
file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DM80.TXT[2/6/2012 4:31:22 PM]

DM80.WS4 (= Display Manager-80 version 1.0 article)

- "Display Manager from DRI"
 Alan Simpson
 "Microsystems", February 1984, p.96

(Retyped by Emmanuel ROCHE.)

Most professional programmers wince a bit when they hear the term "I/O code."
Not because writing code for data entry screens and reports is difficult, but
rather because it is a boring and tedious task. Typically, the programmer
designs displays on graph paper, then laboriously writes line after line of
code to format displays on the screen and printer. The process becomes even
more unpleasant if the program is to be used with many different terminals.
The programmer then needs to take into consideration the control codes for
various CRTs. This is a very time-consuming process, particularly if one plans
on making one's software compatible with 50 different terminals. Most
professional programmers get around some of the tedium by writing general-
purpose I/O routines, and storing displays and terminal codes on data files.

Digital Research has come up with an even better method. You, the programmer,
buy Display Manager, then you "draw" your input and output displays directly
on the screen, exactly as you wish them to appear at run-time. Display Manager
then takes care of writing the I/O functions, storing displays on a data file,
and providing control codes for a variety of terminals. Sounded good to me, so
I thought I would give it a try.

Display Manager (DM-80) is one of Digital Research Incorporated's ("DRI")
"Productivity Tools" (ROCHE> The other one is "Access Manager", providing ISAM
(Indexed Sequential Access Method) to DRI's compiled languages.), and works
with any of their 8-bit programming languages (CB-80, Pascal/MT+, or PL/1-80),
and 16-bit languages, including Pascal/MT+86, CB-86, PL/1-86, and DRC. Version
1.0 of DM-80, the one I used for this review, supports 55 different terminals,
and allows the programmer to include extra terminals. Display Manager also
includes a program written in CB-80 (CBASIC Compiler Version 2) that allows
the end user to install the program to his particular terminal. DM-80 requires
that you use CP/M, CP/NET, or MP/M, and have at least 40 Kilobytes available
in the Transient Program Area of your main memory. Display Manager will also
run under PC DOS with any of the DRI 16-bit programming language.

Using Display Manager

When I first received DM-80, I read the manual from cover to cover. Like most
software manuals, the DM-80 manual tends to be more descriptive than tutorial.
The first thought that came to mind after reading the manual was "What?" The
manual is about 100 pages in length, with the usual addenda that tell you what
the manual forgot to mention, as well as changes that have been made since the
printing of the manual (yes, even though this is Version 1.0). At first, I was
dubious as to whether or not this product was truly going to help increase my

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DM80.TXT[2/6/2012 4:31:22 PM]

productivity. Since I have already developed a number of my own canned
functions to handle I/O screens, it seemed unlikely that learning this new and
seemingly complex tool would be worth the effort. When I actually sat down and
used DM-80, I found it much easier to use than expected, and well worth
learning.

Using DM-80 is essentially a 3-step process: 1) Install DM-80 to your
particular terminal; 2) Create and edit displays using the DM-80 editor; and
3) Write the application programs that access the displays. I will discuss my
experiences with each step in the process.

1. Installation

Installing DM-80 to your particular CRT is a simple process, unless you happen
to be using 5 1/4" disks. DM-80 is delivered on two 8" disks, and one needs to
do quite a bit of wading through the manual to determine exactly which files
must be resident on disk during the various phases of designing screens. I
managed to get DM-80 up and running on a single-sided double-density (180K)
disk through a little trial and error. Once you have the correct files on
disk, the rest is easy. DM-80 is menu-driven, and the program itself is
somewhat tutorial.

If you are using one of the DM-80 supported terminals, installing the program
is as simple as selecting that terminal from a menu of choices. Of the 55
terminals that DM-80 supports, many are different models from the same
manufacturer. For purposes of brevity, I will just list the manufacturers
here:

A.B.M.
A.D.D.S.
Apple
Beehive
Control Data
Cromemco
Digital Equipment Corporation (DEC)
Direct
Hazeltine
Heath
Hewlett-Packard
I.S.C.
Lear-Siegler
Microterm
Osborne
Radio Shack (Tandy)
Soroc
Teleray
Televideo
Toshiba
Vector Graphic
Visual Technology
Xerox
Zenith

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DM80.TXT[2/6/2012 4:31:22 PM]

If you are not using one of the supported terminals, you will have to provide
the control codes for a custom terminal. This is not difficult, provided that
the custom terminal has enough documentation to supply the appropriate codes.
The DM-80 manual has a simple questionnaire to fill out about custom terminal
characteristics. Then, the install program asks the same questions that the
questionnaire did, and you fill in the blanks. The installation program has a
very convenient test capability that allows you to check, to make sure you
have installed a custom terminal properly. It does so by trying each function
(clear screen, position cursor, reverse video, etc.) on the screen, and asking
if the function worked correctly. If you discover a mistake during the test
phase, you can edit the terminal codes using a reinstall option. Once you have
DM-80 installed for your system, you can begin creating displays.

2. Creating displays

I never thought I would see the day I would actually enjoy creating I/O
screens. DM-80 changed that, by allowing me to draw and edit displays on the
screen in an interactive, visual manner.

When you call up Display Manager's editor, it asks if you want to edit an
existing display, or create a new one. If you create a new one, it must have a
unique number, as this number is used by the application program for finding
the display. When you are ready to create your display, the editor presents a
blank screen with the cursor in the upper left-hand corner, and you can just
start drawing your display on the screen as you wish it to appear to the user
at run-time.

The manual tends to make this process more difficult than it is. There are
well over 40 distinct control-key commands (some 3 characters long!) that the
editor uses. Personally, my brain's RAM space for storing control-key
sequences is just about full, but DRI was quite considerate in making
memorization a bit easier. For instance, many of the control-key sequences are
identical to those used in other software packages (^V toggles insert mode,
^OC centers, while ^A, ^S, ^E, ^D, ^X, ^S, ^F move the cursor about on the
screen, etc.). DRI also provides abbreviated reference cards, kindly laminated
in clear plastic, for quick reference. When you first start designing
displays, however, be prepared to do a good deal of wading through the manual.
Control-key definitions are interspersed throughout the text, and the
reference cards are too brief for first-time use.

When you are developing a display, you simply type out the prompts, headings,
and borders where you want them to appear on the screen. You can also enter a
control key command to specify that either an input or output field be
displayed. You can easily move text and fields about the screen, as you zero
in on just the format you wish. You can also include template characters in
input fields, such as "(___) ___-____" for phone numbers. Then, you can
determine visual characteristics for the various fields in a simple and
pleasant manner. To do so, simply position the cursor at the beginning of a
field, and enter a control key command to call up the status window. The
following then appears on the screen.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DM80.TXT[2/6/2012 4:31:22 PM]

 +--+
 | Field No. Row Col Len Posts Type-OUTPUT |
 | 000 000 000 000 YY *rr,cc*nnn |
 +--+
 | Validate :X: X,A,C,D,F,I,U Beep :N: N,Y |
 | Format :L: L,R,N,0-9,C,M AutoRet :N: N,Y |
 | |
 | End input---Cursor :N: BadC :N: FKey :N: N,Y |
 | Video :N: :N: :N: :N: :N: :N: :N: :N: N,Y |
 | Invs Half Invr Flsh Undl Usr1 Usr2 Usr3 |
 +--+

This window presents the DM-80 default characteristics for a single input
field on the screen display. You can use the default characteristics for this
field, or change them by simply moving the cursor about the status window. Of
course, you can change default characteristics also.

The top line of the status window presents the field number (automatically
assigned as the display is being designed), the row, column, and length of the
field, whether or not it is surrounded by blank spaces (posts), and the type
of field (INPUT or OUTPUT). The letters rr and cc are the row and column
numbers of the cursor's present position on the screen, and nnn is the number
of fields in the display.

The Validate prompt allows the programmer to provide error checking with the
simple press of a key. The options are X (accepts any printable character), A
(accepts only alpha characters), C (all characters, including control
characters), D (decimal numbers only), F (allows Function keys only), I
(integer only), and U (same as X, but input is changed to uppercase). Beep
determines whether or not an illegal entry by the user causes the terminal's
bell to ring (Y/N).

Format for the fields can be L (left-justify), R (right-justify), N (numeric
output), 0-9 (number of digits to the left of the decimal point), C (send
control keys to the screen), and M (money fields with leading dollar [or other
currency] sign and 2 digits to the right of the decimal point).

The AutoRet option determines whether data entry terminates when the field's
capacity is full (Y/N). The End-Input options allow the programmer to specify
various methods for terminating data entry. If cursor is selected (Y), then
the terminal's up/down arrow keys terminate data entry for the field. If BadC
is Y, any illegal character for the field terminates entry for that field.
FKey terminates entry if a Function key is entered.

The remaining options Invs, Half, Invr, Flsh, Undl, Usr1, Usr2, Usr3 allow the
programmer to specify visual attributes for a field. By filling in a Y above
an option, the programmer can cause the field to be invisible, half intensity,
inverse video, underlined, or flashing. The programmer can also define up to 3
user-defined visual attributes, and include these in various fields.

The whole procedure is simple and fast. You just draw the display as you want
it to appear to the end user at run-time, then set the cursor to the beginning
of each input and output field, and use the status window to determine the
basic characteristics and visual attributes of the individual field. Any

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DM80.TXT[2/6/2012 4:31:22 PM]

programmer who has ever written I/O code to include as many options as Display
Manager provides will probably see that this is a far quicker and easier
method. I was certainly convinced.

As if this were not enough, Digital Research took it a step further, and made
Display Manager self-documenting. Once the display is created, the programmer
can store a print-image ASCII file of the display on a disk file. This image
file can be pulled directly into most word-processing systems, to ease the
development of a user's manual. Also, the disk file contains detailed
documentation for each field in the display, which helps with the technical
documentation, as well as with debugging and modification. The final step in
the process is to link your displays with your application program.

3. Write the application program

Once the displays have been designed, you need to write the actual programs
that will use the displays. Display Manager adds the following functions to
the programmer's present language:

INITDM
Initializes the application program to use a specific terminal's control codes
and capabilities.

OPENDIS
Opens a DM-80 display file.

RETDM
Returns visual attributes supported by a given CRT, so the programmer knows
which of DM-80's options are readily available for a particular CRT.

CLRSCR
Clear-the-screen command.

CURS
Set cursor to visible or invisible.

DISPD
Places a display from the display file onto the screen.

CLSDIS
Closes a display file.

For managing the actual fields in the display from the application program,
DM-80 provides the following functions:

POSF
Positions the cursor to a given field.

NXTF
Positions the cursor to the next field.

SETF

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DM80.TXT[2/6/2012 4:31:22 PM]

Modifies the visual attributes of a field during run-time.

RETF
Returns the field position, length, and type.

PUTF
Outputs data to the current field.

GETF
Accepts and validates data entered to a field by the end user.

UPDF
Updates and validates data entered for a field.

ENDF
Determines how user ends data entry.

RESF
Resumes operation at last field.

The syntax for using most of DM-80's functions (using CB-80 as an example) is:

 integer variable = FUNCTION (integer expression)

Since DM-80 uses functions rather than commands, it is the programmer's
responsibility to determine whether or not a function is successful, and to
return an error message describing the problem to the user, should an error
occur. This adds a bit of bulk to an application program, but then again, it
does provide the programmer with some flexibility in handling errors.

There are some minor annoying inconsistencies among the functions that the
programmer must deal with. For example, some functions return a zero when the
function is successful (Boolean false?), and negative value when the function
is unsuccessful (Boolean true?). Some functions, like the CURS function, allow
various numeric arguments (e.g., 0-3), but the value must be expressed as a
string. Other functions do not use strings for numeric arguments. Until you
get used to the exact syntax of the various functions, plan on doing a bit of
debugging. You may find some of the syntax awkward and counter-intuitive at
first.

The final step is to write the program in the language of your choice, and use
the various DM-80 routines to access displays and manage field data. In your
source program, you need to include DM-80's prewritten functions. For example,
in CB-80, you need to include the command:

 %INCLUDE dm80extr.bas

Digital Research provides external functions for all the supported languages.
Then, when you link the compiled code, you need to include the DM-80
relocatable library as an overlay. In CB-80, the command to do so is:

 A>LK80 testprog,dm80cb80.irl

Digital Research provides run-time libraries for each of the supported

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DM80.TXT[2/6/2012 4:31:22 PM]

languages. The manual provides sample programs written in CB-80, Pascal/MT+,
and PL/1-80 as useful examples of programming techniques.

Incidentally, once the source code is written and is capable of putting
displays on screen, the end-user can use control keys or arrow keys to move
the cursor about on the screen. DM-80 defaults to both the ANSI standard keys
for moving the cursor about (^H, ^J, ^K, ^L), as well as the more popular ^S,
^X, ^E, ^D keys. The programmer needs not write any code to provide these
capabilities.

Similar products

To my knowledge, there are no products similar to Display Manager for
compilable languages. Ashton-Tate's dBase II, however, includes a program
called ZIP that provides a capability similar to, but not as flexible as, DM-
80. Both ZIP and dBase II have one advantage over DM-80 and the DRI compilable
languages: they are easier to use. With ZIP, the programmer draws the display
on the screen, and follows prompts with the actual field or variable name that
the prompt will be expecting. The programmer can also place commands on the
screen that will later be embedded in the source code. ZIP then generates
source code for the screen displays.

The programmer pays a heavy price for this ease of use, however, and here is
where Display Manager shows its true advantages. First, DM-80 can be used with
high-performance native-code compilers, whereas ZIP can only be used with
dBase II, a slow-running interpretive language. For the independent software
developer, DM-80 allows the user to write programs that will run on just about
any 8- or 16-bit based systems, and Digital Research does not charge royalties
to the developer. ZIP and dBase II narrow the market to customers who already
own dBase II, unless the developer is willing to pay some rather astronomical
"royalty" fees ($70-$100 per copy!) to Ashton-Tate for a run-time package that
allows non-dBase II owners to use the package. Unfortunately, the dBase II
run-time package slows the applications programs down even further. Also,
dBase II is a very high-level database management system which, while
providing powerful commands, robs the more sophisticated programmer of some
lower-level flexibility, such as arrays, mathematical functions, and the
ability to have more than 2 data files active at any time. Basically, if you
are already an experienced programmer and you prefer a compilable language,
DM-80 is your best bet. If not, perhaps ZIP and dBase II are preferable.

Recommendation

I found DM-80 to be a very powerful and productive programming tool. It is
also a pleasure to work with, though somewhat awkward at first. I would
recommend it highly to any professional programmer who is already fluent in
any of the DRI compilable languages. I would especially recommend DM-80 to
anyone thinking about writing marketable software, as it will greatly reduce
the labor inherent in making your programs compatible with a variety of
terminals.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DM80.TXT[2/6/2012 4:31:22 PM]

Display Manager is available from Digital Research, and costs $400 for the 8-
bit version, $500 for the 16-bit version. You can call Digital Research at
(...) for a dealer or distributor nearest you.

EOF

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMCARD1.TXT[2/6/2012 4:31:23 PM]

DMCARD1.WS4 (= Display Manager Card #1)

- "Digital Research -- Display Manager Editor Commands"

(Retyped by Emmanuel ROCHE.)

Hold Ctrl key down for all commands

Cursor movement commands

D or L Cursor right
S or H Cursor left
E or K Cursor up
X or J Cursor down
RETURN key Cursor next line

General editing commands

A Left word
F Right word
G Delete character under cursor
T Delete right word
V Insert space
I Tab
DEL key Delete left character

Field-specific commands

UA Cursor to previous field
UC Copy field
UD or UL Cursor to end of field
UF Cursor to next field
UG Delete field
UI Define input field begin -- ESC ends
UM Move field to cursor
UO Define output field begin -- ESC ends
UR Renumber fields
US or UH Cursor to beginning of field
UV Move field one space right, or Add space before cursor
UW Set current status window as default
UZ Delete field, turn initial values to literals

Miscellaneous commands

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMCARD1.TXT[2/6/2012 4:31:23 PM]

B Show field boundaries -- next key resets
P Set initial value character as template
W Change field attributes in status window -- ESC ends
OB Turn border move on/off, Cursor sets char -- ESC ends
OC Center line
ESC key End certain commands (No Ctrl needed)

Accelerated commands

QB Show boundaries of all fields -- ESC ends
QD or QL Screen right
QS or QH Screen left
QE or QK Screen top
QG Delete line
QV Insert line
QW Leave status window on -- Ctrl-QW ends
QX or QJ Screen bottom
QY Show visual attributes all fields -- next key ends

Output commands

OUN Save and edit next display
OUP Save and edit previous display
OUQ Abandon and exit to main menu
OUS Save display and continue editing
OUT Save display and exit to main menu
OUW Write documentation (file/printer)

Field status window defaults

Input field status window

+---+
| Field No. Row Col Len Posts Type-INPUT |
| 000 000 000 000 YY *rr,cc* nn |
+---+
| Validate :X: X,A,C,D,F,I,U Beep :N: N,Y |
| Format :L: L,R,N,0-9,C,M AutoRet :N: N,Y |
| |
| End Input -- Cursor :N: BadC :N: Fkey :N: N,Y |
| |
| :N: :N: :N: :N: :N: :N: :N: :N: N,Y |
| Invs Half Invr Flsh Undl Usr1 Usr2 Usr3 |
+---+

Output field status window

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMCARD1.TXT[2/6/2012 4:31:23 PM]

+---+
| Field No. Row Col Len Posts Type-OUTPOUT |
| 000 000 000 000 YY *rr,cc* nn |
+---+
| Format :L: L,R,N,0-9,C,M Comma :N: N,Y |
| |
| :N: :N: :N: :N: :N: :N: :N: :N: N,Y |
| Invs Half Invr Flsh Undl Usr1 Usr2 Usr3 |
+---+

EOF

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMCARD2.TXT[2/6/2012 4:31:23 PM]

DMCARD2.WS4 (= Display Manager Card #2)

- "Digital Research -- Display Manager Run-time Functions"

(Retyped by Emmanuel ROCHE.)

Run-time functions

I = CLRSCR Clear screen
I = CLSDIS Close current display file
C$ = CURS(D$) Make cursor visible or invisible, return current setting
I = DISPD(J) Show display with reference number J from current display file
K = ENDF Return 0 if last input terminated normally; otherwise, value
 of terminating character or negative Function key number.
C$ = GETF Get input from field
I = INITDM(D$) Initialize Run-time Library with CRT control code
I = NXTF(J) Move to next or previous field in screen order
I = OPNDIS(D$) Open display file
I = POSF(J) Move to field with number J
I = PUTF(D$) Write D$ to current input or output field
C$ = RESF(J) Resume input from field stored with call to -J. Return all
 data in field.
C$ = RETDM Return attribute capabilities of CRT
C$ = RETF Return field position, length and type
C$ = SETF(D$) Set or reset video attributes of field; return current
 settings.
C$ = UPDF Get data from field. If input field, get input to update data.

Notes:
- I, J and K are integers.
- C$ and D$ are character strings.
- All functions returning to I, return a negative number if error occurs.
- Pascal/MT+ string returning functions use the following convention:
char := STRINGFUNCT(PARAM,STRINGRET).

Specific function values

Function Parameter Returned value
-------- -------------------------- -----------------------------
CURS "0" = Reset to normal mode "0" = Currently set to normal
SETF "1" = Set to special mode "1" = Currently set to special
 "2" = Switch to opposite
 "3" = No change
RETDM "0" = Not supported
 "1" = Supported as PAINT
 "2" = Supported as PLANT

file:///C|/...n/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMCARD2.TXT[2/6/2012 4:31:23 PM]

NXTF FIELD TYPE Current field number; -1 if error
 MOVE either input output
 TO +---------------------
 next | 1 2 3
 prev | -1 -2 -3
 last | 10 20 30
 first | -10 -20 -30

RESF -J = Store current field number If J is negative, then RESF
 cursor position and field data returns a null string.
 (J = 1 to 8).
 J = Write back data in field If J is positive, then RESF
 at time of input termination; returns all data input using
 resume input. the previous input function.

Attribute value positions

 Function
Attribute CURS SETF RETDM
--------- ---- ---- -----
Cursor on/off 1 1
Visibility 1
Half intensity 2 2
Reverse video 3 3
Flashing 4 4
Underlining 5 5
User def. 1 6 6
User def. 2 7 7
User def. 3 8 8

Note: Values = string position

EOF

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMFS.TXT[2/6/2012 4:31:24 PM]

DMFS.WS4 (= Display Manager Function Summary)

- "Digital Research -- Display Manager Function Summary"

First Edition: September 1983

(Retyped by Emmanuel ROCHE.)

Table of Contents

1 Introduction

2 Status windows
2.1 Validation codes
2.2 Format codes
2.3 Video codes
2.4 Color codes
2.5 Other status window codes

3 Editor commands

4 Summary of functions
CLRSCR
CLSDIS
CURS
DISPD
ENDF
GETF
INITDM
NXTF
OPNDIS
POSF
PUTF
RESF
RETDM
RETF
SETF
UPDF

5 Run-time errors

1 Introduction

The "Display Manager Function Summary" contains information extracted and
summarized from your other Display Manager manuals. Explanations of the
commands and functions provided here are brief. If you require more detailed
information, please consult your Display Manager manuals.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMFS.TXT[2/6/2012 4:31:24 PM]

Display Manager commands are used in conjunction with the Editor program.
Display Manager functions are routines contained in the run-time library.

The "Display Manager Function Summary" does not contain information specific
to any operating system or programming language. Consult the appropriate
programmer's guide for this information.

Note: Due to limitations of 8-bit microprocessors, color features are not
available. If your computer is based on the Zilog Z-80 or Intel 8080
microprocessor, you should disregard any references to color.

2 Status windows

To display the status window for a field, place the cursor within the
boundaries of the field and enter a Ctrl-W. The status window appears on the
screen with the cursor positioned inside.

To display the status window constantly, regardless of cursor location, use
the Ctrl-QW command. The cursor is not positioned inside the window.

Both Ctrl-W and Ctrl-QW are toggle commands; re-enter the command to remove
the status window from your screen. Use the cursor movement commands, the
RETURN key, or the space bar to move the cursor while inside the status
window.

Status windows for input and output fields are similar, but distinctly and
logically different.

+---+
| Field No. Row Col Len Posts Type-OUTPOUT |
| nnn nnn nnn nnn YY *rr,cc* nn |
+---+
| Format :L: L,R,N,0-9,C,M Comma :N: N,Y |
| |
| Video :N: :N: :N: :N: :N: :N: :N: :N: N,Y |
| Invs Half Invr Flsh Undl Usr1 Usr2 Usr3 |
| Color :N: :N: :N: :N: :N: :N: :N: :N: N,Y |
| fls RED GRN BLU Int red grn blu |
+---+

 Figure 1. Output field status window

+---+
| Field No. Row Col Len Posts Type-INPOUT |
| nnn nnn nnn nnn YY *rr,cc* nn |
+---+
| Validate :X: X,A,C,D,F,I,U Beep :N: N,Y |
| Format :L: L,R,N,0-9,C,M AutoRet :N: N,Y |
| |
| End Input -- Cursor :N: BadC :N: Fkey :N: N,Y |
| Video :N: :N: :N: :N: :N: :N: :N: :N: N,Y |

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMFS.TXT[2/6/2012 4:31:24 PM]

| Invs Half Invr Flsh Undl Usr1 Usr2 Usr3 |
| Color :N: :N: :N: :N: :N: :N: :N: :N: N,Y |
| fls RED GRN BLU Int red grn blu |
+---+

 Figure 2. Input field status window

2.1 Validation codes

Validate :X: X,A,C,D,F,I,U

The code you enter between the colons (":") specifies the type of validation
you want performed on an input field.

Code Meaning
---- -------
 X Any printable character is accepted (X is the default).

 A Only alphabetic characters, including spaces, are accepted.

 C Any characters, including control characters, are accepted; function
 key input is not interpreted. Data entry for these fields can only be
 terminated using the RETURN key.

 D Only signed, decimal data is accepted.

 F Only function keys are accepted.

 I Only signed, integer data is accepted.

 U Same as type X, except that all information is converted to uppercase.

2.2 Format codes

Format :L: L,R,N,0-9,C,M

The format code you enter between the colons (":") specifies a particular
output format for a field.

Code Meaning
---- -------
 L Left-justified.

 R Right-justified.

 N Numeric format. Numbers are right-justified, and leading zeros
 removed.

 0-9 Decimal format. The number indicates how many positions to the right
 of the decimal point.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMFS.TXT[2/6/2012 4:31:24 PM]

 C Use for sending control characters to the screen. Information is
 displayed unformatted. See your reference manual for further
 information.

 M Money format. Inserts a currency symbol, and aligns two digits to the
 right of the decimal point.

2.3 Video codes

Video :N: :N: :N: :N: :N: :N: :N: :N: N,Y
 Invs Half Invr Flsh Undl Usr1 Usr2 Usr3

If color is available on the run-time terminal, Display Manager uses the color
codes in place of the video codes. The following descriptions explain the
results of setting the video code in the field's status window to Y (the
default is N). With the exception of Invs, all codes require that the feature
selected must be available on the run-time terminal.

Code Result
---- ------
Invs The initial value for the field does not appear when the display is
 shown on the run-time terminal.

Half The field is displayed in half-intensity.

Invr The field is displayed in inverse video.

Flsh Characters in the field flash on and off.

Undl Characters in the field are underlined.

Usr1-3 User-defined video attributes one, two, and three, respectively, are
 activated for the field.

2.4 Color codes

Color :N: :N: :N: :N: :N: :N: :N: :N: N,Y
 fls RED GRN BLU Int red grn blu

Set the "fls" color code to Y to cause the field to flash on and off, provided
this feature is available on the run-time terminal.

The following tables show the colors that normally result when you see these
color code combinations in the field's status window.

Background color codes

RED GRN BLU Result
--- --- --- ------

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMFS.TXT[2/6/2012 4:31:24 PM]

 N N N Black
 N N Y Blue
 N Y N Green
 N Y Y Cyan
 Y N N Red
 Y N Y Magenta
 Y Y N Brown
 Y Y Y White

Foreground color codes

Int red grn blu Result
--- --- --- --- ------
 N N N N Black
 N N N Y Blue
 N N Y N Green
 N N Y Y Cyan
 N Y N N Red
 N Y N Y Magenta
 N Y Y N Brown
 N Y Y Y White
 Y N N N Gray
 Y N N Y Light blue
 Y N Y N Light green
 Y N Y Y Light cyan
 Y Y N N Light red
 Y Y N Y Light magenta
 Y Y Y N Yellow
 Y Y Y Y Bright white

2.5 Other status window codes

The following descriptions explain the results of setting the codes in the
field's status window to Y. The default setting for these codes is N.

Code Result
---- ------
Beep Sounds the terminal's audio beeper (if available) when the end-user
 enters unacceptable information into the field based on the field's
 validation code.

Comma Inserts a comma to the left of every third digit to the left of a
 decimal point in a numeric field.

AutoRet Automatically terminates data entry when the end-user fills the field
 with information.

Cursor Automatically terminates data entry when the end-user enters the up or
 down cursor movement or cursor arrow keys.

BadC Automatically terminates data entry when the end-user enters a

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMFS.TXT[2/6/2012 4:31:24 PM]

 character not conforming to the field's validation code.

Fkey Automatically terminates data entry when the end-user enters one of
 the supported function keys.

3 Editor commands

Editor commands are listed here alphabetically according to their description.
There are alternate commands to many of those listed. Please refer to your
Display Manager manuals for more information.

Command description Command
------------------- -------
Abandon without saving display Ctrl-OUQ
Beginning of field Ctrl-US
Beginning of next line RETURN key (Ctrl-M)
Boundary display (all fields) Ctrl-QB
Boundary display (single line) Ctrl-B
Center line Ctrl-OC
Change field to literal Ctrl-UZ
Change global values/save display Ctrl-OUG
Copy field to cursor location Ctrl-UC
Define input field Ctrl-UI
Define output field Ctrl-UO
Delete character to left DEL key (Ctrl-H)
Delete character under cursor Ctrl-G
Delete field Ctrl-UG
Delete line Ctrl-QG
Delete word to right Ctrl-T
Down half screen Ctrl-QX
Down one line Ctrl-X
Draw border Ctrl-OB
End of field Ctrl-UD
Insert line Ctrl-QV
Insert space Ctrl-V
Left half screen Ctrl-QS
Left one space Ctrl-S
Move field right Ctrl-UV
Move field to cursor location Ctrl-UM
Next field Ctrl-UF
Next word Ctrl-F
Prepare documentation for display Ctrl-OUW
Previous field Ctrl-UA
Previous word Ctrl-A
Renumber fields Ctrl-UR
Right half screen Ctrl-QD
Right one space Ctrl-D
Save display, edit next one Ctrl-OUN
Save display, edit previous one Ctrl-OUP
Save display, edit same one Ctrl-OUS
Save display, return to Main Menu Ctrl-OUT

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMFS.TXT[2/6/2012 4:31:24 PM]

Set status window as default Ctrl-UW
Status window display Ctrl-W
Status window display (constant) Ctrl-QW
Tab TAB key (Ctrl-I)
Template insertion toggle Ctrl-P
Up half screen Ctrl-QE
Up one line Ctrl-E
Video/Color attributes display (*) Ctrl-Y
Video/Color attributes display Ctrl-QY

(* = This command is inoperative in the 8-bit version of Display Manager.)

4 Summary of functions

This section summarizes the Display Manager functions. A syntax line, an
explanation, and, when appropriate, additional information is provided for
each function. The following is a list of the functions explained in this
section.

Function description Mnemonic
-------------------- --------
Clear screen CLRSCR
Close display file CLSDIS
Determine data entry termination method ENDF
Determine field position, length, type RETF
Display data in field PUTF
Initialize run-time terminal and program INITDM
Modify field attributes SETF
Open display file OPNDIS
Place cursor in relative field NXTF
Place cursor in specific field POSF
Place display on screen DISPD
Resume data entry RESF
Retrieve/validate user-entered field input GETF
Retrieve/validate field input (with initial value) UPDF
Return run-time terminal attributes RETDM
Set cursor visible/invisible CURS

CLRSCR

Syntax:

 <integer variable> = CLRSCR

Explanation:

 Clears the screen of the run-time terminal to blanks in all positions.
 Always returns zero.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMFS.TXT[2/6/2012 4:31:24 PM]

CLSDIS

Syntax:

 <integer variable> = CLSDIS

Explanation:

 Closes the currently open display file. Returns zero if close is
 successful; otherwise, returns a negative value.

CURS

Syntax:

 <string variable> = CURS (<string expression>)

Explanation:

 Makes the cursor visible or invisible, provided the run-time terminal
 has this feature.

Argument values:

 0 Set cursor to visible state
 1 Set cursor to invisible state
 2 Change current setting
 3 Do not change current setting

Return values:

 0 Cursor is visible
 1 Cursor is invisible

DISPD

Syntax:

 <integer variable> = DISPD (<integer expression>)

Explanation:

 Places the display you specify on the screen of the run-time terminal.

Argument values:

 Display reference number (1 to 250).

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMFS.TXT[2/6/2012 4:31:24 PM]

Return values:

 Returns the display reference number if the display is located;
 otherwise, returns a negative value.

ENDF

Syntax:

 <integer variable> = ENDF

Explanation:

 Returns a value indicating how the end-user terminated data entry.

Return values:

 0 (ASCII null) Normal termination.
 x Abnormal termination. x is the ASCII value of the invalid character
 causing termination.
 -n -n is a negative number indicating the function key that was pressed.

GETF

Syntax:

 <string variable> = GETF

Explanation:

 Returns information entered into the field. Initial field values are
 not returned.

INITDM

Syntax:

 <integer variable> = INITDM (<string expression>)

Explanation:

 Initializes the run-time application program and the run-time
 terminal.

Argument values:

 Program attributes and terminal control codes for the run-time
 terminal must be passed in the following format:

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMFS.TXT[2/6/2012 4:31:24 PM]

 <program attributes> / <terminal control codes>

 Table 1. Program attributes string

 Position Attribute
 -------- ---------
 1 Money symbol
 2 Decimal delimiter
 3 Alphabetic character set
 4 Cursor movement keys
 5 Clock set

 The default value for these program attributes is A.

Return values:

 Returns zero if initialization is successful. See your Display Manager
 manuals for other possible values.

NXTF

Syntax:

 <integer variable> = NXTF (<integer expression>)

Explanation:

 Locates the cursor at the beginning of a field you specify in the
 argument.

Argument values:

 1 NEXT input or output field
 2 NEXT input field
 3 NEXT output field

 10 LAST field in display
 20 LAST input field in display
 30 LAST output field in display

 -1 PREVIOUS input or output field
 -2 PREVIOUS input field
 -3 PREVIOUS output field

 -10 FIRST field in display
 -20 FIRST input field in display
 -30 FIRST output field in display

Return values:

 Returns the field reference number if the field is located; otherwise,
 returns a negative value.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMFS.TXT[2/6/2012 4:31:24 PM]

OPNDIS

Syntax:

 <integer variable> = OPNDIS (<string expression>)

Explanation:

 Opens a display file you specify. If there is a display file currently
 open, it is closed before the new display file is opened.

Argument values:

 Name of display file to be opened.

Return values:

 Returns zero if the file is opened successfully; otherwise, returns a
 negative value.

POSF

Syntax:

 <integer variable> = POSF (<integer expression>)

Explanation:

 Places the cursor in a field you specify.

Argument values:

 Field reference number of the field to receive the cursor. If zero is
 passed, the field reference number of the current field is returned.

Return values:

 If the field is located or zero is passed as the function argument,
 the current field reference number is returned. If zero is passed as
 the function argument but no field is current, zero is returned. If a
 specified field cannot be located, a run-time error results.

PUTF

Syntax:

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMFS.TXT[2/6/2012 4:31:24 PM]

 <integer variable> = PUTF (<string expression>)

Explanation:

 Displays data in the current field.

Argument values:

 Information to display in field. Must not exceed 132 characters.

Return values:

 Returns zero if the function is successful; otherwise, returns a
 negative value.

RESF

Syntax:

 <string variable> = RESF (<integer expression>)

Explanation:

 Provides a way for your application program to resume data entry in a
 field following abnormal termination. This requires that the RESF
 function be called twice. Initially, it is called with a negative
 argument value that causes Display Manager to 'remember' the cursor
 location and the function (GETF or UPDF) in use at the time. RESF can
 then be subsequently called with a corresponding positive value to
 restore the cursor to its original location and resume data entry.
 Note that data entry does not resume with the original GETF or UPDF
 function call issued by your program.

Argument values:

 A value (negative or positive) ranging from 1 to 8.

Return values:

 Returns the same value as that returned by the original GETF or UPDF
 function used to retrieve data from the field.

RETDM

Syntax:

 <string variable> = RETDM

Explanation:

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMFS.TXT[2/6/2012 4:31:24 PM]

 Returns values indicating what features are available on the run-time
 terminal and the version of the Display Manager run-time library in
 use.

Return values:

 Returns a 16-character string; only the first 11 characters are used.

 1 Cursor visibility
 2 Half intensity
 3 Inverse video
 4 Flashing field
 5 Underline
 6 User-attribute #1
 7 User-attribute #2
 8 User-attribute #3
 9 Function keys
 10 Run-time version number
 11 Color/Monochrome indicator

 Position 1 returns a "1" if the invisible cursor feature is available;
 otherwise, "0" is returned.

 Positions 2 through 8 interpret as follows:

 0 Feature is not available.
 1 Feature available; requires Paint method.
 2 Feature available; requires Plant method.

 Position 9 indicates the number of function keys available.

 Position 10 indicates the version of the run-time library currently in
 use.

 Position 11 returns "0" if the run-time terminal is monochrome; "1" if
 the run-time terminal is color-equipped.

RETF

Syntax:

 <string variable> = RETF

Explanation:

 Returns values indicating the position, length, and type (input or
 output) of the current field.

Return values:

 Returns a 16-character string; only positions 1, 3, 5, 7, and 8 are

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMFS.TXT[2/6/2012 4:31:24 PM]

 used.

 1 Row number of the current field.
 3 Column number where the current field begins.
 5 Length of the current field.
 7 "0" in this position means there is not a space on both sides of the
 field. "1" means there is a space on both sides of the field.
 8 "I" in this position means the current field is an Input field; alpha
 "O" means the field is an Output field.

SETF

Syntax:

 <string expression> = SETF (<string expression>)

Explanation:

 Sets video or color attributes on the run-time terminal.

Argument values:

 A 16-character string referring to specific attributes on the run-time
 terminal that can be set for the field. The following table shows the
 meaning of each character in the string with its normal (default) and
 special setting.

 Table 2. SETF argument values

 Position Attribute Nrm Spc
 -------- --------- --- ---
Video: 1 Invisibility N Y
 2 Half intensity N Y
 3 Reverse video N Y
 4 Flashing field N Y
 5 Underlining N Y
 6 User-defined attribute #1 N Y
 7 User-defined attribute #2 N Y
 8 User-defined attribute #3 N Y
Color: 9 Flashing N Y
Background color codes:
 10 RED N Y
 11 GREEN N Y
 12 BLUE N Y
Foreground color codes:
 13 Intensity N Y
 14 Red Y Y
 15 Green Y Y
 16 Blue Y Y

 The value of each position in the string indicates how you want the
 attribute set, as follows:

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMFS.TXT[2/6/2012 4:31:24 PM]

 0 Normal setting.
 1 Special setting.
 2 Change current setting (normal to special, or vice versa).
 3 Do not change current setting.

 If the argument contains less than 16 characters, those for which no
 code is sent default to '3'.

Return values:

 Returns a 16-character string indicating how attributes are currently
 set. The characters correspond to the attributes shown in the
 preceding table. If the corresponding position contains "0", the
 attribute is in the normal state; if it contains "1", it is in the
 special state.

UPDF

Syntax:

 <string variable> = UPDF

Explanation:

 Returns the character string entered into the field or its initial
 value.

5 Run-time errors

Run-time error codes contain two characters. The first identifies the function
called when the error occurred; the second indicates the nature of the error.
The following list shows the value and the corresponding function of the first
error code character.

 Letter Function
 ------ --------
 a CLRSCR
 b CLSDIS
 c CURS
 d DISPD
 e ENDF
 f GETF
 g INITDM
 h NXTF
 i OPNDIS
 j POSF
 k PUTF
 l RESF
 m RETDM

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMFS.TXT[2/6/2012 4:31:24 PM]

 n RETF
 o SETF
 p UPDF

The following lists the value of the second error code character and a
description of the error.

 Value Meaning
 ----- -------
 1 Function called prior to calling INITDM.
 2 No display file currently open.
 3 There is no current display on the terminal.
 4 There is no current field in the display on the screen.
 5 Second attempt made to use INITDM function.
 6 RESF argument value is not between 1 and 8.
 7 RESF function not previously called with negative argument value.
 8 Not enough memory to show this display.
 9 Target field of POSF function non-existent.
 10 Wrong version of display file.
 11 Not a valid display file.

EOF

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG80.TXT[2/6/2012 4:31:24 PM]

DMPG80.WS4 (= Display Manager Programmer's Guide)

- "Display Manager Programmer's Guide"
 for the CP/M Family of Operating Systems

First Edition: July 1983

(Retyped by Emmanuel ROCHE.)

--> To be found... <--

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

DMPG86.WS4 (= Display Manager Programmer's Guide)

- "Display Manager Programmer's Guide"
 for the CP/M-86 Family of Operating Systems

First Edition: July 1983

(Retyped by Emmanuel ROCHE.)

Foreword

The "Display Manager Programmer's Guide for the CP/M-86 Family of Operating
Systems" explains how to use Display Manager with Digital Research programming
languages.

This "Programmer's Guide" is designed as a supplement to the "Display Manager
Reference Manual". You need both books to make full use of Display Manager.

Section 1 describes general considerations for installing Display Manager.
This section includes two tables that list and describe files on your Display
Manager distribution disks.

The remaining sections explain how to use Display Manager with application
programs written in one of the Digital Research programming languages
supported by Display Manager.

Tables of Contents

1 Installation guidelines

Getting started
Display Manager distribution files

2 CBASIC Compiler (CB-86) user's guide

Linking CBASIC Compiler programs
CBASIC Compiler external declarations
Function arguments and return values
Sample program (SAMPLE.BAS) listing

3 PL/I-86 user's guide

Linking PL/I-86 programs
PL/I-86 external declarations
Function arguments and return values
Minimizing data space in PL/I-86 programs
Sample program (SAMPLI.PLI) listing

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

4 Pascal/MT+86 user's guide

Linking Pascal/MT+86 programs
Pascal/MT+86 external declarations
Function arguments and return values
Special Pascal/MT+86 functions
 INTSTR function
 FPSTR and BCDSTR functions
 INTVAL function
 FPVAL and BCDVAL functions
 DMALLO function
Sample program (SAMPAS.PAS) listing

Section 1: Installation guidelines

This section explains how to install Display Manager with an operating system
in the CP/M-86 family of Operating Systems. You must complete the steps
described below before you can use this productivity tool.

Getting started

 1. Make a copy of your Display Manager distribution disks. Store the
 original disks in a safe place, and use the copy for all future
 processing.

 2. Read the licensing agreement that comes with Display Manager. Complete
 the warranty/registration card, and return it to Digital Research.
 This registers you with our Customer Service and Technical Support
 departments. Then, you will be sure to receive news of changes made in
 the product.

 3. Study your Display Manager documentation to become familiar with its
 contents and organization.

 4. Display the directories of the disk copies made in Step 1. Your disks
 must contain the files listed in the following table. In the table,
 files are listed alphabetically by filename. This makes it easy to
 match them against your disk. If any Display Manager files are
 missing, contact Digital Research immediately.

 5. Study the two tables in this section to determine which files you need
 for your particular situation. Then, configure one or more disks
 (preferably new disks containing an operating system) with the Display
 Manager files you require. For example, you might have one disk
 containing the terminal setup program and associated files, another
 containing the Editor program, and yet another containing the Run-time
 Library modules.

 6. Create the Editor program for your design terminal by running the
 DMSET program. When you have completed this step, you are ready to

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

 begin using the Editor to design displays.

Display Manager distribution files

The following tables list the files that should be on your distribution disks,
with an explanation of what each file contains.

Table 1-1. Display Manager required files

Format: Filename
 File description

DMCB.L86
The Run-time Library containing Display Manager functions used in CBASIC
Compiler (CB-86) source programs.

DMDRC.L86
The Run-time Library containing Display Manager functions used in small or
compact storage model C language source programs.

DMDRCBIG.L86
The Run-time Library containing Display Manager functions used in medium and
big storage model C language source programs.

DMEDHLP.OVR and DMEDOVR.OVR
Program overlays used with the Editor. Use DMEDHLP.OVR for extended help. Use
DMEDOVR.OVR for limited help.

DMEDU.CMD
The original version of the Editor program. Note that this version has not
been created for use with any design terminal. See "Option E--Create Editor
for Design Terminal" in Section 3 of your "Display Manager Reference Manual".

DMEXTR.BAS
Contains external declarations of Display Manager functions used with CBASIC
Compiler (CB-86) source programs.

DMEXTR.C
Contains external declarations of Display Manager functions used with Digital
Research C source programs.

DMEXTR.PAS
Contains external declarations of Display Manager functions used with
Pascal/MT+86 source programs.

DMEXTR.PLI
Contains external declarations of Display Manager functions used with PL/I-86
source programs.

DMPASC.ERL
The Run-time Library containing Display Manager functions used in Pascal/MT+86
source programs.

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

DMPLI.L86
The Run-time Library containing Display Manager functions used in PL/I-86
source programs.

DMSET.CMD
Terminal setup program. This file is used to create the Editor for the design
terminal, create a file of terminal control codes, change terminal control
codes in the file, and other functions. DMSET.CMD is fully described in
Section 3 of your "Display Manager Reference Manual".

DMSET.OVR, DMSET1.OVR, DMSET2.OVR, DMSET3.OVR, DMSET4.OVR, and DMSET5.OVR
Various program overlays used by the terminal setup program. These files must
be on the same disk as the DMSET program.

TERMS.DM
A file containing the terminal control codes for terminals used with Display
Manager. Appendix A of your "Display Manager Reference Manual" describes this
file and the codes contained therein. This file must be on the same disk as
the DMSET program.

Your distribution disks also contain other files that are not critical to the
operation of Display Manager. These include sample programs and aids. These
files are listed and explained in the following table.

Table 1-2. Other Display Manager files

Format: Filename
 File description

INSTALL.BAS
The source code for a program written in CBASIC Compiler. This program is
designed for use in the run-time environment, to help the end-user set up the
run-time terminal. The program uses the terminal control codes in the TERMS.DM
file. You can make whatever changes you want to this program, and distribute
it with your complete application programs.

ORDERS.DIS
A Display Manager display file containing displays used by the sample programs
described later in this table.

PARTS.LST
A data file also used by the sample programs.

READ.ME
If present, this file contains information supplemental to your Display
Manager documentation. Read this file before using Display Manager.

SAMDRC.C
A sample program, the same as SAMPLE.BAS, but written in Digital Research C.

SAMPAS.PAS
A sample program, the same as SAMPLE.BAS, but written in Pascal/MT+86. When

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

compiling this program, use the $B toggle, and link with BCDREALS.ERL and
FULLHEAP.ERL.

SAMPLE.BAS
The source code for a sample program coded in CBASIC Compiler. You can
examine, modify, and use this program in any way you want.

SAMPLE.CMD
A compiled form of SAMPLE.BAS. You can run this program by following these two
steps:

 1. Use the DMSET program to write the terminal control codes for your
 terminal into a file named CURRENT.TRM.

 2. Type SAMPLE and press RETURN at your Operating System prompt.

SAMPLI.PLI
A sample program, the same as SAMPLE.BAS, but written in PL/I.

Section 2: CBASIC Compiler (CB-86) user's guide

This section explains how to use Display Manager with application programs
written in CBASIC Compiler.

Linking CBASIC Compiler programs

To link a CBASIC Compiler program to the Display Manager Run-time Library, use
the following command format in response to your Operating System prompt:

 LINK86 <program name>,DMCB.L86

where <program name> is replaced by the name of the object module produced by
CBASIC Compiler. For example, to link a program named MYPROG, use the
following command line:

 LINK86 MYPROG,DMCB.L86

Because DMCB.L86 is an indexed, relocatable library, the linker places it in
the root module, in the event that language overlay structures are used.

CBASIC Compiler external declarations

CBASIC Compiler requires that you explicitly declare external functions.
External functions are those not coded in the source program, but referenced
by it. The file DMEXTR.BAS contains external declarations for all Display
Manager functions. Use the %INCLUDE feature of CBASIC Compiler to make these
external declarations a part of your application program.

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

Note: The %INCLUDE statement must precede any calls to Display Manager
functions in your application program source code. Refer to the program
listing at the end of this section for an example.

Function arguments and return values

Numeric values used as function arguments, or returned to your application
program, must be of type integer. You can declare them with the INTEGER
statement, or follow the name with a percent sign, %.

Character values used as function arguments, or returned to your application
program, must be of type string. You can declare them with the STRING
statement, or follow the name with a dollar sign, $.

The following example illustrates how you should declare function arguments
and return values.

 INTEGER Int.Value
 STRING Str.Value
 ...
 INIT% = INITDM (Str.Value) REM INIT% is an integer
 ...
 More.In$ = RESF (Int.Value) REM MORE.IN$ is a string
 ...

Sample program (SAMPLE.BAS) listing

The following listing shows the source code for program SAMPLE.BAS, which is
provided on your distribution disks. The program is written in CBASIC Compiler
language; you can modify or use it in any way you want. This listing is for
reference only. Always treat the program on your distribution disks as the
definitive version.

Listing 2-1. SAMPLE.BAS source code

REM
REM :::
REM
REM DISPLAY MANAGER -- CBASIC COMPILER SAMPLE PROGRAM
REM
REM JUNE 1, 1983
REM
REM :::
REM
REM All data entered with GETF and UPDF is in string form
REM
REM ---
 STRING \
 CUSTOMER, \ Customer name

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

 ADDRESS, \ Address
 CITY, \ City
 STATE, \ State
 ZIP, \ Numeric value
 PHONE, \ Numeric value
 PAYMENT(1), \ Method of payment, and account number
 QTY(1), \ Quantity of each item
 DESCRIPTION(1), \ Item description
 PART.NO(1), \ 5 numeric digits (checked for validity)
 PRICE.EA(1), \ Normal price inserted, but may be sale price
 TOTAL(1) \ QTY * PRICE.EA

REM ---
REM Constants and arrays used by the program...
REM ---
 ON$ = "0" REM Make a field visible
 OFF$ = "1" REM Make a field invisible
 LST.SZ% = 50 REM Size of parts list
 TABS$ = " " REM Tabs for output

 DIM \
 PAYMENT(1), \ Account number is second value
 QTY(4), \ Only 5 different items allowed on one order
 DESCRIPTION(4), \
 PART.NO(4), \
 PRICE.EA(4), \
 TOTAL(4), \
 PART.LST$(LST.SZ%,1),\
 PRICE$(LST.SZ%) \

REM :::
REM
REM Include the Display Manager runtime library definitions
REM
REM :::
 %INCLUDE DMEXTR.BAS

REM :::
REM
REM Get terminal control code from "CURRENT.TRM" file
REM
REM :::
 IF END # 1 THEN ERR1 REM If no file present, abort program
 OPEN "CURRENT.TRM" AS 1
 READ # 1;TERM$ REM Read the terminal control code
 CLOSE 1 REM Close the file

REM ---
REM Set up the Part Number List for the Help screen
REM ---
 IF END # 2 THEN ERR2 REM If no file present, abort program
 OPEN "PARTS.LST" AS 2
 IF END # 2 THEN S.LS REM Test for end of file
 FOR CNT% = 0 TO LST.SZ% - 1 REM Loop to build list of part numbers

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

 READ # 2; PART.LST$(CNT%,0),PART.LST$(CNT%,1),PRICE$(CNT%)
 NEXT
S.LS:PART.LST$(CNT% + 1,0) = "" REM When end of list reached,
 CLOSE 2 REM close the file.

REM :::
REM
REM Assign display reference numbers to displays
REM
REM (these can be changed as neededby your program)
REM
REM :::
 PHONE.ORDER% = 1 REM Order Form display
 HELP% = 2 REM Part Number reference display

REM :::
REM
REM ERROR MESSAGES FOR FATAL DISPLAY MANAGER ERRORS
REM
REM :::
 INIDM$ = "ERROR: Initialization failure"
 OPNIS$ = "ERROR: Display file not found"
 DISD$ = "ERROR: Display not found"
 POS$ = "ERROR: Field missing"
 NXT$ = "ERROR: Next field missing"
 PUT$ = "ERROR: Write to field failure"
 CUR$ = "ERROR: Cursor On/Off failure"
 CLSDIS$ = "ERROR: Can't close display file"

REM ***
REM
REM ALL NON-DISPLAY MANAGER FUNCTIONS ARE DEFINED HERE...
REM
REM ***

REM :::
REM
REM This routine checks the value returned by any Display Manager
REM function. Most functions return -1 if an error occurs. These
REM are fatal errors, so the program is aborted.
REM
REM :::
 DEF DM.ERR(F.RET%,ERR.TYPE$)
 IF F.RET% >= 0 THEN RETURN REM Not an error
 PRINT : PRINT REM Clear some space for err
 PRINT ERR.TYPE$ REM Output message
 STOP REM Fatal, so quit
 FEND

REM :::
REM
REM This routine checks to see if the entered part number exists
REM
REM :::

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

 DEF SEARCH(PART.NO$)
 INTEGER SEARCH REM Return array position
 FOR CNT% = 0 TO LST.SZ% - 1
 IF PART.LST$(CNT%,0) = PART.NO$ \
 THEN SEARCH = CNT% : \
 RETURN
 IF PART.LST$(CNT%,0) = "" \
 THEN GOTO ELST
 NEXT
ELST: SEARCH = -1
 FEND

REM :::
REM
REM Data entry routine
REM
REM :::
 DEF GET.ENTRY
 STRING GET.ENTRY
 RET.ERR% = NXTF(2) REM Move to next input field
 CALL DM.ERR(RET.ERR%,NXTF$) REM Check for error in func
 ATTR$ = SETF(PRM.ON$) REM Turn on the prompt
 INP$ = GETF REM Get field input
CONT: IF ENDF = 27 \ REM ESC key to exit?
 THEN CALL SETF ("000000") : \ REM Yes-Reset attributes
 CALL CLRSCR : \ REM Clear the screen
 RET.ERR% = CLSDIS : \ REM Close display file
 CALL DM.ERR(RET.ERR%,CLSDIS$) : \
 STOP
 IF ENDF <> 0 AND ENDF <> 26 \ REM Normal end, or ^Z entered?
 THEN GOTO RETR REM No-ignore char and cont...
 GET.ENTRY = INP$ REM Yes-Store the input
 ATTR$ = SETF(PRM.OFF$) REM turn off the prompt
 RETURN REM Go back
RETR: RET$ = RESF(-1) REM Save curr. field position
REM RET.ERR% = PUTF(INP$ + PROMPT$) REM Replace data in field
REM CALL DM.ERR(RET.ERR%,PUTF$) REM Check for error...
 INP$ = RESF(1) REM Resume input in org field
 GOTO CONT REM Continue data entry...
 FEND

REM :::
REM
REM Display error or help message
REM
REM :::
 DEF ERR.MSG(POS%,ONOFF$)
 RET% = POSF(0) REM Store current field numb.
 RET.ERR% = POSF(POS%) REM Move curs. to spec. field
 CALL DM.ERR(RET.ERR%,POSF$) REM Check for error
 ATTR$ = SETF(ONOFF$) REM Turn message OFF or ON
 RET.ERR% = POSF(RET%) REM Return to original pos.
 CALL DM.ERR(RET.ERR%,POSF$) REM Check for error
 FEND

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

REM ***
REM
REM PROGRAM MAINLINE BEGINS HERE...
REM
REM ***
 RET.ERR% = INITDM(TERM$) REM Init Terminal and Library
 CALL DM.ERR(RET.ERR%,INITDM$) REM Check for error
 AVAIL.ATTR$ = RETDM REM Get terminal attributes
 IF MID$(AVAIL.ATTR$,3,1) <> "0" \ REM If inv. video available,
 THEN PRM.ON$ = "031" : \
 PRM.OFF$ = "330" : \ REM use for prompts.
 ELSE PRM.ON$ = "0" : \ REM Otherwise,
 PRM.OFF$ = "3" REM just initials.

REM ---
REM Open display file, show it, and position to the first field
REM ---
 RET.ERR% = OPNDIS("ORDERS.DIS") REM Open display file
 CALL DM.ERR(RET.ERR%,OPNDIS$) REM Check for error
LOOP:RET.ERR% = DISPD(PHONE.ORDER%) REM Show Phone Order display
 CALL DM.ERR(RET.ERR%,DISPD$) REM Check for error
 RET.ERR% = NXTF(-10) REM Put cursor in first field
 CALL DM.ERR(RET.ERR%,NXTF$) REM Error check
 PROMPT$ = "___________________" REM Initials

REM ---
REM If inverse video available, use for all prompts; otherwise, underline
REM ---
 CUSTOMER = GET.ENTRY REM Use the Data Entry routine
 ADDRESS = GET.ENTRY REM to enter data for these
 CITY = GET.ENTRY REM fields...
 STATE = GET.ENTRY REM
 ZIP = GET.ENTRY REM
 PHONE = GET.ENTRY REM
PAYM:PAYMENT(0) = GET.ENTRY REM Payment code must be A, B,
 IF MATCH(PAYMENT(0),"ABC",1) = 0 OR \ REM or C only.
 PAYMENT(0) = "" \ REM If not A, B, or C,
 THEN CALL ERR.MSG(100,ON$) : \ REM display error message,
 RET.ERR% = NXTF(-2) : \ REM cursor to previous
 CALL DM.ERR(RET.ERR%,NXTF$) : \ REM input field,
 GOTO PAYM \ REM and retry.
 ELSE RET.ERR% = NXTF(3) : \ REM Code o.k., next outp field
 CALL DM.ERR(RET.ERR%,NXTF$) REM Check for error
 IF PAYMENT(0) = "A" \ REM If payment on Account,
 THEN RET.ERR% = PUTF("CCOUNT") : \ REM complete the word,
 CALL DM.ERR(RET.ERR%,PUTF$) : \ REM check for errors,
 PAYMENT(1) = GET.ENTRY \ REM and get account number.
 ELSE IF PAYMENT(0) = "B" \ REM If payment by bank card,
 THEN RET.ERR% = PUTF("ANK CARD") : \ REM complete the word,
 CALL DM.ERR(RET.ERR%,PUTF$) : \ REM check for errors,
 PAYMENT(1) = GET.ENTRY \ REM and get account number.
 ELSE IF PAYMENT(0) = "C" \ REM If Cash On Delivery,
 THEN RET.ERR% = PUTF(".O.D.") : \ REM complete the word,

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

 CALL DM.ERR(RET.ERR%,PUTF$) REM check for errors.
 CALL ERR.MSG(100,OFF$) REM Turn message off

REM ---
REM Get ready to take the order...
REM ---
 RET.ERR% = POSF(75) REM Move cursor to msg field
 CALL DM.ERR(RET.ERR%,POSF$) REM Check for error
 ATTR$ = SETF("0") REM Make the field visible
 PROMPT$ = " " REM Initial characters
 ORDER.NO% = 0 REM Init to first of 5 possi-
 REM ble order entry items.
ORDR:QTY(ORDER.NO%) = GET.ENTRY REM Get quantity for this item
 IF QTY(ORDER.NO%) = "0" THEN GOTO TTLS REM If 0, order is complete
 DESCRIPTION(ORDER.NO%) = GET.ENTRY REM Get item description
 CALL ERR.MSG(76,ON$) REM Turn on ^Z reference msg
PART:PART.NO(ORDER.NO%) = GET.ENTRY REM Get part number (PN)
HRET:IF ENDF = 26 \ REM If ^Z entered,
 THEN GOTO HELP REM show parts list display.
 PART% = SEARCH(PART.NO(ORDER.NO%)) REM Otherwise, find PN in list
 IF PART% = -1 \ not valid part number REM If part number not found,
 THEN CALL ERR.MSG(101,ON$) : \ REM show the error message,
 RET.ERR% = NXTF(-2) : \ REM replace cursor in field,
 CALL DM.ERR(RET.ERR%,NXTF$) : \ REM check for error,
 GOTO PART REM and try again...
 CALL ERR.MSG(101,OFF$) REM Turn error message off
 CALL ERR.MSG(76,OFF$) REM Turn ^Z message off
 RET.ERR% = NXTF(2) REM Move cursor to Price field
 CALL DM.ERR(RET.ERR%,NXTF$) REM
 RET.ERR% = PUTF(PRICE$(PART%)) REM Display the price
 CALL DM.ERR(RET.ERR%,PUTF$) REM
 ATTR$ = SETF(PRM.ON$) REM Turn on the prompt
PTRY:PRICE.EA(ORDER.NO%) = UPDF REM if CR, get initial value
REM ---
REM The price field does not trap bad characters or the ESC key
REM ---
 ATTR$ = SETF(PRM.OFF$) REM Turn off the prompt
 RET.ERR% = NXTF(3) REM Move cursor to total field
 CALL DM.ERR(RET.ERR%,NXTF$) REM Check for errors
 TOTAL(ORDER.NO%) = STR$(VAL(QTY(ORDER.NO%)) * \
 VAL(PRICE.EA(ORDER.NO%))) REM Compute total for item
 RET.ERR% = PUTF(TOTAL(ORDER.NO%)) REM Show the item total
 CALL DM.ERR(RET.ERR%,PUTF$) REM
 ORDER.NO% = ORDER.NO% + 1 REM Get ready for next item
 IF ORDER.NO% < 5 THEN GOTO ORDR REM Up to 5 items accepted
REM ---
REM Compute the total sale amount
REM ---
 ORDER.NO% = 4 REM Initialize loop control
 REM (0 to 4 for 5 items)
TTLS:SALE = 0 REM Init the sale amount
 FOR CNT% = 0 TO ORDER.NO% REM
 SALE = SALE + VAL(TOTAL(CNT%)) REM Add each item total
 NEXT REM

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

 RET.ERR% = POSF(26) REM Put cursor in Total Sale
 CALL DM.ERR(RET.ERR%,POSF$) REM Check for error
 RET.ERR% = PUTF(STR$(SALE)) REM Write Total Sale amount
 CALL DM.ERR(RET.ERR%,PUTF$) REM Check for error
 RET.ERR% = NXTF(20) REM Move to last input field
 CALL DM.ERR(RET.ERR%,NXTF$) REM
 ATTR$ = SETF("0") REM Make the field visible
 RET$ = GETF REM wait for CR to be entered
 IF ENDF = 27 \ REM If ESC entered,
 THEN GOTO DONE REM that's all, folks!

REM :::
REM
REM This program does not output the order information to a storage file.
REM Insert your output routine(s) here to create a file with the order
REM information...
REM
REM :::
 GOTO LOOP REM Take the next order

REM :::
REM
REM The following subroutine restores the original form to the screen
REM after the part numbers help screen has been shown. (See "HELP" below.)
REM This routine restores all information to the screen that was previously
REM entered by the end-user.
REM
REM :::
 DEF WRITEF(OUT$)
 RET.ERR% = NXTF(2) REM Move to next input field
 CALL DM.ERR(RET.ERR%,NXTF$) REM Check for error
 ATTR$ = SETF("0") REM Make the field visible
 RET.ERR% = PUTF(OUT$) REM Show old data in field
 CALL DM.ERR(RET.ERR%,PUTF$) REM Check for error
 RET$ = RETF REM Get current field specs
 IF POSF(0) = 8 \ REM If cursor is in Payment
 THEN RET.ERR% = NXTF(3) : \ REM field, move to next
 CALL DM.ERR(RET.ERR%,NXTF$) : \ REM output field.
 RET.ERR% = PUTF(MID$(OUT$,2,LEN(OUT$))) : \ REM Display
 CALL DM.ERR(RET.ERR%,PUTF$)
 FEND

REM :::
REM
REM The following routine show the part numbers from the PARTS.LST file
REM when the end-user enters ^Z on the order form. This routine also
REM restores the original order form to the screen following the display
REM of the part numbers list. Also, note the use of the WRITEF routine
REM immediately above in restoring the original display.
REM
REM :::
HELP:RET$ = RESF(-1) REM Save current field no.
 CALL CURS("1") REM Make cursor invisible
 RET.ERR% = DISPD(HELP%) REM Put HELP display on screen

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

 CALL DM.ERR(RET.ERR%,DISPD$) REM Check for error
FIRS:CNT% = 0 REM Initialize counter
 PAGE% = 0 REM Init screen line count
NXTL:RET.ERR% = POSF(CNT% + 1) REM Place cursor in field
 CALL DM.ERR(RET.ERR%,POSF$) REM Check for error
 IF PART.LST$(CNT% + PAGE%,0) <> "" \ REM Display all items in list
 THEN TEMP$ = PART.LST$(CNT% + PAGE%,0) + TABS$ + \
 PART.LST$(CNT% + PAGE%,1) : \
 RET.ERR% = PUTF(TEMP$) : \
 CALL DM.ERR(RET.ERR%,PUTF$) : \
 CALL SETF("0") \
 ELSE CNT% = -1
 CNT% = CNT% + 1 REM Bump the counter
 IF CNT% <> 0 AND CNT% < 22 REM End-list or screen full?
 THEN GOTO NXTL REM No-display next line
 RET.ERR% = POSF(100) REM Yes-cursor to end message
 CALL DM.ERR(RET.ERR%,POSF$) REM Check for error
HRTR:RET$ = GETF REM Get end-user's response
 IF RET$ = CHR$(27) THEN GOTO REDS REM ESC, redisplay order form
 IF RET$ <> CHR$(26) \ REM If not ^Z,
 THEN GOTO HRTR REM retry input response.
 IF CNT% = 0 THEN GOTO FIRS REM If end of list, start over
 PAGE% = PAGE% + 21 REM Otherwise, next page
 CNT% = 0 REM Re-initialize counter
 GOTO NXTL REM Display the lines
REM ---
REDS:RET.ERR% = DISPD(PHONE.ORDER%) REM Bring back original disp
 CALL DM.ERR(RET.ERR%,DISPD$) REM
 RET.ERR% = NXTF(-10) REM Put cursor in first field
 CALL DM.ERR(RET.ERR%,NXTF$) REM of display.
 CALL WRITEF(CUSTOMER) REM WRITEF replaces original
 CALL WRITEF(ADDRESS) REM data in each field.
 CALL WRITEF(CITY) REM ...
 CALL WRITEF(STATE) REM ...
 CALL WRITEF(ZIP) REM ...
 CALL WRITEF(PHONE) REM ...
 ON MATCH(PAYMENT(0),"ABC",1) GOTO ACCT,BANK,PCOD
ACCT:CALL WRITEF("ACCOUNT")
 CALL WRITEF(PAYMENT(1))
 GOTO HCON
BANK:CALL WRITEF("BANK CARD")
 CALL WRITEF(PAYMENT(1))
 GOTO HCON
PCOD:CALL WRITEF("C.O.D.") REM Cash On Delivery
 RET.ERR% = NXTF(2)
 CALL DM.ERR(RET.ERR%,NXTF$)
HCON:CALL ERR.MSG(75,ON$) REM Turn on the exit message
 FOR CNT% = 0 TO ORDER.NO% - 1 REM For each COMPLETED item
 CALL WRITEF(QTY(CNT%)) REM in order, redisplay QTY,
 CALL WRITEF(DESCRIPTION(CNT%)) REM description,
 CALL WRITEF(PART.NO(CNT%)) REM part number,
 CALL WRITEF(PRICE.EA(CNT%)) REM and unit price.
 RET.ERR% = NXTF(3) REM Move cursor to Total field
 CALL DM.ERR(RET.ERR%,NXTF$) REM

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

 RET.ERR% = PUTF(TOTAL(CNT%)) REM and redisplay the total.
 NEXT REM Continue for all COMPLETED items
 CALL WRITEF(QTY(ORDER.NO%)) REM For the INCOMPLETE item,
 CALL WRITEF(DESCRIPTION(ORDER.NO%)) REM redisplay quantity, des-
 CALL WRITEF(PART.NO(ORDER.NO%)) REM cription, and part number.
 CALL SETF(PRM.ON$) REM Turn on the prompt
 CALL CURS("0") REM Make the cursor visible
 PART.NO(ORDER.NO%) = RESF(1) REM Replace cursor in field
 CALL SETF(PRM.OFF$) REM Turn off the prompt
 GOTO HRET REM and resume where entry left off...

REM :::
REM If there is no CURRENT.TRM file on the disk...
REM ---
ERR1:PRINT "ERROR: No current terminal file" REM Print error messages
 PRINT "(put control code in 'CURRENT.TRM')"
 STOP REM Stop program

REM :::
REM If there is no PARTS.LST file on the disk...
REM ---
ERR2:PRINT "ERROR: No part no. reference file" REM Print error message
 STOP REM Stop program

REM :::
REM
REM NORMAL PROGRAM TERMINATION
REM
REM :::
DONE:CALL SETF ("000000") REM Reset terminal attributes
 CALL CLRSCR REM Clear the screen.
 RET.ERR% = CLSDIS REM Close display file
 CALL DM.ERR(RET.ERR%,CLSDIS$) REM Check for err during close
 STOP REM Return to Operating System

Section 3: PL/I-86 user's guide

This section explains how to use Display Manager with application programs
written in PL/I-86.

Linking PL/I-86 programs

To link a PL/I-86 program to the Display Manager Run-time Library, use the
following command format in response to your Operating System prompt:

 LINK86 <program name>,DMPLI.L86[S]

where <program name> is replaced by the name of the object module produced by
the PL/I-86 compiler. For example, to link a program named MYPROG, use the
following command line:

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

 LINK86 MYPROG,DMPLI.L86[S]

PL/I-86 external declarations

PL/I-86 requires that you explicitly declare external functions. External
functions are those not coded in the program source code, but referenced by
it. The file DMEXTR.PLI contains external declarations for all Display Manager
functions. Use the %INCLUDE feature of PL/I-86 to make these external
declarations a part of your application program. See the listing at the end of
this section for an example.

Function arguments and return values

You must declare numeric values that are used as function arguments, or that
are returned to your application program, as 15-bit, signed, fixed-length,
binary variables.

You must declare character values that are used as function arguments, or that
are returned to your application program, as character varying variables.

The following example illustrates how you should declare function arguments
and return values.

 DECLARE Arg_Int FIXED BINARY(15), /* Integer */
 Ret_Str CHARACTER(80) VARYING; /* String */
 ...
 Ret_Str = RESF (Arg_Int);
 ...

Minimizing data space in PL/I-86 programs

The PL/I-86 compiler compares the arguments for each function call with the
original argument definition. If you call a function with a string size other
than that of the original string, the compiler allocates enough space to copy
the string in the function call. Because the compiler allocates this space for
each function call, large amounts of memory space can be used very quickly. To
avoid this when calling the PUTF function, assign the argument to a global
string before making the call. This assignment ensures that the compiler does
not allocate extra space. For example,

 DCL Glob_Str CHAR(132) VAR; /* PUTF's argument is also */
 /* declared as 132 bytes. */
 Glob_Str = Mystring;
 CALL PUTF (Glob_Str); /* No extra space allocated */
 ...
 Glob_Str = "This is text for PUTF";
 CALL PUTF (Glob_Str); /* Again, no extra space */

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

 ...

This technique is not necessary for the other Display Manager functions,
because they require only a few bytes.

When using the INITDM function, declare the string that passes the terminal
control codes in the following way:

 CHAR(254) VAR.

This ensures that the PL/I-86 compiler does not create extra space, and saves
the copying time. For example,

 DCL InitStr CHAR(254) VAR;
 ...
 /* Put control codes in INITSTR here... */
 ...
 IF InitDM(InitStr) < 0 THEN
 GOTO Err_Cond;
 ...

Sample program (SAMPLI.PLI) listing

The following listing is the source code for a sample program written in PL/I-
86. Your distribution disks provide the code in the file named SAMPLI.PLI.
This listing is for reference only. Always consider the program on your
distribution disks as the definitive version.

Listing 3-1. SAMPLI.PLI source code

program: PROC options(main);

 %replace onn by '0'; /* Make a field visible. */
 %replace off by '1'; /* Make a field invisible. */
 %replace lst_sz by 50; /* size of parts list */

 /* Include the Display Manager runtime library definitions. */
 %include 'dmextr.pli';
 /* 12345678901234 */
dcl tabs static char(14) init(' '); /*tabs for output */

dcl
 (phone_order,
 order_no,
 page,
 part_fb15,
 cnt,
 CLRSCR_ret,
 ret,
 ret_err,
 helpf) fixed;

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

dcl
 (qty_dec, /* quantity of each item */
 price_ea_dec) /* normal price output, but there may be a sale */
 fixed dec (6,2); /* max is 9,999.99 */
dcl
 total_dec(0:4) /* QTY times PRICE_EA */
 fixed dec (7,2); /* max is 99,999.99 */
dcl
 sale_dec fixed dec (8,2); /* max is 999,999.99 */

dcl term250_str char (250) var;

dcl putf132_str char(132) var;

dcl
 (initdm_str,
 temp,
 retf60_str,
 dispd_str,
 opndis_str,
 posf_str,
 nxtf_str,
 putf_str,
 cur_str,
 CLSDIS_str,
 customer, /* customer name */
 address,
 city,
 state,
 zip, /* validated for numerical value */
 phone, /* numerical */
 payment(0:1), /* method of payment and account no. */
 qty(0:4), /* quantity of each item */
 price_ea(0:4), /* normal price output, but there may be a sale */
 total(0:4), /* QTY times PRICE_EA */
 sale, /* max is 999,999.99 */
 description(0:4), /* brief written description */
 part_no_chr60(0:4), /* 5-digit number, checked for validity */
 part_lst(0:lst_sz,0:1),
 price(lst_sz)) char(60) var; /* All data entered w/ GETF &
 UPDF is in string form. */

 dcl
 (prm_off,
 prm_on,
 retf16_str,
 avail_attr)
 char(16) var;

dcl
 curstat char(1) var ;

dcl

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

 (file_1,
 file_2) file;

/***/
/* The following corresponds to lines 34- 64 in the CB-80 sample program. */
/***/

 /* Get the screen-handling control code from the installation file. */
 on undefinedfile (file_1)
 go to err1; /* no term file, abort */
 on endfile (file_1) go to err1;
 open file (file_1) stream input title('current.trm');
 get file (file_1) edit(term250_str) (a);
 close file (file_1);

 /* Set up the list of part numbers. */
 on undefinedfile (file_2) go to err2; /* no input file, abort */
 open file(file_2) stream input title('parts.lst');
 on endfile (file_2) go to s_ls;
 do cnt=0 to lst_sz-1;
 get file(file_2) list(part_lst(cnt,0),part_lst(cnt,1),price(cnt));
 end;

s_ls:
 part_lst(cnt+1,0)=''; /* indicates end of list */
 close file(file_2);

 /* Assign display numbers. These can be changed as needed. */
 phone_order=1; /* main display */
 helpf=2; /* main part number reference */

 /* Set error output messages for fatal Display Manager errors. */
 initdm_str='ERROR: Initialization failure';
 opndis_str='ERROR: Display file not found';
 dispd_str='ERROR: Display not found';
 posf_str='ERROR: Field missing';
 nxtf_str='ERROR: Next field missing';
 putf_str='ERROR: Write to field failure';
 cur_str='ERROR: Cursor On/Off failure';
 CLSDIS_str='ERROR: Can''t close display file';

/***/
/* The following corresponds to lines 65-122 in the CB-80 sample program. */
/***/

 /* Most DM functions return -1 if there is an error. */
 /* They are fatal, so abort. */
 dm_err: PROC (f_ret,err_type);
 dcl
 err_type char(60) var,
 f_ret fixed;
 if f_ret>=0 then

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

 return; /* not an error */
 put skip(2) list(err_type);
 stop; /* It's fatal, so abort. */
 end dm_err;

 /* If the part number exists, return it. */
 search: PROC (part_no_chr60) returns(fixed);
 dcl
 part_no_chr60 char(60) var;
 do cnt=0 to lst_sz-1; /* returns the array index */
 if part_lst(cnt,0)=part_no_chr60 then
 return(cnt);
 if part_lst(cnt,0)='' then
 go to elst;
 end;
 elst:
 return(-1);
 end search;

 /* Move relative to the next input field, turn on the prompt, & get input. */
 get_entry: PROC returns(char(60) var);
 dcl inp60_local char(60) var;
 ret_err=nxtf(2); /* next input field */
 call dm_err(ret_err,nxtf_str);
 avail_attr=setf(prm_on); /* Turn on the prompt. */
 inp60_local=getf(); /* Input from the field. */
 cont:
 if endf()=27 then /* escape key to exit */
 do;
 CLRSCR_ret = CLRSCR(); /*added11-8*/
 ret_err=CLSDIS();
 call dm_err(ret_err,CLSDIS_str);
 stop;
 end;
 if endf()^=0 & endf()^=26 then /* control character, not ctrl-Z */
 go to retr; /* Ignore the character and continue. */
 avail_attr=setf(prm_off); /* Turn off the prompt. */
 return(inp60_local);
 retr:
 retf60_str=resf(-1); /* Save the position. */
 inp60_local=resf(1); /* Resume input. */
 go to cont; /* Continue. */
 end get_entry;

 err_msg: PROC (pos,onoff);
 dcl
 pos fixed,
 onoff char(1);
 ret=posf(0); /* Store the current position. */
 ret_err=posf(pos);
 call dm_err(ret_err,posf_str);
 avail_attr=setf(onoff); /* Turn the message on/off. */
 ret_err=posf(ret); /* Return to the original position. */
 call dm_err(ret_err,posf_str);

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

 end err_msg;

/***/
/* S T A R T P R O G R A M H E R E */
/***/

/***/
/* The following corresponds to lines 123-232 in the CB-80 sample program. */
/***/

 ret_err=initdm(term250_str); /* Initialize the library. */
 call dm_err(ret_err,initdm_str);
 avail_attr=retdm(); /* Which CRT attributes are available? */
 if substr(avail_attr,3,1)^='0' then /* If inverse video is supported */
 do;
 prm_on='031';
 prm_off='330'; /* then use it for prompts */
 end;
 else
 do;
 prm_on='0';
 prm_off='3'; /* just initials */
 end;

 /* Open the display file, show it, and move to the first field. */
 ret_err=opndis('ORDERS.DIS'); /* Open the file. */
 call dm_err(ret_err,opndis_str);
loop:
 ret_err=dispd(phone_order); /* Show the display. */
 call dm_err(ret_err,dispd_str);
 ret_err=nxtf(-10); /* 1st field */
 call dm_err(ret_err,nxtf_str);

 /* All prompts are inverse video if possible, or underlined otherwise. */
 customer=get_entry(); /* Use relative movement */
 address=get_entry(); /* and GETF */
 city=get_entry();
 state=get_entry(); /* alphabetic only */
 zip=get_entry(); /* numerical validation by DM */
 phone=get_entry();
paym:
 payment(0)=get_entry(); /* A, B, or C only */
 /* A null string is also not a valid entry. */
 if index('ABC',payment(0))=0 ! payment(0)='' then
 do;
 call err_msg(100,onn);
 ret_err=nxtf(-2);
 call dm_err(ret_err,nxtf_str); /* Output an error message */
 go to paym; /* and re-try. */
 end;
 else
 do;

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

 ret_err=nxtf(3);
 call dm_err(ret_err,nxtf_str); /* Go to next column. */
 end;
 if payment(0)='A' then
 do; /* It's a personal credit account. */
 putf132_str = 'CCOUNT';
 ret_err=putf(putf132_str); /* Show the rest of the word. */
 payment(1)=get_entry(); /* Get the account number. */
 end;
 else
 if payment(0)='B' then /* bank credit card */
 do;
 putf132_str = 'ANK CARD';
 ret_err=putf(putf132_str);
 call dm_err(ret_err,putf_str);
 payment(1)=get_entry();
 end;
 else
 if payment(0)='C' then /* cash on delivery */
 do;
 putf132_str = '.O.D.';
 ret_err=putf(putf132_str);
 call dm_err(ret_err,putf_str);
 end;
 call err_msg(100,off); /* Turn it off. */

 /* Take the order now. */
 ret_err=posf(75); /* Turn on the message */
 call dm_err(ret_err,posf_str); /* about the ending entry. */
 avail_attr=setf('0');
 order_no=0; /* up to 5 */
ordr:
 qty(order_no)=get_entry(); /* quantity of items */
 if qty(order_no)='0' then /* Stop entry. */
 go to ttls;
 description(order_no)=get_entry();
 call err_msg(76,onn); /* control-Z reference message */
part_lbl:
 part_no_chr60(order_no)=get_entry(); /* only for this input */
hret:
 if endf()=26 then /* control-z for part number refernce display */
 call help();
 part_fb15 = search(part_no_chr60(order_no)); /* complete input */
 if part_fb15 =-1 then /* not a valid part number */
 do;
 call err_msg(101,onn);
 ret_err=nxtf(-2);
 call dm_err(ret_err,nxtf_str);
 go to part_lbl; /* Re-try. */
 end;
 call err_msg(101,off); /* Turn off the error message. */
 call err_msg(76,off); /* Turn off the control-z message. */
 ret_err=nxtf(2); /* Write the normal price. */
 call dm_err(ret_err,nxtf_str);

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

 putf132_str = price(part_fb15);
 ret_err=putf(putf132_str);
 call dm_err(ret_err,putf_str);
 avail_attr=setf(prm_on);
 ptry:
 price_ea(order_no)=updf(); /* If it's a CR, get the initial value. */
 avail_attr=setf(prm_off);
 ret_err=nxtf(3); /* the field for the total */
 call dm_err(ret_err,nxtf_str);
 qty_dec = qty(order_no);
 price_ea_dec = price_ea(order_no);
 total_dec(order_no) = qty_dec * price_ea_dec;
 total(order_no) = total_dec(order_no);
 total(order_no) = substr(total(order_no),3);
 putf132_str = total(order_no);
 ret_err=putf(putf132_str);
 call dm_err(ret_err,putf_str);
 order_no=order_no+1; /* Only 5 are allowed. */
 if order_no < 5 then /* can break w/QTY = 0 */
 go to ordr;
 order_no=4; /* Only 0 to 4 are allowed. */
 ttls:
 sale_dec =0;
 do cnt=0 to order_no; /* Calculate the total bill. */
 sale_dec = sale_dec + total_dec(cnt);
 end;
 sale = sale_dec;
 sale = substr(sale,3);
 ret_err=posf(26);
 call dm_err(ret_err,posf_str);
 putf132_str = sale;
 ret_err=putf(putf132_str); /* Write the total sale. */
 do cnt= 0 to order_no;
 total_dec(cnt) = 0; /* zero out intermediate totals */
 end;
 call dm_err(ret_err,putf_str);
 ret_err=nxtf(20); /* wait until ready */
 call dm_err(ret_err,nxtf_str);
 avail_attr=setf('0'); /* Turn on the prompt. */
 retf60_str=getf(); /* Wait for a carriage return. */
 if endf()=27 then
 go to done;

 /* output data to file */
 go to loop; /* next order */

/***/
/* The following corresponds to lines 233-249 in the CB-80 sample program. */
/***/

 writef: PROC (out);
 dcl
 out char(60) var;

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

 ret_err=nxtf(2); /* Go to input field. */
 call dm_err(ret_err,nxtf_str);
 avail_attr=setf('0'); /* Turn on the field. */
 putf132_str = out;
 ret_err=putf(putf132_str); /* Put in the old data. */
 call dm_err(ret_err,putf_str);
 retf16_str=retf(); /* Check if it's a payment. */
 if posf(0) = 8 then /* Output the rest in the adjoining
 field. */
 do;
 ret_err=nxtf(3);
 call dm_err(ret_err,nxtf_str);
 putf132_str = substr(out,2,length(out));
 ret_err=putf(putf132_str);
 call dm_err(ret_err,putf_str);
 end;
 end writef;

/***/
/* The following corresponds to lines 250-310 in the CB-80 sample program. */
/***/

help: PROC ; /* Save your place. */
 retf60_str=resf(-1); /* Show the part number list. */
 curstat = curs(off);
 ret_err=dispd(helpf);
 call dm_err(ret_err,dispd_str);
 firs:
 cnt=0;
 page=22; /* Write out the list. */
 nxtl:
 ret_err=posf(cnt+1);
 call dm_err(ret_err,posf_str);
 if part_lst(cnt,0) ^= '' then /* Output to the end of the list. */
 do;
 temp=part_lst(cnt,0)||tabs||part_lst(cnt,1);
 putf132_str = temp;
 ret_err=putf(putf132_str);
 call dm_err(ret_err,putf_str);
 avail_attr = setf('0');
 end;
 else
 cnt=-1;
 cnt=cnt+1;
 if cnt ^= 0 & cnt < 22 then
 go to nxtl;
ret_err=posf(100); /* next page, or exit */
 call dm_err(ret_err,posf_str);
 retf60_str=getf();
 if retf60_str=ascii(27) then
 go to reds; /* escape, return */
 if retf60_str=ascii(26) then
 if cnt=0 then /* control-Z, next with wrap */

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

 go to firs;
 page=page+21; /* next page */
 cnt = 0;
 go to nxtl;
 reds: /* bring back old display */
 ret_err=dispd(phone_order);
 call dm_err(ret_err,dispd_str);
 ret_err=nxtf(-10); /* 1st field, then 1st */
 call dm_err(ret_err,nxtf_str); /* in field to write */
 call writef(customer); /* old data to */
 call writef(address);
 call writef(city);
 call writef(state);
 call writef(zip);
 call writef(phone);

 if payment(0) = 'A' then
 go to acct;
 else if payment(0) = 'B' then go to bank ;
 else if payment(0) = 'C' then
 go to pcod ;

acct:
 call writef('ACCOUNT'); /* special handling */
 call writef(payment(1)); /* done in writef */
 go to hcon;
 bank:
 call writef('BANK CARD');
 call writef(payment(1));
 go to hcon;
 pcod:
 call writef('C.O.D.');
 ret_err=nxtf(2); /* pass acount number */
 call dm_err(ret_err,nxtf_str);
hcon:
 call err_msg(75,onn); /* QTY exit message */
 do cnt=0 to order_no-1; /* Write any */
 call writef(qty(cnt)); /* previous items. */
 call writef(description(cnt));
 call writef(part_no_chr60(cnt));
 call writef(price_ea(cnt));
 ret_err=nxtf(3); /* total is output -- */
 call dm_err(ret_err,nxtf_str); /* field, not input */
 putf132_str = total(cnt);
 ret_err=putf(putf132_str);
 end;
 call writef(qty(order_no)); /* line in progress */
 call writef(description(order_no));
 call writef(part_no_chr60(order_no));
 avail_attr = setf(prm_on);
 curstat = curs(onn);
 part_no_chr60(order_no) = resf(1);
 avail_attr = setf(prm_off);
 goto hret;

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

 end help;

/***/
/* The following corresponds to lines 311-319 in the CB-80 sample program. */
/***/

 err1:
 put list('ERROR: No current terminal file');
 put list('(put control code in "CURRENT.TRM")');
 stop; /* no terminal codes */
 err2:
 put list('ERROR: No part no. reference file');
 stop; /* no price list -- */
 done:
 CLRSCR_ret = CLRSCR();
 ret_err=CLSDIS(); /* close display file */
 call dm_err(ret_err,CLSDIS_str);
 stop;

end program;

Section 4: Pascal/MT+86 user's guide

This section explains how to use Display Manager with application programs
written in Pascal/MT+86. This section also describes special Pascal/MT+86
functions needed to use Display Manager.

Linking Pascal/MT+86 programs

To link a Pascal/MT+86 program to the Display Manager Run-time Library, use
one of the following command formats in response to your Operating System
prompt:

 LINKMT <program name>,DMPAS/S,FULLHEAP,FPREALS/S,PASLIB/S
or
 LINKMT <program name>,DMPAS/S,FULLHEAP,BCDREALS/S,PASLIB/S/X:1000

where <program name> is replaced by the name of the object module produced by
the Pascal/MT+86 compiler. For example, to link a program named MYPROG, use
one of the following command lines:

 LINKMT MYPROG,DMPAS/S,FULLHEAP,FPREALS/S,PASLIB/S
or
 LINKMT MYPROG,DMPAS/S,FULLHEAP,BCDREALS/S,PASLIB/S/X:1000

You can exclude FULLHEAP if you use stack allocation. The real-number
libraries are also optional; the Run-time Library does not have to use
FULLHEAP.ERL. If you do not want to use Heap management, a routine is
available in the Run-time Library that you can use to allocate space when

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

needed for your largest display, and when the stack version of NEW/DISPOSE is
being used. You can make full use of MARK/RELEASE with this routine.

To simplify the linking process, you can use the librarian LIBMT to create a
single, searchable library with DMPASC.ERL, FULLHEAP.ERL, and either
FPREALS.ERL or BCDREALS.ERL. In such cases, you need only specify one
additional run-time library. For example,

 LINKMT MYPROG,DMLIBS/S,PASLIBS/S

Pascal/MT+86 external declarations

Pascal/MT+86 requires that you explicitly declare external functions. External
functions are those not coded in the program source code, but referenced by
it. The file DMEXTR.PAS contains external declarations for all Display Manager
functions. Use the Include File compiler toggle of Pascal/MT+86 to make these
external declarations a part of your application program. For example, the
following statement in your program includes the external declarations:

 {$I DMEXTR.PAS}

Function arguments and return values

Numeric values used as function arguments, or returned to your application
program, must be of type integer. Character values used as function arguments,
or returned to your application program, must be of type string. Character
strings are returned from Display Manager to an extra parameter in the call.
The extra parameter must be of type string, because the function returns a
character. Consider the following example:

 VAR
 Arg_Str: STRING;
 Ret_Int: INTEGER;
 Ret_Str: STRING;
 Ret: CHAR
 ...
 Ret_Int := INITDM (Arg_Str)
 ...
 Ret := RESF (1, Ret_Str);
 ...

Special Pascal/MT+86 functions

The Display Manager Run-time Library for Pascal/MT+86 contains a number of
special functions for your use. These functions are described on the following
pages.

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

INTSTR function

Syntax: <char> := INTSTR (<integer>,<string>)

Explanation:
This function converts an integer to its string value.

Function arguments and return values:
The first argument (<integer>) is the constant or integer variable to be
converted. The second argument (<string>) is the string variable to receive
the converted value. The converted value is in the form given by
WRITE/WRITELN.

Example:
This example returns the string value 123.

 Ret_Char := INTSTR (123, Str);
 WRITELN (Str);
 ...

FPSTR and BCDSTR functions

Syntax: <char> := FPSTR (<floating real>,<string>)
 <char> := BCDSTR (<binary real>,<string>)

Explanation:
These functions convert a real number to its string value. You must use the
function that corresponds to the real-number library you are using. That is to
say, if you are using the FPREALS library, use the FPSTR function; if you are
using the BCDREALS library, use the BCDSTR function.

Function arguments and return values:
The first argument (<floating real> or <binary real>) is the constant or
real variable to be converted. The second argument (<string>) is the string
variable to receive the converted value. The converted value of the number is
in the form given by WRITE/WRITELN.

Example:
The following example shows the use of the FPSTR function. This example
returns the string 1.23450E+02.

 ...
 Ret_Char := FPSTR (123.45, Str);
 WRITELN (Str);
 ...

The next example shows the use of the BCDSTR function. This example returns
the string 123.4500.

 ...
 Ret_Char := BCDSTR (123.45, Str);

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

 WRITELN (Str);
 ...

INTVAL function

Syntax: <integer> := INTVAL (<string>)

Explanation:
This function converts a string to its integer value.

Function arguments and return values:
The argument (<string>) is the string value of the number to be converted. The
integer value of the argument is returned. If the argument contains a real
number, it is truncated to the value to the left of the decimal point. If the
argument is in E form, an incorrect value is returned.

Example:
The following example returns a value of 1234.

 ...
 Int := INTVAL ('1234');
 WRITELN (Int);
 ...

The next example returns a value of 1.

 ...
 Int := INTVAL ('1.234E+02');
 WRITELN (Int);
 ...

FPVAL and BCDVAL functions

Syntax: <floating real> := FPVAL (<string>)
 <binary real> := BCDVAL (<string>)

Explanation:
These functions convert a string to its real-number value. You must use the
function that corresponds to the real-number library you are using. That is to
say, if you are using the FPREALS library, use the FPVAL function; if you are
using the BCDREALS library, use the BCDVAL function.

Function arguments and return values:
The argument (<string>) is the string value of the number to be converted. The
value of the argument is returned as a real number. The standard format of the
real-number type being used is accepted.

Example:
The first example shows the use of the FPVAL function, and returns the real
number 1.23450E+02.

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

 ...
 Real := FPVAL ('123.45');
 WRITELN (Real);
 ...

The next example shows the use of the BCDVAL function, and returns the real
number 123.4500.

 ...
 Real := BCDVAL ('123.45');
 WRITELN (Real);
 ...

DMALLO function

Syntax: <integer> := DMALLO (<integer>)

Explanation:
The DMALLO function allocates space for displays when FULLHEAP.ERL is not
being used. If you use FULLHEAP.ERL, you should not use DMALLO, because space
is automatically allocated.

Function argument and returned values:
The argument (<integer>) is a number ranging from 1 to 6. The number indicates
how many Kilobytes are to be allocated, and must be sufficient to accomodate
the largest display used in your program (5KB is almost always sufficient). If
MARK and RELEASE are used in your program and you release space allocated with
DMALLO, you must call the DMALLO function again before using the DISPD
function.

If the argument value is less than 1, or greater than 6, a value of -1 is
returned to your application program. If no space is available for the DMALLO
function, a run-time error results.

Example:

 ...
 Int := DMALLO (5);
 Err_Ret := DISPD (1);
 ...

Sample program (SAMPAS.PAS) listing

The following listing is the source code for a sample program written in
Pascal/MT+86. Your distribution disks provide the code in the file named
SAMPAS.PAS. This listing is for reference only. Always consider the code on
your distribution disks as the definitive version of the program.

The sample Pascal/MT+86 program must be compiled and linked for use with BCD

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

numbers, as follows:

 MT86 SAMPAS $B
 LINKMT SAMPAS,DMPAS/S,BCDREALS,FULLHEAP,PASLIB/S/X:100

If you encounter problems using the special Display Manager functions BCDVAl
and BCDSTR, request an updated version of the Pascal/MT+86 library
BCDREALS.L86 from Digital Research.

Listing 4-1. SAMPAS.PAS source code

program sample;
const
 onn = '000'; { Make a field visible. }
 off = '100'; { Make a field invisible. }
 lst_sz = 25; { size of parts list }
 { Assign display numbers. These can be changed as needed. }
 phone_order = 1; { main display }
 helpf = 2; { main part number reference }

 { Set error output messages for fatal Display Manager errors. }
 initdm_str = 'ERROR: Initialization failure';
 opndis_str = 'ERROR: Display file not found';
 dispd_str = 'ERROR: Display not found';
 posf_str = 'ERROR: Field missing';
 nxtf_str = 'ERROR: Next field missing';
 putf_str = 'ERROR: Write to field failure';
 cur_str = 'ERROR: Cursor On/Off failure';
 CLSDIS_str = 'ERROR: Can''t close display file';

 { 12345678901234 }
 tabs = ' '; {tabs for output }

type
 com_str = string[40];
 ptr = ^integer;
var
 order_no,
 page,
 part_fb15,
 cnt,
 CLRSCR_ret,
 ret,
 ret_err : integer;

 retchr : char;

 qty_dec, { quantity of each item }
 price_dec: real; { normal price given, but may be sale }

 total_dec : array[0..4] of real; { QTY times PRICE_EA }

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

 sale_dec : real;

 term250_str: string[250];

 retf60_str,
 customer, { customer name }
 address,
 city,
 state,
 zip, { validated for numerical value }
 phone, { numerical }
 sale : com_str;
 qty, { quantity of each item }
 price_ea, { normal price shown, but may be sale }
 total, { QTY times PRICE_EA }
 description, { brief written description }
 part_no_chr60: array[0..4] of com_str;
 part_lst : array[0..lst_sz,0..1] of com_str;
 price : array[0..lst_sz] of com_str;
 payment : array[0..1] of com_str;{ method of payment and account no. }
 buff_rd : string[60];
 temp : string;

 prm_off,
 prm_on,
 retf16_str,
 avail_attr : string[16];

 curstat : string[1];

 file_1,
 file_2 : text;

 { Include the Display Manager runtime library definitions. }
{$I dmextr.pas}
external procedure @hlt;

{***}
{ The following corresponds to lines 65-122 in the CB-80 sample program. }
{***}

procedure halt;
begin
 @hlt; { stop the program }
end;

 { Most DM functions return -1 if there is an error. }
 { They are fatal, so abort. }
procedure dm_err(f_ret : integer;err_type : com_str);
begin
 if f_ret < 0
 then begin

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

 writeln; writeln;
 writeln(err_type);
 halt; { It's fatal, so abort. }
 end;
end; { dm_err }

 { If the part number exists, return it. }
function search(part_no_chr60 : com_str) : integer;
var cnt : integer;
begin
 for cnt := 0 to lst_sz-1 do { returns the array index }
 begin
 if part_lst[cnt,0] = part_no_chr60
 then begin
 search := cnt;
 exit;
 end;
 if part_lst[cnt,0] = ''
 then begin
 search := -1; { -1 unless found }
 exit;
 end;
 end;
 search := -1; { -1 unless found }
end; { search }

 { Move relative to the next input field, turn on the prompt, & get input. }
procedure get_entry(var retval : com_str);
var inp60_local : com_str;
begin
 ret_err := nxtf(2); { next input field }
 dm_err(ret_err,nxtf_str);
 retchr := setf(prm_on,avail_attr); { Turn on the prompt. }
 retchr := getf(inp60_local); { Input from the field. }
 while true do begin
 if endf = 27
 then begin { escape key to exit }
 CLRSCR_ret := clrscr; {added11-8}
 ret_err := clsdis;
 dm_err(ret_err,CLSDIS_str);
 halt;
 end;
 if (endf <> 0) and (endf <> 26)
 then begin { control character, not ctrl-Z }
 retchr := resf(-1,retf60_str); { Save the position. }
 retchr := resf(1,inp60_local); { Resume input. }
 end else begin
 retchr := setf(prm_off,avail_attr); { Turn off the prompt. }
 retval := inp60_local;
 exit;
 end;
 end;
end; { get_entry }

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

procedure err_msg(pos : integer;onoff : string);
begin
 ret := posf(0); { Store the current position. }
 ret_err := posf(pos);
 dm_err(ret_err,posf_str);
 retchr := setf(onoff,avail_attr); { Turn the message on/off. }
 ret_err := posf(ret); { Return to the original position. }
 dm_err(ret_err,posf_str);
end; { err_msg }

{***}
{ The following corresponds to lines 233-249 in the CB-80 sample program. }
{***}

procedure writef(out : com_str);
begin
 ret_err := nxtf(2); { Go to input field. }
 dm_err(ret_err,nxtf_str);
 retchr := setf(onn,avail_attr); { Turn on the field. }
 ret_err := putf(out); { Put in the old data. }
 dm_err(ret_err,putf_str);
 retchr := retf(retf16_str); { Check if it's a payment. }
 if posf(0) = 8
 then begin { Output rest in adjoining field. }
 ret_err := nxtf(3);
 dm_err(ret_err,nxtf_str);
 ret_err := putf(copy(out,2,length(out)-1));
 dm_err(ret_err,putf_str);
 end;
end; { writef }

{***}
{ The following corresponds to lines 250-310 in the CB-80 sample program. }
{***}

procedure help;
var cnt : integer;
begin
 while endf = 26 do begin
 retchr := resf(-1,retf60_str); { Show the part number list. }
 retchr := curs(off,curstat);
 ret_err := dispd(helpf);
 dm_err(ret_err,dispd_str);
 retf60_str := chr(0);
 cnt := 0;
 page := 22; { Write out the list. }
 repeat
 ret_err := posf(cnt+1);
 dm_err(ret_err,posf_str);
 if part_lst[cnt,0] <> ''
 then begin { Output to the end of the list. }
 temp := concat(part_lst[cnt,0],tabs,part_lst[cnt,1]);

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

 ret_err := putf(temp);
 dm_err(ret_err,putf_str);
 retchr := setf(onn,avail_attr);
 end else cnt := -2;
 cnt := cnt+1;
 if (cnt = -1) or (cnt >= 22)
 then begin
 ret_err := posf(100); { next page, or exit }
 dm_err(ret_err,posf_str);
 retchr := getf(retf60_str);
 if retf60_str <> chr(27)
 then begin
 if retf60_str = chr(26)
 then if cnt <> -1
 then begin { control-Z, next with wrap }
 page := page+21; { next page }
 cnt := 0;
 end else begin
 cnt := 0;
 page := 22;
 end;
 end;
 end;
 until retf60_str = chr(27);
 ret_err := dispd(phone_order);
 dm_err(ret_err,dispd_str);
 ret_err := nxtf(-10); { 1st field, then 1st }
 dm_err(ret_err,nxtf_str); { in field to write }
 writef(customer); { old data to }
 writef(address);
 writef(city);
 writef(state);
 writef(zip);
 writef(phone);
 case payment[0,1] of
 'A' : begin
 writef('ACCOUNT'); { special handling }
 writef(payment[1]); { done in writef }
 end;
 'B' : begin
 writef('BANK CARD');
 writef(payment[1]);
 end;
 'C' : begin
 writef('C.O.D.');
 ret_err := nxtf(2); { pass acount number }
 dm_err(ret_err,nxtf_str);
 end;
 end;
 err_msg(75,onn); { QTY exit message }
 for cnt := 0 to order_no-1 do { Write any }
 begin
 writef(qty[cnt]); { previous items. }
 writef(description[cnt]);

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

 writef(part_no_chr60[cnt]);
 writef(price_ea[cnt]);
 ret_err := nxtf(3); { total is output -- }
 dm_err(ret_err,nxtf_str); { field, not input }
 ret_err := putf(total[cnt]);
 end;
 writef(qty[order_no]); { line in progress }
 writef(description[order_no]);
 writef(part_no_chr60[order_no]);
 retchr := setf(prm_on,avail_attr);
 retchr := curs(onn,curstat);
 retchr := resf(1,part_no_chr60[order_no]);
 retchr := setf(prm_off,avail_attr);
 end; { while }
end; { help }

{***}
{ The following corresponds to lines 34- 64 in the CB-80 sample program. }
{***}

{ The errors below correspond to lines 311-319 in the CB-80 sample program. }

procedure init_data;
begin
 { Get the screen-handling control code from the installation file. }
 open(file_1,'current.trm',ret_err);
 if ret_err <> 255
 then begin
 readln(file_1,term250_str);
 if ioresult <> 0
 then ret_err := 255;
 end;
 if ret_err = 255
 then begin
 writeln('ERROR: No current terminal file');
 writeln('(put control code in "CURRENT.TRM")');
 halt; { stop }
 end;
 { Set up the list of part numbers. }
 open(file_2,'parts.lst',ret_err);
 if ret_err <> 255
 then begin
 cnt := 0;
 while (not eof(file_2)) and (cnt < lst_sz) do
 begin
 readln(file_2,buff_rd);
 part_lst[cnt,0] := copy(buff_rd,1,5);
 buff_rd[6] := ' ';
 page := pos(',',buff_rd);
 part_lst[cnt,1] := copy(buff_rd,8,page-9);
 price[cnt] := copy(buff_rd,page+1,length(buff_rd)-page);
 cnt := cnt+1;
 end;

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

 end else begin
 writeln('ERROR: No part no. reference file');
 halt; { stop }
 end;
 part_lst[cnt+1,0] := ''; { indicates end of list }
 close(file_2,ret_err);
 close(file_1,ret_err);
end; { init_data }

procedure head;
begin
 { All prompts are inverse video if possible, or underlined otherwise. }
 get_entry(customer); { Use relative movement }
 get_entry(address); { and GETF }
 get_entry(city);
 get_entry(state); { alphabetic only }
 get_entry(zip); { numerical validation by DM }
 get_entry(phone);
 get_entry(payment[0]); { A, B, or C only }
 { null string not a valid entry. }
 while (pos(payment[0],'ABC') = 0) or (payment[0] = '') do
 begin
 err_msg(100,onn);
 ret_err := nxtf(-2);
 dm_err(ret_err,nxtf_str); { Output an error message }
 get_entry(payment[0]); { retry }
 end;
 ret_err := nxtf(3);
 dm_err(ret_err,nxtf_str); { Go to next column. }
 case payment[0,1] of
 'A' : begin { It's a personal credit account. }
 ret_err := putf('CCOUNT'); { Show the rest of the word. }
 get_entry(payment[1]); { Get the account number. }
 end;
 'B' : begin { bank credit card }
 ret_err := putf('ANK CARD');
 dm_err(ret_err,putf_str);
 get_entry(payment[1]);
 end;
 'C' : begin { cash on delivery }
 ret_err := putf('.O.D.');
 dm_err(ret_err,putf_str);
 end;
 end;
 err_msg(100,off); { Turn it off. }
end; { head }

begin { program }

{***}
{ S T A R T P R O G R A M H E R E }
{***}

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

{***}
{ The following corresponds to lines 123-232 in the CB-80 sample program. }
{***}

 init_data;
 ret_err := initdm(term250_str); { Initialize the library. }
 dm_err(ret_err,initdm_str);
 retchr := retdm(avail_attr); { Which CRT attributes are available? }
 if avail_attr[3] <> '0'
 then begin { If inverse video is supported }
 prm_on := '031';
 prm_off := '330'; { then use it for prompts }
 end else begin
 prm_on := '0';
 prm_off := '3'; { just initials }
 end;

 { Open the display file, show it, and move to the first field. }
 ret_err := opndis('ORDERS.DIS'); { Open the file. }
 dm_err(ret_err,opndis_str);
 repeat
 ret_err := dispd(phone_order); { Show the display. }
 dm_err(ret_err,dispd_str);
 ret_err := nxtf(-10); { 1st field }
 dm_err(ret_err,nxtf_str);
 head;

 { Take the order now. }
 ret_err := posf(75); { Turn on the message }
 dm_err(ret_err,posf_str); { about the ending entry. }
 retchr := setf(onn,avail_attr);
 order_no := 0; { up to 5 }
 repeat
 get_entry(qty[order_no]); { quantity of items }
 qty_dec := BCDVAL(qty[order_no]);
 if qty_dec <> 0
 then begin { Stop entry. }
 get_entry(description[order_no]);
 err_msg(76,onn); { control-Z reference message }
 repeat
 get_entry(part_no_chr60[order_no]);
 help; { ^Z gives part # display }
 part_fb15 := search(part_no_chr60[order_no]);
 if part_fb15 = -1
 then begin { not a valid part number }
 err_msg(101,onn);
 ret_err := nxtf(-2);
 dm_err(ret_err,nxtf_str);
 end;
 until part_fb15 <> -1; { retry }
 err_msg(101,off); { Turn off the error message. }
 err_msg(76,off); { Turn off the control-z message. }

file:///C|/...tion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPG86.TXT[2/6/2012 4:31:25 PM]

 ret_err := nxtf(2); { Write the normal price. }
 dm_err(ret_err,nxtf_str);
 ret_err := putf(price[part_fb15]);
 dm_err(ret_err,putf_str);
 retchr := setf(prm_on,avail_attr);
 retchr := updf(price_ea[order_no]);{ If CR, get the initial value. }
 retchr := setf(prm_off,avail_attr);
 ret_err := nxtf(3); { the field for the total }
 dm_err(ret_err,nxtf_str);
 price_dec := BCDVAL(price_ea[order_no]);
 total_dec[order_no] := qty_dec * price_dec;
 retchr := BCDSTR(total_dec[order_no],total[order_no]);
 ret_err := putf(total[order_no]);
 dm_err(ret_err,putf_str);
 order_no := order_no+1; { Only 5 are allowed. }
 end;
 until (qty_dec = 0) or (order_no >= 5);
 order_no := 4; { Only 0 to 4 are allowed. }
 sale_dec := 0;
 for cnt := 0 to order_no do { Calculate the total bill. }
 sale_dec := sale_dec + total_dec[cnt];
 retchr := BCDSTR(sale_dec,sale);
 ret_err := posf(26);
 dm_err(ret_err,posf_str);
 ret_err := putf(sale); { Write the total sale. }
 for cnt := 0 to order_no do
 total_dec[cnt] := 0; { zero out intermediate totals }
 dm_err(ret_err,putf_str);
 ret_err := nxtf(20); { wait until ready }
 dm_err(ret_err,nxtf_str);
 retchr := setf(onn,avail_attr); { Turn on the prompt. }
 retchr := getf(retf60_str); { Wait for a carriage return. }
 until endf = 27;
 { output data to file }
 clrscr_ret := clrscr;
 ret_err := clsdis; { close display file }
 dm_err(ret_err,clsdis_str);
 exit;
end.

EOF

file:///C|/...ion/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMPGPC.TXT[2/6/2012 4:31:26 PM]

DMPGPC.WS4 (= Display Manager Programmer's Guide)

- "Display Manager Programmer's Guide"
 for PC DOS

First Edition: July 1983

(Retyped by Emmanuel ROCHE.)

--> To be found... <--

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

DMRM.WS4 (= Display Manager Reference Manual)

- "Display Manager Reference Manual"

First Edition: July 1983

(Retyped by Emmanuel ROCHE.)

Foreword

Display Manager, a productivity tool from Digital Research, is a quick, easy-
to-use, efficient tool to help you design and use display screens in your
application programs.

For system designers, Display Manager offers the ability to design display
screens exactly as they appear to the end-user of a program. Display design
takes place on a computer terminal screen, not on paper worksheets.

For programmers, Display Manager simplifies programming tasks, reduces the
size and complexity of programs, and makes it possible for a program to work
on many different computer terminals with virtually no changes required in the
program code. In many ways, Display Manager is an automatic programming tool.

Your Display Manager documentation includes the following:

 1) "Display Manager Reference Manual"
 2) "Display Manager Programmer's Guide"

Your "Reference Manual" describes how to create displays and use them in your
application programs. Your "Programmer's Guide" contains information specific
to using Display Manager with a particular operating system and programming
languages. You need both the "Reference Manual" and "Programmer's Guide" to
make proper use of Display Manager.

Note: Due to the limitations of the hardware of 8-bit microcomputers, the Help
and Color facilities in Display Manager are not available to computers based
on these chips. If you are using Display Manager on such equipment, disregard
all references in your documentation to these facilities.

Table of Contents

1 Introduction to Display Manager

Major Components
Benefits

 What You See Is What You Get
 Reduced Program Size

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

 Easier Program Maintenance
 Simplified Display Designing Methods
 Automatic Documentation
 Uses the Features of any Computer Terminal
 Separates Designing and Programming Tasks
 Optimum Response Times

2 How Display Manager Works

Terminal Setup Environment
Editor Environment
Applications Programming Environment
Run-time Environment
Summary

3 Terminal Setup Program

Starting the Terminal Setup Program
Overview of Terminal Setup Program Options

 Option E--Create Editor Program for Design Terminal
 Option W--Write Terminal Control Codes to Disk File
 Option C--Custom Terminal Setup
 Option T--Test Terminal Control Codes
 Option ESC--Stop Terminal Setup Program

Option E--Create Editor for Design Terminal
Option W--Write Terminal Control Codes to Disk File
Option C--Custom Terminal Setup
Option T--Test Terminal Control Codes

4 Display Design Concepts

Displays
Display Files
Display Fields

 Literal Fields
 Input Fields
 Output Field

Video Attributes
Color Attributes
Status Window

 Status Window Elements
 Status Window Video Attributes
 Status Window Color Attributes

5 Editor options

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Starting the Editor
Editor main menu
Option E--Edit A Display

 Creating New Displays
 Global Values
 Copying Existing Displays
 Editing Existing Displays

Option D--Delete a Display
Option R--Renumber The Displays

 Renumbering Groups of Displays
 Renumbering Individual Displays

Option O--Open A Display File
Option Q--Help and Instructions
Option X--Exit From the Editior

6 Editor Commands

Cursor Movement Commands

 Beginning of Field: Ctrl-US or Ctrl-UH
 Beginning of Next Line: RETURN
 Down Half Screen: Ctrl-QX or Ctrl-QJ
 Down One Line: Ctrl-X or Ctrl-J
 End of Field: Ctrl-UD or Ctrl-UL
 Left Half Screen: Ctrl-QS or Ctrl-QH
 Left One Space: Ctrl-S or Ctrl-H
 Next Field: Ctrl-UF
 Next Word: Ctrl-F
 Previous Field: Ctrl-UA
 Previous Word: Ctrl-A
 Right Half Screen: Ctrl-QD or Ctrl-QL
 Right One Space: Ctrl-D or Ctrl-L
 Tab: Ctrl-I
 Up Half Screen: Ctrl-QE or Ctrl-QK
 Up One Line: Ctrl-E or Ctrl-K

Field Editing Commands

 Boundary Display (All Fields): Ctrl-QB
 Boundary Display (Fields on a Single Line): Ctrl-B
 Change Field to Literal: Ctrl-UZ
 Copy Field to Cursor Location: Ctrl-UC
 Define Input Field: Ctrl-UI
 Define Output Field: Ctrl-UO
 Delete Field: Ctrl-UG
 Move Right Field: Ctrl-UV
 Move Field to Cursor Location: Ctrl-UM
 Renumber Fields: Ctrl-UR

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

 Set Status Window Values as Default: Ctrl-UW
 Status Window Display: Ctrl-W
 Status Window Display (Constant): Ctrl-QW
 Template Insertion: Ctrl-P
 Video/Color Attributes Display: Ctrl-QY or Ctrl-Y

Display Design Commands

 Center Line: Ctrl-OC
 Delete Character to Left: DEL ("<--")
 Delete Character Under Cursor: Ctrl-G
 Delete Line: Ctrl-QG
 Delete Word to Right: Ctrl-T
 Draw Border: Ctrl-OB
 Insert Line: Ctrl-QV
 Insert Space: Ctrl-V
 Print Documentation: Ctrl-OUW

Display File Commands

 Abandon Work, Do Not Save Display: Ctrl-OUQ
 Change Global Values: Ctrl-OUG
 Save Display, Edit the Next One: Ctrl-OUN
 Save Display, Edit the Previous One: Ctrl-OUP
 Save Display, Resume Editing Same One: Ctrl-OUS
 Save Display, Return to Main Menu: Ctrl-OUT
 Write Documentation: Ctrl-OUW
 Help Instructions: Ctrl-OU?

Editor Commands Summary

7 Applications Programming

Overview of Applications Programming
Function Categories
Function Descriptions

 CLRSCR
 CLSDIS
 CURS
 DISPD
 ENDF
 GETF
 INITDM
 NXTF
 OPNDIS
 POSF
 PUTF
 RESF
 RETDM
 RETF
 SETF
 UPDF

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

8 Run-time Environment

Appendixes

A Terminal Control Codes

TERMS.DM File

 Display Manager-supported Terminals
 User-supported Terminals

Terminal Control Code Structures
Display Manager-supported Terminals
User-supported Terminals

B Summary of Restrictions and Limitations

Terminals
Display Files
Fields
Run-time Library

C Custom Terminal Setup

Option T--Set Up Control Codes for this Terminal
Option F--Set Up Control Codes for a Different Terminal
Option C--Change Terminal Control Codes
Option D--Delete Terminal Control Codes
Option E--Examine Terminal Control Codes
Custom Terminal Setup Questions

 Screen Size Questions
 Clear Screen Questions
 Cursor Positioning Questions
 Start-up Codes Questions
 Standard Video Attributes Questions
 User-defined Attributes Questions
 Multiple Attributes Questions
 Cursor Arrow Keys Questions
 Function Keys Questions
 Cursor ON/OFF Questions

Completing Custom Terminal Setup

Tables and Figures

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Tables

Video Attributes
Color Attributes
Input Field Validation Codes
Interpretation of Input Validation Types
Field Format Codes
Background Color Codes
Foreground Color Codes

Editor Main Menu Options

Editor Commands by Category
Editor Commands Summary

Display Manager Functions by Category
CURS Function Argument Values
ENDF Return Values
Data Entry Editing Control Keys
Program Attributes String
INITDM Run-time Errors
NXTF Argument Values
RETDM Terminal Features
Field Information from RETF
SETF Argument Values

Run-time Error Function Codes
Run-time Error Values

Display Manager-supported Terminals
User-supported Terminals

Custom Terminal Setup Options
Other Display Manager Files

Figures

Basic Principles

Terminal Setup Program Main Menu
Create Editor for Design Terminal
Terminal Control Codes/Editor Name Screen
Terminal Control Code Filename Prompt
Write Terminal Control Codes to Disk File
Terminal Test Menu

Editor Environment
Sample Menu Display
Output Field Status Window
Input Field Status Window

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Editor Start-up Screen
Display File Name Prompt
New Display File Prompt
Display File Open Message
Editor Main Menu
Edit a Display Screen (New Display File)
New Display Title Screen
Global Values Prompt
Copy Existing Display Prompt
Copy Existing Display Options Menu
Edit a Display Screen (Existing Display File)
Delete a Display Screen
Renumber Displays Screen
Example of Renumbering Groups of Dispiays
Example of Renumbering an Individual Display
Display File Closing Message
Open Another Display File Prompt
Editor Exit Screen

Documentation Options Menu
Sample Display
Sample of Display Documentation
Output Options Menu

Application Programming Environment
Terminal Control Code Example String

Run-time Environment

Example of Terminal Control Code

Custom Terminal Setup Options Menu
Set Up Control Codes for This Terminal
Set Up Control Codes for a Different Terminal
Change Terminal Control Codes
Custom Terminal Setup Questions Menu
User-supported Terminal Setup Screen

Section 1: Introduction to Display Manager
--

A time-consuming, tedious task in developing computer programs is designing,
creating, and maintaining the displays that show on the screen at the time the
program is run. For example, if you write a program in CBASIC Compiler, you
need a large number of PRINT and PRINT USING statements to show displays on
the screen. If the program has many displays, it might require hundreds of
such statements. Furthermore, the displays require a large amount of main
memory, and make the program difficult to debug and maintain.

Display Manager solves these and other problems by making it possible to
design displays directly on your terminal screen. When a display looks exactly
as you want it to appear when your program is run, you can store it in a disk
file for subsequent use by the program. When the program needs to show a

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

display on the terminal, it reads the display from the disk file, and places
it on the screen.

You can design displays on one terminal, then show them on the same or
different terminals. Display Manager makes it possible to design displays that
work properly on a wide variety of terminals.

1.1 Major components

Display Manager has 3 major components:

 1) The Terminal Setup Program makes it possible for your application
 programs to work with whatever computer terminals you require. Under
 most circumstances, simply run the program, and select the terminals
 that you want to use from a list.

 2) The Editor Program helps you design, create, change, and delete
 displays directly on your terminal screen. Many additional options are
 available to you in this program.

 3) The Run-time Library is a library of routines that your application
 programs can use to manage and manipulate the displays created with
 the Editor program.

 /------------------------------
 +----------+ / Design and create displays
 +-----------> | Terminal | \ using any computer terminal...
 | +----------+ \------------------------------
 | |
 | +----------+ /------------------------------
 | | Display | / ... then store them
 | | file | \ in a disk file...
 +------+-------+ +----------+ \------------------------------
 | These can be | |
 | the same or | +----------+ /------------------------------
 | different | | Program | / ... to be used later
 | terminals. | | | \ by your program...
 +------+-------+ +----------+ \------------------------------
 | |
 | +----------+ /------------------------------
 +------------> | Terminal | / ... when they are shown on a
 +----------+ \ terminal as the program is run.
 \------------------------------

 (Displays can be designed to work on a wide variety of terminals.)

 Figure 1-1. Basic Principles

1.2 Benefits

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

The following sections describe the most significant benefits of using Display
Manager.

1.2.1 What You See Is What You Get

You design displays with Display Manager on a terminal screen to look exactly
as you want them to appear when your application program runs. Display Manager
also simplifies using available features on a terminal, such as highlighting,
inverse video, underlining, color, and others.

1.2.2 Reduced Program Size

Programs written using Display Manager require fewer lines of code. Here are
the primary reasons:

 - You can virtually eliminate PRINT- and PRINT USING-type statements,
 replacing them with a single statement calling a Display Manager
 routine to perform the same functions.

 - Display Manager routines provide the necessary logic to check the
 validity of information entered on a terminal by an end-user.
 Consequently, your programs do not need extensive data validation
 routines. Display Manager's validation routines provide you with
 several options for handling invalid input.

 - The actual image of each display in a program is stored in a compacted
 file on disk, and not as part of your program. This reduces the size
 of both the source and object program; consequently, the program
 requires less memory to run.

1.2.3 Easier Program Maintenance

Because your programs contain fewer lines of code, they are shorter, simpler,
and much easier to debug and maintain. In many programs, PRINT or PRINT USING
and data validation routines alone comprise much of the code. Their
elimination reduces the complexity and size of your programs.

1.2.4 Simplified Display Designing Methods
--

Without Display Manager, the simplest method for designing displays is to lay
them out on worksheets as a means of determining the row and column numbers
for each field. With Display Manager, you type the information that you want
shown in your display on the screen of your terminal. You reserve space in the
display for entering information, and displaying information derived by your
program. Row and column numbers are no longer a major concern.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Also, changes in the design of a display do not require poring over endless
formatting statements, such as PRINT USING, to find and change the correct
ones. Simply use the Display Manager Editor to place the display back on your
terminal screen, make the necessary changes, and store the modified display
back in the disk file.

1.2.5 Automatic Documentation

By entering a single command on your terminal keyboard, you can instruct
Display Manager to prepare detailed documentation for each display you create.
You can either print the documentation, or store it in a disk file. You can
then use a word processor to enhance the information as required. This is a
simple, effective method for creating user manuals and program documentation.

1.2.6 Uses the Features of any Computer Terminal
--

Without Display Manager, creating an application program to work with a
variety of terminals is a complex task. You must determine what codes to send
to the terminal to activate its features, then code them into your program.
Because terminals vary significantly in their features and codes, this can add
a great deal of time and difficulty to the task.

With Display Manager, creating programs to work with different terminals
requires minimum effort on your part. In most cases, you only must enter one
line of code in your source program to make it work with different terminals.
This is even true when you design applications to work on both monochrome and
color terminals.

1.2.7 Separates Designing and Programing Tasks
--

With Display Manager, designing displays is independent of coding the program.
A systems analyst can develop as a separate step all displays for an
application. A programmer can then use the displays, specifications, and
documentation created with Display Manager to do the coding in the most
efficient manner. This separation of tasks means that the user-interface for
your applications is designed and created independently of the actual program
logic, thus making your applications more user-oriented.

1.2.8 Optimum Response Times

Display Manager handles screen display, validation of input information, and
output formatting using optimized assembly code. This provides response times
unattainable by other methods, and frees you from these basic tasks.

Many additional benefits become apparent as you begin to use Display Manager.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Section 2: How Display Manager Works

This section explains how Display Manager works by discussing the various
environments in which it functions. For this discussion, environment refers to
your computer hardware and software. Because several terms and concepts unique
to Display Manager first appear in this section, you might want to study the
Glossary before reading this material.

You use Display Manager in 4 primary environments:

 1) Terminal Setup
 2) Editor
 3) Applications Programming
 4) Run-time

A brief discussion of each environment follows. Sections 3 through 8 contain
detailed descriptions of each environment and its options.

2.1 TERMINAL SETUP ENVIRONMENT

Display Manager works with most terminals on the market today. Because these
terminals vary in their features, capabilities, and operation, you must
specify to Display Manager which terminals you will use. The terminal setup
program, named DMSET, helps you do this.

Display Manager sends control codes to a terminal to activate it and use its
features. Therefore, to function properly with a terminal, Display Manager
must know what control codes to send. On your distribution disks is a file
named TERMS.DM, which contains the control codes for those terminals that you
can use with Display Manager.

When run, the DMSET program shows you a list of the terminals in the TERMS.DM
file, and asks you to pick the terminal or terminals that you want to use from
that list. In most cases, that is the only step needed to set up a terminal
for use with Display Manager (see Section 3 for more detailed information). If
you want to use Display Manager with a terminal not in TERMS.DM, you must
provide the control codes for that terminal by answering a series of questions
that the DMSET program asks. These questions are in common English but, to
answer them, you need the manual for the terminal in question (see Appendix C
for more detailed information).

A terminal used with Display Manager can fall into one, or both, of two
categories:

 1) A design terminal serves to actually create the displays for your
 application program. You use this terminal with the Editor program in
 the Editor environment. The Editor program can only be set up to use
 one, specific design terminal, but you can set up different versions
 of the Editor for use with other design terminals.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

 2) Run-time terminals function at the time the application program runs,
 to present the displays created on the design terminal. You can use
 run-time terminals in the run-time environment. You can design
 application programs to work with any terminal in the TERMS.DM file.

Section 3 and Appendix C describe the options available in the terminal setup
environment. Appendix A describes terminal control codes and the TERMS.DM
file.

2.2 THE EDITOR ENVIRONMENT

In this environment, you use the design terminal to create the displays that
your application program uses in the run-time environment.

While using the Editor, you create a display directly on the screen of the
design terminal. When the display is exactly as you want it to appear at run-
time, you store that display in a display file on disk. Your application
program can use the displays in this file at run-time.

Besides creating displays, you can use the Editor to change displays after
they are created, remove displays from the file when they are no longer
needed, prepare documentation for individual displays, and more.

Sections 4 through 6 describe how to use the Editor.

2.3 APPLICATIONS PROGRAMMING ENVIRONMENT
--

Once you have created the displays that you want to use at run-time, you can
write your application program using one of the Digital Research programming
languages that works with Display Manager (refer to your "Display Manager
Programmer's Guide").

As you create the source code for your program, you code in function calls to
Display Manager routines. These routines are in the Display Manager Run-time
Library, and provide the logic needed to do these and other things:

 - Place a display on the run-time terminal screen.

 - Retrieve information entered by the end-user.

 - Show information on the display.

 - Place the cursor in a specific location in the display.

 - Activate or deactivate features on the run-time terminal, such as
 inverse video, half intensity, color, and graphics.

After your application program is compiled using the appropriate Digital
Research compiler, link the resulting object module to the Run-time Library to
include the necessary routines as part of your program. You can then use the

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

object module, with the included routines, in the run-time environment.

Section 7 describes the applications programming environment. It also includes
descriptions of the various Display Manager routines (functions) that you can
use in your application programs.

2.4 RUN-TIME ENVIRONMENT

Everything created and accomplished in the 3 preceding environments comes
together in the run-time environment. This includes the following:

 - the file of terminal control codes created with the DMSET program

 - the display file created with the Editor containing the displays to be
 used by your application program

 - your application program object module including the routines linked
 in from the Run-time Library

In the run-time environment, the end-user runs your program using a run-time
terminal. Your program retrieves displays from the display file, and shows
them on the run-time terminal screen.

Section 8 describes the run-time environment. It also lists and describes
possible run-time errors.

2.5 SUMMARY

To summarize, here are the steps usually required to use Display Manager:

 1. Create a version of the Editor program for use with your particular
 design terminal. This step need only be completed once for a
 particular design terminal, and is accomplished using the DMSET
 program.

 2. Specify the terminals with which your application program will be used
 by setting up the control codes for each. Use the DMSET program to
 accomplish this step, too.

 3. Create the displays that you will use in your application program
 using the version of the Editor program created in step 1. Prepare
 documentation for your displays using an option available in the
 Editor program.

 4. Write your application programs using one of the Digital Research
 programming languages supported by Display Manager. Prepare the code
 using whatever Display Manager functions your program requires.

 5. Compile your programs, and link to the necessary modules in the
 Display Manager Run-time Library.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Section 3: Terminal Setup Program

You can use DMSET, the terminal setup program, to tell Display Manager the
characteristics of a terminal. You can also use it to create the Editor
program for use with a design terminal, and to set up one or more run-time
terminals for use with your application program.

The only requirements of a terminal used with Display Manager are that it have
an addressable cursor, a clear screen command, and a minimum screen size of 24
rows by 52 columns. All other features are optional.

3.1 STARTING THE TERMINAL SETUP PROGRAM

To start DMSET, type the following command at your operating system prompt:

 DMSET

The screen shows the Digital Research copyright banner, and a message asks you
to wait while the terminal control codes from the TERMS.DM file are loaded
into memory. The program then asks whether you want to run in Help or non-Help
mode. Help mode provides detailed descriptions of each procedure before it is
run; non-Help mode bypasses most of these descriptions, and permits the
program to run faster. After you make this selection, the main Menu appears on
your screen, as shown in the following figure.

 M A I N M E N U

 Option Function
 E Create EDITOR Program for Design Terminal
 W WRITE Terminal Control Codes to disk file
 C CUSTOM Terminal Setup
 T TEST Terminal Control Codes
 ESC Stop Terminal Setup Program (press ESC Key)

 Please enter Your selection --> : :

 Figure 3-1. Terminal Setup Program Main Menu

3.2 OVERVIEW OF TERMINAL SETUP PROGRAM OPTIONS
--

The next table provides brief explanations of the options available on this
menu. Detailed explanations of these options occur later in this section,
except for option C, which is explained in Appendix C.

Table 3-1. Terminal setup options

Format: Option

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

 Explanation

Option E--Create Editor Program for Design Terminal
Before you can use the Editor program to design and create displays, you must
create a version of it for a specific design terminal. Completing this option
provides you with a version of the Editor tailored for use with a specific
terminal.

Option W--Write Terminal Control Codes to Disk File
Use this option to create or extend a disk file containing the terminal
control codes for the run-time terminals to be used with your application
program. Your application program can later use the codes in this file to
properly initialize the run-time terminal.

Option C--Custom Terminal Setup
Use this option to add, change, delete, or examine terminal control codes in
the TERMS.DM file. Appendix C contains detailed instructions for custom
terminal setups.

Option T--Test Terminal Control Codes
Use this option to verify that the control codes for a terminal in TERMS.DM
are correct.

Option ESC--Stop Terminal Setup Program
Press the ESC key to stop the program and return control to your operating
system.

3.2.1 OPTION E--CREATE EDITOR FOR DESIGN TERMINAL

DMEDU.typ is a program file found on your distribution disks. (The "typ" is
the filetype used for program files in your operating system: COM for CP/M
2.2, CMD for CP/M-86, or EXE for MS-DOS.) This file contains a version of the
Editor which is non-specific to any design terminal. When you create the
Editor for your design terminal, you create a new version of DMEDU with a
different name. You cannot use DMEDU as your Editor, or unpredictable results
occur. Note that DMEDU, DMSET, and the TERMS.DM file must be on the same disk
when creating the Editor.

The following figure "Create Editor for Design Terminal" illustrates the
environment where you enter when creating the Editor for use with a design
terminal. When you select option E from the Main Menu, a list of the terminals
contained in the TERMS.DM file shows on your screen. You can scroll through
this list to find the terminal that you want to set up as the design terminal
for use with the Editor.

 +------------+
 | The editor | without design terminal
 | (DMEDU.typ)|
 +------------+
 |
 +---------+
+-----------------+ --------\ | Terminal| /------------- +---------------+

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

| Design terminal | Option E > | Setup | < Control codes | TERMS.DM file |
+-----------------+ --------/ | program | \------------- +---------------+
 ^ +---------+
 | |
 | +------------+
 +------------------> | The editor | ... with design terminal
 | (DMED.typ) |
 +------------+

 Figure 3-2. Create Editor for Design Terminal

When you see the design terminal on the list, you also see a 3-character code
listed with it, such as A41 or Z11. Type this code to select the terminal
from the list. If you type the code correctly, the word "FOUND" appears on the
screen. Press RETURN, and terminal selection is complete.

If you type an incorrect code when selecting the terminal, the words "NOT
FOUND" appear. Use the DEL key ("<--") to erase your entry, then enter a
correct code. Note that you can also use the scroll commands Ctrl-W and Ctrl-
Z, or the ESC key, at this time.

If you do not see your design terminal listed, you have 2 options as to how to
proceed:

 1. It might be that the design terminal uses the same control codes as
 another terminal already in the TERMS.DM file. If this is the case,
 select the terminal from the list, and then use the test option
 (option T on the Main Menu) to verify that the design terminal
 operates correctly.

 2. If the design terminal is neither in the displayed list, nor uses the
 same codes as one that is, press ESC to return to the Main Menu. Then,
 select option C to do a custom terminal setup. See Appendix C for
 instructions.

After you select a terminal from the displayed list, your selection is
displayed, along with its terminal control codes. The program then asks what
name you want to assign to the version of the Editor that you are now
creating. Your screen appears similar to the next figure.

 The selected terminal is: <xxxxxxxx>
 Terminal Control Codes: ABCD EFG3 MNPA BCDZ FGH9

 Please select a name for the Editor. Press RETURN
 to name the Editor DMED, type a different name,
 or Press ESC to exit --> DMED

 The Editor is now named DMED.typ
 Press any Key to continue.

 Figure 3-3. Terminal Control Codes/Editor Name Screen

Before proceeding, verify that you have selected the correct terminal. The
name of the terminal that you selected replaces <xxxxxxxx>. If you selected

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

the wrong terminal, press ESC to make a different selection.

If you press RETURN, the Editor that you are creating is assigned the name
DMED. The program automatically appends the appropriate filetype for your
operating system, such as COM (for CP/M 2.2), CMD (for CP/M-86), or EXE (for
MS-DOS).

To store the Editor on a drive other than your current one, precede the name
with a drive specifier. For example, if you are logged to drive A but want to
store the Editor on drive B under the name DMED, enter the following response:

 B:DMED

You can assign any valid filename to the Editor except DMEDU.typ, where "typ"
is the filetype used for program files in your operating system. For example,
DMEDU.COM is an unacceptable name in a CP/M-86 operating system environment.

After you have assigned a name for the Editor, press any key to return to the
Main Menu. To run the Editor, exit from the DMSET program, and type the
assigned name at your operating system prompt.

3.2.2 OPTION W--WRITE TERMINAL CONTROL CODES TO DISK FILE

This option allows you to write your application programs independent of the
run-time terminals on which they are used. When you select this option, the
terminals in the TERMS.DM file list on your screen. You can then select the
terminals that you want to support in your application program from that list,
and have them stored in a disk file that you name. Your application program
can ask the end-user what run-time terminal is being used, and then read the
correct control codes for that terminal from this file. The following figure
"Write Terminal Control Codes to Disk File" illustrates this environment.

 +----------+
 | TERMS.DM |
 | file |
 +----------+
 |
 +----------+
 +--------------+ --------\ | Terminal |
 | Any terminal | Option W > | setup |
 +--------------+ --------/ | program |
 +----------+
 |
 +--------------+
 +----------------------+ | Terminal |
 | Run-time terminal(s) | - - -> | control code |
 +----------------------+ | file |
 +--------------+
 |
 +--------------+
 | Application |
 | program |

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

 +--------------+

 Figure 3-4. Write Terminal Control Codes to Disk File

After you select option W from the Main Menu, a prompt asks you to enter the
name of the file to which you want to write the terminal control codes, as
shown in the following figure.

 WRITE TERMINAL CONTROL CODES TO DISK FILE

 STEP 1-Indicate name of disk file to store code
 STEP 2-Select codes to write in disk file

 (Press ESC to exit this option.)
 Enter file to write control code to:

 Figure 3-5. Terminal Control Code Filename Prompt

The name that you enter must be an acceptable filename and filetype. If you
enter the name of an existing file, you are asked if you want to add the codes
for the terminals that you select to the end of that file, or overwrite it. If
the file does not exist, you have the option to create it. Note that you
cannot assign the name TERMS.DM to this file.

To create or access a file on a drive other than the one to which you are
logged, precede the name with a valid drive specifier.

Next, you see the list of terminals in the TERMS.DM file. You can scroll
through this list until you find the terminal that you want to add, then enter
its 3-character code. If you enter a code that is not in the list, the words
"NOT FOUND" appear. Use the DEL key ("<--") to erase the code, then enter a
correct one. If you enter a code that the DMSET program cannot recognize, the
words "BAD ENTRY" appear, and you must press ESC to re-enter the code.

When you enter an acceptable code, the word "FOUND" appears. Press RETURN, and
you are shown which terminal you selected, along with its terminal control
codes.

A series of prompts then ask you to do the following:

 - Verify that you want to use the codes that you have selected as they
 are shown to you, one at a time.

 - Indicate whether or not you want to select any more terminal control
 codes for your file.

 - Confirm whether or not you want to write the selected codes into the
 file.

At the conclusion of this procedure, the program returns you to the Main Menu.

Note: Your Display Manager distribution disks contain a CBASIC Compiler
program named INSTALL.BAS. This program is designed to install the end-user's
terminal at run-time, using the control codes in the TERMS.DM file. This is an

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

alternate method to the one just described for installing the run-time
terminal. You can modify INSTALL.BAS any way you want, and distribute it along
with the TERMS.DM file and your application programs.

3.2.3 OPTION C--CUSTOM TERMINAL SETUP

The overview at the beginning of this section explains when you might need to
use this option. Because this is not a commonly used option, it is discussed
in Appendix C.

3.2.4 OPTION T--TEST TERMINAL CONTROL CODES

You can use this option to verify that the control codes for a design or run-
time terminal are correct. You can only conduct this test using the actual
terminal whose codes you want to verify. Testing the control codes for one
terminal while using a different one gives unpredictable results, and might
hang-up your terminal, forcing you to reboot your system.

When you select this option, the Terminal Test Menu appears on your screen, as
shown in the following figure.

 TERMINAL TEST MENU for <terminal name>

 Option Tests . . .
 A ALL features
 S Terminal STARTUP code
 P Cursor POSITIONING
 C CLEAR screen
 Z Screen SIZE
 O Cursor ON/OFF
 T STANDARD video attributes
 U USER-defined attributes
 M MULTIPLE attributes
 R Cursor ARROW KEYS
 F FUNCTION KEYS

 Please enter Your selection --> : :

 Figure 3-6. Terminal Test Menu

You conduct all tests interactively. Display Manager shows you a message
explaining what results to expect, and asks if you want to continue. If you
do, the test is performed, and the results show on your terminal screen. The
program then asks you to confirm if the expected results happened. You then
have the option to go on to the next test, or return to the Terminal Test
Menu. Display Manager cannot determine whether or not the test was successful;
you must decide on its success or failure, and react accordingly. If a
particular test fails, it usually indicates that you need to change the
control codes for the terminal that you are testing (see Appendix C).

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Note that the Terminal Test Menu provides the option to test all features
shown on the menu (option A), or only specific ones. If you select option A,
the program conducts each of the other tests on the menu in turn. If you
select an individual test, the program completes it, and then returns you to
the Terminal Test Menu.

3.2.5 OPTION ESC--STOP TERMINAL SETUP PROGRAM

You can press ESC during any test, to terminate the testing procedures and
return to the Main Menu.

Section 4: Display Design Concepts

A concept basic to understanding display design with the Editor is that
designing the displays, and creating application programs to use those
displays, are 2 separate steps. This section explains the fundamentals of
display design. Section 5 describes the options found on the Editor Main Menu.
Section 6 lists and discusses the Editor commmands. Section 7 explains how to
use displays in your application programs.

The following figure "Editor Environment" illustrates the environment where
you enter when using the Editor. In that environment, you design displays on
the design terminal while running the Editor program (usually named DMED).
When you complete the design of the display, you can store it in a file on one
of your disks (a display file). Your application program subsequently reads
the displays from the display file at run-time, and shows them on the run-time
terminal when needed.

 +-----------------+
 | Design terminal | <-----------+
 +-----------------+ |
 | |
 +------------+ |
 | The editor | |
 | (DMED) | |
 +------------+ |
 | |
 +--------------+ |
 | Up to No.250 | |
 +-+------------+-+ +---------------------+
 | No.n+1 |/----> | Display file (.DIS) |
 +-+------------+-+ +---------------------+
 | Display No.1 |/ |
 +--------------+ +--------------------------+
 | Your application program |
 +--------------------------+

 Figure 4-1. Editor Environment

You can also use the Editor to keep your display files accurate and up-to-

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

date. You can do the following:

 - Recall displays from the display file to make corrections or changes.
 - Delete a display from the file when it is no longer needed.
 - Copy a display from a file, to use as a model when creating new
 displays.

Section 5 gives detailed explanations of these and other options.

4.1 DISPLAYS

A display is the information shown on a terminal screen. Displays usually
cover the entire screen, but they can also cover only a portion of it. They
serve to present information or instructions to the end-user, ask questions,
present a list of options from which to choose, establish a form for data
entry, or virtually any other purpose. The following figure is an example of a
display showing a list of options for the end-user to choose. (Displays of
this type are known as menus.)

 A C C O U N T S P A Y A B L E

 -
 MAIN MENU
 -
 Option Function
 1 Accounts Payable transaction maintenance
 2 Vendor maintenance
 3 Print Accounts Payable checks
 4 Print Accounts Payable reports
 X Stop Program/return to operating system

 : : < ----- Please enter your selection

 Figure 4-2. Sample Menu Display

Each display in a display file receives a unique display reference number,
ranging from 1 to 250, that you assign when creating the display. You can
assign a new number at any time. Display reference numbers do not have to be
contiguous.

Optionally, you can assign a display title in addition to the display
reference number. The title bears no relationship to any other elements; it is
strictly for your convenience in identifying one display from another when
they list on your screen. Display titles can contain as many as 30 characters,
including spaces. For example, "AP01/Accts Pay Main Menu" is an acceptable
display title for the display shown in the preceding figure.

The Editor computes the screen size required to accommodate each display. The
display size is based on the number of rows and columns required for the
display. If your application program attempts to show a display on a screen
with too few rows or columns, the display appears correctly only if all fields
(including literal fields) are within the boundaries of the screen. Otherwise,

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

the results are unpredictable. This flexibility makes it possible to create
displays for different sized screens.

Note: You cannot use the last column of the last row on the screen because, on
many terminals, a character in this position causes the screen to scroll
upward.

You can assign each display global values specifying whether or not to clear
the run-time terminal screen before showing the display and, if your operating
system supports the use of color, the color attributes to be applied. Section
5 discusses global values.

4.2 DISPLAY FILES

A display file contains the displays designed and saved using the Editor. You
can store up to 250 displays in a display file. Your application program can
use as many different display files as disk space on the run-time computer
permits. However, only one display file can be open at any given time.

Assign your display files unique filenames that are compatible with your
operating system. Filetypes can be used, and an informal standard of DIS is
recommended. For example, a recommended name for an accounts payable display
file might be ACCTSPAY.DIS.

4.3 DISPLAY FIELDS

Each display consists of one or more display fields. A display field is a
portion of the display beginning at a particular row and column, and ending on
the same row. The length of a display field can be from one column to an
entire row, but fields cannot overlap.

Primarily, display fields do the following at run-time:

 - Retrieve information entered by the end-user. These are input fields.

 - Display variable information derived by your program from computations
 and data files. These are output fields.

 - Display constant information, such as instructions, prompts, and field
 labels. These are literal fields.

The Editor assigns each input and output field in a display a field reference
number when you create it. The Editor also provides an option to renumber one
or more fields if needed. Field reference numbers range from 1 to 250.

You can assign video attributes to input and output fields. These attributes
are the special effects that may be available on the run-time terminal, such
as inverse video, full/half intensity, underlining, and color. If you assign a
field a video or color attribute, but the feature is not available on the run-
time terminal, the attribute is ignored.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

4.3.1 Literal Fields

Literal fields contain information that is constant. For example, literal
fields can serve as labels for input and output fields, column headings, data
entry prompts, and instructions.

Literal fields cannot be changed during run-time. In fact, the end-user cannot
move the cursor into a literal field.

Any field in a display not specifically defined as an input or output field is
a literal field. Literal fields are not numbered, and cannot be assigned video
attributes.

4.3.2 Input Fields

The end-user can enter information into input fields during run-time. Your
application program can use the GETF (Get Field) or UPDF (Update Field)
functions to retrieve information from input fields. Section 7 describes these
and other functions.

Here are some of the ways you can control the input fields in your displays:

 - Assign video or color attributes to the field.

 - Assign initial (or default) values to the field.

 - Place template characters in the field to aid the end-user during data
 entry.

 - Retrieve information that the end-user enters into the field.

 - Specify the type of data, such as alphabetic or numeric, that can be
 entered in the field.

 - Specify what should happen if the end-user enters a special character
 into the field, such as an up-arrow or function key.

 - Specify what should happen if the end-user enters an illegal
 character, such as the letter "a" in a numeric field.

 - Display information in the field.

You can assign video or color attributes, or both, to an input field for
special effects or increased visibility. The end of this section discusses
these attributes.

When you define an input field with the Editor, you can enter an initial value
in the field. When the display shows on the run-time terminal, the initial
value appears in the field. Initial values can greatly simplify data entry for

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

an end-user, by showing the most commonly-entered value for a field. Consider
the following example of a data entry prompt using an initial value:

 Enter employee's hourly pay rate --> 12.00

The portion of the prompt "Enter employee's hourly pay rate -->" is a literal
field. The input field begins in the column immediately following "-->" and
has been assigned an initial value of 12.00. When the display appears on the
run-time terminal, the prompt appears exactly as shown in the example. If the
end-user presses RETURN without entering anything in the field, the value
12.00 is returned to the application program. The UPDF (Update Field) function
retrieves information from a field containing an initial value.

Template characters are another way to simplify data entry for an end-user.
Here is an example of a prompt using template characters:

 Enter telephone number --> :() - :

The portion of the prompt "Enter telephone number -" and the two colons (:)
are literal fields. The input field begins immediately following the first
colon and ends at the column preceding the second colon. The parentheses, the
space immediately following the parentheses, and the hyphen are all template
characters. When the telephone number is entered, the cursor jumps over each
template character. They cannot be typed over or erased. The input field in
our example accommodates ten characters, for example, (206) 555-1212. Template
characters are never returned to the application program.

You can combine template characters and initial values in an input field. Here
is an example prompt:

 Enter Social Security Number: nnn-nn-nnnn

The hyphens are template characters; the n's are the initial value of the
field. This example of initial values differs from the preceding one in that,
here, the value is not the most common response to the prompt; instead, each n
serves as a place marker which you expect the end-user to replace with a
number. As the n's indicate, the field accommodates nine characters, for
example, 123-45-6789. The GETF (Get Field) function retrieves information from
a field without returning its initial value.

You can define an input field in such a way that Display Manager validates
each character as the end-user enters it at run-time. You can tell the Editor
what type of data, such as alphabetic or numeric, you expect to receive in a
field at run-time. Display Manager then ensures that only that type of data is
returned to your program.

The Editor provides you with several ways to specify how the end-user must
terminate data entry for a field. Data entry can be terminated when the field
is full, an illegal character is entered (such as a number in an alphabetic
field), an up or down cursor movement key is pressed, or a function key is
pressed. The ENDF (End Field input) function can be called by your application
program to determine precisely how the end-user terminated data entry. You can
use the RESF (Resume Field entry) function to signal to the end-user that he
entered an illegal character without terminating data entry for the field.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Your program can display information in an input field using the PUTF (Put
data in Field) function. You can specify a format for the information when
creating the field with the Editor. This is useful for assigning or changing a
field's initial values.

4.3.3 Output Fields

You can use output fields to display variable information derived by your
program. Use the PUTF (Put data in Field) function for this purpose.

Here are some of the ways you can control output fields in your displays:

 - Display information in the field.
 - Assign the field video or color attributes.
 - Specify a format for the way information should appear in the field.
 - Place template characters in the field.
 - Assign the field initial values.

You can assign video or color attributes, or both, to an output field for
special effects or increased visibility. This section explains these
attributes in detail later.

When creating an output field with the Editor, you can specify a format for
the way the information should appear. The format can specify that the
information be left- or right-justified, a certain number of positions follow
a decimal point, and more. Table 4-5, "Field Format Codes", later in this
section explains the codes that determine the field format.

You can also place template characters and initial values in an output field.
Template characters can enhance the appearance of an output field; initial
values ensure the field's appearance when initially displayed.

Your program can retrieve information from an output field using the GETF (Get
Field) or UPDF (Update Field) functions.

4.4 VIDEO ATTRIBUTES

You can assign video attributes to input and output fields to activate any
special features available on the run-time terminal. You can assign the
attributes when you create the field with the Editor. Of course, for the
attribute to take effect, the specified feature must be available on the
terminal; otherwise, Display Manager ignores the request.

Because video attributes cannot be assigned to literal fields, you might want
to set up some of your prompts, help messages, and error description areas as
input or output fields. For example, you might reserve the bottom row of your
display for showing error messages. By making the row an output field, you can
use video attributes to make the messages invisible until needed and
highlighted when shown. Your application program can use the SETF function to

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

control video attributes during run-time.

Display Manager can accommodate up to 8 different video attributes for each
display field. Each attribute has 2 settings, ON or OFF. You can assign a
field 2 separate video attributes at the same time, provided that the terminal
can handle combinations of features, and that the control codes for the
terminal have been set up accordingly with the DMSET program (see Section 3
and Appendix C). If you assign multiple attributes but the run-time terminal
cannot accommodate one or both, it ignores unsupported-attributes.

You cannot use simultaneous, multiple video attributes on some terminals, even
though the attributes might be available individually. In such cases, Display
Manager uses a priority scheme. The following table lists video attributes in
their order of priority. Field visibility has the highest priority, followed
by intensity, inverse video, flashing, underlining, and user-defined
attributes one, two, and three.

You can assign these video attributes with the Editor. Section 7 explains
which commands allow you to assign the attributes. In the following table,
each attribute's normal state appears first; its special state shows second.

Table 4-1. Video attributes

Format: Attribute/Setting
 Feature/Effect

VISIBILITY
Determines if a field shows when initially displayed at run-time. It is useful
for suppressing initial values, template characters, and so forth.

 Visible
 The field's contents appear on the screen.

 Invisible
 The field's contents are suppressed. The field can be made visible at
 run-time using the SETF (Set Field attributes) function.

INTENSITY
Determines how brightly the characters in the field are displayed.

 Full
 Characters in the field are displayed with full brightness.

 Half
 Characters in the field are displayed with 50% brightness. This
 setting is useful for prompts and help messages.

INVERSE VIDEO
Determines if characters are displayed as light images on a dark background or
dark images on a light background.

 Normal
 Characters in the field are displayed as light images on a dark
 background.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

 Inverse
 Characters are displayed as dark images on a light background.

FLASHING
Determines if characters in the field flash ON and OFF.

 Normal
 Characters in the field are displayed as constant images.

 Flashing
 Characters in the field blink ON and OFF continually. Flashing can
 attract attention to a field, but it annoys if overused.

UNDERLINING
Determines if the characters in the field are underlined.

 Normal
 Characters in the field are not underlined.

 Underline
 Characters in the field are underlined.

USER-DEFINED
Three user-defined attributes are available. They are used to activate Special
features (such as color) that might be available on some terminals. The codes
to activate these features must be included in the terminal's control codes
(see Section 3).

 Normal
 The corresponding feature is not activated.

 Special
 The corresponding feature is activated for the field.

On some terminals, you must reserve a blank space on either side of a field in
order for a video attribute to take effect. This technique of activating video
attributes is the Plant method. Other terminals do not require blank spaces.
They use the Paint method. Display Manager provides a function (RETDM) that
can be called by your application program to determine which method (Plant or
Paint) the run-time terminal uses.

If you are not sure whether the run-time terminals use the Plant or Paint
method, you can always be safe by assuming the Plant method, and by reserving
a space on either side of every input and output field in your displays.

4.5 COLOR ATTRIBUTES

You can assign distinct background and foreground colors to displays. You can
also assign different background and foreground colors to the individual
fields in a display. You have a choice of 8 different colors for backgrounds,
and 16 different colors for foregrounds.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Of course, for color to take effect, the run-time terminal must have this
feature. If the terminal is monochrome (black and white), Display Manager uses
the video attributes in place of the color attributes. Consequently, it is a
simple matter to design a display that works equally well on monochrome or
color terminals. Your application program, at run-time, need not really be
concerned with which type of terminal is in use.

While it is possible with Display Manager to design displays on a monochrome
monitor for eventual use on a color monitor, do this with considerable care.
This is also true when designing displays on one color monitor or video board
for use on another. Colors vary significantly from one monitor to another, and
do not always produce the anticipated result. A combination of colors that
sounds good, or even looks good, on one monitor might wash out on another,
rendering the information on the screen almost unreadable.

If you cannot test color combinations on the terminals where they will be
used, use only those combinations of basic colors that provide high-contrast,
or always use a black background.

Also be cautious of overusing colors in your displays. Reading a screen that
is lit up like a Christmas tree can be both difficult and annoying.

The following table lists and explains the various color attributes that you
can assign with Display Manager. The "Status Window" section explains how to
set the attributes, and provides more detailed information.

Table 4-2. Color attributes

Format: Attribute
 Use and effect

Flashing
This can be set to cause the field to flash ON and OFF when the display is
shown. Use with caution; a flashing field attracts attention, but can be
overly distracting.

Background
While there are only 3 background color codes (RED, GREEN, and BLUE), they can
be set in combinations to provide up to 8 different colors. In most cases,
these 3 colors can be mixed as they would be on an artist's palette. For
example, mixing RED and BLUE produces magenta.

Intensity
This applies only to the foreground color for the field. It can be set so
that, when the foreground color is displayed, it is shown in bold intensity.
This has the effect of producing a different color.

Foreground
The foreground color codes work in a manner identical to background codes,
with one exception. When the intensity attribute is set, the result is a
different color. For example, if red is selected as the foreground color and
the intensity attribute is set, the actual color produced is light red. This
doubles the number of available foreground colors, to 16.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

4.6 STATUS WINDOW

Every input and output field in a display has a status window associated with
it. You can make entries in the status window to assign various
characteristics to each field. To gain access to a field's status window,
place the cursor anywhere within the boundaries of the field, then press Ctrl-
W. The status window appears on your screen with the cursor positioned inside.

Status windows for input and output fields are similar, but distinctly and
logically different. The following figure shows a status window for an output
field.

 +--+
 | Field No. Row Col Len Posts Type-OUTPUT |
 | 000 000 000 000 YY *rr,cc*nnn |
 +--+
 | Format :L: L,R,N,0-9,C,M Comma :N: N,Y |
 | |
 | Video :N: :N: :N: :N: :N: :N: :N: :N: N,Y |
 | Invs Half Invr Flsh Undl Usr1 Usr2 Usr3 |
 | Color :N: :N: :N: :N: :N: :Y: :Y: :Y: N,Y |
 +--------fls--RED--GRN--BLU--Int--red--grn--blu------+

 Figure 4-3. Output Field Status Window

The next figure shows a status window for an input field. Note that it
contains everything that you find in an output field's status window (with one
exception), plus 2 additional lines, the Validate/Beep line and the End Input
line. The exception is that AutoRet replaces the Comma element.

 +--+
 | Field No. Row Col Len Posts Type-INPUT |
 | 000 000 000 000 YY *rr,cc*nnn |
 +--+
 | Validate :X: X,A,C,D,F,I,U Beep :N: N,Y |
 | Format :L: L,R,N,0-9,C,M AutoRet :N: N,Y |
 | |
 | End input---Cursor :N: BadC :N: FKey :N: N,Y |
 | Video :N: :N: :N: :N: :N: :N: :N: :N: N,Y |
 | Invs Half Invr Flsh Undl Usr1 Usr2 Usr3 |
 | Color :N: :N: :N: :N: :N: :Y: :Y: :Y: N,Y |
 +--------fls--RED--GRN--BLU--Int--red--grn--blu------+

 Figure 4-4. Input Field Status Window

4.6.1 Status Window Elements

Because the elements within a status window are similar for input and output
fields, the following discussion of these elements pertains to both windows.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

When a distinction is necessary, [INPUT] or [OUTPUT], whichever applies,
precedes the text.

Field No.
The number currently assigned to the field appears beneath the label. The
Editor assigns every input and output field a unique number, ranging from 1 to
250, when it creates the field. You can use the renumber option (described in
Section 6) to assign new numbers to one or more fields in your display. Note,
however, that renumbering fields does not change their relative position
within the display.

Row
This number indicates the row on your screen that contains the field. The top
row on the screen is row 1.

Col
A number indicating the column of the first position in the field. The
leftmost column on the screen is column 1.

Len
Indicates the number of positions (columns) in the field. Any template
characters are included in the count.

Posts
The first letter indicates if the column immediately preceding the field
contains a space (Y=Yes, N=No). The second letter indicates if a space
immediately follows the field. These indicators are significant if any run-
time terminal uses the Plant method to activate video attributes. In such
cases, the values here should be YY.

If the run-time terminals use the Paint method, a space is not required on
either side of the field, and the values here are unimportant.

Type-
Indicates whether the field is used for INPUT or OUTPUT.

rr,cc
These values indicate the row (rr) and column (cc) where the cursor is
currently located. This can be different from the Row and Column numbers
described earlier if the cursor is not in the first position of the field.

nnn
The value replacing nnn indicates the number of input and output fields in the
display.

Validate :X: X,A,C,D,I,U,F
[INPUT] The code that you enter between the colons tells Display Manager how
to validate information that the end-user types into this field at run-time.
There are 7 different forms of validation from which to select, as explained
in the following table.

Table 4-3. Input field validation codes

Format: Code

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

 Validation type

X
Any printable character is accepted. This is the default for all input fields
when they are first created (unless you assign other status window defaults
using the Ctrl-UW command, see Section 6).

A
Only alphabetic characters and spaces are accepted. A numeric entry is treated
as an illegal character.

C
Any characters, including control characters, are accepted, though function
key input is not interpreted. Information entered by the end-user is not
echoed back to the run-time terminal.

D
Only signed, decimal data is accepted. Alphabetic characters and more than one
decimal point are treated as illegal characters. Spaces are allowed, but when
the field contents are echoed, they are truncated starting at the first
embedded or trailing space. Signs are moved next to the number, to eliminate
embedded spaces.

I
Only signed, integer data is allowed. Alphabetic characters and decimal points
are treated as illegal characters. Spaces and signs are handled as for code D.

U
Same as type X, except that all information entered by the end-user converts
to upper case.

F
Only function keys are accepted as valid input for this field.

During run-time, Display Manager routines validate each keystroke as the end-
user enters it. These routines do not pass unacceptable information to your
application program.

You can select only one input data validation type code for each input field.

The next table shows what happens at run-time when different keys are pressed
and a specific data validation code is in effect. Acceptable input is marked
with Y; illegal or unacceptable input is marked N. Numbers refer to notes
following the table.

Table 4-4. Interpretation of input validation types

Type of Data Entered Validation Code used
 by End-user X A C D I U F
--------------------- ---
Alphabetic (A-Z, a-z) Y Y Y N N Y N
Period Y N Y 1 N Y N
Plus or Minus Sign Y N Y 2 2 Y N

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Number (0-9) Y N Y Y Y Y N
Space Y Y Y 3 3 Y N
Other printable
 character (1,",#,etc.) Y N Y N N Y N
Control Key (Ctrl-A
 through Ctrl-Z) other
 than cursor movement N N Y N N N N
Cursor movement
 (control keys and
 standard cursor arrow
 keys for editing) Y Y 4 Y Y Y N
Function Key 5 5 5 5 5 5 Y

Notes:

 1. A decimal field can have only one decimal point.

 2. A single sign character can precede the digits in the field.

 3. Spaces are allowed. When the field content is returned, it is
 truncated starting at the first embedded or trailing space. Signs are
 moved next to the number to eliminate embedded spaces.

 4. The end-user cannot edit control fields because the control keys are
 stored as part of the field. The only way to terminate data entry in a
 control field is by pressing the RETURN key, or filling the field when
 AutoRet is appropriately set.

 5. Function keys generate several, separate ASCII codes that appear to
 the computer as though several keys were pressed. Unless the FKey code
 is set, the generated characters are treated as though they were
 entered into the field individually. When FKey is set and the end-user
 presses a function key, Display Manager returns (via the ENDF
 function) only the appropriate negative value to indicate which
 function key. This assumes that the control codes passed via the
 INITDM function indicated that the terminal has function keys.

Beep :H:
[INPUT] If set to Y and the run-time terminal is equipped with an audible
beeper, the beeper sounds when the end-user enters unacceptable information in
the field. If N, the beeper does not sound under these same conditions.

Format :L: L,R,N,0-9,C,M
Specifies the way data should be formatted when placed in an input or output
field. The next table describes the codes that you can use to specify
formatting.

Table 4-5. Field format codes

Format: Code
 Resulting Format

L
Left-justify. Aligns characters with the leftmost column of the field.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

R
Right-justify. Aligns characters with the rightmost column of the field.

When a field's format code is L or R (signifying Left or Right justification,
respectively) and truncation is necessary, information is always truncated
from the right side of the data field.

N
Formats information in the field as pure, numeric data. Numbers are right-
justified in the field, and leading zeros are removed. If, at run-time, the
number is too long to fit in the field, the least significant digits to the
right of the decimal point are truncated. If the number still does not fit,
the field is filled with asterisks.

0-9
Formats information in the field as a decimal number. Enter a value from 1 to
9 to indicate the number of digits to the right of the decimal point. For
example, if you enter 4, four digits follow the decimal point. Trailing zeros
are inserted if the number contains less than four digits after the decimal
point. If the number with the specified decimal places does not fit in the
field, right truncation occurs, as in the "N" field. Leading zeros are removed
and truncation, not rounding, eliminates extra decimal digits.

C
You can use this format code to send control keys to the screen. Information
in the field is not formatted, and any number of characters can be sent to the
field. You can use this command to go outside Display Manager and use special
screen features, but use the command with caution. For example, this output
format type is useful if you want to use a terminal feature that Display
Manager does not support. To do this, create an output field with format code
C, position the cursor in this field, send the control sequence for the
terminal feature, and then make sure the cursor is back in this field before
returning control to Display Manager.

M
Formats the field to contain money values. This automatically inserts a dollar
sign or other currency symbol in the first space of the field, and formats it
with 2 digits after the decimal point.

Comma :N:
[OUTPUT] This is the numerical separator code. If Y, a comma is inserted to
the left of every 3rd digit to the left of the decimal point. For example, one
million displays as 1,000,000.00. If N, commas are not inserted automatically.

AutoRet :N:
[INPUT] This code indicates whether or not data entry ends automatically when
the input field is full. If Y, the end-user's data is returned to the program
when a character is entered in the last position of the field or RETURN is
pressed. If N, the end-user must press RETURN to terminate data entry.

Cursor :N:
[INPUT] This is the cursor arrow code. If Y, the up or down cursor arrow key,
or the up/down cursor movement control key, causes data entry termination.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Note that cursor arrows might not be supported for a particular terminal. If
N, the keys have no effect.

BadC :N:
[INPUT] This is the illegal character code. If Y, any illegal key entered
forces data entry to end for the input field. An illegal key is any character
that does not conform to the input format specified for the field (see Table
4-3, "Input Field Validation Codes"). Line editing keys are exempt from this
check, unless the validation type is C (control field).

FKey :N:
[INPUT] This is the function key code. If Y, any supported function key that
is entered causes data entry to terminate for this field. If N, any function
key that is entered is not interpreted, and the characters sent when the key
is pressed are treated as normal input for the field, unless the validation
type is F (function key field).

For any given field, more than one code for ending data entry can be set at
the same time. For example, setting the Cursor and FKey codes to Y terminates
data entry if a cursor-positioning key or function key is entered. In this
case, these keys provide the same functionality as the RETURN key. At run-
time, the ENDF function can be used to find out how data entry was actually
terminated (see Section 7).

4.6.2 Status Window Video Attributes

The next 8 field characteristics relate to the video attributes described
earlier. Note that you can use the SETF function at run-time to override any
of these settings. Also note that, with the exception of Invs, the run-time
terminal must have the designated features available for these video
attributes to take effect. Invs functions independent of terminal features.

:N: Invs
Set to Y to make the field invisible, so that it does not appear on the
screen. The default, N, makes the field visible.

:N: Half
Set to Y to show the field in half intensity (50% brightness). The default, N,
shows the field in full intensity.

:N: Invr
Set to Y to show the field in inverse video (dark images on a light
background). The default, N, shows the field as light images on a dark
background.

:N: Flsh
Set to Y to show the characters in the field flashing. The default, N, causes
the characters not to flash.

:N: Undl
Set to Y to underline the characters in the field. The default, N, causes
underlining not to take effect.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

:N: Usr1
Set to Y to activate user-defined field attribute #1.

:N: Usr2
Set to Y to activate user-defined field attribute #2.

:N: Usr3
Set to Y to activate user-defined field attribute #3.

User-defined attributes can activate features available on the run-time
terminal that are not otherwise supported by Display Manager. For example, if
the terminal has a graphics mode capability, it can be defined as one of the
user attributes. This requires that the control codes needed to activate this
feature be included in TERMS.DM. (Section 3 and Appendix C explain how to do
this.) If, for example, the graphics mode codes are set up as user-defined
attribute number 1, and Usr1 is set to Y, the corresponding field is shown as
a string of graphic symbols.

4.6.3 Status Window Color Attributes

The following are descriptions of the color attributes. Note that, with the
exception of the "Invs" video attribute, color attributes always take
precedence over the video attributes. Display Manager examines the control
codes for the run-time terminal and, if color is available, uses the color
attributes; otherwise, it uses the video attributes. Note that the resulting
colors indicated might vary with different color graphics boards and
terminals.

:N: Fls
Set to Y to cause the field to flash ON and OFF when the display is shown. A
flashing field attracts attention but can also be distracting. Use cautiously.

:N: RED :N: GRN :N: BLU
These 3 codes specify the background color for the field. Any codes specified
here take precedence over the global background color selected for the
display. The codes are used in combinations to produce up to 8 different
colors. The following table shows the colors normally produced by each
combination.

Table 4-6. Background color codes

 RED GRN BLU Result
 --- --- --- ------
 N N N Black
 N N Y Blue
 N Y N Green
 N Y Y Cyan
 Y N N Red
 Y N Y Magenta
 Y Y N Brown
 Y Y Y white

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

The final 4 attributes serve together to specify the foreground color for the
field.

:N: Int
When set to Y, the foreground color appears in full intensity. When N, it is
shown in half intensity.

:Y: red :Y: grn :Y: blu
The foreground color codes function the same way as the background codes.
However, when used in conjunction with the Intensity attribute (immediately
preceding), up to 16 different colors are available. The next table shows the
colors normally produced by each combination.

Table 4-7. Foreground color codes

 Int red grn blu Result
 --- --- --- --- ------
 N N N N Black
 N N N Y Blue
 N N Y N Green
 N N Y Y Cyan
 N Y N N Red
 N Y N Y Magenta
 N Y Y N Brown
 N Y Y Y White
 Y N N N Gray
 Y N N Y Light Blue
 Y N Y N Light Green
 Y N Y Y Light Cyan
 Y Y N N Light Red
 Y Y N Y Light Magenta
 Y Y Y N Yellow
 Y Y Y Y Bright White

Section 5: Editor Options

You can do these things with the Editor:

 - Create new displays
 - Make changes to existing displays
 - Delete obsolete displays from a display file
 - Renumber the displays in a display file
 - Change the currently open display file

The latter part of this section explains the Editor options in detail.
However, before you can select an option from the Editor Main Menu, you must
complete some preliminary steps to get the menu on your design terminal.

5.1 STARTING THE EDITOR

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Unless the Editor was installed with a name other than the default, enter the
following command at your operating system prompt to start the Editor running:

 DMED

If the Editor was installed with a different name, enter that name (instead of
DMED) to start the Editor.

Your screen then appears similar to the following figure.

 --
 Display Manager 8x Version 1.0
 Serial No. xxxx-0000-634321 All Rights Reserved
 Copyright (c) 1983 Digital Research Inc.
 --

 Display Manager installed for <xxxxxxxx>

 (Press ESC to exit)
 Press RETURN to continue

 Figure 5-1. Editor Start-up Screen

Before moving on from this screen, check 2 important things. First, make sure
that the copyright banner appears with your Display Manager version and serial
number. If the banner does not appear, or has been modified, you might have an
inoperable version of Display Manager. Please contact Digital Research
immediately. Second, following the words "Editor installed for" (in place of
<xxxxxxxx>) is the name of the design terminal for which the Editor is
created. If this name does not match your terminal, your results are
unpredictable. You should press ESC to stop the Editor and return to your
operating system. See Section 3 for instructions about creating the Editor for
use with your terminal.

When you are satisfied that you are using the correct Editor and terminal
combination, press RETURN to continue. A prompt then asks you to enter the
name of the display file that you want to use, as shown in the following
figure.

 Enter name of display file:
 (Press RETURN to exit Display Manager)

 Figure 5-2. Display File Name Prompt

Type the name of the display file you either want to create, or that contains
the displays that you want to edit, or press RETURN to go back to your
operating system.

The display file name can be qualified according to your operating system and
hardware facilities. For example, enter B:ACCTSPAY.DIS to open a display file
named ACCTSPAY.DIS on drive B while logged to drive A.

If you enter the name of a display file that does not currently exist on the

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

specified drive, an additional prompt appears on your screen, asking if this
is the name of a display file that you want to create.

 Enter Name of Display File:
 (Press RETURN to exit Display Manager)

 Do You want to create a new file (Y or N)? Y

 Figure 5-3. New Display File Prompt

If you respond Y, the Editor creates the file you named. If you respond N, a
prompt asks you to enter the name of a different display file. A message then
appears to let you know that the Editor is busy opening the selected display
file.

 -> Opening display file . . .

 Figure 5-4. Display File Open Message

Once the Editor Main Menu and a list of the displays in the file appear, you
can begin editing your displays.

You can include the name of the display file that you want to use or create on
the same line as the command to start the Editor. For example, you can type
the following command at your operating system prompt:

 DMED ACCTSPAY.DIS

The Editor checks whether the named display file exists (ACCTSPAY.DIS in this
case). If it does not, you can create a file with that name, or enter a
different name, as in the preceding examples.

5.2 EDITOR MAIN MENU

Once you have satisfactorily opened a display file, the Editor Main Menu
appears on your screen:

 +---------------------------------------+
 | D I S P L A Y M A N A G E R |
 | by |
 | DIGITAL RESEARCH INC. |
 +---------------------------------------+

 Current Display File: A:ACCTSPAY.DIS
 Current Display No:
 Current Display Title:

 M A I N M E N U

 E -- Edit a Display
 D -- Delete a Display
 R -- Renumber the Displays

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

 O -- Open a Display File
 Q -- Help and Instructions
 X -- Exit Display Monitor

 Enter selection : :

 Figure 5-5. Editor Main Menu

In addition to the available options, the Main Menu shows you information
about the display file and the display currently being edited.

 Current Display File:

The name of the display file that is currently open. A drive specifier
precedes the name of the currently open display file. In the preceding
example, the file ACCTSPAY.DIS is on the disk in drive A.

 Current Display No:

Once you select a display to edit, its display reference number appears here.

 Current Display Title:

If the display being edited was assigned a display title, it appears here.

The preceding example indicates a display file is open, but no display is
currently being edited. The Main Menu appears this way until you select a
display for editing.

The following table describes briefly the options on the Editor Main Menu.
Subsequent parts of this section describe each option in detail.

Table 5-1. Editor main menu options

Format: Option
 Function

E -- Edit a Display
Use this to create new displays, or to make changes to existing ones.

D -- Delete a Display
Use this to remove an obsolete display from a display file.

R -- Renumber Displays
Use this to change the display reference numbers assigned to the displays in a
file.

O -- Open a Display File
Use this to close a display file and open a different (or the same) one.

Q (Quit) -- Help and Instructions
Use this to activate the on-line help facility. This facility provides
detailed instructions on your design terminal screen for using the Editor.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

X -- Exit Display Manager
Use this to stop the Editor, and to return control to your operating system.

5.3 OPTION E--EDIT A DISPLAY

Use this option to create a new display, or to copy or edit an existing
display.

5.3.1 Creating New Displays

To create a new display, select the E option from the Editor Main Menu. The
EDIT A DISPLAY screen then appears on your design terminal:

 EDIT A DISPLAY

 Current Display File: A:ACCTSPAY.DIS
 Current Display No:
 Current Display Title:

 Enter DISPLAY REF NUMBER of Display to Edit : :
 (Press ESC to return to Main Menu)

 List of displays in file. (Scroll UP = ^W / DOWN = ^Z)

 Figure 5-6. Edit A Display Screen (New Display File)

This figure indicates that the display file currently being used is on drive
A, and named ACCTSPAY.DIS. As shown, no display from that file has been
selected for editing; if it had been, the display reference number and title
would also be shown. This screen also indicates that no displays are in
ACCTSPAY.DIS; if there were, they would appear below the line.

A prompt asks you to enter the reference number of the display that you want
to create. You can assign any number from 1 to 250. Type the reference number,
and press RETURN.

Because there is no display in the file with the reference number that you
assign, the Editor assumes that you want to create a new display, and shows
you the NEW DISPLAY screen, as in the following figure.

 EDIT A DISPLAY

 Current Display File: A:ACCTSPAY.DIS
 Current Display No:
 Current Display Title:

 NEW DISPLAY (Press ESCAPE to begin editing display)

 Enter Display Title --> :

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

 Figure 5-7. New Display Title Screen

A prompt directs you to enter a title for the display that you are creating.
The title can be as many as 30-characters long, and does not have to be unique
within the display file. The title serves no other purpose than to help you
identify it in the list shown on the EDIT A DISPLAY screen. This is the only
opportunity you have to assign a display title.

After you enter the display title, this prompt appears on your screen:

 Do you want to COPY an existing display? (Y=Yes/N=No) :N:

The option to copy an existing display is a useful method when you want to
build displays from a prototype or a model. It is also the recommended
technique when making changes or enhancements to existing displays, as it
ensures against accidental destruction of the original version. You can find
instructions for using this option later in this section.

5.3.2 Global Values

If you respond N (the default response) to the preceding prompt, the Global
Values prompt appears, as shown in the following figure.

 GLOBAL VALUES (Press ESC to begin editing display)

 Clear screen? (Y=Yes, N=No) ? :Y: +-------- Color Menu --------+
 | 0 BLACK 8 Gray |
 Global Color Attributes | 1 BLUE 9 Light Blue |
 ------------------------------------+ 2 GREEN A Light Green |
 Flashing? (Y=Yes,N=No) :N: | 3 CYAN B Light Cyan |
 BACKGROUND COLOR (0-7) :0: | 4 RED C Light Red |
 Foreground Color (0-9 or A-F) :7: | 5 MAGENTA D Light Magenta |
 | 6 BROWN E Yellow |
 | 7 WHITE F Bright White |
 +----------------------------+

 Figure 5-8. Global Values Prompt

If you do not want to alter the Global Values for the display, press ESC.

Clear Screen Prompt

If you respond Y to the Clear Screen prompt, Display Manager clears the screen
to all blanks before showing this display at run-time.

If you respond N, the display overlays whatever is on the screen from a
previous operation. You can use screen overlays in several situations, such as
to build screens line by line, keep help messages and instructions on the
screen, and keep standard headings and banners intact.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Note: When one display overlays another, only the fields in the most recent
display are accessible. Fields from any previous displays are not available to
your application program.

Three separate global values can be set for color. Each of these values
applies to the entire display, as opposed to individual fields within the
display.

 1) Flashing
 If set to Y, all literal fields in the display flash ON and OFF when
 shown. Use with caution.

 2) BACKGROUND COLOR (0-7)
 You can specify any one of 8 different colors for the background of
 the display. Insert one of the codes (0 through 7) from the Color Menu
 shown to the right of the prompt.

 3) Foreground Color (0-9 or A-F)
 Select any one of 16 different foreground colors for the display by
 entering the appropriate code from the Color Menu.

After you press ESC or reply to the global values prompts, the Editor clears
the screen on your design terminal, and places the cursor in the top left
corner. You can now create the actual display. Section 6 describes the various
Editor commands that you can use to create the display. You can also enter
Ctrl-QQ at this point, to display a list of the available commands on your
terminal screen.

5.3.3 Copying Existing Displays

To create a new display by copying an existing one, reply Y when this prompt
appears on the NEW DISPLAY screen:

 Do you want to COPY an existing display? (Y=YES/N=No) :Y:

 Figure 5-9. Copy Existing Display Prompt

When you indicate you want to copy an existing display, the following menu
appears on the screen:

 OPTIONS FOR COPYING AN EXISTING DISPLAY

 1 Copy from CURRENT display file
 2 Copy from a DIFFERENT display file
 3 Quit Copy Options

 Please enter Your selection --> : :

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

 Figure 5-10. Copy Existing Display Options Menu

Use option 1 to copy the display from the currently open display file. The
Editor then asks you for the reference number of the display to copy. If it
finds the display, it copies it then places it on your design terminal for you
to make changes. The display on your screen has the reference number you
assigned to it when this session began.

If the display you want to copy does not exist, the Editor shows you an error
message and asks you to enter another display reference number.

Use option 2 to copy the display from a file other than the one currently
open. The Editor asks for the name of the file containing the display. Enter
the file name, preceded by a disk drive specifier if necessary. If the Editor
locates the file, it opens it, then the procedure is the same as if option one
were selected. After the copy is made, the Editor closes the file from which
the copy was made. You can now edit the copy.

If the Editor cannot locate the specified display file, an error message
appears and asks you to re-enter the name correctly.

5.3.4 Editing Existing Displays

Once you have existing displays, you can select option E from the Editor Main
Menu to change them. This places an EDIT A DISPLAY screen similar to the
following figure on your screen:

 EDIT A DISPLAY

 Current Display File: A:ACCTSPAY.DIS
 Current Display No:
 Current Display Title:

 Enter DISPLAY REF NUMBER of Display to Edit : :
 (Press ESC to return to Main Menu)

 List of displays in file. (Scroll UP = ^W / DOWN = ^Z)

 1 AP01/Accts Pay Main Menu 2 AP02/Vendor Maint Menu
 35 AP35/Vendor Maint Form 42 AP42/Print ChecKs
 103 AP103/Print Reports

 Figure 5-11. Edit a Display Screen (Existing Display File)

Note that the display reference number and title of each display already in
this file are listed below the line. If the file contains more displays than
the screen can show at one time, use the Ctrl-W and Ctrl-Z commands to bring
the others into view.

The prompt at mid-screen asks you to enter the Display Reference Number of the
display you want to edit. If you enter the number of display that does not

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

exist, the Editor assumes you want to create a new display (explained earlier
in this section). If the Editor locates the display you specify, it places it
in memory and gives you the opportunity to change the global values for the
display. Global values are also described earlier in this section.

Once you respond to the global values prompt, the Editor places the display
you want to edit on your design terminal screen. Use the commands described in
Section 6 to make changes to the display now on your screen.

5.4 OPTION D--DELETE A DISPLAY

To delete a display from the current display file, select option D from the
Editor Main Menu. This causes the DELETE A DISPLAY screen to appear on your
screen, as shown in the following figure.

 DELETE A DISPLAY

 Current Display File: A:ACCTSPAY.DIS
 Current Display No:
 Current Display Title:

 Enter DISPLAY REF NUMBER of Display to Delete: : :
 (Press ESC to return to Main Menu)

 List of displays in file. (Scroll UP = ^W / DOWN = ^Z)

 1 AP01/Accts Pay Main Menu 2 AP02/Vendor Maint Menu
 35 AP35/Vendor Maint Form 42 AP42/Print ChecKs
 103 AP103/Print Reports

 Figure 5-12. Delete a Display Screen

To delete a display from the current display file, enter its Display Reference
Number. Once the display is deleted from the file, the program removes it from
the list of displays shown on the screen.

If you enter a reference number for a display not in the file, an error
message appears, asking you to enter a new number.

Note: Once you delete a display from the file, it is no longer available. If
you do not have a back-up copy of the display, the only way to recreate it is
as a new display.

5.5 OPTION R--RENUMBER THE DISPLAYS

Select option R from the Editor Main Menu to renumber individual displays or
groups of displays in the display file. Note that renumbering displays does
not change their relative position within the display file.

Note: Application programs use display reference numbers to place displays on

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

the run-time terminal at the appropriate time. Therefore, renumbering the
displays can have significant impact on the operation of the program. The
recommended practice is to make a copy of a display file currently being used
before renumbering.

When you select the renumber option from the Main Menu, the RENUMBER DISPLAYS
screen appears on your design terminal, as shown in the following figure.

 RENUMBER DISPLAYS

 Renumber a group of displays or a single display.
 A single display has the same first and last number.

 Enter number of FIRST display in group : :
 Enter number of LAST display in group : :

 Enter NEW starting reference number : :
 Enter INCREMENT value : :

 (Press ESC to return to Main Menu)

 List of displays in file. (Scroll UP = ^W / DOWN = ^Z)

 1 AP01/Accts Pay Main Menu 2 AP02/Vendor Maint Menu
 35 AP35/Vendor Maint Form 42 AP42/Print ChecKs
 103 AP103/Print Reports

 Figure 5-13. Renumber Displays Screen

5.5.1 Renumbering Groups of Displays

Enter the reference numbers of the first and last displays in the group to be
renumbered. The last number must be greater than the first.

Then enter the new starting number for the group and the value by which you
want the numbers to be incremented.

For example, assume you want to renumber displays 35, 42, and 103 shown in the
preceding figure. The new reference numbers are to start at 20 and be assigned
in increments of 10. Display 35 becomes number 20, 42 becomes number 30, and
103 becomes number 40. After the renumbering takes place, the new numbers are
listed below the line. Here are the entries to make on the Renumber Displays
screen and the resulting renumbered list:

 RENUMBER DISPLAYS

 Renumber a group of displays or a single display.
 A single display has the same first and last number.

 Enter number of FIRST display in group :35 :
 Enter number of LAST display in group :103:

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

 Enter NEW starting reference number :20 :
 Enter INCREMENT value :10 :

 (Press ESC to return to Main Menu)

 List of displays in file. (Scroll UP = ^W / DOWN = ^Z)

 1 AP01/Accts Pay Main Menu 2 AP02/Vendor Maint Menu
 20 AP35/Vendor Maint Form 30 AP42/Print ChecKs
 40 AP103/Print Reports

 Figure 5-14. Example of Renumbering Groups of Displays

5.5.2 Renumbering Individual Displays

To renumber a single display, enter the same reference number as the first and
last in the group. Then, for the new starting reference number enter the
number you want assigned to the display. Use any positive number for the
increment value.

For example, assume you want to assign display number 103 in the "Renumber
Displays Screen" the number 75. The following figure shows the entries to make
on the Renumber Displays Screen and the resulting changes in the list below
the line:

 RENUMBER DISPLAYS

 Renumber a group of displays or a single display.
 A single display has the same first and last number.

 Enter number of FIRST display in group :03 :
 Enter number of LAST display in group :103:

 Enter NEW starting reference number :75 :
 Enter INCREMENT value :1 :

 (Press ESC to return to Main Menu)

 List of displays in file. (Scroll UP = ^W / DOWN = ^Z)

 1 AP01/Accts Pay Main Menu 2 AP02/Vendor Maint Menu
 35 AP35/Vendor Maint Form 42 AP42/Print ChecKs
 75 AP103/Print Reports

 Figure 5-15. Example of Renumbering an Individual Display

Note: You cannot assign a different number to a display that would cause it to
change its relative position in the display file. For example, you could not
assign display number 2 as number 75 as this would require moving the display
from its original position to between numbers 42 and 103.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

5.6 OPTION O--OPEN A DISPLAY FILE

Select the O option from the Editor Main Menu when you want to close a
currently opened display file. You can then either open a different file or
reopen the same one.

This option has 2 primary purposes: to move between display files without
stopping the Editor, and to periodically save your displays on disk. Display
Manager works with the displays in a part of computer memory and only writes
them to the disk file when necessary and practical. Closing the display file
ensures the displays in memory are stored on disk. Recommended practice is to
close the display file with this option at 10 to 15 minute intervals. This
prevents accidental loss of your work from power or hardware failures.

After you select this option, the Editor displays the following message to let
you know it is busy:

 Now closing and Packing display file: A:ACCTSPAY.DIS
 -> Please wait . . .

 Figure 5-16. Display File Closing Message

The Editor packs a display file each time it is closed, to reclaim any wasted
space and update the index. If the display file contains many displays,
packing may take several seconds to complete, especially on a floppy disk.

After the display file is packed and saved, the Editor shows you the following
prompt:

 Enter Name of Display File:
 (Press RETURN to exit Display Manager)

 Figure 5-17. Open Another Display File Prompt

Enter the name of the display file you now want to open. If you enter the name
of a file that is not on the current drive, the Editor asks if you want to
create the file. You can create a new display file by replying Y, or enter a
different name by replying N. A drive specifier can precede the file name.

Finally, the Editor opens the display file, and shows you the following
message to let you know what is happening:

 -> Opening display file ...

After the display file is opened, the program returns you to the Main Menu.

5.7 OPTION Q--HELP AND INSTRUCTIONS

The Editor provides an on-line Help facility. The facility is available in 2
forms, extended and limited. You can select the form you want by the way you
configure your Display Manager disk.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

 1) Extended Help enables you to display complete descriptions of options
 on the Editor Main Menu and the Editor commands on your design
 terminal screen while using the Editor. It requires that the overlay
 file DMEDHLP.OVR be on the same disk as the Editor program.

 2) Limited Help provides only a list of the Editor commands when you
 press Ctrl-OQ, Ctrl-Q?, or Ctrl-OU? while editing a display. To run
 the Editor with limited help, make sure the alternate overlay file
 DMEDOVR.OVR is on the disk, then remove or rename the overlay file
 DMEDHLP.OVR from your Display Manager disk.

Note that one of the above mentioned overlay files (DMEDHLP.OVR or
DMEDOVR.OVR) must be on the same disk as the Editor program while it is
running. If neither overlay is present, the Editor program cannot run. If
DMEDHLP.OVR is present, Display Manager provides extended help; if DMEDHLP.OVR
is not present, Display Manager provides only limited help.

You can activate the Help facility from any of 3 different places while using
the Editor:

 1) Editor Main Menu: Select the Q option.
 2) Display Editing Screen: Enter Ctrl-QQ or Ctrl-Q?.
 3) Output Options Menu: Select the ? option.

5.8 OPTION X--EXIT FROM THE EDITOR

To stop the Editor and return to your operating system prompt, select option X
from the Main Menu. When you select this option, the Editor automatically
closes the current display file before stopping. The following message appears
to let you know the program is busy:

 Now closing and Packing display file: A:ACCTSPAY.DIS
 -> Number of times file has been edited: 25
 Display repacking timer --> 0

 Figure 5-18. Editor Exit Screen

The message tells you the display file is being closed and packed. It also
tells you how many times editing has been performed on the file. You might
want to use this figure as an audit trail to determine how current your back-
up files are, or if unauthorized changes have been made to the file.

The message also shows a "Display repacking timer -->". This timer counts down
to zero simply as a way of indicating the status of the repacking process.
When the timer reaches zero, packing is complete.

Section 6: Editor Commands

This section describes the various commands that you can use with the Editor

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

to create and make changes to your displays. You can use most of the commands
in conjunction with the control key (labeled "Ctrl" on most keyboards). To
enter these commands, hold down the Ctrl key while pressing the indicated
letter key(s). For example, Ctrl-E means press the E key while holding down
Ctrl.

The ESC key does the following:

 - Ends certain commands, and returns you to the normal editing mode.

 - Removes error messages, allowing you to continue processing.

 - Functions as a general-purpose escape valve. If you do not know what
 to do next, press ESC several times to resume normal editing.

This section explains the Editor Commands by separating them into 4
categories, based on the type of function that the command performs:

 1) Cursor Movement Commands
 2) Field Editing Commands
 3) Display Design Commands
 4) Display File Commands

The following table lists the Editor commands by category. The remainder of
this section provides a more detailed explanation of each command.

Table 6-1. Editor Commands by Category

Function Command
-------- -------
CURSOR MOVEMENT COMMANDS
Beginning of field Ctrl-US
Beginning of next line RETURN
Down half screen Ctrl-QX
Down one line Ctrl-X
End of field Ctrl-UD
Left half screen Ctrl-QS
Left one space Ctrl-S
Next field Ctrl-UF
Next word Ctrl-F
Previous field Ctrl-UA
Previous word Ctrl-A
Right half screen Ctrl-QD
Right one space Ctrl-D
Tab Ctrl-I
Up half screen Ctrl-QE
Up one line Ctrl-E

FIELD EDITING COMMANDS
Boundary display (all fields) Ctrl-QB
Boundary display (single line) Ctrl-B
Change field to literal Ctrl-UZ
Copy field to cursor location Ctrl-UC
Define input field Ctrl-UI

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Define output field Ctrl-UO
Delete field Ctrl-UG
Move field right Ctrl-UV
Move field to cursor location Ctrl-UM
Renumber fields Ctrl-UR
Set Status Window as default Ctrl-UW
Status Window display Ctrl-W
Status Window display (constant)Ctrl-QW
Template insertion Ctrl-P
Video/Color attributes display Ctrl-QY
Video/Color attributes display Ctrl-Y

DISPLAY DESIGN COMMANDS
Center line Ctrl-OC
Delete character to left DEL ("<--")
Delete character under cursor Ctrl-G
Delete line Ctrl-QG
Delete word to right Ctrl-T
Draw border Ctrl-OB
Insert line Ctrl-QV
Insert space Ctrl-V
Print documentation Ctrl-OUW

DISPLAY FILE COMMANDS
Abandon without saving display Ctrl-OUQ
Change global values for display Ctrl-OUG
Save display, edit next one Ctrl-OUN
Save display, edit previous one Ctrl-OUP
Save display, edit same one Ctrl-OUS
Save display, return to Main Menu Ctrl-OUT
Write documentation Ctrl-OUW
Help instruction Ctrl-OU?

Note: Alternate commands exist for many of those shown in this table. For
example, you can use Ctrl-UH instead of Ctrl-US to move the cursor to the
beginning of a field. The individual command descriptions in this section show
the alternate commands when available.

6.1 Cursor movement commands

The cursor movement commands are listed in the preceding table. You can use
these commands to move the cursor around on the screen. Most of the commands
center around what is known as the "Cursor Movement Diamond" on your keyboard.
This diamond is formed by the relative position of the E, S, D, and X keys, as
shown:

 E
 / \
 / \
 S D
 \ /
 \ /

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

 X

The relative position of the key in the diamond indicates the direction of
cursor movement. Ctrl-E moves the cursor vertically up one line, Ctrl-S moves
it one space to the left, Ctrl-D moves it one space to the right, and Ctrl-X
moves it down one line.

If the cursor is in the far right column of a line and you press Ctrl-D, the
cursor moves to the first column on the next line. Similarly, if the cursor is
in the first column and you press Ctrl-S, the cursor moves to the last column
of the previous line.

Note that the Editor does not allow you to position the cursor in the last
column of the last row because, on many terminals, this causes an automatic
scroll that disrupts the screen.

You can also control cursor movement with the standard ANSI cursor movement
characters (Ctrl-K, Ctrl-H, Ctrl-L, and Ctrl-J), and by the cursor arrow keys
if they generate the standard ASCII cursor codes shown previously. However, if
the cursor arrow keys generate other control characters or escape sequences,
the Editor might not be able to use these keys to move the cursor.

Beginning of Field: Ctrl-US or Ctrl-UH
Moves the cursor to the first column of the field. If the cursor is not in a
field, an error message appears.

Beginning of Next Line: RETURN
Moves the cursor to the beginning of the next line in your display.

Down Half Screen: Ctrl-QX or Ctrl-QJ
If the cursor is in the top-half of the screen, it moves to the middle row. If
it is in the bottom-half of the screen, it moves to the bottom row.

Down One Line: Ctrl-X or Ctrl-J
Moves the cursor downward to the next line in the display.

End of Field: Ctrl-UD or Ctrl-UL
Moves the cursor to the last column of the field. If the cursor is not in a
field, an error message appears.

Left Half Screen: Ctrl-QS or Ctrl-QH
If the cursor is in the left-half of the screen, it moves to the leftmost
column. If it is in right-half of the screen, it moves to the center column.

Left One Space: Ctrl-S or Ctrl-H
Moves the cursor to the left, one space at a time. If the cursor is in the
leftmost column, it moves up to the end of the preceding line.

Next Field: Ctrl-UF
Moves the cursor to the next input or output field in the display. The cursor
stops in the first column of the receiving field. The cursor moves from field-
to-field in screen order, without regard to field numbers.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Next Word: Ctrl-F
Moves the cursor to the beginning of the next word. The next word is always to
the right of the current word on the same row, or is the first word on the
next row. The last character of the last word on a line is also treated as a
"stop" point for this command.

Previous Field: Ctrl-UA
Moves the cursor to the previous input or output field in the display. The
cursor stops in the first column of the receiving field. The cursor moves from
field to field in screen order, without regard to field numbers.

Previous Word: Ctrl-A
Moves the cursor to the beginning of the previous word. The previous word is
always to the left of the current word on the same row, or is the last word on
the previous row. The last character of the last word on the previous line is
also treated as a "stop" point for this command.

Right Half Screen: Ctrl-QD or Ctrl-QL
If the cursor is in the right-half of the screen, it moves to the rightmost
column. If it is in the left-half of the screen, it moves to the center
column.

Right One Space: Ctrl-D or Ctrl-L
Moves the cursor to the right, one space at a time. If the cursor is in the
rightmost column, it moves down to the beginning of the next line.

Tab: Ctrl-I
Moves the cursor 8 columns to the right. The Editor does not use tabs in the
normal way. Ctrl-I has the effect of pressing the SPACEBAR 8 times. For
example, if you press Ctrl-I while defining an input or output field (Ctrl-UI
or Ctrl-UO commands), the field is extended by 8 columns. On many terminals,
Ctrl-I and the TAB key have the same effect.

Up Half Screen: Ctrl-QE or Ctrl-QK
If the cursor is in the top-half of the screen, it moves to the top row. If it
is in the bottom-half of the screen, it moves to the middle row.

Up One Line: Ctrl-E or Ctrl-K
Moves the cursor up to the next line in the display.

6.2 FIELD EDITING COMMANDS

The field editing commands are listed in the table at the beginning of this
section. Use these commands to establish the location, boundaries, and
characteristics of input and output fields in a display.

To establish the location and boundaries of a field in your display, position
the cursor where you want the field to begin, and press Ctrl-UI (for an input
field) or Ctrl-UO (for an output field). Press the SPACEBAR to reserve each
position in the field. Press ESC to end the field definition. Detailed
descriptions of these and other commands follow.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Boundary Display (All Fields): Ctrl-QB
Displays the boundaries for all fields in the display. The next command
description (Ctrl-B) explains field boundaries in detail.

While the boundaries are being displayed, you can move the cursor, and still
use most editing commands. However, you cannot use some commands while
boundaries are shown for the entire screen: attempts to use these commands
result in error messages.

To remove the boundary display, press Ctrl-QB again.

Boundary Display (Fields on a Single Line): Ctrl-B
Displays the boundaries of all fields on the line containing the cursor. If
there are no fields on the line, a message appears at the top of your screen.
Field boundaries for output-fields are indicated by the letters O and o; the
letters I and i mark input fields. You can identify adjacent fields because
the letters shown alternate from upper- to lower-case, as in the following
example:

 IIiiii OOOOO oooo IIIIIIIIII Code = 00

The example has seven fields. The first field is an input field two columns
long (II). Adjacent to this field is another input field; it is 4-columns long
(iiii). Next are 2 output fields and one input field, followed by the literal
field "Code =" and an output field 2 columns in length.

Pressing any key makes the boundaries disappear.

Change Field to Literal: Ctrl-UZ
This command deletes a field, but leaves its initial value unchanged. You can
use this command in conjunction with the Move Field to Cursor command, Ctrl-
UM, to move literals around the display. To do this, make the literal an
output field, move the output field with the Ctrl-UM command, then use Ctrl-UZ
to delete the field, making the text once again a literal. Often, it is more
efficient simply to retype the literal where you want it.

Copy Field to Cursor Location: Ctrl-UC
This command copies an input or output field to the current cursor position.
Place the cursor in the row and column where you want the new field to begin,
and press Ctrl-UC. The Editor asks you for the field number of the field to be
copied. Enter the number, and the field is copied to the new location. The new
field has the same attributes as the original field, and is assigned the next
available field number. The command never overwrites an existing field in the
display. In such instances, the Editor presents an error message, and the
field does not copy.

Define Input Field: Ctrl-UI
This command reserves space in the display for an input field. To reserve the
space, place the cursor in the row and column where you want the field to
begin, and press Ctrl-UI. The Editor assigns the next available field
reference number to this new field.

After you press Ctrl-UI, an @ symbol appears under the cursor, and all other

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

fields on the same row show their boundaries. Expand the field that you are
creating by pressing the SPACEBAR. As each space is entered, another @ symbol
reserves the column for this field (thus indicating the location and
boundaries of the field).

Here is a recommended technique for creating and defining an input field into
which you want the end-user to enter a social security number:

 1. Place the cursor where you want the prompt for the field to begin, and
 type the prompt as a literal field. For example,

 Enter Soc. Sec. Number:

 2. Move the cursor to where you want the input field to begin, and type
 the field's initial value (with template characters). The line might
 now look like this:

 Enter Soc. Sec. Number: nnn-nn-nnnn

 3. Move the cursor back to the beginning of the field (to the first "n"),
 and press Ctrl-UI. An @ symbol replaces the n under the cursor.

 4. Press the SPACEBAR 10 times to reserve space for the field. Your
 screen should now look like this:

 Enter Soc. Sec. Number: @@@@@@@@@@@

 5. Press ESC, and the original, initial value that you typed for the
 field returns.

 6. Move the cursor right 3 spaces to the first hyphen (-) and press Ctrl-
 P. Then, type the hyphen on your keyboard. Move the cursor 2 spaces to
 the right (to the next hyphen) and repeat the process. You have now
 defined the template characters for the field.

 7. At this point, you can press Ctrl-W to display the field's status
 window.

To reserve 8 spaces for the field, press Ctrl-I. To delete a position from the
field (thereby shortening it), press Ctrl-G. To add a position to the field,
press Ctrl-V. Press ESC to signal the end of the input field; the boundaries
for any other fields on the same line disappear.

When creating input or output fields, remember to reserve a space before and
after the field if any run-time terminal uses the Plant method to activate
video attributes. If the Plant method is used, do not use these spaces for
another field or a literal. You can find out whether these spaces have been
used by checking the Posts element in the field's status window. The first
post indicates whether the character position immediately preceding the field
is available to Display Manager at run-time for the Plant method of setting
attributes. A Y means it is available; an N indicates it is not. The second
post indicates whether the space immediately after the field is available.
Your application program can also determine (at run-time) which method the
terminal uses with the RETDM function.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

If you attempt to create a field on top of an existing field, an error message
appears, and the new field cannot be created.

Define Output Field: Ctrl-UO
This command reserves space in the display for an output field. The same
rules, methods, and restrictions apply when creating output fields as when
creating input fields. See the preceding command description.

Delete Field: Ctrl-UG
Deletes the field containing the cursor.

Move Field Right: Ctrl-UV
Moves the field containing the cursor one column to the right, and adds a
space preceding the field. All fields to the right of the current field shift
right one column. Any field positions pushed beyond the right edge of the
screen are lost from the display.

Move Field to Cursor Location: Ctrl-UM
This command moves an input or output field to the current cursor location.
Place the cursor in the row and column where you want the field to be located,
and press Ctrl-UM. The Editor asks for the number of the field to be moved.
Enter the number, and the field is moved. If the field that you are moving
must overwrite an existing input or output field, an error message appears,
and the move does not take place.

Renumber Fields: Ctrl-UR
Use this command to renumber all fields or a single field in the display.
After you press Ctrl-UR, the Editor asks whether you want to renumber a single
field or all fields. If you enter a number, that number is assigned to the
current field, and all subsequently-created fields are numbered sequentially
starting with the new number. If you respond with an A, all fields are
renumbered in screen order sequentially from left to right, top to bottom,
starting with field number one. Note that numbering rotates from 250 back to
1.

Press ESC to exit the renumbering mode.

Set Status Window Values as Default: Ctrl-UW
Sets the values in the current status window as the default for all
subsequently-created fields. It is not necessary for the status window to be
displayed for this command to work. Place the cursor in the field whose status
window attributes are to serve as the defaults, then press Ctrl-UW.

As an example, assume that you want all output fields in your display to have
a certain set of attributes. Here are the suggested steps:

 1. Create the first output field, and assign the attributes for that
 field in its status window (use the Ctrl-W camand).

 2. With the cursor in the output field, press Ctrl-UW to establish the
 current status window values as the defaults for all future fields.

 3. Create the other output fields; they automatically have the same

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

 attributes as the field created in the first step.

Status Window Display: Ctrl-W
Displays the status window for the field containing the cursor, and gives you
the opportunity to review or change the attributes assigned for that field.
After you press Ctrl-W, the status window appears with the cursor positioned
in the first attribute. Use the cursor movement commands (Ctrl-S, Ctrl-D,
Ctrl-E, or Ctrl-X), the RETURN key, or the SPACEBAR to move the cursor around
inside the window.

If the cursor is in the top-half of the screen when you enter Ctrl-W, the
status window appears in the bottom-half, and vice versa. If the cursor is not
in a field when you press Ctrl-W, an error message appears.

After you have made all your changes in the status window, press Ctrl-W or
ESC to resume editing.

Section 4 contains a complete description of the status window.

Status Window Display (Constant): Ctrl-QW
This command displays the status window, and leaves it on the screen while the
cursor is moved around the display.

With this command, the cursor is not placed inside the status window. To make
changes to the field's attributes, you must use the Ctrl-W command (as
described earlier).

To remove the status window from your screen, press Ctrl-QW again.

Note: When the status window is ON, and the cursor is in an input or output
field, the field's boundaries appear either immediately above or below it, and
the remainder of the row showing the boundaries is set to blanks. Template
characters appear as pluses (+) and minuses (-).

Template Insertion: Ctrl-P
Use this command to place a template character in the input field. You can use
template characters to simplify data entry for the end user. See the Define
Input Field command description for an example of how to insert template
characters.

During run-time, the cursor does not come to rest on a template character, so
the end-user cannot remove or alter them. Template characters are not returned
to the application program.

To insert a template character in the field, move the cursor to the column
where you want the character to appear, then press Ctrl-P. This reserves a
space under the cursor for the character. Now, type the actual template
character.

If the status window is being displayed, you see the field boundary for that
column position marked with a plus sign (+). This means that the position
contains a template character.

To remove a template character, place the cursor on the character, and press

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Ctrl-P.

Video/Color Attributes Display: Ctrl-QY or Ctrl-Y
(Note that Ctrl-Y is inoperable with some operating systems.) Use these
commands to see how your display would appear to the end-user during run-time.
When either command is pressed, all color or video attributes assigned to the
display, and available on the current design terminal, are shown. Note that
color attributes take precedence over video attributes, and that you cannot
edit while the attributes are being displayed. Use Ctrl-Y to display the
attributes while the cursor is inside the status window.

Press any key to return to normal editing mode.

6.3 DISPLAY DESIGN COMMANDS

The display design commands are listed in the table at the beginning of this
section. These are general-purpose commands to aid in the designing of
displays.

Center Line: Ctrl-OC
Centers the line containing the cursor. All literals and fields shift
appropriately to center the line. The command centers literals fields, initial
field values, and template characters. If a field has no initial value or
template characters, it is not centered.

Delete Character to Left: DEL ("<--")
Deletes the character immediately to the left of the cursor. All characters to
the right on the same row are shifted left one space. If you remove all
positions from a field with the DEL key ("<--"), that field is deleted from
the display.

Typing over characters already on the screen replaces those characters with
the typed ones.

Delete Character Under Cursor: Ctrl-G
Deletes the character under the cursor. All characters to the right on the
same row shift left one space. If you remove all positions from a field using
Ctrl-G, the field is deleted from the display.

If border-mode is ON (Ctrl-B command), Ctrl-G reduces the size of the field
containing the cursor, without affecting the initial value of the field (if
present).

Delete Line: Ctrl-QG
Deletes the line containing the cursor. The line is removed from the display,
and all lines below the cursor move up one row.

Delete Word to Right: Ctrl-T
The word or string of spaces immediately to the right of the cursor position
is removed from the display. All remaining characters to the right of the
cursor on the same row are shifted left to fill the vacated spaces.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Draw Border: Ctrl-OB
This command provides an easy way to draw borders or other figures in your
displays. Press Ctrl-OB and the Editor asks for the character you want to use
for drawing. Press this character, and then proceed to draw using the cursor
movement commands.

To change to another character for drawing, just type the new character while
border-mode is ON. To end border-mode, press ESC.

Insert Line: Ctrl-QV
Inserts a Carriage Return at the current cursor position, creating a blank
line. To use this command, put the cursor at the space where you want the new
line, and press Ctrl-QV. The line to the right of the cursor moves down one
row, and the newly-inserted row to the right of the cursor is blank. The last
row on the screen is pushed off the screen, and is lost.

Insert Space: Ctrl-V
Inserts a character between 2 existing characters in a literal field, or
expands an input or output field. To use this command, place the cursor where
you want the space inserted, and press Ctrl-V. The Editor inserts a blank
space under the cursor. The characters to the right of the cursor, and on the
same row (including the one previously under the cursor), shift one space to
the right. Characters on other lines are not affected. Literals or field
positions pushed beyond the right margin of the screen are lost.

If boundary mode is ON (Ctrl-QB command), Ctrl-V expands the size of the field
containing the cursor, without affecting the initial value of the field (if
present).

Print Documentation: Ctrl-OUW
Prints documentation for the current display or, alternately, places it in a
separate ASCII-type disk file for subsequent processing.

The resulting documentation accounts for every field in the display, whether
visible or invisible. It documents literal fields and template characters, as
well.

After you press Ctrl-OUW, the following message appears to explain your
options:

 Hit P for document to printer
 Hit D for add to end of file (DISPLAY.DOC)
 Output Option: Enter letter or ESC -->

 Figure 6-1. Documentation Options Menu

If you select option D, the Editor adds the documentation to the end of a disk
file named DISPLAY.DOC, if the file exists. If it does not exist, the Editor
creates it on the same disk containing the current display file. DISPLAY.DOC
is an ASCII file that can be edited with a word processor or other program
that reads standard ASCII files. Each line is terminated with a Carriage
Return/Line Feed sequence, and the end-of-file is marked with the standard
Ctrl-Z character. This facility is provided as an aid for creating user
manuals and program documentation. It is also an efficient method, when

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

documenting several displays, for printing at a later time.

Press ESC at any time to abandon the documentation process.

The next 2 figures illustrate the documentation created by pressing Ctrl-OUW.
The first figure is a sample display. The second is a partial example of the
documentation created by the Editor for that display. (An image of the display
is also produced as part of the documentation.) Note in the first figure that
fields have been numbered to correspond to those in the second (this is not a
normal function of the documentation process). Also note in the second figure
that fields are listed by row and column. All information found in the field's
status window is shown. If assigned, initial values are shown just below the
field number.

Several fields in the sample display have the INVISIBLE attribute turned ON.
These fields do not appear when the display is initially shown; they must be
activated using the SETF function in the application program. Field 75, for
example, is made visible only after the end-user enters all required customer
information and begins to enter information in the QTY field. The initial
value in field 75 tells the end-user to complete the CUSTOMER PHONE ORDER by
setting the QTY field to zero.

 CUSTOMER PHONE ORDER

| Customer: _______________________ Address: _______________________ |
| City: __________________ State: __ Zip: _____ Phone: (___) ___-____ |
Payment: _ A = Account, B = Bank Card, C = C.O.D. No. __________
 Press ESC to exit. Set QTY = 0 to send order.
 Press CTRL Z for Part No. Reference

| QTY | DESCRIPTION | PART NO. | PRICE EA || TOTAL |
 ===
			$		
			$		
			$		
			$		
			$		

 TOTAL SALE || |

 INCORRECT PART NO. ENTERED (PRESS CTRL Z FOR HELP)
 MUST BE A, B, OR C
 ORDER SENT, PRESS RETURN TO CONTINUE

 Figure 6-2. Sample Display

 V B F A C C B F I H I F U U U U
 A E O U O U A . N A N L N S S S
 L E R T M R D K V L V A D E E E
 I P M . M S K E I F E S L R R R
Num Typ Row Col Len Post D . T R A R Y Y S . R H N 1 2 3

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

--- --- --- --- --- ---- ------------- ------- ----------------------
50 IN 4 13 21 YY X N L Y N Y N Y N N N N N N N

--- --- --- --- --- ---- ------------- ------- ----------------------
51 IN 4 45 23 YY X N L Y N Y N Y N N N N N N N

--- --- --- --- --- ---- ------------- ------- ----------------------
52 IN 5 9 16 YY X N L Y N Y N Y N N N N N N N

--- --- --- --- --- ---- ------------- ------- ----------------------
54 IN 5 33 2 YY U N L Y N Y N Y N N N N N N N
__
--- --- --- --- --- ---- ------------- ------- ----------------------
55 IN 5 41 5 YY I N L Y N Y N Y N N N N N N N

--- --- --- --- --- ---- ------------- ------- ----------------------
56 IN 5 54 14 YY I N L Y N Y N Y N N N N N N N
(___) ___-____
--- --- --- --- --- ---- ------------- ------- ----------------------
57 IN 6 12 1 YN U N L Y N Y N Y N N N N N N N
_
--- --- --- --- --- ---- ------------- ------- ----------------------
103 IN 6 54 14 YY I N L Y N Y N Y N N N N N N N
No. __________
--- --- --- --- --- ---- ------------- ------- ----------------------
77 OUT 8 2 18 YN L N N Y N N N N N N
Press ESC to exit.
--- --- --- --- --- ---- ------------- ------- ----------------------
75 OUT 8 21 26 NY L N Y Y N N N N N N
Set QTY = 0 to send order.
--- --- --- --- --- ---- ------------- ------- ----------------------
76 OUT 9 2 35 YY L N Y Y N N N N N N
Press CTRL Z for Part No. Reference
--- --- --- --- --- ---- ------------- ------- ----------------------
1 IN 13 3 3 YY I N L Y N Y N N N N N N N N N

--- --- --- --- --- ---- ------------- ------- ----------------------
2 IN 13 9 17 YY X N L Y N Y N N N N N N N N N

--- --- --- --- --- ---- ------------- ------- ----------------------
4 IN 13 30 5 YY I N L Y N Y N N N N N N N N N

--- --- --- --- --- ---- ------------- ------- ----------------------
19 IN 13 41 7 YY D N R Y N N N Y N N N N N N N

--- --- --- --- --- ---- ------------- ------- ----------------------
24 OUT 13 51 9 YN M N N N N N N N N N

 Figure 6-3. Sample of Display Documentation

6.4 DISPLAY FILE COMMANDS

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

The display file commands are listed in the table at the beginning of this
section. Use these commands to save a display that you have been creating or
changing with the Editor. All of these commands have a prefix of OU. When you
press Ctrl-OU, the Editor shows you the following menu:

 Enter letter or ESC -->

 G - Global Changes N - Save & Edit Next
 P - Save & Edit Prior O - Abandon, No save
 S - Save & Edit Same T - Save & Main Menu
 W - Write Documentation ? - HELP Instructions

 Figure 6-4. Output Options Menu

Press ESC to resume editing the current display.

Options N, P, S, and T save whatever work you have done on the display in an
area of memory called a buffer. These options do not necessarily cause the
changes to be stored in the display file on disk. To ensure that your displays
are stored on disk, select the T option here to return to the Main Menu.
Select the O option at that menu, which closes the display file. Closing the
file flushes everything from the buffer area, and writes it to the disk. You
should do this periodically, to make sure that your work is not lost in the
event of hardware or power failures.

Abandon Work, Do Not Save Display: Ctrl-OUQ
Abandons editing of the current display, and loses any changes made since the
last time the file was saved using one of the options on the Output Options
Menu. When you select this option, the Editor asks you to confirm your choice
before actually abandoning your work. If you do confirm, you are returned to
the Main Menu; otherwise, editing resumes.

Change Global Values: Ctrl-OUG
This option provides you the opportunity to change the current global values
for the display. "Global Values" in Section 5 describes the changes that you
can make.

Save Display, Edit the Next One: Ctrl-OUN
Saves the current display, locates the next one in the display file (according
to the display reference numbers), and places it on your design terminal
screen for you to edit.

If the current display is the last one in the file, an error message appears,
and you are returned to the Main Menu.

Save Display, Edit the Previous One: Ctrl-OUP
Saves the current display, locates the previous one in the display file
(according to the display reference numbers), and places it on your design
terminal screen for you to edit.

If there is no previous display in the file, an error message appears, and you
are returned to the Main Menu.

Save Display, Resume Editing Same One: Ctrl-OUS

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Saves the current display, then makes it available again for editing.

Save Display, Return to Main Menu: Ctrl-OUT
Saves the current display, and returns you to the Main Menu.

Write Documentation: Ctrl-OUW
This option is explained under "Display Design Commands" earlier in this
section.

Help Instructions: Ctrl-OU?
This option displays a list of the Editor commands on your design terminal
screen.

6.5 EDITOR COMMANDS SUMMARY

This section summarizes the Editor commands by listing them alphabetically by
commands. Use the following to interpret the Category column:

 CM Cursor Movement
 DD Display Design
 DF Display File
 FE Field Editing

Table 6-2. Editor Commands Summary

Command Category Description
------- -------- -----------
Ctrl-A CM Cursor to previous word
Ctrl-B FE Boundary display (single line)
Ctrl-D CM Right one space
Ctrl-E CM Up one line
Ctrl-F CM Right to next word
Ctrl-G DD Delete character under cursor
Ctrl-H (*) CM Left one space
Ctrl-I CM Moves to the next tab stop. If used while defining a
 field, reserves 8 spaces.
Ctrl-J (*) DM Down one line
Ctrl-K (*) CM Up one line
Ctrl-L (*) CM Right one space
Ctrl-P FE Insert template character
Ctrl-S DD Left one space
Ctrl-T DD Delete word to right
Ctrl-V DD Insert space
Ctrl-W FE Display/Change status window
Ctrl-X CM Down one line
Ctrl-Y FE Show video/color attributes

Ctrl-OB DD Draw border
Ctrl-OC DD Center line

Ctrl-OUG DF Change global values
Ctrl-OUN DF Save display-edit next one

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Ctrl-OUP DF Save display-edit previous one
Ctrl-OUQ DF Abandon without saving display
Ctrl-OUS DF Save display-edit same one
Ctrl-OUT DF Save display-go to Main Menu
Ctrl-OUW DD Write display documentation
Ctrl-OU? DF Display Editor commands list

Ctrl-QB FE Boundary display (all fields)
Ctrl-QD CM Right half screen
Ctrl-QE CM Up half screen
Ctrl-QG DD Delete line
Ctrl-QH (*) CM Left half screen
Ctrl-QJ (*) CM Down half screen
Ctrl-QK (*) CM Up half screen
Ctrl-QL (*) CM Right half screen
Ctrl-QS CM Left half screen
Ctrl-QV DD Insert Line
Ctrl-OW FE Leave status window ON
Ctrl-QX CM Down half screen
Ctrl-QY FE Video attributes display

Ctrl-UA CM Previous field
Ctrl-UC FE Copy field to cursor
Ctrl-UD CM End of field
Ctrl-UF CM Next input/output field
Ctrl-UG FE Delete field
Ctrl-UH (*) CM Beginning of field
Ctrl-UI FE Define input field
Ctrl-UL (*) CM End of field
Ctrl-UM FE Move field to cursor
Ctrl-UO FE Define output field
Ctrl-UR FE Renumber fields
Ctrl-US CM Beginning of field
Ctrl-UV FE Move field right
Ctrl-UW FE Set status window as default
Ctrl-UZ FE Change field to literal

DEL key DD Delete character to left
ESC key Terminates some commands
RETURN CM Beginning of next line down
TAB key CM Moves to next tab stop. If used while defining a
 field, reserves 8 spaces.

(* = Alternate command. See Section 6-1, "Cursor movement commands".)

Section 7: Applications Programming

This section explains how to design and code application programs to use
displays designed with the Editor.

7.1 OVERVIEW OF APPLICATIONS PROGRAMMING

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

--

The Display Manager Run-time Library contains the functions that you need to
manage displays created with the Editor. When you write your application
program source code using one of the Digital Research programming languages,
you code in the necessary calls to these functions. Your source program is
then compiled using the appropriate Digital Research compiler, thus producing
a program object module. The object module is linked to the Run-time Library,
and the resulting component is distributed for use on the end-user's run-time
computer.

Your "Display Manager Programmer's Guide" contains instructions for compiling
and linking your application program source code. The remainder of this
section provides instructions for constructing calls to the various Display
Manager functions in your source code.

The following figure "Application Programming Environment" illustrates the
applications programming environment.

 +------------+
 | Programmer |---------------+
 +------------+ |
 +---------+
 | Program |
 +-------------> | source |
 | | code |
 +----------+ +---------+
 | Function | |
 | calls | +----------+
 +----------+ | Digital |
 ^ | Research |
 | | compiler |
 | +----------+
 +------------------+ |
 | Display Manager | +---------+
 | run-time library |oooo| Program | +----------+
 +------------------+ | object |----> | End-user |
 | module | +----------+
 +---------+

 Figure 7-1. Application Programming Environment

7.2 FUNCTION CATEGORIES

Display Manager has 3 categories of functions. These categories serve only to
aid your understanding of the functions, not to restrict their use.

 1) The Initialization Category consists of only one function. Use it to
 initialize your application program and the run-time terminal for use
 with Display Manager.

 2) The Display Management Category contains functions that find out what

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

 features are available on the run-time terminal, open and close
 display files, clear the terminal screen, show a display on the
 screen, and (if the terminal has the capability) turn the cursor ON or
 OFF.

 3) The Field Management Category has functions that you can use to
 determine the characteristics of a field in a display, retrieve and
 validate information entered into a field by an end-user, determine
 how the end-user stopped entering information into a field, and much
 more.

The following table lists the functions by category, and shows the mnemonic
name assigned to each. The remainder of this section describes each function
in detail. The descriptions are alphabetized according to the mnemonic
function name.

Table 7-1. Display Manager Functions by Category

FUNCTION Description Mnemonic
-------------------- --------
INITIALIZATION
Initialize run-time terminal and program INITDM

DISPLAY MANAGEMENT
Clear screen CLRSCR
Close display file CLSDIS
Open display file OPNDIS
Place display on screen DISPD
Return run-time terminal attributes RETDM
Set cursor visible/invisible CURS

FIELD MANAGEMENT
Determine data entry termination method ENDF
Determine field position, length, type RETF
Display data in field PUTF
Modify field attributes SETF
Place cursor in specific field POSF
Place cursor in relative field NXTF
Resume data entry RESF
Retrieve/validate field input GETF
Retrieve/validate field input/initial value UPDF

7.3 FUNCTION DESCRIPTIONS

This section contains detailed descriptions of the Display Manager functions,
and explains how to use them in your application programs. The following
information about each function is provided when appropriate:

"Syntax" explains the way the various elements in the function call must be
arranged when coded in your application program language. Pascal users please
note that function calls are assignment statements, and not logical compares.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

"Function Category" indicates the general category to which the function
belongs, and is shown separately.

"Explanation" provides a brief description of what the function is designed to
do.

"Cursor Disposition" indicates the location of the cursor following completion
of the function. If omitted, the cursor's location is not affected.

"Function Argument" explains what values must be passed in the function
argument as part of the function call. Some functions do not pass an argument.

"Return Values" describes the information returned by the function at its
conclusion. It is a recommended programming practice to thoroughly check the
value returned by the function, since this value indicates whether or not the
function was successful.

"Additional Comments" explains any special situations and restrictions that
you must observe when using the function.

"Example" is a segment of program code showing one way to use the function in
an application program. The examples are in CBASIC Compiler, but generalized
so they can be applied to any other high-level programming language. In these
examples, variable names ending with a dollar sign ($) denote variable length,
string data. Names ending with a percent sign (%) denote fixed length, binary
integer data. Line numbers have been inserted for reference, and are not part
of the actual code. Note that the examples call the DM.ERR routine following
each function. This routine checks the returned value, to determine if the
function completed successfully.

CLRSCR Function: Clear Screen

Syntax: <integer variable> = CLRSCR

 Display Management Function

Explanation:
The CLRSCR function clears the run-time terminal screen by placing blanks in
all positions.

Cursor Disposition:
The cursor is placed in the top-left corner of the screen.

Return Values:
The CLRSCR function always returns a zero.

Additional Comments:
While designing a display with the Editor, you can specify that the screen
must always be cleared before the display is shown. In such cases, using the
CLRSCR function is unnecessary. However, if you did not specify that the
screen be cleared but now find it necessary, the CLRSCR function does this for
you.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Example:
The run-time terminal screen is cleared in line 300. Subsequent lines close
the display file, check for errors during the close function, and stop the
program.

300 DONE: RET.ERR% = CLRSCR REM Clear terminal screen
310 RET.ERR% = CLSDIS REM Close the display file
320 CALL DM.ERR(RET.ERR%,CLSDIS$) REM Check for file error
330 STOP REM Stop the program

CLSDIS Function: Close Display File

Syntax: <integer variable> = CLSDIS

 Display Management Function

Explanation:
Closes the currently open display file.

Return Values:
Zero is returned if the file is closed successfully; otherwise, a negative
value is returned.

Additional Comments:
The recommended programming practice is always to close the current display
file before terminating your application program.

Display Manager transmits the terminal control codes that return the run-time
terminal to its default condition any time the CLSDIS function is called.
However, when the OPNDIS (open a display file) function is called, it
transmits the terminal startup codes for the run-time terminal. What impact,
if any, this may have on your application program depends on the design and
function of the program itself.

Example:
Line 320 checks to make sure that the file closed without errors.

300 DONE: RET.ERR% = CLRSCR REM Clear terminal screen
310 RET.ERR% = CLSDIS REM Close the display file
320 CALL DM.ERR(RET.ERR%,CLSDIS$) REM Check for file error
330 STOP REM Stop the program

CURS Function: Set Cursor Visible/Invisible

Syntax: <string variable> = CURS(<string expression>)

 Display Management Function

Explanation:
If the run-time terminal has the ability to turn the cursor ON and OFF, the
CURS function can serve to make the cursor visible (ON) or invisible (OFF).

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

This function works independent of the cursor's location on the screen.

Function Argument:
The function argument (<string expression>) is a single-character indicating
the desired setting for the cursor. The value can be zero, one, two, or three,
as shown in this table.

Table 7-2. CURS Function Argument Values

 Arg. Desired
value result
----- -------
 0 Reset the cursor to the visible state.
 1 Set the cursor to the invisible state.
 2 Change the current setting; that is to say: visible to invisible, or
 the reverse.
 3 Do not change the current setting.

Return Values:
If the cursor cannot be made visible or invisible, Display Manager ignores the
CURS function call. Otherwise, a one position character string is returned
indicating the current state of the cursor, as follows:

 0 -- The cursor is visible (ON).
 1 -- The cursor is invisible (OFF).

Additional Comments:
A display does not have to be on the run-time terminal when the CURS function
is called. However, Display Manager must be properly initialized (see the
INITDM function description).

Example:
RETDM serves in line 150 to find out what features are available on the
terminal. Line 160 checks to see if the cursor can be turned ON and OFF. If it
can, it is turned OFF at line 170; otherwise, the terminal is initialized with
the cursor ON in line 180 and 190.

150 AVAIL.ATTR$ = RETDM REM Get terminal's attributes
160 IF MID$(AVAIL.ATTR$,1,1) = 1 REM Cursor turn ON/OFF?
170 THEN CALL CURS("1") REM Yes-turn it off
180 ELSE PRM.ON$ = "0" : REM No-initialize with
190 PRM.OFF$ = "3" REM cursor ON.

DISPD Function: Place Display on Screen

Syntax: <integer variable> = DISPD(<integer expression>)

 Display Management Function

Explanation:
DISPD retrieves the display that you specify from the open display file, and
places it on the run-time terminal screen. To specify which display, you must
provide its display reference number.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Cursor Disposition:
The cursor is placed in the bottom-right corner of the screen.

Function Argument:
The function argument (<integer expression>) is the display reference number
of the display to be shown. The value must not be less than 1, nor more than
250.

Return Values:
If the display is found in the current display file, its display reference
number is returned. If the display cannot be found, a negative value is
returned.

Additional Comments:
The DISPD function reads the specified display from the current display file,
and places it on the screen of the run-time terminal. All literal fields and
visible, initial values for input and output fields are shown. If any video or
color attributes were assigned to the fields in the display, they take effect
if available on the run-time terminal. Fields assigned the Invisible attribute
(in the field's status window) are suppressed.

If the display was designed with the clear screen option, Display Manager
automatically clears the screen before the display is shown. Otherwise, the
screen is not cleared (unless the CLRSCR function is used), and the display
overlays any image currently on the screen. However, your application program
can only reference fields in the current display.

Example:
The display file is opened in line 100; line 110 checks to make sure it was
opened successfully. A display is called from the display file in line 120
(the display is referenced by the variable ORDER.FORM%); line 130 checks to
make sure that the display was found. Line 140 moves the cursor to the first
field in the display (using the NXTF function).

100 RET.ERR% = OPNDIS("ORDERS.DIS") REM Open the display file
110 CALL DM.ERR(RET.ERR%,OPNDIS$) REM Check for file error
120 RET.ERR% = DISPD(ORDER.FORM%) REM Show Order Form Display
130 CALL DM.ERR(RET.ERR%,DISPD$) REM Check if display found
140 RET.ERR% = NXTF(-10) REM Move cursor to first field

ENDF function: Determine Data Entry Termination Method

Syntax: <integer variable> = ENDF

 Field Management Function

Explanation:
The ENDF function returns a value indicating how the end-user terminated data
entry for a field. The returned value is always in reference to the most
recent use of GETF or UPDF to retrieve information from the field.

Return Values:

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

An integer value is always returned. The following table lists and explains
the possibilities.

Table 7-3. ENDF Return Values

Format: Value
 Termination Method Used

0 (ASCII null).
Indicates normal termination. Means that the field was filled while AutoRet
was set in its status window, that the RETURN key was pressed, or that an
immediate return resulted from retrieving information from an output field.

x
Abnormal termination. The "x" is the ASCII value of the invalid character
entered when the BadC or Cursor attribute is set in the field's status window.
For example, if the field is defined as numeric only and the letter A is
entered, data entry is terminated and the value returned is 65.

-n
-n is a negative number indicating the function key that was pressed when the
FKey attribute is set in the field's status window. For example, -1 is
returned when function key #1 is pressed.

Additional Comments:
Display Manager resets the ENDF function every time a new display is placed on
the terminal screen. This ensures that there is no carry over of conditions
from a previous display.

Note that, whatever cursor control keys are used, the up (Ctrl-K) and down
(Ctrl-L) keys are mapped into 11 and 10 when the "Cursor" attribute is set in
the field's status window. When the Cursor attribute is not set but BadC is,
ENDF returns the ASCII value entered by the end-user. These distinctions are
important, because knowing the method used to terminate data entry is useful
for allowing the end-user to move between fields without ill effects (see the
RESF function).

Example:
The GETF function is used at line 250 to retrieve the end-user's input. At
line 260, ENDF checks to see if the ESC key was pressed to terminate data
entry and signal the end of the program. If it was, lines 270 through 290
close the file, check for errors during the close, and stop the program.

250 INPUT$ = GETF REM Get field input
260 IF ENDF = 27 REM ESC key entered?
270 THEN RET.ERR% = CLSDIS : REM Yes-close display file
280 CALL DM.ERR(RET.ERR%,CLSDIS$) REM Check for file error
290 STOP REM Stop the program

GETF Function: Retrieve/Validate Field Input

Syntax: <string variable> = GETF

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

 Field Management Function

Explanation:
GETF retrieves information from the current field, and makes it available to
your application program.

Cursor Disposition:
The cursor is left in the column immediately to the right of the field from
which the data was retrieved.

Return Values:
GETF can be used to retrieve data from either an input or output field. The
function always returns a string variable.

Input Fields

GETF returns the characters entered by the end-user. Only those characters
entered are returned. If the field contains an initial value or template
characters, these are not returned. (Use the UPDF function to retrieve initial
values from a field.)

Each time the end-user types a character into the field, the character is
validated according to the validation code set in the field's status window.
If data entry is terminated abnormally, all characters entered in the field
(except the illegal character) are returned to the application program.

All characters typed into the field are returned until one of the following
occurs:

 - The RETURN key is pressed.

 - Data entry is abnormally terminated (for example, an illegal character
 is entered).

 - The field is filled and the AutoRet code in the field's status window
 is appropriately set.

If the input field contains initial values, and the end-user does not enter
data into the field, a null string is returned.

GETF makes it possible for the end-user to use editing control keys when
entering data in an input field. The next table shows these keys, and their
resulting action.

Table 7-4. Data entry editing control keys

Format: Key
 Result

Right Arrow
Moves cursor right one position in the field. Characters in the field are not
changed. If the cursor is in the last position of the field, it does not move.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Left Arrow or Backspace
Moves cursor left one position in the field. Characters in the field are not
changed. If the cursor is in the first position of the field, it does not
move.

Ctrl-S
Same as left arrow key.

Ctrl-D
Same as right arrow key.

Ctrl-G
Deletes the character under the cursor. All characters to the right of the
deleted character (except template characters) shift left one space.

DEL ("<--")
Deletes the character to the left of the cursor. The character under the
cursor and those to the right (except template characters) shift left one
space. If the cursor is in the first position of the field, the character
under the cursor is deleted.

Ctrl-V
Inserts a space at the current cursor location. In the field, the character
under the cursor and those to the right (except template characters) shift
right one space.

Notes:

 1. Refer to the INITDM function description if you want to assign
 different arrow keys.

 2. When using any of the keys in the preceding table that shift
 characters, any characters shifted beyond the right boundary of a
 field are lost.

Based on the validation code in the field's status window, GETF returns
characters that conform to the specification. For example, if the code
specifies integer information, a string of integers is returned. Thus, 123.45
is returned as 123.

Output Fields

When GETF is used in conjunction with an output field, information from the
field is returned immediately. That is to say: it is not necessary for the
end-user to terminate data entry, since data is not entered into output
fields. This is a useful method for reading information from the display.

Example:
Line 130 places the cursor in the next, relative input field. The GETF
function in line 150 retrieves information from the field.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

110 DEF GET.ENTRY
120 STRING GET.ENTRY
130 RET.ERR% = NXTF(2) REM Curs to next input field
140 CALL DM.ERR(RET.ERR%,NXTF$) REM Check for errors
150 INP$ = GETF REM Get field input
160 CONT: IF ENDF = 27 REM ESC key pressed?
170 THEN RET.ERR% = CLSDIS : REM Yes-close display file
180 CALL DM.ERR(RET.ERR%,CLSDIS$) REM Check for file error
190 STOP REM Stop the program
200 IF ENDF <> 0 AND ENDF <> 26 \ REM No-^char or ^Z pressed?
210 THEN GOTO RETR REM Yes-go to abnormal end
220 GET.ENTRY = INP$ REM No-get input data
230 RETURN
240 RETR: RET$ = RESF(-1) REM Save field position
250 CALL DM.ERR(RET.ERR%,PUTF$) REM Check for errors
260 INP$ = RESF(1) REM Resume input
270 GOTO CONT REM Continue
280 FEND

INITDM Function: Initialize Display Manager

Syntax: <integer variable> = INITDM(<string expression>)

 Initialization Function

Explanation:
The INITDM function initializes the run-time application program and the run-
time terminal for use with Display Manager. This function must be called by
your application program prior to calling any other Display Manager function.

Function Argument:
The function argument (<string expression>) contains program attributes and
terminal control codes. The string must be in this format, and cannot contain
more than 254 characters:

 <program attributes>/<terminal control codes>

Although the program attributes portion of the string is optional, the slash
(/) and the terminal control codes are always required. Note that the terminal
control codes in the TERMS.DM file already have the slash as a prefix.

Program Attributes

Your application program can pass a string of up to 5 program attributes to
Display Manager at run-time. These attributes each have default values that
are used unless you change them by passing new ones. The following table shows
the program attribute that corresponds to each position in the string.

Table 7-5. Program attributes string

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

 Position Attribute
 -------- ---------
 1 Money Symbol
 2 Decimal Delimiter
 3 Alphabetic Character Set
 4 Cursor Movement Keys
 5 Clock Set

The following describes the optional settings for these attributes. The
default value for all attributes is A. Thus, the default string is AAAAA. This
sets the money symbol to a dollar sign ($), the decimal delimiter to period
(.), the alphabetic character set to the ASCII standard, cursor movement keys
to both sets, and the clock to 4-MHz (megahertz).

1) Money Symbol

The character specified in this attribute is displayed in an input or output
field that has been defined as a money field. The default character is a
dollar sign ($), but any printable character can be used.

A
Means the dollar sign ($) should be used.

(x)
If you want money fields to be displayed with something other than the dollar
sign, pass the character that you want to use as the attribute value.

2) Decimal Delimiter

The decimal delimiter attribute tells Display Manager how to show fractional
numbers in a decimal format. This attribute takes effect when a field is
displayed using the PUTF (Put Field) function.

A
Tells Display Manager to use the American standard, where a period is the
decimal delimiter, and a comma is the separator. This causes numbers to print
as follows:

 123,456,789.01

E
Tells Display Manager to use the European standard, where a comma is the
decimal delimiter, and a period is the separator. Numbers print as follows:

 123.456.789,01

3) Alphabetic Character Set

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

The standard set of alphabetic characters includes ASCII characters a-z and A-
Z. Display Manager considers only those characters in this set as acceptable
alphabetic characters when performing validation of information entered by the
end-user (see the "Input Field Validation Codes" table in Section 6). This
attribute makes it possible to extend the alphabetic character set up to 3
characters following z and Z. The characters that become available are
dependent on the terminal in use. For example, European terminals often have
accented characters in these positions.

A
Means only the characters in the standard ASCII set are acceptable.

B
Extends the set by 1 character.

C
Extends the set by 2 characters.

D
Extends the set by 3 characters.

4) Cursor Movement Keys

You can use 2 different sets of cursor movement keys with Display Manager: the
ANSI-standard keys, and the Display Manager keys.

A
Means both sets may be used.

B
Means only the ANSI-standard keys may be used (Ctrl-K, Ctrl-H, Ctrl-L, and
Ctrl-J).

C
Means only the Display Manager set may be used (Ctrl-E, Ctrl-S, Ctrl-D, and
Ctrl-X).

5) Clock Set

This attribute selects the clock speed of the run-time computer. The default
value (4-MHz) is normally adequate for most computers. You may wish to adjust
this rate if there is a timing problem with the run-time terminal, such as
clearing the screen or positioning the cursor. If the run-time computer is a
very slow system based on Z-80 microchips, setting the clock to a lower rate
may clear the screen and position the cursor on some terminals a little
faster.

 A 4-MHz
 B 1-MHz
 C 2-MHz

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

 D 3-MHz
 E 5-MHz
 etc.

Terminal Control Codes

The terminal control codes portion of the argument string contains the codes
that Display Manager needs to initialize the run-time terminal. The codes tell
Display Manager what features are available on the terminal, and how to
activate/deactive them.

Please read Section 3 and Appendix C for additional information on setting up
control codes for various run-time terminals.

Return Values:
Zero is returned if the application program and the run-time terminal are
successfully initialized.

Display Manager checks the control codes for the run-time terminal. If there
are errors, a short message is displayed on the run-time terminal, and one of
the negative numbers listed and explained in the next table is returned to
your application program. The error descriptions in the table make reference
to the terminal control code example string shown here:

 Number of non-null groups
 |
 /2 ABBECDAABABABART GGGHAAAAKJAIFHPPZ6
 +--------------+ +----------------+
 Group 1 Group 30

 Figure 7-2.Terminal Control Code Example String

The "2" following the slash (/) indicates that there are 2 groups in the
string containing non-null characters, Groups 1 and 30. After the first group,
the remaining groups can be in any order, because the group number is actually
part of the code.

Table 7-6. INITDM Run-time Errors

Format: Returned Value
 Description of Error

-1 to -5
One of the code groups in the string contains an unacceptable code. The value
returned indicates which group: for example, -2 indicates the second group,
group 30 in the example string. See Appendix A for a discussion of what
constitutes acceptable codes.

-40
Indicates that the number following the slash is invalid or missing.

-50

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

The code string contains non-blank characters beyond the end. In the preceding
example, 6 marks the end of the code string.

-100
Indicates that the slash, which must precede each code string, is missing.

Additional Comments:
The INITDM function can only be called once by your application program.

Example:
In this example, CURRENT.TRM is assumed to contain the terminal control codes
for the terminal being used. Initialization occurs in line 50. If
initialization is not successful (line 60), an error message is displayed
(line 70) and the program is stopped.

010 IF END #1 THEN ERR1 REM If no terminal file, error
020 OPEN "CURRENT.TRM" AS 1 REM Open terminal ctl code file
030 READ #1;TERM$ REM Read terminal ctl code string
040 CLOSE 1 REM Close the file
050 RET.ERR% = INITDM(TERM$) REM Initialize library a terminal
060 IF RET.ERR% < 0 REM Check for initialize error
070 THEN PRINT "Bad DM code" : REM Yes-print error message
080 STOP REM Stop the program

NXTF Function: Place Cursor in Relative Field

Syntax: <integer variable> = NXTF(<integer expression>)

 Field Management Function

Explanation:
NXTF places the cursor in a specified field of the display. The field you want
to receive the cursor is referenced relative to the current field.

Following the NXTF function, the field receiving the cursor becomes the
current field.

Cursor Disposition:
The cursor is located in the first position of the receiving field. However,
if the specified field cannot be found, the cursor is not moved.

Function Argument:
The function argument (<integer expression>) specifies the field to which the
cursor is to be moved, and its type. The following table shows the acceptable
argument values, and their results. Remember that the receiving field is
always referenced relative to the current field.

Table 7-7. NXTF argument values

Value Cursor Moves To...
----- ------------------
 1 NEXT input or output field
 2 NEXT input field

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

 3 NEXT output field
 10 LAST input or output field in display
 20 LAST input field in display
 30 LAST output field in display
 -1 PREVIOUS input or output field
 -2 PREVIOUS input field
 -3 PREVIOUS output field
 -10 FIRST input or output field
 -20 FIRST input field
 -30 FIRST output field

Return Values:
If the specified field is located, the field reference number of the new
current field is returned; otherwise, a negative value is returned.

Additional Comments:
The cursor moves according to the order of fields on the screen, and without
regard to field reference numbers. Consequently, it is not necessary for your
application program to use specific numbers to reference fields (although you
can use the POSF function to place the cursor according to field reference
numbers).

Example:
This example places the cursor in the next input field relative to the current
field.

100 RET.ERR% = NXTF(2) REM Cursor to next input field
110 CALL DM.ERR(RET.ERR%,NXTF$) REM Check for errors
120 INP$ = GETF REM Get field input

The next example places the cursor in the previous output field relative to
the current field. A total is computed, and then displayed in the output
field.

200 RET.ERR% = NXTF(3) REM Cursor to prev output field
210 CALL DM.ERR(RET.ERR%,NXTF$) REM Check for errors
220 TOTAL(ORDER.NO%) = STR$(VAL(QTY(ORDER.NO%)) REM Compute the total
230 * VAL(PRICE.EA(ORDER.NO%)))
240 RET.ERR% = PUTF(TOTAL(ORDER.NO%)) REM Display data in field
250 CALL DM.ERR(RET.ERR%,PUTF$) REM Check for error

The final example places the cursor in the first field of the display.

300 RET.ERR% = NXTF(-10) REM Cursor to first field
310 CALL DM.ERR(RET.ERR%,NXTF$) REM Check for errors
320 INP$ = GETF REM Get field input

OPNDIS Function: Open Display File

Syntax: <integer variable> = OPNDIS(<string expression>)

 Display Management Function

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Explanation:
Opens a display file. Only one display file can be open at any given time. So,
if a display file is already open when this function is called, the open file
is automatically closed before this function is performed.

If there is a display currently on the run-time terminal, it is not affected
by this function, unless the new display has the Clear Screen global value
set. Note, however, that your application program cannot access any of the
fields in the original display.

Function Argument:
The function argument (<string expression>) is the name of the display file to
be opened. If the file is on a disk in a drive other than your currently-
logged drive, precede the name with the appropriate drive specifier. For
example, B:PAYROLL.DIS opens the file on drive B.

Return Values:
If the display file is opened successfully, a zero is returned; otherwise, a
negative value is returned.

Additional Comments:
A display file must be opened with the OPNDIS function before your application
program can use any of the displays contained therein. But, once a display
file is open, you can use any and all displays from that file any number of
times, without reopening it.

Your program must call the INITDM function before using OPNDIS.

Any time the OPNDIS function is called, Display Manager sends the startup
codes to the run-time terminal.

Example:
This example opens a display file named "ORDERS.DIS".

150 RET.ERR% = OPNDIS("ORDERS.DIS") REM Open ORDERS.DIS file
160 CALL DM.ERR(RET.ERR%,OPNDIS$) REM Check for file error

POSF Function: Place Cursor in Specific Field

Syntax: <integer variable> = POSF(<integer expression>)

 Field Management Function

Explanation:
POSF places the cursor in a specified field of the display. The receiving
field is specified by its field reference number, and becomes the current
field in the display.

Cursor Disposition:
The cursor is located in the first position of the specified field. However,
if the specified field cannot be found, the cursor's location is not changed.

Function Argument:

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

The function argument (<integer expression>) is the field reference number of
the field that is to receive the cursor. Field numbers can range from 1 to
250.

Return Values:
If the specified field is located or zero is passed as the function argument,
the field reference number of the current field is returned. If zero is passed
as the function argument and no field is current (that is to say: the cursor
is not in a field), zero is returned.

Additional Comments:
If the specified field cannot be located, a run-time error results (see
Section 8).

See the NXTF function for placing the cursor in a field relative to the
current field.

Example:
In this example, line 120 stores the current field number. Line 130 moves the
cursor to the field specified by FIELD.NO%. Line 160 returns the cursor to the
original field.

120 CURR.FLD% = POSF(0) REM Save current field number
130 RET.ERR% = POSF(FIELD.NO%) REM Move cursor to specific field
140 ... REM (Other processing)
150 ... REM
160 RET.ERR% = POSF(CURR.FLD%) REM Cursor back to original field

In the next example, the cursor is moved from field to field in the display
according to field reference numbers. This routine assumes the fields are
numbered sequentially in increments of 1.

240 MAX.FLDS% = NXTF(10) REM Save number of last field
250 CNT% = 0 REM Initialize loop index
260 NEXT: RET.ERR% = POSF(CNT% + 1) REM Move cursor to next field
270 CALL DM.ERR(RET.ERR%,POSF$) REM Check for errors
280 ... REM (Other processing)
290 ... REM
350 CNT% = CNT% + 1 REM Add one to index
310 IF CNT% < MAX.FLDS% REM Last field reached?
320 THEN GOTO NEXT REM No-Continue loop

PUTF Function: Display Data in Field

Syntax: <integer variable> = PUTF(<string expression>)

 Field Management Function

Explanation:
PUTF displays data in the current field according to its specified format. The
output format of a field is specified in its status window while using the
Editor to create the display.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

The PUTF function displays string characters in a display field, even when the
Format code in the field's status window is N (specifying Numeric data).

Cursor Disposition:
The cursor is placed in the column immediately to the right of the last
character in the field. If the specified field cannot be found, the cursor is
not moved.

Function Argument:
The function argument (<string expression>) is the information to be displayed
in the field. The string must not contain more than 132 characters.

Return Values:
PUTF returns zero if the information is successfully displayed in the field;
otherwise, a negative value is returned. A negative value might result if, for
example, the information being placed in a number-type field is too large for
that field (in which case, the field is filled with asterisks).

Additional Comments:
The PUTF function erases any data that may have been left in the field from a
previous operation.

Example:
Line 100 moves the cursor to the next output field in the display (relative to
the current field). Line 120 computes a total to show in the field. Line 130
displays the total in the field.

100 RET.ERR% = NXTF(3) REM Cursor to next output field
110 CALL DM.ERR(RET.ERR%,NXTF$) REM Check for error/field found?
120 TOTAL = STR$(VAL(QTY) * VAL(PRICE.EA)) REM Compute total
130 RET.ERR% = PUTF(TOTAL) REM Display total in field
140 CALL DM.ERR(RET.ERR%,PUTF$) REM Check for error/good data?

RESF Function: Resume Data Entry

Syntax: <string variable> = RESF(<integer expression>)

 Field Management Function

Explanation:
The RESF function provides a way for your program to interrupt data entry,
save the information entered into the field thus far, and then resume data
entry exactly where it was interrupted.

For example, assume that the end-user is entering information into a field
whose validation code (in the status window) specifies that only numeric data
can be entered. This is a five-position field and the end-user enters the
following information: "012F". When the F is entered, abnormal data entry
termination is forced. Your program can call the ENDF function to determine
why data entry was terminated. The RESF function can then be called to save
the valid information entered into the field (12) without saving the invalid
character (F). An error message can then be displayed, explaining why data
entry was terminated (based on the value returned by ENDF). Finally, RESF can

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

be called again, to return the cursor to the original input field and resume
data entry at the position where the invalid character was entered.

RESF resumes data entry using the GETF or UPDF function, whichever was in use
at the time of abnormal termination.

Cursor Disposition:
The cursor's location following this function is dependent on the value passed
in the function argument (see the next paragraph).

Function Argument:
The function argument (<integer expression>) is a single-character integer
specifying one of 8 storage locations. If the argument contains a negative
value (-1 to -8), Display Manager saves the information entered up to the
point of termination, and returns an empty string. It also remembers the field
in which data was being entered. The RESF function can subsequently be called
with a corresponding positive value (1 to 8) to cause data entry to resume
exactly where it was terminated.

For example, if your program detects abnormal termination, but you want the
end-user to be able to return to the field and resume entering data, you would
first call RESF with a negative value. When you want to return the user to the
original field for resumption, call RESF with a corresponding positive value.

Return Values:
RESF returns the same value as that returned by the GETF or PUTF function
originally used to retrieve data from the field.

Additional Comments:
RESF with a positive argument continues data entry for a particular field
using the rules associated with either the GETF or UPDF function, depending on
which was used to retrieve the data. The cursor is positioned at the location
where data entry terminated to continue the input. The value returned by RESP
is the character string entered by the end-user.

Example:
Line 100 retrieves the input entered by the end-user. The following 3 lines,
110 to 130, would check for abnormal data entry termination using the ENDF
function. If abnormal termination occurs because of an illegal character, as
determined by the ENDF function, data entry resumes by saving the current
field information (line 140), and resuming input as shown in line 150.

100 INP$ = GETF REM Get input from field
110 ...
120 ... REM (Other processing)
130 ...
140 RET$ = RESF(-1) REM Save field no. and valid data
150 INP$ = RESF(1) REM write old data in field/resume input

RETDM Function: Return Run-time Terminal Attributes

Syntax: <string variable> = RETDM

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

 Display Management Function

Explanation:
Returns a string of 16 separate values. However, only the first 11 values are
currently in use, and they indicate the following:

 - the features available on the run-time terminal
 - the version of the Display Manager Run-time Library currently in use

Return Values:
Each position in the string variable returned by the RETDM function pertains
to a standard terminal feature supported by Display Manager. The following
table explains the individual string positions and their corresponding
features.

Table 7-8. RETDM terminal features

 Pos. Feature
 ---- -------
 1 Cursor Visibility
 2 Half Intensity
 3 Inverse Video
 4 Flashing
 5 Underline
 6 User-defined #1
 7 User-defined #2
 8 User-defined #3
 9 Function Keys
 10 Run-time Version Number
 11 Color/Monochrome Indicator

The values returned in positions 1 through 9 indicate whether or not the
corresponding feature is available on the run-time terminal. It further
indicates whether or not the feature requires a reserved space on either side
of a field (meaning that the terminal uses the Plant method for activating
video attributes). Each position can contain an ASCII value of 0, 1, or 2:

 0: The feature is not available on the run-time terminal.

 1: The feature is available, and does not require a space on either side
 of the field.

 2: The feature is available, and does require a space on either side of
 the field.

Your application program can examine the returned string to determine whether
or not to activate a particular feature. For example, you might want to
activate inverse video if that feature is available, or underlining if it is
not. In such a case, activate the feature only if the corresponding position
contains a 1; do not activate it if the position contains a 0 or 2.

The 9th position indicates the number of function keys available. ASCII zero
("0") indicates none are available, "1" indicates that one function key is
available, and so forth.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

The 10th position indicates the version and release number of the Run-time
Library in use. A value ranging from 0 to 127 (7F hexadecimal) might be
returned. The leftmost digit is the version number; the rightmost is the
release number. For example, hexadecimal 11 signifies version 1, release 1.
This value is significant, since displays created with one version of Display
Manager generally do not work with a different version of the Run-time
Library.

The last position indicates whether the run-time terminal is monochrome or
color equipped. If monochrome, ASCII 0 is returned; if color, ASCII 1 is
returned.

For example, if the RETDM function returns the string

 10110000000

it indicates that the invisible cursor, inverse video, and flashing cursor
features are available. Half intensity, underlining, and user-defined features
are not available, no function keys are available, and version zero/release
zero of the run-time library is being used. Finally, it indicates that the
run-time terminal is a monochrome-type.

Example:
In this example, the features available on the run-time terminal are returned
to the application program in line 150. Line 160 checks the returned string,
to see if the inverse video feature is available. If it is, the feature is
used to highlight prompts (lines 170 and 180).

150 AVAIL.ATTR$ = RETDM REM Get terminal attributes
160 IF MID$(AVAIL.ATTR$,3,1) <> "0" REM Is inverse video supported?
170 THEN PRM.ON$ = "031" : REM Yes-use the feature to
180 PRM.OFF$ = "330" REM highlight prompts.

RETF Function: Return Field Position, Length, and Type

Syntax: <string variable> - RETF

 Field Management Function

Explanation:
This function returns a value indicating the position, length, and type (input
or output) of the current field.

Return Values:
RETF returns a 16-character string. However, only the first 8 characters are
currently used, and they contain information about the current field. The next
table explains the value of each character position.

Table 7-9. Field information from RETF

Format: Position
 Meaning

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

1
An ASCII value ranging from 1 to 255, indicating the ROW number in which the
field is located.

2
(Not used; contains ASCII 0.)

3
An ASCII value ranging from 1 to 255, indicating the COLUMN number where the
field begins.

4
(Not used; contains ASCII 0.)

5
An ASCII value ranging from 1 to 255, indicating the LENGTH (number of
columns) of the field.

6
(Not used; contains ASCII 0.)

7
Position seven indicates whether or not a space exists on either side of the
field: 0 indicates no space is on either side of the field. 1 indicates a
space is on either side (meaning a Plant-type attribute can be set for the
field).

8
Indicates whether the field was defined as an input or output type: "I"
indicates an input field, "O" (letter O, not zero) indicates an output field.

Example:
The RETF function in this example determines the length of a particular field.
Line 360 obtains the field information. Line 370 computes the length of the
field.

300 DEF WRITEF(OUT$)
310 RET.ERR% = NXTF(2) REM Cursor to next input field
320 CALL DM.ERR(RET.ERR%,NXTF$) REM Check for error
330 ATTR$ = SETF("0") REM Make field visible
340 RET.ERR% = PUTF(OUT$) REM Display old data in field
350 CALL DM.ERR(RET.ERR%,PUTF$) REM Check for error
360 RET$ = RETF REM Get field values
370 FIELD.SZ% = ASC(MID$(RET$,5,1)) REM Determine field size
390 IF FIELD.SZ% = 1 \ REM Check field size
400 THEN RET.ERR% = NXTF(3) : \ REM Curs to next output field
410 CALL DM.ERR(RET.ERR%,NXTF$) : \ REM Check for error
420 RET.ERR% = PUTF(MID$(OUT$,2,LEN(OUT$))) : \ REM Show data
430 CALL DM.ERR(RET.ERR%,PUTF$) REM Check for error
440 FEND

SETF Function: Set Field Attributes

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Syntax: <string expression> = SETF(<string expression>)

 Field Management Function

Explanation:
This function can be used to set the video or color attributes of a field
during run-time. These attributes are originally set in the field's status
window during the display design with the Editor. This function makes it
possible to override the original attributes.

Function Argument:
The function argument (<string expression>) is a 16-character string. Each
character in the string refers to a specific attribute on the run-time
terminal that can be set for the field. The next table shows the meaning of
each character in the string, along with its normal and special setting.

Table 7-10. SETF argument values

 Pos. Attribute Nrm Spc
 ---- --------- --- ---
VIDEO
 1 Visibility Y N
 2 Half Intensity N Y
 3 Reverse Video N Y
 4 Flashing Field N Y
 5 Underlining N Y
 6 User-defined #1 N Y
 7 User-defined #2 N Y
 8 User-defined #3 N Y

COLOR
 9 Flashing N Y

Background Color Codes
 10 RED N Y
 11 GREEN N Y
 12 BLUE N Y

Foreground Color Codes
 13 Intensity N Y
 14 Red Y N
 15 Green Y N
 16 Blue Y N

The value of each position in the string indicates how you want the attribute
to be set, as follows:

 0 Normal setting.
 1 Special setting.
 2 Change current setting (normal to special, or the reverse).
 3 Do not change current setting.

The argument is evaluated from left to right. If it contains less than 16

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

characters, only the attributes for which a new value is sent are changed; the
remaining attributes are not affected. Characters beyond 16 are ignored.

Return Values:
SETF returns a 16-character string indicating how attributes are currently set
on the run-time terminal for this field. The characters in this string
correspond to the attributes shown in the preceding table. If the
corresponding position in the string contains 0, the attribute is in the
normal state; if it contains 1, it is in the special state.

Additional Comments:
Use the POSF or NXTF function to locate a particular field in a display. Use
the POSF function with a zero function argument to determine the number of the
current field.

Example:
The following example is a portion of a routine that accepts input from the
display on the run-time terminal. The attributes available on the terminal
were determined previously using the RETDM function. The attributes for any
given field can be changed using the SETF function, as shown in lines 120 and
210.

100 RET.ERR% = NXTF(2) REM To next input field
110 CALL DM.ERR(RET.ERR%,NXTF$) REM Check for error
120 ATTR$ = SETF("0") REM Turn prompt ON
130 INP$ = GETF REM Get field input
140 CONT: IF ENDF = 27 \ REM ESC key to exit?
150 THEN RET.ERR% = CLSDIS : REM Yes-close display file
160 CALL DM.ERR(RET.ERR%,CLSDIS$) : REM Check for file errors
170 STOP REM Stop the program
180 IF ENDF <> 0 AND ENDF <> 26 \ REM Ctrl char (not ^Z)?
190 THEN GOTO RETR REM Yes-ignore char, continue
200 GET.ENTRY = INP$ REM No-get input
210 ATTR$ = SETF("1") REM Turn prompt OFF
220 RETURN
230 RETR: RET$ = RESF(-1) REM Save field no. and data
260 INP$ = RESF(1) REM Write old data in field
270 GOTO CONT REM Continue

UPDF Function: Retrieve/Validate Field Input

Syntax: <string variable> = UPDF

 Field Management Function

Explanation:
UPDF retrieves information from the current field, and makes it available to
your application program.

UPDF is similar to the GETF function except that, if the field contains an
initial value, the value is returned with UPDF, whereas it is not returned
with GETF.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Cursor Disposition:
The cursor is left in the column to the right of the field from which the data
was retrieved.

Return Values:
UPDF can be used to retrieve data from either an input or output field.

Input Fields

UPDF returns the characters entered by the end-user. If the field contains an
initial value, the value is returned even if the end-user does not enter any
characters into the field. However, if the field contains template characters,
these are not returned.

Each time the end-user types a character into the field, it is validated
according to the Validate code set in the field's status window (see Table 4-
3, "Input Field Validation Codes"). If data entry is terminated abnormally,
all characters entered in the field (excluding the illegal character) are
returned to the application program.

UPDF returns all characters entered into the input field until the occurrence
of one of the following:

 - The RETURN key is pressed.

 - Data entry is abnormally terminated (for example, an illegal character
 is entered).

 - The field is filled and the AutoRet code in the field in status window
 is appropriately set.

UPDF makes it possible for the end-user to use editing control keys when
entering data in an input field. The table in the GETF function description
shows these keys and their interpretation.

Output Fields

When UPDF is used in conjunction with an output field, characters in the field
are returned immediately. That is to say: it is not necessary for the end-user
to terminate data entry, since data is not entered into output fields.

Additional Comments:
UPDF is used to access updated information in a field. It is your
responsibility to ensure that the initial value in a field is the type that
your application program expects. The UPDF function does not validate the
entire field; it checks only those characters entered by the end-user. An
exception to this is if the validation code specifies decimal data. UPDF
allows a decimal point to be entered if it is to the left of an existing
decimal point in the field. The function removes the existing decimal point

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

without affecting other characters in the field. If the end-user attempts to
enter a decimal point to the right of an existing one, Display Manager does
not accept it. However, this does not cause abnormal termination of data
entry.

Example:
This example shows UPDF used to accept data input to a field in line 250.
Prior to calling UPDF, an initial value was placed in the field by a PUTF
statement (line 220).

200 RET.ERR% = NXTF(2) REM Cursor to next input field
210 CALL DM.ERR(RET.ERR%,NXTF$) REM Check for errors
220 RET.ERR% = PUTF(PRICE$(PART%)) REM Display initial value
230 CALL DM.ERR(RET.ERR%,PUTF$) REM Check for errors
240 ATTR$ = SETF(PRM.ON$) REM Turn prompt ON
250 PTRY:PRICE.EA(ORDER.NO%) = UPDF REM Get input data
255 REM ---
260 REM This field does not trap bad characters; ESC not trapped.
265 REM ---
270 ATTR$ = SETF(PRM.OFF$) REM Turn prompt OFF

Section 8: Run-time Environment

The run-time environment represents the culmination of work accomplished in
the terminal setup, Editor, and applications programming environments. The
following figure "Run-time Environment" illustrates the normal run-time
environment, though many variations are possible.

 --------- +------------------+ ----------
 (from DMED) | Display Manager | (from DMSET)
 --------- | run-time library | ----------
 : +------------------+ :
 : o :
 +---------+ +---------+ +--------------+
 | Display | | Program | | Terminal |
 | file | | object | | control code |
 +---------+ | module | | file |
 | +---------+ +--------------+
 | | | |
 | +------------+ |
 +-----------> | End-user's | <------------+ |
 | computer |
 +------------+ |
 |
 +----------+ |
 | Run-time | <- - - - - - - - -+
 | terminal |
 +----------+

 Figure 8-1. Run-time Environment

The Terminal Control Code File created in the terminal setup environment

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

contains the codes that your application program needs to work with the run-
time terminals. At run-time, your program can determine the run-time terminal
in use, read the terminal control codes for that terminal from this file, then
pass the codes via the INITDM function to initialize the terminal.

There is a variation to this method of initializing the run-time terminal.
Your Display Manager distribution disks contain a source program named
INSTALL.BAS. This program is written in CBASIC Compiler, and is designed to
help the end-user initialize the run-time terminal for use with your
application program. INSTALL.BAS reads the terminal control codes from the
TERMS.DM file (rather than from the Terminal Control Code File that you create
with DMSET), and uses those codes to initialize the terminal. If you are
developing an application for use on a variety of terminals, this program may
be of use to you.

You can change the INSTALL.BAS program any way you wish, or use it as
distributed. Simply compile and link the program, and provide whatever
documentation you feel that the end-user may require. Distribute the object
module, documentation, and a copy of TERMS.DM with your application.

The program object module is created in the application programming
environment, and linked to the Display Manager Run-time Library to include the
routines required by your application. Of course, your application can consist
of one or more program object modules.

The final component in this environment is the display file containing all of
the displays to be used in your application. This file is created in the
Editor environment. There can be as many display files as disk space permits
on the run-time computer.

All of these components (display files, program object modules, terminal
control code file, and the optional INSTALL.BAS program and TERMS.DM file) can
be distributed for use on the end-user's run-time computer.

Note: You cannot distribute the Editor program.

Errors can occur at run-time if your application program does not use the
routines in the Display Manager Run-time Library correctly. However, if you
thoroughly test your applications before they are distributed, and your
program adequately checks the values returned by the routines, the end-user
should never encounter such errors.

When these errors do occur, they are considered fatal to the application
program. So, Display Manager automatically closes any files that are open,
displays a message indicating the nature and origin of the error, then returns
control to your operating system.

The error message displayed in these cases contains a code indicating the
function (or routine) that was called when the error occurred, as well as an
indication of what caused the error. Here is an example of a run-time error
message:

 Display Manager error: b3 CLSDIS no display

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Note the code portion of the message: "b3". The lower case letter indicates
the function that caused the error. Each Display Manager function is assigned
a separate letter, as shown in the next table.

Table 8-1. Run-time error function codes

Letter Function Letter Function
------ -------- ------ --------
 a CLRSCR i OPNDIS
 b CLSDIS j POSP
 c CURS k PUTF
 d DISPD l RESP
 e ENDF m RETDM
 f GETF n RETF
 g INITDM o SETF
 h NXTF p UPDF

The letter code precedes a hexadecimal value (in the above example: 3)
indicating the nature of the error. The following table lists the possible
values and their meanings.

Table 8-2. Run-time error values

Format: Value
 Meaning

1
Your program called a Display Manager function prior to calling the INITDM
function. INITDM must be the first Display Manager function called in your
application program.

2
No Display Manager display file is currently open. You must open a display
file (using the OPNDIS function) before calling any display management
functions.

3
There is no current display. This might occur if you attempt to use a field
management function in your program before calling the DISPD function.

4
No current field is in the display. This usually occurs if you attempt to use
a field management function before calling the NXTF function.

5
You made a second attempt to use the INITDM function. You can use INITDM only
once in any given program.

6
The value of the argument passed in a RESF function is less than 1 or more
than 8. Only values within this range are permitted.

7
You called the RESF function with a positive argument value before calling it

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

with a negative argument value. You must call RESF with a negative argument
value to save an input field before resuming data entry with a positive
argument value.

8
Insufficient memory is available on your computer for showing the displays as
you have designed them. You might need to use overlays or fewer variables in
your program.

9
You tried to use the POSF function to place the cursor in a non-existent
field. The error message shows the field reference number that you attempted
to use. Consider using the NXTF function, instead of POSF.

10
You tried to use the wrong version of a display file. This occurs when you
create a display file with one version of Display Manager, and use it with a
different one.

11
You tried to use a file that is not a valid display file. Check to ensure that
you have used the correct filename.

Some additional run-time errors occur only with the INITDM function. Section 7
lists and explains these errors under the description of that function.

Appendix A: Terminal Control Codes

This appendix contains information about the terminal control codes used by
Display Manager.

Although most terminals differ greatly in their control characteristics and
features, Display Manager can operate with any terminal, as long as its
control codes are known, and it meets the minimum requirements listed in
Appendix B.

A.1 TERMS.DM FILE

Your Display Manager distribution disks contain a file named TERMS.DM. As
distributed, this file contains the terminal control codes for most of the
more common terminals on today's market (1984). Display Manager can only be
made to work with a terminal if its control codes are contained in TERMS.DM.
If you attempt to run Display Manager with a terminal not in TERMS.DM, or with
the incorrect control codes, your results are unpredictable.

TERMS.DM can contain 2 different categories of terminals, Display Manager-
supported, and user-supported.

A.1.1 Display Manager-supported Terminals

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

These are terminals originally contained in TERMS.DM as distributed by Digital
Research. Display Manager-supported terminals are protected in TERMS.DM. You
cannot add terminals in this category, change their control codes, or delete
them from the file.

The table "Display Manager-supported Terminals", which appears later in this
section, lists the Display Manager-supported terminals contained in TERMS.DM.
Your TERMS.DM file may vary slightly from the table. Use the DMSET program to
examine the file and determine precisely what terminal control codes are
available (see Section 3 and Appendix C).

A.1.2 User-supported Terminals

You can add control codes to TERMS.DM. Any codes you add fall into the user-
supported terminal category. You can also make changes to terminals in this
category, and delete them from the file if necessary. This category is
provided so that you can adapt Display Manager to work with a terminal not
originally in TERMS.DM. Every terminal used with Display Manager, however,
must meet the minimum requirements of an addressable cursor and a clear screen
command.

User-supported terminals can be added to, changed, or deleted from TERMS.DM as
described in Appendix C of this manual.

An empty table at the end of this section is for you to keep a record of the
user-supported terminals that you set up in TERMS.DM. Run the DMSET program to
examine the control codes for these terminals.

Every Display Manager- and user-supported terminal in TERMS.DM has associated
with it the terminal control codes that Display Manager needs to make the
terminal function as expected (either at run-time or while using the Editor).
The terminal control code string has a specific structure which must be
observed.

A.2 TERMINAL CONTROL CODE STRUCTURES

Terminal control codes appear as a string of characters with delimiters to
separate the string into groups as required. The number of codes and code
groups in the string (and, consequently, the string's length) can differ for
each terminal. However, the length of the string must not exceed 254
characters.

Here is an example of a terminal control code string. It is shown in ASCII
format for readability.

 +-- indicates the number of code groups
 |
 /3 FHPNADIJDFAMABCPFDZ3 GCJKIDPCBKX7 MAPEAEBEPNR9

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

 +------------------+ +----------+ +----------+
 Code Code Code
 Group 1 Group 20 Group 30

 Figure A-1. Example of Terminal Control Code

Each code group in the string contains letter codes ranging from A to P. At
the end of each group are error-detecting characters ranging from R to Z and 3
to 9. Display Manager uses the error-detecting characters at run-time to
determine if it has the correct codes for the terminal in use. Your
applications program must pass the correct terminal control code string to
Display Manager at run-time using the INITDM function (described in Section
7).

Three code groups are present in the preceding example:

 1) Code Group 1 contains the codes for clearing the screen, positioning
 the cursor, determining the screen size, and starting up the terminal.
 This code group is required in all terminal control code strings.

 2) Code Group 20 contains the codes for activating standard and user-
 defined attributes, such as inverse video, half intensity, and
 graphics. This code group is optional.

 3) Code Group 30 contains the codes for activating any function keys on
 the terminal. This code group is also optional.

Every terminal control code string must have a slash (/) as the first
character. A number follows the slash, indicating how many code groups the
string contains. Code group one must always be the first group in the string;
other groups can follow in any order.

Blanks can appear anywhere in the string, to make it easier to read. If you
need to create your own terminal control code strings, do not insert newline
(ASCII null = 00H) characters in the string, as they might be treated as the
end of the code.

When you set up a user-supported terminal in TERMS.DM, you can prefix the
control codes with the terminal name. At run-time, your application program
can display the terminal name for the end-user, and request verification that
the proper run-time terminal is being used. The name can contain up to 21
characters.

A.3 DISPLAY MANAGER-SUPPORTED TERMINALS

When you use a terminal listed in the following table, you must place the
terminal in conversational (or character) mode, and turn OFF all editing
features, such as insert and delete. Note also that, if the terminal screen
has protected areas, they can affect the appearance of the display. Be careful
to avoid switching the terminal OFF during run-time, as this might reset
special features that are incompatible with Display Manager.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

If one of the codes in TERMS.DM does not work correctly for your terminal,
check to make certain that you selected the correct model, and that all
the special features have been turned OFF. If it still does not work, find out
if you have any customizations that affect the terminal's operation, such as
special DIP switches or add-in boards. Turn these switches and features OFF,
or run the DMSET program to change the terminal control codes, so that they
handle the extra features properly (see Section 3 and Appendix C).

Table A-1. Display Manager-supported terminals

Manufacturer Model Number/Name
------------ -----------------
ABM 80
ADDS 40 VT
 Regent 20
 Regent 25
 Regent 40
 Viewpoints 60
 Viewpoints A-2
Apple Smarterm
 Video Term
Beehive Int. DM+
 DM Basic
 DM Standard
 DM 5
 DM 5A
 DM 5B
 DM 10
 DM 20
 DM 30
 DM 1A
 Micro Bee 1
 Micro Bee 2
Control Data 721-20
 721-30 (Cyber)
 System 110
cromemco 3102
DEC VT 52
 VT 100
 VT 100AB (80 Column)
 VT 100AB (80 Column:CP/M-86)
 Rainbow (80 Column)
 Rainbow (80 Column:CP/M-86)
Direct 800
Fujitsu Micro 16 (CP/M-86)
Hazeltine 1400
 1410
 1420
 1421
 1500
 1510
 1520
 1552
 Esprit

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

 Executive 80 (80 column) (models 20 and 30)
 Executive 80 (132 column) (models 20 and 30)
Heath H-19
 H-19 (CP/M-86)
 H-89
Hewlett-Packard 2382A
 2621B
 2624B
 2626B
 Business 125
IBM PC Monochrome (CP/M-86)
 PC Color (CP/M-86)
ISC 8001
Lear-Siegler ADM-3A
 ADM-5
 ADM-31
 ADM-42
Micro-Term ACT IV
 ACT V
 ACT V-A
Osborne System 1
Radio Shack Model II (Pickles and Trout)
Soroc IQ 120
 IQ 130
 IQ 140
 IQ 150
Teleray Model 10 DG
 Model 10 MP
 Model 10 V52
 Model 12
 Model 100 (80 column)
 Model 100 (132 column)
TeleVideo 910+
 912
 920
 950
Toshiba T100
 PASOPIA
Vector Graphics 1600
 2600
 2800
 3005
 3032
 5005
 MZ
 System B
 Vector 3
 Vector 4
 Vector 5
Visual Technology
 Visual 100
 Visual 200
 Visual 300
 Visual 400

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Xerox 820
 860
Zenith Z-19
 Z-19 (CP/M-86)
 Z-89

A.4 USER-SUPPORTED TERMINALS

This section is provided to help you keep a physical record of user-supported
terminals that you add to TERMS.DM. You can photocopy these pages if you need
additional space.

Table A-2. User-supported terminals

Manufacturer Model Number/Name
----------- -----------------

Appendix B: Summary of Restrictions and Limitations

This appendix summarizes the restrictions and limitations that you must
observe when setting up terminals for use with Display Manager, using the
Editor, and coding your application programs.

B.1 TERMINALS

Minimum requirements:
Able to clear the screen on command.
Able to position the cursor directly.

Maximum number of rows on CRT:
48 (ROCHE> Not a full page: 66 rows... Too bad!)

Maximum number of columns in a row:
132

Maximum number of positions on CRT screen:
3,840 (if run-time computer has at least 64K RAM).
1,920 (if run-time computer has minimum 48K RAM).

Minimum number of positions on CRT screen:
24 rows by 52 columns.

Maximum number of video attributes that Display Manager can use on a given
terminal:
8 (attributes must be available on the terminal).

Other restrictions:
For use with the Editor, a minimum baud rate of 4800 is recommended.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

The terminal must use ASCII characters.

The last column in the last row on the screen cannot be used.

B.2 DISPLAY FILES

Maximum number of displays that can be contained in any given display file:
250

Maximum number of display files that can be used by an application program:
Limited only by disk space available on the run-time computer.

Maximum number of display files that can be open at any given time:
1

Maximum number of displays that can be in use at any given time:
1

B.3 FIELDS

Maximum number of fields permitted in a single display:
250

Maximum field size:
Cannot be longer than one row on the terminal screen.

Minimum field size:
one column.

Other restrictions:
Fields cannot overlap one another.

B.4 RUN-TIME LIBRARY

Memory required for typical displays, including program code for a 24 row by
80 column screen:
8K (additional memory required if there are a large number of fields in the
displays).

Other restrictions:
The application program must pass the control codes for the run-time terminal
to Display Manager, at run-time, using the INITDM function. The string passed
by this function must not contain more than 254 characters.

The argument <string expression> passed by the PUTF function must not contain
more than 132 characters.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Appendix C: Custom Terminal Setup

Any terminal used with Display Manager must have its terminal control codes
correctly recorded in the TERMS.DM file. Otherwise, the terminal will not
function as expected. The TERMS.DM file contains control codes for most
terminals that you might use with Display Manager. However, there are
situations where this is not the case, and the Custom Terminal Setup option in
the DMSET program accommodates these situations.

This appendix explains how to complete a custom terminal setup. You might find
this necessary in the following situations:

 - TERMS.DM does not contain the codes for a design or run-time terminal
 that you want to use.

 - TERMS.DM contains the codes for a terminal that you want to use but,
 due to the way certain switches or features are set on the terminal,
 the codes are incorrect.

 - You want to remove control codes from TERMS.DM for a specific
 terminal.

 - You want to examine the control codes for a particular terminal in
 TERMS.DM.

To perform a custom terminal setup, you need the manual for the terminal. The
manual should provide all of the information you need to perform this
procedure. If you do not have the manual, or cannot find the required
information, you can contact your dealer for assistance.

Before performing a custom terminal setup, you might want to determine if
terminal emulation is possible. Although the terminal that you want to set up
might not be contained in the TERMS.DM file, it might use the same terminal
control codes as one that is. In this situation, terminal emulation is
possible. Simply select the terminal that you want to emulate from those in
TERMS.DM and, if desired, select option C from the Custom Terminal Setup
Options Menu (see the next figure) to correct the manufacturer and model name
for the terminal to match yours. Thoroughly test the emulation, to ensure it
functions properly (see Section 3.2.4, "Option T--Test Terminal Control
Codes"). Appendix A lists the terminals in TERMS.DM. Use option E (EXAMINE
terminal control codes) to review the actual control codes for any terminal in
TERMS.DM.

To perform a custom terminal setup, start the DMSET program according to the
instructions in Section 3. When the Main Menu appears, select option C. The
Custom Terminal Setup Options Menu appears on your screen, as shown in the
following figure.

 CUSTOM TERMINAL SETUP OPTIONS MENU

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

 Option Function
 T Set up codes for THIS terminal
 F Set up codes for a DIFFERENT terminal
 C CHANGE existing terminal control codes
 D DELETE terminal control codes
 E EXAMINE terminal control codes
 X EXIT (return to Main Menu)

 Please enter your selection --> : :

 Figure C-1. Custom Terminal Setup Options Kenu

The next table provides brief explanations of the functions available on this
menu. The remainder of this section describes each procedure in detail.
Section 3 and Appendix A also contain information pertinent to these
procedures.

Table C-1. Custom terminal setup options

Format: Option
 Explanation

Option T--Set up codes for this terminal
If TERMS.DM does not contain control codes for the terminal that you are now
using, select this option to insert the codes.

Option F--Set up codes for a different terminal
If you want to set up codes for a terminal other than the one that you are now
using, select this option.

Option C--Change existing terminal control codes
Select this option if you want to change the control codes for a user-
supported terminal currently in TERMS.DM.

Option D--Delete terminal control codes
Select this option if you want to remove the terminal control codes for a
user-supported terminal from TERMS.DM.

Option E--Examine terminal control codes
Use this option to look at any terminal control codes in TERMS.DM. You cannot
make changes using this option.

Option X--Exit (return to Main Menu)
Self-explanatory.

C.1 OPTION T--SET UP CONTROL CODES FOR THIS TERMINAL
--

Use this option to set up terminal control codes for the terminal that you are
now using. When you complete this procedure, a user-supported terminal entry
is made in the TERMS.DM file for your terminal. You should then run the test
procedure (option T on the DMSET Main Menu) to verify that the terminal
functions as expected. The following figure "Set Up Control Codes for this

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

Terminal" illustrates this procedure.

 +-----------------+
 | Design terminal | <-- Set up code for THIS terminal
 +-----------------+
 |
 +----------+
 | Terminal |
 | setup |
 | program |
 +----------+
 |
 | User-supported terminal control codes
 |
 +---------------+
 | TERMS.DM file |
 +---------------+

 Figure C-2. Set Up Control Codes for this Terminal

When you select this option, the program asks you a series of questions about
the codes that your terminal uses to perform such functions as clearing the
screen, positioning the cursor, and others. You should be able to find the
information needed to answer these questions in the manual for the terminal.
If you do not have the manual, or are unable to determine the correct answer
to the question(s), contact your dealer for assistance.

C.2 OPTION F--SET UP CONTROL CODES FOR A DIFFERENT TERMINAL

Use this option to set up terminal control codes for a terminal other than the
one that you are now using. When you complete this procedure, a user-supported
terminal entry is made in the TERMS.DM file for the terminal. You should then
run the test procedure (option T on the DMSET Main Menu) to verify that the
terminal functions as expected. Note that the terminal must be available to
run the tests. The following figure "Set Up Control Codes for a Different
Terminal" illustrates this procedure.

 +----------+
 | Terminal | Terminal to be set up;
 +----------+ i.e., a DIFFERENT terminal
 |
 +----------+
 | Terminal | /-------- +----------+
 | setup | < Option F | Terminal | Terminal NOW being used
 | program | \-------- +----------+
 +----------+
 |
 +---------------+
 | TERMS.DM file |
 +---------------+

 Figure C-3. Set Up Control Codes for a Different Terminal

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

When you select this option, you are asked to identify the terminal that you
are now using to conduct this procedure. This is necessary, because displays
created with Display Manager are used by this procedure to help you set up the
required terminal control codes. You are shown the list of terminals in
TERMS.DM, and asked to select the one that you are using by entering its
associated 3-character code. If the code you enter is found in the list, the
word "FOUND" appears, and you only need press RETURN to select it for use. If
the 3-character code is not found, the words "NOT FOUND" appear, and you can
use the DEL key ("<--") to erase your entry and enter a correct code. You can
also use the scroll commands Ctrl-W and Ctrl-Z, or the ESC key, at this time.

If the control codes for the terminal that you are using to conduct this
procedure are not contained in TERMS.DM, you have 2 options for continuing.

 1. Press ESC to stop this procedure and return to the Custom Terminal
 Setup Options Menu. Select and complete option T to "Set up codes for
 this Terminal". Once you complete the procedure, this option is
 restarted for you automatically.

 2. Select a terminal from the displayed list, that uses the same cursor
 positioning and clear screen control codes as the terminal that you
 are using. (These are the only 2 terminal functions used in this
 procedure.)

Once you have selected the terminal that you are now using, you are asked a
series of questions about the terminal you want to set up. Section C.6,
"Custom Terminal Setup Questions", at the end of this section, describes these
questions.

C.3 OPTION C--CHANGE TERMINAL CONTROL CODES

Many terminals have special switches, usually called DIP switches, which can
be set to alter the way one or more of the terminal features operate. For
example, a switch can be set one way to activate a blinking line cursor, or
another way to activate a steady box cursor. If the terminal that you are
setting up has switches that have been set to alter the normal features of the
terminal, you can use this option to create or change the control codes for
the terminal to match the switch settings. The following figure "Change
Terminal Control Codes" illustrates this procedure.

 +----------+
 | Terminal | Changing or copying control codes
 +----------+ (DIP switches, etc.) for this terminal
 |
 +----------+
 | | Terminal | Terminal now being used
 +----------+
 | |
 +----------+ +----------+
 | TERMS.DM | --Control codes-> | Terminal |-----+
 | file | <----Save codes-- | setup | | Make changes

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

 +----------+ | program |<----+
 +----------+

 Figure C-4. Change Terminal Control Codes

As distributed, the TERMS.DM file contains the terminal control codes for all
Display Manager-supported terminals. You cannot change these codes, but you
can copy them and make changes to the copy. The copied codes with changes are
set up in TERMS.DM as user-supported terminals. You can make as many changes
as you like to the control codes for user-supported terminals. (See Appendix A
for further information.)

When you select this option, the first thing that you are asked to do is
identify the terminal whose control codes you want to copy or change. You are
shown the list of terminals in the TERMS.DM file, and asked to enter the 3-
character code of the one that you want to select. If you enter a code that is
in the list, the word "FOUND" appears, and you must press RETURN to select
that terminal. If you enter a code that is not in the list, the words "NOT
FOUND" appear, and you can use the DEL key ("<--") to erase your entry and
enter the correct code. You can also use the scroll commands Ctrl-W and Ctrl-
Z, or the ESC key, at this time.

After you select the terminal that you want to change, you are shown the
manufacturer and model name, and control codes, for that terminal.

In the second step, you are asked to select the terminal that you are NOW
using by the same process explained in the preceding paragraph.

The third step is to make the actual changes to the terminal control codes. To
accomplish this, the Custom Terminal Setup Questions Menu appears on your
screen. Section C.6, "Custom Terminal Setup Questions, at this end of this
section, describes these questions.

C.4 OPTION D--DELETE TERMINAL CONTROL CODES

Use this option to delete control codes for user-supported terminals from the
TERMS.DM file. Note that you cannot delete control codes for Display Manager-
supported terminals.

When you select this option, you are shown a list of user-supported terminals
in the TERMS.DM file. User-supported terminals are indicated by (USER-
SUPPORTED) displayed next to the terminal name and model. Each entry in the
list has a 3-character code associated with it, such as 011 or 012. Scroll
through the list until you find the terminal whose control codes you want to
delete, then enter its corresponding 3-character code.

If you enter a code that is not in the list, the words "NOT FOUND" appear. Use
the DEL key ("<--") to erase your entry, and enter a correct code. You can
also enter the scroll commands Ctrl-W and Ctrl-Z, or the ESC key, at this
point.

When you enter a correct code, the word "FOUND" appears. Press RETURN, and the

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

control codes for that terminal are displayed. You are then asked to confirm
that this is the terminal that you want to delete. Finally, you are given the
option to delete more codes, or return to the Main Menu.

When you delete codes from TERMS.DM, be sure to delete them from your table of
user-supported terminals in Appendix A.4 (if you are maintaining this table).

C.5 OPTION E--EXAMINE TERMINAL CONTROL CODES
--

Use this option to look at how the control codes for one or more specific
terminals are recorded in the TERMS.DM file. Note that you cannot write
terminal control codes to a file, change, or delete them with this option.
This option only allows you to look at the codes.

When you select this option, you are shown the complete list of terminals in
the TERMS.DM file. User-supported terminals are indicated by (USER-SUPPORTED)
displayed next to the terminal name and model. Each entry in the list has a
3-character code associated with it, such as A41 or Z11. Scroll through the
list until you find the terminal whose control codes you want to examine, and
then enter its corresponding 3-character code.

If you enter a code that is not in the list, the words "NOT FOUND" appear. Use
the DEL key ("<--") to erase your entry, and enter a correct code. You can
also enter the scroll commands Ctrl-W and Ctrl-Z, or the ESC key, at this
point.

When you enter a correct code, the word "FOUND" appears. Press RETURN, and the
control codes for that terminal are displayed on your screen. You are then
given the option to examine more codes, or return to the Main Menu.

C.6 CUSTOM TERMINAL SETUP QUESTIONS

This section explains the questions that you are asked when you select option
F or C from the Custom Terminal Setup Options Menu (shown earlier in this
Section, in Figure C-1). There are 10 different categories of questions, with
each relating to a specific terminal feature. These question categories appear
on a menu as shown in the next figure.

 CUSTOM TERMINAL SETUP QUESTIONS MENU

 Code Category
 1 . . . Screen Size
 2 . . . Clear Screen
 3 . . . Cursor Positioning
 4 . . . Startup Codes
 5 . . . Standard Video Attributes
 6 . . . User-defined Attributes
 7 . . . Multiple Attributes
 8 . . . Cursor Arrow Keys

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

 9 . . . Function Keys
 A . . . Cursor ON/OFF
 H . . . HELP
 S . . . Save Terminal Control Codes
 ESC . . . Return to Main Menu
 Please enter your selection --> : :

 Figure C-5. Custom Terminal Setup Questions Menu

You must answer questions in these categories:

 1 ... Screen Size
 2 ... Clear Screen
 3 ... Cursor Positioning
 4 ... Startup Codes

Answers to the remaining categories are optional.

Most questions provide a default answer, which is enclosed in the signs < >.
If you are unsure of an answer, try using the default. However, be sure to
verify that the default works by running the test procedure from the DMSET
Main Menu.

Four types of questions can occur, each requiring a specific type of answer:

 1) Yes/No Questions require a response of Y or N.

 2) Plant/Paint Questions require a response of L (meaning a pLant
 attribute is used) or A (meaning a pAint attribute is used). Section 4
 describes Plant and Paint attributes.

 3) Numeric Questions require an integer value in a decimal format for the
 answer.

 4) Character Sequence Questions are answered by entering a sequence of
 ASCII, decimal, or hexadecimal characters. You can enter up to 8
 characters. These characters sequences activate certain features on
 some terminals.

Once you answer a category of questions from the Custom Terminal Setup
Questions Menu, the program places parentheses around that category in the
menu, to indicate that changes have been made. However, remember that your
changes are not saved in the TERMS.DM file until you select and complete the S
option from the menu.

The following sections explain the questions asked in each category, and
provides space for you to record your answers.

When running the program, you can select categories from the menu in any
order. As you read through the terminal manual, select a category and answer
the questions as you find the required information. Note that all questions
listed in a category might not necessarily appear on your screen; many
questions depend on the answer given to a previous question.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

C.6.1 Screen Size Questions

The answers to these questions indicate how many rows and columns are
available on the terminal screen.

 How many ROWS are on the
 screen? (Top to bottom) <24> ____

 How many COLUMNS are on
 the screen? (Left to right) <80> ____

C.6.2 Clear Screen Questions

You must tell Display Manager how to clear the screen to all blank characters.
Some terminal manuals refer to this as "clear page" or "home cursor".

 What characters must be sent
 to the screen to clear it? ____

 How many milliseconds delay is
 needed after clearing the screen? <50> ____

C.6.3 Cursor Positioning Questions

Terminals can directly position the cursor in a specific row and column of the
screen when sent the correct information. The following questions ask you for
the information Display Manager must send to the terminal to position the
cursor.

 To position the cursor, is the
 ROW number sent first? (N/Y) <Y> ____

 When the cursor moves right, does
 the COLUMN number increase? (N/Y) <Y> ____

 When the cursor moves down, does
 the ROW number increase? (N/Y) <Y> ____

 What COLUMN number positions the
 cursor at the left edge? ____

 What ROW number positions the
 cursor at the top edge? ____

 What characters must be sent
 PRECEDING the row and column number? ____

 What characters (if any) must be sent

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

 BETWEEN the row and column number? ____

 What characters (if any) must be sent
 FOLLOWING the row and column number? ____

 Are the row and column numbers sent as
 SINGLE, INDIVIDUAL bytes? (N/Y) <Y> ____

 (If previous answer was No...)
 Are row and column numbers sent as
 a STRING of characters? (N/Y) <Y> ____

 (If previous answer was No, the terminal
 cannot be set up. If answer was Yes...)
 How many characters in the STRING? <3> ____

 How many MILLISECONDS delay is
 needed following a cursor move? <30> ____

C.6.4 Start-up Codes Questions

A string of start-up codes must be sent to some terminals, to place them in
their normal operating mode. This ensures that they can be used with Display
Manager. You must provide the start-up codes for the terminal that you are
setting up if it does not start in full-intensity, normal video, with only
remote key operation (that is to say: the screen is controlled by signals sent
from the computer, rather than from the keyboard). The following questions ask
for the start-up codes.

 What CHARACTER STRING (if any)
 places the terminal in normal mode? ____

 What CHARACTER STRING (if any)
 places the terminal in default mode? ____

C.6.5 Standard Video Attributes Questions

Video attributes are visual effects such as half-intensity or reverse video
that the terminal can perform on information shown on the screen. A string of
up to 8 characters can be sent to activate or deactivate a video attribute.
Section 4.4 describes video attributes.

 +---------------- Feature --------------+
 | Half Reverse |
 Intensity Video Flashing Underlining
 Is this feature
 AVAILABLE? (Y/N) <N> _________ _______ ________ ___________

 Does it require a
 PAINT or PLANT

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

 attribute? (A/L) <L> _________ _______ ________ ___________

 What CODE ACTIVATES
 the feature? _________ _______ ________ ___________

 What CODE DEACTIVATES
 the feature? _________ _______ ________ ___________

C.6.6 User-defined Attributes Questions

Any feature available on the terminal can be activated as a user-defined
attribute, as long as it functions like a standard video attribute. That is to
say: it only affects text characters, can be turned OFF, and does not move the
cursor. Up to 3 different user-defined attributes can be used with Display
Manager.

 User User User
 Attr#1 Attr#2 Attr#3
 Is this attribute
 USED? (Y/N) <N> ______ ______ ______

 Does it require a
 PAINT or PLANT
 attribute? (A/L) <L> ______ ______ ______

 What CODE ACTIVATES
 the feature? ______ ______ ______

 What CODE DEACTIVATES
 the feature? ______ ______ ______

C.6.7 Multiple Attributes Questions

If the terminal has the capability, Display Manager can activate 2 separate
video and/or user-defined attributes simultaneously. There are 2 methods for
doing this: a special code might exist for the combination, or the 2
attributes might be activated as separate features. In the latter case, at
least one attribute must be a Paint-type, because only one column can be
reserved on either side of a field. To use the following table, mark each
combination of attributes that can be activated simultaneously, and answer the
corresponding questions.

 Combinations | Questions
---------------------------------------|------------------------------
Half Rever Flash Under User-defined | Special Paint Acti- Deacti-
Ints Video line #1 #2 #3 | Code? /Plant vate vate
 | (A/L) Code Code
____ _____ _____ ____ ___ ___ ___|<N> ____ _____ ____ ____
____ _____ _____ ____ ___ ___ ___|<N> ____ _____ ____ ____
____ _____ _____ ____ ___ ___ ___|<N> ____ _____ ____ ____

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

____ _____ _____ ____ ___ ___ ___|<N> ____ _____ ____ ____
____ _____ _____ ____ ___ ___ ___|<N> ____ _____ ____ ____
____ _____ _____ ____ ___ ___ ___|<N> ____ _____ ____ ____

C.6.8 Cursor Arrow Keys Questions

Some terminals have special keys with arrows marked on them for cursor
movement. They can be used with Display Manager if they produce either the
ANSI standard arrow characters (Ctrl-H, Ctrl-J, Ctrl-K, or Ctrl-L) or the
Display Manager cursor movement characters (Ctrl-S, Ctrl-E, Ctrl-D, or Ctrl-
X).

 Does the terminal have
 cursor arrow keys? (Y/N) <N> ____

 (If the previous answer was Yes...)
 Are standard cursor arrow keys
 (^H,^J,^K,^L) used? (Y/N) <N> ____

 Are Display Manager cursor arrow
 keys (^S,^E,^D,^X) used? (Y/N) ____

C.6.9 Function Keys Questions

There are 2 types of function keys. Display Manager cannot be used with the
type that produces local effects (such as Scroll or Delete). Display Manager
can be used with the type that sends a sequence of characters when pressed. In
the following questions, "value" refers to the ASCII character that is
transmitted when the function key is pressed.

 How MANY function keys are there?
 (with same leading/trailing characters) <0> ____

 (If previous answer is >0...)
 What LEADING characters must
 be sent to the screen? ____

 What TRAILING characters must
 be sent to the screen? ____

 What is the VALUE of the FIRST key
 in the function key set? ____

 What is the VALUE of the LAST key
 in the function key set? ____

C.6.10 Cursor ON/OFF Questions

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

The cursor can be made invisible on some terminal screens. Note that some
terminals have several possible shapes for the cursor. In such cases, the code
to turn the cursor ON should be the most commonly-used one.

 Can the cursor be turned
 ON and OFF? (Y/N) <N> ____

 (If previous answer was Yes...)
 What characters must be sent
 to turn the cursor OFF? ____

 What characters must be sent
 to turn the cursor ON? ____

C.7 COMPLETING CUSTOM TERMINAL SETUP

After you have answered all of the questions for the terminal that you are
setting up, select the S option on the Custom Terminal Setup Questions Menu to
save the information and record the control codes in TERMS.DM. When you select
this option, a display similar to the following figure appears on your screen:

 User-supported terminal number: 01
 Control code:
 /1ABADBKBLCKDCCACACAACBLDNAAAAAABIFAAAAAU3
 Enter Manufacturers name:
 Enter Model Name:

 Figure C-6. User-supported Terminal Setup Screen

This display shows you the number assigned to this user-supported terminal
(01) and its control codes (/1ABAD...). The first prompt asks you to enter the
manufacturer's name for the terminal, and the second asks for the model name.
Whatever information you enter here appears on the screen when the Editor
program is started. However, you can suppress this information by placing
square brackets ("[" and "]") around your response. After you enter the
information, it is stored in the TERMS.DM file, along with the control codes.
(Note that space is provided in Appendix A to record this information for
future reference. See Section A.4.)

At this point, you are returned to the DMSET Main Menu.

Glossary

application program:
A series of coded instructions telling a computer how to process information
it receives. The written code is referred to as the source code. The source
code is submitted to a compiler which translates the code into instructions
that can be understood by the computer. The translated code is referred to as
the object module.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

border mode:
While in border mode, you can use certain commands to instruct the Editor to
draw borders and other figures on the design terminal screen. See Section 6.

boundary mode:
While in boundary mode, you can use certain commands to instruct the Editor to
show where the boundaries are for input and output fields in a display. The
boundaries indicate the position, length, and type of each field. See Section
6.

color attributes:
Some computer's terminals have the ability to show displays in color. You can
define input and output fields in a display to use these features, when
available, by assigning the appropriate color attributes in the field's status
window, or as global values for the display. You can designate separate colors
for backgrounds and foregrounds. See Section 4.

CRT:
Cathode Ray Tube. The CRT is the part of a computer terminal that looks like a
television screen.

Ctrl key:
The Control key on a terminal keyboard. You enter most Editor commands by
holding down the Ctrl key while simultaneously pressing another key.
Sometimes, the caret symbol (^) is used to abbreviate Ctrl. For example, both
Ctrl-Z and ^Z means: "type the letter Z while holding down the Ctrl key".

current display:
A term used in the Editor environment to reference the display that is
currently being created or edited.

current display file:
A term used in the Editor environment to reference the display file that is
currently open.

current field:
Field in a display that contains the cursor. You can use the POSF or NXTF
function in an applications program to place the cursor in a field.

cursor control keys:
Keys used to control movement of the cursor on the screen of the design or
run-time terminal. These are sometimes referred to as cursor arrow or cursor
movement keys. There are 2 sets of cursor control keys: the standard ANSI set
(Ctrl-H, Ctrl-J, Ctrl-K, and Ctrl-L) and the standard editing keys (Ctrl-S,
Ctrl-E, Ctrl-D, and Ctrl-X). See Section 6 and the INITDM function description
in Section 7.

DEL key ("<--"):
ROCHE> This key "deletes the character to the left of the cursor".
Unfortunately, DEL has at least 3 different meanings. 1) The ASCII 7F hex
character, that was used on ASR-33 Teletype to DELete the preceding character
by setting it to all ones (hence its location at 7F hex, since ASCII is a 7-
bit code). 2) The ASR-33 Teletype key RUB OUT (or RUBOUT) that was later
sometimes called "DEL", sometimes "BACKSPACE". 3) The IBM PC had a DEL key on

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

its keyboard until someone noticed that another key (used in the famous
"Ctrl+Alt+Del") sequence also had the same name... As a consequence, it was
"renamed" "<--", loosing its name in the process... Normally, historically,
this key was called "RUB OUT" on the ASR-33 Teletype, but 99.99% of persons
using a "IBM Clown" computer do not understand the difference between erasing
(ASCII BACKSPACE 08 hex) and deleting (ASCII DEL 7F hex). So, I chose to use
the name that became common with the IBM Clown, with its symbol ("<--"). I
hope to have been clear.

design terminal:
Terminal used with the Editor to create displays subsequently used in
application programs.

display:
Image shown on the screen of a design or run-time terminal. You create
displays with the Editor, and subsequently use them in your applications
program to interact with the end-user.

display field:
Part of the display into which information is either entered by or shown to
the end-user. These can be literal, input, or output fields.

display file:
A disk file containing a group of related displays created with the Editor.
Each display file can contain up to 250 displays. An application program can
use as many different display files as disk space on the run-time computer
permits. As an informal standard, display filenames have a filetype of DIS,
such as DISPLAYS.DIS.

display reference number:
Number ranging from 1 to 250 that you assign to each display when creating it
with the Editor. When you want to retrieve a display for use with the Editor
or with the application program, you reference it using this number. While
using the Editor, you see a list of the displays in a display file with their
assigned display reference numbers.

editor:
Program you run on your computer to design, create, change, and delete
displays. The Editor must be created for use with your specific design
terminal before it can be used (see Section 3 for instructions). Sections 4
through 6 contain complete instructions for using the Editor.

end-user:
A person who runs your application programs on a run-time computer. In Display
Manager, a clear distinction exists among the person designing the displays,
the person creating the application programs, and the end-user.

field reference number:
Every field in a display is assigned a field reference number when you create
it with the Editor. Numbers can range from 1 to 250. The Editor provides a
command for renumbering one or more fields in a display. The POSF function
positions the cursor in a specific field when passed the field reference
number.

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

function:
A function is a routine in the Display Manager Run-time Library that is used
at run-time to manage displays and display fields. These functions are called
out of the Run-time Library by statements embedded in the source code of the
application program. The function call must conform to a specific syntax.
Section 7 contains descriptions of all Display Manager functions and
instructions for using them.

function key:
Keys than can be programmed to perform specific, predetermined functions. You
can instruct Display Manager to react in certain ways when one of the function
keys is used. Not all terminals are equipped with function keys.

initial value:
Input and output fields in a display can be assigned an initial value. This
value appears in the field when it is initially shown in the display (unless
the field has been assigned the "invisible" attribute). If the UPDF function
is used with a field having an initial value, the value is returned to the
application program if the end-user does not enter any other information into
the field. On the other hand, if the GETF function is used, a null string is
returned to the application program if no information is entered.

input field:
A display field in which an end-user types information. For example, an input
field might be used to enter a customer name, a selection from a menu, and so
forth. Information can also be placed in an input field to be shown to the
end-user. Section 6.2 (Ctrl-UI) explains how to create input fields. Section 7
describes the functions you can use to manage the fields in a display.

literal field:
Any constant information appearing in a display. It usually acts as a label
for an input or output field, provides instructions for the end-user, or
serves as a prompt.

output field:
A display field used to show information to the end-user. You can specify a
format, when the field is created, indicating how the information should
appear. Section 6.2 (Ctrl-UO) explains how to create output fields. Section 7
describes the functions you can use to manage the fields in a display.

run-time:
When an application program is run on the end-user's computer. Section 8
describes the run-time environment.

run-time errors:
Errors that can occur at run-time as a result of using one of the functions in
the Run-time Library. The end-user will never encounter these errors if you
have adequately tested the application program, and included the logic
necessary to intercept such errors. See Section 8.

Run-time Library:
A library of routines provided on your Display Manager distribution disks.
Routines (functions) are called from the library when your application program
needs to manage displays or fields in a display. You must link your

file:///C|/...ation/Emmanuel%20Roche%20DRI%20documents%20conversion/Display%20Manager%20Programmers%20Guide/DMRM.TXT[2/6/2012 4:31:27 PM]

application program object module to the Run-time Library to use the routines
contained therein. Your "Display Manager Programmer's Guide" contains linking
instructions.

run-time terminal:
Terminal used at run-time to show displays created with the Editor.

status window:
Every input and output field in a display has a status window associated with
it. You can use Editor commands to show the status window on your screen while
designing the display, and move the cursor inside the status window to define
the characteristics of a display field. Section 4.6 describes the status
window.

template characters:
You can use templates in display fields to simplify data entry for the end-
user. They indicate exactly how information must be entered in a field.
Template characters are never returned to your application programs. See
Section 4.

terminal control codes:
A string of codes sent to a terminal to make it do what it is supposed to do.
The codes also tell an application program how to send information to the
terminal to do such things as clear the screen, position the cursor, and more.
See Appendix A.

video attributes:
Most computer terminals have one or more optional features such as reverse
video, half intensity, underlining, and others. You can define input and
output fields in a display to use these features, when available, by assigning
the appropriate video attributes in the field's status window. For example,
you can set the video attribute of a field so that, when it appears in the
display, it appears in inverse video. See Section 4.

Index

(To be done by WS4...)

EOF

	DM80
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Display Manager Programmers Guide\DM80.TXT

	DMCARD1
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Display Manager Programmers Guide\DMCARD1.TXT

	DMCARD2
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Display Manager Programmers Guide\DMCARD2.TXT

	DMFS
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Display Manager Programmers Guide\DMFS.TXT

	DMPG80
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Display Manager Programmers Guide\DMPG80.TXT

	DMPG86
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Display Manager Programmers Guide\DMPG86.TXT

	DMPGPC
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Display Manager Programmers Guide\DMPGPC.TXT

	DMRM
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Display Manager Programmers Guide\DMRM.TXT

