
file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG1.TXT[2/6/2012 4:04:04 PM]

CPMPPG1.WS4       (= "CP/M-86 Plus Programmers's Guide", section 1)
-----------

CP/M-86 Plus -- Programmer's Guide
----------------------------------

(Edited by Emmanuel ROCHE.)

Section 1: CP/M-86 Plus system overview
---------------------------------------

This  section  introduces  the general characteristics  of  the  CP/M-86  Plus 
operating  system for someone wishing to write programs for it. It includes  a 
brief description of the system components, the disk file organization, memory 
organization, and program and system execution.

System components
-----------------

The section describes the components of the standard CP/M-86 Plus system.  The 
operating  system consists of the Basic Disk Operating System (BDOS), and  the 
customized  Basic I/O System (BIOS). Also distributed with the system are  the 
individual command files that contain the utilities of the operating system.

Basic Disk Operating System (BDOS)
---------------------------

The  Basic  Disk Operating System (BDOS) handles all system  calls.  Transient 
programs and the CCP access CP/M-86 Plus facilities by making system calls  to 
the  BDOS.  Entry  to  the BDOS is  accomplished  through  the  8086  software 
interrupt  #224,  which is reserved by Intel Corporation for  use  by  Digital 
Research's  8086 Operating Systems. System calls are used to  create,  delete, 
open, and close disk files, read or write to opened files, retrieve input from 
the  console,  send output to the console or list device, and perform  a  wide 
range of other services described in Section 6, "System calls".

Basic Input/Output System (BIOS)
-------------------------

CP/M-86  Plus  achieves  hardware  independence  through  a  clearly   defined 
separation of the hardware-dependent functions, supplied by the BIOS, from the 
machine-independent  primitive  functions called in the  BDOS.  The  interface 
comprises a set of BIOS functions called by the BDOS to perform the  hardware-
dependent primitives, such as peripheral device input and output. For example, 
the BDOS calls the console input function of the BIOS to read the next console 
input character.

The BIOS is tailored to suit a specific computer. However, even when the  BIOS 
primitives  are implemented for different designs, the BIOS entry  points  and 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG1.TXT[2/6/2012 4:04:04 PM]

the  BDOS  remain  constant. Therefore, the BDOS and  the  BIOS  modules  work 
together to give CP/M programs hardware-independent access to the CP/M-86 Plus 
facilities.

Transient programs
------------------

A  transient  program is a file of type CMD. The system  loads  the  transient 
program from the disk into the available memory for execution.

One  transient  program can be run in "foreground". A foreground  program  has 
access to the keyboard and console screen.

Up  to  three  transient CMD-type programs can  run  simultaneously  with  the 
foreground program. These programs are "background", and do not have access to 
the keyboard and console screen.

See  Section  5,  "Program  execution", for a  more  detailed  description  of 
background programs.

Resident System Extensions (RSX)
--------------------------

A resident system extension is a program module that can extend or modify  one 
or  more operating system functions. RSX modules intercept BDOS system  calls, 
and  either perform them, translate them into other system functions, or  pass 
them to the BDOS for normal processing.

It is coded as any other program, except that it requires a special prefix  at 
the beginning of the program. RSX generation and implementation are  discussed 
in Sections 5 and 7.

Memory organization
-------------------

The 8086 memory architecture varies widely from system to system. Some systems 
support  memory that have non-contiguous adress spaces. In these  systems,  an 
application program cannot safely make assumptions about available memory.  In 
the  8086  system,  the program must rely on CP/M-86 Plus  to  keep  track  of 
available memory space, and to load programs accordingly.

Physical  memory  space  is defined through a static  allocation  map  located 
within  the  BIOS.  It  is  possible to  operate  CP/M-86  Plus  in  a  memory 
configuration  that is a mixture of up to eight non-contiguous areas  of  RAM, 
along  with reserved or missing memory regions. In a simple  RAM-based  system 
with  contiguous  memory,  the static map defines  a  single  region,  usually 
starting  at  the end of the BIOS, and extending up to the  end  of  available 
memory.

The 8086/8088 address space is logically subdivided into segments of up to 64K 
bytes  each, which are allocated to code, data, stack, and extra  segments.  A 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG1.TXT[2/6/2012 4:04:04 PM]

program is categorized as a group of segments that are loaded into memory as a 
single  unit.  CP/M-86  Plus incorporates a memory  management  facility  that 
supports program loading and dynamic memory allocation. It takes advantage  of 
the  static  relocation inherent in the 8086 processor,  and  handles  modules 
patterned  after 4 Digital Research Memory Models: the 8080 Memory Model,  the 
Small  Memory  Model, the Compact Memory Model, and the  Large  Memory  Model. 
Section 5, "Program execution", describes these Memory Models.

Program execution
-----------------

When  CP/M-86  Plus  receives a request to load a program  from  the  CCP   or 
another  transient  program, it checks the program's memory  requirements.  If 
sufficient  memory  is available, the system assigns the  required  amount  of 
memory to the program, and loads the program. CP/M-86 Plus also performs load-
time  fixups to address code on data areas larger than 64K. Once  loaded,  the 
program  can request additional memory from the system for buffer space.  When 
the  program is terminated, the system frees both the program memory area  and 
any  additional  dynamically-allocated memory, unless  the  program  indicates 
otherwise.

System disk organization
------------------------

The  CP/M-86  Plus  system disk organization is  standard  for  CP/M  systems. 
Generally,  the  first sector(s) contain(s) a bootstrap program used  to  load 
CP/M-86  Plus  during initial system start. The steps of  this  procedure  are 
described  in  the next section. The remainder of the disk contains  the  disk 
directories and files, including the generating system image CPMP.SYS.

Initial system load
-------------------

The  initial system load is executed immediately after the computer is  turned 
ON,  or when the computer's RESET button is pressed. The initial  system  load 
brings  CP/M-86  Plus  into memory, and gives it  control  of  the  computer's 
resources. The initial system load typically is a multi-stage procedure.

In the first stage, a hardware feature (the ROM-based software associated with 
system  power ON or RESET) loads a small program called the bootstrap  program 
into memory from the system drive (typically drive A).

In the second stage, the CP/M-86 Plus bootstrap program reads the CP/M-86 Plus 
system  file (CPMP.SYS) from the disk. The CPMP.SYS file, which is created  by 
the  CP/M-86 Plus system generation utility GENCPM, contains the BDOS and  the 
BIOS system components. Once the bootstrap program has loaded the BDOS and the 
BIOS  into  memory,  it sends a sign-on message to  the  console,  and  passes 
control to the BDOS.

In the third and final stage of the initial system load, the BDOS  initializes 
the system, and passes control to the command loader. This performs additional 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG1.TXT[2/6/2012 4:04:04 PM]

initialization, and loads the CCP. It then transfers control to the CCP.  When 
CCP.CMD  receives  control, it displays a prompt that references  the  initial 
default drive. If a STARTUP.SUB file is present on the default drive, the  CCP 
executes this file (thanks to SUBMIT) before prompting the user for a  command 
line  input.  See  the "CP/M-86 Plus User's Guide" for  discussion  of  submit 
files.  At  this  point, the initial system load is complete.  Note  that  the 
system sets the current user number to zero after initial system load.

EOF



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG2.TXT[2/6/2012 4:04:04 PM]

CPMPPG2.WS4       (= "CP/M-86 Plus Programmer's Guide", section 2)
-----------

(Edited by Emmanuel ROCHE.)

Section 2: Character device I/O
-------------------------------

Character device I/O is simply input to and output from simple devices such as 
consoles,  line printers, and communications devices. These  physical  devices 
can be assigned the logical device names defined below:

        CONIN:  Logical console input device
        CONOUT: Logical console output device
        AUXIN:  Logical auxiliary input device
        AUXOUT: Logical auxiliary output device
        PRN:    Logical list output device

If  your  system supports the BIOS DEVTBL function, the  CP/M-86  Plus  DEVICE 
utility  can display and change the assignment of logical devices to  physical 
devices. DEVICE can also display the names and attributes of physical  devices 
supported on your system. If your system does not support the DEVTBL function, 
then the logical-to-physical device assignments are fixed by the BIOS.

In  general,  character  I/O  functions read and  write  an  individual  ASCII 
character,  a  character string, or a block of characters to  and  from  these 
devices,  or test the device's ready status. For these functions, a string  of 
characters  is defined as zero to N characters, terminated by a  delimiter.  A 
block  of characters is defined as zero to N characters, where N is  specified 
in a word count field. The maximum value of N in both cases is limited to 64K-
1 (0FFFFh). The following list summarizes character device I/O functions.

        Read  a character from CONIN:
        Read  a character buffer from CONIN:
        Write a character to CONOUT:
        Write a string of characters to CONOUT:
        Write a block  of characters to CONOUT:
        Read  a character from AUXIN:
        Read  a character buffer from AUXIN:
        Write a character to AUXOUT:
        Write a block of characters to AUXOUT:
        Write a character to PRN:
        Write a block of characters to PRN:
        Interrogate status of CONIN:, AUXIN:, AUXOUT:

The  system  cannot run unless CONIN: and CONOUT: are assigned to  a  physical 
console.  The  remaining logical devices can remain unassigned. If  a  logical 
output  device is not assigned to a physical device, an output system call  to 
the  logical  device  performs no action. If a logical  input  device  is  not 
assigned  to  a physical device, an input system call to  the  logical  device 
returns a null character (00h). Note that this action depends on your system's 
BIOS implementation.



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG2.TXT[2/6/2012 4:04:04 PM]

Console I/O
-----------

Because a program's main interaction with its user is through the console, the 
system  supports  many  console I/O functions. Console I/O  functions  can  be 
divided  into  four  categories: basic console I/O, raw  console  I/O,  edited 
console input, and special console functions.

Basic console I/O
-----------------

Using the basic console I/O, programs can access the console device for simple 
input and output. The basic console I/O functions are described in Table 2-1.

Table 2-1. Basic console I/O functions

Mnemonic     Function   Description
--------     --------   -----------
C_READ           1      Read a single character from the console
C_STAT          11      Get console status
C_WRITE          2      Write a single character to the console
C_WRITEBLK     111      Write a block  of characters to the console
C_WRITESTR       9      Write a string of characters to the console

The  input  function  echoes the character to the console,  so  that  you  can 
identify  the typed character. The output functions expand tabs in columns  of 
eight characters.

Control  keys control console output, program termination, and duplication  of 
console  output on the printer (called "printer echo"). These keys are  active 
when performing basic console functions, but can be selectively disabled using 
the C_MODE (Function 109) system call, described in Section 6, "System calls". 
The system recognizes all of the control keys described below when the Console 
Mode is in the default state.

Ctrl-S  stops  console  output,  and Ctrl-Q  resumes  console  output.  Ctrl-C 
terminates  the foreground program. Ctrl-P turns on and off printer echo.  The 
system  always  intercepts  Ctrl-S,  Ctrl-C,  Ctrl-Q,  and  Ctrl-P  characters 
whenever they are entered at the keyboard, unless they have been  specifically 
disabled by using the C_MODE (Function 109) system call. These characters  can 
appear  anywhere  in  the  command  line.  When  a  program  disables   system 
interception  of these characters, the program can use the basic  console  I/O 
functions to read these characters.

Raw console I/O
---------------

The  second category of console I/O is raw console I/O. The C_RAWIO  (Function 
6)  system  call  can provide raw console I/O  in  situations  where  unedited 
console I/O is required. The C_RAWIO system call actually consists of  several 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG2.TXT[2/6/2012 4:04:04 PM]

subfunctions that support direct console input, output, and status checks. The 
system does not filter out special characters during raw console I/O. The  raw 
output subfunction does not expand tabs, and the direct input subfunction does 
not echo typed characters to the console.

Edited console input
--------------------

The  third category of console I/O accepts edited input from the console.  The 
only  function in this category, C_READSTR (Function 10), reads an input  line 
from a buffer, and recognizes certain control characters that edit the  input. 
Table 2-2 lists the editing control characters.

Table 2-2. Line-editing control characters

Char.   System action
------  -------------
Ctrl-A  Moves the cursor one character to the left.

Ctrl-B  Moves  the  cursor to the beginning of the command line,  without  any 
        effect on the contents of the line. If the cursor is at the  beginning 
        of the line, Ctrl-B moves it to the end of the line.

Ctrl-E  Sends  a  Carriage  Return (Ctrl-M) and a Line Feed  (Ctrl-J)  to  the 
        screen, but does not affect the line buffer.

Ctrl-F  Moves the cursor one character to the right.

Ctrl-G  Deletes the character at the cursor. Has no effect when the cursor  is 
        at the end of the line.

Ctrl-H  Deletes  the  character to the left of the cursor. GENCPM  can  change 
        this function to the RUB/DEL function.

Ctrl-I  Echoes  enough  spaces to place the next character position at  a  tab 
        stop.  Tab  stops are fixed at every eight character of  the  physical 
        line.

Ctrl-J  Terminates  the input line. The cursor can be positioned  anywhere  in 
        the line. The entire input line is placed in the input line buffer.

        Note  that  the C_READSTR (Function 10) system call does not  place  a 
        terminating character in the line buffer.

Ctrl-K  Deletes  all  characters from the cursor position to the  end  of  the 
        line.

Ctrl-M  Terminates  the input line. The cursor can be positioned  anywhere  in 
        the  input  line. The entire input line is placed in  the  input  line 
        buffer.

Ctrl-R  Retypes the characters to the left of the cursor on a new line.



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG2.TXT[2/6/2012 4:04:04 PM]

Ctrl-U  Updates the previous line buffer to contain the characters to the left 
        of the cursor. Deletes the current line, and advances to a new line.

Ctrl-W  Recalls  the  previous line if the current line is  empty;  otherwise, 
        moves cursor to the end of the line.

Ctrl-X  Deletes all characters to the left of the cursor.

RUB/DEL Removes  and  echoes  the last character if at the end  of  the  line; 
        otherwise,  deletes  the character to the left of the  current  cursor 
        position. GENCPM can change this function to Ctrl-H.

As an option, the line to be edited can be initialized by the calling program. 
This  option  is  explained  in  the  C_READSTR  (Function  10)  system   call 
description in Section 6, "System calls".

C_READSTR  also  filters input for certain control characters. If you  type  a 
Ctrl-C, the system terminates the calling program. C_READSTR also watches  for 
a  Ctrl-P keystroke, and if it finds one at any position in the command  line, 
it  toggles  the printer echo switch. In general, C_READSTR accepts  as  input 
characters  all  control  characters that it does  not  recognize  as  editing 
control  characters. C_READSTR identifies a control character with  a  leading 
caret  [^] when it echoes the control character to the console.  Thus,  Ctrl-D 
appears as ^D in a command line on the screen.

Console Mode and output delimiter
---------------------------------

The  final category of console I/O functions includes special  functions  that 
modify  the behavior of other console functions. C_DELIMIT (Function 110)  can 
get or set the current delimiter for the C_WRITESTR (Function 9) system  call. 
The default output delimiter is the dollar sign ("$").

C_MODE (Function 109) gets or sets a 16-bit system variable called the Console 
Mode.  Table  2-3 describes the bits of the console mode  variable  and  their 
functions (bit 0 is the least significant bit).

Table 2-3. Console Mode variable bits

Bit     Function
---     --------
 0      If this bit is set, C_STAT (Function 11) returns true only if a Ctrl-C 
        is  typed at the console. Programs that make repeated  console  status 
        calls to test if execution should be interrupted can set this bit,  to 
        interrupt on Ctrl-C only.

        Bit  0 is usually used in conjunction with bit 3. If bit 3 is zero,  a 
        Ctrl-C terminates the program.

 1      Setting this bit disables stop and start scroll support for the  basic 
        console I/O functions, which comprise the first category of  functions 
        described  in this section. When this bit is set, C_READ (Function  1) 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG2.TXT[2/6/2012 4:04:04 PM]

        and  C_READSTR  (Function  10)  read Ctrl-S  and  Ctrl-Q,  and  C_STAT 
        (Function 11) returns true if you type these characters. Use this mode 
        in  situations  where raw console input and edited output  is  needed. 
        While  in  this mode, you can use C_RAWIO (Function 6) for  input  and 
        input  status, and C_READ (Function 1), C_WRITESTR (Function  9),  and 
        C_WRITEBLK  (Function 111) for output without the possibility  of  the 
        output functions intercepting input Ctrl-S and Ctrl-Q characters.

 2      Setting  this  bit disables tab expansion and  printer  echo  (Ctrl-P) 
        support  for  C_WRITE  (Function  2),  C_WRITESTR  (Function  9),  and 
        C_WRITEBLK  (Function  111). Use this mode when non-edited  output  is 
        required.  When  this bit is set, C_READ (Function  2)  and  C_READSTR 
        (Function  10) can read Ctrl-P, and C_STAT (Function 11) returns  true 
        when Ctrl-P is entered.

 3      This bit disables all Ctrl-C intercept action in the system. This mode 
        is useful for programs that must control their own termination.

All  basic  console  I/O functions are affected by  the  Console  Mode  system 
variable.  The  Console Mode determines whether Ctrl-S,  Ctrl-Q,  Ctrl-P,  and 
Ctrl-C  characters are recognized or ignored by the system. When  the  Console 
Mode  is  in  default mode, the four control characters  are  recognized.  The 
Console  Mode  is modified by the program by using the C_MODE  (Function  109) 
system call.

When  a transient program begins execution, the Console Mode bits are  set  to 
zero, the default state.

Note: The "raw" console I/O functions set bits 1, 2, and 3 in the Console Mode 
each  time  they  are called. Raw console I/O  functions  include  the  S_BIOS 
(Funtion 50) (when performing console I/O functions) and the C_RAWIO (Function 
6) system calls. Subsequent basic console I/O system calls automatically reset 
these bits. However, if the program uses the C_MODE (Function 109) system call 
to  set the Console Mode bits, then the basic console I/O system calls do  not 
reset the Console Mode bits.

Other character device I/O
--------------------------

For  the  logical  device PRN:, the system provides  single  character  output 
function L_WRITE (Function 5) and character block output L_WRITEBLK  (Function 
112).

The system also supports single character output A_WRITE (Function 4) for  the 
logical  device  AUXOUT:,  a single character input A_READ  (Function  3)  for 
AUXIN:,  a  character  block  input A_READBLK (Function  172)  for  AUXIN:,  a 
character  block  output  A_WRITEBLK (Function 173) for  AUXOUT:,  and  status 
functions  A_STATIN  (Functions 7) and A_STATOUT (Function 8) for  AUXIN:  and 
AUXOUT:, respectively.

EOF



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG3.TXT[2/6/2012 4:04:05 PM]

CPMPPG3.WS4       (= "CP/M-86 Plus Programmer's Guide", section 3)
-----------

(Edited by Emmanuel ROCHE.)

Section 3: CP/M-86 Plus file system
-----------------------------------

File system overview
--------------------

CP/M-86 Plus can support up to 16 logical drives. Each logical drives has  two 
regions:  a  directory area, and a data area. The directory area  defines  the 
files that exist on the drive, and identifies the data area space that belongs 
to each file. The data area contains the file data defined by the directory.

The file system automatically allocates data blocks and directory entries when 
a  program creates or extends a file. The system returns previously  allocated 
space to free space when a program deletes or truncates a file. The allocation 
and  recovery  of  directory  and data space is  transparent  in  the  calling 
program. The system maintains the integrity of the disk files by not  allowing 
the  user to ever update the directory area and the data area without using  a 
file system call.

File-access system calls
------------------------

Most of the file-access system calls can be divided into three categories:  1) 
system  calls that operate on directory entries, 2) system calls that  operate 
on  records within a file, and 3) miscellaneous system calls that  affect  the 
execution  of other file-access system calls. System calls in the first  group 
include calls to search for one or more files, rename or truncate a file,  set 
file attributes, assign a password to a file, and compute the size of a  file. 
This group also includes calls to make a new file, open an existing file,  and 
close an existing file.

System calls in the second group include functions to read or write records to 
a file, either sequentially or randomly, by record position. System read/write 
calls  transfer  data  in 128-byte units, the basic record size  of  the  file 
system.

The  miscellaneous file-access system calls include calls to set  the  Current 
User  Number, set the DMA buffer address, parse an ASCII  file  specification, 
and  set a default password. This group also includes system calls to set  the 
system Multisector Count and the File System Error Mode.

The three groups of file-access system calls all have mnemonics beginning with 
the F_ prefix, and are listed in Table 3-1.

Table 3-1. File-access system calls



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG3.TXT[2/6/2012 4:04:05 PM]

Mnemonic     Function   Description
--------     --------   -----------
F_ATTRIB        30      Set file attributes
F_CLOSE         16      Close file
F_DELETE        19      Delete file
F_DMAGET        52      Get DMA base address
F_DMAOFF        26      Set DMA offset
F_DMASEG        51      Set DMA segment
F_ERRMODE       45      Set File System Error Mode
F_MAKE          22      Make a new file
F_MULTISEC      44      Set Multisector Count for file read/write
F_OPEN          15      Open file
F_PARSE        152      Parse filename
F_PASSWD       106      Set default password
F_RANDREC       36      Return record number for file read/write
F_READ          20      Read record sequentially from file
F_READRAND      33      Read record randomly from file
F_RENAME        23      Rename file
F_SFIRST        17      Search for first file entry
F_SIZE          35      Compute file size
F_SNEXT         18      Search for next file entry
F_TIMEDATE     102      Return file time/date stamps, Password Mode
F_TRUNCATE      99      Truncate rest of file
F_USERNUM       32      Set/Get directory user number
F_WRITE         21      Write record sequentially into file
F_WRITERAND     34      Write record randomly into file
F_WRITEXFCB    103      Write file's XFCB
F_WRITEZF       40      Write record randomly with zero fill

Drive-related system calls
--------------------------

The  drive-related system calls maintain drive information and  drive  status. 
These include calls to select a drive as the default drive, compute a  drive's 
free space, interrogate drive status, and assign a directory label to a drive. 
The  directory label for a drive determine if file passwords are to  be  used, 
and the type of date and time stamping to be performed for files on the drive. 
These system calls all have mnemonics beginning with the DRV_ prefix, as shown 
in the following table.

Table 3-2. Drive-related system calls

Mnemonic     Function   Description
--------     --------   -----------
DRV_ALLOVEC     27      Get drive Allocation Vector
DRV_ALLRESET    13      Reset all drives
DRV_DPB         31      Get Disk Parameter Block address
DRV_FLUSH       48      Flush data buffers
DRV_FREE        39      Free drive
DRV_GET         25      Get default drive
DRV_GETLABEL   101      Get directory label data byte
DRV_LOGINVEC    24      Return Login Vector
DRV_RESET       37      Reset drive



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG3.TXT[2/6/2012 4:04:05 PM]

DRV_ROVEC       29      Return drives Read-Only Vector
DRV_SET         14      Set (Select) drive
DRV_SETLABEL   100      Set directory label
DRV_SETRO       28      Set drive to Read-Only
DRV_SPACE       46      Get free space on drive

Disk and drive organization
---------------------------

CP/M-86 Plus can support up to 16 logical drives, identified by the letters  A 
through  P with up to 512 Megabytes of storage each. A logical  drive  usually 
corresponds  to  a  physical drive on the system,  particularly  for  physical 
drives  that support removable media such as floppy disks. High-capacity  hard 
disks,  however,  are  commonly divided up into multiple  logical  drives  for 
easier file organization. In this manual, references to "drives" mean "logical 
drives", unless specifically stated otherwise.

The  data  tracks are divided into two regions: a directory area, and  a  data 
area.  The  directory  area defines the files that exist  on  the  drive,  and 
identifies  the  data space that belongs to each file. The size of  each  disk 
directory  is  defined within the BIOS. The data area contains the  file  data 
defined  by the directory. If the drive has adequate storage, a  CP/M-86  Plus 
file can be as large as 32 Megabytes, so that each disk file can contain up to 
262,144 (40000h) 128-byte records.

The  directory  identifies  each file with an 8-character filename  and  a  3-
character  filetype.  Together, these fields must be unique for each  file.  A 
file  can  be  assigned  an 8-character password, to  protect  the  file  from 
unauthorized access.

Disk file I/O
-------------

The maximum file size supported on a drive is 32 Megabytes, so that each  disk 
file  can consist of up to 262,144 (40000h) 128-byte records. When a  file  is 
created  or  extended,  the system automatically  allocates  data  blocks  and 
directory entries to the file. If no directory or data space is available, the 
system  returns  an  error to the calling program. Note that  any  data  block 
allocated  to a file is permanently allocated until deletion of the  file,  or 
until  the system is called to truncate the file. The system does not  support 
any other mechanism for releasing data blocks belonging to a file.

The  program can process files sequentially or randomly. The position of  each 
record in a file, called the Random Record Number, identifies its position  in 
the  file.  For sequentially-created files, the first record's  Random  Record 
Number  is zero; the last record's Random Record Number is one less  than  the 
total  number  of  records  in  the file. The system  can  read  such  a  file 
sequentially  beginning at record zero, or at random by record  position.  You 
can create a random access file by writing records to the file, and specifying 
the Random Record Number.

The  system  automatically  allocates data blocks to a  file  to  contain  its 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG3.TXT[2/6/2012 4:04:05 PM]

records  on the basis of the actual record position consumed. When creating  a 
file using random access, you might have logical records in the file to  which 
no  data  has actually been written. Such files are called "sparse  files".  A 
sparse  file  containing two records, one at position zero, and the  other  at 
position 262,143, consumes only two data blocks in the data area. You can only 
create and access sparse files in random mode.

Under CP/M-86 Plus, the logical record size for disk I/O is 128 bytes. This is 
the  basic  unit of data transfer between the operating system  and  transient 
programs.  However,  the record size on disk is not restricted to  128  bytes. 
These  records  are  called "physical records". Physical record  sizes  are  a 
multiple  of the basic 128-byte record size. When the physical record size  is 
larger than 128 bytes, the system uses record blocking and deblocking for read 
or write operations.

Record blocking and deblocking
------------------------------

The  physical record size on disk can range from 128 bytes to 4K  bytes.  This 
physical record size is normally referred to as the "sector size", which is  a 
multiple  of the basic 128-byte unit. As mentioned above, if  physical  record 
sizes  are  larger  than  128  bytes, the  system  uses  record  blocking  and 
deblocking. The process of building up physical records from 128-byte  logical 
records  is  called  "record  blocking". This process  is  required  in  write 
operations.  The  reverse process of breaking up physical records  into  their 
component  128-byte  records is called "record deblocking".  This  process  is 
required in read operations.

Record  deblocking implies a read-ahead operation. For example, if  a  program 
calls the system to read a logical record, the entire physical record is  read 
into  a  system buffer. The system accesses this buffer  for  subsequent  read 
operations  (assuming,  of course, that the requested record  resides  in  the 
buffer).  Conversely, record blocking results in the postponement of  physical 
write  operations. For example, if a transient program makes a system call  to 
write  a record, the logical record is placed in a system buffer, and  is  not 
written to the disk until the buffer is needed in another I/O operation, or it 
fills up. The program can force a disk write by using the DRV_FLUSH  (Function 
48)  system call. The system automatically makes a DRV_FLUSH system call  when 
called to close a file. Thus, it is sufficient to close a file to ensure  that 
all pending physical buffers for that file are written to the disk.

Multisector I/O
---------------

To  increase  the speed of sequential file access, the system  has  a  feature 
called "multisector I/O", which provides the capability of reading or  writing 
multiple  128-byte  records  in a single system call.  In  a  multisector  I/O 
operation,  the file system bypasses, when possible, all  intermediate  record 
buffering. Data is transferred directly from a drive to user memory, and  vice 
versa.

The number of records that can be supported with multisector I/O ranges from 1 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG3.TXT[2/6/2012 4:04:05 PM]

to 128. This value is called the "Multisector Count", and can be set by  using 
the  F_MULTISEC  (Function  44)  system  call.  The  default  value  for   the 
Multisector  Count  is  one.  Note that  the  greatest  potential  performance 
increases are obtained when the Multisector Count is set to 128. In this case, 
however, the program must provide a 16K buffer.

DMA buffer
----------

DMA  is  an  acronym  for  Direct Memory Access, a  term  used  for  file  I/O 
operations  which  transfer file records directly to memory, and  vice  versa. 
Under CP/M-86 Plus, the current DMA buffer is usually defined as the buffer in 
memory  where a record resides before a disk write, and after a disk read.  If 
the Multisector Count is one, the size of the buffer is 128 bytes. However, if 
the  Multisector  Count is greater than one, then the size of the  DMA  buffer 
must equal n*128, where n equals the Multisector Count.

The system defaults the DMA buffer offset to 0080h, and the DMA buffer segment 
or  base to the initial Data Segment of the program. You can use the  F_DMASEG 
(Function  51)  and/or  F_DMAOFF  (Function 26) system  calls  to  change  the 
location of the DMA buffer.

Although  the  DMA  buffer is normally used for file record  transfer,  it  is 
sometimes  used  for other purpose. For example, system calls that  check  and 
assign  file passwords require that the file password be placed in  the  first 
eight  bytes  of the DMA buffer before issuing a file-access system  call.  As 
another  example, the DRV_SPACE (Function 46) system call returns its  results 
in the first 3 bytes of the current DMA buffer. When the DMA buffer is used in 
this  context, the size of the buffer in memory is determined by the  specific 
requirements of the system call.

File byte counts
----------------

Although the logical record size of CP/M-86 Plus is 128 bytes, the file system 
does provide a mechanism for the user to store and retrieve the byte count for 
the last record of a file. The F_ATTRIB (Function 30) system call can set  the 
last  record  byte  count.  Conversely, the  F_OPEN  (Function  15),  F_SFIRST 
(Function  17), and F_SNEXT (Function 18) system calls return the  byte  count 
for the last record of a file (see Table 3-3, field CS of the FCB).

The  F_OPEN  (Function 15) system call will return the byte count  in  the  CR 
(current  record) field only if CR = 0FFh before the F_OPEN is performed.  The 
F_SFIRST  (Function 17) and F_SNEXT (Function 18) system calls  always  return 
the  byte count in the CS field of the FCB. This field is reserved during  all 
other operations.

Note  that  the  file system does not accept or update the  byte  count  value 
during  read  or write operations. It is the  programmer's  responsibility  to 
maintain  this  value. But the F_MAKE (Function 22) system call does  set  the 
byte count value to zero when it creates a file entry in the directory.



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG3.TXT[2/6/2012 4:04:05 PM]

File Control Block (FCB)
------------------

Each  file being accessed through the system has a corresponding File  Control 
Block  (FCB), which provides information needed for all file  operations.  The 
FCB  is a 33 to 36 byte area in the transient program's memory space  that  is 
set  up for each file. The FCB serves as an important channel for  information 
exchange between a program and file-access system calls. A program initializes 
an FCB to specify the drive location, filename and filetype fields, and  other 
information  required  to make a file-access system call. For example,  in  an 
F_OPEN (Function 15) system call, the FCB specifies the name and location of a 
file  to be opened. In addition, the file system uses the FCB to maintain  the 
current  state  and record position of an open file. Some  file-access  system 
calls  use  special fields within the FCB for invoking  options.  Other  file-
access  system  calls use the FCB to return data to the calling  program.  All 
random  I/O  system calls require the calling program to  specify  the  Random 
Record Number in a 3-byte field at the end of the FCB.

In  order to perform file-access operations on any file, an FCB must first  be 
"activated"  for  the  file. This process of activating a  file  requires  the 
calling  program  to either open the file by using the  F_OPEN  (Function  15) 
system call for an existing file, or the F_MAKE (Function 22) system call  for 
creating  a  new  file. Be sure to verify, by checking the return  code  of  a 
system call, that the open or make operation is successful. After a file's FCB 
has  been  activated, the program can modify only certain fields of  the  FCB. 
These fields are marked with an "(*)" in Table 3-3.

When  making a file-access system call, the program passes an FCB  address  to 
the system. This address has two 16-bit components: register DX containing the 
offset,  and  register DS containing the segment. The length of the  FCB  data 
area depends on the system call. For most system calls, the minimum length  is 
33 bytes. For other system calls, the minimum FCB length is 36 bytes.

FCB format and structure
------------------------

Figure 3-1 describes the FCB format:

     +----+-------+-------+----+----+----+----+--------+----+----------+
     | DR | F1-F8 | T1-T3 | EX | CS | RS | RC | D0-D11 | CR | R0-R1-R2 |
     +----+-------+-------+----+----+----+----+--------+----+----------+
        0   1...8   9..11   12   13   14   15   16..31   32   33-34-35

        Figure 3-1. File Control Block (FCB) format

Table 3-3 describes the FCB structure.

Table 3-3. File Control Block (FCB) structure

Format: Byte Offset -- Field Name
        Description



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG3.TXT[2/6/2012 4:04:05 PM]

0 -- DR
Drive code (0-16).
0 --> Use default drive for file
1 --> Auto disk select drive A
2 --> Auto disk select drive B
  ...
16 --> Auto disk select drive P

1..8 -- F1-F8
Contain the filename in ASCII uppercase, with high bit = 0. F1'-F8' denote the 
high-order  bit of these positions, and are called "file attribute bits".  F1' 
through  F4' are reserved attributes for program (CMD) files.  Otherwise,  F1' 
through F4' are available for user definition. F5' and F6' are referred to  as 
"interface attributes", and are used as option flags for the following  system 
calls:  F_CLOSE (Function 16), F_DELETE (Function 19), F_MAKE  (Function  22), 
and  F_ATTRIB  (Function  30). The F5' and F6' values  are  discussed  in  the 
corresponding  system call descriptions in Section 6, "System calls". F7'  and 
F8' are reserved for system use.

9..11 -- T1-T3
T1, T2, T3 contain the filetype in ASCII uppercase, with  high bit = 0.
T1',  T2', T3' denote the high bit of these positions, and are file  attribute 
bits.
T1' = 1 --> Read-Only (RO) file
T2' = 1 --> System (SYS) file
T3' = 1 --> Archived file
These file attributes are described later in this section.

12 -- EX
Contains  the current extent number. This is set to 0 by the calling  program, 
but  it  can  range from 0 to 31 during file I/O.  Each  extent  contains  128 
logical record.

13 -- CS
File byte count after F_OPEN, F_SFIRST or F_SNEXT.

14 -- RS
Reserved for system use.

15 -- RC
Record  count for extent EX. This field takes on value from 0 to  255  (values 
greater than 128 imply a record count of 128).

16-31 -- D0-D11
Allocation  field  normally filled in by the system, and reserved  for  system 
use. Also used by the F_RENAME (Function 23) and F_PARSE (Function 152) system 
calls.

32 -- CR (*)
Current record to read or write in a sequential file operation. This field  is 
normally set to zero by the calling program when a file is opened or  created. 
File byte count after F_OPEN with CR = 0FFh.

33-34-35 -- R0,R1,R2 (*)



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG3.TXT[2/6/2012 4:04:05 PM]

Optional Random Record Number in the range 0 to 262,143 (0 to 3FFFFh). R0, R1, 
R2 constitutes an 18-bit value with low byte R0, middle byte R1, and high byte 
R2.

Note:  Fields  designated by "(*)" (CR and R0,R1,R2) are fields  that  can  be 
modified by the program after the FCB has been activated.

FCB initialization and usage
----------------------------

The calling program must initialize the DR, F1-F8 and T1-T3 fields of the  FCB 
before making the following file-access system calls:

        F_ATTRIB        Set file attributes
        F_DELETE        Delete file
        F_MAKE          Make a new file
        F_OPEN          Open file
        F_RENAME        Rename file
        F_SFIRST        Search for first file entry
        F_SIZE          Compute file size
        F_SNEXT         Search for next file entry
        F_TIMEDATE      Return file time/date stamps, Password Mode
        F_TRUNCATE      Truncate rest of file
        F_WRITEXFCB     Write file's XFCB

The  calling  program  must also set the EX field of  the  FCB  before  making 
F_MAKE,  F_OPEN,  F_SFIRST, and F_WRITEXFCB (Functions 22, 15,  17,  and  103) 
system  calls.  Set this field to zero, except for the  F_WRITEXFCB  (Function 
103) system call.

To use the F_RENAME (Function 23) system call, the calling program must  place 
the new filename and filetype in bytes D1 through D11.

The  remaining  file-access calls that use FCBs require an FCB that  has  been 
initialized  by  a  prior file-access system call. For  example,  the  F_SNEXT 
(Function  18)  system  call expects an FCB initialized by  a  prior  F_SFIRST 
(Function  17)  system  call. In addition, the  F_READ,  F_READRAND,  F_WRITE, 
F_WRITERAND,  and  F_WRITEZF (Functions 20, 33, 21, 34, and 40)  system  calls 
require  an  FCB that has been activated for record operation.  Under  CP/M-86 
Plus,  only  the  F_OPEN and F_MAKE (Functions 15 and  22)  system  calls  can 
activate an FCB.

If  the  program is to process a file sequentially from the beginning  of  the 
file,  the  CR (current record) field must be set to zero  before  making  the 
first  read  or write call. When processing a file in random  mode,  bytes  33 
through  35 of the FCB must be set to the requested Random Record Number.  The 
F_TRUNCATE (Function 99) system call also requires the random record field  to 
be initialized.

The  F_SFIRST,  F_SNEXT, and the F_DELETE (Functions 17, 18,  and  19)  system 
calls  support multiple or ambiguous file references. In general,  a  question 
mark  ("?") in the filename, filetype, or EX fields matches all values in  the 
corresponding  positions  of the directory entries during a  directory  search 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG3.TXT[2/6/2012 4:04:05 PM]

operation. File directory entries (henceforth referred to as "Directory FCBs") 
maintained  in the directory area of each disk drive have the same  format  as 
FCBs,  except for byte 0 which contains the file's user number, and  bytes  32 
through 35, which are excluded. The F_SFIRST and F_SNEXT (Functions 17 and 18) 
system  calls  also  recognize a question mark in the FCB  DR  field  and,  if 
specified,  return  all  directory entries on the  disk,  regardless  of  user 
number, including empty entries.

The  system  updates  the  memory  copy  of  the  Directory  FCB  during  file 
processing,  to  maintain the current position within the  file.  During  file 
write  operations,  the system also updates the memory copy of  the  Directory 
FCB,  to record the allocation of data blocks to the file. At the  termination 
of file processing, the F_CLOSE (Function 16) system call permanently  records 
this information in the directory.

Note that the system does not necessarily record the data blocks allocated  to 
a file during write operations in the disk directory until the calling program 
issues an F_CLOSE (Function 16) system call. Therefore, a program that creates 
or  modifies files must close the files at the end of  processing.  Otherwise, 
data might be lost.

File naming conventions
-----------------------

The  "CP/M-86  Plus  User's  Guide"  discusses  details  of  the  file  naming 
conventions  for CP/M. In general, however, a file specification  consists  of 
four parts: the drive specifier (d:), the filename, the filetype, and the file 
password. A command line file specification takes the general form:

        {d:}filename{.typ}{;password}

The  drive specifier names the drive on which the file is located.  An  eight-
character filename and a three-character filetype field identify each file  in 
a  directory. Programs can also assign an eight-character password to a  file, 
to  protect  it from unauthorized access. All system calls that  involve  file 
operations specify the requested file by filename and filetype. Multiple files 
can  be  specified  by  a  wildcard  file  specification.  An  ambiguous  file 
specification  uses  one  or  more question marks ("?")  in  the  filename  or 
filetype  to  indicate  that  any character matches  that  position.  Thus,  a 
filename  and  filetype  consisting of all questions marks  (equivalent  to  a 
command  line specification of "*.*") matches all files in the directory  that 
belong to the Current User Number.

A program can use the F_PARSE (Function 152) system call to translate  (parse) 
the file specification, and to place the required FCB fields in a user-defined 
FCB address.

File passwords
--------------

CP/M-86  Plus provides file password protection on CP/M disks in one of  three 
modes. Table 3-4 shows the difference in access level allowed to system  calls 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG3.TXT[2/6/2012 4:04:05 PM]

when the password is not supplied for a password-protected file.

Table 3-4. Password protection modes

 Mode      Access level allowed without password
-------    -------------------------------------
1) Read    Cannot be read, modified, or deleted.
2) Write   Can be read, but not modified or deleted.
3) Delete  Can be read and modified, but not deleted.

If  a  file  is password-protected in Read mode, a  program  must  supply  the 
password to open the file. Programs cannot write to a file protected in  Write 
mode  without  the password. A file protected in Delete mode allows  read  and 
write  access,  but a program must specify the password to  delete  the  file, 
rename the file, or modify the file's attributes. Thus, password protection in 
mode  1 implies mode 2 and 3 protection, and mode 2 protection implies mode  3 
protection. All three modes require the user to specify the password to delete 
the file, rename the file, or to modify the file's attributes.

The F_MAKE (Function 22) or the F_WRITEXFCB (Function 103) system call can  be 
used  to assign a password to a file. The F_WRITEXFCB system call can also  be 
used to change a password, if the original password is supplied.

The following system calls test for passwords for password-protected files:

        DRV_SETLABEL
        F_ATTRIB
        F_DELETE
        F_OPEN
        F_RENAME
        F_TRUNCATE
        F_WRITEXFCB

You do not need to continually supply the password to access your files if you 
establish  a  default  password  before you access  a  file  that  requires  a 
password. You can establish a default password by using the F_PASSWD (Function 
106)  system call. The operator can also establish the default password  prior 
to  program execution by using the SET utility. See the "CP/M-86  Plus  User's 
Guide".

The system uses the default password for password-protected file if you do not 
supply  the  password  in the system call. This password is  in  effect  until 
replaced by another F_PASSWD (Function 106) system call.

File passwords are eight characters long. To make a system call that  requires 
a  password, the program must place the password in the first eight  bytes  of 
the current DMA buffer, or establish a default password.

File date and time stamps
-------------------------

CP/M-86  Plus  supports  three kinds of file  stamping:  create,  access,  and 
update.  Create stamps record when the file was created, acces  stamps  record 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG3.TXT[2/6/2012 4:04:05 PM]

when the file was last opened, and update stamps record the last time the file 
was modified. Create and access stamps share the same field. As a result, file 
access stamps overwrite any create stamps.

Date and time stamps are supported on CP/M media only if the directory of  the 
disk  has  been  properly  initialized.  The  INITDIR  utility  initializes  a 
directory  for date and time stamping. CP/M disk's time and date  stamping  is 
not  performed  if  the CP/M disk's directory label is  absent,  or  does  not 
specify time and date stamping, or if the drive is Read-Only.

Note that the CP/M directory label is also time-stamped. Time stamp fields  in 
the last eight bytes of the directory label show when it was created and  last 
updated. Access stamping is not supported for directory labels.

The  file  system uses system date and time when it records a  date  and  time 
stamp. The operator can set the system time and date by using the DATE command 
(see  the  "CP/M-86  Plus User's Guide"). A program can  also  use  the  T_SET 
(Function 104) system call to set time and date.

File attributes
---------------

The  high-order  bits  of the FCB filename F1' through F4'  and  filetype  T1' 
through T3' are called "attribute bits". The program can assign or interrogate 
the following attributes:

        T1' = 1 --> Read-Only (RO) attribute
        T2' = 1 --> System (SYS) attribute
        T3' = 1 --> Archive attribute

If a file is set to Read-Only, the system cannot write to the file.

If the file has the SYS attribute, the system treats it as a system file.  For 
example,  certain  utilities  such as DIR and PIP do  not  include  it  unless 
explicitly specified. Also, the system allows other users to access user  zero 
SYS files on a Read-Only basis.

When a file has the Archive attribute, it indicates that the file has not been 
modified  since  a  previous archive (back-up) function.  An  archive  program 
should  interrogate  this  attribute, and set the Archive  attribute  when  it 
copies  a file. The system automatically resets the Archive attribute  to  off 
when the file is updated. The PIP utility supports file archiving.

The file attribute bits F1' through F4' and T1', T2', and T3' are recorded  in 
the  file's  Directory FCB. These attributes can be set or reset only  by  the 
F_ATTRIB (Function 30) system call.

User number conventions
-----------------------

The  CP/M-86  Plus  file system subdivides the  directory  area  into  sixteen 
logically  independent directories. These directories are identified  by  user 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG3.TXT[2/6/2012 4:04:05 PM]

number 0 through 15. Physically, all user directories share the directory area 
of  a  drive.  However,  files  existing  under  different  user  numbers  are 
independent of each other; for example, files with the same name but different 
user numbers can reside on the same drive with no conflict.

During  system  operation,  CP/M-86 Plus runs with the user number  set  to  a 
single  value.  This value is referred to as the "Current  User  Number".  The 
system operator can change the Current User Number at the console by using the 
USER  built-in  command  (see the "CP/M-86 Plus User's  Guide").  A  transient 
program  can change the Current User Number by using the  F_USERNUM  (Function 
32) system call.

Only  one  user  number  is active in the system at any  time.  All  file  and 
directory  operations  reference only directory entries associated  with  this 
Current  User Number, except for user zero SYS (System) files.  Under  CP/M-86 
Plus, files under user zero marked with the SYS attribute can be read by other 
users.  This  convention allows utilities, including overlays  and  any  other 
commonly accessed files, to reside on user zero but remain available to  other 
users.  This eliminates the need to copy commonly used utilities to  all  user 
numbers on a directory.

A  program  can  access files on different user numbers by  setting  the  user 
number to the appropriate user number with the F_USERNUM (Function 32)  system 
call. However, an error occurs if a program attempts to read from or write  to 
a file opened under a different user number.

Directory entries
-----------------

Directory entries are 32-byte structures created and updated in the  directory 
area  by the system. They represent a permanent, static recording on  disk  of 
the  file's name, attributes, date and time stamps, password,  and  associated 
data blocks. Directory entries are not processed directly by users; that is to 
say: only the system can update the directory area of the drive.

There  are  four types of directory entries recognized and  supported  by  the 
system:

     1. A Directory Label entry
     2. File directory entry (Directory FCB)
     3. Password directory entry (XFCB)
     4. Date and Time Stamp directory entry (SFCB)

Directory label
---------------

A  directory label can be included in a CP/M drive's directory. The  directory 
label specifies if the system is to support file passwords, and if the  system 
is to maintain date and time stamping for files on the drive. Figure 3-2 shows 
the directory label format.

     +----+-------+-------+----+----+----+----+----------+-----+-----+



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG3.TXT[2/6/2012 4:04:05 PM]

     | DR | Fname | Ftype | DL | S1 | S2 | RC | Password | TS1 | TS2 |
     +----+-------+-------+----+----+----+----+----------+-----+-----+
        0   1...8   9..11   12   13   14   15    16..23     24    28

        Figure 3-2. Directory Label format

Table 3-4 describes the structure and contents of the CP/M directory label.

Table 3-4. CP/M Directory Label structure

Format: Byte Offset -- Field Name
        Description

0 -- DR
Directory label indicator.

1..8 -- Fname
Directory label name.

9..11 -- Ftype
Directory label type.

12 -- DL
Directory label data byte.
Bit 7: Require passwords for password-protected files
Bit 6: Perform access time stamping
Bit 5: Perform update time stamping
Bit 4: Perform create time stamping
Bit 0: Directory label exists

13,14,15 -- S1,S2,RC
Reserved for future use.

16-23 -- Password
8-byte password field (encrypted).

24-27 -- TS1
4-byte creation/access time stamp field.

28-31 -- TS2
4-byte update stamp field.

Only one directory label can exist in a drive's directory area. The  directory 
label name and type fields are not used to search for a directory label;  they 
are used to identify the drive.

The  DRV_SETLABEL  (Function  100) system call can be used to  create  a  CP/M 
directory  label. This function can also be used to assign a  directory  label 
password.  This  password, if assigned, cannot be circumvented,  whereas  file 
password protection on a drive is an option controlled by the directory label.

The  file system provides no specific system call to read the directory  label 
directly.  However, a program can read the directory label data byte by  using 
the  DRV_GETLABEL  (Function  101) system call. A program  can  also  use  the 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG3.TXT[2/6/2012 4:04:05 PM]

F_SFIRST  and F_SNEXT (Functions 17 and 18) system calls to find  a  directory 
label.  The  directory label is identified by a value of 32 (20h)  in  the  DR 
field (byte 0) of the directory label structure.

File directory entry (Directory FCB)
--------------------

Each  file on the CP/M drive has at least one 32-byte entry in the  directory. 
This entry contains the filename, filetype, and other data, plus 16 bytes that 
define  the  allocation  blocks assigned to the file.  Figure  3-3  shows  the 
Directory FCB format.

    +----+-------+-------+----+----+----+----+--------+
    | UC | F1-F8 | T1-T3 | EX | CS | RS | RC | D0-D11 |
    +----+-------+-------+----+----+----+----+--------+
       0   1...8   9..11   12   13   14   15   16..31

        Figure 3-3. CP/M Directory FCB format

Table 3-5 describes the Directory FCB structure.

Table 3-5. Directory FCB structure

Format: Byte Offset -- Field Name
        Description

0 -- UC
User code (0-15).

1..8 -- F1-F8
Contain the filename in ASCII uppercase, with high bit = 0. F1'-F8' denote the 
high-order  bit  of  these  positions, and are the  file  and  interface  bits 
described in Section 3.

9..11 -- T1-T3
Contain  the  filetype in ASCII uppercase, with high bit = 0.  T1',  T2',  T3' 
denote  the  high  bit of these positions, and are  the  file  attribute  bits 
described in Section 3.
T1' = 1 --> Read-Only (RO) file
T2' = 1 --> System (SYS) file
T3' = 1 --> Archived file

12 -- EX
Extent number for the file (0-31).

13 -- CS
File byte count for last record.

14 -- RS
Reserved for system use.

15 -- RC
Record  count for extent EX. This field takes on value from 0 to  255  (values 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG3.TXT[2/6/2012 4:04:05 PM]

greater than 128 imply a record count of 128).

16-31 -- D0-D11
Allocation blocks assigned to this extent.

Password directory entry (XFCB)
------------------------

The  CP/M-86 Plus file system uses extended directory entries  called  "XFCBs" 
for file passwords. Figure 3-4 shows the XFCB format.

    +----+-------+-------+----+----+----+----+----------+----------+
    | DR | Fname | Ftype | PM | S1 | S2 | RC | Password | Reserved |
    +----+-------+-------+----+----+----+----+----------+----------+
       0   1...8   9..11   12   13   14   15    16..23     24..31

        Figure 3-4. CP/M XFCB format

Table 3-6 describes the structure of this extended directory entry.

Table 3-6. Password directory entry (XFCB) structure

Format: Byte Offset -- Field Name
        Description

0 -- DR
XFCB indicator (used by the system only).

1..8 -- Fname
Filename.

9..11 -- Ftype
Filetype.

12 -- PM
Password Mode.
Bit 7: Read mode
Bit 6: Write mode
Bit 5: Delete mode

13-14-15 -- S1,S2,RC
Reserved for system use.

16-23 -- Password
8-byte password field (encrypted).

24-31 -- Reserved
8-byte area reserved for future use.

An XFCB can only be created on a drive that has a directory label, and only if 
the  directory  label enables password protection. For drives in  this  state, 
there  are two ways to create an XFCB for file: with the F_MAKE (Function  22) 
system  call, or with the F_WRITEXFCB (Function 103) system call.  The  F_MAKE 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG3.TXT[2/6/2012 4:04:05 PM]

(Function 22) system call creates an XFCB if the calling program requests that 
a  password  be assigned to the created file. The F_WRITEXFCB  (Function  103) 
system  call  creates  an XFCB when it is called to assign a  password  to  an 
existing file.

Date and time stamps (SFCBs)
--------------------

The CP/M-86 Plus file system uses a special type of directory entry called  an 
SFCB  to  record  date and time stamps for files. When a  directory  has  been 
initialized for date and time stamping, SFCBs reside in every fourth directory 
entry  in the directory. Each SFCB maintains the date and time stamps for  the 
previous three directory entries, as is shown in Figure 3-5.

        +-------------------------------------+
        |          Directory Entry 1          |
        +-------------------------------------+
        |          Directory Entry 2          |
        +-------------------------------------+
        |          Directory Entry 3          |
        +------+--------+--------+--------+---+
        | SFCB | Stamps | Stamps | Stamps | X |
        | flag | entry1 | entry2 | entry3 | X |
        +------+--------+--------+--------+---+

        Figure 3-5. Directory record with SFCB

This  figure shows a 128-byte directory record containing an  SFCB.  Directory 
records  have four directory entries, each 32 bytes long; SFCBs always  occupy 
the last 32-byte position in the directory record.

The  SFCB  itself  contains  five fields. The first field  is  a  single  byte 
containing  the  value  33 (21h); this field identifies the  SFCB  within  the 
directory. The next three fields, called the SFCB subfields, are each 10 bytes 
in  length, and contain the date and time stamps for their  corresponding  FCB 
entries  in  the directory record. The last byte of the SFCB is  reserved  for 
system use. Figure 3-6 shows the detail of the SFCB subfields.

        +---------------+---------------+----------+----------+
        | Create/Access | Update        | Password | Reserved |
        | Time and Date | Time and Date | Mode     |          |
        +---------------+---------------+----------+----------+
    Byte: 0               4               8          9 and 10

        Figure 3-6. SFCB subfields

An SFCB subfield only contains valid information if its corresponding entry in 
the directory record is the file's first directory FCB. For password-protected 
files,  the  SFCB subfield also contains the Password Mode of the  file;  this 
subfield  is  zero  for files without password protection.  The  F_SFIRST  and 
F_SNEXT  (Functions 17 and 18) system calls directly access SFCBs.  Also,  the 
F_TIMEDATE  (Function 102) system call returns the file date and time  stamps, 
and the Password Mode of the file.



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG3.TXT[2/6/2012 4:04:05 PM]

Drive status
------------

After initial system load, all drives are initialized to the reset state. This 
means  that their directories have not been read into the system, or that  the 
drives are not logged in. As a drive is referenced, the drive is automatically 
logged  in; that is to say, its directory is brought into the system for  file 
operations.  The  drive's  Allocation Vector is  initialized.  The  Allocation 
Vector records the allocation and de-allocation of data blocks to files.  This 
vector  is  updated  as files are created, extended,  deleted,  or  truncated. 
Another system function performed during drive log-in is the initialization of 
the  directory checksum vector. The system uses the directory checksum  vector 
to detect media changes on a drive. The drive remains in logged-in state until 
reset  by  using  the DRV_RESET (Function 37) or  DRV_ALLRESET  (Function  13) 
system call.

The primary use of the drive reset functions is to prepare for a media  change 
on  a  drive. Resetting a drive has two important effects. First of  all,  any 
pending  blocking/deblocking  buffers  on  the  reset  drive  are   discarded. 
Secondly, any data blocks that have been allocated to files that have not been 
closed  are  lost.  Be sure to close your files prior to  resetting  a  drive. 
Although  the system automatically logs in removable media when media  changes 
are  detected, you should still explicitly reset a drive before prompting  the 
user to change disks.

File System Error Mode
----------------------

The  file system handles the majority of errors it detects by  setting  return 
codes  in  registers  AL and AH, and returning to  the  calling  program.  Two 
examples  of this kind of error are the "file not found" error for the  F_OPEN 
(Function  15)  system  call, or the "reading unwritten data"  error  for  the 
F_READRAND  (Function 33) system call. More serious errors, such as  disk  I/O 
errors,  are separated in a different category called "physical  and  extended 
errors".  The way the system responds upon encountering these types of  errors 
depends on the File System Error Mode.

The File System Error Mode determines how the file system responds to physical 
or extended error conditions, and can be one of the following:

     - "Return" error mode
        The  system  returns  to  the calling program  with  return  codes  in 
        registers AL and AH.

     - "Display and Terminate" error mode (Default Mode)
        The  system  displays the error message, and  terminates  the  calling 
        program.

     - "Display and Return" error mode
        The  system  displays the error message, and returns  to  the  calling 
        program.



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG3.TXT[2/6/2012 4:04:05 PM]

In  the default state, the system displays the error message,  and  terminates 
the calling program. In "Return" error mode, the system returns control to the 
calling  process with the error codes in registers AL and AH. In "Display  and 
Return" error mode, the system displays the error message, and sets the  error 
codes in registers AL and AH before returning to the calling program.

Physical  and  extended errors are displayed on the console in  the  following 
format:

        CP/M Error on d: error message
        BDOS Function = nn  File = filename.typ

The  "d" identifies the drive selected when the error condition  is  detected; 
"error  message" identifies the error; "nn" is the system function  code,  and 
"filename.typ" identifies the file (if any) affected by the error.

The File System Error Mode can be changed by using the F_ERRMODE (Function 45) 
system call.

EOF



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG4.TXT[2/6/2012 4:04:06 PM]

CPMPP4.WS4        (= "CP/M Plus Programmer's Guide", section 4)
----------

(Edited by Emmanuel ROCHE.)

Section 4: System environment
-----------------------------

The operating system environment is determined by the status of the drives  in 
the  system, the current memory allocation state, and by certain system  flags 
and  data.  This information is necessary for the program to  define  its  own 
execution environment.

When  the  system is first powered up, the operating system  is  brought  into 
memory with certain default parameters. For instance, the current user  number 
is set to zero, and the default drive to the initial default drive defined  at 
system generation. Console or terminal characteristics, such as console  width 
and  page length are defined. The Console Page Mode and the Console  Mode  are 
set  to  default  values. Certain buffer addresses are  defaulted  to  certain 
values. The date and time can also be initialized. The File System Error  Mode 
is  set  to its default value. The Drive Search Chain is set  to  the  default 
drive. All these system parameters can be changed by system utilities (see the 
"CP/M-86 Plus User's Guide"), or by system calls.

System date and time
--------------------

The system date and time is initialized to midnight on 1 January 1980,  unless 
the  BDOS  sets the date and time from a real-time clock. The  DATE  and  TIME 
commands  (see  the  "CP/M-86  Plus User's Guide") or  the  T_SET,  T_GET,  or 
S_SYSVAR  (Functions 104, 105, or 49) system calls can be used to set  or  get 
the date and time.

Console characteristics
-----------------------

The system is also defined with default console characteristics. Some of these 
characteristics can be displayed and modified by using the DEVICE command (see 
the  "CP/M-86  Plus User's Guide"). Others are accessed by system  calls.  The 
following console characteristics can be modified by DEVICE:

        - Console width
        - Console page length

The  "console  width"  and the "console page length" define the  size  of  the 
screen. The "console width" is the maximum number of columns, and the "console 
page length" is the maximum number of lines to be displayed on the screen. The 
DEVICE  command (see the "CP/M-86 Plus User's Guide") can be used to  redefine 
the console size.



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG4.TXT[2/6/2012 4:04:06 PM]

        - Console Page mode

The "console page mode" tells the system whether CP/M-86 Plus utilities are to 
display  information  on the screen a page (as defined by  the  "console  page 
length")  at  a  time,  or whether  to  display  information  continuously  by 
scrolling  (to  be  interrupted by Ctrl-S, and continued by  Ctrl-Q).  If  the 
"console page mode" is ON, then the system displays information on the  screen 
a page at a time. The "console page mode" can be turned OFF or ON by using the 
SETDEF command (see the "CP/M-86 Plus User's Guide"), or by using the S_SYSVAR 
(Function 49) system call.

The  Console  Mode and Output Delimiter are set by the  C_MODE  and  C_DELIMIT 
(Functions 109 and 110) system calls, as discussed in Section 2.

File system variables
---------------------

Some  of  the  file-access system calls are affected by  certain  file  system 
variables. These are described in previous sections of this guide, and include 
the following:

      - Current DMA Buffer address (F_DMAGET, F_DMAOFF, F_DMASEG)
      - Current Disk               (DRV_SET,  DRV_GET)
      - Current User Number        (F_USERNUM)
      - Default Password           (F_PASSWD)
      - Multisector Count          (F_MULTISEC)
      - File System Error Mode     (F_ERRMODE)

All of the above system variables have corresponding system calls that can  be 
used to set or interrogate the system variables.

The S_SYSVAR system call
------------------------

The S_SYSVAR (Function 49) system call allows access to system variables  that 
do not have specific system calls associated with them. The S_SYSVAR (Function 
49)  system  call  (see Section 6, "System calls") describes  the  details  of 
accessing or updating these system variables. They include the following:

        - Console Width
        - Console Page Length
        - Console Page Mode
        - System ticks per second
        - Temporary Drive
        - Date and Time

The  console-related variables have already been discussed above. The  "system 
ticks per second" can be used by an application program which requires a real-
time  system environment. The "date and time" variables are included to  allow 
the program to also set the seconds field of the time.

The  "temporary  drive" is the drive used by the system each time  it  creates 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG4.TXT[2/6/2012 4:04:06 PM]

temporary  files  (with filetype $$$). Of course, the faster  the  drive,  the 
better  the  performance of the system so, if the computer has a  RAMdisk,  it 
should  be used for that purpose. (If the RAMdisk is big, you can also use  it 
as your work disk, instead of the floppies or hard disks (which could  "sleep" 
after  one minute of inactivity), but don't forget to save the result of  your 
work before turning OFF the computer!)

EOF



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG5.TXT[2/6/2012 4:04:06 PM]

CPMPP5.WS4        (= "CP/M-86 Plus Programmer's Guide", section 5)
----------

(Edited by Emmanuel ROCHE.)

Section 5: Program execution
----------------------------

A CP/M transient program is a file of type CMD (denoting a ComManD file)  that 
is loaded from disk, and normally resides in memory only during its operation. 
You  can  initiate  a transient program by entering the program  name  at  the 
system console.

The steps required to generate and execute a transient program under the CP/M-
86 Plus operating system are the following:

     1. Code the program using one of the Memory Models described below.

     2. Assemble or compile the source code.

     3. Generate a command file (type CMD) using the Digital Research's  LINK-
        86  utility  described in the "Programmer's Utilities  Guide  for  the 
        CP/M-86 Family of Operating Systems".

     4. Load  and execute the program via the CCP, by typing the program  name 
        at the system console.

Table 5-1 defines certain 8086 terms.

Table 5-1. 8086 terms

Term            Meaning
----            -------
Nibble          4-bit value
Byte            8-bit value
Word            16-bit value
Double Word     2 contiguous words
Paragraph       16 contiguous bytes
Paragraph Boundary/Address or Segment Address:
                An address divisible evenly by 16 (low order nibble 0)
Segment         Up to 64K contiguous bytes addressable in a paragraph boundary
Segment Register One of the CS, DS, ES, or SS segment
Offset          16-bit displacement relative to a segment register
Group           A segment-register-relative relocatable program unit
Address         The   effective  20-bit  memory  address  derived   from   the 
                composition of a segment register value with an offset  value. 
                This 20-bit value is equal to the segment value times 10h plus 
                the offset value.

Memory Models
-------------



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG5.TXT[2/6/2012 4:04:06 PM]

CP/M-86 Plus supports four types of Memory Models: the 8080 memory model,  the 
Small memory model, the Compact memory model, and the Large memory model. When 
the system loads a program, it initializes the segment registers (CS, DS,  ES, 
and  SS),  the  instruction pointer (IP), and the stack  pointer  (SP).  These 
values  are  determined by the specific type of memory used by  the  transient 
program.  The  system also initializes certain fields in the  Base  Page  area 
(described  in  detail later in this section). Table 5-2 summarizes  the  four 
Memory Models.

Table 5-2. CP/M-86 Plus Memory Models

Model   Group relationships
-----   -------------------
8080    Code and Data groups overlap
Small   Independent Code and Data groups
Compact Independent Code, multiple Data groups
Large   Multiple Code and Data groups

The  8080 Memory Model supports programs that are directly translated from  an 
8080  environment, where code and data are intermixed. The 8080  Memory  Model 
consists  of  one  group that contain all the code,  data,  and  stack  areas. 
Segment  registers  are  initialized to the starting  address  of  the  region 
containing  this group. The segment registers can, however, be managed by  the 
application  program during execution, so that multiple segments in  the  code 
group (which is larger than 64K byte) can be addressed.

The Small Memory Model is similar to that defined by Intel, where the  program 
consists  of  an independent code group and a data group. The  code  and  data 
groups often consist of, but are not restricted to, single 64K byte segments.

The  Compact Memory Model is used when any of the extra, stack,  or  auxiliary 
groups are present in program. Each group can consist of one or more segments, 
but  if  any  group exceeds one segment in size, or if  auxiliary  groups  are 
present,  then the application program must manage its own  segment  registers 
during execution, in order to address all code and data areas.

The  Large  Memory Model supports programs with multiple segments  per  group. 
Code, data, stack, and extra groups may be up to 1 Megabyte in size.

These  four  Memory  Models  differ primarily  in  how  the  operating  system 
initializes  the  segment  registers when it loads a  transient  program.  The 
system  determines the memory model used by a transient program  by  examining 
the Header Record of the CMD file.

For  all  models, the operating system initializes an internal  96-byte  stack 
area.  The  first  two words of this stack are reserved for  the  double  word 
return  for termination by a RETF (Far Return) instruction. Figure  5-1  shows 
the initial program stack for all models.

        +-------------+
        | Ret Segment |
        +-------------+
        | Ret Offset  | <-- Far Return address SS:SP



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG5.TXT[2/6/2012 4:04:06 PM]

        +-------------+
        |  92 bytes   |
        +-------------+

        Figure 5-1. Initial program stack

The  transient  program can terminate by using the P_TERMCPM (Function  0)  or 
P_TERM  (Function  143)  system  call, or by executing  a  RETF  (Far  Return) 
instruction when the SS and SP still point to the initial program stack.

8080 Memory Model
-----------------

The  8080  Memory Model is assumed when the transient  program  Header  Record 
contains  only a code group. In this case, the system initializes the CS,  DS, 
and  ES registers to the beginning of the code group, and sets the SS  and  SP 
registers  to the 96-byte initial stack area. The system sets the  Instruction 
Pointer (IP) register to 0100h. This allows the Base Page to the beginning  of 
the code group.

Following  program load, the 8080 Memory Model appears as in Figure  5-2.  The 
intermixed code and data areas are indistinguishable.

        +-------------+
        | Code / Data |
        :     ...     :
        | Code / Data |
        +-------------+ 0100h <-- CS:IP
        |  Base Page  |
        +-------------+ 0000h <-- CS:0, DS:0, ES:0

        Figure 5-2. 8080 Memory Model

Small Memory Model
------------------

The Small Memory Model is used when the transient program contains both a code 
and data group. (In RASM-86, all code is generated following a CSEG directive. 
Data  is  defined  following a DSEG directive, with the  origin  of  the  Data 
Segment  independent  of the Code Segment.) In this memory model,  the  system 
sets the CS register to the beginning of the code group, the IP to 0000h,  the 
DS  and  ES registers to the beginning of the data group, and the  SS  and  SP 
registers to the 96-byte initial stack area. Following program load, the Small 
Memory Model appears as shown in Figure 5-3.

                                        +------+
                                        | Data |
        +------+                        :  ... :
        | Code |                        | Data |
        :  ... :                        +------+ 0100h
        :  ... :                        | Base |
        | Code |                        | Page |



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG5.TXT[2/6/2012 4:04:06 PM]

        +------+ 0000h <-- CS:IP        +------+ 0000h <-- DS:0, ES:0

        Figure 5-3. Small Memory Model

The  machine  code begins at CS + 0000h, the Base Page values begin  at  DS  + 
0000h, and the data area begins at DS + 0100h.

Compact Memory Model
--------------------

The Compact Memory Model is used when code and data groups are present,  along 
with  one or more of the remaining stack, extra, or auxiliary groups. In  this 
case,  the system sets the CS, DS, and ES registers to the base  addresses  of 
their respective areas, with the IP set to 0000h, and the SS and SP  registers 
set to the 96-byte initial stack area.

Figure  5-4  shows the initial configuration of the segments  in  the  Compact 
Memory  Model.  The  values of the various segment registers  can  be  changed 
during  execution by loading from the initial values placed by the  system  in 
the Base Page. This allows access to the entire memory space.

                        +------+
                        | Data |
        +------+        :  ... :
        | Code |        | Data |        +-------+
        :  ... :        +------+ 0100h  | Extra |
        :  ... :        | Base |        :  ...  :
        | Code | CS:IP  | Page | DS:    | Extra | ES:
        +------+ 0000h  +------+ 0000h  +-------+ 0000h

        Figure 5-4. Compact Memory Model

If the assembly language transient program intends to use the stack group as a 
stack  area,  the SS and SP registers must be set upon entry. The  SS  and  SP 
registers remain in the initial stack area, even if a stack group is defined.

Although it appears that the SS and SP registers should be set to address  the 
stack  group,  there  are two contradictions.  First,  the  assembly  language 
transient program might be using the stack group as a data area. In that case, 
the  stack  values  set by the system to allow a Far  Return  to  terminate  a 
transient program could overwrite data in the stack area.

Second, the SS register would logically be set to the base of the group, while 
the  SP  would be set to the offset of the end of the group. However,  if  the 
stack  group  exceeds 64K, the address range from the base to the end  of  the 
group exceeds a 16-bit offset value.

Large Memory Model
------------------

CP/M-86 Plus supports programs with multiple segments per group, with up to  1 
Megabyte per group (code, data, stack, extra).



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG5.TXT[2/6/2012 4:04:06 PM]

When   loading  Large  Memory  Model  programs,  the  operating  system   will 
automatically fixup all intersegment references, and adjust them according  to 
the group base address. If the top bit of the byte (called the "Program Flag") 
at offset 007Fh in the 128-byte CMD file Header Record is set to 1, relocation 
information is present. In that case, the word at offset 007Dh of the CMD file 
Header  Record  holds  the number of the first 128-byte  record  in  the  file 
holding  relocation data. There is one relocation entry per segment  reference 
(e.g.,  "CALLF",  "SEG <segname>" in assembler). These  relocation  items  are 
automatically  included  into  the  CMD  file  by  LINK-86  when  intersegment 
references are detected in object files.

Each entry consists of four bytes. The top four bits of the first byte specify 
the  source group number, the bottom four bits specify the  destination  group 
number.  An  entry of 00h signals the end of the relocation  list.  The  group 
numbers  are identical to the numbers in the 9-byte Group Descriptors  at  the 
beginning  of the CMD file Header Record. An entry of 12h would be  generated, 
for  example,  if  a  "MOV AX, SEG variable" is found in  the  source  of  the 
program, and "variable" is in a Data Segment in the DGROUP of the program.

The  second and third byte are a word in LSB-first format, which needs  to  be 
added to the segment address of the source segment. The fourth byte  specifies 
the offset within this paragraph that needs to be relocated. If the code group 
is  based at segment 1000h in our example and the 2nd, 3rd, and 4th bytes  are 
27h, 09h, and 0Dh, then the word at offset 1927h:000Dh will be relocated.

The  relocation occurs by adding the segment address of the destination  group 
to  the  word  specified by the relocation item. If the data  segment  in  our 
example was located at 3000h, then the value 3000h would be added to the  word 
1927h:0000Dh.

This relocation scheme is slightly more flexible than the MS-DOS scheme  which 
assumes  that all groups are contiguous in memory, therefore  only  permitting 
the last group to be of variable size.

HEADER.WS4  by Emmanuel ROCHE
----------

Everything you wanted to know about the Header Record, but were too afraid  to 
ask...

The more I work with CP/M-86 Plus ComManD files, the more often I need to know 
what is inside their Header Records.

For the record, a CMD file generally has 2 or 3 parts, which can be  described 
thus:

        +---------------+
        | Header Record |
        +---------------+
        | Segments Used |
        +---------------+
        | Footer Record |  (If RSX(s) present(s))



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG5.TXT[2/6/2012 4:04:06 PM]

        +---------------+

The Header Record contains a description of the Segments used by the  program, 
that  the  loader of the CP/M-86 Plus Operating System will  use  to  allocate 
memory  and load the program in the TPA. As its name implies, it is 128  bytes 
long,  or one record. It contains Group Descriptors at the beginning. A  first 
byte  of zero in a Group Descriptor indicates that no more  Group  Descriptors 
follows. The rest of the record is filled with null bytes (00h), except the  5 
last bytes, which will be explained later.

The Segments Used part of the CMD file are those segments, up to 8.

The  Footer Record is a record containing the names or the addresses/names  of 
the  RSXs  linked/attached (up to 8) to this CMD file. This  record  does  not 
exist if the CMD file has no RSX.

Enough theory, let us see some Header Records.

A>mbasic header
BASIC-86 Rev. 5.22
[CP/M-86 Plus]
Copyright 1977-1982 (C) by Microsoft
Created:  5-Mar-82
62390 Bytes free

HEADER> Enter CMD File Name: ? CMD1

         G-Form  G-Length  A-Base   G-Min    G-Max
        +-------+--------+--------+--------+--------+
(Code)  |  01h  |  0018  |  0000  |  0018  |  0000  |
        +-------+--------+--------+--------+--------+

Offset of Footer Record: 0000
Offset of Fixups Record: 0000
Program Flag: 00

(8080 Memory Model)

Ok
run

HEADER> Enter CMD File Name: ? CMD2

         G-Form  G-Length  A-Base   G-Min    G-Max
        +-------+--------+--------+--------+--------+
(Code)  |  01h  |  0008  |  0000  |  0008  |  0000  |
        +-------+--------+--------+--------+--------+
(Data)  |  02h  |  0018  |  0000  |  0018  |  0000  |
        +-------+--------+--------+--------+--------+

Offset of Footer Record: 0000
Offset of Fixups Record: 0000
Program Flag: 00



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG5.TXT[2/6/2012 4:04:06 PM]

(Small Memory Model)

Ok
run

HEADER> Enter CMD File Name: ? CMD3

         G-Form  G-Length  A-Base   G-Min    G-Max
        +-------+--------+--------+--------+--------+
(Code)  |  01h  |  0008  |  0000  |  0008  |  0000  |
        +-------+--------+--------+--------+--------+
(Data)  |  02h  |  0018  |  0000  |  0018  |  0000  |
        +-------+--------+--------+--------+--------+
(Extra) |  03h  |  0008  |  0000  |  0008  |  0000  |
        +-------+--------+--------+--------+--------+

Offset of Footer Record: 0000
Offset of Fixups Record: 0000
Program Flag: 00

(Compact Memory Model)

Ok
run

HEADER> Enter CMD File Name: ? CMD4

         G-Form  G-Length  A-Base   G-Min    G-Max
        +-------+--------+--------+--------+--------+
(Code)  |  01h  |  0008  |  0000  |  0008  |  0000  |
        +-------+--------+--------+--------+--------+
(Data)  |  02h  |  0018  |  0000  |  0018  |  0000  |
        +-------+--------+--------+--------+--------+
(Extra) |  03h  |  0008  |  0000  |  0008  |  0000  |
        +-------+--------+--------+--------+--------+
(Stack) |  04h  |  0008  |  0000  |  0008  |  0000  |
        +-------+--------+--------+--------+--------+

Offset of Footer Record: 0000
Offset of Fixups Record: 0000
Program Flag: 00

(Compact Memory Model)

Ok
run

HEADER> Enter CMD File Name: ? CMDX1

         G-Form  G-Length  A-Base   G-Min    G-Max
        +-------+--------+--------+--------+--------+
(Code)  |  01h  |  0008  |  0000  |  0008  |  0000  |
        +-------+--------+--------+--------+--------+
(Data)  |  02h  |  0018  |  0000  |  0018  |  0000  |



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG5.TXT[2/6/2012 4:04:06 PM]

        +-------+--------+--------+--------+--------+
(Extra) |  03h  |  0008  |  0000  |  0008  |  0000  |
        +-------+--------+--------+--------+--------+
(Stack) |  04h  |  0008  |  0000  |  0008  |  0000  |
        +-------+--------+--------+--------+--------+
(Aux.1) |  05h  |  0008  |  0000  |  0008  |  0000  |
        +-------+--------+--------+--------+--------+

Offset of Footer Record: 0000
Offset of Fixups Record: 0000
Program Flag: 00

(Compact Memory Model)

Ok
run

HEADER> Enter CMD File Name: ? CMDX2

         G-Form  G-Length  A-Base   G-Min    G-Max
        +-------+--------+--------+--------+--------+
(Code)  |  01h  |  0008  |  0000  |  0008  |  0000  |
        +-------+--------+--------+--------+--------+
(Data)  |  02h  |  0018  |  0000  |  0018  |  0000  |
        +-------+--------+--------+--------+--------+
(Extra) |  03h  |  0008  |  0000  |  0008  |  0000  |
        +-------+--------+--------+--------+--------+
(Stack) |  04h  |  0008  |  0000  |  0008  |  0000  |
        +-------+--------+--------+--------+--------+
(Aux.1) |  05h  |  0008  |  0000  |  0008  |  0000  |
        +-------+--------+--------+--------+--------+
(Aux.2) |  06h  |  0008  |  0000  |  0008  |  0000  |
        +-------+--------+--------+--------+--------+

Offset of Footer Record: 0000
Offset of Fixups Record: 0000
Program Flag: 00

(Compact Memory Model)

Ok
run

HEADER> Enter CMD File Name: ? CMDX3

         G-Form  G-Length  A-Base   G-Min    G-Max
        +-------+--------+--------+--------+--------+
(Code)  |  01h  |  0008  |  0000  |  0008  |  0000  |
        +-------+--------+--------+--------+--------+
(Data)  |  02h  |  0018  |  0000  |  0018  |  0000  |
        +-------+--------+--------+--------+--------+
(Extra) |  03h  |  0008  |  0000  |  0008  |  0000  |
        +-------+--------+--------+--------+--------+
(Stack) |  04h  |  0008  |  0000  |  0008  |  0000  |



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG5.TXT[2/6/2012 4:04:06 PM]

        +-------+--------+--------+--------+--------+
(Aux.1) |  05h  |  0008  |  0000  |  0008  |  0000  |
        +-------+--------+--------+--------+--------+
(Aux.2) |  06h  |  0008  |  0000  |  0008  |  0000  |
        +-------+--------+--------+--------+--------+
(Aux.3) |  07h  |  0008  |  0000  |  0008  |  0000  |
        +-------+--------+--------+--------+--------+

Offset of Footer Record: 0000
Offset of Fixups Record: 0000
Program Flag: 00

(Compact Memory Model)

Ok
run

HEADER> Enter CMD File Name: ? CMDX4

         G-Form  G-Length  A-Base   G-Min    G-Max
        +-------+--------+--------+--------+--------+
(Code)  |  01h  |  0008  |  0000  |  0008  |  0000  |
        +-------+--------+--------+--------+--------+
(Data)  |  02h  |  0018  |  0000  |  0018  |  0000  |
        +-------+--------+--------+--------+--------+
(Extra) |  03h  |  0008  |  0000  |  0008  |  0000  |
        +-------+--------+--------+--------+--------+
(Stack) |  04h  |  0008  |  0000  |  0008  |  0000  |
        +-------+--------+--------+--------+--------+
(Aux.1) |  05h  |  0008  |  0000  |  0008  |  0000  |
        +-------+--------+--------+--------+--------+
(Aux.2) |  06h  |  0008  |  0000  |  0008  |  0000  |
        +-------+--------+--------+--------+--------+
(Aux.3) |  07h  |  0008  |  0000  |  0008  |  0000  |
        +-------+--------+--------+--------+--------+
(Aux.4) |  08h  |  0008  |  0000  |  0008  |  0000  |
        +-------+--------+--------+--------+--------+

Offset of Footer Record: 0000
Offset of Fixups Record: 0000
Program Flag: 00

(Compact Memory Model)

Ok
run

HEADER> Enter CMD File Name: ? CALLVERS

         G-Form  G-Length  A-Base   G-Min    G-Max
        +-------+--------+--------+--------+--------+
(Code)  |  01h  |  0002  |  0000  |  0002  |  0000  |
        +-------+--------+--------+--------+--------+
(Data)  |  02h  |  0012  |  0000  |  0012  |  0000  |



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG5.TXT[2/6/2012 4:04:06 PM]

        +-------+--------+--------+--------+--------+

Offset of Footer Record: 0004
Offset of Fixups Record: 0000
Program Flag: 00

(Small Memory Model)

Ok
run

HEADER> Enter CMD File Name: ? ECHOVERS

         G-Form  G-Length  A-Base   G-Min    G-Max
        +-------+--------+--------+--------+--------+
(Code)  |  01h  |  0006  |  0000  |  0006  |  0000  |
        +-------+--------+--------+--------+--------+
(Data)  |  02h  |  0012  |  0000  |  0012  |  0000  |
        +-------+--------+--------+--------+--------+

Offset of Footer Record: 0400
Offset of Fixups Record: 0000
Program Flag: 10

(Small Memory Model)

Ok
run

HEADER> Enter CMD File Name: ? TESTGIOS

         G-Form  G-Length  A-Base   G-Min    G-Max
        +-------+--------+--------+--------+--------+
(Code)  |  01h  |  0298  |  0000  |  0298  |  0000  |
        +-------+--------+--------+--------+--------+
(Data)  |  02h  |  0058  |  0000  |  0058  |  0000  |
        +-------+--------+--------+--------+--------+
(Extra) |  03h  |  0006  |  0000  |  0006  |  0000  |
        +-------+--------+--------+--------+--------+
(Stack) |  04h  |  0094  |  0000  |  0094  |  0000  |
        +-------+--------+--------+--------+--------+

Offset of Footer Record: 0000
Offset of Fixups Record: 0073
Program Flag: 80

(Large Memory Model)

Ok

From the above, some things become clear: when there is only one Code Segment, 
it is a "8080 Memory model CMD file".

When  there are 2 segments (but only if they are Code and Data), then it is  a 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG5.TXT[2/6/2012 4:04:06 PM]

"Small Memory model CMD file".

When there are more than 2 segments, it is a "Compact Memory model CMD file".

Historically, those were the 3 kinds of Memory Models described in the CP/M-86 
Version 1.x technical documentation by Digital Research.

Under CP/M-86 Plus, RSXes exist. ECHOVERS is an example of such an RSX. As you 
can see, its Program Flag contains 10h. CALLVERS, the CMD file calling it, has 
its "Offset of Footer Record" field containing the value 0400h.

But, what is this "Large Memory model CMD file", TESTGIOS, we have seen last?

With Concurrent CP/M Version 1.0, Digital Research introduced in the Summer of 
1983  a  new kind of CMD file, where each segment can be up to 1  Megabyte  in 
length... (Previously, they could only be 64k long, at the maximum.)

But, to be compatible with all the CMD files produced until then, they had  to 
choose  a  way to let the CMD file loader of the operating system  knows  that 
this CMD file was of the new kind.

Since they could not modify the format of the Group Descriptors, they chose to 
use a byte inside the Header Record.

Over the years, this byte came to be used as flags for 4 things:

     Bit: 7 6 5 4 3 2 1 0
        +-----------------+
        | 1 1 1 1 1 1 1 1 |
        +-----------------+
          | | | | | | | |
          | | | | | | | +--> Bit 0: Not used
          | | | | | | +----> Bit 1: Not Used
          | | | | | +------> Bit 2: Not used
          | | | | +--------> Bit 3: Not used
          | | | +----------> Bit 4: RSX Footer Record Flag
          | | +------------> Bit 5: 8087 Present Flag
          | +--------------> Bit 6: 8087 Support Flag
          +----------------> Bit 7: Large Memory Model Flag

        Program Flag format

The  last 2 CMD files that we examined (ECHOVERS and TESTGIOS)  displayed  10h 
and  80h; that is to say: Bits 4 and 7 set. But what is the purpose of Bits  5 
and 6?

Searching  for  clues in later Digital Research guides, I  finally  found  the 
following paragraph in the "Concurrent CP/M 3.1 Programmer's Guide":

3.1.2 8087 support
------------------

Concurrent  CP/M provides optional 8087 support for systems that use the  8087 
processor.  This support is indicated by the Program Flag, byte 127 (7Fh),  of 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG5.TXT[2/6/2012 4:04:06 PM]

the CMD file Header Record. Setting bit 6 (bit 0 is least significant bit)  of 
the  Program  Flag indicates optional 8087 support, which means that,  if  the 
8087 is present, the program uses it; otherwise, the program will emulate  it. 
If  bit  5  of the Program Flag is set, it indicates that  the  8087  must  be 
present  in order for the program to run. If no 8087 is present and bit  5  of 
the Program Flag is set, the system returns an error when it tries to load the 
program. The CHSET utility can be used to set the program's Header Record  for 
optional or required 8087 support.
------------------

So, you now know what would mean a Program Flag with a value of 20h or 40h.

Now  that we have explained everything known about the Header Record, here  is 
the BASIC program used to learn all this:

list
10 REM HEADER.BAS  by Emmanuel ROCHE
20 :
30 PRINT
40 INPUT "HEADER> Enter CMD File Name: " ; file$
50 PRINT
60 file$ = file$ + ".CMD"
70 :
80 group$ (1) = "(Code) "
90 group$ (2) = "(Data) "
100 group$ (3) = "(Extra)"
110 group$ (4) = "(Stack)"
120 group$ (5) = "(Aux.1)"
130 group$ (6) = "(Aux.2)"
140 group$ (7) = "(Aux.3)"
150 group$ (8) = "(Aux.4)"
160 :
170 ruler$ =  "+-------+--------+--------+--------+--------+"
180 :
190 PRINT TAB(9) " G-Form  G-Length  A-Base   G-Min    G-Max"
200 PRINT TAB(9) ruler$
210 :
220 OPEN "R", #1, file$
230 FIELD #1, 9 AS GD$ (1), 9 AS GD$ (2), 9 AS GD$ (3), 9 AS GD$ (4),
    9 AS GD$ (5), 9 AS GD$ (6), 9 AS GD$ (7), 9 AS GD$ (8),
    51 AS zeroe$, 2 AS fo$, 2 AS fi$, 1 AS fl$
240 GET #1
250 :
260 i = i + 1
270 gform$ = LEFT$ (GD$ (i), 1)
280 gform = ASC (gform$)
290 IF gform = 0 THEN GOTO 440
300 NrGD = NrGD + 1
310 PRINT group$ (gform) TAB(9) "|  " ;
320 PRINT RIGHT$ ("0" + HEX$ (gform), 2) "h  |  " ;
330 glength$ = MID$ (GD$ (i), 2, 2)
340 PRINT RIGHT$ ("000" + HEX$ (CVI (glength$) ), 4) "  |  " ;
350 abase$ = MID$ (GD$ (i), 4, 2)
360 PRINT RIGHT$ ("000" + HEX$ (CVI (abase$) ), 4) "  |  " ;



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG5.TXT[2/6/2012 4:04:06 PM]

370 gmin$ = MID$ (GD$ (i), 6, 2)
380 PRINT RIGHT$ ("000" + HEX$ (CVI (gmin$) ), 4) "  |  " ;
390 gmax$ = MID$ (GD$ (i), 8, 2)
400 PRINT RIGHT$ ("000" + HEX$ (CVI (gmax$) ), 4) "  |"
410 PRINT TAB(9) ruler$
420 GOTO 260
430 :
440 PRINT
450 PRINT "Offset of Footer Record: " ;
460 PRINT RIGHT$ ("000" + HEX$ (CVI (fo$) ), 4)
470 PRINT "Offset of Fixups Record: " ;
480 PRINT RIGHT$ ("000" + HEX$ (CVI (fi$) ), 4)
490 PRINT "Program Flag: " ;
500 fl = ASC (fl$)
510 PRINT RIGHT$ ("0" + HEX$ (fl), 2)
520 :
530 PRINT
540 PRINT "(" ;
550 IF fl > &H7F THEN PRINT "Large" ; : GOTO 590
560 IF NrGD = 1 THEN PRINT "8080" ; : GOTO 590
570 IF NrGD = 2 THEN PRINT "Small" ; : GOTO 590
580 IF NrGD > 2 THEN PRINT "Compact" ;
590 PRINT " Memory Model)"
600 :
610 PRINT
620 CLOSE
630 END

Initial program environment
---------------------------

When the operating system loads a program, there are certain system  variables 
that are set to default or initial values before control is transferred to the 
program. The system also initializes certain information in a region  referred 
to  as the Base Page, which can be used by the program while  executing.  This 
section  discusses the default or initial values of the system  variables  and 
Base Page variables at program load.

System default values
---------------------

The following system variables have been discussed in the previous paragraphs, 
and  are listed in Table 5-3 to indicate their default values at program  load 
time.

Table 5-3. System variables and default values

Format: System variable
        Load time value

Time and Date
The  Time and Date can be set by the operator by using the DATE  utility  (see 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG5.TXT[2/6/2012 4:04:06 PM]

the  "CP/M-86  Plus  User's  Guide") or by the  program  by  using  the  T_SET 
(Function  104) or S_SYSVAR (Function 49) system calls. The current  Time  and 
Date setting is the default value.

Default Password
This value can be set by the operator by using the SET utility (see the "CP/M-
86 Plus User's Guide") or by the program by using the F_PASSWD (Function  106) 
system call. If set by the operator or the program, this password remains  the 
default password until modified again.

Console Page Mode
The  Console Page Mode is initially set by the system to display a page  at  a 
time.  The  Console Page Mode can be set by the operator by using  the  SETDEF 
command (see the "CP/M-86 Plus User's Guide"), or by the program by using  the 
S_SYSVAR  (Function  49)  system call. The current Console Page  Mode  is  the 
default mode.

Console Mode
At program load, the Console Mode is set to its default value, zero.

Output Delimiter
At program load, the Output Delimiter is set to its default value, the  dollar 
sign ("$").

DMA Buffer
At  program load, the DMA Buffer base is set to the address of  the  program's 
Data Segment, and the DMA Buffer offset is set to 0080h. This provides  access 
to the default buffer in the Base Page.

Current Disk
At  program  load, this is the disk indicated at the command  prompt,  and  is 
referred  to  as the "default disk". The application program can set  this  to 
another disk.

Current User Number
At  program  load, this is the user number indicated with the  command  prompt 
(equals  0 if not displayed). The application program can set the user  number 
to  another number, but when the program terminates, the CCP sets the  Current 
User Number back to the CCP Current User Number.

Multisector Count
At program load, this value is always set to 1.

File System Error Mode
At  program  load, this value is always set to "Display and  Terminate"  error 
mode.

Program Return Code
At program load, this value is set to zero by the operating system.

Base Page initialization
------------------------



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG5.TXT[2/6/2012 4:04:06 PM]

The Base Page is the region of memory located from offset 0000h through 00FFh, 
relative  to  the  DS register. When the system receives  a  request  to  load 
a program, it sets the following default values in the Base Page for access by 
the  transient program. Table 5-4 describes the contents and locations of  the 
data in the Base Page region. Locations are offsets from the DS register.

Table 5-4. Base Page structure

Format: Byte offset, Field name
        Description

0000-0002h, CL
Code region length stored in low, middle, and high-order positions  (following 
Intel storage convention). This value represents the length of the code group.

0003-0004h, CB
Base paragraph segment of the code group.

0005h, M80
M80  byte:  a  flag set to 1 if the 8080 Memory Model was  used  during  load. 
Otherwise, the M80 byte is set to 0.

0006-0008h, DL
Data  area length stored in low, middle, and high-order  positions  (following 
Intel storage convention). This value represents the length of the data group.

0009-000Ah, DB
Base paragraph segment of the data group.

000Bh
Reserved.

000C-000Eh, EL
Extra region length stored in low, middle, and high-order positions (following 
Intel  storage  convention).  This value represents the length  of  the  extra 
group.

000F-0010h, EB
Base paragraph segment of the extra group.

0011h
Reserved.

0012-0014h, SL
Stack region length stored in low, middle, and high-order positions (following 
Intel  storage  convention).  This value represents the length  of  the  stack 
group.

0015-0016h, SB
Base paragraph segment of the stack group.

0017h
Reserved.



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG5.TXT[2/6/2012 4:04:06 PM]

0018-0029h, AUX
Region  set  aside  for the four optional independent  groups  that  might  be 
required  for  programs  that execute using the Compact  Memory  Model.  These 
groups  are stored as the previous groups, with 3 bytes for the group  length, 
followed  by  2  bytes for the base paragraph segment of  that  group,  and  1 
reserved byte. The initial values for these Group Descriptors are derived from 
the Header Record of the memory image file (CMD file) generated by the LINK-86 
utility.

0030-004Fh
Reserved.

0050h, DR
Identifies  the  drive  from  which the transient  program  was  loaded.  Zero 
designates the default drive, while a value of 1 to 16 corresponds to drives A 
through P, respectively.

0051-0052h, PWO1
Contains  the offset relative to the DS register of the password field of  the 
first  command-tail operand in the default DMA buffer beginning at 0080h.  The 
system  sets  this  field to zero if no password for  the  first  command-tail 
operand is specified.

0053h, PWL1
Contains the length of the password field for the first command-tail  operand. 
The system also sets this field to zero if no password for the first  command-
tail is specified.

0054-0055h, PWO2
Contains  the offset relative to the DS register of the password field of  the 
second command-tail operand in the default DMA buffer beginning at 0080h.  The 
system  sets  this field to zero if no password for  the  second  command-tail 
operand is specified.

0056h, PWL2
Contains the length of the password field for the second command-tail operand. 
The system also sets this field to zero if no password for the second command-
tail is specified.

0057-005Bh
Reserved.

005C-007Bh, FCB1
Default  File  Control Block, FCB, area 1 initialized by the system  from  the 
first command-tail operand of the command line, if it exists.

006C-007Bh, FCB2
Default  File  Control Block, FCB, area 2 initialized by the system  from  the 
second command-tail operand of the command line, if it exists.

Note: FCB area 2 overlays the last 16 bytes of the default FCB area 1. To  use 
the  information  in this area, a transient program must copy  it  to  another 
location before using FCB area 1.



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG5.TXT[2/6/2012 4:04:06 PM]

007C, CR
Current record position of default FCB area 1. This field is used with default 
FCB area 1 in sequential record processing.

007D-007Fh, RRN1
Optional default random record position. This field is an extension of default 
FCB area 1 used in random record processing.

0080-00FFh, DMA Buffer
Default 128-byte DMA buffer. This buffer is also filled with the command  tail 
when the system loads a transient program.

The system initializes the Base Page prior to initiating a transient  program. 
The  fields at 0050h and above are initialized from the command line  invoking 
the  transient program. The "CP/M-86 Plus User's Guide" describes the  command 
line format in detail.

If  a  drive is specified in the command field, the  system  initializes  byte 
0050h to the drive number, A=1, B=2, ..., P=16. Otherwise, it sets byte  0050h 
to zero.

If a command tail is entered, the field FCB1 is initialized. Otherwise,  bytes 
005Ch  and  0068h through 006Bh are set to zeroes, and the  bytes  from  005Dh 
through 0067h are set to blanks. If a password is specified for the first file 
specification in the command tail, the system stores the password  information 
in  the  PWO1  and PWL1 fields. Otherwise, the system  sets  these  fields  to 
zeroes.

If  a second file specification exists in the command tail, the system  stores 
the  file information in field FCB2. Otherwise, the bytes at 006Ch and  0078h-
007Bh  are set to zeroes, and bytes from 005Dh-0067h are set to blanks.  If  a 
password  is specified for the second file specification of the command  tail, 
the system places the password information in fields PWO2 and PWL2. Otherwise, 
these fields are set to zero.

Transient programs often use the default FCB at FCB1 for file operations. This 
FCB can even be used for random file access, because the three bytes RRN1  are 
available  for this purpose. However, a transient program must first copy  the 
contents  of the default FCB at FCB2 to another area before using the  default 
FCB at FCB1, because an open operation for the default FCB at FCB1  overwrites 
the FCB data at FCB2.

The  default  DMA buffer offset for transient programs is  0080h.  At  program 
load,  the  system initializes this area to contain the command  tail  of  the 
command  line.  The first position contains the number of  characters  in  the 
command tail, followed by a leading blank and the command tail characters. The 
system  stores a binary zero (00h) after the last command tail character.  The 
command tail characters are translated to ASCII uppercase. If the program uses 
the  default  DMA  buffer  for file I/O, it  must  extract  the  command  tail 
information before performing any file operations.

Fields  PWO1, PWL1, PWO2, and PWL2 contain password information for the  first 
two  file specifications in the command tail, if they exist. These fields  are 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG5.TXT[2/6/2012 4:04:06 PM]

provided so that transient programs are not required to parse the command tail 
for password fields. However, the transient program must save the password, or 
change the DMA buffer segment, before performing file operations.

Here is the output of a program showing the Base Page fields.

A>mbasic basepage
BASIC-86 Rev. 5.22
[CP/M-86 Plus]  
Copyright 1977-1982 (C) by Microsoft
Created:  5-Mar-82
62390 Bytes free

Base Page areas
---------------

1F5F:0000| EF 70 00  Last position of Code group
1F5F:0003| 50 18     Base   of Code group
1F5F:0005| 00        M80 byte

1F5F:0006| EF FF 00  Last position of Data group
1F5F:0009| 5F 1F     Base   of Data group
1F5F:000B| 00        Unused 1

1F5F:000C| 00 00 00  Length of Extra group
1F5F:000F| 00 00     Base   of Extra group
1F5F:0011| 00        Unused 2

1F5F:0012| 00 00 00  Length of Stack group
1F5F:0015| 00 00     Base   of Stack group
1F5F:0017| 00        Unused 3

1F5F:0018| 00 00 00  Length of Auxiliary group #1
1F5F:001B| 00 00     Base   of Auxiliary group #1
1F5F:001D| 00        Unused 4

1F5F:001E| 00 00 00  Length of Auxiliary group #2
1F5F:0021| 00 00     Base   of Auxiliary group #2
1F5F:0023| 00        Unused 5

1F5F:0024| 00 00 00  Length of Auxiliary group #3
1F5F:0027| 00 00     Base   of Auxiliary group #3
1F5F:0029| 00        Unused 6

1F5F:002A| 00 00 00  Length of Auxiliary group #4
1F5F:002D| 00 00     Base   of Auxiliary group #4
1F5F:002F| 00        Unused 7

Dump of Reserved Area 1:

1F5F:0030| 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
1F5F:0040| 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................

Drive from which the program was loaded:



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG5.TXT[2/6/2012 4:04:06 PM]

1F5F:0050| 00        (Default drive)

1F5F:0051| 00 00     Offset of first password
1F5F:0053| 00        Length of first password

1F5F:0054| 00 00     Offset of second password
1F5F:0056| 00        Length of second password

Dump of Reserved Area 2:

1F5F:0057| 00 00 00 20 FF |... .

Dump of FCB1:

1F5F:005C| 00 42 41 53 45 50 41 47 45 20 20 20 00 00 00 00 |.BASEPAGE   ....

Dump of FCB2:

1F5F:006C| 00 20 20 20 20 20 20 20 20 20 20 20 00 00 00 00 |.           ....

1F5F:007C| 20        Current record position for FCB1

1F5F:007D| D00F16    Optional random record position for FCB1

Dump of DMA Buffer:

1F5F:0080| 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
1F5F:0090| 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................
1F5F:00A0| 00 00 00 00 00 00 00 00 00 A2 20 91 20 22 4C 65 |.......... . "Le
1F5F:00B0| 6E 67 74 68 22 20 3B 00 14 0E 7C 01 91 20 22 20 |ngth" ;...|.. " 
1F5F:00C0| 6F 66 20 22 20 47 52 4F 55 50 4E 41 4D 45 24 20 |of " GROUPNAME$ 
1F5F:00D0| 28 49 29 00 43 0E 86 01 91 20 53 45 47 24 20 FF |(I).C.... SEG$ .
1F5F:00E0| 82 20 28 22 30 30 30 22 20 F2 20 FF 9A 20 28 41 |. ("000" . .. (A
1F5F:00F0| 44 52 20 F2 20 14 29 2C 20 15 29 20 22 7C 20 22 |DR . .), .) "| "

Here is the source code of the program:

10 REM BASEPAGE.BAS  by Emmanuel ROCHE  for CP/M-86 Plus
20 :
30 PRINT
40 PRINT "Base Page areas"
50 PRINT "---------------"
60 PRINT
62 :
65 nb = 21
70 :
80 DEF SEG
90 HN$ = RIGHT$ ("0" + HEX$ (PEEK (10)), 2)
100 LN$ = RIGHT$ ("0" + HEX$ (PEEK (9)), 2)
110 SEG$ = HN$ + LN$ + ":"
120 :
130 DATA 8



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG5.TXT[2/6/2012 4:04:06 PM]

140 ' Group name, M80/unused
150 DATA "Code group", "M80 byte"
160 DATA "Data group", "Unused 1"
170 DATA "Extra group", "Unused 2"
180 DATA "Stack group", "Unused 3"
190 DATA "Auxiliary group #1", "Unused 4"
200 DATA "Auxiliary group #2", "Unused 5"
210 DATA "Auxiliary group #3", "Unused 6"
220 DATA "Auxiliary group #4", "Unused 7"
230 :
240 READ NE  ' Number of Entries
250 FOR I = 1 TO NE
260     READ GROUPNAME$ (I), UNUSED$ (I)
270     GOSUB 310
280 NEXT I
290 GOTO 500
300 :
310 IF I = 6 THEN WHILE INKEY$ = "" : WEND
320 PRINT SEG$ RIGHT$ ("000" + HEX$ (ADR), 4) "| " ;
330 PRINT RIGHT$ ("0" + HEX$ (PEEK (ADR + 0)), 2) " " ;
340 PRINT RIGHT$ ("0" + HEX$ (PEEK (ADR + 1)), 2) " " ;
350 PRINT RIGHT$ ("0" + HEX$ (PEEK (ADR + 2)), 2) " " ;
360 PRINT TAB(nb) ;
370 IF I < 3 THEN PRINT "Last position" ; : ELSE PRINT "Length" ;
380 PRINT " of " GROUPNAME$ (I)
390 PRINT SEG$ RIGHT$ ("000" + HEX$ (ADR + 3), 4) "| " ;
400 PRINT RIGHT$ ("0" + HEX$ (PEEK (ADR + 3)), 2) " " ;
410 PRINT RIGHT$ ("0" + HEX$ (PEEK (ADR + 4)), 2) " " ;
420 PRINT TAB(nb) "Base   of " GROUPNAME$ (I)
430 PRINT SEG$ RIGHT$ ("000" + HEX$ (ADR + 5), 4) "| " ;
440 PRINT RIGHT$ ("0" + HEX$ (PEEK (ADR + 5)), 2) " " ;
450 PRINT TAB(nb) UNUSED$ (I)
460 PRINT
470 ADR = ADR + 6
480 RETURN
490 :
500 PRINT "Dump of Reserved Area 1:"
510 PRINT
520 SA = &H30 : EA = &H4F : GOSUB 560
530 PRINT
540 GOTO 740
550 :
560 IF SA > EA THEN PRINT CHR$ (7) ; "Dump error: start > end." : END
570 ALPHA$ = ""
580 PRINT SEG$ RIGHT$ ("000" + HEX$ (SA), 4) "| " ;
590 FOR I = 1 TO 16
600     AL = PEEK (SA)
610     AL$ = CHR$ (AL)
620     PRINT RIGHT$ ("0" + HEX$ (AL), 2) " " ;
630     IF (AL < &H20) OR (AL > &H7E) THEN AL$ = "."
640     ALPHA$ = ALPHA$ + AL$
650     SA = SA + 1
660     IF SA > EA THEN PRINT "|" ALPHA$ : GOTO 720
670 NEXT I



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG5.TXT[2/6/2012 4:04:06 PM]

680 PRINT "|" ALPHA$
690 IF INKEY$ = CHR$ (32) THEN WHILE INKEY$ = "" : WEND
700 IF INKEY$ = CHR$  (3) THEN END
710 IF SA <= EA THEN GOTO 570
720 RETURN
730 :
740 PRINT "Drive from which the program was loaded:"
750 PRINT
760 ADR = &H50
770 PRINT SEG$ RIGHT$ ("000" + HEX$ (ADR), 4) "| " ;
780 PRINT RIGHT$ ("0" + HEX$ (PEEK (ADR)), 2) TAB(22) ;
790 IF PEEK (ADR) = 0 THEN PRINT "(Default drive)" ELSE PRINT "(Drive " CHR$ (PEEK (ADR) + &H40) ")"
800 PRINT
810 :
820 WHILE INKEY$ = "" : WEND
830 :
840 DATA 2
850 DATA first, second
860 :
870 READ NP  ' Number of Passwords
880 ADR = &H51
890 FOR I = 1 TO NP
900     READ PASSWORD$ (I)
910     GOSUB 950
920 NEXT I
930 GOTO 1060
940 :
950 PRINT SEG$ RIGHT$ ("000" + HEX$ (ADR), 4) "| " ;
960 PRINT RIGHT$ ("0" + HEX$ (PEEK (ADR + 0)), 2) " " ;
970 PRINT RIGHT$ ("0" + HEX$ (PEEK (ADR + 1)), 2) " " ;
980 PRINT TAB(nb) "Offset of " PASSWORD$ (I) " password"
990 PRINT SEG$ RIGHT$ ("000" + HEX$ (ADR + 2), 4) "| " ;
1000 PRINT RIGHT$ ("0" + HEX$ (PEEK (ADR + 2)), 2) " " ;
1010 PRINT TAB(nb) "Length of " PASSWORD$ (I) " password"
1020 PRINT
1030 ADR = ADR + 3
1040 RETURN
1050 :
1060 PRINT "Dump of Reserved Area 2:"
1070 PRINT
1080 SA = &H57 : EA = &H5B : GOSUB 560
1090 PRINT
1100 :
1110 PRINT "Dump of FCB1:"
1120 PRINT
1130 SA = &H5C : EA = &H6B : GOSUB 560
1140 PRINT
1150 :
1160 PRINT "Dump of FCB2:"
1170 PRINT
1180 SA = &H6C : EA = &H7B : GOSUB 560
1190 PRINT
1200 :
1210 ADR = &H7C



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG5.TXT[2/6/2012 4:04:06 PM]

1220 PRINT SEG$ RIGHT$ ("000" + HEX$ (ADR), 4) "| " ;
1230 PRINT RIGHT$ ("0" + HEX$ (PEEK (ADR)), 2) " " ;
1240 PRINT TAB(nb) "Current record position for FCB1"
1250 PRINT
1260 :
1270 ADR = &H7D
1280 PRINT SEG$ RIGHT$ ("000" + HEX$ (ADR), 4) "| " ;
1290 PRINT RIGHT$ ("0" + HEX$ (PEEK (ADR + 0)), 2) ;
1300 PRINT RIGHT$ ("0" + HEX$ (PEEK (ADR + 1)), 2) ;
1310 PRINT RIGHT$ ("0" + HEX$ (PEEK (ADR + 2)), 2) ;
1320 PRINT TAB(nb) "Optional random record position for FCB1"
1330 PRINT
1340 :
1350 WHILE INKEY$ = "" : WEND
1360 :
1370 PRINT "Dump of DMA Buffer:"
1380 PRINT
1390 SA = &H80 : EA = &HFF : GOSUB 560
1400 PRINT
1410 :
1420 END

Transient program load and exit
-------------------------------

Section 1, "CP/M-86 Plus system overview", discussed the procedure for loading 
and  executing a transient program. After the operating system finds the  file 
to be loaded, it initializes the DMA buffer with the command line, then  calls 
P_CHAIN to initialize the Base Page values, and load and execute the program.

After control is transferred to the transient program, the program can use the 
96-byte  default  stack  and optionally return directly  to  the  system  upon 
program termination by executing a RETF (Far Return) instruction. The  program 
can  also  terminate by using the P_TERMCPM (Function 0) or  P_TERM  (Function 
143)  system  call.  The program can also be terminated (or  aborted)  by  the 
console operator by typing a Ctrl-C at the system console.

Chain to program
----------------

The  system  allows the transient program to specify the next  command  to  be 
executed  by making a P_CHAIN (Function 47) system call. The  system  executes 
the  command  specified  by the transient program, instead  of  prompting  the 
console for the next command.

Note that the P_CHAIN function also uses the Drive Search Chain when searching 
for the program to load.

Program Return Code
-------------------



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG5.TXT[2/6/2012 4:04:06 PM]

Transient  programs  can  set the Program Return Code  before  terminating  by 
making  a P_CODE (Function 108) system call. The operating system  initializes 
the  Program  Return  Code  to zero. The  transient  program  that  terminates 
successfully  can  use the Program Return Code to pass a value  to  a  chained 
program.  If the program terminates as a result of a fatal system error, or  a 
Ctrl-C entered at the console aborted the program, the system sets the Program 
Return  Code to an unsuccessful value. All other types of program  termination 
leave the Program Return Code at its current value.

Explicit program load
---------------------

The  system allows multiple programs to reside in memory. A transient  program 
such  as a debugger can load additional programs for execution under  its  own 
control.  The P_LOAD (Function 59) system call is used to load a program or  a 
special resident system extension (RSX) module.

Resident System Extensions (RSXs)
--------------------------

Resident  System  Extensions (RSXs) are special CMD or RSX files that  can  be 
used  by the programmer to modify or extend the functionality of  the  system. 
RSX  modules  intercept  system calls, and either process them  or  pass  them 
through to the BDOS for normal processing. More than one RSX module can be  in 
memory  at  a time. A transient program can also use the P_RSX  (Function  60) 
system  call to call an RSX for special functions. P_RSX is a general  purpose 
function that allows customized interfaces between programs and RSXs.

The order in which the RSX modules are loaded affects the order in which  they 
intercept  system calls. A more-recently loaded RSX receives control before  a 
previously  loaded RSX. Thus, if two RSXs are in memory at the same time,  the 
more-recently loaded RSX handles the intercepted function first.

The  RSX program code must include a prefix with the format as shown in  Table 
5-5.

Table 5-5. RSX prefix format

Offsets         Contents
----------      --------
0000-0002h      Jump to start of RSX program.
0003h           Terminate flag
                If  non-zero,  the  RSX  is  removed  from  memory  when   the 
                associated program terminates, or when P_CHAIN is called.
                Note: RSXs belonging to background programs are always removed 
                when the program terminates.
0004-0007h      Next RSX in chain
                Offset is followed by segment address.
0008-000Fh      8-character RSX name
                Must follow standard file naming conventions.
0010-0011h      Data Segment of this RSX
0012h           Program ID of this RSX



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG5.TXT[2/6/2012 4:04:06 PM]

0013-0014h      (Not documented)
0015-001Fh      Reserved
0020-????h      RSX code
                This  consists  of function number trapping and  RSX  function 
                processing.  If  the  function  code in  register  CL  is  not 
                intended for the RSX module, the RSX must execute a JMPF  (Far 
                Jump) instruction to the next RSX in the chain. Otherwise,  it 
                processes the function, and returns to the calling program  by 
                executing a RETF (Far Return) instruction.

Section  7, "Resident System Extension (RSXs)", includes an example of an  RSX 
program and the steps required to generate the CMD file using the RSX program. 
It  also describes the GENRSX utility, which generates the CMD and  RSX  files 
required to load and/or execute RSX modules.

Memory management
-----------------

The CP/M-86 Plus system supports four types of memory allocation/de-allocation 
functions: load memory for transient programs, dynamic requests from transient 
programs,  permanent  (sticky) memory requests from  transient  programs,  and 
memory required for the command loader.

Memory  descriptors  in  a system memory descriptor table  represent  free  or 
allocated  areas  of  contiguous memory. This table has  room  for  32  memory 
descriptor  entries.  This  table is initialized  at  system  generation,  and 
optionally at BIOS initialization.

The  system  allocates  memory on a first fit basis. If there  is  not  enough 
available  memory  or not enough available entries in  the  memory  descriptor 
table, the system returns an error code.

A  transient program can use the following system calls to allocate  and  free 
memory. Section 6, "System calls", describes these calls in detail.

Table 5-6. Memory allocation system calls

Mnemonic     Function   Description
--------     --------   -----------
MC_ABSALLOC     56      Allocate exact amount of memory at absolute location
MC_ABSMAX       54      Allocate no more than specified amount of memory at
                          an absolute location.
MC_ALLOC        55      Allocate exact amount of memory
MC_MAX          53      Allocate no more than the specified amount of memory
MC_FREE         57      Free one previous allocation, or all dynamic
                          allocations.

Load memory
-----------

When  the system loads a transient program, it allocates memory  according  to 
the Group Descriptors in its CMD file Header Record. Usually, the system needs 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG5.TXT[2/6/2012 4:04:06 PM]

only one memory descriptor to load a transient program. The memory  allocation 
is  less  than or equal to the sum of the G_MAX fields, and  greater  than  or 
equal  to  the  sum of the G_MIN fields for all  of  the  non-absolute  groups 
defined in the CMD file Header Record. However, if the Header Record  contains 
groups to be loaded at absolute locations, the system uses a memory descriptor 
for each absolute request to record the allocation. The use of absolute  Group 
Descriptors is not encouraged, and is supported for compatibility and  special 
uses, such as PROM programming.

The system also allocates memory for appended RSXs. Each appended RSX requires 
a memory descriptor.

When  the program terminates or executes a P_CHAIN (Function 47) system  call, 
the system releases the program's load memory.

Dynamic and sticky memory management
------------------------------------

When a program requires many small dynamically allocated regions, the  program 
should  allocate a large region, and perform its own management of this  area. 
Run-time  libraries of most high-level programming languages manage memory  in 
this manner.

For  compatibility, the MC_FREE (Function 57) system call allows memory to  be 
released at the end of a previously allocated area. The system cannot  release 
memory at the beginning of, or in the middle of, an allocated area.  Releasing 
entire  memory allocations at once is encouraged over  partial  de-allocation, 
since future CP/M operating systems might not support partial de-allocation of 
memory regions.

A  sticky memory allocation is made by setting a value in the  Memory  Control 
Block  (MCB),  as  described in Section 6, "System  calls".  The  program  can 
release  sticky  memory only by using the MC_FREE (Function 57)  system  call. 
Once  a program allocates sticky memory, it "owns" the sticky memory,  and  is 
the  only  program  that  can free this memory.  However,  after  the  program 
terminates, any program can de-allocate sticky memory if it knows the start of 
the sticky memory area.

A  Resident System Extension provides an example of the use of sticky  memory. 
The CP/M-86 Plus loader allocates sticky memory for RSXs, and puts the segment 
value  of the RSX data in the RSX prefix. When a program terminates  or  calls 
the  P_CHAIN (Function 47) system call, the system releases the RSX memory  if 
the RSX is flagged for termination.

Sticky  memory also allows for the loading of interrupt-driven  routines  that 
need to stay in memory.

Background tasking
------------------

CP/M-86 Plus allows up to four programs to run simultaneously: one program  in 
the  foreground,  and three in the background. The  background  capability  is 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG5.TXT[2/6/2012 4:04:06 PM]

intended  to  run  programs  such  as  those  that  handle  printer  spooling, 
communications,  and monitoring of instruments. Background programs must  have 
the CMD file type, and should follow the rules described below.

In the foreground
-----------------

When a program is initially loaded, it runs in the foreground. Console I/O  is 
only permitted in the foreground, so any tasks the program has to perform that 
may  require  a  dialogue with the user should be  done  before  entering  the 
background. While it is possible to do command line syntax checking, file I/O, 
memory  allocation, etc, in the background, these tasks are  better  performed 
while it is still possible to give the user information about error conditions 
that may arise.

How to enter the background
---------------------------

Having  completed any necessary dialogue with the user, the program need  only 
make  the CP/M-86 Plus C_DETACH (Function 147) system call in order to  switch 
from foreground to background execution. For example:

Enter_Background:
;----------------
;
; Entry: None
; Exit : AX = 0000h if success, 0FFFFh if failure
;
        MOV     CL, 147         ; = C_DETACH
        INT     224             ; = BDOS
        RET                     ; If AX zero, now in background

For programmers writing their code in programming languages such as C, Pascal, 
COBOL, etc, this subroutine could be assembled separately, and then linked  in 
with the main program.

The C_DETACH (Function 147) system call will fail if the BIOS does not support 
multitasking (no tick). See the S_SYSVAR (Function 49) system call.

The C_DETACH (Function 147) system call forces a new program environment to be 
created, this is always the Console Command Processor (CCP.CMD) running in the 
foreground.  The  RSXs loaded with the program become part of  the  background 
program  environment.  Previously loaded RSXs remain part  of  the  foreground 
environment. For example, program P is loaded with an RSX that intercepts  the 
BDOS calls. If P subsequently enters the background, the RSX will become  part 
of  the background environment, and will only intercept BDOS calls made by  P, 
not BDOS calls made by any foreground program.

RSXs  attached to background programs are always removed from memory when  the 
background program terminates.



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG5.TXT[2/6/2012 4:04:06 PM]

In the background
-----------------

Console  I/O is no longer possible. If a background program attempts  to  read 
from  the  system  console, it will be terminated. Attempts to  write  to  the 
console are ignored.

If  necessary,  the  program can communicate with the user  by  directing  its 
output  to  a  console output file (filetype BAC,  normally  produced  by  the 
BACK.CMD utility), which the user can examine when the program has terminated. 
Note that, since there is no file locking under CP/M-86 Plus, it is the user's 
responsibility to ensure that two or more programs do not try to write to  the 
same  file at the same time. (Any number of programs may safely read from  the 
same file at the same time.)

Only BDOS system calls are available to background programs.

General notes
-------------

If a program has to do character I/O, whether to the system console or to  the 
auxiliary  port,  it should wherever possible do so via those  BDOS  functions 
that  do not return until the character has been transferred. A  program  that 
sits in a loop polling the port status will consume processor time that may be 
better  spent elsewhere. A user will notice that his system  becomes  sluggish 
when he loads his background program that polls the auxiliary status.

By  default,  the  processor  divides its  time  between  the  foreground  and 
background programs in the ratio 16:1. For every cycle it spends processing  a 
background  program, it spends 16 cycles processing a foreground program.  The 
user can alter this ratio with the built-in command FORE, which is  documented 
in the "CP/M-86 Plus User's Guide".

EOF



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

CPMPPG6.WS4       (= "CP/M-86 Plus Programmer's Guide", section 6)
---------

(Edited by Emmanuel ROCHE.)

Section 6: System calls
-----------------------

This  section  describes the interface conventions which allow  the  transient 
program  to  access system functions. It also discusses each  system  call  in 
detail.  This section also describes and lists the return and error codes  for 
the system calls.

The  system  calls are categorized into functional groups. Table  6-1  defines 
these groups.

Table 6-1. The main system call groupings

Prefix  Category
------  --------
A_      Auxiliary device I/O system calls
C_      Console I/O system calls
DRV_    Drive-related system calls
F_      File-access system calls
L_      List device I/O system calls
MC_     Memory management system calls
P_      Program execution system calls
S_      System-related system calls
T_      Time system calls

Table 6-2 lists the system calls alphabetically.

Table 6-2. CP/M-86 Plus system calls

Mnemonic     Function   Definition
--------     --------   ----------
Auxiliary device I/O system calls
--------     --------   ----------
A_READ           3      Auxiliary input
A_STATIN         7      Auxiliary input status
A_STATOUT        8      Auxiliary output status
A_WRITE          4      Auxiliary output
A_READBLK      172      Auxiliary block input
A_WRITEBLK     173      Auxiliary block output
--------     --------   -----------
Console I/O system calls
--------     --------   -----------
C_DELIMIT      110      Get/Set Current Output Delimiter
C_DETACH       147      Detach program from console
C_MODE         109      Get/Set Console Mode
C_RAWIO          6      Direct console I/O
C_READ           1      Console input



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

C_READSTR       10      Read console buffer
C_STAT          11      Get console status
C_WRITE          2      Console output
C_WRITEBLK     111      Write block  of characters to console
C_WRITESTR       9      Write string of characters to console
--------     --------   -----------
Drive-related system calls
--------     --------   -----------
DRV_ALLOCVEC    27      Get drive allocation vector
DRV_ALLRESET    13      Reset all drives
DRV_DPB         31      Get disk parameter block address
DRV_FLUSH       48      Flush data buffers
DRV_FREE        39      Free drive
DRV_GET         25      Get default drive
DRV_GETLABEL   101      Get directory label data byte
DRV_LOGINVEC    24      Return drives logged in vector
DRV_RESET       37      Reset drive
DRV_ROVEC       29      Return drives Read-Only vector
DRV_SET         14      Set (select) drive
DRV_SETLABEL   100      Set directory label
DRV_SETRO       28      Set drive to Read-Only
DRV_SPACE       46      Get free space on drive
--------     --------   -----------
File-access system calls
--------     --------   -----------
F_ATTRIB        30      Set file's attributes
F_CLOSE         16      Close file
F_DELETE        19      Delete file
F_DMAGET        52      Get DMA segment and offset address
F_DMAOFF        26      Set DMA offset address
F_DMASEG        51      Set DMA segment address
F_ERRMODE       45      Set file system error mode
F_MAKE          22      Make a new file
F_MULTISEC      44      Set Multisector Count for file Read/Write
F_OPEN          15      Open file
F_PARSE        152      Parse filename
F_PASSWD       106      Set default password
F_RANDREC       36      Return record number for file Read/Write
F_READ          20      Read sequential record from file
F_READRAND      33      Read random record from file
F_RENAME        23      Rename file
F_SETDATE      116      Set File Stamps
F_SFIRST        17      Search for first file entry
F_SIZE          35      Compute file size
F_SNEXT         18      Search for next file entry
F_TIMEDATE     102      Return file time/date stamps and password mode
F_TRUNCATE      99      Truncate rest of file
F_USERNUM       32      Set/Get directory user number
F_WRITE         21      Write sequential record into file
F_WRITERAND     34      Write random record into file
F_WRITEXFCB    103      Write file's XFCB
F_WRITEZF       40      Write random record with zero fill
--------     --------   -----------
List device I/O system calls



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

--------     --------   -----------
L_WRITE          5      Write a character to LST:
L_WRITEBLK     112      Write a block of characters to LST:
--------     --------   -----------
Memory management system calls
--------     --------   -----------
MC_ABSALLOC     56      Allocate absolute exact memory
MC_ABSMAX       54      Allocate absolute maximum memory
MC_ALLFREE      58      Free all memory
MC_ALLOC        55      Allocate exact amount of memory
MC_FREE         57      Free memory
MC_MAX          53      Allocate maximum memory
--------     --------   -----------
Program execution system calls
--------     --------   -----------
P_CHAIN         47      Chain to next program
P_CODE         108      Set program return code
P_DELAY        141      Delay program
P_DISPATCH     142      Relinquish processor
P_LOAD          59      Load CMD or RSX module
P_RSX           60      Call Resident System Extension
P_TERM         143      Terminate calling program
P_TERMCPM        0      Terminate calling program
--------     --------   -----------
Miscellaneous system calls
--------     --------   -----------
S_BDOSVER       12      Return BDOS Version Number
S_BIOS          50      Direct BIOS calls
S_SERIAL       107      Return Serial Number
S_SYSDAT       154      Get System Data address
S_SYSVAR        49      Get/Set System Variables
--------     --------   ------------
Time system calls
--------     --------   ------------
T_GET          105      Get date and time
T_SET          104      Set date and time

System call parameters
----------------------

When  a program makes a system call, it loads values into the registers  shown 
in  Table 6-3, and initiates an Interrupt 224 (via the "INT 224"  instruction) 
reserved by the Intel Corporation for CP/M.

Each  system call is determined by a function code (number) which defines  the 
function  request.  These  function codes have been  assigned  function  names 
(mnemonics) which you may find easier to remember.

The  calling  program  passes  the function code in  register  CL,  with  byte 
parameters  in DL, and word parameters in DX. The system  returns  single-byte 
values  in AL, word values in AX, and double-word values in ES and AX. On  all 
returns, register BX is set to the value of register AX. The system saves  all 
segment  registers upon entry, and restores them upon exit, except when ES  is 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

used for the segment part of a double-word returned value.

Table 6-3. Registers used in system calls

Reg.    Entry parameter
----    ---------------
 CL     Function code
 DL     Byte parameter, or
 DX     Word parameter, or
 DX     Address -- Offset, and
 DS     Address -- Segment

Reg.    Returned values
----    ---------------
 AL     Byte return, or
 AX     Word return, or
 AX     Address -- Offset, and
 ES     Address -- Segment
 BX     Same as AX
 CX     Error code
 AH     Return Code

The  system also returns error codes in register CX. Table 6-4 lists CX  error 
codes  with the corresponding functions. All CP/M-86 Plus system calls  return 
CX = 0000h on successful execution.

Table 6-4. CX error codes and corresponding functions

Dec     Hex     Function(s)             Error report
---     ----    -----------             ------------
  0     0000    --                      Successful return
  2     0002    --                      Illegal function
  3     0003    P_LOAD, MC_calls        Memory for allocation not available
  4     0004    DEV_WAITFLAG            Illegal system flag number
  5     0005    --                      Flag overrun
  6     0006    DEV_WAITFLAG            Flag underrun
 12     000C    C_DETACH                No free process environments
 18     0012    MC_calls                No available Memory Descriptors
 23     0017    P_CHAIN,P_LOAD,F_PARSE  Illegal drive number
 24     0018    P_CHAIN,P_LOAD,F_PARSE  Illegal filename
 25     0019    P_CHAIN,P_LOAD,F_PARSE  Illegal filetype
 29     001D    P_LOAD                  Error reading file
 30     001E    P_CHAIN, P_LOAD         Could not open file
 32     0020    C_DETACH, MC_FREE       Not owner of resource
 33     0021    P_LOAD                  No code group descriptor in
                                          CMD file Header Record.
 38     0026    P_CHAIN,P_LOAD,F_PARSE  Illegal password
 41     0029    P_LOAD                  Error in performing load-time fixups
 42     002A    P_CHAIN, P_LOAD         Error loading RSX module
 43     002B    MC_calls                Illegal parameter
 45     002D    C_DETACH                No tick interrupt
 46     002E    MC_LOAD                 8087 in use, cannot load another
                                          program that uses the 8087.



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

Auxiliary device I/O system calls
---------------------------------

The  auxiliary device I/O system calls handle I/O operations for  the  logical 
devices  AUXIN:  and  AUXOUT:. Table 6-5 lists all the  auxiliary  device  I/O 
system calls discussed in this section.

Table 6-5. Auxiliary device I/O system calls

Mnemonic     Function   Description
--------     --------   -----------
A_READ           3      Auxiliary input
A_STATIN         7      Auxiliary input status
A_STATOUT        8      Auxiliary output status
A_WRITE          4      Auxiliary output
A_READBLK      172      Auxiliary block input
A_WRITEBLK     173      Auxiliary block output

BDOS Function 3: A_READ  (Auxiliary Input)

Entry Parameters:
     Register CL: 3

Returned  Values:
     Register AL: ASCII character
              BL: Same as AL

Function
The  A_READ  system  call  reads the next 8-bit  character  from  the  logical 
auxiliary input device AUXIN: into register AL. Control does not return to the 
calling program until the character is read.

BDOS Function 7: A_STATIN  (Auxiliary Input Status)

Entry Parameters:
     Register CL: 7

Returned  Values:
     Register AL: Auxiliary Input Status (0FFh = Ready, 00h = Not ready)
              BL: Same as AL

Function
The  A_STATIN  system call checks the input status of  the  logical  auxiliary 
input device AUXIN:.

System action
The  system returns the value 0FFh in register AL if a character is ready  for 
input from the logical device AUXIN:. If no character is ready for input,  the 
system returns the value 00h in register AL.



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

BDOS Function 8: A_STATOUT  (Auxiliary Output Status)

Entry Parameters:
     Register CL: 8

Returned  Values:
     Register AL: Auxiliary Output Status (0FFh = Ready, 00h = Not ready)
              BL: Same as AL

Function
The  A_STATOUT system call checks the output status of the  logical  auxiliary 
output device AUXOUT:.

System action
The  system  returns the value 0FFh in register AL if  the  logical  auxiliary 
device AUXOUT: is ready for output. If the device is not ready for output, the 
system returns the value 00h in register AL.

BDOS Function 4: A_WRITE  (Auxiliary Output)

Entry Parameters:
     Register CL: 4
              AL: ASCII character

Function
The  A_WRITE  system  call sends the ASCII character in  register  AL  to  the 
logical  auxiliary  output  device AUXOUT:. Control does  not  return  to  the 
calling program until the device is ready for output.

BDOS Function 172: A_READBLK  (Auxiliary Block Input)

Entry Parameters:
     Register CL: 172
              DX: CHCB Address -- Offset

Returned  Values:
     Register AX: Number of characters read
              BX: Same as AX

Function
The  A_READBLK system call reads characters from the logical  auxiliary  input 
device  AUXIN:  and  writes  them into the character  buffer  located  by  the 
CHaracter Control Block (CHCB) addressed by DX.

The format of the CHCB is as follows:

        Bytes 0 and 1: Offset  of character buffer
        Bytes 2 and 3: Segment of character buffer
        Bytes 4 and 5: Length  of character buffer (word value)

This  system  call  returns the number of characters actually  read  from  the 
default  auxiliary  device in register AX. A_READBLK returns  to  the  calling 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

process  when the status of AUXIN: indicates that the device is empty, or  the 
character  buffer  is full. This call does not return control to  the  calling 
process until at least one character has been read.

BDOS Function 173: A_WRITEBLK  (Auxiliary Block Output)

Entry Parameters:
     Register CL: 173
              DX: CHCB Address -- Offset

Returned  Values:
     Register AX: Number of characters written
              BX: Same as AX

Function
The A_WRITEBLK system call sends the character string located by the CHaracter 
Control Block (CHCB) addressed in register DX to the logical auxiliary  device 
AUXOUT:.

The format of the CHCB is as follows:

        Bytes 0 and 1: Offset  of character string
        Bytes 2 and 3: Segment of character string
        Bytes 4 and 5: Length  of character string (word value)

A_WRITEBLK  returns the number of characters written to the default  auxiliary 
device  in register AX. This system call returns to the calling  process  when 
the  status  of AUXOUT: indicates that the device is full,  or  the  character 
string  has  been written. A_WRITEBLK does not return control to  the  calling 
process until at least one character has been written.

Console I/O system calls
------------------------

The  console  I/O system calls handle I/O operations for the  logical  console 
CON:.  Table  6-6  lists all the console I/O system calls  discussed  in  this 
section.

Table 6-6. Console I/O system calls

Mnemonic     Function   Description
--------     --------   -----------
C_DELIMIT      110      Get/Set Current Output Delimiter
C_DETACH       147      Detach console from program
C_MODE         109      Get/Set Console Mode
C_RAWIO          6      Direct console I/O
C_READ           1      Console input
C_READSTR       10      Read console buffer
C_STAT          11      Get console status
C_WRITE          2      Console output
C_WRITEBLK     111      Write block  of characters to console
C_WRITESTR       9      Write string of characters to console



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

BDOS Function 110: C_DELIMIT  (Get/Set Output Delimiter)

Entry Parameters:
     Register CL: 110
              DX: 0FFFFh (Get), or
              DL: Output Delimiter (Set)

Returned  Values:
     Register AL: Output Delimiter, or no value
              BL: Same as AL

Function
The C_DELIMIT system call sets or returns the current Output Delimiter.

Entry condition
If  register  DX = 0FFFFh, the request is to return the  Output  Delimiter  in 
register AL. Otherwise, the request is to set the current Output Delimiter.

System action
The  system  returns  the Output Delimiter in register AL  if  register  DX  = 
0FFFFh.  Otherwise,  the  system sets the Output Delimiter  to  the  value  in 
register DL.

The default Output Delimiter is the dollar sign ("$"). The Output Delimiter is 
used by the C_WRITESTR (Function 9) system call.

BDOS Function 147: C_DETACH  (Detach Program from Console)

Entry Parameters:
     Register CL: 147

Returned  Values:
     Register AX: 0000h if successful, 0FFFFh if failure
              BX: Same as AX
              CX: Error Code (See Table 6-4)

Function
The C_DETACH system call detaches the program from the console.

System action
The system detaches the program from the console. This function is used if the 
program wishes to run in the background.

The system returns an error code if it cannot run any background programs.

BDOS Function 109: C_MODE  (Get/Set Console Mode)

Entry Parameters:
     Register CL: 109
              DX: 0FFFFh (Get), or Console Mode (Set)



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

Returned  Values:
     Register AX: Console Mode, or no value
              BX: Same as AX

Function
The  C_MODE  system  call sets or returns the Console  Mode  (see  Section  2, 
"Character device I/O").

Entry condition
If register DX = 0FFFFh, the request is to return the Console Mode in register 
AX. Otherwise, the request is to set the Console Mode to the value in register 
DX.

System action
The  system returns the Console Mode in register AX if register DX  =  0FFFFh. 
Otherwise, the system sets the Console Mode to the value in register DX.

The  Console  Mode  is  a  16-bit system  variable  described  in  Section  2, 
"Character device I/O", and summarized in Table 6-7.

Table 6-7. Console Mode variable bit summary

Bit     Function
---     --------
 0      1 indicates Ctrl-C only status for C_STAT.
        0 indicates normal status function for C_STAT.

 1      1 disables stop scroll; Ctrl-S, start scroll; Ctrl-Q.
        0 enables  stop scroll, start scroll support.

 2      1 disables tab expansion and printer echo.
        0 enables normal console output mode.

 3      1 disables Ctrl-C system interception.
        0 enables  Ctrl-C system interception.

BDOS Function 6: C_RAWIO  (Direct Console I/O)

Entry Parameters:
     Register CL: 6
              DL: 0FFh (input/status) or
                  0FEh (status) or
                  0FDh (input) or
                  char (output)

Returned  Values:
    (input/status)
     Register AL: 00h (no character) or
                  Character
    (status)
     Register AL:  00h (no character) or
                  0FFh (character ready)



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

    (input)
     Register AL: Character
              BL: Same as AL

Function
The  C_RAWIO  system  call  allows the calling  program  to  process  unedited 
("direct" or "unadorned") console input or output.

System action
The  calling  program  selects  the type of  Direct  Console  I/O  by  passing 
different values in register DL. Table 6-8 summarizes the C_RAWIO options  and 
responses:

Table 6-8. C_RAWIO options and responses

Reg.DL  Meaning
------  -------
 0FFh   Get console input, or check console status.
        If  a  character has been typed, the system returns the  character  in 
        register AL. Otherwise, the system sets register AL to 00h.

 0FEh   Get console status.
        If  a character has been typed, the system sets register AL  to  0FFh. 
        Otherwise, the system sets register AL to 00h.

 0FDh   Get console input.
        If  a character has been typed, the system returns it in register  AL. 
        Otherwise, the system waits until a character is typed, and returns it 
        in register AL.

  ASC   Output ASCII character to the console.

Note: The system disables all normal character control functions when  C_RAWIO 
is  used. See Section 2, "Character device I/O", for a description of  control 
character functions.

BDOS Function 1: C_READ  (Console Input)

Entry Parameters:
     Register CL: 1

Returned  Values:
     Register AL: Character
              BL: Same as AL

Function
The C_READ system call reads the next character from the console CONIN:.

System action
The  system reads the next character typed at the keyboard, and returns it  in 
register AL. If it is a graphic character or a Carriage Return, Line Feed,  or 
BackSpace  character,  it is echoed to the console. All other  characters  are 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

read,  but  not  echoed  to the console. If printer  echo  (Ctrl-P)  has  been 
activated,  the  character is also sent to the list device  LST:.  The  system 
expands tab characters (Ctrl-I) in columns of eight characters.

If  the  Console Mode is in default state (see Section  2,  "Character  device 
I/O"), the system intercepts Ctrl-S, Ctrl-Q, Ctrl-C, and Ctrl-P characters.

If  start scroll/stop scroll is disabled, the system passes Ctrl-S and  Ctrl-Q 
characters  to the calling program. If Ctrl-P is disabled, the  system  passes 
Ctrl-P to the program.

If no character is typed at the keyboard, the system waits and does not return 
to the calling program until a character is typed.

BDOS Function 10: C_READSTR  (Read Console Buffer)

Entry Parameters:
     Register CL: 10
              DX: BUFFER Address -- Offset: 0FFFFh
                 (If buffer to be used is current DMA address
                  and buffer is already initialized.)
              DS: BUFFER Address -- Segment

Function
The  C_READSTR system call reads a line of edited console input  from  console 
CONIN: to a buffer addressed by the DX register. If the DX register is 0FFFFh, 
the system displays the string in the current DMA buffer for operator editing. 
See the "User's Guide" for details of line-editing input.

        +----+----+---------------+----+
        | MX | NC | Characters... | ?? |
        +----+----+---------------+----+
          0    1    2               MX+2

        Figure 6-1. Console input buffer format

MX  is the maximum number of characters the buffer holds (1 through 255),  and 
is  set by the program upon entry. If the MX field is set to zero, the  system 
assumes the value one.

NC is the number of characters (0 through MX) placed in the buffer, and is set 
by C_READSTR.

CHARACTERS  are  the  characters entered by the operator (DX  <>  0FFFFh),  or 
initialized by the calling program (DX = 0FFFFh).

BDOS Function 11: C_STAT  (Get Console Status)

Entry Parameters:
     Register CL: 11

Returned  Values:



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

     Register AL: 01h if character is ready, or
                  00h if character is not ready
              BL: Same as AL

Function
The  C_STAT  system call checks to see if a character has been  typed  at  the 
system console CONIN:.

System action
If a character has been typed at the console, the system returns the value  in 
register AL. Otherwise, the system returns 00h in register AL.

Note:  If  bit  0  and  bit 3 of the Console Mode  are  set  (see  Section  2, 
"Character device I/O", and the C_MODE (Function 109) system call), the system 
returns  01h  only  if Ctrl-C has been typed at the  console.  Otherwise,  the 
system sets register AL to 00h.

BDOS Function 2: C_WRITE  (Console Output)

Entry Parameters:
     Register CL: 2
              DL: 8-bit character

Function
The  C_WRITE  system  call sends the 8-bit character in  register  DL  to  the 
console device CONOUT:.

System action
If the Console Mode is in the default state (see Section 2, "Character  device 
I/O"), the system expands tab characters (Ctrl-I) in columns of 8  characters, 
checks  for stop scroll, start scroll characters (Ctrl-S, Ctrl-Q),  and  sends 
the  character to the list device LST: if printer echo (Ctrl-P) is  activated. 
Otherwise,  the  system action is determined by the bits set  in  the  Console 
Mode.

BDOS Function 111: C_WRITEBLK  (Print Block)

Entry Parameters:
     Register CL: 111
              DX: CHCB Address -- Offset
              DS: CHCB Address -- Segment

Function
The C_WRITEBLK system call sends the character block located by the  Character 
Control Block (CHCB) to the console device CONOUT:.

System action
If  the  Console  Mode is in the default state (see  Section  2),  the  system 
expands  tab characters (Ctrl-I) in columns of 8 characters, checks  for  stop 
scroll,  start  scroll characters (Ctrl-S, Ctrl-Q), and  sends  the  character 
string  to  the  list  device LST: if  printer  echo  (Ctrl-P)  is  activated. 
Otherwise,  the  system action is determined by the bits set  in  the  Console 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

Mode.

The CHCB format is as follows:

        Bytes 0-1: Offset  of character string
        Bytes 2-3: Segment of character string
        Bytes 4-5: Length  of character string (word value)

BDOS Function 9: C_WRITESTR  (Print String)

Entry Parameters:
     Register CL: 9
              DX: String Address -- Offset
              DS: String address -- Segment

Function
The  C_WRITESTR  system call sends the character string addressed  by  the  DX 
register to the output console CONOUT:.

System action
If the Console Mode is in the default state (see Section 2, "Character  device 
I/O"), the system expands tab characters (Ctrl-I) in columns of 8  characters, 
checks  for stop scroll, start scroll characters (Ctrl-S, Ctrl-Q),  and  sends 
the  character  string  to the list device LST: if printer  echo  (Ctrl-P)  is 
activated.

The string is terminated by the Output Delimiter, which is normally the dollar 
sign  ("$"),  but  a  program can change the Output  Delimiter  to  any  other 
character by making a C_DELIMIT (Function 110) system call.

Assigning logical devices
-------------------------

Most  CP/M-86 Plus computer systems have a console with a keyboard and  screen 
display,  and  perhaps a printer. To keep track of these different  input  and 
output  devices,  CP/M-86 Plus assigns different physical devices  to  logical 
devices in the system.

A logical device represents a class of physical devices. For example, both the 
keyboard  and  auxiliary  port are physical devices that  can  provide  input. 
Console  input,  therefore,  is a logical device that can  be  assigned  to  a 
physical  device like the keyboard. Similarly, console output can be  assigned 
to a physical device such as the screen. When a logical device is not assigned 
to anything specific, it is said to be assigned to a null, or dummy, device.

The following table gives the names and types of CP/M-86 Plus logical devices. 
It  also shows the physical devices assigned to these logical devices  in  the 
standard CP/M-86 Plus system.

        Logical         Logical                 Physical
        Device          Device                  Device
        Name            Type                    Assignment



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

        -------         -------------           ----------
        CONIN:          Console Input           Keyboard
        CONOUT:         Console Output          Screen
        AUXIN:          Auxiliary Input         Null
        AUXOUT:         Auxiliary Output        Null
        LST:            List Output             Printer

Typically,  you can assign a number of physical devices to any  given  logical 
device.

The following table shows a number of possibilities.

        Logical         Logical                 Physical
        Device          Device                  Device
        Name            Type                    Assignment
        -------         -------------           ----------
        CONIN:          Console Input           Keyboard
        CONOUT:         Console Output          Screen, Printer
        AUXIN:          Auxiliary Input         Modem, Lightpen,
                                                Joystick, Mouse, and so on
        AUXOUT:         Auxiliary Output        Modem, Printer,
                                                Plotter, and so on
        LST:            List Output             Printer, Screen

If you use your computer for a range of tasks, you might want to add different 
kinds  of  devices  to your system. For example, a line printer,  a  modem,  a 
lightpen, or even a joystick for playing games.

In  some  implementations  of  CP/M-86  Plus,  you  can  change  the  standard 
assignments with a DEVICE command. If your system supports the DEVICE command, 
you  can,  for  example, assign AUXIN: and AUXOUT: to a modem,  so  that  your 
computer can communicate with other computers over the telephone.

Drive-related system calls
--------------------------

The drive-related system calls operate on the system logical drives. Table 6-3 
lists all the drive-related system calls discussed in this section.

Table 6-13. Drive-related system calls

Mnemonic     Function   Description
--------     --------   -----------
DRV_ALLOCVEC    27      Get drive allocation vector
DRV_ALLRESET    13      Reset all drives
DRV_DPB         31      Get disk parameter block address
DRV_FLUSH       48      Flush data buffers
DRV_FREE        39      Free drive
DRV_GET         25      Get default drive
DRV_GETLABEL   101      Get directory label data byte
DRV_LOGINVEC    24      Return drives logged in vector
DRV_RESET       37      Reset drive
DRV_ROVEC       29      Return drives Read-Only vector



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

DRV_SET         14      Set (select) drive
DRV_SETLABEL   100      Set directory label
DRV_SETRO       28      Set drive to Read-Only
DRV_SPACE       46      Get free space on drive

BDOS Function 27: DRV_ALLOCVEC  (Get Address of Allocation Vector)

Entry Parameters:
     Register CL: 27

Returned  Values:
     Register AX: ALLOCVEC Address -- Offset
              BX: Same as AX
              ES: ALLOCVEC Address -- Segment

Function
The DRV_ALLOCVEC system call returns the base address of the allocation vector 
for the currently selected drive.

System action
The  system returns in register ES and AX the base address of  the  allocation 
vector for the currently selected drive. Bits in the allocation vector  denote 
allocated  blocks  when set to 1, and unallocated blocks when set  to  0.  The 
high-order bit in the first byte of the allocation vector corresponds to block 
0.  The DRV_SPACE system call can be used to get the number of  free  128-byte 
records on a drive.

BDOS Function 13: DRV_ALLRESET  (Reset Disk System)

Entry Parameters:
     Register CL: 13

Function
The  DRV_ALLRESET system call restores the file system to a reset state  where 
all  the disk drives are set to Read/Write, the default drive is set to  drive 
A,  and  the  default DMA address is reset to offset  0080h  relative  to  the 
current DMA segment address.

BDOS Function 31: DRV_DPB  (Get Address of DPB Parameter Block)

Entry Parameters:
     Register CL: 31

Returned  Values:
     Register AX: DPB Address -- Offset  (0FFFFh on Physical Errors)
              BX: Same as AX
              ES: DPB Address -- Segment

Function
The  DRV_DPB  system  call  returns the  address  of  the  BIOS-resident  Disk 
Parameter Block for the currently selected drive. The calling program can  use 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

this address to display or compute the space on the drive.

System action
The  system  returns in register AX the offset address of the  Disk  Parameter 
Block, and the segment address in register ES.

If  the  system encounters a physical error, the system sets  register  AX  to 
0FFFFh.

The Disk Parameter Block (DPB) contains the parameters that define the  actual 
disk. See the "System Guide" for complete description of the DPB.

BDOS Function 48: DRV_FLUSH  (Flush Buffers)

Entry Parameters:
     Register CL: 48
              DL: Purge Flag

Returned  Values:
     Register AL: Return Code  (0FFh = Physical Error)
              AH: Physical Error Code (00h = No error)
              BX: Same as AX

Function
The  DRV_FLUSH  system  call forces the write  of  any  write-pending  records 
contained in internal blocking/deblocking buffers.

System action
The  system  writes  any  write-pending  records  contained  in  the  internal 
blocking/deblocking  buffers. If register DL is set to 0FFh, the  system  also 
purges all active data buffers belonging to the calling process. Programs that 
provide  write with read operation need to purge internal buffers,  to  ensure 
that  verifying data comes from the disk, and not from internal data  buffers. 
The PIP utility is an example of such a program.

If the flush operation is successful, register AL is set to 00h. If a physical 
error  is detected by the system and the File System Error Mode is in  default 
mode,  the  system displays a message identifying the error,  and  terminates. 
Otherwise, the system sets register AL to 0FFh, and register AH to one of  the 
following physical error codes:

        01: Disk I/O error
        02: Read-Only disk
        04: Invalid drive error

BDOS Function 39: DRV_FREE  (Free Drive)

Entry Parameters:
     Register CL: 39

Returned  Values:
     Register AL: 00h



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

              BL: Same as AL

Function
The  DRV_FREE  system call is a function that is not supported  under  CP/M-86 
Plus.  If  called, the file system returns a 00h in register AL,  to  indicate 
that the free request is successful.

BDOS Function 25: DRV_GET  (Return Current Disk)

Entry Parameters:
     Register CL: 25

Returned  Values:
     Register AL: Drive Number (0-15)
              BL: Same as AL

Function
The  DRV_GET system call returns the currently-selected default disk or  drive 
in register AL.

System action
The  system returns in register AL the currently-selected default  drive.  The 
drive  number ranges from 0 through 15, corresponding to drives A  through  P, 
respectively.

BDOS Function 101: DRV_GETLABEL  (Return Directory Label Data)

Entry Parameters:
     Register CL: 101
              DL: Drive Number (0-15)

Returned  Values:
     Register AL: Directory Label Data Byte
                  (00h if no label, 0FFh if Physical Error)
              AH: Physical Error Code
              BX: Same as BX

Function
The  DRV_GETLABEL  system  call returns the directory  label  data  byte  (see 
Section 3) of the directory label for the specified drive.

Entry parameter
The drive number in register DL ranges from 0 through 15, with 0 corresponding 
to drive A, 1 corresponding to drive B, and so on through 15 for drive P.

System response
If the disk contains a directory label, the system returns the directory label 
data  byte in register AL. If the disk has no label, the system sets  register 
AL  to 00h. If the system encounters a physical error on the specified  drive, 
and  the  File  System Error Mode is in default mode, the  system  displays  a 
message identifying the error, and terminates. Otherwise, it sets register  AL 
to 0FFh, and register AH to one of the following physical error codes:



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

        01: Disk I/O error
        04: Invalid drive error

BDOS Function 24: DRV_LOGINVEC  (Return Login Vector)

Entry Parameters:
     Register CL: 24

Returned  Values:
     Register AX: Login Vector
              BX: Same as AX

Function
The  DRV_LOGINVEC  system call returns a bit map of currently logged  in  disk 
drives.

System action
The system returns in register AX the Login Vector. The Login Vector is a  16-
bit value whose least significant bit corresponds to drive number 0, or  drive 
A, and whose most significant bit corresponds to drive number 15, or drive  P. 
A bit set to 0 indicates that the corresponding drive is not logged in,  while 
a bit set to 1 indicates that the corresponding drive is logged in. A drive is 
logged  in  when  its directory is read into the system,  and  its  allocation 
vectors  built.  A  drive can be logged in explicitly  by  using  the  DRV_SET 
(Function 14) system call, or implicitly by a file operation specifying a non-
zero value in the DR field of the referenced FCB.

The  Login Vector is a data structure of 16-bit values specifying one or  more 
drives,  where the least significant bit corresponds to drive A, and the  most 
significant  bit  corresponds to the sixteenth drive, labeled  P.  Figure  6-2 
illustrates the format of the Login Vector.

            +---------------------------------+
        DRV | P O N M L K J I H G F E D C B A |
            +---------------------------------+
        BIT   F E D C B A 9 8 7 6 5 4 3 2 1 0

        Figure 6-2. Login Vector structure

BDOS Function 37: DRV_RESET  (Reset Drive)

Entry Parameters:
     Register CL: 37
              DX: Drive Vector

Returned  Values: None

Function
The  DRV_RESET system call programmatically restores specified drives  to  the 
reset state. A reset drive is one that is not logged in, and is in  Read/Write 
status.



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

System action
The system resets the drives specified by the drive vector in register DX. The 
drive  vector  is a 16-bit value whose least significant  bit  corresponds  to 
drive 0 or A, and whose most significant bit corresponds to drive 15 or P. The 
system resets those drives whose corresponding bits are set to 1.

BDOS Function 29: DRV_ROVEC  (Get Read-Only Vector)

Entry Parameters:
     Register CL: 29

Returned  Values:
     Register AX: Read-Only Vector
              BX: Same as AX

Function
The  DRV_ROVEC  system  call  returns a 16-bit value  in  register  AX,  which 
indicates which drives have the temporary Read-Only bit set.

System action
The  system  returns the Read-Only vector in register AX.  This  16-bit  value 
indicates  which  drives  are  set to Read-Only.  The  least  significant  bit 
corresponds  to  drive 0 or A, while the most significant bit  corresponds  to 
drive 15 or P.

A drive is set to Read-Only by using the DRV_SETRO (Function 28) system call.

The  Read-Only Vector is a data structure of 16-bit values specifying  one  or 
more  drives, where the least significant bit corresponds to drive A, and  the 
most significant bit corresponds to the sixteenth drive, labeled P. Figure 6-3 
illustrates the format of the Read-Only Vector.

            +---------------------------------+
        DRV | P O N M L K J I H G F E D C B A |
            +---------------------------------+
        BIT   F E D C B A 9 8 7 6 5 4 3 2 1 0

        Figure 6-3. Read-Only Vector structure

BDOS Function 14: DRV_SET  (Select Disk)

Entry Parameters:
     Register CL: 14
              DL: Drive Number (0-15)

Returned  Values:
     Register AL: Return Code
              AH: 00h, or Physical Error Code
              BX: Same as AX

Function



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

The DRV_SET system call designates the disk drive specified in register DL  as 
the default disk for subsequent system file I/O operation.

System action
The system selects the specified disk drive in register DL as the default disk 
for  subsequent file I/O operation. The value in register DL can range from  0 
(for  drive A) through 15 (for drive P). The system also logs in the  selected 
drive  if  it  is currently in the reset state. If  the  select  operation  is 
successful,  the  system  sets  register AL to 00h. If  a  physical  error  is 
encountered  and  the File System Error Mode is in default  mode,  the  system 
displays  a  message  identifying the error, and  terminates.  Otherwise,  the 
system sets register AL to 0FFh, and sets register AH to one of the  following 
physical error codes:

        01: Disk I/O error
        04: Invalid drive

BDOS Function 100: DRV_SETLABEL  (Set Directory Label)

Entry Parameters:
     Register CL: 100
              DX: FCB Address -- Offset
              DS: FCB Address -- Segment

Returned  Values:
     Register AL: Directory Code (0FFh if Physical Error)
              AH: Physical or Extended Error Code (00h if no error)
              BX: Same as AX

Function
The  DRV_SETLABEL  system call creates or updates a directory  label  for  the 
specified drive.

Entry conditions
The  calling  program sets the F1 through F8 (name) and T1 through  T3  (type) 
fields  of  the FCB to be used by the system as the directory  label.  The  EX 
(extent  field) of the FCB is also set, to define the user's specification  of 
the directory label data byte, as described in Section 3.

If  the  current directory label is password-protected, the  correct  password 
must be placed in the first 8 bytes of the current DMA.

If bit 0 of the data byte is set, then the system is to assign a new  password 
to  the directory label. This new password is placed in the second 8 bytes  of 
the current DMA.

System action
The  system  creates  or  updates the directory  label  with  the  information 
specified  in the FCB. If successful, the system returns a Directory  Code  in 
register  AL with the value 0 to 3, and sets register AH to 00h. If  no  space 
existed  in the referenced directory to create a directory label,  the  system 
sets  register AL to 0FFh, and register AH to 00h. If a physical  or  extended 
error  is encountered and the File System Error Mode is in default  mode,  the 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

system  displays a message identifying the error, and  terminates.  Otherwise, 
the  system sets register AL to 0FFh, and register AH to one of the  following 
physical or extended error codes:

        01: Disk I/O error
        02: Read-Only disk
        04: Invalid drive error
        07: File password error

BDOS Function 28: DRV_SETRO  (Write Protect Disk)

Entry Parameters:
     Register CL: 28

Returned  Values:
     Register AL: Return Code
              BL: Same as AL

Function
The DRV_SETRO system call sets the currently-selected drive to Read-Only.

System action
The  system  sets the currently-selected drive to Read-Only.  No  program  can 
write  to a drive that is in Read-Only state. The DRV_RESET (Function 37)  and 
DRV_ALLRESET  (Function  13)  system  calls  restore  a  Read-Only  drive   to 
Read/Write  status.  The system automatically restores a  Read-Only  drive  to 
Read/Write status if a media change is detected on the drive.

If  the write-protect operation is successful, the system sets register AL  to 
00h. Otherwise, it sets register AL to 0FFh.

BDOS Function 46: DRV_SPACE  (Get Disk Free Space)

Entry Parameters:
     Register CL: 46
              DL: Drive Number

Returned  Values:
     Register AL: Return Code
              AH: 00h, or Physical Error Code
              BX: Same as AX

Function
The  DRV_SPACE  system  call computes the number  of  free  sectors  (128-byte 
records) on the specified drive.

System action
The  system  returns a binary number in the first 3 bytes of the  current  DMA 
buffer.  The  first byte corresponds to the low byte, the second byte  is  the 
middle byte, and the third byte is the high byte of the binary number.

If  the  DRV_SPACE function is successful, it sets register AL to  00h.  If  a 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

physical  error  is encountered and the File System Error Mode is  in  default 
mode,  the  system displays a message identifying the error,  and  terminates. 
Otherwise, the system sets register AL to 0FFh, and sets register AH to one of 
the following physical error codes:

        01: Disk I/O error
        04: Invalid drive error

File access system calls
------------------------

Most file-access system calls reference a File Control Block (FCB). This  data 
structure is described in detail in Section 3, "CP/M-86 Plus file system". The 
file-access  system  calls  include  calls that  operate  on  files  within  a 
directory, calls that operate on records within files, and other miscellaneous 
functions  related  to file I/O. Table 6-14 lists all the  file-access  system 
calls.

Table 6-14. File-access system calls

Mnemonic     Function   Description
--------     --------   -----------
F_ATTRIB        30      Set file's attributes
F_CLOSE         16      Close file
F_DELETE        19      Delete file
F_DMAGET        52      Get DMA segment and offset address
F_DMAOFF        26      Set DMA offset address
F_DMASEG        51      Set DMA segment address
F_ERRMODE       45      Set file system error mode
F_MAKE          22      Make a new file
F_MULTISEC      44      Set Multisector Count for file Read/Write
F_OPEN          15      Open file
F_PARSE        152      Parse filename
F_PASSWD       106      Set default password
F_RANDREC       36      Return record number for file Read/Write
F_READ          20      Read sequential record from file
F_READRAND      33      Read random record from file
F_RENAME        23      Rename file
F_SFIRST        17      Search for first file entry
F_SIZE          35      Compute file size
F_SNEXT         18      Search for next file entry
F_TIMEDATE     102      Return file time/date stamps and password mode
F_TRUNCATE      99      Truncate rest of file
F_USERNUM       32      Set/Get directory user number
F_WRITE         21      Write sequential record into file
F_WRITERAND     34      Write random record into file
F_WRITEXFCB    103      Write file's XFCB
F_WRITEZF       40      Write random record with zero fill

BDOS Function 30: F_ATTRIB  (Set File Attributes)

Entry Parameters:



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

     Register CL: 30
              DX: FCB Address -- Offset
              DS: FCB Address -- Segment
     Interface Attribute: 
              F6' = 0 --> Do not set byte count
              F6' = 1 --> Set last record byte count

Returned  Values:
     Register AL: Return Code
              AH: Physical or Extended Error
              BX: Same as AX

Function
The F_ATTRIB system call modifies a file's attributes, and optionally sets its 
last record byte count.

Entry conditions
The file attributes F1' through F4' and T1', T2', and T3' can be set to 0 or 1 
by the calling program. Section 3, "CP/M-86 Plus file system", describes these 
attributes.

The interface attribute F6' specifies if the byte count of the last record  is 
to  be set by F_ATTRIB. If the calling program sets F6' to 1 and the CS  field 
of the FCB to the byte count, F_ATTRIB sets the last record byte count for the 
file. If F6' is 0, then F_ATTRIB does not record a last record byte count  for 
the file.

In addition, if the specified file is password-protected, the correct password 
must  be placed in the first 8 bytes of the current DMA buffer, or  have  been 
previously  established as the Default Password (See the F_PASSWORD  (Function 
106) system call).

System action
The  system searches the directory for entries belonging to the  current  user 
number that matches the file specified in the referenced FCB. The system  then 
updates  the  file  directory  FCB, to set the  attributes  specified  in  the 
referenced FCB.

If  F6' is set to 1, the last record byte count is also recorded in  the  file 
directory FCB.

If the F_ATTRIB function is successful, the system sets register AL and AH  to 
00h.

If  the  specified file is not found, the system sets registers AL and  AH  to 
00h.

If a physical or extended error is encountered and the File System Error  Mode 
is  in default mode, the system displays a message identifying the error,  and 
terminates. Otherwise, the system sets register AL to 0FFh, and sets  register 
AH to one of the following physical or extended error codes:

        01: Disk I/O error
        02: Read-Only disk



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

        04: Select error
        07: File password error
        09: "?" in the FCB filename or filetype field

BDOS Function 16: F_CLOSE  (Close File)

Entry Parameters:
     Register CL: 16
              DX: FCB Address -- Offset
              DS: FCB Address -- Segment
     Interface Attribute: 
              F5' = 0 --> Permanent close
              F5' = 1 --> Partial close

Returned  Values:
     Register AL: Directory Code (0FFh = File not found)
              AH: Physical Error Code (00h = No error)
              BX: Same as AX

Function
The F_CLOSE system call permanently records new or updated information in  the 
referenced FCB to the disk directory.

Entry conditions
The  referenced  FCB  must have previously been initialized  by  a  successful 
F_OPEN or F_MAKE system call. The calling program sets the interface attribute 
F5' to 0 to indicate a permanent close operation; that is to say, the  program 
has completed file operations on the referenced file. F5' set to 1 requests  a 
partial close operation; that is to say: the system updates the directory, but 
keeps the file in the open state.

System action
If  the referenced FCB contains new information because of  write  operations, 
the system records the new information in the disk directory. If the FCB  does 
not contain new information, the system does not update the directory.

If  the close operation is successful, the system sets registers AL and AH  to 
00h.

If  the  file referenced in the FCB is not in the disk directory,  the  system 
sets register AL to 0FFh, and register AH to 00h.

If a physical or extended error is encountered and the File System Error  Mode 
is  in default mode, the system displays a message identifying the error,  and 
terminates. Otherwise, the system sets register AL to 0FFh, and register AH to 
one of the following physical error codes:

        01: Disk I/O error
        02: Read-Only disk
        04: Invalid drive error

BDOS Function 19: F_DELETE  (Delete File)



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

Entry Parameters:
     Register CL: 19
              DX: FCB Address -- Offset
              DS: FCB Address -- Segment
     Interface Attribute: 
              F5' = 0 --> Standard delete
              F5' = 1 --> Delete only XFCBs
     Password in DMA buffer (if required)

Returned  Values:
     Register AL: Directory Code (0FFh = File not found)
              AH: Physical Error Code (00h = No error)
              BX: Same as AX

Function
The  F_DELETE  system call removes file directory entries  and/or  XFCBs  that 
match the files referenced in the FCB.

Entry conditions
The files to be deleted must be specified in the filename and filetype  fields 
of  the FCB. The filename and filetype can contain ambiguous references;  that 
is  to  say:  question marks ("?") in bytes F1 through T3.  If  the  interface 
attribute  F5' is set to 0, the calling program requests removal of  all  file 
directory  entries belonging to the files specified in the FCB. If F5' is  set 
to 1, then the system is to delete only the XFCBs of the specified files.

If  any  of the files specified are password-protected, the  correct  password 
must  be placed in the first 8 bytes of the current DMA buffer, or  must  have 
been  previously established as the Default Password (see  F_PASSWD  (Function 
106) system call).

System action
For  standard  delete  operations, the system removes  all  directory  entries 
belonging to the specified files in the referenced FCB. All disk and directory 
space  owned  by  the deleted files are returned to  free  space,  and  become 
available for allocation to other files.

Directory  XFCBs  belonging  to the deleted files are also  removed  from  the 
directory.

If  F5' is 1, the system deletes only the directory XFCBs of the files in  the 
referenced FCB.

If the delete operation is successful, the system sets registers AL and AH  to 
00h.

If  the  file referenced in the FCB is not in the disk directory,  the  system 
sets register AL to 0FFh, and register AH to 00h.

For  both delete operations, if any of the files fail the password  check,  or 
are Read-Only, or are currently open by another program, then the system  does 
not delete any files or XFCBs.



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

If a physical or extended error is encountered and the File System Error  Mode 
is  in default mode, the system displays a message identifying the error,  and 
terminates. Otherwise, the system sets register AL to 0FFh, and register AH to 
one of the following physical or extended error codes:

        01: Disk I/O error
        02: Read-Only disk
        03: Read-Only file
        04: Invalid drive error
        07: File password error

BDOS Function 52: F_DMAGET  (Return Address of DMA Buffer)

Entry Parameters:
     Register CL: 52

Returned  Values:
     Register AX: DMA Address -- Offset
              BX: Same as AX
              ES: DMA Address -- Segment

Function
The F_DMAGET system call returns the current DMA buffer offset in register AX, 
and the base segment in register ES.

See  Section  3,  "CP/M-86 Plus file system", for a  description  of  the  DMA 
buffer.

BDOS Function 26: F_DMAOFF  (Set DMA Buffer Offset)

Entry Parameters:
     Register CL: 26
              DX: DMA Address -- Offset

Function
The  F_DMAOFF  system call changes the current DMA buffer  offset  to  another 
offset.

System action
The  system sets the current DMA buffer offset to that specified  in  register 
DX.

See  Section  3,  "CP/M-86 Plus file system", for a  description  of  the  DMA 
buffer.

BDOS Function 51: F_DMASEG  (Set DMA Buffer Segment)

Entry Parameters:
     Register CL: 51
              DX: DMA Address -- Segment



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

Function
The F_DMASEG system call sets the current DMA buffer segment.

System action
The  system sets the current DMA buffer segment to that specified in  register 
DX.

Note: Upon initial program load, the default DMA buffer segment base is set to 
the  address of the program's data segment (the initial value of DS)  and  the 
DMA buffer offset to 0080h, which provides access to the default DMA buffer in 
the Base Page.

See  Section  3,  "CP/M-86 Plus file system", for a  description  of  the  DMA 
buffer.

BDOS Function 45: F_ERRMODE  (Set System Error Mode)

Entry Parameters:
     Register CL: 45
              DL: System Error Mode
                  (0FFh = Return error mode)
                  (0FEh = Return and Display mode)
                  (Any other value = Default mode) (Display and Terminate)

Function
The  F_ERRMODE  system  call determines the system action  when  physical  and 
extended  errors are encountered. See Section 3, "CP/M-86 Plus  file  system", 
for a description of the different Error Modes.

System action
The  system sets the File System Error Mode to that specified in register  DL. 
If  register  DL contains 0FFh, the system sets the Error Mode to  the  Return 
error mode. If DL contains 0FEh, the system sets the Error Mode to the  Return 
and  Display  mode. Otherwise, the system sets the Error Mode to  the  Default 
mode (Display and Terminate).

BDOS Function 22: F_MAKE  (Make File)

Entry Parameters:
     Register CL: 22
              DX: FCB Address -- Offset
              DS: FCB Address -- Segment
     Interface Attribute:
              F6' = 0 --> No password (default)
              F6' = 1 --> Assign password
     Password in DMA buffer (if F6' = 1)

Returned  Values:
     Register AL: 00h (0FFh = Physical or Extended Error)
              AH: Physical or Extended Error Code
                  (00h = No error, or no directory space)
              BX: Same as AX



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

Function
The F_MAKE system call creates a new directory entry for the file specified in 
the FCB for the current user number, and activates the FCB for read and  write 
operations.

Entry conditions
The calling program must have initialized the following fields in the FCB: the 
DR field for the drive, F1 through F8 and T1 through T3 fields specifying  the 
filename and filetype, and the EX field set to 0 for the extent number. The CR 
field, the current record field, must be set to zero if the intent is to write 
sequentially from the beginning of the file.

Interface attribute F6' specifies whether a password is to be assigned to  the 
created file. If F6' is 0, then the system is not to assign a password. If F6' 
is 1, then the calling program must place the password in the first 8 bytes of 
the current DMA buffer, and set byte 9 of the DMA buffer to the password  mode 
(Bit 7: Read mode, Bit 6: Write mode, Bit 5: Delete mode).

System action
The system creates a new directory entry for the specified file in the FCB. It 
also  creates  an  XFCB  for the file, if the  referenced  drive  has  enabled 
password protection, and the calling program has set F6' to 1.

The  system  initializes both the directory FCB and the referenced FCB  to  an 
empty  file. The system also initializes all file attributes to zero. If  date 
and  time  stamping is active on the specified drive, the system  creates  the 
date and time stamps for the file.

If  the F_MAKE function is successful, the system sets registers AL and AH  to 
00h.

If  there is no directory space available for another file entry,  the  system 
sets register AL to 0FFh, and register AH to 00h.

If  the file referenced in the FCB is already in the disk directory, or  if  a 
physical error is detected and the File System Error Mode is in default  mode, 
the  system  displays  a  message  identifying  the  error,  and   terminates. 
Otherwise, the system sets register AL to 0FFh, and register AH to one of  the 
following physical or extended error codes:

        01: Disk I/O error
        02: Read-Only disk
        04: Invalid drive error
        08: File already exists
        09: "?" in the FCB filename or filetype field

BDOS Function 44: F_MULTISEC  (Set Multisector Count)

Entry Parameters:
     Register CL: 44
              DX: 1-128 (Number of Sectors)



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

Returned  Values:
     Register AL: Return Code
              BL: Same as AL

Function
The  F_MULTISEC  system call sets the Multisector Count for  the  system.  The 
Multisector  Count determines the number of 128-byte records that  the  system 
reads  or  writes  with  one  call to  any  of  the  following  system  calls: 
F_READRAND, F_WRITERAND, F_READ, F_WRITE, and F_WRITEZF.

System action
The system sets the Multisector Count to the value in register DL.

Upon return, the system sets register AL to 00h if the value in register DL is 
in the range of 1 to 128. Otherwise, register AL is set to 0FFh.

Note:  The default Multisector Count is 1. See Section 3, "CP/M-86  Plus  file 
system", for a discussion of multisector I/O.

BDOS Function 15: F_OPEN  (Open File)

Entry Parameters:
     Register CL: 15
              DX: FCB Address -- Offset
              DS: FCB Address -- Segment

Returned  Values:
     Register AL: Directory Code (0FFh = File not found, or Physical error)
              AH: Physical Error Code (00h = No error)
              BX: Same as AX

Function
The  F_OPEN  system  call  activates the FCB for the  file  specified  in  the 
referenced FCB for the current user number or user 0.

Entry conditions
The  calling  program sets the DR field, the F1 through F8 and T1  through  T3 
(filename and filetype) fields, and zeroes the EX extent field of the FCB.

If the file specified is password-protected in Read mode, the correct password 
is  placed in the first 8 bytes of the current DMA buffer, or must  have  been 
previously  established as the default password (see the F_PASSWORD  (Function 
106) system call).

The calling program sets the CR field of the FCB to 0FFh to request F_OPEN  to 
return  the last record byte count of the file. F_OPEN returns this  value  in 
the CR field.

System action
The  system  searches the directory for the file specified in  the  referenced 
FCB. If a match is found, the system copies the relevant directory information 
from the matching directory entry into the allocation field of the  referenced 
(memory)  FCB.  The  process of copying the  directory  information  into  the 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

referenced FCB is referred to as "activating" the FCB.

If the current user is non-zero and the file to be opened does not exist under 
the  current user number, the system searches user zero for the file.  If  the 
file exists under user zero and has the system attribute T2' set, the file  is 
opened  under user zero and the system sets interface attribute F8' to  1,  to 
indicate that the file can be accessed only in Read-Only mode.

If  the file is password-protected in Write mode and the correct password  was 
not passed in the DMA buffer or did not match the default password, the system 
sets interface attribute F7' to 1.

Write  operations are not supported for an activated FCB if  either  interface 
attributes  F7' or F8' are set to 1. If the open operation is successful,  the 
system  makes  an  access  date and time stamp for  the  opened  file  if  the 
following  conditions are satisfied: 1) the referenced drive has  a  directory 
label  that request access date and time stamping, and 2) the FCB EX field  is 
zero.

If  the open operation is successful, the system sets registers AL and  AH  to 
00h.

If the file does not exist, the system sets register AL to 0FFh, and  register 
AH to 00h.

If a physical or extended error is encountered and the File System Error  Mode 
is  in default mode, the system displays a message identifying the error,  and 
terminates. Otherwise, the system sets register AL to 0FFh, and register AH to 
one of the following physical or extended error codes:

        01: Disk I/O error
        04: Invalid drive error
        07: File password error
        09: "?" in the FCB filename or filetype field

BDOS Function 152: F_PARSE  (Parse Filename)

Entry Parameters:
     Register CL: 152
              DX: FCB Address -- Offset
              DS: FCB Address -- Segment

Returned  Values:
     Register AX: 0FFFFh = Error, 0000h = End of line or ASCII string
              BX: Same as AX
              CX: Error Code (See Table 6-4)

Function
The  F_PARSE  system call parses an ASCII file specification, and  prepares  a 
File Control Block (FCB) for the file.

Entry conditions
The calling program passes the address of a data structure, called the  "Parse 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

Filename  Control Block" (PFCB), in register DX. The PFCB contains the  offset 
of  the ASCII file specification, followed by the offset of the target FCB  to 
be filled by the system, as shown below:

PFCB:   DW      Ifile           ; Offset of input ASCII filespec
        DW      TFCB            ; Offset of target FCB

The maximum length of the input ASCII filespec to be parsed is 128 bytes.  The 
length of the target FCB must be 36 bytes. The system assumes the input  ASCII 
filespec to be in the following form:

        {d:}filename{.typ}{;password}

where those items enclosed in curly brackets ("{" and "}") are optional.

System action
The  system parses the first file specification it finds in the input  string. 
The  system first eliminates leading blanks and tabs. The system  assumes  the 
file specification ends on the first delimiter it hits that is out of  context 
with the specific field it is parsing. For instance, if it finds a colon (":") 
and  it  is  not the second character of the  file  specification,  the  colon 
delimits  the  whole  file  specification.  The  system  call  recognizes  the 
following characters as delimiters:

        space
        tab
        return
        null
        ;       (semicolon) -- Except before password field
        =       (equal)
        <       (less than)
        >       (greater than)
        .       (period) -- Except after filename and before filetype
        :       (colon) -- Except before filename and after drive
        ,       (comma)
        [       (left  square bracket)
        ]       (right square bracket)
        /       (slant)

If the system reaches a non-graphic character (in the range 1 through 31)  not 
listed above, it treats it as an error.

The system initializes the specified FCB as shown in Table 6-15.

Table 6-15. FCB initialization

Byte    Description
----    -----------
 0      The drive field is set to the specified drive.
        If the drive is not specified, the default value is used.
        0=default, 1=A, 2=B, and so on.

 1-8    The  name is set to the specified filename. Letters are  converted  to 
        uppercase.  If the name is not 8 characters long, the remaining  bytes 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

        in  the filename field are padded with blanks. If the filename has  an 
        asterisk  ("*"), all remaining bytes in the filename field are  filled 
        with question marks ("?"). The system returns an error if the filename 
        is more than 8 bytes long.

 9-11   The  type  is  set  to  the specified  filetype.  If  no  filetype  is 
        specified,  the type field is initialized to blanks. All  letters  are 
        converted to uppercase. If the type is not three characters long,  the 
        remaining  bytes in the filetype field are padded with blanks.  If  an 
        asterisk ("*") occurs, all remaining bytes are filled in with question 
        marks  ("?").  The system returns an error if the type field  is  more 
        than 3 bytes long.

 12-15  Filled in with zeros.

 16-23  The password field is set to the specified password. If no password is 
        specified,  it  is  initialized to blanks. If the password  is  not  8 
        characters  long, remaining bytes are padded with blanks. All  letters 
        are  converted  to  uppercase.  The system returns  an  error  if  the 
        password  field  is  more  than 8 bytes long. A  blank  in  the  first 
        position of the password field implies no password is specified. 

 24-31  Reserved for system use.

If  the  system  encounters an error, it sets all fields that  have  not  been 
parsed to their default values, then returns 0FFFFh in register AX.

On  a  successful parse, the system checks the next item in  the  ASCII  input 
string.  It  skips  over  trailing blanks and tabs,  and  looks  at  the  next 
character.  If  the character is a null character (00h), it  returns  a  0000h 
in AX indicating the end of the ASCII input string. If the next character is a 
delimiter,  it returns the address of the delimiter. If the next character  is 
not a delimiter, it returns the address of the first trailing blank or tab.

If  the  first non-blank or non-tab character in the ASCII input string  is  a 
null  (00h)  or  a Carriage Return (0Dh), the system returns  a  0000h  in  AX 
indicating the end of the string.

If the system is to be used to parse a subsequent filename in the ASCII  input 
string,  the  returned address should be advanced over  the  delimiter  before 
placing it in the PFCB.

BDOS Function 106: F_PASSWD  (Set Default Password)

Entry Parameters:
     Register CL: 106
              DX: Password Address -- Offset
              DS: Password Address -- Segment

Function
The F_PASSWD system call specifies a default password value to be used by  the 
system for password-protected files.



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

System action
The system establishes the default password as the 8-byte field referenced  by 
the Password Address.

When the system accesses a password-protected file, it checks the current  DMA 
buffer and/or the default password for the correct password.

If  either value matches the file's password, the system allows access to  the 
file.

BDOS Function 36: F_RANDREC  (Set Random Record Number)

Entry Parameters:
     Register CL: 36
              DX: FCB Address -- Offset
              DS: FCB Address -- Segment

Returned  Values:
     R0,R1,R2 field in FCB set

Function
The F_RANDREC system call sets the random record number of the next record  to 
be accessed from a file that has been previously accessed sequentially.

System action
The system returns the random record number of the next record to be  accessed 
in the R0, R1, and R2 field of the referenced FCB.

BDOS Function 20: F_READ  (Read Sequential)

Entry Parameters:
     Register CL: 20
              DX: FCB Address -- Offset
              DS: FCB Address -- Segment

Returned  Values:
     Register AL: Return Code
              AH: Physical Error, or Record Count
              BX: Same as AX

Function
The  F_READ  system  call reads the next 1 to 128  logical  records  (128-byte 
records)  from a file into memory, beginning at the current DMA  address.  The 
system  Multisector  Count determines the number of records to  be  read  (see 
Section  3, "CP/M-86 Plus file system"). The Multisector Count defaults  to  1 
record.

Entry conditions
Before  reading a record from a file, the calling program must first  activate 
the  file FCB (using the F_OPEN (Function 15) or F_MAKE (Function  22)  system 
call).  This ensures that the FCB is properly initialized for subsequent  read 
operations.  If the intent is to read sequentially from the beginning  of  the 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

file,  the calling program must set the CR (byte 32) current record  field  of 
the FCB to 00h.

System action
The  system  reads the record specified in the CR field of the  FCB  into  the 
current  DMA buffer address, and automatically increments the CR field to  the 
next  record  position. If the CR field overflows,  the  system  automatically 
opens the next logical extent (16 Kbytes), and resets the CR field to zero  in 
preparation for the next read operation.

If  the  Multisector  Count is greater than one,  the  system  reads  multiple 
consecutive  records  into memory, beginning at the current  DMA  buffer,  and 
automatically increments the CR field of the FCB to read each record.

If the read operation is successful, the system sets register AL to 00h.

If  an error condition is detected, the system sets register AL to one of  the 
following error codes:

        01: Reading unwritten data (end of file)
        09: Invalid FCB
        10: Media change occurred

and  register AH to the number of records successfully read before  the  error 
occurred.  This value can range from 0 to 127, depending on the value  of  the 
Multisector Count. This value is always 0 if the Multisector Count is 1.

If a physical error condition is encountered and the File System Error Mode is 
in  default  mode, the system displays a message identifying  the  error,  and 
terminates. Otherwise, the system sets register AL to 0FFh, and register Ah to 
one of the following physical error codes:

        01: Disk I/O error
        04: Invalid drive error

BDOS Function 33: F_READRAND  (Read Random)

Entry Parameters:
     Register CL: 33
              DX: FCB Address -- Offset
              DS: FCB Address -- Segment

Returned  Values:
     Register AL: Return Code
              AH: Physical Error, or Record Count
              BX: Same as AX

Function
The  F_READRAND system call reads the record whose record number is  indicated 
by the value in the R0,R1,R2 field of the FCB.

Entry conditions
Before  reading  a random record from a file, the calling program  must  first 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

open  the file (using F_OPEN (Function 15) system call) with the EX  field  in 
the  FCB  set to zero. This ensures that the FCB is properly  initialized  for 
subsequent random access operations. The calling program then sets the  record 
number  to  be  read  in the random record field of the  FCB.  This  field  is 
indicated by the 24-bit value constructed from the three-byte (R0,R1,R2) field 
of  the  FCB.  Note  that the sequence of 24 bits is  stored  with  the  least 
significant  byte  first  (R0),  the  middle byte  next  (R1),  and  the  most 
significant  byte  last  (R2). The random record number can range  from  0  to 
262,143.  This  corresponds to a maximum value of 3 in byte R2,  and  255  (or 
0FFh) in both R0 and R1.

System action
The  system  reads the record into the current DMA buffer,  and  automatically 
sets the logical extent and current record values, but (unlike the  sequential 
F_READ  (Function  20)  system  call) the system does  not  increment  the  CR 
(current record) field. Thus, a subsequent F_READRAND system call re-reads the 
same  record.  After  a  random  read  operation,  a  file  can  be   accessed 
sequentially,  starting from the current record position. When switching  from 
random to sequential mode, the last randomly-accessed record is re-read or re-
written.

If  the  Multisector  Count  is greater than  1,  the  system  reads  multiple 
consecutive records into memory, beginning at the current DMA buffer  address, 
and  automatically  increments  the R0,R1,R2 field of the  FCB  to  read  each 
record.  However, upon return to the calling program, the system restores  the 
FCB's random record number to the original requested value.

If  the read operation is successful, the system sets registers AL and  AH  to 
00h.

If  an error condition is detected, the system sets register AH to one of  the 
following error codes:

        01: Reading unwritten data (end of file)
        03: Cannot close current extent
        04: Seek to unwritten extent
        06: Random record number out of range
        10: Media change occurred

and  register AH to the number of records successfully read before  the  error 
occurred.  This value can range from 0 to 127, depending on the value  of  the 
Multisector Count. This value is always 0 if the Multisector Count is 1.

If  a  physical  error is encountered and the File System  Error  Mode  is  in 
default  mode,  the  system  displays a message  identifying  the  error,  and 
terminates. Otherwise, the system sets register AL to 0FFh, and register AH to 
one of the following error codes:

        01: Disk I/O error
        04: Invalid drive error

BDOS Function 23: F_RENAME  (Rename File)



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

Entry Parameters:
     Register CL: 23
              DX: FCB Address -- Offset
              DS: FCB Address -- Segment
     Bytes  0-16 of FCB: Old filename
     Bytes 17-27 of FCB: New filename
     Bytes  0-7  of DMA: Password (if required)

Returned  Values:
     Register AL: 00h = No error, 0FFh = File not found, or Physical Error
              AH: Physical or Extended Error Code (00h = No error)
              BX: Same as AX

Function
The F_RENAME system call changes the filename and filetype of a disk's file.

Entry conditions
The calling program sets the DR drive field, filename, and filetype fields  of 
the  referenced  FCB  to  specify  the  old  filename,  and  bytes  17  to  27 
(corresponding  to  bytes 1 to 11) to specify the new filename.  If  the  file 
specified  is password-protected, the correct password must be placed  in  the 
first  8  bytes  of  the current DMA buffer,  or  must  have  been  previously 
established  as the default password (see the F_PASSWD (Function  106)  system 
call).

System action
The system changes all directory entries of the file specified by the first 16 
bytes  of the referenced FCB to the file specification in the second 16  bytes 
of  the  FCB. The system uses byte 0 to select the  drive.  The  corresponding 
drive code at byte 16 is ignored.

If the rename operation is successful, the system sets registers AL and AH  to 
00h.

If the file does not exist, the system sets register AL to 0FFh, and  register 
AH to 00h.

If  a physical or extended error occurs and the File System Error Mode  is  in 
default  mode,  the  system  displays a message  identifying  the  error,  and 
terminates. Otherwise, the system sets register AL to 0FFh, and register AH to 
one of the following physical or extended error codes:

        01: Disk I/O error
        02: Read-Only disk
        03: Read-Only file
        04: Invalid drive error
        07: File password error
        08: File already exists
        09: "?" in the FCB filename or filetype field

BDOS Function 116: F_SETDATE  (Set File Stamps)

Entry Parameters:



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

     Register CL: 116
              DX: FCB Address -- Offset
              DS: FCB Address -- Segment
     Time-Date stamp in DMA Buffer

Returned  Values:
     Register AL: Return Code
              AH: Physical Error
              BX: Same as AX

Function
The  F_SETDATE  system call sets the time and the date stamp  fields  for  the 
specified  file  to the time and date stamp values specified in  the  first  8 
bytes  of the DMA buffer. The specified file must currently be open in  Locked 
mode by the calling process.

(ROCHE>  I *think* that those 8 bytes are the same as the first 8 bytes of  an 
SFCB, that is to say:

        Bytes 0 to 3: Create/Access stamp
        Bytes 4 to 7: Update stamp

Where each stamp has the DAT format:

        Byte 0 and 1: Date field
        Byte 2: Hour field
        Byte 3: Minute field
        (There is no Seconds field.) )

BDOS Function 17: F_SFIRST  (Search for First)

Entry Parameters:
     Register CL: 17
              DX: FCB Address -- Offset
              DS: FCB Address -- Segment

Returned  Values:
     Register AL: Directory Code (0FFh = File not found, or Physical Error)
              AH: Physical or Extended Error Code (00h = No error)
              BX: Same as AX

Function
The  F_SFIRST  system  call  scans the directory for a  match  with  the  file 
specified in the FCB.

Entry conditions
The  calling  program must set the DR drive field, the F1 through  F8  and  T1 
through  T3  (filename and filetype) fields, and the EX extent  field  of  the 
referenced FCB. The EX field must be set to 00h.

An  ambiguous  file reference can be specified in the FCB by a  question  mark 
("?")  in  any  of the bytes F1 through F8 and T1 through T3  in  the  FCB.  A 
question  mark  matches  all entries in the  directory  in  the  corresponding 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

position. This type of file reference is called an "ambiguous file reference", 
and can be used to search for multiple files in the directory.

If  the  DR field of the referenced FCB is set to a question mark  ("?"),  the 
system locates the first directory entry residing on the current default drive 
for any user number. If the DR field is set to a drive code, the system  scans 
for  the first matching file entry in the specified directory that belongs  to 
the current user number.

System action
The  system  locates the first directory entry that matches the entry  in  the 
referenced FCB. It also initializes the F_SNEXT (Function 18) system call,  in 
case the calling program wants to locate subsequent matching entries.

If  the  search is successful, that is to say: a match is  found,  the  system 
returns  a Directory Code in register AL with the value 0 to 3, and fills  the 
buffer  at  the current DMA address with the record containing  the  directory 
entry,  and  its  relative starting position is AL  times  32.  The  directory 
information can be extracted from the buffer at this position.

If  the  search  is not successful (the file is not found),  the  system  sets 
register AL to 0FFh, and register AH to 00h.

If  a  physical  error is encountered and the File System  Error  Mode  is  in 
default  mode,  the  system  displays a message  identifying  the  error,  and 
terminates. Otherwise, the system sets register AL to 0FFh, and register AH to 
one of the following physical error codes:

        01: Disk I/O error
        04: Invalid drive error

BDOS Function 35: F_SIZE  (Compute File Size)

Entry Parameters:
     Register CL: 35
              DX: FCB Address -- Offset
              DS: FCB Address -- Segment

Returned  Values:
     Register AL:  00h = File was found,
                  0FFh = File not found, or Physical Error
              AH: Physical or Extended Error Code (00h = No error)
              BX: Same as AX
     R0,R1,R2 field of FCB: File size

Function
The F_SIZE system call determines the virtual file size of the file  specified 
in  the  referenced  FCB.  This is the  position  of  the  record  immediately 
following  the  end  of the file. The virtual file  size  corresponds  to  the 
physical file size if the file is written sequentially. If the file is written 
in random mode, gaps might exist in the allocation, and the file might contain 
fewer  records than the indicated size. For example, if a single  record  with 
record number 262,143 is written to a file using the F_WRITERAND (Function 33) 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

system  call,  the virtual size of the file is 262,144, even though  only  one 
data block is allocated to the file.

Entry conditions
The  calling  program sets the DR drive field, and the filename  and  filetype 
fields of the referenced FCB.

System action
The  system sets R0,R1,R2 (the random record number) field of the FCB  to  the 
Random Record Number + 1 of the last record of the file. Note that, if the  R2 
byte  is  set to 04h, and R0 and R1 are both 00h, then the file  contains  the 
maximum record count: 262,144.

Note:  A program can append data to the end of an existing file by  using  the 
F_SIZE system call to set the random record number position to the end of  the 
file, then performing a sequence of random writes.

The  file need not be open in order to use F_SIZE. However, if data  has  been 
written to the file, the file must be closed before calling F_SIZE. Otherwise, 
an incorrect file size might be returned by the system.

If  the F_SIZE function is successful, the system sets registers AL and AH  to 
00h.

If the file does not exist, the system sets register AL to 0FFh, and  register 
AH to 00h.

If a physical or extended error is encountered and the File System Error  Mode 
is  in default mode, the system displays a message identifying the error,  and 
terminates. Otherwise, the system sets register AL to 0FFh, and register AH to 
one of the following physical or extended error codes:

        01: Disk I/O error
        04: Invalid drive error
        09: "?" in the FCB filename or filetype field

BDOS Function 18: F_SNEXT  (Search for Next)

Entry Parameters:
     Register CL: 18

Returned  Values:
     Register AL: Directory Code (0FFh = File not found, or Physical Error)
              AH: Physical or Extended Error Code (00h = No error)
              BX: Same as AX

Function
The  F_SNEXT  system  call continues the scan of the directory  for  the  file 
specified in the FCB.

Entry conditions
The calling program must have previously executed an F_SFIRST (Function 17) or 
a  previous F_SNEXT system call with no other intervening disk-related  system 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

calls.

System action
The  system  locates the next directory entry of the file  referenced  in  the 
specified  FCB,  and  returns  to the calling program,  as  described  in  the 
F_SFIRST system call explanation.

BDOS Function 102: F_TIMEDATE  (Read File Date Stamps and Password Mode)

Entry Parameters:
     Register CL: 102
              DX: FCB Address -- Offset
              DS: FCB Address -- Segment

Returned  Values:
     Register AL: 00h = No error, 0FFh = Physical Error
              AH: Physical Error Code
              BX: Same as AX

Function
The  F_TIMEDATE  system call returns the date and time stamp  information  and 
password mode for the specified file in byte 12 and bytes 24 through 32 of the 
referenced FCB.

System action
If  the specified file is found, the system sets the following fields  in  the 
referenced FCB:

        Byte 12: Password Mode field
                 Bit 7: Read mode
                 Bit 6: Write mode
                 Bit 5: Delete mode

Byte 12 equal to zero indicates the file has not been assigned a password.

        Bytes 24 to 27: Create (or Access) time stamp field
        Bytes 28 to 31: Update time stamp field

The  time stamp fields are set to binary zeroes if a stamp has not been  made. 
The format of the time stamp fields is the same as the format of the date  and 
time structure described in the T_SET (Function 104) and T_GET (Function  105) 
system calls.

If the system finds the specified file in the directory, it sets registers  AL 
and AH to 00h. If the specified file is not found, the system sets register AL 
to 0FFh, and register AH to 00h.

If a physical or extended error is encountered and the File System Error  Mode 
is  in default mode, the system displays a message identifying the error,  and 
terminates. Otherwise, the system sets register AL to 0FFh, and register AH to 
one of the following physical or extended error codes:

        01: Disk I/O error



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

        04: Invalid drive error
        09: "?" in the FCB filename or filetype field

BDOS Function 99: F_TRUNCATE  (Truncate File)

Entry Parameters:
     Register CL: 99
              DX: FCB Address -- Offset
              DS: FCB Address -- Segment

Returned  Values:
     Register AL:  00h = File was found
                  0FFh = File not found, or Physical Error
              AH: Physical or Extended Error Code (00h = No error)
              BX: Same as AX

Function
The F_TRUNCATE system call sets the last record of a file to the random record 
number specified in the referenced FCB.

Entry conditions
The calling program sets the DR drive field, the filename and filetype  fields 
of  the referenced FCB to specify the file to be truncated, and R0,R1,R2  (the 
random record number) of the FCB to the record number to which the file is  to 
be truncated.

If  the  file specified is password-protected, the correct  password  must  be 
placed in the first 8 bytes of the current DMA buffer, or have been previously 
established  as the default password (see the F_PASSWD (Function  106)  system 
call).

F_TRUNCATE requires that the file specified in the FCB be closed.

Also,  the  random  record number field must specify a  value  less  than  the 
current file size. In addition, if the file is sparse, the random record field 
must specify a record in a region of the file to which data has actually  been 
written.

System action
The  system  sets the last record number of the specified file to  the  random 
record number in the referenced FCB.

If the F_TRUNCATE function is successful, the system sets registers AL and  AH 
to 00h.

If the file does not exist, the system sets register AL to 0FFh, and  register 
AH to 00h.

If a physical or extended error is encountered and the File System Error  Mode 
is  in default mode, the system displays a message identifying the error,  and 
terminates. Otherwise, the system sets register AL to 0FFh, and register AH to 
one of the following physical or extended error codes:



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

        01: Disk I/O error
        02: Read-Only disk
        03: Read-Only file
        04: Invalid drive error
        07: File password error
        09: "?" in the FCB filename or filetype field

BDOS Function 32: F_USERNUM  (Set/Get User Number)

Entry Parameters:
     Register CL: 32
              DL: User Number (Set), or
                  0FFh (Get User Number)

Returned  Values:
     Register AL: Current User Number (if Get)
              BL: Same as AL

Function
The F_USERNUM system call returns the Current User Number, or sets the current 
user number.

System action
The  system  returns the Current User Number in register AL if register  DL  = 
0FFh.  Otherwise,  the  system  sets the Current  User  Number  to  the  value 
specified in register DL (modulo 16). The Current User Number can range from 0 
to 15.

BDOS Function 21: F_WRITE  (Write Sequential)

Entry Parameters:
     Register CL: 21
              DX: FCB Address -- Offset
              DS: FCB Address -- Segment

Returned  Values:
     Register AL: Return Code
              AH: Physical Error, or Record Count
              BX: Same as AX

Function
The F_WRITE system call writes 1 to 128 128-byte records to a file from memory 
beginning  at  the current DMA buffer address. The  system  Multisector  Count 
determines  the number of records to be written (see Section 3, "CP/M-86  Plus 
file system"). The Multisector Count defaults to 1 record.

Entry conditions
Before writing a record to a file, the calling program must first activate the 
file FCB (using F_OPEN (Function 15) or F_MAKE (Function 22) system call) with 
the  EX  (extent) field in the FCB set to 00h. This ensures that  the  FCB  is 
properly  initialized  for subsequent write operations. If the  intent  is  to 
write  sequentially from the beginning of the file, the calling  program  must 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

set the CR field of the FCB to 00h.

System action
The  system  writes the record specified in the CR field of the FCB  from  the 
current  DMA buffer address, and automatically increments the CR field to  the 
next record position. If the CR field overflows, then the system automatically 
opens the next logical extent, and resets the CR field to 00h, in  preparation 
for the next write operation.

If  the write operation is successful, the system sets registers AL and AH  to 
00h.

If  an error condition is detected, the system sets register AL to one of  the 
following error codes:

        01: No available directory space
        02: No available data block
        09: Invalid FCB
        10: Media change occurred

and  register AH to the number of records successfully read before  the  error 
occurred.  This value can range from 0 to 127, depending on the value  of  the 
Multisector Count. This value is always 0 if the Multisector Count is 1.

If a physical error condition is encountered and the File System Error Mode is 
in  default  mode, the system displays a message identifying  the  error,  and 
terminates. Otherwise, the system sets register AL to 0FFh, and register AH to 
one of the following physical or extended error codes:

        01: Disk I/O error
        02: Read-Only disk
        03: Read-Only file
            or File open from user 0 when the current user number is non-zero
            or File password-protected in Write mode
        04: Invalid drive error

BDOS Function 34: F_WRITERAND  (Write Random)

Entry Parameters:
     Register CL: 34
              DX: FCB Address -- Offset
              DS: FCB Address -- Segment

Returned  Values:
     Register AL: Return Code
              AH: Physical Error, or Record Count
              BX: Same as AX

Function
The F_WRITERAND system call writes the record whose record number is indicated 
by the values in the R0,R1,R2 (random record) field of the FCB.

Entry conditions



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

Before  writing  a  random record to a file, the calling  program  must  first 
activate  the  file FCB (using F_OPEN (Function 15) or  F_MAKE  (Function  22) 
system  call),  with the EX extent field in the FCB set to 00h.  This  ensures 
that the FCB is properly initialized for subsequent random access  operations. 
The  calling program then sets the record number to be written in  the  random 
record  field  of  the  FCB.  This field is  indicated  by  the  24-bit  value 
constructed  from the three-byte (R0,R1,R2) field beginning at position 33  of 
the  FCB.  Note  that  the  sequence of 24  bits  is  stored  with  the  least 
significant  byte  first  (R0),  the  middle byte  next  (R1),  and  the  most 
significant  byte  last  (R2). The random record number can range  from  0  to 
262,143.  This  corresponds to a maximum value of 3 in byte R2,  and  0FFh  in 
bytes R0 and R1.

System action
The  system  writes  the  record from the  current  DMA  buffer  address,  and 
automatically  sets the logical extent and current record values, but  (unlike 
the  sequential F_WRITE (Function 22) function) the system does not  increment 
the  CR  (current  record) field of the FCB. Thus,  a  subsequent  F_WRITERAND 
system call rewrites the same record.

After a random write operation, a file can be accessed sequentially,  starting 
from  the current record position. However, the last randomly-accessed  record 
is rewritten when switching from random to sequential mode.

If  the write operation is successful, the system sets registers AL and AH  to 
00h.

If  an error condition is detected, the system sets register AL to one of  the 
following error codes:

        02: No available data block
        03: Cannot close current extent
        05: No available directory space
        06: Random record number out of range
        10: Media change occurred

and  register AH to the number of records successfully read before  the  error 
occurred.  This value can range from 0 to 127, depending on the value  of  the 
Multisector Count. This value is always 0 if the Multisector Count is 1.

If  a  physical  error is encountered and the File System  Error  Mode  is  in 
default  mode,  the  system  displays a message  identifying  the  error,  and 
terminates. Otherwise, the system sets register AL to 0FFh, and register AH to 
one of the following physical or extended error codes:

        01: Disk I/O error
        02: Read-Only disk
        03: Read-Only file
            or File open from user 0 when the current user number is non-zero
            or File password-protected in Write mode
        04: Invalid drive error

BDOS Function 103: F_WRITEXFCB  (Write File XFCB)



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

Entry Parameters:
     Register CL: 103
              DX: FCB Address -- Offset
              DS: FCB Address -- Segment

Returned  Values:
     Register AL: Return Code
              AH: Physical Error, or Record Count
              BX: Same as AX

Function
The  F_WRITEXFCB system call creates a new XFCB, or updates the existing  XFCB 
for the specified file.

Entry conditions
The  calling  program  sets the DR (drive) field, the F1  through  F8  and  T1 
through T3 (filename and filetype) fields in the referenced FCB, and sets  the 
EX field of the FCB to specify the password mode and whether a new password is 
to be assigned to the file. The following bits are defined for the EX field in 
the FCB:

        Byte 12: Password Mode field
                 Bit 7: Read mode
                 Bit 6: Write mode
                 Bit 5: Delete mode
                 Bit 0: Assign new password to the file

If  the specified file is currently password-protected, the  correct  password 
must  reside  in  the first 8 bytes of the current DMA buffer,  or  have  been 
previously  established  as the default password (see the  F_PASSWD  (Function 
106)  system call). If bit 0 is set to 1, the new password must reside in  the 
second 8 bytes of the current DMA buffer.

System action
The system creates a new XFCB, or updates the existing XFCB, for the specified 
file  with  the  Password Mode as set in byte 12 of  the  referenced  FCB.  If 
requested, the system assigns a new password to the file.

If  the F_WRITEXFCB operation is successful, the system sets registers AL  and 
AH to 00h.

If no directory label exists for the specified drive, or the file specified is 
not found, or no more space exists in the directory for the XFCB, or passwords 
are  not  enabled  for the drive, the system sets register  AL  to  0FFh,  and 
register AH to 00h.

If a physical or extended error is encountered and the File System Error  Mode 
is  in default mode, the system displays a message identifying the error,  and 
terminates. Otherwise, the system sets register AL to 0FFh, and register AH to 
one of the following physical or extended error codes:

        01: Disk I/O error
        02: Read-Only disk



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

        04: Invalid drive error
        07: File password error
        09: "?" in the FCB filename or filetype field

BDOS Function 40: F_WRITEZF  (Write Random with Zero Fill)

Entry Parameters:
     Register CL: 40
              DX: FCB Address -- Offset
              DS: FCB Address -- Segment

Returned  Values:
     Register AL: Return Code
              AH: Physical Error, or Record Count
              BX: Same as AX

Function
The F_WRITEZF system call is identical to the F_WRITERAND (Function 34) system 
call,  except  that F_WRITEZF fills a previously unallocated data  block  with 
zeroes before writing the record. These zero-filled records identify unwritten 
random  records.  When using the F_WRITERAND (Function 34)  system  call,  the 
unwritten random records in allocated data blocks contain uninitialized data.

List device I/O system calls
----------------------------

The list device I/O pertains to functions operating on the system list  device 
LST:.  Table  6-16 lists all the list device system calls  discussed  in  this 
section.

Table 6-16. List device I/O system calls

Mnemonic     Function   Description
--------     --------   -----------
L_WRITE          5      Write a character to LST:
L_WRITEBLK     112      Write a block of characters to LST:

BDOS Function 5: L_WRITE  (List Output)

Entry Parameters:
     Register CL: 5
              DL: Character

Function
The L_WRITE system call sends the character in DL to the list device LST:.

System action
The system sends the character in DL to the list device LST:.

If the device is not ready, the system waits for the device to be ready.



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

BDOS Function 112: L_WRITEBLK  (List Block)

Entry Parameters:
     Register CL: 112
              DX: CHCB Address -- Offset
              DS: CHCB Address -- Segment

Function
The  L_WRITEBLK  system  call sends the character  string  referenced  by  the 
CHaracter Control Block (CHCB) to the list device LST:.

The CHCB format is the following:

        Bytes 0 and 1: Offset  of character string
        Bytes 2 and 3: Segment of character string
        Bytes 4 and 5: Length  of character string (word value)

Memory management system calls
------------------------------

The memory management system calls allocate and free memory segments. Table 6-
17 lists all the memory management system calls described in this section.

Table 6-17. Memory management system calls

Mnemonic     Function   Description
--------     --------   -----------
MC_ABSALLOC     56      Allocate absolute exact memory
MC_ABSMAX       54      Allocate absolute maximum memory
MC_ALLFREE      58      Free all memory
MC_ALLOC        55      Allocate exact amount of memory
MC_FREE         57      Free memory
MC_MAX          53      Allocate maximum memory

The  MC_ memory management system calls use the Memory Control Block (MCB)  to 
pass  parameters  to  and from the operating system. The  MCB  is  defined  as 
follows:

MCB_Segment     EQU     WORD PTR 0      ; Start  of memory allocation
MCB_Length      EQU     WORD PTR 2      ; Length of memory allocation
MCB_Ext         EQU     BYTE PTR 4      ; Returned byte value,
                                        ;   defined with each function.

BDOS Function 56: MC_ABSALLOC  (Allocate Absolute Exact Memory)

Entry Parameters:
     Register CL: 56
              DX: MCB Address -- Offset
              DS: MCB Address -- Segment
     MCB_Segment: Paragraph address
     MCB_Length : Number of paragraphs to be allocated
     MCB_Ext    : 02h if region is to remain allocated



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

                      after program terminates.

Returned  Values:
     Register AX: 0000h = Successful, 0FFFFh = Not successful
              BX: Same as AX
              CX: Error Code  (See Table 6-4)
     MCB_Segment: Base of allocated memory
     MCB_Length : Number of paragraphs allocated
     MBC_Ext    : 00h if no additional memory available
                  01h if additional memory available

Function
The MC_ABSALLOC system call allocates memory area at the address specified  by 
MCB_Segment for the number of paragraphs specified by MCB_Length.

Entry conditions
The  calling program sets MCB_Segment to the base address of the paragraph  at 
which  the  allocated  region is to start, and MCB_Length  to  the  number  of 
paragraphs to be allocated. The program also sets MCB_Ext to 02h if the region 
is to remain allocated after the program terminates.

System action
The  system allocates a memory area that starts at the base address  specified 
by  MCB_Segment. The size of the memory area is specified by  MCB_Length.  The 
system sets MCB_Ext to 00h if no additional memory is available, or to 01h  if 
additional memory is available.

If  the  allocation  is  successful, the system sets  register  AX  to  0000h. 
Otherwise, it sets register AX to 0FFFFh.

BDOS Function 54: MC_ABSMAX  (Allocate Absolute Maximum Memory)

Entry Parameters:
     Register CL: 54
              DX: MCB Address -- Offset
              DS: MCB Address -- Segment
     MCB_Segment: Paragraph address
     MCB_Length : Number of paragraphs to allocate
     MCB_Ext    : 02h if region is to remain allocated
                      after program terminates.

Returned  Values:
     Register AX: 0000h = Successful, 0FFFFh = Not successful
              BX: Same as AX
              CX: Error Code  (See Table 6-4)
     MCB_Segment: Base of allocated memory
     MCB_Length : Number of paragraphs allocated
     MCB_Ext    : 00h if no additional memory available
                  01h if additional memory available

Function
The  MC_ABSMAX  system  call  allocates the largest  possible  region  at  the 
absolute  paragraph  boundary  specified  by  MCB_Segment  for  a  maximum  of 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

MCB_Length.

Entry conditions
The  calling  program  sets  MCB_Segment to the  paragraph  address  at  which 
allocation is to begin, and MCB_Length to the maximum number of paragraphs  to 
be  allocated.  The  program sets MCB_Ext to 02h if the region  is  to  remain 
allocated after the program terminates.

System action
The  system sets MCB_Segment to the base address of the allocated memory,  and 
MCB_Length  to  the number of paragraphs allocated, and MCB_Ext to 00h  if  no 
additional memory is available, or to 01h if additional memory is available.

If  the  allocation  is  successful, the system sets  register  AX  to  0000h. 
Otherwise, it sets AX to 0FFFFh.

BDOS Function 58: MC_ALLFREE  (Free All Memory)

Entry Parameters:
     Register CL: 58

Function
The  MC_ALLFREE  system call is included for compatibility  only  with  CPM-86 
Versions  1.0  and 1.1. You are referred to documentation  provided  for  that 
system for description of this function. This function might not be  supported 
in future releases of the operating system.

(ROCHE>  The "documentation" is only the following sentence: "Function  58  is 
used  to release all memory in the CP/M-86 environment (normally used only  by 
the CCP upon initialization).")

BDOS Function 55: MC_ALLOC  (Allocate Exact Amount of Memory)

Entry Parameters:
     Register CL: 55
              DX: MCB Address -- Offset
              DS: MCB Address -- Segment
     MCB_Length : Number of paragraphs to be allocated
     MCB_Ext    : 02h if region is to remain allocated
                      after program terminates.

Returned  Values:
     Register AX: 0000h = Successful, 0FFFFh = Not successful
              BX: Same as AX
              CX: Error Code  (See Table 6-4)
     MCB_Segment: Base of allocated memory
     MCB_Length : Number of paragraphs allocated
     MCB_Ext    : 00h if no additional memory available
                  01h if additional memory available

Function
The MC_ALLOC system call allocates memory area specified by MCB_Length.



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

Entry conditions
The  calling  program  sets  MCB_Length to the  number  of  paragraphs  to  be 
allocated, and sets MCB_Ext to 02h if the region is to remain allocated  after 
the program terminates.

System action
The  system  sets  MCB_Segment to the base address of  the  allocated  memory, 
MCB_Length  to  the number of paragraphs allocated, and MCB_Ext to 00h  if  no 
additional memory is available, or to 01h if additional memory is available.

If  the  allocation  is  successful, the system sets  register  AX  to  0000h. 
Otherwise, it sets AX to 0FFFFh.

BDOS Function 57: MC_FREE  (Free Memory)

Entry Parameters:
     Register CL: 57
              DX: MCB Address -- Offset
              DS: MCB Address -- Segment
     MCB_Segment: Start of allocated memory
     MCB_Length : Number of paragraphs allocated
     MCB_Ext    :  00h = Free this allocation
                  0FFh = Free all memory allocated to the program

Returned  Values:
     Register AX: 0000h = Successful, 0FFFFh = Not successful
              BX: Same as AX
              CX: Error Code  (See Table 6-4)
     MCB_Segment: Base of allocated memory
     MCB_Length : Number of paragraphs allocated

Function
The MC_FREE system call frees the specified allocated memory to the end of the 
allocated segment that includes the specified paragraph.

Entry conditions
The calling program sets MCB_Segment to the paragraph address of the memory to 
be released.

System action
The  system  releases  memory  starting  at  the  address  specified  in   the 
MCB_Segment  to the end of the previously allocated segment that contains  the 
specified paragraph.

If  the  allocation  is  successful, the system sets  register  AX  to  0000h. 
Otherwise, it sets AX to 0FFFFh.

Note:  Either  an entire allocated region must be released, or the  end  of  a 
region can be released; the middle section of a region cannot be released.

BDOS Function 53: MC_MAX  (Allocate Maximum Memory)



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

Entry Parameters:
     Register CL: 53
              DX: MCB Address -- Offset
              DS: MCB Address -- Segment
     MCB_Length : Number of paragraphs to be allocated
     MCB_Ext    : 02h if region is to remain allocated
                      after program terminates.

Returned  Values:
     Register AX: 0000h = Successful, 0FFFFh = Not successful
              BX: Same as AX
              CX: Error Code  (See Table 6-4)
     MCB_Segment: Base of allocated memory
     MCB_Length : Number of paragraphs allocated
     MCB_Ext    : 00h if no additional memory available
                  01h if additional memory available

Function
The  MC_MAX  system call allocates the largest available memory area  that  is 
less than or equal to the length specified by MCB_Segment.

Entry conditions
The  calling  program  sets  MCB_Length to the  number  of  paragraphs  to  be 
allocated.  It also sets MCB_Ext to 02h if the region is to  remain  allocated 
after the program terminates.

System action
The  system allocates the largest available memory area that is less  than  or 
equal to the length specified by MCB_Length.

The  system  sets  MCB_Segment to the base address  of  the  allocated  memory 
region,  and sets MCB_Ext to 00h if no additional memory is available,  or  to 
01h if additional memory is available.

If  the  allocation  is  successful, the system sets  register  AX  to  0000h. 
Otherwise, it sets AX to 0FFFFh.

Program execution system calls
------------------------------

All  system  calls  described  in this section pertain  to  program  load  and 
execution,  and  program termination. Table 6-18 summarizes the  functions  in 
this section.

Table 6-18. Program execution system calls

Mnemonic     Function   Description
--------     --------   -----------
P_CHAIN         47      Chain to next program
P_CODE         108      Set program return code
P_DELAY        141      Delay program
P_DISPATCH     142      Relinquish processor



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

P_LOAD          59      Load CMD or RSX module
P_RSX           60      Call Resident System Extension
P_TERM         143      Terminate calling program
P_TERMCPM        0      Terminate calling program

BDOS Function 47: P_CHAIN  (Chain to Program)

Entry Parameters:
     Register CL: 47
      DMA Buffer: Command Line

Returned  Values:
     Register AX: 0FFFFh = No CMD file
              BX: Same as AX
              CX: Error Code  (See Table 6-4)

Function
The  P_CHAIN system call provide a means of chaining from one program  to  the 
next without operator intervention.

Entry conditions
The  calling program places a command line terminated by a null byte (00h)  in 
the default DMA buffer.

System action
The  system searches for the file under the Current User Number and user 0  on 
the default drive. If the system does not find the file, it sets AX to 0FFFFh, 
and returns to the calling program.

If  the system finds the file, it releases the calling program's memory  area, 
and  tries  to  load  the file. If the memory required for  the  file  is  not 
available  to  load  the chained program, the system  terminates  the  calling 
program. If the program is running in the foreground, the system also displays 
a message on the console.

If  the  load  operation is successful, the system transfers  control  to  the 
program.

Note:  The  P_CODE  system call can be used to pass a two-byte  value  to  the 
chained program.

BDOS Function 108: P_CODE  (Get/Set Program Return Code)

Entry Parameters:
     Register CL: 108
              DX: Program Return Code (Set), or 0FFFFh (Get)

Returned  Values:
     Register AX: Program Return Code (Get)
              BX: Same as AX

Function



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

The P_CODE system call sets or returns the Program Return Code.

Entry conditions
The  calling program sets register DX to 0FFFFh if the request is to  get  the 
Program Return Code. Otherwise, the request is to set the Program Return  Code 
to the value in register DX.

System action
If register DX = 0FFFFh, the system returns the current Program Return Code in 
register  AX. Otherwise, the system sets the Program Return Code to the  value 
passed by the calling program in register DX.

The P_CODE system call provides a mechanism for programs to pass an error code 
or  a value to a subsequent command. Program Return Codes can also be used  by 
programs  to  pass an error code or value to a chained  program  (see  P_CHAIN 
(Function 47) system call).

A  program can set or interrogate the Program Return Code by using the  P_CODE 
system call. If register DX = 0FFFFh, then the current Program Return Code  is 
returned in register AX. Otherwise, P_CODE sets the Program Return Code to the 
value in register DX. Table 6-19 defines Program Return Codes.

Table 6-19. Program Return Codes

Code (Hex)      Meaning
---------       -------
0000-FEFF       Successful return
FF00-FFFE       Unsuccessful return
0000            The  operating system initializes the Program Return  Code  to 
                0000h, unless the program is loaded as the result of a P_CHAIN 
                (Function 47) system call from a previous transient program.
FF80-FFFC       Reserved
FFFD            The program is terminated because of a fatal system error.
FFFE            The program is terminated by the system because the user typed 
                a Ctrl-C.

BDOS Function 141: P_DELAY  (Delay Program for Specified ticks)

Entry Parameters:
     Register CL: 141
              DX: Number of ticks to delay

Returned  Values:
     Register AX: 0000h = Delay supported, 0FFFFh = Delay not supported
              BX: Same as AX

Function
The  P_DELAY  system  call  provides  a  means  of  delaying  a  program   and 
relinquishing the processor during the delay interval.

Entry conditions
The calling program specifies the number of system ticks. The number of  ticks 
per second can be determined via an S_SYSVAR (Function 49) system call. (It is 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

normally  50  ticks  per  second in Europe, 60 in the  USA.)  Control  is  not 
returned to the calling program until the specified interval has occurred.

If  the implementation of CP/M-86 Plus does not support the system tick,  then 
P_DELAY returns an error.

(ROCHE>  The  "Concurrent  CP/M 3.1 Programmer's Guide"  gives  the  following 
explanation:

The P_DELAY system call causes the calling process to wait until the specified 
number  of  system  ticks has occurred. The P_DELAY  system  call  avoids  the 
necessity of programmed delay loops. It allows other processes to use the  CPU 
resource, while the calling process waits.

The  length  of the system tick varies among installations. A  typical  system 
tick  is 60 Hz (16.67 milliseconds) in the USA. In Europe, it is likely to  be 
50  Hz (20 milliseconds). The exact length of the system tick can be  obtained 
by  reading  the TICKS/SEC value from the System Data Segment  (refer  to  the 
S_SYSDAT system call).

There  is up to one tick of uncertainty in the exact amount of  time  delayed. 
This  is due to the P_DELAY system call being called asynchronously  from  the 
actual  time base. The P_DELAY system call is guaranteed to delay the  calling 
process  at  least the number of ticks specified. However,  when  the  calling 
process  is rescheduled to run, it might wait quite a bit longer if there  are 
higher  priority  processes waiting to run. The P_DELAY system  call  is  used 
primarily  by  programs  that need to wait specific amounts of  time  for  I/O 
events  to  occur. Under these conditions, the calling process usually  has  a 
very high priority level. If a process with a high priority calls the  P_DELAY 
system call, the actual delay is typically within a system tick of the  amount 
of time wanted.)

BDOS Function 142: P_DISPATCH  (Relinquish Processor)

Entry Parameters:
     Register CL: 142

Returned  Values:
     Register AX: 0000h = Control returned Ok, 0FFFFh = Dispatch not supported

Function
The P_DISPATCH system call provides a means of relinquishing the processor  to 
other  running programs. All running programs are given the  appropriate  time 
ratio  (set  by  the CP/M-86 Plus built-in command  FORE)  before  control  is 
returned to the calling program.

BDOS Function  59: P_LOAD  (Load CMD or RSX)

Entry Parameters:
     Register CL: 59
              DX: FCB Address -- Offset
              DS: FCB Address -- Segment



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

Returned  Values:
     Register AX: Base Page address (0FFFFh = Error)
              BX: Same as AX
              CX: Error Code  (See Table 6-4)

Function
The P_LOAD system call loads a CMD file or an RSX file into memory.

Entry conditions
The  calling  program  must  have successfully opened  the  CMD  or  RSX  file 
specified in the referenced FCB.

System action
The system loads the CMD module, and sets both registers AX and BX to the Base 
Page address for the loaded program. It does not call the loaded program.

If  the  file Header Record indicates an RSX only, the system  loads  the  RSX 
module, and sets both registers AX and BX to 0000h.

If  the memory required to load the program is not available, or if  an  error 
occurs  while  reading the file, the system sets register AX  to  0FFFFh,  and 
returns.

BDOS Function 60: P_RSX  (Call Resident System Extension)

Entry Parameters:
     Register CL: 60
              DX: RSX PB Address

Returned  Values:
     Register AX: 0FFFFh = No RSX in memory

Function
The  P_RSX  system  call  is a special system function  to  use  when  calling 
Resident System Extensions.

Entry conditions
The  RSX  subfunction  is specified in a structure called  the  RSX  Parameter 
Block, defined as follows:

RSXPB   DB      FUNC            ; RSX Subfunction Number
        DB      NumParms        ; Number of word parameters
        DW      Parm1           ; Parameter 1
        DW      Parm2           ; Parameter 2
        ..      ...
        DW      ParmN           ; Parameter N

System action
RSX  modules  in memory filter all system calls, and intercepts  RSX  function 
calls  that  they can handle. The program uses the P_RSX system  call  and  an 
associated subfunction number to call an RSX. The RSX module that handles  the 
specific function call must be in memory.



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

If the RSX module is not present, the call is not intercepted, and the  system 
returns  a  0FFFFh in register AX. RSX subfunction numbers from 0 to  127  are 
available  for CP/M-compatible software use. RSX subfunction numbers from  128 
to 255 are reserved for system use.

BDOS Function 0 or 143: P_TERMCPM or P_TERM  (Terminate Program)

Entry Parameters:
     Register CL: 0, or 143
              DL: Abort Code

Function
The P_TERMCPM or P_TERM system calls terminate the calling program, and return 
control to the system.

Entry condition
The calling program sets register DL to 00h if all the memory belonging to the 
program is to be released. Otherwise, the calling program sets register DL  to 
01h if the program and its buffers are to remain in memory.

Note: The program can set the Program Return Code by making a P_CODE (Function 
108) system call prior to making a P_TERMCPM or P_TERM system call.

System action
The system reloads the CCP, if necessary, rebuilds the allocation vectors  for 
the  currently  logged-in  drives, sets the DMA buffer offset  to  0080h,  and 
transfers  control to the CCP. Furthermore, if DL = 00h, the  system  releases 
the  memory  and  buffers of the calling program. If DL  =  01h,  the  program 
remains in memory, and the memory allocation state remains unchanged.

Miscellaneous system calls
--------------------------

This  section  includes  calls to set the system values  and  parameters,  the 
direct  call to the BIOS, and time-related system calls. Table 6-20 lists  all 
the system calls described in this section.

Table 6-20. Miscellaneous system calls

Mnemonic     Function   Description
--------     --------   -----------
S_BDOSVER       12      Return BDOS Version Number
S_BIOS          50      Direct BIOS calls
S_SERIAL       107      Return Serial Number
S_SYSDAT       154      Get System Data address
S_SYSVAR        49      Get/Set system variables
T_GET          105      Get date and time
T_SET          104      Set date and time

BDOS Function 12: S_BDOSVER  (Return BDOS Version Number)



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

Entry Parameters:
     Register CL: 12

Returned  Values:
     Register AL: 31 (BDOS Version Number: 3 and Revision Level: 1)
              AH: 10 (8086 CP/M)
              BX: Same as AX

Function
The S_BDOSVER system call returns a two-byte value containing the BDOS Version 
Number and Release Level, and whether the system is CP/M or MP/M, and 8-bit or 
16-bit.

System action
ROCHE>  The  "Concurrent  CP/M 3.1 Programmer's  Guide"  gives  the  following 
explanation:

The  S_BDOSVER  system  call  returns the BDOS  file  system  Version  Number, 
allowing version-independent programming.

        AL High Nibble = BDOS Version Number
        AL Low  Nibble = BDOS Revision Level
        AH High Nibble = CPU Type : 0 = 8080, 1 = 8086
        AH Low  Nibble = OS  Type : 0 = CP/M
                                    1 = MP/M
                                    2 = CP/M with networking
                                    3 = MP/M with networking
                                    4 = Concurrent CP/M
                                    5 = Reserved
                                    6 = Concurrent CP/M with networking
                                    7 to 0Eh = Reserved

BDOS Function 50: S_BIOS  (Direct BIOS Call)

Entry Parameters:
     Register CL: 50
              DX: BIOS PB Address -- Offset
              DS: BIOS PB Address -- Segment

Returned  Values:
     Register AX: BIOS Return Code
              BX: Same as AX

Function
The  S_BIOS system call provides a direct BIOS call, and transfers control  to 
the BIOS through the BDOS.

Entry condition
The DX register addresses a 5-byte memory area containing the BIOS   Parameter 
Block:

BIOSPB  DB      FUNC            ; BIOS function number



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

        DW      CX_reg          ; CX register contents
        DW      DX_reg          ; DX register contents

FUNC  is an 8-bit BIOS function number, and values CX_REG and DX_REG  are  the 
16-bit  values  that  would  normally be passed directly  in  the  CX  and  DX 
registers  with the BIOS call. The CX and DX values are loaded into  the  8086 
registers  before  the BIOS call is initiated. See the  "CP/M-86  Plus  System 
Guide" for descriptions of the BIOS functions.

The only allowed BIOS function numbers under CP/M-86 Plus are the following:

Table 6-21. BIOS functions allowed with CP/M-86 Plus

Func.   Description
----    -----------
  0     Console status
  1     Console input
  2     Console output
  3     List output status
  4     List output
  5     Auxiliary input
  6     Auxiliary output
  7     Not implemented (Concurrent CP/M function)
  8     Not implemented (Concurrent CP/M function)
  9     Select disk
 10     Read sector
 11     Write sector
 12     Not implemented (CP/M-86 function)
 13     Not implemented (Concurrent CP/M function)
 14     Character device initialization
 15     Console output status
 16     Auxiliary input status
 17     Auxiliary output status

BDOS Function 107: S_SERIAL  (Return Serial Number)

Entry Parameters:
     Register CL: 107
              DX: SERIAL Address -- Offset
              DS: SERIAL Address -- Segment

Returned  Values:
     SERIAL number filled in

Function
The  S_SERIAL system call sets a 6-byte structure SERIAL to the  CP/M-86  Plus 
serial number.

System action
The system sets the serial number in the SERIAL data structure.

Each byte in the structure contains an ASCII number.



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

BDOS Function 154: S_SYSDAT  (Get System Data Address)

Entry Parameters:
     Register CL: 154

Returned  Values:
     Register BX: SYSDAT Address -- Offset
              ES: SYSDAT Address -- Segment

Function
The S_SYSDAT system call returns the segment address of the System Data  Area. 
This  call  provides the ability for advanced programmers to  access  internal 
data and structures not accessible via the "normal" BDOS calls.

These  are  documented  in "Appendix C: SYSDAT format" of  the  "CP/M-86  Plus 
System  Guide",  but  programmers are reminded that, as  these  locations  may 
differ in future version of CP/M-86 Plus, they should be used with discretion.

BDOS Function 49: S_SYSVAR  (Get/Set System Variables)

Entry Parameters:
     Register CL: 49
              DX: SCB PB Address -- Offset
              DS: SCB PB Address -- Segment

Returned  Values:
     SCB PB filled in if Get

Function
The  S_SYSVAR system call allows access to system variables that do  not  have 
specific system calls associated with them.

Entry conditions
A  structure  called  the SCB Parameter Block (SCBPB) is used  to  define  the 
calling and return parameters. The SCBPB is defined as follows:

SCBPB   DB      Num             ; Number identifying the variable
        DB      Set             ; 0FFh = Set, 00h = Get
        RS      Value           ; VALUE ranges from 1 to 5 bytes,
                                ;   depending on the variable.

The system variable numbers to be set in NUM are defined as follows:

Table 6-22. SCBPB variable numbers

Number  Definition
------  ----------
   0    Console Width
        This  parameter  specifies the number of columns,  or  characters  per 
        line,  on  the  console.  This byte value is  relative  to  zero,  and 
        defaults  to 79 on most systems. The Console Width can be set  by  the 
        DEVICE command (see the "CP/M-86 PLus User's Guide"). Note that typing 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

        a  character  into the last position specified by  the  Console  Width 
        field must not cause the cursor to advance to the next line position.

   1    Console Page Length
        This  parameter  defines  the  page length (lines  per  page)  of  the 
        console.  This byte value defaults to 24 on most systems.  The  DEVICE 
        command can be used to change this value (see the "CP/M-86 Plus User's 
        Guide").

   2    Console Page Mode
        If  this  byte  is set to 1, the system displays one  full  screen  of 
        information  at a time. If this byte is set to 0, the system  displays 
        information continuously, scrolling after the screen is full.  Display 
        is  interrupted  and  continued by the Ctrl-S,  Ctrl-Q  sequence.  The 
        SETDEF command can be used to change this value (see the "CP/M-86 Plus 
        User's Guide").

   3    System Ticks per Second
        This byte value contains the number of ticks per second of the  system 
        clock. The program can only request this value, not set it.

   4    Temporary File Drive
        This byte value contains the drive number of the temporary file drive. 
        The drive number ranges from 0 through 16, where 0 corresponds to  the 
        default  drive, while 1 through 16 correspond to drives A  through  P, 
        respectively. The SETDEF command can be used to change this value (see 
        the "CP/M-86 Plus User's Guide").

   5    Date and Time
        The 5-byte time and date information is set in the data block starting 
        at  the reserved area whose structure is similar to the DAT  structure 
        (see  the T_GET (Function 105) system call). The DATE command  can  be 
        used to change these values (see the "CP/M-86 Plus User's Guide").

System action
If  the SET parameter is set to 0FFh, the system updates the  system  variable 
defined  by  NUM to the value assigned by the program. Otherwise,  the  system 
returns the requested system information in the reserved area.

(ROCHE> One of my program displays the following:

System Variables
----------------

Console Width: 80
Console Page Length: 24
Console Page Mode: OFF
System Ticks per Second: 60
Temporary File Drive: @
Date: 04DC
Time: 12:34:56
8087 Present: TRUE
Program ID: 00
Drive Search Chain: A, B, C, D



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

In the Background: FALSE
Number of Running Processes: 01
Foreground Ratio: 16

So, some fields are not documented...)

BDOS Function 105: T_GET  (Get Date and Time)

Entry Parameters:
     Register CL: 105
              DX: DAT Address -- Offset
              DS: DAT Address -- Segment

Returned  Values:
     Register AL: Seconds
              BL: Same as AL
     DAT filled in (Days, Hours, and Minutes only)

Function
The T_GET system call returns the system internal date and time.

Entry conditions
The  DX register is set to the address of a 4-byte data structure  to  contain 
the date and time values. The number of seconds is returned in register AL  as 
a two-digit BCD value. The format of the DAT structure is as follows:

DAT     DW      0000h   ; Date field
        DB      00h     ; Hour field
        DB      00h     ; Minute field

The  date  is  represented as a 16-bit integer, with day  1  corresponding  to 
January  1, 1978. The time is represented as two bytes: hours and minutes  are 
stored as two BCD digits.

System action
The  system places the date and time information in the referenced  DAT  area. 
The seconds field is returned in register AL.

BDOS Function 104: T_SET  (Set Date and Time)

Entry Parameters:
     Register CL: 104
              DX: DAT Address -- Offset
              DS: DAT Address -- Segment

Function
The  T_SET system call sets the system internal date and time to the date  and 
time specified in the DAT structure, as described in the T_GET (Function  105) 
system call.

Entry conditions
The  DX register is set to the address of a 4-byte data  structure  containing 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG6.TXT[2/6/2012 4:04:07 PM]

the date and time values. The format of the DAT structure is as follows:

DAT     DW      0000h   ; Date field
        DB      00h     ; Hour field
        DB      00h     ; Minute field

The  date  is  represented as a 16-bit integer, with day  1  corresponding  to 
January  1, 1978. The time is represented as two bytes: hours and minutes  are 
stored as two BCD digits.

System action
The  system  sets the internal date and time to the values  contained  in  the 
referenced DAT. The seconds field is set to zero.

EOF



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG7.TXT[2/6/2012 4:04:10 PM]

CPMPPG7.WS4     (= "CP/M-86 Plus Programmer's Guide", section 7)
-----------

(Edited by Emmanuel ROCHE.)

Section 7: Resident System Extensions (RSXs)
-------------------------------------

Construction of an RSX program
------------------------------

This  section  describes the standard prefix of a  Resident  System  Extension 
(RSX),  and  illustrates  the construction of an RSX  with  an  example.  (See 
Section  5  for  a discussion of how RSXs operate  under  CP/M-86  Plus.)  RSX 
programs are usually written in assembler, but you can use other languages  if 
the interface between the language and the calling conventions of the BDOS are 
set up properly.

RSX prefix
----------

The first 32 bytes of an RSX program contain a standard data structure  called 
the RSX prefix. The RSX prefix has the following format:

        CSEG
start:  JMP     ftest           ; Jump to start of program
;
term    DB      0FFh            ; Terminate flag: Set to 0FFh to remove
                                ;   this RSX after program terminates.
                                ;   Set to 00h if RSX stays in memory.
next    DW      0,0             ; Pointer to next RSX in chain
rname   DB      'ECHOVERS'      ; Name of this RSX
RSXDS   RS      2               ; Data Segment of this RSX
RSXID   RS      1               ; Program ID of this RSX
RSXnd   RS      2               ; (Not documented)
        RS      11              ; Reserved
;
ftest:  ...                     ; BDOS Function test
        ...
        CALLF DWORD PTR next    ; BDOS Call (replaces INT 224)
        ...
        RETF                    ; Return to CMD file

The  only fields of the RSX prefix that you must initialize are the TERM  flag 
and the RNAME of the RSX.

The START field contains a jump instruction to the beginning of the RSX  code, 
where the RSX tests to see if this BDOS function call is to be intercepted  or 
passed on to the next module in line (FTEST means "(BDOS) Function Test".)



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG7.TXT[2/6/2012 4:04:10 PM]

The NEXT field contains the Offset and Segment address of the next RSX  module 
in  the chain, or the address of the LOADER program if the RSX is  the  oldest 
one  in  memory.  The RSX program must make its own  BDOS  function  calls  by 
calling the NEXT entry point.

The  TERM  field controls whether the RSX is removed from memory by  the  next 
call to P_LOAD (Function 59). If the TERM flag is 0FFh, the system removes the 
RSX from memory when the program terminates.

Example of RSX use
------------------

These  2  sample  programs illustrate the use of an  RSX  program.  The  first 
program,  CALLVERS,  prints a message to the console, and then  makes  a  BDOS 
Function  12  (S_BDOSVER)  call to obtain the  CP/M-86  Plus  Version  Number. 
CALLVERS  repeats  this  sequence five times before  terminating.  The  second 
program, ECHOVERS, is an RSX that intercepts the BDOS Function 12 call made by 
CALLVERS,  prints  a second message, and returns the Version Number  1031h  to 
CALLVERS.

Although  this example is simple, it illustrates BDOS  function  interception, 
stack swapping, and BDOS function calls within an RSX.

Listing 7-1. Sample program using RSX

; CALLVERS.A86
; ------------
;
; CP/M-86 Plus -- CALLVERS.CMD
;
; CALLVERS prints a message to the console, then makes a BDOS
; Function 12 call to obtain the BDOS Version Number. CALLVERS
; repeats this sequence 5 times before terminating.
;
;--------------------------------
;
bdos    EQU     224             ; CP/M-86 Plus's BDOS
;
; BDOS functions used.
;
P_TERMCPM       EQU      0      ; System Reset
C_WRITESTR      EQU      9      ; Print String
S_BDOSVER       EQU     12      ; BDOS Version Number
;
; ASCII characters used.
;
lf      EQU     0Ah             ; Line Feed
cr      EQU     0Dh             ; Carriage Return
;
;--------------------------------
; Small Memory model.
;
        CSEG



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG7.TXT[2/6/2012 4:04:10 PM]

        DSEG
        ORG     0100h
;
CallMsg DB      cr, lf, '**** CALLVERS **** $'
;
;--------------------------------
        CSEG    $
;--------------------------------
;
        MOV     DL, 5           ; Perform loop 5 times
Loop:   PUSH    DX              ; Save loop counter
        MOV     CL, C_WRITESTR  ; Print **** CALLVERS ****
        MOV     DX, OFFSET CallMsg
        INT     bdos            ; Go through the RSX chain
        MOV     CL, S_BDOSVER   ; Get BDOS Version Number
        INT     bdos            ; Go through the RSX chain
        POP     DX              ; Restore loop counter
        DEC     DL              ; Decrement loop counter
        JNZ     Loop            ; If counter > 0, then loop through again
;
        MOV     CL, P_TERMCPM   ; Warm Boot
        MOV     DL, CL          ; Remove RSX from memory
        INT     bdos            ; Go through RSX chain
;
;--------------------------------
;
        END

Listing 7-2. Sample program of an RSX

; ECHOVERS.A86
; ------------
;
; CP/M-86 Plus -- ECHOVERS.RSX
;
; ECHOVERS is an RSX that intercepts the BDOS Function 12 call
; made by CALLVERS, prints a second message, and returns the
; CP/M-86 Plus Version Number 1031h to CALLVERS.
;
; Although this example is simple, it illustrates BDOS function
; interception, stack swapping, and BDOS function calls within an RSX.
;
;--------------------------------
; BDOS functions used.
;
C_WRITESTR      EQU      9      ; Print String
S_BDOSVER       EQU     12      ; BDOS Version Number
;
; ASCII characters used.
;
lf      EQU     0Ah             ; Line Feed
cr      EQU     0Dh             ; Carriage Return
;
;--------------------------------



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG7.TXT[2/6/2012 4:04:10 PM]

; Small Memory model.
;
        CSEG
        DSEG
        ORG     0100h
;
EchoMsg DB      cr, lf, '**** ECHOVERS **** $'
;
Ret_ss  DW      0000h           ; Stack Segment save area
Ret_sp  DW      0000h           ; Stack Pointer save area
Stack   RW      0100h           ; 128-word stack
Loc_Stk RS      0               ; Beginning of RSX stack
;
;--------------------------------
        CSEG    $
;--------------------------------
; RSX prefix.
;
        JMP     Ftest           ; Go test BDOS Function number
;
        DB      0FFh            ; Terminate RSX flag = TRUE
next    DW      0,0             ; Pointer to next RSX in chain
rname   DB      'ECHOVERS'      ; Name of this RSX
RSXDS   DW      0000h           ; Data Segment of this RSX
RSXID   DB      00h             ; Program ID of this RSX
RSXnd   DW      0000h           ; (Not documented)
        RS      11              ; Reserved area
;
;--------------------------------
; Start of RSX code.
;
Ftest:
;
; Normally, the purpose of an RSX is to intercept BDOS function calls.
; So, the first thing to do is to check the BDOS Function number.
;
        MOV     AL, CL          ; Put BDOS Function number in Accumulator
        CMP     AL, S_BDOSVER   ; Is it BDOS Function 12 ?
        JZ      Begin           ; Yes: Intercept this call
        JMPF    DWORD PTR next  ; No: Some other BDOS Function call
;
;--------------------------------
Begin:
;
; Like all Small Memory Model program, this RSX has distinct
; Code and Data segments (CS and DS).
; The problem is that, if we want to print a string contained
; in the RSX, the DS must be updated, else we will print some
; garbage from the CMD file...
;
        PUSH    DS              ; Save calling CMD file's DS
        MOV     DX, RSXDS       ; Get DS from the RSX's Prefix
        MOV     DS, DX          ; DS updated
;



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG7.TXT[2/6/2012 4:04:10 PM]

; Last thing to do, before processing: swap the stack to the local stack
; (since the stack is also in the calling CMD file's DS...).
;
        MOV     Ret_ss, SS      ; Save Stack Segment
        MOV     Ret_sp, SP      ; Save Stack Pointer
        MOV     AX, DS          ;
        MOV     SS, AX          ; Switch to local stack
        MOV     SP, OFFSET Loc_Stk
;
; RSX Initialization done.
;--------------------------------
; We can finally print a second message.
;
        MOV     CL, C_WRITESTR  ; Print **** ECHOVERS ****
        MOV     DX, OFFSET EchoMsg
;
; Note that the standard "INT 224" is replaced by the following:
;
        CALLF   DWORD PTR next  ; Call the BDOS through the RSX chain
;
; And return the BDOS Version Number 1031h to CALLVERS.
; (1031h = CP/M-86 Plus)
; (1131h = MP/M-86 with BDOS 3.1)
: (1431h = Concurrent CP/M 3.1)
;
        MOV     BX, 1031h       ; Return BDOS 'Version 3.1'
;
; Done.
;--------------------------------
; Standard end of RSX.
;
        MOV     SS, Ret_ss      ; Restore Stack Segment
        MOV     SP, Ret_sp      ; Restore Stack Pointer
        POP     DS              ; Restore CMD file's DS
        RETF                    ; Return to calling CMD file
;
;--------------------------------
;
        END

You can prepare the preceding programs for execution as follows:

1) Assemble the CALLVERS program using ASM-86:

        A>ASM CALLVERS

2) Generate a CMD file for CALLVERS with GENCMD:

        A>GENCMD CALLVERS

3) Assemble the RSX program ECHOVERS using ASM-86:

        A>ASM ECHOVERS



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG7.TXT[2/6/2012 4:04:10 PM]

4) Generate a CMD file using the GENCMD command:

        A>GENCMD ECHOVERS

5) Convert ECHOVERS.CMD to an RSX file:

        A>GENRSX ECHOVERS

6) Attach the RSX file to CALLVERS by using the GENRSX utility:

        A>GENRSX CALLVERS ECHOVERS [ATTACH]

7) Run the CALLVERS.CMD module:

        A>CALLVERS

The message

        **** CALLVERS ****

followed by the message

        **** ECHOVERS ****

appears on the screen five times if the RSX program works.

The GENRSX utility
------------------

The GENRSX utility creates an RSX file from a CMD file, or modifies a CMD file 
to link or attach RSX programs to the CMD. Conversely, the GENRSX utility  can 
strip linked or attached RSXs from a CMD file.

The GENRSX command has the following format:

        GENRSX CMDfilespec {RSXfilespec, ..., RSXfilespec} [ATTACH/STRIP]

These elements are as follows:

     - CMDfilespec is a file of type CMD
     - RSXfilespec is a file of type RSX
     - ATTACH specifies that the RSX files are to be attached  to the CMD file
     - STRIP  specifies that the RSX files are to be removed from the CMD file

GENRSX functions
----------------

GENRSX performs the following functions:

     1) Converts a CMD file to an RSX format.
     2) Links RSX files to a CMD file.
     3) Attaches RSX files to a CMD file.
     4) Removes RSX files from a CMD file.



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG7.TXT[2/6/2012 4:04:10 PM]

1) Convert CMD to RSX
---------------------

Syntax:   GENRSX CMDfilespec

Example:  A>GENRSX A

The preceding example converts a CMD file to an RSX file. GENRSX searches  for 
file  A.CMD, and changes the file's Header Record to indicate that this is  an 
RSX file. Then, it renames A.CMD to A.RSX.

Note:  A valid RSX file cannot be generated just by renaming a CMD file to  an 
RSX filetype. It must be processed by GENRSX.

An  RSX file can be loaded into memory by entering just the filename  and  RSX 
filetype at the console, as follows:

        A>A.RSX

While  it is in memory, A.RSX intercepts each BDOS system call, and checks  it 
to  see  if  it should process this call, or pass it to the  BDOS  for  normal 
processing.

2) Link RSX to CMD
------------------

Syntax:   GENRSX CMDfilespec RSXfilespec ... RSXfilespec

Example:  A>GENRSX A B C

This  command links B.RSX and C.RSX to A.CMD. GENRSX searches for file  A.CMD, 
B.RSX,  and C.RSX. If it finds all the files, it modifies the CMD file  Header 
Record  and  the RSX files Header Records to indicate that the  CMD  file  has 
linked  RSXs. When loading A.CMD, the system can tell from the Header  Records 
which RSXs are to be loaded with the CMD file.

Each BDOS system call invoked by program A will be intercepted first by RSX C. 
If this call applies to C, then C processes the call and returns to program A. 
Otherwise, RSX C passes the call to RSX B. RSX B likewise checks the call  for 
processing. If this call applies to B, then B processes it and returns to  the 
program A. Otherwise, B passes the call to BDOS for normal processing.

3) Attach RSX to CMD
--------------------

Syntax:   GENRSX CMDfilespec RSXfilespec ... RSXfilespec [ATTACH]

Example:  A>GENRSX A B C [ATTACH]

The above example attaches RSX files B.RSX and C.RSX to CMD file A.CMD. GENRSX 



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG7.TXT[2/6/2012 4:04:10 PM]

modifies  the  CMD file Header Record and the RSX file  Headers  Records,  and 
generates a new file A.CMD.

The BDOS system calls invoked by program A are intercepted by RSXs C and B  as 
described in the previous section.

Note:  A  command file can have both linked and attached  RSXs.  This  process 
requires 2 GENRSX commands. For example, the following commands generate  file 
A.CMD with linked RSXs B and C, and attached RSXs D and E:

        A>GENRSX A B C
        A>GENRSX A D E [ATTACH]

4) Remove RSX from CMD
----------------------

Syntax:   GENRSX CMDfilespec RSXfilespec ... RSXfilespec [STRIP]

Example:  A>GENRSX A B C [STRIP]

The  above  example strippes RSX files B.RSX and C.RSX from CMD  file   A.CMD. 
GENRSX  modifies the CMD file Header Record and the RSX file Headers  Records, 
and generates a new file A.CMD.

The BDOS system calls invoked by program A are no longer intercepted by RSXs C 
and B.

EOF



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG8.TXT[2/6/2012 4:04:10 PM]

CPMPPG8.WS4       (= "CP/M-86 Plus Programmer's Guide", section 8)
-----------

(Edited by Emmanuel ROCHE.)

Section 8: Escape sequences
---------------------------

CP/M-86  Plus  allows you to use the following escape sequences  in  order  to 
change  the position or shape of the cursor on screen. These sequences can  be 
divided into two groups: VT-52 sequences, and VT-100 sequences.

VT-52 sequences
---------------

ESC A -- Move cursor one line up
If  the  cursor  was in the first line, the entire screen is  moved  one  line 
downwards. The last line is lost. The new (first) line consists of blanks.

Example:
The cursor is in the line 1, column 10.  ESC A is pressed. The screen is moved 
one  line downwards, a blank line is inserted, and the cursor remains  in  the 
line 1, column 10.

ESC B -- Move cursor one line down
The cursor is moved one line downwards.

ESC C -- Move cursor forward one column
The  cursor  is moved one column to the right.  If the cursor is in  the  last 
column, it is moved to the beginning of the next line.

ESC D -- Move cursor backward one column
The  cursor  is moved one column to the left.  If the cursor is in  the  first 
column, it is moved to the end of the previous line.

ESC H -- Move cursor to HOME position
The cursor is positioned in the topmost left corner of the screen.

ESC Y<line><column> -- Position cursor

Parameter: <line>   = line number   (1 through 24)
           <column> = column number (1 through 80)

Note:      <line> = 0 or <column> = 0 is treated as 1.

Example: ESC Y!A
The  cursor is positioned at line 1, column 21. Since this sequence  does  not 
require a conversion, the parameters are considered ASCII characters - 20h.

Example of ASCII characters and their results:



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG8.TXT[2/6/2012 4:04:10 PM]

ASCII                 Significance
-----                 ------------
  !   = 21h - 20h =     1 decimal
  2   = 32h - 20h =    12 decimal
  M   = 4Dh - 20h =    45 decimal
  p   = 70h - 20h =    80 decimal

ESC e -- Make cursor visible

ESC f -- Make cursor invisible

ESC j -- Save cursor position

ESC k -- Restore cursor position

ESC E -- Clear screen

ESC J -- Delete screen from current cursor position

ESC d -- Delete screen until current cursor position

ESC K -- Delete from cursor position to end of line

ESC o -- Delete from beginning of line until cursor position

ESC l -- Delete line

ESC L -- Insert line

ESC N -- Delete character

ESC M -- Remove line

ESC b<parameter> -- Set foreground color

ESC c<parameter> -- Set background color

The following <parameter>s apply to ESC b and ESC c:

        0 - black        8 - grey
        1 - blue         9 - light blue
        2 - green       10 - light green
        3 - cyan        11 - light cyan
        4 - red         12 - light red
        5 - magenta     13 - light magenta
        6 - yellow      14 - light yellow
        7 - white       15 - light white

These values must be entered as hexadecimal numbers, i.e. the function  cannot 
be  used via the keyboard. To execute the function, you need to write a  small 
program.

ESC p -- Reverse video ON



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG8.TXT[2/6/2012 4:04:10 PM]

ESC q -- Reverse video OFF

ESC r -- Intensity ON (high intensity)

ESC u -- Intensity OFF (low intensity)

ESC s -- Flashing ON

ESC t -- Flashing OFF

ESC v -- Automatical setting of CR/LF at end of line

ESC w -- No CR/LF at end of line

ESC z -- Set all attributes to normal

Normal condition means:
        Black characters on white background,
        Normal intensity,
        Reverse OFF,
        Flashing OFF,
        Cursor visible.

ESC x -- Switch over to color card

ESC y -- Switch over to monochrome card

ESC 7 -- Function key expansion ON

ESC 6 -- Function key expansion OFF

VT-100 sequences
----------------

The following VT-100 escape control sequences have been implemented:

ESC [<line>;<column>H -- Position cursor

Parameter: <line>   = line number   (1 through 24)
           <column> = column number (1 through 80)

Note:      <line> = 0 or <column> = 0 is treated as 1.

Example: ESC[10;40H
The cursor is positioned at line 10, column 40.

ESC [<par>m -- Set screen control attributes

Parameter: <par> = 0  : Normal (See note (1) below)
           <par> = 1  : Normal (See note (2) below)
           <par> = 2  : Low intensity ON
           <par> = 3  : Low intensity OFF



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG8.TXT[2/6/2012 4:04:10 PM]

           <par> = 4  : Normal (See note (1) below)
           <par> = 5  : Flashing ON
           <par> = 6  : Flashing OFF
           <par> = 7  : Reverse video ON
           <par> = 8  : Reverse video OFF
           <par> = 9  : Insert CR,LF at end of line
           <par> = 10 : No CR,LF at end of line

Notes:
    (1) All  values identical to those in ESC z, except for the  cursor  which 
        remains invisible.
    (2) All values identical to those in ESC z.

Example: ESC[7m
Following this sequence, all characters are reversed.

ESC [<par>c -- Set cursor mode

Parameter: <par> = 0  : Block, static
           <par> = 1  : Underscore, static
           <par> = 2  : Block, flashing
           <par> = 3  : Underscore, flashing
           <par> = 4  : Cursor, invisible
           <par> = 5  : Block, slowly flashing
           <par> = 6  : Underscore, slowly flashing

ESC [<par>K -- Delete line

Parameter: <par> = 0  : Delete from cursor position
           <par> = 1  : Delete until cursor position
           <par> = 2  : Delete complete line

Note:
The control characters do not change the position of the cursor.

Example:
The cursor is in line 10, column 7. Following ESC[0K, line 10 is deleted  from 
column 7 onwards until the end of the line.

ESC [<par>J -- Clear screen

Parameter: <par> = 0  : Delete from cursor position
           <par> = 1  : Delete until cursor position
           <par> = 2  : Delete complete screen

Note:
The control characters do not change the position of the cursor.

Example:
The  cursor is in line 9, column 11. Following ESC[0J, the screen  is  deleted 
from the cursor position until the end of the screen.



file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Guide/CPMPPG8.TXT[2/6/2012 4:04:10 PM]

EOF


	CPMPPG1
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Programmers Guide\CPMPPG1.TXT


	CPMPPG2
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Programmers Guide\CPMPPG2.TXT


	CPMPPG3
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Programmers Guide\CPMPPG3.TXT


	CPMPPG4
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Programmers Guide\CPMPPG4.TXT


	CPMPPG5
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Programmers Guide\CPMPPG5.TXT


	CPMPPG6
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Programmers Guide\CPMPPG6.TXT


	CPMPPG7
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Programmers Guide\CPMPPG7.TXT


	CPMPPG8
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Programmers Guide\CPMPPG8.TXT



