules are described in the following subsection while the details of version 
management are deferred to later in the section. 

5.3.2. Update and Access Rules 
On an insert of a new tuple into a relation, tmin is marked with the 

timestamp of the inserting transaction and its identity is recorded in BXID. When 
a tuple is deleted, tmax is marked with the timestamp of the deleting transaction 
and its identity is recorded in EXID. An update to a tuple is modelled as an insert 
followed by a delete. 

To find all the record which have the qualification, QUAL a t  time T the run 
time system must find all magnetic disk records such that: 

1) tmin < T < tmax and BXID and EXID are committed and QUAL 
2) tmin < T and tmax = null and BXID is committed and QUAL 
3) tmin < T and BXID = committed and EXID = not-committed and QUAL 

Then it must find all optical disk records satisfying 1). A special transaction log is 



described below that  allows the DBMS to determine quickly whether a particular 
transaction has  committed. 

5.3.3. The POSTGRES Log and Accelerator 
A new XACTID is assigned sequentially to each new transaction. When a 

transaction wishes to commit, all data pages which i t  has written must be forced 
out of memory (or a t  least onto stable storage). Then a single bit is written into 
the POSTGRES log and an  optional transaction accelerator. 

Consider three transaction identifiers; T1 which is the "youngest" transaction 
identifier which has  been assigned, T2 which is a "young" transaction but 
guaranteed to be older than the oldest active transaction, and T3 which is a 
"young" transaction that is older than the oldest committed transaction which 
wrote data which is still on magnetic disk. Assume that T1-T3 are recorded in 
"secure main memory" to be presently described. 

For any transaction with a n  identifier between T1 and T2, we need to know 
which of three states i t  is  in: 

0 = aborted 
1 = committed 
2 = in-progress 

For any transaction with an identifier between T2 and T3, a "2" is impossible and 
the log can be compressed to 1 bit per transaction. For any transaction older than 
T3, the vacuum process has written all records to archival storage. During this 
vacuuming, the updates to all aborted transactions can be discarded, and hence all 
archival records correspond to committed transactions. No log need be kept for 
transactions older than T3. 

The proposed log structure is an  ordered relation, LOG as follows: 

line-id: the access method supplied ordering field 
bit1[10001: a bit vector 
bit-2[1000]: a second bit vector 

The status of xact number i is recorded in bit (remainder of i divided by 1000) of 
line-id number iJ1000. 

We assume that several thousand bits (say 1K-1OK bytes) of "secure main 
memory" are available for 10-100 blocks comprising the "tailn of the log. Such main 
memory is duplexed or triplexed and supported by an  uninterruptable power 
supply. The assumed hardware structure for this memory is the following. 
Assume a circular "block pool" of n blocks each of size 2000 bits. When more space 
is needed, the oldest block is reused. The hardware maintains a pointer which 
indicates the current largest xact identifier (TI  - the high water mark) and which 
bit i t  will use. i t  also has a second pointer which is the current oldest transaction 
in the buffer (the low water mark) and which bit i t  points to. When high-water 
approaches low-water, a block of the log must be "reliably" pushed to disk and joins 
previously pushed blocks. Then low-water is advanced by 1000. High-water is 
advanced every time a new transaction is started. The operations available on the 
hardware structure are: 



advance the high-water (i.e. begin a xact) 
push a block and update low-water 
abort a transaction 
commit a transaction 

Hopefully, the block pool is big enough to allow all transactions in the block to 
be committed or aborted before the block is "pushed." In this case, the block will 
never be updated on disk. If there are long running transactions, then blocks may 
be forced to disk before all transactions are committed or aborted. In this case, the 
subsequent commits or aborts will require an update to a disk-based block and will 
be much slower. Such disk operations on the LOG relation must be done by a 
special transaction (transaction zero) and will follow the normal update rules 
described above. 

A trigger will be used to periodically advance T2 and replace bit-2 with nulls 
(which don't consume space) for any log records that correspond to transactions now 
older than T2. 

At 5 transactions per second, the LOG relation will require about 20 Mbytes 
per year. Although we expect a substantial amount of buffer space to be available, 
i t  is clear that high transaction rate systems will not be able to keep all relevant 
portions of the XACT relation in main memory. In this case, the NU-time cost to 
check whether individual transactions have been committed will be prohibitive. 
Hence, an optional transaction accelerator which we now describe will be a 
advantageous addition to POSTGRES. 

We expect that virtually all of the transaction between T2 and T3 will be 
committed transactions. Consequently, we will use a second XACT relation as a 
bloom filter [SEVR76] to detect aborted transactions as follows. XACT will have 
tuples of the form: 

line-id : the access method supplied ordering field 
bitmap(M1 : a bit map of size M 

For any aborted transaction with a XACTID between T2 and T3, the following 
update must be performed. Let N be the number of transactions allocated to each 
XACT record and let LOW be T3 - remainder (T3/N). 

replace XACT (bitmap[i] = 1) 
where XACT.line-id = (XACTID - L0W)modulo N 
and i = hash (remainder ((XACTID - LOW) 1 N)) 

The vacuum process advances T3 periodically and deletes tuples from XACT that 
correspond to transactions now older than T3. A second trigger will run 
periodically and advance T2 performing the above update for all aborted 
transactions now older than T2. 

Consequently, whenever the run-time system wishes to check whether a 
candidate transaction, C-XACTID between T2 and T3 committed or aborted, it 
examines 

bitmap[ hash (reaminder((C-XACTID - LOW) / N))] 
If a zero is observed, then C-XACTID must have committed, otherwise C-XACTID 
may have committed or aborted, and LOG must be examined to discover the true 
outcome. 



The following analysis explores the performance of the transaction accelerator. 

5.3.4. Analysis of the Accelerator 
Suppose B bits of main memory buffer space are available and that M = 1000. 

These B bits can either hold some (or all) of LOG or they can hold some (or all) of 
XACT. Moreover, suppose transactions have a failure probability of F, and N is 
chosen so that X bits in bitmap are set on the average. Hence, N = X / F. In this 
case, a collection of Q transactions will require Q bits in LOG and 

Q* F * 1000 1 X 
bits in the accelerator. If this quantity is greater than Q, the accelerator is useless 
because it takes up more space than LOG. Hence, assume that F * 1000 I X < < 
1. In this case, checking the disposition of a transaction in LOG will cause a page 
fault with probability: 

FAULT (LOG) = 1 - [ B 1 Ql 

On the other hand, checking the disposition of a transaction in the accelerator will 
cause a page fault with probability: 

P(XACT) = 1 - ( B * X) / (Q * F * 1000) 

With probability 

X I 1000 

a "1" will be observed in the accelerator data structure. If 
B < Q * F *  1000/X 

then all available buffer space is consumed by the accelerator and a page fault will 
be assuredly generated to check in LOG if the transaction committed or aborted. 
Hence: 

FAULT (XACT) = P(XACT) + X I 1000 

If B is a larger value, then part of the buffer space can be used for LOG, and 
FAULT decreases. 

The difference in fault probability between the log and the accelerator 

delta = FAULT (LOG) - FAULT (XACT) 
is maximized by choosing: 

X = 1000 * square-root (F) 
Figure 7 plots the expected number of faults in both systems for various buffer 
sizes with this value for X. As can be seen, the accelerator loses only when there is 
a miniscule amount of buffer space or when there is nearly enough to hold the 
whole log. Moreover 

size (XACT) = square-root (F) * size (LOG) 

and if 

B = size (XACT) 

then the fault probability is lowered from 

FAULT (LOG) = 1 - square-root (F) 



Figure 7. Expected number of faults versus buffer size. 

FAULT (XACT) = square-root (F) 

If F = -01, then buffer requirements are reduced by a factor of 10 and FAULT from 
.9 to .I. Even when F = .l, XACT requires only one-third the buffer space, and 
cuts the fault probability in half. 

5.3.5. Transaction Management 
If a crash is observed for which the disk-based database is intact, then all the 

recovery system must do is advance T2 to be equal to T1 marking all transactions 
in progress a t  the time of the crash "aborted." After this step, normal processing 
can commence. It is expected that recovery from "soft" crashes will be essentially 
instantaneous. 

Protection from the perils of "hard" crashes, i.e. ones for which the disk is not 
intact will be provided by mirroring database files on magnetic disk either on a 
volume by volume basis in hardware or on a file by file basis in software. 

We envison a conventional two phase lock manager handling read and write 
locks along with I, T and D locks. It is expected that R and W locks will be placed 
in a conventional main memory lock table, while other locks will reside in data 
records. The only extension which we expect to implement is "object locking." In 
this situation, a user can declare that his stored procedures are to be executed with 
no locking a t  all. Of course, if two uses attempt to execute a stored procedure a t  
the same time, one will be blocked because the first executor will place a write lock 
on the executed tuple. In this way, if a collection of users is willing to guarantee 
that there are no "blind" accesses to the pieces of objects (by someone directly 
accessing relations containing them), then they can be guaranteed consistency by 
the placement of normal read and write locks on procedural objects and no locks a t  



all on the component objects. 

5.3.6. Access Methods 
We expect to implement both B-tree and OB-tree [STON83b] secondary 

indexes. Moreover, our ADT facility supports an arbitrary collection of user 
defined indexes. Each such index is, in reality, a pair of indexes one for magnetic 
disk records and one for archival records. The first index is of the form 

index-relation (user-key-or-keys, pointer-to-tuple) 

and uses the same structure as current ZNGRES eecondary indexes. The second 
index will have pointers to archival tuples and will add "tmin" and "tmax" to 
whatever user keys are declared. With this structure, records satisfying the 
qualification: 

where relation.key = value 

will be interpreted to mean: 

where (relation["now"].key = value) 

and will require searching only the magnetic disk index. General queries of the 
form: 

where relation[T].key = value 

will require searching both the magnetic disk and the archival index. Both indexes 
need only search for records with qualifying keys; moreover the archival index can 
further restrict the search using tmax and tmin. 

Any POSTQUEL replace command will insert a new data record with an 
appropriate BXID and tmin, and then insert a record into all key indexes which 
are defined, and lastly change tmax on the record to be updated. A POSTQUEL 
append will only perform the first and third steps while a delete only perfurms the 
second step. Providing a pointer from the old tuple to the new tuple would allow 
POSTGRES to insert records only into indexes for keys that are modified. This 
optimization saves many disk writes a t  some expense in run-time complexity. We 
plan to implement this optimization. 

The implementor of a new access method structure need only keep in mind 
that the new data record must be forced from main memory before any index 
records (or the index record will point to garbage) and that multiple index updates 
(e.g. page splits) must be forced in the correct order (i.e. from leaf to root). This is 
easily accomplished with a single low level command to the buffer manager: 

order pa gel, page2 

Inopportune crashes may leave an access method which consists of a multi-level 
tree with dangling index pages (i.e. pages that are not pointed two from anywhere 
else in the tree). Such crashes may also leave the heap with uncommitted data 
records that cannot be reached from some indexes. Such dangling tuples will be 
garbage collected by the vacuum process because they will have EXID equal to not 
committed. Unfortunately if dangling data records are not recorded in any index, 
then a sweep of memory will be periodicaly required to find them. Dangling index 
pages must be garbage collected by conventional techniques. e 



Ordered relations pose a special problem in our environment, and we propose 
to change OB trees slightly to cope with the situation. In particular, each place 
there is a counter in the original proposal [STON83bl indicating the number of 
descendent tuple-identifiers, the counter must be replaced by the following: 

counter- 1 : same as counter 
flag : the danger bit 

Any inserter or deleter in an OB tree will set the danger flag whenever he updates 
counter-1. Any OB tree accessor who reads a data item with the danger flag set 
must interrupt the algorithm and recompute counter-1 (by descending the tree). 
Then he reascends updating counter-1 and resetting the flag. After this interlude, 
he continues with his computation. In this way the next transaction "fixes up" the 
structure left dangling by the previous inserter or deleter, and OB-trees now work 
correctly. 

5.3.7. Vacuuming the Disk 
Any record with BXZD and EXID of committed can be written to an optical 

disk or other long term repository. Moreover, any records with an BXID or EXID 
corresponding to an aborted transaction can be discarded. The job of a "vacuum" 
demon is to perform these two tasks. Consequently, the number of magnetic disk 
records is nearly equal to the number with EXlD equal to nu11 (i.e. the magnetic 

' 

disk holds the current "state" of the database). The archival store holds historical 
records, and the vacuum demon can ensure that A U  archival records are valid. 
Hence, the run-time POSTGRES system need never check for the validity of 
archived records. 

The vacuum process will first write a historical record to the archival store, 
then insert a record in the IID archival index, then insert a record in any archival 
key indexes, then delete the record from magnetic disk storage, and finaly delete 
the record from any magnetic disk indexes. If a crash occurs, the vacuum process 
can simply begin a t  the start of the sequence again. 

If the vacuum process promptly archives historical records, then one requires 
disk space for the currently valid records plus a small portion of the historical 
records (perhaps about 1.2 times the size of the currently valid database) 
Additionally, one should be able to maintain good physical clustering on the 
attribute for which ordering is being attempted on the magnetic disk data set 
because there is constant turnover of records. 

Some users may wish recently updated records to remain on magnetic disk To 
accomplish this tuning, we propose to allow a user to instruct the vacuum as  
follows: 

vacuum rel-name where QUAL 
A reasonable qualification might be: 

vacuum rel-name where rel-name.tmax < now - 20 days 

In-this case, the vacuum demon would not remove records from the magnetic disk 
representation of rel-name until the qualification became true. 



6.3.8. Version Management 
Versions will be implemented by allocating a differential file [SEVR76] for 

each separate version. The differential file will contain the tuples added to or 
subtracted from the base relation. Secondary indexes will be built on versions to 
correspond to those on the base relation from which the version is constructed. 

The algorithm to process POSTQUEL commands on versions is to begin with 
the differential relation corresponding to the version itself. For any tuple which 
satisfies the qualification, the v-IID of the inspected tuple must be remembered on 
a list of "seen Ws" [WOOD83]. If a tuple with an IID on the "seen-id" list is 
encountered, then i t  is discarded. As long as tuples can be inspected in reverse 
chronological order, one will always notice the latest version of a tuple first, and 
then know to discard earlier tuples. If the version is built on top of another 
version, then continue processing in the differential file of the next version. 
Ultimately, a base relation will be reached and the process will stop. 

If a tuple in a version is modified in the current version, then i t  is treated as a 
normal update. If an  update to the current version modifies a tuple in a previous 
version or the base relation, then the IIl3 of the replaced tuple will be placed in the 
v-IID field and an appropriate tuple inserted into the differential file for the 
version. Deletes are handled in a similar fashion. 

To merge a version into a parent version then one must perform the following 
steps for each record in the new version valid a t  time T: 

1) if i t  is an insert, then insert record into older version 
2) if i t  is a delete, then delete the record in the older version 
3) if i t  is a replace, then do an insert and a delete 

There is a conflict if one attempts to delete an already deleted record. Such cases 
must be handled external to the algorithm. The tactics in (GARC841 may be 
helpful in reconciling these conflicts. 

An older version can be rolled forward into a newer version by performing the 
above operations and then renaming the older version. 

6. SUMMARY 
POSTGRES proposes to support complex objects by supporting an extendible 

type system for defining new columns for relations, new operators on these 
columns, and new access methods. This facility is appropriate for fairly "simple" 
complex objects. More complex objects, especially those with shared subobjects or 
multiple levels of nesting, should use POSTGRES procedures as their definition 
mechanism. Procedures will be optimized by caching compiled plans and even 
answers for retrieval commands. 

Triggers and rules are supported as commands with "always" and "demand" 
modifiers. They are efficiently supported by extensions to the locking system. Both 
forward chaining and backward chaining control structures are provided within the 
data manager using these mechanisms. Our rules system should prove attractive 
when there are multiple rules which might apply in any given situation. - 



Crash recovery is simplified by not overwriting data and then vacuuming 
tuples to an archive store. The new storage system is greatly simplified from 
current technology and supports time-oriented access and versions with little 
difficulty. The major cost of the storage system is the requirement to push dirty 
pages of data to stable storage a t  commit time. 

An optical disk is used effectively as an archival medium, and POSTGRES has 
a collection of demons running in the background. These can effectively utilize 
otherwise idle processors. Custom hardware could effectively provide stable main 
memory, support for the LOG relation, and support for run-time checking of tuple 
validity . 

Lastly, these goals are accomplished with no changes to the relational model 
a t  all. At the current time coding of POSTGRES is just beginning. We hope to 
have a prototype running in about a year. 
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