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GKILDALL.WS4
------------

List of Gary Kildall texts compiled by Emmanuel ROCHE.

1968
----

- "Experiments in large-scale computer direct access storage manipulation"
   Thesis for Master of Science, University of Washington
   December 1968  (Thesis No.17341)
   (ROCHE> Retyped: GKMS.WS4)

1969
----

- "Experiments in large-scale computer direct access storage manipulation"
   Technical Report No.69-01, Computer Science Group
   University of Washington, 1969
   (ROCHE> Missing...)

1970
----

- "APL\B5500: The language and its implementation"
   Technical Report No.70-09-04, Computer Science Group
   University of Washington, September 1970
   (ROCHE> Retyped: GKAPL.WS4)

- "The ALGOL-E Programming System"
   Internal Report, Mathematics Department,
   Naval Postgraduate School, Monterey, California
   December 1970
   (ROCHE> Missing...)

1971
----

- "A Heathkit method for building data management programs"
   Gary Kildall & Earl Hunt
   ACM SIGIR Information Storage and Retrieval Symposium
   1971, pp.117-131
   (ROCHE> Retyped: GKEH.WS4)

1972
----

- "A code synthesis filter for basic block optimization"
   Technical Report No.72-01-01, Computer Science Group
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   University of Washington
   January 1972
   (ROCHE> Missing...)

- "ALGOL-E: An experimental approach to the study of programming languages"
   Naval Postgraduate School, Monterey, California
   NPS Report NPS-53KG72 11A
   January 1972
   (ROCHE> Missing...)

- "ALGOL-E: An experimental approach to the study of programming languages"
   Gary Kildall & Alan Roberts
   ACM SIGCSE Bulletin Vol.4, No.1 (March 1972), pp.127-135
   (ROCHE> Retyped: GKALG.WS4)

- "Global expression optimization during compilation"
   Thesis for Ph.D. in Computer Science, University of Washington
   May 1972  (Thesis No.20506)
   (ROCHE> I have it, but not yet retyped)

- "Global expression optimization during compilation"
   Technical Report No.72-06-02, Computer Science Group
   University of Washington, June 1972
   (ROCHE> Missing...)

1973
----

- "A unified approach to global program optimization"
   ACM First Symposium on Principles Of Programming Languages (POPL)
   Boston, Massachussetts, October 1973, pp.194-206
   (ROCHE> I have it, but not yet retyped) (Lots of Maths symbols...)

1974
----

- "High-level language simplifies microcomputer programming"
  "Electronics", June 27, 1974, p.103
   (ROCHE> Retyped: GKHLL.WS4)

- "System languages: management's key to controlled software evolution"
   Proceedings of the 1974 western electronics show and convention
   (WESCON), September 1974
   (ROCHE> Retyped: GKSL.WS4)

1975
----

- "CP/M: A disk control program for microcomputer system development"
  "Journal of Microcomputer Applications", June 1975
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   (ROCHE> Missing...)

- "Microcomputer Software Design: A Checkpoint"
   Proceedings of the Fall Joint Computer Conference
   Spartan Books, New-York, 1975
   (ROCHE> Retyped: GKCHK.WS4)

1976
----

1977
----

1978
----

- "A simple technique for static relocation of absolute machine code"
   DDJ, #22, Vol.3, No.2, February 1978, pp.10-13
   (ROCHE> Retyped: GKPRL.WS4)

1979
----

1980
----

- "The evolution of an industry: One person's viewpoint"
   DDJ, #41, Vol.5, No.1, January 1980, pp.6-7
   (ROCHE> Retyped: GKEI.WS4)

1981
----

- "CP/M: A Family of 8- and 16-bit Operating Systems"
   BYTE, June 1981, p.216
   (ROCHE> Retyped: GKBYTE.WS4)

1982
----

- "PL/I for limited resource computers"
  "Microsystems", Jan/Feb 1982, pp.28-29
   (ROCHE> Retyped: GKLRC.WS4)

- "PL/I-80"
  "Interface Age", June 1982, p.71
   (ROCHE> Retyped: GKPLI.WS4)

- "Running 8-bit software on dual-processor computers"
  "Electronic Design", September 16, 1982, p.157



file:///C|/...20Histories%20Report%20to%20CHM/DRI/Emmanuel%20Roche%20documents%20conversion/Kildall.(zip)/GKILDALL.TXT[2/6/2012 10:28:06 AM]

   (ROCHE> Retyped: GKED.WS4)

1983
----

1984
----

1985
----

1986
----

- "The compact disk ROM: applications software"
   Tim Oren & Gary Kildall
  "IEEE Spectrum", Vol.23, No.4, April 1986, pp.49-54
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CSLABUW.WS4     (= Computer Science LABoratory at University of Washington)
-----------

- "The Computer Science teaching laboratory at the University of Washington"
   Earl Hunt
   ACM "SIGCSE Bulletin", No.2, 1970, pp.30-33

   (ACM = Association for Computing Machinery)
   (SIGCSE = Special Interest Group on Computer Science Education)

(Retyped by Emmanuel ROCHE.)

The  purpose of this paper is to describe the Computer Science  Laboratory  at 
the  University of Washington, explain how it is run, and to examine both  its 
benefits  and costs to the University. In order to do so, it is  necessary  to 
discuss  briefly  the  University  of Washington  itself.  The  University  of 
Washington  is  a very large, single-campus, state university.  In  a  typical 
quarter,  approximately  33,000 students are enrolled. There is a  faculty  of 
about   2,000.  By  contrast,  the  computer  science  program  is   a   small 
interdisciplinary program confined strictly to graduate education. The program 
was  begun in 1967, and granted its first Ph.D. in 1968. There are at  present 
somewhat more than 40 graduate students, and a full-time equivalent faculty of 
about  seven. Prior to the development of the program, there were, of  course, 
teaching  courses in Electrical Engineering and other departments, and  a  few 
courses  in  mathematics,  but the advanced computer  science  stamp  for  the 
University of Washington had not yet been established.

The  equipment  on  campus  is also important to  our  story.  The  University 
Computer  Center  operates a Control Data 6400 and a  Burroughs  B5500.  These 
machines are available to the general user, although the B5500 gives  priority 
to  administrative data processing. Use of the machines is charged  either  to 
research accounts, or to special departmental accounts established to  support 
computing. That is to say, the Computer Center does not decide who runs on the 
computer.  Rather,  this is levied as a charge against  departmental  budgets. 
Like  any other department, the Computer Science Group also has a  budget  for 
computing  on  the  Center's equipment. In addition, there are  a  variety  of 
special  computers on campus. For example, the Physics Department  contains  a 
PDP-10  and  an XDS-930. There is a very large Raytheon  computer  complex  in 
Biophysics,  and there are a number of 1130 and 1800 installations on  campus. 
All  these  computers  are associated with  specific  research  projects  and, 
therefore, are available only to students who are working with the faculty  on 
these projects. In addition, the University has provision for favorable  rates 
on  a  number  of commercial time-sharing installations.  Departments  do  not 
receive  funds  for off-campus computing, so that extra-mural  funds  must  be 
sought  by  anyone  who  wishes to make  use  of  a  conversational  computing 
capability.

The Computer Science Laboratory contains a Xerox Data Systems Sigma 5 which is 
funded  by a special departmental account, so that no student is ever  charged 
for use of this machine. However, only a favored few students and faculty,  to 
wit, those associated in some way with the Computer Science program, may  have 
access to the machine at all.
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The laboratory system
---------------------

The  Sigma  5  is a 32-bit machine with an 850-nanosecond  cycle-time  and  16 
general  registers. In a word, it looks very much like a 360-44, a machine  to 
which  it is frequently compared. The basic Washington configuration  consists 
of the Sigma 5 itself with 24,000 words of core, a 6-megabyte disc, and 2 low-
speed  tape  drives. This is slightly larger than the  initial  configuration, 
which was installed in September, 1969, and consisted of 16,000 words of  core 
and a .75-megabyte disc. The computer contains an external interface which  is 
a multiplexing device for tying foreign equipment to the computer, and an  EIA 
interface which provides for four outlets. Three of these outlets are now used 
for  a standard telephone line attached to 103A data sets. The fourth port  is 
used  to attach a 1200-baud line to a Computer Displays, Inc. ARDS unit.  This 
is a keyboard, plus a "memory scope" CRT, plus a graphic input device known as 
a  mouse. We are now attaching an IMLAC Corp. PDS-1 Display Unit, which  is  a 
small  computer  used to control a high-resolution Visual Display  System.  We 
have  a  floating-point  hardware,  and two  general  register  blocks  of  16 
registers. The latter may seem somewhat unusual in a machine that only has 24K 
of actual core, and obviously is not doing very much multi-programming.

In  summary,  we have a large number of peripherals, but not  enough  core  or 
secondary  memory  space to do any really useful work.  This  is  intentional, 
since the configuration is not intended to serve users. The rationale for  the 
laboratory is that computer science students should be able to do anything  at 
all  in  computing on an EXPERIMENTAL basis, but that  the  University  cannot 
afford  to  let all its 30,000 potential users run wild with  any  application 
whatsoever.  In  some  aspects of Computer Science, it  is  obvious  that  the 
Computer  Science student or faculty member does not appear, to a machine,  to 
be  any  different  from any other user. Examples  are  studies  in  numerical 
analysis,  compiler testing, and much of the work in  artificial  intelligence 
and  pattern recognition. These projects need a very big machine, and we  have 
one,  the University's CDC 6400. We compete for resources to use this  machine 
on  the same basis as anybody else. We, at one time, did  limited  interactive 
and  large information retrieval application studies on the  Burroughs  B5500, 
but  this  had to drop out as administrative data processing  took  over  that 
machine. It is really only for this reason that we have a disc as large as  we 
do.

Having  said  what the computer science facility is not for, let  us  consider 
what it is for. Within our configuration, we can set up a prototype system  of 
considerable  complexity. We have all the problems introduced by multiple  I/O 
devices,  allocation  of  secondary memory and primary  memory,  tape  drives, 
paper-tape  card reading, and teletype work. We can prove that a system  would 
work,  but cannot operate it economically. This is all right, because we  have 
shown that, when a programming idea works, then the computer science  research 
is finished, and we should turn our product over to somebody else.  Therefore, 
the  Computer Science facility has been designed to make it easy to  bring  up 
and tear down operating systems. Similarly, we can do graphics projects on  an 
experimental basis. Of course, we are not unique in this. There are even a few 
fortunate  schools  in  which  the general user can  do  a  graphics  project. 
However, they are very few, and the University of Washington is simply not one 
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of them. We hope our limited graphics capability will serve as a prototype  to 
guide  other graphics users, as well as opening a new research avenue for  our 
own  students.  A similar sort of argument holds for  studies  of  interacting 
computing and conversational computing systems. Formerly, we used the B5500 to 
study  conversational computing and, in fact, produced some  very  interesting 
systems, such as the Burroughs B5500 APL system, using that machine.  However, 
it  is now no longer available to us on a reliable basis. We can use  our  own 
machine  to  run  a  conversational system. Granted, it can  have  at  most  3 
teletypes,  but  to go from zero to one is a giant step in this field;  to  go 
from one to three is, we feel, a substantial step, and from three to n a  much 
smaller one.

Another  very important class of research topics that we can attack with  this 
facility,  and  that we certainly could not touch in  any  general  university 
facility,  consists of those projects which attach hardware to  the  computer. 
For good reason, no production manager wants a strange signal flowing into his 
system.  Since we run on a hands-on basis, all we have to assure is  that  the 
strange  systems  do not physically damage our equipment. We are  helped  here 
eagerly  by  the  Xerox Data Systems staff. Projects  which  involve  hardware 
modification  and  measurement  have  been done. If these  were  done  on  the 
University's   production   machine,  the  effect  on  throughput   would   be 
intolerable. It appears to us that the only way the University can do any sort 
of  research  in  these fields is by having equipment  dedicated  to  computer 
science research.

Operations
----------

We have a hands-on operation. There are no paid operators. Instead, we give  a 
driver's  license examination to each prospective user, who then operates  the 
machine for himself. This is obviously not enough for systems work. We do have 
a  staff  of  about four system programmers and  a  small  secretarial  staff, 
supervised  by  a faculty director. The staff size varies from time  to  time. 
During  summers, we try to employ students who have interesting projects,  but 
who are not normally associated with the lab, to give them the experience, and 
to give us the benefit of developing a particular project.

A  very  important  point  is that the Director (a  faculty  member)  and  the 
secretary  are  the  only non-students involved. There is  a  designated  head 
systems  programmer,  who  has a university rating and  salary  as  a  systems 
programmer  but, in fact, is an advanced graduate student who can qualify  for 
this  position.  The remaining systems programmers are also  students  in  the 
program. The point is that all the staff identify themselves as students,  and 
the laboratory as a student-faculty operation to be run together, rather  than 
something that is run by old bogey "university administration".

The  systems programming jobs are excellent as training positions. We  try  to 
rotate these frequently, rather than keeping one person in any of them  during 
his  graduate  career. The ideal is that a person will spend one  year  fairly 
early  in his graduate career as a learner working with the system, and  then, 
perhaps  two  years  later,  during  a  period  in  which  he  has   completed 
substantially all his classwork, but has not yet seized up a research idea, he 
will take some supervisory responsibility as a senior systems programmer. This 
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gives  him  valuable  experience while he is waiting for the  idea  that  will 
occupy  him  full-time on his Ph.D. research. We do not believe that it  is  a 
good  idea  to let a man have substantial systems  programming  responsibility 
after he has identified his Ph.D. topic.

The  idea  of  heavy  student  involvement  has  been  characteristic  of  the 
laboratory  from  its inception. The selection of the equipment  was  done  by 
students,  with  faculty supervision. I want to stress that this  was  a  very 
serious  business.  Selected  students participated in the  preparation  of  a 
request  for  bid and an evaluation of proposals, as part of a  seminar.  Some 
students who were particularly interested worked throughout the summer on  all 
the  problems  involved in actually getting the machinery here. There  was  no 
behind-the-back  direction, the graduate students were made  fully  conversant 
with  all  stages  of negotiation and evaluation,  both  with  the  University 
administration, whom in our case represented management, and with the  various 
vendors,  at  all  times.  At present, the  laboratory  staff  and  interested 
students  participate in the planning of expansions, preparation  of  requests 
for bid for additional equipment, and the evaluation of proposals by  vendors. 
We  feel  that  this is extremely important practical  training  for  Computer 
Science students, including those students who will become faculty members and 
who,  while  they will have primary responsibilities for the  normal  academic 
work, will live in continual danger of being appointed to the Computer  Center 
Policy  Committee,  the Committee to Buy the New Computer or,  if  exceedingly 
unlucky, become the Computer Science Director.

Results
-------

Now,  I want to ask the question of whether, or not, we have accomplished  the 
job the University desired. There are three ways of asking this: "What are the 
advantages?", "What are the disadvantages?", and "How do we sum them up?"

First of all, what have we accomplished? One way of evaluating this is to look 
at  the sort of projects that have been done in the year that  the  laboratory 
has  been  in  operation. Our major project was the development  of  a  paging 
system.  We now quite routinely run jobs which require up to 128,000 words  of 
core, using a paging system which is transparent to the user. This system came 
up  and became a useful tool, even though not completely debugged, in  a  very 
short  time. It was developed by one faculty member with help of  two  others, 
and  four or five interested students, not all of whom are on  the  laboratory 
staff. In work associated directly with class work, another professor, who  is 
charged  with the advanced software courses, has been able to  give  realistic 
assignments  and term projects. These include such things as the  construction 
of  text editors, interactive desk calculators systems, input/output  drivers, 
assemblers  and  compilers,  and the development of  a  graphic  language.  Of 
course,  some  of these projects could have been done on the  University  main 
computers, but we doubt that very many of them would have been done, or  would 
have  been carried out to the extent that they were carried out, or  with  the 
appreciation  of  the  hardware and operating  system  interactions  that  the 
students had to gain, in order to do the work on our primitive machine.

A  number  of research projects have begun, which would have  been  impossible 
without hands-on access to equipment. Some of the most interesting are in  the 
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area  of  measurements  where, as I have indicated,  we  can  actually  attach 
physical   devices  and  do  hardware  measurements,  ignoring  the  cost   of 
substantial  interference  with  the execution of programs.  If  the  hardware 
interface causes a crash, or if the software measurement takes excessive time, 
that  is simply not a problem. In a straight software field, we have  begun  a 
fairly  large  study of interactive problem solving, using both  the  graphics 
device  manipulation and the information retrieval capability of  the  system. 
Another  project  has developed a flying spot scanner for  photographic  image 
analysis,  which  is  hardwired  into  the  machine  for  studies  of  pattern 
recognition from filmed data.

Personnel training is, of course, a major purpose of a university. By far, the 
greatest amount of training is that of the laboratory personnel themselves. By 
maintaining  steady student rotation, we are able to give students  experience 
in the "nitty-gritty" aspects of Computer Science which tend to be lost in the 
maze of Artificial Intelligence and automata theory. This sort of training  is 
not limited just to the laboratory staff, since we welcome all students in the 
various  Computer Science courses who are willing to work. The spirit  in  the 
lab  is that we do not want to shut anyone out, unless he is lazy.  This  does 
not pose a disciplinary problem for the faculty, incidentally, as the students 
handle problems nicely themselves.

There  is  one way in which we have not begun to fulfill the  role  which  the 
University  desired for us. It was hoped that this facility would serve  as  a 
prototype  for other departmental research facilities. In particular,  it  was 
hoped  that we would be able to work with other departments, to  provide  them 
with some sort of guide to the sort of equipment they really needed, using  us 
as  a guinea pig to set up the system which they wanted, and then  seeing  how 
much of our equipment they actually used. This would have been a great help in 
letting them decide what course to follow in acquiring a computer  capability, 
and in preparing requests for proposals from vendors. As yet, however, we have 
only  begun to get into such work, in a small way. We hope that, in  the  next 
few years, as we become better known on campus, this will become more and more 
one of our tasks.

In every life, a little rain must fall. There are obvious disadvantages to the 
approach we have taken. The major one is cost. This is an expensive system  to 
run for a forty-graduate student program. The monthly budget for equipment  is 
approximately  $7,000, and for personnel (not including the faculty  director) 
$2,500.  We also have a rather large space requirement in terms of the  amount 
of space usually devoted to a departmental activity. However, in terms of  the 
amount  of space for a computer facility, our quarters in the Computer  Center 
are  uncomfortably crowded, and not particularly luxurious. In fact,  we  have 
been  featured  in "Computer World" as the computer that was  drowned  by  the 
laboratory upstairs, when they forgot to close off one of their water  spouts. 
Again,  the students were involved in mopping up the computer, and  presumably 
they  learned something from that about the reliability of various  pieces  of 
hardware.

A  more  subtle cost is the diversion of faculty effort. Because of  the  high 
turnover  of  personnel,  our  faculty have to  devote  considerable  time  to 
breaking  in  new  students on the system. A professor cannot  rely  upon  the 
manuals, and consultants and old-time programmers, that would be available  if 
he  were  using  the Computer Center for his course work; he  must  guide  the 
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students himself.

There is a hidden educational cost to running this machine. The laboratory can 
become  a  tail  wagging  a  dog. It is  clear  that,  at  the  University  of 
Washington,  that "where the action is" is in the Computer Science  Lab.  This 
means  that the automata theorist, if he is rather a sensitive soul, may  feel 
left  out.  We  cannot evaluate how much this system acts as  a  magnet  which 
diverts student attention from other quite worthy aspects of computer science. 
Even  within  the research fields of operating systems and  interactive  work, 
where this facility should contribute most to the research effort, there is  a 
problem  when  students are trapped into a continual cycle  of  learning,  and 
practicing new techniques without ever taking a step back to consider what the 
basic  scientific problems are. This is always a nebulous problem in  graduate 
education, and we do not know whether making good equipment available makes it 
more serious. I personally felt, when I was acting as faculty director, that I 
had  to  be extremely careful to watch for the student who runs from  one  fun 
project  to another, without ever trying to develop new research questions  of 
his  own.  The lab would be a good place to breed computer  nuts,  instead  of 
computer  scientists.  The  problem would be even more serious if  we  had  an 
undergraduate program, because it would be very easy to get students  diverted 
into  the fun things, without them ever learning a great deal about the  major 
problems.  Our graduate students have, at least, had forced exposure to  other 
fields.

Notwithstanding  these  problems,  we  feel there can be  no  doubt  that  the 
Computer  Science  Research  facility  is a fine  thing  for  the  educational 
program.  Whether it justifies the expense to the University is  something  of 
which we are perhaps not the best judges. We think that, in a very short time, 
the  Computer Science program at the University of Washington has  moved  from 
non-existence  to  a small, reasonably good program which  stresses  the  more 
practical  aspects  of  the computing field. We do not want  to  rest  on  our 
laurels (if any); we hope that we will get better.

EOF
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GKALG.WS4
---------

- "ALGOL-E: An Experimental Approach to The Study of Programming Languages"
   Gary Kildall & Alan B. Roberts
   ACM "SIGCSE Bulletin", Vol.4, No.1, March 1972, pp.127-135
   (ACM SIGCSE Second Symposium on Education in Computer Science)

   (ACM = Association for Computing Machinery)
   (SIGCSE = Special Interest Group on Computer Science Education)

(Retyped by Emmanuel ROCHE.)

A  common  approach  to  the teaching of  Programming  Languages  (Course  I2, 
Curriculum  68)  has  been to teach several languages,  each  demonstrating  a 
feature deemed significant, such as ALGOL, LISP, SNOBOL, and COBOL [References 
3 & 7]. The problem that exists with this method is that far too much time  is 
spent  learning the details necessary to use the languages, leaving  time  for 
only  a few trivial programs in each language. A popular alternative  to  this 
approach is to teach the course using a single general-purpose language  which 
has  a broad repertoire of language features, such as PL/I. While this  method 
successfully avoids much of the detail which characterizes the former, it  too 
seems  to  have a serious drawback. The student can become quite  talented  at 
programming  in  the  language,  and  still have  very  little  feel  for  the 
implications  of  the higher level language structures at the  machine  level. 
Moreover, these languages typically provide no means by which the student  can 
readily  investigate  these  implications. Hence, ALGOL-E  is  proposed  as  a 
programming language system which provides such a capacity.

ALGOL-E  is  a  programming language based on  ALGOL-60,  defined  within  the 
framework  of  a  complete system designed with the  teaching  of  programming 
language concepts in mind [Ref. 4]. A basic design criterion for the  language 
was  that  it be simple and easy to use, while not severely  compromising  the 
language constructions available. The language is constructed such that it can 
be implemented using a single execution stack [Ref. 6]. The system is  defined 
by  three  programs,  each  corresponding  to  a  distinct  level  of   formal 
definition.  The  first of these programs is a stack machine  simulator  which 
accepts  zero-address  machine code. The machine operators  of  the  simulated 
machine  are defined formally in terms of primitive register  operations.  The 
second  is  an  assembler  which  provides  a  convenient  means  of  symbolic 
programming at the machine level, rather than using absolute machine code. The 
syntax  of  the  assembly language is given in the Backus  notation,  and  the 
associated semantic actions are defined using the machine operators.  Finally, 
the  third  program  is  a compiler for the  ALGOL-E  language.  As  with  the 
assembler,  syntactic structure is given in Backus-Naur Form  (BNF);  however, 
the  semantic  interpretation of the high-level language is  formally  defined 
using the assembly language.

The notation used in the description of register actions defining the  machine 
operations is essentially that used by Burroughs on the B5500 [Ref. 2]. Memory 
is  considered as a vector M, with the S register (rS) pointing to the top  of 
the  stack.  The  C  register (rC)  is  the  instruction  counter  controlling 
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instruction  sequencing.  Figure  1 below gives descriptions of  some  of  the 
machine operators. The notation is fairly straightforward; note, however, that 
rA  and rB are abbreviations for the top two stack locations, M[rS] and  M[rS-
1],  respectively. The add operation, for example, indicates that the top  two 
elements  of the stack are summed, and the result replaces those two  elements 
on  the  stack. The instruction counter is then incremented to  the  following 
instruction. These operator definitions serve as a basis for the definition of 
the Assembler.

OpCode  Operation                       Action of Operator
------  ---------                       ------------------
129     addition (ADD)                  rB:=rB+rA; rS:=rS-1; rC:=rC+1

138     less or equal (LEQ)             rB:= if rB <= rA then 1,
                                        otherwise 0, rS:=rS-1; rC:=rC+1

148     load (LOD)                      rA:=M[rA]; rC:=rC+1

149     store (STO)                     M[rB]:=rA; rB:=rA; rS:=rS-1; rC:=rC+1

177     store and destruct stack (STD)  M[rB]:=rA; rS:=rS-2; rC:=rC+1

155     exchange (XCH)                  M[rS+1]:=rB; rB:=rA;
                                        rA:=M[rS+1]; rC:=rC+1

161     branch to segment (BRS)         rC:=rA; rS:=rS-1

162     branch to segment conditional (BSC)  rC:= if rB = 0 then rA,
                                        otherwise rC+1; rS:=rS-2

0, 1, ..., 127  literal call (LIT)      rS:=rS+1; rA:=C[rC]*; rC:=rC+1

146     immediate one syllable (IM1)    rC:=rC+1; rS:=rS+1;
                                        rA:=C[rc]; rC:=rC+1

147     immediate two syllables (IM2)   rC:=rC+1; rS:=rS+1;
                                        rA:=256*C[rC]+C[rC+1]; rC:=rC+2

*C represents the code area of memory, addressed here as a vector.

                Figure 1

The  Assembler is designed to achieve readability and facility at the  machine 
level.  The  simple structure of the assembly language is defined in  BNF,  to 
provide an introduction to the notation prior to considering the more  complex 
structure of the high level language. Pseudo-instructions, CON, VEC, and  STR, 
are  provided  for  symbolically defining  integer  constants  and  variables, 
integer  vectors,  and print strings, respectively. Symbolic labels  are  also 
allowed. The assembly language LIT, or literal call syllable, is used to place 
a  value onto the stack. This value might be a data value to be used  with  an 
arithmetic  operation,  a  variable address to be used with a  load  or  store 
operation,  or  a  label  address to be used  with  a  branch  operation.  The 
assembler  LIT translates into one of several machine instructions, LIT,  IM1, 
or  IM2,  depending  on the size of the  value.  Assembly  language  mnemonics 
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associated with the machine instructions are given in Figure 1 above.

Neither  the machine nor the assembly language described above constitutes  an 
end  in  itself,  but  rather  they exist  for  the  purpose  of  illustrating 
structures  and concepts in the high-level language. The features of  interest 
are  many  and  varied. Significant among these is block  structure.  All  too 
often, block structure and scope of variables is learned by example, with  the 
student  gaining very little feel for its implementation. Closely  related  to 
the  understanding  of block-structured declarations is the  understanding  of 
memory  allocation  and, in particular, the  difference  between  compile-time 
allocation and dynamic allocation, and their respective implementations. Along 
with  the  idea of dynamic allocations for such things as  arrays  comes  very 
naturally the problem of array subscripting. An understanding of the mechanism 
by  which  subscripting  is accomplished in  a  particular  implementation  is 
certainly requisite to reasonable and efficient use of subscripted  variables. 
Another  area of significant importance is subprograms. Included here are  the 
differences  between  functions  and subroutines, and the  handling  of  their 
parameter  lists.  Certainly, a large source of chagrin for students  in  this 
area  is recursion, and the handling of parameters and local variables  during 
recursive  calls.  Not only does the understanding of  the  implementation  of 
recursion  serve to demonstrate the overhead involved in its use, but also  it 
seems that, for many students, it serves to shed light on the concept  itself. 
Finally, there is the implementation of the basic statements of the  language. 
The  parsing  and  transformation of generalized language  statements  to  the 
machine  level  are not intuitively obvious. Among these would  be  assignment 
statements, iterative statements, and conditionals.

Given  that the concepts described above are things which merit  investigation 
in a programming language course, it is worth noting that the investigation of 
them involves scrutiny of the compilation process, as well as execution.  This 
is the reason that an "understanding gap" from high-level language to  machine 
exists, because compilation is precisely the step which is obscured most  from 
the  user.  ALGOL-E  is designed to allow  investigation  of  the  compilation 
process without too large an investment of time in the details of the compiler 
writer's job.

The  compiler's  symbol table is one of the first areas to come  under  study. 
Block  structure  is implemented by association of address with  symbol  in  a 
table  built  as a stack. A vector of "block level" pointers  mark  the  block 
levels  within the table, as shown in Figure 2 below. When the end of a  block 
is  scanned by the compiler, the table is cut back to the level  indicated  by 
the  last entry in the block level vector. A degree of efficiency  in  storage 
use can be obtained by resetting the storage location counter when the  symbol 
table  is cut back. This causes the storage locations to be reassigned in  the 
next block, and has the effect of sharing storage locations between  variables 
declared  in parallel blocks of a program. A problem is created in this  area, 
however,  when  subprograms  are  considered. Even though  a  block  within  a 
subprogram  is  ended, the subprogram can be referenced  anywhere  within  the 
block  in  which  it is defined, and hence the storage  locations  within  the 
subprogram  cannot  be reassigned until this outer block is closed.  To  avoid 
this  problem,  an additional vector is used in conjunction  with  the  symbol 
table  which records the maximum storage location assigned within a block,  so 
that they can be protected if the block is recognized as part of a subprogram.
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        BEGIN LOCAL U, GAMMA;
              BEGIN LOCAL A,
              X, B;
                    BEGIN
                    LOCAL R, S;
                    ...
                    END
              END
        END

           BLOCK         SYMBOL    LOCATION
          +-----+       +-------+  +-----+
        . |     |     . |       |  |     |
        . |     |     . |       |  |     |
        . |     |     . |       |  |     |
        . |     |     7 |   S   |  |  6  |
        . |     |     6 |   R   |  |  5  |
        5 |     | +-> 5 |   B   |  |  4  |
        4 |     | |   4 |   X   |  |  3  |
        3 |  5  +-+   3 |   A   |  |  2  |  
        2 |  2  +---> 2 | GAMMA |  |  1  |
        1 |  0  |     1 |   U   |  |  0  |
          +-----+       +-------+  +-----+

                Figure 2

Two  program options augment investigation of the compilation process. One  of 
these  is  a trace of the parsing reduction as applied in the  recognition  of 
program  syntactic  structure  (The parsing algorithm is  the  mixed  strategy 
precedence algorithm of McKeeman [Ref. 5].). The other is a trace of the  code 
generated during compilation, to demonstrate the association of semantics with 
each  of  the  reductions.  This code is  printed  in  the  assembly  language 
mnemonics  for readability. With these options, a number of  important  things 
become  readily  visible. The code which accomplishes dynamic  allocation  for 
such  things as arrays and recursion is available, and the code  corresponding 
to  the  mapping  of array subscripts and subprogram parameters  can  also  be 
explored.  In addition, the implementation of the various language  statements 
is  easily  investigated. Code tracing during compilation is, of  course,  not 
unique  to  the  ALGOL-E compiler. The advantage here, however,  is  that  the 
ALGOL-E  machine  is conceptually simple, and the semantic actions  are  well-
defined. Hence, the student can readily understand the ALGOL-E code trace.

Figure  3  below  shows a program listing demonstrating  the  parse  and  code 
tracing facilities.

        CARD | BL | SYL |
           1 |  0 |   0 | BEGIN LOCAL X,I;
        $PARSE
           3 |  1 |   0 |      X:=I;
                         <BEGIN> <DECLARATION SET> ;
                         <IDENTIFIER>
                         <IDENTIFIER>
                         <VARIABLE>
                         <PRIMARY ELEMENT>
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                         <PRIMARY>
                         <TERM>
                         <ARITHMETIC EXPRESSION>
                         : = <EXPRESSION>
                         <VARIABLE> <RIGHT PART>
                         <ASSIGNMENT STATEMENT>
                         <SIMPLE STATEMENT>
                         <STATEMENT>
        $PARSE
        $CODE
           6 |  1 |   4 |   FOR I:= 1 STEP 1 UNTIL 10 DO
                      4 |     001
                      5 |     001
                      6 | STO 149
                      7 | IM2 147
                      8 |     000
                      9 |     000
                     10 | BRS 161
                     11 |     001
                     12 |     001
                     13 | LOD 148
                     14 | ADD 129
                     15 |     001
                     16 | XCH 155
                     17 | STO 149
                  (BACKSTUFF 8,9: 18)
                     18 |     010
                     19 | LEQ 138
                     20 | IM2 147
                     21 |     000
                     22 |     000
                     23 | BSC 162
          7 |  1 |   24 |       X:= I;
                     24 |     000
                     25 |     001
                     26 | LOD 148
                     27 | STO 149
                     27 | STD 177
                     28 | IM2 147
                     29 |     000
                     30 |     000
                     31 | BRS 161
                  (BACKSTUFF 21,22: 32)
                  (BACKSTUFF 29,30: 11)
        $CODE
           9 |  1 |  32 | END
          10 |  1 |  32 | EOF
        PRT=2, DATA=0, CODE=9 (WORDS).

                Figure 3

Along  with the compilation options available, there are  built-in  procedures 
which  aid both in language investigation and in debugging of programs.  These 
include an execution trace feature, and a snapshot dump capability. The  trace 
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feature  prints one line per instruction, indicating the contents  of  machine 
registers  and  the top of the stack. The snapshot dump  facility  allows  the 
programmer  to  obtain  a memory dump at any point in the  program.  The  dump 
obtained,  however,  is not the usual octal or hexadecimal dump  available  on 
most  machines. Rather, it is decoded for readability, with the  memory  areas 
flagged,  the  code area appearing in the assembler mnemonics, and  the  stack 
contents appearing in decimal form, as shown in Figure 4 below. In this  form, 
the dump feature becomes a viable tool for the investigation of memory changes 
for such things as successive levels of recursion.

        CARD | BL | SYL |
        $STACK
           2 |  0 |   0 |
           3 |  0 |   0 | BEGIN FUNCTION FACTORIAL (N);
           4 |  2 |  10 |       IF N EQL 0 THEN
           5 |  2 |  14 |          BEGIN DUMP; FACTORIAL:=1 END
           6 |  3 |  25 |       ELSE FACTORIAL:=N * FACTORIAL(N-1);
           7 |  1 |  48 |
           8 |  1 |  48 |       WRITE (FACTORIAL (3) )
           9 |  1 |  52 | END
          10 |  1 |  53 | EOF
        PRT=3, DATA=0, CODE=14 (WORDS).
        CODE FILE WRITTEN
        END OF COMPILATION DECEMBER 28, 1971.  CLOCK TIME = 15:35:0.72

        A L G O L - E   M E M O R Y   D U M P
        -------------------------------------

        MACHINE REGISTERS
                       RA: 2
                       RB: 24
                       RS: 31
                       RC: 31 (SYLLABLE=19)
                       RG: 8188

        INPUT BUFFER:
        ||

        OUTPUT BUFFER:
        ||

        PROGRAM REFERENCE TABLE (PRT)
                       MEMORY ADDR    FIXED FORMAT
                          0              0
                          2              28

(Note: 28 is the memory location associated with function call
       (factorial=0, n=0, pointer=28) See execution stack below.)

        FIXED DATA AREA (FDA)
                       MEMORY ADDR    FIXED FORMAT   CHARACTER FORMAT

        CODE AREA
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                       MEMORY ADDR    SYLLABLE LOC        SYLLABLES
                          3              0             IM2 000 045 BRS
                          4              4             001 IM2 000 000
                          5              8             000 SAV 001 LOD
                          6              12            000 EQL IM2 000
                          7              16            029 BSC 002 BIF
                          8              20            DEL 001 000 XCH
                          9              24            STD IM2 000 041
                          10             28            BRS 001 LOD 001
                          11             32            LOD 001 MIN 004
                          12             36            PRO MUL 000 XCH
                          13             40            STD 001 000 UNS
                          14             44            RTN 002 000 STD
                          15             48            DMP 003 004 PRO
                          16             52            WRV XIT XIT XIT

        EXECUTION STACK
                       MEMORY ADDR    FIXED FORMAT
                          17             0
                          19             3
                          20             0---+
                          21             3   |
                          22             1---+

(Note: Function values associated with original call
       (factorial=0, n=3, pointer=1) )

                          23             2
                          24             0---+
                          25             2   |
                          26             20--+

(Note: Function values associates with first recursive call
       factorial=0, n=2, pointer=20) )

                          27             1
                      --> 28             0---+
                          29             1   |
                          30             24--+

(Note: Function values associated with second recursive call
       (factorial=0, n=1, pointer=24) )

                          31             2
                          32             29
                          33             0
                          8188           49--+
                          8191           64--+

(Note: Return addresses (saved from top of execution stack, toward bottom). )

        END OF DUMP.

                Figure 4
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The definition of the system on several levels lends itself to the possibility 
of  formally  proving the correctness of various aspects  of  the  compilation 
process. An example is given in Appendix A. In the example, it is shown that a 
FOR statement of the form

        FOR I:=1 STEP 1 UNTIL N DO <simple statement>

terminates,  as long as the <simple statement> terminates and does  not  alter 
the values of I and N.

To  date,  ALGOL-E  has  been used twice in  the  teaching  of  a  programming 
languages  course. Because of its limitations as far as data  types,  allowing 
only  integers, and its lack of such features as string manipulation and  list 
processing,  it  is not intended as the subject of the entire course.  It  has 
been  found  that  approximately  six weeks of an eleven  week  quarter  is  a 
reasonable  time  to study ALGOL-E, and gain a feel for the language  and  its 
structure.  From  there,  a transition is made to ALGOL-W [Ref.  1]  to  study 
string  manipulation  and list processing. The similarities  between  the  two 
languages  are  such  that  the transition is quite  easy.  Relative  to  list 
processing, a second version of the algol-E machine exists, which maintains  a 
"Free  Storage  Area"  separate from the stack. This version can  be  used  to 
demonstrate a linked-list approach to storage management suitable for the more 
general dynamic allocations necessary for such things as list processing.

A  convenient  side  effect of the ALGOL-E system worth  noting  is  that  the 
emphasis  placed  upon  the  compilation process as  a  key  to  understanding 
programming   language   features   establishes   continuity   with   Compiler 
Construction (Course I5, Curriculum 68). The ALGOL-E programs were constructed 
using  the  XPL Compiler Generator System [Ref. 5], and they can serve  as  an 
excellent example for the teaching of the compiler writing course.

In  summary, the emphasis in the ALGOL-E system is placed upon  providing  the 
student  tools  whereby  he  can gain understanding  of  high  level  language 
concepts through direct investigation. It is designed to replace exposition by 
an  instructor  with experimentation by the student, and to  provide  concrete 
examples in the place of vague generalizations. The ALGOL-E programming system 
will  operate  on any computer capable of running the XPL  Compiler  Generator 
System, typically an IBM S/360 Model 50, or larger. The system is available in 
its  entirety,  along  with  documentation, from the  W.  R.  Church  Computer 
Facility, Naval Postgraduate School, Monterey, California, 93940.

Appendix A
----------

Consider the following FOR statement in ALGOL-E:

        FOR I:=1 STEP 1 UNTIL N DO <simple statement>

The ALGOL-E semantics for this statement are:

        <for statement> ::= <for clause> <step expression> <until clause>
                            <do statement>
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        <for clause>; <step expression>; <until clause>; <do statement>;
        END:

        <for clause> ::= FOR <assignment statement>
        {save identifier V in assignment statement}
        <assignment statement>; LIT UNTIL; BRS

        <step expression> ::= STEP <expression>
        STEP: <expression>; LIT V; LOD; ADD; LIT V; XCH; STO

        <until clause> ::= UNTIL <expression>
        UNTIL: <expression>; LEQ; LIT END; BSC

        <do statement> ::= DO <simple statement>
        <simple statement>; LIT STEP; BRS

where <assignment statement>, <expression>, and <simple statement> are further 
expanded to their respective representatives.

A  machine  execution  is determined by a vector M  representing  the  program 
variables and the execution stack, a code vector C, and registers rC and rS. A 
machine execution sequence consists of an initial configuration <M0, rC0, rS0> 
and a sequence (not necessarily finite) of successor configurations <M1,  rC1, 
rS1>,  <M2,  rC2,rS2>,  ..., <Mk, rCk, rSk>, where  <Mi+1,  rCi+1,  rSi+1>  is 
derived  from  <Mi,  rCi, rSi> by application of the  definition  of  operator 
C[rCi].  A  machine  execution  sequence terminal at t  is  a  finite  machine 
execution  sequence <M0, rC0, rS0>, <M1, rC1, rS1>, ..., <Mk, rCk,  rSk>  such 
that rCk=t and rCi<>t whatever i, 0 <= i < k.

Suppose the variables I and N in the above FOR statement are elements 0 and  1 
of M, respectively. Expanding the semantics given above, C is:

        C[1]    LIT I
        C[2]    LIT 1
        C[3]    STO
        C[4]    LIT UNTIL               (13)
        C[5]    BRS
        C[6]    LIT 1
        C[7]    LIT I
        C[8]    LOD
        C[9]    ADD
        C[10]   LIT I
        C[11]   XCH
        C[12]   STO
        C[13]   LIT N
        C[14]   LOD
        C[15]   LEQ
        C[16]   LIT END                 (k+2)
        C[17]   BSC
        C[18]   <simple statement>
        C[k]    LIT STEP                (6)
        C[k+1]  BRS
        C[K+2]  ...
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Let <simple statement> be such that all machine execution sequences  beginning 
with  initial configuration <Mi, 18, rS> are terminal at k with  configuration 
<Mj, k, rSj> rSi=rSj, Mip=Mjp whatever p <= rSi, 18 <= rCq <= k whatever q  it 
exists i <= q <= j. In other words, the simple statement must leave the  stack 
pointer  in the same position, with no changes below that point in the  stack, 
and  no  changes to I or N. It must also not branch out of the  range  of  the 
simple statement.

Theorem:  All  machine  execution sequences of the above  FOR  statement  with 
initial  configuration <(lambda, n, lambda, ..., lambda),1,1> are terminal  at 
k+2 whatever n belonging to Z, where lambda is an indeterminate value.

Proof:
P(x):  Consider a machine execution sequence of the above FOR  statement  with 
initial  configuration <(lambda, n, lambda, ..., lambda),1,1> which  does  not 
contain a configuration with rC=k+2 such that configurations with rC=17  occur 
in  this  sequence at least x times. If <M, 17, rS> is the xth  occurrence  of 
such a configuration, then M0=x.

The  proposition above states that, if, in the execution of a  FOR  statement, 
the test is reached for the xth time without having terminated the loop,  then 
the value of the loop index I is X. 

To  show  P(1): Consider the following enumeration of  an  execution  sequence 
beginning with initial configuration

        <(lambda, n),1,1>*      apply rS:=rS+1; rA:=C[rC]; rC:=rC+1

*M  is of fixed length, and is assumed to be "large enough" for  the  problem. 
Only the pertinent portion of M is shown here.

        <(lambda, n, 0),2,2>    apply rS:=rS+1; rA:=C[rC]; rC:=rC+1

        <(lambda, n, 0),3,3>    apply M[rB]:=rA; rB:=rA; rS:=rS-1; rC:=rC+1

        <(1, n, 1),4,2>         apply rS:=rS+1; rA:=C[rC]; rC:=rC+1

        <(1, n, 1, 13),5,3>     apply rC:=rA; rS:=rS-1

        <(1, n, 1),13,2>        apply rS:=rS+1; rA:=C[rC]; rC:=rC+1

        <(1, n, 1, 1),14,3>     apply rA:=M[rA]; rC:=rC+1

        <(1, n, 1, n),15,3>     apply rB:=1 if rB <= rA otherwise 0;
                                rS:=rS-1; rC:=rC+1

        <(1, n, s),16,2>        apply rS:=rS+1; rA:=C[rC]; rC:=rC+1

        <(1, n, s, k+2),17,3>

Note that the only element of a configuration to this point which is dependent 
on  the  value of n is the value of s. It follows that all  machine  execution 
sequences  begin  with  this  sequence, hence at the  first  occurrence  of  a 
configuration with rC=17, it is always the case that M0=1.
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To  show P(q) implies P(q+1): Let S be a machine execution sequence such  that 
configurations  with rC=17 occur at least q+1 times. In the qth occurrence  of 
<M, 17, rS>, M0=q by the inductive hypothesis. Consider the machine  execution 
sequence with initial configuration <(q, n, s, k+2),17,3>. C[17] is BSC  which 
is defined as:

        rC:= rA if rB=0 otherwise rC+1; rS:=rS-2

Hence, there are two possible successor configurations:

        (a) <M, k+2, 1>
and
        (b) <M, 18, 1> ,

but  case  (a) cannot occur, since it causes S to be terminal  at  k+2,  which 
contradicts  the fact that <M, 17, rS> occurs at least q+1 times.  Hence,  the 
successor  configuration is <M, 18, 1>. Consider a machine execution  sequence 
S'  with  initial  configuration <(q, n), 18, 1>. By  the  conditions  on  the 
<simple  statement>,  S' is terminal at k with configuration <(q,n ),  k,  1>. 
Since  18  <= rC <= k for all configurations of the  <simple  statement>,  the 
configuration <M, 17, rS> cannot have occurred in S'.

Consider  a machine execution sequence S" with initial configuration <(q,  n), 
k+1>. Enumerating S":

        <(q,n),k,1>
        <(q,n,6),k+1,2>
        <(q,n),6,1>
        <(q,n,1),7,2>
        <(q,n,1,0),8,3>
        <(q,n,1,q),9,3>
        <(q,n,q+1),10,2>
        <(q,n,q+1,0),11,3>
        <(q,n,0,q+1),12,3>
        <(q+1,n,q+1),13,2>
        <(q+1,n,q+1,1),14,3>
        <(q+1,n,q+1,n),15,3>
        <(q+1,n,t),16,2>
      * <(q+1,n,t,k+2),17,3>

Extending the sequence S by S' followed by S", it is evident that * is the q+1 
occurrence  of  a  configuration  with  rC=17,  hence  P(q+1).  Therefore,  by 
induction,  it is true that, for every positive integer x, the value of  I  at 
the  xth  test in the FOR loop is x. The proof can then be  completed  in  the 
following manner:

    (1) Consider  the case n <= 0 and demonstrate that the branch is taken  to 
        the terminal configuration rC=k+2 at the first test.
        (I=1>N)

    (2) Show by induction that, for any positive value of n, the branch to the 
        terminal configuration is taken at the n+1 test.
        (I=N+1>N)
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The logic above can be extended to show such corollaries as the fact that  the 
simple  statement  is executed exactly n times for all values n > 0,  and  the 
fact that stack underflow does not occur. More precisely, the stack pointer at 
the  termination  of  a FOR statement is in same position as  in  the  initial 
configuration.

Appendix B: A complete ALGOL-E program  (105 colums wide)
----------

   2 |  0 |   0 | BEGIN
   3 |  0 |   0 | COMMENT -- ALGOL-E program to compute the shortest route between cities.
   4 |  0 |   0 |
   5 |  0 |   0 |    INPUT DATA:
   6 |  0 |   0 |          city1 dist city2
   7 |  0 |   0 |
   8 |  0 |   0 | Where CITY1 and CITY2 are the integers corresponding to the cities involved
   9 |  0 |   0 | (see the "PRINTCITY" procedure below). DIST is a non-negative integer which
  10 |  0 |   0 |     (1) indicates the distance between the two cities if greater than zero,
  11 |  0 |   0 |     (2) indicates that the shortest route between the two cities is desired
  12 |  0 |   0 |         if equal to zero.
  13 |  0 |   0 |
  14 |  0 |   0 | The end-of-data is indicated by CITY1 equal to HALT;
  15 |  0 |   0 |
  16 |  0 |   0 | LOCAL n, halt; n:=10; halt:=99999;
  17 |  1 |   8 |     BEGIN ARRAY dist, route, flag <1:n>; ARRAY citylist <1:n, 1:n>;
  18 |  2 |  35 |
  19 |  2 |  35 |     PROCEDURE printcity (k, c);
  20 |  3 |  45 |         IF k GTR n OR k LEQ 0 THEN WRITEON (TAB c, k) ELSE
  21 |  3 |  65 |         CASE k OF
  22 |  3 |  71 |             BEGIN k:=k;
  23 |  5 |  87 |               WRITEON (TAB c, "Seattle"       );
  24 |  5 |  97 |               WRITEON (TAB c, "Boise"         );
  25 |  5 | 107 |               WRITEON (TAB c, "Modesto"       );
  26 |  5 | 117 |               WRITEON (TAB c, "Sacramento"    );
  27 |  5 | 127 |               WRITEON (TAB c, "San Francisco" );
  28 |  5 | 137 |               WRITEON (TAB c, "Monterey"      );
  29 |  5 | 147 |               WRITEON (TAB c, "Las Vegas"     );
  30 |  5 | 157 |               WRITEON (TAB c, "Los Angeles"   );
  31 |  5 | 167 |               WRITEON (TAB c, "Bakersfield"   );
  32 |  5 | 177 |               WRITEON (TAB c, "Tijuana"       )
  33 |  5 | 180 |             END;
  34 |  2 | 238 |
  35 |  2 | 238 |     PROCEDURE addcity (c1, d, c2);
  36 |  3 | 248 |         BEGIN LOCAL i; SKIP (1);
  37 |  4 | 252 |         printcity (c1, 10); WRITEON (TAB (i:=APPEND + 1), "is", TAB i+3, d,
  38 |  4 | 275 |         TAB (i:=APPEND + 1), "miles from"); printcity (c2, APPEND + 1);
  39 |  4 | 295 |         citylist <c1, c2> := citylist <c2, c1> := d;
  40 |  4 | 313 |         WRITEON (TAB APPEND, ",");
  41 |  4 | 319 |         END;
  42 |  2 | 326 |
  43 |  2 | 326 |     LOCAL r;
  44 |  2 | 326 |
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  45 |  2 | 326 |     FUNCTION path (city, dest);
  46 |  3 | 336 |         IF city EQL dest THEN path:=0 ELSE
  47 |  3 | 349 |         IF flag <city> EQL 1 THEN path:=halt ELSE
  48 |  3 | 370 |         BEGIN LOCAL i, q, rt, j, t; ARRAY dst, rte <r+1:n>;
  49 |  4 | 389 |         LOCAL bestdist, bestcity, bestroute;
  50 |  4 | 389 |         flag <city>:=1; bestdist:=halt; bestcity:=bestroute:=0; rt:=r;
  51 |  4 | 409 |         FOR i:=1 STEP 1 UNTIL n DO
  52 |  4 | 430 |             BEGIN q:=citylist <city, i>;
  53 |  5 | 440 |             IF q NEQ halt THEN
  54 |  5 | 445 |                BEGIN t:=path (i, dest);
  55 |  6 | 459 |                IF t+q LSS bestdist THEN
  56 |  6 | 467 |                   BEGIN
  57 |  6 | 471 |                   bestroute:=r; bestcity:=i; bestdist:=t+q;
  58 |  7 | 486 |                   FOR j:=rt+1 STEP 1 UNTIL r DO
  59 |  7 | 510 |                       BEGIN rte <j>:=route <j>; dst <j>:=dist <j>
  60 |  8 | 529 |                       END
  61 |  8 | 534 |                   END;
  62 |  6 | 538 |                r:=rt
  63 |  6 | 539 |                END;
  64 |  5 | 542 |             END;
  65 |  4 | 546 |             COMMENT -- Arrive here after all connections have been examined;
  66 |  4 | 546 |             IF bestcity NEQ 0 THEN
  67 |  4 | 550 |                BEGIN
  68 |  4 | 554 |                FOR j:=rt+1 STEP 1 UNTIL bestroute DO
  69 |  5 | 578 |                    BEGIN route <j>:=rte <j>; dist <j>:=dst <k>
  70 |  6 | 597 |                    END;
  71 |  5 | 606 |                r:=bestroute+1; dist <r>:=citylist <city, bestcity>;
  72 |  5 | 626 |                route <r>:=bestcity
  73 |  5 | 631 |                END;
  74 |  4 | 634 |             flag <city>:=0; path:=bestdist
  75 |  4 | 641 |             END;
  76 |  2 | 656 |
  77 |  2 | 656 |     PROCEDURE routefinder (c1, d, c2);
  78 |  3 | 666 |         BEGIN LOCAL i;
  79 |  4 | 666 |         IF (i:=APPEND) GTR 1 THEN
  80 |  4 | 672 |            BEGIN WRITEON (TAB i-1, "."); SKIP (1)
  81 |  5 | 685 |            END;
  82 |  4 | 688 |         SKIP (1); WRITE ("The shortest route from"); printcity (c1, APPEND+1);
  83 |  4 | 705 |         WRITEON (TAB APPEND+1, "to"); printcity (c2, APPEND+1); r:=0;
  84 |  4 | 725 |         WRITEON (TAB (i:=APPEND+1), "is", TAB i+3, (i:=path (c1, c2) ), TAB APPEND+1,
  85 |  4 | 756 |         "miles");
  86 |  4 | 759 |         IF i EQL halt THEN WRITE (TAB 10, "(The cities are not connected)") ELSE
  87 |  4 | 774 |         IF i EQL 0 THEN WRITE (TAB 10, "(Don't go anywhere)") ELSE
  88 |  4 | 792 |         WRITEON (TAB APPEND+1, "via:");
  89 |  4 | 804 |         SKIP (1);
  90 |  4 | 808 |         FOR i:=1 STEP 1 UNTIL r DO
  91 |  4 | 827 |             BEGIN WRITE (TAB 15, dist <r-i+1>, TAB APPEND+1, "miles to");
  92 |  5 | 852 |             printcity (route <r-i+1>, APPEND+1); WRITEON (TAB APPEND, ",");
  93 |  5 | 876 |             END;
  94 |  4 | 880 |         IF (i:=APPEND) GTR 1 THEN WRITEON (TAB i-1, "."); SKIP (1);
  95 |  4 | 902 |         END;
  96 |  2 | 909 |
  97 |  2 | 909 |     LOCAL city1, city2, distance;
  98 |  2 | 909 |
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  99 |  2 | 909 |     FOR city1:=1 STEP 1 UNTIL n DO
 100 |  2 | 930 |         BEGIN flag <city1>:=0; route <city1>:=dist <city1>:=0;
 101 |  3 | 950 |         FOR city2:=1 STEP 1 UNTIL n DO citylist <city1, city2>:=halt;
 102 |  3 | 985 |         END;
 103 |  2 | 989 |     READ (city1);
 104 |  2 | 992 |     WHILE city1 NEQ halt DO
 105 |  2 |1001 |           BEGIN READ (distance, city2);
 106 |  3 |1007 |           IF distance EQL 0 THEN
 107 |  3 |1011 |              routefinder (city1, distance, city2) ELSE
 108 |  3 |1026 |           addcity (city1, distance, city2); READ (city1)
 109 |  3 |1041 |           END;
 110 |  2 |1047 |     END;
 111 |  1 |1050 | SKIP (3); WRITE ("End Of Run.");
 112 |  1 |1058 | END
 113 |  1 |1058 | EOF
PRT=40, DATA=67, CODE=265 (WORDS).
CODE FILE WRITTEN
END OF COMPILATION DECEMBER 28, 1971.  CLOCK TIME = 15:36:52.20.

113 CARDS WERE READ.
NO ERRORS WERE DETECTED.

SET UP TIME              0:0:0.57.
ACTUAL COMPILATION TIME  0:0:10.03.
CLEAN-UP TIME AT END     0:0:0.47.
TOTAL TIME IN COMPILER   0:0:11.07.
COMPILATION RATE :675 CARDS PER MINUTE.

PRT=40, DATA=67, CODE=265

        Seattle is 150 miles from Boise,
        Boise is 300 miles from Modesto,
        Seattle is 400 miles from Modesto,
        Modesto is 150 miles from Monterey,
        Modesto is 50 miles from San Francisco,
        San Francisco is 200 miles from Las Vegas,
        Las Vegas is 350 miles from Monterey,
        Los Angeles is 400 miles from Las Vegas,
        Bakersfield is 300 miles from Monterey,
        Bakersfiled is 250 miles from Las Vegas,
        Los Angeles is 450 miles from Tijuana,
        Tijuana is 700 miles from Las Vegas,
        Las Vegas is 920 miles from Boise.

The shortest route from Seattle to Monterey is 550 miles via:

        400 miles to Modesto,
        150 miles to Monterey.

The shortest route from Seattle to Seattle is 0 miles
        (Don't go anywhere)

The shortest route from Boise to Tijuana is 1250 miles via:



file:///C|/...ate%20Histories%20Report%20to%20CHM/DRI/Emmanuel%20Roche%20documents%20conversion/Kildall.(zip)/GKALG.TXT[2/6/2012 10:27:56 AM]

        300 miles to Modesto,
        50 miles to San Francisco,
        200 miles to Las Vegas,
        700 miles to Tijuana.

End Of Run.
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Abstract
--------

        APL\B5500  is a multiple-user interactive system for a  conversational 
programming  language  implemented  on the Burroughs  B5500  computer  at  the 
University of Washington. The language is patterned after APL\360, which is an 
implementation  of  "Iverson Notation". This paper describes  the  differences 
between  the APL\360 and APL\B5500 languages. In addition, the algorithms  and 
data structures used in the implementation of APL\B5500 are given.
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Section 1: Introduction
-----------------------

        APL\B5500 is a multiple-user interpretive system for a  conversational 
programming  language  implemented  on the Burroughs  B5500  computer  at  the 
University  of  Washington.  The  language is  patterned  after  APL\360  [see 
Reference  1], which is an implementation of "Iverson Notation"  [Ref.2].  The 
APL\B5500  system provides line-by-line evaluation of APL statements as  input 
by  a  programmer at a remote teletype station. The system  provides  both  an 
"immediate  execution  mode" and a "stored program facility". The  basic  data 
elements of APL are numeric and character constants. Identifiers, however, can 
be  used to name numeric and character data for later reference. In  addition, 
the  data  elements are in the form of scalars, vectors, and arrays.  A  large 
number  of  special-purpose operators operate on the data  elements,  allowing 
concise expression of mathematical or manipulative constructs.

        A  comprehensive  set of commands allows communication  with  the  APL 
system  monitor, providing a number of facilities useful in  a  conversational 
programming environment.

        The  conciseness of APL statement expression, along with  APL  monitor 
functions, makes APL\B5500 an excellent interactive programming system.

        A full discussion of the capabilities of APL\B5500 are given elsewhere 
[Ref.3];  the purpose here is to provide a reasonably complete  discussion  of 
the  internal  structure of the system. It is useful, however, to  provide  an 
introduction  to  the  language, as well as to  point  out  major  differences 
between the APL\360 and APL\B5500 languages.

        The  structure  of APL statements is most easily shown with  a  simple 
example. Consider the following ALGOL 60 program:

        begin integer n; real t;
        read (n);
             begin real array a[1:n]; integer i;
             for i:=1 step 1 until n do
                 begin read (a[i]); t:=t+a[i]
                 end;
             t:=t/n
             end;
        write (t)
        end;

which  calculates  the  average  value  from a  set  of  values  stored  in  a 
dynamically  allocated array A (This ALGOL example includes the use of  "read" 
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and  "write" procedure calls, which produce the obvious effect.  Clearly,  the 
computation  could  be performed without the array A; it is included  here  in 
order that the dynamic storage allocation can be compared.). With input data

        5, 5, 4, 4, 8, 16

the ALGOL program produces the ouput

        7

An APL statement pair which performs the same computation is as follows:

        X := 5 5 4 4 8 16
        (+/X) % RHO X

Dynamic  storage allocation occurs on the first line, where a vector  constant 
is  assigned  to  the  variable  X. The  second  line  performs  the  required 
computation, and causes the numeric scalar result to be printed.

        The  second  APL  statement contains  three  operators  which  require 
explanation: the reduction operator (/), the divide operator (%), and the  RHO 
operator.

        The  reduction operator applies the operator occurring on its left  to 
the vector to its right, by "placing" the operator between each element of the 
vector. Thus, since

        X = 5 5 4 4 8 16

then

        (+/X)

is equivalent to

        5 + 5 + 4 + 4 + 8 + 16

In this case, the divide operator divides the scalar to its left by the scalar 
value occurring on its right. The divide operator, as used here, is said to be 
"dyadic",  since  it  occurs between two operands (i.e., it  operates  on  two 
operands, resulting in a single operand).

The  RHO operator is "monadic" in this example, since it operates on only  one 
operand (the one which occurs on its right). The RHO operator is used here  to 
extract  the  "dimensionality" of the vector X. RHO X results  in  the  scalar 
value  6, since X represents a vector with six elements. Thus, the second  APL 
expression

        (+/X) % RHO X

reduces to a final scalar result through the following steps:

        (+/X) % RHO X
        (+/X) % 6
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        (+/(5 5 4 4 8 16)) % 6
        (42) % 6
        7

        It  should  also  be  noted that there is  no  hierarchy  of  operator 
evaluation  in an APL statement. All operators are applied from right to  left 
in  the  statement:  the order of evaluation can be  controlled,  however,  by 
properly parenthesizing sub-expressions. Hence, the APL statement

        +/X % RHO X

reduces to (approximately) the same result as above, through the steps:

        +/X % RHO X
        +/X % 6
        +/(5 5 4 4 8 16) % 6
        +/(5%6 5%6 4%6 4%6 8%6 16%6)
        ((5%6)+((5%6)+((4%6)+((4%6)+((8%6)+(16%6))))))
        7

        Note that, in this case, the divide operator divides the vector on its 
left  by  the  scalar on its right, resulting in a  vector.  The  results  may 
actually differ, of course, due to truncation errors.

        There  are  approximately  forty-five  special-purpose  operators   in 
APL\B5500.  Most  of  these  operators can be  taken  as  monadic  or  dyadic, 
depending upon the context in which they are used.

        As  mentioned  previously, APL statements can be grouped  together  in 
stored  programs  or  "functions". The APL programmer defines  a  function  by 
entering  "function  definition  mode". This is accomplished  by  typing  a  $ 
("del")  at the teletype, followed by an identifier which names  the  function 
(Although all APL programs are called "functions, it is not necessary that the 
program return a value in the usual functional sense.).

        An APL function defined for the purpose of calculating the average  of 
a set of numbers follows:

                $AVERAGE
        [1]     X:=[]
        [2]     (+/X) % RHO X
                $

The  line  numbers  enclosed  in square brackets on the  left  are  typed  out 
automatically  by APL\B5500 when the user is operating in function  definition 
mode. In addition to automatic line numbering, an extensive set of commands is 
provided  for  displaying  defined functions,  deleting  function  lines,  and 
altering previously typed lines.

        The above function is invoked by typing

        AVERAGE

at  the teletype. The function begins execution at line one,  and  immediately 
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encounters  the  []  ("quad"). Executing the quad causes the  teletype  to  be 
opened for input with the prefix

        []:

indicating that APL requires input data from the terminal station in order  to 
continue execution. The APL programmer may then type input data, such as:

        5 5 4 4 8 16

and the result

        7

is printed at the teletype.

        As  mentioned  above, APL\B5500 provides the APL user with  a  set  of 
monitor communication commands. These monitor commands allow the user to  sign 
onto  the APL system, interrogate APL regarding the contents of a  work  area, 
maintain  separate  work areas, and provide APL execution parameters  for  his 
programs.

        All APL monitor commands are prefixed with a ")" by the user, in order 
to distinguish them from other APL statements. Most of the APL\B5500  commands 
correspond exactly to APL\360 commands [Ref.1]. A more complete discussion  of 
APL monitor commands is found in a later section; the sample terminal  session 
given  in  Figure  1  below, however, includes a  number  of  monitor  command 
examples ("<--" indicates lines typed by the APL user).

XXXXXXXXXXXXX
 D. NIXON LOGGED IN WEDNESDAY 10-21-70  10:42
        X:=5 5 4 4 8 16<--
        X<--
5   5   4   4   8   16

        $AVERAGE[[]]$<--

        AVERAGE
[1]     X:=[]
[2]     (+/X) % RHO X

        AVERAGE<--
[]:
        5 5 4 4 8 16<--
7

        )VARS<--
AVERAGE(F) X         Y
        )FNS<--
AVERAGE
        )DIGITS<--
9
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        )DIGITS 3<--
        1 % 3<--
0.333
        )DIGITS 5<--
        1 % 3<--
0.33333
        )WIDTH<--
72
        )LOGGED<--
(1) IS D. NIXON
(2) IS P. NIXON
        )ORIGIN<--
1
        )FUZZ<--
1@-11
        )SEED<--
59823125
        )CLEAR<--
        )VARS<--
NULL.
        )OFF<--
        END OF RUN

        Figure 1: Sample APL\B5500 terminal session

1.1 Hardware configuration required for APL\B5500
-------------------------------------------------

        APL\B5500  is  implemented on a Burroughs B5500 computer  system.  The 
machine  used in the implementation is a single processor system  with  32,768 
words  of  48-bit central memory. Messages to and from  remote  teletypes  are 
buffered  in a single Burroughs B487 Data Transmission Terminal  Unit  (DTTU). 
The  B487 DTTU is interfaced with model 33 or model 35 teletypes through  line 
adaptors  and  Western  Electric  103A2 (dial-up)  data  sets.  The  equipment 
required for remote operation of APL\B5500 is a model 33 or model 35  teletype 
with attached acoustic coupler or data set. The remote teletypes must  operate 
in  half-duplex mode. In addition, teletypes may be directly connected to  the 
B487 DTTU through line adaptors.

        The  virtual memory of the APL system requires access to at least  one 
B475 Disk File Storage Module (9.6 million character capacity).

        No line printers, tape drives, or card readers are required for normal 
APL operation.

        A  complete description of the B5500 hardware components is  given  in 
the B5500 hardware reference manual [Ref.4].

1.2 Software environment required by APL\B5500
----------------------------------------------

        APL\B5500  is  designed to operate concurrently with other  batch  and 
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conversational  programs  under control of the B5500  multiprogramming  Master 
Control  Program (MCP). APL is coded entirely in B5500 Extended ALGOL,  except 
for a few statements which allow APL to directly communicate with the MCP. For 
the most part, APL runs under the same conditions as many B5500 user  program, 
and  thus  enjoys  the  protection  and  facilities  (e.g.,  dynamic   storage 
allocation, automatic overlay, and disk-file Input/Output facilities) provided 
by the MCP.

        A  primary  design objective in the organization of APL was  that  the 
resulting  system operation interfer as little as possible with  normal  B5500 
user  program  processing.  In light of this  objective,  APL  central  memory 
requirements  are  approximately  3000  words  of  resident  (non-overlayable) 
storage,  with  an additional 7000 words of transient  (overlayable)  storage. 
Resident  and transient requirements can be altered at APL system  compilation 
time, with a corresponding trade-off in system response time.

        The  current  version  of APL\B5500 also requires the  services  of  a 
separate  priviledged program called the "remote handler". The remote  handler 
interrogates the B487 DTTU, and passes messages between the B487 and APL.  APL 
has been coded in such a way as to allow the remote handler to be removed, and 
its functions taken over by APL, with a small amount of re-coding.

        In  many ways, APL\B5500 can be considered a  time-sharing  submonitor 
and language processor under the B5500 MCP, since it:

        (1) handles its own virtual memory,
        (2) handles its own terminal Input/Output processing,
        (3) handles execution of APL statements and functions,
        (4) schedules APL user tasks and APL monitor tasks for
            execution,
        (5) maintains back-up storage for APL work areas, and
        (6) provides an APL-oriented command language for user
            control of APL monitor functions.

After  initial  connection of a user terminal to the B5500,  the  terminal  is 
under control of the APL\B5500 system.

        A  complete  description  of  the  B5500  software  is  given  in  the 
"Narrative Description of the B5500 Master Control Program" 
[Ref.5].

Section 2: APL\B5500 language description
-----------------------------------------

        The  APL\B5500 statement and monitor command syntax is, for  the  most 
part, structurally equivalent to AL\360, with a transliteration of the APL\360 
character  set. The correspondence between the two languages is maintained  as 
much  as  possible,  in  order that an APL  programmer  can  easily  make  the 
transition  from one language to the other. In addition to the  usual  APL\360 
operators, the proposed epsilon operator ("execute string") is implemented  in 
APL\B5500, as shown in Table 1 below. The monadic epsilon operator operats  on 
a  vector  character  string containing an APL statement. The  result  of  the 
operation  is the result of the evaluation of the APL statement  contained  in 
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the character string. Thus,

        EPS "2+3"

results in the scalar 5. If the APL statement is invalid, an appropriate error 
message is printed.

Table 1: APL\360 and APL\B5500 transliteration
----------------------------------------------
(Note: some APL\360 characters are not shown below.)

APL\360 APL\B5500 Monadic form          Dyadic form
------- --------- ------------          -----------
   +        +     identity              addition
   -        -     additive inverse      subtraction
   x        &     sign                  multiplication
            %     mult inverse          division
   *        *     exponential           exponentiation
           LOG    natural logarithm     logarithm
      CEIL or MAX ceiling               maximum
       FLR or MIN floor                 minimum
   |  ABS or RESD absolute value        residue
   ! FACT or COMB factorial             combinatorial
   ?      RNDM    random number         random deal
   ~       NOT    negation
   o     CIRCLE   circular              circular
   <       LSS                          less than
   <=      LEQ                          less or equal
   =        =                           equals
   =/      NEQ                          not equal
   >=      GEQ                          greater or equal
   >       GTR                          greater than
           AND                          and
            OR                          or
          NAND                          nand
           NOR                          nor
          IOTA    index generator       indexing
           RHO    dimension vector      restructuring
   ,        ,     ravel                 catenation
          TRANS   transpose
         BASVAL   base-2 value          base value
           REP                          representation
           EPS    execute               membership
          TAKE                          take
          DROP                          drop
   ;        ;                           heterogeneous output
   /        /                           compression
   \        \     scan                  expansion
           PHI    reversal              rotation
         SORTUP   sorting up
         SORTDN   sorting down

APL\360           APL\B5500             Usage
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----------        -------------         -----
RETURN key           <--                End of message signal
                     []                 Input, or display
                     ["]                Character input
                  =: or GO              Transfer control
                     :=                 Assignment
[..;..;..]        [..;..;..;..]         Subscripts
    -                 #                 Minus sign
    E              @ or E               Power of ten
                      $                 Function definition
 'string'         "string"              String quotes

        APL\B5500  monitor  commands  are summarized in  Table  2  below.  The 
command  structure  is  similar  to that of APL\360,  except  for  the  "SYN", 
"NOSYN", "STORE", "ABORT", and "line edit" commands.

Table 2: APL\B5500 monitor commands
-----------------------------------

Monitor command         Monitor function
---------------         ----------------
)SAVE <name>

All variables and functions in the active work area are stored in a disk  file 
library.  The  library is labeled with the user's B5500 <job number>  and  the 
identifier specified by <name>.

)SAVE <name> LOCK

This  command performs the same function as above, except that all  other  APL 
users are prevented from accessing the library.

)LOAD <name>

The  library  labeled <job number> and <name> is activated for the  user.  All 
library variables and functions are accessible after the LOAD operation.

)LOAD <job number>,<name>

This  command  allows access to saved libraries of other APL  users  when  the 
library  was  originally  saved  without the lock  option.  The  <job  number> 
corresponds to the user who originally saved the library.

)COPY <name>,<function>

This command adds the function named by <function> to the active work area for 
the user from the library labeled by <name>.

)COPY <job number>,<name> <function>

This  command  has the same function as the copy command  above,  except  that 
another APL user's library may be referenced.
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)CLEAR <name>

This command removes the referenced library from the disk.

)CLEAR

This command causes all variables and functions in the active work area to  be 
erased.

)ERASE <name>

This  command selectively erases variables or functions named by  <name>  from 
the active work area.

)FNS

This  command  provides the user with a list of all defined functions  in  the 
active work area.

)VARS

This  command lists all variables and function names in the active work  area. 
Functions are identified by a following "(F)".

)SI

This  command  lists the names of all suspended functions in the  active  work 
area.

)SIV

This  command  lists the names of local variables in suspended  functions,  as 
well as the function name.

)ABORT

This command terminates all suspended functions.

)STORE

This  command stores variables into the active work area which are  global  to 
suspended functions, and which have been altered during function execution. If 
the  ABORT  command  is  issued before the STORE  in  suspended  mode,  global 
variables are left in their original state for re-execution at a later time.

)"<search string>"<insert string>"<search string>"

This is the Line Edit command. The command is used to alter the most  recently 
typed line. This command is described fully in the text.

)ORIGIN <integer>

The origin (first subscript) of arrays is assumed to be that specified by  the 
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integer value <integer>.

)WIDTH <integer>

This command changes the width of the output line to <integer> characters.

)DIGITS <integer>

This  command changes the number of digits printed after the decimal point  in 
output to <integer> digits.

)SEED <integer>

This command changes the base of the random number generator.

)SYN

This  command  causes  APL to check each line typed by the  user  in  function 
definition mode for syntactic correctness.

)NOSYN

This command reverses the action of the SYN command above.

)LOGGED

This command lists the terminal number and user identification of each  active 
APL user.

)MSG <integer> <message>

The  MSG command allows active APL users to communicate. The <integer> is  the 
terminal  number  of  the station which is to  receive  the  character  string 
<message>.

NOTE:  If the <integer> in any of the commands ORIGIN, WIDTH, DIGITS, or  SEED 
is omitted, then the current value assumed by APL is printed.

        The line edit command is particularly useful when only a slight  error 
has been made in a line typed by the user. The form of the Line Edit is:

        )"<search string>"<insert string>"<search string>"
or
        )"<search string>"<insert string>"

In either case, the last message typed by the APL user is edited according  to 
the  Line Edit command, and resubmitted for processing by APL. The  action  of 
the  Line Edit is as follows: the first <search string> is located by  APL  in 
the  last  line typed by the user; when it is found, the  <insert  string>  is 
placed  into the line, and all characters up to the occurrence of  the  second 
<search  string> are deleted. If the first <search string> is not found,  then 
no  changes  are made. If the second <search string> is not  found,  then  all 
characters  after  the  <insert string> are deleted. Finally,  if  the  second 
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<search  string>  is not specified, then no characters are deleted.  The  null 
string is found immediately in all cases. Thus, if the user first types:

        ((+/(X-AVE)*2/% N-1)*.5

he  will receive an error message (unbalanced parenthesis: "*2/"  should  have 
been typed as "*2)"). The line can be altered by typing:

        )"2")"%"

and APL will respond with:

        ((+/X-AVE)*2)% N-1)*.5

The  statement  is then resubmitted for execution. This command  is  extremely 
useful when a long expression has been typed which needs simple alteration.  A 
similar command is available in function definition mode, allowing  alteration 
of all or part of a function definition.

        APL\B5500  also differs from APL\360 in the method of handling  global 
variables when executing functions. Functions which contain errors  (syntactic 
or  semantic) are "suspended" at the point where the error  occurs.  Suspended 
functions  may have operated upon global variables to produce new  values  for 
the global variables. The altered values are not permanently entered into  the 
active  work area until the function has successfully completed, or until  the 
user  has  issued  the STORE command while the  function  is  suspended.  This 
feature   allows   re-execution  of  the  corrected  function,   without   re-
initialization of the global data.

        The  APL\B5500  function  editor differs  somewhat  from  the  APL\360 
editor.  The  APL editor is invoked whenever the APL user types  a  $  ("del") 
followed by a function "header" while in calculator mode. The simplest form of 
a function header is an APL identifier. Hence, if the user types:

        $F

APL  will enter function definition mode, and (assuming F is a  new  function) 
will respond with:

        [1]

and await the first line of the function F by opening the teletype for  input. 
As  subsequent lines of text are entered, the line counter is  incremented  by 
one. Thus, the user could enter the three lines:

        [1]     A
        [2]     B
        [3]     C

with the line numbers to the left supplied automatically by APL. Although  APL 
will  "prompt"  the user for the fourth line, it is possible to  insert  lines 
elsewhere in the function. The user could, for example, insert a line  between 
lines one and two by replying to the prompt with:
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        [4]     [1.1]D

overriding the line prompt. APL will then take the increment last used by  the 
APL programmer, and prompt with:

        [1.2]

The  smallest  increment  possible is .0001 between lines.  The  largest  line 
number possible is 9999.9999.

        In  general, any line prefixed by a "[" while in  function  definition 
mode  is  taken  to be an editor command. Table 3 below  provides  a  complete 
listing of APL\B5500 editor command.

Table 3: APL\B5500 function editor commands
-------------------------------------------

APL editor command      Command function
------------------      ----------------
[[]]

This  command  causes  the currently active function to be  displayed  at  the 
terminal.

[<line reference>[]]

This command causes the line specified by the <line reference> to be displayed 
at the terminal.

[<line reference>[]<line reference>]

This  command  causes  all  lines from the  first  through  the  second  <line 
reference> to be displayed at the terminal.

[<line reference>]<statement>

This command inserts the APL statement specified by <statement> in the current 
function  at  the time denoted by <line reference>. The current line  and  the 
increment are changed in most cases.

[<line reference>]

This command deletes the function line corresponding to <line reference>.

[<line reference>][<line reference>]

This  command  deletes  all  lines from the first  through  the  second  <line 
reference>.

[IOTA]

This command causes the current function to be completely renumbered, starting 
at one with an increment of one.
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[["]]<line edit>

This command causes the APL editor to alter all lines of the current function, 
according to the rule given in the <line edit>. The <line edit> is the same as 
the Line Edit command described under APL monitor commands (in Table 2).

[<line reference>["]]<line edit>]

This  command is similar to the above edit command, except that only the  line 
referred to by <line reference> is altered.

[<line reference>["]<line reference>]<line edit>

This  command  applies the <line edit> from the line specified  by  the  first 
<line reference> through the line specified by the second <line reference>.

        The  <line  reference>  is a basic constituent in  almost  all  editor 
commands.  In  the  simplest case, the <line reference> is  an  integer  value 
corresponding  to a line of a function. Thus (referring to the delete  command 
of  Table 3 above), the user could delete the first three lines of  the  above 
function by typing (after the APL prompt):

        [1.2] [1][2]

APL deletes the lines, and returns the prompt:

        [1.2]

opening the terminal for input. Note that the function F now contains:

        [3]     C

        Another type of <line reference> is an APL statement label. Statements 
are  labeled  by  placing  identifiers separated  by  colons  before  the  APL 
statement.  Thus,  the APL user may continue definition of F by  typing  (with 
prompting by APL):

        [1.2]   [4]D
        [5]     E: F+G
        [6]     L1:L2:H+I
        [7]

where "E", "L1", and "L2" are all statement labels. Although statement  labels 
are  used primarily for transfer of control at function execution  time,  they 
can  be used as <line reference>s when in function definition mode.  The  line 
with  <line  reference<  5 can be deleted by typing either  of  the  following 
commands:

        [5]
        [E]

        A <line reference> may also involve a numeric offset on either side of 
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the statement label. Line 5 can be displayed by typing:

        [L1-1[]]

and APL will respond:

        [5]     E:F+G

Further,  an  entire set of lines around statement five may  be  displayed  by 
typing:

        [E-1[]E+1]

resulting in the response from APL:

        [4]     D
        [5]     E: F+G
        [6]     L1:L2:H+I

        APL  allows  statement labels to be edited as well. The  statement  at 
line six can be edited by typing:

        [L2["]]:L"3"

APL  searches  the line labeled L2 for an occurrence of ":L",  inserts  a  "3" 
immediately  after the occurrence, and deletes characters up to the  following 
":". Hence, the command:

        [L2[]]

results in an error message (the label L2 no longer exists), but the command:

        [L3[]]

results in the display:

        [6]     L1:L3:H+I

        A last point which should be made is that labels within functions  are 
treated  as  local  variables, but are initialized to  their  respective  line 
numbers.  The  line  number value of a label may be  altered  during  function 
execution. Further examples of function definition are given in the discussion 
of the APL\B5500 function editor implementation.

        Appendix  A  shows  a  sample  APL\B5500  terminal  session  including 
examples  of  APL  operators, APL monitor commands, and  APL  function  editor 
usage.

        A formal definition of the syntax of APL\B5500 is included in Appendix 
B.

Section 3: APL\B5500 implementation
-----------------------------------
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        The internal data structures and program organization of APL\B5500 are 
given  in  the  following sections. The time-sharing  facilities  of  APL  are 
explained,  along  with  a description of monitor command  execution  and  APL 
"machine"  organization.  APL\B5500  functions  are  logically  divided   into 
components parts, as shown in Figure 2 below:

1.    APL Resource management. Central memory and central processor  resources 
are allocated by the Resource Management component of APL\B5500.

2. Terminal Input/Output handler. Terminal message bufferring and dispatching, 
along  with  primitive Input/Output facilities, are provided by  the  Terminal 
Input/Output handler.

3.  Virtual memory management. The Virtual Memory Management section  provides 
an APL controlled extension of the B5500 central memory resources.

4. APL function editor. Terminal messages issued while the user is in function 
definition mode are processed by the APL Function Editor.

5.  Monitor  command handler. All terminal input messages which  are  prefixed 
with  a ")" (i.e., APL monitor commands) are processed by the Monitor  Command 
Handler.

6. APL statement compiler. The APL Statement Compiler checks the syntax of APL 
statements  submitted for execution by the user. In most cases,  "pseudo-code" 
is generated, corresponding to the APL statement.

7.  APL "machine". The APL "machine" is a software simulation of  a  computing 
machine oriented toward execution of APL statements.

        +--------------+  +------------+  +----------+
        | Terminal     |  |  APL       |  | APL      |
        | Input/Output |  | memory     |  | function |
        | handler      |  | management |  | editor   |
        +------+-------+  +-----+------+  +----+-----+
               |                |              |
               |          +-----+------+       |
               +----------+ APL        +-------+
                          | resource   |
               +----------+ management +-------+
               |          +-----+------+       |
               |                |              |
        +------+-------+  +-----+------+  +----+-----+
        | APL          |  | APL        |  | Monitor  |
        | "machine"    |  | statement  |  | command  |
        |              |  | compiler   |  | handler  |
        +--------------+  +------------+  +----------+

        Figure 2: APL\B5500 software components

3.1 APL resource management
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---------------------------

        APL  Resource Management is responsible for allocation of work to  the 
other  components  of the APL system. In addition, the needs  of  the  various 
terminal users are monitored constantly.

        The  current "state" of each active APL user is maintained in a  table 
called the User State Table, shown in Figure 3 below. Each element of the User 
State  Table,  called a User State Register, corresponds to  exactly  one  APL 
user.  The  field  width of each element in the  User  State  Register  varies 
according to the maximum data size.

        +--------------+-----------+------+...
        | Current mode | User mask | Seed |
        +--------------+-----------+------+...

        ...+--------+------+--------+-------+...
           | Origin | Fuzz | Digits | Width |
        ...+--------+------+--------+-------+...

        ...+----------------------------------+
           | ... Miscellaneous run parameters |
        ...+----------------------------------+

        Figure 3a: User State Register

        User State Register 1
        User State Register 2
        ...
        User State Register i <---- Current user
        ...
        User State Register n

        Figure 3b: User State Table

        APL  schedules  tasks  for  execution  based  on  a  simple  two-queue 
algorithm  [Ref.6], with tasks which have not required a full time-slice in  a 
FIFO  (first-in first-out) queue for immediate processing. A production  queue 
lists all tasks which require central processor resources, and which have used 
at  least  one  time-slice. Users without a task in  the  immediate  queue  or 
production queue are considered to be in an "idle" queue.

        The  "current  mode" field of the User State  Register  indicates  the 
present  status  of the corresponding user's APL run. The current  mode  of  a 
particular user can be:

1.  Caculator  mode. The user is in an idle state, and is not  using  the  APL 
Function  Editor.  Further, the user is not executing APL statements.  APL  is 
awaiting input from the user's terminal.

2.  Execution mode. The user is in the process of executing an APL  statement. 
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The APL statement may or may not have invoked functions.

3.  Function definition mode. The user is currently defining an APL  function. 
All  messages, except those prefixed by ")", are directed to the APL  Function 
Editor.

4. Input mode. A user in execution mode is changed to input mode when his  APL 
program  requests input from the terminal (by encountering a "quad" or  "quote 
quad"). The user is restored to execution mode when input is completed.

5.  Error mode. A user is put into error mode when his program  encounters  an 
error  during  execution. Messages are sent to the  terminal,  and  corrective 
action is taken before changing the user's current mode.

        Concurrency of APL tasks is thus maintained by retaining the status of 
each user, in order that his task may be started and stopped in various states 
of  execution.  The  CURRENT  USER is set  by  the  Resource  Manager,  before 
execution  of  an APL task is initiated. The current user is indicated  by  an 
index to the corresponding User State Register, as shown in Figure 3b above.

        When  control is given to another APL component, such as the  Function 
Editor,  a  small increment of processing is done for the current  user,  with 
control  returning  to  the Resource Manager  almost  immediately.  Since  the 
parameters  required  by  each  component are maintained  in  the  User  State 
Registers,  it is possible for one user to define one line of an APL  function 
and,  immediately after, another user can use the function editor to define  a 
line of his APL function.

        This notion of concurrency is, of course, fundamental to the operation 
of any operating system, including time-sharing. Each component of the  system 
must  be coded in such a way as to return control to the  Resource  Management 
component as soon as possible, in order that other system users do not  notice 
any delay. This notion is referred to here as "functional concurrency".

        The  "user mask" field of the User State Register shown in  Figure  3a 
above contains a set of binary "switches" associated with the user's APL  run. 
The bit positions of the user mask include:

1. The master mode bit. The master mode bit is set if the User State  Register 
belongs  to  the APL system supervisor. The system supervisor's user  code  is 
compiled into the APL system, and thus is the only INITIAL valid user. A  user 
operating  with  the  master mode bit set (i.e.,  the  system  supervisor)  is 
provided  with  additional monitor commands which allow user  codes  and  user 
phrases to be added to or deleted from the APL system.

2. The debug bit. The debug bit can be set by a user operating in master mode. 
When this bit is set, various system diagnostic information is provided at the 
user's terminal.

3.  The nosyntax bit. The nosyntax bit of the User State Register can  be  set 
with  the "NOSYN" monitor command. Input lines typed by the user  in  function 
definition  mode  are not checked by APL for syntactic  correctness  when  the 
nosyntax bit is set.
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4. The suspension bit. The suspension bit is set when the user's APL execution 
encounters  an  error. The function in error is "suspended", and  may  be  re-
activated at a later time.

        The remaining fields of the User State Register contain values of  run 
time  parameters,  along  with  variable  information  used  by  the   various 
components  of  the APL system. The actual contentof  the  "miscellaneous  run 
parameters"  field, shown in Figure 3a above, is discussed in detail when  the 
individual components are considered.

        It should be noted that the system components, other than the Resource 
Manager, need not be concerned with keeping track of the active system  users. 
Once  the  Resource  Manager selects a user for execution,  the  other  system 
components  refer  to the User State Register indicated by  the  current  user 
index  in the User State Table. Thus, the individual components act upon  data 
either  located in the current User State Register, or upon data addressed  by 
fields within the current User State Register.

        A simplified state diagram, given in Figure 4 (ROCHE> Too difficult to 
translate  into "ASCII graphics". Maybe a GIF of JPEG file will be  needed  to 
display it?), shows the action of the Resource Manager.

3.2 The terminal Input/Output handler
-------------------------------------

        The  Terminal Input/Output Handler provides an interface  between  the 
APL system components and the terminal users. This interface includes  message 
queueing  facilities,  I/O  interrupt handling,  input  message  scanning  and 
translation,  and  output formatting capabilities. In addition,  the  Terminal 
Input/Output  Handler adds items to the immediate queue for processing at  the 
appropriate times. The I/O functions are grouped into the following types:

1.  Message queue and table maintenance. Information is maintained  describing 
the  status  of each terminal port. I/O buffers and queues are  also  kept  in 
order by this component.

2.  Input  message  scanner.  The  scanner  provides  a  common  facility  for 
extracting  lexical  elements  from the input messages  corresponding  to  the 
current user.

3. Output formatting routines. All preparation of output messages from the APL 
system components is handled by the Output Formatting Routines.

        The  message queue and table maintenance component of the I/O  Handler 
maintains  the status of each terminal port in the Station Table, shown  along 
with the relevant fields of a Station Element in Figure 5 below. The  Terminal 
Input/Output  Handler  maintains  the  Station Table  in  order  that  it  may 
determine for each terminal port:

1.  if  the  station is physically connected to  the  B5500  system  (physical 
connection bit),

2. if the terminal has an input message or messages waiting to be processed by 
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APL (read ready bit),

3. if the terminal is set-up to accept a message (write ready bit),

4.  if  a  message has been sent to a station but transmission  has  not  been 
completed (output finish wait bit),

5.  if  some  components of the APL system has requested  that  a  message  be 
readied for processing (input request bit),

6.  if  an APL component has passed a message through the I/O  Handler  to  be 
written on the terminal (output request bit),

7.  if  the  "break key" at the terminal has been depressed by  the  APL  user 
(break key depression bit),

8.  if  an APL system component has acknowledged that the break key  has  been 
depressed, has taken the appropriate action, and has requested that the  break 
key depression bit be reset (break key reset bit),

9. the number of messages from the terminal which have not yet been  processed 
by APL (input queue size),

10. the number of messages produced by APL which have not yet been sent to the 
terminal because the station is not write ready (output queue size),

11.  if  the maximum number of messages in the input queue or  in  the  output 
queue has been reached (input or output queue size exceeded bit),

12.  if  the APL\B5500 heading has been printed at the  station  (APL  heading 
bit), and

13. if the user has successfully signed-on to the APL system (APL logged bit).

Thus, since there is a Station Element for each terminal port, the I/O Handler 
can immediately determine the I/O status of any terminal.

                         Station Table
                        +---------------+
        Terminal port 1 |               |
        Terminal port 2 |               |
                   etc. |               |
                        |               |
                +-----> |               |
                |       |               |
                |       +---------------+
        Station Element
       +-+-+-+-+-+-+-+-+-+-+-+-+-+
       | | | | | | | | | | | | | |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+
        | | | | | | | | | | | | |
        | | | | | | | | | | | | +--> APL logged bit
        | | | | | | | | | | | +----> APL heading bit
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        | | | | | | | | | | +------> Input or Output queue
        | | | | | | | | | |            size exceeded.
        | | | | | | | | | +--------> Output queue size
        | | | | | | | | +----------> Input  queue size
        | | | | | | | +------------> Break key reset bit
        | | | | | | +--------------> Break key depression bit
        | | | | | +----------------> Output request bit
        | | | | +------------------> Input  request bit
        | | | +--------------------> Output finish wait bit
        | | +----------------------> Write ready bit
        | +------------------------> Read  ready bit
        +--------------------------> Physical connection bit

        Figure 5: station table with corresponding station element

        Input/Output buffers are maintained for active APL users, as shown  in 
Figure 6 below.

        Input buffer table      Output buffer table
        (one input buffer       (one output buffer
         per active user)        per active user)
        +---------------+-+     +----------------+-+
        |               | |     |                | |
        | 1st input msg |+--+   | 1st output msg |+--+
        |               | | |   |                | | |
        |               | | |   |                | | |
        +---------------+-+ |   +----------------+-+ |
                            |                        |
          +-----------------+                        |
          | +----------------------------------------+
          | |
          | |   Input/Output queue
          | |   +-----------------------+-+
          | |   |                       | |
          | +-->| Last message          |@|
          |     |                       | |
          +---->| 2nd input message     |+--+
                |                       | | |
            +-->| Last message          |@| |
            |   |                       | | |
            |   |                       | | |
            |   +-----------------------+-+ |
            |                               |
            +-------------------------------+

        Note: The end of list is denoted by "@".

        Figure 6: Input/Output buffers and queues

        An  I/O queue is maintained on back-up storage with  forward  pointers 
(starting at the input or output buffer) connecting all elements of the  queue 
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for a particular user. The disk I/O queue may, at a particular point in  time, 
contain both input and output messages in transit to or from the APL system.

        The  I/O  queue  are, of course, maintained on  a  first-in  first-out 
basis,  except  when a time-slice "jiggle" is sent by an  APL  component.  The 
jiggle is a null message which rattles the teletype typing mechanism,  letting 
the  system user know that APL processing is in progress. The  jiggle  message 
goes to the front of the output queue for a particular user.

        Since  the  terminal user normally waits for a response from  APL  for 
each line of input, the input queue will rarely contain more than one message.

        The Terminal Input/Output Handler has access to the scheduling  queues 
which are searched by the Resource Manager. Thus, when a particular user sends 
a  message for APL processing while in the idle queue, the I/O Handler  places 
the user in the immediate queue for processing. The Resource Manager allocates 
processor  time  to the user when the user gets to the fron of  the  immediate 
queue.

        The state diagram of Figure 7 (ROCHE> Too difficult to translate  into 
"ASCII graphics". Maybe a GIF or JPEG file will be needed?) shows the logic of 
the I/O Handler in processing terminal messages.

        The  scanning  and formatting routines provide  APL  system  component 
interface  with  the I/O Handler. The input message scanner  provides  lexical 
analysis of input messages upon request by APL components. The terminal  input 
buffer  referenced  by  the scanner is always that of  the  current  user,  as 
defined  by  the  Resource  Manager. The  scanner  provides  translation  from 
external symbols to internal coded form, identifies and converts positive  and 
negative  integer  and  real  numbers, as  well  as  numbers  in  power-of-ten 
notation.  In  addition, APL variable, function, and command  identifiers  are 
isolated  by  the scanner. Except for string constants, all input to  the  APL 
components is processed by the input scanner.

        Conversely, all output from APL components directed to terminal  users 
is  funneled through the output formatting routines. The  formatting  routines 
provide  the  APL  system with primitive  formatting  capabilities;  character 
strings  are  appended  to the output buffer belonging  to  the  current  user 
according to the following output controls:

1. append characters to those already in the current user's output buffer, but 
do not send the message to the station (there is more to come),

2.  append characters to the characters in the current user's  output  buffer, 
and queue the message for output,

3.  first,  send  the  contents of the current  user's  output  buffer;  place 
characters in the output buffer, but do not send the message,

4.  first,  send  the  contents of the current user's  output  buffer  to  the 
terminal, place characters in the output buffer, and send this second  message 
also.

        In  conclusion,  the  Terminal  Input/Output  Handler  processes   all 
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terminal  messages sent from other APL components, or sent to  APL  components 
from the user's terminals. Functional concurrency is maintained by  initiating 
as  many  terminal message transfers as possible without  causing  unnecessary 
delays before returning to the Resource Manager.

3.3 Virtual memory management
-----------------------------

        As  mentioned  previously,  a fundamental design  criterion  was  that 
APL\B5500  interfere  as little as possible with normal B5500  operations.  In 
particular, the central memory requirements for APL must be minimized, without 
causing  an excessive increase in overall response time. One solution  to  the 
storage  problem  might be to use the automatic overlay feature of  the  B5500 
MCP.  Automatic overlay, however, cannot be directly controlled by  APL\B5500. 
Thus, the data areas used by APL are extended beyond the central memory areas, 
through the use of an APL-suited virtual memory structure.

        The  APL Virtual Memory is a completely independent component  of  the 
APL\B5500  system, but is used in conjunction with a central memory data  area 
called the "scratch pad". The scratch pad data area make use of the  automatic 
overlay  features of the MCP, while the virtual memory is directly  controlled 
by APL.

        Although  the  physical structure of the virtual memory  is  described 
elsewhere  [Ref.7],  enough  detail  is given here,  in  order  that  one  may 
understand its use by the various APL system components.

        The virtual memory is PHYSICALLY structured using simple demand paging 
techniques  [Ref.8].  A file on back-up storage is divided into  "pages"  (the 
page size is determined at compile time) with an index to these pages residing 
in  central memory. In addition, a number of central memory "page frames"  are 
maintained in central memory to hold most-recently accessed pages. The  number 
of  page frames can be altered dynamically by other APL components,  depending 
upon APL storage requirements and the number of active APL users.

        Virtual  memory  access  routines provide the  interface  between  APL 
system  components  and  the APL Virtual Memory.  The  virtual  memory  access 
routines  give  the  virtual memory a CONCEPTUAL  structure,  which  is  quite 
different from the physical structure.

        Conceptually, the APL virtual memory is divided into "storage  units". 
The storage units can be created dynamically by APL components, and are of  no 
predetermined size (except for the maximum extent of the disk file).

        The storage units, in turn, can be of two types: "ordered" storage, or 
"sequential"  storage. Ordered storage units contain data in tables  appearing 
to  the APL components as contiguous alphabetically arranged data  with  fixed 
field  lengths.  Sequential storage units contain data  elements  of  variable 
length,  but  are only accessible through a fixed address within  the  storage 
unit.  The  maximum number of storage units which can be active at  any  given 
time is 512.

        Figure  8  below  shows the conceptual structure  of  virtual  memory. 
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Ordered  and sequential storage units are often related through  a  right-most 
field  in ordered storage unit elements. This field might contain the  address 
of  a  data element in an associated sequential storage  unit,  although  this 
assumption is not made by the virtual memory routines.

        Ordered storage unit    Sequential storage unit
        +---------------+--+    +-----------------------+
        | AAA           |  |    | Data Element 1 | Data |
        | AB            |  |    |Element 2 | Data Elemen|
        | AXX           |  |    |t 3 | Data Element 4 | |
        | C             |  |    |                       |
        | CDA           |  |    |                       |
        |               |  |    |                       |
        | ZZZ           |  |    |                       |
        |               |  |    |   | Last Data Element |
        +---------------+--+    +-----------------------+

        Ordered storage unit    Sequential storage unit
        +---------------+--+    +-----------------------+
        | ALPHA         |  |    |                       |
        | BETA          |()--+  |   | Data Element |    |
        |               |  | |  |     |                 |
        | 0000000       |  | |  +-----|-----------------+
        | 0000001       |  | |        |
        |               |  | +--->----+
        | 9999999       |  |
        +---------------+--+

        Figure 8: Conceptual structure of virtual memory

        APL initializes with storage units one and two reserved for user codes 
and  associated user phrases, as shown in Figure 9 below.  Initially,  storage 
unit  one  contains  only  the system supervisor's user  code,  and  unit  two 
contains  his  user phrase. Units one and two increase in size as  the  system 
supervisor adds more user codes and user phrases.

        Unit 1                  Unit 2
        (ordered storage)       (sequential storage)
        (APL user codes)        (APL user phrases)
        +-------+-------+       +----------------------------+
        | A453  |       |    +->| System Supervisor |      | |
        | H003  |       |  +-|->| D. Nixon, General Accnt |  |
        | H004  |       |  | |  |     |               |      |
        | M552  |   *--->--+ |  |                            |
        | M993  |       |    |  |         |           |      |
        |       |       |    |  |     |                   |  |
        | U001  |       |    |  |                            |
        | U002  |   *--->----+  |         |                  |
        | Z302  |       |       |                            |
        +-------+-------+       +----------------------------+
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        Figure 9: User codes and user phrases

        The services provided for APL components by the virtual memory  access 
routines can be categorized as follows:

3.3.1 Storage maintenance
-------------------------

a.  A  particular direct access disk file can be named for use  as  a  virtual 
memory back-up storage unit.

b. Particular storage units can be created and destroyed.

c. The number of active page frames can be increased or decreased.

d.  APL components may designate that vital information, necessary for  proper 
system recovery in case of failure, be written onto back-up storage.

3.3.2 Storage interrogation and alteration
------------------------------------------

a. Variable-length data can be stored in a specified sequential storage unit.

b. Ordered storage units may be searched for a particular data item on  demand 
by an APL component.

c. Information can be inserted into a specified ordered storage unit.

d.  The  contents  of a particular address in  either  ordered  or  sequential 
storage can be retrieved.

e. Elements in either ordered or sequential storage units can be deleted.

f. Entire storage units can be erased with the corresponding data areas  added 
to free storage.

3.3.3 Storage utility functions
-------------------------------

a. The number corresponding to the next available storage unit can be obtained 
by an APL component. The unit can then be used for storage.

b.  The  size  (number of data elements) in a specific  storage  unit  can  be 
requested by an APL component.

c. The mode of a particular unit can be determined (i.e., whether the unit has 
been designated as an ordered or a sequential storage unit).

        The  work  area  of an APL user may consist  of  several  ordered  and 
sequential  storage  units. At sign-on time, the user is assigned  an  ordered 
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storage  unit, called "names", and a sequential storage unit,  called  "data". 
The  "names" unit contains variable and function names, along with  additional 
information  about  the  names.  The "data" storage  unit  holds  numeric  and 
character  array  results computed during the APL run. As shown in  Figure  10 
below,  the  "data" storage unit also contains a "recent" copy of  the  user's 
User State Register. This recent copy of the User State Register allows a user 
to  restart  an  APL session with very little loss of work in the  case  of  a 
hardware or software failure.

        "names"                 "data"
        (ordered storage unit)  (sequential storage unit)
        +---------------+---+   +-----------------------+
        | AAA           |   |   | User State Register   |
        | AB            |   |   | (recent copy)         |
        |               |   |   |                       |
        | ...           |   |   | Numeric               |
        |               |   |   | and                   |
        |               |   |   | character             |
        | ZZZ           |   |   | arrays                |
        +---------------+---+   +-----------------------+

        User State Register
        +---+...+-------+------+...+---+
        |   |   | Names | Data |   |   |
        +---+...+-|-----+-|----+...+---+
                  |       |
                  |       +--> Unit number of "data"
                  |             sequential storage unit
                  |
                  +--> Unit number of "names"
                        ordered storage unit

        Figure 10: Storage units for names and data

        The  important  concept here is that at any point in the  APL  run,  a 
portion of the user's work area, consisting of ordered and sequential  storage 
units,  is  located  in central memory page frames,  while  the  remainder  is 
located on back-up storage. The portion in central memory is based entirely on 
data  access  activity.  This,  of course, is a  fundamental  concept  in  any 
implementation  of demand paging. The scheme does, however, allow the  storage 
units to become much larger than would be possible if all tables and data were 
to remain in central memory.

        It  will  become  evident  in later  sections  that  the  ordered  and 
sequential  storage units, along with the virtual memory access  routines  are 
well-suited to the needs of the APL system.

        As  a  final  note, the APL Virtual Memory  Manager,  like  other  APL 
components, maintains functional concurrency. When the virtual memory  manager 
has  back-up  storage maintenance to perform, it does so in  small  increments 
each time it is called. Thus, control returns to the Resource Manager as  soon 
as possible.
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3.4 The APL function editor
---------------------------

        The  APL  Function Editor component of the APL\B5500  system  provides 
function  definition  and  editing capabilities for APL  users.  The  Function 
Editor  handles the syntax of the function header, and creates  internal  data 
structures  from  the header to pass to the other APL components.  The  Editor 
relies  upon  the virtual memory access routines in implementing  the  editing 
functions.

        Every function defined by the APL user causes two units of storage  to 
be  allocated: an ordered storage unit called a "function label unit",  and  a 
sequential storage unit called a "function text unit". The function label unit 
contains entries corresponding to the line numbers of the function, along with 
addresses of lines of function text in the corresponding function text unit.

        Figure  11 below shows the interconnection of the function label  unit 
and the function text unit. The left-most field of each entry of the  function 
label unit contains the line numbers in full character form (without a decimal 
point). The right-most field contains the address of the corresponding line in 
the  function text unit. Note that the function header is assumed to  be  line 
zero of the function.

        Addition  and  deletions of text and line numbers is  accomplsihed  by 
using the corresponding virtual memory access routines.

                Function definition
                -------------------
                $STDEV
        [1]     AVE := (+/X)% N := RHO X
        [2]     ( (+/(X-AVE)*2)%N-1 )*.5
        [3]     $

                Storage unit structure
                ----------------------
        Function label unit     Function text unit
        (ordered)               (sequential)
        +------------+---+      +-------+---------------+
        | 00000000   | *-|-->---| STDEV | AVE := (+/X)% |
        +------------+---+      +-------+-|-------------+
        | 00010000   | *-|-->------->-----+    +----<-----+
        +------------+---+      +------------+-|-------+| |
        | 00020000   | *-|-->-+ | N := RHO X | ( (+/(X- | |
        +------------+---+    | +------------+-----+----+ |
                              | | AVE)*2)%N-1 )*.5 |    | |
                              | +------------------+----+ |
                              +-------->------------>-----+

        Figure 11: Function storage units
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        The Function Editor also keeps track of local variables and labels  in 
functions. As shown in Figure 12 below, a number of cases occur:

1. the local variables are all marked with a right-most field in the  function 
label unit which is less than or equal to zero:

        a.  the local variable which contains the value to be returned at  the 
end of function execution is marked with a negative one,

        b.  the arguments (formal parameters) are marked with a minus two  and 
minus three,

        c. all other local variables are marked with zeroes.

2.  labels  are  marked  with  the  full  character  representation  of  their 
corresponding line numbers.

Case (2) above allows access to lines of text through the line labels.

        Subroutine  Niladic       Monadic        Dyadic
        header      function      function       function
                    header        header         header

        $F;I;J      $Z:=F;I;J     $Z:F Y;I;J     $Z:=X F Y;I;J
        |           |             |              |
        +----->-----+->-+----<----+------<-------+
                        |
                        Function definition

                [1]     L: X:=IOTA 3
                [2]     Z:=X RHO 1
                [2.1]   M: N: Z+5$

                        Function label units
                        (ordered storage

        Subroutine structure      Niladic function structure
        +----------+----------+   +----------+----------+
        | I        | 00000000 |   | I        | 00000000 |
        | J        | 00000000 |   | J        | 00000000 |
        | L        | 00010000 |   | L        | 00010000 |
        | M        | 00021000 |   | M        | 00021000 |
        | N        | 00021000 |   | N        | 00021000 |
        | 00000000 |       p1 |   | Z        |       -1 |
        | 00010000 |       p2 |   | 00000000 |       p1 |
        | 00020000 |       p3 |   | 00010000 |       p2 |
        | 00021000 |       p4 |   | 00020000 |       p3 |
        +----------+----------+   | 00021000 |       p4 |
                                  +----------+----------+

        Dyadic function structure Monadic function structure
        +----------+----------+   +----------+----------+
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        | I        | 00000000 |   | I        | 00000000 |
        | J        | 00000000 |   | J        | 00000000 |
        | L        | 00010000 |   | L        | 00010000 |
        | M        | 00021000 |   | M        | 00021000 |
        | N        | 00021000 |   | N        | 00021000 |
        | X        |       -3 |   | Y        |       -2 |
        | Y        |       -2 |   | Z        |       -1 |
        | Z        |       -1 |   | 00000000 |       p1 |
        | 00000000 |       p1 |   | 00010000 |       p2 |
        | 00010000 |       p2 |   | 00020000 |       p3 |
        | 00020000 |       p3 |   | 00021000 |       p4 |
        | 00021000 |       p4 |   +----------+----------+
        +----------+----------+

        NOTE: F is the function name, I and J are local variables, X and Y are 
        formal  parameters, and Z denotes the value returned by F. The  values 
        p1,p2,p3,p4 represent the addresses of the corresponding lines of text 
        in the function text unit.

        Figure 12: Function label unit structure

        Like  all  other  APL  system components,  the  Function  Editor  must 
maintain  functional  concurrency. Clearly, there are  many  situations  where 
functional  concurrency  becomes a problem (e.g., displaying lines  of  text). 
Thus,  the Function Editor maintains a number of variables in the  User  State 
Register,  as  shown in Figure 13 below. The Function Editor fields  are  only 
defined, when the user is in function definition mode, when they contain:

1. the number of the ordered storage unit assigned as the function label unit,

2.  the  number of the sequential storage unit assigned as the  function  text 
unit,

3. the name of the function being edited,

4. the current line of the function being defined,

5. the current line increment for this user,

6. the editing "submode" (i.e., deleting text, editing, or displaying lines of 
text),

7. the editing submode boundaries (e.g., the starting and ending line  numbers 
for the display command).

        User State Register
        +------------+
        | .......... | User must be in function definition mode
        +------------+
        | Function   | Ordered storage unit corresponding to
        | label unit | function label unit
        +------------+
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        | Function   | Sequential storage unit number
        | text unit  | corresponding to function text unit
        +------------+
        | Function   | Full character representation
        | name       | of function name
        +------------+
        | Current    | Line of function currently being defined
        | line       |
        +------------+
        | Editing    |--+
        | submode    |  |
        +------------+  +--> Editing submode values
        | Editing    |--+
        | bounds     |
        +------------+

        Figure 13: User state register entries for the function editor

        A corresponding entry is made in the "names" ordered storage unit  for 
this  user as soon as the function definition mode is closed. The entry for  a 
function consists of the name of the function in the left-most field, and  the 
numbers corresponding to the function label unit and the function text unit in 
the right-most field.

        Note  also that the Function Editor examines the nosyntax bit  of  the 
user  mask  whenever  a new line is inserted or an old line  is  edited  in  a 
function.  If  the  nosyntax  bit is reset, then the  Editor  passes  the  APL 
statement  to  the  APL Statement Compiler for a syntax  check.  The  user  is 
notified if errors are detected.

        The  state diagram of Figure 14 (ROCHE> Too difficult to translate  to 
"ASCII  graphics.  Maybe a GIF or JPEG file will be needed?) below  shows  the 
basic logic of the Function Editor.

Section 5: The APL monitor command handler
------------------------------------------

        After a terminal user has initially signed-on to the APL\B5500 system, 
the Resource Manager passes all messages which begin with a ")" to the Monitor 
Command  Handler  for processing. The Monitor Command  Handler  processes  the 
monitor commands shown in Table 2 above (in "APL\B5500 language description"), 
along with the system supervisor commands listed in Table 4 below.

Table 4: Priviledged monitor commands
-------------------------------------

Monitor command         Command function
---------------         ----------------
)ASSIGN <user code> <user phrase>

This command assigns a new user code to be recognized by APL. The <user  code> 
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goes into the user code ordered storage unit. The <user phrase> goes into  the 
user phrase sequential storage unit, and serves to identify the user to  other 
APL users.

)DELETE <user code>

This  command  removes  a user code and associated user phrase  from  the  APL 
system.

)LIST CODES

This  command  provides a listing at the system supervisor's terminal  of  all 
assigned user codes.

)LIST USERS

This  command provides a complete listing of all assigned user codes and  user 
phrases.

)DEBUG MEMORY <integer>

This  command specifies that a trace of APL virtual memory activity be  given. 
The <integer> specifies trace options.

)DEBUG POLISH

This  command causes the APL statement compiler to print a trace of  the  code 
produced for each APL statement executed by the system supervisor.

The entire set of monitor commands can be categorized as:

5.1 System maintenance commands
-------------------------------

        The  system  maintenance commands allow the APL system  supervisor  to 
add,  delete,  and  alter  user  codes and  user  phrases.  In  addition,  the 
supervisor can set system diagnostic flags. These commands are recognized only 
when the master mode bit is set in the user's User State Register.

5.2 Work area maintenance commands
----------------------------------

        Work  area  maintenance commands allow the APL user to add  or  delete 
items from his associated work area. The user may also save the work area in a 
separate file, and later reactivate the work area.

5.3 APL run parameter specification
-----------------------------------

        Variables  which  affect the APL run for a user can be  displayed  and 
altered through APL monitor commands (e.g., "WIDTH" and "ORIGIN").
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5.4 Line edit command
---------------------

        The last line entered by each user can be altered and re-submitted, as 
discussed previously using the Line Edit command.

5.5 Function suspension commands
--------------------------------

        The  function suspension commands allow the user to  control  function 
execution when functions have been suspended due to errors.

5.6 Run termination commands
----------------------------

        The  APL  user may terminate the APL run using a number  of  different 
options.

        The implementation of most of the monitor communication algorithms  is 
straightforward.  It  is  useful,  however, to  examine  the  data  structures 
involved in these operations.

        If the monitor command to be executed is a system maintenance command, 
the master bit of the User State Register for the current user is examined. If 
this  bit is reset, then the user is issued an error message.  Otherwise,  the 
Monitor  Command Handler uses the virtual memory access routines  to  examine, 
add to, or delete from, the user code ordered storage unit and the user phrase 
sequential storage unit.

        The work area maintenance commands access the "names" ordered  storage 
unit. The variables and functions can be listed and deleted by application  of 
the appropriate virtual memory access routines. In addition, the total content 
of  the  work area may be copied to an external library for  later  use.  This 
operation  involves accessing and copying all ordered and  sequential  storage 
units  allocated  for the user's work area. The "names" ordered  storage  unit 
provides  an  entry  point for referencing all variables  and  functions.  The 
library is constructed by first constructing a dictionary, as shown in  Figure 
15 below.

                User State Register
        +---...---+-------+------+---...---+
        |         | NAMES | DATA |         |
        +---...---+-------+------+---...---+

        "NAMES"       1234 =    "DATA"
        (ordered)     SCALAR    (sequential)
        +-------+-------+  |    +-----------------------+
        | AAA   |   *---+--|-+  | User State Register | |
        | BBB   | 1234  |<-+ |  |                       |
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        | STDEV | * | * |    +--+-->| Numeric vector |  |
        | ZZZ   | |   |*+---+   |                       |
        +-------+-+---+-+   +---+->| Character vector | |
                  |   |         |                       |
                  |   |         +-----------------------+
                  |   |
                  |   +---->----
                  |             |
        Function label unit     Function text unit
        (ordered)               (sequential)
        +------------+---+      +-------+---------------+
        | 00000000   | *-|-->---| STDEV | AVE := (+/X)% |
        +------------+---+      +-------+-|-------------+
        | 00010000   | *-|-->------->-----+    +----<-----+
        +------------+---+      +------------+-|-------+| |
        | 00020000   | *-|-->-+ | N := RHO X | ( (+/(X- | |
        +------------+---+    | +------------+-----+----+ |
                              | | AVE)*2)%N-1 )*.5 |    | |
                              | +------------------+----+ |
                              +-------->------------>-----+

                        Resulting disk library
                +--------------------+
                |  +-----------------|---------------------+
                |  | Library descript|ve information       |
                |  | AAA      | L1 | * | BBB    |     1234 |
                |  | STDEV    |        | ZZZ    | L2  : *--+--+
                +->| Numeric vector corresponding to       |  |
                   | AAA, with length L1    |   | 00000000 |  |
                   | STDEV |  | 00010000AVE := (+/X)%      |  |
                   | N := RHO X |   | 00020000( (+/(X-     |  |
                   | AVE)*2)%N-1 )*.5  | & | Character vec |<-+
                   | tor corresponding to ZZZ, with        |
                   | length L2  |                          |
                   +---------------------------------------+

        Figure 15: The format of a library

        All  non-scalar  data  is  copied into the  library  from  the  "data" 
sequential storage unit, with appropriate addresses in the library dictionary. 
Whenever  functions  are encountered in the "names"  unit,  the  corresponding 
function  label  unit  and function text unit are accessed  through  the  unit 
numbers  in the right-most field of the function entry. The line label,  along 
with  the function text for each line, is forward-chained for  each  function. 
The dictionary entry for the function addresses the head of this chain.

        Library  load  and  copy  operations  reference  the  directory  of  a 
particular  library to obtain addresses and data lengths in the  library.  The 
load  and  copy  operations occur in just the opposite  order  from  the  save 
operation.  The  situation  arises, however, when copying  functions  into  an 
active  work  area,  where the function name being copied is  identical  to  a 
variable name occurring in the "names" unit. In this case, the variable, along 
with the corresponding data, is removed from the work area before copying  the 
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function.

        All  of  the above operations make use of the  virtual  memory  access 
routines in searching and altering storage units.

        The  APL run parameter specification commands are easily  implemented. 
Display  is  accomplished by referencing the corresponding field of  the  User 
State  Register  (e.g.,  the "digits" field). Similarly,  the  fields  may  be 
altered directly on command by the user. Thus, if the command is "DIGITS", the 
"digits"  field is retrieved from the User State Register, and  displayed.  If 
the  message  typed by the user is "DIGITS 3", then a new value  of  three  is 
inserted in the user's User State Register.

        The  Line Edit command is implemented by retaining a copy of the  last 
message  typed by the user in calculator mode (initially, the  null  message). 
The  Line  Edit  is  processed according to the rules  given  earlier,  and  a 
"simulated"  teletype  input  is  performed with  the  new  edited  line.  The 
simulated  input,  however, goes to the beginning of the input queue  for  the 
user.  The  Line Edit command does not replace the last message typed  by  the 
user; hence, it is possible to edit the same line several times.

        User to user communication is made possible with two monitor commands: 
the  "LOGGED" command, and the "MSG" command. The first command  displays  the 
user  phrases  corresponding to each active APL user, along  with  the  user's 
station number. The Monitor Command Handler refers to the user phrase  storage 
unit to obtain this information.

        The  users  may  communicate as shown in Figure  16  below.  The  user 
specifies  the station number with the "MSG" command of the user which  is  to 
receive the message. The message is extracted from the originator's input, and 
placed  (with the proper prefix) at the beginning of the output queue  of  the 
station receiving the message.

        FROM (2): ARE YOU GOING TO BE WORKING LATE TONIGHT...
        )MSG 2 I THINK I WILL QUIT ABOUT MIDNIGHT<--
        X<--
3
        FACT X*2<--
362880
        LOG 473<--
6.1591
        FROM (2): HAVE YOU FINISHED THE NUMERICAL ANALYSIS ASSIGNMENT...
        )MSG 2 I ALMOST HAVE THE BIG ANSWER<--
        L0G 474<--
SYNTAX ERROR AT 474
        LOG 474<--
6.16121
        (LOG 3)+(LOG 4)<--
2.48491
        LOG 12<--
2.48491
        FROM (2): DO YOU HAVE A SAVED COPY THAT I CAN COMPARE WITH.
        )MSG 2 YES I SAVED ONE ABOUT 1 HOUR AGO<--
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        LOG 362880
12.80183
        FROM (2): IT IS UNLOCKED... WHAT IS THE NAME OF THE LIBRARY...
        )MSG 2 IT IS INTERPOLLY... READY TO GO<--
        )VARS<--
INTERP (F) STRING  X  Y
        STRING<--
A VERY FAT CAT

        INTERP<--
        FROM (2): OK... I AM GOING TO LOAD IT...
        INTERPOLATION PROBLEM C1

INPUT X VALUES

[]:
        V:= 2 4 6 8 10 12 15 20<--
INPUT Y VALUES

[]:
        LOG V<--
INPUT VALUE TO INTERPOLATE

[]:
        13<--
INTERPOLATED VALUE IS 2.56564

        LOG 13<--
2.56495
        )OFF<--
        END OF RUN

        Figure 16: User/user communication

        The  last  command  to consider is the  "OFF"  command.  This  command 
informs  the APL system that the user wishes to discontinue the  APL  session. 
Two options are available:

        1. "OFF", and
        2. "OFF DISCARD".

In  case (1), APL assumes the user wishes to be physically  disconnected  from 
the system with the active work area saved under the library name  "CONTINUE". 
The  appropriate bits are reset in the station table entry for the  port,  and 
the library is constructed. A termination message is then printed, followed by 
deallocation of data areas (storage units, buffers, and registers.

Case (2) is similar to the first, except that a library is not constructed. In 
either  case,  assumes that some user wishes to sign-on again  after  a  short 
period.  The  teminal  is not physically disconnected,  and  the  buffers  are 
retained for this port until a fixed time has elapsed without a sign-on at the 
terminal.
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        The monitor command handler is distinct from the other APL components, 
but provides a command language and command facilities which are useful in the 
APL environment.

        In conclusion, it can be easily seen that the Monitor Command  Handler 
makes  use  of  the virtual memory access routines in  the  implementation  of 
nearly all the commands.

Section 6: Storage and representation of APL data structures
------------------------------------------------------------

        The methods used in data storage and representation are fundamental in 
the understanding of the two APL components remaining to be discussed: the APL 
Statement Compiler, and the APL "machine".

        The  fast-access data area mentioned earlier, called the scratch  pad, 
contains  data  which  is "active". Further, each data item  residing  in  the 
scratch pad has an associated "descriptor", which gives the characteristics of 
the  data.  The organization of the scratch pad, data layout,  and  descriptor 
formats are the subjects of this section.

        The  scratch  pad may be considered the memory of  the  simulated  APL 
machine.  The scratch pad is, in fact, an array which increases and  decreases 
in  size as the requirements for working storage increase and decrease.  Space 
is  allocated  within the scratch pad using a variation of  simple  segmenting 
[Ref.9].

        All  APL  data  in a particular user's work  area  can  be  considered 
"active"  or  "passive". Data can be active for a user only when the  user  is 
executing  an  APL  statement or function, and the data  has  been  referenced 
during  the  execution.  Passive data is that data  which  can  be  referenced 
through  the "names" ordered storage unit assigned to the user. References  to 
passive  data may occur when the user is executing an APL statement.  In  this 
case,  a copy of the passive data is brought into the scratch pad  during  the 
computation.  Active data in the scratch pad may replace passive data  in  the 
user's work area at the end of execution (i.e., the user returns to calculator 
mode  from  execution mode). In addition, new results may have  been  computed 
during execution, causing additions to the "names" and "data" storage units.

        At  any  point in the execution of several user's  APL  programs,  the 
scratch  pad  contains active data for all of these users. The  passive  data, 
however,  is kept distinct in the individual "names" and "data" storage  units 
referenced through the corresponding User State Registers.

        Data which is active in the scratch pad is identified through the  use 
of "descriptors". The descriptors, shown in Figure 17 below, identify data  by 
providing the following information:

1. Descriptor identification bit. The descriptor identification bit is set  if 
the descriptor refers to APL data.

2. Data presence bit. The data presence bit is set when the data corresponding 
to the descriptor is present in scratch pad memory.
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3.  Named bit. The named bit is set in a descriptor when the  data  associated 
with a descriptor is not a temporary result.

4.  Scalar  bit. The scalar bit is set in descriptors which  reference  scalar 
data.

5. Character bit. The character bit is set in a descriptor when the descriptor 
refers to a character array rather than numeric data.

6.  Back pointer field. The back pointer field is primarily used  to  identify 
the origin of the descriptor in scratch pad memory.

7.  Rank  field.  The  rank  field of a  descriptor  contains  the  number  of 
dimensions in the data associated with the descriptor.

8.  Scratch  pad  field. The scratch pad field holds the  actual  scratch  pad 
address of the data associated with the descriptor.

        Data/function descriptor
        +-----+------+------+---------+
        |     |      |      |         |
        +-+-+-+------+------+---------+
          | |   Back   Rank   Scratch
          | |  pointer field   pad
          | |   field         field
          | |
          | +--> Data descriptor
          |      +-+-+-+-+-+
          |      | | | | | |
          |      +-+-+-+-+-+
          |       | | | | |
          |       | | | | +--> Character bit
          |       | | | +----> Scalar bit
          |       | | +------> Named bit
          |       | +--------> Data presence bit
          |       +----> Descriptor identification bit (set)
          |
          +---> Function descriptor
                +-+-+---+-+
                | | |   | |
                +-+-+---+-+
                 | |  |  |
                 | |  |  +--> Return value bit
                 | |  +-----> Argument field
                 | +--------> Function presence bit
                 +----> Descriptor identification bit (reset)

        Figure 17: Data and function descriptors

        The  size  of each field depends upon the maximum value  that  can  be 
assumed in each case.
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        Data   in  array  form  is  stored  in  row-major  order,   with   the 
dimensionality of the array in the first few locations, as shown in Figure  18 
below.

        APL statement:
        2 3 RHO IOTA 6

        Scratch pad representation:

        Data descriptor for vector (2 3)
        +-----+----+-+---+      +-------+
        |11100|////|1| *-+----->|     2 |
        +-----+----+-+---+      |     2 |
                                |     3 |
                                +-------+

        Data descriptor resulting from execution
        +-----+----+-+---+      +-------+
        |11000|////|2| *-+----->|     2 |
        +-----+----+-+---+      |     3 |
                                |     1 |
                                |     2 |
                                |     3 |
                                |     4 |
                                |     5 |
                                |     6 |
                                +-------+

        Data descriptor for constant 6
        +-----+----+-+---+      +-------+
        |11110|////|0| *-+----->|     6 |
        +-----+----+-+---+      +-------+

        Data descriptor for IOTA 6
        +-----+----+-+---+      +-------+
        |11000|////|1| *-+----->|     6 |
                                |     1 |
                                |     2 |
                                |     3 |
                                |     4 |
                                |     5 |
                                |     6 |
                                +-------+

        Figure 18: Scratch pad data representation

        The  use  of descriptors allows execution-time  determination  of  the 
complete meaning of a particular operator. Thus, the meaning of the statement

        X+Y
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cannot be exactly determined at compile-time, since the "+" could represent  a 
scalar-scalar, scalar-array, or array-array operation. The exact operation  is 
determined  at execution time, by examining the data descriptors  involved  in 
the operation.

        The  use of descriptors is also extended to APL  functions.  Referring 
again  to  Figure  17  above,  function  descriptors  contain  the   following 
information:

1.  Descriptor identification bit. The descriptor identification bit is  reset 
for function descriptors.

2.  Argument  field.  The  argument field contains  the  number  of  arguments 
(parameters) required for function execution.

3.  Return  value bit. The return value bit is set  for  function  descriptors 
corresponding to functions which return a value from execution.

The  presence bit, back pointer field, and scratch pad field are used  in  the 
same manner as in the data descriptor.

        Descriptor access is accomplished through the symbol tables  described 
in the following section.

Section 7: Active and passive symbol tables
-------------------------------------------

        Corresponding  to active and passive data and functions in  APL\B5500, 
there  are active and passive symbol tables. The passive symbol table is  just 
the "names" ordered storage unit shown in Figure 10 above. The details of  the 
passive symbol table entries are shown in Figure 19 below. The contents of the 
right-most  field  of a passive symbol table entry depends upon  the  type  of 
entry.  In  particular, a non-present (presence bit reset)  data  or  function 
descriptor  may appear with the name, or simply a scalar value will appear  if 
the name represents a scalar.

        Passive symbol table
        ("names" ordered        "data" sequential
          storage unit)          storage unit)
        +-----+-+-------+       +---------------+
        |     | |       |  +----|->Vector data  |
        |     | |       |  |    +---------------+
        |     | |       |  |
        |     | | +-----|--+--->Function label unit
        |     | | |     |  |    (ordered storage)
     +->|     | | * : *-|--+-+  +-------+-------+
     |  |     | |       |  | |  |       |       |
     |  |     | |       |  | |  +-------+-------+
     |  |     | |       |  | |
     |  |     | |       |  | +->Function text unit
     |  |     | |       |  |    (sequential storage)
     |  |     | |   *---|--+    +---------------+
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     |  |     | |       |<--+   |               |
     |  +-----+-+-------+   |   +---------------+
     |                      +-----+
     |  Function entry            | Variable entry
     |  +--------+-----+--------+ | +-------+-----+------+
     +--|        |     |        | +-|       |     |      |
        +--------+-----+--------+   +-------+-----+------+
         Function Entry Function    Variable Entry Data
         name     ID    descrip-    name     ID    descriptor
         field    field tor         field    field   or
                                                   scalar

        Figure 19: Passive symbol table

        Each   passive  symbol  table  entry  is  identified  by   the   entry 
identification  field. The entry identification field may take on one  of  the 
following values:

1. Scalar. The name corresponding to the entry is a scalar. The scalar vale is 
contained in the right-most field of the passive symbol table entry.

2.  Array.  The entry corresponds to an array variable. The  right-most  field 
contains  a  non-present data descriptor. The scratch pad  field  contains  an 
address  in the "data" sequential storage unit, where the  corresponding  data 
can  be  found.  The data is loaded into the scratch  pad  when  the  variable 
becomes active and is accessed.

3.  Function.  The entry represents a defined function. The  right-most  field 
contains  a non-present descriptor. The back pointer field, however,  contains 
the unit number of the function label unit, and the scratch pad field contains 
the number of the function text unit corresponding to the function.

        The  passive symbol table is always searched using the virtual  memory 
access routines.

        The  active  symbol  table exists for a particular  user  only  during 
execution of a statement or function. The active symbol table, shown in Figure 
20  below, is located in the scrtach pad, and is addressed through the  symbol 
base field of the user's User State Register. At any given time, there may  be 
several  active symbol tables in the scratch pad; one for each user of APL  in 
the  process  of executing APL statements. The active  symbol  table  contains 
entries  for the active data, not including constants, temporary  results,  or 
local  variables.  The descriptors in the active symbol table may or  may  not 
have their presence bits set.

        Active symbol table
        +-+-+------+------+
     +->| | |      |      |
     |  | | |      |      |
     |  | | |      |      |<------------+
     |  | | |      |      |             |
     |  | | |      |      |             |
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     |  | | |      |      |             |
     |  +-+-+------+------+             |
     |                                  |
     |  User State Register             |
     |  +---...---+--------+---...---+  |
     |  |         | Symbol |         |  |
     |  |         |  base  |         |  |
     |  |         |  field |         |  |
     |  +---...---+--------+---...---+  |
     |                 |                |
     +-----------------+                |
                                        |
     +----------------------------------+
     |
     |  Variable or function entry
     |  +-+---+---------+---------+
     +--| |   |         |         |
        +-+---+---------+---------+
         |  |      |         |
         |  |      |         +--> Function or data descriptor
         |  |      +--> name field
         |  +--> Entry identification field
         +--> Altered bit

        Figure 20: Active symbol table format

        The entry identification field (switched to the front of the name  for 
machine-dependent reasons) has an additional bit position, called the "altered 
bit",  in  the active symbol table. The altered bit indicates whether  or  not 
changes  have been made to data which is active, and thus needs to be  changed 
in the "data" storage unit. In addition, the altered bit is set for  variables 
which are created during execution and do not yet exist in the passive  symbol 
table. All variables with their altered bit set are changed or entered in  the 
passive symbol table when the user returns to calculator mode from execution.

        Another  important symbol table used in compilation and  execution  of 
APL  statements is called the function label table, shown in Figure 21  below. 
The  function  label table is essentially an extension of  the  active  symbol 
table  in the scratch pad. A function label table is constructed  whenever  an 
APL  statement  references  a  function with the presence  bit  reset  in  the 
corresponding  function descriptor. The function descriptor is replaced  by  a 
data  descriptor referencing the function label table as soon as the table  is 
constructed. The information found in the function label table is derived from 
the function's corresponding function label unit.

        Passive data structures
        -----------------------
               +--------->-------+
Passive symbol | Function label  +----> Function text <-----+
table      +->-+ unit                   unit                |
+-----+-+--|-+   +--------+--------+    +-----------------+ |
|     | |+-+-|-->|I       |00000000| +->|Z:=X F Y;I;J|  L:| |
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|     | || | |   |J       |00000000| |  |X:=IOTA 3 | Z:=| | |
|     | || | |   |L       |00010000| |  |X RHO 1 | M:|N:| | |
|     | || | |   |M       |00021000| |  |Z + 5 |   | |  | | |
|     | || | |   |N       |00021000| |  +----------|-|--|-+ |
|     | || | |   |X       |      -3| |             | |  |   |
| F   | |*|* |   |Y       |      -2| |             | |  |   |
|     | |    |   |Z       |      -1| |             | |  |   |
|     | |    |   |00000000|      p1|-+             | |  |   |
|     | |    |   |00010000|      p2|------->-------+ |  |   |
|     | |    |   |00020000|      p3|------->---------+  |   |
|     | |    |   |00021000|      p4|------->------------+   |
+-----+-+----+   +--------+--------+                        |
                                                            |
        Active data structures                              |
        ----------------------                              |
                                                            |
        Active symbol table    Section label table          |
        +-+-------+-------+    +--------+--------+          |
        | |       |       | +->|    29  |    *---|----------+
        | |       |       | |  |    n1  |    n2  |
        | | F     | | | |*|-+  |    n3  |    n4  |
        | |       |       |    |I       |00000000|
        | |       |       |    |J       |00000000|
        | |       |       |    |L       |00010000|
        | |       |       |    |M       |00021000|
        | |       |       |    |N       |00021000|
        | |       |       |    |X       |      -3|
        | |       |       |    |Y       |      -2|
        | |       |       |    |Z       |      -1|
        +-+-------+-------+   /|00000000| | | |p1|
                             | |00010000| | | |p2|
          Initially, all  <--| |00020000| | | |p3|
          non-present         \|00021000| | | |p4|
          data descriptors.    +--------+--------+

        NOTE:  n1 is the relative location of the first numeric label,  n2  is 
        the  relative  location  of the first argument,  n3  is  the  relative 
        location  of the second argument, and n4 is the relative  location  of 
        the result.

        Figure 21: Function label table structure

        The function label table is logically an APL numeric vector referenced 
by  the (now present) data descriptor in the active symbol table.  The  right-
most  fields  of  the  numeric  labels  are  initially  all  non-present  data 
descriptors with the scratch pad fields referencing the corresponding lines of 
text in the function text unit.

        Thus,  it is possible to address all variables and  functions  through 
the  passive symbol table for a particular user. In addition, all active  data 
and functions, along with function labels and local variables, are  accessible 
through the active symbol table and function label table.
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        The reasons for maintaining the active and passive areas can be stated 
as follows: the amount of data and the number of functions in a work area  may 
be  voluminous. Further, during the execution of a calculator  mode  statement 
(which  places  the user in execution mode), it may happen that only  a  small 
fraction  of the work area is actually referenced. Although passive  data  and 
functions  are readily accessible through the virtual memory, it happens  that 
little  used areas remain on back-up storage (because of the  demand  paging). 
Active data and functions, however, are not paged out of central memory, since 
they  reside  in  the  scratch pad. The assumption, of  course,  is  that  the 
accessed data has the highest probability of being accessed again, before  the 
user returns to calculator mode.

        It  should also be noted that lines of text in an active function  are 
compiled  only on demand. That is, there must be an attempt by the user's  APL 
program  to execute a particular line of an APL function before that  line  is 
compiled.  Once  the  line is compiled, it remains in the  scratch  pad  in  a 
compiled form until the user returns to calculator mode. Again, the assumption 
is  that function lines which have been executed have the highest  probability 
of  being  re-executed. Further discussion of demand paging is  found  in  the 
sections which follow.

Section 8: The APL statement compiler
-------------------------------------

        The  APL Statement Compiler generates an internal  pseudo-code  string 
corresponding  to APL statements submitted for compilation. The APL  Statement 
Compiler  can  be called while the current user (as defined  by  the  Resource 
Manager) is in function definition mode, or in execution mode. If the user  is 
in  function  definition mode, no code is generated, nor is  any  scratch  pad 
memory allocated.

        In  execution  mode, the compiler returns a  present  data  descriptor 
addressing  an APL numeric vector in the scratch pad. This vector has, as  its 
first  element, a present data descriptor addressing an APL  character  vector 
containing  the  original  APL statement, as shown in  Figure  22  below.  The 
original  statement is maintained with the compiled code, in order that  error 
messages  may  be  printed during execution. In any case,  the  APL  Statement 
Compiler  is  called  upon  to compile only one  statement  at  a  time,  thus 
maintaining functional concurrency.

        Present data
         descriptor
        +--+----+-+----+
        |  |    |1|  * |
        +--+----+-+--+-+
                     |
    +--------<-------+
    |                          +--> N words
    |                          |
    |        /-----------------+----------------------\
    |   +---+--+----+-+----+--------+--------+---...---+
    +-->| N |  |    | |  * |        |        |         |
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        +---+--+----+-+--|-+--------+--------+---...---+
             \------+----|/ \-----------+-------------/
                    |    |              |
    +--------<------+----+              +--> Pseudo-code words
    |               |
    |               +--> Present data descriptor
    |
    |   +---+---------------------------+
    +-->| M |   APL statement           |
        +---+---------------------------+
             \----------+--------------/
                        |
                        +--> M characters

        Figure 22: Code string format

        APL  pseudo-code words, shown in Figure 23 below, are  interpreted  by 
the simulated APL machine during execution of the statement.

        Pseudo-code words
        +--+---+------+--+--------+
        |  |   |      |  |        |
        +--+---+------+--+--------+
         |  |   |      |  |
         |  |   |      |  +--> Address field
         |  |   |      +-----> Rank field
         |  |   +------------> Location field
         |  +----------------> Type field
         +-------------------> Operator type field

        Operator type field     Type field      Location field
        -------------------     ----------      --------------
        Niladic                 Operand         Decriptor
        Monadic                 Constant          address
        Dyadic                  Operator        Operator
        Triadic                 Function          code

        Rank field              Address field
        ----------              -------------
        Value returned          Location of lexical
          or not returned         item which generated
        Operator                  the code word (used
          subscript               for error reporting).

        Figure 23: Pseudo-code word format

        The  type  field  of the code word indicates  whether  the  code  word 
represents  an  operand  or constant fetch, or an  APL  operation  or  defined 
function  call. If the code word represents an operand or constant,  then  the 
fields are defined as follows:
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1. Operator type. The operator type is not used for operands and constants.

2.  Type field. The type field indicates whether the code word  represents  an 
operand or a constant.

3. Location field. The location field contains the scratch pad address of  the 
data  descriptor corresponding to the code word (i.e., the descriptor for  the 
operand or constant).

4. Rank field. The rank field is not used.

5.  Address field. The address field contains the location of the  operand  or 
constant  within the original APL statement. This location allows exact  error 
reporting during execution.

If the code word represents a function or operator, then the fields are:

1. Operator type. The operator type indicates the number of operands  involved 
in the operation or function.

2.  Type  field. The type field indicates whether the code word  represents  a 
function or operand.

3.  Location  field.  IF the code word represents an APL  operator,  then  the 
location  field contains an integer number assigned to this operator.  If  the 
code  word describes a function, then the location field contains the  address 
of the descriptor for this function in the active symbol table.

4.  Rank  field.  The rank field contains an  operator  "subscript"  (see  the 
following  explanation  of the "[" operator) if the code  word  represents  an 
operator.  If  the  code  word represents a  function,  then  the  rank  field 
indicates whether or not the function returns a value.

        The final code string for an APL statement is generated in two passes: 
a forward pass, called the lexical pass, and a backward pass, called the  code 
generation  pass. The two pass approach is taken in order to arrange the  code 
words in the proper order for a right-to-left execution of the statement.

        The  lexical pass involves the identification of each lexical item  in 
the infix expression (operators, constants, variables, and functions).  During 
this  pass,  shown  in Figure 24 below, a push-down stack,  called  Infix,  is 
loaded with code words corresponding to the lexical items. All table  look-ups 
in  the  function label table, active symbol table, and passive  symbol  table 
occur  during the lexical pass. In addition, all scalars, along  with  numeric 
and character vector constants, are placed into the scratch pad.

        Figure  24:  Lexical  pass  state diagram  (ROCHE>  Too  difficult  to 
        translate  to  "ASCII  graphics". Maybe a GIF or  JPEG  file  will  be 
        needed?)

        During  the code generation pass, the Infix stack is examined,  and  a 
form of suffix notation is generated by rearrangement of the code words.  This 
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form  will  be termed "reverse inverted Polish", since it  involves  not  only 
suffix  form, but also a rearrangement of the operands (this form can also  be 
thought  of as direct Polish written backwards). The reverse  inverted  Polish 
form is suitable for execution by the simulated APL machine, and is sufficient 
for  the proper right-to-left execution. The fundamental transformations  from 
infix  to  reverse inverted Polish form are shown in Table 5 below.  Note  the 
"subscript  computation" operator in Table 5, denoted by "[[n". This  operator 
is  "subscripted"  by  n;  that is, the number of  operands  involved  in  the 
subscript computation is denoted by n.

Table 5: Infix to reverse inverted Polish transformations
---------------------------------------------------------

Infix           Reverse inverted Polish
-----           -----------------------
m X             X m
X d Y           Y X d
M X             X M
X D Y           Y X D
X[s1;s2;...;Sn] Sn Sn-1 ... S2 S1 X[[n

NOTE:  m denotes a monadic operator, d denotes a dyadic operator, M denotes  a 
monadic  function,  D denotes a dyadic function, and X, Y, S1, S2  through  Sn 
denote valid APL expressions.

        One might think that the usual reverse Polish form would be sufficient 
for proper APL statement execution. However, statements such as:

        A + A:=5

where  the  variable "A" initially has a value other than  five  is  evaluated 
incorrectly if reverse Polish form is used.

        The  logic of the code generation pass is shown in Figure 25 below  in 
simplified form.

        Figure 25: Code generation pass (ROCHE> Too difficult to translate  to 
        "ASCII graphics". Maybe a GIF or JPEG file will be needed?)

        There  are  a number of special cases not covered by  the  diagram  in 
Figure 25 above, such as the occurence of the quad or quote quad; however, the 
diagram  does  cover most cases. Error conditions are not shown in  the  state 
diagram  for  the  code generator, but may be detected in a  number  of  ways, 
including:

1. attempting to mark an operator or function as dyadic when it is defined  as 
a monadic operator or function, or vice-versa;

2. the absence of an anticipated code word on the operator stack (e.g., delete 
")" from the top of the operators stack anticipates the occurrence of the  ")" 
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);

3. examination of the operators stack for extraneous symbols at the end of the 
transformation.

        Figure 26 below shows the steps occurring in the transformation of  an 
APL statement into reverse inverted Polish form. For purposes of illustration, 
the  symbolic equivalent of each code word in the Infix stack is used,  rather 
than  the code word itself. Note also that the stacks extend to the right  for 
readability. Operators in the final code string which have been recognized  as 
monadic are marked with a prime (').

        APL expression:
        (D is a dyadic function, M is a monadic function)
        A[ABS B+3;C[3]-B:=M 5;(3 D 4)-8]

        (1)  I   A[ABS B+3;C[3]-B:=M 5;(3 D 4)-8 ]
         n   O   1]<-----------------------------+
         1-->C-->+

        (2)  I   A[ABS B+3;C[3]-B:=M 5;(3 D 4)-8
         n   O   1]                            |
         1   C   8<----------------------------+

        (3)  I   A[ABS B+3;C[3]-B:=M 5;(3 D 4)-
         n   O   1] -<------------------------+
         1   C   8

        (4)  I   A[ABS B+3;C[3]-B:=M 5;(3 D 4)
         n   O   1]- )<----------------------+
         1   C   8

        (5)  I   A[ABS B+3;C[3]-B:=M 5;(3 D 4
         n   O   1]-)                       |
         1   C   8 4<-----------------------+

        (6)  I   A[ABS B+3;C[3]-B:=M 5;(3 D
         n   O   1]-) D<------------------+
         1   C   8 4

        (7)  I   A[ABS B+3;C[3]-B:=M 5;(3
         n   O   1]-) D------+          |
         1   C   8 4  3  D<--+          |
                      +-----------------+

        (8)  I   A[ABS B+3;C[3]-B:=M 5;(
         n   O   1]- *--)----+
         1   C   8 4 3 D -<--+

        (9)  I   A[ABS B+3;C[3]-B:=M 5;
         n   O   1]
         2   C   8 4 3 D -
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        (10) I   A[ABS B+3;C[3]-B:=M 5
         n   O   1]                  |
         2   C   8 4 3 D - 5<--------+

        (11) I   A[ABS B+3;C[3]-B:=M
         n   O   1] M<-------------+
         2   C   8 4 3 D - 5

        (12) I   A[ABS B+3;C[3]-B:=--+
         n   O   1] M---->---+  :=<--+
         2   C   8 4 3 D - 5 M'

        (13) I   A[ABS B+3;C[3]-B
         n   O   1] :=----------+-------+
         2   C   8 4 3 D - 5 M' B  :=<--+

        (14) I   A[ABS B+3;C[3]-
         n   O   1] -<---------+
         2   C   8 4 3 D - 5 M' B :=

        (15) I   A[ABS B+3;C[3]
         n   O   1]- 2 ]<-----+
         1   C   8 4 3 D - 5 M' B :=

        (16) I   A[ABS B+3;C[3--->---+
         n   O   1]-2[               |
         1   C   8 4 3 D - 5 M' B := 3

        (17) I   A[ABS B+3;C[1--+
         n   O   1]- 2 ] [1<----+
         2   C   8 4 3 D - 5 M' B := 3

        (18) I   A[ABS B+3;C-----------+
         n   O   1] -*--[1-------------|----+
         2   C   8 4 3 D | - 5 M' B := C [1 -
                         +---------------+

        (19) I   A[ABS B+3;
         n   O   1]
         3   C   8 4 3 D - 5 M' B := 3 C [1 -

        (20) I   A[ABS B+3-------->-----------+
         n   O   1]                           |
         3   C   8 4 3 D - 5 M' B := 3 C [1 - 3

        (21) I   A[ABS B+
         n   O   1] +<--+
         3   C   8 4 3 D - 5 M' B := 3 C [1 - 3

        (22) I   A[ABS B--->----+
         n   O   1] + ----------|->---------------+
         3   C   8 4 3 D - 5 M' B := 3 C [1 - 3 B +

        (23) I   A[ABS----+
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         n   O   1] ABS<--+
         3   C   8 4 3 D - 5 M' B := 3 C [1 - 3 B +

        (24) I   A[3-+
         n   O   1] [3 ABS------------->------------+
         1   C   8 4 3 D - 5 M' B := 3 C [1 - 3 B + ABS'

        (25) I   A---------------------------------------+
             O   [3--------------------------------------|-+
             C   8 4 3 D - 5 M' B := 3 C [1 - 3 B + ABS' A [3

        Resulting reverse inverted Polish:
        8 4 3 D - 5 M' B := 3 C [1 - 3 B + ABS' A [3

        NOTE:  "I"  represents  the  Infix  stack  (in  symbolic  form),   "O" 
        represents  the  Operator stack, and "C" represents the  Code  string. 
        Each  step  shows the effects of one circuit through  the  diagram  of 
        Figure 25 above.

        Figure 26: Transformation of an APL statement

        Figure 27 below shows the evaluation of the resulting reverse inverted 
Polish  taken from Figure 26 above. Rectangles enclose operands and  operators 
which result in a single operand.

        +-----------------------------------------------------+
        |             +---------------------+                 |
        |+----------+ |+----------+         |+-----------+    |
        ||  +-----+ | ||+----+    |+------+ ||+-----+    |    |
        ||8 |4 3 D|-| |||5 M'|B :=||3 C [1|-|||3 B +|ABS'|A [3|
        ||  +-----+ | ||+----+    |+------+ ||+-----+    |    |
        |+----------+ | +---------+         |+-----------+    |
        |             +---------------------+                 |
        +-----------------------------------------------------+

        Figure 27: Evaluation of reverse inverted Polish

        All constants created during the lexical pass are attached to the code 
string  through  the data descriptor returned by the  statement  compiler,  as 
shown in Figure 28 below. Thus, the data descriptor returned by the  statement 
compiler  provides access to the constants associated with the APL  statement, 
the  APL  statement  itself, and the pseudo-code words  corresponding  to  the 
original statement.

        Present data
        descriptor
        +-+---+-+---+
        | | * |1| * |
        +-+-|-+-+-|-+
            |     |
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        +---+     |
        | +-------+
        | |                      +-----+------------------+
        | |                  +-->|   14| 2 3 RHO IOTA 6   |
        | |                  |   +-----+------------------+
        | |                  |   Pseudo-code words
        | |   +-----+-+--+-+-|-+-----+------+-------+-----+
        | +-->|    5| |  |1| * |     |      |       |     |
        |     +-----+-+--+-+---+-----+------+-------+-----+
        |                         6    IOTA   (2 3)   RHO
        |
        Constant chain
        |
        |   Present data        Present data
        |   descriptor          descriptor
        |       +----->-----+
        |   +-+-|-+-+---+   |   +-+---+-+---+
        +-->| | * |0| * |   +-->| | @ |1| * |
            +-+---+-+-|-+       +-+---+-+-|-+
            +---------+         +---------+
            |   +-----------+   |   +-----------+
            +-->|         6 |   +-->|         2 |
                +-----------+       |         2 |
                                    |         3 |
                                    +-----------+

        Figure 28: Data structure resulting from statement compilation

        The  connection between the APL statement compiler and  the  simulated 
APL machine is given in the following section.

Section 9: The APL "machine"
----------------------------

        The APL "machine" component of APL\B5500 is a software simulation of a 
fictitious  APL  processor. The architecture of this "machine" is  similar  to 
that of the B5500 in that it is a stack-oriented, descriptor-based  processor. 
The  simulated machine, however, executes an order-code which is suitable  for 
APL statement execution. Thus, the simulated machine does not directly use the 
B5500  hardware  stack mechanism. The Machine is capable of  interpreting  APL 
statements  when expressed in reverse inverted Polish form. In  addition,  the 
Machine  provides control functions including transfer-of-control  within  APL 
functions,  and  execution interruption facilities necessary  for  maintaining 
functional concurrency within the component.

        Each  APL user in execution mode is provided with an  execution  stack 
located in the scratch pad, and addressed through the stack base field of  the 
User  State Register. The execution stack, shown in Figure 29 below,  has  the 
top-of-stack  index  as  its  first element. The  remaining  elements  of  the 
execution  stack  consist  of either descriptors or  execution  control  words 
(described below).
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             Execution stack
            +---------------+
            |               | \
            |               | |
        +-->|               | |
        |   |               | + --> Descriptors and
        |   |               | |      control words.
        |   |               | |
        +---|-* Stack top   | /
        +-->+---------------+
        |
        |              Pseudo-code words
        |       +---...---+----+----+---...---+
        |       |         |    |    |         |
        |       +---...---+----+----+---...---+
        |                      |
        |                      +--> CI (Control Index)
        +----------------+
                         |
        +---...---+------+-----+---...---+
        |         | Stack base |         |
        +---...---+------------+---...---+
               User State Register

        Figure 29: Execution stack and control index

        In  addition  to  the  execution  stack,  a  control  index  (CI)   is 
maintained,  which points to the current pseudo-code word being processed  for 
the  user.  As  the CI moves through a code string,  code  words  representing 
operands  cause the corresponding descriptor to be loaded onto  the  execution 
stack.  Code  words  which  represent  operators  or  user-defined  functions, 
however,  cause the corresponding operation or function to be applied  to  the 
top descriptors. The descriptor resulting from the operation of function  call 
replaces  those descriptors involved in the operation or function  call.  Data 
descriptors  with a reset named bit (temporary data) cause  the  corresponding 
data  to  be removed from the scratch pad when "unstacked".  Figure  30  below 
shows  the  steps  involved in the execution of the simple  APL  statement  of 
Figure  28 above. This method of APL statement interpretation is,  of  course, 
both natural and straightforward.

        (1)         6  IOTA   2 3   RHO
                +----+------+-----+-----+
                |    |      |     |     |
                +----+------+-----+-----+
                  CI

            Execution stack
            +---------------+
            |               |   +---------+
        +-->| |    |0|    *-+-->|       6 |
        |   |               |   +---------+
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        |   |               |
        |   |               |
        +---+----*          |
            +---------------+

        (2)         6  IOTA   2 3   RHO
                +----+------+-----+-----+
                |    |      |     |     |
                +----+------+-----+-----+
                        CI

            Execution stack
            +---------------+
            |               |
            |               |   +---------+
        +-->| |    |1|    *-+-->|       6 |
        |   |               |   |       1 |
        |   |               |   |       2 |
        |   |               |   |       3 |
        |   |               |   |       4 |
        |   |               |   |       5 |
        |   |               |   |       6 |
        |   |               |   +---------+
        +---+----*          |
            +---------------+   

        (3)         6  IOTA   2 3   RHO
                +----+------+-----+-----+
                |    |      |     |     |
                +----+------+-----+-----+
                               CI

                                   +---------+
                               +-->|       2 |
                               |   |       2 |
            Execution stack    |   |       3 |
            +---------------+  |   +---------+
            | |    |1|    *-+--+   +---------+
        +-->| |    |1|    *-+----->|       6 |
        |   |               |      |       1 |
        |   |               |      |       2 |
        |   |               |      |       3 |
        |   |               |      |       4 |
        |   |               |      |       5 |
        |   |               |      |       6 |
        |   |               |      +---------+
        +---+----*          |
            +---------------+   

        (4)         6  IOTA   2 3   RHO
                +----+------+-----+-----+
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                |    |      |     |     |
                +----+------+-----+-----+
                                     CI

            Execution stack
            +---------------+
            |               |
            |               |   +---------+
        +-->| |    |2|    *-+-->|       2 |
        |   |               |   |       3 |
        |   |               |   |       1 |
        |   |               |   |       2 |
        |   |               |   |       3 |
        |   |               |   |       4 |
        |   |               |   |       5 |
        |   |               |   |       6 |
        +---+----*          |   +---------+
            +---------------+   

        Figure 30: Interpretation of APL code strings

        Control  words  mark  various positions in the  execution  stack.  The 
control words appear in a number of forms, as shown in Figure 31 below.

        Control word
        +---+-------+---+---------+
        |   |       |   |         |
        +---+-------+---+---------+
          |     |     |      |
          |     |     |      +--> Memory address field
          |     |     +--> Index field
          |     +--> Last control word field
          +--> Control word identification field
                Interrupt mark stack
                Program mark stack
                Function mark stack
                Quad input mark stack
                Quote quad input mark stack

        Figure 31: Control word format

        The control words have the following functions:

1.  Interrupt mark stack control word (IMS). The interrupt mark stack  control 
word  is  placed at the top of the execution stack at the end  of  the  user's 
execution  period. Information in this control word allows later  recovery  of 
additional information for restarting execution.

2. Program mark stack control word (PMS). The program mark stack control  word 
contains  information leading to the code string in execution  directly  above 
the control word in the stack.
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3.  Function  mark stack control word (FMS). The function mark  stack  control 
word  is  inserted  into the execution stack whenever  defined  functions  are 
invoked during execution.

4.  Quad input and quote quad input mark stack control words (QMS  and  QQMS). 
The quad input and quote quad input mark stack control words are inserted into 
the  execution  stack whenever the user's APL program requests quad  or  quote 
quad input from the terminal.

All control words are linked together in the execution stack through the "last 
control word" field of each control word. The use of the "index" field and the 
"memory address" field depends on the type of control word.

        The  execution  stack is initialized with a program  mark  stack  upon 
entry to execution mode from calculator mode. The program mark stack addresses 
the  data descriptor corresponding to the compiled calculator mode  statement, 
as shown in Figure 32a below.

            Execution stack
            +-----------+
            |           |
            |           |      Data descriptor
            |           |      +-+--+-+---+
            |           |  +-->| |  | | * |
            |           |  |   +-+--+-+-+-+
        +-->|PMS|@|0| *-+--+            |
        +---+-----*     |               |
            +-----------+               |
                                        |
        +------------------<------------+
        |
        |             +---------------+
        |         +-->| APL statement |
        |         |   +---------------+
        |         |
        |   +---+-+-+---+---+---+---+---+---+---+
        +-->|   | * |   |   |   |   |   |   |   |
            +---+---+---+---+---+---+---+---+---+
             Pseudo-code words

        Figure 32a: Initial execution stack contents

              Execution stack
              +-----------+
              |           |
              |           |
              |           |
        +---->|IMS|*|  |  |
        | +---+-<--+      |
        | |   |           |\
        | |   |           | |
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        | |   |           | +--> Descriptors
        | |   |           | |
        | |   |           |/
        | +-->|PMS|@|CI|<-+--<--+
        +-----+-----*     |     |
              +-----------+     |
                                |
        +----------->-----------+
        |
        |    Pseudo-code words
        |   +---+-+-+---+---+---+---+---+---+---+
        |   |   |   |   |   |   |   |   |   |   |
        |   +---+---+---+---+---+---+---+---+---+
        |                CI
        +---------<------+

        Figure 32b: Execution stack after interruption

        An  interrupt  mark stack control word is inserted at the top  of  the 
execution stack whenever time-slice interruption of execution occurs, as shown 
in  Figure 32b above. At the time of the interruption, the control index  (CI) 
is placed into the index field of the program mark stack.

        A  number  of actions take place in the case that  a  calculator  mode 
statement  invokes  a function, or a function invokes  another  function.  The 
arguments  to a function are at the top of the execution stack at the time  of 
the  call,  because of the form of the reverse inverted Polish.  The  function 
descriptor  is examined in the active symbol table (addressed directly by  the 
pseudo-code word) and, if not present, the function label table is constructed 
as shown in Figure 21 above. The function mark stack control word is  inserted 
into  the execution stack, followed by the descriptors for each  argument  and 
local  variable.  In  order  to  obtain  call-by-value  parameters,  all  data 
described  by data descriptors with a set named bit cause a copy operation  on 
the data items before passing the new descriptor to the function.

        The  descriptors corresponding to local variables,  including  labels, 
are  kept  in the stack area above the function mark  stack.  Local  variables 
which  do not correspond to formal parameters are initially set to  "null"  by 
placing a null vector (rank field zero) data descriptor into the stack. Labels 
are  treated  as any other local variable, except that the descriptor  in  the 
stack  is  initially  a present scalar data descriptor  addressing  a  numeric 
scalar corresponding to the line on which the label appears.

        The simulated APL "machine" also keeps track of the current line being 
executed by a user when the user is executing a function. The current line  is 
called the line index (LI), and is essentially an index into the corresponding 
function  label table. A program mark stack control word is inserted into  the 
execution  stack after the parameters and local variables, in order  to  start 
the function, as shown in Figure 33 below.

      Execution stack                         Function label
      +-----------+                           table



file:///C|/...rate%20Histories%20Report%20to%20CHM/DRI/Emmanuel%20Roche%20documents%20conversion/Kildall.(zip)/GKAPL.TXT[2/6/2012 10:27:57 AM]

      |           |                           +-----+-----+
      |           |                   +------>|     |     |
+---->|PMS|*|  |*-+---------->--------+--->---+-->--+--+  |
| +---+----+      |\     Locals,      |  LI-->|     |  *  |
| |   |           | |    variables,   |       |     |     |
| |   |           | +--> labels, and  |       |     |     |
| |   |           | |    parameters   |       |     |     |
| |   |           |/                  |       |     |     |
| +-->|FMS|*|LI|*-+---------->--------+       +-----+-----+
| +---+-<--+      |
| |   |           |\
| |   |           | |    Data
| |   |           | +--> descr-
| |   |           | |    iptors
| |   |           |/
| +-->|PMS|@|CI|--+-->--+
+-----+-----*     |     |
      +-----------+     |
                        |
        +-------<-------+
        |
        |    Data descriptor
        |   +-+---+-+---+
        +-->| |   | | * |
            +-+---+-+-+-+
                      |
        +-------<-----+
        |
        |             +-------------------------+
        |         +-->|                         |
        |         |   +-------------------------+
        |         |
        |   +---+-+-+---+---+---+---+---+---+---+
        +-->|   | * |   |   |   |   |   |   |   |
            +---+---+---+---+---+---+---+---+---+
                                     CI
             Compiled code for calculator mode statement

        Figure 33: Stack organization for function execution

        Two points should be made about function execution. First, because  of 
the index field in each of the control words, functions may be invoked at  any 
point in the execution of a function. The CI is saved in the previous  program 
mark  stack,  and the LI is saved in the previous function mark stack  (if  it 
exists).  Upon  return  from  the function execution, the CI  and  LI  can  be 
recovered,  and control is returned to the pseudo-code word which follows  the 
function   call.  Secondly,  since  the  descriptors  for  parameters,   local 
variables,  and  labels are maintained in the execution stack, and  since  the 
pseudo-code strings are "pure" (i.e., they are not self-modifying),  recursive 
function invocations is permitted.

        At the end of function execution, the function mark stack is  deleted. 
If  the  function returns a value, the descriptor representing  the  value  is 
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placed  at  the top of the execution stack. The LI and CI are  then  recovered 
from the control words which are "lower" in the execution stack.

        Note  also that the data descriptors in the function label  table  are 
initially  marked non-present (refer to Figure 21 above). Any reference  to  a 
non-present data descriptor causes the APL "machine" to make the data  present 
(i.e.,  in the case of data, the "data" sequential storage unit is  referenced 
with the corresponding data brought into the scratch pad). In the case of data 
descriptors  in the function label table, the corresponding APL  statement  is 
retrieved  from  the  function text unit, and the APL  Statement  Compiler  is 
called  to  compile  the  line. The resulting  data  descriptor  replaces  the 
previously  non-present  data  descriptor in the  function  label  table.  The 
compiled form of the statement then remains in the scratch pad, until the user 
returns to calculator mode.

        This "demand compilation" avoids unnecessary compilation of statements 
which  are never executed. In addition, functional concurrency is more  easily 
attained, since the compilation is incremental.

        When the user returns to calculator mode from execution, the  Resource 
Manager  calls upon the APL "machine" to make active data into  passive  data. 
The  active symbol table is examined for variables which have the altered  bit 
set. Entries are then made into the "names" and "data" storage units for these 
variables.  Thus,  the  passive  data retains  its  original  form  until  the 
completion  of  execution.  Passive  data  is  not  altered  if  an  error  is 
encountered during the execution of the APL program, unless the STORE  monitor 
command is issued by the user.

        If  an execution error is encountered, the user is notified,  and  the 
execution  is  suspended. During suspension, the user may examine  the  active 
symbol table, the stack locations corresponding to the local variables of  the 
most-recently  executing  function,  and  the local  variables  of  any  other 
suspended functions. The user may alter these variables, and continue function 
execution,  or abort the execution. If the function is aborted before a  STORE 
command is issued, then the active symbol table values are destroyed, and  the 
passive symbol table values are retained. Thus, the function can be  restarted 
without reinitialization of global variables.

        Additional functions of the simulated APL "machine" include:

1.  deallocation of all scratch pad memory cells (returning the storage  areas 
to the B5500 MCP) when no users are in execution mode, and

2.  deallocation  of  areas  reserved  for  a  particular  user  returning  to 
calculator mode from execution mode.

        Although the above discussion is a simplification of the functions  of 
the simulated APL "machine", it does provide an outline of the operations  and 
data structures involved. The state diagram given in Figure 34 below shows the 
logic of the APL "machine".

        Figure  34: APL "machine" logic (ROCHE> Too difficult to translate  to 
        "ASCII graphics". Maybe a GIF or JPEG file will be needed?)
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        A detailed discussion of efficient APL "machine" organization and data 
representation,  along with an extensive bibliography  concerning  APL-related 
topics, is given by ABRAMS [Ref.10].

Conclusion
----------

        The  APL\B5500 system is a self-contained time-sharing submonitor  for 
the  Burroughs B5500 computer providing full APL\360 processing  capabilities. 
Although  the design of APL\B5500 was affected by limited computer  resources, 
such  as  central  memory, the overall design is thought  to  be  sufficiently 
general to be applicable to other APL implementations.

        The  APL\B5500  system is presently in a stable  condition:  no  major 
modifications in design are foreseen. It is necessary, however, to measure the 
effectiveness  of  the  various APL components in an  attempt  to  make  minor 
modifications and adjustements to tune the system for best performance.
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Appendix A: Sample terminal session
-----------------------------------

XXXXXXXXXXXXXXX
 MARY LOGGED IN THURSDAY 10-22-70  09:27
      )VARS<--
 INTERP (F) NEWTON (F) STRING  X       X0
      )FNS<--
 INTERP  NEWTON
      )ERASE STRING<--
      )VARS<--
 INTERP (F) NEWTON (F) X       X0
      2+2<--
4
      2-2<--
0
      -2<--
-2
      #2<--
-2
      2 #2<--
2  -2
      2#2<--
2  -2
      2&3+4<--
14
      (2&3)+4<--
10
      )")"-"4<--
(2&3)-4
      2
      3.4 MAX 4.5<--
4.5
      )DIGITS<--
3
      )DIGITS 9<--
      4 & 3 MAX 5.1<--
20.4
      (4&3) MAX 5.1<--
12
      CIRCLE 1<--
3.141592654
      CIRCLE 1 2<--
3.141592654  6.283185307
      1 CIRCLE 1<--
0.841470985
      IOTA 4<--
1  2  3  4
      CIRCLE IOTA 2<--
3.141592654  6.283185307
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      $G:=M GCD N<--
[1]   G:=M<--
[2]   M:=M RESD N<--
[3]   =:(M NEQ 0)/XIT<--
[4]   [3["]]/"CONT"T<--
[4]   [3[]]<--

[3]   =:(M NEQ 0)/CONT

[4]   N:=G<--
[5]   [4["]]"CONT:"<--
[5]   =:1<--
[6]   [[]]<--

      G:=M GCD N
[1]   G:=M
[2]   M:=M RESD N
[3]   =:(M NEQ 0)/CONT
[4]   CONT:N:=G
[5]   =:1

[6]   [CONT[]]<--

[4]   CONT:N:=G

[6]   [2[]4]<--

[2]   M:=M RESD N
[3]   =:(M NEQ 0)/CONT
[4]   CONT:N:=G

[6]   [CONT-2[]CONT+1]<--

[2]   M:=M RESD N
[3]   =:(M NEQ 0)/CONT
[4]   CONT:N:=G
[5]   =:1

[6]   $<--
      2 GCD 2<--

      )SI<--
      GCD     S
      )SIV<--
      GCD     S  CONT    G      M       N
      CONT<--
4
      G,M,N<--
0  2  2

      =:0<--
      $GCD<--
[6]   [3.1]=:0<--
[3.2] [[]]<--
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      G:=M GCD N
[1]   G:=M
[2]   M:=M RESD N
[3]   =:(M NEQ 0)/CONT
[3.1] =:0
[4]   CONT:N:=G
[5]   =:1

[3.2] $<--
      2 GCD 2<--
2
      36 GCD 64<--
4
      $GCD<--
[6]   [3][3.1]<--
[6]   [[]]<--

      G:=M GCD N
[1]   G:=M
[2]   M:=M RESD N
[3]   =:L& M NEQ 0
[4]   CONT:N:=G
[5]   =:1

[6]   [CONT["]]""N<--
[6]   [4[]]<--

[4]   NT:N:=G

[6]   [4["]]""N:<--
[6]   [3]=:L& M NEQ 0<--
[4]   [4["]]"L:"<--
[4]   [4[]]<--

[4]   L:N:=G

[4]   [[]]$<--

      G:=M GCD N
[1]   G:=M
[2]   M:=M RESD N
[3]   =:L& M NEQ 0
[4]   L:N:=G
[5]   =:1

      36 GCD 64<--
4

      $Z:=FIB N<--
[1]   =:N+2 MIN 4<--
[2]   =:Z:=0<--
[3]   =:1-Z:=L<1<--
[4]   =:Z:=(FIB N-1)+FIB N-2<--



file:///C|/...rate%20Histories%20Report%20to%20CHM/DRI/Emmanuel%20Roche%20documents%20conversion/Kildall.(zip)/GKAPL.TXT[2/6/2012 10:27:57 AM]

[5]   [[]]$<--

      Z:=FIB N
[1]   =:N+2 MIN 4
[2]   =:Z:=0
[3]   =:1-Z:=1
[4]   =:Z:=(FIB N-1)+FIB N-2

      FIB 0<--
0
      FIB 1<--
1
      FIB 2<--

      )SI<--
      FIB     S
      )SIV<--
      FIB     S  N       Z
      N<--
2
      Z<--
1
      )ABORT<--
      $FIB[4["]]""Z$<--
[5]   [4[]]<--

[4]

[5]   [4]=:Z:=(FIB N-1)+FIB N-2<--

[5]   [4[]]<--

[4]   Z:=(FIB N-1)+FIB N-2

[5]   $<--
      FIB 2<--
1
      FIB 4<--
      FIB 5<--
      )SIV<--
NULL.
      $FIB[[]]$<--

      Z:=FIB N
[1]   =:N+2 MIN 4
[2]   =:Z:=0
[3]   =:1-Z:=1
[4]   Z:=(FIB N-1)+FIB N-2

      $FIB[1["]]:"(N+2)" M<--
[5]   [1[]]<--

[1]   =:(N+2) MIN 4



file:///C|/...rate%20Histories%20Report%20to%20CHM/DRI/Emmanuel%20Roche%20documents%20conversion/Kildall.(zip)/GKAPL.TXT[2/6/2012 10:27:57 AM]

[5]   $<--
      FIB 2<--
1
      FIB 4<--
3
      FIB 6<--
8
      FIB 8<--
21
      $INTERP[[]]$<--

      INTERP;X;Y;Z;D;N
[1]   "INTERPOLATION PROBLEM C1"
[2]   =:(0=&/(IOTA N:=RHO X)=X IOTA X:=[])/UNIQERR,0 RHO []:="INPUT X VA
LUES"
[3]   =:(N NEQ RHO Y:=[])/DIMERR,0 RHO []:="INPUT Y VALUES"
[3.5]  =:(N GEQ D:=X IOTA Z:=[])/FOUNDZ,0 RHO []:="INPUT VALUE TO INTERP
OLATE"
[4]    =: 0,0 RHO []:="INTERPOLATED VALUE IS";+/(Y&(&/D)%D:=Z-X)%&/(N,N-
1)RHO((N*2)RHO 0,N RHO 1)/,X CIRCLE . -X
[5]   FOUNDZ: =:0,0 RHO []:="INTERPOLATED VALUE IS";Y[D]
[6]   UNIQERR: =:0,0 RHO []:="X VALUES NOT UNIQUE  ERROR"
[7]   DIMERR: "DIMENSIONS DO NOT MATCH   ERROR"

      $INTERP[IOTA]<--
[9]   [FOUNDZ-1[]FOUNDZ+1]$<--

[5]   =: 0,0 RHO []:="INTERPOLATED VALUE IS";+/(Y&(&/D)%D:=Z-X=%&/(N,N-
1)RHO((N*2)RHO 0,N RHO 1)/,X CIRCLE . -X
[6]   FOUNDZ: =:0,0 RHO []:="INTERPOLATED VALUE IS";Y[D]
[7]   UNIQERR: =:0,0 RHO []:="X VALUES NOT UNIQUE  ERROR"

      INTERP<--
INTERPOLATION PROBLEM C1

INPUT X VALUES

[]:
      1 4 6 10<--
INPUT Y VALUES
      3 8 12 40<--
INPUT VALUE TO INTERPOLATE

[]:
      5<--
INTERPOLATED VALUE IS 9.592592593

      $X:=FX NEWTON DFX; ERR<--
LABEL ERROR AT  X:=FX NEWT

      )FNS<--
FIB      GCD     INTERP  NEWTON
      $NEWTON[[]]$<--
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      X:=FX NEWTON DFX;ERR
[1]   X:=X0
[2]   =:((ABS ERR) GEQ @-6)/2, 0 RHO X:=X-ERR:=EPS FX, "%", DFX

      "((X*2)-2)" NEWTON "2&X"<--
1.144123562
      "((X*2-2" NEWTON "2&X"<--
SYNTAX ERROR AT  (X*2-2%2&X

NEWTON
[2]   SYNTAX ERROR AT  EPS FX, "%

      )"-2")"<--
"((X*2-2)" NEWTON "2&X"
      SYNTAX ERROR AT  (X*2-2)%2&

NEWTON
[2]   SYNTAX ERROR AT  EPS FX, "%

      )SIV<--
      NEWTON  S  DFX     ERR      FX      X
      NEWTON  S  DFX     ERR      FX      X
      =:0<--
1
      )ABORT<--
      )SIV<--
NULL.
      )"2")<--
=:0
      SYNTAX ERROR AT  0

      "WALLA WALLA WASH"<--
WALLA WALLA WASH

      (" " NEQ STRING)/STRING:=[]<--
[]:
      WALLA WALLA WASH<--
SYNTAX ERROR AT  WASH
SYNTAX ERROR

      (" " NEQ STRING)/STRING:=    []<--
[]:
      "WALLA WALLA WASH"<--
WALLAWALLAWASH

      STR:=["]<--
A FAT CAT<--
      STR<--
A FAT CAT

      STRING[ 2 10 RHO 6 + IOTA 10]<--
WALLA WASH
WALLA WASH
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      2 10 RHO 6 DROP STRING<--
WALLA WASH
WALLA WASH

      )WIDTH 30<--
      $NEWTON[[]]$<--

      X:=FX NEWTON DFX;ERR
[1]   X:=X0
[2]   =:((ABS ERR) GEQ @-6)/2,
 0 RHO X:=X-ERR:=EPS FX,"%",
DFX

      )DIGITS<--
9
      1%3O<--
SYNTAX ERROR

      1%30<--
0.033333333
      )DIGITS 3<--
      1%30<--
0.033
      )WIDTH 72<--
      13 RNDM 52<--
49  43  27  14  26  21  44  9  16  29  6  30  32

      )OFF
      END OF RUN

Appendix B: Syntax
------------------

(Nota Bene: " <-- " means: Press the RETURN/ENTER key"...)

<apl program> ::= )<login> <-- <statement set> <-- )<logout> <--
<login> ::= <user code>
<user code> ::= <identifier>
<logout> ::= OFF<off option>
<off option> ::= DICARD|<empty>
<statement set> ::= <statement>|<statement set> <-- <statement>
<statement> ::= <monitor command>|<apl statement>|<empty>
<monitor command> ::= )<command>
<command> ::= <library maintenance>|CLEAR|ERASE<identifier list>|FNS|
               VARS|SI|SIV|ABORT|STORE|<buffer edit>|<run parameter>|
               LOGGED|<message>
<library maintenance> ::= LOAD<library name>|<copy>|<clear>|<save>
<library name> ::= <library prefix><library suffix>
<library prefix> ::= <job number>,|<empty>
<job number> ::= {user account number}
<library suffix> ::= <identifier>
<copy> ::= COPY<library name><copy name>
<copy name> ::= <stored program name>|<variable name>
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<stored program name> ::= <identifier>
<variable name> ::= <identifier>
<clear> ::= CLEAR<library suffix>
<save> ::= SAVE<library suffix><lock option>
<lock option> ::= LOCK|<empty>
<identifier list> ::= <identifier>|<identifier list><space><identifier>
<buffer edit> ::= "<line edit>
<line edit> ::= <search string>"<insert string><quote option>
<search string> ::= <proper string>|<empty>
<insert string> ::= <proper string>|<empty>
<quote option> ::= "<search string>|<empty>
<run parameter> ::= <parameter type><number>|SYN|NOSYN|<parameter type>
<parameter type> ::= ORIGIN|WIDTH|DIGITS|SEED|FUZZ
<message> ::= MSG<station><improper string>
<station> ::= <unsigned integer>
<improper string> ::= <improper string element>|<improper string>
                      <improper string element>
<improper string element> ::= <visible string character>|"|<space>
<apl statement> ::= <stored program definition>|<basic statement>
<stored program definition> ::= $<definition entry><stored program body>$
<definition entry> ::= <stored program name>|<header>
<header> ::= <stored program options><local variables> <--
<stored program options> ::= <function specifier><parameter options>
<function specifier> ::= <variable name> := |<empty>
<parameter options> ::= <niladic name>|<monadic name><formal
                        parameter>|<formal parameter><dyadic name>
                        <formal parameter>
<niladic name> ::= <niladic subroutine name>|<niladic function name>
<dyadic name> ::= <dyadic subroutine name>|<dyadic function name>
<monadic name> ::= <monadic subroutine name>|<monadic function name>
<niladic subroutine name> ::= <identifier>
<niladic function name> ::= <identifier>
<dyadic subroutine name> ::= <identifier>
<dyadic function name> ::= <identifier>
<monadic subroutine name> ::= <identifier>
<monadic function name> ::= <identifier>
<formal parameter> ::= <identifier>
<local variables> ::= <local set>|<empty>
<local set> ::=; <identifier>|<local set>;<identifier>
<stored program body> ::= <stored program statement>|<stored program
                           body> <-- <stored program statement>
<stored program statement> ::= <edit>|<compound statement>|<empty>
<edit> ::= [<edit command>
<edit command> ::= <display>|<insertion>|<change>|<delete>
<display> ::= <line option>[]<line option>
<line option> ::= <line reference>|<empty>
<line reference> ::= <label expression>|<number>
<label expression> ::= <identifier><relative location>
<relative location> ::= <direction><number>|<empty>
<direction> ::= +|-
<insertion> ::= <line reference>]<compound statement>
<change> ::= <line option>["]<line option>]<line edit>
<delete> ::= <line reference>]<delete option>
<delete option> ::= [<line reference>]|<empty>
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<compound statement> ::= <label set><basic statement>
<label set> ::= <label>|<label set><label>|<empty>
<label> ::= <identifier>:
<basic statement> ::= <expression>|<subroutine call>|<transfer statement>
<expression> ::= <operand>|<assignment statement>|<left part><expression>
<operand> ::= <constant>|<identifier><subscript option>|
              (<expression<)|[]|["]|<niladic function name>
<subscript option> ::= [<subscript list>]|<empty>
<subscript list> ::= <subscript>|<subscript list>;<subscript>
<subscript> ::= <expression>|<empty>
<assignment statement> ::= <assign operand>:=<expression>
<assign operand> ::= <identifier><subscript option>
<left part> ::= <monadic operator>|<operand><dyadic operator>
<monadic operator> ::= <monadic function name>|<monadic scalar
                       operator>|<monadic mixed operator>|
                       <monadic suboperator>
<monadic scalar operator> ::= +|-|&|%|*|LOG|CEIL|FLR|ABS|FACT|RNDM|NOT|CIRCLE
<monadic mixed operator> ::= ,|RHO|IOTA|BASVAL|TRANS|EPS
<monadic suboperator> ::= <monadic suboperator type><dimension part>
<monadic suboperator type> ::= <reduction type operator>|PHI|SORTUP|SORTDN
<reduction type operator> ::= <dyadic scalar operator>/|<dyadic
                               scalar operator>\
<dimension part> ::= [<expression>]|<empty>
<dyadic operator> ::= <dyadic function name>|<dyadic scalar operator>|
                      <dyadic mixed operator>|<dot operator>|<dyadic

--------> Missing line in my photocopy ! <-------------

<dyadic scalar operator> ::= +|-|&|*|LOG|MAX|MIN|%|RESD|COMB|AND|OR|
                             NAND|NOR|LSS|LEQ|=|GEQ|GTR|NEQ|CIRCLE
<dyadic mixed operator> ::= ,|EPS|RHO|IOTA|BASVAL|REP|RNDM|TAKE|DROP
<dot operator> ::= <dyadic scalar operator>.<dyadic scalar operator>
<dyadic suboperator> ::= <dyadic suboperator type><dimension part>
<dyadic suboperator type> ::= PHI|/|\
<subroutine call> ::= <operand><dyadic subroutine name><expression>|
                      <monadic subroutine name><expression>|<niladic
                      subroutine name>
<transfer statement> ::= =:<expression>

APL SYNTAX -- Constants and Identifiers
---------------------------------------

<data element> ::= <identifier>|<constant>
<identifier> ::= <letter>|<identifier><letter>|<identifier><digit>
<letter> ::= A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z
<digit> ::= 0|1|2|3|4|5|6|7|8|9
<constant> ::= <number>|<string>
<number> ::= <decimal number><exponent part>|<decimal number>|
             <exponent part>
<decimal number> ::= <integer><decimal fraction>|<integer>|<decimal fraction>
<integer> ::= <unsigned integer>|+<unsigned integer>|#<unsigned integer>
<unsigned integer> ::= <digit>|<unsigned integer><digit>
<decimal fraction> ::= .<unsigned integer>



file:///C|/...rate%20Histories%20Report%20to%20CHM/DRI/Emmanuel%20Roche%20documents%20conversion/Kildall.(zip)/GKAPL.TXT[2/6/2012 10:27:57 AM]

<exponent part> ::= <exponent symbol><exponent sign><unsigned integer>
<exponent symbol> ::= @|E
<exponent sign> ::= #|-|+|<empty>
<empty> ::= {the null string of symbols}
<string> ::= "<proper string>"
<proper string> ::= <string element>|<proper string><string element>
<string element> ::= <string character>|""
<string character> ::= <visible string character>|<space>
<visible string character> ::= <letter>|<digit>|<special symbol>
<special symbol> ::= .|(|)|,|&|$|*|+|;|:|#|%|=|@|/|\|[|]|-
<space> ::= <single space>|<space><single space>
<single space> ::= {a single unit of horizontal spacing which is blank}

EOF
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GKCD.WS4        (= Gary Kildall CD-ROM article)
--------

- "The compact disk ROM: applications software"
   Tim Oren & Gary Kildall
  "IEEE Spectrum", Vol.23, No.4, April 1986, pp.49-54

(Retyped by Emmanuel ROCHE.)

It  optimizes access time, is compatible with various operating  systems,  and 
has the potential for multimedia use

Given  the specialty of the compact-disk, read-only memory -- putting  massive 
databases  on a user's desk inexpensively -- many engineers will  likely  find 
themselves perfecting the technology and expanding its uses for years to come. 
A spinoff of compact-disk audio technology, the optically read CD-ROM presents 
various challenges to computer software and systems engineers:

      - Overcoming a relatively slow rate of data access.
      - Integrating audio, video, and graphics.
      - Providing multiuser access to data.
      - Accommodating a lack of standards for CD-ROM data structures.
      - Updating the CD-ROM database.

In addition, systems designers and managers must consider:

      - Hardware requirements for workstations using the CD-ROM.
      - Costs of converting data and producing ROMs.
      - Rapid changes in a new technology.

Solutions to these concerns combine hardware, software, and systems approaches 
-- which are themselves still evolving to a remarkable degree.

All  of the challenges, and some of the approaches to their  solutions,  arise 
naturally from the pathway that information follows on its way from  publisher 
to  user  via the CD-ROM. First, the data are scanned from  printed  pages  or 
converted from magnetic media to a form suitable for the CD-ROM. At this  data 
preparation  stage, some indexing of information and optimization  for  CD-ROM 
storage  is  usually performed. The transformed data are  stored  on  magnetic 
tape,  which then goes to a premastering facility for error-correction  coding 
and  data interleaving and scrambling. The premaster tape is used to create  a 
glass master disk for verification. Mass production follows, with the pressing 
process embossing the data onto plastic disks for end users. The final step is 
playback in a CD-ROM drive, typically attached to a desktop computer.

It  is  here that the hardware concerns -- primarily the  performance  of  the 
drive  unit  and  the  capacity of the medium --  become  evident.  The  prime 
software goal is to create data structures and accessing strategies  optimized 
for the drive's characteristics. Economic concerns arise at each stage of  the 
process,  with  one-time  costs  predominating on  the  data  preparation  and 
mastering side, and unit costs in the production and retrieval steps.
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CD-ROM drives: wait before hurrying
-----------------------------------

CD-ROM  drives that provides access up to 600 megabytes of data on  each  120-
millimeter  disk  have  been available for under  $1000  since  March  (1986). 
Although  this combination of cost and capacity is unprecedented,  the  drives 
suffer  from slow access speed. The laser pickup head typically  requires  0.5 
second to access information on the innermost tracks, and 1.5 seconds to reach 
the outer tracks.

By contrast, hard-disk units can access data in tens of milliseconds. The  CD-
ROM is slowed by the mass of its pickup head, which contains a focusing system 
with  several  lenses and which must be positioned with  extreme  accuracy.  A 
high-torque stepping motor would move the head more quickly but would increase 
the cost and mass of the drive beyond practicality. To help compensate for the 
long access time, most CD-ROM drives have a small tipping mirror that  rapidly 
directs  the  laser beam to nearby tracks without any movement of  the  entire 
lens  assembly. Once the head has moved to the desired spot on the  disk,  the 
sequential reading speed of the CD-ROM is quite good: 1.2 megabits per second.

The  slow  access  rate  is a severe drawback for the  most  common  forms  of 
information stored on CD-ROMs: sequential data files, conventional  databases, 
and textual information bases. In any of these cases, data structures designed 
for magnetic disks will produce unacceptable results on the CD-ROM.

In  a typical magnetic disk file and directory structure, each link  from  one 
block  of a directory or file to another will cause a movement of  the  pickup 
head. The primary purpose of such links is the expansion of existing files and 
directories when information is added.

But  on a CD-ROM there is no possibility of expanding the information once  it 
is  stored. Because the number and size of the data files are known  when  the 
data  are prepared, a much simpler disk structure may be used. Finding a  file 
will  require at most two head motions, the first to reach the  directory  and 
the  second  to move to the file. The data blocks are contiguous  within  each 
file and within the disk directory, taking advantage of the drive's sequential 
read rate and tipping mirror.

In a relational database, one of the most common types, stored information  is 
considered  to  consist of tables. For instance, an  auto  insurance  database 
might include a table with one column containing the names of policy  holders, 
another  column for policy numbers, and additional columns for  renewal  dates 
and descriptions of automobiles owned. Each row of the table would consist  of 
the  data  for  a single customer. The columns in another table  in  the  same 
database  would  designate the auto maker, model and  year,  estimated  value, 
accident rate, and theft rate. Each row in this table would refer to a  single 
type of car insured by the firm using the database.

Information  in  such a database is retrieved through indexes that  store  the 
order and location of each row as sorted by a key column. One such index might 
allow  insurance  policies  to  be accessed in order of  renewal  date.  On  a 
magnetic  disk,  the  indexes  are  constructed  as  a  "tree"  of  links   to 
information.  Each  branching point, or node, in the tree  contains  links  to 
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further  nodes,  leading eventually to the data itself. Finding  a  particular 
record  requires traversing several levels of the tree, and following each  of 
the links requires a movement of the pickup head.

Such  a relational database will perform very poorly on a CD-ROM unless it  is 
modified.  The  data structure must be adapted to the characteristics  of  the 
drive. In particular, the number of levels in the tree, and thus the number of 
head  seeks, can be reduced by making each node much larger -- increasing  the 
number of its links. This also takes advantage of the CD-ROM's high sequential 
read speed.

The  large  data capacity of the CD-ROM can also be used to advantage  in  the 
"join" operation that is commonly performed to merge two tables. For instance, 
there might be a need to selectively combine the two auto insurance tables  to 
yield  yet another one, consisting of data on policy number, auto  value,  and 
loss  rate only. Because a join operation requires a great deal of  access  to 
the  storage  unit,  it  saves time to compute such  operations  in  the  data 
preparation stage and then store the redundant tables on the CD-ROM.

Searching the whole text on a desktop
-------------------------------------

Full-text searching, which examines an entire database for the occurrence of a 
single  word or a complex combination of terms, is becoming possible  for  the 
personal  computer  for the first time, thanks to CD-ROM  technology.  With  a 
complete full-text search package, a user will be able to specify the  desired 
proximity  of multiple-search terms; to use Boolean AND, OR and NOT  operators 
in the specification; and to specify a non-unique search term with "wild-card" 
characters.

The data structures needed for full-text search are generated by the inversion 
method.  The entire database is scanned to find and count the  occurrences  of 
each word. At this point, words that occur so frequently as to be meaningless, 
like  "of"  and "to", are discarded. In material about  data  processing,  for 
example, terms such as "computer" might also fall into this category.

The  database  is re-read once to record the position of every  occurrence  of 
each  word.  The  resulting  large  table is  the  word  index,  or  full-text 
inversion,  of the database. A magazine article on  semiconductor  technology, 
for  example,  might use the word "micron" four times. The  inversion  of  the 
article  would  contain an entry for "micron", along with the  four  locations 
where the word occurred.

On a magnetic disk system such an index is usually stored in a multilevel data 
structure  similar  to  that  of  a  relational  database.  The  strategy  for 
conversion to CD-ROM also follows the database pattern: the levels of the data 
structure are reduced in number, so the index for each letter of the  alphabet 
can  be  stored  in one undivided area, and read in a  single  operation.  The 
pointers to text locations would appear in another table nearby.

A  search for each paragraph containing the two words "micron"  and  "leakage" 
would  require four seek operations on the CD-ROM. One motion is  required  to 
read  the  index for the letter "m" and verify the existence  of  "micron".  A 
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second  motion  reads the locations of the word. The same two  operations  are 
performed for "leakage". The various text locations, obtained from the  index, 
are then compared to see if any paragraph contains both terms.

Of  course  there is a price to pay for such extensive indexing.  A  full-text 
inversion  can occupy as much storage space on the CD-ROM as the  text  itself 
does. If complete indexing exceeds the storage capacity of the ROM, it may  be 
possible  to  discard more terms during the first phase of inversion.  On  the 
other  hand, storing only key words or an index for abstracts of papers  would 
occupy only a few percent of the total capacity.

When  these expedients are unacceptable, compressing the data and indexes  may 
be  possible.  Optimal encoding of text information can double  the  effective 
storage,  but  at the cost of retrieval efficiency. Some  compression  of  the 
inversion can be achieved by storing the distance between successive locations 
of a word, rather than storing the actual location of every occurrence. Again, 
the penalty is a slower search.

Because  the  CD-ROM  pickup  movement  is slow,  it  is  a  poor  device  for 
timesharing  by several users or tasks. If several simultaneous  searches  are 
competing,  the  pickup head will be moved frequently as each task  takes  its 
turn. This "thrashing" destroys carefully optimized sequences of head  motion, 
and performance quickly degrades.

The reproducible nature of the CD-ROM disk offers some solutions on a  systems 
level.  For  example, identical CD-ROMs may be clustered  in  multiple  drives 
under  an  intelligent controller to serve several users  simultaneously.  The 
controller can switch read requests to the available drive that has its pickup 
head  closest  to the requested location on the disk. Systems  designers  must 
carefully assess the load factor per user to determine the number of identical 
drives needed to prevent thrashing and give all users adequate access times.

If multiple drives are too costly, other users may be locked out when a search 
is in progress. The penalties in response time and bottlenecking of tasks  are 
obvious, but they may not be excessive when there are only a few users.

Multiple media are coming
-------------------------

Currently  CD-ROM  is a closed system with no capability for  audio  or  video 
information, but this may change soon. On February 24, (1986) Sony and Philips 
announced  their  intent to create a specification for interactive  audio  and 
video  applications  on  CD-ROM  -- the "CD  Interactive  Media"  (CD-I).  The 
specification  would  be  a complete format for  interactive  use  of  CD-ROM, 
including speech; natural still and animated pictures; and computer  graphics, 
files,  and  programs  as  well as audio and video.  The  CD-I  standard  will 
tentatively include specifications for a low-cost player based on the Motorola 
68000 microprocessor, with the first player expected to be introduced sometime 
next year.

In  the  interim,  multimedia presentations based on CD-ROM  will  require  an 
additional peripheral player. In such cases, the CD-ROM would hold  search-key 
information for a remotely controlled audio CD or a videodisk player.
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If  cost  prohibits the use of two drives, inexpensive  stopgap  measures  are 
available.  Sound  sequences  may be digitized and  recorded  on  the  CD-ROM. 
Similarly, printed images may be captured with scanners, or video images  with 
frame  grabbers, and the results placed on the disk. However, both  the  audio 
and  the  video techniques may yield inferior reproduction, and they  are  not 
portable from one "player" to another. For example, the playback of  digitized 
audio may differ on computers with different hardware clock rates and may  not 
be  feasible  at all on timeshared systems. Scanned images may not  match  the 
resolution, aspect ration, or color capability of a display.

One  technique for overcoming graphics contraints on the CD-ROM is to  include 
standard  graphics  metafiles, such as the one based on the  Graphical  Kernel 
System  (GKS). A metafile captures the sequence of output operations, such  as 
lines,  pie segments, or text, that make up a picture. Given the  availability 
of  GKS driver software for a display, a metafile may be played back  with  no 
loss of resolution. However, picture libraries in this form are not  generally 
available,  so the technique is limited to applications where graphics can  be 
generated from scratch.

Looking for software standards
------------------------------

Like  other  peripherals, the CD-ROM must contend with  a  cluttered  computer 
marketplace.  While  designers of dedicated CD-ROM workstations  may  to  some 
degree  choose their own environment, the developer of general-purpose  CD-ROM 
hardware  or  software  faces  a  variety  of  competing  processor  and   bus 
architectures, operating systems, and user interfaces.

Compounding this difficulty is one of the most controversial issues now facing 
CD-ROM  technology:  the lack of standards for formatting data  on  the  disk. 
While the CD-ROM hardware standard guarantees that a given disk may be read in 
any  drive,  the lack of standards for file or index structures  on  the  disk 
means  that  a  disk  prepared by one CD-ROM company cannot  be  read  by  the 
software  of another vendor. Thus, the purchaser of several  different  CD-ROM 
databases  would  have to use different software to access each one,  with  no 
convenient way to integrate the data extracted.

A  standard called Unifile was proposed last year by Digital  Equipment  Corp. 
This  proposal and others, ranging from descriptions of bands on the  disk  to 
detailed  file  directory and index standards, are under consideration  by  an 
informal industry association called the High Sierra Group.

Choosing  single  standards for directories, file organization,  and  indexing 
structures  may  be  premature  at this  time.  Mimicking  magnetic-disk  data 
structures  on  current  CD-ROM  drives  has  severe  performance   penalties. 
Furthermore,  it  would be equally shortsighted to adopt these  expedients  as 
standards without further experience with current systems, not to mention  the 
improvements that may occur in CD-ROM drives.

Two  other factors argue against a standard now. First, information  providers 
such  as  news organizations, book publishers, and database  proprietors  want 
their  CD-ROM products to be protected from piracy. They have  requested  that 
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the developers of CD-ROM systems scramble the indexes and encrypt the data  to 
protect  their investments. Second, CD-ROM technology and the  techniques  for 
efficient handling of very large masses of data are too immature to judge what 
types  of information may be found on CD-ROMs within, say, five years,  or  to 
predict what accessing structures may be appropriate for this information.

How,  then,  is bedlam to be averted? The solution may lie in  discarding  the 
false analogy of the CD-ROM retrieval system and a standardized record player. 
Unless the CD-I player comes to dominate the business environment, there  will 
be an excess of architectures for the foreseeable future. Further, the  record 
player  analogy  ignores the adaptability of a general-purpose  computer.  The 
capacity of a CD-ROM is ample for storage of unique versions of the  retrieval 
software  for  dozens  of different information  delivery  systems.  A  CD-ROM 
standard  need include only a disk header that allows the delivery  system  to 
identify  and retrieve software, making a standardized data architecture  less 
urgent.

A  simple CD-ROM disk design should include program storage in the  format  of 
each intended delivery system. The programs would include retrieval  software, 
video-display  drivers  when necessary, and any other  desirable  software.  A 
single  band on the disk would be allocated to each combination  of  processor 
and  operating  system. For instances, one band might be  allocated  to  Intel 
microprocessors  operating  under the MS-DOS standard, a second  band  to  VMS 
running on VAX machines, and a third to Motorola 68000-based Unix systems.

The  database itself would reside in one or more bands occupying most  of  the 
disk   and  would  include  the  accessing  structures  appropriate   to   the 
application. This approach is flexible enough to reserve disk areas for future 
audio and video storage.

Direct updates of a CD-ROM database are, of course, impossible, so the  entire 
disk  must  be replaced if changes are made in the data.  Given  current  lead 
times  for  mastering  and production, a quarterly update cycle  is  the  most 
frequent  that  can  be  reliably maintained. If  more  frequent  changes  are 
necessary, updates must be distributed onto magnetic media or transferred from 
online sources to magnetic disk by the user.

However,  since  even a 1 percent change in a full CD-ROM  represents  over  5 
megabytes  of  material, a few such changes can easily fill in  a  hard  disk. 
Another  consideration is the method of integrating the new and the old  data, 
which  must  be done smoothly to avoid undue annoyance to the user --  say  an 
engineer  searching an updated database for articles on a new type  of  MOSFET 
not found in the original CD-ROM database. The search software must direct the 
query  to the new material on the magnetic disk without explicit  instructions 
from the user.

Toward this end, the software that controls access to the data must be able to 
recognize  queries to updated portions of the database, and to  redirect  them 
transparently  to the magnetic disk files. The various indexes on  the  CD-ROM 
would  also  have  to be checked against the  updated  information,  disabling 
entries  for  obsolete  data  and finding those for  new  data.  New  indexing 
information  could be distributed on the magnetic disk as part of the  update, 
or  it  could  be created by the user's computer, based on a  version  of  the 
indexing software used in the original data preparation.
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The  mastering and production costs and the production schedules  for  CD-ROMs 
depend  heavily  on the availability of manufacturing  facilities,  which  are 
essentially  the  same  as  those for  producing  compact  audio  disks.  Most 
production  facilities are dedicated to the audio CD market, which  leads  CD-
ROMs by orders of magnitude.

Since March (1986) the production phases from premastering to the first  mass-
produced  disks  have typically required four to six weeks.  This  rate  would 
permit quarterly updates of CD-ROMs for legal, medical, and financial data, as 
well  as other types of databases in which timely information is crucial.  New 
production capacity is coming on-stream rapidly, however, and a monthly update 
cycle could be practical by the end of this year.

Costs  for  premastering and mastering are now around $3000  for  each  master 
disk,  and  $4 to $5 per CD in lots of 10,000. These rates will  fall  as  the 
production capacity grows.

Justified for multimegabyte storage
-----------------------------------

Not  all databases belong on CD-ROMs, of course. If the information  does  not 
exceed  10 megabytes, there is little reason to put it on a CD-ROM, unless  it 
is  merely part of a broader, general program. At present, a  standard  CD-ROM 
can  store  about 550 megabytes, which may include anywhere from  300  to  450 
megabytes of raw information, depending on the density of indexing.

Databases  that exceed this limit may be accompanied with multiple drives,  or 
"jukebox" changers -- but at a greater cost, naturally. It may be possible  to 
break  up some large databases into chunks, each of them residing on a  single 
disk.  The  chunks ought to be sufficiently autonomous, however,  to  allow  a 
search to continue without disruption through a change of one or more disks.

The markets with the greatest immediate potential for CD-ROMs include lawyers, 
doctors,  and  engineers and other manufacturing professionals  who  regularly 
retrieve specifications. Many of these markets are already served by dedicated 
workstations  and  online data utilities. For workstations, CD-ROM  offers  an 
immediate cost savings over magnetic disk. A workstation that is based on  CD-
ROMs  may  help  a  user recover its cost in as little  as  a  few  months  by 
substantially curtailing the bill for online data services.

A  vendor  who  wants  to deliver CD-ROM technology for  the  office  or  home 
personal computer, however, faces a problem. With no currently installed  base 
of  CD-ROM drives, publishers are reluctant to convert information from  print 
to the CD-ROM format. And without many disk titles available, the consumer  is 
hesitant to buy a CD-ROM drive. This impasse may be broken in the next year as 
the  price  of  drives continues to fall, and two or three  CD-ROM  titles  of 
general interest -- like encyclopedias, dictionaries, movies, sports features, 
and  reference  sets of classical and religious literature --  appear  on  the 
market.  As the first set of consumers enter the market place, publishers,  in 
turn, will be encouraged to jump into the business.

The  CD-ROM is likely to have the greatest impact when it  penetrates  schools 
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and  municipal  libraries. To save space and money,  such  institutions  might 
choose  the  CD-ROM  format for storing references  that  are  not  frequently 
accessed.

Refinements are imminent
------------------------

Current  technical developments indicate that solutions are imminent  for  the 
most severe applications problems of the CD-ROM. Lighter pickups and  erasable 
optical media are now under development and could reach the mass market within 
two years.

Even  when these major problems are overcome, however, that will  still  leave 
the  far-reaching question of how to deal effectively with massive amounts  of 
information.  Users such as educators and businessmen unaccustomed to  complex 
information  retrieval systems may be overwhelmed by a deluge of  unstructured 
data, two orders of magnitude greater than that seen up to now.

A  CD-ROM system that can deliver the equivalent of 400 volumes of  text  must 
include powerful but transparent accessing methods if the information is to be 
useful. Current retrieval systems, limited to full-text search, must give  way 
to workstations for research and writing with optical databases at the core.

CD-ROM databases will continue to offer document title indexing and  full-text 
search,  but  in the future they will also link related documents in  what  is 
becoming known as a "hypertext" system.

Such  a  system  provides  direct links to cited  articles  at  the  point  of 
references and, through a full indexing system, it can show all the  citations 
of  a  document  under study. With this capability, the  researcher  can  move 
quickly  through networks of related information, saving the browse path as  a 
personalized index.

Database  word  indexes  are  likely  to be  augmented  with  a  thesaurus  of 
synonymous terms, so the search system can suggest extensions and  refinements 
to  the searches made on it. The use of hypertext links as a data  flow  graph 
will  enable searches to be restricted to "nearby" information --  information 
about closely related or similar topic.

When  indexing information becomes available to the user during a search,  the 
retrieval  software  can  be reconfigured to the research  task  at  hand.  An 
offshoot  will be such secondary products as encyclopedia study  guides,  case 
law  studies,  and  medical  tutorials, to allow the  reader  to  examine  the 
underlying source documents immediately.

Text and indexing information may be extracted from the database or entered by 
the  user  to  form  new documents that will be  added  transparently  to  the 
existing data bases. A single document might be viewed as contiguous text,  as 
a  skeletal outline, or as a collection of notecards. Document  editing  tools 
are  likely to include notecard and outline processors for  organizing  ideas, 
and text and image editors to add character and picture information.  Database 
references  in  a newly formed document will remain linked to  the  underlying 
information, and may also be linked to other documents.
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Progress  in  CD-ROM technology could make such workstations a  reality  soon. 
With  these tools, existing records can then be converted into  structures  of 
related  knowledge. When mixed-mode drives become available, video  and  audio 
information  can be incorporated directly into these archives, and  animations 
and simulations will be added to encyclopedias as personal computers grow ever 
more powerful.

EOF
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GKCHK.WS4
---------

- "Microcomputer software design -- A checkpoint"
   Gary KILDALL
   Proceedings of the Fall Joint Computer Conference, 1975

(Retyped by Emmanuel ROCHE.)

Introduction
------------

The general availability of low-cost microcomputers has revolutionized digital 
design and digital applications. Using LSI chip technology, microcomputers are 
no   more  than  scaled-down  central  processing  units   with   minicomputer 
capability,  and are treated as component computers at the heart of a  digital 
design.  Thus,  microcomputers  find wide application in  both  dedicated  and 
general-purpose roles, ranging from simple controllers through smart terminals 
and test instruments to small business data processing systems.

In each application, hardware and software modules are intermixed to  minimize 
unit  cost. As a result, the overall quality of a microcomputer-based  product 
is directly determined by the quality of its hardware and software components. 
Similar to its hardware counterparts, the product's programmed subsystems must 
be  well-specified  and engineered for long-term reliability. In  fact,  well-
engineered  software has never been as important: packaged systems  are  often 
produced  in  the  hundreds or thousands, where each  program  is  permanently 
stored  in unalterable ROM (Read-Only Memory). Unreliable programs  have  far-
reaching effects, while ill-specified software hinders product adaptability.

A  particular high-level language has emerged as an aid to  the  microcomputer 
software  engineer which forecasts some industry standardization.  This  paper 
briefly reviews current design aids, with particular emphasis on applicability 
of high-level languages in the microcomputer environment. A particular project 
case  study  is  presented,  which  exemplifies  current  design  methodology, 
followed by projected trends in microcomputer software aids.

Beyond the data sheet
---------------------

In  essence,  a microcomputer is simply another integrated circuit  chip  set, 
with  somewhat  more than average capability. In fact, many  design  engineers 
consider  a  microcomputer  CPU as simply a ROM-driven LSI  chip  which,  with 
proper arrangement of 1's and 0's in the external ROM, can be tailored to  act 
like  a custom chip. The design engineer breadboards a circuit  including  the 
microcomputer,  fills  the ROM's with binary codes which drive the  chip,  and 
proceeds  to debug with logic probe and scope. Although costly in  development 
and maintenance time, this approach is quite popular since no external support 
is required beyond the chip's data sheet.

At  the  opposite  end  of the applications  spectrum,  the  microcomputer  is 
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considered   just   another   processor   which,   independent   of   physical 
characteristics,  provides  a key to product update and new  marketing  areas. 
Often  from  a minicomputer background, customers are unwilling to  return  to 
primitive programming tools and meager design support.

As  a  result  of  demands  from  a  broad  customer  base,  many  of  today's 
semiconductor houses find themselves in the software business. A recent survey 
cross-references  ten microcomputer manufacturers by the software design  aids 
which they support [Ref. 1]. Of these manufacturers:

        all ten support a cross-assembler,
        four offer resident assemblers,
        three provide a resident editor,
        eight support relocatable or absolute loaders,
        five provide primitive debugging facilities,
        six offer cross-simulators, and
        two support a high-level language.

The  cross products all require a larger host computer for  actual  execution. 
That is to say, cross-assemblers are usually written in ANSI standard  FORTRAN 
to  allow some measure of machine independence. The customer either  purchases 
the  program directly from the manufacturer, or contracts with a  time-sharing 
service which supports the manufacturer's software.

Resident  software  systems, on the other hand,  execute  using  microcomputer 
developmental  hardware.  Most manufacturers offer  a  built-up  microcomputer 
prototyping system as a hardware developmental aid, including CPU, memory, I/O 
access, and front panel control. In this configuration, the microcomputer  has 
minicomputer  characteristics, and thus can support its own software  systems, 
including  assemblers,  paper tape editors, loaders, and  debuggers.  Although 
some  of  these  resident  software tools  are  quite  comprehensive,  current 
manufacturer's offerings are hindered by limited I/O facilities. As a  result, 
resident  software  tools  are less convenient than  cross  systems,  but  are 
generally less expensive to support.

        Figure 1. Rockwell's PPS-4 microcomputer development system

Although  similar  in  capability to  a  minicomputer,  developmental  systems 
generally incorporate features peculiar to microcomputer systems  development. 
National's   IMP-16P  prototyping  machine,  for  example,  contains   special 
circuitry  for loading reprogrammable ROM's, while  Rockwell's  "assemulator", 
shown  in  Figure  1,  contains a built-in  assembler  and  CPU  emulator  for 
programming and debugging their PPS-4 microcomputer. Thus, the  manufacturer's 
developmental systems are generally inappropriate as end-user products.

Cross-simulators  are also used on larger host computers  to  programmatically 
simulate  actions of the microcomputer. The primary problem, however, is  that 
extensive program testing and simulation of real-time external events, such as 
signals input from a device controller, is tedious and expensive. Thus, cross-
simulators  are  principally  used to  step-through  subroutines  and  program 
modules  independent of the electronic environment. A simulator  is  extremely 
useful,  however,  when  exact execution time must  be  determined  for  time-
critical program segments.
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Two major manufacturers of microcomputer chip sets are currently supporting  a 
particular  subset  of  PL/I as a base language for  their  products.  Intel's 
language,  called  PL/M, has been available since mid-1973  through  a  cross-
compiler,  while National's product, called PL/M+, will be available  in  mid-
1975 as an integral part of their resident developmental system. Intel's  PL/M 
provides  a base language for their 8-bit processors, and National's PL/M+  is 
designed  for  the  IMP-16  and PACE microcomputers.  The  two  languages  are 
basically  compatible,  thus  allowing  transportation  of  customer  software 
between these two manufacturers.

System languages
----------------

As   interest   grows  in  PL/M-like  languages  for   microcomputer   systems 
development, one immediately questions the suitability of high-level languages 
in such an environment. First, does a language such as PL/M support  necessary 
low-level control functions which occur in microcomputer systems, or does  the 
designer  "lose  control" of his machine? Second, how memory-efficient  can  a 
translator  for  such  a language be? The cost  of  high-quantity  electronics 
products  is  largely determined by component count, and  high-level  language 
translators  are notorious for their inefficient code sequences, resulting  in 
excessive  memory  requirements  in the final product.  Thus,  the  discussion 
focuses  on experiences with Intel's product as a benchmark for this class  of 
languages.

First,  a  few  general comments on PL/M itself. The  language  is  modest  in 
structure  and scope: basic operators are tied closely to the capabilities  of 
8-  and  16-bit processors, augmented by structures for  writing  assignments, 
simple  expressions, conditional statements, looping control,  and  subroutine 
mechanisms.  The  result  is a language which  simplifies  the  expression  of 
microcomputer systems, while allowing access to all machine functions, without 
becoming completely dependent upon a particular CPU organization. The language 
has facilities which are reflected within the capability of the microcomputer, 
and,  similarly,  each  machine  function  is  reflected  in  some  high-level 
statement. Architecture-oriented languages of this sort, often referred to  as 
system languages, are traditionally used to implement the lowest level  system 
functions, to avoid the rigidities of assembly language coding. In the  larger 
computer  environment, system languages are often used to implement  operating 
systems, language processors, utilities, and some applications software. Thus, 
they  are  themselves  self-supporting, generally  requiring  little  existing 
system  support.  As  illustrated in the examples  which  follow,  this  close 
relationship between the language and the machine architecture holds also  for 
PL/M.

The  Appendix  contains  a  sample PL/M  program  which  indicates  the  basic 
facilities   of   the   language.  This   particular   language   has   global 
characteristics  of the "PL-family", but derives its basic structure from  the 
microcomputer problem environment, as described above [Ref. 2].

As  a  final comment, one notices that, after decades of ad  hoc  programming, 
there  is finally an emerging body of theory and practice concerning  software 
engineering  [Refs.  3,  4,  5, 6] which  is  gaining  industrial  acceptance. 
Languages  such as PL/M, which provide clear representation of control  flows, 
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are  important  tools in support of structured  programming  techniques.  When 
combined  with professional project management and programming practices,  the 
result  is  usually well-specified, reliable, and efficient  software  systems 
[Refs. 7, 8, 9].

A case study
------------

Given  the  current level of support, how does one  approach  a  microcomputer 
project  which  involves  a  total system  design?  Non-trivial  projects  are 
generally evolutionary in nature, where each phase of development and  testing 
is  a controlled experiment. In the case of software generation, the  designer 
starts  with  cross  systems  for initial  program  development  and  testing, 
gradually moving to resident developmental systems, and then to a breadboarded 
prototype. Since system malfunctions can occur at any level, from low  voltage 
power   supplies   through  marginal  IC's  to  programming   blunders,   this 
evolutionary approach isolates the range of errors at each stage. A particular 
microcomputer project is outlined below which demonstrates this approach.

A dedicated computer system was recently constructed at the Naval Postgraduate 
School  to  be  used  by Navy divers while  working  underwater  for  extended 
periods.  The  device  monitors  the  dive time  and  depth,  and  produces  a 
continuous  read-out of the "safe ascent depth". The safe ascent depth is  the 
depth to which the diver can ascend from his current depth without contracting 
the  "bends".  As the diver descends, his blood takes on nitrogen, and  as  he 
ascends,  the nitrogen is given off. Depending upon the length of time he  has 
worked  at various depths on a particular dive, he can rise only to  the  safe 
ascent depth before nitrogen gases form in the blood. Thus, the computer keeps 
the  diver  informed  of this depth. The diving computer  has  four  principal 
functions to perform:

     1) compute partial pressures of nitrogen for several controlling tissues,
     2) monitor  external  parameters such as elapsed time  and  current  dive 
        depth,
     3) drive simple displays with the current and safe ascent depths, and
     4) control the sequencing of external monitoring, computing, and display.

The final prototype was developed in two man-months, with approximately  three 
weeks  devoted to software development, and the remainder in  hardware  design 
and debugging.

With  the overall analysis of the dive problem complete, a BASIC  program  was 
written  which computed test values. The computations involved  32-bit  signed 
integer  values with fixed precision. Since the 8-bit processors support  only 
simple  operations  on 8-bit quantities, subroutines were written in  PL/M  to 
provide  the necessary functions. Each subroutine was compiled using the  PL/M 
cross-compiler on the school's IBM S/360, and the machine code was read-in  by 
another program, called Interp/8, which simulates 8008 CPU actions. Using  the 
break  point  and display commands of the simulator,  the  numeric  subroutine 
package was checked-out, using only the S/360, with no physical  microcomputer 
hardware.

The  numeric  subroutines  were  augmented by  additional  PL/M  coding  which 
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evaluated  standard  formulae  (essentially the same as  those  of  the  BASIC 
program)  for determining the partial pressures of nitrogen for  a  particular 
depth. Again, these subroutines were checked-out under simulation by inserting 
test values in simulated memory, running a single computation, and  displaying 
the values resulting from the simulation. A control and sequencing program was 
then   written,  which  simulated  a  complete  dive  by  looping  through   a 
predetermined dive profile of times and depths. Using the simulation,  several 
complete  dive profiles were run, and the intermediate and final results  were 
compared  with the BASIC program. Extensive testing was  infeasible,  however, 
since  a  simulated fifteen minute dive to a depth of 130 feet  required  over 
thirty minutes of S/360 CPU time.

Transition  to real microcomputer hardware thus became necessary  to  complete 
the testing. From this point on, the program was compiled using the cross PL/M 
compiler on the S/360, but executed in real-time using a developmental system. 
A  paper  tape  was produced from the S/360 compilation  containing  the  8008 
machine  code,  which  was then loaded through the Teletype  reader  into  the 
memory of the developmental system, and executed.

In  order  to  properly  check-out the  central  algorithms,  another  set  of 
subroutines was written in PL/M which provided basic communication between the 
program  and  Teletype,  allowing the program to  read  commands,  write  test 
results,  and  read and print 32-bit fixed-point  numbers.  These  subroutines 
formed  a  software test bed which would eventually be  discarded.  Each  test 
involved a dive profile with various times and depths preset from the Teletype 
console.  The  program would run the dive profile and print  the  safe  ascent 
depth  at crucial points in the test. The computations executed in five  times 
real-time  (a 30 minute dive was completed in six minutes of 8008  time),  and 
thus  it  was  possible to verify results by comparing  with  both  the  BASIC 
program  and  standard  Navy  diving  tables.  After  check-out,  the  central 
algorithms  were  separated from the test environment, and set aside  for  the 
final prototype.

At  this  point, it was determined that there were  several  disadvantages  in 
using  the  8008  for the final prototype, including  factors  such  as  power 
consumption  and compactness. Thus, the design was altered to incorporate  the 
newer  8080 microcomputer. Because of its increased speed, the 8080  could  be 
"shut-down"  for  longer  periods  between  each  computation,  resulting   in 
significant  power savings (partial pressures were updated every two  seconds, 
and  could  be  computed  in 50 milliseconds). The  PL/M  language  is  upward 
compatible  along  this processor line, and thus the  program  was  recompiled 
using the 8080 version of PL/M.

        Figure 2. Navy SCUBA diving computer, using the Intel microcomputer

The prototype was constructed and debugged, and, upon completion, I/O  drivers 
were  coded  in  PL/M,  placed  into  erasable  ROM  in  the  prototype,   and 
independently  tested.  The  I/O  drivers were then  combined  with  the  core 
computation  and  control algorithms. The total program was  compiled  on  the 
S/360, placed into ROM in the prototype and checked-out. As shown in Figure 2, 
the completed prototype is contained on a single 7x9 wirewrap board with space 
for 2K bytes of erasable ROM (the program currently uses 1.2K), and 1024 bytes 
of random access memory.
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Additional applications
-----------------------

The  case  study  given above serves to illustrate  current  methods  used  to 
develop  dedicated  microcomputer  software.  In  addition,  the   application 
involves both bit-level and simple numeric processing, which are both  handled 
well  in  this  particular high-level language. To  illustrate  the  range  of 
applicability  of  PL/M, however, additional projects  from  more  traditional 
computer areas are considered.

        Figure 3. A disk-based microcomputer development system

There  is  current industry-wide interest in  incorporating  today's  low-cost 
peripherals  with microcomputer devices to build  inexpensive  general-purpose 
processors  for resident microcomputer development and end-user  applications. 
One such computer system, shown in Figure 3, includes a floppy disk  operating 
system,  which implements a named file structure with dynamic disk  allocation 
on  multiple disks, sequential or random access, and optimal disk  arrangement 
strategies.  When  combined with the system's  loaders,  language  processors, 
editors,  and  debuggers,  the resulting facility rivals that  of  most  time-
sharing  services for microcomputer program development. All software  modules 
are  written  in  PL/M,  including basic  file  management  subroutines  (3K), 
transient  console  command  handler (2K), and various  utility  programs.  An 
indefinite  number  of programs and subsystems can be  supported,  since  they 
reside on disk and are loaded into memory on demand. Clearly, this  particular 
application  of a microcomputer heavily overlaps  traditional  general-purpose 
minicomputer areas.

A  number  of language processors have been implemented in PL/M,  including  a 
translator  for  the  BASIC language as an  aid  in  developing  microcomputer 
programs  which  make  heavy  use  of  floating-point  operations.  The  BASIC 
translator  operates under the disk system described above, and produces  code 
whch is executed interpretively by a special run-time subroutine package. More 
importantly, any translated program can optionally be loaded into ROM with the 
run-time  subroutines,  and placed into a circuit with a  microcomputer  which 
executes the program repetitively at the push of a button.

The translator for BASIC was itself written in PL/M (5K), and demonstrates its 
use  as  an  implementation language. That is to say,  PL/M  has  only  simple 
operations,  and thus is relatively easy to implement for  any  microcomputer. 
Given  that PL/M exists, further special-purpose programs, such as  the  BASIC 
translator,  can  be  coded easily. As a result, all system  software  can  be 
transported  between  different  architectures if the  base  language  can  be 
transported.  It  is  reassuring to know, for example, that  the  disk  system 
software,  BASIC translator, and BASIC programs will execute on  Intel's  8008 
and  8080 machines, as well as National's IMP-16 and PACE microcomputers  with 
little modification.

Suitability of PL/M
-------------------

These  examples  indicate  the  suitability  of  one  high-level  language  in 
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microcomputer  systems  design.  Based  upon  this  implementation,  the  most 
straightforward applications were those which the basic machine could  already 
perform,  including bit-level I/O control and character manipulation found  in 
word-processing,  operating systems, and language processors. In these  cases, 
the  algorithms  were easy to express, and simple to debug and  maintain.  The 
operating   system  application,  however,  contains  heavier  use  of   table 
subscripting and run-time address computations. Although these functions  were 
easy to express in PL/M, the underlying computations are more complicated  for 
Intel's  8-bit machines. General floating-point applications were by  far  the 
most  complicated  to code and debug in PL/M and, in general,  resulted  in  a 
sequence of unintelligible mainline calls on these numeric subroutines.

The  question  of  memory-efficiency  is  also  a  part  of  the   suitability 
discussion. Again, the bit-level and character processing functions result  in 
short  code sequences which are quite competitive with good assembly  language 
programming.  The 16-bit address computations found in operating  system  work 
cause excessive program length, unless the programmer uses techniques such  as 
localizing  computations to common subroutines, which minimize this  overhead. 
The  general floating-point application took an inordinate amount  of  program 
storage,  due principally to the lack of basic machine facilities  to  perform 
these  functions. One should consider implementing basic arithmetic  functions 
of  this sort in PL/M-compatible assembly language, where the side-effects  of 
the  machine can be more easily exploited. In any case, measured overhead  for 
PL/M  is  in the range 10 percent to 35 percent when  compared  with  assembly 
language  coding,  based  upon experienced programmers and  the  current  PL/M 
compiler [Ref. 9].

One  can conclude, however, that the most suitable problems for expression  in 
PL/M  are  precisely those problems which are most appropriate for  the  8-bit 
processors.  That is to say, the low-level functions are all present in  PL/M, 
and  the  high-level functions are not. Further, the low-level  functions  are 
exactly the ones which are most memory-efficient.

Future trends
-------------

Microcomputer  development  practices  seem to change on a  monthly  basis  as 
manufacturer  support  increases,  and  hardware  component  costs   decrease. 
Although  any  projections  are  questionable  in  light  of  this   advancing 
technology,  several  trends are evident. First, the use of  inconvenient  and 
expensive  cross-development tools will be short-lived. Although the cost  for 
cross-assembly  and  cross-compilation  is  comparable,  either  approach  can 
rapidly  consume project funds. Inexpensive disk-based resident  developmental 
machines  are becoming commercially available which, although  still  somewhat 
primitive,  can  be  purchased  for the  price  of  the  timesharing  services 
necessary for even a moderate project. National's PL/M+, for example, will  be 
available  in  mid-1975  as  an  integral  part  of  their  floppy  disk-based 
development system, while numerous independent companies are providing  add-on 
equipment   for  Intel,  Rockwell,  and  other  manufacturers.  Due   to   the 
developmental nature of these systems, resident language processors will  soon 
be  augmented  by comprehensive debuggers which provide  high-level  reference 
through symbolic names and statement context.
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Current interest in PL/M as a base language indicates that high-level language 
standards  are  possible  to  some degree in  the  8-bit  processor  category. 
Although  there  are  obvious customer benefits  in  training,  documentation, 
benchmarking,  program portability, and machine independence,  standardization 
also  benefits the manufacturer. The present similarity between  Intel's  PL/M 
and  National's PL/M+ allows the companies to "second source" one  another  at 
the  language compatibility level. Thus, able to share customer  bases,  their 
products  can  compete  on a meaningful level: questions  of  suitability  are 
settled  by benchmarked performance and cost, not simply on the cycle time  of 
the  CPU.  The  role  of the microcomputer  has  expanded  since  the  initial 
introduction of PL/M, however, and thus the language must evolve to suit these 
applications.   Nearly   all  major  manufacturers   have   investigated   the 
implementation of a PL/M-like language for their processors, and one can  only 
guess whether these factors will lead to a unified base language, or simply  a 
maze of confused dialects.
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Figure 4. A sample PL/M program for the 8080 microcomputer

00001  1    /* The following 8080 PL/M program computes and displays the
00002  1       elapsed time since system start-up. The elapsed time is
00003  1       printed at the Teletype console every minute. */
00004  1   
00005  1   DECLARE
00006  1       /* Literal substitutions in the program */
00007  1       True LITERALLY '1',
00008  1       False LITERALLY '0',
00009  1       Forever LITERALLY 'WHILE True',
00010  1   
00011  1       /* Teletype constants for UART */
00012  1       Tto LITERALLY '0',   /* Data to TTY is output(0) */
00013  1       Tts LITERALLY '1',   /* Status port is input(1) */
00014  1   
00015  1       /* Special characters (non graphic) */
00016  1       Bel LITERALLY '7',   /* Ring Teletype bell */
00017  1       CR LITERALLY '15Q',  /* Carriage Return (15 Octal) */
00018  1       LF LITERALLY '0AH';  /* Line Feed (0A Hexadecimal) */
00019  1   
00020  1       /* Teletype output subroutines */
00021  1   
00022  1   PrintChar: PROCEDURE (Char);
00023  1       DECLARE Char BYTE;
00024  2       /* Print the 8-bit ASCII character in 'Char' at the
00025  2       Teletype console */
00026  2   
00027  2        DO WHILE Ror (INPUT (Tts), 2);
00028  2           /* Wait for UART transmit ready */
00029  2        END;
00030  2   
00031  2       OUTPUT (Tto) = NOT Char;
00032  2       END PrintChar;
00033  1   
00034  1   CRLF: PROCEDURE;
00035  2       /* Send a Carriage Return followed by a Line Feed */
00036  2       CALL PrintChar (CR); CALL PrintCHar (LF);
00037  2       END CRLF;
00038  1   
00039  1   PrintBCD: PROCEDURE (B);
00040  2       /* Print the BCD pair held in the 8-bit variable 'B' */
00041  2       DECLARE B BYTE;
00042  2       CALL PrintChar  (SHR (B, 4) + '0');
00043  2       CALL PrintCHar ((B AND 0FH) + '0');
00044  2       END PrintBCD;
00045  1   
00046  1   Print: PROCEDURE (A);
00047  2       /* Write characters to the Teletype, starting at address 'A'
00048  2       in memory until the first '$' character is encountered */
00049  2       DECLARE A ADDRESS,
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00050  2        (Message BASED A) BYTE;
00051  2   
00052  2        DO WHILE Message <> '$';
00053  2           CALL PrintChar (Message);
00054  3           A = A + 1;
00055  3        END;
00056  2   
00057  2       END Print;
00058  1   
00059  1       /* End of Teletype output subroutines */
00060  1   
00061  1       /* FRACS holds the number of 1/60ths of a second which
00062  1       have elapsed in the last partial second, while
00063  1       SECS, MINS, and HRS hold the elapsed time counts */
00064  1   
00065  1       DECLARE (Fracs, Secs, Mins, Hrs) BYTE;
00066  1   
00067  1   TimeKeeper: PROCEDURE INTERRUPT 2;
00068  2       /* The TimeKeeper procedure is called through an external
00069  2       interrupt (RST 2) every 1/60th of a second. The procedure
00070  2       updates the values of HRS, MINS, and SECS so that the total
00071  2       elapsed time since system start-up is maintained in
00072  2       BCD-pair form */
00073  2   
00074  2       IF (Fracs := Fracs + 1) >= 60H THEN  /* One full second */
00075  2           DO;
00076  2           Fracs = 0;
00077  3   
00078  3           IF (Secs := DEC (Secs + 1)) = 60H THEN  /* One minute */
00079  3               DO;
00080  3               Secs = 0;
00081  4   
00082  4               IF (Mins := DEC (Mins + 1)) = 60H THEN  /* Hour */
00083  4                   DO;
00084  4                   Mins = 0;
00085  5                   IF (Hrs := DEC (Hrs + 1)) = 24H THEN
00086  5                       /* One day elapsed */ Hrs = 0;
00087  5                   END;
00088  4               END;
00089  3           END;
00090  2       END TimeKeeper;
00091  1   
00092  1    /* Set counters to zero */
00093  1    Fracs, Secs, Mins, Hrs = 0;
00094  1   
00095  1    /* Start counting time */
00096  1    ENABLE;
00097  1   
00098  1    /* Write initial message */
00099  1    CALL CRLF; CALL CRLF;
00100  1    CALL Print (.'** Elapsed Time Counter **$');
00101  1    CALL CRLF;
00102  1   
00103  1    /* Write elapsed time every minute */
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00104  1       DO Forever;  /* Or until RESET, whichever comes first */
00105  1          IF Secs = 0 THEN
00106  2          DO;  /* Print elapsed hours and minutes */
00107  2             CALL CRLF;
00108  3             CALL PrintChar (Bel);  /* Ring TTY bell */
00109  3             CALL PrintBCD  (Hrs);  CALL Print (.'Hours $');
00110  3             CALL PrintBCD  (Mins); CALL Print (.'Mins$');
00111  3             CALL PrintChar (Bel);
00112  3             CALL CRLF;
00113  3   
00114  3             /* Note that 'SECS' must have changed when the message
00115  3             was sent (assuming 10 CPS transmission rate) */
00116  3          END;
00117  2       END;
00118  1   EOF
NO PROGRAM ERRORS

Appendix
--------

The  listing  given in Figure 4 is an example of an 8080  PL/M  program  which 
executes  on an Intel developmental system. The purpose of the program  is  to 
test a procedure which keeps track of the elapsed time since system  start-up. 
After each minute of elapsed time, the program prints:

        hh Hours mm Mins

at the teletype, where hh and mm are decimal values for the hours and  minutes 
of elapsed time.

The following run-time environment is assumed. A Teletype is connected to  the 
8080  CPU  through a UART (Universal  Asynchronous  Receiver-Transmitter).  In 
addition, an external interrupt is generated every 1/60th of a second, and  is 
used for the basic program timing.

The  program  consists of a number of procedures, followed by calls  on  these 
procedures.  The  mainline  procedures  are listed  below,  along  with  their 
function in the program:

        PRINTCHAR       Print the single ASCII character in CHAR
        CRLF            Send a Carriage-Return and Line-Feed
        PRINTBCD        Print two decimal digits
        PRINT           Print a sequence of characters

One  "interupt  procedure", called TIMEKEEPER, is defined with  the  attribute 
INTERRUPT  2.  This  interrupt  attribute  results  in  control  transfer   to 
TIMEKEEPER whenever interrupts are enabled and the external interrupt occurs.

The  first PL/M statement which is executed follows the TIMEKEEPER  procedure. 
The four variables FRACS, SECS, MINS, and HRS are zeroed. The first  variable, 
FRACS is a byte variable which tallies the number of 1/60ths of a second which 
have elapsed during a one second interval. The remaining variables each hold a 
pair of BCD numbers. The ENABLE statement turns on the 8080 interrupt system.
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At  this  point, the program execution must be considered in  two  parts:  the 
mainline  code  which continues past the ENABLE statement, and  the  interrupt 
code  which is executed each time an interrupt is generated. If the  interrupt 
system  had  not been enabled, the mainline code within the DO  FOREVER  block 
would execute indefinitely, and, since the value of SECS remains at zero,  the 
message

        00 Hours 00 Mins

would print continuously.

Given  that the interrupt system has been enabled, the interrupt which  occurs 
60  times each second causes the mainline code to stop at each interrupt.  The 
TIMEKEEPER  procedure immediately receives control, with the interrupt  system 
automatically  disabled  and the machine state saved. Upon completion  of  the 
interrupt  processing, control returns back to the interrupted mainline  code, 
to  the point of interruption with the machine state restored, and  interrupts 
enabled.  As  a  result, the values of SECS, MINS, and  HRS  are  continuously 
incremented  as the mainline program executes. Thus, the program  output  will 
appear as follows:

        00 Hours 01 Mins
        00 Hours 02 Mins
        00 Hours 03 Mins

and so-forth, with one minute intervals between each line of output.

EOF
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GKED.WS4
--------

-"Running 8-bit software on dual-processor computers"
  Gary A. Kildall
 "Electronic Design", September 16, 1982, p.157

(Retyped by Emmanuel ROCHE.)

Abstract: New desktop computers with both 8-bit and 16-bit microprocessors can 
take advantage of the many application programs written for 8-bit processors.

New generation 16-bit microprocessor chips are appearing in increasing numbers 
in desktop computers. However, new computers traditionally suffer from a  lack 
of  application software when first introduced, and the new  16-bit  computers 
are no different. Recognizing that there are thousands of application programs 
for today's 8-bit computers, many desktop computer manufacturers are producing 
dual-processor  computers  that  run both 8-bit and  16-bit  software  without 
intervention from the operator.

For  the  CP/M software user, this means that all  present  8-bit  application 
software  can  operate  side  by side with the new  16-bit  software.  From  a 
programmer's  standpoint, 8-bit processors have advantages in  simplicity  and 
program  density  that make them preferable in many  applications.  The  dual-
processor  computers let a programmer select either processor, depending  upon 
the intended use.

In  contrast  to CP/M-86, most other 16-bit operating systems do not  use  the 
same  file format or data structures as their comparable 8-bit systems.  They, 
therefore,   require  two  resident  operating  systems  that   maintain   two 
environments with different command lines, displays, and diskette formats.  As 
a result, the 8-bit and 16-bit environments in a dual-processor system must be 
treated differently by an operator. In addition, data files must be "imported" 
or  "exported" from one operating system to another, using  utility  programs. 
Further, the import and export operations must use distinct diskettes or hard-
disk  data  areas,  to keep the operating systems from  interfering  with  one 
another.  That prevents effective disk-space allocation, and can be  confusing 
for even the most experienced computer operators.

The  8080, Z-80, and 8085 are the mainstays of the 8-bit micros, but only  the 
8080 instructions are common to all three chips. As a result, nearly all 8-bit 
application  software that operates with CP/M uses the 8080  instruction  set. 
This  instruction  set  has proved sufficient for  many  advanced  commercial, 
scientific, and educational uses.

8080 is the base
----------------

The  8080  instruction set is largely contained with the 8086, but  there  are 
incompatibilities  that require 8080 programs to be recoded, to  properly  use 
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the  8086  instruction set. The 8086 has one major advantage  over  the  8-bit 
microprocessor  chips: it lets application programs access sixteen times  more 
directly  addressable  memory.  This means that new  or  evolving  application 
programs  for  16-bit processors can use this additional memory  to  implement 
features that could not be included in their 8-bit counterparts.

CP/M-based  software depends upon three components, when moving to the  16-bit 
world:  file  formats, data formats, and machine  instructions.  File  formats 
define the layout of data on a backup storage device, such as a floppy or hard 
disk. Data formats define the layout of data in main memory -- the arrangement 
of  bits, bytes, words, and characters in a specific data  structure.  Machine 
instructions  define  the manner in which data files and data  structures  are 
processed. Under CP/M, only the machine instructions need change when software 
moves to the 8086.

File format compatibility means that a diskette can be used for both CP/M  and 
CP/M-86  without  change.  Thus,  a word processing  program  with  CP/M,  for 
example,   allows  text  files  to  be  read  using  CP/M-86.   Without   such 
compatibility,  a programmer would have to choose either the 8-bit  or  16-bit 
processor  and  file  format, but not both, as the  target  environment.  File 
format  compatibility means that all removable and fixed storage  devices  are 
shared between both processors.

While  data  format compatibility may not be critical to a user,  it  is  very 
important  to  a  software vendor. Application  software  contains  data  area 
definitions  that  follow the conventions of a  particular  operating  system. 
These conventions are used when the software package calls upon the  operating 
system  for  services,  such as reading data from a  file  or  keyboard.  Data 
formats  are  identical for CP/M and CP/M-86, so that a  software  vendor  can 
easily  convert  from  one operating system  to  another.  Converted  software 
contains fewer errors, because the changes required are minimized. This  helps 
bring  converted application packages to market quickly.  Application  writers 
also benefit, because the well-understood 8-bit interface is used in their new 
16-bit  programs.  Data  format compatibility means  that  CP/M-86  completely 
replaces CP/M, so that only one operating system is necessary to support  both 
processors.

                             +--------+
        +----------<---------| Switch |--------->----------+
        |                    +--------+                    |
        |                       |  |                       |
        |   +-------------+     |  |     +-------------+   |
        +-->|     8085    |-->--+  +--<--|     8086    |<--+
            +-------------+              +-------------+
            |0001|<--16-->|              |             |
            |<--  20   -->|              |<--  20   -->|
            +------------------------------------------+
            |                Memory Bus                |
            +------------------------------------------+
                            |<-- 20 -->|
                       +--------------------+
                       |       Memory       |
                       |   (up to 1 Mbyte)  |
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                       +--------------------+

        Figure  1. This dual-processor computer allows the 8-bit 8085 and  16-
        bit  8088 to share memory. The switch controls the processors  through 
        their hold and output lines.

Dual-processor hardware
-----------------------

A  dual-processor  version  of CP/M does not  require  complex  hardware.  For 
example, an 8-bit 8085 can share memory with a 16-bit 8088 processor (Figure 1 
above).  In this example, the memory ranges from 128 Kilobytes to 1  Megabyte. 
The  8085  has only 16 address lines that access 64 Kilobytes of  memory.  The 
8088,  on  the  other hand, adds a "segment number"  that  produces  a  20-bit 
address to access all of memory. Each 8085 memory reference has a high-order 1 
bit  that translates the reference to a location with the second 64  Kilobytes 
of  memory. The first 8085 address, 0000, becomes 8088 hexadecimal 10000,  and 
the last 8085 address, FFFF, is translated to 8088 memory location 1FFFF.

Both  processors  access memory through a common bus  containing  the  address 
lines,  data lines, and read and write signals. Only one processor can  access 
memory  at  any  instant,  so a simple electronic  switch  must  control  each 
processor. Initially, this switch activates the Hold signal for the 8085,  and 
then  releases  the 8088, so that it can read or change  data  throughout  the 
entire memory area.

A  program  running  on the 8088 releases control of memory  to  the  8085  by 
executing an output instruction to the output port connected to the electronic 
switch.  The  switch suspends the 8088 by enabling its Hold signal,  and  then 
initiates  the 8085 by releasing the signal. The 8085 returns control  to  the 
8088  in exactly the same way. An area in the second 64 Kilobytes  of  memory, 
common  to  both the 8085 and 8088, is used to exchange  data  values  between 
processors.

        +-----------------+
        |     CP/M-86     | 
        |   file system   |
        |   Function 59   |
        |       ...       |
        |   Function 50   |
        | +-------------+ |
        | |    CP/M     | |
        | | file system | |
        | | Function 40 | |
        | |     ...     | |
        | | Function 00 | |
        | +-------------+ |
        +-----------------+

        Figure  2.  All  CP/M functions are contained  within  CP/M-86,  which 
        contains ten function calls for 16-bit operation.
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CP/M's upward compatibility
---------------------------

Upward compatibility from CP/M to CP/M-86 simplifies dual-processor operation. 
Application  programs  that  operate under CP/M use a  common  set  of  system 
function calls, numbered from 0 through 40. These function calls let  programs 
communicate  with  the operator console, and transfer data to  and  from  disk 
files. CP/M-86 contains all CP/M function calls, and adds new calls,  numbered 
50  through 59, for 8088 memory management (Figure 2 above).  Because  CP/M-86 
includes  all CP/M function calls, only CP/M-86 need be included in the  dual-
processor computer. CP/M-86 intercepts all 8-bit CP/M calls, and runs them  on 
the 8088.

Two  significant  side effects occur when using CP/M-86 to process  all  8-bit 
CP/M  calls. First, all operating system functions are run on the faster  8088 
microprocessor. Existing 8-bit programs benefit from this speed increase  when 
they  perform  CP/M calls. A second, more important, side effect is  that  the 
available  transient  program area (TPA) is substantially  increased.  Only  a 
simple  software  interface need be stored in the 8085  memory  area,  leaving 
considerable  memory space for the TPA. A 62 Kilobyte TPA thus is feasible  in 
most implementations.

In this dual-processor system, CP/M-86 controls the operation of the  computer 
by performing the usual cold-start sequence when the computer is first powered 
up.  CP/M-86 reads console commands, and loads and runs 8088 programs  in  the 
16-bit environment.

If  the operator types an 8-bit program name, CP/M-86 must first run a  16-bit 
program,  RUN85,  to initialize the 8-bit memory area. RUN85 reserves  the  64 
Kilobyte  memory  region  at  10000 for  8-bit  program  execution,  and  then 
initializes  data  structures  and  program  areas  within  this  region  that 
duplicate  8-bit  CP/M.  RUN85 loads the 8-bit program into  the  64  Kilobyte 
region,  transfers control to the 8085, and then waits to intercept  any  CP/M 
system  calls.  Each  time the 8-bit program performs  a  system  call,  RUN85 
regains control, and performs the required function with a direct call to  the 
CP/M-86 system.

When RUN85 transfers to the 8085, the 8-bit memory region contains data  areas 
that correspond to 8-bit CP/M, along with machine code that transfers  control 
back to the 8088 when system calls are made.

        +========================+--+
        | Disk parameter tables  |  |
        |   Allocation vector    |  |
        +------------------------+  |
        |      JMP Sectran       |  +--> BIOS
        |      ...               |  |
        |      JMP Warm_Start    |  |
        |      JMP Cold_Start    |  |
        +========================+--+
        |          CP/M          |  |
        |       file system      |  |
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        |       Function 40      |  +--> BDOS
        |           ...          |  |
        |       Function 00      |  |
        +========================+--+
        | Transient Program Area |  +--> TPA
        +========================+--+
        |      Command line      |  |
        +------------------------+  |
        | (File control blocks)  |  |
        +------------------------+  |
        |       (Not used)       |  +--> Base Page
        +------------------------+  |
        |        JMP BDOS        |  |
        +------------------------+  |
        |       JMP BIOS+3       |  |
        +========================+--+

        Figure  3.  The  8-bit CP/M memory is basically  organized  into  four 
        blocks:  Basic I/O System (BIOS), Basic Disk Operating System  (BDOS), 
        Transient  Program Area (TPA), and the Base Page. The CP/M-86  program 
        called "RUN85" initializes the BDOS, BIOS, and Base Page areas  before 
        an 8-bit program begins to run.

RUN85  initializes  three  memory areas before the 8-bit  program  is  started 
(Figure  3 above): the Base Page, the Basic Disk Operating System (BDOS),  and 
the Basic I/O System (BIOS). Most application programs use only the Base  Page 
and BDOS, while a few also include direct BIOS calls. To be complete, the data 
and  function of all three areas must be duplicated. The TPA holds  the  8-bit 
program loaded by CP/M-86, and requires no special initialization.

                +------------+
         1FFF0: | Parameters |
                +------------+
                |    BIOS'   |
                +------------+
                |    BDOS'   |
                +------------+
                |    TPA     |
                +------------+
         10000: | Base Page  |
                +------------+

        Figure  4.  RUN85  creates an 8-bit memory image  within  the  CP/M-86 
        memory area. The image contains the Parameters (16 bytes to hold  data 
        values  shared by the 8085 and 8088); BDOS' and BIOS' interfaces  with 
        the  BDOS and BIOS running on the 8088, as well as the TPA  and  RUN85 
        Base Page.

Base  Page  initialization is done by RUN85. RUN85 first copies its  own  base 
page,  prepared  by CP/M-86, to 8085 memory at 10000 (Figure 4  above).  RUN85 
inserts  two  jump  instructions  in low memory,  that  lead  to  the  CP/M-86 
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interface code shown in Fig. 4 as BDOS' and BIOS'.

The BDOS' program module
------------------------

The BDOS' module interfaces the 8085 program with CP/M-86 running on the 8088, 
while  the  BIOS' module intercepts all direct BIOS calls from the  8085,  and 
passes  the  calls to the CP/M-86 BIOS. The last 16 bytes of  memory,  labeled 
"Parameters" in Figure 4 above, are reserved to pass data between the 8085 and 
8088.

The  BDOS'  module is a simple interface, with the real BDOS  running  on  the 
8088. Each 8-bit BDOS call enters through the JMP BDOS call in the Base  Page. 
Upon entry, the 8085 registers contain the following values:

        Register  C: function code, 0 to 40
        Register DE: entry value, 0 to 65,535

Upon  exit  from the BDOS' module, 8-bit CP/M programs  expect  the  following 
returned values:

        Register  A: byte return value from CP/M
        Register HL: word return value from CP/M
        Register  B: same as H

Normally, programs use register A for a byte value, and register pair HL  when 
a  word  value is brought back from CP/M. Register B contains  the  high-order 
byte  of  a  word result, to be compatible with early versions  of  CP/M.  The 
Parameters  region contains reserved areas, to pass these  parameters  between 
processors (Figure 5 below).

                +-------+-------+
         1FFFE: | (Not  | Used) |
                +-------+-------+
         1FFFC: |      ...      |
                +-------+-------+
         1FFF3: | Return value  |
                +-------+-------+
         1FFF1: | Entry  value  |
                +-------+-------+
         1FFF0: | Func. |
                |  code |
                +-------+

        Figure 5. The Parameters region of the CP/M-86 memory area of Figure 4 
        above holds the CP/M function code (0 to 40), as well as the entry and 
        return values for the 8085 CP/M program.

The BDOS' module stores the function code and entry value into the Parameters, 
and  switches to the 8088 to perform the CP/M function. Upon return  from  the 
8088, the BDOS' program recalls the return value, and goes back to the calling 
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program.  Figure  6 below gives detailed machine code for  the  BDOS'  program 
(absolute addresses are shown for simplicity in each example).

        ; BDOS' Program Module
        ;
        MOV     A,C             ; Get Function Code
        STA     0FFF0H          ; Save in "Func"
        XCHG                    ; Entry Value to HL
        SHLD    0FFF1H          ; Save in "Entry Value"
        OUT     Switch          ; Switch to 8088, Wait
        ;
        ; 8085 Now in "Hold" State, Stopped Until
        ; CP/M-86 Returns from 8088 Processor.
        ;
        LHLD    0FFF3H          ; Return Value to HL
        MOV     A,L             ; Byte Return Value
        MOV     B,H             ; Copy of H to B
        RET                     ; Return to Caller

        Figure  6.  The BDOS' program module sets up the 8085  registers,  and 
        switches operations to the 8088 until the function is performed,  when 
        it returns to the 8085.

Recall  that RUN85 suspends execution when control transfers to the 8085.  The 
OUT  instruction  in  the  BDOS' interface module  again  reverses  roles,  by 
transferring  back  to the 8088, to let RUN85 continue  its  operation.  RUN85 
performs  a  CP/M-86 function call, using the function code (Func)  and  entry 
value  deposited  by BDOS' in the Parameters region of  common  memory.  RUN85 
sends these values to CP/M-86, using the following registers:

        Register CL: function code, 0 to 59
        Register DX: entry value, 0 to 65,535

Return values from CP/M-86 appear in the following registers:

        Register AL: byte return value from CP/M-86
        Register AX: word return value from CP/M-86
        Register BX: (Same as AX)

RUN85 takes the 16-bit return value in AX, and stores it into the return value 
portion of common memory. Figure 7 below shows the RUN85 program segment  that 
intercepts and processes CP/M calls.

Goto85: OUT     Switch          ; Transfer to 8085
        ;
        ; 8088 Now in "Hold" State. Wait for 8085
        ; to Execute "OUT Switch" For Next CP/M Call.
        ; (Assume DS = 10000H on Entry.)
        ;
        MOV     CL,0FFF0H       ; Function Number 0 to 59
        MOV     BX,0FFF1H       ; Entry Value
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        INT     224             ; Calls CP/M-86
        MOV     0FFF3H,AX       ; Save Return Value
        JMP     Goto85          ; Go Back for Another Call

        Figure  7.  RUN85  intercepts and processes calls  with  an  intercept 
        module  running  on the 8088. When the 8085 makes a CP/M  call,  RUN85 
        retrieves  the  function code and entry value, and  calls  CP/M-86  to 
        perform the function.

This  program segment follows the 8085 memory initialization described  above. 
The OUT instruction relinquishes control to the 8085, to begin running the  8-
bit  application  program. The BDOS' module returns to this  program  segment, 
following  the  OUT instruction, when a CP/M call is made from  the  8085.  As 
shown,  RUN85 retrieves the function code and entry value from the  Parameters 
memory  segment,  and  calls CP/M-86 to perform  the  function.  When  CP/M-86 
completes  the  operation,  RUN85  stores  the  returned  value  back  to  the 
Parameters segment of common memory. RUN85 then loops to the OUT  instruction, 
to  send  control back to the 8085, so that it can continue to run  the  8-bit 
program.

The  8085 and 8088 continually pass control back and forth, until the  program 
ends  by calling CP/M function 0 (System Reset). This function  clears  RUN85, 
and returns memory allocated for 8085 processing.

The BIOS' program module
------------------------

The  BIOS' module captures all direct BIOS calls from the 8085. Entry  to  the 
BIOS' is through a sequence of seventeen 8085 jump (JMP) instructions  located 
at  the  beginning of the BIOS' module. When a BIOS call takes place  from  an 
8085 application program, the BIOS' module translates it into a direct call to 
the 8088 BIOS that is a part of CP/M-86. In general, a program enters the BIOS 
with  active  data in register pairs BC and DE. Single byte values  return  in 
register A, and word values are brought back in register pair HL.

The  BIOS' module works with RUN85 to transfer the data in 8085  registers  BC 
and DE to 8088 registers CX and DX, respectively. The BIOS' program stores  BC 
and DE into the Parameters area of common memory, and relinquishes control  to 
RUN85.  RUN85  retrieves the parameters in the same manner as  a  BDOS'  call, 
transfers to the 8088 BIOS, and stores the result parameters on return.

A  direct  BIOS call is simple under CP/M-86, because a specific  function  is 
included for that purpose. Function call 50 transfers program control  through 
the  8088 BDOS directly to the 8088 BIOS. The DX register pair is  assumed  to 
address a five byte area of the form shown in Figure 8a below.

        +-----------+---------+---------+
(a)     | Function  | Content | Content |
        | code 0-16 |  of BC  |  of DE  |
        +-----------+---------+---------+
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                +-------+-------+
(b)      1FFFE: | (Not  | Used) |
                +-------+-------+
                |      ...      |
                |      ...      |
                +-------+-------+
         1FFF8: | Contents of DE|
                +-------+-------+
         1FFF6: | Contents of BC|
                +-------+-------+
         1FFF5: | Func. |<------<-------+
                |  code |               |
                +-------+-------+       |
         1FFF3: | Return value  |       |
                +-------+-------+       |
         1FFF1: |     0FFF5     |--->---+
                +-------+-------+
         1FFF0: |  50   |
                +-------+

        Figure  8.  A  direct  BIOS call uses function  50  under  CP/M-86  to 
        transfer  program  control  to the 8088 BIOS.  The  DX  register  pair 
        addresses  a five byte area, (a) comprising the function code and  the 
        contents  of registers BC and DE. The Parameters region of the  memory 
        is  augmented by two additional fields, to hold the register  contents 
        (b).

To accommodate this additional information, the Parameters region is augmented 
by  two  additional fields, labeled "Content of BC" and "Content  of  DE",  as 
shown in Figure 8b above. In Figure 8b, "50" invokes the direct BIOS call from 
RUN85,  while "Func" corresponds to one of the seventeen jump elements of  the 
BIOS  jump  vector. Figures 9a and 9b below show the BIOS' module  in  outline 
form.

(a)     ; BIOS' Jump Vector
        ;
                JMP     f0
                JMP     f1
                ...
                JMP     f16

        ; Ready "Func" for Go88
        ;
        f0:     MVI     A,0
                JMP     Go88
        ;
        f1:     MVI     A,1
                JMP     Go88
        ;
                ...
        ;
        f16:    MVI     A,16
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                JMP     Go88

(b)     ; BDOS' Interface to RUN85
        ;
        Go88:   LXI     H,0FFF5H        ; Addr Func
                SHLD    0FFF1H          ;
                MOV     M,A             ; A --> Func
                INX     H               ; to FFF6
                MOV     M,C             ; Low of BC
                INX     H               ; to FFF7
                MOV     M,B             ; High of BC
                INX     H               ; to FFF8
                MOV     M,E             ; Low of DE
                INX     H               ; to FFF9
                MOV     M,D             ; High of DE
                MVI     A,50            ; Direct Call
                STA     0FFF0H          ; to 8088 BIOS
                OUT     Switch          ; go to 8088
                LHLD    0FFF3H          ; Word Return
                MOV     A,L             ; Byte Return
                RET                     ; to Caller

        Figure 9. Each BIOS' jump is intercepted by the BIOS' jump module (a), 
        which transfers operations to a common sequence (b), where RUN85 takes 
        over.

The  program segment in Figure 9a intercepts each BIOS jump, and transfers  to 
common  code in Figure 9b, where the 8085 relinquishes control to  RUN85.  The 
program in Figure 9b stores the BC and DE registers in common memory, and sets 
up  CP/M-86 function call 50. The OUT instruction sends control to  the  8088, 
where RUN85 is in a Hold state, waiting for a CP/M-86 call. Referring back  to 
Figure  7, RUN85 gets control following its OUT Switch  instruction,  performs 
the  direct  BIOS call, and returns to the 8085. The 8085  executes  the  last 
instruction  in  Figure  9b, where control returns  to  the  8085  application 
program.

Three  deficiencies  of this model must be corrected in a working  BIOS'.  The 
first  involves  the  8085  startup sequence;  the  others  involve  the  Disk 
Parameter Table and Allocation Vector data structures located within the BIOS.

On  initial  startup, the 8085 begins execution at location zero.  This  leads 
directly to the BIOS' warm start entry, which immediately terminates execution 
of  RUN85  and the 8085 program. To prevent this, the first call to  the  warm 
start entry must instead transfer to the beginning of the TPA. The application 
program  runs to completion before control again transfers to the  BIOS'  warm 
start. This time, control passes through to RUN85, to stop the 8-bit program.

Two additional BIOS' entry points return the addresses of two data structures: 
the  disk parameter table and the allocation vector, shown in Figure 3  above. 
These data structures reside, however, in the BIOS that is a part of  CP/M-86, 
and cannot be addressed by the 8085. Whenever these addresses are requested by 
the 8-bit application program, RUN85 must copy the values from the 8088 memory 
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space into a reserved area within the BIOS' module. These two data  structures 
are  rarely  referred  to  by application programs,  so  that  the  additional 
overhead has little effect on overall execution time.

Appendices
==========

The dual-processor approach
---------------------------

The  dual-processor desktop computers that include both an 8-bit and a  16-bit 
microprocessor chip in the same cabinet offer the best of both worlds to their 
users.  The low-cost microprocessors share expensive memory,  power  supplies, 
and  peripheral  equipment.  All 8-bit  application  software  is  immediately 
accessible.   Application   writers  choose  either  the   8-bit   or   16-bit 
microprocessor  and, in fact, can switch from 8- to 16-bit processors with  no 
change  in  operator  interaction.  The  target  processor  is  simply  of  no 
consequence.

Several dual-processor microcomputers have been introduced recently. In  April 
of  this year (1982), Digital Equipment Corp. presented its "Rainbow"  desktop 
computer, which includes Z-80 and 8088 microprocessor chips, along with  CP/M-
86.

Rainbow's  operation  demonstrates  effective  use  of  both  processors.  The 
operator  begins  by  typing the name of a program following  the  usual  CP/M 
prompt.  If  the  operator types the name of an  8-bit  program,  the  Rainbow 
operating  system  loads  the machine code into memory, and  starts  the  Z-80 
microprocessor.  If  the user names a 16-bit program, the  Rainbow  loads  the 
machine code into memory, and starts the 8088 microprocessor. Only the machine 
code differs for these two programs, so that the diskettes and hard-disks  are 
accessed in the same way by both microprocessors. Most important, the operator 
need not be concerned which microprocessor chip is executing the program.

Compupro  offers a more advanced desktop computer, that uses MP/M-8/16.  MP/M-
8/16  is  Compupro's name for the combined multi-user  operating  system  that 
employs  MP/M-86 to perform single-user, single-stream CP/M  functions,  along 
with  multi-user, multi-tasking MP/M operations. As in the  Rainbow  operating 
system, MP/M-8/16 automatically selects an 8085 or 8088 microprocessor chip to 
run  the application program. Compupro's machine has all the features  of  the 
combined CP/M and CP/M-86 Rainbow computer, but adds the dimension of multiple 
taks operating from one or more consoles.

Another  interesting  dual-processor is Dynabyte's Monarch, which  features  a 
high-speed  Z-80  coupled with an 8086 microprocessor. The  Monarch  operating 
system includes MP/M-II facilities using MP/M-86.

Extensions to concurrent operating systems
------------------------------------------

Dual-processor computers can also support concurrent operations, which let  an 
operator run more than one program at a time. In a dual-processor environment, 
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one or more terminals can be connected to a computer that runs a mixture of 8-
bit  and  16-bit  programs  using both processors.  Though  the  hardware  and 
software  systems for concurrent operation are more complex, they  are  simple 
extensions of the model given for the simpler case of CP/M.

The  fundamental job of a concurrent operating system is to keep track of  the 
status of each active program as they take turns using the processor. This  is 
accomplished  by maintaining, in memory, a machine state for each  program  -- 
the contents of the hardware registers internal to the microprocessor chip.  A 
machine  state  is  saved and exchanged whenever an  active  8-bit  or  16-bit 
program performs an input or output operation, or when a predetermined "slice" 
of time elapses.

The simplest way to extend the dual-processor example to concurrent  operation 
is to ensure that the machine state is saved and exchanged only when the  8088 
has  control.  This minimizes changes to MP/M-86 to support  both  processors, 
because only the 8088 machine state needs to be managed.

To  ensure that the 8088 has control during a machine state  change,  consider 
the two possible ways to change that state: through a system call, or  through 
an external asynchronous interrupt. A system call leads to the RUN85  program, 
which  does  operate under control of the 8088.  The  asynchronous  interrupt, 
however,  comes from an external device, such as a disk controller,  keyboard, 
or  timer,  and can occur when either processor is operating.  In  this  case, 
interrupt circuitry must be used, to allow the 8085 to discontinue  processing 
and transfer to RUN85, before the interrupt is accepted.

Specifically, the circuit interrupts the 8085 if it has control, and holds the 
interrupt  source  until control is exchanged to the 8088.  If  the  interrupt 
occurs  when  the  8085  is processing, the circuit  forces  a  restart  (RST) 
instruction  onto the bus, to stop the 8085. The 8085 fields  this  interrupt, 
and  transfers  to  RUN85. When RUN85 regains control,  using  the  8088,  the 
interrupt  circuit  releases the interrupt source, and the  machine  state  is 
changed  by  MP/M-86.  This  extended model  for  concurrent  operation  works 
properly,  but has the restriction that only one 8085 program can  participate 
in  the multitasking environment at any given time. The restriction is due  to 
the absolute 8085 memory assignment between hex locations 10000 and 1FFFF.  To 
remove  it, additional relocation hardware must be added to the 8088,  to  map 
the  64  Kilobyte  8085 memory to an arbitrary base  location,  usually  to  a 
"paragraph" address that is a multiple of 16 bytes.

With  the relocation hardware, multiple 8085 programs can run  under  MP/M-86. 
Each  8085 program corresponds to one RUN85 program under MP/M-86. Each  RUN85 
program  allocates its own 64 Kilobyte segment for the 8085 program, sets  the 
relocation  register  whenever control transfers to the 8085.  When  the  8085 
interrupt  occurs,  the 8085 interrupt handling code saves  the  8085  machine 
state in its own 64 Kilobyte segment before transferring to RUN85. As long  as 
the  8085  interrupt code and machine state are placed in  the  same  relative 
location  within each 8085 memory area, the relocation hardware  automatically 
commences  execution of the 8085 with the proper machine state. To save  space 
and  time, RUN85 is coded as a re-entrant resident system process under  MP/M-
86.

Concurrent CP/M provides similar features to MP/M-86, with the addition of so-
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called "virtual screens", that let an operator switch between the interactions 
of  a variety of programs. Concurrent CP/M requires the same model as  MP/M-86 
for operation with dual processors.

EOF
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Abstract
--------

One  of  the  difficulties faced in implementing  information  management  and 
retrieval  systems  is  that  each  case seems  to  present  its  own  special 
complexities. As a result, information retrieval systems typically fall behind 
their programming schedule and have many bugs when delivered. In this paper, a 
set  of basic operations on types of files are defined. These  operations  are 
intended   to  fulfill  the  same  role  for  information  retrieval   systems 
programmers  that functions such as LOG(X) fill for mathematical  applications 
programmers... they should make the job very much easier. The file  operations 
have  been  implemented  as  a run-time package  written  in  FORTRAN  IV  and 
Burroughs  Extended  ALGOL.  The  approach has  been  used  to  develop  three 
different information management systems; an APL interactive computing system, 
a  generalized  information retrieval system, and  a  specialized  information 
retrieval system for map-oriented data. These systems are described.

Key words and phrases
---------------------

Information  retrieval, file management, information  management,  interactive 
programming, graphics, systems programming, paging

Programs  to manage large amounts of intricately structured data are  hard  to 
write.  They are delivered late and usually contain many bugs when  delivered. 
Only indifferent success has been obtained from "generalized" data  management 
systems.  The usual way to write large data management programs is  to  obtain 
the  service of several wise old (or bright, young) hands and hope  that  they 
will read Knuth [Ref. 7] and Lefkovitz [Ref. 8] before setting out to reinvent 
the wheel. Usually, this hope is not fulfilled. The resulting code is often so 
replete with programmer-specific or problem-specific tricks that it is hard to 
document, maintain, or modify.
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We  shall  describe  a method for the rapid construction  of  data  management 
programs. The basic idea is that all data management is done through a set  of 
subroutines,  called  a  "kernel package", which we have  found  helpful.  The 
programmer  using or modifying a system designed with the kernel package  need 
only grasp the few simple concepts and operations involved in the kernel.  The 
approach  is somewhat akin to the approach used to build complex gadgetry  out 
of  Heathkit or Digibit components, hence the name of the paper. Our  approach 
has  been  applied in the construction of three  substantial  applications;  a 
conversational  version  of  the  APL  language,  a  generalized   information 
retrieval  system, and a system for graphics-based information  retrieval.  At 
least one other organization has also used our approach successfully. We shall 
first  describe  the technique, and then discuss the way it was used  in  each 
application.

Basic concepts
--------------

The  term "Level 0" storage will refer to word-addressable, fast access  store 
(usually  core  memory),  and "Level 1" storage will  refer  to  file-oriented 
random  access  store, normally a drum or disk. We assume a system  which  has 
both  level  0 and level 1 store. The ideas could easily be generalized  to  a 
multi-level  system. We also assume a user who writes a program to  manipulate 
data  in  level 0 store, using the FORTRAN or ALGOL languages, but who  has  a 
very large amount of data that is to be held in level 1 store and requested on 
demand.  The  kernel package is used to relieve the user from  worrying  about 
either  the management of level 1 store or the interplay between level  0  and 
level  1 store. The kernel also provides the user with commands  for  creating 
and  manipulating very complicated data structures without ever  being  forced 
outside of the confines of FORTRAN or ALGOL.

Data structures
---------------

The user's data resides in a named file in level 1 storage. The kernel  system 
divides the file in two ways. Physically, the file is organized into  "pages", 
which are brought into level 0 as needed. The kernel system keeps track of the 
location  of  pages in both level 0 and level 1 store. Logically,  the  user's 
data  is organized into "units" which he manipulates directly. Insofar as  the 
user  is concerned, a unit is a logically-connected set of records in  one  of 
two  types of formats. If the unit is an "ordered storage unit",  its  entries 
are organized by fixed formats called "fields". These are established when the 
unit  is created. One of the fields is designated as the "sort field".  Within 
an  ordered  storage  unit,  records  are  kept  sorted  on  the  sort  field. 
"Sequential  storage units" contain variable-length character strings,  placed 
in the unit wherever room for them can be found at the time they are inserted. 
Ordered  storage  units  are  typically  used  to  provide  indices  by  which 
particular strings may be found in sequential storage units. A simple  example 
is shown in Figure 1.

             Ordered                            Sequential
             storage                            storage
        +----------+----+               +------------------------+
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        |          |    |       +------>| Sidney#6336 W Crest St |
        |          |    |       |       +------------------------+
        +----------+----+       |       |                 |
        |Doolittle |  o-+-------+       +---------------------+
        +----------+----+    +--------->|@Arvey#08@Arold#16   |
        |          |    |    |          +---------------------+...
        |          |    |    |          |        |          |    :
        |          |    |    |    +--------------+          |    :
        |          |    |    |    |     +---------------+...|.....
        +----------+----+    |    +---->|222 E Yeast St |   +-------+
        |Johnson H |  o-+----+          +---------------+           |
        +----------+----+               |         |                 |
        |          |    |               +-----------------------+   |
        |          |    |       +------>|Herbie#7373 S Fauth St |   |
        |          |    |       |       +-----------------------+   |
        |          |    |       |       |               |           |
        |          |    |       |       +-----------------+         |
        |          |    |       |       |8998 N Fourth St |<--------+
        |          |    |       |       +-----------------+
        |          |    |       |       |               :
        +----------+----+       |       +--------------------+
        |Zimmerman |  o-+-------+       |                    |
        +----------+----+               +--------------------+
         |          |
         |          +--> Pointer field
         +-------------> Sort field

        Figure 1. Ordered storage provides entry into sequential storage

Units  are identified to the user's program by unit number. A unit is  created 
(and space reserved for it) only when the user's program calls the appropriate 
kernel  subroutine. Pages are created for units on demand. Page  creation  and 
manipulation is done entirely within the kernel system, so the user has no way 
of controlling or interfering with it.

Table 1. Kernel system subroutines

Format: Subroutine
        Description

1) Storage maintenance subroutines

NAME
Identifies the user's level 1 file to the kernel subroutines.

SEQUENTIAL
Specifies  that a particular unit is to be used as a sequential storage  unit; 
unspecified units are treated as ordered storage units.

ALLOCATE
Indicates the amount of level 0 storage to be used for paging.
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MAINTENANCE
Orders that the assignment of level 1 space be examined by the kernel routines 
to determine if more efficient balance can be achieved between the pages.

WRAPUP
Orders  that all file maintenance be completed; it is used at the end  of  the 
user's program run.

2) Storage interrogation and alteration subroutines

STORESEQ
Stores a character string from the user's program into a specified  sequential 
storage unit.

SEARCHSTORE
Searches  a specific ordered storage unit for a programmer-provided  character 
string, and then stores the string in proper sorted order in the unit.

SEARCHORD
Search an ordered storage unit for a specified character string; the  location 
of the closest matching string is returned.

STOREORD
Stores  a  string  of characters into an ordered storage unit  in  a  specific 
location.

CONTENTS
Retrieves a character string from a specific programmer-provided location in a 
sequential or ordered storage unit.

DELETE
Removes entries from ordered or sequential storage units.

RELEASE UNIT
Orders  the kernel subroutines to release all pages assigned to  a  particular 
unit to the garbage collector.

3) Storage utility subroutines

NEXTUNIT
Returns the number of the lowest unassigned unit to the user's program.

SIZE
Returns the number of entries in a particular storage unit.

UNITMODE
Returns the mode (sequential or ordered) of a particular unit.

System use
----------
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The subroutines within the kernel system are listed in Table 1. They fall into 
three major groups. "Storage maintenance" subroutines communicate between  the 
user's  program and the computer's operating system, and declare  and  release 
units. They also allow the user a small amount of control in balancing the use 
of physical resources. The user may specify the amount of level 0 memory to be 
reserved  for  pages  (thus decreasing the number of  references  to  level  1 
storage  to get data needed by the user program), and he may specify times  at 
which page and unit assignments in level 1 store are to be re-examined to  see 
if better storage utilization can be obtained by shuffling data between pages. 
The user does not control the process of examination.

"Storage  interrogation  and  alteration  commands" allow  the  user  to  add, 
retrieve,  or  delete items to, from, or in units. The items  are  defined  by 
naming  character strings, simple variables, or arrays in the user's  program. 
Finally, utility routines are provided to let the user determine the status of 
the data created by the kernel system.

The paging method
-----------------

Let us shift from the user's view of the system as a package of subroutines to 
the systems program view, as a demand paging system for data.

When the user first initiates the system, he names a level 1 file. The  kernel 
divides  the  file  into pages. Each page consists of  two  parts;  the  "page 
descriptor"  and the "page contents" (user information). The  page  descriptor 
indicates  the  physical  layout of user information  in  the  contents  area, 
including  the  size of the free space area at the end of the page.  The  unit 
number,  and  type of the unit to which the page is assigned, is also  in  the 
page descriptor. Any number of pages may be assigned to a unit. Assignment  is 
done by the kernel system in response to user needs.

The kernel system keeps track of page assignments through the use of an "index 
table" in level 0 store. The entries in this table for all pages assigned to a 
particular unit are stored sequentially. The table entries are descriptors  of 
the  page.  The  relation between the index table and the pages  is  shown  in 
Figure 2.

         Level 0 index table             Level 1 page
        +-+-+---+--+-----+--+           +-------------+---------+
        | | |   |  |     |  |           |             |         |
        | | |   |  |     |  |           +-------------+         |
        | | |   |  |     |  |           |                       |
        | | |   |  |     |  |           |                       |
        | | |   |  |     |  |           |                       |
        | | |   |  |     |  |           +-+-+-+-+-----+---------+--+
        | | |   |  |     |  |    +----> | | | | | BBB |     CCC |  |
        | | |   |  |     |  |    |      +-+-+-+-+-+---+         |  |
        +-+-+---+--+-----+--+    |      |         |             |  + Page k
        |0|0| 34| 3| BBB |k |----+    +-----------+             |  |
        +-+-+---+--+-+---+--+         | |                       |  |
        | | |   |  | |   |  |         | +-------------+---------+--+
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        | | |   |  | +----------+-----+ |             |         |
        | | |   |  |     |  |  Page     +-------------+         |
        | | |   |  |     |  |descriptors|                       |
        | | |   |  |     |  |           |                       |
        | | |   |  |     |  |           |                       |
        +-+-+---+--+-----+--+           +-----------------------+

        Figure 2. Relationship between page descriptors and index table

In  addition  to the index table, the kernel system maintains a  "unit  table" 
which specifies the first and last entries in the index table assigned to each 
unit. The unit table is also kept in level 0 store.

A basic principle of kernel system operation is that pages should be  shuffled 
as little as possible. Therefore, when a page is assigned to a unit, a certain 
amount  of blank "free space" is left at the end of the page. As more data  is 
moved  into  the  page,  the free space is used as  a  buffer  to  avoid  page 
overflow.  If  page overflows do occur, new pages are allocated.  One  of  the 
major  jobs  of  the MAINTENANCE subroutine is to examine  pages,  create  new 
pages,  and shuffle data between pages to avoid an imbalance between  contents 
and  free  space that may have arisen as data was manipulated.  This  is  done 
without  moving  data from level 1, by using descriptors in the  index  table. 
Having a free space area minimizes the number of times maintenance needs to be 
requested by the kernel system itself. Ideally, maintenance is limited to  the 
post-run  WRAPUP  or  to  times  indicated by  the  user's  program.  This  is 
particularly  useful in conversational application, since MAINTENANCE  can  be 
called while the program is awaiting input from a console. There is no  chance 
of  the system becoming unresponsive, for the MAINTENANCE  subroutine  (unlike 
WRAPUP)  returns periodically to see if the program which called it wishes  to 
go on to another task.

Copies  of one or more pages may be held in level 0 storage at run  time.  The 
exact  number of copies held is determined by the user, through  the  ALLOCATE 
command.  The kernel system keeps track of the names of pages in level  0,  so 
that there are no unnecessary accesses to level 1. In general, it pays to have 
at  least  two  pages in core, so that one may have available  portions  of  a 
sequential  unit  and portions of an ordered unit serving as an index  to  the 
sequential unit.

This  concludes our brief description of the kernel program. Kildall [Ref.  5] 
describes  it  in  much greater detail. The original  kernel  was  written  in 
Burroughs  Extended ALGOL for the Burroughs B5500 and is inextricably tied  to 
that  machine. Two of the applications we will describe are B5500 programs.  A 
second  kernel  has been written in FORTRAN IV. We have attempted to  make  it 
"machine  independent" except where it interfaces with the  operating  system. 
For instance, the FORTRAN kernel must have the machine word and character size 
specified  to  it.  The  FORTRAN  kernel has  been  tested  and  used  for  an 
application  on  the  XEROX  Data Systems Sigma  5,  a  32-bit,  byte-oriented 
machine. [We are aware of a second FORTRAN kernel used to implement a business 
information system on a Digital Equipment Corporation PDP-10. We have examined 
this  kernel and, although it is written in FORTRAN, we feel that it  uses  so 
many  (quite  effective) machine-dependent tricks that it is solely  a  PDP-10 
program.] Subsequently, we plan to test it on other machines.
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Applications
============

B5500 APL
---------

A conversational APL interpreter has been written for the Burroughs B5500. The 
system is similar to APL/360 [Ref. 4] in its outward characteristics. It is  a 
multi-user, conversational computing system operating as a user program  under 
the  Burroughs B5500 Master Control Program. B5500 APL is  internally  divided 
into  several components; a resource management section which  schedules  work 
for  the other components, a terminal message handler for input and output,  a 
monitor  command and function editor section through which the  user  defines, 
edits,  and  traces the execution of APL functions, and  a  compiler-simulator 
section  which translates from APL code to the order code of  an  hypothetical 
APL computer and then simulates the action of that computer. These  components 
are apparent to the user. Quite hidden from him, but of central concern to us, 
is  the  virtual memory management section, which controls the  allocation  of 
user space in level 1 store. This section is not specialized to APL. It  could 
equally  well be used for any conversational computing application  where  the 
user needed the illusion of having a very large memory.

When  an  APL user enters the system for the first time, he  is  assigned  two 
storage  units; an ordered unit called his "name table" and a sequential  unit 
called his "data table". Since the system is designed for multiple users,  the 
numbers  of these units cannot be predicted in advance. From the viewpoint  of 
the  kernel system, then, the APL system program is the user and the APL  user 
simply  an input source for the user program. The APL system calls  for  units 
from the kernel as it needs them.

In addition to calling for units when a user enters the system, APL must  call 
for  units  through  its function editor, as the user builds  his  library  of 
programs  and  data.  The APL user can declare three types  of  names;  scalar 
names, array names (for numeric or character arrays), and function names.  All 
names,  regardless of types, are given entries in the name table. If the  name 
is  the name of a scalar variable, its current value is also kept in the  name 
table.  If the name is an array name, the name table entry contains a  pointer 
from  the  name  table into the data table, where  the  string  of  characters 
defining  the  array  value is located. When the name is the name  of  an  APL 
function,  the  situation  is more complicated. Upon  user  declaration  of  a 
function,  two  units are created for it: the "function label table"  and  the 
"function text table". The label table is an ordered unit containing two types 
of entries. There is one entry for each line of text in the definition of  the 
APL  function  definition.  The  line entry  contains  pointers  to  the  line 
definition, which is stored as a character string in the function text table.

Recall  that, from the viewpoint of the kernel, the APL system itself  is  the 
user,  and  hence  owns the file which the kernel is asked  to  organize.  The 
result  of the above process is that the kernel creates on the APL level  1  a 
virtual memory for the APL user, containing his APL program and the value  for 
all  his  variables. Because the size of the units assigned to a user  can  be 
expanded  as  needed  (so long as there is room on the  APL  file  itself)  by 
causing  the  kernel  to create new pages, the APL user has  the  illusion  of 
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having  a  very large machine. The way this machine is laid out  in  units  is 
shown  in Figure 3. The unit arrangement is transparent to the APL user,  just 
as the page arrangement is transparent to the APL system programmer.

         User state register
        +------+-------+------+------+
        |  //  | Names | Data |  //  |
        +------+-------+------+------+

        "Names"                         "Data"
        (ordered)         SCALAR        (sequential)
        +------+------+     |           +-----------------------+
        | AAA  |    o-+-----+----+      |  User state register  |
        +------+------+     |    |      +-----------------------+
        | BBB  | 1234 |<----+    |      |  +----------------+   |
        +------+------+          +------+->| Numeric vector |   |
        | STDEV| o o  |                 |  +----------------+   |
        +------+-|-|--+                 |  +------------------+ |
        | ZZZ  | | |o-+-----------------+->| Character vector | |
        +------+-|-|--+                 |  +------------------+ |
                 | +-------------+      +-----------------------+
                 V               |
        Function label unit      +-----> Function text unit
        (ordered)                       (sequential)
                             +--------------------------+
                             |   +----------------+     |
                             |   |                |     |
                             |   |                V     |
        +----------+------+  |   |      +------++-------+---------+
        | 00000000 |    o-+--+---+----->|STDEV || AVE :=|(+/X)*/o |
        +----------+------+  |   |      +------++---++--V---------+
        | 00010000 |    o-+--+   |      |N := RHO X || ( (+/(X-AV |
        +----------+------+      |      +-----------++----++------+
        | 00020000 |    o-+------+      |E)*2)*/oN-1 )*.5 ||      |
        +----------+------+             +-----------------++------+

        Figure 3. The format of user 'core' storage

To operate, the APL system must have an entry into the units assigned to  each 
user.  This  is provided by a user state register (shown in Figure  3)  which, 
among  other  things, contains the unit numbers of the user's  name  and  data 
table. This is all the system needs to retrieve any piece of information about 
the status of the user's work area virtual memory. In practice, the user's APL 
program  is  executed by bringing appropriate bits and pieces of it  from  the 
level  1 file into a level 0 scratchapd area, where data is presented  to  the 
APL  compiler and simulated APL computer. Note that, because of the  elaborate 
entry  system into user virtual memory provided by the kernel program, only  a 
very  small  amount of APL program needs be brought into level 0  at  any  one 
time. For example, functions may be retrieved one line at a time. This greatly 
reduces  the demand on costly level 0 memory without restricting the  size  of 
the program a user may write in APL.

A second interesting result of using the kernel system as a virtual memory for 
APL is that the system is very hard to disrupt due to computer system crashes. 
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The  APL system keeps in its level 1 file the equivalent of a program  counter 
for virtual memory. This program counter is updated whenever new data is moved 
to  or from the scratchpad to level 1. When the machine crashes, the  level  1 
APL  file  will contain sufficient information to restart the  user  from  the 
point of the last level 1 access before the crash. Typically, then, the amount 
of computing the user will lose is measured in milliseconds. This is no  small 
advantage to any interactive computing system.

The B5500 APL system, and with it the Extended ALGOL kernel program, have  now 
been  in operation for over a year. We regard this as a stable application  of 
the  Heathkit  technique.  The  details of the  B5500  APL  system  are  given 
elsewhere (Kildall [Ref. 6]).

A generalized information retrieval system
------------------------------------------

The  B5500  Extended ALGOL kernel has also been used to  construct  a  program 
called  IRSYS,  for defining and operating information retrieval  systems,  by 
Finke  [Ref.  1  and 2]. Like the APL system, IRSYS is best thought  of  as  a 
program  by  which the ultimate user defines his application, and  not  as  an 
application  program  in  itself. Again like the APL  application,  the  IRSYS 
programmer  is quite unaware of the kernel system, although the IRSYS  program 
writer uses kernel continually.

Externally,  IRSYS  looks  like  any number  of  other  information  retrieval 
systems.  Its  basic  user unit is the "data set". A data set  consists  of  a 
reserved  "data set symbol", followed by one or more "data set elements",  and 
an  "end  symbol". A data set element consists of an "element symbol"  and  an 
"element  value".  The  element value may be either a number  or  a  character 
string. For example, a data set defining a book might be written

        /DSET
        $AUTHOR MEADOW C.T.
        $DATE 1970
        $PUBLISHER WILEY
        $COMMENT TOPICAL TITLE
        /END

The terms /DSET and /END are the data set symbol and end symbol, respectively. 
$AUTHOR,  $DATE,  etc.  are element symbols, and the  strings  following  them 
element  values. A data set may have more than one element of the  same  type. 
IRSYS is used to define a file consisting of such items, and to retrieve items 
referenced by the values of different elements.

A  user  interacts with IRSYS in three ways. In "definition  mode",  the  user 
states  what  the  reserved  symbols  will be.  Elements  are  defined  to  be 
retrievable  with  character string values, as $AUTHOR in the  example  above, 
numerically  retrievable with numbers as values, as $DATE in the  example,  or 
miscellaneous, non-retrievable elements ($COMMENT above). IRSYS accepts  these 
definitions and reserves the necessary tables for the user dictionary by calls 
to  the  kernel  system. Unlike APL, IRSYS is a single user  program,  so  the 
kernel is used to organize a separate IRSYS file for each user.
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In  "retrieval  mode", the user writes queries about data sets  by  expressing 
Boolean  combinations of statements about the values of retrievable  elements. 
Relational  statements  may  be  used  to  reference  values  of   numerically 
retrievable elements. Thus, the query for ( ($PUBLISHER WILEY) AND ($DATE .GT. 
1960) ) refers to all data sets with WILEY in the $PUBLISHER element and  with 
a  $DATE element greater than 1960. IRSYS will locate the data sets  specified 
by a query and report their number. It will print these sets only on  command, 
either on the line printer or on a console.

In  "storage  mode", the user stores data sets into his IRSYS file  and  edits 
data sets already in the file. Obviously, one definition session must  precede 
any  other  session, and at least one storage session must precede  the  first 
retrieval  session.  Otherwise,  there is no fixed order to  the  sequence  of 
sessions in each mode. IRSYS can accept input either from a remote console, as 
an  interactive  IR  system, or from the card reader in  batch  mode.  A  file 
established in batch mode may be interrogated from a console and vice versa.

Now,  let us look at how IRSYS uses the kernel system. Only a few examples  of 
the  technique will be given, since there are many special uses to  allow  for 
"pathological" user definitions such as one name's being contained in another. 
Finke  [Ref.  1] discusses all applications of the  kernel  with  considerable 
detail and clarity.

Each retrievable element symbol has associated with it an ordered storage unit 
which  is  created when the retrievable element is defined.  The  value  entry 
contains  both  the  value name and a pointer to a second unit  in  which  the 
strings  are  the  internal numbers of data sets which  have  the  appropriate 
element  and  value.  Whenever a data set is entered in storage  mode,  it  is 
assigned an internal number. Its elements are then examined. The element  name 
table of each element in the data set is examined to see if the element  value 
has  appeared  before. If it has, there will be an appropriate  entry  in  the 
element  table,  which will point to a sequential unit. This unit  contains  a 
list  of previous data sets which have the same element and value as  the  new 
data  set. The internal number of the current data set is added to this  list. 
If  the  element value has never appeared before, a new entry is made  in  the 
element  name unit (in the proper place in the sequence) and a new, one  entry 
list is created in the sequential storage unit. The result is a set of  cross-
index tables pointing to lists of data set numbers, as shown in Figure 4.

        'Author' ordered        List of data set
        storage list            nos., sequential store
        +----------+-----+      +-----------------------+
        |          |     |      |                       |
        | Jones, F |  o--+------+--> 5, 7, 10 ...       |
        |          |     |      |    ...                |
        |          |     |      |                       |
        +----------+-----+      +-----------------------+

        Ordered list of         Sequential text of
        data set nos.           data sets
        +----------+-----+      +-----------------------+
        | 1        |     |      |                       |
        +----------+-----+      +-----------------------+
        |  2       |     |      |                       |
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        +----------+-----+      +-----------------------+
        |  3       |     |      |                       |
        +----------+-----+      +-----------------------+
        |  4       |     |      |                       |
        +----------+-----+      +-----------------------+
        |  5       |  o--+------+--> Text of data set 5 |
        +----------+-----+      +-----------------------+
        |  6       |     |      |                       |
        +----------+-----+      +-----------------------+
        |  7       |  o--+------+--> Text of data set 7 |
        +----------+-----+      +-----------------------+
        |  8       |     |      |                       |
        +----------+-----+      +-----------------------+
        |  9       |  o--+------+--> Text of data set 9 |
        +----------+-----+      +-----------------------+
        | 10       |     |      |                       |
        +----------+-----+      +-----------------------+

        Figure 4. Organization of data set files in IR system

In addition, when the data set is entered, its entire text is converted to  an 
internal form (from which the original form is recoverable), and is placed  in 
a sequential unit called the DATA SET Table. An entry for the data set is also 
made,  under its internal number, in the Data Set number table. The  Data  Set 
number table is an ordered storage unit whose entries point to the appropriate 
text  in the Data Set Table. The result is shown in simplified form in  Figure 
4. Not shown is another ordered set in which IRSYS keeps a list of the element 
names and the number of their associated units. [The observant reader may have 
noted  that,  if this were all that IRSYS did, it would be  unable  to  handle 
situations  in  which one term included another -- e.g. JOHN and  JOHNSON,  if 
both terms filled up one of the fixed fields of an ordered storage unit.  Such 
problems  are  handled in IRSYS by a rather complex system  of  pointers  from 
ordered  to sequential units, the decription of which would add little to  the 
current  discussion.] IRSYS uses the kernel to keep this list and many  others 
besides.  By  examining Figure 4, one can see that, given  an  element  value, 
IRSYS has the capability of finding data sets containing that element.

In interactive information retrieval applications, the user must often sharpen 
his question before he locates the set of items he really wants. For  example, 
suppose we were interrogating a file of cinema reviews. The question  "$RATING 
INDECENT"  might locate 4970 data sets, while the question  "$RATING  INDECENT 
AND  $DATE .GT. 1965" might find only 100. [O tempora! O mores!] It  would  be 
more  efficient  if  the questions were asked in series, and  the  search  for 
"$DATE .GT. 1965" restricted to the set of data set numbers already  retrieved 
in response to the first question. To allow for such situations, IRSYS permits 
the  user to "nest" his questions, first asking a question which refers  to  a 
set of data sets, and then asking questions which are understood to refer only 
to that set. The kernel system is used to maintain the various temporary lists 
needed by IRSYS in this exchange.

IRSYS has now been in operation about nine months without maintenance. It  has 
produced useful results for a number of users.
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Graphic information retrieval
-----------------------------

Our  final example is different in a number of ways. The application  involves 
the  use  of an XDS Sigma 5 to control a graphic display device  known  as  an 
ARDS. [This is a Computer Display Incorporated Advanced Remote Display  System 
(ARDS). The ARDS is essentially a storage type CRT, a keyboard, and a  graphic 
input device known as a "mouse". By moving the mouse on a table, the user  can 
manipulate a point or vector on the display face, which can then be located by 
the  computer.  In  addition to  the  (hopefully)  machine-independent  kernel 
system, this application uses the systems software for controlling the  mouse, 
ARDS, and communication equipment which is part of the operating system of the 
University  of  Washington Computer Science Teaching  Laboratory  (Hunt  [Ref. 
3]).]

A  MAP  MANIPULATOR program has been written in FORTRAN, using  a  FORTRAN  IV 
kernel,  to allow the user to draw a map (or portion of a map) on the face  of 
the  ARDS display. The map is a conventional street map, composed of  streets, 
barriers, areas, and points of various types. Messages may be associated  with 
any  map element. Speed indicators are associated with areas and streets.  The 
MAP MANIPULATOR program is not, itself, intended to do anything useful. It  is 
intended to be a component in a larger system for displaying information in  a 
"command  and  control" situation in which the user must  observe  and  direct 
moving units, such as police patrol assignments or air traffic control.

Initially, the user "draws" the map on the ARDS display face using the  mouse. 
At any time, he may edit the map or associate a message with an element of the 
map. The user indicates an element of interest either by "pointing" to it with 
the  mouse,  or by referencing to its internal number. (If the user  does  not 
know  the  internal  number of an element, he may obtain it  by  pointing  and 
asking.)  Once  the  user has established a map, he  may  ask  that  different 
portions  of  it  be displayed, at different  magnifications,  by  zooming  or 
windowing.  Thus,  he  has  at  his command  roughly  the  capabilities  of  a 
simplified  SKETCHPAD  system  (Sutherland  [Ref.  9])  specialized  for   map 
manipulation.

The  basic information unit of MAP MANIPULATOR is the "map table". This  is  a 
sequential  unit  whose  records are strings in a language  for  defining  map 
elements.  Each  sentence in this language must conform to a  BNF  syntactical 
specifications. For example, the grammatical definition of a road is:

        <road>::= 1 <roadname> <route> | <road> <route>
        <roadname>::= {positive integer}
        <route>::= <speed> <line>
        <speed>::= {negative number}
        <line>::= {coordinate pair} {coordinate pair}

The associated semantics are:

        1 is an identification symbol to aid in interpretation. Remember  that 
        this  "language" is for strings that will be read by a program, not  a 
        person.

        The  <roadname> integer is a pointer to an entry in the "road  table", 
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        an ordered unit that will be described below.

        The absolute value of <speed> indicates a multiple of the basic speed. 
        This is interpreted as the value of speed of movement along the  road. 
        It  is intended for use in answering questions about best routes  from 
        one  point  to another, or about the transit time along  a  particular 
        route.

        The coordinate pairs for the <line> are the endpoints of a vector.  In 
        the  "map table", they are in map-coordinates, i.e. they refer to  the 
        scale of the map, which may be much more than can be displayed.

"Road table" is an ordered unit which contains one entry for each road in  the 
map. This entry contains pointers back to the string defining the road in  the 
"map table", and, if appropriate, to the string defining the road as displayed 
(in  display  face  coordinates) on the sequential unit  "display  table".  In 
addition,  a "road table" entry contains a pointer to a "message  list"  table 
entry. "Message list" is a sequential unit whose records are lists of  message 
numbers associated with a particular map element. Each message number names an 
entry in the ordered "message table" which, in turn, contains a pointer to the 
message text in the sequential "message text" table.

The  overall structure of the data defining roads in MAP MANIPULATOR is  shown 
in Figure 5. Similar figures could be constructed showing tables for barriers, 
areas, pointers and events.

        Map table                       Road table
        +-----------------------+       +---+---+---+---+
        |  +--------------------+-------+---+-+ |   |   |
        |  |                    |       |   | | |   |   |
        |  V                    |       |   | | |   |   |
        |  [String defining     |   +-->|9  | o | o | o |
        |                       |   |   |   |   | | | | |
        |      +----------------+---+   |   |   | | | | |
        |      |                |       |   |   | | | | |
        | Road 9 in map         |  +----+---+---+-+ | | |
        |                       |  |    |   |   |   | | |
        | co-ordinates          |  |    |   |   |   | | |
        |                       |  |    |   |   |   | | |
        +-----------------------+  |    +---+---+---+-+-+
                                   |                  |
          +------------------------+ +----------------+
          |                          |
          V Display table            |  Message list
        +-----------------------+    |  +---------------+
        | [String defining      |    |  |               |
        |                       |    +--+--> [7, 12, 15 |
        | Road 9 in display     |       |    /(messages |
        |                       |       |   /   about   |
        | co-ordinates          |       |  /  Road 9) ] |
        |                       |       | /             |
        +-----------------------+       +/--------------+
                                        /
     +---------------------------------+
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     |
     |  Message table                   Message text
     |  +------------+----------+       +---------------+
     +--+--> 7       | o--------+-------+---->[Text of  |
        |            |          |       |    message 7] |
        +------------+----------+       +---------------+

        Figure 5. Structure of MAP MANIPULATOR

We  have  pointed  out  that "map table" defines  elements  in  terms  of  map 
coordinates.  A "display table" unit, similar in form to "map table",  defines 
the  elements  actually being displayed at any one time in  terms  of  display 
coordinates.  This  is  necessary  both for  windowing  and  zooming,  and  to 
determine what element the user is pointing at with the mouse.

The  structure of data in MAP MANIPULATOR gives us the potential for asking  a 
number  of  questions about graphically-displayed data. For example,  one  can 
display  a  map,  indicate an area by pointing to it, ask  that  the  area  be 
displayed  at  an  appropriate magnification, and either  insert  or  retrieve 
messages  about  the area. Note that these messages could be entries  into  an 
information retrieval system similar to one established by IRSYS. We have  not 
actually made this connection as yet.

Summary
-------

Nothing we have reported is terribly exciting or new. Building complex systems 
requires  sophisticated tools. The Heathkit approach is an attempt to make  it 
easier  to  program  complex information management systems,  and  to  produce 
programs  that  are easy to maintain and understand. Basically,  the  approach 
will  work  if many systems can be designed with the same tools. It  will  not 
work if every information management problem is unique. We think the  Heathkit 
approach  works well. While we certainly do not want to disparage any  of  our 
colleagues  who have worked on the various applications we have described,  we 
think  it is correct to say that none of them came to these projects with  any 
substantial background in system programming.

The timetable for the results was as follows:

        B5500  APL, which includes many things besides the virtual  management 
        memory  package, was completed by four people, working at about a  25% 
        effort for six months.

        IRSYS was completed by one person working half-time for six months.

        MAP  MANIPULATOR was brought to a nearly workable stage by two  people 
        working quarter-time for three months. A substantial part of this time 
        was spent checking the FORTRAN IV kernel system. The kernel system  is 
        far from simple, and obviously must work if anything else is to work.

We  believe  this is a good record. It may be, of course, that  the  resulting 
programs  execute  very  inefficiently.  It  is  hard  to  determine   whether 
inefficiencies should be blamed on the Heathkit approach or on the fault in  a 
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particular implementation. In fact, we are not all sure that inefficiency does 
follow  from our approach. IRSYS has been used by a number of people who  have 
not  complained  about the bills. IRSYS contains routines  to  monitor  system 
operation,  and  this  is  currently  being done.  APL  B5500  appears  to  be 
reasonably economic if the system on which it runs is not too heavily  loaded. 
In  any  case,  execution  efficiency is not the  only  criterion  for  system 
programming. There is a good argument for bringing up a working system quickly 
and  then replacing it with a highly efficient one at your leisure.  How  many 
microseconds are there in a month?
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1973...

I  was sitting quietly at my desk when Masatoshi Shima hurried into my  office 
at  Intel and asked me to follow him to his laboratory down the hall.  In  the 
middle of his work bench, among the typical snaggle of jumpers,  oscilloscopes 
and  multi-meters, sat a binocular microscope with spider-leg probes,  all  of 
which  were subjecting a minute piece of silicon to helpless investigation.  I 
peered through the microscope at the enlarged regular patterns with particular 
interest.  As a consultant, my job was to design and develop certain  software 
tools  for Intel. One was Interp/80, a program which simulated  Intel's  newly 
evolved  8080  microprocessor to be used by Intel  customers  on  time-sharing 
systems.  As  I  searched for something recognizable, I  hoped  my  simulation 
resembled  the operation of Shima's first 8080 chip which had finally come  to 
life.

My  proposal to Intel had been simple: I would provide them with  a  language, 
called PL/M, to replace serious systems programming in assembly language.  The 
compiler  would  first  be written in FORTRAN for  operation  on  time-sharing 
computers and "cross-compiled" to the 8-bit processors. Next, we would write a 
PL/M  compiler  in PL/M and "boot-strap" from the time-sharing computer  to  a 
resident compiler operating on Intel's new Intellec-8 development system.  The 
first  part  was  complete, PL/M cross-compilers and  Interp  simulators  were 
implemented for the now-best-forgotten 8008, as well as the 8080. Programs had 
been  written and tested by Intel's software group, consisting of  myself  and 
two  other people, and we were ready for the real machine. Things  were  going 
well: the resident compiler would be the next step.

Unfortunately,  nearly all small computer systems in 1973 used paper  tape  as 
the  backup storage device, with the ubiquitous model 33 Teletype  serving  as 
the  nerve-shattering  I/O  device. It was  readily  apparent  that   resident 
development  systems  could  not  compete  with  time-sharing  services   when 
considering  throughput,  resources,  and services. Still,  the  notion  of  a 
personal computer for software development interested everyone.

I  became  intrigued with a new device, called a floppy  disk,  which,  though 
designed  by  IBM  to replace punched cards, appeared  to  have  much  greater 
potential. The device was ideal: over 3,000 times the data rate of a Teletype, 
each  $7 diskette could randomly access the equivalent of 2000 feet  of  paper 
tape. Best of all, the drive was priced at a low $500. Due to a slight problem 
of  under-capitalization, I found this incredibly low price still a bit  high. 
At that time, a smallish company called Shugart Associates was in operation  a 
few  miles  up  the road from Intel. Dave SCOTT,  then  marketing  manager  at 
Shugart Associates, donated one of their 10.000-hour test drives to the cause, 



file:///C|/...porate%20Histories%20Report%20to%20CHM/DRI/Emmanuel%20Roche%20documents%20conversion/Kildall.(zip)/GKEI.TXT[2/6/2012 10:28:02 AM]

complete  with worn-out bearings and a bearing repair kit. It was only  later, 
as  I  sat  in  my office at home, staring at the naked  disk  drive,  that  I 
realized  I had no cabinet, no cables, no power supplies, no  controller,  and 
most distressing of all, no hardware design experience. To make matters worse, 
no controllers were commercially available, even if I could afford one.

After several abortive attempts at constructing an interface to my Intellec-8, 
it became readily apparent that my efforts would be better directed toward the 
software aspects. Between projects, I put together the first CP/M file system, 
designed  to  support a resident PL/M compiler. The  time-sharing  version  of 
PL/M, along with the Interp simulator, allowed me to develop and checkout  the 
various  file operations to the level of primitive disk I/O. A simulation  is, 
after all, just a simulation, and the inability to make that 10.000-hour drive 
work for just one more hour was frustrating.

Shortly thereafter, in the Fall of 1974, John Torode became interested in  the 
project. I offered as much moral support as possible while John worked through 
the aberrations of the IBM standard to complete one of my aborted controllers. 
Our  first  controller  was a beautiful rat's nest of  wirewraps,  boards  and 
cables (well, at least it was beautiful to us!) which, by good fortune,  often 
performed  seeks, reads, and writes just as requested. For agonizing  minutes, 
we  loaded  the  CP/M  machine code through the paper  tape  reader  into  the 
Intellec-8  memory.  To  our  amazement, the  disk  system  went  through  its 
initialization and printed the CP/M prompt at the Teletype.

Anyone who has brought-up CP/M on a homebuilt computer has felt this moment of 
elation.  A  myriad  of connections are properly closed, bits  are  flying  at 
lightning speeds over busses and through circuits and program logic to produce 
a single prompt. In comparison to our paper tape devices, we had the power  of 
a S/370 at our fingertips. A few nervous tests confirmed that all was  working 
properly,  so  we  retired  for the evening to take on  the  simpler  task  of 
emptying  a  jug  of not-so-good red wine while  reconstructing  battles,  and 
speculating on the future of our new software tool.

In   the  months  that  followed,  CP/M  evolved  rather  slowly.  Intel   was 
experiencing  enormous growth, and all software development was  halted  while 
new  management  structures were instituted. Intel expressed  no  interest  in 
CP/M,  nor in continuing any resident compiler work. Nearly two  years  passed 
before  Intel  again  took interest in resident  software  tools,  with  their 
introduction  of  the ISIS operating system and later,  the  resident  PL/M-80 
compiler.

Meanwhile,  John  Torode redesigned and refined our  original  controller  and 
produced his first complete computer system, marketed under his company  name, 
Digital   Systems  (which  later  became  Digital  Microsystems).  The   first 
commercial licensing of CP/M took place in 1975 with contracts between Digital 
Systems  and Omron of America for use in their intelligent terminal, and  with 
Lawrence Livermore Laboratories where CP/M was used to monitor programs in the 
Octopus network. Little was paid to CP/M for about a year. In my spare time, I 
worked  to  improve overall facilities, and added an  editor,  assembler,  and 
debugger which were predecessors of the current ED, ASM, and DDT programs.  By 
this time, CP/M had been adapted for four different controllers.

In  1976,  Glenn Ewing approached me with a problem: IMSAI  Incorporated,  for 
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whom  Glenn consulted, had shipped a large number of disk sub-systems  with  a 
promise  that  an operating system would follow. I was somewhat  reluctant  to 
adapt CP/M to yet another controller, and thus the notion of a separated Basic 
I/O  System (BIOS) evolved. In principle, the hardware-dependent  portions  of 
CP/M  were concentrated in the BIOS, thus allowing Glenn, or anyone  else,  to 
adapt  CP/M  to  the  IMSAI equipment.  IMSAI  was  subsequently  licensed  to 
distribute CP/M version 1.3, which eventually evolved into an operating system 
called IMDOS.

By coincidence, Jim Warren and I were both consulting at Signetics Corporation 
during this time. Jim was then the editor of DDJ, and pushed for sale of  CP/M 
to  the  general public. There was, at the time, a  pervading  paranoia  among 
software vendors who felt that any and all loose software would be immediately 
"ripped-off"  by  this immoral group of computer junkies. Jim's faith  in  the 
industry,  however,  led me to introduce the CP/M 1.3 system for sale  on  the 
open  market at $70 per copy. In the months that followed, the nature  of  the 
computer  hobbyist became apparent. In most case he was, like myself,  in  the 
computer industry and merely wanted a personal computer for his own endeavors. 
CP/M  gradually  gained popularity through a "grassroots" effect and,  to  the 
amazement  of  the  skeptics, the rip-off factor was practically  nil.  A  new 
company  called  Digital  Research was formed to  support  CP/M,  develop  new 
products, and provide administrative functions.

It has been nearly three years since CP/M's initial introduction, with several 
revisions  and improvements. Although floppy disks maintain their  popularity, 
CP/M  2.0 is now offerred to manage larger capacity disks which  are  becoming 
more readily available. Customer needs and demands have also led to the recent 
introduction  of  MP/M,  a  CP/M-compatible  multi-terminal  multi-programming 
system for more sophisticated applications.

More  important,  however, is that CP/M  provides  a  manufacturer-independent 
basis for an evolving software market. We all know that software is  expensive 
to  develop and support, with numbers quoted in the hundreds of  thousands  of 
dollars over the product lifetime. In a classical computer market-place, these 
costs  are  amortized  over  a  few  installations,  resulting  in   seemingly 
outrageous prices. Active CP/M users, however, number in the tens of thousands 
and  can be reached through any number of popular magazines.  Thus,  marketers 
reduce  their  prices substantially to interest a much larger  customer  base. 
Software  is sold profitably as an independent commodity by a large number  of 
responsible companies, and the benefits to the consumer are clear. Competition 
forces low prices and quality control, with selection among a wide variety  of 
software  products.  Currently,  CP/M-compatible  products  range  from  word-
processing  programs  through  business  systems to  a  variety  of  languages 
processors  for BASIC, FORTRAN, COBOL, Pascal, and others. All are  priced  in 
the $100 to $700 range. The future is, without doubt, optimistic for producers 
and customers alike.

EOF
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- "A Unified Approach to Global Program Optimization"
   Gary A. Kildall
   ACM First Symposium on Principles of Programming Languages, 1973

(Retyped by Emmanuel ROCHE.)

Abstract
--------

A technique is presented for global analysis of program structure, in order to 
perform  compile-time optimization of object code generated  for  expressions. 
The  global expression optimization presented includes  constant  propagation, 
common  subexpression  elimination,  elimination of  redundant  register  load 
operations,  and  live  expression analysis. A  general-purpose  program  flow 
analysis  algorithm  is  developed, which depends upon  the  existence  of  an 
"optimizing  function".  The algorithm is defined formally  using  a  directed 
graph  model  of program flow structure, and is shown to be  correct.  Several 
optimizing functions are defined which, when used in conjunction with the flow 
analysis  algorithm, provide the various forms of code optimization. The  flow 
analysis  algorithm  is  sufficiently general that  additional  functions  can 
easily be defined for other forms of global code optimization.

Section 1: Introduction
-----------------------

A  number of techniques have evolved for the compile-time analysis of  program 
structure,  in  order  to  locate  redundant  computations,  perform  constant 
computations, and reduce the number of store-load sequences between memory and 
high-speed  registers.  Some  of these techniques  provide  analysis  of  only 
straight-line sequences of instructions [Ref.5,6,9,14,17,18,19,20,27,29,34,36,
38,39,43,45,46],  while  others  take the  program  branching  structure  into 
account  [Ref.2,3,4,10,11,12,13,15,23,30,32,33,35]. The purpose, here,  is  to 
describe  a single program flow analysis algorithm which extends all of  these 
straight-line  optimizing  techniques  to  include  branching  structure.  The 
algorithm is presented formally, and is shown to be correct. Implementation of 
the flow analysis algorithm in a practical compiler is also discussed.

The methods used here are motivated in the section which follows.

Section 2: Constant propagation
-------------------------------

A fairly simple case of program analysis and optimization occurs when constant 
computations  are  evaluated at compile-time. This process is referred  to  as 
"constant propagation", or "folding". Consider the following skeletal ALGOL-60 
program:

        begin integer i,a,b,c,d,e;
        a:=1; c:=0; ...
        for i:=1 step 1 until 10 do
            begin b:=2; ...
            d:=a+b; ...
            e:=b+c; ...
            c:=4; ...
            end
        end

This program is represented by the directed graph shown in Figure 1  (ignoring 
calculations  which  control the FOR-loop). The nodes of  the  directed  graph 
represent sequences of instructions containing no alternate program  branches, 
while  the  edges of the graph represent program  control  flow  possibilities 
between the nodes at execution-time.

               A┌──────┐ 
        Entry:  │ a:=1 │
                └──┬───┘
                   V
               B┌──────┐ 
                │ c:=0 │
                └──┬───┘
                   V
               C┌──────┐ 
                │ b:=2 │<──┐
                └──┬───┘   │
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                   V       │
               D┌──────┐   │
                │d:=a+b│   │
                └──┬───┘   │
                   V       │
               E┌──────┐   │
                │e:=b+c│   │
                └──┬───┘   │
                   V       │
               F┌──────┐   │
                │ c:=4 ├───┘
                └──────┘

        Figure  1.  A  program  graph corresponding  to  an  ALGOL-60  program 
        containing one loop.

For  purposes of constant propagation, it is convenient to associate a  "pool" 
of  propagated  constants with each node in the graph. The pool is  a  set  of 
ordered  pairs  which indicate variables which have constant values  when  the 
node  is  encountered. Thus, the pool of constants at node B, denoted  by  PB, 
consists of the single element (a,1) since the assignment a:=1 at node A  must 
occur before node B is encountered during execution of the program.

The  fundamental  global analysis problem is that of determining the  pool  of 
propagated  constants  for  each  node  in  an  arbitrary  program  graph.  By 
inspection of the graph of Figure 1, the pool of constants at each node is

        PA = 0
        PB = {(a,1)}
        PC = {(a,1)}
        PD = {(a,1),(b,2)}
        PE = {(a,1),(b,2),(d,3)}
        PF = {(a,1),(b,2),(d,3)}.

In  the general case, PN could be determined for each node N in the  graph  as 
follows.  Consider each path (A,p1,p2,...,pn,N) from the entry node A  to  the 
node  N.  Apply constant propagation throughout this path to obtain a  set  of 
propagated  constants  at node N for this path only. The intersection  of  the 
propagated  constants  determined  for  each path to N  is  then  the  set  of 
constants  which  can be assumed for optimization purposes, since  it  is  not 
known which of the paths will be taken at execution-time.

The  pool of propagated constants at node D of Figure 1, for example,  can  be 
determined  as  follows.  A  path  from the entry node A  to  the  node  D  is 
(A,B,C,D). Considering only this path, the "first approximation" to PD is

        PD
1 = {(a,1),(b,2),(c,0)}

A longer path from A to D is (A,B,C,D,E,F,C,D) which results in the pool

        PD
2 = {(a,1),(b,2),(c,4),(d,3),(e,2)}

corresponding  to this particular path to D. Successively longer paths from  A 
to  D can be evaluated, resulting in PD

3, PD
4, ..., PD

n for arbitrarily  large 
n. The pool of propagated constants which can be assumed, no matter which flow 
of control occurs, is the set of constants common to all PD

i; that is,

        PD = ∩ PD
i

            i

This  procedure, however, is not effective since the number of such paths  may 
have  no finite bound in the case of an arbitrary directed graph.  Hence,  the 
procedure  would  not necessarily halt. The purpose of the  algorithm  of  the 
following section is to compute this intersection in a finite number of steps.

Section 3: A global analysis algorithm
--------------------------------------

The  analysis  of  the program graph of Figure 1 suggests a  solution  to  the 
global   constant   propagation  problem.  Considering  node  C,   the   first 
approximation to PC is given by propagating constants along the path  (A,B,C), 
resulting in

        PC
1 = {(a,1),c,0)}.
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Based upon this approximate pool, the first approximations to subsequent nodes 
can be determined:

        PD
1 = {(a,1),(c,0),(b,2)}

        PE
1 = {(a,1),(c,0),(b,2),(d,3)}

        PF
1 = {(a,1),(c,0),(b,2),(d,3),(e,2)}.

Using PF
1, the constant pool resulting from node F entering node C is

        P = {(a,1),(b,2),(d,3),(e,2),(c,4)}.

Note, however, that since

        PC = ∩ PC
i

            i

it follows that PC  PC
1 ∩ PC

2. Thus, rather than assuming PC
2 = P, the second 

approximation to PC is taken as

        PC
2 = PC

1 ∩ P = PC
1 ∩ {(a,1),(b,2),(d,3),(e,2),(c,4)} = {(a,1)}.

Using PC
2, the circuit through the loop past C is traced once again. The  next 

approximation at subsequent nodes can then be determined, based upon PC
2:

        PD
2 = PD

1 ∩ {(a,1),(b,2)}       = {(a,1),(b,2)},
        PE

2 = PE
1 ∩ {(a,1),(b,2),(d,3)} = {(a,1),(b,2),(d,3)},

        PF
2 = PF

1 ∩ {(a,1),(b,2),(d,3)} = {(a,1),(b,2),(d,3)}.

Continuing  around  the  loop  once again from node F to  node  C,  the  third 
approximate pool PC

3 is determined as

        PC
3 = PC

2 ∩ {(a,1),(b,2),(d,3)} = {(a,1)}.

Clearly, no changes to subsequent approximate pools will occur if the  circuit 
is traversed again since PC

3 = PC
2, and the effect of PC

2 on the pools in  the 
circuit  has alredy been investigated. Thus, the analysis stops, and the  last 
approximate  pools  at each node are taken as the final constant  pools.  Note 
that  these  last approximations correspond to the constant  pools  determined 
earlier by inspection.

Based  upon  these observations, it is possible to informally state  a  global 
analysis algorithm.

     a. Start  with  an entry node in the program graph, along  with  a  given 
        entry  pool corresponding to this entry node. Normally, there is  only 
        one entry node, and the entry pool is empty.

     b. Process  the entry node, and produce optimizing information  (in  this 
        case,  a set of propagated constants) which is sent to  all  immediate 
        successors of the entry node.

     c. Intersect the incoming optimizing pools with that already  established 
        at  the  successor  nodes  (if this is the  first  time  the  node  is 
        encountered, assume the incoming pool as the first approximation,  and 
        continue processing).

     d. Considering   each  successor  node,  if  the  amount  of   optimizing 
        information  is reduced by this intersection (or if the node has  been 
        encountered for the first time) then process the successor in the same 
        manner  as  the initial entry node (the order in which  the  successor 
        nodes are processed is unimportant).

In  order  to  generalize  the  above notions,  it  is  useful  to  define  an 
"optimizing  function" f which maps an "input" pool, along with  a  particular 
node, to a new "output" pool. Given a particular set of propagated  constants, 
for example, it is possible to examine the operation at a particular node  and 
determine the set of propagated constants which can be assumed after the  node 
is  executed.  In  the  case of constant  propagation,  the  function  can  be 
informally  stated as follows. Let V be a set of variables, let C be a set  of 
constants, and let N be the set of nodes in the graph being analyzed. The  set 
U  = V × C represents ordered pairs which may appear in any constant pool.  In 
fact, all constant pools are elements of the power set of U (i.e., the set  of 
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all subsets of U), denoted by P(U). Thus,

        f: N × P(U) → P(U),

where (v,c)  f(N,P) <=>

     a. (v,c)   P and the operation at node N does not assign a new value  to 
        the variable v,
or
     b. the  operation at node N assigns an expression to the variable v,  and 
        the  expression evaluates to the constant c, based upon the  constants 
        in P.

Consider  the graph of Figure 1, for example. The optimizing function  can  be 
applied to node A with an empty constant pool, resulting in

        f(A,0) = {(a,1)}.

Similarly, the function f can be applied to node B with {(a,1)} as a  constant 
pool yielding

        f(B, {(a,1)}) = {(a,1),c,0)}.

Note that given a particular path from the entry node A to an arbitrary node N 
  N, the optimizing pool which can be assumed for this path is determined  by 

composing  the  function  f up to the last node of the path.  Given  the  path 
(A,B,C,D), for example,

        f(C,f(B,f(A,0))) = {(a,1),(c,0),(b,2)}

is the constant pool at D for this path.

The pool of optimizing information which can be assumed at an arbitrary node N 
in the graph being analyzed, independent of the path taken at execution  time, 
can now be stated formally as

        PN = ∩ x
            x FN

where

        FN = {f(pn,f(pn-1,...f(p1,P))...) | (p1,p2,...,pn,N) is a path from an 
        entry node P1 with corresponding entry pool P to the node N}.

Before  formally  stating the global analysis algorithm, it  is  necessary  to 
clarify the fundamental notions.

A finite directed graph G = <N,E> is an arbitrary finite set of "nodes" N  and 
"edges"  E  N × N. A "path" from A to B in G, for A,B  N, is a  sequence  of 
nodes (p1,p2,...,pk)  P1 = A and Pk = B, where (pi,pi+1)  E  i, 1 ≤ i <  k. 
The "length" of a path (p1,p2,...,pk) is k-1.

A  "program graph" is a finite directed graph G along with a non-empty set  of 
"entry nodes"   N such that given N  N  a path (p1,...,pn)  P1   and Pn 
= N (i.e., there is a path to every node in the graph from an entry node).

The set of "immediate successors" of a node N is given by

        I(N) = {N'  N |  (N,N')  E}.

Similarly, the set of "immediate predecessors" of N is given by

        I-1(N) = {N'  N |  (N',N)  E}.

Let  the finite set P be the set of all possible optimizing pools for a  given 
application  (e.g., P = P(U) in the constant propagation case, where U =  V  × 
C), and ^ be a "meet" operation with the properties

        ^: P × P → P,
        x ^ y = y ^ x (commutative),
        x ^ (y ^ z) = (x ^ y) ^ z (associative),

where  x,  y,  z   P. The set P and the ^ operation  define  a  finite  meet-
semilattice.

The ^ operation defines a partial ordering on P given by

        x ≤ y <=> x ^ y = x  x,y  P.
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Similarly,

        x < y <=> x ≤ y and x ≠ y.

Given X  P, the generalized meet operation

          x
       x  X

is defined simply as the pairwise application of ^ to the elements of X. P  is 
assumed to contain a "zero element" 0  0 ≤ x  x  P. An augmented set P'  is 
constructed from P by adding a "unit element" 1 with the properties 1  P  and 
1 ^ x = x  x  P; P' = P  {1}. It follows that x < 1  x  P.

An "optimizing function" f is defined 

        f: N × P → P

and must have the homomorphism property:

        f(N,x ^ y) = f(N,x) ^ f(N,y), N  N, x,y  P.

Note that f(N,x) < 1  N  N and x  P.

The global analysis algorithm is now stated:

Algorithm A
-----------

Analysis of each particular program graph G depends upon an "entry pool set"  
   × P, where (e,x)   if e   is an entry node with  corresponding  entry 

optimizing pool x  P.

A1[initialize]          L ← .
A2[terminate?]          If L = 0 then halt.
A3[select node]         Let L'  L, L' = (N,Pi) for some N  N and Pi  P, L ← 
                        L - {L'}.
A4[traverse?]           Let  PN  be  the  current  approximate  pool  of   the 
                        optimizing  information  associated with  the  node  N 
                        (initially, PN = 1).
A5[set pool]            PN ← PN ^ Pi, L ← L  {(N',f(N,PN)) | N'  I(N)}.
A6[loop]                Go to step A2.

For  purposes of constant propagation, P = (U), where U = V × C,  as  before. 
The  meet operation is ∩, and the less-than-or-equal relation is . Note  that 
the  zero  element  in this case is 0  (U). The unit element in  (U)  is  U 
itself.  The algorithm requires a new unit element, however, which is  not  in 
(U). The new unit element is constructed as follows: let δ be a symbol not in 

U,  and  let U = U  {δ}. It follows that U ∩ x = x  x  (U) and U    (U). 
Thus,  P'  =  P    {U} is obtained from P by adding  a  unit  element  U.  As 
demonstrated  in  the proof in Theorem 2, the addition of the symbol  δ  to  U 
causes  the  algorithm A to consider each node in the program graph  at  least 
once.

Appendix A shows the analysis of the program graph of Figure 1 using the entry 
pool set  = {(A,0)}.

Theorem 1
---------

The algorithm A is finite.

Proof
-----

The  algorithm A terminates when L = 0. Each evaluation of step A3 removes  an 
element from L, and elements are added to L only in step A5. Thus, A is finite 
if the number of evaluations of step A5 is finite. Informally, each evaluation 
of  step A5 reduces the "size" of the pool PN at some node N. Since  the  size 
cannot  be  less  than 0, the process must be finite.  Formally,  step  A5  is 
performed  only when PN ≠ PN ^ Pi. But (PN ^ Pi) ^ PN = PN ^ Pi => PN ^  Pi  ≤ 
PN, and PN ^ Pi ≠ PN => PN ^ Pi < PN. Thus, the approximate pool PN at node  N 
can  be  reduced  at most to 0 since PN ← PN ^ Pi. Further,  since  the  first 
approximation  to PN is 1 and the lattice is finite, it follows that  step  A5 
can be performed only a finite number of times. Thus A is finite.
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An  upper  bound  on  the number of steps in the algorithm  A  can  easily  be 
determined.  Let  n  be the cardinality of N and h(P') be  a  function  of  P' 
(which,  in turn, may be a function of n) providing the maximum length of  any 
chain between 1 and 0 in P'. Step A5 can be executed a maximum of h(P')  times 
for any given node. Since there are n nodes in the program graph, step A5  can 
be performed no more than n ∙ h(P') times.

In the case of constant propagation, for example, let u be the cardinality  of 
U. The size of U varies directly with the number of nodes n. In addition,  the 
maximum length of any chain u1,u2,...,uk such that u1 = U and uk = 0, where u1 
  u2    u3 ...  uk is u. Thus, h( (U)) = u; and the  theoretical  bound  is 

n ∙ u.  Since  u  varies directly with n, it follows that  the  order  of  the 
algorithm A is no worse than n2.

The correctness of the algorithm A is guaranteed by the following theorem.

Theorem 2
---------

Let  FN  = {f(pn,f(pn-1,..., f(p1,P))...) | (p1,...,pn,N) is a  path  from  an 
entry node p1 with corresponding entry pool P to the node N}. Further, let

        XN =  x
           x  FN

corresponding to a particular program graph G, set P', and optimizing function 
f,  which  satisfy  the  conditions of the algorithm A. If  PN  is  the  final 
approximate pool associated with node N when A halts, then PN = XN  N  N.

Theorem  2  thus relates the final output of the algorithm  to  the  intuitive 
results  which  were  developed earlier. The proof of Theorem 2  is  given  in 
Appendix B.

An  interesting  side-effect  of  Theorem 2 is that the  order  of  choice  of 
elements from L in step A3 is arbitrary, as given in the following corollary.

Corollary 1
-----------

The  final  pool PN associated with each node N  N upon  termination  of  the 
algorithm  A is uniquely determined, independent of the order of choice of  L' 
from L in step A3.

Proof
-----

This corollary follows immediately, since the proof of Theorem 2 in Appendix B 
is independent of the choice of L'.

Since  the choice of L' from L in step A3 is arbitrary, it is  interesting  to 
investigate  the  effects of the selection criteria upon  the  algorithm.  The 
number  of steps to the final solution is clearly affected by this choice.  No 
selection  method has been established, however, to maximize this  convergence 
rate.  One  might  also notice that, by treating accesses  to  L  as  critical 
sections  in steps A3 and A5, the elements of L can be processed in  parallel. 
That  is,  independent  processes can be started in step  A3  to  analyze  all 
elements of L.

It  is  important to note, at this point, that the algorithm A allows  one  to 
ignore the global analysis, and concentrate upon development of  straight-line 
code  optimizing  functions.  That  is, if an optimizing  function  f  can  be 
constructed  for  optimizing  a sequence of  code  containing  no  alternative 
branches, then the algorithm A can be invoked to perform the branch  analysis, 
as long as f satisfies the conditions of the algorithm.

Section 4: Common subexpression elimination
-------------------------------------------

Global  common subexpression elimination involves the analysis of a  program's 
structures  in  order  to  detect  and  eliminate  calculations  of  redundant 
expressions. A fundamental assumption is that it requires less execution  time 
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to  store the result of a previous computation and load this value,  when  the 
redundant expression is encountered.

As an example, consider the simple sequence of expressions:

        ... r:=a+b; ... r+x ... (a+b)+x ...

which could occur as a part of an ALGOL-60 program.

               T┌───────┐
        Entry:  │r:=a+b │
                └───┬───┘
                    V
               U┌───────┐
                │  r+x  │
                └───┬───┘
                    V
               V┌───────┐
                │(a+b)+x│
                └───┬───┘
                    V
               W┌───────┐
                │       │
                └───────┘

        Figure  2. An acyclic program graph representing a simple  computation 
        sequence.

Figure  2  shows  this sequence written as a directed  graph.  Note  that  the 
redundant  expression  (a+b)  at  node V  is  easily  recognized.  The  entire 
expression (a+b)+x at node V is redundant, however, since r has the same value 
as  a+b at node U, and r+x is computed at node U, ahead of node V. It is  only 
necessary  to describe an optimizing function f which detects  this  situation 
for  straight-line  code;  the algorithm A will  make  the  function  globally 
applicable.

A  convenient  representation for the optimizing pool, in the case  of  common 
subexpression  elimination,  is  a  partition of a  set  of  expressions.  The 
expressions in the partition at a particular node are those which occur before 
the node is encountered at execution-time.

The  optimizing function for common subexpression elimination manipulates  the 
equivalence classes of the partition. Two expressions are placed into the same 
class  of  the  partition  if  they  are  known  to  have  equivalent  values. 
Considering Figure 2, for example, the set of expressions which are  evaluated 
before node T is encountered is empty; thus, PT = 0. The expressions evaluated 
before  node  U  are exactly those which occur at node  T,  including  partial 
computations.  The  set of (partial) computations at node  T  is  {a,b,a+b,r}. 
Since r takes the value of a+b at node T, r is known to be equivalent to  a+b. 
Thus,  PU  = {a|b|a+b,r}, where "|" separates the equivalence classes  of  the 
pool.  Similarly, PV = {a|b|a+b,r|x|r+x} and PW  =  {a|b|a+b,r|x|r+x|(a+b)+x}. 
The expression a+b at node V is redundant, since a+b is in the pool PV.

Note, however, that the redundant expression (a+b)+x at node V is not  readily 
detected.  This  is due to the fact that r+x was computed at node  U  and,  as 
noted  above,  the evaluation of r+x is the same as evaluation of  (a+b)+x  at 
node U. In order to account for this in the output optimizing pool, (a+b)+x is 
added to the same class as r+x. Thus, PV becomes

        {a|b|a+b,r|x|r+x,(a+b)+x}.

This process is called "structuring" an optimizing pool. Structuring  consists 
of  adding any expressions to the partition which have operands equivalent  to 
the  one  which  occurs at the node being considered.  The  entire  expression 
(a+b)+x at node V is then found to be redundant, since the structured pool  PV 
contains a class with (a+b)+x.

An optimizing function f1(N,P) for common subexpression elimination can now be 
informally stated.

     1. Consider each partial computation e in the expression at node N  N.

     2. If the computation e is in a class of P then e is redundant; otherwise

     3. create  a  new  class  in  P  containing  e  and  add  all   (partial) 
        computations which occur in the program graph and which have  operands 
        equivalent to e (i.e., structure the pool P).

     4. If  N  contains  an assignment d:=e, remove  from  P  all  expressions 
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        containing  d  as  a  subexpression.  For  each  expression  e'  in  P 
        containing e as a subexpression, create e'' with d substituted for  e, 
        and place e'' in the class of e'.

The  meet  operation  ^  of  the  algorithm  A  must  be  defined  for  common 
subexpression elimination. Since the optimizing pools in P' are partitions  of 
expressions, the natural interpretation is as intersection by classes, denoted 
by . That is, given P1,P2  P', P = P1  P2 is defined as follows.

Let     C =    p   n  p
            p  P1  p  P2

and P(c) = P1(c) ∩ P2(c)  c  C.

C  is the set of expressions common to both P1 and P2, while P1(c)  and  P2(c) 
are the classes of c in P1 and P2, respectively. Thus, the class of each c  C 
in  the new partition P is derived from P1 and P2 by intersecting the  classes 
P1(c) and P2(c). For example, if P1 = {a,b|d,e,f} and P2 = {a,c|d,f,g} then  C 
= {a,d,f} and P1  P2 = {a|d,f}.

It  is easily shown that  has the properties required of the meet  operation; 
hence, a "refinement" relation is defined:

        P1  P2 <=> P1  P2 = P1.

That  is,  P1   P2 if and only if P1 is a refinement of  P2.  The  refinement 
relation provides the ordering required on the set P' for the algorithm A.

The  function  f1 can be stated formally, and shown to have  the  homomorphism 
property required by the global analysis algorithm [Ref.33]:

        f1(N,P1  P2) = f1(N,P1)  f1(N,P2).

Before  considering  an  example of the use of f1 with the  algorithm  A,  the 
function   f1  is  extended  to  combine  constant  propagation  with   common 
subexpression elimination.

Section 5: Constant propagation and common subexpression elimination
--------------------------------------------------------------------

The  common subexpression elimination optimizing function f1 of Section 4  can 
easily be extended to include constant propagation. Consider, for example, the 
following segment of an ALGOL-60 program:

        ... u:=20; ... v:=30; ... u+v ... x:=10;
        ... y:=40; ... x+y ... y-x ...

                    │
                    V           PB = 0
               B┌───────┐
                │ u:=20 │
                └───┬───┘
                    V           PD = {u,20}
               D┌───────┐
                │ v:=30 │
                └───┬───┘
                    V           PE = {u,20|v,30}
               E┌───────┐
                │  u+v  │
                └───┬───┘
                    V           PF = {u,20|v,30|u+v,50}
               F┌───────┐
                │ x:=10 │
                └───┬───┘
                    V           PG = {u,20|v,30|u+v,50|x,10}
               G┌───────┐
                │ y:=40 │
                └───┬───┘
                    V           PH = {u,20|v,30|u+v,50|x,10|y,40}
               H┌───────┐
                │  x+y  │
                └───┬───┘
                    V           PI = {u,20|v,30|u+v,50,x+y|x,10|y,40}
               I┌───────┐
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                │  y-x  │
                └───────┘

        Figure  3.  A  program graph demonstrating  the  effects  of  constant 
        propagation.

Figure  3  shows a program graph representing this segment. Assume  the  entry 
pool  is  empty; i.e., PB = 0. The analysis proceeds up to node E  as  before, 
resulting in

        PE = {u,20|v,30}.

Note  that u and v are both propagated constants in PE since they are both  in 
classes containing constants. If the expression u+v at node E is processed  as 
in f1, the output pool is

        {u,20|v,30|u+v}.

Noting  that  u  and v are in classes with constants, then  u+v  must  be  the 
propagated  constant  20+30 = 50. Hence, the constant 50 is  placed  into  the 
class of u+v in the resulting partition. Thus,

        PF = {u,20|v,30|u+v,50}.

The analysis continues as before up to node H, resulting in

        PH = {u,20|v,30|u+v,50|x,10|y,40}.

In  the  case of the f1 optimizing function, the expression x+y at node  H  is 
placed  into a distinct class. The operands x and y, however,  are  propagated 
constants since they are equivalent to 10 and 40, respectively. The expression 
x+y is equivalent to 50 which is already in the partition. Thus, x+y is  added 
to the class of 50, resulting in

        PI = {u,20|v,30|u+v,50,x+y|x,10|y,40}.

Similarly, the output pool from node I is

        {u,20|v,30,y-x|u+v,50,x+y|x,10|y,40}.

The  analysis above depends upon the ability to recognize certain  expressions 
as  constants, and the ability to compute the constant value of an  expression 
when  the operands are all propagated constants. It is also implicit  that  no 
two differing constants are in the same class.

An  optimizing  function f2 which combines constant  propagation  with  common 
subexpression  elimination can be constructed from f1 by altering step (3)  as 
follows:

    3a. Create  a  new  class  in  P  containing  e  and  add  all   (partial) 
        computations which occur in the program graph, and which have operands 
        equivalent to those of e (structure the pool as before).

    3b. If  e  does  not evaluate to a constant value  based  upon  propagated 
        constant  operands,  then no further processing is required  (same  as 
        setp (3) of f1); otherwise, let z be the constant value of e. If z  is 
        already in the partition P, then combine the class of z with the class 
        of e in the resulting partition. If z is not in the partition P,  then 
        add  z  to  the  class of e. The expression  e  becomes  a  propagated 
        constant in either case.

The  function  f2  is  stated formally and  its  properties  are  investigated 
elsewhere [Ref.33].

Section 6: Expression elimination
---------------------------------

Expression  optimization,  as defined earlier, includes  common  subexpression 
elimination,  constant propagation, and register optimization. The  first  two 
forms of optimization are covered by the f2 optimizing function; only register 
optimization  needs  to  be considered. It will be shown below  that  f2  also 
provides a simple form of register optimization.

In general, global register optimization involves the assignment of high-speed 
registers  (accumulators and index registers) throughout a program in  such  a 
manner  that  the  number  of store-fetch  sequences  between  the  high-speed 
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registers and central memory is minimized. The store-fetch sequences arise  in 
two ways. The first form involves redundant fetches from memory. Consider  the 
sequence of expressions

        a:=b+c; d:=a+e;

for example. A straight-forward translation of these statements for a  machine 
with multiple general-purpose registers might be

        r1:=b; r2:=c; r1:=r1+r2; a:=r1;
        r1:=a; r2:=e; r1:=r1+r2; d:=r1.

Note, however, that the operation r1:=a is not necessary since r1 contains the 
value  of the variable a before the operation. McKeeman [Ref.38]  discusses  a 
technique  called  "peephole optimization" which  eliminates  these  redundant 
fetches within a basic block.

                     │
                     V          PH = 0
               H┌─────────┐
                │  d:=r1  │
                └────┬────┘
                     V          PG = {r1}
               G┌─────────┐
                │r1:=r1+r2│
                └────┬────┘
                     V          PF = {r1,r2,r1+r2}
               F┌─────────┐
                │  r2:=e  │
                └────┬────┘
                     V          PE = {r1,e}
               E┌─────────┐
                │  r1:=a  │
                └────┬────┘
                     V          PD = {a,e}
               D┌─────────┐
                │  a:=r1  │
                └────┬────┘
                     V          PC = {e,r1}
               C┌─────────┐
                │r1:=r1+r2│
                └────┬────┘
                     V          PB = {e,r1,r2,r1+r2}
               B┌─────────┐
                │  r2:=c  │
                └────┬────┘
                     V          PA = {e,c,r1}
               A┌─────────┐
                │  r1:=b  │
                └─────────┘

        Figure 4. Elimination of redundant register load operations.

Figure  4 shows a program corresponding to the register operations above.  The 
f2  optimizing  function  is applied to each successive  node  in  the  graph, 
resulting  in  the optimizing pools shown in the Figure. In  particular,  note 
that

        PE = {a,r1|b|r2,c}.

The operation at node E assigns the variable a to the register r1. Since a  is 
already  in  the class of r1, however, the operation is redundant and  can  be 
eliminated.  Hence,  the  f2 optimizing function can  be  used  to  generalize 
peephole  optimization.  Further, the algorithm A extends f2 to  allow  global 
elimination of redundant register load operations.

The  second source of store-fetch sequences arises when registers are  in  use 
and must be released temporarily for another purpose. The contents of the busy 
register  is  stored into a central memory location and restored  again  at  a 
later  point  in  the program. An optimal  register  allocation  scheme  would 
minimize  the number of temporary stores. This form of  register  optimization 
has  been  treated  on  a local  basis,  including  algorithms  which  arrange 
arithmetic  computations  in  order to reduce the total  number  of  registers 
required   in  the  evaluation  [Ref.5,27,36,39,43,45,46].   Global   register 
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allocation  has also been formulated as an integer programming problem by  Day 
[Ref.14], given that register interference and cost of data displacement  from 
registers  is  known. No complete solution to the global  register  allocation 
problem is known by the author at this time.

A  solution  to the global register allocation problem will be  aided  by  the 
analysis  of "live" and "dead" variables at each node in the program graph.  A 
variable  v  is  live  at a node N if v could possibly  be  referenced  in  an 
expression subsequent to node N. The variable v is dead otherwise. Recent work 
has been done by Kennedy [Ref.32] using interval analysis techniques to detect 
live and dead variables on a global basis.

An  optimizing  function f3 can be constructed which produces a  set  of  live 
expressions  at  each  node in the graph. The detection  of  live  expressions 
requires  the  analysis  to proceed from the end of  the  program  toward  the 
beginning.

                     │
                     V          PH = {a|r1|b|c|r2,e}
               H┌─────────┐
                │  d:=r1  │
                └────┬────┘
                     V          PG = {a,r1|b|c|r2,e}
               G┌─────────┐
                │r1:=r1+r2│
                └────┬────┘
                     V          PF = {a,r1|b|r2,c}
               F┌─────────┐
                │  r2:=e  │
                └────┬────┘
                     V          PE = {a,r1|b|r2,c}
               E┌─────────┐
                │  r1:=a  │
                └────┬────┘
                     V          PD = {r1|b|r2,c}
               D┌─────────┐
                │  a:=r1  │
                └────┬────┘
                     V          PC = {r1,b|r2,c}
               C┌─────────┐
                │r1:=r1+r2│
                └────┬────┘
                     V          PB = {r1,b}
               B┌─────────┐
                │  r2:=c  │
                └────┬────┘
                     V          PA = 0
               A┌─────────┐
                │  r1:=b  │
                └─────────┘

        Figure 5. Detection of live expressions in a reversed program graph.

Figure 5 shows the graph of Figure 4 with the direction of the edges reversed. 
The  live  expressions at the beginning of the graph correspond  to  the  live 
expressions at the end of program execution; hence, PH = 0 (there are no  live 
expressions at the end of execution). The expression d:=r1 at node H refers to 
the expression r1. Thus, r1 is live ahead of node H. This fact is recorded  by 
including r1 in PG.

        PG = {r1}.

Since r1 is assigned a new value at node G, it becomes a dead expression, but, 
since  r1 is also involved in the expression r1+r2, it immediately  becomes  a 
live expression again. Thus,

        PF = {r1,r2,r1+r2}.

The  analysis continues, producing the optimizing pools associated  with  each 
node in Figure 5. The expressions which are live at node C, for example, are

        PB = {e,r1,r2,r1+r2}.

The optimizing function f3(N,P) which provides live expression analysis can be 



Converted from file "GKFS.WS4"

file:///C|/...istories%20Report%20to%20CHM/DRI/Emmanuel%20Roche%20documents%20conversion/Kildall.(zip)/GKFS.HTM[2/6/2012 10:28:03 AM]

informally stated as follows:

     1. If the expression at node N involves an assignment to a variable,  let 
        d  be  the  destination  of the assignment; set P ←  P  -  {e|d  is  a 
        subexpression  in e} (d and all expressions containing d  become  dead 
        expressions).

     2. Consider  each  partial computation e at node N. Set P ← P    {e}  (e 
        becomes a live expression). The value of f3(N,P) is the altered  value 
        of P.

The  algorithm A can then be applied to the reversed program graph  using  the 
optimizing function f3. The exit nodes of the original graph become the  entry 
nodes of the reversed graph. In addition, the meet operation of the  algorithm 
A  is  the  set union operation . The union  operation  induces  the  partial 
ordering given by

        P1 ≤ P2 <=> P1  P2 = P1 <=> P1  P2,  p1,P2  P',

where P is the set of (partial) computations which occur in the program graph. 
Note  that 0 = P' and 1 = 0 in this case. Thus, all initial approximate  pools 
in the algorithm A are set to 0.

There is a simple generalization of detection of live expressions to  "minimum 
distance  analysis" where each live expression is accompanied by  the  minimum 
distance to an occurrence of the expression. The optimizing pools in this case 
are  sets  of ordered pairs (e,d), where e is a live expression and d  is  the 
minimum  distance  (in program steps) to an occurrence of  e.  The  optimizing 
function extends live expression analysis by tabulating a distance measure  as 
the  live  expression  analysis  proceeds. In  addition,  the  meet  operation 
consists of both set union and a comparison of the distances corresponding  to 
each  live expression. This minimum distance information can then be  used  in 
the register replacement decision: whenever all registers are busy and contain 
live expressions, the register containing the live expression with the largest 
distance to its occurrence is displaced.

Examples  are given in the section which follows, demonstrating the f2 and  f3 
optimizing functions when used in conjunction with the algorithm A.

Section 7: A tabular form for the algorithm A
---------------------------------------------

                                Table I
  ┌──────┬───┬───────────────────────────┬───────────────────────────┬───┐
  │ Step │ N │ PN ← PN ^ Pi              │ f(N,PN)                   │ L │
  ├──────┼───┼───────────────────────────┼───────────────────────────┼───┤
  │   1  │   │                           │ 0                         │/A │
  │   2  │(A)│ 0                         │ a,1                       │/B │
  │   3  │(B)│ a,1                       │ a,1|c,0                   │/0 │
  │   4  │ C │ a,1|c,0                   │ a,1|c,0|b,2               │/D │
  │   5  │ D │ a,1|c,0|b,2               │ a,1|c,0|b,2|d,a+b,3       │/E │
  │   6  │ E │ a,1|c,0|b,2|d,a+b,3       │ a,1|c,0|b,2,e,b+c|d,a+b,3 │/F │
  │   7  │ F │ a,1|c,0|b,2,e,b+c|d,a+b,3 │ a,1|b,2,e|d,a+b,3|c,4     │/0 │
  │   8  │(C)│ a,1                       │ a,1|b,2                   │/D │
  │   9  │(D)│ a,1|b,2                   │ a,1|b,2                   │/E │
  │  10  │(E)│ a,1|b,2|d,a+b,3           │ a,1|b,2|d,a+b,3|b+c,e     │/F │
  │  11  │(F)│ a,1|b,2                   │ a,1|b,2|c,4               │/0 │
  └──────┴───┴───────────────────────────┴───────────────────────────┴───┘

The  processing  of the algorithm A can be expressed in a  tabular  form.  The 
tabular  form  allows presentation of a number of examples,  and  provides  an 
intuitive  basis  for implementing the optimizing techniques.  In  particular, 
this  form allows representation of the approximate optimizing pools  at  each 
node,  the elements of L, and the node traversing decision. As shown in  Table 
I, the column labeled "N" contains the current node being processed (i.e., the 
N  in  L' = (N,Pi) in step A5). The column labeled "PN ← PN ^  Pi"  shows  the 
change  in the approximate pool at node N when the node is traversed  in  step 
A5.  The column marked "f(N,PN)" contains the output optimizing pool  produced 
by  traversing  the  node N (the set braces are  omitted  for  convenience  of 
notation). The last column, marked "L", represents the set of nodes  remaining 
to be processed (the set L of the algorithm A).

Paraphrasing the algorithm A, the tabular form is processed as follows.

     1. List  all  entry nodes and entry pools vertically  in  the  right-hand 
        columns, with entry node ei in column L, and associated entry pool  xi 
        in  column f(N,PN). Normally, there is only one entry node,  with  the 
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        null set as an entry pool.

     2. Select  an  L' from L as follows. Choose any node from column  L,  say 
        node  N.  If there are no elements remaining in L then  the  algorithm 
        halts. The line where N was added to L contains the associated  output 
        pool  Pi in the column f(N,PN). Eliminate L' from L by crossing out  N 
        from column L.

     3. Using  L' = (N,Pi) from step 2, scan the table from the bottom  upward 
        to the first occurrence of node N in column N. The current approximate 
        pool  PN  is adjacent in the column PN ← PN ^ Pi. If node  N  has  not 
        appeared  in column N, then assume the first approximation to PN  =  1 
        (and hence, PN ← 1 ^ Pi = Pi).

     4. If  PN  ≤ Pi then go to step 2. Otherwise, write the node  name  N  in 
        column N, and the value of the new approximate pool determined by PN ^ 
        Pi  in the column marked PN ← PN ^ Pi. Compute the output  pool  based 
        upon the new approximate pool PN in the column f(N,PN), and write  the 
        names of the immediate successors of N in column L. Go back to step 2.

Upon  termination of this algorithm, the table is scanned from bottom to  top; 
the first occurrence of each node N  N is circled (ROCHE> Surrounded with  "( 
)". Example: "(A)".). The pool associated with each circled node in column  PN 
← PN ^ Pi is the final pool for that node. Any nodes of N which do not  appear 
in  column N cannot be reached from an entry node, and can be eliminated  from 
the program graph.

Table  I shows the analysis of the program graph given in Figure 1, using  the 
f2  optimizing function. The entry node set for this analysis is  =  {(A,0)}, 
as before. L is treated as a stack; elements are removed from the lower  right 
position of column L in step 2. After processing the graph, the final pools at 
each  node are listed in the table opposite the circled nodes. The final  pool 
at node E, for example, is

        PE = {a,1|b,2|d,a+b,3}.

The  final  pools determined by the algorithm correspond to  those  determined 
previously in Section 2.

                                        A┌───────┐ 
                                 Entry:  │ x:=10 │
                                         └───┬───┘
                                             V
                                        B┌───────┐ 
                                         │  x∙y  │
                                         └───┬───┘
                                             V
                                        C┌───────┐
           ┌────────────────────────────>│   x   │<────┐
           │                             └───────┘     │
       F┌──┴──┐   E┌──────┐   D┌──────┐    │   │   G┌──┴──┐
        │ u∙y │<───┤ u:=x │<───┤ x:=5 │<───┘   └───>│ x∙y │
        └─────┘    └──────┘    └──────┘             └─────┘

        Figure 6. A program graph with two parallel feedback loops.

                        Table II
  ┌──────┬───┬──────────────────────────┬──────────────────────────┬─────┐
  │ Step │ N │ PN ← PN ^ Pi             │ f(N,PN)                  │  L  │
  ├──────┼───┼──────────────────────────┼──────────────────────────┼─────┤
  │   1  │   │                          │ 0                        │/A   │
  │   2  │(A)│ 0                        │ x,10                     │/B   │
  │   3  │(B)│ x,10                     │ x,10|y|x∙y               │/C   │
  │   4  │ C │ x,10|y|x∙y               │ x,10|y|x∙y               │/D,/G│
  │   5  │ G │ x,10|y|x∙y               │ x,10|y|x∙y               │/C   │
  │   6  │ D │ x,10|y|x∙y               │ 10|y|x∙y|x,5             │/E   │
  │   7  │(E)│ 10|y|x,5                 │ 10|y|x,5,u               │/F   │
  │   8  │(F)│ 10|y|x,5,u               │ 10|y|x,5,u|u∙y,x∙y       │/C   │
  │   9  │(C)│ x|10|y|x∙y               │ x|10|y|x∙y               │/D,/G│
  │  10  │(G)│ x|10|y|x∙y               │ x|10|y|x∙y               │/C   │
  │  11  │(D)│ x|10|y|x∙y               │ x,5|10|y                 │/E   │
  └──────┴───┴──────────────────────────┴──────────────────────────┴─────┘

Figure 6 shows a program graph with two parallel feedback loops. The  analysis 
of  this program is given in Table II, using the f2 optimizing function.  Note 
that in step 8,
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        PF = {10|y|x,5,u}.

Applying f2(F,PF), the resulting output pool is

        {10|y|x,5,u|u∙y,x∙y}.

The  expression  x∙y  is placed into the class of u∙y when  the  partition  is 
structured. That is, x∙y is an expression which occurs in the program, and x∙y 
is  operand equivalent to u∙y. Thus, x∙y must be added to the class of u∙y  in 
the output pool. The redundant expression x∙y is detected at node G since  the 
final pool PG contains x∙y.

           G┌─────┐            D┌──────┐ E┌──────┐ F┌─────┐
        ┌──>│ x∙y ├────┐   ┌────┤ x:=5 │<─┤ u:=x │<─┤ u∙y │<──┐
        │   └─────┘    │   │    └──────┘  └──────┘  └─────┘   │
        │              V   V                                  │
        │           C┌───────┐                                │
        └──────<─────┤   x   ├────>───────────────────────────┘
              Entry: └───┬───┘
                         V
                    B┌───────┐
                     │  x∙y  │
                     └───┬───┘
                         V
                    A┌───────┐
                     │ x:=10 │
                     └───────┘

        Figure  7.  The reversed graph corresponding to the program  graph  of 
        Figure 6.

                        Table III
  ┌──────┬───┬──────────────────────────┬───────────────────────┬────────┐
  │ Step │ N │ PN ← PN ^ Pi             │ f(N,PN)               │    L   │
  ├──────┼───┼──────────────────────────┼───────────────────────┼────────┤
  │   1  │   │                          │ 0                     │/C      │
  │   2  │ C │ 0                        │ x                     │/B,/F,/G│
  │   3  │ G │ x                        │ x,y,x∙y               │/C      │
  │   4  │(C)│ x,y,x∙y                  │ x,y,x∙y               │/B,/F,/G│
  │   5  │(G)│ x,y,x∙y                  │ x,y,x∙y               │/C      │
  │   6  │(F)│ x,y,x∙y                  │ x,y,x∙y,u,u∙y         │/E      │
  │   7  │(E)│ x,y,x∙y,u,u∙y            │ x,y,x∙y               │/D      │
  │   8  │(D)│ x,y,x∙y                  │ y                     │/C      │
  │   9  │(B)│ x,y,x∙y                  │ x,y,x∙y               │/A      │
  │  10  │(A)│ x,y,x∙y                  │ y,10                  │        │
  └──────┴───┴──────────────────────────┴───────────────────────┴────────┘

Global  live  expressions analysis can be performed on the  program  graph  of 
Figure  6 by reversing the graph, as shown in Figure 7. Given that node  C  is 
the  exit  node of the original graph, node C becomes the entry  node  of  the 
reversed  graph. Thus,  = {(C,0)} in the analysis shown in Table  III,  using 
the f3 optimizing function. For example, the final pool

        PA = {x,y,x∙y}

indicates  that  the expression x, y, and x∙y are live  immediately  following 
node A in the original graph.

This  tabular  form  can be used for processing any  program  graph  using  an 
optimizing function which satisfies the conditions of the algorithm A.

Section 8: Implementation notes
-------------------------------

Implementation  of the above optimizing techniques in a practical compiler  is 
considered  below. In particular, the optimizer operates upon an  intermediate 
form of the program, such as tree structures or Polish [Ref.24], augmented  by 
branching information. The control flow analyzer accepts the intermediate form 
and  calls  the  various optimizing functions to  process  each  basic  block, 
roughly  paralleling the tabular form given previously. A single stack can  be 
used to list uninvestigated basic blocks, corresponding to "L" of the  tabular 
form.  Pool information must be maintained for each basic block  corresponding 
to the "PN ← PN ^ Pi" column, but may be discarded and replaced if the node is 
encountered  again in the analysis (i.e., the node reappears in  column  "N"). 
The  output  optimizing  pools found in columns  "f(N,PN)",  however,  can  be 
intersected with all immediate successors as they are produced, and thus  need 
not  be maintained during analysis. The final optimizing pools (determined  by 
"scanning"  the  tabular form) are simply the current pools attached  to  each 
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basic block.

The  optimizing  functions  and corresponding meet  operations  are  generally 
simple  to implement using bit strings for sets, and lists for ordered  pairs. 
Common  subexpression  elimination, however,  requires  further  consideration 
since  direct  representation  and manipulation of  structured  partitions  is 
particularly unwieldy.

One approach to handling structured partitions allows direct representation of 
the classes, but limits the number of expressions which appear. A list of  all 
(sub)expressions  is  constructed by prescanning the  program  (an  optimizing 
function which always returns 0 is useful for this scan). When a partition  is 
structured,  only  those expressions which occur in the  expression  list  are 
included.  The  set of eligible expressions can be further  reduced  by  first 
performing  live  expression  analysis.  The expressions  which  appear  in  a 
partition  are limited to the live expressions at the point the  partition  is 
generated.  The  use of live expression analysis before  common  subexpression 
elimination  will generally reduce partition size and improve the  convergence 
rate of the analysis algorithm.

A  second  approach to representation of structured  partitions  involves  the 
assignment  of  "value  numbers" to the expressions in  the  optimizing  pools 
[Ref.13,24,33,34]. A value number is a unique integer assigned to all elements 
of the same class. The sequence of statements

        a:=b+c; d:=b; e:=a;

results in the structured partition

        P1 = {b,d|c|b+c,d+c,a,e}.

Next,  assign the value numbers 1, 2, and 3 to the three classes, and  replace 
the expressions b+c and d+c by (1)+(2), representing the addition of  elements 
of class (1) and class (2). P1 can now be written as

        P2 = { b,d| c |(1)+(2),a,e }.
               (1) (2)     (3)

Similarly, the sequence of assignments

        a:=d; b:=c; e:=b+c;

produces the structured partition represented by

        P2 = { a,d| b,c |(5)+(5),e }.
               (4)  (5)     (6)

which expands to

        P2 = {a,d|b,c|b+c,b+b,c+b,c+c,e}.

Thus, the assignment of value numbers provides a data structure whose size  is 
linear in the number of expressions in the basic block. In addition, the value 
number  representation  is  particularly  easy to construct  and  use  in  the 
detection of common subexpressions.

Given two partitions P1 and P2 in value number form, the meet operation P = P1 
  P2  can  be  iteratively computed. The  computation  proceeds  as  follows. 

Construct  a  list  C consisting of the number of occurrences  of  each  value 
number in P1. The elements of C thus provide a count of the number of elements 
in  each  class of P1. This count is decremented whenever an  element  of  the 
class  is processed, until the count goes to zero indicating the entire  class 
is exhausted.

A list R is also maintained, which gives a mapping of the class numbers in  P1 
and P2 to the resulting class numbers in P. The elements of R are of the  form 
r(r1,r2), indicating that value number r1 from P1 and value number r2 from  P2 
map  to  value number r in the resulting partition P. R is  built  during  the 
construction of P.

The  elements  of  P1 are scanned and processed until the classes  of  P1  are 
exhausted.  Suppose q is an identifier in P1 with value number v1.  The  count 
corresponding to v1 in the list C is first decremented. If q does not occur in 
P2  then  the next element of P1 is selected. Otherwise, let v2 be  the  value 
number corresponding to q in P2. R is scanned for an element v(v1,v2); if  not 
found,  a  new  value number v is assigned, and v(v1,v2) is added  to  R.  The 
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identifier q is placed into P with value number v.

If the element selected from P1 is not an identifier, then it is an expression 
of  the  form  (n1) Θ (m1) with value number v1, where n1  and  m1  are  value 
numbers  in P1 (assuming all operations Θ are binary). If the count of  either 
class (n1) or (m1) is non-zero in C, defray the processing of this expression; 
otherwise,  decrement the count for class (v1) in C, as above. Examine  R  for 
pairs  of elements n(n1,n2) and m(m1,m2) where n2 and m2 are value numbers  in 
P2.  For each such pair, search P2 for an entry (n2) Θ (m2). If found, let  v2 
be  the value number of this matched expression. Scan R for an element of  the 
form v(v1,v2), and make a new entry if not found, as above. The expression (n) 
Θ (m) with value number v is then placed into the intersection P.

As  an  example, consider the class intersection of the partitions P1  and  P2 
given previously. These partitions are represented by the value number tables

             P1              P2
        exp     val#    exp     val#
        ---     ----    ---     ----
         b      (1)      a      (4)
         d      (1)      d      (4)
         c      (2)      b      (5)
      (1)+(2)   (3)      c      (5)
         a      (3)   (5)+(5)   (6)
         e      (3)      e      (6)

The class count list C for the partition P1 is initially

        val#    count
        ----    -----
        (1)       2
        (2)       1
        (3)       3

The identifiers b, d, and c are processed first, reducing the class counts for 
(1) and (2) to zero in C. The class mapping list at this point is

        R = {7(1,5),8(1,4),9(2,5)}.

The identifiers b, d, and c are placed into P with value numbers 7, 8, and  9, 
respectively.  The expression (1)+(2) with value number (3) is then  processed 
from P1, since the class counts for both (1) and (2) are zero. Based upon  the 
mappings  in R, P2 is searched for an occurrence of (5)+(5) or (4)+(5).  Since 
(5)+(5) occurs in P2 with value number (6), R is scanned for an element of the 
form  v(3,6), and, since no such element is found, 10(3,6) is added to R.  The 
expression  (7)+(9) with value number (10) is included in P. The identifier  a 
is then processed, resulting in another mapping 11(3,4) in R; a is added to  P 
with  value number (11). Finally, the identifier e from P1 with  value  number 
(3)  is  processed. A match is found in P2 with value number  (6).  Since  the 
element  10(3,6) is already in R, e is added to P with value number (10).  The 
final value of the class list is

        R = {7(1,5),8(1,4),9(2,5),10(3,6),11(3,4)}

which can now be discarded. The value of the resulting partition P is

        exp     val#
        ---     ----
         b      (7)
         d      (8)
         c      (9)
      (7)+(9)   (9)
         a      (11)
         e      (10)

which represents the structured partition

        {b|d|c|b+c,e|a}.

Note that the predicate P2 ≥ P1 is easily computed during this process.

The control flow analysis algorithm has been implemented as a  general-purpose 
optimizing module, including several optimizing functions. The  implementation 
is described in some detail elsewhere [Ref.33].
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Section 9: Conclusions
----------------------

An algorithm has been presented which, in conjunction with various  optimizing 
functions,  provides  global program optimization. Optimizing  functions  have 
been  described  which  provide  constant  propagation,  common  subexpression 
elimination, and a degree of register optimization.

The functions which have been given by no means exhaust those which are useful 
for  optimization. Simplifying formal identities such as 0+x = 0+x = x can  be 
incorporated  to further coalesce equivalence classes at each  application  of 
the  f2  optimizing  function.  In addition, it may  be  possible  to  develop 
functions which extend live expression analysis to completely solve the global 
register allocation problem.
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Appendix A: Analysis
--------------------

 1  A1: L = {(A,0)}

 2  A3: L' = (A,0), L = 0

 3  A4: PN = PA = 1, Pi = 0, PA  Pi, PA ← PA ^ Pi = Pi = 0

 4  A5: PA = 0, L = {(B,{(a,1)})}

 5  A3: L' = (B,{(a,1)}), L = 0

 6  A5: PB = {(a,1)}, L = {(C,{(a,1),(c,0)})}

 7  A3: L' = (C,{(a,1),(c,0)}), L = 0

 8  A5: PC = {(a,1),(c,0)}, L = {(D,{(a,1),(c,0),(b,2)})}

 9  A3: L' = (D,{(a,1),(c,0),b,2)}), L = 0

10  A5: PD = {(a,1),(c,0),(b,2)}, L = {(E,{(a,1),(c,0),(b,2),(d,3)})}

11  A3: L' = (E,{(a,1),(c,0),(b,2),(d,3)}), L = 0

12  A5: PE = {(a,1),(c,0),(b,2),(d,3)},
        L  = {(F,{(a,1),(c,0),(b,2),(d,3),(e,2)})}

13  A3: L' = (F,{(a,1),(c,0),(b,2),(d,3),(e,2)}), L = 0

14  A5: PF = {(a,1),(c,0),(b,2),(d,3),(e,2)},
        L  = {(C,{(a,1),(c,4),(b,2),(d,3),(e,2)})}

15  A3: L' = (C,{(a,1),(c,4),(b,2),(d,3),(e,2)}), L = 0

16  A5: PC = {(a,1), L = {(D,{(a,1),(b,2)})}

17  A3: L' = (D,{(a,1),(b,2)])}, L = 0
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18  A5: PD = {(a,1),(b,2)}, L = {(E,{(a,1),(b,2),(d,3)})}

19  A3: L' = (E,{(a,1),(b,2),(d,3)}), L = 0

20  A5: PE = {(a,1),(b,2),(d,3)}, L = {(F,{(a,1),(b,2),(d,3)})}

21  A3: L' = (F,{(a,1),(b,2),(d,3)}), L = 0

22  A5: PF = {(a,1),(b,2),(d,3)}, L = {(C,{(a,1),(b,2),(d,3),(c,4)})}

23  A3: L' = (C,{(a,1),(b,2),(d,3),(c,4)}), halt.

Appendix B: Proof
-----------------

The proof of Theorem 2 is given below. First note that, given a program  graph 
G  with  multiple entry nodes, an augmented graph G' can be  constructed  with 
only one entry node with entry pool 0. The construction is as follows. Let  = 
{e1,e2,...,ek} be the entry node set and  = {(e1,x1),(e2,x2),...,(ek,xk)}  be 
the  entry  pool  set corresponding to a  particular  analysis.  Consider  the 
augmented graph G' = <N',E'> where N' = N  {v,v1,...,vk}  v,vi  N  i, 1  ≤ 
i ≤ k, and E' = E  {(v,v1),(v,v2),...,(v,vk),(v1,e1),...(vk,ek)}.

The augmented graph G' has a single entry node v and entry node set ' =  {v}. 
The functional value of f is defined for these nodes as

        f(v,P) = 0       P  P,
and
        f(vi,P) = xi     P  P, 1 ≤ i ≤ k.

Hence,  the  analysis proceeds as if there is only a single  entry  node  with 
entry pool 0; i.e., ' = {(v,0)}.

Lemma 1
-------

If  f(N,P1 ^ P2) = f(N,P1) ^ f(N,P2) then P1 ≤ P2 => f(N,P1) ≤ f(N,P2),  N   
N, P1,P2  P.

Proof
-----

The proof is immediate since P1 ≤ P2 => f(N,P1 ^ P2) = (f(N,P1) ^ f(N,P2))  => 
f(N,P1) ≤ f(N,P2).

Lemma 2
-------

Let X  P, if f(N,P1 ^ P2) = f(N,P1) ^ f(N,P2)  N  N, P1,P2  P then

        f(N,/\x) = /\f(N,x).
           x X    x X

Proof
-----

The proof proceeds by induction on the cardinality of X, denoted by Ƈ (X).  If 
Ƈ(X) = 1 then f(N,/\x) = f(N,x) and the lemma is trivially true.
                  x X
If Ƈ(X) = k, k > 1, assume lemma is true for all X'  Ƈ(X') < k. Let y  X and 
X' = X - {y}.

        f(N,/\x) = f(N,y^(/\x)) = f(N,y) ^ f(N,/\x) =
            x X           x X                  x X

        f(N,y) ^ (/\,f(N,x)) = /\f(N,x)
                  x X          x X

Proof of Theorem 2
------------------

It will first be shown by induction on the path length that
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        PN ≤ XN  N  N.

Consider the following proposition on n:

        PN ≤ f(pn,f(pn-1,...,f(p1,0))...) for all final pools PN and paths  of 
        length n from the entry node p1 with entry pool 0 to node N,  N  N.

The  trivial  case is easily proved. The only node which can be reached  by  a 
path  of  length  0 from the entry node p1 is p1 itself.  Hence,  it  is  only 
necessary  to show that pp1 ≤ 0. This is immediate, however, since  (p1,0)  is 
initially  placed into L in step A1, and extracted in step A3 as L' =  (p1,0). 
But, pp1 is initially 1, and hence pp1  pi = 0 in step A4. Thus, pp1 ← pp1  ^ 
0 = 0 in step A5. Thus, it follows that pp1 = 0 ≤ 0.

        Suppose the proposition is true for all n < k, for k > 0. That is,  PN 
        ≤ f(pn,...,f(p1,0))...) for all paths of length less than k from p1 to 
        node N, for each node N  N.

Let  K   N   a path (P1,...,pk,K) of length k. It will be shown that  PK  ≤ 
f(pk,f(pk-1,...,f(p1,0))...).

Consider  each  immediate  predecessor  in I-1(K).  Let  pk  denote  one  such 
predecessor, and let T = f(pk-1,...,f(p1,0))...). By inductive hypothesis, ppk 
≤ T. It will be shown that PK  f(pk,T).

Since  Ppk  is the final approximation to the pool at pk,  (K,f(pk,Ppk))  must 
have been added to L in step A5. But, Ppk ≤ T => f(pk,Ppk) ≤ f(pk,T) by  Lemma 
1.  The pair (K,f(pk,Ppk)) must be processed in step A3 before  the  algorithm 
halts. Thus, either PK ≤ f(pk,Ppk) in step A4, or PK ← PK ^ f(pk,Ppk).

In either case, PK ≤ f(pk,PPK). But

        PK ≤ f(pk,Ppk) ≤ f(pk,T) => PK ≤ f(pk,T)

        => PK ≤ f(pk,f(pk-1,...,f(p1,0))...).

Thus,  since  the  proposition  holds for paths of length  k,  it  follows  by 
induction  that the proposition is true for all paths from the entry  node  to 
node N, for all N  N.

The  following claim will be proved in order to show that XN ≤ PN for all N   
N:  at any point in the processing of G by the algorithm A, either N  has  not 
been  encountered in step A5, or XN ≤ PN, where PN is the current  approximate 
pool associated with node N, for all N  N. The proof proceeds by induction on 
the  number  of  times step A5 has been executed. Suppose  step  A5  has  been 
executed only once. Then L' = (p1,0) and the only node encountered in step  A5 
is  the entry node p1. The entry pool 0 corresponds to a path of  length  zero 
from p1 to p1. Thus, 0   Fp1 => Xp1 = 0 and the proposition is trivially true 
since Xp1 = 0 ≤ Pp1 = 0.

Suppose that either N has not been encountered in step A5, or XN ≤ PN  N   N 
when step A5 has been executed n < k times, k > 1. Consider the kth  execution 
of step A5. Let L' = (N,T) where T = f(N',PN') for some N'  I-1(N). The  pair 
(N,T)  was added to L when the node N' was processed in the nth  execution  of 
step  A5,  for n < k. Hence, XN' ≤ PN', by inductive  hypothesis.  But,  using 
Lemma 2,

        XN ≤ /\f(N',f(pt,...,f(p1,0))...) =
              paths
         (p1,...,pt,N',N)

        f(N',/\(pt,f(pt-1,...,f(p1,0))...) =
              paths
         (p1,...,pt,N',N)

        f(N',XN').

XN' ≤ PN', and thus XN ≤ f(N',XN') => XN ≤ f(N',PN') = T, using Lemma 1.
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If  this  step is the first occurrence of node N in A5, then PN ← 1 ^  T  =  T 
since f(N',P) ≠ 1 for any N'  N, P  P. In this case, XN ≤ PN = T after  step 
A5. Otherwise, suppose this is not the first occurrence of node N in step  A5. 
XN  ≤  PN  and  XN ≤ T => XN ≤ PN ^ T => XN ≤ PN ← PN ^ T  after  step  A5  is 
executed.  Hence,  the  proposition holds for each execution of  step  A5.  In 
particular,  XN ≤ PN  N  N upon termination of the algorithm A.  Hence,  the 
theorem is proved since

        PN ≤ XN and XN ≤ PN => XN = PN  N  N.

EOF
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- "High-level language simplifies microcomputer programming"
   Gary Kildall
  "Electronics", June 27, 1974, pp.103-109

(Retyped by Emmanuel ROCHE.)

Abstract:  Just  as  FORTRAN  and BASIC sharply reduce  the  time  and  effort 
required to program large computers, so Intel's PL/M eases the programming  of 
systems based on LSI microprocessors; here are step-by-step directions.

The  microcomputer  is  being  applied to more and more  tasks  that  are  not 
economically feasible for a minicomputer, with its larger instruction set  and 
higher speed and cost. Although the microprocessor is slower than the  central 
processor of a minicomputer, it can easily perform many tasks that are complex 
enough to require extensive digital processing.

What's   more,   microprocessors,  which  serve  as  central   processors   of 
microcomputers  and are generally made with MOS large-scale  integration,  are 
constantly attaining higher speeds and higher circuit density per chip. As the 
capabilities  of microcomputers are being ever extended, programming aids  are 
being developed to simplify their use, while minimizing design and development 
time. These aids sometimes require use of a larger computer; when this is  the 
case,  they  can be used either on commercial time-sharing networks  or  on  a 
user's own large in-house computer.

The  microcomputer  may be viewed as a ROM-driven LSI logic chip  because  the 
microcomputer  can execute complicated sequences of instructions stored in  an 
external memory. Thus, the microcomputer chip connected to a read-only  memory 
containing the proper data can appear to be a single custom chip. In this way, 
the  system designer can substitute microcomputer programming for  traditional 
hard-wired  logic  design or custom chip fabrication,  gaining  advantages  in 
reduced development time, ease of design change, and reduced production costs.

The application of microcomputers points up the common ground between software 
and hardware designers. While software-system designers can use microcomputers 
most effectively when they are aware of the hardware environment, the hardware 
designer is well advised to learn the basic techniques of the programmer.

These  techniques  include  how to use assemblers,  compilers,  and  processor 
simulators,  which are effective tools in developing and debugging  large  and 
small microcomputer programs. This article introduces these programming  tools 
to the hardware designer and specifically examines the advantages of the  PL/M 
language,  which  make  possible  rapid design of  systems  around  the  MCS-8 
microcomputer, made by Intel Corp.

The  MCS-8 is based on the 8008 microprocessor, one of a new class of  devices 
being  offered  by  several manufacturers as a result of  recent  advances  in 
semiconductor  electronics. The PL/M programming aid is a good example of  the 
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service  that  these  manufacturers can offer to simplify  the  use  of  their 
products.

Minimizing software costs 
-------------------------

Like  other programming tools, the PL/M approach automates the  production  of 
programs to counteract the rapidly increasing cost of software production at a 
time when hardware costs are decreasing. And, in addition to rapid  production 
turnaround, the programs can be fully checked out early in the design process. 
What's more, the self-documentation of PL/M programs enables one programmer to 
readily  understand the work of another, which dramatically  reduces  program-
maintenance   costs   and  provides  transportability  of   software   between 
programmers and to other Intel processors as they are introduced.

Additional cost reductions will also result from standardization of parts  and 
modules,  and  alterability of the final program often outweighs  benefits  of 
random-logic designs or custom-chip fabrication.

The PL/M compiler, which is another program, translates the PL/M program  into 
machine language. This compiler, which can be run on a medium- or  large-scale 
computer, is available from several nationwide time-sharing services.

Last  but  not least, PL/M programs can be recompiled as  improved  optimizing 
versions  of the compiler are released, as Intel has recently done.  A  recent 
revision  of  the  PL/M compiler, for example,  makes  possible  reduction  of 
generated code by about 15%.

Although  PL/M  requires a cross-compiler -- one that runs only  on  a  larger 
machine  -- a resident compiler that uses the microcomputer itself to  produce 
its programs is technically feasible with the advanced state of micro-computer 
development and today's inexpensive peripherals. Such a compiler would require 
several passes to reduce a PL/M source program to machine language, using  the 
developmental  system  itself,  and  eliminating  the  need  for  large-system 
support.

A program for the Intel 8008 microprocessor is a sequence of instructions from 
its  normal instruction set (see "Hardware for PL/M" box, at the end  of  this 
article)  that  performs  a particular task. Given no  programming  aids,  the 
designer  must  determine  the  machine  codes  that  represent  each  of  the 
instructions  in his program and store these codes into program  memory.  This 
approach  to programming quickly becomes unwieldy in all but the most  trivial 
projects.

Nearly  all manufacturers of microprocessors (and mini- and  maxicomputers  as 
well)  provide symbolic assemblers -- programs that ease the programming  task 
by  eliminating  the  need to translate instructions  manually  into  machine-
readable  form.  The designer can express his program in terms  of  mnemonics, 
which  are  abbreviations  that  suggest  individual  instructions.  Then  the 
assembler translates each mnemonic instruction into its binary representation.

Symbolic addresses 
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------------------

In  addition, the programmer can refer to memory locations by  symbolic  name, 
rather than actual numeric address; the assembler translates these, as well as 
the  instructions. The assembler usually runs on a larger  computer,  although 
both  Intel  Corp. and National Semiconductor Corp. have assemblers  that  run 
directly  on  their  microcomputer-based  development  systems,  and  symbolic 
programs  for  Rockwell  microcomputers can be assembled on  a  machine  built 
around  that unit by Applied Computer Technology Inc. The  assembler  requires 
significantly less development and check-out time than manual translation, and 
there are fewer coding errors.

Assembly-language programming, however, is necessarily closely related to  the 
machine  architecture because instructions in symbolic code have a  one-to-one 
correspondence  with those in machine code. As a result, the  programmer  must 
spend much more time keeping track of the location of data elements and proper 
register usage than actually conceptualizing the solution to his problem.

On large-scale computers, high-level languages have been developed to  provide 
important facilities independently of particular machine architectures,  while 
eliminating  the trivialities of assembly languages. These facilities  include 
program-control structures, data types, and primitive operations suitable  for 
concise  expressions  of  programs in  particular  problem  environments.  For 
example,  a problem environment may be one of numerical computation, in  which 
application-oriented   programming  languages  like  BASIC  and  FORTRAN   are 
appropriate.  Or the environment may be the control of a particular  class  of 
computer  and  all  its  functions, for  which  system  languages,  which  are 
necessarily closely related to the machine architecture, are useful.

In  a system language, program statements generally correspond  directly  with 
machine-level  instructions,  and  conversely,  every  machine  operation   is 
reflected in a high-level language statement. Because of this  correspondence, 
system-language programs usually translate efficiently to the machine-language 
level,  and  the  programmer  finds  all  the  machine's  facilities  directly 
available  to him. PL/M, an example of such a language, was designed  for  use 
with  the  8008  microprocessor, and is also usable with  Intel's  newer  8080 
microprocessor ["Electronics", April 18 (1974), p. 95], which has more  useful 
machine-level  instructions and a consideraibly faster instruction cycle  than 
its predecessor.

Nevertheless, some hardware designers, particularly those newly introduced  to 
software  systems, may prefer to work at a comfortable level, which  may  mean 
programming  in  absolute machine code initially and then moving  to  assembly 
language  as more capability is required. Similarly, they can easily make  the 
transition  to  a high-level language when  programming  in  assembly-language 
becomes tedious.

In  any  case,  the designer soon becomes familiar  with  various  programming 
levels.  One  of  these  levels can then be  intelligently  selected  as  most 
appropriate  for a given application. Each level has its own  advantages.  For 
example, a program in PL/M that compiles into about 500 bytes of memory  space 
when  using  the 8008's instruction set might require perhaps as much  as  30% 
less space if it were coded directly in assembly language. But larger programs 
running  1,000 bytes or more usually turn out to be more compact when  written 
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in  PL/M  than in assembly language because the compiler can keep  track  more 
easily  of memory-reference areas, registers, and other resources. The  amount 
of machine code generated in assembly language or PL/M varies, of course, with 
program complexity and style. Thus, an absolute comparison between the two  is 
not possible.

Simple coding 
-------------

The  PL/M  language  consists of a number of basic statement  types  in  which 
complicated arithmetic, logical, and character operations on 8-bit and  16-bit 
quantities  can  be expressed in a form resembling usual  algebraic  notation. 
Relational  tests  can be expressed in a natural way  to  control  conditional 
branching throughout the PL/M program.

For  example, to move the larger of two numbers in locations A and B into  the 
location called C, either the PL/M statement, 

        IF A > B THEN C=A; ELSE C=B 

or  the  nine-instruction assembly-language program shown in Figure 1  can  be 
used. The statement reads, "If the value of A is greater than the value of  B, 
then set C to equal A; otherwise set C to equal B."

        +-------------------------------------------------------+
        |       LABEL   INSTRUCTION     COMMENT                 |
        |       -----   -----------     -------                 |
        |       TEST    SHL     B       Load address of B       |
        |               LAM             Load B into Accum       |
        |               SHL     A       Load address of A       |
        |               CPM             Compare B with A        |
        |               JFC     L1      Jump to L1 if B <= A    |
        |               LAM             Load A into Accum       |
        |       L1      SHL     C       Load address of C       |
        |               LMA             Store Accum into C      |
        |               END             End of program          |
        +-------------------------------------------------------+

        Figure 1. Symbolic. This simple program for choosing the larger of two 
        numbers takes nine lines of code in symbolic or assembly language, but 
        typically only one line in a higher-level language, such as PL/M.

Additional  language  structures provide iteration control to  permit  program 
segments to be "looped", or executed repeatedly a prescribed number of  times. 
Subroutine   facilities  include  mechanisms  that  are  useful  for   modular 
programming and construction of subroutine libraries.

The  overall structure of the PL/M language is most easily demonstrated  by  a 
simple  example. Suppose a teleprinter is connected to  the  least-significant 
bit  of  an output port of the Intel 8008. A PL/M program that sends  a  short 
message  to  the teleprinter is shown in Figure 2; it individually  times  the 
transmission  of  the  bits  through the output  port.  This  program  can  be 
translated into machine code loaded into the memory of the MCS-8, and then  it 



file:///C|/...rate%20Histories%20Report%20to%20CHM/DRI/Emmanuel%20Roche%20documents%20conversion/Kildall.(zip)/GKHLL.TXT[2/6/2012 10:28:05 AM]

is executed.

+-----------------------------------------------------------------------+
|  LINE  STATEMENT                                                      |
|  ----  ---------                                                      |
|    1   DECLARE message DATA ('walla walla wash'),                     |
|    2          (char, i, j, sendbit) BYTE;                             |
|    3                                                                  |
|    4   /* Send each character from message vector to teleprinter '*/  |
|    5   DO i = 0 TO LAST (message);                                    |
|    6      char = message (i);                                         |
|    7      sendbit = 0;                                                |
|    8                                                                  |
|    9      /* Send each bit from char to teleprinter */                |
|   10      DO j = 1 TO 11;                                             |
|   11         OUTPUT (0) = sendbit                                     |
|   12         CALL TIME (91);        /* Waits 9.1 ms */                |
|   13         sendbit = char AND 1;                                    |
|   14         /* Rotate char for next iteration */                     |
|   15         char = ROR (char OR 1, 1);                               |
|   16      END;                                                        |
|   17   END;                                                           |
+-----------------------------------------------------------------------+

        Figure 2. Serial sender. To print a short message on a Teletype,  this 
        routine  in PL/M transmits 11 pulses at 9.1-millisecond intervals  for 
        each character in the message, stopping after the last one. The  pulse 
        train  consists  of one start pulse, eight data pulses, and  two  stop 
        pulses.

The  program  begins with a data declaration that defines a  string  of  ASCII 
characters  --  the  words  "Walla Walla Wash" as shown  in  line  1.  The  16 
individual characters of this string are labeled from 0 to 15 so that they can 
be  addressed by the program (spaces are characters, too). Four variables,  or 
8-bit memory locations, CHAR, I, J, and SENDBIT, are defined on line 2.

Any names 
---------

These  designations are wholly arbitrary; the programmer may use any names  he 
wants,  so  long  as  he defines them before he uses  them.  CHAR  holds  each 
character  of  the message in succession for transmission,  I  identifies  the 
position  of the character in the message, and J controls the position of  the 
bit  in the character. The right-most bit of location SENDBIT is the next  bit 
to be transmitted.

Since the instructions between lines 5 and 17 are executed repetitively,  they 
are  collectively  called a loop. Before each repetition, the  variable  I  is 
incremented  until its value indicates the position of the last  character  in 
MESSAGE -- in this case, 15.

First, the value of all bits in SENDBIT is set to 0 on line 7 to send a  start 
pulse  as  the first bit (line 11). Then the individual bits of  the  selected 
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character  are  sent in the inner loop between lines 10 and 16. This  loop  is 
executed  11 times, corresponding to the start pulse, 8 data bits, and 2  stop 
pulses, during each passage through the outer loop, beginning on line 5.

Each  successive bit is sent on line 11, followed by a  9.1-millisecond  time-
out. This time delay is a standard feature in PL/M; the compiler implements it 
by  inserting a wait loop in the program. The wait loop stores an  appropriate 
number  in a counter, decrements it once each processor cycle, and allows  the 
program to continue when the counter reaches zero.

On  each inner-loop iteration, the right-most bit of CHAR is selected on  line 
13 by the AND function, and it is stored in SENDBIT. The operation on line  15 
places a 1 in the right-most position of CHAR and then rotates the result  one 
step  to the right. This step gradually fills CHAR with 1s, working from  left 
to  right in each iteration, so that two stop pulses, which are 1s,  are  sent 
properly on the 10th and 11th iterations.

The operation of the PL/M compiler and its PLM1 and PLM2 subdivisions is shown 
graphically  in  Figure  3. PLM1 accepts a PL/M source  program  from  a  card 
reader, time-sharing console, or other input device. This first pass  produces 
a  listing  of  the  source program, along with  any  error  diagnostics,  and 
analyzes  the  program  structure.  An  intermediate  file  that  contains   a 
linearized version of the original program is written, and the symbols used in 
it are listed.

        +--------------+        +------------------+
        |   Original   |        |    Annotated     |
        | PL/M program |        |  source program  |
        +--------------+        | with diagnostics |
                |               +------------------+
        Program |                        ^
         input  |      +-----+           | Listing
                +----> | ??? |-----------+
                       +-----+
                         | |
           Dictionary of | | Intermediate
            symbols used | | form of program
                         V V
                       +-----+
                +------| ??? |
        List of |      +-----+
        symbols |         |
                V         |
             +-----+      |            +---------------+
             | ??? |<-----+----------->|     8008      |
             |     |                   | developmental |
             +-----+ 8008 machine code |    system     |
                                       +---------------+

        Figure  3. Compiler. Translating PL/M programs into  machine  language 
        takes  two passes with programs called PLM1 and PLM2, run by a  larger 
        machine. A third pass, with Interp/8, simulates the microprocessor  on 
        the big machine to check out the program.
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Although the linearized version does not resemble either an assembly  language 
or  PL/M,  it  has been reduced to a highly simplified form  of  the  original 
program. PLM2 uses this intermediate file as input and generates machine  code 
for the 8008 microcomputer.

A PL/M program can often be checked out by simulating the 8008 microcomputer's 
actions  on a larger machine. A third program, called Interp/8,  is  available 
for  this purpose. The three programs PLM1, PLM2, and Interp/8 are written  in 
ANSI standard FORTRAN IV, and will run on most larger computer systems.

A  new  version of the PL/M compiler is available for use  with  the  extended 
instruction  set  of the 8080. Consisting of sections PLM81 and PLM82,  it  is 
accompanied  by a new simulator called Interp/80. New coding is  not  required 
for  the  8080.  Working  with old PL/M programs written  for  the  8008,  the 
compiler  can produce binary code requiring 10% to 20% less storage  than  the 
8008  requires,  and  having  the advantages of  new  interrupt  and  decimal-
arithmetic capabilities.

Experience with PL/M will enable designers of future Intel microprocessors  to 
incorporate  new machine-level instructions that will make more efficient  use 
of  the  PL/M  language. Furthermore, if Intel so chooses, it  can  alter  its 
processor architecture in future designs, as it did between the 8008 and 8080, 
without  affecting  the user of PL/M at all, except possibly  to  improve  the 
performance of this application.

A number of microcomputer manufacturers are considering the use of  high-level 
languages to augment their assembly-language products, although none have been 
announced  yet.  Several  minicomputer producers,  however,  offer  high-level 
applications  languages,  and  at least one  minicomputer  company,  Microdata 
Corp.,  provides  a  systems  language.  In  fact,  Microdata's  MPL  language 
["Electronics", Feb. 15, 1973, p. 95] closely resembles PL/M; both of them, in 
fact, were essentially derived from the same basic system language.

Once the PL/M program is written and checked out, the machine code is  punched 
on  paper  tape  (Figure  3)  and  loaded  into  memory  of  a   microcomputer 
developmental  system. Again, the program is verified, and all  real-time  and 
environmental  considerations  are checked out. Final production  systems  can 
then be developed from this prototype. The production system, for example, may 
use read-only memory for the program when the developmental system's memory is 
read/write.

How to go on the air 
--------------------

Given  a  PL/M  program  and an MCS-8 microcomputer,  how  does  a  programmer 
actually  go  through  the compilation and  execution  process?  As  mentioned 
previously,  the  PL/M  compiler is available from  several  nationwide  time-
sharing  services.  These are the General Electric,  Tymshare,  National  CSS, 
Applied  Logic Corp., and United Computing Services facilities.  Documentation 
for  general programming is available from Intel Corp., and  the  time-sharing 
services provide system-dependent operating instructions.

Once the programmer has a contract with the commercial service, he is assigned 
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a  work  area in the host system in which he can store  PL/M  programs.  These 
programs are created on line by using the time-sharing service's editor, which 
allows  the  programmer to enter and alter program files.  When  a  particular 
program  is  created,  it  is  saved  in  a  permanent  file  for   subsequent 
compilation.

In  the  compilation  process, PLM1 is executed first, using  the  saved  PL/M 
program  as  input. Any diagnostic messages are printed  at  the  time-sharing 
console.  If  no program errors are detected during the PLM1  pass,  then  the 
programmer  can call for PLM2. This second pass leaves code in  MCS-8  machine 
language, which corresponds to the original program in the user's work area. 

With  this code, the programmer may execute the Interp/8 program, which  reads 
the  machine  code  and  simulates the actions of  the  MCS-8,  as  previously 
discussed.  If execution errors appear during simulation, the  programmer  can 
alter  the  original PL/M program and repeat the  compilation  and  simulation 
process. When the programmer is convinced the program is correct, he can punch 
the machine language on paper tape or other medium at his local console.

Programming at home 
-------------------

When  a large amount of development work is to be done, the user may  find  it 
feasible  to purchase the PL/M compiler and CPU simulator directly from  Intel 
and  run  them on an in-house computer system. The user, at  his  option,  can 
program either in batch or time-sharing mode.

The machine code produced by the compiler can be executed in several different 
ways.  The  easiest method is with a developmental system, such as  the  Intel 
SIM8-01  or  Intellec  8 or equivalent  prototyping  hardware.  These  systems 
include hardware and software for Teletype, as well as facilities for  loading 
and checking out programs.

The  machine code is loaded into the SIM8-01 from the Teletype  into  erasable 
read-only  memories.  These  chips  are then  inserted  into  sockets  on  the 
prototype   board,  and  the  program  is  executed.  With  the   Intellec   8 
developmental  system,  the  machine code is entered from  the  Teletype  into 
read/write memory, where the program can be subsequently executed and  tested. 
Both approaches bypass the simulation stage.

After testing the program on a developmental system, a production model making 
use of MCS-8 and a mixture of read-only and read/write memory can be  tailored 
closely  to the final application. Although the hardware is minimized  in  the 
production  system  to reduce costs, the programs remain the same  as  in  the 
prototype.

Developing systems 
------------------

Intel  Corp.  has  completed a number of projects  using  PL/M,  including  an 
assembler  that runs on the Intellec 8 developmental system. This  assembler's 
characteristics  show  the  effectiveness  of  the  PL/M  approach  to  system 
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development.  For example, it has full macro capabilities, which means that  a 
programmer can define special pseudo-instructions that cause the assembler  to 
insert  sequences  of  instructions in the main program  during  the  assembly 
process.  Macros are like subroutines, except that the main  program  executes 
them as it comes to them, instead of branching out of the main stream and then 
returning, as it does with subroutines.

The assembler is also capable of conditional assembly, which means that it can 
react  to  such external signals as the positions of console switches  at  the 
time  of assembly. Such signals indicate conditions that are  not  necessarily 
known  to  the  programmer  at the time he writes the  code  --  such  as  the 
availability  of particular output equipment to which the assembler's  results 
are to be sent.

Another useful characteristic of the assembler is evaluation of expressions at 
assembly  time,  which permits the programmer to  specify  certain  parameters 
algebraically  instead of numerically or symbolically. Then when a program  is 
assembled,  the assembler evaluates the algebraic expressions and inserts  the 
correct  values  in  the machine-language program. The  process  requires  the 
variables  to  be specified ahead of time, but it permits  the  programmer  to 
alter  these variables by changing their specification only once, rather  than 
every  time  they are used in the program. It's a great  time-saver  and  bug-
killer.

While  these characteristics are not uncommon in advanced assembly  languages, 
high-level  languages that can handle them are quite rare. Yet by using  PL/M, 
the assembler was coded in approximately 100 man-hours, and it requires  6,000 
bytes of program storage -- equivalent to 3,000 words on a minicomputer with a 
16-bit word size. Intel estimates that the project would have taken five times 
as  long  to code and debug directly in assembly language, with little  or  no 
reduction in program-memory space. The resulting assembler is easy to maintain 
and  alter, and, equally important, it can be recompiled for Intel's new  8080 
microprocessor without alteration.

A practical example 
-------------------

PL/M permits many programming shortcuts, such as dividing a complex task  into 
individual  subtasks,  or  procedures, that are called  upon  when  needed  to 
simplify  the  job  of  writing  the  program  itself.  These  procedures  are 
conceptually  simple and therefore easy to formulate and express in  PL/M,  as 
well as easy to check out before being incorporated in a larger program.

For example, consider a simple program for character manipulation -- one  that 
might be part of the work of a more comprehensive word-processing system.  The 
function  is relatively simple: the program asks the keyboard for  two  input-
character  strings, scans the first string for all occurrences of the  second, 
echoes the first string, and types an asterisk under the starting position  in 
the first string of each occurrence of the second string. A sample interaction 
with this program is shown in Figure 4.

        String comparison program
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        Type source string:__A__B__C__D
        Type test string: __
        __A__B__C__D
        *  *  *  *

        Type source string: 666 666 666
        Type test string: 6
        666 666 666
        *** *** ***

        Type source string: AAAAAAAABABABA
        Type test string: AB
        AAAAAAAABABABA
               * * *

        Type source string: XXXXXXX
        Type test string: XXXX
        XXXXXXX
        ****

        Type source string: WALLA WALLA WASH
        Type test string: WALLA
        WALLA WALLA WASH
        *     *

        Figure  4.  Test  run. Sample PL/M  program  produced  this  printout. 
        Technique is valuable debugging tool.

Stated  in  this  way, this example may seem to have little  or  no  practical 
value.  But  it is almost identical to a program needed to fetch  the  strings 
from two different data-entry devices and do something more sophisticated than 
printing an asterisk when it finds a match.

This suggests a practical application -- a teleprinter to check out a  routine 
before  it is embedded in a larger program. When all the bugs are out  of  the 
routine, the procedures that transfer data to and from the teleprinter can  be 
replaced  with  other  procedures that, for example, check  sensors  and  turn 
indicators  on and off. The new procedures, of course, have to be checked  out 
in  a real environment, but that's much easier when the main routine is  known 
to be bug-free.

Box: Hardware for PL/M
----------------------

The  Intel  MCS-8  microcomputer consists of the 8008  microprocessor  plus  a 
collection of standard read/write and read-only memories and shift  registers. 
The 8008 is a single-chip MOS device with 

      - 8-bit parallel word size 
      - Seven 8-bit general-purpose registers 
      - 16,384-word  address  capability, in either  read-only  or  read/write 
        memory
      - Up to 32 8-bit latched input and output ports 
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The  MCS-8 instruction set includes register-to-register,  register-to-memory, 
and memory-to-register transfers, along with arithmetic, logic, and comparison 
instructions. Conditional and unconditional transfers and subroutine calls are 
also  provided. Input and output instructions read data from input  ports  and 
set  data into output-port latches. Each of these instructions is  represented 
in program memory by a sequence of one, two, or three 8-bit words.

        (Insert MCS-8 logic diagram here) 

EOF
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GKLRC.WS4
---------

- "PL/I for Limited Resource Computers"
   Gary KILDALL
  "Microsystems", Jan/Feb 1982, pp.28-29

(Retyped by Emmanuel ROCHE.)

PL/I, Programming Language One, has in form or another been with us for nearly 
twenty  years.  Although  a  pragmatic  language,  it  was  considered  large, 
unwieldy, and difficult to implement. Recently, however, the language has been 
revitalized  through the efforts of the American National Standards  Institute 
(ANSI) Technical Committee X3Jl where the General Purpose Subset language  was 
defined.  This  so-called "Subset-G" language is upward compatible  with  full 
PL/I, but is designed expressly for mini-computer implementation. The elements 
selected  for inclusion within Subset-G are the most commonly used  facilities 
used  in  commercial,  scientific, and  educational  application  programming. 
Redundant   language  constructs,  little-used  facilities,  and   error-prone 
statement  forms  were  eliminated, resulting in  a  sub-language  which  most 
observers believe is superior to the full language in many ways.

ANSI standard Subset-G is now available for operation on several  minicomputer 
systems,  including the Data General Eclipse and MV/8000, Prime computers  and 
the  popular Digital Equipment Corporation VAX computer. PL/I-8O,  offered  by 
Digital  Research, is based upon Subset-G, and brings many mini  computer  and 
mainframe  facilities  to  the  micro-computer  application  programmer.   The 
following  is  a  brief history of the PL/I language,  a  discussion  of  PL/I 
facilities, and an overview of the Digital Research implementation.

PL/I  was  originally conceived in the early 1960's by the  Advanced  Language 
Development  Committee of the SHARE FORTRAN Project, in the wake  of  interest 
created by ALGOL, FORTRAN, and COBOL. Elements of each of these languages were 
incorporated  into  the  original design: block  structure,  nested  scope  of 
variables, procedure formats, and array referencing were, like Pascal, derived 
from  ALGOL.  Scientific  facilities came  from  FORTRAN,  including  separate 
compilation,  expression  formulation,  floating-point  arithmetic,  some  I/O 
formation,  and  a  wide  variety  of  transcendental  functions.   Commercial 
processing  in  PL/I  was derived from COBOL,  including  structures,  decimal 
arithmetic,  file processing, and picture formats. A variety of new  statement 
forms  were  added to allow character string  processing  and  error-exception 
handling,   which  where  considered  essential  for  high-level   application 
programming. Real-time multi-tasking facilities were also added to allow  PL/I 
to  be used for systems programming as well. The language which resulted  from 
this  design effort contains more built-in data types, arithmetic  operations, 
and general-purpose programming facilities than any other programming language 
available  today. But herein lies the primary difficulty with full  PL/I.  The 
language  is  too  large  to implement effectively  on  any  but  the  largest 
mainframes.  The complexity of the language also inhibited proper use  of  all 
language  features, while the unwary programmer was often trapped  by  strange 
twists  and  nuances of the language. Nevertheless, PL/I has proved  to  be  a 
practical,  pragmatic  language  for application  programmers  over  the  past 
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several years, through implementations on a variety of mainframe computers.

The  popularity  of  PL/I led to standardization efforts  for  the  full  PL/I 
language.  The  document produced by the ANSI committee for  full  PL/I  gives 
complete  syntactic  and semantic specifications for the language  in  a  form 
suitable for compiler and run-time system implementation. That is to say,  the 
language specification describes the manner in which PL/I must be  implemented 
in  order  to conform to the standard, but does not  specifically  cover  PL/I 
programming  practices. The full PL/I document is considered one of  the  best 
language specifications produced to date.

The Subset-G document, in turn, describes the portions of full FL/I which  are 
to be included. Specific features which remain in Subset-G include:         

        Decimal arithmetic
        Character and String Constants
        Restricted Arrays and Structure Assignments
        Allocate and Free
        Record (binary) I/O
        Stream (ASCII) I/O
        Format Specifications with Pictures
        On-Conditions
        A wide variety of Built-in Functions
        Separate Compilation
        Initialized Variables
        Based Variables

The  Digital Research PL/I-80 programming system project was started in  1978, 
and completed two years later. PL/l-80 is based upon Subset-G, with nearly all 
of  the  Subset-G  features, and operates under  the  Digital  Research  CP/M, 
multi-programming  MP/M, and CP/NET network operating systems for 8080,  8085, 
and  Z-80 microprocessors. The PL/I-80 programming system itself  consists  of 
the  compiler,  macro assembler, linkage editor, program librarian,  and  run- 
time subroutine library.

The PL/I-80 Compiler is a "three-pass" system that reads a FL/I source program 
prepared  using a program editor, and produces a relocatable file  as  output. 
The  first pass collects declaration information, and produces a symbol  table 
used by subsequent passes. The second pass augments the symbol information and 
produces  intermediate  language in tree-structure form  for  subsequent  code 
generation. Both passes analyze the source program using recursive descent.

The  third  compiler pass is largely machine-independent, and  consists  of  a 
comprehensive code optimization system, along with semantic handlers for 8-bit 
code  generation. The optimizer processes the intermediate tree structures  in 
three stages: first the trees are "normalized" and "flattened", then  analyzed 
by a "frame optimizer", and finally processed by a special- forms recognizer.

The  normalization and flattening process reduces alternate of  an  equivalent 
expression  to  the same form, while re-arranging expressions  to  reduce  the 
number  of  intermediate  temporary variables. The  frame  optimizer  performs 
common  subexpression detection within a limited range of  tree-structures  in 
preparation  for  later processing. This limited  window  provides  optimizing 
information  over  a  range of approximately ten to  twenty  statements,  thus 
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avoiding  the  processing  overhead  associated  with  complete  program  flow 
analysis.  Trees annotated with optimizing information are then passed to  the 
special-forms processor, where approximately three hundred tree-structures  of 
special  interest are matched and detected. Special-forms  recognition  allows 
concise sequence of code to be produced for many common statements.

As  an example, suppose the statements shown below occur in a  FL/I-80  source 
program:

        K=1+J
        I=J+I
        A(I)=A(K)+I

The normalization process re-arranges the first statement to:                

        K=J+I

The frame optimizer then marks I and K as equivalent expressions, so that A(I) 
and  A(K)  are known to have the same address.  The  special-forms  recognizer 
notes  that  the  A(I) array element is simply  being  incremented,  and  thus 
produces an increment memory instruction to affect the operation.

Generally,  the PL/I-80 optimizing scheme produces dense machine code for  all 
operations  which are reflected in 8-bit and 16-bit  architectures,  including 
byte  and  word fixed-point and bit string operations. More  complicated  data 
forms,  such as floating-point and decimal arithmetic, are  performed  out-of-
line by calls to subroutines extracted from the run-time library.

The PL/I-80 linkage editor combines relocatable code produced by the  compiler 
and  macro  assembler  into a machine-executable memory  image.  In  addition, 
subroutines  are automatically extracted from the PL/I run-time  library  when 
referenced.  The  linkage editor also allows multi-level overlays, so  that  a 
large  application,  such as a menu-driven inventory control program,  can  be 
effectively executed in a small memory region.

The  PL/I-80  programming  system is currently being transported  to  16-  bit 
processors,  with initial support for the Intel 8088 and 8086  processors,  so 
that  designers  may  select  either 8-bit  or  16-bit  processors  for  their 
applications programs. The transition to the Intel processors is simplified in 
two  ways. First, the compiler itself is written in PL/M,  Intel's  high-level 
system  language, with portions of the run-time system written in PL/I.  Thus, 
only  the semantic handlers need to be altered, along with conversion  of  the 
space  and  time  critical run-time subroutines, such  as  the  floating-point 
library, which are implemented in assembly language.

The  PL/I  programming  system  will be  transported  to  all  processors  and 
operating  systems supported by Digital Research in the future, and serves  as 
the basis for application software written for the microprocessor industry  by 
independent software vendors.

Subset-G  is  a concise, consistent and practical  language  for  professional 
programmers  who write quality commercial applications programs for their  own 
use or for public distribution. Further, the rapid acceptance of the  Subset-G 
standard  in  the  mini-computer  industry opens  a  wide  customer  base  for 
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application  programs,  while  ensuring that those programs  will  not  become 
obsolete.

EOF
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GKPLI.WS4
---------

- "PL/I-80"
   Gary Kildall
  "Interface Age", Vol.7, No.6, June 1982, p.71

(Retyped by Emmanuel ROCHE.)

(ROCHE> PL/I-80 fans will note that the program and most paragraphs are  taken 
from  Section  12,  "Decimal  Processing  Using  PL/I-80",  of  the   "PL/I-80 
Applications Guide".)

Since  its  introduction on mainframe computers some 20 years  ago,  and  more 
recently on minicomputers, the PL/1 language has been popular, primarily  with 
sophisticated programmers.

PL/1  is  useful because it has many of the best elements of  early  languages 
such  as  ALGOL,  FORTRAN and COBOL. It has, for  example,  incorporated  such 
commercial/business  processing  features as structures,  decimal  arithmetic, 
file processing and picture formats from COBOL.

PL/1  has its limitations, though. Redundant language constructs,  little-used 
facilities  and  error-prone  statement forms make PL/1  large,  unwieldy  and 
difficult to implement for less experienced programmers.

With  the  development  in 1976 of ANSI Subset-G  PL/1,  the  General  Purpose 
Subset,   many  of  the  drawbacks  of  full  PL/1  were  eliminated.   Almost 
immediately,  Subset-G  achieved  widespread acceptance  in  the  minicomputer 
world,  with  implementations by Data General, DEC, Prime and Wang.  With  the 
development of the Subset-G-based PL/I-80 by Digital Research (Pacific  Grove, 
CA),  the  advanced programming features of PL/1 are available for  the  first 
time on microcomputers.

One  powerful feature in this micro version of PL/1 is its ability to  perform 
both  fixed  decimal  and floating-point binary  operations  under  programmer 
control.  This  makes PL/I-80 particularly useful in business  and  commercial 
processing.

In most languages, the programmer has no command over the internal format used 
for  numeric  processing.  Therefore,  the  programmer  has  no  control  over 
truncation  errors that might arise during internal conversion from binary  to 
decimal  operations.  These errors are magnified in  business  and  commercial 
applications because of the need for monetary accuracy.

Differences  between  the way application programs process data  and  the  way 
computers perform arithmetic operations make conversion necessary. Internally, 
computers  may perform operations in binary OR decimal numbers, not  in  both. 
They generally perform in binary because binary data can be processed directly 
by most processors.

Commercial  programs,  on the other hand, usually process decimal  values,  so 
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those  values  must  be converted to binary on input, and  converted  back  to 
decimal on output.

The  problem  of truncation errors is compounded by  differences  in  internal 
number  formats between languages. For example, among two of the most  popular 
BASIC  interpreters  for  microcomputers,  one  performs  calculations   using 
floating-point  binary,  while  the  other  uses  decimal  arithmetic.  Pascal 
language  translators  generally use implementation-defined  precision,  while 
FORTRAN always performs arithmetic using floating- or fixed-point binary.

COBOL,  designed  specifically  for commercial  applications  in  which  exact 
figures must be maintained throughout computations, uses decimal arithmetic.

        dec_comp:                       bin_comp:
            proc options (main);            proc options (main);
            dcl                             dcl
                i fixed,                        i fixed,
                t decimal (7, 2);               t float (24);
            t = 0;                          t = 0;
            do i = 1 to 10000;              do i = 1 to 10000;
               t = t + 3.10;                   t = t + 3.10;
            end;                            end;
            put edit (t) (f (10, 2));       put edit (t) (f (10, 2));
            end dec_comp;                   end bin_comp;

        Figure 1. Differences between decimal and binary

The two short programs in Figure 1 illustrate the essential difference between 
the  two  computational forms: decimal and binary. The  programs  perform  the 
simple  function of summing the value 3.10 a total of 10,000 times.  The  only 
difference between these programs is that dec_comp computes the results  using 
a FIXED decimal variable, while bin_comp does it with FLOATING point binary.

Dec_comp  produces the correct result, 31000.00, while bin_comp produces  only 
an approximation, 30997.30. The difference is a result of internal  truncation 
that  occurs  when certain decimal constants, such as 3.10, are  converted  to 
binary  approximations.  The  decimal .10 cannot be represented  as  a  finite 
binary  fractional  expansion;  that  is  to  say,  3.10  is  approximated  as 
3.099999E+00 in floating-point binary. Each addition propagates a small  error 
into  the  sum that is compounded by the number of  additions.  In  scientific 
applications, inherent truncation errors are often insignificant and  ignored, 
but such errors are unacceptable in commercial and business applications.

PL/I-80   gives   a  programmer  the  choice  between   decimal   and   binary 
representations,  so  that  each  program can  be  tailored  to  a  particular 
application's  exact needs. It converts the internal format of the program  in 
two steps. It first converts values to character format, and then converts  to 
either  fixed decimal or floating-point binary, depending on the  requirements 
of the application.

To  prevent  truncation  of  digits, which occurs  in  the  least  significant 
position,  PL/I-80 considers all digits in a computation equally  significant. 
Since all digits are significant, the programmer must keep track of the  range 
of values that arithmetic operands can take on.
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To do this, decimal variables and constants in PL/I-80 have both precision and 
scale.  Precision  denotes the number of digits in the variable  or  constant, 
while scale denotes the number of digits in the fractional part. Fixed decimal 
variable  and constant precisions must not exceed 15, and the scale  must  not 
exceed  the  precision.  The precision and scale of  a  PL/I-80  variable  are 
defined in the variable's declaration:

        declare x fixed decimal (10, 3)

The  precision  and  scale of a PL/I-80 constant are  derived  by  a  compiler 
counting  the  number  of  digits in the constant and  the  number  of  digits 
following the decimal point. For example, the constant -324.76 has precision 5 
and  scale 2. Internally, fixed decimal variables and constants are stored  as 
binary-coded  decimal  (BCD) pairs, where each BCD digit occupies  either  the 
high or low order four bits of each byte.

Loan schedule as an example
---------------------------

A typical commercial/business application for this particular feature is shown 
in  the  accompanying  listing  for a program that  computes  a  loan  payment 
schedule, while incorporating a number of useful analysis and display formats.

In  simplified terms, the algorithm incorporated into this program to  compute 
the  loan payment schedule uses three input values: principal (P), the  yearly 
interest  rate  (i) and the monthly payment (PMT). Each month,  the  remaining 
principal is computed as:

(Eq.1)  P + i * P

and  is then reduced by the payment amount, producing a new principal for  the 
next month:

(Eq.2)  Pn = (Po + i * Po) - PMT

As show, beginning on line 116, this program reads several data items:

        PV  : present value (initial principal)
        yi  : yearly interest rate
        PMT : monthly payment
        ir  : yearly inflation rate
        sm  : starting month of payment (1-12)
        sy  : starting year  of payment (0-99)
        fm  : fiscal month (end of fiscal year, 1-12)
        dl  : display level (0-2)

The initial principal and payment variables are declared as fixed decimal (10, 
2),  allowing values as large as $99,999,999.99. The yearly interest rate  and 
yearly  inflation  rate  are expressed in percentages as large  as  99.99,  as 
defined  on lines 24 and 29. The month and year variables, sm, sy and fm,  are 
in  fixed binary format, and are assumed to properly represent month and  year 
values.  The variable dl defines the amount of information displayed during  a 
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particular iteration of the program, where 0 provides the abbreviated display, 
1 provides additional information and 2 gives the full trace.

Using  an  algorithm similar to the one described in equations 1  and  2,  the 
primary  loop  in  the  program occurs between lines 96  and  131,  where  the 
principal  is  increased by the monthly interest, and reduced by  the  monthly 
payment until it becomes zero.

                S U M M A R Y    O F    P A Y M E N T S

                Output File Name ,

                Principal      3000
                Interest       14
                Payment        144.03
                %Inflation     0
                Starting Month 11
                Starting Year  80
                Fiscal Month   12

                Display Level
                Yr Results : 0
                Yr Interest: 1
                All Values : 2 0

------------------------------------------------------------------------------
|                   L O A N   P A Y M E N T   S U M M A R Y                  |
------------------------------------------------------------------------------
|               Interest Rate 14.00%      Inflation Rate 00.00%              |
------------------------------------------------------------------------------
|Date |  Principal   |Plus  Interest|  Payment  |Principal Paid|Interest Paid|
------------------------------------------------------------------------------
|12/80|$     2,890.97|$        33.73|$    144.03|$       219.33|$       68.73|
|12/81|$     1,479.02|$        17.26|$    144.03|$     1,647.75|$      368.67|
|11/82|$         0.25|$         0.00|$      0.25|$     3,000.00|$      456.97|
------------------------------------------------------------------------------

        Figure 2. Loan payment computation

Figure  2  is a minimal display for a loan of $3,000 at 14%  interest  with  a 
$144.03  monthly payment. In this case, a 0% inflation rate is assumed with  a 
starting payment in November 1980 and end of the year taxes due in December of 
each year. The display indicates the principal, interest in December,  monthly 
payment, amount paid toward principal in December, and the amount of  interest 
paid in the last month of the fiscal year.

                Principal      ,
                Interest       ,
                Payment        ,
                %Inflation     ,
                Starting Month ,
                Starting Year  ,
                Fiscal Month   ,
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                Display Level
                Yr Results : 0
                Yr Interest: 1
                All Values : 2 1

------------------------------------------------------------------------------
|                   L O A N   P A Y M E N T   S U M M A R Y                  |
------------------------------------------------------------------------------
|               Interest Rate 14.00%      Inflation Rate 00.00%              |
------------------------------------------------------------------------------
|Date |  Principal   |Plus  Interest|  Payment  |Principal Paid|Interest Paid|
------------------------------------------------------------------------------
|12/80|$     2,890.97|$        33.73|$    144.03|$       219.33|$       68.73|
------------------------------------------------------------------------------
|               Interest Paid During '80-'80 is         $68.73               |
------------------------------------------------------------------------------
|12/81|$     1,479.02|$        17.26|$    144.03|$     1,647.75|$      368.67|
------------------------------------------------------------------------------
|               Interest Paid During '81-'81 is        $299.94               |
------------------------------------------------------------------------------
|11/82|$         0.25|$         0.00|$      0.25|$     3,000.00|$      456.97|
------------------------------------------------------------------------------
|               Interest Paid During '82-'82 is         $88.30               |
------------------------------------------------------------------------------

        Figure 3. Execution of the main loop

Figure  3  shows an execution of the main loop using the same  values  with  a 
display  level 1. In this case, the output also contains the  yearly  interest 
paid on the loan (which would presumably be deducted from taxable income)  for 
each fiscal year.

                Principal      ,
                Interest       ,
                Payment        ,
                %Inflation     ,
                Starting Month ,
                Starting Year  ,
                Fiscal Month   ,

                Display Level
                Yr Results : 0
                Yr Interest: 1
                All Values : 2 2

------------------------------------------------------------------------------
|                   L O A N   P A Y M E N T   S U M M A R Y                  |
------------------------------------------------------------------------------
|               Interest Rate 14.00%      Inflation Rate 00.00%              |
------------------------------------------------------------------------------
|Date |  Principal   |Plus  Interest|  Payment  |Principal Paid|Interest Paid|
------------------------------------------------------------------------------
|11/80|$     3,000.00|$        35.00|$    144.03|$       109.03|$       35.00|
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|12/80|$     2,890.97|$        33.73|$    144.03|$       219.33|$       68.73|
------------------------------------------------------------------------------
|               Interest Paid During '80-'80 is         $68.73               |
------------------------------------------------------------------------------
|01/81|$     2,780.67|$        32.44|$    144.03|$       330.92|$      101.17|
|02/81|$     2,669.08|$        31.14|$    144.03|$       443.81|$      132.31|
|03/81|$     2,556.19|$        29.82|$    144.03|$       558.02|$      162.13|
|04/81|$     2,441.98|$        28.49|$    144.03|$       673.56|$      190.62|
|05/81|$     2,326.44|$        27.14|$    144.03|$       790.45|$      217.76|
|06/81|$     2,209.55|$        25.78|$    144.03|$       908.70|$      243.54|
|07/81|$     2,091.30|$        24.40|$    144.03|$     1,028.33|$      267.94|
|08/81|$     1,971.67|$        23.00|$    144.03|$     1,149.36|$      290.94|
|09/81|$     1,850.64|$        21.59|$    144.03|$     1,271.80|$      312.53|
|10/81|$     1,728.20|$        20.16|$    144.03|$     1,395.67|$      332.69|
|11/81|$     1,604.33|$        18.72|$    144.03|$     1,520.98|$      351.41|
|12/81|$     1,479.02|$        17.26|$    144.03|$     1,647.75|$      368.67|
------------------------------------------------------------------------------
|               Interest Paid During '81-'81 is        $299.94               |
------------------------------------------------------------------------------
|01/82|$     1,352.25|$        15.78|$    144.03|$     1,776.00|$      384.45|
|02/82|$     1,224.00|$        14.28|$    144.03|$     1,905.75|$      398.73|
|03/82|$     1,094.25|$        12.77|$    144.03|$     2,037.01|$      411.50|
|04/82|$       962.99|$        11.23|$    144.03|$     2,169.81|$      422.73|
|05/82|$       830.19|$         9.69|$    144.03|$     2,304.15|$      432.42|
|06/82|$       695.85|$         8.12|$    144.03|$     2,440.06|$      440.54|
|07/82|$       559.94|$         6.53|$    144.03|$     2,577.56|$      447.07|
|08/82|$       422.44|$         4.93|$    144.03|$     2,716.66|$      452.00|
|09/82|$       283.34|$         3.31|$    144.03|$     2,857.38|$      455.31|
|10/82|$       142.62|$         1.66|$    144.03|$     2,999.75|$      456.97|
|11/82|$         0.25|$         0.00|$      0.25|$     3,000.00|$      456.97|
------------------------------------------------------------------------------
|               Interest Paid During '82-'82 is         $88.30               |
------------------------------------------------------------------------------

        Figure 4. Full display of data

Figure  4  uses  the same initial values, but provides  full  display  of  the 
monthly principal, interest, monthly payment, payment applied to the principal 
and interest payment.

                Principal      ,
                Interest       ,
                Payment        ,
                %Inflation     10
                Starting Month ,
                Starting Year  ,
                Fiscal Month   10

                Display Level
                Yr Results : 0
                Yr Interest: 1
                All Values : 2 2

------------------------------------------------------------------------------
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|                   L O A N   P A Y M E N T   S U M M A R Y                  |
------------------------------------------------------------------------------
|               Interest Rate 14.00%      Inflation Rate 10.00%              |
------------------------------------------------------------------------------
|Date |  Principal   |Plus  Interest|  Payment  |Principal Paid|Interest Paid|
------------------------------------------------------------------------------
|11/80|$     3,000.00|$        35.00|$    144.03|$       109.03|$       35.00|
|12/80|$     2,864.95|$        33.42|$    142.73|$       217.35|$       68.11|
|01/81|$     2,733.39|$        31.88|$    141.58|$       325.29|$       99.45|
|02/81|$     2,602.35|$        30.36|$    140.42|$       432.71|$      129.00|
|03/81|$     2,471.83|$        28.83|$    139.27|$       539.60|$      156.77|
|04/81|$     2,341.85|$        27.32|$    138.12|$       645.94|$      182.80|
|05/81|$     2,212.44|$        25.81|$    136.97|$       751.71|$      207.08|
|06/81|$     2,083.60|$        24.31|$    135.82|$       856.90|$      229.65|
|07/81|$     1,955.36|$        22.81|$    134.66|$       961.48|$      250.52|
|08/81|$     1,829.70|$        21.34|$    133.65|$     1,066.60|$      269.99|
|09/81|$     1,702.58|$        19.86|$    132.50|$     1,170.05|$      287.52|
|10/81|$     1,576.11|$        18.38|$    131.35|$     1,272.85|$      303.41|
------------------------------------------------------------------------------
|               Interest Paid During '80-'81 is        $332.69               |
------------------------------------------------------------------------------
|11/81|$     1,451.91|$        16.94|$    130.34|$     1,376.48|$      318.02|
|12/81|$     1,326.68|$        15.48|$    129.19|$     1,478.03|$      330.69|
|01/82|$     1,203.50|$        14.04|$    128.18|$     1,580.64|$      342.16|
|02/82|$     1,079.56|$        12.59|$    127.03|$     1,680.87|$      351.67|
|03/82|$       957.46|$        11.17|$    126.02|$     1,782.38|$      360.06|
|04/82|$       835.87|$         9.74|$    125.01|$     1,883.39|$      366.92|
|05/82|$       714.79|$         8.34|$    124.00|$     1,983.87|$      372.31|
|06/82|$       594.25|$         6.93|$    123.00|$     2,083.81|$      376.22|
|07/82|$       474.26|$         5.53|$    121.99|$     2,183.19|$      378.66|
|08/82|$       354.84|$         4.14|$    120.98|$     2,281.99|$      379.68|
|09/82|$       236.02|$         2.75|$    119.97|$     2,380.19|$      379.27|
|10/82|$       117.80|$         1.37|$    118.96|$     2,477.79|$      377.45|
------------------------------------------------------------------------------
|               Interest Paid During '81-'82 is        $124.28               |
------------------------------------------------------------------------------
|11/82|$         0.20|$         0.00|$      0.20|$     2,457.00|$      374.25|
------------------------------------------------------------------------------
|               Interest Paid During '81-'82 is          $0.00               |
------------------------------------------------------------------------------

        Figure 5. Loan with inflation adjustment

The  same  loan and interest rate with an adjustment in dollar  value  due  to 
inflation  is shown in Figure 5. A rather conservative 10% inflation  rate  is 
assumed, so that all amounts are scaled to the value of the dollar at the time 
the  loan  was issued. For tax reporting purposes, the display  showing  total 
interest paid at the end of the year is not scaled and does not match the  sum 
of the interest paid during the year.

If we assume a zero inflation rate, the total loan payment is $3,456.97, taken 
from  the  previous output. Assuming an inflation rate of  10%,  however,  the 
total cost of the loan in today's dollars is
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        $2,457.00
      +    374.25
        ---------
        $2,831.25

resulting in a net gain of $68.75 over a two-year period.

Listing
-------

pmt:
        proc options (main);
        %replace
                true    by '1'b,
                false   by '0'b,
                clear   by '^z';
        dcl
                end bit (1),
                m       fixed binary,
                sm      fixed binary,
                y       fixed binary,
                sy      fixed binary,
                fm      fixed binary,
                dl      fixed binary,
                P       fixed decimal (10, 2),
                PV      fixed decimal (10, 2),
                PP      fixed decimal (10, 2),
                PL      fixed decimal (10, 2),
                PMT     fixed decimal (10, 2),
                PMV fixed decimal (10, 2),
                INT     fixed decimal (10, 2),
                YIN     fixed decimal (10, 2),
                IP      fixed decimal (10, 2),
                yi      fixed decimal (4, 2),
                i       fixed decimal (4, 2),
                INF     fixed decimal (4, 3),
                ci      fixed decimal (15, 14),
                fi      fixed decimal (7, 5),
                ir      fixed decimal (4, 2);
                
        dcl
                name char (14) var static init ('$con'),
                output file;
                
        put list (clear, '^i^iS U M M A R Y    O F    P A Y M E N T S');
        
        on undefinedfile (output)
                begin;
                put skip list ('^i^icannot write to', name);
                go to open_output;
                end;
                
        open_output:
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                put skip (2) list ('^i^iOutput File Name ');
                get list (name);
                
        if name = '$con' then
                open file (output) title ('$con') print pagesize (0);
        else
                open file (output) title (name) print;
                
        on error
                begin;
                put skip list ('^i^iBad Input Data, Retry');
                go to retry;
                end;
                
        retry:
                do while (true);
                put skip (2)
                        list ('^i^iPrincipal     ');
                get list (PV);
                P = PV;
                put list ('^i^iInterest          ');
                get list (yi);
                i = yi;
                put list ('^i^iPayment           ');
                get list (PMV);
                PMT = PMV;
                put list ('^i^i%Inflation        ');
                get list (ir);
                fi = 1 + ir / 1200;
                ci = 1.00;
                put list ('^i^iStarting Month ');
                get list (sm);
                put list ('^i^iStarting Year  ');
                get list (sy);
                put list ('^i^iFiscal Month   ');
                get list (fm);
                put edit ('^i^iDisplay Level  ',
                        '^i^iYr Results : 0 ',
                        '^i^iYr Interest: 1 ',
                        '^i^iAll Values : 2 ')
                        (skip, a);
                get list (dl);
                if dl < 0 | dl > 2 then
                        signal error;
                m = sm;
                y = sy;
                IP = 0;
                PP = 0;
                YIN = 0;
                if name ^= '$con' then
                        put file (output) page;
                call header ();
                        do while (P > 0);
                        end = false;
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                        INT = round (i * p / 1200, 2);
                        IP  = IP + INT;
                        PL  = P;
                        P   = P  + INT;
                        if P < PMT then
                                PMT = P;
                        P   = P - PMT;
                        PP  = PP + (PL - P);
                        INF = ci;
                        ci = ci / fi;
                        if P = 0 | dl > 1 | m = fm then
                                do;
                                put file (output) skip
                                        edit ('|', 100*m+y) (a,p'99/99');
                                call display (PL * INF, INT * INF,
                                PMT * INF, PP * INF, IP * INF);
                                end;
                        if m = fm & dl > 0 then
                                call summary ();
                        m = m + 1;
                        if m > 12 then
                                do;
                                m = 1;
                                y = y + 1;
                                if y > 99 then
                                        y = 0;
                                end;
                        end;
                if dl = 0 then
                        call line ();
                else
                if ^end then
                        call summary ();
                end;
                        
        display:
                proc (a,b,c,d,e);
                dcl
                        (a,b,c,d,e) fixed decimal (10, 2);
                put file (output) edit
                        ('|',a,'|',b,'|',c,'|',d,'|',e,'|')
                        (a,2(2(p'$zz,zzz,zz9v.99',a),
                                    p'$zzz,zz9.v99',a));
                end display;
                
        summary:
                proc;
                end = true;
                call current_year (IP - YIN);
                YIN = IP;
                end summary;
                
        current_year:
                proc (I);
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                dcl
                        yp fixed binary,
                        I fixed decimal (10, 2);
                yp = y;
                if fm < 12 then
                        yp = yp - 1;
                call line ();
                put skip file (output) edit
                ('|','Interest Paid During ''',yp,'-''',y' is ',I,'|')
                (a,x(15),2(a,p'99'),a,p'$$$,$$$,$$9V.99',x(16),a);
                call line ();
                end current_year;
                
        header:
                proc;
                put file (output) list (clear);
                call line ();
                put file (output) skip edit
                ('|','L O A N  P A Y M E N T  S U M M A R Y','|')
                        (a,x(19));
                call line ();
                put file (output) skip edit
                ('|','Interest Rate',yi,'%','Inflation Rate',ir,'%','|')
                        (a,x(15),2(a,p'b99v.99',a,x(6)),x(9),a);
                call line ();
                put file (output) skip edit
                        ('|Date |',
                         ' Principal    |',
                         'Plus  Interest|',
                         '  Payment  |',
                         'Principal Paid|',
                         'Interest Paid |') (a);
                call line ();
                end header;
                
        line:
                proc;
                dcl
                        i fixed bin;
                put file (output) skip edit
                ('-------','------------',
                        '---------------' do i = 1 to 4)) (a);
                end line;
end pmt;

EOF
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GKPRL.WS4
---------

- "A simple technique for static relocation of absolute machine code"
   Gary Kildall
   DDJ ("Dr. Dobb's Journal"), #22, Vol.3, No.2, February 1978, pp.10-13

(Retyped by Emmanuel ROCHE.)

One  principal  difficulty  with newly evolving computer  technology  is  that 
software  generation  tools generally lag corresponding  hardware  facilities, 
thus  forcing  the  software  engineer to resort  to  outmoded  techniques  to 
produce software systems.

The  purpose  here is to present one area of difficulty -- that  of  a  static 
program  relocation -- and to offer a simple solution which can be applied  to 
nearly  any  microcomputer  software  environment  where  relocation  is   not 
supported by the manufacturer.

The  need  for static relocation arises most often in a  situation  where  the 
software  systems must be reconfigured in the field. For example,  data  entry 
equipment  manufacturers often provide a range of optional  peripherals  which 
can  be attached to user's equipment as processing requirements  change.  Each 
peripheral usually requires a software "driver" which is device-specific,  and 
interfaces the device to the operation environment.

A  common  approach to software reconfiguration is to arrange  the  individual 
translated peripheral drivers into distinct machine code modules which can  be 
selectively brought together to form an integral system at the customer  site. 
In  order to perform the field reconfiguration, each module is  translated  so 
that  it originates at location 0 in memory and, when it is  brought  together 
with other modules, it is placed at the next available memory location as  the 
system  is  being constructed. All machine code elements which  are  location-
dependent must, of course, be altered to reflect the actual locations that the 
driver occupies. Generally, the elements which are affected are the  addresses 
of  branch destinations and data addresses. If the locations of  the  affected 
addresses  in each module are known ahead of the system  reconfiguration,  the 
module can be placed anywhere in the final memory image.

Simple static relocation
------------------------

The  process  of  constructing  an  executable memory  image  from  a  set  of 
relocatable  modules,  as  described  above,  is  called  static   relocation. 
Unfortunately,  very  few  microcomputer  manufacturers  produce  the  address 
information with their translator output which is required for the  relocation 
process. The method described below, however, can be applied to the output  of 
most  manufacturer's absolute translators to derive the  necessary  relocation 
information. In order to be specific, the Intel 8080 microcomputer is used  in 
the  discussion,  with  the  understanding that the  concepts  can  be  easily 
extended to differing architectures.
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The Intel 8080 microcomputer has a 64K (65,535 bytes) memory space, which  can 
be thought of as 256 "pages" of 256 bytes per page. Data and instructions  are 
intermixed  in  this  memory space, and are addressed with  a  16-bit  address 
operand which can be divided into an 8-bit (high-order) page address  (0-255), 
and  an  8-bit (low-order) address within a page.  Typical  8080  instructions 
which  can use these address operands are shown in Figure 1, where PA  denotes 
the page address, and AWP denotes the address within a page.

        +--------+-----+
        | MVI A, | PA  |        Move immediate to A
        +--------+-----+
        | MVI C, | AWP |        Move immediate to C
        +--------+-----+----+
        | LXI D, | AWP | PA |   Load DE with address
        +--------+-----+----+
        | JMP    | AWP | PA |   Jump to address
        +--------+-----+----+

        Figure 1. Typical 8080 instructions

In general, a machine code memory image consists of instructions,  instruction 
addresses, and data items. The instructions and data items are independent  of 
the  actual  location  at which the module finally resides.  Further,  only  a 
subset  of the instruction addresses are dependent upon the  module  location. 
That  is  to say, a load instruction may reference a buffer address  which  is 
fixed  outside the relocatable module, in which case it does not  change  when 
the module is moved into position. If the address references a branch location 
or  data item within the module, then the value of PA, AWP, or both,  must  be 
biased by fixed values, dependent upon the final position of the module in the 
resulting configuration.

A  simpler form of relocation, called "page boundary relocation",  is  usually 
sufficient for field reconfiguration. In this case, the module is relocated to 
a page boundary, so that only the page address (PA) need be changed to perform 
the relocation, since the address within a page (AWP) remains constant.

Page boundary relocation
------------------------

In  its  simplest  form,  page boundary  relocation  can  be  accomplished  by 
constructing two parallel memory images for each module. The first, called the 
"relative-0",  image  is created by translating the module  for  execution  at 
location  0.  The  second,  called the  "relative-1",  image  is  produced  by 
translating  the module for execution at page 1 (address 256). The  relative-0 
and relative-1 memory images can then be compared to determine the  high-order 
address elements which must change when the module is moved to its final  page 
boundary  location. Figures 2a and 2b show a simple program segment  assembled 
as  relative-0  and  relative-1 images. The differences in  the  machine  code 
images  are  shown in bold characters, and are thus the  high-order  addresses 
which  must  be  biased when the module is moved. Figure  2c  shows  the  same 
program  segment assembled at page 5. Note that, if the bolded address  fields 
in  the  relative-0  image are biased by an amount 5  (corresponding  to  page 
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boundary 5), they result in the proper values for the relocated program.

 0000                   ORG     0               ; Relative-0 assembly
 0000 3E00      start:  MVI     A, d1 SHR 8     ; Page address to A
 0002 0E0A              MVI     C, d1 AND 0FFH  ; Address in page
 0004 110A00            LXI     D, d1           ; Full address to DE
 0007 C30000            JMP     start
                ; Data area
 000A           d1      DS      2               ; Two unfilled
 000C 00                DB      0               ; One filled element
 000D                   END

:0A0000003E000E0A110A00C30000C2
:01000C0000F3
:0000000000

        Figure 2a. Relative-0 assembly

 0100                   ORG     100H            ; Relative-1 assembly
 0100 3E01      start:  MVI     A, d1 SHR 8     ; Page address to A
 0102 0E0A              MVI     C, d1 AND 0FFH  ; Address in page
 0104 110A01            LXI     D, d1           ; Full address to DE
 0107 C30001            JMP     start
                ; Data area
 010A           d1      DS      2               ; Two unfilled
 010C 00                DB      0               ; One filled element
 010D                   END

:0A0100003E010E0A110A01C30001BE
:01010C0000F2
:0000000000

        Figure 2b. Relative-1 assembly

 0500                   ORG     500H            ; Assembly at page 5
 0500 3E05      start:  MVI     A, d1 SHR 8     ; Page address to A
 0502 0E0A              MVI     C, d1 AND 0FFH  ; Address in page
 0504 110A05            LXI     D, d1           ; Full address to DE
 0507 C30005            JMP     start
                ; Data area
 050A           d1      DS      2               ; Two unfilled
 050C 00                DB      0               ; One filled element
 050D                   END

:0A0500003E050E0A110A05C30005AE
:01050C0000EE
:0000000000

        Figure 2c. Assembly at page 5

The  program  which  actually  performs the relocation  process  is  a  simple 
modification  of  an  absolute  loader. The  translator  output  for  an  8080 
microcomputer  is  a  "hex format" file, containing  a  sequence  of  absolute 
records which give a load address and byte values to be stored starting at the 
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load address. The exact format of each record, shown in Figure 3, begins  with 
a colon (":") followed immediately by a 2-digit record length (RL) and 4-digit 
load  address (LA). The 2-digit record type (RT) is always zero  for  absolute 
records, and is followed by RL pairs of hexadecimal digits to be placed at  LA 
through LA+RL-1 in memory.

        +---+----+------+----+--------------+----+
        | : | nn | aaaa | tt | d1 d2 ... dn | cc |
        +---+----+------+----+--------------+----+
where:
        nn   = record length (01-FF)
        aaaa = load address (0000-FFFF)
        tt   = record type (00)
        d1   = data byte #1
        d2   = data byte #2
        ...
        dn   = data byte #n
        cc   = checksum byte

        Figure 3. Hex file format

The  record  terminates  with a pair of checksum digits: if  the  byte  values 
(hexadecimal  digit pairs) are summed, starting immediately after  the  colon, 
and  continuing through the end of the record (including the  checksum  byte), 
then the sum should be zero when computed with an 8-bit counter. The  checksum 
byte  is  included as an error detection mechanism. The last record of  a  hex 
file is denoted by a record length of 00.

An  absolute  loader  reads each record of the hex file, and  loads  the  byte 
values at the load address specified by LA for the next RL bytes, as shown  in 
the algorithm of Figure 4.

Note:   nextchar reads the next ASCII character
        nextbyte reads the next pair of digits
        nextaddr reads the next pair of bytes
        CS is the checksum accumulator  (8-bits)
        RL is the record length         (8-bits)
        LA is the load address         (16-bits)
        M[x] is memory location x       (8-bits)

        A1  [scan for :]        if nextchar <> ":" go to A1
        A2  [set checksum]      CS := 0
        A3  [get length]        RL := nextbyte
        A4  [last record?]      if RL = 0 go to A16
        A5  [set address]       LA := nextaddr
        A6  [set type]          RT := nextbyte
        A7  [load bytes]        if RL = 0 go to A13
        A8  [get byte]          b := nextbyte
        A9  [store byte]        M[LA] := b
        A10 [checksum]          CS := CS + b
        A11 [next addr]         LA := LA + 1
        A12 [count length]      RL := RL - 1, go to A7
        A13 [checksum]          CS := CS + nextbyte
        A14 [total  ok?]        if CS = 0 go to A1
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        A15 [check error]       halt, "checksum error"
        A16 [normal end]        halt, "tape read ok"

        Figure 4. Absolute loader algorithm

The notation used in this algorithm is that of Knuth [Ref. 2], where each step 
is labeled with a step name (A1, ..., A16), followed by a [comment] describing 
the  action  of  the step. The action itself is a  series  of  assignments  of 
expressions  to  variables, and conditional control transfers.  The  algorithm 
begins  at step A1, and scans for the beginning colon (":") for  each  record. 
When found, the algorithm reads the record length and, if zero, terminates the 
load  operation. If the record length is not zero, the load address  is  read, 
followed  by the record type (which should be zero). The algorithm then  loops 
between  steps A6 and A12, reading successive bytes to memory while  computing 
the checksum. When the entire record has been loaded, the final checksum  byte 
is  added,  which  should  result in a zero  value.  Upon  completion  of  the 
algorithm  of  Figure 4, the entire hex file has been read and  loaded  to  an 
absolute location in memory.

Note:   nextchar,  nextbyte,  nextaddr,  CS, RL, LA, and M  are  identical  to 
        Figure  4.  PG  is the page number where  the  relocated  module  will 
        reside.

        A1  [scan for :]        if nextchar <> ":" go to A1
        A2  [set checksum]      CS := 0
        A3  [get length]        RL := nextbyte
        A4  [last record?]      if RL = 0 go to A16
        A5  [set address]       LA := nextaddr
        A6  [set type]          RT := nextbyte
        A7  [load bytes]        if RL = 0 go to A13
        A8  [get byte]          b := nextbyte
        A9  [store byte]        M[LA + PG * 256] := b
        A10 [checksum]          CS := CS + b
        A11 [next addr]         LA := LA + 1
        A12 [count length]      RL := RL - 1, go to A7
        A13 [checksum]          CS := CS + nextbyte
        A14 [total  ok?]        if CS = 0 go to A1
        A15 [check error]       halt, "checksum error"
        A16 [end rel-0]         go to R1

        R1  [scan for :]        if nextchar <> ":" go to R1
        R2  [set checksum]      CS := 0
        R3  [get length]        RL := nextbyte
        R4  [last record?]      if RL = 0 go to R19
        R5  [set address]       LA := nextaddr + 256 * (PG - 1)
        R6  [set type]          RT := nextbyte
        R7  [record done?]      if RL = 0 go to R15
        R8  [compare data]      b := nextbyte
        R9  [data same?]        if b = M[LA] go to R12
        R10 [page diff 1?]      if b <> M[LA]+1 go to R18
        R11 [relocate]          M[LA] := M[LA] + PG
        R12 [checksum]          CS := CS + b
        R13 [next address]      LA := LA + 1
        R14 [count length]      RL := RL - 1, go to R7
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        R15 [checksum]          CS := CS + nextbyte
        R16 [total ok?]         if CS = 0 go to R1
        R17 [check error]       halt, "checksum error"
        R18 [reloc error]       halt, "relocation error"
        R19 [end rel-1]         halt, "relocation done"

        Figure 5. Relocating loader algorithm

The  algorithm  of  Figure 5 is a simple extension of  the  previous  absolute 
loader,  which  reads  two successive hex files. The first  hex  file  is  the 
relative-0  machine code, produced by translating the module for execution  at 
location 0. The second hex file is the relative-1 machine code, resulting from 
the  module translation when originated at location 256 (100 in  hexadecimal). 
The first part of the algorithm, given by steps A1 through A16, is similar  to 
that  of Figure 4, except that the data is loaded to address LA+PG*256  (which 
effectively  moves  the module to the page boundary given by PG)  rather  than 
absolute address LA.

Upon reaching step A16, the module has been loaded into memory at page PG, but 
is translated for execution at location 0 and thus would (most likely) execute 
improperly,  since the high-order branch and data addresses must be biased  by 
an  amount  PG.  Thus, steps R1 through R19 read the relative-1  hex  file  to 
determine  the  addresses  which must change. These steps are  similar  to  A1 
through  A16,  except  that  the  input  data  is  compared  with  memory  for 
differences,  rather  than  actually placed in memory. In step  R5,  the  load 
address is read as before but, since the relative-1 machine code is biased  by 
one page, the effective address must be reduced by 256 bytes. Step R9 compares 
the data loaded in the first phase with the data read in the second phase:  if 
the data is the same, then the element is invariant in the relocation process. 
If  the  data  differs, then it must have been due to the  difference  in  the 
relative-0 and the relative-1 memory images. Further, this difference must  be 
exactly  1,  since differences occur only in the  high-order  address  fields; 
otherwise,  an  error  occurs  and the module  cannot  be  relocated.  When  a 
relocatable element is found, the original value loaded and relocated in phase 
1  must be biased by an amount PG in step R11. Upon completion of  the  second 
phase,  the algorithm halts at step R19 with the high-order addresses  altered 
by the proper amount in the relocated module. Note that the algorithm given in 
Figure  5, when applied to the relative-0 file of Figure 2a, followed  by  the 
relative-1  file of Figure 2b, produces the relocated machine code  of  Figure 
2c, when page boundary PG=5 is used.

The algorithm of Figure 5 can be easily translated to an appropriate  assembly 
or high-level language program to perform this relocation process.

The  processing of Figure 5 can be used to produce a more compact form of  the 
relocatable  module by building a "bit vector" which tabulates  the  addresses 
which  require  relocation,  rather than actually  performing  the  relocation 
process.  That  is  to say, in step R11 the address LA must be  biased  by  an 
amount  PG for proper execution when the module originates at address  PG*256. 
Thus,  on the first pass, the data can be read to memory and, upon  completion 
of the pass, a bit vector is constructed, which has one bit position for  each 
address  within the module. Before starting step R1, the entire bit vector  is 
zeroed, to indicate that no addresses require relocation. As the second  phase 
processing  proceeds,  each relocation address determined in step R11  can  be 
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"marked"  by  setting  the  corresponding position of  the  bit  vector.  Upon 
completion  of the algorithm, the bit vector contains zeroes in the  positions 
corresponding  to addresses which are invariant over the relocation, and  ones 
in the positions which require biasing by an amount PG. The entire relocatable 
module can then be saved for later static relocation.

Given  that  the  relative-0  memory  image has  been  saved  along  with  the 
relocation bit vector, the page boundary relocation can be simply accomplished 
by  reading the memory image to its relocated page address PG. The bit  vector 
is  then read and processed: for each bit position which is set, the value  PG 
must  be added to the corresponding element which was previously loaded.  Note 
that  this extension to the basic algorithm of Figure 5 is included  only  for 
compact  representation,  and produces exactly the same memory  image  as  the 
original algorithm.

A case in point
---------------

The following situation shows a case where page boundary relocation is useful. 
The  CP/M operating system [Ref. 1] is a simple small computer  diskette-based 
software  system,  which  implements a file  management  and  program  loading 
facility for microcomputer development. The operating system is arranged as  a 
set  of  modules  which are loaded into memory when  the  computer  system  is 
started.  User  programs are then loaded into memory from  the  diskette  and, 
because of memory constraints, must overlay non-essential portions of the CP/M 
system to reclaim storage for program and data areas. In order to allow  these 
areas  of  memory  to be reclaimed, the CP/M system is loaded  into  the  high 
addresses  of the memory space, and the user programs are loaded into the  low 
addresses.  Thus, the user programs can overlay the high addresses  of  memory 
when necessary and, upon completion, cause the CP/M system to be brought  back 
from the diskette for the next operation.

Given  that  relocation  is not supported by  the  manufacturer,  this  memory 
organization  presents  a fundamental difficulty: each CP/M  operating  system 
must be tied directly to the memory size. If the user of CP/M owns a  computer 
system with 16K bytes of memory, then a 16K version of CP/M must be  supplied. 
If the user adds memory to enhance system capabilities, a different version of 
CP/M must be supplied to support the larger memory space.

In  order to overcome this difficulty, the CP/M system can be reconfigured  in 
the  field  to  accomodate  the increased  memory,  using  the  page  boundary 
relocation technique described above. In particular, each user receives a  16K 
version  of  CP/M  (the smallest amount of memory which  is  useful  for  CP/M 
operation),  along  with a program which implements the  reconfiguration.  The 
user  may  optionally  execute the program which  rebuilds  the  CP/M  system, 
according  to the existing memory size, and places the relocated memory  image 
back on the diskette, ready for subsequent loading.

The  CP/M  debugger  program, called the Dynamic Debugging  Tool  (DDT),  also 
resides  in  the  upper portions of memory, so that it can  coexist  with  the 
programs  under test. Again, the area in which DDT is loaded depends upon  the 
current  memory configuration, and thus page boundary relocation is  performed 
each  time the DDT program is brought into memory. The increased elapsed  time 
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for relocation of DDT is negligible when compared to an absolute load, as long 
as the bit vector technique of the previous section is used.

Restrictions
------------

It should be noted that the technique described here is by no means a complete 
linking  loader:  no address resolution is provided between  modules,  and  no 
load-time  address arithmetic is allowed. Sets of modules which coexist in  an 
integral system must communicate through instruction and data addresses. Using 
the  technique  presented here, the communication must  be  performed  through 
dedicated  absolute addresses for data items. Further,  instruction  addresses 
must be established through a "root module" which contains a jump vector  with 
vector elements for each possible module which could be configured in a  final 
system.

Address arithmetic is often useful when combining modules. In the simple  page 
boundary relocation described above, all address arithmetic must be  performed 
at assembly or compile time, and must consist only of simple operations  which 
involve a fixed positive or negative offset from a base address, or a shift or 
logical  AND operation which extracts the 8-bit page address of a full  16-bit 
address.  A  relocation error will occur, for example, if an  8-bit  immediate 
operand instruction is obtained from a 7-bit right shift, rather than an 8-bit 
right shift of an address quantity.

In  spite  of these shortcomings, the technique has particular  advantages  in 
being  independent of a manufacturer's capabilities, whims, and  fancies.  All 
language  processors  must  eventually produce an absolute  memory  image  for 
execution  on  the target machine, and thus the relocation  process  presented 
here will continue to operate when new software tools are introduced.
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Abstract
--------

Current industry trends forecast widespread use of microcomputers to  simplify 
the design, development, and manufacture of many digital electronics products. 
The  effects  of microcomputer software design upon the  production  cycle  is 
presented,  emphasizing  the necessity for  well-organized  software  systems. 
High-level   systems   languages  are  introduced  as  an  aid   in   software 
organization, using Intel's PL/M as a specific example.

Introduction
------------

The general availability of the low-cost microcomputer, or "CPU on a chip", is 
undoubtedly  the greatest single breakthrough in digital design technology  in 
this  decade. Although relatively inexpensive general-purpose  computers  have 
been packaged as end-user oriented minicomputers for several years, it is  now 
economically  feasible  to design-in a microcomputer set into the heart  of  a 
digital system produced in large quantities. Though only recently  introduced, 
microcomputers  have  been applied to a wide spectrum of  digital  processing, 
from simple device controllers through sophisticated word-processing  systems. 
In  fact, the ability to treat a microprocessor as simply  another  relatively 
inexpensive  component  has  led to simplification  of  many  current  product 
designs,  and opened the door to a vast array of digital applications  limited 
only by one's imagination.

Simply  stated,  the  microcomputer  allows  us  to  economically   substitute 
programming  for  wiring. Although there are tremendous  savings  in  software 
development when compared with hardware breadboarding, there are also inherent 
difficulties in controlling the evolution of a software-based product. Control 
over software evolution becomes especially important in the more comprehensive 
microcomputer  applications, such as small business systems. The purpose  here 
is  to  identify and investigate some of these difficulties from  the  project 
manager's  viewpoint. The notion of a "systems language" is introduced  as  an 
aid  to  control of software evolution  in  high-quantity  microcomputer-based 
products  where a significant software investment is involved. As  a  specific 
example, Intel's high-level systems language, called PL/M, is presented.

The  general  product  evolution  cycle  is  discussed  first,  in  order   to 
characterize the effects of software development upon this cycle.
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Product evolution
-----------------

The wealth of new digital applications, when coupled with rapid  technological 
change,  place  severe  demands upon the project manager. A  product  must  be 
planned  with change in mind, in order to extend its sales window  beyond  the 
next unpredictable technological breakthrough. In fact, product evolution  can 
be considered the cyclic process of change involving the product definition in 
order to adapt to the environment. The product environment, in turn,  involves 
such factors as market trends, customer requirements, competitor reaction, and 
new technology. It is obvious that the adaptability of a product to a changing 
environment  directly determines its survival in the marketplace. The  product 
evolution  cycle is shown graphically in Figure 1, distinguishing the 2  major 
branches  of engineering and manufacturing, and marketing. The advent  of  the 
LSI microprocessor is an example of a technological advancement which  affects 
the  product evolution cycle. Random logic or custom chip fabrication can  now 
be  economically  replaced by any of a number of low-cost  ROM-driven  digital 
processors  which  can perform complicated logic, arithmetic,  and  sequencing 
operations. As a result, the microprocessor can provide central and peripheral 
control  and  processing in many designs, greatly reducing time  and  cost  in 
product specification, development, and production.

                                    |
                                    V
        +--------------------> Formulation <--------------------+
        |                           |                           |
        |                 +---------+--------+                  |
        |                 |                  |                  |
        |                 V                  |                  |
        +-----> Internal specification       |                  |
        |                 |                  V                  |
        |                 |        External documentation <-----+
        |                 V                  |                  |
        +-----> Design, Check-out            V                  |
        |               |              Marketing strategy <-----+
        |               V                         |             |
        +-----> Manufacturing                     |             |
        |             |                           |             |
        |             +--> Sales, Distribution <--+             |
        |                           |                           |
        |                           V                           |
        +--<--------------- Customer response --------------->--+

        Figure 1. The product evolution cycle

The effects of microcomputer use on the marketing cycle have been investigated 
elsewhere  [Ref.  1],  and  thus  the  discussion  turns  to  engineering  and 
manufacturing  aspects. Referring to Figure 1, product  specification  efforts 
are  reduced,  since  operation  of a device can  be  specified  in  terms  of 
conceptually   simpler  computer  programs,  rather  than  complicated   logic 
diagrams. Further, the circuitry necessary for interfacing with the electronic 
environment is generally reduced to specification of simple modular units.
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Design,  development, and check-out efforts are reduced in a number  of  ways. 
First, the flexibility inherent in programming allows principal algorithms  to 
be  written, tested, and reprogrammed in a relatively short period, using  the 
software  development tools which are available from the  major  microcomputer 
manufacturers.  This flexibility allows the designer to develop programs in  a 
software  "test bed", roughly equivalent to a hardware breadboard for  circuit 
testing.  Subroutines communicate with a standard device, such as a  teletype, 
where data is manually entered, representing information which would  normally 
be  expected  from  the corresponding circuitry.  This  technique  allows  the 
principal  control functions to be developed and independently checked  before 
system  integration.  In  addition, the forced modularity  of  the  peripheral 
circuitry   implies  that  each  individual  module  can  also  be   designed, 
breadboarded, and tested independently.

System  integration  is  thus simplified, since  each  hardware  and  software 
subsystem has been verified. The simulating subroutines and simulated  devices 
are individually replaced by their corresponding actual circuitry and drivers, 
thus isolating system design errors at each step of the integration.

Finally,  manufacturing is simplified, since standard  microprocessor  modules 
can  either  be  purchased from OEM suppliers, or  developed  in-house.  These 
standard modules generally involve fewer parts than corresponding random logic 
designs,  thus reducing both PC (ROCHE> Note that Gary Kildall uses  the  term 
"PC" 7 years (!) before the birth of the "IBM Clown"...) board layout  efforts 
and  costs  for board production and testing. Given  that  the  microprocessor 
modules  are properly checked-out, the transition from software  prototype  to 
production  software is immediate. Further, production changes  often  involve 
software  modifications  which  affect ROM  contents,  rather  than  requiring 
assembly alterations.

Thus,  the  use of microcomputers and their  associated  software  development 
tools  can significantly reduce the time and costs for the  first  engineering 
and manufacturing cycle of an electronic product.

Consider  now  the  cyclic evolution of a microcomputer-based  product  as  it 
adapts  to  market  pressures. Clearly, the adaptability  of  the  product  is 
directly governed by the adaptability of its software system. That is to  say, 
since  most  modifications are accomplished through program changes,  one  can 
consider  the product's evolution in terms of the evolution of its  associated 
software.  Changes  may  arise in a number of ways,  including  requests  from 
customers  for  increased facilities, alterations required  by  design  errors 
detected  through  field use, or modifications caused by  cost  advantages  in 
using newly available hardware devices or software techniques. Thus,  software 
evolution must be a major concern of the project manager: with proper control, 
each  cyclic regeneration of software systems improves upon  its  predecessor. 
Loss of control over software evolution results in a maze of  over-specialized 
algorithms and data structures which hinder successive product cycles, to  the 
point  where entire systems must be re-developed. Factors  affecting  software 
evolution are presented in the paragraphs which follow.

Software evolution
------------------
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Similar  to  product  evolution, the evolution of a  software  system  can  be 
considered  the cyclic process of change in program design and expression,  in 
order  to adapt to the changing product definition. The 3 factors  which  most 
affect software adaptability are listed below.

     1) Maintainability  is  a  measure of the ease with  which  a  particular 
        program can be corrected when an error is found in the product.

     2) Expandability  determines the effort required to add new  features  or 
        subsystems as the product definition changes.

     3) Portability  among  programmers, machine  designs,  and  manufacturers 
        determines  the  extent  to which a software  system  depends  upon  a 
        particular software or hardware designer and design philosophy.

Maintainability, expandability, and portability of software directly determine 
time and cost for program regeneration. Programs are developed only once,  but 
are maintained throughout their lifetime. Thus, the ease of program correction 
is  a  major concern in the overall software evolution cycle. Second,  as  new 
features  or capabilities are added to the product,  corresponding  extensions 
are necessary to the programs. Programs written with expansion as a  principal 
design  goal  adapt easily, while those which are not  cause  excessive  delay 
during  redesign.  When  time  constraints prevent  proper  redesign  of  non-
expandable  programs, the resulting "interim" software is  often  undependable 
and  cannot  be  properly  maintained,  thus  adversely  affecting  subsequent 
evolution.  Finally,  unlike  random logic designs,  software  systems  easily 
become  dependent upon a particular programmer, or upon a  particular  machine 
architecture  or  manufacturer. In most cases, if the  project  manager  finds 
advantages  in  changing any of these variables, the software must  be  mainly 
reconstructed,  often  obviating those advantages. In fact,  in  this  rapidly 
moving industry, the ease with which programs can be effectively moved between 
machines  of differing design, while being readily understood by a  number  of 
different  programmers,  may be the most important single influence  upon  the 
software evolution cycle.

Clearly,   there  are  many  aspects  of  software  design   which   determine 
maintainability,  expandability, and portability, and a complete treatment  of 
all  factors  is  beyond the scope of this paper. The  reader  is  encouraged, 
however, to refer to notes on structured programming [Ref. 2 and 3],  software 
engineering  [Ref.  4],  and programming management [Ref.  5]  for  additional 
details.  One important, but intangible, factor is the  training,  experience, 
and  problem  insight of the project programmers. Even  the  most  experienced 
programmer, however, depends upon the programming tools that are available  to 
express  his or her solution. As a result, these tools have a profound  effect 
upon the adaptability of the product's software.

Programming tools
-----------------

The  discussion  of  software  evolution  now  focuses  upon  the  degree   of 
adaptability   obtained   from  the  various   approaches   to   microcomputer 
programming.  In  particular,  a  programming  language  is  the  programmer's 
principal means of expressing the algorithms and data structures which perform 
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the   specified  product  function.  There  are  4  basic  methods   used   in 
microcomputer software development for expressing programs: machine  language, 
assembly   language,   macro  assembly  language,  and   high-level   language 
programming. These 4 methods are briefly reviewed below for completeness.

1)  Machine  language  programming uses the bit  patterns  recognized  by  the 
microprocessor  as  a  means for expressing programs.  All  program  and  data 
locations are referenced by their absolute addresses in memory.

2)  Assembly  language programming is one step removed from  a  machine  level 
expression  of a program. It allows the programmer to use symbolic  names  for 
each  of the processor's operation codes, and automatically  translates  these 
codes  to the proper bit patterns for microcomputer execution. The  programmer 
references  program  and  data addresses by  freely-assigned  symbolic  names, 
rather  than absolute addresses. In all cases, however, there is a  one-to-one 
correspondence between symbolic instructions written by the programmer and the 
translated  machine  level  instructions. Thus, an assembly  language  can  be 
considered a convenient means of expressing machine level instructions. Figure 
2  shows  a sample assembly language program, and  the  corresponding  machine 
level  code  for an Intel 8080 microcomputer [Ref. 6]. Note  that  the  memory 
locations and machine operation codes are given as hexadecimal values in  this 
figure.

 +------------- Location
 |    +-------- Machine language
 |    |         Assembly language and comments
 |    |         |
 V    V         V
                ; Sample assembly language program
                ; for the Intel 8080 microcomputer.
                ;
                ; Compare the values of X and Y,
                ; store the larger value into Z.
                ;
                ;--------------------------------
 0100                   ORG     0100H           ; Start program code at 0100H
                ;--------------------------------
                ;
 0100 211301            LXI     H,y             ; Address Y
 0103 7E                MOV     A,M             ; Load
 0104 EB                XCHG                    ; Exchange DE,HL
 0105 211201            LXI     H,x             ; Address X
 0108 BE                CMP     M               ; Compare memory
                ;
                ; Carry is set if X > Y
                ;
 0109 DA0D01            JC      setc            ; Jump if no Carry
                ;
                ; X is less or equal
                ;
 010C EB                XCHG                    ; Exchange DE,HL
                ;
 010D 7E        setc:   MOV     A,M             ; Load X or Y
 010E 321401            STA     z               ; Store
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                ;
                ;--------------------------------
 0111 76                HLT                     ; Halt processor
                ;--------------------------------
                ; Variable definitions.
                ;
 0112 00        x       DB      0
 0113 00        y       DB      0
 0114 00        z       DB      0
                ;
                ;--------------------------------
 0115                   END     0100H

        Figure  2.  Machine language and assembly language  programs  for  the 
        Intel 8080 microcomputer.

3) Macro assembly language is similar to assembly language coding, except that 
the  programmer is allowed to define and use macros. A macro is  a  predefined 
group of assembly language statements which is given a macro name. Each use of 
the  macro name causes the predefined instructions or data definitions  to  be 
directly  substituted  for  the name. Thus, for example,  the  programmer  can 
effectively   "invent"  new  machine  operations  as  necessary  for   concise 
expression of a particular problem. Additional facilities, such as conditional 
assembly  and  assembly-time expression evaluation, are usually present  in  a 
macro  assembly  language,  which make it considerably more  flexible  than  a 
simple assembly language.

4)  High-level language programming is one step further removed from  assembly 
language  programming.  Normally, the notation used in a  high-level  language 
more closely resembles common mathematical symbolism, rather than relying upon 
complicated sequences of machine instructions to perform a specific  function. 
For example, the high-level statement

        IF x > y THEN z = x; ELSE z = y

is  read as follows: "if the value of X is greater than the value of  Y,  then 
store X's value into Z; otherwise, store Y's value into Z". The effect is that 
Z's  new  value  is  the  larger of X and  Y.  Each  high-level  statement  is 
translated into a sequence of machine level instructions by a compiler for the 
language. The statement given above is translated into the equivalent  machine 
code  shown  in Figure 2 by Intel's PL/M compiler for the  8080  microcomputer 
[Ref.  7].  In general, a high-level language provides  primitive  operations, 
data  types,  and  control structures which  are  appropriate  for  expressing 
programs within a particular problem environment. Thus, a high-level  language 
is  reasonably independent of a particular machine design and, instead,  tends 
to  depend upon the type of problem being solved. These concepts are  examined 
in later sections.

How do these various language levels affect software evolution? First, machine 
level coding is generally considered inappropriate for even moderate projects, 
due  to the non-symbolic nature of the resulting programs.  Assembly  language 
programming,  with  or  without macro capabilities,  may  be  appropriate  for 
moderately-sized  programs. However, the adaptability of the final product  is 
highly dependent upon the coding practices of the project programmers, as well 
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as  the  coding  standards  set forth and enforced  by  the  project  manager. 
Portability   between  programmers  is  relatively  difficult,   and   depends 
principally  upon the quality of the program's documentation, rather than  the 
programs   themselves.  Portability  from  machine  to  machine  is   severely 
restricted,   and  is  usually  accomplished  only  at  the  option   of   the 
manufacturer.   Assembly   language   programs  written   for   Intel's   8008 
microcomputer,   for  example,  can  be  re-assembled  for  their   new   8080 
microcomputer  with only minor changes in the original program.  Although  the 
resulting programs benefit from the increased speed of the new processor, they 
must  be rewritten to take advantage of the 8080's expanded  instruction  set. 
High-level  languages,  however,  currently  provide  the  highest  degree  of 
maintainability,  expandability, and portability of any of  these  programming 
tools.  In  fact,  a specific class of high-level  languages,  called  systems 
languages,  are considered the most appropriate tool for controlling  software 
evolution.

Systems languages
-----------------

As  stated  previously, a high-level language is relatively independent  of  a 
particular  machine  architecture,  and is primarily  intended  to  provide  a 
concise means for expressing programs in a particular problem environment. The 
BASIC and FORTRAN programming languages, for example, are high-level languages 
which assume a scientific computation problem environment. The actual  machine 
on which a BASIC or FORTRAN program executes should have little effect on  the 
resulting output.

A  high-level  systems  language is more specialized,  since  it  assumes  the 
problem  environment  is  the  control of a particular  machine  or  class  of 
machines.  Thus, the goals are somewhat different than those of a  pure  high-
level  language: a high-level systems language must be relatively  independent 
of the exact computer, while providing the necessary control structures,  data 
types, and basic operations for clear and concise expression of systems for  a 
particular  type  of computer. It follows that such a  systems  language  must 
allow  complete  control  of all machine functions, and,  at  the  same  time, 
eliminate  the  needless  trivialities of assembly language.  In  addition,  a 
systems  language must also be structured in such a way that it can be  easily 
translated to efficient machine language programs for the target machine. Each 
operation  in  the systems language has a direct counterpart in  the  machine, 
resulting in little or no run-time support software.

The  primitive operations and data types for a microcomputer systems  language 
are  fairly  simple. Bit-level data occur frequently when  communicating  with 
peripheral circuitry, such as the status information received from an input or 
output  device.  Thus,  bit-level  data types  must  be  present,  along  with 
corresponding   shifting,  masking,  and  bit-testing  operations.   Character 
handling   is  also  an  important  function  in  word-processing   and   data 
communication applications. As a result, string data types should be  allowed, 
with facilities for comparing strings, selection of substrings, and conversion 
between other data types. Fundamental arithmetic processing is also necessary, 
but  the  data types may depend heavily upon the  microcomputer  architecture. 
Based  upon current offerings, the useful arithmetic data types include  4-bit 
decimal (BCD) operands, and 8-, 16-, and 32-bit fixed-point binary quantities, 
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along   with  the  usual  arithmetic  and  relational   operations.   Finally, 
communication  primitives  must be provided for environmental  monitoring  and 
control.

Given  that  a  particular microcomputer can support these  functions,  it  is 
certainly  the  case that the operations and data types can be included  in  a 
macro  assembly  language for the processor. In a systems  language,  however, 
these  facilities  are  imbedded in a convenient  expressional  notation,  and 
enhanced by comprehensive data definition and program control facilities. That 
is  to  say,  along  with the necessary basic  functions,  the  programmer  is 
provided with language statements which allow program expression in a readable 
or  "well-structured"  [Ref.  8] form. These  structures  normally  include  a 
natural notation for statement grouping, conditional branching, and  iteration 
or loop control. Furthermore, subroutine definition, parameter  specification, 
and  subroutine  invocation  mechanisms are normally provided.  As  a  result, 
subroutine linkage standards are enforced, modular programming is  encouraged, 
and construction of comprehensive subroutine libraries becomes practical.  The 
PL/M microcomputer systems language presented in the following section is used 
to illustrate these capabilities.

A case in point
---------------

Intel's PL/M high-level language provides an example of a systems language for 
programming  their  8-bit  microcomputers. The  statement  structure  of  PL/M 
resembles  IBM's PL/1 programming language and, in fact, was derived from  XPL 
which  is  a dialect of PL/1. The similarity, however,  is  only  superficial; 
differences in control structures, operations, and data types make PL/1 useful 
for  general applications programming, while those of XPL make it  appropriate 
for  compiler  implementation.  PL/M was designed with the  special  needs  of 
microcomputer  systems in mind, as given in the previous section, and thus  is 
neither a subset nor superset of these languages. The important point is  that 
PL/M  belongs to the general family of "PL languages", and thus  a  programmer 
who is familiar with one of these languages finds it relatively easy to  learn 
any  of the others. Figure 3 contains a listing of a PL/M program  similar  to 
one proposed by Popper [Ref. 9] for comparing high-level and assembly language 
microcomputer programming. Although Popper gives a complete description of the 
program in his notes, the overall structure is presented as an example of PL/M 
program organization.

/* Quicksort procedure

This  PL/M procedure sorts an array into ascending order using  the  QUICKSORT 
algorithm.  Included in this listing is the procedure, QUICKSORT, and  a  test 
driver program to demonstrate the calling sequence. Note that the procedure is 
written  with an assumption that the number of elements to be sorted  is  less 
than  or equal to 256 (low, high, uptr, dptr, lstack, hstack, array$size,  a1, 
and  a2 are byte variables) and that the precision of the array elements is  8 
bits  (list,  temp,  and ref are byte variables). These  restrictions  may  be 
lifted by changing the declarations. Note also that the working arrays (lstack 
and hstack) are dimensioned by stack$size, where

        stack$size >= log2 (array$size)
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*/

quicksort:
  PROCEDURE (array, array$size);
    DECLARE stack$size LITERALLY '10';
    DECLARE array ADDRESS;
    DECLARE array$size BYTE;
    DECLARE list BASED array BYTE;
    DECLARE lstack (stack$size) BYTE, hstack (stack$size) BYTE;
    DECLARE top BYTE;
    DECLARE (low, dptr, uptr, high) BYTE;
    DECLARE (ref, temp) BYTE;

    push:
      PROCEDURE (a1, a2);
        DECLARE (a1, a2) BYTE;

        lstack (top) = a1;
        hstack (top) = a2;
        top = top + 1;
      END push;

    /* Main program */

    top = 0;
    CALL push (0, array$size);
    DO WHILE top <> 0;
       top = top - 1;
       IF (dptr := (low  := lstack (top)))
       <> (uptr := (high := hstack (top))) THEN
       DO ;
          ref = list (low);
    down:
          DO WHILE list (dptr) <= ref AND high > dptr;
             dptr = dptr + 1;
          END;
          DO WHILE list (uptr) >= ref AND low < uptr;
             uptr = uptr - 1;
          END;
          IF dptr < uptr THEN
          DO ;
             temp = list (uptr);
             list (uptr) = list (dptr);
             list (dptr) = temp;
             dptr = dptr + 1;
             uptr = uptr - 1;
             GO TO down;
          END;
          IF uptr > low THEN
          DO ;
             list (low) = list (uptr);
             list (uptr) = ref;
             uptr = uptr - 1;
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          END;
          CALL push (low,  uptr);
          CALL push (dptr, high);
       END;
    END;
  END quicksort;

/* Begin test driver */

DECLARE test$array (16) BYTE INITIAL
  (0,15,1,14,2,13,3,12,4,11,5,10,6,9,7,8);

  CALL quicksort (.test$array, last (test$array));

EOF

        Figure 3. A QUICKSORT program in PL/M

As described in the program "comment" at the start of Figure 3, the subroutine 
QUICKSORT  is  used  to  sort a list of  numbers  into  ascending  order.  The 
subroutine  begins  with a number of declarations which define  variables  and 
macros  used  within  the QUICKSORT subroutine. These  declarations  are  then 
followed by a nested subroutine, called PUSH, which performs a function  local 
to  QUICKSORT. The remainder of the QUICKSORT subroutine then manipulates  the 
locally-defined  variables,  along  with  a list  of  numbers  passed  to  the 
subroutine, to produce a list in sorted order.

Following  the  end  of the QUICKSORT subroutine, a list  of  test  values  is 
defined, called TEST$ARRAY. This test list is then passed to QUICKSORT in  the 
CALL  statement  near the end of the program, to verify that  QUICKSORT  works 
correctly. The program is terminated by the symbol EOF.

The  PL/M  compiler  is  then used to  translate  this  program  into  machine 
language.  The resulting machine language can be loaded into the memory of  an 
Intel 8-bit microcomputer, and executed. There is no output operation shown in 
this  example,  and  thus  the resulting sorted list is  simply  left  in  the 
machine's  memory. In fact, the QUICKSORT subroutine would normally  become  a 
distinct  software  module  in a microcomputer application, such  as  a  small 
inventory  control system, and hence the program in Figure 3 is simply a  test 
of  the  module. The overall organization of the PL/M programming  system  has 
been  presented in some detail elsewhere [Ref. 10], along with  operating  and 
debugging practices.

How does PL/M affect adaptability of software systems? First, the high  degree 
of  self-documentation  found  in  high-level  language  programming   greatly 
enhances  maintainability, expandability, and portability  among  programmers. 
This  fact has been shown many times over in large-scale computer  programming 
using  PL languages, and easily carries over to microcomputer  programming  in 
PL/M. Portability between machines has been demonstrated by Intel in their  8-
bit processor line. Specifically, Intel offers a PL/M compiler for both  their 
8008   and   newer  8080  microcomputer  which  allow   strict   upward   PL/M 
compatibility.  That  is  to  say,  although  8080  PL/M  provides  additional 
programming  features,  any  PL/M  program written for the  8008  CPU  can  be 
recompiled for the 8080 CPU without modification. The only difference is  that 
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the  resulting 8080 machine level program requires less storage, and  executes 
faster. Furthermore, Intel's long term commitment to PL/M means that customers 
can  expect  their  programs to execute on  future  processors,  while  taking 
advantage of each new machine design.

Portability among manufacturers is more difficult in PL/M, but not impossible. 
First,  the  8-  and 16-bit class of microcomputer appears  to  be  a  popular 
architecture.  Thus,  PL/M programs could execute  on  another  manufacturer's 
machine  if  a  PL/M  compiler for that  particular  machine  were  available. 
Construction  of a compiler is generally considered a formidable  task.  PL/M, 
however,  is  a  small language with simple grammar  rules,  simple  statement 
execution  rules, and no run-time support requirements. Given that  a  company 
has  a  significant investment in software, a specialized  compiler  for  PL/M 
could be developed in-house for nearly any manufacturer's microcomputer. Using 
well-known  automatic compiler generation techniques [Ref. 11], a  specialized 
PL/M  compiler of this sort would require only a few man-months of  effort  to 
write,  debug, and document. This approach not only allows  portability  among 
manufacturers, but also solves the second source problem to some degree.

Thus,  given that a high-level language exists for a  particular  application, 
one cannot argue its merit as an aid in developing adaptable software.

The efficiency question
-----------------------

High-level  languages have traditionally been under attack for their  relative 
inefficiency  when  compared to tightly-coded assembly language  programs.  As 
stated by Weinberg [Ref. 12] "when we ask for efficiency, we are often  asking 
for  tight coding that will be difficult to modify. In terms  of  higher-level 
languages, we often descend to the (assembly) language level to make a program 
more efficient. This loses at least one of the benefits of having the  program 
in the higher-level language -- that of transportability between machines.  In 
fact, it has the effect of freezing us to a machine or implementation that, we 
have  admitted by our very act, is unsatisfactory. However, the same  managers 
who scream for efficiency are the ones who tear their hair when told the  cost 
of modifications". Weinberg's comments are especially true in the  large-scale 
computer community. When discussing microcomputer systems, however, one  might 
argue that the relative inefficiencies of high-level language programming  are 
intolerable, due to the added cost of memory in large quantity production.

Concentrating only on the question of efficiency for a moment, one should note 
that it is impossible to categorically state that all high-level languages are 
necessarily  inefficient.  Efficiency  depends upon at least  2  factors:  the 
proximity  of  the  language to the target machine, and  the  quality  of  the 
compiler which performs the translation to machine language. In fact, this  is 
a  principal  point: a high-level systems language is closely related  to  the 
architecture  of the machines it is to control, which leads to "good"  machine 
level programs. Statements in PL/M, for example, translate into short  machine 
instruction sequences, since PL/M statements reflect the machine architecture. 
Conversely,  FORTRAN language statements are difficult to process on  a  small 
machine,  and  would  produce long sequences of  machine  instructions.  As  a 
result,  systems languages are potentially the most efficient subclass of  the 
high-level languages.
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The quality of the high-level language translator can be measured in terms  of 
the  degree  of "program optimization" that it performs. That is  to  say,  an 
optimizing  compiler  is one which analyzes the program structure  to  produce 
machine level code which best uses the target machine's resources.  Optimizing 
compilers  are themselves evolutionary, and are generally improved over  time. 
Several  versions of Intel's PL/M compiler have been released since its  first 
introduction  in June of 1973. Each version has additional program  optimizing 
features which reduce the amount of generated machine language. As an example, 
consider  the  QUICKSORT subroutine shown in Figure 3, which was  proposed  by 
Popper  [Ref.  9] as an indication of relative inefficiency. Popper  gives  an 
equivalent  QUICKSORT  subroutine  using Intel  8008  assembly  language.  The 
assembly  language  version is highly 8008 machine-dependent, resulting  in  a 
tightly-coded  215 statement program. Table 1 shows a comparison of  the  PL/M 
and assembly language versions of QUICKSORT, giving the relative  inefficiency 
of PL/M as the measure

        Mp - Ma
        -------
          Ma

where  Mp  and Ma represent the memory requirements of the PL/M  and  assembly 
language versions, respectively.

        Table 1. QUICKSORT comparison

        Translator        Program size    Relative
                           (in bytes)   inefficiency
        --------------    ------------  ------------
        8008 assembler         300           -
        8008 PL/M Ver1         426          42%
        8008 PL/M Ver3         391          30%
        8008 PL/M Ver3
        (subscript optim.)     336          12%
        8080 PL/M Ver1         330          10%

        Note: Program size based upon body of QUICKSORT procedure.

The  June  1973 release of PL/M produced 42% more program storage,  while  the 
February  1974  release  produced  30%  more  instructions.  Because  of   the 
relatively  small program size, and the large number of  subscripted  variable 
references, this particular program can be considered a "worst case" for PL/M. 
Thus,  Table  1  also  shows the result of  compilation  with  the  8008  PL/M 
subscript optimization options enabled. These options allow the PL/M  compiler 
to  insert  short subroutines for subscript computations, rather  than  inline 
code, which both decreases the memory requirements and increases the execution 
speed. Using these options, the relative inefficiency is reduced to 12%.  Note 
also that the first version of the 8080 PL/M compiler, released in March 1974, 
produced only 10% more machine instructions.

        (ROCHE> PL/M dates:

        8008 PL/M Version 1: June     1973
        8008 PL/M Version 2: ?        1973
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        8008 PL/M Version 3: February 1974
        8080 PL/M Version 1: March    1974
        8080 PL/M Version 2: January  1975)

There  are several points to consider in this comparison. First, it  is  clear 
that the assembly language version could be completely rewritten for the  8080 
CPU, further reducing memory requirements. This, however, is the entire point: 
given  the 2 original programs, one in PL/M, the other in  assembly  language, 
the  PL/M  program improves without alteration as new  compilers  and  machine 
designs   are  introduced,  while  the  assembly  language  version   requires 
reprogramming  to  adapt.  Further, the experience  a  manufacturer  gains  in 
processing the high-level language can be used in designing future  processors 
which more effectively execute these programs.

It  must  also  be  noted that the relative  inefficiency  measure  cannot  be 
considered  an  absolute  comparison. The numbers  vary  widely  with  program 
complexity,   programming  style,  and  programmer  experience.  Due  to   the 
complexity   of  large  programs,  it  quite  often  happens   that   relative 
inefficiency becomes negative. That is to say, experience has shown that,  for 
programs  larger  than 1000-2000 bytes, the PL/M  compiler  actually  produces 
better  machine  level  programs  that hand-coded  versions.  This  effect  is 
principally  due  to  the fact that the compiler  more  readily  accounts  for 
machine  resources,  where  assembly  language  coding  becomes  confused  and 
disorganized.

In  fact, the entire discussion of relative inefficiency may be a moot  point, 
given  the  current and projected costs for memory. In quantity, 2K  by  8-bit 
ROM's  are  currently  available  for less than  $15  apiece,  and  hence  the 
incremental difference in production cost is hardly appreciable when  compared 
to the adaptability of the product.

Summary
-------

Current microcomputer designs and applications merely predict their  promising 
future. However, due to a microcomputer-based product's heavy dependence  upon 
software  systems,  the major hurdle in the near future will  be  in  software 
design  methodology.  Never  before has software  design  been  as  important: 
reliability  and correctness of programs directly determines the quality of  a 
product  manufactured  in the thousands. As customers, we must  encourage  the 
industry  to  offer  and support the tools  necessary  for  effective  program 
development and adaptability.

One tool, high-level systems languages, has been shown to be a viable approach 
to microcomputer systems development. When coupled with proper management  and 
programmer  experience,  high-level  systems languages provide  the  means  to 
produce quality software systems for supporting a constantly evolving  product 
definition.
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GKTMA.WS4
---------

- "They Made America" 2nd Edition
   Harold Evans
   Back Bay Books, 2006

(Retyped by Emmanuel Roche.)

Gary Kildall  (1942-1994)
------------

He  saw the future and made it work. He was the true founder of  the  Personal 
Computer revolution and the father of PC software.

Gary Kildall loved piloting his many aircraft, surfing his speedboats, roaring 
off  on  his  motorcycles,  riding  the waves  on  his  Jet  Ski,  racing  his 
Lamborghini Countach S -- at one time when he had more money than he knew what 
to do with, he had the pick of 14 sports cars at his lakeside villa. But  what 
Kildall  enjoyed  most, in his short life, was sitting for hours in  a  little 
office writing code for computers. "It is fun to sit at a terminal and let the 
code  flow", he said. "It sounds strange, but it just comes out of  my  brain; 
once I am started, I do not have to think about it." He would call  colleagues 
in  the  middle of the night to tell them that a program had worked.  "What  a 
rush!" he would shout. Author Robert Cringely's metaphor is apt: He wrote code 
as Mozart wrote concertos.

In the early 1970s, he was utterly brilliant at programming -- but that is  an 
understatement of his crucial role in the Personal Computer revolution. He was 
the  first  person to realize that Intel's microprocessors could  be  used  to 
build not just desk calculators, microwave ovens, traffic systems and  digital 
watches,  but  small Personal Computers with an unimaginable  multiplicity  of 
uses.  Then, entirely out of his own head, without the backing of  a  research 
lab  or anyone (ROCHE>??? He was PAID by Intel to develop PL/M... And, to  use 
PL/M,  he  needed an Operating System...), he wrote the first language  for  a 
microcomputer  Operating  System and the first floppy  Disk  Operating  System 
before there was even a microcomputer, months before there was an Apple, years 
before  IBM launched a Personal Computer. Kildall did it, moreover, in such  a 
manner  that programmers were no longer restricted by compatibility  with  the 
computer's  hardware. In Kildall's system, anybody's application could run  on 
anybody else's computer. It was the genesis of the whole third-party  software 
industry. This alone would have been an astounding achievement. Yet, Kildall's 
accomplishment,  while revered by experts -- "the world  changed  dramatically 
because  of  him"  (Dr.  Ken  Hoganson of  Kennesaw  State  Universty)  --  is 
relatively  unknown  to the millions of users of the PC. Professor  Sol  Libes 
summed  it up: "Every PC owner owes Gary a debt of gratitude. Bill  Gates  and 
Microsoft owe him more than anyone else."

Kildall  stayed  ten  years ahead of his time and never  stopped  pushing  the 
boundaries  of  technology up to his untimely death just as the  Internet  was 
beginning  to  take  hold. He pushed  for  pre-emptive  multi-tasking,  window 
capabilities  and menu-driven user interfaces. He laid down the basis  for  PC 
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networking.  He created the first computer interface for videodiscs  to  allow 
non-linear  playback  and  search capability,  presaging  today's  interactive 
multimedia.  He  built  the  first consumer  CD-ROM  filing  system  and  data 
structures  for a PC. With all this inventiveness, the "Edison  of  computers" 
was also a dedicated teacher; as his son, Scott, noted, it was his devotion to 
creating  tools to help the world, rather than money-making, that led  him  to 
devote  a great deal of time to a product called Dr. Logo, an intuitive,  non-
abstract computer language program geared toward teaching kids to program,  to 
use computers as learning tools, not merely game-playing machines. By the  end 
of  his life, he was working on wireless hardware connections. In all he  did, 
he  epitomized the openness of the early days of Silicon Valley, the zest  for 
the  next frontier, the conviction that the best technology would  succeed  in 
the marketplace on its own merits. He had the faith of the academic  scientist 
that  mankind  advances  less  by the protection  of  knowledge  than  by  its 
diffusion. Jacqui Morby, a venture capitalist, has an affectionate remembrance 
of  his  idealism from their first lunch appointment. "He said to look  for  a 
red-bearded  man in cow-boy boots at San Jose airport, then he rolled up in  a 
light  plane and yelled from the cockpit for me to jump in." She had  no  idea 
that  she would be whisked off to the Nut Tree restaurant, in Gold Country  80 
miles  North of San Jose, which just happened to have a little landing  strip. 
On  the lunch napkin, her host drew a visionary plan of an industry  in  which 
the  owner  of the Operating System would forswear going in  for  applications 
like  word  processing. "He said that would create a dangerous  monopoly,  and 
stiffle innovation."

Kildall  was  hardly  a humorless missionary; he  was  unassuming,  droll  and 
generous. The bitterness that darkened the last decade of his life was similar 
to  that  inflicted on radio's Edwin Armstrong. Both men discovered  that  the 
sublime  could come off a bad second to the mediocre,  that  misrepresentation 
and manipulation could prevail over truth and justice.

"The day Gary went flying" has entered legend as the explanation of how a deal 
with IBM came to make Bill Gate's fortune. Kildall, so it is said, preferred a 
joyride  to  a  meeting with IBM and was too prickly to  sign  IBM's  standard 
confidentiality  agreement.  The story has been swallowed  whole  by  computer 
historians  without the benefit of Kildall's own testimony. It is  misleading. 
Bill  Gates certainly saw and seized an opportunity, but IBM was not  straight 
with Kildall -- and Kildall was not a natural fighter.

The  loss  was  not Kildall's alone. Had IBM embraced  Kildall's  genius  (and 
Kildall  returned the embrace), the majority of computer users would have  had 
multi-tasking and windows a decade earlier. Not long after the release of  the 
IBM  PC, Kildall's company was able to demonstrate Concurrent CP/M, a  single-
user  system  (ROCHE>  False! CP/M was single-user  single-tasking.  MP/M  was 
multi-user  multi-tasking.  Concurrent  CP/M  was  designed  because  of   the 
technical  limitations  of  the hardware of the IBM Clown,  to  use  "virtual" 
screens. The standard version of Concurrent CP/M was running several  separate 
tasks  on 3 screens: the PC screen and two Wyse 60 terminals connected to  the 
RS-232C   ports.  The  last  version  of  Concurrent  CP/M  was   running   64 
terminals...)  to run multiple jobs at the same time, a feature that  did  not 
occur in Microsoft products until some ten years later. By adopting  Microsoft 
Disk Operating System (MS-DOS), IBM and Microsoft forced users to endure years 
of   crashes,  with  incalculable  economic  cost  in  lost  data   and   lost 
opportunities.
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At   the  end  of  his  life,  Kildall  wrote  an   autobiography,   "Computer 
Connections",  which  has never been published. It  is  incisive,  unaffected, 
moving  and funny, suffused by Kildall's romance with technology.  It  informs 
part  of  the  narrative  that  follows, and is  the  source  of  the  kildall 
quotations, but nothing may ever be enough to drive a stake through the  heart 
of  the appealing myth of how Kildall missed becoming the richest man  in  the 
world. In his manuscript, Kildall writes: "I think I will make a cassette tape 
of the 'IBM Flying Story'. I will carry a few copies in my jacket, to give out 
on  occasion.  There is only one problem. I tell this story and,  after  I  am 
done, the same person says: "Yeah, but did you go flying and blow IBM off?"

Gary  Kildall's precise seafaring father, Joseph, long dreamed of  building  a 
simple machine to take the tedium out of finding just where a ship was on  the 
face of the Earth. Having taken a sextant reading and checked a chronometer, a 
navigator  still  had  tedious calculations to do, based on  tables  from  the 
"Nautical  Almanac"  to  correlate the exact time and date.  Joe,  who  taught 
navigation  at the family nautical college, envisaged just punching  the  data 
into  his machine of cams and gears, and turning a crank for the  answer.  "It 
was  not  until  the microcomputer was invented", writes  Kildall,  "that  the 
'crank' was truly feasible", but his father's idea stayed in his mind.

Gary was a poor performer at Seattle's Queen Anne High School. He applied  his 
gifts  to rebuilding old cars and boats, and carrying out pranks.  He  rewired 
neighborhood  phone  lines, so as to eavesdrop on his  sister's  conversations 
with her boyfriend. But his English grades at Queen Anne were so bad he had to 
stay  back a year. It turned out to be a stroke of luck: When he squeezed  his 
lanky  frame into the desk for his repeat year, he found himself sitting  next 
to  a beguiling and witty young woman, Dorothy McEwen. His focus on  irregular 
verbs  suffered  --  they talked so much they had to  be  moved  to  different 
corners  of  the  classroom -- but she became his bride  a  few  years  later. 
Dorothy  remembers:  "He was inventive. He was like a little kid  in  a  candy 
shop."

After  high school, Gary followed his father, who had followed  *his*  father, 
Harold,  in  becoming  teacher at the Kildall Nautical  School.  Teenage  Gary 
taught navigation and trigonometry for several years, alongside his father and 
grand-father.  The family tradition was strong, so Gary's father did his  best 
to  sabotage  Gary's  plans  when,  at the age of  21,  he  announced  he  was 
abandoning  ship  to  go to college. His ambition ran afoul of  not  only  his 
father's  protests, but the fact that his grades at high school had  not  been 
good  enough  to qualify for the University of Washington. He  petitioned  the 
university  regents to take into account his teaching at the Kildall  Nautical 
School,  and  "by entirely too close a margin", he was admitted in  1963,  the 
year  of  his marriage to Dorothy. She supported him while he studied  --  and 
study  hard he now did. "The Kildall Nautical School", he writes,  "taught  me 
processes that high school had not. Such as the ability to do mathematics of a 
sort  and, most important, the mental tools to dissect and  solve  complicated 
problems, and to work from the beginning to the end in an organized  fashion." 
He got nothing but top grades.

Kildall found himself in a pivotal moment in the transition between mechanical 
and digital computing. He studied both; of the mechanicals, he dryly  remarked 
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that,  after  a lot of complicated button pushing, "Sometimes,  the  resulting 
number  was  correct." His deepest passion was for an important piece  of  the 
computer  software  called a compiler. Compilers are  translators.  They  take 
programs written in computer languages understandable by people and turn  them 
into  the  famous binary digits -- ones and zeros -- called "bits"  for  short 
(BInary digiTS), that the computer understands. "They are sort of like natural 
language  translators", writes Kildall, "who sit in a business conference  and 
make  English into Japanese. Compilers, when perfected, can be elegant to  the 
point  where you want to paste a printout on your wall, like artwork. OK,  you 
have  to be into writing compilers to get my meaning, but when  your  compiler 
works, you are very proud and want to show it off."

In 1966, the University of Washington bought a new Burroughs B5500, a computer 
powerful  enough  to  run  ALGOL,  or ALGOrithmic  Language  --  a  series  of 
procedures done by numbers. The computer follows algorithms to do  mathematics 
much  faster than people ever could. ALGOL was a precursor for today's  Pascal 
programming  language.  Kildall got himself a part-time  job  maintaining  the 
Burroughs. He writes: "That old B5500 became my learning machine. I saw a  ton 
of  sunrises  over  that Computer Center." He became  so  gleeful  having  the 
computer  to himself that, at midnight, he would put up a sign  saying  "B5500 
Down  for  Maintenance". At 6 a.m., he would take down the sign  after  having 
played with the machine all night.

His  nocturnal  exercises  paid off. In 1967, he was accepted  as  one  of  20 
students  in UW's first Master's degree program in Computer Science. What  the 
left  hand  of  Providence bestowed, the right threatened  to  take  away:  He 
received a draft notice consigning him to the Army and the Vietnam War. "Damn! 
All of a sudden, visions of rice paddies flew through my head. I know you  are 
not supposed to use connections but, quite frankly, I did not want to get shot 
at.  Dad connected me with one of his [Navy] buddies, and I got a reprieve  to 
finish my Master's degree while I worked toward my commission as an  officer." 
He spent two Summers at the Navy's Officer Candidate School in Newport,  Rhode 
Island, in 1967 and 1968, became an Ensign and, while waiting for  assignment, 
taught data processing to sailors in Seattle. "It was a bummer. I was destined 
to  become  an  officer  on a destroyer tossing shells  into  the  forests  of 
Vietnam."  Unbeknownst  to  Kildall,  the  President  of  the  University   of 
Washington,  Dr.  Charles Odegaard, had been impressed by  Kildall's  computer 
work in 1969, and arranged for him to have a decisive interview shortly before 
he  was due to be posted. The Navy Captain he met with stared Kildall  in  the 
eye.  "Mr.  Kildall", he said, "you have a choice to make."  He  could  become 
either an officer on a destroyer, or an instructor in Mathematics at the Naval 
Postgraduate  School  (NPS) in Monterey, California.  Kildall  recalls:  "This 
particular  question  made me understand the length of a  microsecond.  "Well, 
Sir", he said, "I would like dearly to serve my country in battle, but I think 
I  shall take the second option, if you please." The Captain warned him  that, 
if he taught at the Naval Postgraduate School, he would probably not reach the 
level  of  Admiral. "I took a pensive stance for a moment, and then  told  him 
that I would accept that risk."

The Navy did, however, benefit greatly from Kildall's teaching Mathematics  at 
NPS.  While  he  and Dorothy settled down to family life in  Seaside,  on  the 
beautiful  Monterey peninsula, he became lifelong friends with Dan Davis,  who 
was  assigned  by  the  Navy to NPS at the same  time,  having  completed  his 
Mathematics Ph.D. at Caltech and, together with others in the Math department, 
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they  later founded the NPS Computer Science department. They even learned  to 
fly  together in the NPS Flying Club. When his three-year tour of  naval  duty 
was up in 1972, Kildall kept a link with the School as an assistant professor, 
but returned to the University of Washington to continue work on his Ph.D. His 
thesis  topic  was to optimize the translation of programming  languages  into 
computer-readable form, by analyzing the flow of execution of the program.  He 
called  the project "Global Flow Optimization". After several months,  Kildall 
found  a  method that seemed to work, but he could not prove  its  correctness 
mathematically. He slept little, struggling vainly for an answer. "I just  sat 
and  sat and sat in my UW grad student office, resting my head in  both  hands 
until  my  eyes shut by themselves late [one] evening. Nothing.  Then,  in  an 
instant, the proof came to me. I was not even paying attention to it. I  awoke 
in an instant and wrote the entire proof of my central theorem, not  finishing 
until  sunrise.  I  guess  that  is  why  they  put  lightbulbs  over  cartoon 
characters. The discovery of this proof was one of the grandest experiences of 
my life, except, of course, for the time I visited Niagara Falls."

It was also a manifestation of Kildall's genius. His colleague Dan Davis says: 
"This  was  the  first time anyone had created a  general  and  mathematically 
rigorous approach to code generation for compilers. An unusual fact about Gary 
was  that  he  was equally creative in both the practical nuts  and  bolts  of 
building  systems and the theoretical knowledge underlying the practical.  His 
practical  genius  is  known, but he also made a  major  contribution  to  the 
advance  of  theoretical  knowledge of code optimization  in  compiler  theory 
through  his Ph.D. work. Not many people could match the breadth and depth  of 
his  practical  and  theoretical knowledge of computing,  certainly  not  Bill 
Gates."

In  1972, a colleague showed Kildall an ad in "Electronic  Engineering  Times" 
saying:  "Intel  Corporation  offers a computer for  $25."  Actually,  it  was 
offering the four-bit computer chip (ROCHE> The Intel 4004.), containing 2,300 
transistors  but  measuring  only  approximately 0.8 by  0.3  inches.  It  was 
designed  by  Intel's young Ted Hoff for a Japanese  desktop  calculator,  but 
released  for  general  sale at Hoff's urging. The cost was $25  only  if  you 
bought  10,000 of them; the price jumped to between $45 and $60 if you  bought 
just one. But customers using the Intel 4004 chip would first need to design a 
custom board-level or box-level system with memory, power supplies,  keyboard, 
display and cables. Kildall was intrigued. He had never heard of this  "little 
chip company", but he sent for specifications for the first development system 
for the Intel 4004. It was a little foot-square blue box called the SIM  4-01, 
with  read-only  memory  (ROM),  but the price was  $1,000  plus  $700  for  a 
Teletype. He did not have enough money for both on his $20,000-a-year salary.

He got around this by faking the operation of the little Intel 4004 on the big 
IBM  370 (ROCHE> of the NPS). As he programmed the simulator, the  limitations 
of  the chip drove him crazy, but he saw the potential of escaping from  large 
immobile  computers.  "This  [Intel 4004] was a  very  primitive  computer  by 
anyone's  standard,  but  it foretold the possibility of  one's  own  Personal 
Computer  that need not be shared by anyone else. It may be hard  to  believe, 
but  this little processor started the whole damn industry... There, in  1972, 
my dad's navigation 'crank' had arrived in the Intel 4004, but there  appeared 
to be some major programming work to get the crank to actually work."

The  Intel  4004  had  no trigonometric functions,  so  Kildall  spent  months 
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programming the chip to find Sines and Cosines. After debugging the program on 
his simulator, Kildall called a friend at Intel and offered to swap the  Intel 
4004 simulator for a development system built around a real chip, a $1,000 SIM 
4-01.  The  Intel engineer was less interested in the simulator  than  in  the 
trigonometric functions Kildall had written. They made the trade, and  Kildall 
had his own 4004.

There  was a tedious year's journey to make anything of a machine  that  could 
fed  data only four bits at a time, and had no monitor. Kildall describes  the 
process:  shining a Ultra-Violet light through a quartz window for 30  minutes 
to  erase  256 bytes of space on the EPROM  (erasable  programmable  read-only 
memory), so there was room for his own little program; feeding paper tape into 
a  Teletype  and then, line by line, typing a program written  in  hexadecimal 
code  (ROCHE>??? This must be a misunderstanding. Kildall was  not  PHYSICALLY 
typing the hex code: the hex code was read from the paper tape (output by  the 
compiler)  and written in the EPROM.), known as machine language;  fixing  the 
typing  errors by going back to the beginning; running the corrected  code  to 
load  each EPROM. "We, pioneers, had to do all this stuff two decades ago,  so 
you  can enjoy your sweet little laptop while cruising placidly over  Colorado 
at 37,000 feet... For reference, an average JFK to SFO flight takes about  six 
hours. That's the time it takes to program twelve EPROMs of 256 bytes each, or 
a total of 3,072 bytes of memory."

A laptop today does all this work in a fraction of a second.

Nonetheless, Kildall built a briefcase computer -- "It may have been the first 
Personal Computer". He proudly showed it to Dan Davis, then took it around for 
demos,  lugging with him the 60-pound Teletype. He inspired hundreds,  one  of 
them  a  young  engineering  graduate at the  University  of  Washington,  Tom 
Rolander, who later became important in his life. Intel, too, was impressed by 
Kildall's  bubbling  imagination, and engaged him as a  part-time  consultant, 
initially  to  build a simulator for the new microprocessor  the  company  was 
working  on (ROCHE> The Intel 8008.), which was to be more sophisticated  than 
the  Intel  4004,  and  ten times faster. Software  applications  were  a  low 
priority then at Intel; the "software group" Kildall joined part-time was only 
two people tucked away in a space the size of a small kitchen. Kildall devised 
a video game for his briefcase computer based on a 1972 idea -- something like 
the future "Star Wars" -- by Intel engineer Stan Mazor, a co-developer of  the 
microprocessor.  The  pair  of them showed it off to one of  the  founders  of 
Intel,  Bob  Noyce,  a  gentle,  smilling  presence  who  occasionally  walked 
encouragingly  through  the  little software corner in  his  white  lab  coat. 
Kildall writes: "Noyce peered at the LEDs blinking away on my 4004. He  looked 
at Stan and me, and said, bluntly, that the future is in digital watches,  not 
in  computer games." Intel had just bought Microma, one of the  first  digital 
watch  companies  which was, not long afterward, beaten into the ground  by  a 
flood of Japanese digital watches. Intel thus passed up an opportunity to lead 
the  video  game industry. Kildall, in a judgment that would  reverberate  for 
him,  too, writes of Noyce: "He, like all of us, made some decisions that  are 
right, and some that could have made the future unfold in a different manner." 
What mattered to Kildall was that, in building an industry in microprocessors, 
"Bob treated his people with dignity".

Intel was abuzz in 1973 with the triumph of the Intel 8008 chip, which doubled 
the power of its first microprocessor, and Kildall was drawn to spend more and 



file:///C|/...ate%20Histories%20Report%20to%20CHM/DRI/Emmanuel%20Roche%20documents%20conversion/Kildall.(zip)/GKTMA.TXT[2/6/2012 10:28:09 AM]

more  time  there.  After his "eyeballs gave way", he would  spend  the  night 
sleeping  in his Volkswagen van in the parking lot. He became a trader  in  an 
electronic  bazaar,  swapping  his software  skills  for  Intel's  development 
hardware.  One morning, he knocked on the door of Hank Smith, the  manager  of 
the little software group, and told him he could make a compiler for the Intel 
8008  microprocessor, so that his customers would not need to go  through  the 
drag  of low-level assembly language. Smith did not know what  Kildall  meant. 
Kildall  showed how a compiler would enable an 8008 user to write  the  simple 
equation  x = y + z instead of several lines of low-level  assembly  language. 
The manager called a customer he was courting, put the phone down and, with  a 
big  smile, uttered three words of great significance for the  development  of 
the Personal Computer: "Go for it!"

The  new  program (ROCHE> The simulator was called "Interp".),  which  Kildall 
called  PL/M,  or  Programming  Language  for  Microcomputers,  was  immensely 
fruitful.   Intel  adopted  it,  and  Kildall  used  it  to  write   his   own 
microprocessor  applications, such as Operating Systems and utility  programs. 
(ROCHE> It was a "System Language" (like C), but with Kildall's  optimizer...) 
It  was the instrument for developing the PL/I-80 compiler that he  worked  on 
with  Dan  Davis for three years. "Gary was very visual", Davis told  me.  "He 
would  design  things more or less graphically, and then transfer  his  design 
into code. He even had an aesthetic about his drawings. He was very  thorough, 
patient  and persistent in ensuring his solutions were not only  correct,  but 
elegant."  Kildall's  reward  was  Intel's  small  new  computer  system,  the 
Intellec-8.  (ROCHE>  There  is an obvious error in dates, here.  He  got  his 
Intellec-8  for  PL/M, not PL/I-80.) It must have been  the  first  commercial 
Personal  Computer,  Kildall notes, though no one thought of it  as  that.  He 
borrowed  $1,700 to buy a printer and a video display. What irritated him  was 
that  he could not operate the Intellec-8 independently of the  expensive  DEC 
PDP-10  minicomputer now installed in the Navy's classrom at  Montery  (ROCHE> 
Error: There was an IBM 370 Mainframe at NPS, and a DECsystem-10 at Intel! The 
S/370  was running under CP/VMS, hence the name "CP/M"...) -- unless he  could 
contrive a way for the Intellec-8 to store data.

Experiments  with cassette tape did not work; then Memorex (ROCHE>???  Kildall 
says  "Shugart  Associates" in his DDJ article?), just down  the  street  from 
Intel, came up with an eight-inch floppy disk for mainframes (ROCHE>??? Wasn't 
it IBM who invented the 3740?). It held 250,000 characters (ROCHE> Well,  more 
exactly (since it is a power of 2), 256KB.), moved data at 10,000 characters a 
second (compared with ten characters a second with the Teletype paper  reader) 
and,  in theory, gave nearly instant access to any portion of the stored  data 
without  rewind  or fast-forward. Wonderful -- but the  communication  between 
Kildall's  small  computer  and the disk drive needed a  controller  board  to 
handle the complex electronics, and there was no such thing. "I sat and stared 
at  that  damned diskette drive for hours on end, and played  by  turning  the 
wheels  by  hand,  trying to figure a way to make it fly.  The  absence  of  a 
controller  for  that floppy drive was the only thing between me and  a  self-
hosted  computer.  It drove me nuts." The equipment sat in his  office  for  a 
year, the software genius defeated by hardware. "I would just look at it every 
once in a while. That did not seem to work any better."

He  went  reluctantly  back to his DEC minicomputer, and  built  an  Operating 
System  he called CP/M, or Control Program for Microcomputers,  mimicking  the 
name  PL/M.  He knew the program was sound, but he still could not get  it  to 
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communicate with the disk. Desperate, he called his friend from the University 
of Washington, John Torode, who had a Ph.D. in Electrical Engineering.  Torode 
worked on it for a few months, and came up with a neat little microcontroller. 
Kildall  held  his breath: "We loaded my CP/M program from paper tape  to  the 
diskette, and 'booted' CP/M from the diskette, and up came the prompt:

        *

"This  may  have  been one of the most exciting days of my  life,  except,  of 
course, when I visited Niagara Falls, one day."

Kildall  opened  a  file,  stored it on the floppy, and  it  appeared  in  the 
directory  --  common place stuff now, but a dramatic  achievement  then,  the 
world's first Disk Operating System for a microcomputer. As Al Fasoldt writes, 
without  a Disk Operating System, a computer is just too dumb to  do  anything 
useful.  Walking back to Kildall's home for a celebratory bottle of wine,  the 
programmer  and  the  engineer told each other: "This is going  to  be  a  big 
thing".  But  where  was  the market? Ben Cooper,  an  entrepreneur  from  San 
Francisco, paid Kildall to write a program for an arcade astrology machine  he 
was making: Put in a quarter, dial your birth date and out comes your  future. 
Kildall  built the software system in a converted tool shed behind  his  home. 
When Ben mistakenly entered the command "del *.*" instead of "dir *.*" to  get 
his files, he deleted all of the files on the diskette. And that is the origin 
of the prompt: "Are you sure? (Y/N)".

Cooper finally got his machine installed on Fisherman Wharf in San  Francisco, 
and the entrepreneur and programmer sat on a bench one Summer evening, to  see 
what would happen. A hand-in-hand couple put in a quarter, did not bother with 
the  dial,  and  walked  off happily enough  with  someone  else's  horoscope. 
"Because  of  it",  writes  Kildall, "they are  probably  married  with  seven 
children  to this day". But nobody wanted to buy the 200 machines  Cooper  had 
built. (ROCHE> This must be quite a collector, today!)

The  first  big break was a sale of a word-processing  program  (ROCHE>  Which 
one?)  in  1975 to Omron, which made newspaper display terminals. It  was  the 
first  company  to  build hardware using CP/M. Kildall and  Torode  split  the 
$25,000.

Earlier in the year, in Albuquerque, New Mexico, Ed Roberts had come out  with 
a mail-order kit for hobbyists for the first commercially successful  Personal 
Computer, the Altair, which sold for $500. It had an Intel 8080 microprocessor 
inside  --  a larger, faster and more capable successor to the Intel  8008  -- 
with  indicator  lights and toggle switches on the front  panel  for  entering 
programs  (ROCHE> Like all previous computers, since the front panel  was  the 
simplest  way to test the components... In addition, if you had nothing  more, 
you  could  still play with the LEDs!). It was notoriously difficult  to  use, 
with only 256 bytes of memory, and no screen or keyboard.

A company called IMSAI (ROCHE> The first "clone" maker, using the same  "S-100 
Bus" chosen at random by MITS.), in San Rafael, across the Golden Gate  Bridge 
from Silicon Valley, had promised delivery of a Diskette Operating System  for 
the general public, but had not even begun to figure it out when Glenn  Ewing, 
a former naval student of Kildall's, engaged as a consultant, told IMSAI about 
CP/M.  "Glenn came to my toolshed computer room in 1975", writes Kildall,  "so 
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we  could 'adapt' CP/M to the IMSAI hardware. What this means is that I  would 
rewrite  the  parts of CP/M that manage things like diskette  controllers  and 
CRTs  (screens). Well, come on, I had already done this so many times  (ROCHE> 
???)  that the tips of my fingers were wearing thin, so I designed  a  general 
interface,  which  I called the BIOS (basic input/output system) that  a  good 
programmer  could  change  on the spot for their hardware.  This  little  BIOS 
(ROCHE> Less than 1KB...) arrangement was the secret to the success of CP/M."

Kildall  had,  in essence, created a digital pancake. The underside  could  be 
adapted  to fit different hardware configurations. But the top part was  truly 
revolutionary;  it  did  not have to be rewritten. (ROCHE>  Well,  that's  the 
purpose  of  any  Disk  Operating System... But it was the  first  to  run  on 
microcomputers, whose users were experiencing, until then, programs tied to  a 
particular  hardware.  Like Microsoft BASIC, which was "bundled" to  the  MITS 
8800  hardware until Version 4.51... It is only after CP/M became bigger  than 
MITS, that Bill Gates ported it to CP/M.) Kildall developed a  general-purpose 
easily  expandable  mechanism  through which  any  application  program  could 
interface  with  his  Operating  System,  by  executing  a  simple  "CALL   5" 
instruction (ROCHE> Well, more precisely, calling the BDOS with an appropriate 
system function number in a register.) This was a phenomenal advance.  (ROCHE> 
For  microcomputers.  Disk  Operating Systems existed  for  years  before,  on 
minicomputers  and Mainframes. Indeed, CP/M commands were patterned after  the 
"Monitor" of the DECsystem-10, which had an history going up to the first  DEC 
PDP-1.)   It  liberated  software  from  hardware.  Any   application   could, 
thereafter,  run  on any computer. Another way of visualizing  the  revolution 
comes  from  former DRI programmer Joe Wein:  "Kildall's  Application  Program 
Interface created a virtual program 'socket'."

According to Kildall, he and Ewing completed the system on a lovely afternoon, 
sitting in the toolshed behind Gary's house on Bayview Avenue in Pacific Grove 
with its hummingbird feeders, a pastoral scene for a computer revolution,  for 
that  is  what it portended. (It was still there in 2005, and ought to  be  an 
historic  site.)  Here,  they  created the "universal  software  bus"  to  run 
programs on any home-brew computer based on the Intel 8080; a lower-cost Intel 
device  dubbed the 8085; or on a more sophisticated microprocessor, the  Zilog 
Z-80,  prodded by an Intel spin-off. Kildall's friend and future partner,  Tom 
Rolander,  puts  into  context  what we take for  granted  today:  "Think  how 
horrible it was for the software vendors before that time. They would have  to 
have  different  copies  of their program configured to  different  pieces  of 
hardware -- and there were scores of specialized pieces of hardware. Imagine a 
world where each model of car required a different kind of gasoline --  that's 
what it was like for computer operators, before Kildall's innovation." (ROCHE> 
Obviously,  Tom  Rolander  has not used CP/M for quite a while,  since  he  no 
longer remembers that CP/M provided a standard for system calls dealing with a 
floppy  disk  and a virtual Teletype, THAT'S ALL... There was not  one  single 
system call dealing with screens, printers, graphics, or networks.  (Remember: 
Gary used a Teletype (like everybody else, since the Teletype was the standard 
I/O  device used by computers during 30 years...) when he created CP/M.) As  a 
result,  each  CP/M program had its own INSTALL program for using  screens  or 
printers.  Tom  Rolander also forget to mention that, as a  result,  CP/M  was 
PORTABLE: it was not tied to a particular hardware. Indeed, to this day,  some 
people are still using CP/M and its programs, thanks to this portability. Have 
you  ever tried to port Windows on a Z-80? Most people are shocked  when  they 
learn  that  the IBM PC cannot PHYSICALLY underline a line  on  screen,  since 
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Internet  links  used to be displayed in Blue underlined. They  simply  ignore 
(and  Microsoft  does  not  want them to know) that  Windows  use  a  "virtual 
machine" to separate it from the limitations of the hardware of the IBM Clown. 
That's  why Windows is so slow: it is doing in software what should have  been 
done  in  hardware.  But, then, it would not run  on  IBM  Clowns...)  Kildall 
created  the bedrock and subsoil out of which the PC software  industry  would 
grow. He licensed his system to IMSAI for $25,000 and felt rich. 

Clearly,  there  was a business here, but Kildall found  the  transition  from 
inventor (ROCHE>??? What did Kildall invent? Certainly not CP/M, since it is a 
port  of the Disk Operating System used by the University of Washington,  that 
he  describes  at  length in his Master Thesis, dated  1968,  5  years  before 
CP/M...) to innovator wrenching.

His  happy marriage (with "two great kids, Scott and Kristin") hit a  reef  in 
1974,  but it was retrieved by Dorothy's willingness to help make  a  business 
out  of the CP/M program. She had not had a formal college education, but  she 
had  worked in a phone company's customer service department and,  as  Kildall 
writes, often outsmarted the grads who came to him. Gary continued to teach at 
Monterey  while  Dorothy  handled the early  business,  sending  diskettes  to 
customers  responding  to a $25 advertisement she and Gary had bought  in  the 
famous   insider  (ROCHE>???)  magazine  "Dr.  Dobb's  Journal   of   Computer 
Calisthenics  and Orthodontia" at the suggestion of its founding  editor,  Jim 
Warren. Demand for the diskettes was slow at first; the market was made up  of 
early  computer enthusiasts. "We started in a corner of the bedroom",  Dorothy 
told us. "There was no long-term plan. We put no money into the operation.  We 
didn't have much savings. We lived off Visa and MasterCard."

Gary  had fun with his classes at Monterey, where the graduates revved  up  on 
his  enthusiasm and readiness to give everyone a chance. He led  them  through 
the  steps  to  design a wristwatch computer that  monitored  a  Navy  diver's 
nitrogen  pressures at varying depths, to avoid the "bends". His classrom,  in 
the  words  of Michael Swaine, editor at large for "Dr. Dobb's  Journal",  was 
probably  the world's first academic microcomputer lab. But it was a  time  to 
move on.

"He  just  loved teaching", said Dorothy. "It was a hard decision for  him  to 
quit school full-time." But Dorothy encouraged the choice they made in 1976 to 
start  a  full-time  mail-order business they  called  "Intergalactic  Digital 
Research" -- "Intergalactic" only because someone else held claim to  "Digital 
Research" for a couple of years. They moved to an office on Lighthouse  Avenue 
in  Pacific Grove, where Gary worked from a cupola on top of the building.  He 
initially proposed selling his system for $29.95 a disk, i.e., giving it away. 
At  Dorothy's  insistence,  he asked $70 -- which was  still  absurdly  cheap. 
(ROCHE>  Compared to prices of software for IBM Mainframes and  minicomputers, 
whose  users were banks and companies.) She remembers going down the block  to 
the  Pacific Grove Post Office in 1976, hoping to find checks that would  keep 
the  company  alive  a  little while longer but, by 1978,  it  was  a  roaring 
success,  leaving other proprietary systems in its wake. CP/M made  the  Intel 
Operating System look like a scam (ROCHE>??? What the Hell is he saying? Intel 
had  *NO*  Operating System! The only one which was developed  "in-house"  was 
CP/M,  but they decided to concentrate on hardware only, kept PL/M,  and  gave 
CP/M  to  Gary,  free to do whatever he wanted with it... Just  a  few  months 
before the boom of the microcomputer revolution!), in addition to being cheap, 
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Kildall's  system  was  small,  it was fast, and it would  run  on  all  Intel 
computers  and  competing  Zilog Z-80s. "No other software  product  had  been 
priced our way before", Kildall writes. "OK, CP/M's price came up to $100  per 
copy  with Version 1.4, but no one seemed to care." That denomination was,  in 
itself, another Kildall invention: The first digit was a "major" revision, and 
the (ROCHE> digit following) the decimal point indicated a minor revision  for 
update.  "You charge the manufacturers and customers a 'minor' fee to get  the 
minor revision, and then issue a 'major' revision, like CP/M 2.0, and charge a 
major fee. That became the way microcomputer softare was labeled, and for that 
purpose only."

In  1978,  when sales were $100,000 a month with a 57 percent  profit  margin, 
Gary  and Dorothy moved the business into a more spacious old Victorian  house 
at  801  on  Lighthouse Avenue, overlooking the waves of  Monterey  Bay.  Gary 
worked  on  the top floor and Dorothy ran the business office  on  the  ground 
floor,  Dorothy  abandoning the name Kildall for her maiden name,  McEwen,  to 
avoid the aroma of a mom-and-pop operation. "It was a very exciting time,  and 
we were just very naive about everything, about starting a business, about the 
industry",  Dorothy recalls. "We were young. The grownups had not  come  yet." 
They gradually recruited a young staff, students, professors and friends,  and 
installed  the programmers out of sight on the second level of the house.  The 
hiring was casual. Dan Davis was laid up at home, recovering from a motorcycle 
accident, when Kildall walked in with a computer and asked if he would like to 
work  full-time on a language compiler. "This was a wonderful period in  DRI's 
history", recalls Dan. "Beer and pizza every Friday. People like John  Pierce, 
Kathy  Strutynski, Dave Brown, Bob Silberstein and others working  like  crazy 
and  having a lot of fun." The atmosphere was certainly zany; as  Kildall  put 
it,  a lot of marriages, a bunch of babies. People came to work  barefoot,  in 
shorts  and in hippie dresses; anyone in a suit was a visitor.  One  candidate 
for interview with Kildall found herself talking technology with a red-bearded 
Roman  imperor  in a toga. Tom Rolander, visiting Kildall  after  three  years 
working as an engineer at Intel, remarked that, as a pilot, he recognized  the 
model  airplane on Kildall's desk. Within minutes, Kildall bundled him into  a 
sports  car for a fast drive to the airport and a flight in the real plane,  a 
Cherokee  180. Two days later, Rolander was at work in Pacific  Grove  writing 
the  multitasking  version of CP/M. But everyone worked hard.  Strutynski  was 
known as "the mother of CP/M 2.2", the largest money-spinner for DRI, for  the 
hundreds  and  hundreds  of  hours she put in  with  Dave  Brown  and  others, 
perfecting Kildall's original design.

Rolander  was with Kildall through all the later triumphs and crises.  Kildall 
writes:  "Tom and I had a knack about how we worked together. I  would  create 
new  stuff, write programs, and he would clean things and make them  products. 
Sometimes  the products were good, and sometimes they weren't. But that's  how 
this world works. You don't get a home run every time." Rolander, the son of a 
preacher,  was described by one associate as "Tom the Cannon". "What he  meant 
is that you aim Tom in a particular direction, and light the fuse. Tom  really 
doesn't care what direction it is; he only wants to work 80 hours a week on an 
interesting software problem." He is, today, still a lean, focused man exuding 
fitness. Visitors to his office inclined to pick up his bicycle in a  corridor 
find  it  impossible to move. Rolander loads it with bricks, to make  sure  he 
gets a proper workout. He might equally be called T-for-Thoroughness Tom. "Tom 
learned and practiced calligraphy", writes Kildall. "During our friendship, he 
wrote [out] "The Prophet" in calligraphy for me. I know it took him many, many 
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hours  to do this." The two men flew together, jogged the Asilomar  Beach  and 
confided  to each other. Writes Kildall: "At the time, he was my  co-pilot  in 
flying  and in life." On one scary night flight, Rolander saved both of  them. 
Kildall,  untypically distrusting his instruments, mistook a string of  lights 
crossing Lake Ponchartrain outside New Orleans for the horizon. They were half 
a second from crashing when Rolander, looking out the right window, yelled the 
alarm. "With the airplane now in a bank", writes Kildall, "I went back on  the 
gauges. Righting that Aerostar to 'instrument level' may have been the hardest 
thing I have done in my lifetime."

Kildall was not a daredevil pilot. He was fully instrument rated. But, on  the 
ground,  he relished risky fun. For his 39th birthday in 1981, he was given  a 
pair  of  roller skates, "the kind that look like tennis shoes  mounted  on  a 
Formula  One  car". When the party ran out of Champagne, he sped  downhill  on 
them to get some more, stumbling over small acorns to everyone's merriment. He 
liked  the  skates so much he rolled around on them in the  corridors  of  the 
office.  Alan  Cooper, who made an accounting system using CP/M  on  an  IMSAI 
computer,  says Kildall got frustrated only when the company did not  function 
like a college. "Employees would come to him, expecting him to solve  business 
problems, marketing problems, personnel problems. He did not know the answers; 
did  not  really want to think about the problems. What he wanted  to  do  was 
write code."

There  was nothing wild about that. Flying more than 1,000 hours  on  business 
trips with Kildall, Rolander -- like Dan Davis and Andy Johnson-Laird --  came 
to appreciate Kildall's very methodical approach, whether for brief acrobatics 
in  his  Pitts biplane or for a journey across the country  in  a  twin-engine 
Aerostar.  "While  my  own personality would have  prompted  more  spontaneous 
departures",  says  Rolander,  "Gary's would always  be  done  after  detailed 
weather briefings, fuel loading, and weight and balance calculations."

"Gary's programming was just as methodical. It always began with complete  and 
detailed  sketches  of data structures on large sheets of  paper.  The  coding 
never  started  until he had visualized and comprehended the  overall  design. 
From  the  preflight  to landing, Gary was a consummate  professional  in  his 
flying,  paying attention to every detail and never getting flustered. He  was 
always  calm, confident and equally demanding of detail from his  copilot.  He 
would have me rehearse my air traffic control transmissions over and over,  so 
that I would sound like a professional. After all, we were flying up at 25,000 
feet,  close  to  the  big commercial jet traffic.  Gary  paid  just  as  much 
attention to detail in his programming. Unlike other designers, who are  often 
content  to paint the broad picture and then let the more  junior  programmers 
fill in the details, Gary designed, implemented and debugged his products."

By  1980,  Kildall had sold hundreds of thousands of copies of CP/M,  and  had 
redesigned his system for the new hard drives. His was the standard  Operating 
System  for  most PCs. (ROCHE> It all depends what he means by  "PC".  In  one 
article, Gary uses the expression "personal computer" several years BEFORE the 
IBM  Clown. But, at the time, everybody was talking about  microcomputers,  or 
home  computers. It is only after the IBM Clown that the expression  "personal 
computer"  and its abbreviation "PC" came into widespread use, along with  the 
"shareware"  concept  for  office users, not home users. Before,  it  was  not 
uncommon  for societies to sell THE SOURCE CODE of their programs...  Example: 
IMSAI  4K  and 8K BASIC, Tarbell 24K BASIC, which had  a  full-screen  editor, 
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while MBASIC used a Teletype, even on the first IBM PCs. Just try MBASIC v5.28 
in  a "DOS box" to experience how old-fashioned MBASIC was, on  screens.)  The 
most popular software programs, like WordStar and dBase II, ran on CP/M -- and 
nothing  else.  (ROCHE> The only significant software ever developed  for  the 
Apple II was VisiCalc. Every other professional software (1:  Word-processing: 
Word-Master,  then WordStar, 2: Programming: CBASIC, then CBASIC Compiler,  3: 
Spread-Sheet:   Multiplan   and   SuperCalc,  4:  Database:   dBase   II,   5: 
Communications:  XMODEM  (still used 30 years later!), 6:  Graphics:  GSX,  Dr 
Graph,  DR Draw) was developed under CP/M, then, sometimes, ported  to  others 
niche  systems.)  For the young couple, it was a heady time. Gerry  Davis  (no 
relation  to  Dan),  who was then the Kildall  attorney,  remembers  the  bank 
calling to ask if DRI's profits were real. Davis said they were. "But they are 
making  85 percent profits. That's not possible." Davis assured the banker  it 
was true. The Kildalls had a virtual monopoly. The natural question, then,  is 
how Bill Gates got into the act.

Bill Gates was a 13-year-old hacker when Gary Kildall had already written  his 
first compiler and was pursuing his Doctorate. Gates and Paul Allen first came 
into the fringes of Kildall's consciousness in 1968. Several professors at the 
University of Washington formed a company called "Computer Center Corporation" 
("C-Cubed"),  to  rent  out  time  on the  new  DEC  PDP-10,  the  first  real 
minicomputer. It allowed remote access through early modems. The Seattle  area 
high  school  attended by Gates and Allen, Lakeside, had an account,  and  the 
teenagers  used their school connection to break into C-Cubed's memory,  where 
other people's passwords were kept. When a customer started complaining  about 
charges that were not his, Allen and Gates were found out. Kildall writes that 
one of the professors "found the culprits and cleverly allowed them access, so 
that he could recode and test the Operating System to prevent illegal access".

Later, Gates and Allen famously simulated one of Ed Robert's computers (ROCHE> 
The  MITS 8800 had nothing particular. In reality, Allen wrote an  Intel  8080 
simulator, then wrote a BASIC interpreter. After that, all that was needed was 
to write I/O subroutines for the MITS 8800, that Bill Gates wrote, since  Paul 
Allen was busy writing Version 2. Both were totally ignorant of how  computers 
performed  computations, so paid someone else who had  studied  Floating-Point 
software  at  university:  Monte Davidoff, to write  the  Floating-Point  math 
package, a good third of the program, and the only technically difficult  part 
of  the program.) on the Harvard mainframe (ROCHE> Note that only  Bill  Gates 
was  a student at Harvard, while Paul Allen was working as a programmer...  It 
would be funny to check if Harvard students were allowed to make  professional 
work on an academic computer...) and installed on it a simple program invented 
at Dartmouth (ROCHE> College) by John Kemeny and Thomas Kurtz called  "BASIC", 
meaning  "Beginner's All-Purpose Symbolic Instruction Code". It was  primitive 
(ROCHE>??? It was LEADING EDGE TECHNOLOGY, at the time! Today, 30 years later, 
according  to  Microsoft, Visual BASIC is the #1 Programming Language  in  the 
world.  No other Programming Language has been sold in such a number,  in  the 
history  of  computing.), but it enabled hobbyists to write their  own  simple 
programs.  In 1975, Gates and Allen formed a company called Microsoft  (ROCHE> 
Historically,  "Micro-Soft".  It  is only 2 years later,  that  the  name  was 
changed  to "Microsoft".) to sell this BASIC interpreter out  of  Albuquerque, 
not  far  from  Robert's factory (ROCHE> Indeed! Since the  mail  address  for 
Altair  BASIC was *INSIDE* MITS...) but, two years into it, Gates wondered  if 
that  was the right location for his little business (ROCHE> After he  started 
having bad relations with Ed Roberts...).
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Gates came to consult with Kildall (ROCHE>??? Why? Remember that, at the time, 
Altair  BASIC was NOT running under CP/M...), who drove him along the  central 
California coastline and, while commiserating about the speeding tickets  they 
both  routinely  collected, they talked of merging their  two  companies.  "We 
invited him to stay that night at our home. Dorothy fixed a nice roast chicken 
dinner",  writes Kildall in his memoir. But he adds: "For some reason, I  have 
always  felt uneasy around Bill. I always kept my hand on my wallet,  and  the 
other   on  my  program  listings.  I  found  his  manner  too  abrasive   and 
deterministic, although he mostly carried a smile through a discussion of  any 
sort.  Gates is more an opportunist than a technical type." David Kaplan,  the 
author  of the engaging "Silicon Boys", says there seemed to be a  gentleman's 
agreement that neither would get involved in the other's business. "DRI  would 
stay away from languages, and Microsoft would leave Operating Systems alone."

Around  this  time,  Kildall says he was encouraged by  an  engineer  at  Data 
General Corporation, located outside Boston, to write a whole new compiler for 
a  newly-defined subset of IBM's Mainframe PL/I. The original PL/I was a  very 
powerful  language  originally  developed  by IBM in the  early  1960s  --  "a 
dinosaur  every  bit  as well done as Disney  could  have  produced",  Kildall 
writes.  But he was impressed by the PL/I Subset-G design, and became  excited 
about  building  a compiler for microcomputers, partly to show  that  Personal 
Computers  could  be  used as serious machines, not  just  for  running  BASIC 
programs and games. Dan Davis, who worked on it with him, recalls: "Gary would 
write  code for this compiler ten hours a day, day in and day out  for  months 
and months. It was a monumental undertaking." In the end, it took not the nine 
months  Kildall  thought it needed, but nearly three  years.  Using  Kildall's 
algorithm from his Ph.D. work, it was, by far, the most sophisticated compiler 
ever built for the Intel chip set, enabling a host of new applications. But it 
interfered  with  the completion of CP/M-86, a 16-bit CP/M version to  run  on 
Intel's  8086  chip  --  a delay that gave Bill Gates  the  opportunity  of  a 
lifetime, one he was to seize with alacrity.

Gates  settled  his  enterprise  near  Seattle,  Washington,  of  course.  His 
breakthrough, in 1978, was Allen's design of a "Microsoft Softcard". This  was 
an  add-in board to the Wozniak-Jobs Apple IIe, so that it would run CP/M  and 
Microsoft  BASIC. The addition of CP/M gave Apple II users access to  a  large 
software  base  from  the CP/M application suppliers. "I  wanted  a  royalty", 
writes Kildall, "but Bill wanted a buyout and was stuck on that point. I  sold 
him  10,000  copies for $2.50 each." Kildall adds with  emphasis:  "He  signed 
agreements to protect the CP/M design under this license."

It  was  a necessary precaution. As Kildall writes: "CP/M was and  always  has 
been  a  copyrighted  product, with external and  internal  markings  to  that 
effect", but many people where mimicking Kildall's design. By the late  1970s, 
hundreds  of "clones" had been made. Some were sold in minor  quantities,  but 
they  gained  little  market share and, in Kildall's view,  hardly  merited  a 
lawsuit. Gerry Davis would issue warning letters, but Kildall liked to drop in 
on a more noticeable copyright infringer and try a little shame. Roger  Mellon 
bought  an Operating System from the Palo Alto Computer Store and was  assured 
it  was  original. He was astounded when Kildall used the  machine's  built-in 
debugger to view Mellon's memory storage and, embedded there, was the message: 
"Copyright  1978, Digital Research". Mellon promptly signed up for a  license. 
Kildall  writes: "I put the copyright message in the object code  for  exactly 
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that purpose, and you had to be a very sophisticated programmer to remove that 
message.  Not  only that, if it was removed, CP/M would not  run  because  the 
Operating  System  checked to see if the message was  there  before  starting, 
using  an encryption scheme that worked quite well." (Kildall had learned  the 
encryption techniques at the Naval Postgraduate School.) In the fall of  1979, 
Roger  Billings  was  doing very well selling a computer  system  out  of  his 
company  in  Provo, Utah. Kildall and Rolander flew seven hours in  a  single-
engine  Piper Archer, only to have Billings make them cool their heels in  the 
waiting  room.  With  nothing to do, Kildall played  with  a  sample  Billings 
computer  in the waiting room. Using his debugger program, he quickly  entered 
the innards of the computer Operating System. There, again, was his  copyright 
message. Kildall writes: "Roger became quite friendly, all of a sudden."

Another  participant  in  these  little  morality  plays  was  Rod  Brock,  an 
enterprising neighbor of Bill Gates's in Redmont. Brock, who owned a  mom-and-
pop company called Seattle Computer Products (SCP), was impatient in 1979  for 
the  CP/M-86  Kildall  was developing to maximize the potential  of  the  more 
powerful  (ROCHE>??? In which sense? Complexity? Slowness? Lack  of  hardware? 
(The IBM PC used the 8-bit Intel 8088... That Intel was obliged to  introduce, 
since  all the hardware existing at the time used 8-bits I/O busses.) Lack  of 
software?)  8086  16-bit Intel chip. Brock has said he was told  it  would  be 
ready  in  December,  but his revenues were running down so, in  the  hope  of 
filling the gap, he hired 24-year-old Tim Paterson, a University of Washington 
graduate  with a Bachelor's degree in Computer Science. In August 1980,  Brock 
shipped  an  early  version  of  the system Paterson  came  up  with.  It  was 
officially  known  as 86-DOS, but Paterson called it QDOS,  for  Quick'n'Dirty 
Operating  System,  and  Brock shipped a finished version  in  December  1980. 
Paterson  borrowed  Kildall's basic applications architecture,  to  make  QDOS 
compatible  for users of the dominant CP/M-80 and upcoming CP/M-86, which  was 
shipped  on  January  23,  1981.  Andy  Johnson-Laird  was  a  savvy  computer 
specialist in Oregon, who had a business customizing the CP/M Operating System 
for hardware vendors. He heard that Seattle Computer Products had produced the 
first  S-100  (ROCHE>  Bus) card with a 16-bit  processor.  Out  of  technical 
curiosity,  he  dropped in on SCP. "It was a small one man, a boy, and  a  dog 
kind  of  operation", he recalls. "Messrs. Brock and Paterson  were  the  only 
people  I  saw working out of one of those generic business  park  offices.  I 
bought one of their boards. Later, when I looked at the documentation for  86-
DOS  that was supplied by SCP, it made it clear that, in the API calls,  there 
were   substantial  similarities  to  CP/M."  (APIs,   meaning   "Applications 
Programming Interfaces", are ground rules that tell the application  developer 
what the Operating System will do in response to a defined set of requests  or 
"calls".)  Johnson-Laird  just happened to be a licensee of CP/M  since  about 
1977  who had become friends with Kildall and others, so he phoned Kildall  to 
ask if he knew about this.

In his memoir, Kildall writes: "Paterson's Seattle DOS was yet another one  of 
the rip-offs of the CP/M design. The CP/M machine code was taken apart,  using 
CP/M's  own DDT [its debugger], to determine the internal workings of CP/M  in 
order  to make a clone of CP/M's operation." Paterson, who  vehemently  denies 
using  Kildall's  source  code,  explained  in  a  subsequent  PBS  television 
documentary  what  he did: "I took a CP/M manual that I had  gotten  from  the 
Retail Computer Store for five dollars or something, and used that as a  basis 
for  what would be the application program interface, the API of my  Operating 
System."  According to James Wallace and Jim Erikson in "Hard Drive",  Kildall 



file:///C|/...ate%20Histories%20Report%20to%20CHM/DRI/Emmanuel%20Roche%20documents%20conversion/Kildall.(zip)/GKTMA.TXT[2/6/2012 10:28:09 AM]

lost his traditional cool. They report an interview they had with Paterson, in 
which  he said Kildall phoned him and accused him of "ripping off"  CP/M:  "At 
the time", said Paterson, "I told him I did not copy anything. I just took his 
printed  documentation and did something that did the same thing. That's  not, 
by  any stretch, violating any kind of intellectual property laws. Making  the 
recipe  in the book does not violate the copyright on the recipe. I  would  be 
happy to debate this in front of anybody, any judge."

The  analogy is questionable. Another way of looking at it is that a  cookbook 
may give a chef an implicit right to prepare its recipes, but it does not give 
a chef the right to borrow extensively from the text for his own book or, say, 
translate the most important passages into foreign languages and sell it at  a 
profit.  Paterson  was  not writing a computer application  according  to  DRI 
specs,  i.e., cooking from a recipe. He was creating a derived work, based  on 
the  cookbook  copyrighted  by someone else. When  Paterson  wrote  QDOS  with 
Kildall's  manuals "at his side" (in the words of Gary Rivlin in "The Plot  to 
Get  Bill  Gates"),  he  was  using  materials  marked  on  every  page:  "All 
Information  Contained Herein is Proprietary to Digital Research".  The  title 
page  just  about  covered every contingency:  "Copyright  (C)  1979.  Digital 
Research. All rights reserved. No part of this publication may be  reproduced, 
transmitted,  transcribed, stored in any retrieval system, or translated  into 
any  language,  or  computer language, in any form  by  any  means,  magnetic, 
optical,  chemical, manual, electronic, mechanical, or otherwise, without  the 
prior written permission of Digital Research, Inc."

Computer  commentators  have  variously referred to QDOS as  a  clone  --  "an 
obvious  CP/M knock-off" (Gary Rivlin); "almost a direct copy of  CP/M"  (Ward 
Christiansen);  "mostly  a copy of CP/M" (Joe Wein); and "kind of  like  CP/M" 
(Microsoft  co-founder Paul Allen). In 1994, following the death  of  Kildall, 
Paterson and John Wharton, a former Intel engineer and computer specialist who 
was  a  friend  of Kildall's, got into a vigorous  debate  in  "Microprocessor 
Report". Wharton referred to QDOS as "an unauthorized 'quick and dirty' knock-
off  of CP/M". He added: "I can empathize somewhat with the bind in which  SCP 
found  itself:  unable  to sell its 8086 hardware for lack  of  software,  and 
unable  to  buy  the software it wanted. But, for Mr.  Paterson  to  cite  the 
unavailability  of  CP/M-86 as justification for appropriating the  'look  and 
feel'  of  a  competing  Operating System and  its  utilities  seems,  to  me, 
analogous  to telling a judge: 'I needed a car, Your Honor, and the  plaintiff 
wouldn't sell me his, so I was forced to take it.'"

Paterson resented the analogy. In a long response, he admitted drawing on  the 
1976  CP/M  Interface  Guide "so that the interface used  by  applications  to 
request  Operating System services would be exactly the same as  CP/M's  after 
applying  the translation rules". But he also vigorously defended his work  as 
original:  "Because of the completely different file-storage format,  none  of 
the internal workings has any corresponding relation to anything like CP/M.  I 
never  used CP/M source or disassembly at any time while I was developing  86-
DOS."

In 1980, the argument would have been a bagatelle, soon disposed of by lawsuit 
or  a license from Kildall, but for the curious behavior of IBM. Everybody  in 
the computer world knew that Kildall had created and owned CP/M --  everybody, 
it seems, except the biggest beast in the Mainframe jungle, at which  Personal 
Computer  had,  hitherto,  been  almost invisible. In  July  1980,  IBM's  top 
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managers  in Armonk, New York, set up a taks force in Boca Raton, Florida,  to 
report  on  the  feasibility of urgently mass-producing  a  desktop  computer. 
Philip "Don" Estridge was given just one year to get the secret project, code-
named  "Project  Chess",  into  the  marketplace. This  left  no  time  to  do 
everything  within  IBM, so they chose an Intel processor and  looked  for  an 
Operating  System with open architecture to facilitate add-ons --  exactly  as 
Kildall had designed -- then called not on Kildall and DRI in California,  but 
on Bill Gates in Seattle.

Jack Sams, the IBM Operating Systems expert charged with buying the  software, 
had  visited Microsoft in July, and had been stunned to find that the  "office 
boy"  who  came to greet him was "the most brilliant mind I  have  ever  dealt 
with".  (ROCHE>  Yes,  the  one  who wrote  (twice!)  publicly  that  the  DAA 
instruction  was  useless... MITS "Computer Notes", September  1975,  page  7. 
Instruction that still exists on IBM Clowns, 35 years later...) Sams wanted  a 
license  for the source code for CP/M because he had been impressed  with  its 
success in the Microsoft Softcard for Apple II. (ROCHE> Eureka! The IBM PC was 
designed  to  fight  against  the Apple II,  not  the  hundreds  of  thousands 
microcomputers  running  under  CP/M! But why the Apple II?  Because,  at  the 
beginning, VisiCalc was running ONLY on the Apple II... and many customers  of 
IBM  were  so  stricken by the first Spread-Sheet of history  that  they  were 
buying them "en masse", since they were so incredibly cheap, compared to their 
incredibly  expensive Mainframes. IBM commercial engineers noticed those  non-
IBM  "things" appearing in their customers's offices, and IBM decided to  kill 
it.  Now, you know the REAL origin of the IBM Clown. If you study the  history 
of  the IBM PC, you will find that the first version had no floppy disk  drive 
(!),  but  a magnetic cassette interface, 64KB of RAM, and  a  ROM-version  of 
BASIC. That is to say: the specifications of the Apple II...) "I just  assumed 
Microsoft  had  a  license  to market the CP/M source  code",  Sams  told  me. 
(ROCHE>???  Had  the customers of IBM a license to market the source  code  of 
IBM's Operating System? This answer is, simply, incredible.) "But I also  very 
much  wanted Microsoft's languages." (ROCHE> This sounds more  logical.)  When 
Sams flew cross country again to Seattle, on a Wednesday in August, he brought 
with  him a whole IBM team. Having ensured that Gates and his  partner,  Steve 
Ballmer, signed a tight confidentiality agreement and a consulting  agreement, 
they opened negotations to buy a license for CP/M from Microsoft. Hello? Gates 
had  to  say  it  was  not his system to license.  "IBM  had  not  done  their 
homework",  said Gates later. Gates, there and then, phoned Kildall,  only  to 
say  that  a "big client" was going to contact DRI, and  that  Kildall  should 
"treat them well". Sams took the phone to schedule a meeting with DRI two days 
later.

This  is where the myth begins. In his memoir, Kildall is quite specific  (and 
Rolander  confirms)  that he arranged to meet the "Project Chess"  team  on  a 
Friday  afternoon. Knowing and explaining that he had  a  previously-scheduled 
business  trip  on  Friday  morning  (taking  urgent  documentation  to   CP/M 
distributor  Bill Godbout at his factory in Oakland), he arranged  an  initial 
meeting between the visitors and Dorothy, who negociated contracts.

The IBM team showed up as scheduled at 10 a.m., and the lawyer, well-known for 
his  aggresive style, presented Dorothy with a ludricrously far-reaching  non-
disclosure agreement. According to Kildall, it stated: "All Ideas, Inventions, 
or  other Information become the property of IBM." Anything IBM said would  be 
confidential, whereas anything DRI said was not. For its part, IBM was unhappy 
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that  every page of the DRI manuals was stamped: "Confidential". Dorothy  gave 
the IBM team DRI's standard licensing agreement, which Kildall says more  than 
1,000 manufacturers had already signed. There was a stalemate for a few hours. 
Dorothy would not sign IBM's broad agreement without knowing what IBM  wanted. 
IBM  would  not  reveal what it wanted until DRI signed.  Dorothy  sought  the 
advice  of Gerry Davis. He agreed with her that the undertaking asked for  was 
too  broad,  but thought it might be modified. He says, "Bill  [Gates]  signed 
that  agreement  because he had nothing to lose, because he did  not  have  an 
Operating System."

Dorothy  decided  not  to negotiate further until Kildall came  back  for  the 
afternoon  session. In the meantime, it appears, the IBM team fumed. There  is 
an exponential arc to the revisionism that was to so amaze and dismay Kildall. 
In  an  interview  with the "Times" of London in 1982, Gates  is  reported  as 
saying:  "Gary was out flying when IBM came to meet, and that is why they  did 
not  get the contract". Robert Cringely's "Accidental Empires" (1992), one  of 
the  seminal  works on Silicon Valley, states that Kildall never  bothered  to 
show  up at all. The Long Island newspaper "Newsday" wrote: "In a story  often 
told,  the  starched-shirt  IBM  guys,  after  CP/M  long-hairs  canceled   an 
appointment,  turned  to  an unknown company called Microsoft,  headed  by  an 
unknown computer geek named Bill Gates." (On a smaller point of accuracy,  Tom 
Rolander was quite bald by that time.) The source for the absent-Kildall story 
is Sams. In 1992, he told Wallace and Erikson he was sure Kildall did not turn 
up  for  the  meeting, "unless he was there pretending to  be  someone  else". 
(ROCHE>  The behavior of Sams is really more and more curious.) When  I  asked 
Sams about this in the light of Kildall's memoir to the contrary, he conceded: 
"I  believed  we had not met, but he may have been one of the  three  or  four 
people  round  the table." Alfred Chandler Jr., who does not  doubt  Kildall's 
presence, writes in his 2001 book "Inventing the Electronic Century": "Kildall 
was  unwilling  to sign the standard non-disclosure agreements  on  which  IBM 
insisted...  If Kildall had been willing to accept the non-disclosure  clause, 
and  if  Motorola's chip had been the first choice over  Intel's  commercially 
unpopular  one,  the underlying history of the Personal  Computer  during  the 
critical  decade  of  the 1980s might have remained much  the  same.  But  the 
industry's  two most powerful players in the 1990s might not have  been  Intel 
and Microsoft." David Kaplan explains the prevalence of these stories: "That's 
the  Microsoft,  and  popular,  version -- and since  winners  tend  to  write 
history, it is the prevailing one."

This  is  what Kildall has to say about his role as the  invisible  man:  "Tom 
Rolander  and I flew back in the early afternoon, to join the IBM  discussion. 
The  group  consisted of me, the IBM Chess Team, Dorothy, and  attorney  Gerry 
Davis. Tom was around for a time. The non-disclosure agreement was signed, and 
the IBM team revealed their plans for their new Personal Computer."

There  is  a  conflict on timing, here. Sams maintains  that,  at  this  first 
meeting,  he did not reveal IBM's plans for a PC (ROCHE> While he had done  so 
with Microsoft, which had no Operating System, 2 days earlier... The  behavior 
of Sams, the "Operating System expert", is really more and more curious!), but 
one  of  the  key DRI staffers (Kathy Strutynski, see below)  has  a  distinct 
memory of Kildall talking about the PC only a week or so later. John  Katsaros 
was  not with the company at the time of the 1980 meeting but, in  July  1981, 
six  months  after he took over marketing, Dorothy let him  see  an  agreement 
Kildall had signed at the first meeting with IBM. "What I saw was a short one-
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page  document saying that Digital Research would not disclose to others  that 
IBM came by for a discussion. I was told that one of the hang-ups was the fact 
that Digital Research manuals contained the word "Confidential" on every page, 
and  that  IBM  would not accept these manuals  without  their  non-disclosure 
agreement being signed. Dorothy told me that, when IBM left the meeting,  they 
said she should call them whenever DRI was ready to proceed."

At this meeting, that the conventional histories say never took place, Kildall 
writes  that  Rolander presented Frank Holsworth's new MP/M-86  for  DRI,  the 
Multi-Tasking Operating System that they envisaged working with Intel's 16-bit 
computers. (ROCHE> Can you imagine an "Operating System expert" not  realizing 
the power of MP/M-86, and forgetting it?) Kildall says he also briefed the IBM 
team  on DRI's transitional Operating System, CP/M-86, to help CP/M  customers 
move to new 16-bit Intel chips.

Ultimately,  though,  Kildall wanted MP/M-86 to become the  new  standard.  He 
writes:  "The new MP/M-86 was the Operating System for the future, because  it 
had  built-in Multi-Tasking that supported the existing software base. It  had 
built-in  networking.  Only  today  [1994]  are  we  even  considering   these 
prospects.  Clearly,  the PC industry would be much more advanced if  DRI  had 
been allowed to introduce these products a decade ago." According to Rolander, 
Kildall  felt  uncomfortable  around the  stiff,  overdressed  (by  California 
standards)  IBM  men. They probably saw him as a hippie. Despite  the  awkward 
beginning  to the IBM meeting, and the arguments over the wording of the  non-
disclosure agreement, Kildall still believed they could strike a deal. As  far 
as  he  knew, no one else had an Operating System that IBM could  use  on  its 
hardware. ("We looked at Unix and other possibilities", Sams told me, "but all 
were  too  big  or too slow for our machine.") (ROCHE>  Can  you  imagine?  An 
"Operating  System  expert" having been presented with  several  people  using 
several programs AT THE SAME TIME on a 4-MHz chip, and forgetting it?) Kildall 
writes:  "We broke from discussions but, nevertheless, handshaking in  general 
agreement on making a deal."

Kathy Strutynski, the DRI CP/M-86 project leader, told me that, around 8  p.m. 
that  evening,  she had a call at her home from Bill Gates. "He  asked  me  to 
contact Gary and urge him to restart negotiations with IBM." But she could not 
find  Kildall, for the good reason that he and his family had,  that  evening, 
set out for a vacation in the Carribean. On the initial flight to Florida, the 
Kildalls ran into the IBM team returning to Boca Raton. Kildall says he  spent 
much  of  the  flight discussing how he would adapt CP/M-86  to  IBM's  needs. 
Dorothy  described  the  team as "friendly". "One of them  kissed  me  on  the 
cheek", she told me. I asked Sams about this manifestation of the Kildalls. He 
said  he missed it because he parted from his team headed for Boca Raton,  and 
went to IBM in White Plains, New York. (ROCHE> Why?)

When  Kathy Strutynski did finally pass on the message from Bill Gates  "three 
or  four days later", she says Kildall gave her three reasons why he  had  not 
already  done  a  deal with IBM. "First, no large computer  company  had  been 
successful  in  the PC market. Second, we owed loyalty to  many  manufacturers 
[OEMs]  who  had purchased our products and we could not  conceal  information 
about  IBM.  This was a major concern. Third, he did not  want  IBM  employees 
stationed  in our two office buildings." Strutynski comments: "I  think  these 
concerns of Gary's were valid, especially the second. Bill Gates did not  have 
the business relationships with all these players that DRI had, and that  gave 
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him  free  rein  to  do what he did. One could argue that  loyalty  is  a  bad 
business practice."

In his memoir, Kildall says that, when they returned to Monterey after a  week 
away, "I repeatedly attempted to contact the Chess Team, headed by Jack  Sams. 
Sams  never returned any of my calls." (ROCHE> Yet one more  curious  behavior 
from  Sams...)  Sams told me: "He may have tried to call, and I may  not  have 
been  where  he  was  calling. I did make an appointment  to  see  him  around 
Thanksgiving."  We  now  know  that,  by this time,  Sams  had  gone  back  to 
Microsoft. Gerry Davis said DRI caught wind, later, that IBM might be  talking 
to Gates again, but Kildall told him: "Bill is a friend of mine. He would  not 
cut my throat." (ROCHE> How true!)

When IBM revisited Gates with news of the encounter with Kildall, Gates jumped 
in with the observation that Kildall had not yet finished designing CP/M for a 
16-bit  machine  (ROCHE>???  You need a microscope  to  find  the  differences 
between  CP/M-80 and CP/M-86. So, what "design" was difficult to finish?)  and 
that  Microsoft  could,  itself, meet IBM's requirements.  He  accepted  IBM's 
deadline  of October for delivery of a proposal. As soon as the  IBM  visitors 
had  left,  Paul  Allen called Rod Brock at Seattle Computer, to  say  an  OEM 
customer he could not name might be interested in QDOS and could Microsoft  as 
licensing  agent.  Brock  agreed.  He ended  up  receiving  $25,000  from  the 
licensing deal.

Gates  was  taking three gambles. The first was whether he  could  meet  IBM's 
tight  schedule.  The  second  was that  Paterson's  adaptation  of  Kildall's 
architecture risked a damaging legal suit: Gates never told IBM how close QDOS 
was to CP/M. "We had no idea it was similar", Sams told me. The third was that 
IBM  might pull out. They had done that before; back in 1974, IBM had  made  a 
$10,000 PC, the IBM 5100, which failed to sell. (ROCHE> In big number: it  was 
too expensive, as usual for IBM products. But I saw one which worked 17 years. 
Anyway, IBM could not "pull out". In 1974, there was no competition. In  1980, 
the  Apple  II,  thanks  to the  VisiCalc  spreed-sheet,  was  invading  IBM's 
customers!  So, it was anything but a gamble: it was a counter-attack.)  "They 
seriously talked about cancelling the project, up until the last minute", says 
Gates (ROCHE> Rubbish!), "and we had put so many of the company resources into 
this  thing." (ROCHE> That is to say: Gates had GAMBLED on the outcome.  Would 
you  invest  in a man who has such a dangerous behavior?)  Free  of  Kildall's 
limiting  relationships,  and with a keener appetite for business,  Gates  was 
willing to bet everything. His dominating vision, even then, was of building a 
company that would span all three sectors of the nascent industry -- Operating 
System,  development  tools, and office software -- establishing the  kind  of 
monopoly Kildall had feared in his lunchtime conversation with Jacqui Morby.

At  the  end of September, Gates and Ballmer flew to Boca  Raton,  to  present 
their proposal for using Paterson's version of Kildall's interface program. On 
the drive from the airport to the meeting, Gates panicked when he realized  he 
had forgotten a tie. (They stopped at a department store on the way in.) Gates 
understood how to behave around IBM. His culture meshed with theirs far better 
than  Kildall's  did. He had other advantages. Estridge, who was to die  in  a 
famous  Dallas  "wind sheer" crash in 1985, told Gates over lunch  that,  when 
IBM's  new chief executive, John Opel, heard Microsoft might be involved  with 
the  PC,  he  enthused: "Oh, is that Mary Gates's  boy's  company?"  Opel  and 
Gates's mother served together on the board of the United Way. (ROCHE> What  a 
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coincidence! So, IBM, the biggest computer maker in the world, was to bet  its 
future  in  microcomputers  with a "Harvard dropout" who had a  version  of  a 
public domain programming language, while ignoring a Ph.D. in Computer Science 
whose  name is still found, 35 years later, in books about compilers... Is  it 
serious?)

Gates is reported to have done a bargain basement deal, licensing DOS  (ROCHE> 
What's  that?  DOS  is  an abbreviation for  Disk  Operating  System.  Several 
companies  had already used "DOS" in their product's names.) system  for  only 
$15,000,  with  almost  nothing in royalties, but the agreement  with  IBM  in 
November 1980 left him free to license the Operating System to other equipment 
manufacturers.  IBM's acceptance of this has long been regarded as one of  the 
greatest  blunders  in  business history. Microsoft went back  to  Brock,  and 
bought  the system outright for $50,000 -- thereafter known  as  Microsoft-DOS 
(MS-DOS),  or  PC-DOS on the IBM machine. Sams's explanation is that  IBM  let 
Gates  keep  control because it had too many problems "being  sued  by  people 
claiming  we had sold their stuff. We had lost a series of suits on this,  and 
so we did not want to have a product which was clearly someone else's  product 
worked on by IBM people." (ROCHE> And, in such a context, he did not care  how 
Gates  could have invented, overnight, an Operating System? Who would  believe 
this?)  Of  course,  when  MS-DOS eventually  became  the  industry  standard, 
Microsoft  left IBM in its wake. Nobody had seen the size of the market  quite 
as Gates had done. "We had no idea", Paterson has said, "that IBM was going to 
sell many of these computers." (ROCHE> I never bought an IBM Clown. During  15 
years,  I continued to use, totally alone, an Epson QX-10 running  CP/M  Plus. 
Now,  I  am  given IBM Clowns, that I use under CP/M-86  Plus.  I  have  never 
understood why people where buying technically (both in hardware and software) 
inferior  computers for more money.) Neither Brock nor Paterson  profited  all 
that  much  for their enterprise. They had retained licenses  on  DOS  (ROCHE> 
Which  one?) after its sale to Gates but, when Brock later tried to  sell  the 
license, he was blocked by Microsoft. He sued for $60 million, and settled for 
a  million. Paterson, too, was eventually to receive a million for  giving  up 
his  DOS license; he took a job with Microsoft. Steve Ballmer,  looking  back, 
acknowledged  the ironies: "Tim Paterson's Operating System, which  saved  the 
deal with IBM, was, well, adapted from Gary Kildall's CP/M." (ROCHE> Where  is 
the irony? This is a FACT.)

None  of  this was known, at the time, at Pacific Grove. Kildall  was  relaxed 
about  not  hearing  from Sams. He shared Silicon Valley's view of  IBM  as  a 
dinosaur.  "A lot of us, in the microcomputer world, in the early days,"  says 
Rolander,  "saw  IBM  as  all  fluff  and  marketing,  big,  lumbering,  slow, 
uninteresting,  not clean, exciting, fast." (ROCHE> There is a  famous  saying 
among  computer  programmers: "An elephant is a mouse with  an  IBM  Operating 
System.") In 1981, Kildall's CP/M ran on 90 percent of the roughly 500,000  or 
so Intel chip-based Personal Computers in existence. (Apple and Commodore were 
the exceptions, using their own proprietary system.) Where else could IBM go?

But,  about six months after IBM's visit to Pacific Grove, Andy  Johnson-Laird 
again alerted Kildall to dissemination of his system. Now, it was not a  small 
computer  company, but the great IBM! So that software developers  would  know 
how  to write programs for its still-secret project, IBM had to  let  selected 
programmers  have a list of API function calls. Kildall was angry to find  how 
much of CP/M's proprietary list appeared, there. He had no idea IBM had a deal 
with  Gates.  He  was just upset that IBM itself seemed  to  have  copied  his 
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interfaces.  In  his unpublished memoir, he says he furiously got  through  to 
IBM.  They immediately dispatched a manager and an attorney to Pacific  Grove. 
"I  showed  the IBM attorney definitive evidence that PC-DOS was  a  clone  of 
CP/M, and immediately threatened a lawsuit for copyright infringement. The IBM 
attorney compared the API interface, and I can clearly that he fairly blanched 
at  the comparison and stated that he was not aware of the similarity. I  told 
him that he should take note and become aware at the earliest opportunity,  or 
else he should face a major lawsuit."

The upshot was that Don Estridge -- The "Don of Boca" in Johnson-Laird  phrase 
-- immediately invited Kildall to Boca Raton. The decisive meeting was on July 
21,  1981, when he had with him Gerry Davis, John Katsaros and  Johnson-Laird. 
Katsaros was strongly in favor of suing. IBM knew it had to appease Kildall in 
some  way, since a lawsuit for "injunctive relief" could, at the  very  least, 
delay  its  entire  secret venture, due to be launched only  the  next  month. 
Estridge  at once offered to market CP/M-86 alongside PC-DOS. Kildall  writes: 
"IBM offered to buy out CP/M for its new PC for $250,000. You might be saying: 
'Hey,  Gary, sell the whole damn thing to IBM, then just wrap MP/M on  top  of 
that, say hey?' That strategy may have worked [for IBM]. So, I countered  with 
a  $10-per-copy royalty for CP/M -- as was paid by all  other  manufacturers." 
Gerry  Davis  points  out that DRI had contracts with  "most  favored  nation" 
clauses, meaning that, to sell CP/M to IBM for a flat flee, might have  caused 
DRI to be sued by its other customers. When they turned to discuss the  retail 
price to be charged for the PC with CP/M-86, IBM insisted they could not agree 
to  set  a  price.  "They told us", said Davis, "they feared  it  would  be  a 
violation  of  antitrust  laws." In the end, Kildall thought  he  was  getting 
exactly  what he wanted. "CP/M-86" would not be changed to "PC-DOS",  and  IBM 
accepted  that it would market CP/M and pay DRI. "Once the heavy  negotiations 
were over", Johnson-Laird says, "Estridge, who had presided like a  benevolent 
dictator, gave us a demonstration of the new PC, with a color display and  two 
160-Kilobyte floppy drives. It looked like a toy. I had no idea that it  would 
sell  in  the millions." (ROCHE> Notice that, again, all the people  who  were 
used  to something better, like single-user single-tasking CP/M or  multi-user 
multi-tasking MP/M, judged the IBM Clown to be a toy... And why would IBM, the 
Giant   of  computer  Mainframes,  want  to  introduce  a  toy?  Because   its 
specifications matched the one of the Apple II... which was the real target.)

Kildall  left the details of the contract to Gerry Davis, who worked into  the 
small  hours with Estridge, both dictating to a secretary. "Unhappily",  Davis 
remembers, "she was typing on a magnetic card, it got knocked, so that all the 
data  was lost, and we had to do it all over again." A final  sticking  point, 
Davis  recalls,  was  that IBM wanted a guarantee it would  not  be  sued  for 
infringement of CP/M copyrights. Kildall agreed.

Immediately after this agreement, IBM sent their prototype machine to Kildall, 
so that CP/M-86 could be installed. IBM had not yet announced their project to 
the  general public, and was in paranoid mode. Kildall was told the  prototype 
had  to  be chained to a desk, strong locks put on the doors of  the  bedrooms 
where the DRI developers would work, and shutters installed, so that neighbors 
could not see in and take pictures. No phone was allowed nearby. Any  document 
printed  out  had to be shredded and burned. Several  times,  IBM  technicians 
appeared  on nearby roofs, armed with special meters to detect if  anyone  was 
able to eavesdrop on the electromagnetic signals emitted by the new computer's 
keyboard.  Johnson-Laird, who had been invited by Kildall to install  CP/M  on 
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the  prototype,  recalls: "I sat in this secure room equipped  with  a  three-
drawer  safe with a giant steel bar and padlock running down the front.  I  do 
not  know  what it was for but, in the spirit of the enterprise, I  locked  my 
sandwiches in it. I know they would have been impressed."

His  very first hour on the prototype startled him. "I put in the IBM  floppy, 
and  was  stunned by what I saw. There, in the 'boot' sector, the  very  first 
sector of data on the diskette, was the name of Bob O'Rear. I knew him to be a 
Microsoft  programmer. I called Gary up to look. He went ashen." The shock  to 
Kildall  was, suddenly, to find that Microsoft was in bed with IBM,  and  must 
have been so secretly before Kildall's angry visit to Boca Raton. Bill  Gates, 
of  course, had signed the celebrated IBM confidential document -- "Bill  kept 
our  deal  very secret", Sams affirmed. Kildall was not only alarmed  by  that 
collusion,  but  worried that Microsoft might license the cloned  software  to 
other  hardware vendors, meaning DRI would be facing competition in  a  market 
Gates had previously left to DRI, while DRI stayed out of languages. The  non-
litigious Kildall could have sued Microsoft, but took comfort in the fact that 
both  PC-DOS  and CP/M would be sold with the new PC.  The  marketplace  would 
decide the victor, and he had no doubt of DRI's technical superiority. What he 
did  not know was that Gates had licensed MS-DOS with almost no  royalty,  nor 
how deeply committed IBM was to Microsoft. Sams told me they preferred to deal 
with a single supplier. For his part, Gates was reported to be furious his old 
friend  had  been  allowed  back in the game,  insisting  that  IBM  had  been 
"blackmailed into it".

In  August  1981, IBM's PC finally came out. Rolander remembers  driving  with 
Kildall to the nearest store, both of them brimming with excitement. They knew 
a knife had been plunged in their backs the moment they saw the labels on  the 
software  boxes: Microsoft's price advantage was a multiple of six. IBM  asked 
$240 for CP/M-86, and only $40 for Microsoft's PC-DOS. (ROCHE> PC-DOS was  the 
name  of  the  Operating  System  sold by IBM, and  MS-DOS  the  one  sold  by 
Microsoft.) Rolander says seeing the price difference was probably the biggest 
shock of his life. "It was just as if I were to reach across the table,  right 
now,  and  give  a slap across the face, something completely  off  the  wall. 
Looking  at the price and knowing you had been completely screwed, that  there 
was  no  intention whatsoever on their part to sell CP/M-86. No  intention  at 
all.  There was such a trusting nature, especially in the academic world  that 
was  collegial. This was so big-business, agressive, killer." He  and  Kildall 
felt so naive. They called IBM to demand the company reduce the price of CP/M-
86,  but  no  one called back. Gerry Davis says:  "IBM  clearly  betrayed  the 
impression  they gave Gary and me." (ROCHE> Why IBM did not want CP/M-86  and, 
even  more MP/M-86? Because THEY WERE TOO MUCH POWERFUL. IBM wanted  an  Apple 
II-killer, not something even more appealing! Else, how would you explain that 
one "Operating System expert" would not be attracted by one multi-user, multi-
tasking Operating System already running?)

Kildall writes: "The pricing difference set by IBM killed CP/M-86. I  believe, 
to this day, the entire scenario was contrived by IBM, to garner the  existing 
standard  at  almost no cost. Fundamental to this conspiracy was the  plan  to 
obtain   the  waiver  for  their  own  PC-DOS  produced  by   Microsoft."   As 
psychiatrists like to say, even paranoids are persecuted. Kildall clearly was.

Yet another explanation of what happened came from Bill Gates in an  interview 
with "PC Magazine" in 1997. (ROCHE> Who would believe an explanation from  the 
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man who benefited from the crime?) He said: "The IBM guys flew down there, and 
they could not get the non-disclosure signed. Because IBM non-disclosures  are 
pretty  unreasonable. It is very one-sided. And we just went ahead and  signed 
the  thing.  But they did not. Subsequently, Digital Research woke up  to  the 
fact that this was a pretty important project, and convinced IBM to also offer 
their  product.  But  they priced it very high." There  are,  of  course,  two 
problems  with  these two sentences. First, by the time the PC  was  launched, 
Kildall had clearly signed a non-disclosure agreement. Second, who is "they" -
- IBM or Kildall? The implication that DRI itself set the price of the  retail 
product is misleading. Though Kildall had asked for a ten-dollar royalty,  IBM 
could have priced both products equally, or with a ten-dollar difference.  The 
obvious  question  is why Kildall did not sue Microsoft. That  hectic  August, 
Kildall flew to Seattle with Katsaros, to confront Gates and Allen. He writes: 
"Allen was worried about a lawsuit, and asked if DRI had ever sued anyone over 
copying  CP/M.  I said I had not. I was telling the truth. Paul  is  a  gentle 
person, but he saw my chink and said that we were now engaged in OS-Wars."

By  the  time he wrote his memoir, Kildall saw the decision not to  sue  as  a 
fateful  error. He grew increasingly irate about the similarity of PC-DOS  and 
CP/M.  (ROCHE> PC-DOS was IBM's version, written by Microsoft...)  He  writes: 
"The  first  twenty-six  function  calls of the  API  in  Gates's  PC-DOS  are 
identical  to  and taken directly from the CP/M  proprietary  documents  [CP/M 
manuals]."  Then, he poses a challenge for his old friend: "If you think  Bill 
Gates  invented those function calls, ask him why "Print String" (function  9) 
ends with a dollar sign. He will not know." (Bill Gates's office said he  felt 
unable to give me a personal interview for the first edition of this book but, 
after  publication,  a  letter from Microsoft said: "Your  book  implies  that 
Gates'  and Kildall's relationship was competitive and contentious in  nature. 
Mr.  Gates has stated on the record, on a number of occasions, that he  had  a 
good  relationship  with  Gary Kildall, and valued his  contributions  to  the 
industry.")  (ROCHE> I like the hypocrisy of this letter. What  "contributions 
to the industry" Bill Gates made? He did not invent BASIC (Dartmouth College), 
he  did not invent MS-DOS (QDOS), he did not invent Xenix (Unix), he  did  not 
invent Windows (Apple Macintosh), he did not invent the CD-ROM (KnowledgeSet), 
he  did  not  invent the Internet (Netscape Communicator)... Yet,  he  is  the 
richest man in the world! Is it just?)

What Paterson, essentially, did was rewrite the bottom part of the software -- 
improving the way files were stored (ROCHE>??? Is the author stupid, or has he 
NEVER heard of FAT crashes? CP/M is bullet-proof. I have used CP/M Plus during 
15  years, and never lost a file. It is impossible for me to say the same  for 
MS-DOS  and  Windows. It is against the truth. But who needs  the  truth  when 
there  is  the marketing of Microsoft?) and adapting the program to  a  16-bit 
machine (ROCHE> Everybody knows how to do it. There are even programs (XLT-86) 
which  do  this automatically. Paterson had a  Z-80-to-8086  translator.  Have 
a look to the registers, and you will see that it can be done  automatically.) 
--  while  copying  most  of the top part (ROCHE> That is  to  say:  the  most 
important part.) of Kildall's Operating System interfacing mechanisms. Even if 
QDOS  and  CP/M were 80 percent different (ROCHE> Which  is  impossible.),  as 
Peterson has insisted, he took almost unaltered Kildall's interrupt  mechanism 
--  the  key  innovation.  (ROCHE>  I am  afraid  that  the  author  does  not 
understand,  on  a  technical  level, how an Operating  System,  and  CP/M  is 
particular, works. The "interrupt mechanism" is part of the hardware,  decided 
by the manufacturer (Intel, in this case). What we are talking are the ways to 
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have  an  Operating System obey its user. In the case of CP/M,  you  have  two 
parts:  the BDOS and the BIOS. (In addition, on the IBM Clown, there is a  ROM 
BIOS, providing lots of functions directly from the hardware.) So, the BIOS is 
quite  small  on the IBM Clown, thanks to the ROM BIOS. What  remains  is  the 
BDOS,  the Heart of the Operating System, without which no computer can  work. 
And  Paterson's  QDOS  copied the first 26 BDOS calls... when  he  could  have 
invented  any  other way. So, Paterson simply copied  a  Copyrighted  program. 
That's  all. And, of course, Bill Gates knew it.) One curious feature  of  the 
systems is that both CP/M and DOS began each new line with A>. (ROCHE>??? What 
is  curious? QDOS was a copy of CP/M, and CP/M was typical of  minicomputers's 
Operating Systems of its time, down to its "system prompt". See the DECsystem-
10  "Monitor".) Paterson's original 86-DOS, or QDOS, began with  the  slightly 
different  A:. After Microsoft acquired 86-DOS rights, the prompt was  changed 
back  to  being  identical with CP/M's A>,  thereby  eliminating  this  slight 
cosmetic   difference.  To  demonstrate  how  far  Paterson  mimicked   CP/M's 
interface,  the first 36 Interrupt 21 functions, Kildall's memoir  devotes  an 
appendix to comparing the sequence and language of CP/M, and those of QDOS and 
MS-DOS. A few words were changed. Kildall's "Read Sequential" function  became 
"Sequential Read"; "Write Sequential" became "Sequential Write"; "Read Random" 
was called "Random Read". And so on.

In addition, The PC-DOS EDLIN editor program was almost the same as CP/M's  ED 
program. (ROCHE> Something with can ONLY be the result of a disassembly... So, 
why would Paterson have disassembled a program two times bigger than the BDOS, 
and not the BDOS itself? Nonsense.) Paterson has continued to justify his work 
with  varying  degrees of emphasis on his claims to originality. "This  was  a 
real  product", he told Wallace and Erikson. "Everyone always thinks  IBM  was 
the first to have it. That's crap. We shipped it a year before they did." In a 
1997  "Forbes"  magazine article under Paterson's byline, he said: "I  was  24 
when I wrote DOS. It is an accomplishment that probably cannot be repeated  by 
anyone  else. (ROCHE> *BULLSHIT!*) More copies of DOS have been sold than  any 
other program in history." (ROCHE> But not QDOS... QDOS only dealt with floppy 
disk  drives,  and everybody knows that MS-DOS Version 2 became a  bastard  of 
CP/M and Unix, to manage hard disks.)

A  year  later, Paterson protested his apparent boastfulness. "That  makes  me 
sound  egomaniacal",  he  told  Doug  Conner,  who  interviewed  Paterson  for 
"MicroNews"  in  1998, when Paterson was in his eight year as an  employee  of 
Microsoft.  Conner remarked that it was surprising Paterson was, then, not  as 
well-known as his computer system -- surprising in light of the fact "that  he 
sometimes bears the heavy mantle: 'The Father of DOS'." Conner writes: "It  is 
a  quieter celebrity the amiable software design engineer carries around,  and 
it is a celebrity he is comfortable with -- when the stories are accurate.  He 
squirms, for instance, at the implication that he is fixated on his authorship 
of  DOS."  To that title, "Father of DOS", he reports Paterson  responding  as 
follows:  "I  prefer 'original author'", he explains, "I don't like  the  word 
'inventor'  because  it  implies a certain level of creativity  that  was  not 
really  the case. (ROCHE> This is an understatement...) Besides,"  he  laughs, 
"there are enough people who think it is nothing to be proud of. If I say:  'I 
invented DOS', they say: 'Well, good for you, Sucker.'" Rolander observes: "If 
Tim did not consider himself the inventor of MS-DOS, and felt his own creative 
contribution  was minimal, it is hard to see how he can complain if  his  dead 
predecessor  is  given  credit for showing  the  necessary  inventiveness  and 
creativity Paterson has declined."
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In  the  same  year of 1981, when IBM launched  its  PC,  venture  capitalists 
invested  in  DRI -- Jacqui Morby of TA Associates in Boston and  the  venture 
capital  companies  Hambrecht  and Quist and Venrock Associates  --  and  they 
helped  the company move into the big time with a new president, John  Rowley, 
relieving  Kildall of management. But the Board also dithered about suing,  as 
time ran out under the statute of limitations. Gerry Davis had to advise  them 
of  the uncertainties -- the computer illiteracy of courts, at the  time,  and 
the deep pockets of IBM, which would have to back Microsoft. The Copyright Law 
of 1976 was not amended until 1981, specifically to cover the "look and  fell" 
of  software.  Gerry Davis himself won one of the first cases, putting  a  Bay 
Area  infringer  of CP/M out of business. So, was it a mistake to  hold  back? 
"Yeah", says Davis now, "what we should have done, in retrospect, was gone  in 
and  sued  Microsoft  very early on, even with the  uncertainty  of  the  law, 
because it would have stopped the development of a competitor. And, if we  had 
stopped  them  to begin with, they would never have gotten the  foothold  they 
have."  Jacqui  Morby  agrees.  But  aggression  ran  contrary  to   Kildall's 
character.  Davis remembers him saying: "It is not nice to sue people, and  we 
are  going to succeed, anyway." Everybody in the company was in denial  for  a 
couple of years, says Davis. "There was a lot of naivety on the part of a  lot 
of us, the board, me, and then the venture capital people." Katsaros  believes 
DRI should have gone back to IBM and asked for a repricing agreement, "but, by 
then, John Rowley was on board, and did not prioritize that." The  complacency 
at  DRI  was  understandable. In 1981, CP/M was used  worldwide  in  close  to 
200,000 installations, with more than 3,000 different hardware configurations. 
(ROCHE> You will note that, now, there is only one hardware configuration: the 
IBM  Clown,  who froze the hardware. Remember the 80%-compatible  IBM  Clowns? 
This never happened during CP/M days, as the Microsoft Softcard (running on an 
6502!) proves.) There were nearly 500 software products in the shops.  (ROCHE> 
Today,  nothing  new  exists, thanks to the IBM Clown  (MS-DOS  and  Windows). 
Programs  are still classified in 6 categories: 1) word-processor, 2)  spread-
sheet,  3)  data  base,  4)  business  graphics,  5)  communications,  and  6) 
programming. At the time, people where thinking that the 640KB of MS-DOS would 
lead  to "integrated software" (one single program doing everything)  but,  30 
years later, Microsoft is still selling its programs separately...)

The  company doubled its space, moving from the Victorian house to offices  on 
Central Avenue. By the end of 1982, DRI employed more than 500 people, and had 
operations in Europe and Asia. Revenues skyrocketed from $6 million in 1981 to 
$44.6  million  in  1983.  Everyone was confident  --  they  knew  that  DRI's 
technology  was  superior,  so  it must surely  prevail  in  the  marketplace. 
Engineers  at DRI had, under Gary's leadership, moved beyond CP/M and  MS-DOS, 
which  was  based on it, and they had a poor view of the IBM  machine  itself. 
"That  machine  was  a  piece of crap",  says  Rolander,  "compared  to  other 
machines. I would defy you to find anyone else who was around the industry  20 
years ago who would have thought the IBM would be successful." Soon after  the 
IBM  machine came out, DRI engineers already had Concurrent CP/M as a  single-
user  multi-tasker  up and running. (ROCHE> Previously, there was  MP/M-86,  a 
multi-user multi-tasking Operating System for S-100 Bus computers.  Concurrent 
CP/M was designed because of the limitations of the hardware of the IBM  Clown 
which prevented several users to use the machine at the same time. The biggest 
limitation  of the IBM Clown was its "memory mapped screen" as it limited  the 
number of people able to use the machine. That's why DRI was obliged to design 
a  card to connect other monitors. At the beginning, "only" 3 terminals  could 
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use  Concurrent  CP/M  running on a single IBM Clown. At the  end,  up  to  64 
persons could use one single PC! Compare this with the slowness of Windows...) 
It  did  things computer users take for granted now, such as printing  a  file 
while editing a spread-sheet, or cutting and pasting between spread-sheet  and 
text.  The IBM-Microsoft Operating System, being single-tasking,  did  nothing 
like  this. Sometime after the release of the IBM PC, Dan Davis and a team  of 
engineers  had visited the IBM PC team in Boca Raton, and  demonstrated  their 
PL/I  and some other products on an IBM PC, including DRI  Operating  Systems. 
"We  dit  it  to convince them that we had better system  software  than  Bill 
Gates",  recalls Davis. "The IBM engineers were simply flabbergasted  that  we 
had  been able to create a multi-tasking Operating System on such a small  (by 
IBM standards) machine. We demoed several programs running while, at the  same 
time,  we were printing to a printer, and the engineers said: 'How do  you  do 
this, without printer jobs interfering with each others?' We explained we  had 
mutual-exclusion queues in the Operating System. We realized, talking to them, 
that  not only were they very unfamiliar with microcomputer  system  software, 
they  were  not  even  that familiar with  their  own  Operating  System  from 
Microsoft."

Still, IBM stuck to Microsoft, perhaps out of incomprehension, perhaps because 
it knew what a relentlessly-driven super-salesman Gates was, or the fact  that 
it  was making so much money with its virtually free PC-DOS and booming  sales 
of its PC. IBM let it be known it would only provide further technical support 
for  DOS. John Wharton concludes that IBM "consciously chose to  kill  CP/M-86 
because it was machine-independent. There was clearly a strategic advantage in 
IBM  promoting  an Operating System that locked customer  software  into  its, 
then, proprietary hardware." (ROCHE> Hum... I don't agree with everything,  so 
I will only add that CP/M (a family of Operating Systems, 8- and 16-bits)  was 
not  only portable, but probably too much powerful for IBM, who  probably  did 
not want to threaten its own machines, just kill the Apple II. MS-DOS  Version 
1  was so pitiful that it was not a threat. It was not before Version 2  (with 
hierarchical directories, etc, from Unix) that MS-DOS became usable. Now,  why 
did so many buy IBM Clowns, when the S-100 Bus computers were at their heyday? 
My Epson QX-10 was making circles around the IBM PC. I simply don't understand 
why people where buying such a bad computer.)

Kildall simmered, the tensions reflecting in his personal life. He and Dorothy 
separated and then divorced after 18 good years together; she opened a  lovely 
guest  ranch in Carmel Valley. How utterly maddening it must have  been:  With 
Microsoft and IBM controlling the market, Kildall could not push MP/M-86,  the 
multi-tasking  16-bit  version  of CP/M. (ROCHE>Well, well...  The  author  is 
mixing a few facts, here. CP/M was a single-user single-tasking OS. Its multi-
user  multi-tasking  version was called MP/M. Both were running on  S-100  Bus 
computers.  Due  to  the limitations of the hardware of the  IBM  Clown,  Gary 
Kildall  had  the  idea of Concurrent CP/M, a  version  of  MP/M-86  specially 
designed for the IBM Clown. The first version used BDOS Version 3, then  added 
MS-DOS Version 1 compatibility, then MS-DOS Version 2 compatibility, etc.)  "I 
was  competing with an Operating System clone, MS-DOS, of my original  design, 
and  both  Operating  Systems were, by this time,  completely  out  of  date." 
(ROCHE>  Because MS-DOS (and CP/M-86) were both using BDOS 2, not BDOS 3.)  In 
Europe,  at  least,  Kildall could push forward.  Digital  Research  had  four 
European  offices, two in England, one in Paris and one in Munich.  (ROCHE>??? 
Where is Digital Research Japan?) IBM and Microsoft had much less market clout 
abroad, and DRI's European operations kept the company afloat during the  mid-
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1980s.  (ROCHE> In 1986, (English) Amstrad made the best selling CPC-6128  and 
PCW-8256.  Amstrad was paying DRI only 1 Sterling Pound per machine... But  it 
sold  more  than  1 million of both machine!) Paul Bailey, DRI's  head  of  UK 
operations,  beat  out Microsoft for big accounts like Siemens  (ROCHE>  Which 
used CP/M-86 Plus under the name "Personal CP/M", a denomination also used for 
CP/M  Version  2.8,  a  version of 8-bits CP/M in ROM  that  was  designed  to 
counter-attack the Japanese MSX machines.) and Nixdorf. DRI software was  used 
to  automate  industry  in  Europe; (ROCHE>  Both  German  companies  produced 
components  using  ARCnet  (a network only used by industry)  via  DR-Net  and 
Personal  CP/M.)  Microsoft still could do only  single-tasking,  while  DRI's 
software allowed manufacturers to track multiple pieces of data.

Wharton  writes  that the impression he got of Microsoft programmers,  at  the 
time,  was  that they were "untrained, undisciplined... They did not  seem  to 
appreciate  the importance of defining Operating Systems and  user  interfaces 
with an eye to the future. In the end, it was the latter vision, I feel,  that 
set  Gary  Kildall so far apart from his peers." (ROCHE>??? Who  else  had  an 
Operating  System, in 1981? QDOS = MS-DOS = clone of CP/M, while he  had  MP/M 
running  in  1978... Gary Kildall had no peers.) What Kildall  saw,  and  what 
Paterson,  Gates  and  IBM did not, is that CP/M-86,  itself,  would  soon  be 
antiquated.  (ROCHE>  That's  why Gary pushed and pushed  MP/M-86!)  The  real 
problem for computer users was not that QDOS was similar to CP/M, but that  it 
did   not  have  the  stable  multi-tasking  capabilities  that  Kildall   was 
developing. (ROCHE> Totally false! MP/M was running THREE YEARS before the IBM 
Clown! Re-read the microcomputer magazines of the time!) Dan Davis says he has 
always  believed that what depressed his friend and colleague in  later  years 
"was not so much that Bill Gates got undeserved credit for his creations,  but 
that  the vision Gary had for an industry he helped to create would  never  be 
realized".

While the salesmen fought the battle over Operating Systems, Kildall could not 
stop  inventing  and innovating. Videodiscs were still new --  they  were  the 
beginning  of  "multimedia" -- and he and Rolander pushed  the  boundaries  to 
fashion interactive hardware and software for the Commodore 64 computer.  They 
labeled the system "VidLink". Kildall astonished Grolier Publishing by storing 
Grolier's entire nine-million-word encyclopedia on a single videodisc. Grolier 
gave  the  go-ahead  for  Kildall to develop a  commercial  version  of  their 
"Academic American Encyclopedia" on videodisc. Ironically, the new  management 
of  DRI did not take the job, so Kildall and Rolander independently  made  the 
first  encyclopedia videodisc in Kildall's garage. (ROCHE> And what was  doing 
Microsoft, meanwhile? Nothing. It is only AFTER Gary Kildall demonstrated that 
CD-ROM  were working that Bill Gates decided to use them on IBM Clowns...)  In 
1984,  Kildall  set up a new company with Rolander called  "Activenture";  the 
name  later  changed  to "KnowledgeSet". It was small,  just  like  the  early 
Digital  Research,  with  Kildall  and Rolander  doing  the  engineering,  and 
Kildall's new wife, Karen, doing the bookkeeping.

Kildall,  ever  prescient, set out in 1985 to build a CD-ROM  version  of  the 
encyclopedia, called the "Grolier Electronic Encyclopedia". Rolander  remarks: 
"This was in June of 1985. Here we are, 17 years later. At that point in time, 
we said, absolutely every new computer will have a CD-ROM drive. You will  not 
be able to buy a new computer without a CD-ROM drive. And it took at least  10 
years  to  get to the point where they were commonplace, and 12 or  13  before 
they  were  a standard device." KnowledgeSet made CD-ROMs for the  Boeing  767 
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manuals, with vector drawings -- and Rolander's daughter, Kari, got an A+ on a 
paper,  astounding the teachers with her knowledge of Costa Rica from the  CD-
ROM searches.

Bill  Gates,  not realizing who KnowledgeSet really was, wrote the  company  a 
letter,  saying  Microsoft  might be interested in acquiring  a  CD-ROM  firm. 
(ROCHE>  Typical  of Bill Gates: He never develop a new thing,  just  buy  the 
company  who created it.) When he discovered that Kildall was the  man  behind 
it,  he wrote him what Kildall describes as "a fine letter". It is  not  clear 
whether Kildall is paraphrasing, but his memoir says it went like this:  "Dear 
Gary,  It has been a long time since we have been together. Next time you  are 
in Seattle, maybe we can get together and go water-skiing, and talk about  CD-
ROMs."  In the spring of 1985, Kildall visited Seattle to see his  family  and 
met  Gates  in a suite at the Olympic Four Seasons  Hotel.  The  ever-generous 
Kildall  writes  that  the meeting was pleasurable "and, for  some  reason,  I 
opened  up  to  Bill. I told him about the CD-ROM work that I  was  doing.  We 
talked of standards. We talked for hours." Kildall mentioned his intention  to 
hold  a  CD-ROM seminar at the Asilomar Conference Center,  in  Monterey,  for 
publishers,  and  was  somewhat taken aback,  shortly  afterward,  when  Gates 
invited  him to be the (unpaid) keynote speaker at a  $1,000-a-head  Microsoft 
CD-ROM  conference.  Only  when he had given his speech did he  hear,  from  a 
Microsoft  friend  in the audience, that Gates had come straight back  to  his 
office  from  the  Four  Seasons meeting to order  a  conference,  to  preempt 
Kildall's.   Kildall  writes:  "It  was  clever.  It  was  divisive.  It   was 
manipulative.  It is Bill Gates's nature. I must give him credit for  being  a 
very opportunistic person."

By  1984, DRI was enabling PC users to link their computers through a  program 
primiarily designed by Joe Wein (ROCHE>???) called Concurrent DOS, a clone  of 
MS-DOS  with StarLink software. (ROCHE> "StarLink" was the name of  the  board 
used to connect additional terminals to an IBM Clown running under  Concurrent 
CP/M.)  You could buy one single IBM-compatible PC to serve as a hub to  other 
PCs,  linked  by  cable and with shared access to a  common  database.  Again, 
Kildall was a decade ahead with PC networking. (ROCHE>??? The author seems  to 
mix  "multi-tasking" with "networking". Networking is  via  telecommunications 
software,  like DR-Net, that was developed (among others) by Joe  Wein...  And 
DR-Net  is  a  version of CP/NET-86, itself a 16-bit  version  of  CP/NET  for 
Good Old CP/M...)

By  the middle of the decade, for all these innovations (ROCHE>??? The  author 
forgets GSX, the PORTABLE graphics system for CP/M, and GEM, the Graphics-User 
Interface  ("GUI") with pull-down menus and mouse... GEM is GSX  Version  2.), 
DRI  was losing its principal business against the muscle of IBM  in  alliance 
with  Microsoft. The board fired John Rowley, and authorized Kildall  to  sell 
the  company. Recognizing his responsibility to shareholders, he  gritted  his 
teeth  and  called  Gates.  Kildall flew his airplane  to  the  San  Francisco 
airport,  and met Gates in the United Red Carpet Room. "This is a very  sticky 
situation", he writes. "Bill, although once a good friend, had taken advantage 
of me at least twice. Bill appeared nearly on time at 2:00 in the afternoon. I 
learned  what  'eating  crow'  means." No doubt  fearing  he  might  be  taken 
advantage of again, Kildall gave Gates only public information, and  suggested 
$26  million would be a fair price. Gates replied that DRI was probably  worth 
only  $10  million.  "We parted friends for some reason I  do  not  understand 
today. However, this rejection by Bill was one of his big business mistakes."
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Kildall  made  one  deal with Atari's Jack  Tramiel  for  its  graphic-display 
technology  (ROCHE>  GEM for the Atari 520ST.) and another with Kay  Nishi,  a 
Japanese  programmer and entrepreneur who had fallen out with  Gates.  (ROCHE> 
Personal CP/M?) Many people, like Nishi, wanted DRI to create an MS-DOS direct 
competitor. DRI was the only company that could legally parallel DOS,  Kildall 
believed,  because DOS was simply "a derived work of CP/M".  Microsoft  seemed 
vulnerable,  because  it had not improved its Operating System  (ROCHE>  Still 
based  on  BDOS 2.), had done nothing to support the new  larger  disk  drives 
until  Compaq move in to do that and had failed to improve  memory  management 
for  the  larger applications programs (such as desktop  publishing).  (ROCHE> 
Compare  the concepts of "memory model" of CP/M-86's CMD and MS-DOS's COM  and 
EXE files, and find which one is technically primitive...)

When  DRI's first version of DR-DOS was released, Kildall must have loved  the 
irony  that the company he founded was now selling a clone of MS-DOS. The  new 
single-tasking  (ROCHE>  Maybe  Version 1, but the doc  available  online  now 
explains  how  to use it for multi-tasking...) Operating  System  was  MS-DOS-
compatible,  and gave Microsoft a run for its money. On AUgust 6,  1989,  Bill 
Gates  wrote  in  an  e-mail to Steve Ballmer: "DOS being  cloned  has  had  a 
dramatic  impact on our pricing for DOS. I wonder if we would have  it  around 
30-40%  higher  if  it was not cloned. I bet we would!" This  was  a  loss  of 
millions of dollars. Users started calling DRI's new Operating System  "Doctor 
DOS",  not "Dee Are DOS", since it cured so many of the bugs found in  MS-DOS. 
The August 1990 "Byte" magazine commented: "The latest incarnation of  DR-DOS, 
Digital  Research's  MS-DOS clone, is an innovative and  intriguing  Operating 
System  that  is thoughtfully designed. Version 5.0 is also  packed  with  the 
extra  features that Microsoft's own Operating System should have (and  might, 
eventually,  have if the long-rumored MS-DOS 5.0 becomes a reality)."  (ROCHE> 
Another particularity of Bill Gates is "vaporware": announcing programs 2 or 3 
years  before they arrive, that is to say: announcing a program that does  not 
exist, but is started to been made AFTER announcing its arrival...)

Microsoft  responded by announcing in May 1990 that, within a few  months,  it 
would  issue  a new release of MS-DOS that would catch up on the  DRI  system. 
Industry  experience  indicates that it would have been  near  impossible  for 
Microsoft  to so soon develop and release a commercial  version.  Nonetheless, 
Microsoft repeated this vaporware announcement throughout the Summer and  into 
the  Fall of 1990. In fact, MS-DOS 5.0 was not released until June  1991  and, 
when finally released, it did not offer the features Microsoft had promised.

On  July  17,  1991, Ray Noorda, the founder of  Novell,  announced  that  his 
company was acquiring DRI -- not for the $26 million Kildall had asked or  the 
$10  million  Gates had offered, but for $120 million. Using  DR-DOS  and  its 
networking  software,  Novell became one of Microsoft's biggest  rivals.  Now, 
Gates  was up against a tougher opponent than Kildall. Noorda devoted  himself 
to  fighting Microsoft by acquiring a small start-up called  "Caldera",  which 
employed  the  Linux  system, and he used Caldera as a battering  ram  to  sue 
Microsoft  for monopolistic practices. His petition noted that "QDOS  borrowed 
heavily  from  an  Operating System developed by  Digital  Research",  but  it 
concentrated  on  the  "predatory" way Microsoft had cut DR-DOS  sales  by  91 
percent.  "This action", said Caldera's claim, "challenges illegal conduct  by 
Microsoft  calculated and intended to prevent and destroy competition  in  the 
computer software industry." Caldera alleged Microsoft would falsely  announce 
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new  software  that did not exist, engage in  exclusionary  licensing,  create 
false  warning messages (ROCHE> True!), criticize DR-DOS, use  product  tying, 
and  threaten customers who used DR-DOS with retaliation. According  to  Judge 
Dee  Benson, who oversaw the lawsuit, "On September 23, 1991,  IBM  officially 
endorsed  DR-DOS  6.0,  which was scheduled to be released to  the  public  in 
September or October of the same year. Plaintiff alleges that, in response  to 
IBM's  endorsement and in anticipation of an IBM/Novell alliance,  Bill  Gates 
publicly threatened retaliation against IBM, should it choose DR-DOS.  Caldera 
claims that, as a result of the threatened retaliation and intense FUD  [Fear, 
Uncertainty,  Doubt campaign] concerning DR-DOS incompatibility with  Windows, 
IBM withdrew its consideration of DR-DOS."

The lawsuit stretched three and a half years. On January 10, 2000, just  weeks 
before  the  lawsuit was to go to a jury, Caldera and Microsoft  settled.  The 
deal was secret, but Microsoft announced a one-time charge against earnings of 
three  cents per share. Observers of the case quickly noted that, since  there 
were  over  five billion shares of Microsoft stock, that came to a  charge  of 
over $150 million. The "Wall Street Journal" estimated the cost of  settlement 
at $275 million, but some estimates go up to half a billion.

Kildall and his second wife, Karen, had moved to Austin, Texas, in 1991  after 
the  sale  to  Novell.  Again, Kildall was ahead  of  his  time,  provoked  by 
technical  conundrums  encountered even by an undaunted computer  wizard.  His 
son,  Scott,  created a desktop publishing system using the  Apple  Macintosh, 
impressing  Kildall enough to want to give it a try himself. He found  setting 
up  his own Macintosh "one of the worst [experiences] of my life,  except  for 
the  day  I visited Philadelphia." Then, he wrestled with a  Murata  F-50  fax 
machine and found it "a switch-o-manic's nightmare", with 17 switches and such 
confusing  instructions  he  ended up finding that his fax  machine  rang  his 
personal phone day and night.

"OK",  he writes, "so I am complaining about switches. How about  proposing  a 
solution  to  this  stuff. I mean, plugging in a stereo these  days  seems  to 
require a degree in electrical engineering. But there seems to be something on 
the  horizon that may help. It is called digital wireless." Kildall set  up  a 
company  called  "Prometheus Light and Sound", working closely  with  Japanese 
company  DDI,  to  exploit the fact that the  one-dollar  chips  for  cordless 
phones, communicating at 32KB in a frequency range around 1.9-GHz, could  also 
be  used  for  stereos,  VCRs, security systems,  heating  "and  you-name  it, 
because, for the local area, you need no wires... Buy a stereo at macy's. Plug 
a  unit  into the wall and turn it on. No speaker connections.  No  CD  player 
connections. No tuner connections. It just works... It just works."

He predicted: "Switches, cables, wiring. We cannot live with it in the future, 
because of the complexity of the interconnections. Wireless will solve part of 
this. Some 'switch standards' will solve the rest." He might have made another 
fortune.  But  making  money  was never what drove him.  He  had  a  beautiful 
lakeside  ranch  in  the West Lake Hills suburb of Austin, a  mansion  with  a 
splendid sea view in Pebble Beach, California, and all his fast toys, but  his 
second  marriage  was heading toward divorce. He got  some  satisfaction  from 
charitable work for pediatric AIDS, but the continual anointment of Bill Gates 
as  the founder of the PC revolution finally got to him. Jim Warren says:  "In 
his  personal one-on-one candid comments to me, Gary was intensely  upset  and 
depressed  about Bill Gates and what Microsoft had done. And it continued  and 



file:///C|/...ate%20Histories%20Report%20to%20CHM/DRI/Emmanuel%20Roche%20documents%20conversion/Kildall.(zip)/GKTMA.TXT[2/6/2012 10:28:09 AM]

increased,  unabated,  until his death. Gary was a super good  guy."  Rolander 
remembers: "The more the fortune and influence of Bill Gates grew, the more he 
became  obsessed. Day and night, the film of that day played in his  head.  It 
was  not a question of money. What really hurt him was the myth. Gary felt  no 
one accorded any importance to what he had accomplished."

Everywhere Kildall went, people would ask why he had "gone flying" the day IBM 
came. Cruelly, the University of Washington triggered an emotional decline. It 
invited  Kildall  --  surely  its  most  lustrous  graduate  --  to  the  25th 
anniversary  celebration  of  UW's Computer Science program, but  just  as  an 
ordinary  member of the audience; and he was mortified to hear that  they  had 
asked Bill Gates -- "a generous donor" -- to be the speaker that evening. When 
Kildall rang to question that, the chairman of the Computer Science department 
hung  up on him. Kildall writes: "The UW Computer Science Department  educated 
me  so  that I could produce compilers like PL/M. Then I made CP/M  a  success 
through millions of copies sold throughout the world, again using my knowledge 
gained  through education at the UW. Gates takes my work and makes it his  own 
through divisive measures, at best. He made his 'cash cow', MS-DOS, from CP/M. 
So Gates, representing wealth and being proud of the fact that he is a Harvard 
dropout,  without  requirement  for an education, delivers a  lecture  at  the 
twenty-fifth reunion of the Computer Science class. Well, it seems to me  that 
he did have an education to get there. It happened to be mine, not his."

So Kildall ends his manuscript.

His  health deteriorated. When he was afflicted with arrhythmia of the  heart, 
his  doctor banned him from flying. Kildall gave Rolander his pilot's  helmet. 
It  was  a bittersweet moment. He had so loved flying. Now, one  of  his  last 
refuges was taken away from him.

During the Summer of 1994, he returned to Monterey for a visit. Shortly before 
midnight on Friday 8, 1994, he stumbled and hit his head inside the "Francklin 
Street  Bar and Grill" in downtown Monterey. The place was packed, and he  was 
found  on the floor, next to a video game. He went to the hospital twice  over 
the  week-end,  but was released. Doctors saw nothing wrong. (ROCHE>  This  is 
America.  In  France, a radio of the head would have  been  mandatory,  before 
leaving.)  Three days later, on July 11, he died of a cerebral  hemorrhage.  A 
blood clot had formed between his brain and skull.

He  was  52. More than 300 people came to his memorial service  at  the  Naval 
Postgraduate  School.  Bill  Gates  was not among  them.  Microsoft  issued  a 
statement that Kildall's passing was "a loss to the industry". Kildall's ashes 
were  buried next to his father and grand-father, the sources of his love  for 
teaching, not far from the lakefront where Gates was building his $60  million 
home.

Etched on Kildall's tombstone is a simple image: a floppy disk.
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