CPNET12.WS4

 "CP/NET: The CP/M Network Operating System" William Wong Microsystems, October 1983, p.46

(Retyped by Emmanuel ROCHE.)

CP/NET version 1.2 is the latest networking version of the popular 8-bit CP/M operating system from Digital Research, Inc. (DRI). It offers a number of improvements over its predecessor. It is a multiuser alternative to MP/M II, also a DRI product. CP/NET provides each user with a dedicated processor and memory, and common shared resources of a server processor for devices such as disks and printers. This approach can give significantly better performance than MP/M, since CP/NET can supply more processing power and memory per user. For example, a four-user CP/NET system would have one processor for the whole system.

This version of CP/NET has a number of improvements, including better documentation. Performance has been increased, and record locks compatible with MP/M II are supported. Basic password protection is added when accessing common server-based disk resources. A simple electronic mail program is also included. Even support for a banked MP/M II server is supplied with CP/NET.

This article presents an overview of CP/NET architecture, the system programs supplied with CP/NET, the additional CP/M functions available to programmers, and a brief description of how CP/NET is implemented, with some comments on system performance.

CP/NET overview

A CP/NET system typically consists of a number of CP/NET nodes connected to a CP/NET server. Each node has its own processor, memory, and network interface to the CP/NET server. The node may also have local peripherals such as a printer or disk drives. Figure 1 shows the general CP/NET architecture with one server and one requestor. A CP/NET system can also have many servers, as well as many requestors.

++	++	
MP/M II -	CP/M	
CP/NET	Communications Interface CP/NET	
Server	Requestor	
++	++	

Figure 1. General CP/NET architecture

DRI supplies for the requestor a standard Network Disk Operating System (NDOS) and a skeletal Network I/O System (NIOS), which is customized by the system

implementor. These are similar to the BDOS and BIOS of CP/M. A corresponding network interface skeleton is provided for the server. These parts map into the International Standards Organization (ISO) model for computer networks, as shown in Figure 2. The operation and structure of the CP/NET requestors and servers are discussed in the rest of this section.

CP/NET ISO ISO CP/NET				
Server Model Model Requestor				
++ ++				
Application Application Application				
Layer Layer Program				
++ ++				
Server Presentation Presentation				
Program Layer Layer				
++ CP/NET				
Session Session NDOS				
Layer Layer				
++ ++				
Transport Transport				
Network Layer Layer				
Interface ++ ++ CP/NET				
Program Network Network NDOS Layer Layer				
++ ++ ++				
Datalink Datalink				
Hardware Layer Layer Hardware				
+++				
Interface Physical Interface				
Layer				
++				

Figure 2. CP/NET and the ISO network model

CP/NET requestors can be divided into two types: those with local disk drives, and those without. The first type is normally referred to as a CP/NET node, while the later is called a CP/NOS node. They differ only in terms of initial loading of the CP/NET system. A CP/NET node loads the network support by running the CPNETLDR.COM program, which is located on a local drive. CP/NOS nodes usually have a ROM that contains about 4K. This ROM can either contain the CP/NOS operating system, or it may act as a bootstrap loader which can load CP/NOS from the server.

In either case, the resulting memory model is shown in Figure 3. The CP/NET NDOS examines all I/O calls, including direct BIOS calls. Local device access is done through the normal CP/M BDOS and BIOS, while all remote accesses are forwarded to the CP/NET server through the CP/NET NIOS.

High Memory +-----+ +---->| CP/M | | +-<-| BIOS |<--+---+ | | +----+ | Local | Local | Network | | CP/M |->-+ BIOS | BIOS | BIOS | | BDOS |<-----+ Local | console | console | +----+ | BDOS |

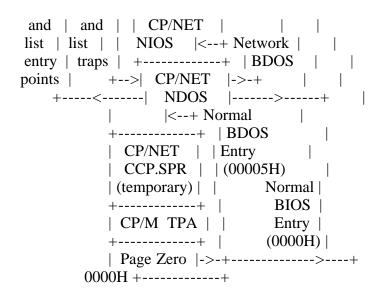
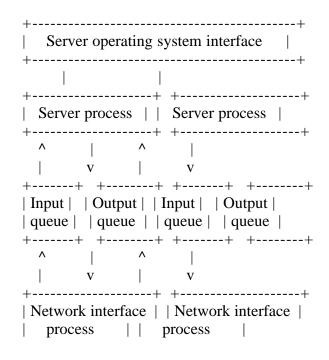



Figure 3. Requestor memory model

A CP/NET node has a smaller TPA than CP/M because of the added CP/NET NDOS and NIOS, but the reduction is usually less than 3K. A CP/NOS node usually has a larger TPA than CP/M because the BDOS and BIOS are smaller. The CCP.SPR replaces the normal CP/M console command processor (CCP). It is loaded into the top of the TPA at each warm boot, and does not reduce the size of the TPA when a program is loaded.

CP/NET servers come in two flavors: those based on MP/M, and those implemented under other operating systems. Both types are available from various vendors. Figure 4 shows the basic CP/NET server architectures. The number of server and interface processes is a function of the implementation, which varies depending upon the design constraints. The documentation describes the various considerations, and examples are provided. In any case, the server process at the host performs functions for the requestor, and returns the results to the requestor upon completion.

1) Paired network interface and server

++	++
Hardware interface	Hardware interface
++	++

2) Single network interface with multiple servers

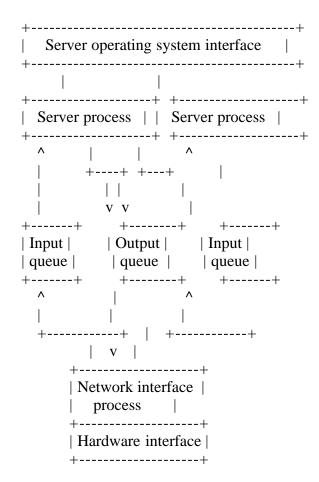


Figure 4. Server models

An MP/M II server can be implemented using modules and guidelines supplied with the CP/NET package. In this case, it is a matter of creating a network interface routine to support the particular hardware interface, and of setting the appropriate table values. This version of CP/NET optionally allows the designer to place parts of the server and network interface processes in banked memory, thereby providing better memory utilization on the MP/M II server.

Servers implemented under other operating systems must be modeled after the MP/M II flavor. Designing this type of server may require assistance from DRI. Both implementations are described in detail in the documentation.

CP/NET documentation

The CP/NET documentation is a vast improvement over the previous version. It includes a table of contents, an index, and an excellent set of appendices, but references to other sources of information are missing. The presentation is very good, with excellent figures and tables placed throughout the

document.

The document is divided into three basic sections: the utilities, the programmer's guide, and the system guide. The first two of these have been greatly improved; only the systems section needs more work. The systems section explains the various options for requestors and servers, and examples are provided for each area. There are assembly language listings for three existing implementations, but the comments are very sparse. More comments should be added to the source code, and a commentary needs to be included.

CP/NET utilities

Figure 5 lists the set of utility programs supplied with CP/NET. The MAIL program has been added to the original list. It is also the only program that runs on the server as well as on the requestor. All other utilities change the logical network configuration, or provide network status. Their operation is consistent with the previous release of CP/NET.

Program Description
LOGIN.COM Notifies a server that the node may want to use some of common resources. These resources are selected using NETWORK.COM.
LOGOFF.COM Indicate that the resources of the server are no longer required.
NETWORK.COM Indicates that a logical device is located on a server which has been logged in. For example: NETWORK B:=D:[02]
LOCAL.COM Indicates that a logical device is located on this node.
ENDLIST.COM Indicates that output to the server's printer is finished.
DSKRESET.COM Resets a specified disk drive, so a new disk can be mounted.
CPNETLDR.COM This program loads the CP/NET system, which consists of the SNIOS.SPR and NDOS.SPR files. It is run only ONCE to initialize the node.
CPNETSTS.COM Prints the current network status, including the physical location of all logical devices.
MAIL.COM A menu-driven electronic mail system for sending and receiving mail.
Figure 5. CP/NET utility programs

The MAIL program is worth mentioning in more detail, since it provides a method of communication between users on different nodes. It is the only real application program supplied with CP/NET.

The MAIL program can run on either the requestor or the server, and uses files on the temporary disk of the server. Each node using the mail system has a file named xxMAIL.TEX, where xx is the node identification number. The MAIL program can send messages to a file, or read messages from a file. The messages can contain text up to 1.7K in length, and can be deleted after they are read.

The program is menu-driven, but menus are presented by scrolling the display -- a simple customization for screen erase would make presentation much nicer. Data to be sent as mail can be entered from the console, or can be read from a previously-created file. The console entry is line-oriented. Again, a simple screen editor would be a great improvement. Another minor difficulty arises in accessing different mail files, because the mail program uses the node address to select the mail file.

The only major quibble with MAIL is that all addresses are hex values; it makes things quite confusing. However, the next release of CP/NET is slated for real names instead of numbers. It will then be possible to send mail to J. Doe, instead of number 54.

Programmer's interface

The programs running on the requestor have the standard interface to CP/M, except that a number of additional BDOS functions are recognized. These new functions are used by the programs supplied with CP/NET, and are available for general use. Each function is described in more detail in the CP/NET documentation.

The new function codes can be divided into two categories. The first category contains functions that are defined under MP/M II. These deal with device, file, and record locking, along with controls for the enhanced MP/M II error message control and file password protection. The MP/M II-compatible functions are:

BDOS Function Description

- 38 Access drive
- 39 Free drive
- 42 Lock record
- 43 Unlock record
- 45 Set BDOS Error Mode
- 106 Set default password

These functions operate in the same manner whether the logical device maps to a physical device on the requestor, or to one of the server. The functions actually do nothing if the operations access a resource on the requestor, since this can run only one program, which will have exclusive access to any local resources. However, operations which take place on the server operate in the same fashion as they do under MP/M II.

Functions in the second category are unique to CP/NET, and are available only on a requestor. The following functions are used by the NDOS and the CP/NET support programs.

BDOS Function Description

- 64 Login
- 65 Logout
- 66 Send message on network
- 67 Receive message from network
- 68 Get network status
- 69 Get configuration table
- 70 Set compatibility attributes
- 71 Get server configuration table address

These functions change the state of the network, and also provide access to the servers. The operation of these functions should be apparent from the description. The notable exception is function 70.

It seems that some programs written under CP/M may not run as expected when accessing disk resources on the server, since this is similar to a multitasking operation. For example, a program accessing a file on a server will have exclusive access to that file. This may be the proper mode of operation, but it makes simultaneous sharing of data files or overlays difficult. The compatibility attributes can be used to select the proper access mode as required.

CP/NET also performs another useful function with regard to temporary file names. It will translate any use of \$\$\$ as a file name or type to \$xx, where xx is the requestor number, thereby allowing common applications programs to use \$\$\$ in temporary file names. The CP/M SUBMIT program is a notable example.

The manner in which a requestor communicates with a printer attached to a server differs from the CP/M method. Although programs send characters one at a time to the logical printer device, CP/NET collects them in a 128-character buffer at the requestor. Only when the buffer is full does CP/NET transmit the entire buffer to the server. This buffering reduces the amount of network traffic due to printer output.

Implementing CP/NET

Implementing CP/NET is a two-part project. The first part consists of customizing the NIOS for the requestor; the second is to bring up the network interface on the server. Several examples are provided for both parts. Even so, implementing a CP/NET system is still the domain of a good systems programmer, especially if high-performance is required. A good background in CP/M is also a pre-requisite.

Putting together a CP/NET requestor requires the creation of the SNIOS.SPR file (Slave NIOS). This program supplies the hardware-specific interface to the communications network, and the configuration tables used by CP/NET. There is no need to link this file with the other CP/NET files -- The CPNETLDR.COM file performs this function. Thus, the task is actually simpler than creating a CP/M system. Debugging capabilities have also been placed into CPNETLDR.COM, to allow testing of the NIOS on the slave.

Building a CP/NOS requestor has been simplified, too, though it is more complex than the CP/NET requestor. In fact, the recommendation is to generate

the CP/NET version first, even if it is not used in the final product, because debugging is easier. More sophisticated tools, such as in-circuit emulators and logic analyzers may be required for debugging a NIOS in a CP/NOS requestor.

Actually, the NIOS for CP/NOS differs only slightly from the CP/NET SNIOS.SPR file. Conditional assembly can allow one source file to generate both. The implementation process changes because the NIOS file, plus all the CP/NOS modules, must be linked together into one program. This is typically placed into a ROM. The documentation indicates that a 4K ROM is sufficient for most implementations.

Servers are a bit more difficult to build, especially those not based on MP/M II. The documentation covers this approach, but it is best left to the experts. On the other hand, the MP/M II approach is much easier. It requires the creation of one or more network interface processes named NTWRKIPn, where "n" is the process number. These processes are very similar to the requestor's NIOS. The main difference is that these network interface processes are interrupt-driven to improve efficiency and to provide better response time. Interrupts can complicate the debugging process significantly, but the results are well worth the work.

As for the CP/NET requestor, the server customization consists of a single program which contains the network interface code, the network configuration tables, and the queues necessary for communicating with the server processes supplied by DRI. Again, this customized program need not be linked to the other components; however, the MP/M II GENSYS procedure must be done each time the network interface program is modified.

The CP/NET documentation also addresses many important issues, such as banked and non-banked MP/M II server, watchdog timers, and modifications of the MP/M II XIOS (eXtended I/O System) to enhance the CP/NET support. Most of these options can be added after the basic network is running.

Adding new types of requestor nodes, or server nodes, to an existing system is usually much easier if the existing nodes are already operating in a reliable fashion. If this is not the case, then keep the implementation simple, and add functions only when the basic version is dependable.

Performance

The overall system performance is limited by three factors: the speed of the communications network, the speed of the network server, and the load produced by the requestors. Obviously, the first two should be made as fast as possible, and the third should be as low as possible, to reduce the response time of a requestor.

In general, a four-requestor system gives very good response time when supported by an MP/M II server over a fast serial bus running at one megabit per second. Eight requestors can be supported, but response time then depends upon the loading of the system. The communication link between the server and the requestors can take many forms. In general, point-to-point RS-232 serial links can provide performance close to a floppy-based system when running at 9600 baud or faster. Slower rates are possible, but not recommended. High-speed serial point-to-point, bus, or loop architecture operating at about one megabit per second seem to be ideal for systems with 4 to 16 requestors. Very high-speed serial bus, shared memory, or a multiprocessor bus are attractive for large networks, or those requiring the best response time with heavy loads.

There are several ways to increase the performance of the server. One is to build a customized server not based on MP/M -- but this is a big task. MP/Mbased systems can be improved by including additional message buffers in the network interface program. Substantial improvements can be seen when multiple disk data buffers are available; these reduce the likelihood of thrashing at the server, which tends to occur if only a single buffer is used. Unfortunately, multiple disk buffers usually require modification of the MP/M II XIOS, and such modification is not always advisable or possible.

Although some data base programs may provide better response time under MP/M, CP/NET generally provides better performance. This is very apparent with computation-bound programs, or those using the local resources, such as the requestors console. The CP/NET architecture also provides better performance than MP/M as the number of users increases.

Summary

CP/NET is a unique product in Digital Research's product line. It provides an environment where existing CP/M programs can be run on a dedicated machine, while allowing access to shared resources such as a hard disk. The transparency of CP/NET indicates that a great deal of thought has been given to compatibility and flexibility.

This new version of CP/NET is a vast improvement over the previous one. The documentation is superb, and the system is much easier to use. Also, the implementation details have finally been properly addressed.

The popularity of CP/NET has been growing, along with the interest in local area networks. CP/NET is currently used by a number of major computer system manufacturers, including NCR and Corvus. These commercial systems use many different communication protocols and interfaces, but they have CP/M and CP/NET as common elements. Some systems even allow different types of requestor nodes on the same network. Digital Research may once again have provided the basis for a de facto industry standard with CP/NET, as it did with CP/M.

Things to come

Digital Research is currently working on the 8086 version of CP/NET, called CP/NET-86, with new enhancements, including an improved electronic mail system. This includes server support for MP/M-86 and Concurrent CP/M. Servers

will be able to support both CP/NET and CP/NET-86 requestors, thereby allowing 8- and 16-bit processors to run in the same network.

Concurrent CP/NET-86 (ROCHE> Probably DR-Net) is also in the works. Imagine -multiple virtual consoles, multi-tasking, plus the ability to share resources on the network. Digital Research should be taking the wraps off these systems soon after this article is published.

References

- "CP/NET Reference Manual" Digital Research, Inc. 1982
- "CP/M Reference Manual" Digital Research, Inc. 1981

EOF

CPNETACM.WS4 (= CP/NET ACM article)

 "An Analysis of CP/NET" George H. Clapp ACM "SIGPC Notes", Vol.6, No.2, 1983, p.117 (1983 ACM Conference on Personal and Small Computers)

(Retyped by Emmanuel ROCHE.)

Abstract

CP/NET, a software package designed to add networking capabilities to microcomputers running under the CP/M-80 Operating System, is examined with respect to internal logical organization, separation of functions, and correspondence with the ISO OSI reference model.

Introduction

CP/NET, or "Control Program for a NETwork", is a software package which adds networking capabilities to a computer running under the CP/M-80 Operating System. CP/M-80, or "Control Program for Microcomputers", is an operating system for 8080-, 8085-, and Z-80-based microcomputers produced by Digital Research, Inc., of Pacific Grove, California. CP/NET is designed to enhance the currently dominant version, CP/M-80 2.2. Another Digital Research product, MP/M II, or "MultiProgramming for Microcomputers", provides multiprogramming capabilities on a Z-80- or 8086-based microcomputer. CP/NET is designed to connect computers running under these two operating systems, creating a network in which CP/M-80 machines are single user workstations which make requests to be serviced by an MP/M II machine. In the parlance of Digital Research, the CP/M-80 machines are "requesters", and the MP/M II machines are "servers". Only requesters can initiate actions; a server merely responds. The CP/NET package includes software written for both the CP/M-80 and the MP/M II machines. Our analysis shall focus on the CP/M-80 software for two reasons: as the initiator, the CP/M-80 software defines the network; and, second, the goal of the author is to support CP/NET with a Unix server, in which case the software at the MP/M II server is irrelevant.

CP/NET [Ref: DIGI82] is capable of supporting a variety of network architectures. This capability results from a design philosophy in which the logical machine is separated from the physical machine. CP/M-80 exemplifies this design approach; it consists of three components: the BDOS, or "Basic Disk Operating System", the CCP, or "Console Command Processor", and the BIOS, or "Basic Input/Output System". The BDOS deals with a logical machine, and remains unchanged across a spectrum of microcomputers. The CCP intercepts and interprets operator input, and passes requests to a logical machine; it remains unchanged as well. The BIOS alone deals with the physical machine, and must therefore be "fitted" to each particular microcomputer architecture. The following figure depicts the relationships between the operator, application program, the CCP, BDOS, and BIOS:

++
Application >+
program
CCP >+
++
BDOS >+<+
++
BIOS +<+
++
Physical <+
machine
++

Figure 1. Logical diagram of a CP/M machine.

The diagram represents layers of logical machines: as one traverses outwards, the machines become more logical, or "abstract"; as one traverses inwards, the machines become more physical until, at the center, one encounters the actual hardware. A boundary between two layers depicts the interface which the inner layer presents to the outer, and the arrows represent requests for service which one layer may make upon another. Notice that an arrow goes only from an outer to an inner layer, indicating that a less "abstract" machine does not (or should not) request a service from one more abstract.

The BIOS requests services from the physical machine, and the BDOS, in turn, requests services from the logical machine presented at the BDOS/BIOS interface. The emphasized boundary about the BDOS layer represents the CP/M-80 machine. This strictly defined interface is the logical machine used by all CP/M-80 compatible application programs. The CCP and application programs are peers which use the CP/M-80 machine to provide services to the operator. Notice that an application program may circumvent the BDOS, and call directly upon the BIOS. This is done relatively infrequently, however.

The CP/M-80 software modules BIOS, BDOS, and CCP reside in memory as indicated below:

```
+-----+

high | BIOS | 4 KB

+----+

| BDOS | 3.5 KB

+----+

| CCP | |

+----+ |

| 56.25 KB

| TPA | |

| | |

+----+

| Base | 0.25 KB

low | Page |

+----+
```

Figure 2. Memory layout of a CP/M machine.

The BIOS resides in highest memory. The BDOS is placed immediately below the BIOS, and the CCP immediately below the BDOS. The first 256 bytes is called the "Base Page", and is reserved for system use. Memory from the end of the Base Page to the beginning of the BDOS is available to an application program. Digital Research refers to this region of memory as the "Transient Program Area", or TPA. Since the CCP and application programs are peers, an application program may overwrite the CCP, and make use of the memory in which the CCP resides. The BDOS copies the CCP back into memory as part of the "warm boot" process, which occurs upon termination of an application program.

The typical BIOS requires 4 KB; BDOS consumes 3.5 KB. Taking the Base Page into consideration, a 64 KB CP/M-80 microcomputer is left with 56.25 KB available to application programs.

Digital Research has extended the philosophy of separating the logical from the physical to the design of CP/NET. The logical network is supported by a software module entitled NDOS, or "Network Disk Operating System", and the physical network is supported by a second module entitled SNIOS, or "Slave Network I/O System". Due to this separation, CP/NET may be implemented on several of the currently available physical network architectures.

The logical machine diagram for a CP/M-80 machine in which CP/NET resides in given below:

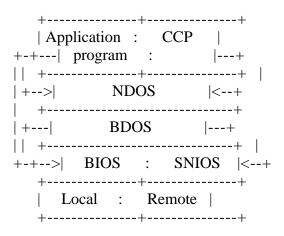


Figure 3. Logical diagram of a CP/NET machine.

There are several noteworthy attributes of this "CP/NET" machine. Most important, the physical hardware consists of two entities: the local machine, and the network machine. The BIOS requests service from the local machine only; the SNIOS deals only with the network machine. Another attribute is that the NDOS, rather than the BDOS, presents the CP/M-80 interface to the CCP or to an application program. Digital Research has taken pains to maintain compatibility with existing CP/M-80 application software. With only a few extensions (not exceptions), the interface presented by NDOS mimics that of BDOS. An CP/M-80 application program will typically run on a CP/NET machine with no modifications.

As indicated by the diagram, a primary function of NDOS is to route requests to the appropriate destination: a request for a local resource to the local machine, a request for a remote resource to the network machine. NDOS routes requests for local resources to the BDOS. It transforms a request for a remote resource into a logical message, and passes the message to SNIOS, which in turn transmits the message to a network server.

NDOS routes requests immediately upon receipt for all resources, except for two I/O devices. In Digital Research's terminology, these are the console and the list (i.e., printer) devices. Rather than route these requests upon receipt, NDOS passes these requests directly to the BDOS, where they are translated to BIOS calls. It is not until the BDOS calls upon the BIOS that the NDOS intercepts and routes these requests according to the location of the resource. Therefore, a SECOND logical entry point exists in NDOS, which intercepts BIOS rather than BDOS service requests. Presently, only the BIOS routines related to the console and list devices, and to the warm boot process, are intercepted in this manner.

A possible rationale for this approach is that it allows application programs to make direct calls upon the BIOS, yet retains the mapping from logical to local/remote resources. The remaining non-disk I/O devices, reader and punch, are not intercepted in this manner, because they cannot be networked. However, direct BIOS calls for disk resources are not intercepted in this manner. The reason may lie in a practical necessity related to the Control-P function. Control-P is a toggle which enables program output to be echoed to the list, as well as the console, device. Yet, there are ample opportunities for NDOS to determine the destination(s) of output prior to entry to BIOS. The approach taken by Digital Research requires a less "abstract" machine, the BIOS, to request a service from one more "abstract", the NDOS. The result is a product more conceptually complex, less theoretically "clean" than might be desired.

The CP/NET software modules reside in memory as indicated in the next diagram:

```
+----+
high | BIOS | 4 KB
  +----+
  | BDOS | 3.5 KB
  +----+
  | SNIOS | 0.75 KB
  +----+
  | NDOS | 3 KB
  +----+
  |CCP | |
  +----+ |
  | 52.5 KB
  |TPA | |
  +----+<--+
  | Base | 0.25 KB
low | Page |
  +----+
```

Figure 4. Memory layout of a CP/NET machine.

As before, the BIOS and BDOS together occupy 7.5 KB. The NDOS requires 3 KB, and a sample SNIOS included in the CP/NET package consumes 0.75 KB. After

taking the Base Page into consideration, an application program has 52.5 KB of memory available for use.

Given the logical organization and memory layout of the CP/NET machine, it is instructive to follow the paths taken by a request. These paths are depicted in the following diagrams. There are three possibilities: 1) a request for a local resource, 2) for a networked disk resource, and 3) for a networked console or list (printer) resource.

```
+----+
+---| BIOS |<--+
4 | +----+ | 3
+-->| BDOS |---+
+---| |<--+
| +----+ |
5 | | SNIOS | | 2
 | +----+ |
+-->| NDOS |---+
+---| |<--+
| +----+ |
6 | | CCP | | 1
| +----+ |
+-->| |---+
  |TPA |
  +----+
  | Base |
low | Page |
  +----+
```

Figure 5. (1) Path taken by a request for local resource.

```
+----+
     | BIOS |
     +----+
     | BDOS |
     | |<--+
3 <--- 4 -->+-----+ |
   +---| SNIOS | | 2
  5 | +----+ |
   +-->| NDOS |---+
   +---| |<--+
   | +----+ |
  6 | | CCP | | 1
   | +----+ |
   +-->| |---+
     | TPA |
     +----+
     | Base |
   low | Page |
     +----+
```

Figure 6. (2) Path taken by a request for a remote disk.

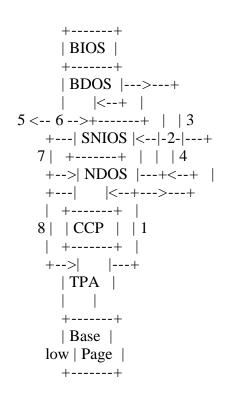


Figure 7. (3) Path taken by a request for a remote console or list device.

With this understanding of CP/NET, it is possible to place CP/NET in context. The International Standards Organization (ISO) has proposed the "Reference Model of Open Systems Interconnection", or the "ISO OSI reference model", in an effort towards network standardization [Ref: TANE81, LARS83]. The ISO reference model consists of seven layers as depicted below:

++ ++
Application <> Application
++ ++
Presentation <> Presentation
++ ++
Session <> Session
++ ++
Transport <> Transport
++ ++
+ +
++ ++
Network <> Network
++ ++
Data-Link <> Data-Link
++ ++
Physical <> Physical
++ ++
++

Communication Subnet

Figure 8. The ISO OSI reference model.

Each layer is briefly described below:

Application layer

This layer is the entry point into the network, and presents the interface experienced by the operator. It deals with the problems of human engineering, network transparency, and optimal solutions to user tasks. Sample services are query optimization in distributed data bases, security checks, and address validation.

Presentation layer

The presentation layer provides frequently requested utilities, typically conversion utilities, such as text compression, encryption, and file format conversion.

Session layer

A session is a communications connection between two application processes, and an appropriate title for the session layer is "communications connection manager". This layer is responsible for establishing and maintaining the logical connection between two users. In addition, the session layer may reorder, or group, transmitted messages, as required by the application program.

Transport layer

While the session layer manages the connection between two application PROCESSES, the transport layer is responsible for establishing, maintaining, and terminating the connection between the ultimate source and destination NODES. The transport layer establishes the connection at the request of the session layer, divides the message into smaller units, if necessary, and transmits the message to the destination node(s). It ensures that the message is received correctly, and that the destination node is not swamped with messages.

The application, session, and transport layers of the source node communicate "directly" with their peers at the destination node. It is truly "end to end" communication. In contrast, the lower layers, the network, data-link, and physical layers, communicate only with their immediate neighbors, which may or may not be the ultimate source or destination nodes. In more complex networks, the neighbors often are not the end communicators. Therefore, the lower three levels present a logical network to the higher levels, and are collectively referred to as the "communication subnet".

Network layer

This layer accepts messages from the transport layer, "packets", and routes them over an existing virtual circuit. In short, the functions of the network layer are packetization, routing, and congestion control.

Data-link layer

The data-link layer provides the error-free circuit expected by the network layer. Frequently a collaboration of hardware and software, the data-link layer implements a data-link protocol which ensures that a message transmitted over the "raw" circuit is received correctly. Messages descending from the network layer are "enveloped", or "framed", and sent to a remote node. The destination node acknowledges the message, informing the sender whether or not the message was received intact. If the message was garbled, the sender retransmits, and again awaits acknowledgment. The process is repeated until success occurs.

physical layer

This layer is the only "non-virtual" circuit in the ISO model, and consists of the electrical and mechanical components which provide the raw transmission medium used by the higher levels.

With the ISO reference model in mind, the functions performed by NDOS and SNIOS may be explored more fully. The NDOS provides the following functions:

- 1. It intercepts and routes disk, console, and printer resource requests to the appropriate location.
- 2. It transforms requests for remote resources into packets, and passes the packets to the SNIOS for transmission.
- 3. It receives packets from the SNIOS, and transforms the packet information into the form expected by CP/M-80.
- 4. It intercepts and executes certain BDOS system information and control functions, circumventing the BDOS entirely.
- 5. It provides extensions to the CP/M-80 2.2 functions. These extensions serve two purposes: to reconcile the discrepancies between the CP/M-80 and MP/M II operating systems, which occur primarily in the file systems, and to support network functions, such as "login" and "send message".

Unlike NDOS, which is sold only in load module form, sample SNIOS's are sold to the customer in the form of 8080 assembler source code. The SNIOS functions are strictly defined, as are those of CP/M-80's BIOS, and consist of the following:

- 1. Network system information and control functions, such as network interface initialization and returning the network status.
- 2. Transmit and receive a message on the network.

NDOS is static, and acts as an interface between CP/M-80 and the logical network provided by the SNIOS. The simple SNIOS function titles, "send/receive a message", hide a mass of network functions which may range from routing to data-link protocols. The flexibility gained by shoving the physical network onto the SNIOS comes at the price of a less than clear delineation of the ISO reference model layer functions between the NDOS and the SNIOS, and of requiring the customer to have knowledgeable programming support. The division of the ISO reference model layer functions between the NDOS and SNIOS will be discussed shortly. Digital Research has attempted to alleviate the latter problem by providing sample SNIOS's written to support three network architectures: 1) the Corvus OMNINET, 2) the ULCnet of Orange Compuco, Inc., and 3) a simple, default architecture, in which the requester is connected to one or more servers via a serial I/O port.

In addition to NDOS and SNIOS, Digital Research sells several other programs as part of the CP/NET package. These include a CCP customized for the CP/NET environment, an electronic MAIL program, LOGIN and LOGOFF utilities, and a program entitled CPNETLDR, which loads NDOS and SNIOS below the BDOS. Two important programs are NETWORK and LOCAL, which enable the operator to declare system resources as either remote or local.

The correspondence of CP/NET with the ISO reference model can now be examined.

Application layer

The CP/NET programs CPNETLDR, CCP, MAIL, NETWORK, and LOCAL belong in this layer. Until the operator executes CPNETLDR, the network does not even exist, and although network initialization is not specifically mentioned as a function of the application layer, it is a necessary precursor to all the functions provided by lower levels. The CCP serves as a network interface in which the primary concern is network transparency. Its interaction with the server is relatively minor, and its functions are restricted to such housekeeping chores as ensuring that file attributes are compatible across the network, and releasing allocated server drives upon termination of a local application program. MAIL, NETWORK, and LOCAL are application programs whose purposes were described earlier.

Presentation layer

The session layer is the primary interface between the application program and the network. The application layer sends a suitably formatted message to the session layer, and the presentation layer usually plays a minor supporting role. In CP/NET, however, the application programs were written before CP/NET existed. They have no conception of messages, or of remote resources. An important function of NDOS, therefore, is to convert a system call made by an application program into a message suitable for transmission over the network, and to convert a message from the network into a form acceptable to the application program.

Session layer

The session layer manages communications between application PROCESSES. A CP/NET requester identifies the destination of a message by a server ID number, and by his own requester ID number. The server ID specifies the destination NODE; the requester ID specifies the destination PROCESS. The programs LOGIN and LOGOFF fit neatly into the session layer. LOGIN establishes the logical connection between requester and server processes; LOGOFF dismantles the connection.

However, to clarify the architecture of CP/NET, it should be noted that it is impossible for a requester to communicate with more than one process at a

server node. CP/M-80 is a SINGLE tasking operating system. The designers of CP/NET did not envisage a situation in which multiple processes at a requester would interleave service requests to a single MP/M II server. Therefore, CP/NET makes no distinction between a destination node and a destination process.

The session layer has the additional responsibilities of maintaining the communications connection, and of reordering or grouping messages as required by the application program. NDOS maintains the connection in a negative sense: if a message cannot be sent or received, NDOS simply returns an error to the application program, and allows it to make any attempt at recovery it desires. With regard to message sequencing, NDOS orders the messages in strict request/response pairs: each request requires a response.

Digital Research offers to the application programmer the capacity both to evade the ordering normally imposed upon messages, and to circumvent the conversion performed by NDOS at the presentation level. The system calls "Send Message on Network" and "Receive Message on Network" cause NDOS to pass messages between the application layer and the transport layer virtually untouched. The action taken by NDOS at the session layer is merely to indicate the success or failure of the transmission. These system calls are the means by which future application programs can exploit the extended facilities offered by CP/NET.

In summary, the functions of the session layer are provided by three elements of the CP/NET package: LOGIN and LOGOFF provide session creation and termination; NDOS provides connection maintenance.

Digital Research has left the next three ISO reference model layers: the transport, network, and data-link layers, to the SNIOS. In effect, the communication subnet has been extended to include the transport layer, and left in the hands of the SNIOS. The lowest layer, the physical layer, is a matter of electrical hardware, and is beyond the scope of CP/NET.

Transport layer

Since CP/NET does not distinguish between destination nodes and processes, the problem of managing nodal communication is subsumed by NDOS in the session layer. Also, since NDOS acts in the presentation layer to convert system calls to messages which are suitable at the data-link layer, it is not necessary to split a message into smaller units. The transport layer is unnecessary in CP/NET, and no module performs its functions. The SNIOS could be modified to provide these functions, in the event that a network architecture required them.

Network layer

It is difficult, or at least improbable, to imagine a CP/NET topology in which routing represents a significant problem. CP/NET lends itself most readily to a star topology in which each requester has a dedicated port on the central server. Routing is then a trivial affair, and is no more difficult with a bus or ring topology. Although surprising, a ring topology is possible under CP/NET. The requester must respond to I/O interrupts on the network port, and execute an interrupt routine which will pass the message on to the next requester.

Packetization and congestion control, like routing, are functions unlikely to occur, except in the most sophisticated implementations of CP/NET. As is the case with all the communication subnet layers, the SNIOS can be modified to provide the desired function.

Data-link layer

Digital Research has proposed a simple byte count oriented data-link protocol, in an effort towards cross-system compatibility [Ref: MCNA77]. The logical messages are clearly defined; the figure given below depicts the standard format:

Figure 9. CP/NET logical message format.

Each field, except the MSG field, occupies a single byte, and is defined as follows:

FMT: message ForMaT code DID: message Destination ID SID: message Source ID FNC: message FuNCtion code SIZ: data field length - 1 MSG: MeSsaGe data (SIZ + 1 bytes)

The data-link protocol devised by Digital Research is demonstrated in the next figure.

DBn |--> ETX | CKS | EOT -+ <-- ACK

Figure 10. CP/NET data-link protocol.

Although not indicated in the diagram, timeouts and retransmissions are part of the protocol as well. The checksum, which is simply the negative of the sum, modulo 256, of the logical message bytes, is not as rigorous as a cyclic redundancy code, which can be implemented in a simple and short subroutine. Also, the ENQ and ACK characters exchanged in the handshaking sequence are transmitted naked over the physical link. Control messages might be sent in the headers of messages, with no data but with checksums, as is done with other byte count oriented protocols. Despite these failings, however, the protocol is workable and simple to implement.

Physical layer

As mentioned previously, CP/NET leaves the physical layer in other hands.

Conclusion

The following diagram shows the relationship between CP/NET and the ISO reference model.

+----+ CCP, +----+ | CPNETLDR, MAIL, || Application || LOCAL, NETWORK | +----+ | +----+ |+----+| || Presentation || | +----+ | NDOS || Session || |+----+| +----+ |+----+| || Transport || |+----+| || Network || SNIOS |+----+| || Data-Link || | +----+ | +----+ +----+ | Physical | +----+

Figure 11. CP/NET and the ISO OSI reference model.

NDOS and SNIOS separate cleanly at the session-transport interface. NDOS provides the functions at the presentation and session layers; SNIOS provides the communication subnet, which is expanded by CP/NET to include the transport layer.

CP/NET logical message formats cannot presently support an addressing scheme which will distinguish between processes at a destination node. It is true that CP/M-80 machines are presently single tasking, but sixteen bit microprocessors will become the predominant architecture in personal workstations, and multiprogramming will be the norm, rather than the exception. Digital Research itself sells a multiprogramming version of CP/M-80 designed for the 8086, their "Concurrent CP/M". The authors of CP/NET may come to regret this melding of the destination process and node.

Another flaw in the design of CP/NET is the decision to have the NDOS intercept calls at the BIOS, as well as the BDOS, level. Perhaps they were forced to do so by practical necessity, but the result is a more cluttered, less straightforward design.

CP/NET's strengths are its compatibility with existing application programs, and the variety of architectures which it can support. The wealth of CP/M-80 software, and the large and increasing number of CP/M-80 machines, represent an important market to innovative manufacturers of inexpensive networks. By placing the communication subnet in the SNIOS, Digital Research has offered these vendors an avenue into this market.

Bibliography

[CORT82] "Inside CP/M: A guide for users and programmers, with CP/M-86 and MP/M II" David E. Cortesi Holt, Rinehart and Winston, 1982

[DIGI78] "CP/M 2.2 Manual" Digital Research, Inc.

[DIGI82] "CP/NET Reference Manual" Digital Research, Inc. 5th Edition, November, 1982

[DITL83] "Idealism Spawns Realism" Steve Ditlea "Collegiate Microcomputer", Vol.1, No.1, February, 1983, pp.57-65

[LARS83]

"Adding another layer to the ISO net architecture reduces costs" Kenneth N. Larson & W. Roy Chestnut "Data Communications", Vol.12, No.3, March, 1983, pp.215-222

[MCNA77]

"Technical Aspects of Data Communication" John E. McNamara Digital Press, 1977

[ROLA82] "Network software borrows design from microcomputer operating system" Thomas A. Rolander, Randall Baird, & John Wharton "Data Communications", Vol.11, No.13, pp.123-133

[TANE81] "Computer Networks" Andrew S. Tanenbaum Prentice-Hall, Inc., 1981

EOF

"CP/NET: Control Program for a microcomputer NETwork" Thomas Rolander
"Microprocessors and Microsystems" magazine, Vol.5, No.2, March 1981, pp.69-71

(Retyped by Emmanuel ROCHE.)

Thomas Rolander describes the network operating system CP/NET, which links masters running MP/M and slaves running CP/M.

The purpose of the CP/NET software system is to support network technology by allowing independent microcomputers access to common, and often expensive, facilities such as peripherals, programs and databases. It is designed for adaptation to a wide range of network hardware, operating with CP/M and MP/M to support the many CP/M-compatible products available. This article consider aspects of this operating system, and some of the network configurations possible.

The purpose of CP/NET, a network operating system, is to enable microcomputers to obtain access to common resources via a network. It allows microcomputers to share and transfer disk files, to share printers and consoles, and to share programs and databases. CP/NET consists of masters running MP/M and slaves running CP/M, the masters being hosts which manage the shared resources that can be accessed by the network slaves.

CP/M and MP/M gained widespread use because of their portability. This portability was accomplished by separating the logical operating system from the hardware environment, by placing all the hardware-dependent code in a separate I/O module. This same design approach was applied to CP/NET. It is network independent: all network-dependent code for the slave has been placed in the slave network I/O system (SNIOS) module, and all network-dependent code for the master placed in the network interface (NETWRKIF) module. Logical messages are passed to and from the SNIOS or NETWRKIF modules, and are transmitted over an arbitrary network between masters and slaves using an arbitrary network protocol.

CP/NET is the first of a family of network operating system products to be introduced by Digital Research. As shown in Figure 1 below, it can be considered as a bridge between a microcomputer running MP/M and one running CP/M though (as will be seen later) configurations involving more than one master and slave are possible. The MP/M master manages resources which are considered 'public' to the network. However, the CP/NET slaves executing CP/M have access to both the public resources of the master, and to their own private resources, which cannot be accessed from the network. This choice of architecture guarantees the security of the resources of the slave, while still permitting resources of the master to be shared among the slaves. The distinction between masters and slaves is also based on the ability of the MP/M masters to respond to the network asynchronously in real-time, while the CP/M slaves perform sequential I/O, and are not capable of monitoring a network interface in real-time. The relationship between CP/M, MP/M and CP/NET is illustrated in Figure 1.

+----+ +---++ / \+----+/ \ < MP/M <> CP/NET <> CP/M > \ /+----+\ / +----++ +---++

Figure 1. CP/NET

There are 2 other network operating systems for different circumstances: CP/NOS, which is intented for applications in which the slave microcomputer does not have any disk resources (and is therefore unable to run CP/M), and MP/NET, which provides the capability for MP/M systems to share each other's resources on the network. CP/NOS consists of a bootstrap loader which can be placed in ROM or PROM, a skeletal CP/M containing only the console and printer functions, and the logical and physical portions of the CP/NET slave. At the user level, CP/NOS provides a virtual CP/M 2.2 system to the slave microcomputer. A slave microcomputer could consist of simply a microprocessor, memory and an interface to the network. Thus, a CRT with sufficient RAM could execute CP/M programs, performing its computing locally while depending on the network to provide all disk, printer and other I/O facilities. Figure 2 shows the relationship of CP/NOS, MP/M and CP/NET.

+----+ +----+ / \+----+/ \ < MP/M <> CP/NET <> CP/NOS > \ /+----+\ / +----+

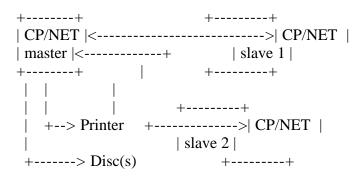
Figure 2. CP/NOS

With the 3rd network operating system, MP/NET, there is no distinction between a master and a slave, as all the nodes in an MP/NET system can manage shared resources, as well as initiate network messages. Thus, MP/NET provides a symmetrical network where all the nodes have equal capability. This relationship between MP/M and MP/NET is illustrated in Figure 3.

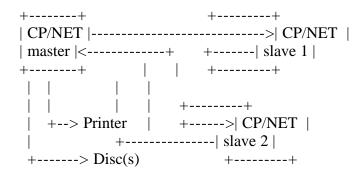
+----+ +----+ / \+----+/ \ < MP/M <> CP/NET <> MP/M > \ /+----+\ / +----++ +---++

Figure 3. MP/NET

CP/NET is designed to operate in multiple-processor environments ranging from tightly- to loosely-coupled. Tightly-coupled processors are, here, defined as processors sharing all, or a portion of, common memory. Communication of inter-processor messages is at memory speed. Loosely-coupled processors are those which do not have access to memory which is common or accessible by both processors. Communication between loosely-coupled processors may be implemented with a serial data link or possibly a high-speed parallel bus.


In addition to the standard CP/M facilities, CP/NET provides the following capabilities:

- the network can be accessed for system I/O facilities
- an electronic mail system is supported, whereby slaves and masters may send each other mail


CP/NET configurations

One aim in designing CP/NET was that it should be independent of the form of the network. Star, ring and bus configurations are possible, with single or multiple slaves. Figure 4 shows 2 possible CP/NET configurations. It should be noted that the inter-processor message format permits multiple CP/NET masters so that, if the hardware capability exists, more than one master can be present in a network. Such multiple masters cannot, however, share resources with each other.

(a) active hub star configuration

(b) ring configuration

Figure 4. Single master and multiple slave configurations:

Slave interface

The slave portion of the operating system is logically divided into 2 modules: the slave network I/O system (SNIOS) and the network disk operating system (NDOS). The SNIOS is a hardware-dependent module which defines the exact lowlevel interface to NDOS, which is necessary for network I/O. Although a standard SNIOS is supplied, explicit instructions are provided for field reconfiguration of the SNIOS to match most hardware network environments.

The purpose of NDOS is to intercept all CP/M BDOS function calls, and to determine if the operation is to be performed locally or on the network. If the operation is local, control is transferred to the BDOS. If the operation is to be done on the network, the NDOS forms the appropriate logical message, and then sends it to the master (via the SNIOS) to perform the specified function.

Logical network message format

The simple message format used by CP/NET for processor communication includes some packaging overhead, as well as the actual message itself. This packaging overhead consists of a message format code, CP/NET destination and source addresses, a CP/M function code and a message size. This is shown in Figure 5.

Figure 5. Message format

The message format does not contain a cyclic redundancy code (or any other error checking) as part of the packaging overhead. This is because the userwritten NIOS can add the error checking when it actually places the message onto the network, and test it when it receives a message from the network. This function is intentionally left to the user, avoiding redundant error checking where standard interface protocols, both in hardware and software, may already provide error checking.

Slave configuration table

The configuration table which resides in the CP/NET slave's NIOS is used to allow re-assignment of physical and logical devices. The configuration table creates a mapping of logical to physical devices which can be altered during CP/NET processing. In particular, the configuration table is used to specify the system I/O which is to be accessed through the network.

The slave configuration table is defined as follows:

000-000 -- Slave status byte

001-001 -- CP/NET slave processor ID

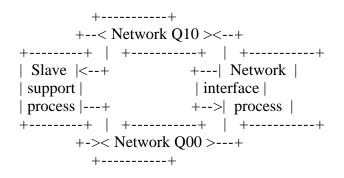
002-033 -- Disk devices

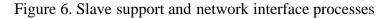
Sixteen 2-byte pairs -- first byte high-order bit ON means drive on network, with the master physical drive code in the least significant 4 bits; second byte contains the master processor ID.

034-035 -- Console device

First byte high-order bit ON means console I/O on network, with the master console number in the least significant 4 bits; second byte contains the master processor ID.

036-037 -- List device


First byte high-order bit ON means list to network, with the master list device number in the least significant 4 bits; the second byte contains the master processor ID.


Master interface

The network interface processes are part of the user-written NETWRKIF module. They perform the actual physical I/O for the CP/NET master. There is typically one network interface process per slave that is supported by the master. Queues are used to pass messages between the interface processes and the slave support processes. The slave support processes are provided for the CP/NET master in the form of a resident system process.

The interaction between the slave support processes and the network interface processes which actually handle the direct physical I/O between the master and the slaves is indicated in Figure 6.

Conclusion

The CP/NET network operating system brings CP/M-based networking to microcomputers. In conjunction with MP/M (the Multi-programming control Program for Microcomputers), a variety of CP/NET configurations allow valuable resources to be shared among a number of masters running MP/M and slaves running CP/M. For example

- share and transfer disk files
- share printers and consoles
- share programs and databases

As with CP/M and MP/M, CP/NET is compatible with a large variety of computer hardware, allowing a network to be constructed with any combination of shared memory, parallel I/O or serial links with any protocol.

Reference

 "CP/NET User's Guide" Digital Research, Inc.
 P.O. Box 579
 Pacific Grove
 California 93950
 USA

EOF

Digital Research CP/NET Network Operating System Reference Manual

(Edited by Emmanuel ROCHE.) (WARNING: but not proof-read...)

COPYRIGHT

Copyright (C) 1980, 1981, 1982 by Digital Research. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of Digital Research, Post Office Box 579, Pacific Grove, California, 93950. Portions of this manual are, however, tutorial in nature. Thus, the reader is granted permission to include the example programs, either in whole or in part, in his own programs.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Further, Digital Research reserves the right to revise this publication and to make changes from time to time in the content hereof without obligation of Digital Research to notify any person of such revision or changes.

TRADEMARKS

CP/M and CP/NET are registered trademarks of Digital Research. ASM, CP/NOS, DDT, LINK-80, MP/M II, RMAC, SID, and ZSID are trademarks of Digital Research. Altos is a registered trademark of Altos Computer Systems. Intel is a registered trademark of Intel Corporation. Keybrook is a registered trademark of Orange Compuco, Inc. Xerox, 820 Computer, and R820-II are registered trademarks of Xerox Corporation. Z-80 is a registered trademark of Zilog, Inc. Corvus OMNINET is a trademark of Corvus Systems, Inc. DSC-2 is a trademark of Digital Microsystems. DB8/5200 is a trademark of Dynabyte. FileServer is a trademark of Keybrook Business Systems, Inc.

The CP/NET Network Operating System Reference Manual was prepared using the Digital Research TEX Text Formatter, and printed in the United States of America by Commercial Press/Monterey.

Foreword

CP/NET, a network operating system, enables microcomputers to access common resources via a network. CP/NET allows microcomputers to share and transfer disk files, to share printers and consoles, and to share programs and data bases. CP/NET consists of servers running MP/M II and requesters running CP/M. The servers are hosts that manage the shared resources that the network requesters can access.

The hardware environment for CP/NET must include two or more microcomputers that can communicate in some way.

One of the microcomputers must execute the MP/M II operating system to provide the CP/NET server facilities. The processor executing MP/M II must be an 8080, 8085, or Z-80 CPU with a minimum of 32K bytes of memory, 1 to 16 consoles, 1 to 16 logical or physical disk drives each containing up to eight megabytes, a clock/timer interrupt, and a network interface.

The CP/NET requester microcomputers must have 8080, 8085, or Z-80 CPUs with at least 16K bytes of memory, 0 to 16 logical or physical disk drives each containing up to eight megabytes, and a network interface. A console is not absolutely required, although it is strongly recommended.

The "CP/NET Network Operating System Reference Manual" is intended for several different levels of CP/NET users. It contains all the information you need to use CP/M applications programs on a CP/NET requester, to write new application programs under CP/NET, and to customize CP/NET for a specific network.

Section 1, an overview of the CP/NET system, discusses CP/NET features, network topologies, and the principles behind CP/NET operation.

Section 2 contains all the information you need to use the network when executing CP/M application programs. You need no skill level beyond that required for normal CP/M operation.

Section 3 describes the CP/NET interprocessor message format and each of the Network Disk Operating System (NDOS) functions you can invoke from application programs. This section provides the information you need to access the network primitives. Section 3 also discusses the implications of performing CP/M operations on a resource controlled by the MP/M II operating system.

Section 4 provides information for the systems programmer. This section describes how to write a custom Slave Network I/O System (SNIOS) that performs the CP/NET requester network functions. The mechanics of implementing and debugging a custom SNIOS are also discussed. Programmers attempting to develop an SNIOS should be familiar with CP/M, and experienced in writing a custom CP/M BIOS. This section also explains how to write a custom Network Interface Process (NETWRKIF) that performs the CP/NET server network functions.

Section 4 also discusses implementing and debugging the NETWRKIF module. You must have a high degree of competence and experience with MP/M II to develop a custom NETWRKIF. You must be familiar with the process and queue descriptor data structures, and the MP/M II XDOS primitive functions. Experience with implementing an XIOS for MP/M II might also be necessary.

Appendixes to this manual contain several example network communications packages.

Table of Contents

- **1 CP/NET Overview** 1.1 CP/NET Features 1.2 CP/NET Configurations 1.3 How the Requester Works 1.4 How the Server Works 2 CP/NET Utilities 2.1 The LOGIN Command 2.2 The LOGOFF Command 2.3 The NETWORK Command 2.4 The LOCAL Command 2.5 The ENDLIST Command 2.6 The DSKRESET Command 2.7 The CPNETLDR Command 2.8 The CPNETSTS Command 2.9 Ctrl-P 2.10 The MAIL Utility 2.10.1 Menus 2.10.2 Data Entry 2.10.3 MAIL Options 2.10.4 Error Messages 3 CP/NET Programmer's Guide 3.1 CP/NET Interprocessor Message Format 3.1.1 Message Format Code 3.1.2 Message Destination Processor ID 3.1.3 Message Source Processor ID 3.1.4 CP/M Function Code 3.1.5 Size 3.1.6 CP/NET Message 3.1.7 Additional Packaging Overhead 3.2 Running Applications Transparently Under CP/NET 3.2.1 MP/M II vs. CP/M File Systems
 - 3.2.2 Error Handling Under CP/NET
 - 3.2.3 Temporary Filename Translation
 - 3.2.4 Opening System Files on User 0
 - 3.2.5 Compatibility Attributes
 - 3.2.6 Password Protection Under CP/NET
 - 3.2.7 Networked List and Console Devices
- 3.3 CP/NET Function Extensions to CP/M
- 3.4 CP/NET Applications

4 CP/NET System Guide

- 4.1 General Network Considerations
- 4.1.1 Functions of the CP/NET Physical Modules
- 4.1.2 Interfacing a Computer to a Network
- 4.1.3 Developing a Network Layer
- 4.1.4 Error Recovery
- 4.2 Customizing the Requester's SNIOS
- 4.2.1 Slave Network I/O System Entry Points
- 4.2.2 Requester Configuration Table
- 4.2.3 Prefiguring the Configuration Table
- 4.2.4 Sending and Receiving Messages
- 4.2.5 Generating and Debugging a Custom SNIOS
- 4.3 Customizing the Server
- 4.3.1 Detecting and Receiving Incoming Messages
- 4.3.2 The Architecture of the NETWRKIF Module
- 4.3.3 Elements of the NETWRKIF
- 4.3.4 Enhancements and Additions to the NETWRKIF
- 4.3.5 MP/M II Performance Factors and NETWRKIF
- 4.3.6 Generating the NETWRKIF
- 4.3.7 Debugging the NETWIRKIF
- 4.4 Implementing Non-MP/M II Servers

Appendixes

- A CP/NOS
- A.1 Overview
- A.2 System Requirements
- A.3 Customizing the CP/NOS
- A.4 Building the CP/NOS System
- A.5 Debugging the System
- B CP/NET 1.2 Standard Message Formats
- C CP/NET 1.2 Logical Message Specifications
- **D NDOS Function Summary**
- E A Simple RS-232C CP/NET System
- E.1 Protocol Handshake
- E.2 Binary Protocol Message Format
- E.3 ASCII Protocol Message Format
- E.4 Modifying the SNIOS
- E.5 Modifying the NETWRKIF
- F A CP/NET System for Use with ULCnet
- F.1 Overview of ULCnet
- F.2 Customizing a ULCnet SNIOS for the Requester
- F.3 Creating the ULCnet Server
- G Using CP/NET 1.2 With Corvus OMNINET
- G.1 The Corvus Engineering Transporter
- G.2 Implementation Structure
- G.3 The SNIOS Implementation
- G.4 The NETWRKIF Implementation Model
- G.5 Possible Improvements to NETWRKIF

Tables

- 2-1. Receive Mail Message-handling Options
- 3-1. Interface Attributes
- 3-2. BDOS Error Modes
- 4-1. Requester Configuration Table
- 4-2. Server Configuration Table
- 4-3. Requester Control Block
- B-1. Message Field Length Table
- C-1. Conventional CP/NET Messages
- **D-1. NDOS Functions**
- G-1. Transporter Command Block
- G-2. Receive Result Block

Figures

-
- 1-1. Standard CP/NET Configuration
- 1-2. CP/NOS Configuration
- 1-3. Single Requester Networked to MP/M II Server
- 1-4. Multiple Requesters in Hub-star Configuration
- 1-5. Multidrop Network
- 1-6. Hybrid Network
- 1-7. CP/NET Memory Structure
- 1-8. A Simple Server Supporting Three Requesters
- 3-1. Message Format
- 4-1. Layered Model of a CP/NET Network Node
- 4-2. Network Status Byte Format
- 4-3. Algorithm for Interrupt-driven Requester Node
- 4-4. Server Architecture
- 4-5. Two-process NETWRKIF
- 4-6. Transport Process/Data-link Processes Interface
- 4-7. Directly Interfacing NETWRKIF to XIOS Routines
- 4-8. Synchronizing Data-link Activity Using Flags
- 4-9. A Typical Server Memory Map
- 4-10. Implementing Timeouts with Flags
- B-1. CP/NET 1.2 Logical Message Format
- E-1. Protocol Handshake
- E-2. Binary Protocol Message Format
- E-3. ASCII Protocol Message Format

Listings

- 2-1. A Typical CPNETLDR Execution
- 2-2. A Typical CPNETSTS Execution
- 4-1. SNIOS Jump Vector
- 4-2. Stack and Process Descriptor Allocation for Four-requester Server
- E-1. Requester Network I/O System
- E-2. Server Network I/F Module
- F-1. Requester Network I/O System for ULCnet
- F-2. NETWRKIF for Systems Running ULCnet
- F-3. ULCnet Data-link Layer MP/M XIOS Module
- G-1. Sample SNIOS for Corvus OMNINET
- G-2. Sample Server Network I/F for Corvus OMNINET

Section 1: CP/NET Overview

By separating the logical operating system from the hardware environment and placing all hardware-independent code in a separate I/O module, CP/M and MP/M II have gained widespread industry acceptance. The CP/NET operating system uses this same design approach. CP/NET is network independent. The Slave Network I/O System (SNIOS) module contains all network-dependent code for the requester. The Network Interface Process (NETWRKIF) module contains all network-dependent code for the server. Logical messages passed to and from the SNIOS or NETWRKIF are transmitted over an arbitrary network between servers and requesters using an arbitrary network protocol.

CP/NET and CP/NOS can be combined in a composite network consisting of MP/M II servers, CP/M requesters, and diskless CP/NOS requesters.

CP/NET is a bridge between a microcomputer running MP/M II and a microcomputer running CP/M. The MP/M II server manages resources that are considered public to the network. The CP/NET requesters executing CP/M have access to the public resources of the server and to their own local private resources, which cannot be accessed from the network. This architecture permits the server's resources to be shared among the requesters, yet guarantees the security of the requester's resources.

The MP/M II server responds to the network asynchronously in real-time; the CP/M requesters perform sequential I/O, and are usually not capable of monitoring a network interface in real-time. Figure 1-1 illustrates the relationship between CP/M, MP/M II, and CP/NET.

Figure 1-1. Standard CP/NET Configuration

CP/NOS, the second network operating system product, is designed for applications where the requester microcomputer lacks disk resources, and is therefore unable to run CP/M. CP/NOS consists of

- a bootstrap loader that can be placed into ROM or PROM,
- a skeletal CP/M containing only the console and printer functions,
- the logical and physical portions of the CP/NET requester.

At the user level, CP/NOS provides a virtual CP/M 2.X system to the requester microcomputer. A requester microcomputer can consist of no more than a processor, memory, and an interface to the network. Thus, a CRT with sufficient RAM can execute CP/M programs, performing its computing locally and depending on the network to provide all disk, printer, and other I/O facilities. Figure 1-2 illustrates the relationship between CP/NOS, MP/M II, and CP/NET.

Figure 1-2. CP/NOS Configuration

1.1 CP/NET Features

CP/NET operates in multiple-processor environments ranging from tightly to loosely coupled to networked processors. In this manual, tightly coupled processors are those sharing at least a portion of common memory. Interprocessor messages communicate at memory speed. Loosely coupled processors do not have access to memory that is common or accessible by both processors; they communicate via a short, high-speed bus. Loosely coupled processors usually reside in the same physical box. Networked processors are usually physically separated, and communicate over a serial link.

The CP/NET operating system is an upward-compatible version of CP/M 2.2, which provides system I/O facilities to requester microcomputers through a network. Additions to the Basic I/O System (BIOS) called the Slave Network I/O System (SNIOS), and a new Basic Disk Operating System (BDOS) called the Network Disk Operating System (NDOS), provide network access to System I/O facilities. The requester NDOS and NIOS are loaded and executed while running under CP/M 2.2.

In addition to the standard CP/M facilities, CP/NET provides the following capabilities:

- The network can be accessed for system I/O facilities.
- The network environment can be reconfigured to access I/O facilities according to application requirements.
- Messages can be transmitted and received between requesters and servers.
- An electronic mail system allows requesters and servers to send mail to each other.

The MP/M II server is implemented by adding some resident system processes at system generation (GENSYS) time. The resident system processes include server processes (SERVER) that perform the logical message-handling functions for the server, and network interface processes (NETWRKIF) that you can customize for a particular hardware network interface.

1.2 CP/NET Configurations

CP/NET supports a number of different network topologies, and a variety of system resources. The interprocessor message formats permit a requester to access more than one server for different resources.

Figure 1-3 illustrates an MP/M II system supporting a single CP/NET requester. The requester is a totally independent system, with its own console, printer, and disk resources. The requester can also access the MP/M II system's resources over the network. The MP/M II system also supports other users using local terminals.

Figure 1-3. Single Requester Networked to MP/M II Server

Figure 1-4 shows an active hub-star network running CP/NET. Each requester is networked to the server through a unique network port. The requesters have their own local resources, but they also share the server's disk and printer resources. This topology is simple to implement, because you can adapt the network protocol from the protocol used for RS-232 console drivers. The sample system in Appendix E uses this topology.

Figure 1-4. Multiple Requesters in Active Hub-star Configuration

Figure 1-5 shows a system of three requesters and two servers networked together in a bus or multi-drop configuration. The network protocol must be capable of resolving conflicts when nodes attempt to use the network simultaneously. Each requester has access to the resources of both servers, in addition to its own local resources. Appendixes F and G provide examples of CP/NET systems using this network topology.

Figure 1-5. Multi-drop Network

Finally, you can combine these topologies, as well as other topologies like loops and trees, into a hybrid network topology. Figure 1-6 depicts such a topology, combining the bus, star, and loop forms.

Figure 1-6. Hybrid Network

1.3 How the Requester Works

The CP/NET requester software runs under an unmodified CP/M version 2 operating system. The requester operating system consists of three object modules: NDOS.SPR, SNIOS.SPR, and CCP.SPR. These modules are system page relocatable files that can be loaded directly under the CP/M BDOS and BIOS, regardless of their size or their location in memory.

The module NDOS.SPR contains the Network Disk Operating System (NDOS), the logical portion of the CP/NET system. The NDOS determines whether devices referenced by CP/M function calls are local to the requester or whether they are located on a remote system across a network. If a referenced device is networked, the NDOS prepares messages to be sent across the network, controls their transmission, and finally reformats the result received from the network

into a form usable by the calling application program. NDOS.SPR is distributed in object form by Digital Research. No modification to this module is required to run CP/NET.

The Slave Network I/O System (SNIOS) is contained in the module SNIOS.SPR. The systems implementer must customize this software to run on a particular computer and network system. The SNIOS performs primitive operations that allow the NDOS to send and receive messages across a network. The SNIOS also provides a number of housekeeping and status functions to the NDOS. Digital Research distributes a number of example SNIOS modules in source form with CP/NET.

The final module, CCP.SPR, is a replacement for the normal CP/M 2.2 CCP. Like the regular CCP, CCP.SPR is loaded directly below the operating system. However, CCP.SPR performs a number of special network functions that initialize the environment for a program.

The logical origin of SPR files is location zero. Each file has a 256-byte header, with locations 1 and 2 defined as the length of the code in the file. A bit map, appended to the end of the code, identifies bytes of the code that must be relocated when the code is loaded on a particular page (256-byte) boundary. The CP/NET utility CPNETLDR relocates the bytes defined by the bit map.

CPNETLDR loads SNIOS.SPR directly below the CP/M BDOS. NDOS.SPR is loaded directly below the SNIOS. CPNETLDR then passes control to an initialization routine. This routine modifies key areas of the operating system:

- Location 5, which contains a jump to the BDOS entry point, is saved away by the NDOS. Location 5 is then modified to jump to an entry point in the NDOS. This assures that the NDOS intercepts all CP/M function calls.
- The BIOS jump vector entries for console status, console in, console out, list status, list out, and warm boot are replaced with entries that jump into special NDOS routines. The NDOS saves the BIOS entry points for these routines, allowing direct BIOS calls to these routines to be intercepted in exactly the same way that CP/M function calls are intercepted.

After these modifications have been made, the NDOS calls the SNIOS to initialize the network. The NDOS then jumps to its own warm boot routine, which performs a disk system reset, loads CCP.SPR, and then passes control to the CCP.

When an application program calls the CP/NET operating system via location 5, the NDOS is entered instead of the BDOS. Invalid functions return to the user program immediately as errors. Functions dealing with console or printer I/O immediately pass through to the local BDOS; but these functions are intercepted by the NDOS again when the BDOS calls the BIOS. At this level, the NDOS checks whether the console or printer is a networked device. If so, the NDOS sends a request across the network for the input or output.

Some functions have no meaning when they are sent across the network to a

remote server. Examples of these are Function 26 (Set DMA Address), Function 32 (Get/Set User Number), and Function 12 (Return Version Number). The local BDOS always handles these functions. But the NDOS saves certain parameters from these functions for its own use, processing them before allowing them through to the BDOS.

Finally, the NDOS checks most functions that deal with either the disk drive system or the file system to determine whether they reference local devices. If so, these functions pass unmodified to the BDOS. The NDOS also checks whether these functions reference devices that exist somewhere out on the network. If they do, the NDOS constructs a network message to be sent to the system on which the device exists. The network message contains the network function to be performed and the information necessary to perform it.

Figure 1-7 illustrates how the CP/NET operating system is organized. The solid line outlines the function flow of an operation on a networked disk drive. The dotted line traces the flow of an I/O operation to a networked list device or console. Arrows indicate possible function flow.

Figure 1-7. CP/NET Memory Structure

When an NDOS requester sends a function message out over the network, a response from the addressed server is implied. As soon as the NDOS has successfully called the SNIOS to send the message, the NDOS calls the corresponding message receive routine, also in the SNIOS. This procedure precludes the problem of trying to recover sequencing information from an arbitrary stream of messages.

The NDOS uses the network response to update the application program that made the function call. The NDOS then returns to the application program. If the device referenced was local, then the requester's BDOS updates the application program.

1.4 How the Server Works

Unlike the requester, the server software that runs under MP/M II does not modify the actual operating system. Rather, the operating system is a set of cooperating processes under MP/M II.

In its most basic form, each requester to be attached to a server requires two processes, communicating through two queues. One process, resident in the NETWRKIF.RSP module, performs the physical message transport task. The systems implementer must modify this process to accommodate the network's node-to-node protocol. The process's protocol must be compatible with that of the requester's SNIOS.

The NETWRKIF must be capable of monitoring one or more network lines in realtime and detecting when a requester is trying to send a message. The NETWRKIF must then receive the message, check it for data integrity, and send it on to the logical portion of the server, contained in the module SERVER.RSP.

When the SERVER module returns its response to the logical message, the

NETWRKIF must receive the message, and then transmit it across the network back to the requester.

The module SERVER.RSP performs the logical operation the requester specifies. After receiving the message from the NETWRKIF, SERVER.RSP checks to make sure that the requester is logged in properly. Then SERVER.RSP responds to the message by performing a series of MP/M II operating system calls. Using the information returned by those calls, the SERVER constructs a response message, and sends it to the NETWRKIF module for transmission.

Both the NETWRKIF and SERVER modules are Resident System Process files (RSPs). RSPs are built into the MP/M II system during its GENSYS operation. When MP/M II is cold started, all RSPs are automatically dispatched. Each RSP module might contain multiple processes, but only one process per RSP is automatically dispatched. Because each requester bound to a server might require one process from the NETWRKIF and one from the SERVER, both RSPs contain initialization code to create additional copies of themselves. These processes can be reentrant. They can share the same code, but they have separate data areas to avoid conflict between program variables.

One of the simplest server architectures is shown in Figure 1-8. Processes from the NETWRKIF are named NtwrkIP<x> where <x> is the ASCII representation of a hexadecimal number between 0 and F. SERVER processes are named SERVR<x>PR.

Figure 1-8. A Simple Server that Supports Three Requesters

A NtwrkIP<x> process writes the address of an input message to a queue named NtwrkQI<x>. A SERVR<x>PR process reads this queue while waiting for an input message. Because the queue is empty when the requester is not requesting service, the SERVR<x>PR process is suspended and consumes no CPU resources.

When the NtwrkIP<x> process writes to the queue, the SERVR<x>PR process is dispatched, and it begins to operate on the message. As soon as the NtwrkIP<x> process has finished sending the incoming message to NtwrkQI<x>, NTWRKIP<x> immediately tries to read a second queue, named NtwrkQO<x>. This queue is empty, and the NtwrkIP<x> process is consequently suspended until the SERVR<x>PR process writes the response message to it. The NtwrkIP<x> can then transmit the message back to the requester.

Server functions can be divided into four categories:

- 1) session control functions
- 2) file serving functions
- 3) print serving functions
- 4) non-CP/NET functions

Session control functions permit a requester to log on to a server, log off, set compatibility attributes, set default passwords, and examine the server configuration table.

File serving functions make up the bulk of the server's work. These functions include opening and closing networked files, reading and writing files, and managing disk devices.

The server can operate as a print server in two different modes. If the MP/M module SPOOL.RSP is present in the system, requester outputs to a networked list device are spooled to a file for future printing. If no spooler exists in the system, the server manages the attaching and detaching of various print devices.

Finally, the NETWRKIF module can be designed to recognize a logical message that has no meaning to the SERVER module, but that can be operated on by a user-defined process. This feature allows you to use functions CP/NET does not provide.

Section 2: CP/NET User's Guide

This section describes the requester commands that enable you to access the network and use its resources. All the requester commands are actually COM files that reside on disk at the requester.

2.1 The LOGIN Command

The LOGIN command allows a requester to log in to a specified server. A requester must log in before any resources on the server can be accessed. Once a requester has logged in, it is not necessary to log in again even though the requester might power down and then power up again. A requester can only be logged off a server by an explicit LOGOFF command issued from the requester. The command takes the general form:

LOGIN {password}{[mstrID]}

where "password" is an optional 8 ASCII-character password; the default password is "PASSWORD". [mstrID] is an optional two-digit server processor ID; the default is "[00]". The simplest form is

A>LOGIN

2.2 The LOGOFF Command

The LOGOFF command allows a requester to log off from a specified server. Once a requester has logged off, the server cannot be accessed again until you issue a LOGIN command. The command takes the general form:

LOGOFF {[mstrID]}

where [mstrID] is an optional two-digit server processor ID; the default is "[00]". The most simple form is

A>LOGOFF

2.3 The NETWORK Command

The NETWORK command enables a requester to assign selected I/O to the network. The NETWORK command updates the requester Configuration table. The command takes the general form:

NETWORK {local dev} {=} {server dev{[srvrID]}}

where "local dev = server dev" is the specification of a server device such as A:, B:, ..., P: in the case of a disk device, or 0, 1, ..., 15 in the case of CON: or LST:. A missing "server dev" defaults to 0 in the case of CON: or LST:. [srvrID] is an optional two-digit hexadecimal server processor ID. The default is "[00]". Typical assignments are

A>NETWORK LST:	
A>NETWORK LST:=3[07]	(list dev #3 on server 07)
A>NETWORK CON:=2	(console #2 on default server)
A>NETWORK B:=D:[F]	(logical B: is D: on server 0F)

Note: When networking drive A to a server, the file CCP.SPR must reside on the networked drive, or warm boot operations fail. Do not network a device to a non-existent or off-line server, because network errors could result.

2.4 The LOCAL Command

The LOCAL command enables a requester to reassign selected I/O back to local from the network. The LOCAL command updates the requester configuration table. The command takes the general form:

LOCAL {local dev}

where "local dev" is the specification of a local device such as LST:, A:, B:, ..., CON:. The following are typical assignments:

A>LOCAL LST: A>LOCAL B:

2.5 The ENDLIST Command

The ENDLIST command sends a hexadecimal 0FF to the list device, signaling that a list output to a networked printer is finished. If a spooler is resident on the server, the spool file is closed and enqueued for printing. If no spool file is present, the networked list device is freed for use by another requester.

Note: The CCP implements an endlist every time a program terminates, provided that Ctrl-P is not active at the time. Turning Ctrl-P off also causes an endlist.

2.6 The DSKRESET Command

The DSKRESET command functions exactly like the PRL that executes under MP/M II. DSKRESET resets the specified drive, so a disk can be changed. The command takes the general form:

DSKRESET {drive(s)}

where "drive" is a list of the drive names to be reset. If any of the drives specified cannot be reset, the console displays the message:

Reset Failed

The following are typical disk resets:

A>DSKRESET (resets all drives) A>DSKRESET B:,F: (reset drive B: and F:)

2.7 The CPNETLDR Command

The CPNETLDR command loads the requester CP/NET system. Specifically, the SNIOS.SPR file loads and relocates directly below the CP/M BDOS. The NDOS.SPR file loads and relocates directly below the SNIOS.

From that point on, the BIOS, BDOS, SNIOS, and NDOS remain resident in memory. The CPNETLDR requires no user customization. CPNETLDR displays an error message when loader errors are encountered. Listing 2-1 is a typical CPNETLDR execution.

A>CPNETLDR

CP/NET 1.2 Loader

BIOSF600H 0A00HBDOSE800H 0E00HSNIOSSPRE500H 0300HNDOSSPRDB00H 0A00HTPA0000H DB00H

CP/NET 1.2 loading complete. <Warm Boot> A>

Listing 2-1. A Typical CPNETLDR Execution

2.8 The CPNETSTS Command

The CPNETSTS command displays the requester configuration table. The requester configuration table indicates the status of each logical device that is either local or assigned to a specific server on the network. Listing 2-2 shows a typical CPNETSTS execution.

A>cpnetsts

CP/NET 1.2 Status

Requester processor ID = 34HNetwork Status Byte = 10HDisk device status: Drive A := LOCALDrive B: = LOCAL Drive C: = Drive A: on Network Server ID = 00HDrive D: = Drive B: on Network Server ID = 00HDrive E: = LOCAL Drive F: = LOCAL Drive G := LOCALDrive H: = LOCAL Drive I: = LOCALDrive J := LOCALDrive K: = LOCALDrive L: = LOCAL Drive M: = LOCAL Drive N := LOCALDrive O: = LOCALDrive P: = LOCAL Console Device = LOCAL List Device = List #0 on Network Server ID 00H A>

Listing 2-2. A Typical CPNETSTS Execution

2.9 Ctrl-P

A Ctrl-P causes console output to be echoed to the list device until the next Ctrl-P. The messages

CTL-P ON and CTL-P OFF

are displayed at the console. When the requester list device has been networked, the local system uses the server printer. The second Ctrl-P causes a hexadecimal FF to be sent to the server, causing the server to close and print the spool file.

Note: When the requester uses the server printer with a Ctrl-P active, the requester must issue a second Ctrl-P to cause the server to close the spooled

file and begin printing it. When the requester is using the server printer and has invoked it with a program such as PIP, the warm boot at program termination causes the required endlist character to be sent to the server to close and print the spooled file.

The program ENDLIST is not needed to terminate network list output in these situations.

2.10 The MAIL Utility

The MAIL utility allows you to send, receive, and manage electronic mail in a network environment. MAIL operates using file based function calls, so special processing by the server is not required. MAIL runs transparently on either server or requester, so only one program is required throughout the entire electronic mail system.

MAIL allows you to send messages to a single node, broadcast messages to all nodes currently logged in, or receive messages.

Messages are stored for your future examination on the temporary file drives of CP/NET servers. A user's mail file is named

xxMAIL.TEX

where "xx" corresponds to your node ID. For example, if requester #5C wants his mail, the MAIL program accesses files named 5CMAIL.TEX on the temporary file drives of all the servers that node 5C currently has logged in. Every server in the CP/NET system might have one of these files, so other nodes in the network that do not have direct access to all of node 5C's servers can still send messages indirectly to it.

Menu-driven operation allows you to run the program with a minimum of instruction. Messages are limited in size to 1.7K bytes. You can enter messages into the system directly from the keyboard or through a preedited file. Options allow you to answer a message immediately while reading your mail, and to delete unwanted entries.

2.10.1 Menus

Three basic menus can appear during a MAIL session:

- 1) Main Menu
- 2) Input Source Menu
- 3) Receive Response Menu

The Main Menu determines the basic operation to be performed. The Input Source Menu specifies whether input comes from a file or whether you enter it directly. Finally, the Receive Response Menu determines the disposition of messages you receive. Enter a menu selection by typing the number associated with the selection, followed by a carriage return. If you type an invalid character or no character at all, the menu system defaults to the last item on the menu. You simply press the carriage return for common operations.

Main Mail Menu

The main mail menu appears when you enter the mail program, and when any of its options have completed execution. Main mail menu options are

- 1 Broadcast
- 2 Send Mail
- 3 Receive Mail
- 4 Exit Program

A simple carriage return or an invalid entry at this level return you to CP/M or MP/M II command level.

Input Source Menu

The input source menu allows you to specify how message input is entered into the system. The input source menu has only two options:

1 - File

2 - Console Input

Receive Response Menu

The receive response menu determines the disposition of messages once the user has examined them. The options are

- 1 Stop Receiving Mail
- 2 Answer Message
- 3 Delete Message From Mail File
- 4 Answer Message, Then Delete
- 5 Re-Examine Last Message
- 6 Get Next Message

2.10.2 Data Entry

In addition to the menus, MAIL prompts you for a variety of inputs. These inputs determine the destination of messages, input files, and subjects.

Destination ID Prompt

When using the send mail option, MAIL requires an explicit destination to deliver the message properly. The system prompts for the destination. The legal value is a 2-digit hexadecimal number, followed by a carriage return. This value corresponds to a CP/NET server or requester ID value.

If you enter a value that is not a legal hexadecimal number, the system displays an error message, and prompts you again. The system does not check, however, to determine whether a requester or server with this ID exists on the network.

Subject Prompt

With both the broadcast and send mail options, MAIL prompts for a subject header. This header is displayed as the title of the message, and is also used for answering mail to the message that is sent.

When the system prompts for subject, you can enter a subject header from 0 to 80 bytes long, followed by a carriage return.

Input File Prompt

If a preedited file contains the text of a message, MAIL prompts for the filename. You can then enter a valid CP/M file specification. If the file specified does not exist, the system displays an OPEN ERROR, and the program aborts.

Console Input Prompt

If you choose to enter a message directly from the console, MAIL prompts for input. You can then simply type the message. Individual message lines can be up to 78 characters long. A message, whether input from the console or from a file, must be no longer than 1764 characters, about enough to fill a standard terminal display. Longer messages are truncated.

To terminate input, the user presses Ctrl-Z, followed by a carriage return.

2.10.3 MAIL Options

This section explains how the CP/NET system gathers and receives mail, and how you control the disposition of mail.

Broadcast

The broadcast option sends a message to every node that it can find logged in to the CP/NET system.

MAIL works differently when it is running on a server under MP/M II, from the way it works when it is running on a requester under CP/M or CP/NOS. If a requester is broadcasting, MAIL sends the specified message to every server on which it is logged in, as well as to every other requester logged in to those servers. If a server is broadcasting, MAIL sends the message only to every requester logged in to that server. A server has no means of initiating transactions with other servers, although it can use its own local MP/M II system to file mail for its own requesters.

A message cannot be broadcast to the broadcasting node.

To send a message to a given server and its associated requesters, MAIL must reference that server's temporary file drive across the network. If a requester has not networked the temporary file drive of a server, no messages are sent to that server.

When the broadcast option is entered, MAIL prompts you for a subject and message. When the operation is completed, it returns to the main menu.

Send Mail

The send mail option sends a message to a specific node in the CP/NET system. The destination can be either a server or a requester. If the option is running on a requester, it first searches the network to see if the node specified is logged in. If the option finds the node is logged in, it sends the message if the option does not find the node, it leaves the message on the first server located when MAIL searches the local configuration table. If a destination requester logs in later, its mail will be waiting for it. Mail files can accumulate that were erroneously sent to nonexistent requesters or to servers that the requester sending the message had not logged onto when it sent the message.

If the option is running on a server, mail is left on that server, whether the node it is being sent to is logged in or not.

Upon selecting the send mail option, MAIL prompts you for a destination ID, a subject, and for the message itself. MAIL then attempts to send the message. If MAIL cannot find a server with a temporary file drive to accept the message, the error "NO SERVER MAIL DRIVE NETWORKED" is displayed, and the program aborts.

Receive Mail

The receive mail option permits you to examine messages left for you on all the servers on which you are currently logged in. After each message is displayed, you are presented with a number of message-handling options. If you are running MAIL on the server, only the mail file on the server is accessed. However, if MAIL is being run on a requester, each server to which the requester is logged in is searched for messages.

Each message is preceded by a header that tells you what node the message came from and the subject of the message. The actual message is then displayed. As a message is being displayed, you can halt the display by pressing Ctrl-S and resume display by pressing Ctrl-Q. At the end of the message, bring up the receive response menu by pressing any key. You can then take one of the options listed in Table 2-1.

Table 2-1. Receive Mail Message-handling Options

Format: Option Explanation

Stop receiving mail

MAIL stops searching for more entries or additional files, and returns to the main menu.

Answer message

MAIL prompts you to type in a reply message. The reply message is sent back to the sender of the original message. The subject of the reply message is the characters "RE: ", followed by the original subject.

Delete message

MAIL flags the message in the file as deleted. At the end of each file, or if you decide to stop receiving mail, deleted messages are physically removed from the file.

Answer, then delete

This option answers the message message just displayed, then deletes the message.

Display next message

Messages continue to be displayed in this fashion, allowing the user to respond to each one, until no more can be found. The message "No More Messages" is then displayed, and the program returns to the main menu.

Upon completion of any message-handling options, with the exception of the reexamine option, the next message is displayed.

2.10.4 Error Messages

In addition to the error messages already mentioned, CP/NET returns file system errors. These errors display

ERROR READING FILE ERROR WRITING FILE or ERROR OPENING FILE followed by a filename. After displaying such an error, MAIL aborts. It is possible to get the "ERROR OPENING FILE" message by specifying a nonexistent input file for sending or broadcasting a message. Almost all other instances of the messages, however, indicate possibly serious trouble with the network, the server file system, or the mail-handling system.

Section 3: CP/NET Programmer's Guide

This section provides information for the applications programmer who wants to write programs to run under CP/NET, or to evaluate the performance and correctness of programs written for CP/M or MP/M II under the CP/NET operating system.

MP/M II performs all operations on a networked device, and makes file security checks that CP/M does not usually make. Because MP/M was designed to run unmodified CP/M applications, these checks seldom prevent the use of a CP/M application under CP/NET.

3.1 CP/NET Interprocessor Message Format

The simple message format that CP/NET uses for interprocessor communication includes packaging overhead and the message itself. The packaging overhead is a header consisting of a message format code, a CP/NET destination address, a CP/NET source address, a CP/M function code, and a message size. The actual CP/NET message follows the header.

3.1.1 Message Format Code

The message format code is a single byte that specifies the format of the message itself. Digital Research reserves message formats 0-127 for general interprocessor message format codes and future use. The general interprocessor format codes follow the message format shown below, but differ in length of the individual fields. (See Appendix B.)

The odd-numbered format codes are for response messages sent back from servers to requesters. Thus, a CP/M disk read function sent from a requester to a server has a message format code of 0, and the return code sent back from the server to the requester has a message format code of 1.

Implement the general interprocessor message formats 0 and 1 as shown in Appendix A, because these formats promote standardization among microcomputers from different vendors.

3.1.2 Message Destination Processor ID

The message destination processor ID field is one byte long. Destination IDs

can be in the range 0-0FE hex. An ID of 0FF is illegal. Many CP/NET utilities use a server destination of 0 as a default. For this reason, assign the most commonly used network server a node ID of 0.

3.1.3 Message Source Processor ID

The message source processor ID field is usually one byte long. The node sending the message always fills this field with its own ID. Valid source IDs range from 0 to 0FE hex. An ID of 0FF is illegal.

3.1.4 CP/M Function Code

The CP/M function code field is one byte long. The size of the message data field depends on the CP/M function. Each CP/M function has a specific number of bytes to be sent to the server, and a specific number of bytes to be returned to the requester. Appendix C provides the logical message specification for each of the CP/M functions. Some of the CP/M function codes have no equivalent network function.

3.1.5 Size

The size field is one byte long. The size value has a bias of 1. Thus, a size of 0 specifies an actual size of 1, while a size of 255 specifies an actual size of 256. With a 1-byte size field, the minimum data field is 1 byte, and the maximum is 256.

3.1.6 CP/NET Message

The CP/NET message consists of binary data and is from 0 to 256 bytes long. The meaning of the message depends on the format, function, and size specified by the header.

3.1.7 Additional Packaging Overhead

Some networks might have to modify the standard CP/NET message to transmit it over the physical network medium, route it to the proper destination, and ensure its integrity.

For example, the message format shown in Figure 3-1 contains no cyclic redundancy code (CRC) or any other error checking as a part of the packaging overhead. The user-written SNIOS can add the error checking when it places the message onto the network, and then test the message when the SNIOS receives a message from the network. This function is intentionally left to the user, avoiding redundant error checking where standard interface protocols, both in

software and hardware, might already provide error checking.

The NDOS always constructs messages using format 0. Likewise, the server processes always expect to receive messages in format 0. The server sends its response in format 1, which the NDOS requires to interpret the response. If the SNIOS and NETWRKIF must communicate using a different format, they must convert all received messages back into the standard formats 0 and 1.

+----+---+ | FMT | DID | SID | FNC | SIZ | MSG ... | +----+ | | | | | | | | | | | | | | | | | +-- Message of length SIZ+1 bytes | | | +-- Size of message = message length - 1 | | +-- CP/NET Function Code | +-- Message Source ID | +-- Message Destination ID +-- Format Code

Figure 3-1. Message Format

3.2 Running Applications Transparently under CP/NET

Applications that use local devices under CP/NET use the CP/M 2.2 BDOS file system. Applications that use networked devices use the MP/M II file system. These operating systems are largely compatible with each other, so applications written to run under CP/M should run across the network with no changes.

But there are some differences between the two file systems:

- The CP/NET NDOS supports MP/M II functions not supported under CP/M 2.2. Because these function calls are meaningless to CP/M, they can only be made to devices that are mapped across the network.
- The two operating systems handle errors differently. The NDOS reconciles these differences, for CP/M application programs. A special function call takes advantage of MP/M II's extended error-handling capability for applications referencing networked devices under CP/NET.
- MP/M II file security checking can cause certain CP/M applications to abort, because these applications modify fields in the File Control Block that make the FCB invalid to MP/M II. Special compatibility modes have been added to CP/NET, to allow these applications to run without modification.
- Temporary filenames, like \$\$\$.SUB or FILENAME.\$\$\$, are modified under CP/NET. If more than one requester requires a temporary file with the same name, this modification prevents collisions between filenames that otherwise cause an application to abort. The modification is transparent to the application, but it can be confusing when trying to

analyze aborted programs.

- A CP/NET requester presents a different version number to an application program when it calls Function 12 (Return Version Number). Under CP/M 2.2, this function returns a 002x value. Under CP/NET, it returns a 022x value. Application programs checking this version number might not function properly. They must be modified. Modifications to CP/NET, to present the same version number as CP/M, are now included as application notes in all releases of the CP/NET product.
- You can protect files on networked drives from unauthorized access by requiring a requester to specify a predefined password. You can also assign default passwords to all servers logged on to a particular requester. Certain files that exist only on user zero can be opened by any other user number if they are opened in the proper mode.
- The operating system must handle the printer differently under CP/NET than from under CP/M, because printer output is buffered into 128-byte packets. The operating system must have some way of deciding when an application program has finished using the printer. Also, several requesters might be competing for the same printer.
- The allocation vector for a networked drive is returned into the NDOS's default message buffer on a call to function 27 (Get Allocation Vector Address), and register pair HL is set to the address of the message buffer. Because of this, the allocation vector must be used or moved before the next network message is sent, or the vector is destroyed.

Differences between the CP/M 2.2 BDOS and MP/M II file systems are more fully described in the following sections.

3.2.1 MP/M II vs. CP/M File Systems

MP/M II is a real-time, multitasking operating system. To function properly, MP/M II requires a file system capable of sharing files among multiple processes and resolving access conflicts among those processes. In contrast, CP/M is a single-task operating system, so no such conflicts can arise.

One of MP/M II's key methods for maintaining file system integrity is the File Control Block checksum. The FCB checksum takes into account the process controlling the FCB, the physical blocks allocated to the file, whether the file is open in a mode that allows other processes to share it, and other factors.

When file-related functions are submitted to MP/M II, the checksum is examined. If the checksum is found to be invalid, MP/M II returns an error to the calling process.

MP/M II also returns an error if

- a process attempts to open a file in a mode incompatible with the mode of a file already opened by another process
- a valid password is not supplied for the file
- a user tries to write to a file opened for Read-Only access
- a process exceeds certain predefined parameters for the operating system

Because a single process handles all CP/NET activity on a server, all of these limitations apply to a CP/NET requester performing file operations on a remote device. These limitations, however, do not apply to a requester accessing a local device. The systems implementer should take these factors into account when designing servers for a CP/NET system.

3.2.2 Error Handling Under CP/NET

Most CP/NET function calls result in specific values returned in the CPU registers. These values can be pointers to data objects, bit vectors specifying drive status, directory codes, or success or error conditions. Directory, success, and error codes are returned in register A. Pointers and bit vectors are returned in register HL. Register A is always equal to register L, and register B is equal to register H for all CP/NET return codes.

Error Handling for Local Devices

When a CP/NET requester performs a local file operation, the function parameters pass untouched to the CP/M BDOS. The BDOS checks those parameters for validity, and calls the BIOS to perform physical I/O functions. Two types of errors can arise from these local operations.

The BDOS can detect certain logical problems with a file function and return a logical error. If it does, an error code is returned in register A, but the calling application program is allowed to continue.

A physical error is returned when the BIOS is unable to successfully perform a physical operation requested by the BDOS. When the BDOS is presented with a physical error, it prints the following message on the console:

BDOS Err on <x>: <error message>

where $\langle x \rangle$ is the drive referenced when the error occurred, and $\langle error message \rangle$ is one of the four following errors:

Bad Sector Select File R/O R/O

After the physical error message is printed, the BDOS waits for the user to respond to the error with one of two actions. Pressing Ctrl-C causes the BDOS

to perform a warm boot, aborting the program. Pressing any other key causes the BDOS to ignore the physical error, and continue as if it had not occurred.

For a more complete discussion of CP/M 2.x errors, see the "CP/M Operating System Manual", published by Digital Research.

Error Handling for Network Devices

When an application references a networked device, the MP/M II server performs the actual file operation and returns a message defining whether the operation was successful or not. Unlike the local case, the requester has only indirect knowledge of any error status. Direct physical error indications are impossible to obtain, because a requester has no contact with the MP/M II XIOS. Instead, if an error occurs, MP/M II returns a message indicating that an error occurred, and the type of error it was.

When referencing a remote device, the two types of errors possible under CP/NET are logical errors and extended errors.

Like logical errors under local CP/M, logical network errors define nonfatal error conditions, such as reading past the end of a file or attempting to open a nonexistent file. Some serious error conditions are returned as logical errors for functions that expect to process their own errors. These functions are

- 20 Read Sequential
- 21 Write Sequential
- 33 Read Random
- 34 Write Random
- 40 Write Random with Zero Fill
- 42 Lock Record
- 43 Unlock Record

Errors for these functions are returned in the return code field of a CP/NET message. The NDOS formats this field into register A, so the condition code upon return to the application program looks exactly as it does under local CP/M. Some of the following codes can be returned in register A for each of the preceding functions:

- 00 Function Successful
- 01 Reading Unwritten Data or No Directory Space Available
- 02 No Available Data Block (Disk Full)
- 03 Cannot Close Current Extent
- 04 Seek to Unwritten Extent
- 05 No Directory Space Available
- 06 Random Record Greater than 3FFFF
- 08 Record Locked by Another Process
- 09 Invalid FCB
- 0A FCB Checksum Error
- 0B File Verify Error
- 0C Record Lock Limit Exceeded
- 0D Invalid File ID

0E No Room in System Lock List

Extended errors indicate that a potentially fatal condition has occurred during the execution of an MP/M II function. The condition can be a physical error, similar to the physical errors that can occur under CP/M. Or the condition can be an error produced by the file system, indicating that the specified operation violates the integrity of the file system.

When an extended error occurs under MP/M II, the default mode of operation displays the extended error message on the console attached to the calling process, and the process aborts. MP/M II provides, however, for returning extended errors to the calling process without aborting that process. In this return error mode, register A is set to FF hexadecimal, and register H contains the extended error code.

The CP/NET server uses return error mode because if the server aborted, it could not communicate further with the requester it was servicing until MP/M II was restarted. When the server detects an extended error, it constructs a special CP/NET message. The message is two bytes long, with the first byte (the return code) set to FF. The second byte is set to the extended error code.

When the requester detects one of these special messages, it checks the error mode set by the application program with Function 45 (Set BDOS Error Mode).

There are three possible modes:

1) Default Mode

2) Return Error Mode

3) Return and Display Error Mode

If the NDOS is in default mode, it prints the following error message:

NDOS Err <xx>, Func <yy>

where <xx> is the extended error code in hexadecimal, and <yy> is the function being performed when the error occurred, also in hexadecimal. The NDOS then performs a warm boot, aborting the program.

In return error mode, the NDOS does not display a message or abort the program. Instead, the NDOS sets register A to FF and register H to the extended error code; then it returns to the application program.

If an extended error is detected in return and display error mode, the NDOS displays the error message on the console. But the NDOS does not abort the program, setting the registers in the same manner as return error mode.

Function 45 (Set BDOS Error Mode) does not exist under CP/M. Because of this, most CP/M applications automatically run in default mode. If an extended error occurs, these applications abort.

The following extended error codes can be returned to the NDOS:

01 Bad Sector -- Permanent Disk Error

- 02 Read-Only Disk
- 03 Read-Only File
- 04 Drive Select Error
- 05 File Open by Another Process in Locked Mode
- 06 Close Checksum Error
- 07 Password Error
- 08 File Already Exists
- 09 Illegal ? in an FCB
- 0A Open File Limit Exceeded
- 0B No Room in System Lock List
- OC Requester not Logged on to Server or Function Not Implemented on Server
- FF Unspecified Physical Error

Extended error 0C hex is returned, not by MP/M II, but by the server itself.

This error indicates that the server is unable to process an otherwise valid CP/NET message, either because the requester is not logged in to that server or because the function code contained in the message is invalid.

Extended error FF can result only from two special functions, Get Allocation Vector Address and Get Disk Parameter Address. Because these functions return a pointer in register pair HL, it is not possible to detect a regular extended error. Instead, these functions return an FFFF value in HL if a physical error occurs.

Not all CP/NET functions are capable of returning extended errors. However, extended error 0C can be returned on any function, even on MP/M II functions that normally have no extended error associated with them. If an extended error is returned for such a function, the NDOS ignores it. The following functions can result in the performance of a network access but cannot produce an extended error:

- 1 Console Input
- 2 Console Output
- 5 List Output
- 9 Print String
- 10 Read Console Buffer
- 24 Return Login Vector
- 28 Write Protect Disk
- 29 Get Read-Only Vector
- 37 Reset Drive
- 39 Free Drive
- 64 Login
- 66 Send Message on Network
- 67 Receive Message on Network
- 70 Set Compatibility Attributes
- 106 Set Default Password

Any other function can cause a program to abort if an MP/M II extended error occurs, if an unsupported function is passed to the server, or if the server is not logged in.

3.2.3 Temporary Filename Translation

Many common application programs use temporary files. The names of these files often have the form FILENAME.\$\$\$ or \$\$\$.SUB. When multiple copies of these applications run on different requesters logged on to the same server, a number of these temporary files can have the same name, causing extended MP/M II errors that abort the application program.

To solve this problem, each requester's NDOS recognizes temporary filenames destined for networked drives and implicitly renames them, so the filename an application presents to the operating system is not the one the NDOS presents to the MP/M II file system.

Each occurrence of the string \$ in the first three bytes of a filename, as well as any filetype of \$, forms a CP/NET message with a filename or filetype of \$, where <xx> is the ASCII representation of the requester ID byte.

Because all requesters have a unique ID, this modification guarantees the uniqueness of temporary filenames.

This modification is transparent to the calling application program. When the NDOS modifies a filename in a CP/NET message, it converts the filename back to its original form before updating the application's FCB. The only possible change to the FCB is that interface attributes set in the high-order bits of the filename strings modified are reset. This change poses no problems if temporary files are truly temporary. Treat temporary files like Read/Write files with the DIR attribute; delete them before the application program terminates.

Functions 17 (Search For First Directory Entry) and 18 (Search For Next Directory Entry) do not perform temporary filename translation when referencing a networked drive. If a user creates file with a temporary filename, and then attempts to locate it within his directory, this can be confusing.

For example, suppose that a user working on requester 5A enters the command:

REN \$\$\$.\$\$\$=BLAH.TMP

Then the user enters a DIR command. The file previously renamed appears as

\$5A.\$5A

in the directory.

If a temporary file is referenced on a drive that is local to the CP/NET system, the filename passes unmodified to the BDOS. No conversion is necessary, because there is no possibility of conflict.

3.2.4 Opening System Files on User 0

```
file:///Cl/...1%20Roche%20DRI%20documents%20conversion/CP%20NET-80%20Version%201.2%20Reference%20Manual/CPNETRM.TXT[2/6/2012 4:07:51 PM]
```

Under MP/M II, a requester running in a user number other than 0 can access certain networked files in user 0. If an MP/M II file has its t2' interface attribute set, the file is a system file. If a networked file is opened in locked or Read-Only mode from a nonzero user number, the following actions are taken:

- If the file exists in the same user number, MP/M II opens the file.
- If the file does not exist in the same user number, MP/M II searches user 0.
- If the file exists on user 0 and it is a system file, MP/M II opens it just as though the file existed under the other user number.
- If the file exists on user zero as a system file, but it is also a Read-Only file (interface attribute t1'), MP/M II automatically opens the file in Read-Only mode.

The user of a CP/NET requester can make convenient use of these options. Because the CCP.SPR always opens files in Read-Only mode, all COM files can be placed in user 0 and marked as system files, making them accessible to all user numbers. Because this facility does not exist under CP/M 2.x, all COM files on local devices must exist within the user numbers from which they are to be executed.

3.2.5 Compatibility Attributes

Because of MP/M II's added file security, applications written under CP/M might not work properly under MP/M II. Two basic factors contribute to the incompatibility. The first is the FCB checksum computation that MP/M II performs on open FCBs. Certain CP/M applications modify their FCBs in a way that makes their checksums invalid. Second, MP/M II defaults to opening all files in locked mode, allowing only one process to have a file open at a time. Although files can be opened in an unlocked or shared mode, an application must explicitly specify that the file is to be opened unlocked. CP/M applications have no knowledge of this procedure.

To enable CP/M applications to run unmodified under MP/M II, a system of compatibility attributes has been added. This feature is supported under CP/NET. Using compatibility attributes, a user can selectively disable parts of the MP/M II file security mechanism.

When a requester's CCP opens a COM file for loading and subsequent execution, it examines the high-order bits of the first, second, third, and fourth bytes of the filename. These bits are referred to as interface attributes Fl', F2', F3', and F4'. The CCP constructs a byte based on the interface attribute set. It then uses this byte as a parameter for Function 70 (Set Compatibility Attributes).

Function 70 causes the NDOS to send a logical compatibility attribute message to every server of which it has knowledge. Table 3-1 defines the interface attributes.

Table 3-1. Interface Attributes

Format: Attribute Meaning

F1'

Causes MP/M II to behave as though all files were opened in Read-Only mode, although write accesses are still permitted. F1' is functionally equivalent to opening a file in unlocked mode, except that record locking is not possible. Using this attribute, two programs can update the same record simultaneously, leaving the file in an indeterminate state.

F2'

Causes all file close operations to convert to partial close operations. A partial close uses the current FCB to update the directory, but permits the application program to continue using the file without reopening it.

F3'

Disables FCB checksum verification during close operations. Files are closed successfully, as long as MP/M II can tell the file was initially opened and still has an item on the system lock list. If the file was not opened, an error is still returned.

F4'

Disables all FCB checksum verification. F4' implicitly sets attributes F2' and F3' as well. Use this attribute with extreme caution, because it is possible to perform valid file operations using corrupt FCBs. Doing this could result in serious damage to the files on the disk drive being referenced.

The CCP uses the interface attributes to construct a one-byte parameter for the set compatibility attributes call by setting the following bits:

F1' bit 7 F2' bit 6 F3' bit 5 F4' bits 4, 5, and 6 All other bits are set to zero.

The set compatibility attributes logical message causes the server to change its process descriptor if the user has enabled compatibility attributes during the MP/M II GENSYS operation. Otherwise, the message is ignored.

When an application program terminates, the CCP resets all compatibility attributes. This prevents a subsequent program from operating in an environment with insufficient file security.

It is advisable to enable the minimum number of compatibility attributes necessary to allow a program to run properly. Use the following guidelines for setting the attributes:

- If the program aborts with NDOS Error 05, "FILE OPEN BY ANOTHER PROCESS", set Fl'.
- If the program aborts with NDOS Error 06, "CLOSE CHECKSUM ERROR", set

F3'. if an error code is returned in register A on I/O operations under CP/NET, but no error is returned under CP/M, try setting F2'. If the problem persists, try setting both F2' and F3'. If the problem still persists, set user attribute F4'. Make sure there is no possibility of corrupting the file system before using attribute F4'.

You can use the SET utility under MP/M II to enter compatibility interface attributes into a COM file's directory entry from an MP/M II console. For example,

SET <filespec> [F1=ON,F3=ON]

If you cannot use MP/M II, you can set the interface attributes under program control using Function 30 (Set File Attributes).

3.2.6 Password Protection Under CP/NET

The MP/M II file system limits file access by unprivileged users through password protection for individual files. There are three levels of password protection for files:

- 1) All access is denied without the password.
- 2) The file can be read without the password, but it cannot be written to.
- 3) The file can be read and written to without the password, but not deleted.

Use the SET utility to assign passwords under MP/M II. The procedure for assigning passwords is described in the "MP/M II Operating System User's Guide". CP/NET does not support the assignment of passwords across the network.

CP/NET does, however, allow an application program to send a password across the network when a file is opened. This allows a user on a CP/NET requester the most basic form of password support: operation on networked files that have been previously password protected.

If a read-protected file is opened and no password is specified, an extended error is returned across the network, and the calling application aborts. The same error is also returned when an application attempts to write to a writeprotected file for which no password was provided when the file was opened. Finally, any attempt to delete, rename, or change the attributes of a deleteprotected file without providing a password results in an extended error.

CP/NET also supports Function 106 (Set Default Password). Function 106 provides a password against which all protected files are checked if no password is provided or if the password is incorrect. This function can relieve an application of the responsibility to parse passwords constantly into the first eight bytes of the current DMA buffer.

CCP.SPR does not support MP/M II's facility of supplying passwords when the user enters a command line. Because of this, do not password-protect COM files

unless a default password utility is provided to the user.

Because CP/M 2.x does not support any kind of file protection, passwords are ignored when referencing files on drives local to a CP/NET requester.

3.2.7 Networked List and Console Devices Under CP/NET

In addition to the 16 disk devices, CP/NET allows the user to map the list and console devices across the network. A number of requesters can share a printer, or a console can be logically attached to a completely independent system running CP/NET or CP/NOS. Such a system needs only a network interface to support full CP/M capability.

Unlike most requester BDOS calls, whether a console or list device is local or networked is determined, not at the BDOS intercept level, but at the BIOS-intercept level. This feature enables application programs to make direct BIOS calls for console and printer I/O, and to continue to run transparently across the network.

List device I/O is handled in the following manner: when the BIOS call is made to LISTOUT, the NDOS traps it. The NDOS examines the configuration table to determine whether the list device is local to the CP/NET system or networked. If the list device is local, the call is passed through to the BIOS unchanged.

If the list device is networked, however, the NDOS stores the character to be listed in a special buffer, located directly below the requester configuration table. When 128 characters are stored, the NDOS sends a List Output logical message to the server upon which the list device is mapped. This buffering process improves system performance, because one-character messages that would congest the network communication interfaces need not be sent between each requester and server.

Under CP/M, there is no need to tell the list device when a listing is complete, because only one application can list at a time, and that application has complete control of the device during that time. Under CP/NET, however, more than one requester can share a printer. So, a mechanism must be included to notify the server that a listing is done, and that the list device is available to other requesters.

A special provision must be included so a partially filled list buffer can be flushed to the server when a listing is finished, and so the server can release the list device. Endlist, a special character equal to FF hex, is intercepted by the NDOS as the signal to terminate a listing.

The endlist character can come from one of four sources:

- 1) The CCP.SPR sends an endlist character every time it is entered and detects that a list is in progress. This causes an endlist every time a program terminates.
- 2) An application can issue an endlist to terminate its own listing.

- 3) Every time a Ctrl-P is toggled to off, the NDOS console input routine detects this, and issues its own endlist.
- 4) You can use the ENDLIST utility to terminate the listing.

The server can handle listing in two different modes. If the module SPOOL.RSP is present in MP/M II, the server takes all list output messages, and writes them to a dedicated spooler file. When the server detects an endlist, it inserts a Ctrl-Z end-of-file character into the message, closes the spooler file, and directs the SPOOL process to begin printing the file on the appropriate list device.

If a SPOOL process is not resident under MP/M II, the server, upon receiving an initial list out message, performs an explicit attach list function on the specified list device. This prevents other requesters from using the list device until the requester being serviced is finished listing. All other requesters are suspended, or receive network errors if they try to use the same list device.

When the server finally receives the endlist character, it issues a detach list function, freeing the list device for another process.

Both server modes have potential disadvantages. A printer that uses a Ctrl-Z as an escape sequence for special printing functions cannot be used with the SPOOL.RSP. Using Ctrl-Z causes the spooler to terminate a print job prematurely, assuming that an end-of-file was encountered. On the other hand, explicit attaching and detaching of list devices can cause a network error if a requester attempts to attach a list device that is already in use, has its server become suspended, and eventually times out.

Console I/O cannot be buffered and sent across the network in large blocks, because it is not possible to determine when input critical to the operation of an application is needed. The NDOS must therefore send such I/O across the network one character at a time.

As with list output, the NDOS traps console-related BIOS calls. The NDOS determines whether the console is local or networked. If the console is local, no action is taken, and the local BIOS is entered. If the console is networked, a raw or unfiltered console I/O message is sent to the server. The server performs the I/O function, and sends a response back to the requester.

If a networked console is used with CP/NET, the system behaves unreliably when the console is also being used as a regular MP/M II terminal, because MP/M II allocates a Terminal Message Process (TMP) to each known user console. Both a server process and a TMP can be waiting for input from the same console. Because of this, typed characters can be echoed normally, doubly echoed, or not echoed at all. The actual processes might or might not receive every character.

A networked console user should also be aware that, because each character must be sent over the network, networked consoles drastically degrade the performance of the entire CP/NET system. Networked consoles are not recommended unless there is no way to support a local console, as in certain industrial process-control applications.

The Ctrl-P facility of CP/M is partially handled by the NDOS. The NDOS must know when Ctrl-P is active, because it must send an endlist character when the facility terminates. If the CCP detects that Ctrl-P is active, it will not send an endlist, even if a program terminates.

3.3 CP/NET Function Extensions to CP/M

Applications accessing networked drives use the MP/M II file system to perform file operations. Many of those operations have slightly different meanings than they do under CP/M. For example, by setting the high-order bits of an FCB filename, a file can be opened or made in locked mode, unlocked mode, or Read-Only mode. CP/NET also allows an application to place a password in the current DMA buffer for opening password-protected files. Similarly, a close operation can perform either a permanent close or a partial close.

The return codes and side-effects of MP/M II functions also differ.

Error-handling differences are discussed in Section 3.2.2. The open and make functions also differ. These functions return a two-byte value, called the file ID, in the random record field of the opened FCB. The file ID is necessary for performing record locking functions.

For a complete description of how individual CP/M functions work under MP/M II, see the "MP/M II Operating System Programmer's Guide".

This section describes CP/NET functions that have no counterpart under CP/M. These include MP/M II functions that do not exist under CP/M, as well as a set of dedicated CP/NET functions. All of these functions adhere to exactly the same calling conventions as the rest of CP/M, and all follow the same conventions regarding return codes.

FUNCTION 38: ACCESS DRIVE Prevents Drives from Being Reset

Entry Parameters: C = 26H DE = Drive Vector

Returned Values: A = Return Code H = Extended Error

The Access Drive function inserts a dummy open file item in the item lock list for each drive specified in the drive vector. The drive vector is a 16-bit vector in which each possible drive is presented. Bit 0 represents drive A:, bit 1, drive B:, continuing through 15 for drive P:.

The NDOS separates the drive vector into a number of drive vectors, one per server that the NDOS can find in the requester's configuration table. The NDOS then sends a logical message to each of these servers. If any of these messages result in an extended error, the function is aborted (???).

If a server's system lock list does not have enough room to fit all the dummy items for all the drives specified, or if the open file limit for the server process is exceeded, none of the items is inserted, and Function 38 returns an extended error.

Because the NDOS sends messages to each server in sequence, an extended error on one server does not indicate that servers accessed previously failed to insert open file items. This differs from MP/M II, where only one file system controls the entire lock list. Note that drives might have to be freed after a failure resulting from an access drive call.

If the NDOS is in return error mode, an error condition on function 38 causes register A to be set to 0FFH, and register H contains one of the following codes:

0A Open File Limit Exceeded

- 0B No Room in the System Lock List
- 0C Server Not Logged In

Because Function 38 is meaningless to local drives under CP/NET, no call to the local BDOS is made.

FUNCTION 39: FREE DRIVE Free Specified Disk Drives

Entry Parameters: C = 27H DE = Drive Vector

The Free Drive function purges servers' lock lists of all items pertaining to the drives specified. The drive vector is a 16-bit vector in which each possible drive is represented. Bit 0 represents drive A:, bit 1, drive B:, continuing through 15 for drive P:.

Because dummy drive accesses, locked records, and open files are all purged, close all important files before issuing the free drive call. Otherwise, a checksum error is returned on the next file access, and data might be lost.

The CP/NET CCP issues a free drive every time a program terminates. This prevents the server process associated with the requester from becoming clogged with useless files.

Because Free Drive is meaningless under CP/M, the operating system ignores entries in the drive vector that specify drives local to the requester. Free Drive has no error return.

FUNCTION 42: LOCK RECORD Lock Records in a File

Entry Parameters: C = 2AHDE = FCB Address

Returned Values: A = Return Code

H = Extended Error

The Lock Record function grants a requester exclusive write access to a specific record of a file opened in unlocked mode. Using this function, any number of requester processes can simultaneously update a common file.

To lock a record, a requester application must place the logical record number to be locked in the random record field of the file's FCB. The file ID number, a two-byte value that is returned in the random record field when a file is opened in unlocked mode, must be placed in the first two bytes of the current DMA buffer. When the lock function is called, a pointer to the FCB must exist in register pair DE.

The record to be locked must reside within a block currently allocated for the file. The lock fails if the record is locked by another process or requester. This prevents two processes from simultaneously updating the same record, and leaving it in an indeterminate state.

If a file was opened in locked mode, the Lock Record function always returns successfully, but no explicit action is taken because the whole file is locked in the first place.

To use the Lock Record function, follow these steps:

- Open the file in unlocked mode. Save the file ID returned in the random record field of the open FCB.
- When the application needs to update the record, lock the record, even before attempting to read it. Reading a record that is locked by another process can result in leaving the record in an indeterminate state. If an error results because the record is locked by another process, repeat this step until the record is locked successfully. Place a timeout value on retrying the lock in case another requester has locked the record, and then gone off line.
- Read the record.
- Update the record.
- Write the record back.
- Unlock the record.

The Lock Record function returns a 0 in register A if successful. Otherwise, the Lock Record function returns one of the following error codes in register A:

- 01 Reading Unwritten Data
- 03 Cannot Close Current Extent to Access Extent Specified
- 04 Seek to an Unwritten Extent
- 06 Random Record Number Greater than 3FFFF
- 08 Record Locked by Another Process
- 0A FCB Checksum Error
- 0B Unlock File Verification Error
- 0C Process Record Lock Limit Exceeded
- 0D Invalid File ID in the DMA Buffer
- 0E No Room on the System Lock List
- FF Extended Error

These extended errors can occur:

01 Permanent Error04 Select Error0C Requester Not Logged In to Server

The Lock Record function has no meaning when a drive local to the requester is referenced. The function returns with register A set to 0.

FUNCTION 43: UNLOCK RECORD Unlock Records in a File

Entry Parameters: C= 2BHDE = FCB Address

Returned Values: A = Return Code H = Extended Error

The Unlock Record function releases a previously locked record, allowing it to be locked and written to by another requester. The record to be unlocked must be placed in the random record field of the file's FCB. The file ID is a twobyte value that is returned in the random field when a file is opened in unlocked mode. The file ID must be placed in the first two bytes of the current DMA buffer. Register pair DE must contain a pointer to the FCB.

The Unlock Record function returns successfully if

- the file was opened in locked mode.
- the record specified is already unlocked.
- the record is locked by another process.

In all these cases, no action is performed.

Do not unlock a record until the requester's application program has finished updating the locked record, and has written it back out to the file. Otherwise, another process might inadvertently destroy the updated information.

The Unlock Record function returns a 0 in register A if Successful. Otherwise, the function returns one of the following error codes in register A:

- 01 Reading Unwritten Data
- 03 Cannot Close Current Extent to Access Extent Specified
- 04 Seek to an Unwritten Extent
- 06 Random Record Number Greater than 3FFFF
- 0A FCB Checksum Error
- 0B Unlock File Verification Error
- 0D Invalid File ID in the DMA Buffer
- FF Extended Error

These extended errors can occur:

01 Permanent Error

04 Select Error 0C Server Not Logged In

The Unlock Record function is meaningless when it references a requester's local drive; it returns a 0 in register A.

FUNCTION 45: SET BDOS ERROR MODE Defines CP/NET Error Handling

Entry Parameters: C = 2DHE = Error Mode

The Set BDOS Error Mode function provides the NDOS with these options:

- aborting on extended errors
- returning the extended error to the calling application for handling
- returning the error to the application, and displaying it on the console.

All requester application programs are initially loaded in a default environment that causes the NDOS to abort on extended errors, and to display the extended error code. Use Function 45 to change this default mode, according to the contents of register E.

Table 3-2. BDOS Error Modes

Reg. Explanation

- 0FFH Return Error Mode. BDOS returns extended errors coming from the network to the application program. Register A is set to 0FFH, and register H contains the extended error code. No error message is displayed on the console.
- 0FEH Return and Display Mode. BDOS returns the extended error in the same manner as in Return Error Mode, but also displays an extended error message.

Any other value: Default Mode.

Function 45 is not implemented across the network. The NDOS maintains its own internal error mode flag, and acts upon returning network messages according to that flag.

The Set BDOS Error Mode function has no effect on physical errors returned by the requester's local BIOS. These errors always display an error message, then they give the user the option of aborting the application program or continuing.

FUNCTION 64: LOGIN Initiate Session Between a Requester and a Server

Entry Parameters: C = 40H

DE = Ptr to Login Msg

Returned Values: A = Return Code

The Login function identifies a requester to a server, and initiates a session with that server. The Login function must always be successfully called before a requester can access a server's resources. Register pair DE must contain a pointer to a data structure that contains the following two fields:

00-00 Server ID byte 01-08 Password

The NDOS uses this structure to construct a logical LOGIN message to the server specified. Only the LOGIN message can be passed to the SERVER module without generating an extended error 0C, requester not logged in.

The server checks to see whether the password matches the password defined in the server configuration table. The server then scans the configuration table to find out whether logging in another requester exceeds the number of servers present in the system. If a server exists for the requester, and the password matches, the NDOS returns a 0 in register A. Otherwise, an error is flagged by returning an 0FFH in register A. The NDOS also returns a 0 in register A if the requester is already logged in.

FUNCTION 65: LOGOFF Terminate a Session Between a Requester and a Server

Entry Parameters: C = 41HE = Server ID

Returned Values: A = Return CodeH = Extended Error

The Logoff function completes a session, and breaks the logical binding between the server specified in register E and the calling requester. Once a Logoff has been performed, the server process is free to begin a session with another requester, if the the server's NETWRKIF can support the dynamic binding of requester nodes to server processes.

Function 65 returns a 0 if successful. It returns an extended error 0C, requester not logged on to server, if unsuccessful.

FUNCTION 66: SEND MESSAGE ON NETWORK Send a Message to Another Network Node

Entry Parameters: C = 42HDE = Pointer to Message

Returned Values: A = Return Code

The Send Message on Network function sends messages across the network that might have no defined function on the MP/M II server. This allows applications

to be written under CP/NET that use non CP/NET messages. Point-to-point communications packages, special electronic mail systems, implementation of requester synchronization functions, and special print spooling systems are examples of such applications.

To use Function 66, the address of the message to be sent must be passed in register pair DE. The message pointed to might have the standard CP/NET structure of FMT, DID, SID, FNC, SIZ, and MSG, or it might take some nonstandard format. In the latter case, the SNIOS must be able to recognize the nonstandard message, and send it properly.

Unlike the usual CP/NET session protocol, the Send Message on Network function does not automatically attempt to receive a response to the message that was sent. So an application can send throw-away messages that do not require a logical acknowledgment or response. You can also define message types that can be broadcast to every node in the network.

If an application requires a logical response to a message sent using Function 66, make an explicit call to Function 67 (Receive Message on Network).

As a rule, set the FMT field of the message header of any nonstandard message sent through a CP/NET system to a value other than those reserved for use by Digital Research. Future releases can then run applications using Function 66, with minimal modification.

Function 66 returns an FF in registers A, H, and L if a network error occurred and the message was not sent.

FUNCTION 67: RECEIVE MESSAGE ON NETWORK Receive Message from Another Network Node

Entry Parameters: C = 43HDE = Receive Buffer Address

Returned Values: A = Return Code

The Receive Message on Network function is the counterpart of Function 66, Send Message on Network. Invoke it immediately after performing a send message if a logical response is expected. Function 67 can also be used to wait for an unsolicited message from another node.

To use Function 67, an application must pass a pointer to a buffer area into which the message can be received in register DE. Upon return, registers A, H, and L are set to 0FFH if the function failed to receive the message properly. Like Function 66, Function 67 can handle nonstandard messages across a CP/NET network, provided that the requester's SNIOS is equipped to handle them. For a more detailed discussion on how to use Functions 66 and 67, see section 3.4.

FUNCTION 68: GET NETWORK STATUS Get Network Status Byte from the Configuration Table

Entry Parameters: C = 44H

Returned Values: A = Network Status Byte

The Get Network Status function returns the configuration table's network status byte in register A. It also resets any error conditions in the status byte.

For a description of the fields contained in the network status byte, see Section 4.2.1.

FUNCTION 69: GET CONFIGURATION TABLE ADDRESS Get Configuration Table Address

Entry Parameters: C = 45H

Returned Values: HL = Table Address

The Get Configuration Table Address function returns the address of the requester configuration table maintained in the SNIOS. Using this function, an application can dynamically modify the mappings of devices across the network.

The utilities NETWORK and LOCAL use Function 69 to accomplish this kind of modification.

For a description of the fields in the configuration table, see Section 4.2.2.

FUNCTION 70: SET COMPATIBILITY ATTRIBUTES Configure Server File Systems for an Application

Entry Parameters: C = 46HE = Compatibility Attribute Byte

The Set Compatibility Attributes function selectively disables the file security mechanism on all MP/M II servers to which the calling requester has networked drives. This allows certain applications that run under CP/M, but not under the MP/M II file system, to run under CP/NET, and access networked devices.

The CCP.SPR checks the compatibility interface attributes of all COM files that it loads for execution, and performs a Set Compatibility Attributes function based on the pattern it finds. This is the only time to use this function.

Applications should not modify their compatibility mode in midexecution. Doing so might produce unpredictable results.

The compatibility attribute byte is set according to the interface attributes found in the COM file's name. The following attributes cause the corresponding bits to be set in register E prior to the call to Function 70:

F1' bit 7 F2' bit 6 F3' bit 5 F4' bits 4, 5, and 6

For a complete description of how to use compatibility attributes, see Section 3.2.5.

Function 70 has no error return. Extended error messages from servers to which the requester is not logged in are ignored.

FUNCTION 71: GET SERVER CONFIGURATION TABLE ADDRESS Get Information About a Server

Entry Parameters: C = 47HE = Server ID

Returned Values: HL = Server Configuration Table Address

The Get Server Configuration Table Address function returns a pointer to parts of the specified server's configuration table. The ID of the server to be examined is passed in register E prior to calling Function 71, and a pointer to the received information is returned in register pair HL.

The data structure addressed by HL has the following format:

00-00 Server Temporary File Drive

- 01-01 Server Network Status Byte
- 02-02 Server ID
- 03-03 Maximum Number of Requesters Permitted on the Server
- 04-04 Number of Requesters Currently Logged In Bit Vector of Requesters Logged In in the Requester

05-06 ID Table

07-16 Requester ID Table

The information is identical with that contained in the server conguration table, except that the login password has been (???), and a byte containing the server's temporary file drive has been added to the front of the table.

Function 71 can determine whether other requesters are logged into a server. The temporary file drive can be used when an application wants to leave a file on a server but does not know the capacity or type of the server's disk drives. The MAIL utility makes frequent use of Function 71.

The server configuration table is returned across the network in a Special buffer in the NDOS. If more than one call is to be made to Function 71, and the calls reference a different server each time, the buffer is overwritten by each successive call. If an application must examine more than one server configuration table at once the table must be copied down into a buffer defined by the application.

If Function 71 passes a server ID to which the calling user is not logged on, an extended error 0C, requester not logged in, is returned.

FUNCTION 106: SET DEFAULT PASSWORD Establish a Default Password for File Access

Entry Parameters: C = 46HDE = Password Address

The Set Default Password function allows an application to specify a password that is checked if an incorrect password is presented during an Open File function. If a file is password protected, MP/M II first checks for a password in the current DMA buffer. If no match is found, MP/M II then checks the default password set by Function 106. If MP/M II finds a match, it allows the requested operation to succeed. Otherwise, MP/M II returns an error.

When Function 106 is performed on a requester, the requester's NDOS attempts to set the default password on every server to which a drive is networked by that requester. Since Function 106 has no error return, extended requester not logged in errors are ignored.

Each server process uses an MP/M II default password slot, starting with console 0, and using as many slots as there are requesters supported.

The default password set by Function 106 persists until another default password is set.

3.4 CP/NET Applications

In addition to running standard CP/M applications packages on a CP/NET requester, you can implement special applications using the network functions available in CP/NET. The applications can handle message processing in a distributed environment. Examples include high-performance print spoolers, node-to-node transfer utilities, and network management tools.

Using Functions 66 (Send Message on Network) and 67 (Receive Message on Network), you can define an entire set of specialized messages to provide network functions. These messages must be recognized and processed by the SNIOS and NETWRKIF but, once implemented, they can be used by application programs as though they were functions themselves.

Suppose a specific network application requires a print spooler that provides special formatting features. You can write an application program that creates messages with a special code in the format byte of the CP/NET message header. When the application wants to spool data to the special spooler on the server, it uses Function 66 to send the data.

On the server side, the NETWRKIF must be capable of recognizing the specially defined format code. When the NETWRKIF sees this format, instead of routing the message to a server process, it writes the message to a special queue. The actual spooler can reside as a process under MP/M II. The spooler reads the queue, and spools the data.

Notice that Functions 66 and 67 are independent of the logical protocol of CP/NET, where every message sent by a requester implies that the requester

waits to receive the message. This independence permits an application using a feature like a special spooler to return immediately after sending its message. The application need not wait for a logical acknowledgment.

Another convenient application is a file copy program that works without server intervention. Under the regular CP/NET protocol, the only way to copy a file on a local requester drive to the local drive of another requester is first to copy the file to a common networked drive, then copy it back to the other requester's drive. This is inefficient.

Instead, suppose that the users of the two requesters agree to cooperate in the copying of the file. They can do this by sending each other mail. One user invokes an application program called RECEIVE, while the other brings up an application program called SEND.

The SEND program merely reads the file into memory, then sequentially sends it to the other requester, using Function 66. The SEND program might or might not request verification from the receiving requester via Function 67. In the meantime, the RECEIVE program reads the messages from the network. No server intervention is required; only the two SNIOS modules of the requester are involved in the transmission. Even though the two requesters are only capable of sequential processing, they are still able to send and receive messages synchronously. This application does not require modifications to the SNIOS and NETWRKIF; the standard CP/NET protocol is sufficient, because such applications never reference the server.

Finally, a complex network might require automatic system monitoring and maintenance utilities. Using special message formats, you can design a set of messages that check which drives are usable on various servers, compute the best path from a requester to a given server and back, and notify the system's users of servers and requesters going on or off line. These messages can be handled automatically by the SNIOS or NETWRKIF software, or they can be implemented under the control of special application programs.

Section 4: CP/NET System Guide

The requester's NDOS and the server's SERVER module are key components in the logical structure of the CP/NET operating system. These modules, however, do not deal with the physical problems of moving a logical message from the source requester to the destination server, and back again. Implementing this task varies depending on network topology, hardware, and the characteristics of the host computer systems. These modules are therefore not portable from machine to machine. You must customize them.

This section provides the network systems implementer with the information necessary to design and implement a CP/NET system efficiently. Section 4 is divided into four parts. Section 4.1 discusses general network design issues that affect CP/NET implementation. Section 4.2 details how to implement the requester network software, the SNIOS.SPR. Section 4.3 discusses the design and implementation of the server communications software, the NETWRKIF.RSP. Section 4.4 describes the design of a CP/NET server that runs under an operating system other than MP/M II. Appendixes to this manual contain several

example network communications packages.

4.1 General Network Considerations

This section explains some of the basic functions of network communications software and describes, in the most general way, how communications software fits into the overall architecture. If any of the material in this section is unfamiliar to you, consult one of the many excellent textbooks available on modern networking technology. Theoretical knowledge can help you enormously in the design and implementation of your network system.

4.1.1 Functions of the CP/NET Physical Modules

The SNIOS and NETWRKIF modules function on four levels. At the lowest level, they must handle the physical transfer of a bit stream from one network node to another. This physical layer must take into account the I/O port numbers being used for communication, the physical characteristics of the network medium, network contention schemes, and other factors.

The next layer of functions must address the problem of getting complete messages from one node to another with no errors or redundant data. This datalink layer takes the bit stream from the physical layer, and processes it according to its own protocol.

If any routing from node to node is required, you must include, a networklevel protocol. The network layer can be as simple as identifying when a message is destined for a particular node, or it can perform complex storeand-forward operations, compute the best route from node to node, and maintain open circuits for nodes that want to communicate.

The last layer the SNIOS and NETWRKIF must address provides an interface between the low-level communications software and the logical level operating system software. In the SNIOS, this layer must transport messages to and from the NDOS. In the NETWRKIF, the transport layer reads and writes message from and to the appropriate server queues.

The layered architecture presented here can be indistinct in implementations, with single subroutines sometimes handling all four layers at once. Figure 4-1 shows the relationship of the various layers to the network interface. Notice that the physical, data link, and network layers might have to participate in the interface to recover information to perform their functions.

Figure 4-1. Layered Model of a CP/NET Network Node

Notice also the interfaces between the various levels. As a message migrates through the layers, the data in the message can change. The interface between the physical layer and the data-link layer yields bit or character data; the message itself is incomplete. The interface between the data-link and network layers produces messages, but the messages might contain routing information irrelevant to the transport layer. When a message reaches the transport layer,

it might be in a format unusable by the higher logical layers of the operating system. Only when the message is passed to those logical layers must it be complete and in the standard format of a CP/NET message.

The architecture described above corresponds to the four lowest layers of the network model described by the International Standards Organization (ISO). However, there are some slight differences. For example, the ISO definition of the transport layer concerns itself mostly with migrating messages from a centralized network controller to one of many possible hosts. In the model described above, the transport layer deals with moving messages that have already reached a host into the correct portion of the operating system. The model in Figure 4-1 is the basis for the following, more detailed discussion.

4.1.2 Interfacing a Computer to a Network

All network nodes need some method of controlling the communication functions that take place on the communications medium of the network. The simplest method is to have the node's CPU directly control all network communications protocols.

In this case, the network interface is a direct line into the host computer. When the communications software is called upon to send a message, the CPU must initiate the message, possibly waiting for an appropriate handshake response from the destination node. The CPU must then transmit the message, receive and process any acknowledgments, and determine whether the message should be retransmitted. If the node is receiving a message, it must, under program control, detect when the sender is trying to initiate a message, perform any handshake with the sender, receive the message, verify its correctness, and provide acknowledgment. All these tasks must be performed using programmed I/O operations or possibly some form of DMA for parts of the transmission or reception.

These tasks can take up a significant amount of the CPU's processing power. For an SNIOS, this is not a problem, because the NDOS is idle in the time interval after a message is sent and before the response is received. For a NETWRKIF, however, the multitasking nature of the server can result in serious performance degradation.

Another drawback to this method is that it places the burden of engineering communications software on the host systems implementer. This software can be extremely costly to develop for a high performance network.

The principal advantage of this method is its simplicity. If two computers have spare RS-232 ports, you can network them together with no special hardware. Many simple protocols can be readily modified to provide low-performance networks at low cost. Such a protocol is provided in Appendix E.

For higher-performance networks, it might be necessary to relieve the host CPU of the burden of physical, data-link, and network processing. In this case, an intelligent network communications controller can be useful. Many such controllers are available, and there is a variety of methods of interfacing them to a host computer.

An intelligent communications controller can perform all physical and datalink processing, as well as many network layer functions, with no host CPU intervention. The SNIOS and NETWRKIF modules must be concerned only with a nominal amount of network routing, if necessary, and with the problem of transporting the message from the controller. Because the communications controller can transfer data to the host at high speed with high reliability, the host's transport layer can be very simple, and requires little CPU time. Appendix G provides a CP/NET implementation utilizing an intelligent network controller.

Intelligent controllers require special hardware that must be added to the host computer. Interfacing this hardware is not always possible. In addition, each network node needs a controller. This can be expensive.

CP/NET also works in multiprocessor environments, both loosely coupled and tightly coupled. A loosely coupled system can send messages via a high-speed, reliable bus. This reduces the data-link problem, so simply transferring data is often sufficient to ensure the message's integrity. Tightly coupled processors can share memory, so messages can be sent between nodes by mapping memory from one processor to another.

4.1.3 Developing a Network Layer

Because CP/NET is independent of the network used, the communication modules must be modified to support various network topologies. The NETWRKIF that supports a multidrop, contention network is different from the one that supports an active hub-star configuration.

Some CP/NET configurations require extremely complex interconnections. Messages destined for one server might have to pass unmodified through several servers or requesters before they reach their final destination. The network implementer must define the software necessary to accomplish this routing. For simple networks, a network layer is barely necessary. For example, a simple work station cluster, where several requesters share a single server, requires only that the destination ID field of the message match the server's ID on a request, and that the destination match the requester's ID when the server's response is sent back to the requester.

In complex networks, each node might need to keep track of other nodes on-line in the network. Some algorithms require the exchange of routing messages to maintain an accurate picture of the topology of the overall network. To do this, the communications software must recognize these routing messages as nonstandard CP/NET messages, and not pass them to a server process or to the NDOS for processing.

Even requesters might need a network layer. For example, consider a daisychain network of several requesters with a server at one end. All the traffic for requesters farther down the chain passes through the requester adjacent to the server.

Because a CP/M requester can only operate a single task, the communications

software for receiving and forwarding a message must be written as a series of interrupt routines. Because the NDOS might call on the SNIOS to transmit or receive a message of its own, these routines must be reentrant to the extent that NDOS requests can be held up until an intermediate message has been processed.

4.1.4 Error Recovery

Network transmission media are often unreliable. Messages are occasionally garbled or lost. In addition to data-link errors, networks can route messages incorrectly, or messages can be lost due to congestion in a section of the network. Because of these problems, a node must be able to recover from transmission errors.

The most common form of error is garbled data. Bits that should have been zeros are received as ones, and ones are received as zeros. The easiest way to detect this type of error is to transmit a check along with the message. The check is computed by performing an arithmetic operation on the actual message before it is transmitted. If the check does not match the result of performing the same operation when the message is received, then a transmission error has probably occurred.

Most data-link protocols provide a mechanism for acknowledging that a message was received correctly. This mechanism requires a special message as an acknowledgment. The node that received the original message sends the special message back to the node that sent the original message. If an error occurs, the receiver either sends no acknowledgment or sends a negative acknowledgment, telling the sender to retransmit the message immediately.

The sender must be able to detect a transmission error, and take steps to retransmit the message. This can be a problem, because the sender does not know what the receiver is doing. If an error message comes back, the sender knows something has gone wrong. But if a message is lost completely, the receiver might not know it was sent, and never send an error condition.

To solve this problem, the sender can send a message, then wait a predetermined interval for acknowledgment. If no acknowledgment arrives, the interval expires, and the sender times out. A timeout condition can cause the sender to retransmit the message or take other steps to recover from the error. When the message is finally sent successfully, the sender can free up the buffer that held it, and continue with other processing.

For a CP/NET requester, two different levels of timeouts might be necessary. At the data-link level, a timeout can be set on the amount of time that elapses between sending a message and receiving the acknowledgment that it was received correctly. This timeout interval can be fairly short, since the transmission path is not likely to be very long.

The second timeout addresses the logical structure of CP/NET. Every message sent to the server implies a response to be sent back to the requester. A timeout can be set upon entering the requester's receive message routine. If the requester waits too long for a response, it can be assumed that the

communication link or the server itself has crashed. With this kind of timeout, the error recovery involves much more than just retransmitting the initial message. A logical initialization must take place, probably including a CP/M warm boot.

A timeout scheme can successfully retransmit lost or garbled messages. Another problem arises, however, when the receiver's acknowledgment signal is lost. The sender, not receiving the acknowledgment, eventually times out, and retransmits the message. In the meantime, the message has actually been successfully received. When the message arrives from the sender a second time, the receiver must have some way of knowing that the message is a duplicate. The receiver should ignore the message, but send an acknowledgment to stop the sender from sending the duplicate yet again.

The easiest way to detect duplicates is to assign a sequence number to each message. If the receiver does not receive the sequence number it was expecting, it ignores the message, even if the message was received correctly. Every time a message is received, the expected sequence number is incremented. Every time the sender receives an acknowledgment, the sequence number to be sent is incremented. If a message times out, however, the sequence number is not incremented.

All error recovery schemes should be free from deadlocks. A deadlock occurs when the sender is waiting for an action from the receiver, but the receiver is not performing that action because it is waiting for the sender to perform another action. Carefully analyze networks that store and forward messages from node to node for deadlocks, because two nodes can try to transmit to one another simultaneously.

The means of avoiding deadlocks varies according to the network topology. A multidrop network can use collision detection. if two nodes attempt to use the network at the same time, they immediately detect that their messages are garbled and stop transmitting. To avoid continuous collisions and a consequent deadlock condition, the two nodes attempt to transmit again based on a random time interval, so that one node can start transmitting before the other.

In a point-to-point network, a properly designed message handshake can often avoid data-link deadlocks. At a higher level, enforcing a buffer allocation protocol can often prevent deadlocks. Waiting to transmit messages until the receiver has space for them minimizes the possibility of two messages continuously timing out.

4.2 Customizing the Requester's SNIOS

The communication interface between the logical NDOS and the actual network is contained in the Slave Network I/O System module, SNIOS.SPR. Because this interface varies depending on the computer system and network hardware, you must customize the SNIOS.

For most applications, the SNIOS need only be a sequential system. The SNIOS never needs to respond asynchronously to unsolicited messages. Only the NDOS must direct the SNIOS to receive messages. However, some networks require

real-time response from their SNIOS modules to pass a message between two network nodes that have no direct means of communicating with one another.

This section details the design and preparation of an SNIOS for inclusion with a CP/NET requester, and describes the installation of the utilities necessary to run the requester.

4.2.1 Slave Network I/O System Entry Points

The SNIOS must begin with a jump vector containing the network I/O system entry points, as shown below:

Listing 4-1. SNIOS Jump Vector

SNIOS: JMP NETWORKINI	T; Network initialize
JMP NETWORKSTS	; Rtn network status
JMP CONFIGTBLADR	; Rtn Config. Tbl Adr
JMP SENDMSG	; Send msg on network
JMP RECEIVEMSG	; Receive msg from ntwk
JMP NTWRKERROR	; Network error
JMP NTWRKWBOOT	; Network warm boot

Each jump address corresponds to a subroutine that performs the specific function. The exact responsibilities of each entry point subroutine are given below.

NETWORKINIT

This SNIOS entry point is called when control is transferred to the NDOS initialization entry point after being loaded by the CPNETLDR. This subroutine performs any required network interface initialization. Initialization includes reading back-panel switches, or some other suitable source, to obtain the requester processor ID for the configuration table. If initializing messages must be sent out over the network, send them from this routine.

NETWORKSTS

This subroutine returns a single byte in register A, and determines the status of the network interface. The error bits snderr and reverr are reset when the call is made. The format of the network status byte is shown in Figure 4-2.

| +----> ctrlps +----> active

active = 1 if requester logged in ctrlps = 1 if Control-P is active rcverr = 1 if error in received message snderr = 1 if error in sending a message

Figure 4-2. Network Status Byte Format

CONFIGTBLADR

This subroutine returns the requester configuration table address in the HL register pair. The requester configuration table is described in section 4.2.2.

SENDMSG

This subroutine enables messages to be sent from one processor to another via the network. The passed parameter, in registers BC, is a pointer to the message. Control is not returned from this procedure until the message has been sent. Thus, the message pointed to by the BC register pair can be modified immediately upon return. The return code, in register A, has a value of 0 indicating success or FFH indicating failure to access the network.

RECEIVEMSG

Messages are received from another processor through the network with this subroutine. The passed parameter, in registers BC, is a pointer to a message buffer. Control is not returned from this procedure until the message has been received and placed into the message buffer. Thus, the message in the buffer is valid immediately upon return. The return code, in register A, has a value of 0 indicating success or FFH indicating failure to access the network.

NTWRKERROR

When network errors are encountered, this procedure is called. Any required network interface device reinitialization should be performed. In typical SNIOS implementations, executing a return from the NTWRKERROR procedure results in a retry. If a retry is not wanted, an appropriate message is displayed on the console, and a warm boot is performed.

NTWRKWBOOT

This SNIOS procedure is called each time the NDOS reloads the CCP. The sample SNIOS in Appendix E displays a

<Warm Boot>

message on the console only as a demonstration of NTWRKWBOOT. More practical applications of this procedure include interrogating the CP/NET server for messages. In this way, each time a warm boot is performed, the user is notified of messages posted for him.

4.2.2 Requester Configuration Table

The configuration table that resides in the CP/NET requester's SNIOS allows reassignment of logical devices to networked servers. The configuration table creates a mapping of logical to physical devices that can be altered during CP/NET processing. The configuration table specifies the system I/O to be accessed through the network.

The requester configuration table is defined in Table 4-1.

Table 4-1. Requester Configuration Table

Offset Explanation 000-000 Requester status byte

- 001-001 CP/NET requester processor ID
- 002-033 Disk Devices; 16 two-byte pairs, first byte high-order bit ON = drive on network, with the server drive code in the least significant 4 bits; the second byte contains the server processor ID.
- 034-035 Console Device; first byte high-order bit ON = console I/O on network, with the server console number in the least significant 4 bits; the second byte contains the server processor ID.
- 036-037 List Device; first byte high-order bit ON = list to network, with the server list device number in the least significant 4 bits; the second byte contains the server processor ID.
- 038-038 List Device buffer index.
- 039-043 List Device logical message header: FMT, DID, SID, FNC and SIZ.
- 044-044 List Device server list device number.

045-172 List Device buffer.

4.2.3 Preconfiguring the Configuration Table

In many network systems, there is never any need to modify the device mappings specified through the NETWORK utility. In such systems, you can preconfigure the device mappings in the configuration table. To do this, select the devices to be networked, and set the high-order bit of the first byte in the entries corresponding to those devices. Set the remote device to which the local device is to be mapped in the low-order four bits of the same byte. Finally, set the server ID of the remote device in the second byte of the entry.

Be careful when preconfiguring devices to servers that might be off line. Some CP/NET functions send messages to all servers referenced in the configuration table. If one of these servers is not capable of receiving messages, functions that might subsequently send messages to servers on line can prematurely abort. For example, the CCP might issue a free drive function to initialize the server environment for a subsequent application program. If the previous application had left files open on two on line servers, but a third server was off line, those files are left open if the free drive message was sent to the off-line server before the on-line servers. The next application program might damage the files that were inadvertently left open.

You can solve this problem by having the error recovery in the SNIOS remove any networked device that experiences continuous timeouts, converting it back into a local device. This prevents the NDOS from making continuous references to the off-line server. A major drawback of this scheme, however, is that an application might suddenly begin referencing a local device, possibly destroying files on a local disk drive. A more secure, but less friendly protocol for dealing with off-line servers is to force a warm boot whenever a network error is encountered.

It is wise to enforce a protocol that prohibits devices from being networked until the server to which they are assigned is on line. Special utilities can be written to accomplish this by sending a dummy message to every server to which drives are mapped.

4.2.4 Sending and Receiving Messages Asynchronously

In some networks, a requester might have to receive and retransmit asynchronously a message destined for another node. For example, consider a loop network, where every node has two network ports. The network protocol specifies that all messages are sent via port #1, and all messages are received via port #2. If there is only one server in the network, but more than one requester, all messages must pass through every other requester, either as they are sent to the server or as the response returns from the server.

If a requester must asynchronously handle a communication channel, it must do so outside of the facilities provided by the single-tasking CP/M operating system. The communication protocol must be interrupt driven. An interrupt service routine must at least detect the start of a message; after that, the rest of the message can be handled sequentially or under control of additional interrupt routines. If a requester cannot support interrupts, asynchronous handling of messages might be impossible. Neither the application program nor the NDOS can periodically check for incoming messages. A mechanism must be provided so that the NDOS, sequentially calling the SNIOS to send a message, does not collide with the asynchronous transmission of another message. Receiving messages cannot collide because only one message can come over the network at a time. To accomplish this, consider implementing the loop network described above.

As a requester's application is running, another node suddenly starts sending a message to it. The requester must now receive the message, verify its correctness, and retransmit it to another node. All of these operations must be performed without damaging the local application program. If the data-link routines do not make CP/M system calls, and do not modify the message buffers used by the NDOS, the entire message can be received and transmitted transparently. When this operation is finished, the interrupt service routine returns to the application program, and processing continues. When the NDOS needs to use the network, the same data-link routines that handled the asynchronous message can be used to handle the sequential one.

It is even possible to transmit a message from the NDOS while receiving a message from some other node. To do this, the message must be able to be received a piece at a time, giving both the send and receive routines enough processor time to avoid timing out. Such a system requires a mechanism for preventing both the NDOS and the interrupt service routine from attempting simultaneous transmission. A semaphore variable can be used to control the system.

Figure 4-3 outlines a possible protocol for such a system. Both the SNIOS SENDMSG routine and the asynchronous receive interrupt service routine access a piece of reentrant code to control access to the message transmission system.

Three external events drive the system:

- 1) The NDOS can request to send a message.
- 2) The NDOS can request to receive a message.
- 3) A message, unbidden, can cause an interrupt so that it can be received.

In this implementation, the message sending software is interrupt driven, started by enabling a transmitter interrupt. The message sending software can also operate sequentially, called by the reentrant routine that controls its use.

Figure 4-3. Algorithm for Interrupt-driven Requester Node that Stores and Forwards Messages

4.2.5 Generating and Debugging a Custom SNIOS

Follow these steps to generate and debug a custom SNIOS.

Prepare the SNIOS.SPR file, as shown below:

A>RMAC SNIOS A>LINK SNIOS[OS]

The output of the linker is the SNIOS.SPR file.

If you do not use RMAC and LINK-80 use ASM, PIP, and GENMOD, as shown below:

Assemble with ORG 0000H. A>ASM SNIOS A>REN SNIOS0.HEX=SNIOS.HEX

Edit the SNIOS.ASM ORG statement. Assemble with ORG 0100H. A>ASM SNIOS A>REN SNIOS1.HEX=SNIOS.HEX

Concatenate the HEX files. A>PIP SNIOS.HEX=SNIOS0.HEX,SNIOS1.HEX

Generate the SNIOS.SPR file. A>GENMOD SNIOS.HEX SNIOS.SPR

The GENMOD program uses the difference in code origins to produce a bit map of addresses to be relocated. GENMOD then places this bit map at the end of a copy of the origin 0 code, and constructs a 256-byte header to create an SPR file.

Copy the following files to the requester:

CPNETLDR.COM = Loads CP/NET (NDOS.SPR and SNIOS.SPR) CPNETSTS.COM = Displays status of the system I/O NETWORK.COM = Redirects I/O from local to network LOCAL.COM = Redirects I/O from network to local DSKRESET.COM = Resets specified logical drives LOGIN.COM = Logs on to server LOGOFF.COM = Logs off from server MAIL.COM = Electronic mail utility NDOS.SPR = Network Disk Operating System SNIOS.SPR = Previously Customized Slave Network I/O System CCP.SPR = Console Command Processor

You can use DDT to debug the SNIOS as follows:

A>DDT CPNETLDR.COM *I\$B *s103 0103 07 xx *g

where "xx" is the restart the debugger uses, usually 7.

At this point, CP/NET loads, displaying the memory map, and then breaks at the specified restart. You can place breakpoints at desired locations, and then issue a G command specifying the address following the restart instruction where the CPNETLDR broke.

Communications software is difficult to debug. Because of its real-time nature, when the program is interrupted to find out what is going on, the other side of the network overruns or times out. These pointers might help you:

- Before debugging, disable any timeout logic in both the SNIOS and the NETWRKIF. This allows one node to be examined without causing errors on the other node. The SNIOS example in Appendix E accomplishes this with a conditional assembly switch called ALWAYS\$RETRY.
- Never set a breakpoint in the SNIOS without setting a corresponding breakpoint in the NETWRKIF.
- Write a simulation module that mimics how you think the NETWRKIF should behave in response to the actions the SNIOS takes to send a message. Disable the actual network transmission until the SNIOS can successfully send messages to and from the simulation. Gather copious statistics because, when you finally transmit over a real network link, the simulation and the real NETWRKIF probably will not correspond. The statistics can help point up what was wrong with the simulation, the NETWRKIF, or both.
- Carefully verify any communications handshakes between the two nodes. You can do this by stepping through the code of both nodes simultaneously, using debuggers. Discover which data link operations can be performed while the other node is halted or disabled. Quite often, making a mistake in your debugging session points up holes in your protocol design. Once you have the protocol working with this method, have someone step one node while you step the other. Do not coordinate the actions of the two debuggers. If your protocol works without conscious synchronizing, try running it full speed. If possible, write one data-link module for both the SNIOS NETWRKIF, then interface them to the appropriate module. This enhances the uniformity of the protocol, making it easier to debug.

4.3 Customizing the Server

This section addresses the problems of designing and implementing an efficient CP/NET server under the MP/M II operating system. Because a CP/NET server must be capable of handling several simultaneous requests in real-time, the Network Interface module (NETWRKIF) must take full advantage of the real-time primitives of MP/M II.

The server's logical module, SERVER.RSP, consists of a set of processes, one for each requester supported. This section also discusses how the NETWRKIF sends and receives messages to and from those processes.

Finally, this section explains the system generation options available to the server implementer once the NETWRKIF has been implemented.

4.3.1 Detecting and Receiving Incoming Messages

The server is a passive, asynchronous system; it does not initiate CP/NET transactions. The server performs two distinct functions:

- 1) The server must detect an incoming message, and initialize the communications software to receive.
- 2) The server must actually receive the message.

The server detects incoming messages in two ways. The first is polling, where the server periodically checks the status of the network interface. If the status changes from an idle to a ready state, the server receives a message. The second method relies on the network interface's interrupting the server. The server then transfers control to a service routine that receives the message.

Either of these methods can accomplish the two functions listed above. Both methods have advantages and drawbacks.

Polling the Server

Polling is a more active method, requiring more processing overhead. If the server has a fairly heavy, continuous load of network traffic, then the status of the poll operation often indicates that a message is to be received. In this kind of system, polling has a marked advantage: the server can immediately begin receiving the message without switching contexts. But if the network traffic is subject to bursts of data mixed with periods of traffic, then the extra overhead of interrogating the network terface is inefficient.

Interrupting the Server

Interrupt driven operation is excellent for communication that occurs in bursts because no overhead is required when no mmunication is taking place. But very high network loads cause the server to waste a great deal of time saving the state of the process currently executing when the interrupt occurred.

Once a message has been initiated, it can be received under interrupt control, where data is processed on demand as it comes in, or under direct program control, where a process is dedicated to monitoring the incoming message. The most efficient choice depends on the type of network being used, and the amount of traffic the network must handle.

In an interrupt driven communication scheme, the server responds to network events asynchronously. The network interface determines when data is processed by the host CPU. For example, when the network interface presents characters to the host, each character causes an interrupt. When the network interface performs direct memory access to transfer blocks of data, only each complete DMA transfer causes an interrupt. Depending on the protocol, each interrupt causes a specific action to be performed. The CPU is free, however, to process other tasks in between processing each piece of data. Like interrupt-driven message detection, saving the state of an interrupted process requires CPU overhead. The greater the number of interrupts required to process a message, the more system performance is degraded.

Overruns

One of the greatest problems of an interrupt-driven communications scheme develops when the interrupts occur faster than the CPU can service them. This condition is known as an overrun, and it can cause data to be lost. When an overrun occurs, the message appears to be garbled, and the sender must retransmit it. If overruns occur only when the host is extremely busy, it might be more efficient to accept the occasional garbled message in exchange for better overall response. If the number of overruns is too high, however, serious system degradation sets in. Many protocols prevent overruns by allowing the receiver to signal the sender that data is Coming in too fast.

Disabling Interrupts

The other approach to message processing uses MP/M II's facility to control processes. Unlike an interrupt service routine, which is largely transparent to MP/M II, a process is a logically complete task. Using a process-oriented protocol, you can eliminate the overrun problem by disabling interrupts while the message is being received. Disabling interrupts gives the communication program exclusive control of the CPU, so all other processing comes to a halt. If messages are fairly short, however, this method might be preferable to an interrupt-driven scheme, because no overhead is incurred by switching back and forth between a process and an interrupt service routine continually.

Selecting a Protocol

The actual data-link protocol used to process messages has not been discussed. Consider the selection of a protocol when designing how the server is going to respond to incoming messages. For example, in a CP/NET system where loosely coupled processors are communicating over a high-speed bus with little or no error checking, DMA transfer of data can be efficiently interrupt driven. But complex cyclic redundancy checks that involve extensive arithmetic operations require careful design in an interrupt-driven system, or overruns might result. Such a protocol might be better implemented using a process-oriented system.

4.3.2 NETWRKIF Module Architecture

Section 4.3.1 discusses general strategies for implementing a data-link layer

protocol under MP/M II. This section deals with integrating the data-link layer into a network and transport layer. This integration allows the entire communications package to send logical requester messages to the SERVER.RSP module, and then receive the SERVER's response message for transmission back to the requester.

A dedicated server process is associated with each requester logged on to a server node. These processes are named SERVR<x>PR where <x> is an ASCII character between 0 and 9 or A and F. This character is a sequence number that serves as a unique identifier for the server process. Each server opens two queues that it expects the NETWRKIF module to have created. They are named NtwrkQI<x> and NtwrkQO<x> where <x> is the same character as the server's sequence number. The server process always reads the address of incoming messages from NtwrkQI<x>, and it always writes the address of the response message to NtwrkQO<x>.

This is the basic interface between the SERVER.RSP module supplied by Digital Research and the user-customized communications software. However, there are a variety of ways to implement the processes driving the interface.

Appendix E includes an example of the simplest NETWRKIF architecture. In this architecture, one network interface process is associated with each server. All processes execute the same reentrant code, but each process maintains local data that identifies the communications port it is using, and the sets of queues through which it interfaces to the server process. This implementation handles its data-link software at the process level. It uses polled console I/O functions in the XIOS to detect incoming messages. This architecture is illustrated in Figure 4-4.

Figure 4-4. Server Architecture with Reentrant NETWRKIF Processes

Another possible NETWRKIF architecture has only two network interface processes. An input process receives data from the network, identifies the requester that sent the message, and writes the message to the appropriate queue. An output process conditionally reads all the output queues, and sends any messages it finds back out over the network.

It is also possible to force all the server processes to write their messages to a single queue by patching SERVER.RSP. In this case, the output network interface process reads the single output queue. When a message is written to it, the output process sends the message out across the network, and goes back to read the queue again. An application note details how to patch SERVER.RSP.

Figure 4-5 illustrates both strategies. Note that a small patch to the SERVR<x>PR processes can consolidate the output queues.

Figure 4-5. Two-process NETWRKIF

You can design a single NETWRKIF process that receives a message, writes it to the appropriate queue, then checks for any output activity. If NETWRKIF finds a message to send, it sends it, then it returns to checking for input. This kind of process has the disadvantage of being constantly busy; there is no point at which it can allow itself to become blocked. To do so might result in a deadlock or serious performance degradation. Consider the network topology when designing the NETWRKIF architecture. For example, a NETWRKIF that uses one process per requester is suitable in an active hub-star configuration, where a unique network line is dedicated to each requester. This allows several messages to arrive at the server simultaneously.

For a multidrop topology, however, a single output and single input process NETWRKIF might be more suitable, because the network hardware guarantees that only one message is active on the network at any one time. The same type of architecture could be applied to a loop topology.

For an active hub-star network that services several multidrop lines, it might be necessary to combine the two architectures, so that several reentrant processes are routing input to the server processes, while a set of output processes are collecting data from output queues, and sending it back out of the appropriate multidrop line.

Also consider what the NETWRKIF does when it has no traffic to process. If the NETWRKIF loops madly while waiting, it will gobble up precious CPU resources, degrading the overall performance of the server system. On the other hand, the NETWRKIF must be able to respond to traffic quickly.

A number of MP/M II system calls cause a process to become blocked, so that the operating system dispatcher does not pass control back to the process until a critical condition is fulfilled. Reading an empty queue, waiting on a flag, and performing a poll call are three of the most common ways to suspend the execution of a process conditionally. Such quiescent points should be built into all NETWRKIF systems to minimize the overhead of maintaining the process when it is idle.

The processes driving the input and output queues constitute one half of a message transport layer. The NETWRKIF must also deal with how the raw message is received from the data-link and network layers that are performing the actual communication control. This interface is governed by how the data-link and network layer software is implemented.

Consider an architecture that has little or no network layer, so that the data-link software interfaces directly with the transport processes. If the data-link is included in the processes that are also performing the queuing functions, then no special interface is needed. The process can pass control from one function to another, first performing input data-link and network activities to receive a message; then computing the routing to the appropriate server input queue; then reading the response from an output queue; and finally returning to the data-link level to send the response back to the requester. The sequence can be repeated indefinitely.

Some implementations require the data-link and network layers to be under process control, with a separate set of processes controlling the transport layer. In these cases, the transport processes can use queuing for both the low-level interface to the data-link layer and the upward interface to the server processes.

This kind of architecture has the drawback of slowing down the MP/M II

dispatcher with extra queuing overhead. For a small number of processes, however, the impact is slight. The architecture has the advantage of being highly modular, facilitating the future upgrade of the data-link and network layers or the transport layers. Figure 4-6 details the architecture.

Figure 4-6. A Single Transport Process Interfacing to Low-level Datalink Processes

To implement some network interfaces, it is necessary to modify the MP/M II XIOS. Interrupt service routines must access the system interrupt vector, which is usually maintained by the XIOS. If an interface routine requires polling, the routine to accomplish the polling must be placed on the list maintained by the XIOS POLLDEVICE routine.

Interfacing to data-link and network routines that reside in the XIOS is slightly more complex than interfacing to routines contained in the NETWRKIF. These routines are often not processes, but shared code fragments or interrupt service routines. They cannot use queues as an interface mechanism. Routines that are not process-oriented must communicate through a direct function linkage, through polling, or through the Flag Set/Flag Wait functions supported by MP/M II.

Because the NETWRKIF might not be able to resolve references to such routines directly, it is often necessary to enter the XIOS through its jump vector. The XIOS jump vector table is always page aligned; a pointer to that page is located in byte 7 of the MP/M II system data page -- From this point, data-link routines can be called by specifying dummy console I/O or dummy list device I/O.

If dummy console or printer I/O is used, the NETWRKIF loads a non-existent device number in register D and, if necessary, a pointer to a message buffer.

The I/O routine specified checks for the non-existent device number, and dispatches the call to the appropriate network routine.

Figure 4-7 illustrates how the NETWRKIF module can perform calls to subroutines resident in the XIOS.

Figure 4-7. Directly Interfacing the NETVRKIF to XIOS Routines

Another method of interfacing data-link and network layer routines to a transport NETWRKIF is to have the low-level routines set a flag when a message has been processed. For example, consider a data-link routine that reads in an incoming message, and checks it for validity. This routine might be a set of vectored interrupt service routines.

At this point, the NETWRKIF is not synchronized with the data link routine. When the NETWRKIF requires a message, it issues a flag-wait call to MP/M II. When the data-link routine has a complete message, it issues a flag set call. The NETWRKIF does not proceed until the flag has been set. The NETWRKIF can then transfer the message from a predefined buffer, and transport it to the appropriate server process.

This type of architecture is ideal for allowing intelligent network

controllers to drive the NETWRKIF transport processes. A simple interrupt service routine locates the message, builds a control block, and sets a flag to inform the NETWRKIF of the status and location of the message. Figure 4-8 shows a similar interface.

Figure 4-8. Synchronizing Data-link Activity Using Flags

To send a response message back to a requester using flags, the transport process must first identify the message to be sent, and instruct the data-link layer to send it. A predefined control block can accomplish both operations. The transport process then waits on a flag until the message is sent and the flag set by the data-link.

Another possible synchronization mechanism is through the MP/M II Poll function. With this function, MP/M II suspends the calling NETWRKIF process but periodically interrogates the status of the data-link and network software through a small code fragment defined in the XIOS POLLDEVICE routine. When the status becomes true, MP/M II allows the NETWRKIF process to proceed.

If the server system supports vectored interrupts, and the location of the system's interrupt vector is known, you can write interrupt service routines that reside inside the NETWRKIF module. When the NETWRKIF performs its initialization, it simply writes the addresses of various interrupt service routines into the vector. From then on, any reference to those vector locations results in the execution of the NETWRKIF's ISRs.

This approach preserves system modularity, and allows the network implementer to implement low-level routines when the XIOS itself is not available for modification. This approach still requires a synchronization mechanism between code fragments that are not part of any process and the more well-defined transport processes of the NETWRKIF.

In addition to synchronizing with low-level communications software, NETWRKIF processes might have to compete for data-link resources. For example, a transport process that wants to send a message might have to be suspended while another process is busy receiving a message. Or two reentrant processes might try to send a message out across the same network line simultaneously. These conflicts can be resolved through use of mutual exclusion (MX) queues.

An MX queue contains only one dummy message, called a token. In order to control a resource, a process must first acquire the token, leaving the MX queue empty. If another process already has the token, the first process is suspended until the second completes its resource-critical operation, and replaces the token. In this way, two low-level data-link routines--one for sending and one for receiving--can be driven without collisions by their higher-level transport processes, even if the low level routines have no explicit mechanism for sharing a network resource.

Just as the design of the network topology and error recovery schemes for CP/NET must be examined for potential deadlocks, so must the server architecture itself. A simple example of a deadlock is a process that competes for a resource using an MX queue but never restores the token to the queue when it is finished with the resource. All the other processes waiting for the resource come to a grinding halt, the network becomes congested, and

eventually everything stops.

Finally, you can design an architecture that distinctly divides the data-link, network, and transport layers. The preceding synchronization strategies can be generalized to work across several layers, just as easily as they can work when the server architecture divides the communications software into low-level and high-level segments. Remember that, as the architecture grows more and more complex, performance of the MP/M II dispatcher and nucleus software degrade further and further. It is always wise to keep the architecture as simple as possible.

4.3.3 Elements of the NETWRKIF

This section defines the data objects and processing required to allow the server to be initialized, and to operate smoothly and continuously. Through these objects, you define how many requesters a server can handle at once, and how many messages can be simultaneously processed.

The following objects must be present to create the NETWRKIF.RSP module:

- XDOS entry point
- Transport Process Process Descriptors
- Transport Process Stacks
- Queue control blocks (QCBs) for the interface between the NETWRKIF and the server processes
- User queue control blocks (UQCBs) to allow the NETWRKIF to access the queues
- Message buffers
- The server configuration table
- Stack space for additional server processes, if more than one requester is to be serviced at a time.
- Areas allocated to contain more server Process Descriptors, if more than one requester is to be serviced at a time.
- Network initialization code
- Data-link interface code
- Message validity checking and reformatting
- Server process interface code

XDOS Entry Point

All resident system processes (RSPs) require a linkage to MP/M II's XDOS entry point because the Command Line Interpreter does not prepare an execution environment for them. This linkage is always the first two bytes of the module. When the implementer runs the MP/M II GENSYS utility to include the server modules into the operating system, GENSYS automatically fills in these two bytes with a pointer to the XDOS entry point. This allows the execution of MP/M II system functions within the body of the RSP by setting up the function parameters, loading this pointer, and dispatching. -----

Immediately following this pointer, MP/M II expects to see a Process Descriptor. It automatically creates and executes the process to which the Descriptor refers. In the case of the NETWRKIF, this Process Descriptor controls the execution of one of the server transport processes. These processes perform the queue read and write operations to move messages into and out of the server processes. The first process must also be responsible for server and network initialization, and for creating any additional transport processes.

Process Descriptors for additional transport processes must also be included, if the processes are necessary. These processes can be automatically created by linking them to the first Process Descriptor. Linking is accomplished by placing a pointer to the second Process Descriptor in the PL field of the first Process Descriptor, a pointer to the third in the PL field of the second, and so on. The chain of links terminates with a zero in the PL field of the last Process Descriptor to be created.

If you choose to have processes automatically created, remember that once processes are created, they are completely independent unless they are explicitly synchronized. The processes should not be dependent upon the first process to perform initialization for them.

Run transport processes at a very high priority, so that messages tie up the communications software for as little time as possible. The example in Appendix E runs at priority level 64, exactly the same priority as the server processes. For compute bound NETWRKIF processes, it is advisable to give the server a slightly higher priority than the NETWRKIF. The implementation in Appendix F, for example, runs at a priority of 66. This forces MP/M II always to process logical messages first if both the server and transport processes are ready at the same time.

Each transport process must have its own local stack area. Because RSPs do not have access to the extra user stack space on system calls, each stack must be capable of supporting the local storage required by the MP/M II XDOS and XIOS, in addition to its own local storage.

When a process is created, its Process Descriptor's STKPTR field should point to the top of its associated stack. The top of the stack must contain the starting execution address for the process.

Queue Control Blocks

The NETWRKIF module must contain all of the queue control blocks for the entire server system. The number of QCBs varies depending on how many requesters the server system supports at one time. For each requester, there must be one input queue, named NtwrkQI0, NtwrkQI1, and so on. There must also be one output queue per requester, named NtwrkQO0, NtwrkQO1, and so on. These queues must also be created by the NETWRKIF module.

You can patch the server process code so that all processes open the same output queue, NtwrkQOO. If this patch is applied, the NETWRKIF need only include the one output QCB. The NETWRKIF examples in Appendixes F and G use this method.

The input and output queues communicate the address of the message buffer containing the message to be processed by the server or the response to be sent back to the requester. Because the message passed through the queue is only two bytes long, circular queues can be used. Both input and output queues need only buffer one message at a time because a requester must have always received a response before sending another request. Consequently, there is never more than one message from a given requester at the server at a time. A queue capable of buffering more than one message is required only when the server processes have been patched to write all of their responses to a single queue. In this case, the queue must be capable of buffering the output from all of the servers simultaneously.

User Queue Control Blocks

Transport processes must read and write queues using user queue control blocks. These data structures contain a pointer to the appropriate QCB, and a pointer to the message to be written. The queue passes only the addresses of message buffers rather than the message buffers themselves. The address of the message buffer to be accessed must be written to a location in memory, and a pointer to that location must be loaded into the appropriate UQCB.

If the UQCB can resolve the address of its associated QCB, there is no need for the NETWRKIF to open the queue using MP/M II Function 135 once the queue has been created. A pointer to the QCB can be placed in the UQCB at link time, instead. If, however, the QCB address cannot be resolved, an open queue operation must be performed. This might be the case if the system implementer breaks the NETWRKIF module into an RSP and a Banked Resident System Process (BRS).

Message Buffers

The message buffers must each be at least 262 bytes long, 5 bytes for the CP/NET header information, and 257 bytes for the actual CP/NET message. Even though the longest CP/NET message is only 256 bytes long, the extra byte is required because the server processes use the message buffer they are passed as a temporary scratch area.

If the data-link and network layers require additional header information, the message buffers must be even longer. If the message format used by the network is different from that used by CP/NET, the message must be converted into the standard CP/NET format before it is passed to the server process. The server process expects a one-byte format code of 0, a one-byte destination code equal to the server ID, a one-byte source code, a one-byte function code, a one-byte size code, and a contiguous message in binary format. The server returns an error for any deviation from this format.

A server process always returns its response to a requester in the same message buffer that it is passed. Consequently, no transport process should modify a message in between the time that its address is written to NtwrkQI<x>, and the time that its address is read back from NtwrkQO<x>. To do so can cause the server to crash.

It is not always necessary to have one buffer for every server process in the server system. Fewer buffers can be provided if the network implementer limits the number of transactions that can occur simultaneously. It is important to recognize the distinction between the number of requesters supported (the number of sessions that can be ongoing at any one time) and the number of simultaneous transactions supported (the number of messages the server can process at any one time).

Because many server processes can be idle, the number of transactions can be much lower than the number of requesters. Limiting the number of transactions can sometimes drastically improve the performance of a CP/NET server because it reduces the amount of time the operating system switches from process to process trying to service a number of file-oriented requests simultaneously.

The Server Configuration Table

The server process must interface directly with a set of objects within the NETWRKIF to perform its own initialization, maintain its own reentrant processes, and perform validity checking on its incoming messages. These three sets of objects are the server configuration table, server Process Descriptor areas, and server process stacks.

The server configuration table is defined in Table 4-2.

Table 4-2. Server Configuration Table

Offset Explanation

- 00-00 Server status byte. The communications software can use this byte to signal the current state of the network. This byte has no fixed function, however.
- 01-01 Server processor ID. The server processes compare this field against the destination ID field of all incoming messages. An error is returned if they do not match. A server ID of FF hex is illegal. Requester utility programs use a default server ID of 0, so a CP/NET network containing only one server identifies it as node 0, for convenience.
- 02-02 Maximum number of requesters supported at once. Up to 16 requesters can be supported.
- 03-03 Number of requesters currently logged in. This field is incremented by a server process when a login takes place, and decremented when a logoff takes place. Logins return an error if the maximum equals the

number currently logged in.

- 04-05 Log-in vector. Each bit of this field indicates whether the corresponding requester ID table entry is valid, and refers to a logged-in requester. When a successful login takes place, a bit is set in this vector, and the corresponding table entry is updated. When a logoff occurs, the table is searched, and the corresponding bit is reset.
- 06-21 Requester ID table. When a requester is successfully logged in, a server process locates an empty slot by checking the log-in vector, marks the slot as used, and then writes the source ID of the log-in message into this table, using the bit vector position as an index.
- 22-29 Log-in password. The password sent in the log in message must match this password, or the log in fails, and an error is returned.

Just as the requester configuration table can be preconfigured to map certain devices as networked, the server configuration table can be preconfigured to define certain requesters as logged in without performing a login operation. To do this, set the current number of logged-in requesters to the number of predefined logins desired. Make sure the number is less than the maximum number of requesters permitted. Otherwise, the server's behavior becomes unpredictable.

The log-in vector should have a bit set for every requester to be prelogged in, and the requester ID table should contain the logged-in requesters. For example, for a five-requester server where requesters 1, 2, and 5 are defined as already logged in, the server configuration table might look like this:

configtbl:		db	0	; Server status
(db	0	;	Server ID
(db	5	;	Max number of requesters
(db	3	;	Currently logged in
(dw	80	09h	; Log-in vector
(db	1	;	Requester ID table
(ds	2		
(db	2		
C	ds	11		
(db	5		
(db	'W	UG	GA' ; Password

The requester ID table is position independent. When a server process checks to see if a requester is logged in, it searches the entire requester table, using the entire log-in vector to check the entries for validity.

Consequently, the configuration table is not sufficient to specify the process to which an incoming message should be routed.

The transport software must maintain its own routing mechanism. For example, the NETWRKIF in Appendix E maintains its routing implicitly as local data in its reentrant processes. The example in Appendix F, on the other hand, relies on a requester control block that associates a source ID number with a UQCB.

Descriptors and Stacks

The module SERVER.RSP contains only one Process Descriptor and stack area. It is consequently initialized as only one process. SERVER.RSP must have some way of creating additional copies of itself. To do this, SERVER.RSP must know how many copies to create, and where to put the additional Process Descriptors and stacks.

By convention, the NETWRKIF process writes the address of the server configuration table into location offset 0009 in the system data page. The SERVER module uses this address to locate the maximum number of requesters from the configuration table. It then creates the maximum number, less one, of processes. To locate storage to create the additional processes, the SERVER module expects to find stack areas for the extra processes directly following the configuration table.

Server process stacks must be exactly 150 bytes long, and there must be one stack for each additional server. For example, to support a total of five servers, 4*150 = 600 bytes of storage must he allocated after the configuration table.

The server expects the top of each additional server stack to contain a pointer to a 52-byte data area in which to create the new Process Descriptor. All of the Process Descriptor data areas must be contiguous.

Here is an example of the structure required for a four requester server:

server\$pds: ds (4-1)*52 ; Server Process Descriptors

; (Other data or code can be defined here.)

configtbl:	ds	30	; Configuration table allocation
srvr\$stkl:	ds	148	; Second server stack area
	dw	server\$pc	ds
	ds	148	; Third server stack area
	dw	server\$pc	ds+52
	ds	148	; Fourth server stack area
	dw	server\$pc	ds+104

Listing 4-2. Stack and Process Descriptor Allocation for a Four-requester Server

NETWRKIF Execution Requirements

The initialization code must perform the following actions:

- Initialize the network hardware, or cause lower-level routines to initialize it.
- Via MP/M II Function 134, make all input and output queues required to

run the server.

- Write the address of the configuration table into the system data page.

These initialization functions need not be performed by a single process; they can be distributed among a variety of processes and interrupt service routines. The address of the configuration table should be written to the system data page with interrupts disabled. This prevents the server from loading an incorrect partial address and making its process-creation decisions on invalid data.

Figure 4-9 shows a memory map, detailing how the SERVER.RSP and NETWRKIF.RSP modules fit into the rest of MP/M II, and how they communicate with one another during initialization.

Figure 4-9. A Typical Server Memory Map

Most of the other NETWRKIF run-time functions are discussed in previous sections. The general form of the NETWRKIF is the following:

- Allocate a message buffer, and receive a message. Check the message for data-link or network errors.
- Reformat the message, if necessary, into the standard CP/NET format.
- Compute the server process to which the message should be routed.
- Write the message to the server's input queue.
- Read the response from the server's output queue.
- Send the response back to the requester, and free the buffer.
- Repeat this process indefinitely.

4.3.4 Enhancements and Additions to the NETWRKIF

This section deals with extensions to the basic elements required to allow a CP/NET server to run under MP/M II. These extensions can increase the capabilities, and improve the performance of the basic system.

Network Initialization and Maintenance

The network interface initialization can do much more than get the server processes ready to run. In addition to passing information about the network environment to the server and physical device initialization, the NETWRKIF can interrogate the network environment to identify other nodes in the system, their status, and their resources.

For example, the NETWRKIF network layer software might send out special packets to discover on-line nodes. When other NETWRKIFs and SNIOSs detect these packets, they respond with special routing packets of their own. If these routing messages are carefully designed, each node can build a table of routes to various nodes, and mark other nodes as inaccessible.

Once the network has been initialized, a special network communications

process intermittently circulates the routing packets. This circulation keeps the network routing information current as nodes go on and off line.

Nodes can be interrogated to identify their system resources for networking. For example, when a process similar to the routing process just described detects the existence of a node, it logs in to the node, and sends out a series of dummy select disk messages. According to the error conditions returned, the process can identify the disk drives the node has available. This can also be accomplished by having a network-layer process issue its own select disk calls in response to receiving a special message.

In implementing these schemes, make sure these special messages do not interfere with regular CP/NET traffic. Some provisions are required to ensure that requests are not made to requesters that ignore the requests or mistake them for legitimate responses to previous requests. You might have to modify the SNIOS to allow it to deal with these strange messages.

Error Handling with Timeouts

Although the transport layer software of a CP/NET system is probably extremely reliable, and the possibility of garbled messages can be ignored, network data-link errors are likely in the long run. Section 3.2.2 includes a general discussion of error handling. This section details a specific error-handling implementation, using timeouts.

Once the data-link software sends a message, it waits for an acknowledgment that the message was received. If no acknowledgment arrives, a timeout is triggered, and the message is retransmitted.

You can implement a watchdog timeout mechanism as an interrupt service routine or as a process. When the transport process requests transmission from the data-link software, the process initializes a timeout variable, and then waits on a flag. If the watchdog routine is implemented as an interrupt service routine (ISR), it decrements the timeout variable as a multiple of the clock interrupt frequency. If the watchdog routine is implemented as an extremely high priority process, it simply decrements the variable, and then executes the MP/M II delay function for a fixed number of cycles.

With either method, a timeout status and the flag on which the transport process is waiting are set if the timeout variable is decremented to zero. At the same time, the data-link software sets the same flag and a transmission success status if it receives an acknowledgment.

When the transport process resumes processing after the flag wait operation, it checks the status variable to see which event occurred first. If the transmission timed out, the process attempts to retransmit. If the transmission succeeded, the transport process Continues.

There are many variations to this method. The preceding one assumes that the message is transmitted with no handshake or initial signal to the receiver that a message is about to follow. If a handshake is implemented, it might require a timeout of its own. Several timeout points might have to be set

throughout a single message, depending on how the receiver intends to acknowledge that message.

Other error conditions can occur; they can be integrated into the errorhandling structure described above. For example, the receiver can transmit a negative acknowledgment, indicating that the message was received but that it was garbled. In this case, the data-link software need only set the same event flag, but instead of setting a message received status, it sets a transmit error variable. The transport process must now differentiate between three statuses rather than two when it resumes execution, but the overall structure is the same. The architecture required to implement timeouts is shown in Figure 4-10.

Figure 4-10. Implementing Timeouts with Flags

Store-and-Forward Networks

In some networks, the NETWRKIF can receive a message destined for another node that the sender could not reach directly. For these networks, implement network layer software to check the ultimate destination, and send the message out along some other network line. These NETWRKIFs might need some of the following features.

The NETWRKIF might need more message buffers than there are supported requesters. Some messages are actually destined for the server processes resident on the current node, but a potentially high volume of the messages might be headed elsewhere.

The NETWRKIF must have a mechanism for receiving a message and then immediately sending it elsewhere without an intervening Queue Write-Queue Read operation. You can facilitate this type of operation by making the NETWRKIF software highly modular. It is advisable to have both network layer processes and transport layer processes, in addition to the data-link implementation you use. This gives the network layer process exclusive control of the data link layer, simplifying interprocess competition for the data-link resource.

Finally, the network software must have a method of knowing which nodes can be reached through which network lines. This method can be a static, predefined table or a dynamic message-passing scheme like the one described in the preceding "Network Initialization and Maintenance" section.

Dynamic Login Handling

A CP/NET server under MP/M II can handle 16 requesters at a time. Many more physical requester nodes might want to access the server. The source ID byte in the standard CP/NET message allows up to 255 nodes. Theoretically, 254 requesters can be waiting to access one server.

Obviously, it would be useful to have a method whereby a server process can be reused by another requester after its previous owner has logged off.

Unfortunately, the information contained in the server configuration table is not sufficient to identify which specific server processes are free, and which are in use.

To solve this problem, define one requester control block (RCB) for each requester to be simultaneously supported by the server. The RCB is defined in Table 4-3.

Table 4-3. Requester Control Block

Offset Explanation

- 00-00 Requester ID, If the control block is not in use, this field is set to FF hex.
- 01-03 Pointer to a particular server's input QCB.
- 04-05 A predefined pointer to byte 6 of this RCB.
- 06-07 A buffer that contains the address of the received message to be handled by this server process.

Notice that this control block is a requester ID that can be matched with an incoming source ID, followed by a user queue control block. With this simple data structure, servers can be dynamically allocated to requesters with the following algorithm:

Receive a message.

Scan the RCBs for a match between the source ID of the message and the requester ID field of the RCB.

If a match is found, write the message buffer address into the RCB's message buffer address field in bytes 6 and 7. Then write to the queue, using the RCB's internal UQCB.

If a match is not found, but the scan reveals a free RCB (indicated by a requester ID field of FF), and the incoming message is a login, then flag the RCB in use by writing the message's source ID into the RCB; update the message buffer address field; and write to the queue.

If a match is not found and the message is not a login, send a message back to the requester with extended error 12, requester not logged in.

If a match is not found, and there are no free RCBs, and the message is a login, send a message back indicating login failed.

When a response message is read from the queue and the message is a logoff, then free the appropriate RCB before sending the message back to the requester.

This algorithm still does not allow more than 16 requesters to be logged in at the same time. But the algorithm does permit more than 16 requester nodes to compete for access to the server node. When more than 16 requester nodes log in, they receive login failed messages. These requester nodes cannot access the server until another requester logs off. In this kind of network, it is advisable to implement an automatic logoff feature for requesters that have not used the network for a fixed period of time.

Handling Special Messages

Special messages exchange network maintenance information between nodes. These messages have almost unlimited uses. For example, you can define a special message format for a special feature, high-performance print spooler. Once the format has been implemented, custom application packages can access it using Function 66 (Send Message on Network).

There are two basic steps to processing special message formats. First, the transport processes must be able to recognize special message formats, and prevent them from entering the server processes. Second, the transport processes must have an interface to pass the messages off for special processing.

The first step can be accomplished by defining additional codes in the format field of the standard CP/NET message. When the transport software recognizes a strange format, it takes the appropriate action. If the message does not contain the standard CP/NET header, the data-link software can recognize this fact, and notify the transport layer.

The problem of what to do with the message once it has been recognized can be solved using the same methods that are used for transporting messages throughout the more normal portions of the NETWRKIF. For example, the special print spooler and the transport layer can communicate via a predefined queue.

Some special formats require a logical response message. Functions 66 and 67 are intentionally exempt from the standard logical protocol of CP/NET. If a logical acknowledgment is required, then the tansport layer must know how to accept it from the defined interface. Otherwise, the transport layer can forget that the special message occurred.

Bank-switched NETWRKIF Modules

Because of the size of the SERVER.RSP and NETWRKIF.RSP modules in a CP/NET server, MP/M II servers usually need more common memory than is available on the server system. Because of this, CP/NET users can use only one bank of their systems, completely wasting additional banks that might be used to run auxiliary processes, or as additional disk buffer.

However, you can reduce the common memory requirements of an RSP by breaking it into two modules. One, still named a resident System process, contains only the code and data that must reside in Common memory to allow MP/M II to work. The rest of the module is reformatted, and placed in a banked resident system process (BRS) that can be banked out when it is not executing, allowing its address space to be used by another process.

Process Descriptors and queue control blocks are the only sections of the server code that must reside in common memory. Prepare source module containing the XDOS entry point, all transport Process Descriptors, area for server Process Descriptors, all the NETWRKQIX QCBs, and all NTWRKQOX QCBs.

The first NETWRKIF Process Descriptor still must be allocated immediately after the XDOS entry point for the module, at relative (???). However, this Descriptor's memory segment value should be verifying that a BRS module is associated with it. (???)

If any other processes exist in the NETWRKIF -- for example, watchdog timeout processes -- their Process Descriptors must also be included in this module. Assemble this source module, and link it into RSP format. Name the object module <netprocess>.RSP where <netprocess> is the name of the first Process Descriptor in the module.

Then use the main body of the NETWRKIF source module to form a second source module. Remove all Process Descriptors and QCBs, and place the following header at relative location 0:

rsp\$adr:	ds	2 ; Address of associated RSP
stk\$adr:	dw	stk\$top ; Top of stack containing entry point
brs\$name:	db	' <netprocess>'</netprocess>

where "stk\$top" is the address of the top of the stack for the first process, and <netprocess> matches the name of the associated RSP. This is the standard format for a BRS module; it is described in more detail in the "MP/M II Operating System System Guide".

Because the Process Descriptors and queue control blocks are in a completely separate RSP, they cannot be resolved as simple externals. They must be defined in terms of known offsets from the beginning of <netprocess>.RSP. At run-time, the variable "rsp\$adr" contains a pointer to the beginning of this RSP, placed there by MP/M II's GENSYS utility. Using this pointer and the predefined offsets, required references to these data objects can be resolved.

On startup, the NETWRKIF processes perform the following initialization: Initialize the stack pointer fields in all NETWRKIF Process Descriptors with a pointer to the top of the stack associated with each process. This is not necessary for the first process because GENSYS provides the stack pointer linkage via the header data in the BRS.

The make queue operations the NETWRKIF requires can be complicated because the QCB addresses must be resolved. Once they are, however, update the UQCBs associated with them with those addresses, avoiding the necessity of performing open queue functions.

The NETWRKIF.BRS module requires a different way of referencing the operating system because it does not contain a pointer to the XDOS entry point. The RSP associated with the BRS module, however, does contain such a pointer as its first two bytes. The following subroutine performs operating system calls transparently:

do\$os: lhld rsp\$adr mov a,m inx h mov h,m mov l,a pchl

You must also assemble this module, and link it into RSP format; but name it <netprocess>.BRS.

Banking out the NETWRKIF module alone might raise the BNKXIOS COMMONBASE entry point above the hardware bank-select point, allowing banked operation of MP/M II. If banking out the module does not accommodate this, you can use a patch to convert SERVER.RSP into a banked module in a similar way. The patch is detailed in "CP/NET V1.2 Application Note #2, 11/11/82".

Perform GENSYS with a specified banked system. You can add memory segments to occupy the new banks. The address ranges of the new memory segments are prompted for at the end of GENSYS.

If the number of requesters to be supported still requires more common memory than is available, there is no purpose in implementing a banked version of the server.

A banked-out server has a marginally slower response time because the dispatcher must select the system bank, and because of the added level of indirection in calling the operating system. This degradation, however, is insignificant.

Although banking out the server provides additional user segments under MP/M II, resist the temptation to add additional consoles to the system. Because of the extremely high priority at which the server runs, performance on additional consoles is very poor. However, these extra banks do provide the user with a means of performing occasional jobs directly from the MP/M II level. More importantly, extra segments can enhance the server itself by using special CP/NET messages.

4.3.5 MP/M II Performance Factors Affecting the NETWRKIF

The characteristics of the network for which a server is being implemented influence the architecture of the NETWRKIF and the rest of the server software. Another important factor in designing efficient servers under MP/M II is the nature of MP/M II itself. This section points out the overhead MP/M II incurs in implementing multitasking programming environment.

The heart of the MP/M II operating system is its dispatcher. This routine is entered every time a system call is made. The dispatcher protects system resources, tests for events that could influence the execution of any process in the system, and finally chooses the processes to execute, and their order. The dispatcher takes roughly 900 microseconds to execute, but interrupts are disabled for no longer than 90 microseconds. This overhead is incurred on every system call.

The limitations of the dispatcher alone place some basic constraints on communications speed. If the network is using a serial I/O device capable of buffering three characters at 10 bits per character, then the NETWRKIF had better not rely on a system call like console input to receive network messages if the transmission rate is faster than 33K bits per second and the sender sends characters as fast as possible. Even below this speed, overruns are likely if there are any other processes in the system. This assumes an extremely simple protocol. If the network has extra signal lines, most serial I/O devices permit the receiver to signal a clear to send condition back to the sender. But networks often must work without these extra signals.

Because interrupts are disabled for no longer than 90 microseconds, a network that works at the character-interrupt level functions properly at transmission speeds up to 333K bits per second. Beyond that speed, overruns are likely to occur too often for adequate performance.

At speeds higher than 333K bits per second, the network interface software can use one of three approaches:

- 1) A process can disable interrupts, and perform no system calls, preventing the dispatcher from being entered, and perform its own direct network I/O, character by character.
- 2) The network interface can use DMA to transfer large blocks of message data and perform validity checking after the message has been transferred.
- 3) The network interface can use an intelligent protocol controller that also does DMA or it can map completed messages from its own memory space into MP/M II's memory space.

Serial I/O is not the only possible network transmission medium. The example is provided to acquaint you with the performance of MP/M II.

The amount of time spent in the dispatcher varies depending on a number of factors. Because the dispatcher must check suspended processes against system events, keep the number of processes, queues, flags, and poll calls to a minimum. Poll calls are especially degrading. Every time the dispatcher is entered, it executes every code fragment associated with every outstanding poll call. If all 16 reentrant NETWRKIF processes polled output ports at once, the dispatcher would be very busy. In fact, enough poll calls can lengthen the dispatcher's execution time so much that it exceeds the clock interval. When this happens, the dispatcher is reentered before it has even been exited.

The design of interrupt service routines Must take the structure of the dispatcher into account. ISRs must first of all save the register image of the process they interrupted--the service routine then executes. When the ISR terminates itself, it should restore the interrupted process's registers, and take one of two actions:

1) If the service routine winds up setting a flag, the flag set call to MP/M II should be made, followed by a jump into the dispatcher. This

allows the dispatcher to ready the process waiting on the flag as quickly as possible.

2) If no flag is to be set, the ISR can simply return to the interrupted process.

ISRs should perform no MP/M II system calls except for the Flag Set function. There are two reasons for this. First, ISRs are not processes, so the dispatcher has no way of saving the status of the ISR in a Process Descriptor before allowing the function to be performed. Second, the dispatcher reenables interrupts, and possibly dispatches another process, leaving the ISR and the interrupted process in an indeterminate state. The Flag Set function is specifically recognized by the dispatcher to avoid dispatching a different process.

Several factors determine how often the NETWRKIF and server processes are dispatched. The most obvious is, once again, the number of processes. If MP/M II must share the CPU with more tasks, there is less CPU available. Consider the priority of the various network server processes carefully. All processes in the SERVER module run at a high priority level of 100. processes in the NETWRKIF might require other priorities. In general, assign compute-bound processes lower priorities than I/O-bound processes, to prevent processes that perform few system calls from hogging the CPU.

The dispatcher always schedules processes according to priority. Improperly setting priorities can cause processes to be permanently suspended. For example, consider a NETWRKIF module that performs all direct I/O and busy-waits for network input. Suppose this process has a priority of 60, slightly higher than the server processes. Although the dispatcher is entered every time the system clock ticks, the NETWRKIF is ready. Because the NETWRKIF has a higher priority than the server processes, the server processes never execute.

Note that because of the extremely high priority of the server process, normal user processes running under MP/M II perform very poorly. In addition, the extra process load degrades the server performance. It is recommended that normal workstation terminals not be provided on an MP/M II system that is functioning as a server, although a system console can be convenient for monitoring system performance, and giving the operator a means of maintaining the server's data base.

The last factor affecting the dispatch rate is the system clock frequency. Every time a clock tick occurs, the dispatcher is entered and recomputes the process to be executed next. Processes of equal priority are dispatched on a first come, first served basis. The system clock can be tuned for optimal network performance. There are no general rules on tuning, because each network and the applications run on the network determine the optimal clock period. Experiment with the clock frequency to determine the best performance for the server.

In addition to designing the NETWRKIF for the server system, you might want to reexamine the XIOS used in the system. Many CP/NET users discover that, once their communications system has been optimized, server performance has improved only slightly, because several requesters are forcing the disk system to thrash. Thrashing can be minimized if the XIOS is provided with efficient

blocking/deblocking algorithms, like those discussed in the "MP/M II Operating System System Guide". These algorithms buffer disk accesses, deferring physical Read/Write operations until they are absolutely necessary. As a result, many file record Read/Write operations occur at memory speed, instead of having to wait for physical I/O from a disk drive.

Extra blocking/deblocking buffers can also improve overall server performance enormously. Because a dedicated server only requires a single tiny user program segment, or, in some cases, no user segment at all, almost all additional memory remaining after the server has been implemented can be used for disk buffers. In a bank-switched or memory-managed system, potentially huge amounts of memory can be made available for disk buffers. Providing one or more disk buffers per supported requester potentially eliminates competition between two requesters for buffer resources.

Another way to improve disk performance with limited memory for disk buffers is to limit the number of transactions that can be present in the server at one time. Even if a server is supporting 16 requester sessions, it is possible, for example, to permit only four or five messages to be active at a time. This limit reduces the amount of competition between actual processes, although competition continues between individual transactions. Quite often, however, the overhead incurred by refusing network messages, and forcing requesters to retransmit them, is considerably less than the overhead incurred by repeatedly having to flush disk buffers for use and reuse by individual processes.

You can estimate the average number of disk accesses an application program is likely to perform in a short time. The NETWRKIF processes can then selectively transport messages from only one requester for a short amount of time, then service another requester for an equal amount of time. The scheme allows a single process to take maximum advantage of the blocking and deblocking algorithms implemented in the server's XIOS. The major disadvantage of such a scheme is that it is extremely complex and difficult to implement efficiently. Carefully tuned, however, it can greatly improve performance.

4.3.6 Generating the NETWRKIF

To create the MP/M II server, perform the following steps:

If the XIOS has been modified, generate a new version of RESXIOS.SPR or BNKXIOS.SPR or BNKXIOS.SPR, according to the instructions provided in the "MP/M II Operating System System Guide".

Assemble and link the NETWRKIF module: A>RMAC NETWRKIF A>LINK NETWRKIF[NR,OR]

The linker generates the NETWRKIF.RSP file.

If RMAC and LINK are not available, you must use ASM, PIP, and GENMOD, as shown below:

Assemble with ORG 0000H. A>ASM NETWORKIF A>REN NTWRK0.HEX=NETWRKIF.HEX

Now, edit the NETWRKIF.ASM ORG statement to locate the module at 100 hex.

Assemble with ORG 0100H. A>ASM NETWRKIF A>REN NTWRK1.HEX=NETWRKIF.HEX

Concatenat the HEX files. A>PIP NETWRKIF.HEX=NTWRKO.HEX,NTWRK1.HEX

Generate the NETWRKIF RSP file. A>GENMOD NETWRKIF.HEX NETWRKIF.RSP

Copy the following files to the server boot disk.

SERVER.RSP = Server process Module NETWRKIF.RSP = Custom Network Interface Process MAIL.COM = Mail Utility

Perform a GENSYS on the MP/M II system. The GENSYS must include the SERVER.RSP file and the customized NETWRKIF.RSP; it can also include the SPOOL.RSP.

When GENSYS asks for the number of consoles, do not include the consoles (character I/O drivers) that support the requesters. Usually, the response is "1".

You must also configure the file system for the types of applications CP/NET runs, enable compatibility attributes, if necessary, and so on. These issues are discussed in the "MP/M II Operating System System Guide".

4.3.7 Debugging the NETWRKIF

The MP/M II server is now ready to be debugged. There are three general strategies for debugging the server.

Debugging MP/M II Under CP/M

To debug MP/M II under CP/M, follow these steps:

GENSYS the MP/M II with the top of memory set below where a CP/M system running on the same hardware would reside when it is running DDT, SID, or ZSID.

Boot up CP/M on the server target computer system.

Run MPMLDR under the debugger. You can halt the loader just before passing control to MP/M II through the following sequence:

A>DDT MPMLDR.COM *I\$B *G

When the loader breaks, you can insert breakpoints, and restart the loader.

When using this method, remember that, because CP/M is a single-tasking operating system, the entire CP/M operating system becomes part of the process in which a breakpoint is inserted every time the system encounters a breakpoint. Furthermore, DDT and SID reenable interrupts on breakpoints. If a clock tick goes off, the MP/M II dispatcher is likely to suspend CP/M and continue with other processing. This might not inconvenience you, because the process that was breakpointed is also suspended. If it does affect the operation of the system, you might have to disable the system clock.

Debugging the NETWRKIF as a COM file

The example in Appendix E is set up to debug the NETWRKIF as a COM file.

Debugging instructions are also included in Appendix E.

Inserting Trace Code Into the NETWRKIF

Gather run-time statistics by inserting trace code into the NETWRKIF. Although this is not very helpful for debugging real-time problems, it is the least destructive method of gathering real-time statistics. This method can also be useful when tuning the network for increased performance.

4.4 Implementing Non-MP/M II Servers

It is possible to implement a CP/NET server on any computer system, under any operating system. There are several reasons why you might choose another operating system:

MP/M II servers limit the number of requesters to 16. You might want more than 16 workstations to have access to a common database.

You might require higher performance levels. The high speed of a mainframe CPU can substantially increase CP/NET performance.

You might want your system to take advantage of the large base of CP/M applications programs, but maintain its files under another operating system.

Or you might want to create a gateway to one of the other commercially available network systems. A special server could translate CP/NET messages into an appropriate format for the other network.

The module SERVER.RSP cannot be used on a different processor or under a different operating system. So, you must not only create the equivalent of the NETWRKIF for the target computer system; you must also write the logical portion of the server.

The server processes under MP/M II act essentially as a proxy for the requester assigned to them. For example, the requester wants to open a file on a networked drive but it does not have access to the operating system controlling that drive. Instead, the requester sends a message to a server process that does have direct access to the controlling operating system, and asks that process to open the file for the requester. The server obligingly performs the operation for the requester, and tells it what happened. This is often referred to as a ghosted process model of a server, because the operating system thinks it is running the entire application program as a process, while in fact the application is running somewhere else, but has a friend to help out.

Using the logical messages included in this manual, you can write a ghosted process server for CP/NET under almost any multitasking operating system. You can even write a CP/NET server under a single-tasking operating system. (CP/NET servers have actually been implemented under CP/M.)

The basic elements of such a server are:

- A communications interface.
- A function interpreter. This module must interpret the logical messages sent by the CP/NET requester and take the appropriate action.
- A file system translator. This module must convert CP/M BDOS File Control Blocks passed by the requester into native operating system File Control Blocks.
- An operating system interface. This module must translate a CP/NET function that corresponds exactly to a function supported by MP/M II into a function or set of functions supported by the native operating system.

Each of these functional modules varies depending on the environment under which it is forced to execute. The communications interface is governed by the types of process architectures the target operating system can support. The remaining modules can be a set of reentrant processes, as they are under MP/M II, or they can be a single process that keeps track of the requester it is currently servicing. If the latter method is used, the server must keep track of such context sensitive information as directory search first/search next information, and shared files.

It might not be possible to support all CP/M functions under a non-MP/M II server. If this is the case, choose applications that do not require the use of the unsupportable functions.

Finally, it might be necessary to have several different computer systems and operating systems acting as servers in the same network. It is best to make

the server implementation as portable as possible. Implementing the server in a high-level language is a first step to portability.

Making the system highly modular can improve its portability. For example, break the communications interface into a hardware interface module, a data link module, a network module, and a transport module. All of these modules, with the exception of the hardware interface, can port to different systems with minimal modification.

The server's function interpreter should be completely portable, but you will probably have to rewrite the file system interpreter and the operating system interface modules.

Appendix A: CP/NOS Overview

A.1 overview

CP/NOS is a version of the CP/M operating system that performs all file handling across a CP/NET network system. CP/NOS supports one local console and one local printer, but it supports only remote mass storage media. Because of this, the BDOS and BIOS modules in a CP/NOS system are considerably smaller than their counterparts in a standard CP/M system. This allows CP/NOS to fit in a fairly small (usually 4K bytes) Read-Only Memory, so you do not need a bootstrap loader. CP/NOS can also be downloaded from a server. Using a small loader, you can also download a CP/NOS system from a centralized server.

Programs written under any CP/M 2.x system are fully compatible with a comparable CP/NOS system, provided that mass storage devices referenced by the application are available across the network. When BDOS calls that service, these devices are automatically translated into network functions.

Unlike CP/NET, CP/NOS cannot be loaded under an existing CP/M system. The network modules and CP/M modules must be linked together and executed in a stand-alone environment. The special problems this creates in debugging CP/NOS are discussed in this appendix.

A.2 System Requirements

CP/NOS can run on an 8080, 8085, or Z-80 microprocessor, with a maximum of 64K of memory. A usual CP/NOS system can be placed in a 4K ROM.

The CP/NOS requester must be networked to an MP/M II server. The server is the same as the one used by CP/NET. CP/NOS and CP/NET requesters can even be networked to the same server.

A.3 Customizing CP/NOS

Three of the modules incorporated in CP/NOS are system dependent, and must be modified to work on a particular hardware configuration. They are the CPBIOS, CPNIOS, and NETWRKIF modules.

The CPBIOS can be exactly the same as the BIOS used in a CP/M system that runs on the same hardware, except that only a small portion of the BIOS is required. The only routines required are:

BOOT cold start CONST read console status CONIN read console character CONOUT write console character LIST write character to the list device LISTST read list device status

The CPBIOS jump vector must be the same as that of a regular BIOS, but all other entry points can be null.

The CPNIOS module takes the place of the SNIOS module in CP/NET, and requires only minimal modification. The only difference is that all variables must be initialized upon cold start, including the requester configuration table. The utilities NETWORK and LOGIN are not sufficient to define the configuration table after cold start, because CP/NOS has no local disk drives from which to load these utilities. The CPNIOS must also prompt the user for login information upon cold start, or a warm boot results in continuous requester not logged in extended errors, as the CP/NOS requester tries to load the file CCP.SPR from a server that has no knowledge of the requester.

The SNIOS example in Appendix E contains a sample CPNIOS, conditionally assembled out. To obtain the CPNIOS version, equate the literal CPNOS to true.

Note: If the two preceding routines are to reside eventually in ROM, all variable data must be contained in data segments, and cannot be initialized at run-time. Initializing values must reside in a code segment, and they must be copied down to their corresponding data segment locations at cold start. The assembly of these modules requires an assembler capable of supporting separate code and data segments; the segments must be assembled into REL file format. Use RMAC with 8080 source files.

The NETWRKIF module resides on the server, and is identical to the NETWRKIF required to support CP/NET. See Section 4.3 for a discussion of NETWRKIF preparation.

A.4 Building the CP/NOS System

To generate a CP/NOS system ready for insertion into ROM, follow these steps:

- 1) Assemble the modules CPBIOS and CPNIOS.
- 2) Link the following modules together in the order shown, using LINK-80: CPNOS, CPNDOS, CPNIOS, CPBDOS, CPBIOS

Locate the code segment where the ROM sits in the address space of the finished system. At least 1K (400 hexadecimal bytes) of RAM must be allocated for data segments. If the code segments are to be loaded into high memory (at 0F000H for a 4K system), data must be explicitly linked, using the D option, at least 1K in front of the code segments. For example,

A>LINK CPNOS, CPNDOS, CPNIOS, CPBDOS, CPBIOS[LF000, DEC00]

These two steps produce an executable CP/NOS, capable of being programmed into ROM. At this stage, however, the system cannot be debugged from CP/M.

A.5 Debugging the System

You can create a version of CP/NOS that can be cold started from CP/M if a CP/M system with 64K RAM is available. First, type the following commands:

A>RMAC CPNIOS A>RMAC CPBIOS A>LINK CPNOS,CPNDOS,CPNIOS,CPBIOS,CPBIOS[LF000,DEC00] A>GENHEX MVCPN0S 0100 A>GENHEX CPNOS 0200 A>PIP LDCPNOS.HEX=MVCPNOS.HEX[I],CPNOS.HEX[H] A>LOAD LDCPNOS

This procedure produces a file LDCPNOS.COM that is directly executable from CP/M. LDCPNOS relocates the CPNOS module to location 0F000H, and passes control to it, destroying CP/M and replacing it with CP/NOS.

Because CP/M is destroyed by this procedure, it is not advisable to run LDCPNOS under software debugger like DDT or SID, although you can run LDCPNOS under an In-Circuit Emulator. To run CP/NOS under DDT or SID, use the following procedure: Link CPNOS so that all code and data reside below the address specified as END when the debugger is brought up:

A>LINK CPNOS, CPNDOS, CPNIOS, CPBDOS, CPBIOS[L<org>, D<org-400H>]

where <org> is the link origin.

A>DDT CPNOS.COM

Relocate CPNOS from location 100, where DDT loads it, to its link origin:

-M100,<100+next-1>,<org>

where "next" is the field specified by NEXT when the debugger loads CPNOS.COM, and <org> is the link origin.

Begin execution with appropriate diagnostics:

-G<org>

where <org> is the link origin.

FMTDIDSIDFNCSIZMSG

Figure B-1. CP/NET 1.2 Logical Message Format

FMT = Message format code DID = Message destination processor ID SID = Message source processor ID FNC = MP/M function code SIZ = Data field length - 1 MSG = Actual message, SIZ + 1 bytes long

 Table B-1. Message Field Length Table (???)
 1

 FMT CODE FMT DID SID FNC-siz MSG Comment

 00
 111
 1
 1-256
 Preferred format

 01
 111
 1
 1-256
 Returned result

 02
 111
 1
 2
 1-65536

 03
 111
 1
 2
 1-65536

 03
 111
 1
 1-256

 04
 122
 1
 1-256

 05
 122
 1
 1-256

06 122 1 2 1-65536

07 122 1 2 1-65536 Returned result

Appendix C: CP/NET 1.2 Logical Message Specifications

Messages for all CP/NET functions are defined in this appendix. These messages are logical messages. Any implementation of the SNIOS or NETWRKIF modules must always present messages to the ENDOS or SERVER modules in the form presented here.

You must adhere to these formats when implementing a server that runs under an operating system other than MP/M II.

Notes: ss = Server ID rr = Requester ID xx = Don't care byte nn = Value specified All numeric values are in hexadecimal. All functions capable of returning extended errors are marked *EE*. Extended errors are returned with the following mesage format: Siz = MSG(0) = FF MSG(1) = Extended Error Code Any message can return the server not logged in or function not implemented on server extended error, extended error 0C.

FMTDIDSIDFNCSIZMSG SYSTEM RESET: NOT IMPLEMENTED AT SERVER 00ssrr00000-00 = xx01rrss000100-00 = 0FFh01-01 = 00Ch CONSOLE INPUT: NOT IMPLEMENTED AT SERVER 00ssrr010000-00 = xx01rrss000100-00 = 0FFh01-01 = 00Ch CONSOLE OUTPUT: NOT IMPLEMENTED AT SERVER 00ssrr020000-00 = xx01rrss000100-00 = 0FFh01-01 = 00Ch **RAW CONSOLE INPUT:** 00ssrr030000-00 = Server Console # 01rrss03000-00 = Character Input **RAW CONSOLE OUTPUT:** 00ssrr040100-00 = Server Console # 01-01 =Character to Output 01rrss040000-00 = 00LIST OUTPUT: 00ssrr05nn00-00 = Server List # 01-nn = Characters to List Device (nn = 01 to 80) 01rrss05000-00 = 00DIRECT CONSOLE I/O: NOT IMPLEMENTED AT SERVER 00ssrr060000-00 = xx01rrss000100-00 = 0FFh01-01 = 00Ch GET I/O BYTE: NOT IMPLEMENTED AT SERVER

00ssrr070000-00 = xx

01rrss000100-00 = 0FFh01-01 = 00Ch SET I/O BYTE: NOT IMPLEMENTED AT SERVER 00ssrr080000-00 = xx01rrss000100-00 = 0FFh01-01 = 00Ch **PRINT STRING:** NOT IMPLEMENTED AT SERVER 00ssrr090000-00 = xx01rrss000100-00 = 0FFh01-01 = 00Ch **READ CONSOLE BUFFER:** NOT IMPLEMENTED AT SERVER 00ssrr0A0000-00 = xx01rrss000100-00 = 0FFh01-01 = 00Ch GET CONSOLE STATUS: 00ssrr0B0000-00 = Server Console # 01rrss0B0000-00 = Console Status Byte **RETURN VERSION NUMBER:** NOT IMPLEMENTED AT SERVER 00ssrr0C0000-00 = xx01rrss000100-00 = 0FFh01-01 = 00Ch **RESET DISK SYSTEM:** NOT IMPLEMENTED AT SERVER 00ssrr0D000-00 = xx01rrss000100-00 = 0FFh01-01 = 00Ch SELECT DISK: *EE* 00ssrr0E0000-00 = Selected Disk01rrss0E0000-00 = Return Code**OPEN FILE:** *EE* 00ssrr0F2C00-00 = User Number01-24 = FCB25-2C = Password01rrss0F2400-00 = Directory Code

01-24 = FCB

CLOSE FILE: *EE* 00ssrr102C00-00 = User Number 01-24 = FCB25-2C = Not Used01rrss102400-00 = Directory Code01-24 = FCBSEARCH FOR FIRST: *EE* 00ssrr112500-00 = Current Disk if MSG(2) 1?1 01-01 =User Number 02-25 = FCB01rrss112000-00 = Directory Code01-20 = Directory Entry SEARCH FOR NEXT: *EE* 00ssrr120100-00 = xx01-01 =User Number 01rrss122000-00 = Directory Code01-20 =Directory Entry DELETE FILE: *EE* 00ssrr132400-00 = User Number01-24 = FCB01rrss130000-00 = Directory Code**READ SEQUENTIAL: *EE*** 00ssrr142400-00 = User Number 01-24 = FCB01rrss14A400-00 = Return Code01-24 = FCB25-A4 =Sector of Data Read WRITE SEQUENTIAL: *EE* 00ssrr15A400-00 = User Number01-24 = FCB25-A4 = Sector of Data to Write 01rrss152400-00 = Return Code01-24 = FCBMAKE FILE: *EE*

00ssrr162400-00 = User Number01-24 = FCB

01rrss162400-00 = Directory Code01-24 = FCB RENAME FILE: *EE* 00ssrr172400-00 = User Number 01-24 = FCB in RENAME format

01rrss170000-00 = Directory Code

RETURN LOGIN VECTOR: 00ssrr180000-00 = xx

01rrss180100-01 = Login Vector

RETURN CURRENT DISK: NOT IMPLEMENTED AT SERVER 00ssrr190000-00 = xx

01rrss000100-00 = 0FFh01-01 = 00Ch

SET DMA ADDRESS: NOT IMPLEMENTED AT SERVER 00ssrr1A0000-00 = xx

01rrss000100-00 = 0FFh01-01 = 00Ch

GET ALLOCATION VECTOR ADDRESS: 00ssrr1B0000-00 = Current Disk

01rrss1BFF00-FF = Allocation Vector

WRITE PROTECT DISK: 00ssrr1C0000-00 = Current Disk

01rrss1C0000-00 = 00

GET R/O VECTOR: 00ssrr1D0000-00 = xx

01rrss1D0100-01 = R/O Vector

SET FILE ATTRIBUTES: *EE* 00ssrr1E2400-00 = User Number 01-24 = FCB with File Attributes Set

01rrss1E0000-00 = Directory Code

GET DISK PARAMETER ADDRESS: 00ssrr1F0000-00 = Current Disk

01rrss1F0F00-0F = Disk Parameter Block

SET/GET USER CODE: NOT IMPLEMENTED AT SERVER 00ssrr200000-00 = xx 01rrss200100-00 = 0FFh 01-01 = 00Ch

- READ RANDOM: *EE* 00ssrr212400-00 = User Number 01-24 = FCB
- 01rrss21A400-00 = Return Code01-24 = FCB25-A4 = Sector of Data Read
- WRITE RANDOM: *EE* 00ssrr22A400-00 = User Number 01-24 = FCB 25-A4 = Sector of Data to Write
- 01rrss222400-00 = Return Code 01-24 = FCB
- COMPUTE FILE SIZE: *EE* 00ssrr232400-00 = User Number 01-24 = FCB
- 01rrss232400-00 = Return Code 01-24 = FCB
- SET RANDOM RECORD: 00ssrr242400-00 = User Number 01-24 = FCB
- 01rrss242400-00 = Return Code 01-24 = FCB
- RESET DRIVE: 00ssrr250100-01 = Drive Vector
- 01rrss250000-00 = Return Code
- ACCESS DRIVE: *EE* 00ssrr260100-01 = Drive Vector
- 01rrss260000-00 = Return Code
- FREE DRIVE: 00ssrr270100-01 = Drive Vector
- 01rrss270000-00 = Return Code
- WRITE RANDOM WITH ZERO FILL: *EE* 00ssrr28A400-00 = User Number 01-24 = FCB 25-A4 = Sector of Data to Write

01rrss282400-00 = Return Code 01-24 = FCB

UNLOCK RECORD: *EE* 00ssrr2B2600-00 = User Number 01-24 = FCB 25-26 = File ID

01rrss2B2400-00 = Return Code 01-24 = FCB

SET BDOS ERROR MODE: NOT IMPLEMENTED AT SERVER 00ssrr2D0000-00 = xx

01rrss2D0100-00 = 0FFh01-01 = 00Ch

LOGIN: 00ssrr400700-07 = Password, 8 ASCII Chars

01rrss400000-00 = Return Code

LOGOFF: 00ssrr410000-00 = xx

01rrss410000-00 = Return Code

SEND MESSAGE ON NETWORK: NOT IMPLEMENTED AT SERVER 00ssrr42xx00-FF = xx

01rrss000100-00 = 0FFh01-01 = 00Ch

RECEIVE MESSAGE ON NETWORK: NOT IMPLEMENTED AT SERVER 00ssrr430000-00 = xx

01rrss000100-00 = 0FFh01-01 = 00Ch

GET NETWORK STATUS: NOT IMPLEMENTED AT SERVER 00ssrr440000-00 = xx

01rrss000100-00 = 0FFh01-01 = 00Ch

GET CONFIGURATION TABLE ADDRESS: NOT IMPLEMENTED AT SERVER 00ssrr450000-00 = xx

01rrss000100-00 = 0FFh

01-01 = 00Ch

SET COMPATIBILITY ATTRIBUTES 00ssrr460000-00 = Compatibility Attributes

01rrss460000-00 = xx

RETURN SERVER CONFIGURATION 00ssrr470000-00 = xx

01rrss471600-00 = Server Temporary File Drive 01-01 = Server Status Byte 02-02 = Server ID 03-03 = Maximum Number of Requesters 04-04 = Number Logged In 05-06 = Login Vector 07-16 = Requester ID's

SET DEFAULT PASSWORD 00ssrr6A0700-07 = Default Password to be Set

01rrss6A0000-00 = Return Code

Appendix D: NDOS Function Summary

Table D-1. NDOS Functions

Code Function Name Input Parameters Output Results _____ ----DE = Drive Vector none 38 Access Drive 39Free DriveDE = Drive Vectornone42Lock RecordDE = FCB AddressA = Err Code43Unlock RecordDE = FCB AddressA = Err Code 45 Set BDOS Error Mode E = Error Modenone 64 Login See definition A = Err Code65 Logoff E = Server IDnone 66 Send Message on Ntwrk DE = Message Adr A = Err Code67 Receive Msg from Ntwk DE = Message Adr A = Err Code68Get Network StatusnoneA = Status byte69Get Config Table AdrnoneHL = Table Adr70Set Compat. Attrs.E = attributesnone 71 Get Server Config. E = Server ID HL = Table Adr 106 Set Default Password See definition none

Appendix E: A Simple RS-232C CP/NET System

Digital Research developed a relatively simple RS-232C point to-point protocol to provide a demonstration vehicle for CP/NET, and to encourage compatibility among hardware vendors. The protocol, as implemented in the sample SNIOS and NETWRKIF in this appendix, breaks the logical message into a fixed header and

a variable length data portion, the size of which is obtained from the fixed header. This simplifies operation with DMA channels that need terminal counts, and also provides a checksum for the header that contains the SIZ field.

This protocol can be implemented between any requester and server that support an extra RS-232 console port.

E.1 Protocol Handshake

The protocol handshake is detailed in Figure E-1.

Figure E-1. Protocol Handshake

E.2 Binary Protocol Message Format

Data integrity for this protocol is maintained by a simple checksum, shown in Figure E-2, on both the header and the actual message.

Figure E-2. Binary Protocol Message Format

Message format codes 00 & 01 are recommended.

Field Description:

ENQ = Enquire, one byte, 05H.

SOH = Start of Header, one byte, 01H.

FMT,DID,SID,FNC,SIZ = as defined in Appendix A, one byte per field.

HCS = Header Checksum, one byte. This is a simple horizontal checksum, computed by adding together all the bytes of the message, starting with the SOH, to the SIZ byte of the header field modulo 256, complementing the result, and adding one. The entire message, from the SOH to and including the HCS, should add up to zero.

STX = Start of Data, one byte, 02H.

MSG = SIZ + 1 byte long.

ETX = End of Data, one byte, 03H.

- CKS = Checksum, one byte. This is a simple horizontal checksum, computed by adding together all the bytes of the message, starting with the STX, to the last byte of the MSG field modulo 256, complementing the result, and adding one. The entire message, from the STX to and including the CKS, should add up to zero.
- EOT = End of Transmission, one byte, 04H.

E.3 ASCII Protocol Message Format

If the RS-232 link is not capable of transmitting 8-bit binary data, you might have to transmit each nibble of the message as a 7 bit ASCII character.

Note: The 7-bit ASCII network protocol is identical to the 8-bit protocol

except that it requires twice as many bytes because each byte is transmitted in hexadecimal ASCII format.

The ASCII network protocol message format is detailed in Figure E-3.

Figure E-3. ASCII Protocol Message Format

Message format codes 00 & 01 are recommended.

Field Description:

- ENQ = Enquire, one byte, 05H.
- SOH = Start of Header, one byte, 01H.
- FMT,DID,SID,FNC,SIZ = as defined in Appendix A, two bytes per field.
- HCS = Header Checksum, 2 bytes (Hex-ASCII). This is a simple horizontal checksum. It is computed by adding together all the bytes of the message, starting with the SOH, to the SIZ of the header field modulo 256, complementing the result, and adding one. The entire message, from the SOH to and including the HCS, should add up to zero.
- STX = Start of Data, one byte, 02H.
- MSG = 2 * (SIZ + 1) bytes long.
- ETX = End of Data, one byte, 03H.
- CKS = Checksum, two bytes (Hex-ASCII) . This is a simple horizontal checksum. It is computed by adding together all the bytes of the message, starting with the STX, to the last byte of the MSG field modulo 256, complementing the result and adding one. The entire message, from the FMT to and including the CKS, should add up to zero. EOT = End of Transmission, one byte, 04H.

E.4 Modifying the SNIOS

The sample SNIOS can be modified for almost any requester that has a spare console port. To do so, follow these steps:

Obtain assembled listings of the SNIOS.ASM source file that require modification. You can use MAC, RMAC, or ASM. If you use ASM, the title, name, if, and else statements must be removed from the source files to assemble correctly. Using RMAC is highly recommended, because it simplifies the task of generating the SPR files when used in conjunction with LINK. Otherwise, the SPR files must be generated in the same manner as for MP/M II XIOS.SPR generation.

A>RMAC SNIOS

Study the SNIOS.PRN listing. Notice the ASCII equate. If true, it specifies that the message format is 7-bit ASCII. If false, it specifies a binary 8-bit message format. The ASCII mode is sometimes useful in debugging, but in practice do not use it where it is possible to transmit 8-bit serial data.

The only code that requires modification in the SNIOS.ASM file is contained in the CHAROUT, CHARIN, and DELAY procedures. The CHAROUT and CHARIN procedures can be conditionally assembled for a Dynabyte DB8/2, now called DB8/5200, a

Digital Microsystems DSC-2 or an ALTOS 8000-2. The NOPs in the CHAROUT procedure are simply padding, so the length of the DB8/2 SNIOS and DSC-2 SNIOS is the same, which helps in the debugging of these two versions.

Perhaps the most critical area in the SNIOS that requires adjustment for a specific network configuration is in the timeout code of the CHARIN procedure. If too little time is allowed, the server might not be able to complete the function because of a heavy request load from the requesters. If too much time is specified, communication breaks on the network can go undetected for a period of time, making both error recovery and precise detection difficult. Note that this is a logical timeout, not a data-link timeout. The logical timeout determines how long the requester expects the server to take between the time it receives the message and the time it returns a response message.

Another critical parameter that requires adjustment for different environments is ALWAYS\$RETRY. This equate, when true, controls conditional assembly that always produces retries on network failures. In this mode of operation, it is possible to recover from broken communication between the requester and a server. However, ALWAYS\$RETRY does hang the requester in a busy retry mode when failures occur.

Listing E-1: Request Network I/O System

CP/M RMAC ASSEM 1.1 #001 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

1	title 'Requester Network I/O System for CP/NET 1.2'
2	page 54
3	
4	***************************************
5	***************************************
6	** **
7	;** Requester Network I/O System **
8	** **
9	***************************************
10	·*************************************
11	
12	;/*
13	; Copyright (C) 1980, 1981, 1982
14	; Digital Research
15	; P.O. Box 579
16	; Pacific Grove, CA 93950
17	;
18	; Revised: October 5, 1982
19	;*/
20	
21 0000 =	false equ 0
22 FFFF =	true equ not false
23	
24 0000 =	cpnos equ false ; cp/net system
25	
26 0000 =	DSC2 equ false
27 0000 =	DB82 equ false
28 FFFF =	Altos equ true

30FFFF =always\$retryequtrue; force continuous retries31320000 =modemequfalse33340000 =ASCIIequfalse35360000 =debugequfalse	
$32 0000 = modem equ false$ $33 \\ 34 0000 = ASCII equ false$ $35 \\ 36 0000 = debug equ false$	
$\begin{array}{rcl} 33\\ 34&0000 = & ASCII equ false\\ 35\\ 36&0000 = & debug equ false \end{array}$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
$36 \ 0000 =$ debug equ false	
37	
38 CSEG	
39 if cpnos	
40 extrn BDOS	
41 else	
$42 \ 0005 = BDOS \ equ \ 0005h$	
43 endif	
44	
45 NIOS:	
46 public NIOS	
47 ; Jump vector for SNIOS entry points	
48 0000 C3A900 jmp ntwrkinit ; network initialization	
49 0003 C3B800 jmp ntwrksts ; network status	
50 0006 C3C300 jmp cnfgtbladr ; return config table addr	
51 0009 C3C700 jmp sendmsg ; send message on network	
52 000C C33301 jmp receivemsg ; receive message from network	
53 000F C3DD01 jmp ntwrkerror ; network error	
54 0012 C3DE01 jmp ntwrkwboot ; network warm boot	

CP/M RMAC ASSEM 1.1 #002 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

55				
56		if	DB82	
57		slave\$ID	equ	12h ; slave processor ID number
58		endi	f	-
59		if	DSC2	
60		slave\$ID	equ	34h
61		endi	f	
62		if	Altos	
63	0056 =	slave\$	SID equ	56h
64		endi	f	
65				
66		if	cpnos	
67		; Initi	al Slave Co	nfiguration Table
68		Initconfig	tbl:	
69		db	0000\$000	0b ; network status byte
70		db	slave\$ID	; slave processor ID number
71		db	84h,0	; A: Disk device
72		db	81h,0	; B: "
73		db	82h,0	; C: "
74		db	83h,0	; D: "
75		db	80h,0	; E: "
76		db	85h,0	; F: "
77		db	86h,0	; G: "
78		db	87h,0	; H: "

79	db	88h,0	; I: "
80	db	89h,0	; J: "
81	db	8ah,0	; K: "
82	db	8bh,0	; L: "
83	db	8ch,0	; M: "
84	db	8dh,0	; N: "
85	db	8eh,0	; O: "
86	db	8fh,0	; P: "
87	db	0,0	; console device
88	db	0,0	; list device:
89	db	0	; buffer index
90	db	0	; FMT
91	db	0	; DID
92	db	slave\$ID	; SID
93	db	5	; FNC
94	initcfglen	equ \$-init	configtbl
95	endif		
96			
97	0000 = default	master ec	ju 00h
98			
99	wboot\$ms	g:	; data for warm boot routine
100	0015 3C5761726D	db	"
101	0020 24 d	b '\$'	
102			
103	networker	rmsg:	
104	0021 4E6574776F	db	'Network Error'
105	002E 24 d	lb '\$'	
106			
107			
108	page		
	1 -		

CP/M RMAC ASSEM 1.1 #003 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

109 110 111	DSEG	
112 113 114 115	; Slave Cor configtbl:	figuration Table
115	Network\$status	::
117 0000	ds 1	; network status byte
118 0001	ds 1	; slave processor ID number
119 0002	ds 2	; A: Disk device
120 0004	ds 2	; B: "
121 0006	ds 2	; C: "
122 0008	ds 2	; D: "
123 000A	ds 2	; E: "
124 000C	ds 2	; F: "
125 000E	ds 2	; G: "
126 0010	ds 2	; H: "
127 0012	ds 2	; I: "
128 0014	ds 2	; J: "

129	0016	ds	2	; K:	"
	0018	ds	$\frac{1}{2}$; L:	"
131		ds	2	; M	
132		ds	2	; N:	
133		ds	2	; O:	
134	0020	ds	2	; P:	"
135					
136	0022	ds	2	; cor	nsole device
137					
138	0024	ds	2	; list	device:
139	0026	ds	1	;	buffer index
140	0027 00	db	0	;	FMT
141	0028 00	db	0	;	DID
142	0029 56	db	Slave\$I	D	; SID (CP/NOS must still initialize)
143	002A 05	db	5	;	FNC
144	002B	ds	1	;	SIZ
145	002C	ds	1	;	MSG(0) List number
146	002D	ds	128	;	MSG(1) MSG(128)
147					
148		msg\$adr:			
	00AD	ds	2	; m	lessage address
150			odem		
151			ies equ 0		; timeout a max of 256 times
152		else			
153	0064 =		retries equ	100	; timeout a max of 100 times
154	0004	endif			
155	000A =		ries equ 10)	; send message max of 10 times
156	0045	retry\$count:			
157	00AF	ds	1		
158					
159		FirstPass:	0.07		
160	00B0 FF	db	Offh		
161					
162		; Networ	k Status B	yte E	quates

CP/M RMAC ASSEM 1.1 #004 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

163		;					
164	0010 =		active	e	equ	0001\$0000b	; slave logged in on network
165	0002 =		rcverr	e	equ	0000\$0010b	; error in received message
166	0001 =		sender	r	equ	0000\$0001b	; unable to send message
167							
168		;	Gene	eral Eq	uates		
169		;					
170	0001 =		SOH	equ	01h	; Start	of Header
171	0002 =		STX	equ	02h	; Start	of Data
172	0003 =		ETX	equ	03h	; End o	of Data
173	0004 =		EOT	equ	04h	; End o	of Transmission
174	0005 =		ENQ	equ	05h	; Enqu	ire
175	0006 =		ACK	equ	06h	ı ; Ackn	lowledge
176	000A =		LF	equ	0ah	; Line F	Feed
177	000D =		CR	equ	0dh	; Carria	ige Return
178	0015 =		NAK	equ	15h	n ; Nega	tive Acknowledge
				-		-	-

```
file:///C|...1\% 20 Roche\% 20 DRI\% 20 documents\% 20 conversion/CP\% 20 NET-80\% 20 Version\% 201.2\% 20 Reference\% 20 Manual/CPNETRM.TXT [2/6/2012 4:07:51 PM]
```

179		
180 0002	2 = conout equ 2	; console output function
181 0009	1 1	; print string function
182 0043	3 = rcvmsg equ 67	; receive message NDOS function
183 0040	$0 = \log in equ 64$; Login NDOS function
184		
185	; I/O Equates	
186	;	
187	if DB82	
188	stati equ 83h	
189	mski equ 08h	
190	dprti equ 80h	
191		
192	stato equ 83h	
193	msko equ 10h	
194	statc equ 81h	
195	mskc equ 20h	
196	dprto equ 86h	
197	endif	
198	if DSC2	
199 200	if modem	
200 201		
201 202	stati equ 59h mski equ 02h	
202	dprti equ 58h	
203	upiti equi 581	
204	stato equ 59h	
205	msko equ 01h	
207	dprto equ 58h	
208	else	
209	stati equ 51h	
210	mski equ 02h	
211	dprti equ 50h	
212		
213	stato equ 51h	
214	msko equ 01h	
215	dprto equ 50h	
216	endif	

CP/M RMAC ASSEM 1.1 #005 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

217		endif
218		
219		if Altos
220	001F =	stati equ 1fh
221	0001 =	mski equ 01h
222	001E =	dprti equ 1eh
223		
224	001F =	stato equ 1fh
225	0004 =	msko equ 04h
226	001E =	dprto equ 1eh
227		endif
228		

229

```
230
231
```

page

CP/M RMAC ASSEM 1.1 #006 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

232	
233	CSEG
234	; Utility Procedures
235	
236	delay: ; delay for c[a] * 0.5 milliseconds
237 002F	•
238	delay1:
239 0031	•
240	delay2:
241 0033	•
	C23300 jnz delay2
243 0037	5 5
	C23100 jnz delay1
245 003B	5 5
246	
247	if ASCII
248	Nibsout: ; A = nibble to be transmitted in ASCII
249	cpi 10
250	jnc nibAtoF ; jump if A-F
251	adi '0'
252	mov c,a
253	jmp Char\$out
254	nibAtoF:
255	adi 'A'-10
256	mov c,a
257	jmp Char\$out
258	endif
259	
260	Pre\$Char\$out:
261 003C	
262 003D	
263 003E	
264	
265	nChar $out:$; C = byte to be transmitted
266	if Altos
267 003F	3E10 mvi a,10h
	D31F out stato
269	endif
270 0043	DB1F in stato
271 0045	E604 ani msko
	CA3F00 jz nChar\$out
273	·
274	if DB82
275	in statc
276	ani mskc
277	jz nChar\$out
278	endif

279		
280	if DSC2	
281	nop	; these NOP's make DB8/2 & DSC2
282	nop	; versions the same length - saves
283	nop	; a second listing
284	nop	
285	nop	

CP/M RMAC ASSEM 1.1 #007 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

286 287	nop nop
288	endif
289	
	004A 79 mov a,c
	004B D31E out dprto
	004D C9 ret
293	;
294	Char\$out:
295	004E CD3F00 call nChar\$out
296	if Altos
297	0051 E3E3E3E3 xthl! xthl! xthl! xthl
298	0055 E3E3E3E3 xthl! xthl! xthl! xthl
299	0059 E3E3E3E3 xthl! xthl! xthl! xthl ;delay 54 usec
	005D C9 ret
301	else
302	jmp delay ; delay after each Char sent to Mstr
303	; ret
304	endif
305	
306	if ASCII
307	Nib\$in: ; return nibble in A register
308	call Char\$in
309	rc
310	ani 7fh
311	sui '0'
312	cpi = 10
313 314	jc Nib\$in\$rtn ; must be 0-9 adi ('0'-'A'+10) and 0ffh
314	adi ('0'-'A'+10) and 0ffh cpi 16
315	jc Nib\$in\$rtn ; must be 10-15
317	lda network\$status
318	ori reverr
319	sta network\$status
320	mvi a,0
321	stc ; carry set indicating err cond
322	ret
323	
324	Nib\$in\$rtn:
325	ora a ; clear carry & return
326	ret
327	endif
328	

331 332 333 334 335 336 337 338	005E 0664 0060 C36500	ar\$in: mvi b,100 ; 100 ms corresponds to longest possible jmp char\$in0 ;wait between master operations r\$in: ; return byte in A register ; carry set on rtn if timeout if modem mvi b,0 ; 256 ms = 7.76 chars @ 300 baud else if Altos mvi b,3 ; 3 ms = 50 chars @ 125k baud
CP/M	RMAC ASSE	M 1.1 #008 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2
340		else
341		mvi b,50 ; 50 ms = 50 chars @ 9600 baud
342		endif
343		endif
344	Cha	r\$in0:
345	0065 0E5A	mvi c,5ah
346	Cha	r\$in1:
347		if Altos
348		mvi a,0
349	0069 D31F	out stati
350		endif
	006B DB1F	in stati
352	006D E601	ani mski
353	006F C27C00	5
354	0072 0D 0073 C26700	dcr c
	0075 C26700 0076 05	jnz Char\$in1 dcr b
357		
	0077 C20300 007A 37	stc ; carry set for err cond = timeout
359	007B C9	ret
360		r\$in2:
361	007C DB1E	in dprti
362	007E C9	ret ; rtn with raw char and carry cleared
363		
364	NetS	Sout: ; C = byte to be transmitted
365		; $D = checksum$
366		mov a,d
367	0080 81	add c
368	0081 57	mov d,a
369		
370		if ASCII
371 372		mov a,c mov b,a
372		rar
373		rar
375		rar
376		rar
377		ani OFH ; mask HI-LO nibble to LO nibble
378		call Nib\$out

379 380	mov ani	a,b 0FH	
381	jmp	Nib\$c	out
382			
383	else		
384	0082 C34E00	jmp	Char\$out
385	endif		
386			
560			
380 387	Msg\$in:		; HL = destination address
	Msg\$in:		; HL = destination address ; E = # bytes to input
387	Msg\$in: 0085 CD9000	call	,
387 388	C		; $E = #$ bytes to input
387 388 389	0085 CD9000		; $E = #$ bytes to input
387 388 389 390	0085 CD9000 0088 D8 rc	ov m	; E = # bytes to input Net\$in

CP/M RMAC ASSEM 1.1 #009 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

394 395	008C C28500 008F C9	jnz ret	Msg\$in
395 396	0001 09	Iet	
397	Net\$in:		; byte returned in A register
398	ι τοτφιπ.		; $D = checksum accumulator$
399			, D = checkball acculture of the constant of
400	if	ASCII	
401	cal		
402	rc		
403	ado	l a	
404	ado	l a	
405	ado	l a	
406	ado	l a	
407	pus	sh psw	
408	cal	l Nib\$i	n
409	pop	o b	
410	rc		
411	ora	b	
412			
413	else		
414	0090 CD6300	call	Char\$in ;receive byte in Binary mode
415	0093 D8	rc	
416	enc	lif	
417	11 41		
418	chks\$in		
419	0094 47		o,a
420	0095 82	add d	, I
421	0096 57		l,a
422	0097 B7	ora a	,
423	0098 78		a,b
424 425	0099 C9	ret	
425 426	Maata	<i>+</i> •	· III - source address
426 427	Msg\$ou	ι.	; HL = source address : $\mathbf{E} = \#$ bytes to output
427			; $E = #$ bytes to output ; $D = checksum$
420			, D = CHECKSUIII

429		; $C = preamble byte$
430	009A 1600	mvi d,0 ; initialize the checksum
431	009C CD3C00	call Pre\$Char\$out ; send the preamble character
432	Msg\$ou	it\$loop:
433	009F 4E	mov c,m
434	00A0 23	inx h
435	00A1 CD7F00	call Net\$out
436	00A4 1D	dcr e
437	00A5 C29F00	jnz Msg\$out\$loop
438	00A8 C9	ret
439		
440	pa	ge

CP/M RMAC ASSEM 1.1 #010 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

441		
442		Network Initialization
443	, ntw	rkinit:
444	IItw	ikiliit.
444		if cpnos ; copy down network assignments
445		
440 447		ý E
447		
440 449	init	mvi c,initcfglen
449 450	11111	loop:
450 451		mov a,m stax d
451		
453		inx h inx d
454		dcr c
455		jnz initioop ; initialize config tbl from ROM
456		Jiz initioop , initialize config to from Kow
457		else
458	00A9 3E56	mvi a,slave\$ID ;initialize slave ID byte
459	00AB 32010	
460	0011D 32010	endif
461		
462	:	device initialization, as required
463	,	
464		if Altos
465	00AE 3E47	mvi a,047h
466	00B0 D30E	out Oeh
467	00B2 3E01	mvi a,1
468	00B4 D30E	out Oeh
469		endif
470		
471		if DSC2 and modem
472		mvi a,0ceh
473		out stato
474		mvi a,027h
475		out stato
476		endif
477		
478		if cpnos

479		call loginpr	; login to a master
480		endif	
481			
482	inito	ok:	
483	00B6 AF	xra a	; return code is 0=success
484	00B7 C9	ret	
485			
486			
487		page	

CP/M RMAC ASSEM 1.1 #011 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

488			
489	: N	etwork S	tatus
490	ntwrks		
491	00B8 3A0000	lda	network\$status
492	00BB 47	mov	b,a
493	00BC E6FC	ani	not (rcverr+senderr)
494	00BE 320000	sta	network\$status
495	00C1 78	mov	a,b
496	00C2 C9	ret	
497			
498			
499			
500	; R	eturn Coi	nfiguration Table Address
501	cnfgtbl	adr:	0
502	00C3 210000	lxi	h,configtbl
503	00C6 C9	ret	
504			
505			
506	pa	ıge	

CP/M RMAC ASSEM 1.1 #012 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

507		
508	; Se	nd Message on Network
509	sendms	g: ; BC = message addr
510	00C7 60	mov h,b
511	00C8 69	mov l,c ; HL = message address
512	00C9 22AD00	shld msg\$adr
513	re\$send	msg:
514	00CC 3E0A	mvi a,max\$retries
515	00CE 32AF00	sta retry\$count ; initialize retry count
516	send:	
517	00D1 2AAD00	lhld msg\$adr
518	00D4 0E05	mvi c,ENQ
519	00D6 CD4E00	call Char\$out ; send ENQ to master
520	00D9 1664	mvi d,timeout\$retries
521	ENQ\$r	esponse:
522	00DB CD6300	call Char\$in
523	00DE D2E800	jnc got\$ENQ\$response
524	00E1 15	dcr d

525 00E2 C2DB00 ENQ\$response jnz 526 00E5 C32B01 Char\$in\$timeout jmp 527 got\$ENQ\$response: get\$ACK0 528 00E8 CD1E01 call 529 00EB 0E01 mvi c,SOH 530 00ED 1E05 e,5 mvi call Msg\$out 531 00EF CD9A00 ; send SOH FMT DID SID FNC SIZ 532 00F2 AF a xra 533 00F3 92 d sub 534 00F4 4F mov c,a 535 00F5 CD7F00 ; send HCS (header checksum) call net\$out call get\$ACK 536 00F8 CD1801 537 00FB 2B h dcx 538 00FC 5E mov e,m 539 00FD 23 inx h 540 00FE 1C inr e 541 00FF 0E02 c,STX mvi 542 0101 CD9A00 call Msg\$out ; send STX DB0 DB1 ... 543 0104 0E03 c,ETX mvi 544 0106 CD3C00 Pre\$Char\$out ; send ETX call 545 0109 AF xra а 546 010A 92 sub d 547 010B 4F mov c,a 548 010C CD7F00 call Net\$out ; send the checksum 549 010F 0E04 c,EOT mvi 550 0111 CD3F00 call nChar\$out ; send EOT 551 0114 CD1801 get\$ACK call ; (leave these 552 0117 C9 two instructions) ret ; 553 554 get\$ACK: 555 0118 CD6300 call Char\$in 556 011B DA2301 send\$retry ; jump if timeout jc 557 get\$ACK0: 558 011E E67F 7fh ani 559 0120 D606 ACK sui 560 0122 C8 $\mathbf{r}\mathbf{z}$

CP/M RMAC ASSEM 1.1 #013 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

561	send\$reti	y:
562	0123 E1	pop h ; discard return address
563	0124 21AF00	lxi h,retry\$count
564	0127 35	dcr m
565	0128 C2D100	jnz send ; send again unles max retries
566	Char\$in\$	timeout:
567	012B 3E01	mvi a,senderr
568		
569	if	always\$retry
570	012D CDD201	call error\$return
571	0130 C3CC00	jmp re\$sendmsg
572	else	
573	jmp	error\$return
574	endi	f

page

CP/M RMAC ASSEM 1.1 #014 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

```
577
578
                 Receive Message from Network
            receivemsg:
                                  ; BC = message addr
579
580 0133 60
                    mov
                           h,b
581 0134 69
                    mov
                          1,c
                                  ; HL = message address
582 0135 22AD00
                       shld msg$adr
583
            re$receivemsg:
584 0138 3E0A
                      mvi
                            a,max$retries
585 013A 32AF00
                       sta
                            retry$count
                                        ; initialize retry count
586
            re$call:
587 013D CD4F01
                        call receive
                                        ; rtn from receive is receive error
588
589
            receive$retry:
590 0140 21AF00
                       lxi
                            h,retry$count
591 0143 35
                    dcr m
592 0144 C23D01
                            re$call
                       jnz
593
            receive$timeout:
594 0147 3E02
                     mvi
                           a,rcverr
595
596
                 if
                     always$retry
                       call error$return
597 0149 CDD201
598 014C C33801
                       jmp re$receivemsg
599
                 else
600
                       error$return
                 jmp
601
                 endif
602
603
            receive:
604 014F 2AAD00
                        lhld msg$adr
605 0152 1664
                           d,timeout$retries
                     mvi
606
            receive$firstchar:
                           xcharin
607 0154 CD5E00
                     call
                            got$firstchar
608 0157 D26201
                      jnc
609 015A 15
                     dcr d
                       jnz receive$firstchar
610 015B C25401
611 015E E1
                     pop h ; discard receive$retry rtn adr
                      jmp receive$timeout
612 015F C34701
            got$firstchar:
613
614 0162 E67F
                           7fh
                     ani
615 0164 FE05
                           ENQ
                                      ; Enquire?
                      cpi
616 0166 C24F01
                      jnz
                           receive
617
618 0169 0E06
                           c.ACK
                     mvi
619 016B CD3F00
                        call nChar$out
                                        ; acknowledge ENQ with an ACK
620
621 016E CD6300
                       call Char$in
622 0171 D8
                                  ; return to receive$retry
                    rc
623 0172 E67F
                           7fh
                     ani
624 0174 FE01
                           SOH
                                      ; Start of Header ?
                     cpi
```

625	0176 C0	rnz		; return to receive\$retry
626	0177 57	mov	d,a	; initialize the HCS
627	0178 1E05	mvi	e,5	
628	017A CD8500	cal	ll Msg	s\$in
629	017D D8	rc		; return to receive\$retry
630	017E CD9000	cal	l Net	Sin

CP/M RMAC ASSEM 1.1 #015 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

	0181 D8	rc ; return to receive\$retry
	0182 C2CD01	jnz bad\$checksum
	0185 CDC501	call send\$ACK
	0188 CD6300	call Char\$in
	018B D8	rc ; return to receive\$retry
	018C E67F	ani 7fh
	018E FE02	cpi STX ; Start of Data ?
638	0190 C0	rnz ; return to receive\$retry
639	0191 57	mov d,a ; initialize the CKS
640	0192 2B	dcx h
641	0193 5E	mov e,m
642	0194 23	inx h
643	0195 1C	inr e
644	0196 CD8500	call msg\$in ; get DB0 DB1
645	0199 D8	rc ; return to receive\$retry
646	019A CD6300	call Char\$in ; get the ETX
647	019D D8	rc ; return to receive\$retry
648	019E E67F	ani 7fh
649	01A0 FE03	cpi ETX
650	01A2 C0	rnz ; return to receive\$retry
651	01A3 82	add d
652	01A4 57	mov d,a ; update CKS with ETX
653	01A5 CD9000	call Net\$in ; get CKS
654	01A8 D8	rc ; return to receive\$retry
655	01A9 CD6300	call Char\$in ; get EOT
656	01AC D8	rc ; return to receive\$retry
657	01AD E67F	ani 7fh
658	01AF FE04	cpi EOT
659	01B1 C0	rnz ; return to receive\$retry
660	01B2 7A	mov a,d
661	01B3 B7	ora a ; test CKS
662	01B4 C2CD01	jnz bad\$checksum
663	01B7 E1	pop h ; discard receive\$retry rtn adr
664	01B8 2AAD00	lhld msg\$adr
665	01BB 23	inx h
666	01BC 3A0100	lda configtbl+1
	01BF 96	sub m
668	01C0 CAC501	jz send\$ACK ; jump with A=0 if DID ok
669	01C3 3EFF	mvi a,0ffh ; return code shows bad DID
670	send\$A	CK:
		push psw ; save return code
	01C6 0E06	
		call nChar\$out ; send ACK if checksum ok
		pop psw ; restore return code

675	01CC C9	ret		
676				
677	bads	\$DID:		
678	bads	\$checksum:		
679	01CD 0E15	mvi	c,NAK	
680	01CF C34E0	0 jmp	Char\$out	; send NAK on bad chksm & not max retries
681	;	ret		
682				
683	erro	r\$return:		
684	01D2 210000) lxi	h,network\$sta	atus
CP/M	RMAC ASSE	M 1.1 #010	6 REQUES	TER NETWORK I/O SYSTEM FOR CP/NET 1.2
685	01D5 B6	ora n	n	
686	01D6 77	mov	m,a	

686	01D6 77	mov n	n,a	
687	01D7 CDDD01	call	ntwrkerr	or ; perform any required device re-init.
688	01DA 3EFF	mvi	a,0ffh	
689	01DC C9	ret		
690				
691	ntwrkerr	or:		
692			; perform	n any required device
693	01DD C9	ret	;	re-initialization
694				
695	pag	ge		

CP/M RMAC ASSEM 1.1 #017 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

696	
697	;
698	ntwrkwboot:
699	
700	; This procedure is called each time the CCP is
701	; reloaded from disk. This version prints ""
702	; on the console and then returns, but anything necessary
703	; for restart can be put here.
704	
705	01DE 0E09 mvi c,9
706	01E0 111500 lxi d,wboot\$msg
707	01E3 C30500 jmp BDOS
708	
709	page

CP/M RMAC ASSEM 1.1 #018 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

710	
711	if cpnos
712	•
713	; LOGIN to a Master
714	•
715	; Equates
716	;

717	buff equ 0080h
718	bull equ boobli
719	readbf equ 10
720	
720	active equ 0001\$0000b
722	
723	loginpr:
724	mvi c,initpasswordmsglen
725	lxi h,initpasswordmsg
726	lxi d,passwordmsg
727	copypassword:
728	mov a,m
729	stax d
730	inx h
731	inx d
732	dcr c
733	jnz copypassword
734	mvi c,print
735	lxi d,loginmsg
736	call BDOS
737	mvi c,readbf
738	lxi d,buff-1
739	mvi a,50h
740	stax d
741	call BDOS
742	lxi h,buff
743	mov a,m ; get # chars in the command tail
744	ora a
745	jz dologin ; default login if empty command tail
746	mov c,a ; $A = #$ chars in command tail
747	xra a
748	mov b,a ; B will accumulate master ID
749	scanblnks:
750	inx h
751	mov a,m
752	cpi ''
753	jnz pastblnks ; skip past leading blanks
754	dcr c
755	jnz scanblnks
756	jmp prelogin ; jump if command tail exhausted
757	pastblnks:
758	cpi '['
759	jz scanMstrID
760	mvi a,8
761	lxi d,passwordmsg+5+8-1
762	xchg
763	spacefill:

CP/M RMAC ASSEM 1.1 #019 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

764	mvi	m,' '
765	dcx	h
766	dcr	a

767	jnz spacefill
768	xchg
769	scanLftBrkt:
770	mov a,m
771	cpi '['
772	jz scanMstrID
773	inx d
774	stax d ;update the password
775	inx h
776	dcr c
777	jnz scanLftBrkt
778	jmp prelogin
779	scanMstrID:
780	inx h
781	dcr c
782	jz loginerr
783	mov a,m
784	cpi ']'
785	jz prelogin
786	sui '0'
787	cpi 10
788	jc updateID
789	adi $('0'-'A'+10)$ and Offh
790	cpi 16
791	jnc loginerr
792	updateID:
793	push psw
794	mov a,b
795	add a
796	add a
797	add a
798	add a
799	mov b,a ; accum * 16
800	
800	pop psw add b
802	
	mov b,a
803	jmp scanMstrID
804	1 .
805	prelogin:
806	mov a,b
807	
808	dologin:
809	lxi b,passwordmsg+1
810	stax b
811	dcx b
812	call sendmsg
813	inr a
814	lxi d,loginfailedmsg
815	jz printmsg
816	lxi b,passwordmsg
817	call receivemsg
	6

CP/M RMAC ASSEM 1.1 #020 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

818	inr a
819	lxi d,loginfailedmsg
820	jz printmsg
821	lda passwordmsg+5
822	inr a
823	jnz loginOK
824	jmp printmsg
825	
826	loginerr:
827	lxi d,loginerrmsg
828	printmsg:
829	mvi c,print
830	call BDOS
831	jmp loginpr ; try login again
831	Jinp loginpi , uy login again
	locinOV
833	loginOK:
834	lxi h,network $status$; HL = status byte addr
835	mov a,m
836	ori active ; set active bit true
837	mov m,a
838	ret
839	
840	;
841	; Local Data Segment
842	;
843	loginmsg:
844	db cr,lf
845	db 'LOGIN='
846	db '\$'
847	
848	initpasswordmsg:
849	db 00h ; FMT
850	db 00h ; DID Master ID #
851	db slave\$ID;SID
852	db 40h ; FNC
852	db 7 ; SIZ
854 855	× 1
855	initpasswordmsglen equ \$-initpasswordmsg
856	
857	1 .
858	loginerrmsg:
859	db lf
860	db 'Invalid LOGIN'
861	db '\$'
862	
863	loginfailedmsg:
864	db lf
865	db 'LOGIN Failed'
866	db '\$'
867	
868	DSEG
869	passwordmsg:
870	ds 1 ; FMT
	,

871

ds 1 ; DID

CP/M RMAC ASSEM 1.1 #021 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

872	ds 1	; SID
873	ds 1	; FNC
874	ds 1	; SIZ
875	ds 8	; DAT = password
876	endif	
877		
878 01E6	end	

CP/M RMAC ASSEM 1.1 #022 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

0006 175# 559 618 672 ACK ACTIVE 0010 164# 721# 836 ALTOS FFFF 28# 62 219 266 296 338 347 464 FFFF 30# 569 596 ALWAYSRETRY ASCII 0000 34# 247 306 370 400 BADCHECKSUM 01CD 632 662 678# BADDID 01CD 677# 0005 40 42# 707 736 741 830 BDOS CHARIN 0063 308 333# 414 522 555 621 634 646 655 0065 331 344# 357 CHARIN0 0067 346# 355 CHARIN1 CHARIN2 007C 353 360# CHARINTIMEOUT 012B 526 566# 004E 253 257 294# 384 519 680 CHAROUT CHKSIN 0094 418# CNFGTBLADR 00C3 50 501# CONFIGTBL 0000 114# 447 459 502 666 CONOUT 0002 180# **CPNOS** 0000 24# 39 66 445 478 711 CR 000D 177# 844 **DB82** 0000 27# 56 187 274 0000 36# DEBUG DEFAULTMASTER 0000 97# 002F 236# 302 DELAY 0031 238# 244 DELAY1 0033 240# 242 DELAY2 DPRTI 001E 190# 203# 211# 222# 361 001E 196# 207# 215# 226# 291 DPRTO DSC2 0000 26# 59 199 280 471 0005 174# 518 615 ENQ ENQRESPONSE 00DB 521# 525 EOT 0004 173# 549 658 **ERRORRETURN** 01D2 570 573 597 600 683# 0003 172# 543 649 ETX FALSE 0000 21# 22 24 26 27 32 34 36 FIRSTPASS 00B0 159# GETACK 0118 536 551 554# **GETACK0** 011E 528 557#

GOTENQRESPONSE 00E8 523 527# GOTFIRSTCHAR 0162 608 613# **INITOK** 00B6 482# LF 000A 176# 844 859 864 LOGIN 0040 183# MAXRETRIES 000A 155# 514 584 MODEM 0000 32# 150 200 335 471 MSGADR 00AD 148# 512 517 582 604 664 **MSGIN** 0085 387# 394 628 644 MSGOUT 009A 426# 531 542 009F 432# 437 MSGOUTLOOP 0001 189# 202# 210# 221# 352 MSKI MSKO 0004 193# 206# 214# 225# 271 NAK 0015 178# 679 NCHAROUT 003F 265# 272 277 295 550 619 673 NETIN 0090 389 397# 630 653

CP/M RMAC ASSEM 1.1 #023 REQUESTER NETWORK I/O SYSTEM FOR CP/NET 1.2

NETOUT 007F 364# 435 535 548 NETWORKERRMSG 0021 103# NETWORKSTATUS 0000 116# 317 319 491 494 684 834 NIOS 0000 45# 46 NTWRKERROR 01DD 53 687 691# 00A9 48 443# NTWRKINIT NTWRKSTS 00B8 49 490# NTWRKWBOOT 01DE 54 698# 003C 260# 431 544 PRECHAROUT 0009 181# 734 829 PRINT RCVERR 0002 165# 318 493 594 RCVMSG 0043 182# RECALL 013D 586# 592 014F 587 603# 616 RECEIVE RECEIVEFIRSTCHAR 0154 606# 610 RECEIVEMSG 0133 52 579# 817 RECEIVERETRY 0140 589# RECEIVETIMEOUT 0147 593# 612 RERECEIVEMSG 0138 583# 598 00CC 513# 571 RESENDMSG 00AF 156# 515 563 585 590 RETRYCOUNT SEND 00D1 516# 565 SENDACK 01C5 633 668 670# SENDERR 0001 166# 493 567 00C7 51 509# 812 SENDMSG 0123 556 561# SENDRETRY SLAVEID 0056 57# 60# 63# 70 92 142 458 851 SOH 0001 170# 529 624 001F 188# 201# 209# 220# 349 351 STATI 001F 192# 205# 213# 224# 268 270 473 475 STATO STX 0002 171# 541 637 TIMEOUTRETRIES 0064 151# 153# 520 605 TRUE FFFF 22# 28 30 WBOOTMSG 0015 99# 706

XCHARIN 005E 329# 607

E.5 Modifying the NETWRKIF

The NETWRKIF, designed for an Altos ACS 8000-10, is also easy to modify. The NETWRKIF implements the protocol by checking for the first character of an incoming message through one of the XIOS CONIN routines. After receiving the first character and validating it, the NETWRKIF disables interrupts, and reads the rest of the message in under direct process control. If an XIOS CONIN routine does not exist for the port to be used for the network, you must write one.

To modify this NETWRKIF, follow these steps:

Set the NMB\$SLVS equate to the number of requesters to be supported. If more than four must be supported, you must add more Process Descriptors and queues.

If the server can only transmit or receive one message at a time, then the NETWRKIF supports a mutual exclusion queue to prevent collisions. To use this queue, set MUTEXIN or MUTEXOUT to true.

If the server is running on a Z-80 processor, set Z-80 to true for more efficient implementation of character I/O.

If all or some of the network RS-232 ports support only 7 bit ASCII, modify the BINARYASCII table by setting the appropriate entries to 0.

Modify the network port definitions. CONSOLE4\$STATUS through PRINTER2\$STATUS must be modified. Also, CHARIOTBL must be modified, so that the console numbers associated with the ports listed in STATUS\$PORTS match.

I/O port numbers in the routines CHAR\$OUT and CHAR\$IN might have to be modified. You might have to implement a I/O port table similar to STATUS\$PORTS. This implementation relies on the fact that the Altos ACS 8000-10 always positions its I/O ports at a fixed offset from its status ports.

The sample NETWRKIF contains a debug conditional assembly flag that permits generation of a NETWRKIF.COM file. The NETWRKIF.COM version can debug a single requester, as follows:

Perform a GENSYS in which the SERVER.RSP is included; do not include a NETWRKIF.RSP. During the GENSYS, do not specify bank-switched memory. Execute the MPM.SYS produced from GENSYS, and load the NETWRKIF.COM file with DDT, SID, or ZSID.

Use DDT, SID, or ZSID to debug the NETWRKIF process. This works only for a single requester.

CP/M RMAC ASSEM 1.1 #001 MASTER NETWORK I/F MODULE

```
1
            title 'Master Network I/F Module'
2
            page 54
3
         4
5
         6
         **
                                     **
7
         •**
                                              **
              Server Network I/F Module
         •**
8
                                     **
9
         10
11
         ;/*
12
13
         ; Copyright (C) 1980
14
         ; Digital Research
15
         ; P.O. Box 579
         ; Pacific Grove, CA 93950
16
17
18
          Modified October 5, 1982
         ;
19
20
         ;*/
21
22
23 0000 =
           false equ
                     0
24 \quad \text{FFFF} =
                equ
                     not false
            true
25
26 FFFF =
            z80
                 equ
                      true
27
28 0000 =
           debug equ
                      false
29
  0000 =
           modem equ
                       false
30
  0000 =
           WtchDg equ
31
                       false
                               ; include watch dog timer
32
  0000 =
33
                      false
           mutexin equ
                               ; provide mutual exclusion on input
34
  0000 =
           mutexout equ
                       false
                               ; provide mutual exclusion on output
35
36
37
            if
                debug
38
39
         NmbSlvs equ 1
                            ;debug only one requester
40
41
                 sp,NtwrkIS0+2eh
            lxi
42
                 c,145
            mvi
43
                 e,64
            mvi
44
                 bdos
                         ; set priority to 64
            call
                 h,UQCBNtwrkQI0 ; initialize reentrant variables
45
            lxi
                 d,UQCBNtwrkQO0
46
            lxi
                 b,BufferQ0
47
            lxi
48
                 a,00h
            mvi
49
            ret
50
```

51	bdosadr:	
52	dw	0005h
53		
54	else	

CP/M RMAC ASSEM 1.1 #002 MASTER NETWORK I/F MODULE

55			
56	0002 = 1	NmbSlvs equ	2 ;RSP is configured for two requesters
57		_	
58	bdos	sadr:	
59	0000 0000	dw \$-	\$;XDOS entry point for RSP version
60			
61		endif	
62			2
63	; N	etwork Interfac	e Process #0
64		1 100	
65		rkIP0:	. 1
66 67	0002 0000	dw 0	; link
67	0004 00	db 0	; status
	0005 40 0006 6400	db 64	; priority
69 70	0008 4E7477		twrkIS0+46 ; stack pointer 'NtwrkIP0' ; name
70	0010 00	db 0	; console
	0010 00 0011 FF	db Offl	
73	0012	ds = 2	; b
73 74	0012	ds = 2 ds = 2	; thread
75	0016	ds = 2 ds = 2	; buff
	0018	ds = 1	; user code & disk slct
77	0019	ds 2	; dent
78	001B	ds 1	; searchl
79	001C	ds 2	; searcha
80	001E	ds 2	; active drives
81	0020 0000	dw 0	; HL'
82	0022 0000	dw 0	; DE'
83	0024 0000	dw 0	; BC'
84	0026 0000	dw 0	; AF'
85	0028 0000	dw 0	; IY
86	002A 0000	dw 0	; IX
87			QCBNtwrkQI0 ; HL
88	002E A000		JQCBNtwrkQO0 ; DE
89	0030 A600		ufferQ0 ; BC
90	0032 0000	dw 0	; AF, A = ntwkif console dev $\#$
91	0034	ds 2	; scratch
92 93	NItax	rkIS0:	
93 94	0036 C7C7C		0c7c7h,0c7c7h,0c7c7h,0c7c7h
94 95	0030 C7C7C		
95 96	003E C7C7C		
97	0046 C7C7C		
98	0056 C7C7C		
99	005E C7C7C		
100	0064 4206	_	etup
	'		1

101				
101	OCBN	NtwrkQI0:		
	0066	ds 2	, link	
			; link	
	0068 4E747772		•	
	0070 0200		; msgl	
	0072 0100	dw 1	; nmbr	nsgs
	0074	ds 2	; dqph	
108	0076	ds 2	; nqph	
CP/M	RMAC ASSEM	1.1 #003	MASTER NI	ETWORK I/F MODULE
100	0070	1 0		
	0078	ds 2	; msgin	
	007A	ds 2	; msgout	
111	007C	ds 2	; msgcnt	
112	007E	ds 2	; buffer	
113				
114	UQCI	3NtwrkQI0:		
	0080 6600	-	CBNtwrkQI0	: pointer
	0082 8400	•	ufferQI0Addr	· •
		rQI0Addr:		, moguai
		dw B	ufforOO	
	0004 A000	uw D	unerQu	
119		L 1000		
120		NtwrkQO0:		
	0086	ds 2	; link	
	0088 4E747772		· ·	
123	0090 0200	dw 2	; msgle	en
124	0092 0100	dw 1	; nmbr	nsgs
125	0094	ds 2	; dqph	
126	0096	ds 2	; nqph	
127	0098	ds 2	; msgin	
	009A	ds 2	; msgout	
129	009C	ds = 2	; msgcnt	
	009E	ds = 2 ds = 2	; buffer	
130	0071	us 2	, build	
131	UOCI			
	-	3NtwrkQO0:		
	00A0 8600		CBNtwrkQO0	
134			BufferQO0Add	r; msgadr
135		rQO0Addr:		
	00A4	ds 2		
137				
138	Buffer	rQ0:		
139	00A6	ds 1	; FMT	
140	00A7	ds 1	; DID	
141	00A8	ds 1	; SID	
142	00A9	ds 1	; FNC	
143	00AA	ds 1	; SIZ	
144		ds 1 ds 257	; MSG	
145		45 251	, 1150	
143 146	. N	Jotwork Inton	face Process #1	1
	, 1	NELWOIK IIILER	Tate Flotess #	1
147	•		CE 2	
148	it		GE 2	
149	Ntwrk	API:		
150				

151		if NmbSl	vs GE 3
152		dw Ntwrk	
153		else	
	01AC 0000		0 ; link
155		endif	· ,
156			
	01AE 00	db 0	; status
	01AF 40		; priority
159	01B0 0E02		NtwrkIS1+46 ; stack pointer
	01B2 4E7477		· · ·
161	01BA 00	db 0	; console
162	01BB FF	db 0:	ffh ; memseg
CP/M	RMAC ASSE	M 1.1 #004	MASTER NETWORK I/F MODULE
163	01BC	ds 2	; b
	01BE	ds 2	; thread
165	01C0	ds 2	; buff
166	01C2	ds 1	; user code & disk slct
167	01C3	ds 2	; dcnt
168	01C5	ds 1	; searchl
169	01C6	ds 2	; searcha
	01C8	ds 2	; active drives
	01CA 0000		0 ; HL'
	01CC 0000		0 ; DE'
	01CE 0000		0; BC'
	01D0 0000		0; AF'
	01D2 0000		0 ; IY
	01D4 0000		0; IX
	01D6 2A02		UQCBNtwrkQI1 ; HL
	01D8 4A02		UQCBNtwrkQO1 ; DE
179	01DA 5002 01DC 0001		BufferQ1 ; BC 0100h ; AF, A = ntwkif console dev #
180	01DC 0001 01DE	ds 2	; scratch
181	OIDE	us 2	, seraten
183	Ntw	vrkIS1:	
184			w 0c7c7h,0c7c7h,0c7c7h,0c7c7h
185			
186			
187			w 0c7c7h,0c7c7h,0c7c7h,0c7c7h
188	0200 C7C7C	7C7C7 dv	w 0c7c7h,0c7c7h,0c7c7h,0c7c7h
189	0208 C7C7C	7C7C7 dv	w 0c7c7h,0c7c7h,0c7c7h
190	020E 6906	dw i	nit
191			
192	-	BNtwrkQI1:	
193	0210	ds 2	; link
194	0212 4E7477		'NtwrkQI1'; name
	021A 0200		2 ; msglen
196			1 ; nmbmsgs
197	021E	ds 2	; dqph
198	0220	ds = 2	; nqph
199	0222 0224	ds 2 ds 2	; msgin
200	0224	ds 2	; msgout

	0226		2		; msgcnt	
	0228	ds	2		; buffer	
203				_		
		UQCBNt	-			
	022A 10				CBNtwrkQI1	
	022C 2E		dw		ufferQI1Addr	; msgadr
		BufferQI				
	022E 500)2	dw	Βı	ifferQ1	
209						
		QCBNtwi	-			
	0230		2		; link	
					'NtwrkQO1'	
		00			; msgl	
	023C 010		dw			nsgs
	023E	ds			; dqph	
216	0240	ds	2		; nqph	
CP/M	RMAC A	SSEM 1.1	#00)5	MASTER NE	TWORK I/F MODULE
217	0242	ds	2		; msgin	
	0244		2		; msgout	
	0246	ds ds	2		; msgout	
	0248		$\frac{2}{2}$; buffer	
220	0240	us	2		, ouner	
221		UQCBNt	wrkOC)1·		
		0QCD100 02	-		CBNtwrkQO1	: pointer
	024C 4E		dw	-	ufferQO1Addr	-
		BufferQO				, msgaui
	024E	ds		•		
220	02112	u b				
228		BufferQ1	•			
		ds			; FMT	
	0251	ds			; DID	
	0252	ds			; SID	
	0253	ds			; FNC	
	0254		1		; SIZ	
234	0255			7		
235		endif		-	,	
236		•				
237		; Netv	vork In	ter	face Process #2	2
238		, 1000				
239		if	NmbS	lvs	GE 3	
240		NtwrkIP2			020	
241		2 (0) 11(11 2	•			
242		if	NmbS	lvs	GE 4	
243		dw			P3 ; link	
244		else			- ,	
245		dw	0		; link	
246		endif			,	
247		enan				
248		db	0		; status	
249		db			; priority	
250		dw			S2+46 ; stacl	k pointer
200		G 11	110,00		<u>, , , , , , , , , , , , , , , , , , , </u>	r onicer

251	db	'NtwrkIP2' ; name
252	db	0 ; console
253	db	Offh ; memseg
254	ds	2 ; b
255	ds	2 ; thread
256	ds	2 ; buff
257	ds	1 ; user code & disk slct
258	ds	2 ; dcnt
259	ds	1 ; searchl
260	ds	2 ; searcha
261	ds	2 ; active drives
262	dw	0 ; HL'
263	dw	0 ; DE'
264	dw	0 ; BC'
265	dw	0 ; AF'
266	dw	0 ; IY
267	dw	0 ; IX
268	dw	UQCBNtwrkQI2 ; HL
269	dw	UQCBNtwrkQO2 ; DE
270	dw	BufferQ2 ; BC

CP/M RMAC ASSEM 1.1 #006 MASTER NETWORK I/F MODULE

271	dw 0200h ; AF, $A = ntwkif$ console dev #
272	ds 2 ; scratch
273	
274	NtwrkIS2:
275	dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
276	dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
277	dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
278	dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
279	dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
280	dw 0c7c7h,0c7c7h,0c7c7h
281	dw init
282	
283	QCBNtwrkQI2:
284	ds 2 ; link
285	db 'NtwrkQI2' ; name
286	dw 2 ; msglen
287	dw 1 ; nmbmsgs
288	ds 2 ; dqph
289	ds 2 ; nqph
290	ds 2 ; msgin
291	ds 2 ; msgout
292	ds 2 ; msgcnt
293	ds 2 ; buffer
294	
295	UQCBNtwrkQI2:
296	dw QCBNtwrkQI2 ; pointer
297	dw BufferQI2Addr ; msgadr
298	BufferQI2Addr:
299	dw BufferQ2
300	

301	QCBNtwi	rkQO2:	
302	ds	2	; link
303	db	'Ntwrk	QO2'; name
304	dw	2	; msglen
305	dw	1	; nmbmsgs
306	ds	2	; dqph
307	ds	2	; nqph
308	ds	2	; msgin
309	ds	2	; msgout
310	ds	2	; msgcnt
311	ds	2	; buffer
312			
313	UQCBNt	wrkQO2	:
314	dw	QCBN	StwrkQO2 ; pointer
315	dw	Buffer	QO2Addr ; msgadr
			C = = = = = , = = = 0
316	BufferQO	02Addr:	,
	BufferQO ds	2Addr: 2	(,,,
316			(
316 317		2	
316 317 318	ds	2	; FMT
316 317 318 319	ds BufferQ2	2 :	
316 317 318 319 320	ds BufferQ2 ds	2 : 1	; FMT
316 317 318 319 320 321	ds BufferQ2 ds ds	2 : 1 1	; FMT ; DID

CP/M RMAC ASSEM 1.1 #007 MASTER NETWORK I/F MODULE

325		257	; MSG
326	endif		
327			
328	; Netwo	ork Inter	face Process #3
329			
330		NmbSlvs	s GE 4
331	NtwrkIP3:		
332	dw	0	; link
333	db	0	; status
334	db	64	; priority
335	dw	NtwrkI	S3+46 ; stack pointer
336	db	'NtwrkI	P3'; name
337	db	0	; console
338	db	Offh	; memseg
339	ds	2	; b
340	ds	2	; thread
341	ds	2	; buff
342	ds	1	; user code & disk slct
343	ds	2	; dent
344	ds	1	; searchl
345	ds	2	; searcha
346	ds	2	: active drives
347	dw	0	; HL'
348	dw	0	; DE'
349	dw	0	; BC'
350	dw	0 0	; AF'
220	a tr	0	,

351	dw 0 ; IY
352	dw 0 ; IX
353	dw UQCBNtwrkQI3 ; HL
354	dw UQCBNtwrkQO3 ; DE
355	dw BufferQ3 ; BC
356	dw 0300h ; AF, A = ntwkif console dev $\#$
357	ds 2 ; scratch
358	
359	NtwrkIS3:
360	dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
361	dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
362	dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
363	dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
364	dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
365	dw 0c7c7h,0c7c7h,0c7c7h
366	dw init
367	
368	QCBNtwrkQI3:
369	ds 2 ; link
370	db 'NtwrkQI3' ; name
371	dw 2 ; msglen
372	dw 1 ; nmbmsgs
373	ds 2 ; dqph
374	ds 2 ; nqph
375	ds 2 ; msgin
376	ds 2 ; msgout
377	ds 2 ; msgcnt
378	ds 2 ; buffer

CP/M RMAC ASSEM 1.1 #008 MASTER NETWORK I/F MODULE

379		
	LIOCDN41-OI2.	
380	UQCBNtwrkQI3:	
381	dw QCBNtwrkQI3 ; pointer	
382	dw BufferQI3Addr ; msgadr	
383	BufferQI3Addr:	
384	dw BufferQ3	
385		
386	QCBNtwrkQO3:	
387	ds 2 ; link	
388	db 'NtwrkQO3' ; name	
389	dw 2 ; msglen	
390	dw 1 ; nmbmsgs	
391	ds 2 ; dqph	
392	ds 2 ; nqph	
393	ds 2 ; msgin	
394	ds 2 ; msgout	
395	ds 2 ; msgcnt	
396	ds 2 ; buffer	
397		
398	UQCBNtwrkQO3:	
399	dw QCBNtwrkQO3 ; pointer	
400	dw BufferQO3Addr ; msgadr	

401	BufferQO3	Addr:	
402	-	2	
403	•••	-	
404	BufferQ3:		
405	-	1	; FMT
406		1	; DID
407		1	; SID
408		1	; FNC
409		1	; SIZ
410		257	; MSG
411	endif	_0 /	,
412			
413			
414	if V	VtchDg	
415	; Watchdo		Process
416	•	0	
417	WatchDog	PD:	
418	U		
419	if N	NmbSlvs	s GT 1
420	dw	NtwrkI	P1 ; link to the remaining NETWRKIF PD's
421	else		
422	dw	0	; link
423	endif		
424			
425		0	; status
426		64	; priority
427			DogSTK+46 ; stack pointer
428			Dog'; name
429		0	; console
430		Offh	; memseg
431		2	; b
432	ds	2	; thread
CP/M RM	AC ASSEM 1.1	#009	MASTER NETWORK I/F MODULE
	IC ADDLM 1.1	11007	
433	ds	2	; buff
434		1	: user code & disk slct
435	ds	2	; dent
436		1	; searchl
437	ds	2	; searcha
438	ds	2	; active drives
439	dw	0	; HL'
440	dw	0	; DE'
441	dw	0	; BC'
442	dw	0	; AF'
443	dw	0	; IY
444	dw	0	; IX
445	dw	0	; HL
446	dw	0	; DE
447	dw	0	; BC
448	dw	0	; AF
449	ds	2	; scratch
450			

450

451	WatchDogSTK:
452	dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
453	dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
454	dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
455	dw 0c7c7h,0c7c7h,0c7c7h,0c7c7h
456	dw 0c7c7h,0c7c7h,0c7c7h
457	dw 0c7c7h,0c7c7h,0c7c7h
458	dw WatchDog
459	dw WatenDog
460	WatahDogTimo
	WatchDogTime:
461	dw \$-\$; one-second counter
462	
463	WatchDogTable:
464	; Waiting Timeout Start Flag Requester
465	db 0, 0, 0,0, 0ah ;#0
466	db 0, 0, 0,0, 0bh ; #1
467	db 0, 0, 0,0,0fh ; #2
468	db 0, 0, 0,0, 0dh ; #3
469	endif
470	
471	if mutexin or mutexout
472	QCBMXSXmitq: ; MX queue for requester transmitting
473	
474	ds 2 ; link
475	db 'MXSXmitq' ; name
476	dw = 0; msglen
477	dw 1 ; nmbmsgs
478	
479	ds 2 ; nqph
480	ds 2 ; msgin
481	ds 2 ; msgout
482	ds 2 ; msgcnt
483	ds 2 ; buffer (owner PD)
484	
485	UQCBMXSXmitq:
486	dw QCBMXSXmitq
CP/M	RMAC ASSEM 1.1 #010 MASTER NETWORK I/F MODULE
487	; dw 0 ; no message, since it's an MX queue
488	; db 'MXSXmitq' ; no name, since the QCB pointer is resolved
489	endif
490	
491	; Server Configuration Table
492	,
493	configtbl:
	0356 00 db 0 ; Server status byte
495	$0357\ 00$ db 0 ; Server ID
	0358 02 db NmbSlvs ; Maximum number of requesters supported
	0359 02 db Ninosivs , Maximum number of requesters supported 0359 00 db 0 ; Number of requesters currently logged-in
	035A 0000 dw 0000h ; 16 bit vector of logged in requesters
	035C ds 16 ; Requester ID's currently logged-in
500	036C 5041535357 db 'PASSWORD' ; login password

501		
502	0001 =	nmsg equ 1 ; number of messages buffered
503	0096 =	slave\$stk\$len_equ 96h ; server process stack size
504		
505		if NmbSlvs GE 2
506		slave1\$stk:
507	0374	ds slave\$stk\$len-2
508	0408 0A	
509		
510		endif
511		
512		if NmbSlvs GE 3
513		slave2\$stk:
514		ds slave\$stk\$len-2
515		dw Slave2
516		endif
517		
518		if NmbSlvs GE 4
519		slave3\$stk:
520		ds slave\$stk\$len-2
521		dw Slave3
522		endif
523		
524		if NmbSlvs GE 2
525		Slave1:
526	040A	ds 52 ; SERVR1PR processor descriptor
527		endif
528		
529		if NmbSlvs GE 3
530		Slave2:
531		ds 52 ; SERVR2PR processor descriptor
532		endif
533		
534		if NmbSlvs GE 4
535		Slave3:
536		ds 52 ; SERVR3PR processor descriptor
537		endif
538		
539		; Local Data Segment
540		-

CP/M RMAC ASSEM 1.1 #011 MASTER NETWORK I/F MODULE

541	Bina	yASCII	:	
542	043E FF	db	Offh	; Requester #0: 0=7 bit ASCII, FF=8 bit binary
543	043F FF	db	0ffh	; #1
544	0440 FF	db	Offh	; #2
545	0441 FF	db	Offh	; #3
546				
547	Netw	orkstatu	s:	
548	0442 00	db	0	; Slave #0 network status byte
549	0443 00	db	0	; #1
550	0444 00	db	0	; #2

551 552	0445 00	db	0	;	#3
552 553 554	0446 0000	conin: dv	w \$-\$; save area for XIOS routine address
555 556	000A = .	max\$retrie	es equ	10	; maximum send message retries
557	,	The follo	wing tab	oles are	e for use in the ALTOS i/o routines.
558	;				MUST be used with an XIOS which allows
559	;				r port as a console port - Accessed as console
560	•	#4	-	-	
561					
	002B =	Console4\$		1)2bh
563	002F =	Console3\$	-		2fh
564	002D =	Console2		-)2dh
565	0029 =	Printer2\$st	tatus equ	029	9h ; ALSO CONSOLE #4
566					
567		if z80			
568	;				
569	;	ENIKIE	S IN TH	E FOL	LLOWING TWO TABLES MUST MATCH !!!!
570 571	oto	tualmorta			
572	0448 2B	tus\$ports: db	Consol	a/\$ctat	tus ; Console 4 (Requester 0) status port
573	0448 2B 0449 2F	db			tus; Console 3 (Requester 1) status port
574	044A 2D	db			atus ; Console 2 (Requester 2) status port
575	044B 29	db			us; Printer 2 (Requester 3) status port
576	0110 25	endif	1 1111012	245tutu	as, Thinter 2 (Requester 5) status port
577		Unun			
578	ch	ariotbl:		: Relat	ationship between requesters and consoles
579	044C 03	db	3	,	1 1
580	044D 02	db	2		
581	044E 01	db	1		
582	044F 04	db	4		
583					
584	;	Network	Status B	yte Eq	quates
585					
586	0080 =	ntwrktxrdy	-		000000b ; NETWRKIF ready to send msg
587	0010 =	active	equ	000100	
588	0008 =	msgerr	equ		1000b ; error in received message
589	0004 =	ntwrk	-	00000	
	0002 =	msgovr	equ		00010b ; message overrun
591	0001 =	ntwrkrxrdy	equ	0000	000001b ; NETWRKIF has revd msg
592		ם מסמת		C Down	
593	;	BDOS an		s Equa	ates
594					

CP/M RMAC ASSEM 1.1 #012 MASTER NETWORK I/F MODULE

595	0085 =	flagset equ	133	; flag set
596	0086 =	makeq equ	134	; make queue
597	0089 =	readq equ	137	; read queue
598	008B =	writeq equ	139	; write queue
599	008D =	delay equ	141	; delay
600	008E =	dsptch equ	142	; dispatch

601 0090 = 144 createp equ ; create process 602 009A = sydatad equ 154 ; system data page address poll equ 083h 603 0083 = ; Poll device 604 605 ; **General Equates** 606 $607 \quad 0001 =$ SOH equ 01h ; Start of Header 608 0002 = STX equ 02h ; Start of Data ; End of Data 609 0003 = ETX 03h equ 610 0004 = EOT 04h ; End of Transmission equ 611 0005 = ENQ 05h equ ; Enquire 612 0006 = ACK 06h ; Acknowledge equ 613 000A = LF equ 0ah ; Line Feed 614 000D = CR 0dh ; Carriage Return equ 615 0015 = ; Negative Acknowledge NAK equ 15h 616 617 0010 = printer2 10h ; special poll device number for second equ 618 ; printer port 619 620 Utility Procedures ; 621 622 bdos: 623 0450 2A0000 lhld bdosadr ; get XDOS entry point from RSP start 624 0453 E9 pchl 625 626 ; A = nibble to be transmitted in ASCII Nibout: 627 0454 FE0A cpi 10 628 0456 D25F04 inc nibatof ; jump if A-F 629 0459 C630 adi '0' 630 045B 4F mov c,a 631 045C C36804 imp Charout 632 nibatof: 633 045F C637 adi 'A'-10 634 0461 4F mov c,a 635 0462 C36804 Charout jmp 636 637 PreCharout: 638 04657A a,d mov 639 0466 81 add с 640 0467 57 mov d,a ; update the checksum 641 642 if z80 ; Z-80 version, using OUT A,(C) instruction 643 char\$out: 644 645 Character output routine for network i/o ; using the ALTOS SIO ports 646 ; 647 ; 648 Z-80 version: this can use indirect port numbers in a clean,

CP/M RMAC ASSEM 1.1 #013 MASTER NETWORK I/F MODULE

. . .

649	;	reentrant fashion
650	:	

. . .

651	;	Entry: C register contains 8 bit value to transmit
652	,	Entry : Slave number in register b
653	0468 E5	eweb b
	0408 E5 0469 D5	push h
		push d push b
	046A C5	L
657		mov d, c ; save the character
	046C 214804	
	046F 48 0470 0600	mov c, b mvi b 0 $(\mathbf{PC}) = (\mathbf{b})$
		$mvi b, 0 \qquad ; set (BC) = (b)$
661	0472 09 0473 4E	dad b
663	04/3 4E	mov c,m
664		Now C contains the address of the correct status port
665	,	Now C contains the address of the correct status port
666	oute	utloop
	0474 3E10	utloop: mvi a,10h
668	0474 3110	
669	•	out (c),a
	, 0476 ED79	db 0edh,79h
671	0470 ED77	
672		in a,(c)
673	, 0478 ED78	db 0edh,78h
674	0470 LD70	
	047A E604	ani 04h ; wait for TXready
	047C CA7404	
677	0470 01740-	f Jz outputtoop
678	•	In the Altos system, data registers are one below status registers
679	,	
680	047F 0D	dcr c
681		
682	:	out (c),d
683	0480 ED51	db 0edh,51h
684		, ,
	0482 C1	pop b
	0483 D1	pop d
	0484 E1	pop h
688	0485 C9	ret
689		
690		else
691		
692	char	\$out:
693	Char	
	Cildi	φουι.
694	;	Character output routine for network I/O
694 695	;	
	;;;;	Character output routine for network I/O
695 696 697	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	Character output routine for network I/O
695 696 697 698	; ; ; ; ; ;	Character output routine for network I/O using ALTOS SIO ports
695 696 697 698 699	; ; ; ; ; ; ;	Character output routine for network I/O using ALTOS SIO ports 8080 version: This has to dispatch and then use direct port I/O extremely messy to do reentrantly
695 696 697 698 699 700	; ; ; ; ; ; ; ; ;	Character output routine for network I/O using ALTOS SIO ports 8080 version: This has to dispatch and then use direct port I/O extremely messy to do reentrantly Entry: C = character to transmit
695 696 697 698 699	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Character output routine for network I/O using ALTOS SIO ports 8080 version: This has to dispatch and then use direct port I/O extremely messy to do reentrantly

703	push h
704	push d
705	push b
706	
707	lxi d,out0 ; dispatch address =
708	mov l,b ; $out0 + slaveid*16$
709	mvi h,0
710	dad h
711	dad h
712	dad h
713	dad h
714	dad d
715	mvi a,10h ;load "get transmit status" value
716	pchl ;dispatch
717	
718 c	outO:
719	out Console4\$status ;wait for TXready status
720	in Console4\$status
721	ani 4
722	jz out0
723	
724	mov a,c
725	out Console4\$status-1 ;write the character
726	pop b
727	pop d
728	pop h
729	ret
730	
731 o	out1: out Console3\$status
732	in Console3\$status
733	ani 4
734	jz outl
735	
736	mov a,c
737	out Console3\$status-1
738	pop b
739	pop d
740	pop h
741	ret
742	
	out2: out Console2\$status
744	in Console2\$status
745	ani 4
746	jz out2
747	
748	mov a,c
749	out Console2\$status-1
750	pop b
751	pop d
752	pop h
753	ret
754	

CP/M RMAC ASSEM 1.1 #015 MASTER NETWORK I/F MODULE

757	ani 4
758	jz out3
759	JZ OUIS
760	mov a,c
761	out Printer2\$status-1
762	
	pop b
763	pop d
764	pop h
765	ret
766	
767	endif
768	
769	
	Nibin: ; return nibble in A register
771 0486 CD	BD04 call Charin
772 0489 D8	rc
773 048A E67	
774 048C D63	30 sui '0'
775 048E FE0	OA cpi 10
776 0490 DA	A604 jc Nibin\$return ; must be 0-9
777 0493 C6F	adi ('0'-'A'+10) and 0ffh
778 0495 FE1	0 cpi 16
779 0497 DA	A604 jc Nibin\$return ; must be 10-15
780 049A 3A	4204 Ida networkstatus
781 049D F60	08 ori msgerr
782 049F 324	
783 04A2 3E0	00 mvi a,0
784 04A4 37	stc
785 04A5 C9	ret
786	
787	Nibin\$return:
788 04A6 B7	ora a
789 04A7 C9	ret
790	
	xChar\$in: ; Get the first character using polled
792	; console I/O. Note that the rest of the
793	; message will be received using direct
794	; port I/O with interrupts disabled.
795	; OVERRUNS ARE NOT POSSIBLE USING THIS SCHEME
796	
797 04A8 E5	push h
798 04A9 C5	push b
799 04AA 21	-
800 04AD E5	
801 04AE 48	mov c,b
802 04AF 060	
803 04B1 214	,
803 04B1 214 804 04B4 09	dad b
004 0404 09	uau U

 805
 04B5 56
 mov d, m
 ; Get the console number

 806
 04B6 2A4604
 lhld conin
 ; vector off

 807
 04B9 E9
 pchl
 ; vector off

 808

 ; vector off

 809
 Charin\$return:
 ; vector off

 810
 04BA C1
 pop
 b

CP/M RMAC ASSEM 1.1 #016 MASTER NETWORK I/F MODULE

811	04BB E1	pop	h	
812	04BC C9	ret		
813				
814				
815		if z80		
816	char	\$in:		
817				
818	•		input routine for network i/o	
819	•	using the	ALTOS SIO ports at 125k baud	
820	•			
821	•	Z-80 Vers	sion uses indirect port addresses loaded into register C	
822	;			
823	;	Entry : Sl	ave number in register b	
824	;	Exit : Ch	aracter in register a	
825	;			
826	04BD E5	push	h	
827	04BE C5	push	b	
828	04BF 214804	lxi	h, status\$ports	
829	04C2 48	mov	c, b	
830	04C3 0600	mvi	b, 0 ; set $(BC) = (b)$	
831	04C5 09	dad	b	
832	04C6 4E	mov	c,m	
833				
834	•	Now C cc	ontains the address of the correct status port	
835				
836	04C7 2E50	mvi	1, 80	
837				
838	input	tloop1:		
839	04C9 2D	dcr	1	
840	04CA CADA	04 j	z retout	
841				
842	;	in a,(c)		
843	04CD ED78	db	0edh,78h	
844				
845	04CF E601	ani	01h ; wait for RXready	
846	04D1 CAC904	4 jz	inputloop1	
847				
848	;	In the Alt	os system, data registers are one below status registers	•
849				
850	04D4 0D	dcr	с	
851				
852	• •	in a,(c))	
853	04D5 ED78	db	0edh,78h ;get the character	
854				

855	04D7 C1	pop	b	
856	04D8 E1	pop	h	
857	04D9 C9	ret		
858				
859	retout:			
860	04DA 37	stc		;set carry => error flag
861	04DB C1	pop	b	
862	04DC E1	pop	h	
863	04DD C9	ret		
864				

CP/M RMAC ASSEM 1.1 #017 MASTER NETWORK I/F MODULE

865	else
866	
867	char\$in:
868	
869	; Character input routine for network I/O
870	; using ALTOS SIO ports
871	;
872	; 8080 Version uses same nasty dispatch mechanism that the output
873	; routine used
874	;
875	; Entry: $B = Slave ID$
876	; Exit: $A = character input$
877	
878	push h
879	push d
880	push b
881	lxi d,in0 ; $HL = in0 + 17$ *slaveid
882	mov l,b
883	mvi h,0
884	xchg
885	dad d
886	xchg
887	dad h
888	dad h
889	dad h
890	dad h
891	dad d
892	
893	mvi c,80 ; load status retry count
894	pchl ; dispatch
895	
896	in0:
897	dcr c
898	jz retout ; error return if retry timeout
899	
900	in Console4\$status; wait for RXready
901	ani 1
902	jz in0
903	
904	in Console4\$status-1 ; get the character

905		pop	b
906		pop	d
907		pop	h
908		ret	
909			
910	in1:		
911		dcr	с
912		jz	retout
913			
914		in	Console3\$status
915		ani	1
916		jz	in1
917		-	
918		in	Console3\$status-1

CP/M RMAC ASSEM 1.1 #018 MASTER NETWORK I/F MODULE

pop	b d
100	
in2:	
	С
	retout
J-	
in	Console2\$status
ani	1
jz	in2
5	
in	Console2\$status-1
pop	b
	d
pop	
ret	
in3:	
dcr	c
jz	retout
in	Printer2\$status
ani	1
jz	in3
in	Printer2\$status-1
pop	b
pop	d
pop	h
ret	
	; error return (carry=1)
pop	b
pop	d
	pop pop ret in2: dcr jz in ani jz in pop pop ret in3: dcr jz in ani jz in ani jz tret retout: stc

955	po	p h	
956	ret		
957			
958	en	dif	
959			
960			
961	Netout:		; $C = byte$ to be transmitted
962	04DE 7A	mov	v a,d
963	04DF 81	add	c
964	04E0 57	mov	d,a
965	04E1 3A3E04	lda	la BinaryASCII
966	04E4 B7	ora	a
967	04E5 C26804	jnz	z Charout ; transmit byte in Binary mode
968	04E8 79	mov	a,c
969	04E9 F5	push	psw
970	04EA 1F	rar	
971	04EB 1F	rar	
972	04EC 1F	rar	

CP/M RMAC ASSEM 1.1 #019 MASTER NETWORK I/F MODULE

973	04ED 1F	rar
974	04EE E60F	ani 0FH ; Shift HI nibble to LO nibble
975	04F0 CD5404	call Nibout
976	04F3 F1	pop psw
977	04F4 E60F	ani OFH
978	04F6 C35404	jmp Nibout
979		
980	Netin:	; byte returned in A register
981		; $D = checksum accumulator$
982	04F9 3A3E04	lda BinaryASCII
983	04FC B7	ora a
984	04FD CA0705	jz ASCIIin
985	0500 CDBD04	call charin ;receive byte in Binary mode
986	0503 D8	rc
987	0504 C31705	jmp chksin
988		
989	ASCIIir	1:
990	0507 CD8604	call Nibin
991	050A D8	rc
992	050B 87	add a
993	050C 87	add a
994	050D 87	add a
	050E 87	add a
996	050F F5	push psw
997	0510 CD8604	call Nibin
998	0513 D8	rc
999	0514 E3	xthl
1000	0515 B4	ora h
1001	0516 E1	pop h
1002	chksin:	
1003	0517 B7	ora a
1004	0518 F5	push psw

```
file:///C|...l\% 20 Roche\% 20 DRI\% 20 documents\% 20 conversion/CP\% 20 NET-80\% 20 Version\% 201.2\% 20 Reference\% 20 Manual/CPNETRM.TXT [2/6/2012 4:07:51 PM]
```

1005	0519 82	add d ; add & update checksum accum.
1006	051A 57	mov d,a
1007	051B F1	pop psw
1008	051C C9	ret
1009		
1010	Msgin:	; $HL = destination address$
1011		; $E = #$ bytes to input
1012	051D CDF904	call Netin
1013	0520 D8	rc
1014	0521 77	mov m,a
1015	0522 23	inx h
1016	0523 1D	dcr e
1017	0524 C21D05	jnz Msgin
1018	0527 C9	ret
1019		
1020	Msgout	: ; HL = source address
1021		; $E = #$ bytes to output
1022		; $D = checksum$
1023		; $C = preamble character$
1024	0528 1600	mvi d,0
1025	052A CD6504	call PreCharout
1026		

CP/M RMAC ASSEM 1.1 #020 MASTER NETWORK I/F MODULE

1027	Msg	goutloop:
1028	052D 4E	mov c,m
1029	052E 23	inx h
1030	052F CDDE0	04 call Netout
1031	0532 1D	dcr e
1032	0533 C22D03	5 jnz Msgoutloop
1033	0536 C9	ret
1034		
1035	;	Network Initialization
1036		
1037	nwi	nit:
1038		
1039	;	device initialization, as required
1040		
1041		
1042		mvi a,047h ;sets up CTC for baud rate of 125k
1043	0539 D331	out 031h
1044		
1045		if nmbslvs ge 3 ;initialize only the ports that are needed
1046		out 030h
1047		endif
1048		
1049		if nmbslvs ge 4
1050		out 032h
1051		endif
1052		
1053	053B 3E01	mvi $a,1$; count of one => max speed
1054	053D D331	out 031h

1055 1056 if nmbslvs ge 3 1057 out 030h 1058 endif 1059 1060 if nmbslvs ge 4 1061 032h out endif 1062 1063 1064 1065 Find address of XIOS console output routine ; 1066 1067 053F 2A0100 lhld 0001h ; get warmstart entry in the XIOS jump table 1068 0542 23 h inx 1069 0543 5E mov e, m 1070 0544 23 inx h 1071 0545 56 d, m mov 1072 0546 210600 lxi h, 0006h ; Offset for conin routine 1073 0549 19 dad d 1074 054A 224604 shld conin ; save the address 1075 054D AF ; return code is 0=success xra а 1076 054E C9 ret 1077 1078 1079 Network Status ; 1080

CP/M RMAC ASSEM 1.1 #021 MASTER NETWORK I/F MODULE

1082054F 0600mvib,010830551 214204lxih,networkstatus10840554 09dadb10850555 7Emova,m10860556 47movb,a10870557 E6F5aninot (msgerr+msgovr)10880559 77movm,a	
1084055409dadb108505557Emova,m1086055647movb,a10870557E6F5aninot (msgerr+msgovr)	
108505557Emova,m1086055647movb,a10870557E6F5aninot (msgerr+msgovr)	
1086 0556 47 mov b,a 1087 0557 E6F5 ani not (msgerr+msgovr)	
1087 0557 E6F5 ani not (msgerr+msgovr)	
1088 0559 77 mov m,a	
1089 055A 78 mov a,b	
1090 055B C9 ret	
1091	
1092	
1093 ; Return Configuration Table Address	
1094	
1095 cfgadr:	
1096 055C 215603 lxi h,configtbl	
1097 055F C9 ret	
1098	
1099	
1100 ; Send Message on Network	
1101	
1102 sndmsg: ; DE = message addr	
1103 ; C = Slave #	
1104 0560 41 mov b,c	

11061107send:11080563 F5push psw1109ifmutexout1111ifmutexout1111:Use mutual exclusion if it is possible for some unsolicited input1112:Use mutual exclusion if it is possible for some unsolicited input1113:to stomp on your output (This is nice is you;re running some sort1114:of multi-drop protocol)1115.1116push b1117push d1118mvi c,readq1119lxi d,UQCBMXSXmitq1120call bdos ; obtain mutual exclusion token1121pop d1122pop b1123endif1124.11250564 EB1260565 E5push h11270566 F311280567 0E05mvi c,ENQ11290569 CD68041130056C CDA005call getACK; won't return on an error1131056F 1E0511320571 0E01mvi c,SOH11330573 CD2805callMsrout1330573 CD2805callMsrout1330573 CD2805callMsrout1330573 CD2805callMsrout1340573 CD2805callMsrout1350573 CD2805callMsrout136054 ED5137054 ED513805	1105	0561 3E0A	mvi a,max\$retries ; $A = max$ \$retries
11080563 F5pushpsw1109ifmutexout1111ifmutexout1112;Use mutual exclusion if it is possible for some unsolicited input1113;to stomp on your output (This is nice is you;re running some sort1114;of multi-drop protocol)1115;of multi-drop protocol)1116pushb1117pushd1118mvi c,readq1119lxid,UQCBMXSXmitq1120callbdos1121popd1122popb1123endif1124if11250564 EBxchg11260565 E5push11270566 F3di11280567 0E05mvi c,ENQ11290569 CD6804call Charout1290566 CDA005call getACK131056F 1E05mvi e,511320571 0E01mvi c,SOH	1106		
1109ifnutexout1110ifmutexout11111112:Use mutual exclusion if it is possible for some unsolicited input1113:to stomp on your output (This is nice is you;re running some sort1114:of multi-drop protocol)1115.1116push b1117push d1118mvi c,readq1119lxi d,UQCBMXSXmitq1120call bdos ; obtain mutual exclusion token1121pop d1122pop b1123endif1124.11250564 EBxchg11260565 E5push h11270566 F3di ; disable interrupts to avoid underrun11280567 0E05mvi c,ENQ11290569 CD6804call Charout ; send ENQ1130056C CDA005call getACK ; won't return on an error1131056F 1E05mvi e,511320571 0E01mvi c,SOH	1107	send:	
1110if mutexout1111	1108	0563 F5	push psw
11111112;Use mutual exclusion if it is possible for some unsolicited input1113;to stomp on your output (This is nice is you;re running some sort1114;of multi-drop protocol)1115	1109		
1112;Use mutual exclusion if it is possible for some unsolicited input1113;to stomp on your output (This is nice is you;re running some sort1114;of multi-drop protocol)1115	1110	i	f mutexout
1113;to stomp on your output (This is nice is you;re running some sort1114;of multi-drop protocol)11151116push b1116push d11171117push d1118mvi c,readq1119lxi d,UQCBMXSXmitq1120call bdos ; obtain mutual exclusion token1121pop d1122pop b1123endif1124112511260565 E511270566 F311280567 0E0511290569 CD68041130056C CDA0051131056F 1E0511320571 0E011132mvi c,SOH	1111		
1114; of multi-drop protocol)111511161117push d1117118mvi c,readq119119120call bdos; obtain mutual exclusion token1121pop d1122pop b1123endif112411250564 EBxchg11260565 E5push h11270566 F3di; disable interrupts to avoid underrun11280567 0E05mvi c,ENQ11290569 CD6804call Charout; send ENQ11300567 1E05mvi e,511320571 0E01mvi c,SOH	1112	; 1	Use mutual exclusion if it is possible for some unsolicited input
1114; of multi-drop protocol)111511161117push d1117118mvi c,readq119119120call bdos; obtain mutual exclusion token1121pop d1122pop b1123endif112411250564 EBxchg11260565 E5push h11270566 F3di; disable interrupts to avoid underrun11280567 0E05mvi c,ENQ11290569 CD6804call Charout; send ENQ11300567 1E05mvi e,511320571 0E01mvi c,SOH	1113	; t	to stomp on your output (This is nice is you;re running some sort
1116push b1117push d1118mvi c,readq1119lxi d,UQCBMXSXmitq1120call bdos ; obtain mutual exclusion token1121pop d1122pop b1123endif1124112511250564 EB1126xchg11270566 F311280567 0E0511290569 CD68041130056C CDA0051131056F 1E0511320571 0E0111320571 0E0111320571 0E0111320571 0E0111320571 0E0111320571 0E0111320571 0E0111320571 0E011134113511320571 0E011134113411351132113211341134113411341134113411341134113411341134113411351132113411341134113511341134113511351135113511361136113711381134113411341134113411341134113511351136113611	1114		
1117push d1118mvi c,readq1119lxi d,UQCBMXSXmitq1120call bdos ; obtain mutual exclusion token1121pop d1122pop b1123endif1124112511250564 EB11260565 E5push h11270566 F311280567 0E0511290569 CD68041130056C CDA0051131056F 1E0511320571 0E0111320571 0E0111320571 0E01	1115		
1118mvic,readq1119lxid,UQCBMXSXmitq1120callbdos; obtain mutual exclusion token1121popd1122popb1123endif112411250564 EBxchg11260565 E5push11270566 F3di11280567 0E05mvi11290569 CD6804call1130056C CDA005call1131056F 1E05mvi11320571 0E01mvi11320571 0E01mvi	1116	ŗ	bush b
1119lxid,UQCBMXSXmitq1120callbdos; obtain mutual exclusion token1121popd1122popb1123endif112411250564 EBxchg11260565 E5push11270566 F3di11280567 0E05mvi11290569 CD6804call1130056C CDA005call1131056F 1E05mvi11320571 0E01mvi11320571 0E01mvi	1117	Ī	bush d
1120call bdos; obtain mutual exclusion token1121pop d1122pop b1123endif1124112511260564 EB11260565 E5push h11270566 F311280567 0E05mvi c,ENQ11290569 CD68041130056C CDA005call getACK; won't return on an error1131056F 1E05mvi c,SOH	1118	r	nvi c,readq
1121 pop d 1122 pop b 1123 endif 1124	1119	1	xi d,UQCBMXSXmitq
1122 pop b 1123 endif 1124 1125 1125 0564 EB xchg 1126 0565 E5 push h 1127 0566 F3 di ; disable interrupts to avoid underrun 1128 0567 0E05 mvi c,ENQ 1129 0569 CD6804 call Charout ; send ENQ 1130 056C CDA005 call getACK ; won't return on an error 1131 056F 1E05 mvi e,5 1132 0571 0E01	1120	C	call bdos ; obtain mutual exclusion token
1123 endif 1124	1121	I	pop d
1124 1125 0564 EB xchg 1126 0565 E5 push h 1127 0566 F3 di ; disable interrupts to avoid underrun 1128 0567 0E05 mvi c,ENQ 1129 0569 CD6804 call Charout ; send ENQ 1130 056C CDA005 call getACK ; won't return on an error 1131 056F 1E05 mvi e,5 1132 0571 0E01 mvi c,SOH	1122	I	pop b
1125 0564 EB xchg 1126 0565 E5 push h 1127 0566 F3 di ; disable interrupts to avoid underrun 1128 0567 0E05 mvi c,ENQ 1129 0569 CD6804 call Charout ; send ENQ 1130 056C CDA005 call getACK ; won't return on an error 1131 056F 1E05 mvi e,5 1132 0571 0E01 mvi c,SOH	1123	e	endif
1126 0565 E5 push h 1127 0566 F3 di ; disable interrupts to avoid underrun 1128 0567 0E05 mvi c,ENQ 1129 0569 CD6804 call Charout ; send ENQ 1130 056C CDA005 call getACK ; won't return on an error 1131 056F 1E05 mvi c,SOH	1124		
11270566 F3di; disable interrupts to avoid underrun11280567 0E05mvi c,ENQ11290569 CD6804call Charout ; send ENQ1130056C CDA005call getACK ; won't return on an error1131056F 1E05mvi e,511320571 0E01mvi c,SOH	1125	0564 EB	xchg
1128 0567 0E05 mvi c,ENQ 1129 0569 CD6804 call Charout ; send ENQ 1130 056C CDA005 call getACK ; won't return on an error 1131 056F 1E05 mvi e,5 1132 0571 0E01 mvi c,SOH	1126	0565 E5	push h
1129 0569 CD6804 call Charout ; send ENQ 1130 056C CDA005 call getACK ; won't return on an error 1131 056F 1E05 mvi e,5 1132 0571 0E01 mvi c,SOH	1127	0566 F3	di ; disable interrupts to avoid underrun
1130 056C CDA005 call getACK ; won't return on an error 1131 056F 1E05 mvi e,5 1132 0571 0E01 mvi c,SOH	1128	0567 0E05	mvi c,ENQ
1131 056F 1E05 mvi e,5 1132 0571 0E01 mvi c,SOH	1129	0569 CD6804	call Charout ; send ENQ
1132 0571 0E01 mvi c,SOH	1130	056C CDA005	call getACK ; won't return on an error
			mvi e,5
1133 0573 CD2805 call Megout · send SOH FMT DID SID FNC SIZ			
		0573 CD2805	call Msgout ; send SOH FMT DID SID FNC SIZ
1134 0576 AF xra a	1134	0576 AF	xra a

CP/M RMAC ASSEM 1.1 #022 MASTER NETWORK I/F MODULE

1135	0577 92	sub d
1136	0578 4F	mov c,a
1137	0579 CDDE04	call Netout ; send HCS (header checksum)
1138	057C CDA005	call getACK ; won't return on an error
1139	057F 2B	dcx h
1140	0580 5E	mov e,m
1141	0581 23	inx h
1142	0582 1C	inr e
1143	0583 0E02	mvi c,STX
1144	0585 CD2805	call Msgout ; send STX DB0 DB1
1145	0588 0E03	mvi c,ETX
1146	058A CD6504	call PreCharout ; send ETX
1147	058D AF	xra a
1148	058E 92	sub d
1149	058F 4F	mov c,a
1150	0590 CDDE04	call Netout ; send CKS
1151	0593 0E04	mvi c,EOT
1152	0595 CD6504	call PreCharout ; send EOT
1153	0598 CDA005	call getACK ; won't return on an error
1154	059B D1	pop d ; discard message address

1155	059C F1	pop psw	; discard retry counter
1156			
1157	if	mutexout	
1158	cal		
1159	ene	dif	
1160			
1161	059D FB	ei	; return from suspended animation
	059E AF	xra a	
1163	059F C9	ret	; $A = 0$, successful send message
1164			
1165	getACK	K:	
	05A0 CDBD04	call Ch	arin
	05A3 DAAB05		ACK\$timeout ; receive timeout>start error recovery
	05A6 E67F	ani 7fh	
	05A8 D606	sui ACK	
	05AA C8	rz	
1171			
1172		K\$timeout:	
	05AB D1	pop d	; discard return address
1174			
1175	if	mutexout	
1176	pu		
1177	cal	ll release\$MX	
1178	poj		
1179	ene	dif	
1180			
1181	05AC D1	pop d	; DE = message address
1182	05AD F1	pop psw	; $A = retry count$
	05AE 3D	dcr a	
	05AF C26305	jnz send	
	05B2 3D	dcr a	; else>we're dead>A = 0ffh
	05B3 C9	ret	; failed to send message
1187			
1188	if	mutexin or n	nutexout

CP/M RMAC ASSEM 1.1 #023 MASTER NETWORK I/F MODULE

1189			
1190	release\$M	IX:	; send back requester transmit MX message
1191	mvi	c,writeq	
1192	lxi	d,UQCBMX	SXmitq
1193	jmp	bdos	
1194	endif		
1195			
1196	; Rece	ive Message	from Network
1197		C	
1198	rcvmsg:		; DE = message addr
1199	C	; C	2 = Slave #
1200	05B4 41 n	nov b,c	
1201			
1202	receive:		
1203	05B5 EB	xchg	
1204		push h	

1205 05B7 CDBF05 call get\$ENQ 1206 1207 a return to this point indicates an error ; 1208 1209 receive\$retry: ei 1210 05BA FB ; re-enable other processes 1211 1212 if mutexin 1213 push b 1214 call release\$MX 1215 pop b 1216 endif 1217 1218 05BB D1 pop d 1219 05BC C3B505 jmp receive 1220 1221 get\$ENQ: ; get first character of message using ; polled console I/O 1222 1223 05BF CDA804 call xCharin 1224 05C2 DABF05 get\$ENQ jc 1225 05C5 E67F ani 7fh 1226 05C7 FE05 ; Start of Message ? cpi ENQ 1227 05C9 C2BF05 jnz get\$ENQ 1228 1229 if mutexin 1230 1231 ; Don't get too involved with receiving a message if some other 1232 NETWRKIF process is going to stomp you by sending a message along 1233 the same line ; 1234 1235 push b 1236 push h 1237 mvi c,readq 1238 d,UQCBMXSXmitq lxi 1239 call bdos 1240 pop h 1241 pop b 1242 endif CP/M RMAC ASSEM 1.1 #024 MASTER NETWORK I/F MODULE 1243 1244 05CC 0E06 c,ACK mvi 1245 05CE F3 di ; requester in gear now serve only him 1246 1247 05CF CD6804 charout ; send ACK to requester, allowing transmit call call Charin 1248 05D2 CDBD04 1249 05D5 D8 rc 1250 05D6 E67F 7fh ani 1251 05D8 FE01 cpi SOH 1252 05DA C0 rnz 1253 05DB 57 ; initialize the HCS mov d,a 1254 05DC 1E05 mvi e,5

1255	05DE CD1D05	call Msgin
1256	05E1 D4F904	cnc Netin
1257	05E4 D8	rc
	05E5 7A	mov a,d
1259	05E6 B7	ora a
	05E7 C21406	jnz sendNAK ; jmp & send NAK if HCS $<> 0$
	05EA 0E06	mvi c,ACK
	05EC CD6804	call Charout
1263	05EF CDBD04	call Charin
1264	05F2 D8	rc
1265	05F3 E67F	ani 7fh
1266	05F5 FE02	cpi STX
1267	05F7 C0	rnz
1268	05F8 57	mov d,a ; initialize the CKS
1269	05F9 2B	dcx h
1270	05FA 5E	mov e,m
1271	05FB 23	inx h
1272	05FC 1C	inr e
1273	05FD CD1D05	call msgin
1274	0600 D4BD04	cnc Charin
1275	0603 D8	rc
1276	0604 E67F	ani 7fh
1277	0606 FE03	cpi ETX
1278	0608 C0	rnz
1279	0609 82	add d
1280	060A 57	mov d,a
1281	060B CDF904	call Netin ; get Checksum byte
1282	060E D8	rc
1283	060F 7A	mov a,d
1284	0610 B7	ora a ; should be zero
1285	0611 CA1906	jz sendACK ; jump if checksum OK
1286		
1287	sendNA	AK: ; else>refuse the message
1288	0614 0E15	mvi c,NAK
1289	0616 C36804	jmp Charout ; send NAK and return to receive\$retry
1290		
1291	sendAC	
	0619 CDBD04	call Charin ; get EOT
1293	061C D8	rc
	061D E67F	ani 7fh
	061F FE04	cpi EOT
1296	0621 C0	rnz

CP/M RMAC ASSEM 1.1 #025 MASTER NETWORK I/F MODULE

1297	0622 0E06		mvi	c,ACK	-
1298	0624 CD6804		cal	l Charo	out ; send ACK if checksum ok
1299	0627 D1		рор	d	; discard return address
1300	0628 D1		pop	d	; discard message address
1301	0629 FB		ei		; Dispense with the Rip Van Winkle act
1302					
1303		if	mute	xin	
1304		call	relea	ase\$MX	

1305		endif	
1306		enan	
1307	062A AF	xra	a
1308	062B C9	ret	
1309			
1310			
1311	resto	ore:	
1312			
1313	;	This routi	ine allows N copies of NtwrkIPx to run reentrantly.
1314	•		he values that were pre-initialized in the process
1315	;	-	r and later saved on the stack and loads them into
1316	;	-	ers, leaving the stack image untouched. All variables
1317	;		to the process therefore always reside on the
1318	•	process-d	lependent stack
1319	0.400 E2	1.	
1320	062C F3	di	; this is a real critical region
1321	062D E1	pop	h
1322	062E 224006		d rtnadr
1323 1324	0631 E1 0632 D1	pop	h
1324	0632 D1 0633 C1	рор рор	d b
	0634 F1	pop	psw
1320		pop	psw
1328	0636 C5	push	-
1329	0637 D5	push	
1330	0638 E5	push	
1331	0639 E5	push	h
1332	063A 2A4006	5 Ihl	ld rtnadr
1333	063D E3	xthl	
1334	063E FB	ei	
1335	063F C9	ret	
1336			
1337	0640 rt	nadr: ds	2
1338		·C	
1339		if Wtcl	hDg
1340		WatahDa	Timer Drasses
1341 1342	,		by Timer Process
1342	,	-	s. They might possibly abort the offending NtwrkIPx
1344			recreate it, and allow it to re-initialize its queues
1345	,	process, 1	recreate it, and abow it to re initialize its queues
1346	Wat	chDog:	
1347		0	Delay
1348		lxi d,60	•
1349		call bdo	•
1350			atchDogTime

CP/M RMAC ASSEM 1.1 #026 MASTER NETWORK I/F MODULE

1351	inx	h
1352	shld	WatchDogTime
1353	lxi	h,WatchDogTable-5
1354	mvi	c,NmbSlvs

1355	
1355	WatchDogLoop:
1350	lxi d,0005h
1358	dad d
1359	mov a,m
1360	ora a
1361	jz WatchDogDec
1362	inx h
1363	ana m
1364	dcx h
1365	jnz WatchDogDec ; waiting & timeout set
1366	push h ; save HL -> WDT.waiting
1367	inx h
1368	inx h
1369	di
1370	mov e,m
1371	inx h
1372	mov d,m
1373	ei
1374	lhld WatchDogTime
1375	mov a,l
1376	sub e
1377	mov l,a
1378	mov a,h
1379	sbb d
1380	mov h,a
1381	mvi a,10 ; # seconds since started Charin
1382	sub 1
1383	mvi a,0
1384	sbb h
1385	pop h
1386	jnc WatchDogDec
1387	push h
1388	inx h
1389	mvi m,0ffh; WDT.timeout = 0ffh
1390	inx h
1391	inx h
1392 1393	inx h
1393	push b mov a m $E = E \log t$
1394	mov e,m ; E = Flag # mvi c,Flagset
1395	call bdos
1397	
1397	pop b pop h
1399	Коћ и
1400	WatchDogDec:
1400	dcr c
1402	jnz WatchDogLoop
1403	J
1404	jmp WatchDog
	5 I C

CP/M RMAC ASSEM 1.1 #027 MASTER NETWORK I/F MODULE

1405		endif
1405		chan
1407		
1408		Setup code for Network Interface Procedures
1409	,	Setup code for Network interface riocedures
1410	Setu	in'
1410	0642 F5	-
1412	0643 C5	
	0644 D5	push b
	0645 E5	push d
	0646 CD3705	push h 5 call nwinit
1415	0040 CD370.	5 call nwinit
		if mutavin or mutavout
1417		if mutexin or mutexout
1418		mvi c,makeq ; make the mutual exclusion queue
1419		lxi d,QCBMXSXmitq call bdos
1420		call bdos
1421 1422		mui a writag i laava a takan in tha quaya
1422		mvi c,writeq ; leave a token in the queue lxi d,UQCBMXSXmitq
1423		lxi d,UQCBMXSXmitq call bdos
1424		endif
1425		enun
1420		if WtchDg
1427		if WtchDg lxi d,WatchDogPD ;since this process is linked to all other
1429		;NtwrkIPx processes, creating it creates all
1429		;of the others
1430		
1431		mvi c,createp call bdos
1432		call buos
1433		else
1434		eise
1435		if NmbSlvs GE 2
	0649 11AC01	
1438	00 4) 11AC01	;processes if there's no watchdog
	064C 0E90	mvi c,createp
1440	064E CD5004	
1441	0042 CD5004	endif
1442		endif
1443		
1444	0651 0E8E	mvi c,dsptch ;give everything a chance to create its queues
1445	0653 CD5004	
1446	0000 00000	
	0656 0E9A	mvi c,sydatad
	0658 CD5004	•
1449	065B 110900	
	065E 19	dad d
1451	065F 115603	lxi d,configtbl
1452	0662 73	mov m,e
1453	0663 23	inx h
1454	0664 72	mov m,d ; sysdatpage($9\&10$) = co.configtbl
1455		; filling in the config tbl address is the
1456		; the server processes' cue to start
1457		, F
1458		if modem
-		

1459	; In	itialize the modem
1460	,	
1461	m	vi c,CR
1462	m	vi b,slvmodem
1463	ca	ll Charout
1464	m	vi c,'Z'
1465	ca	
1466	m	vi c,CR
1467	ca	
1468		
1469	WtSpac	ce:
1470	ca	ll Charin
1471	jc	SetupDone
1472	an	i 07fh
1473	ср	i ''
1474	jn	z WtSpace
1475	m	vi c,'A'
1476	ca	ll Charout
1477		
1478	SetupD	one:
1479	en	dif
1480		
1481	0665 E1	pop h
1482	0666 D1	pop d
1483		pop b
1484	0668 F1	pop psw
1485		
1486	; Netw	ork Interface Reentrant Procedure
1487	- •	
1488	Init:	
1489		push psw ; $A =$ network i/f console dev #
1490	066A C5	push B ; BC= buffer address
1491	066B D5	push D ; DE= UQCB ntwrk queue out
	066C E5	push H ; HL= UQCB ntwrk queue in
	066D 5E	mov e,m
1494		inx h
1495		mov d,m
1496		mvi c, makeq
1497		call bdos ; make the ntwrk queue in
1498		call restore
1499 1500		xchg
		mov e,m
1501 1502		inx h mov d,m
1502		
1505		mvi c,makeq call bdos ; make the ntwrk queue out
1504	007L CDJ004	can buos , make the newik queue but
1505	Loop:	
1500	-	call restore
1507		mov d,b
1500	000100	110, u ,0

1510 1511 0686 4F mov c,a 1512 0687 CDB405 call rcvmsg CP/M RMAC ASSEM 1.1 #029 MASTER NETWORK I/F MODULE 1513 1514 068A CD2C06 call restore 1515 068D EB xchg 1516 068E 0E8B mvi c,writeq 1517 0690 CD5004 call bdos 1518 1519 0693 CD2C06 call restore 1520 0696 0E89 mvi c,readq 1521 0698 CD5004 call bdos 1522 1523 069B CD2C06 call restore 1524 069E 50 d,b mov 1525 069F 59 mov e,c 1526 1527 06A0 4F mov c,a 1528 06A1 CD6005 call sndmsg 1529 1530 06A4 C38106 jmp Loop 1531 1532 06A7 end CP/M RMAC ASSEM 1.1 #030 MASTER NETWORK I/F MODULE ACK 0006 612#1169 1244 1261 1297 ACTIVE 0010 587# 0507 984 989# ASCIIIN BDOS 0450 44 622#1120 1193 1239 1349 1396 1420 1424 1432 1440 1445 1448 1497 1504 1517 1521 BDOSADR 0000 51# 58# 623 BINARYASCII 043E 541# 965 982 00A6 47 89 118 138# BUFFERQ0 0250 179 208 228# BUFFERQ1 BUFFERQI0ADDR 0084 116 117# BUFFERQI1ADDR 022E 206 207# BUFFERQO0ADDR 00A4 134 135# BUFFERQO1ADDR 024E 224 225# CFGADR 055C 1095# CHARIN 04BD 771 816# 867# 985 1166 1248 1263 1274 1292 1470 04BA 799 809# CHARINRETURN 044C 578# 803 CHARIOTBL 0468 631 635 643# 692# 967 1129 1247 1262 1289 1298 CHAROUT 1463 1465 1467 1476 0517 987 1002# CHKSIN

1509 0685 59

mov

e,c

CONFIGTBL 0356 493# 1096 1451 CONIN 0446 553# 806 1074 CONSOLE2STATUS 002D 564# 574 743 744 749 928 932 CONSOLE3STATUS 002F 563# 573 731 732 737 914 918 CONSOLE4STATUS 002B 562# 572 719 720 725 900 904 000D 614#1461 1466 CR CREATEP 0090 601#1431 1439 0000 28# 37 DEBUG DELAY 008D 599#1347 DSPTCH 008E 600#1444 0005 611#1128 1226 ENQ EOT 0004 610# 1151 1295 ETX 0003 609#1145 1277 FALSE 0000 23# 24 28 29 31 33 34 FLAGSET 0085 595# 1395 05A0 1130 1138 1153 1165# GETACK GETACKTIMEOUT 05AB 1167 1172# GETENO 05BF 1205 1221# 1224 1227 INIT 0669 190 281 366 1488# INPUTLOOP1 04C9 838# 846 LF 000A 613# LOOP 0681 1506# 1530 0086 596# 1418 1496 1503 MAKEQ MAXRETRIES 000A 555#1105 MODEM 0000 29# 1458 0008 588# 781 1087 MSGERR 051D 1010# 1017 1255 1273 MSGIN 0528 1020#1133 1144 MSGOUT MSGOUTLOOP 052D 1027# 1032 MSGOVR 0002 590# 1087 0000 33# 471 1188 1212 1229 1303 1417 MUTEXIN **MUTEXOUT** 0000 34# 471 1110 1157 1175 1188 1417 NAK 0015 615# 1288 NETIN 04F9 980#1012 1256 1281 CP/M RMAC ASSEM 1.1 #031 MASTER NETWORK I/F MODULE NETOUT 04DE 961#1030 1137 1150 NETWORKSTATUS 0442 547# 780 782 1083 045F 628 632# NIBATOF 0486 770# 990 997 NIBIN NIBINRETURN 04A6 776 779 787# 0454 626# 975 978 NIBOUT **NMBSLVS** 0002 39# 56# 148 151 239 242 330 419 496 505 512 518 524 529 534 1045 1049 1056 1060 1354 1436 **NMSG** 0001 502# NTWRK 0004 589# NTWRKIP0 0002 65#

01AC 149# 420 1437

0036 41 69 93#

01E0 159 183# 0001 591#

0080 586#

0537 1037# 1415

NTWRKIP1 NTWRKIS0

NTWRKIS1

NWINIT

NTWRKRXRDY NTWRKTXRDY

file:///C|...1% 20 Roche% 20 DRI% 20 documents% 20 conversion/CP% 20 NET-80% 20 Version% 201.2% 20 Reference% 20 Manual/CPNETRM.TXT [2/6/2012 4:07:51 PM]

NWSTAT 054F 1081# OUTPUTLOOP 0474 666# 676 POLL 0083 603# PRECHAROUT 0465 637#1025 1146 1152 PRINTER2 0010 617# PRINTER2STATUS 0029 565# 575 755 756 761 941 945 QCBNTWRKQI0 0066 102# 115 QCBNTWRKQI1 0210 192# 205 QCBNTWRKQO0 0086 120# 133 QCBNTWRKQO1 0230 210# 223 05B4 1198# 1512 RCVMSG 0089 597#1118 1237 1520 READQ RECEIVE 05B5 1202# 1219 RECEIVERETRY 05BA 1209# 062C 1311#1498 1507 1514 1519 1523 RESTORE 04DA 840 859# 898 912 926 939 951# RETOUT 0640 1322 1332 1337# RTNADR SEND 0563 1107# 1184 SENDACK 0619 1285 1291# 0614 1260 1287# SENDNAK SETUP 0642 100 1410# 040A 508 525# SLAVE1 SLAVE1STK 0374 506# SLAVESTKLEN 0096 503# 507 514 520 SNDMSG 0560 1102# 1528 0001 607#1132 1251 SOH STATUSPORTS 0448 571# 658 828 STX 0002 608#1143 1266 009A 602#1447 SYDATAD FFFF 24# 26 TRUE UQCBNTWRKQI0 0080 45 87 114# UQCBNTWRKQI1 022A 177 204# UQCBNTWRKQO0 00A0 46 88 132# UQCBNTWRKQO1 024A 178 222# 008B 598#1191 1422 1516 WRITEQ WTCHDG 0000 31# 414 1339 1427

CP/M RMAC ASSEM 1.1 #032 MASTER NETWORK I/F MODULE

XCHARIN 04A8 791# 1223 Z80 FFFF 26# 567 642 815

Appendix F: A CP/NET System for use with ULCnet

F.1 Overview of ULCnet

ULCnet (Universal Low Cost Network) is a local area network system designed specifically for microcomputers in the CP/M and MP/M II operating system environments. ULCnet was introduced by Orange Compuco, Inc. in June 1982 as a low cost method of sharing resources and data among microcomputers of varying

manufacture and architecture. ULCnet, in combination with CP/NET, creates a cost effective method for the development of shared data base applications among single user microcomputers. ULCnet architecture readily supports CP/NET implementation.

The ULCnet connector adaptor box can be connected to any computer that has a spare RS-232 port. ULCnet employs a multidrop topology with carrier sense, multiple-access design. Contention between network nodes is arbitrated using a full-duplex collision detection mechanism.

ULCnet is available to OEMs on a private label basis, and through licensing.

Keybrook Business Systems, Inc., Hayward, California, a licensee of ULCnet, produces the FileServer system. This system uses CP/NET to drive ULCnet. For more information on ULCnet, contact

Orange Compuco, Inc. 17801-G South East Main Street Irvine, California 92714 (714) 957-8075

Orange Compuco distributes ULCnet connector adaptor hardware with a variety of release software, including the example programs in this appendix. In addition, Orange Compuco provides documentation detailing the installation and operation of ULCnet and logical structure of the data-link layer software. This documentation includes:

- details on the installation and configuration of ULCnet

- a detailed description of the linkage between the proprietary datalink software and the user-definable Network I/O Drivers (NIOD)
- a detailed description of the interface between higher-level software and data-link software
- a description of the data-link interface (DLIF) between the data-link software and higher-level layers

F.2 Customizing a ULCnet SNIOS for the Requester

The CP/NET requester listing, SNIOS for ULCnet, that appears at the end of this section, is contained in a file called ULCNIOS.ASM on the CP/NET release disk, and is designed to run ULCnet in a polled environment on a Xerox 820 computer, now called the Xerox R820-IIS. The listing uses the ULCnet short format. This means that virtual circuit numbers must be agreed upon before the requester and the server can communicate. This version assumes that the server ID is always 0, and that up to four requesters, ID 1 through 4, are on the network. The virtual circuit number and the requester ID are always the same.

This SNIOS combines the two sections of the ULCnet protocol that are user configurable, the data-link interface (DLIF) and the network I/O drivers (NIOD). The DLIF acts as a transport layer between the NDOS and the data-link routines. The NIOD contains the physical device drivers use to communicate with the ULCnet network adaptor box. The bulk of the data-link protocol is contained in a module called PBMAIN.REL. This module is proprietary to Orange

Compuco, and is therefore distributed only in REL file format by Orange Compuco.

When the NDOS instructs the SNIOS to send a message, the SNIOS first converts the CP/NET message format into ULCnet short format. The SNIOS then calls the TRANSMIT routine in PBMAIN to send the message, followed by the GETTCODE routine to discover the status of the message. If the send was successful, the SNIOS returns to the NDOS. If it was not successful, the SNIOS continues to try to send the message. No timeout is included in this routine to halt transmission.

To receive a message, the SNIOS calls RECEIVE, followed by GETRCODE to check the status of the message. If the status shows success, the message is converted from ULCnet format back into CP/NET format, and returns to the NDOS. If the status shows an error, the SNIOS attempts to receive the message again.

To modify the SNIOS for a requester other than a Xerox 820, follow these steps:

- Decide whether to make the requester operate in a polled or interruptdriven environment. If you want interrupts, set the INTERRUPTS assembly switch to TRUE, and link the module using IPBMAIN instead of PBMAIN.
- If your ULCnet connector adaptor has been modified for self clocked operation, set the assembly switch SLFCLKD to TRUE. Application notes detailing how to modify the connector adaptor for self-clocked operation are available from Orange Compuco.
- Determine your requester's transmission speed capabilities. Set the baud rate masks BAUDSL and BAUDSH to reflect these values. Enter values for the requester's baud rate generator into the table BAUDTBL.
- Modify the port numbers for the baud rate generator and the UART to reflect those used by your requester.
- Modify the NIOD to run on your requester. The NIOD is currently set up to drive a Z-80 SIO chip. If your requester has an SIO, it needs little modification. The routine PGMUART, which sets up the network port for ULCnet operation, might have to be modified. In an interrupt driven system, interrupt vectors must be set up here.
- Assemble and link the SNIOS by performing

A>RMAC ULCNIOS A>LINK SNIOS=ULCN1OS,PBMAIN[OS]

If the requester is interrupt-driven, perform

A>LINK SNIOS=ULCNIOS, IPBKAIN[OS]

to link the module. The module is then ready for installation on the CP/NET requester system disk.

Listing F-1: Requester Network I/O System for ULCnet

CP/M RMAC ASSEM 1.1 #001 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

1 2			title page		ster Ne	etwork I/C) System	for ULCne	et'				
3			1 0										
4		;***	****	*****	*****	******	*******	*******	******	******	******	*********	**
5		;***	****	*****	*****	******	*******	*******	******	******	******	********	**
6		**						**					
7		.**			SNI	DS FOR U	JLCNET			**			
8		.**						**					
9		***	****	*****	*****	*******	*******	*******	******	*******	******	******	**
10		**	****	*****	*****	******	******	******	*****	*****	******	******	**
11		,											
12		:	Dev	eloped	jointl	v by:							
13		:		I	J .								
14		:		Digita	al Rese	arch, Inc.							
15		•		0	Box 57								
16		•				ve, CA 93	950						
17		•	and	I delli	010	0 , 011 <i>)</i> 0	200						
18		•	una	Kevh	rook B	usiness S	vstems Ir	C					
19		•				al Avenu							
20		,				A 94545	C						
20		,		IIuy v	uru, c	11 7 15 15							
$\frac{21}{22}$			This	SNIC	S was	written fo	or a Xeroy	x 820 attac	hed to (Orange			
23		,						: This mo		-			
23		,						e low-leve			are		
25		,		-				so contain					
26		,	-		•			ale. This	-	•	VCIS		
20		,		•				with PBM					
28		,	me	nupt-c		ina musi			171111.11				
28 29													
30													
31	0000 =		false	equ	0								
32	FFFF =			equ	not f	مادم							
33	1111 -		true	cqu	not i	aise							
	0000 =		interr	unto	0011	false	· folco	=polled, ti	mo_into	rrunt driv	on		
35	FFFF =		netsta	-	equ	true		h to gather		-			
36	FFFF =		slfclk		equ	true		orts self-cl			~ 5		
37	1.1.1.1		SILCIN	<u>u</u>	equ	uue	, suppo			peration			
38		• Т i	nkaa	e infori	notion								
38 39		, L	inkage		nation								
40			nub	lia sot	and w	mit roov i	nitu · NIC	D routine	s collod	hy IDDM	AIN		
40 41			-					DToutine	s calleu	Uy IF DIVI	AIIN		
41		public inituart,pgmuart public chkstat,netidle,initrecv											
42 43			-			art,csniod							
43 44			-			art,esiii00							
			-	lic dsb		adr							
45 46			pub	lic dllb	Jau,net	aur							
46			;£	inter	11040								
47			if	interr	-	Jahlus							
48			-		orrecv,	lsblrecv							
49			endi	I									

50		
51 extrn	transmit, receive	; IPBMAIN routines and objects
52 extrn	gettcode,getrcode	
53 extrn	csdll,dllon,regshrt	
54 extrn	terrent,parentr,ovren	ntr

CP/M RMAC ASSEM 1.1 #002 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

55		extrn frmcntr,inccntr	
56 57		if interrupts	
58		extrn rtmochk	; IPBMAIN interrupt routines
59		extrn dlisr,reisr,niisr	
60 61		endif	
62			
63		: Hardware definitions for th	he Z-80-SIO channel A - For the Xerox 820.
64		,	
65	0003 =	baudsl equ 03h	; Usable baud rates: 9600, 19.2K asynch.,
66	002A =	baudsh equ 2ah	; 76.8K, 153.6K, 307.2K self-clocked
67 68		, houd r	ata aanahility maak
69	2A03 =		ate capability mask 100h)+baudsl
70	21105 -	budds equ (buddsn	100H) + Outdist
71	0000 =	baudgen equ 0	; External baud rate generator register
72	0006 =	siocmd equ 6	; Command/Mode register
73	0006 =	-	; Status register
74	0004 =	sioxmit equ 4	; Transmit register
75	0004 =	siorecv equ 4	; Receive register
76 77	0002 -	redubit agy 0	. Transmit huffer ampty status hit
77 78	0002 = 0004 =	xrdybit equ 2 xrdymsk equ 4	; Transmit buffer empty status bit ; transmit buffer empty status mask
78 79	0004 = 0000 =	rrdybit equ 0	; Receive buffer full status bit
80	0000 = 0001 =	rrdymsk equ 1	; receive buffer full status mask
81	0001 = 0003 =	•	; Net Idle detect bit position
	0008 =	carmsk equ 8	; Net Idle detect mask
83	0030 =	errst equ 030h	; Error flag reset
84	0070 =	errbits equ 070h	; Error bit position mask
85	0004 =	pbit equ 4 ;	Parity error bit position
86	0010 =	pmsk equ 10h	; parity error mask
87	0005 =		Overrun error bit position
88	0020 =	omsk equ 20h	; overrun error mask
89	0006 =	-	Framing error bit position
	0040 =	fmsk equ 40h selfbit equ 3	; framing error mask
91 92	0003 = 0008 =	selfbit equ 3 selfmsk equ 8	; Self clock bit position ; slef clock bit mask
92 93	0008 = 00000000000000000000000000000000	dtron equ Oeah	; Turn on DTR
94	00LA = 006A =	dtroff equ 06ah	; Turn off DTR
95	0001 = 0001 =	enarcy equ 0c1h	; Enable receive-clock
96	00C0 =	disrcv equ 0c0h	; Disable receive clock
97	000F =	enaslf equ 00fh	; Enable Self-clock mode
98	004F =	disslf equ 04fh	; Disable Self-clock mode
99			

```
100
              ; SIO Mode 2 interrupts vector table
101
102 FF08 =
                  siov4 equ
                                0ff08h
                                             ; SIO port A xmit buffer empty
103 \text{ FF0A} =
                                 0ff0ah
                   siov5 equ
                                             ; SIO port A external status change
104 \text{ FF0C} =
                  siov6 equ
                                 0ff0ch
                                             ; SIO port A receive
105 FF0E =
                                0ff0eh
                  siov7 equ
                                             ; SIO port A special receive condition
106
107
108
              ; Message Buffer Offsets
```

CP/M RMAC ASSEM 1.1 #003 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

```
109
110 0000 =
                 fmt
                                  0
                                            : format
                            equ
111 0001 =
                 did
                           equ
                                  fmt+1
                                              ; destination ID
                                              ; source ID
112 \quad 0002 =
                                  did+1
                 sid
                           equ
113 0003 =
                 fnc
                           equ
                                  sid+1
                                              ; server function number
114 0004 =
                                 fnc+1
                                             ; size of message (normalized to 0)
                 siz
                           equ
115 0005 =
                            equ
                                   siz+1
                                              ; message
                 msg
116 0106 =
                 buf$len
                             equ
                                   msg+257
                                                  ; length of total message buffer
117
118
             ; ULCnet Packet Offsets
119
120 \quad 0000 =
                 ulc$fmt
                             equ
                                    0
                                              ; packet format
121 \quad 0001 =
                 ulc$v$circ
                                                  ; virtual circuit number
                              equ
                                    ulc$fmt+1
122 0002 =
                 ulc$len$lo
                              equ
                                    ulc$v$circ+1 ; low order of length
123 \quad 0003 =
                 ulc$len$hi
                              equ
                                    ulc$len$lo+1
                                                 ; high order of length
124 0004 =
                                   ulc$len$hi+1 ; start of message: function code
                 ulc$fnc
                             equ
125 0005 =
                                    ulc$fnc+1
                                                  ; CP/NET message
                 ulc$msg
                              equ
126
127
             ; Network Status Byte Equates
128
129 0010 =
                 active
                            equ
                                   0001$0000b
                                                  ; slave logged in on network
130 \quad 0002 =
                                                  ; error in received message
                 rcverr
                            equ
                                   0000$0010b
131 0001 =
                                   0000$0001b
                                                  ; unable to send message
                 senderr
                             equ
132
133
134
                  CSEG
135
136 0005 =
                 BDOS equ
                                0005h
137
138
             NIOS:
139
                  public NIOS
140
141
             ; Jump vector for SNIOS entry points
142
143 0000 C3E100
                               ntwrkinit
                                            : network initialization
                         jmp
144 0003 C3EE00
                         jmp
                               ntwrksts
                                            ; network status
145 0006 C3F600
                         jmp
                               cnfgtbladr
                                            ; return config table addr
146 0009 C30401
                        jmp
                               sendmsg
                                             ; send message on network
147 000C C32001
                               receivemsg
                                             ; receive message from network
                         jmp
148 000F C3FA00
                         jmp
                                ntwrkerror
                                              ; network error
149 0012 C30301
                               ntwrkwboot
                        jmp
                                              ; network warm boot
```

```
file:///C/...1% 20Roche% 20DRI% 20documents% 20conversion/CP% 20NET-80% 20Version% 201.2% 20Reference% 20Manual/CPNETRM.TXT[2/6/2012 4:07:51 PM]
```

150			
151			
152	0001 = rqs	str\$id	equ 1 ; requester ID: must be between 1 and 4
153	004B = fm	nt\$byte	equ 4bh ; format byte: short format with data-link
154			; acknowledge, 153.6K baud self-clocked
155			
156	Γ	DSEG	
157			
158	; Tran	sport Lay	yer Data
159			
160	netwo	rk\$error\$	Smsg:
161			
162	0000 0D0A	db	0dh,0ah

CP/M RMAC ASSEM 1.1 #004 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

163	0002 4E65	74776F	db 'Ne	etwork Error'
164	000F 0D0A	A d	b 0dh,0	ah
165	0011 24	db	'\$'	
166				
167				
168	•	Requester (Configurati	on Table
169		-	-	
170	СС	onfigtbl:		
171	Ν	etwork\$sta	tus:	
172				
173	0012	ds	1	; network status byte
174	0013 01	db	rqstr\$id	; slave processor ID number
175	0014	ds	2	; A: Disk device
176	0016	ds	2 2	; B: "
177	0018	ds	2	; C: "
178	001A	ds	2	; D: "
179	001C	ds	2 2	; E: "
180	001E	ds		; F: "
181	0020	ds	2 2 2 2 2 2	; G: "
182	0022	ds	2	; H: "
183	0024	ds	2	; I: "
184	0026	ds	2	; J: "
185	0028	ds		; K: "
186	002A	ds	2	; L: "
187	002C	ds	2	; M: "
188	002E	ds	2	; N: "
189	0030	ds	2	; O: "
190	0032	ds	2	; P: "
191	0034	ds	2	; console device
192	0036	ds	2	; list device:
193				
194	;	List Buffer	Data	
195				
196	0038	ds	1	; buffer index
197				
198	0039 00	db	0	; FMT
199	003A 00	db	0	; DID

201 202 203	003B 01 003C 05 003D 003E 003F	db rq db 5 ds 1 ds 1 ds 128					
200 207 208	;	ULCnet Data D	Definitions				
209 210 211	00BF 00C2		3 ;ULCnet network address2 ;baud rate mask				
	0016 =	timeval equ	22 ; WAIT routine time constant ; 12 for 2.5 megahertz				
214 215			; 22 for 4.0 megahertz Z80				
	00C4 FF	curbaud db	0ffh ; Current baud rate				
CP/M	RMAC AS	SEM 1.1 #003	5 REQUESTER NETWORK I/O SYSTEM FOR ULCNET				
217							
218 219 220	9 ; table to convert baud number codes						
221 222 223	00C5 0102	2040810btbl: d	b 1,2,4,8,16,32,64,128				
224 225 226	b	audtbl:	; async baud rate table				
227 228	00CD 0E 00CE 0F		Deh ; 9600 Baud ofh ; 19200				
229 230	S	cbaudt:	; self-clock baud rate table				
231 232	00CF 00	db 0	' I				
233 234	00D0 0D 00D1 00	db 0 db 0	Odh ; 76800 Baud ; 125000 Baud - Not implemented				
235	00D2 0E		eh ; 153600 Baud				
236 237	00D3 00 00D4 0F	db 0 db 01	; 250000 Baud - Not implemented fh ; 307200 Baud				
237	00D4 01	ub 0.	111 , 507200 Baud				
239		if interru	pts				
240	S)h,14h,4fh,15h,06ah,13h,0c1h,11h,01h,10h,10h,30h				
241	0005 001	else					
242 243	00D5 3012	4F156Asioiblk	db 030h,14h,4fh,15h,06ah,13h,0c1h,11h,00h,10h,10h,30h				
243 244		endif					
244	000C =	sioilen equ	\$-sioiblk				
246		······································					
247 248		nage					
240		page					

CP/M RMAC ASSEM 1.1 #006 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

```
249
250
                  Network Initialization Routine
             ;
251
252
             ntwrkinit:
253
254 00E1 CD0000
                         call csdll
                                              ; cold start the data link
255 00E4 CD0000
                         call dllon
                                              ; initialize the SIO drivers
256 00E7 3E01
                             a,rqstr$id
                                              ; register the id with the data link
                       mvi
257 00E9 CD0000
                         call regshrt
258 00EC AF
                                           ; return with no error
                       xra
                            а
259 00ED C9
                      ret
260
261
262
                  Return network status byte
             ;
263
264
             ntwrksts:
265
                              network$status
266 00EE 3A1200
                        lda
267 00F1 47
                     mov
                            b,a
268 00F2 E6FC
                       ani
                             not (reverr or senderr)
269 00F4 78
                            a,b
                     mov
270 00F5 C9
                      ret
271
272
273
             ;
                  Return configuration table address
274
275
             cnfgtbladr:
276
277 00F6 211200
                       lxi
                             h,configtbl
278 00F9 C9
                      ret
279
280
                  Network error routine
             ;
281
282
283
             ntwrkerror:
284
285 00FA 0E09
                       mvi
                              c,9
286 00FC 110000
                             d,network$error$msg
                        lxi
287 00FF CD0500
                         call bdos
288
289 0102 C9
                     ret
290
291
                  Network Warm Boot Routine
             ;
292
293
                                         ; this entry is unused in this version
             ntwrkwboot:
294
295 0103 C9
                      ret
296
297
298
                  Send a Message on the Network
             ;
```

299 ;	Input:
300 ;	BC=pointer to message buffer
301 ;	Output:
302 ;	A = 0 if successful

CP/M RMAC ASSEM 1.1 #007 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

303	;	1	if failure	
304				
305	sendr	nsg:		
306		C		
307	0104 C5	push	b	
308	0105 60	mov	h,b	
309	0106 69	mov	l,c	
310	0100 07	ino (1,0	
311	0107 364B	mvi	m,fmt\$byte	;set ulc\$net format byte
312	0107 5010	111 V 1	m,may by to	,set the first format by to
313	0109 23	inx	h	;reformat source to virtual circuit
	0109 23 010A 23	inx	h	, reformat source to virtual circuit
	010A 25 010B 56			
	010B 30 010C 2B	mov	d,m b	
		dcx	h m d	
317	010D 72	mov	m,d	
318				
319	0105 00		1	
320	010E 23	inx	h	
321	010F 23	inx	h	
	0110 46	mov	b,m	;save function
323				
	0111 23	inx	h	
	0112 5E	mov	e,m	;get size
	0113 70	mov	m,b	;function=msg(0) in ULC format
327				
	0114 1600	mvi	d,0	
	0116 13	inx	d	
330	0117 13	inx	d	;normalize CP/NET to ULC sizes
331				
	0118 2B	dcx	h	
333	0119 72	mov	m,d	
	011A 2B	dcx	h	
335	011B 73	mov	m,e	
336				
337	011C C1	pop	b	;restore buffer pointer
338				
339	011D C34A01	jr	np dl\$send	;blast away
340				
341				
342	;	Receive a	a Message on th	ne Network
343	;			
344	•	This rout	ine calls the da	ta-link routine to receive the message,
345			verts it into UL	-
346	•			
347	•	Input:		
348	•	-	= pointer to but	ffer to receive the message
			-	C

349		;	Output:			
350		;	A =	0 if s	successful	
351		;	1	if fai	lure	
352						
353		rece	ivemsg:			
354						
355	0120 C5		push	b		;save buffer pointer
356			-			-

CP/M RMAC ASSEM 1.1 #008 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

357 358	0121 CD	3701 ca	all dl	\$receive ;slurp the message
359	0124 E1	рор	h	
360	0125 360			;FMT = 0 (requester to server)
361	0125 500		,	
	0127 23	inx	h	;DID already = virtual circuit #
363	0127 23	шх		,DID anoudy - virtual oncur #
	0128 23	inx	h	;get length
	0129 5E	mov		
	012A 23	inx	h	
367		mov		
368	0122 00	1110 (-
	012C 1B	dcx	d	
370	012D 1B			;normalize ULC to CP/NET format
371			-	,
	012E 23	inx	h	
	012F 7E	mov	a,m	;save FNC
374			,	,
375	0130 73	mov	m,e	;format SIZ (<256)
376			,	
377	0131 2B	dcx	h	
378	0132 77	mov	m,a	;format FNC
379				
380	0133 2B	dcx	h	
381	0134 AF	xra	a	;set success
382	0135 77	mov	m,a	;assume server always 0
383				
384	0136 C9	ret		;CP/NET message formatted form ULCnet
385				
386				
387				
388		; Data Link In	nterfac	e Routines
389				
390				
391		; DL\$RECEI	VE: N	etwork Receive Function.
392		; Input:		
393		; BC	= Buf	fer address
394				
395				
396		dl\$receive:		
397				
398	0137 50	mov	d,b	; Buffer address in DE for data link

399 400	0138 59	mov e,c
401 402	rretry:	
403	0139 AF	xra a ; Packet mode
404		lxi b,257 ; Buffer size
	013D 210000	lxi h,0 ; Infinite wait
	0140 D5	push d ; Save buffer address for retry
407		
	0141 CD7801	call psrecv ; Initiate Receive and wait for completion
409	01 <i>44</i> D1	non de Bostons huffen oddroos
410	0144 D1	pop d ; Restore buffer address
CP/M	RMAC ASSEM	.1 #009 REQUESTER NETWORK I/O SYSTEM FOR ULCNET
411	0145 B7	ora a
412	0146 C8	rz ; Return if no error
413		
	0147 C33901	jmp rretry ; Jump to try again if error
415		
416 417		END: Network Transmit Function
417	· · · ·	but:
419	, 111 ₁	BC = Buffer address
420	,	
421	dl\$send	:
422		
423	014A 50	mov d,b ; Buffer address in DE for data link
424	014B 59	mov e,c
425		
426	tretry:	
427		una a Daalvat mada mait fan Nat Idla
428 429	014C AF 014D D5	xra a ; Packet mode, wait for Net Idle
429	014D D3	push d ; Save buffer address for retry
431	014E CD5701	call psxmit ; Initiate Transmit, wait for completion
432	0112 020701	
433	0151 D1	pop d ; Restore buffer address
434	0152 B7	ora a
435	0153 C8	rz ; Return if no error
436		
437	0154 C34C01	jmp tretry ; Jump to retry if error
438	DOM	
439		IIT: Transmit the packet pointed at by DE. If carry flag is set
440 441	; t	hen don't wait for the Net to become idle.
441	; • I	Returns the completion code in A
442	, I	0 - Transmission ok and Data Link Ack Received
444	•	(In the case of multicast, no Ack required)
445	,	2 - Transmission OK but no Data Link Ack received.
446	•	
447	•	4 - Other error.
448		

449	psxmit:		
450			
451	0157 CD0000	call transmit	; This will transmit, set return code
452			
453	twait:		
454			
455	015A CD0000	call gettcode	; A := GETTCODE - Xmit return code
456	015D 5F	mov e,a	
457	015E 1600	mvi d,0	
458	0160 216901	lxi h,trtbl	; dispatch on the return code
459	0163 19	dad d	
460	0164 5E	mov e,m	
461	0165 23	inx h	
462	0166 66	mov h,m	
463	0167 6B	mov l,e	
464	0168 E9	pchl	

CP/M RMAC ASSEM 1.1 #010 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

465				
466	trtbl:			
467				
468	0169 7701	dw	psxret	; Good transmission
469	016B 7701	dw	psxret	; No Data Link Ack
470	016D 7701	dw	psxret	; Too many collisions
471	016F 7701	dw	psxret	; Transmitter is disabled
472	0171 5A01	dw	twait	; Transmitter is idle
473	0173 5A01	dw	twait	; Transmitter is in progress
474	0175 5A01	dw	twait	; Transmitter is waiting for ack
475				-
476	psxret			
477				
478	0177 C9	ret		
479				
480	; PSRI	ECV: Re	ceive a packet	t into buffer pointed at by DE. Length of
481	;	packet n	nust be less the	an length of buffer in BC. HL is the receive
482	;	timeout	count.	
483	;			
484	;	Upon re	turn clear the	carry bit if a packet received and ACKed.
485	;	Set the c	arry flag if an	y error occured.
486				
487	psrecv	:		
488				
489	0178 CD0000	cal	l receive	; Receive. Return code will be set
490				
491	rwait:			
492				
493	017B CD0000	ca	ll getrcode	; $A := GETRCODE$
494				
495		mov	e,a	
496		mvi	d,0	
497	0181 218A01	lxi	h,rrtbl	; dispatch on the return code
498	0184 19	dad	d	

```
file:///C|...l\% 20 Roche\% 20 DRI\% 20 documents\% 20 conversion/CP\% 20 NET-80\% 20 Version\% 201.2\% 20 Reference\% 20 Manual/CPNETRM.TXT [2/6/2012 4:07:51 PM]
```

499	0185 5E	mov e,m	
500	0186 23	inx h	
501	0187 66	mov h,m	
502	0188 6B	mov l,e	
503	0189 E9	pchl	
504			
505	rrtb	ol:	
506			
507	018A 9601	dw rgood	; Good receive
508	018C 9801	dw rbad	; Bad receive
509	018E 9801	dw rbad	; Disabled
510			
511		if not interrupts	
512	0190 9801	dw rbad	; Still idle after timeout
513		else	
514		dw ridle	; Idle
515		endif	
516			
517	0192 7B01	dw rwait	; Inprogress
518	0194 7B01	dw rwait	; In progress and for us.

CP/M RMAC ASSEM 1.1 #011 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

519			
520		if interrupts	
521	ridl	le:	
522			
523		call rtmochk	; Check for timeout
524		jc ridle1	; Jump if timeout
525		call wait1	; Wait 1 ms
526		jmp rwait	; Continue to wait if no timeout
527			
528	ridl	le1:	
529			
530		call dsblrecv	; Disable the receiver
531		stc	
532		ret	; Return with error
533		endif	
534			
535	rgo	od:	
536			
537	0196 A7	ana a	
538	0197 C9	ret	
539			
540	rba	d:	
541			
542	0198 37	stc	; Indicate error
543	0199 C9	ret	
544		page	

CP/M RMAC ASSEM 1.1 #012 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

545						
546						
547	; NIOD routines					
548						
549						
550						
551	; SETBAU	JD: Set	t the baud r	rate based on the baud rate code in A. Do special		
552			self-clocked	-		
553	;					
554	;	0 = 960	0 baud			
555	;	1 = 192	200 baud			
556	;	9 = 768	800 baud se	lf-clock		
557	;	11 = 153	3600 baud s	self-clock		
558	;	13= 30'	7200 baud s	self-clock		
559	• •					
560			nnot handle	e the requested baud rate, then set		
561	; the carry	flag.				
562	.1 1					
563	setbaud:					
564 565	019A E60F	ani (Ofh	; mask all but the baud bits		
565	019C 21C400		h,curbaud	; are we at the current baud rate?		
	 .		m	, are we at the current badd rate?		
568	a	rz		es>all done		
569		12	, , ,			
570	01A1 47 m	nov t	o,a ;	else>get baud rate generator value		
571	01A2 E607		7	8		
572		nov e	e,a			
573	01A5 1600		d,0			
574						
575	01A7 21C500	lxi	h,btbl	; point to vertical-to-horizontal decode		
576	01AA 19	dad d	1;	table		
577						
578		slfclkd				
			a,b			
	01AC E608		selfmsk	; is this a self-clocked value?		
581	01AE C2D601	jnz	selfclkd			
582 583	endif					
585 584	01B1 3E03	mvi	a,baudsl	; get legal baud rate mask		
585	01 D 0 1 1	ana n		, get legal baue fate mask		
586	0 4 D 4 0 D	tc	.1			
587		ſZ	: re	turn with error if its an illegal rate		
588	0120 00 1	E	, 10			
589	if	slfclkd				
590			a,5	; else>switch off possible self-clock mode		
591	01B8 D306		siocmd	. L		
592	01BA 3E6A	mvi	a,dtroff	; disable DTR in SIO register 5		
593	01BC D306	out	siocmd	-		
594						
595	01BE 3E04	mvi	a,4	; disable sync mode in register 4		
596	01C0 D306		siocmd			
597	01C2 3E4F		a,disslf			
598	01C4 D306	out	siocmd			

CP/M RMAC ASSEM 1.1 #013 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

599	enc	dif
600 601	01C6 21CD00	lxi h,baudtbl ; point to async baud rate table
601	0100 210000	ixi in, baddibi , point to asyne badd fale table
603	outbau:	
604		
605	01C9 19	dad d ; get async baud rate value
606	01CA 7E	mov a,m
607	01CB D300	out baudgen ; load it into the baud rate generator
608		; NOTE: This is not a CTC
609		
	01CD 21C400	lxi h,curbaud
611	01D0 70	mov m,b ; set current baud byte
612 613	01D1 CDA702	call wait ; allow the system to reach equilibrium
614	01D1 CDA/02	can wait , anow the system to reach equilibrium
	01D4 A7	ana a ; return success
	01D5 C9	ret
617		
618	if	slfclkd
619	; Throw	SIO into self-clocked mode
620		
621	selfclkd	:
622		
	01D6 3E2A	mvi a, baudsh ; Is this a legal rate?
	01D8 A6	ana m
	01D9 37 01DA C8	stc
620 627	UIDA Co	rz ; return an error if not
	01DB 3E04	mvi a,4 ; enable sync mode in register 4
	01DD D306	out siocmd
	01DF 3E0F	mvi a,enaslf
631	01E1 D306	out siocmd
632		
	01E3 3E05	mvi a,5 ; enable DTR in register 5
634	01E5 D306	out siocmd
635	01E7 3EEA	mvi a,dtron
636	01E9 D306	out siocmd
637 638	01EB 21CF00	lxi h,scbaudt ; point to baud rate table for self-clock mode
639	01EB 21CF00 01EE C3C901	lxi h,scbaudt ; point to baud rate table for self-clock mode jmp outbau ; program the baud rate generator
640	enc	J I V I C C
641	UII	
642		
643	; DSBL	XMIT: Disable the transmitter if in self clocked mode
644		
645	dsblxmi	it:
646		
647	if	slfclkd
648	01F1 3AC400	lda curbaud ; are we in self-clocked mode?

649 650 651	01F4 E608 01F6 C8	ani rz	selfmsk ; 1	no>don't bother
	01F7 3E05	mvi	a,5	; disable SIO from transmitting by disabling
CP/M	RMAC ASSE	M 1.1 #0	14 REQU	JESTER NETWORK I/O SYSTEM FOR ULCNET
653	01F9 D306	out	siocmd	; DTR in register 5
654	01FB 3E6A	mvi		,
655	01FD D306	out	siocmd	
656				
657	01FF 3E05	mvi	a,5	; Enable receive by re-enabling DTR
658	0201 D306	out	siocmd	
659	0203 3EEA	mvi	a,dtron	
660	0205 D306	out	siocmd	
661		endif		
662				
663	0207 C9	ret		
664				
665	. VI	MT. Trong		in A on metricula A
666 667	, ΛΙ	viii: Irans	mit the byte	e in A on network A.
668				
669	xmi	t۰		
670	ХШ	ι.		
671		if not in	terrupts	
672	0208 F5	push	-	
673		I	I	
674	xmi	t1:		
675				
676	0209 DB06	in	siostat	; don't overrun the transmitter if we're
677	020B E604	ani	xrdymsk	; interrupt-driven; wait for TxReady
678	020D CA090	jz jz	xmit1	
679	0010 51			
680	0210 F1		psw	
681 682		endif		
683	0211 D304	out	sioxmit	; blast that byte
684	0211 D304 0213 C9	ret	SIOXIIII	, blast that byte
685	0215 C)	101		
686				
687	; RE	ECV: Recei	ve a byte fi	rom Network A. Set the carry flag if there was
688	•	a receive	•	
689	;			
690	;	For Z80-5	SIO receive	errors are handled by the special receive
691	;	condition	interrupts.	
692				
693	recv	:		
694		· c	<i>.</i> .	
695	0214 00500		iterrupts	
696 607	0214 CD5D0			sat arror condition if the net want idle
697 698	0217 DA2702	2 јс	rto	; set error condition if the net went idle
090				

699	021A DB06	in	siostat	; else>wait until a character is in the
700	021C E601	ani	rrdymsk	; buffer
701	021E CA1402	jz	recv	
702				
703	0221 CD2A02	call	chkstat	; check for receive errors
704				
705	else			
706	ana	а	; clea	ar carry flag

CP/M RMAC ASSEM 1.1 #015 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

707	en	dif		
708				
709	0224 DB04	in	siorecv	; input the character
710	0226 C9	ret		
711				
712	rto:		; set a	n error
713				
714		xra	a	
715		stc		
716	0229 C9	ret		
717				
718	CINI		C1 1	
719	; CHKS			status bits of a receive error. If not error then
720	•			and return. Otherwise figure out which
721				ncrement its counter and set the carry flag.
722	•	Issue ar	a error reset	command to the UART.
723				
724	11			
725	chkstat			
726	000 4 0001		1	
	022A 3E01	mvi	a,1	; get error status from SIO read register 1
728		out	siocmd	
729	022E DB06	in	siostat	
730	0220 E670		a uula ita	
731		ani	errbits	a and the shere a second solution a
732 733	0232 C8	rz	, 1	no error occurred>all done
734	if	notet	ota · cot	her statistics on the type of error
	0233 47	netst	b,a , gai	her statistics on the type of error
736	0233 47 0234 E610	mov ani	pmsk	
737		jz	np	; not a parity error
738	0250 CA51 02	JZ	пр	, not a party crior
739	0239 210000	lxi	h,parcntr	; else>
740	0237 210000 023C CD0000	ca	1	; increment parity error counter
741	0250 020000	Cu	ii incenti	, merement party error counter
742	np:			
743	пp.			
744	023F 78	mov	a,b	
745		ani	obit	
746		jz	no	; not an overrun
747		JZ		,
	0245 210000	lxi	h,ovrentr	; else>
. 10		1/11		, • ·

749	0248 CD0000	call incentr	; increment overrun counter
750			
751	no:		
752			
753	024B 78	mov a,b	
754	024C E606	ani fbit	
755	024E CA5702	jz nf	; not a framing error
756			
757	0251 210000	lxi h,frment	r ; else>
758	0254 CD0000	call incentr	; increment framing error counter
759			
760	nf:		

CP/M RMAC ASSEM 1.1 #016 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

761	enc	lif
762		
763	0257 3E30	mvi a, errst ; reset error condition
764	0259 D306	out siocmd
765	025B 37	stc ; signal an error
766	025C C9	ret
767		
768		
769		
770	; NETII	DLE: See if network A is idle. If idle then set the carry flag.
771		
772	netidle:	
773		
774	025D 3E10	mvi a,10h ; reset interrupts
775	025F D306	out siocmd
776	0261 D306	out siocmd ; do it twice to reject glitches on DCD
777		
778	0263 DB06	in siostat ; is there a data-carrier detect?
779	0265 E608	ani carmsk
780	0267 C8	rz ; yes>net is in use>carry flag cleared
781		
782	0268 AF	xra a
783	0269 CD9A01	call setbaud ; net is idle>reset to hailing rate (9600)
784	026C 37	stc ; set net idle to true
785	026D C9	ret
786		
787		
788	if	interrupts
789		
790	; ENBL	RECV: Enable the channel A receiver interrupts.
791	1.1	
792	enblrecy	·:
793		• • • • • • • • • • • • •
794 705	mv	· · · ·
795 706	out	
796	mv	
797	out	siocmd ; channel B
798	ret	

799 800 801 802 803	; DSBLRECV: Disable the channel A receiver interrupts. dsblrecv:
804	mvi a,1 ; Disable interrupts on received characters
805	out siocmd ; (Keep status interrupts enabled)
806	out siocmd ; NOTE: Channel B mask is 05h
807	ret
808	
809	endif
810	
811	
812	; PGMUART: Program the Network UART channel
813	
814	pgmuart:

CP/M RMAC ASSEM 1.1 #017 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

 815 816 817 818 819 820 821 822 823 	if	interrupts ; The 820 already has the SIO vector address ; programmed from channel B. Other ; implementations will have to provide linkage ; to the vector area in the main XIOS, and ; load the vector offset into SIO write ; register 2
824	lxi	h,niisr ; load status interrupt service routine vector
825	shl	
826	lxi	h,dlisr ; load transmit ISR vector
827	shl	
828	lxi	h,reisr ; load receiv ISR vector
829 830	shl	
830 831	enc	111
832	026E 21D500	lxi h,sioiblk ; point to SIO initialization block
833	020L 21D 300 0271 060C	mvi b,sioilen ; length of block
834	0273 F3	di
835		
836	pgm1:	
837		
	0274 7E	mov a,m ; output the block to the SIO
	0275 D306	out siocmd
	0277 23	inx h
841	0278 05	dcr b
842	0279 C27402	jnz pgm1
843	007C ED	
	027C FB	ei $rac{1}{2}$ so $rac{1}{2}$ so $rac{1}{2}$ boud rate $= 0.600$
	027D AF 027E CD9A01	xra a ; set up hailing baud rate = 9600 call setbaud
840 847	027E CD9A01 0281 C9	
848 848	0201 03	ret
0-10		

849 850 851 852 853 854				e uart for network A by issuing a reset command a receive buffer.
855	0282 3E03	mvi	a,3	; disable the receiver through register 3
856	0284 D306	out	siocmd	
857	0286 3EC0	mvi	a,disrcv	
858	0288 D306	out	siocmd	
859				
860	028A DB06	in	siostat	; is there a garbage byte?
861	028C E601	ani	rrdymsk	
862	028E CA9602	jz	initu	; no>continue initialization
863				
864	0291 DB04	in	siorecv	; else>eat the character
865	0293 C38202	jmp	inituart	; try again
866				
867	initu:			
868				

CP/M RMAC ASSEM 1.1 #018 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

869	0296 3E30	mvi	a,errst	; reset error conditions
870	0298 D306	out	siocmd	
871				
872	029A 3E03	mvi	a,3	; re-enable the receiver
873	029C D306	out	siocmd	
874	029E 3EC1	mvi	a,enarcv	
875	02A0 D306	out	siocmd	
876				
877	02A2 C9	ret		
878				
879	; INIT	RECV: I	nitialize a r	eceive operation
880				
881	initrec	v:		
882				
883	02A3 CD8202	cal	l inituart	
884				
885	if		-	
886		all enbli	recv ; e	nable receiver interrupts
887	e	ndif		
888				
889	02A6 C9	ret		
890				
891				
892	; WAI	T - Wait	100 micro s	econds
893				
894	wait:			
895				
896	02A7 3E16	mvi	a,timeval	
897				
898	w:			

899			
000			
900		dcr a	; 04
901		ana a	; 04
902	02AB C2A902	jnz w	; 12
903		;	
904	02AE C9	ret	; 30 T-States total
905			
906			
907	; REST		ialize the UART to the way it was in the
908	;	original BIOS	after completing the network operations
909			
910			
911	restuar		
912	02AF C9	ret	; UART not used except by network
913			
914	CON		11
915			old start initialization which is necessary.
916	,		turn the value of BAUDS
917			uses the printer port then set theh carry flag
918	;	otherwise clear	1t.
919 920	csniod:		
920 921	csinou.		
921	02B0 01032A	lxi b,ba	ude raturn the legal hand rates
922	02D0 01032A	IXI U,Ua	uds ; return the legal baud rates
CP/M	RMAC ASSEM	1.1 #019 R	EQUESTER NETWORK I/O SYSTEM FOR ULCNET
923	02B3 B7	ora a	; not using a printer port
923 924	02B3 B7 02B4 C9	ora a ret	; not using a printer port
			; not using a printer port
924			; not using a printer port
924 925 926			; not using a printer port
924 925 926	02B4 C9	ret	; not using a printer port
924 925 926	02B4 C9	ret	; not using a printer port
924 925 926 927	02B4 C9	ret end	; not using a printer port EQUESTER NETWORK I/O SYSTEM FOR ULCNET
924 925 926 927 CP/M	02B4 C9 02B5 RMAC ASSEM	ret end 1.1 #020 R	
924 925 926 927 CP/M	02B4 C9 02B5 RMAC ASSEM VE 0010 1	ret end 1.1 #020 R 29#	
924 925 926 927 CP/M ACTIV BAUI	02B4 C9 02B5 RMAC ASSEM VE 0010 1 DGEN 0000	ret end 1.1 #020 R 29# 71# 607	
924 925 926 927 CP/M ACTIV BAUE BAUE	02B4 C9 02B5 RMAC ASSEM VE 0010 1 DGEN 0000 DS 2A03	ret end 1.1 #020 R 29# 71# 607 69# 922	
924 925 926 927 CP/M ACTIV BAUE BAUE BAUE	02B4 C9 02B5 RMAC ASSEM VE 0010 1 0GEN 0000 0S 2A03 0SH 002A	ret end 1.1 #020 R 29# 71# 607 69# 922 66# 69 623	
924 925 926 927 CP/M ACTIV BAUE BAUE BAUE BAUE	02B4 C9 02B5 RMAC ASSEM VE 0010 1 0GEN 0000 0S 2A03 0SH 002A 0SL 0003	ret end 1.1 #020 R 29# 71# 607 69# 922 66# 69 623 65# 69 584	
924 925 926 927 CP/M ACTIV BAUE BAUE BAUE BAUE BAUE	02B4 C9 02B5 RMAC ASSEM VE 0010 1 DGEN 0000 DS 2A03 DSH 002A DSL 0003 DTBL 00CD	ret end 1.1 #020 R 29# 71# 607 69# 922 66# 69 623 65# 69 584 225# 601	
924 925 926 927 CP/M ACTIV BAUI BAUI BAUI BAUI BAUI BAUI BAUI BAUI	02B4 C9 02B5 RMAC ASSEM VE 0010 1 OGEN 0000 OS 2A03 OSH 002A OSL 0003 OTBL 00CD 5 0005 13	ret end 1.1 #020 R 29# 71# 607 69# 922 66# 69 623 65# 69 584 225# 601 86# 287	
924 925 926 927 CP/M ACTIV BAUE BAUE BAUE BAUE BAUE BAUE BAUE BAUE	02B4 C9 02B5 RMAC ASSEM VE 0010 1 0GEN 0000 0S 2A03 0SH 002A 0SL 0003 0TBL 00CD 5 0005 13 00C5 22	ret end 1.1 #020 R 29# 71# 607 69# 922 66# 69 623 65# 69 584 225# 601 36# 287 22# 575	
924 925 926 927 CP/M ACTIV BAUE BAUE BAUE BAUE BAUE BAUE BAUE BAUE	02B4 C9 02B5 RMAC ASSEM VE 0010 1 0GEN 0000 0S 2A03 0SH 002A 0SL 0003 0TBL 00CD 0005 13 00C5 22 EN 0106	ret end 1.1 #020 R 29# 71# 607 69# 922 66# 69 623 65# 69 584 225# 601 36# 287 22# 575 116#	
924 925 926 927 CP/M ACTP BAUE BAUE BAUE BAUE BAUE BAUE BAUE BAUE	02B4 C9 02B5 RMAC ASSEM VE 0010 1 OGEN 0000 OS 2A03 OSH 002A OSL 0003 OTBL 00CD 0005 13 00C5 22 EN 0106 BT 0003	ret end 1.1 #020 R 29# 71# 607 69# 922 66# 69 623 65# 69 584 225# 601 86# 287 22# 575 116# 81#	
924 925 926 927 CP/M ACTIV BAUE BAUE BAUE BAUE BAUE BAUE BAUE BAUE	02B4 C9 02B5 RMAC ASSEM VE 0010 1 0GEN 0000 0S 2A03 0SH 002A 0SL 0003 0TBL 00CD 5 0005 13 00C5 22 EN 0106 01T 0003 4SK 0008	ret end 1.1 #020 R 29# 71# 607 69# 922 66# 69 623 65# 69 584 225# 601 36# 287 22# 575 116# 81# 82# 779	EQUESTER NETWORK I/O SYSTEM FOR ULCNET
924 925 926 927 CP/M ACTIV BAUI BAUI BAUI BAUI BAUI BAUI BAUI BAUI	02B4 C9 02B5 RMAC ASSEM VE 0010 1 0GEN 0000 0S 2A03 0SH 002A 0SL 0003 0TBL 00CD 0005 13 00C5 22 EN 0106 01T 0003 4SK 0008 0TAT 022A	ret end 1.1 #020 R 29# 71# 607 69# 922 66# 69 623 65# 69 584 225# 601 36# 287 22# 575 116# 81# 82# 779	EQUESTER NETWORK I/O SYSTEM FOR ULCNET

0012 170# 277

00C4 216# 566 610 648

0000 53 254

02B0 43 920#

CONFIGTBL

CSDLL

CSNIOD

CURBAUD

DID 0001 111# 112 DISRCV 00C0 96# 857 DISSLF 004F 98# 597 00C2 45 210# DLLBAU DLLON 0000 53 255 0137 357 396# DLRECEIVE DLSEND 014A 339 421# DSBLXMIT 01F1 44 645# 006A 94# 592 654 DTROFF 00EA 93# 635 659 DTRON 00C1 95# 874 ENARCV 000F 97# 630 ENASLF ERRBITS 0070 84# 731 0030 83# 763 869 ERRST 0000 31# 32 34 FALSE 0006 89# 754 FBIT 0040 90# FMSK FMT 0000 110# 111 **FMTBYTE** 004B 153# 311 0003 113# 114 FNC FRMCNTR 0000 55 757 0000 52 493 GETRCODE GETTCODE 0000 52 455 0000 55 740 749 758 INCCNTR 02A3 42 881# INITRECV 0296 40 862 867# INITU 0282 41 853# 865 883 **INITUART INTERRUPTS** 0000 34# 47 57 239 511 520 671 695 788 816 885 MSG 0005 115# 116 NETADR 00BF 45 209# 025D 42 696 772# NETIDLE NETSTATS FFFF 35# 734 NETWORKERRORMSG 0000 160# 286 NETWORKSTATUS 0012 171# 266 NF 0257 755 760# NIOS 0000 138# 139

CP/M RMAC ASSEM 1.1 #021 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

NO 024B 746 751# NP 023F 737 742# NTWRKERROR 00FA 148 283# NTWRKINIT 00E1 143 252# 00EE 144 264# NTWRKSTS NTWRKWBOOT 0103 149 293# OBIT 0005 87# 745 OMSK 0020 88# 01C9 603# 639 OUTBAU OVRCNTR 0000 54 748 0000 54 739 PARCNTR 0004 85# PBIT PGM1 0274 836# 842

PGMUART 026E 41 814# 0010 86# 736 PMSK PSRECV 0178 408 487# 0157 431 449# PSXMIT 0177 468 469 470 471 476# PSXRET 0198 508 509 512 540# RBAD RCVERR 0002 130# 268 RECEIVE 0000 51 489 RECEIVEMSG 0120 147 353# RECV 0214 40 693# 701 0000 53 257 REGSHRT 02AF 43 911# RESTUART RGOOD 0196 507 535# 0001 152# 174 200 256 RQSTRID 0000 79# RRDYBIT RRDYMSK 0001 80# 700 861 0139 401# 414 RRETRY RRTBL 018A 497 505# 0227 697 712# RTO 017B 491# 517 518 526 RWAIT 00CF 230# 638 SCBAUDT SELFBIT 0003 91# SELFCLKD 01D6 581 621# SELFMSK 0008 92# 580 649 0001 131# 268 SENDERR 0104 146 305# SENDMSG SETBAUD 019A 40 563# 783 846 SID 0002 112# 113 SIOCMD 0006 72# 591 593 596 598 629 631 634 636 653 655 658 660 728 764 775 776 795 797 805 806 839 856 858 870 873 875 00D5 240# 242# 245 832 SIOIBLK SIOILEN 000C 245# 833 0004 75# 709 864 SIORECV 0006 73# 676 699 729 778 860 SIOSTAT SIOV4 FF08 102# FF0A 103# 825 SIOV5 FF0C 104# 827 SIOV6 FF0E 105# 829 SIOV7 SIOXMIT 0004 74# 683 SIZ 0004 114# 115

CP/M RMAC ASSEM 1.1 #022 REQUESTER NETWORK I/O SYSTEM FOR ULCNET

FFFF 36# 578 589 618 647 SLFCLKD TERRCNT 0000 54 TIMEVAL 0016 212# 896 TRANSMIT 0000 51 451 TRETRY 014C 426# 437 TRTBL 0169 458 466# FFFF 32# 35 36 TRUE TWAIT 015A 453# 472 473 474 **ULCFMT** 0000 120# 121

ULCFNC 0004 124# 125 0003 123# 124 ULCLENHI ULCLENLO 0002 122# 123 ULCMSG 0005 125# ULCVCIRC 0001 121# 122 02A9 898# 902 W WAIT 02A7 43 613 894# XMIT 0208 40 669# 0209 674# 678 XMIT1 XRDYBIT 0002 77# XRDYMSK 0004 78# 677

F.3 Creating the ULCnet Server

The server communications software is contained in the modules XIOSNET.ASM and ULCIF.ASM. XIOSNET.ASM contains modifications to MP/M II's XIOS. ULCIF.ASM is the equivalent of the NETWRKIF transport processes.

ULCIF.ASM uses only two processes, one for input and one for output. To use ULCIF.ASM with the module SERVER.RSP, you must patch SERVER.RSP to write all message responses to a single output queue named NtwrkQO0. This patch is detailed in "CP/NET V1.2 Application Note #2, 11-11-82".

The communications interface is interrupt driven, servicing each character as it is received by the network port. ULCIF.ASM requests the network resource through a set of dummy console I/O calls to the XIOS. A call to CONST initializes the network. Calls to CONIN and CONOUT receive and send messages on the network. The communications interface checks network status through a set of poll calls.

The ULCIF input transport process is dispatched at MP/M II cold start. This process makes all necessary queues, creates the ULCIF output process, initializes the network, and writes the configuration table address into the system data page. ULCIF then goes into a loop where it perpetually performs the following actions:

- Allocates a buffer for an incoming message. If no buffer is available, ULCIF repeats the allocation process until a buffer becomes available.
- Receives a message by placing the dummy console number in register D, a pointer to the message buffer just allocated in register pair BC, and calling CONIN in the XIOS.
- Converts the ULCnet format message into CP/NET format. To do this, ULCnet assumes that the virtual circuit number and the requester source ID are identical.
- Matches the requester ID with a requester control block. If no server is allocated to this requester and the message is a login, ULCIF allocates a server if one is available. Otherwise, ULCIF writes an extended error message to the output queue, NtwrkQO0.

- Using the requester control block, ULCIF writes the address of the message buffer to the appropriate input queue, NtwrkQI.
- Repeats.

The output process performs the following actions:

- Reads the output queue, NtwrkQI0.
- If the message is a LOGOFF function, frees the appropriate requester control block entry.
- Converts the message response from CP/NET format into ULCnet format. To do this, ULCnet uses the requester destination ID as the virtual circuit number.
- Places the dummy console number into register D, the message buffer address into register pair BC, and calls CONOUT in the XIOS.
- Repeats.

The ULCnet modules DLIF and NIOD are contained in the module XIOSNET.ASM. This module must be incorporated into the server's XIOS. XIOSNET.ASM handles four XIOS jump vector entries, CONST, CONIN, CONOUT, and POLLDEVICE. The jump vector in the XIOS must be modified to point to these routines. XIOSNET contains a linkage to the real XIOS routines for these functions, in this case renamed NCONST, NCONIN, NCONOUT, and POLDEV. The XIOS's interrupt vector might also have to be modified to support the SIO interrupt service routines in IPBMAIN.

When the console I/O routines are entered, they immediately check to see if the dummy console number has been supplied.

Note: You must define a console number that does not conflict with real consoles. Make the dummy console number at least larger than the number of requesters to be supported, since each server process pretends to attach to a unique console ID. If a dummy console number has not been supplied, these routines jump into the real console routines. If the dummy number has been supplied, the routines take the following steps.

CONST:

Performs network initialization. Registers the expected Requester ID's as virtual circuit numbers by repeatedly calling REGSHRT. Returns to the ULCIF. This routine is called only once.

CONIN:

Calls RECEIVE, using the buffer pointer passed from ULCIF Executes the MP/M II poll function, specifying a poll device routine that repeatedly performs the GETRCODE function until its status shows that a message has been received properly. Returns to the ULCIF.

CONOUT:

Calls TRANSMIT, using the buffer pointer passed from ULCIF. Executes the poll function, specifying a poll device routine that repeatedly performs the GETTCODE function until the message has been sent and received by the destination without error. Returns to the ULCIF.

The POLLDEVICE routine behaves almost like the console I/O routines. POLLDEVICE checks for specific poll device numbers to perform network status functions. If these numbers are not detected, control passes to the real POLDEV routine. If network status functions are detected, POLLDEVICE performs the appropriate status check. If the check is successful, a hexadecimal 0FF is returned in register A. If not successful, a 0 is returned.

The MP/M II dispatcher calls POLLDEVICE when it is entered. If the status returned is 0, MP/M II maintains the poll device number on a list, and continues to call POLLDEVICE every time it is entered. When the returned status is FF, the dispatcher removes the device number from its list, and returns control to the code that originally performed the poll function call, in this case either CONIN or CONOUT. In this manner, the communications interface operates completely transparently, requiring very little CPU resource.

The XIOSNET is designed to be interrupt driven. The IPBMAIN.REL module performs the actual data-link. This module is identical to the IPBMAIN.REL used in the SNIOS. An interrupt-driven protocol is strongly recommended. If you use the polled version, PBMAIN, calls to TRANSMIT and RECEIVE do not return until the requested operation has been performed. This means communications software uses up enormous amounts of CPU time, suspending only when a clock tick interrupts them and forces the dispatcher to be entered. This results in poor server performance.

The interrupt-driven IPBMAIN module sets up the requested operation only when TRANSMIT and RECEIVE are called. The actual protocol is driven by the arrival or departure of each character of the message. This interrupt-driven protocol consumes considerably less CPU time.

To modify the modules ULCIF and XIOSNET for your own server:

- Patch the module SERVER.RSP to write all of its outputs to a single queue, as described in an application note.

Only three parameters must be modified in the ULCIF if four or fewer requesters are to be supported.

- Set NMB\$RQSTRS to the number of requesters supported.
- Set NMB\$BUFS to the number of requesters, plus one. This extra buffer permits the transmission of LOGIN error messages to the output process, even when all SERVER processes are busy. Having fewer buffers limits the burden on the server at any one time.
- Set CONSOLE\$NUM to the dummy console number. The sample listing uses the arbitrarily large number hex 20. This number should be sufficient.

If more than four requesters are supported, you must provide extra QCBs, requester control blocks, stack space, and Process Descriptor areas.

- Modify the XIOS jump vector to jump into the XIOSNET routines CONST, CONIN, CONOUT, and POLLDEVICE. You might have to make additional PUBLIC and EXTRN declarations.
- Include linkage access to the XIOS interrupt vector. If the XIOS has no interrupt vector, create one.
- Make sure the false console number specified by the ULCIF module agrees with the one used by XIOSNET.
- Make sure the device numbers CONIN and CONOUT use in their poll calls do not conflict with other device numbers used by the XIOS.
- Customize the NIOD section of XIOSNET the same way you customized this section in ULCNIOS.ASM.
- Create a resident or banked XIOS by linking the regular XIOS module with the network interface:

A>LINK RESXI0S=<regular XIOS modules>,XI0SNET,IPBMAIN[0S]

If you are creating a banked system, all of XIOSNET must reside in common memory.

- Build the ULCIF.RSP module:

A>RMAC ULCIF A>LINK ULCIF[OR]

- Perform a GENSYS, using the new RESXIOS.SPR, or perform a BNKXIOS.SPR for a banked system. Include the patched SERVER.RSP and ULCIF.RSP modules.

You must have access to the XIOS source modules to implement a ULCnet server in the manner described here. There are two reasons for this:

1) Access to the interrupt vector is required.

2) Additional device polling routines must be placed into POLLDEVICE.

Both of these problems can be circumvented, but not without difficulty. If the code for XIOSNET is placed in ULCIF, the input process must initialize the interrupt vectors by performing the Zilog Z-80 instruction:

LD A,I

But, to do this, the input process must know where there is empty space in the interrupt page.

Worse is the prospect of not being able to poll for network completion. Instead, the ULCIF might have to drastically reduce its own process priority, then busy wait, making repeated calls to GETTCODE and GETRCODE until the datalink completes. Alternatively, the server can use the polled version of the data-link, PBMAIN.REL. The problems associated with this version have already been described. Placing XIOSNET in the XIOS greatly improves performance.

Listing F-2: NETWRKIF for Systems Running ULCnet

CP/M RMAC ASSEM 1.1 #001 NETWRKIF FOR SYSTEMS RUNNING ULCNET

1	title 'NETWRKIF for Systems Running ULCnet'
2	page 54
3	
4	***************************************
5	**************************************
6	*** **
7	;** Server Network Interface Module **
8	** **
9	**************************************
10	************************************
11	
12	
13	·*************************************
14	***************************************
15	** **
16	;** This module performs communication operations on a server **
17	;** equipped with Orange Compuco's ULCnet network adaptor. **
18	;** The actual communications protocol is proprietary to Orange **
19	;** Compuco. It is included on the CP/NET release disk in REL **
20	** file format on a module called PBMAIN.REL. PBMAIN and a data- **
21	;** link interface module, DLIF, must be linked into the XIOS **
22	;** as console I/O routines. A sample DLIF is included with this **
23	;** module. **
24	** **
25	;** This module performs the high-level transport and network **
26	;** processing, then calls the DLIF via a direct XIOS console I/O **
27	;** function for data-link. The following features are supported: **
28	** **
29	;** o Queue Minimization using only 2 interface processes **
30	;** o Dynamic LOGIN/LOGOFF support **
31	** **
32	** Very little of this routine needs to be modified to run an a **
33	;** particular computer system. The DLIF must be modified to **
34	;** support the system's particular RS-232 hardware, and the XIOS **
35	;** must be modified to support interrupt-driven operation, if so **
36	;** desired, and also support the pseudo-console drivers of the **
37	;** DLIF. **
38	** **
39	***************************************
40	***************************************
41	,

42	; This	software wa	s developed jointly by
43	;		
44	•	Digital Rese	earch, Inc.
45	•	P.O. Box 57	'9
46	•	Pacific Grov	ve, CA 93950
47	; and		
48	•	Keybrook B	usiness Systems, Inc.
49	•	2035 Nation	al Avenue
50	•	Hayward, C	A 94545
51			
52			
53	bdosadr:		
54	0000 0000	dw \$-\$; RSP XDOS entry point

CP/M RMAC ASSEM 1.1 #002 NETWRKIF FOR SYSTEMS RUNNING ULCNET

```
55
56
             ; User-Configurable Parameters (These should be the only changes needed)
57
58 \quad 0002 =
                                     2
                nmb$rqstrs
                               equ
                                           ; Number of requesters supported at one time
   0003 =
                nmb$bufs
                                           ; Number of message buffers
59
                                     3
                              equ
                                       20h ; Pseudo-console number
60
   0020 =
                console$num
                                equ
   004B =
61
                fmt$byte
                              equ
                                     4bh
                                           ; Format byte: short format with acknowledge,
62
                                ; 153.6K baud self-clocked
63
64
             ; Message Buffer Offsets
65
66 0000 =
                                            ; format
                fmt
                                  0
                           equ
   0001 =
                did
67
                           equ
                                  fmt+1
                                              ; destination ID
68 \quad 0002 =
                sid
                           equ
                                 did+1
                                              : source ID
                                              ; server function number
69 \quad 0003 =
                                 sid+1
                fnc
                           equ
70 \quad 0004 =
                siz
                           equ
                                 fnc+1
                                              ; size of message (normalized to 0)
71
   0005 =
                                  siz+1
                msg
                            equ
                                              ; message
   0106 =
                buf$len
72
                                   msg+257
                                                  ; length of total message buffer
                             equ
73
74
             ; ULCnet Packet Offsets
75
   0000 =
                ulc$fmt
76
                                              ; packet format
                             equ
                                    0
   0001 =
                ulc$v$circ
77
                              equ
                                    ulc$fmt+1
                                                   ; virtual circuit number
78
   0002 =
                ulc$len$lo
                                    ulc$v$circ+1 ; low order of length
                              equ
79 \quad 0003 =
                ulc$len$hi
                              equ
                                    ulc$len$lo+1 ; high order of length
80 0004 =
                ulc$fnc
                             equ
                                   ulc$len$hi+1 ; start of message: function code
   0005 =
                                                   ; CP/NET message
81
                ulc$msg
                                    ulc$fnc+1
                              equ
82
83
             ; Requester Control Block Offsets
84
85
   0000 =
                rqstr$id
                                             ; requester ID for this server
                            equ
                                   0
                                   rqstr$id+1
   0001 =
86
                uqcb
                            equ
                                                 ; uqcb to queue to this server
   0005 =
                                                 ; queue message <--> msg buffer ptr
87
                buf$ptr
                                   uqcb+4
                             equ
88
   0007 =
                rcb$len
                             equ
                                   buf$ptr+2
                                                 ; length of requester control block
89
90
91
             ; NETWRKIF Process Descriptors and Stack Space
```

92 93 94	netwo	rkin:		; Receiver Process	
94 95	0002 0000	dw	0	; link	
96	0002 0000	db	0	; status	
97	0005 42	db	66	; priority	
98	0006 6400	dw	net	stkin+46 ; stack pointer	
99	0008 4E455457	52	db	'NETWRKIN' ; name	
100	0010 00	db	0	; console	
101	0011 FF	db	0ffh	; memseg	
102	0012	ds	2	; b	
103	0014	ds	2	; thread	
104	0016	ds	2	; buff	
105	0018	ds	1	; user code & disk slct	
106	0019	ds	2	; dcnt	
107	001B	ds	1	; searchl	
108	001C	ds	2	; searcha	

CP/M RMAC ASSEM 1.1 #003 NETWRKIF FOR SYSTEMS RUNNING ULCNET

109	001E	ds 2	2	; active drives
110	0020 0000	dw	0	; HL'
111	0022 0000	dw	0	; DE'
112	0024 0000	dw	0	; BC'
113	0026 0000	dw	0	; AF'
114	0028 0000	dw	0	; IY
115	002A 0000	dw	0	; IX
116	002C 0000	dw	0	; HL
117	002E 0000	dw	0	; DE
118	0030 0000	dw	0	; BC
119	0032 0000	dw	0	; AF, A = ntwkif console dev #
120	0034	ds 2	2	; scratch
121				
122	netstk			
123	0036 C7C7C7C		dw	0c7c7h,0c7c7h,0c7c7h,0c7c7h
124	003E C7C7C7C		dw	0c7c7h,0c7c7h,0c7c7h,0c7c7h
125	0046 C7C7C7C		dw	0c7c7h,0c7c7h,0c7c7h,0c7c7h
126	004E C7C7C7C		dw	0c7c7h,0c7c7h,0c7c7h,0c7c7h
127	0056 C7C7C7C		dw	0c7c7h,0c7c7h,0c7c7h,0c7c7h
128	005E C7C7C7C		dw	0c7c7h,0c7c7h,0c7c7h
129	0064 B405	dw	set	up
130				
131	netwo	rkout:		; Transmitter Process
132				
133	0066 0000	dw	0	; link
134	0068 00	db	0	; status
135	0069 42	db	66	; priority
136	006A C800	dw		tstkou+46 ; stack pointer
137	006C 4E455457		db	'NETWRKOU' ; name
138	0074 00	db	0	; console
139	0075 FF	db	Offh	; memseg
140	0076	ds 2		; b
141	0078	ds 2	2	; thread

142	007A	ds 2	2	; buff
143	007C	ds 1	l	; user code & disk slct
144	007D	ds 2	2	; dcnt
145	007F	ds 1		; searchl
146	0080	ds 2		; searcha
147	0082	ds 2		; active drives
148	0084 0000	dw	0	; HL'
149	0086 0000	dw	0	; DE'
150	0088 0000	dw	0	; BC'
151	008A 0000	dw	0	; AF'
152	008C 0000	dw	0	; IY
153	008E 0000	dw	0	; IX
154	0090 0000	dw	0	; HL
155	0092 0000	dw	0	; DE
156	0094 0000	dw	0	; BC
157	0096 0000	dw	0	; AF, A = ntwkif console dev #
158	0098	ds 2		; scratch
159				
160	netstk	ou:		
161	009A C7C7C7C	C7C7	dw	0c7c7h,0c7c7h,0c7c7h,0c7c7h
162	00A2 C7C7C7C	C7C7	dw	0c7c7h,0c7c7h,0c7c7h,0c7c7h
CP/M	RMAC ASSEM	1.1 #	004	NETWRKIF FOR SYSTEMS RUNNING ULCNET
163	00AA C7C7C7	C7C7	dw	0c7c7h,0c7c7h,0c7c7h,0c7c7h
164	00B2 C7C7C7C	C7C7	dw	0c7c7h,0c7c7h,0c7c7h,0c7c7h
165	00BA C7C7C7	C7C7	dw	0c7c7h,0c7c7h,0c7c7h,0c7c7h
166	00C2 C7C7C7C	C7C7	dw	0c7c7h,0c7c7h,0c7c7h
167	00C8 8606	dw	out	put
168				
169				
170	; Inpu	t queue c	contro	l blocks
171				
172	qcb\$ir	n\$0:		
173	00CA	ds	2	; link
174	00CC 4E74777	26B	db	'NtwrkQI0' ; name
175	00D4 0200	dw	2	; msglen
176	00D6 0100	dw	1	; nmbmsgs
177	00D8	ds 2	2	; dqph
178	00DA		2	; nqph
179	00DC		2	; msgin
180	00DE	ds 2	2	; msgout
181	00E0	ds 2	2	; msgcnt
182	00E2	ds 2	2	; buffer
183				
184	if	f nmb	\$rqstr	rs ge 2
185	qcb\$ir			
	00E4	ds 2		; link
187	00E6 4E747772	26B	db	'NtwrkQI1' ; name
188	00EE 0200	dw	2	; msglen
	00F0 0100	dw	1	; nmbmsgs
	00F2	ds 2		; dqph
191	00F4	ds 2		; nqph

192	00F6	ds	2	; msgin
193	00F8	ds	2	; msgout
194	00FA	d	s 2	; msgcnt
195	00FC	d	s 2	; buffer
196		endit	f	
197				
198		if	nmb\$rc	strs ge 3
199		qcb\$in\$2		
200		ds	2	; link
201		db	'Ntwrk	QI2'; name
202		dw	2	; msglen
203		dw	1	; nmbmsgs
204		ds	2	; dqph
205		ds	2	; nqph
206		ds	2	; msgin
207		ds	2	; msgout
208		ds	2	; msgcnt
209		ds	2	; buffer
210		endi	f	
211				
212		if	nmb\$rc	strs ge 4
213		qcb\$in\$3	:	
214		ds	2	; link
215		db	'Ntwrk	QI3'; name
216		dw	2	; msglen

CP/M RMAC ASSEM 1.1 #005 NETWRKIF FOR SYSTEMS RUNNING ULCNET

017		1	1	1
217		dw	1	; nmbmsgs
218			2	; dqph
219		ds 2	2	; nqph
220		ds 2	2	; msgin
221		ds 2	2	; msgout
222		ds 2	2	; msgcnt
223		ds 2	2	; buffer
224		endif		
225				
226	; Ou	tput qu	eue	control blocks
227				
228	qcb\$	out\$0:		
229	00FE	ds	2	; link
230	0100 4E74777	726B	d	b 'NtwrkQO0' ; name
231	0108 0200	d	W	2 ; msglen
232	010A 0300	C	łw	nmb\$bufs ; nmbmsgs
233	010C	ds	2	; dqph
234	010E	ds	2	; nqph
235	0110	ds	2	; msgin
236	0112	ds		; msgout
237	0114	ds	2	; msgcnt
238	0116	ds	2*	nmb\$bufs+1 ; buffer
239				
240	; Red	quester	Mar	nagement Table
		-		-

242 rqstr\$table: 243 244 ;requester 0 control block 245 246 011D FF db 0ffh ; requester ID (marked not in use) 247 011E CA00 ; UQCB: QCB pointer dw qcb\$in\$0 248 0120 2201 dw \$+2 pointer to queue message dw 249 0122 0000 \$-\$; pointer to msg buffer (loaded on receive) 250 251 nmb\$rqstrs ge 2 if 252 ;requester 1 control block 253 254 0124 FF db 0ffh ; requester ID (marked not in use) 255 0125 E400 qcb\$in\$1 ; UQCB: QCB pointer dw 256 0127 2901 \$+2 dw pointer to queue message 257 0129 0000 \$-\$; pointer to msg buffer (loaded on receive) dw 258 endif 259 260 if nmb\$rqstrs ge 3 261 ;requester 2 control block 262 263 ; requester ID (marked not in use) db 0ffh qcb\$in\$2 264 dw ; UQCB: QCB pointer pointer to queue message 265 dw +2266 dw \$-\$; pointer to msg buffer (loaded on receive) endif 267 268 269 if nmb\$rqstrs ge 4 270 ;requester 3 control block CP/M RMAC ASSEM 1.1 #006 NETWRKIF FOR SYSTEMS RUNNING ULCNET 271 272 db 0ffh ; requester ID (marked not in use) 273 dw qcb\$in\$3 ; UQCB: QCB pointer 274 \$+2 pointer to queue message dw 275 dw \$-\$; pointer to msg buffer (loaded on receive) 276 endif 277 278 ; Output user queue control block 279 280 uqcb\$out\$0: 281 012B FE00 dw qcb\$out\$0 ; pointer 282 012D 2F01 out\$buffer\$ptr ; pointer to queue message dw 283 out\$buffer\$ptr: 284 285 012F ds 2 ; a queue read will return the message 286 ; buffer pointer in this location 287 288 ; UQCB for flagging errors from receive process to send process 289 290 uqcb\$in\$out\$0: 291 0131 FE00 qcb\$out\$0 dw ; pointer

292 293	0133 3501	dw	in\$out\$buffer\$ptr ; pointer to queue message
294			
295		ut\$buffer\$j	
296	0135	ds 2	; this pointer used by input process to
297			; to output "server not logged in" errors
298			
299	; Sei	ver Config	uration Table
300			
301		igtbl:	
302	0137 00); Server status byte
303	0138 00) ; Server processor ID
	0139 02		mb\$rqstrs ; Max number of requesters supported at once
	013A 00		0 ; Number of currently logged in requesters
	013B 0000	dw	0000h ; 16 bit vector of logged in requesters
	013D		6 ; Logged In Requester processor ID's
308	014D 504153	5357 d	b 'PASSWORD' ; login password
309			
310			ver processes. A pointer to the associated process
311			a must reside on the top of each stack. The stack for
312			s internal to SERVER.RSP, and is consequently omitted from the
313	; NE	TWRKIF	nodule.
314			
315	0096 = s	rvr\$stk\$ler	equ 96h ; server process stack size
316			
317			nmb\$rqstrs ge 2
318		vr\$stk\$1:	ds srvr\$stk\$len-2
319	01E9 EB01		dw srvr\$1\$pd
320		endif	
321			
322	,		nmb\$rqstrs ge 3
323	srvr		s srvr\$stk\$len-2
324		dw	srvr\$2\$pd

CP/M RMAC ASSEM 1.1 #007 NETWRKIF FOR SYSTEMS RUNNING ULCNET

325	endif
326	
327	if nmb\$rqstrs ge 4
328	srvr\$stk\$3: ds srvr\$stk\$len-2
329	dw srvr\$3\$pd
330	endif
331	
332	; Memory allocation for server process descriptor copydown
333	; All server process descriptor allocation must be contiguous
334	
335	if nmb\$rqstrs ge 2
336 01EE	B srvr\$1\$pd: ds 52
337	endif
338	
339	if nmb\$rqstrs ge 3
340	srvr\$2\$pd: ds 52
341	endif

342
343 if nmb\$rqstrs ge 4
344 srvr\$3\$pd: ds 52
345 endif
346
347
348 ; Buffer Control Block: 0 indicates buffer is free for receiving a message
349 ; Offh indicates that the buffer is in use
350
351 buf\$cb: rept nmb\$bufs
352 db 0
353 endm
354 021F+00 DB 0
355 0220+00 DB 0
356 0221+00 DB 0
357
358 ; Message Buffer Storage Area
359
360 msg\$buffers: rept nmb\$bufs
361 ds buf\$len
362 endm
363 0222+ DS BUF\$LEN
364 0328+ DS BUF\$LEN
365 042E+ DS BUF\$LEN
366
367 ; save area for XIOS routine addresses
368
369 conin\$jmp:
370 0534 C3 db jmp
371 0535 0000 conin: dw \$-\$
372
373 conout\$jmp:
374 0537 C3 db jmp
375 0538 0000 conout: dw \$-\$
376
377 constat\$jmp:
378 053A C3 db jmp
J I

CP/M RMAC ASSEM 1.1 #008 NETWRKIF FOR SYSTEMS RUNNING ULCNET

379	constat:			
380	053B 0000	dw	9	\$-\$
381				
382				
383				
384				
385	; NETWI	RKIF	Ut	ility Routines
386				
387	; Operatin	ng sys	ter	n linkage routine
388				
389	monx:			
390				
391	053D 2A0000	lhl	d	bdos\$adr

392 393	0540 E9		pchl				
394							
395		; Doubl	e word s	subtract: DE =	= HL	DE	
396							
397		dw\$sub	:				
	0541 7D		mov	a,l			
	0542 93			e			
	0543 5F		mov	e,a			
	0544 7C		mov	a,h			
	0545 9A 0546 57		sbb	d			
	0540 57 0547 C9		mov ret	d,a			
404	0347 09		101				
406		· Routir	ne to sca	n requester co	ntrol	l blocks for a match with the received	
407		; source		in requester et	muoi	T blocks for a match with the received	
408		·	ID.				
409		, : Input:	A = Sc	ource ID to M	atch		
410		;			acen		
411		; Outpu	t:				
412	; success: $HL = pointer$ to requester control block						
413	; $A <> 0FFh$						
414	; no match, but a free control block found:						
415		; $HL = pointer to RCB$					
416		;		0FFh			
417		;	CY	= 0			
418		; no match and no available RCB's:					
419		;		0FFh			
420		;	CY	= 1			
421		.					
422		scan\$tal	ble:				
423	0540 011	D01	1:	h waatuttahi	-	maint to the start of the DCD table	
	0548 211 054B 060			-		;point to the start of the RCB table	
	054D 110		mvi lxi	b,nmb\$rqstı d,rcb\$len	8	;size of RCB's for scanning the table	
420	034D I I	5700	IXI	u,icoșieli		, SIZE OF KCB'S TOF Scanning the table	
428		sc\$t1:					
429		56411.					
	0550 BE		cmp	m	:]	RCB ID = SID?	
	0551 C8		rz		,	> a match> return	
432							
CP/M	RMAC A	SSEM 1	.1 #0	09 NETWR	KIF	FOR SYSTEMS RUNNING ULCNET	
				_	_		
	0552 19			d	;els	se>check next entry	
	0553 05	-00-	dcr t				
	0554 C25	5005	jnz	sc\$t1			
436	0557 011	D01	1:	h rastates 1	2	ino match Nook for a function	
	0557 211 055A 06		lxi mvi	h,rqstr\$table		;no match>look for a free entry	
438 439	033A 000	52	mvi	b,nmb\$rqsti	.5		
440		sc\$t2:					
441		5τψι2.					

442 443	055C 7E 055D 3C	mov a,m inr a				
444 445		jz sc\$t3	;an unoccupied entry has been found			
	0561 19	dad d	;else>keep looking			
447	0562 05	dcr b				
448	0563 C25C05	jnz sc\$t2				
449		·				
450	0566 3EFF	mvi a,0ffh	;outa luck>set the big error			
451	0568 37	stc				
452	0569 C9	ret				
453						
454	sc\$t3:	;n	o match, but found a free entry			
455						
456	056A 3D	dcr a	;A=0FFh			
457	056B B7	ora a	;CY=0			
458	056C C9	ret				
459						
460						
461			ster control block for somebody else who			
462						
463	;					
464	; In	put: $A = $ source ID th	at just logged off			
465	a t	*				
466	free\$rq	str\$tbl:				
467						
468	056D 211D01	lxi h,rqstr\$tabl	e			
469	0570 110700	lxi d,rcb\$len				
470	C 1					
471	fr\$t1:					
472	0572 DE					
473	0573 BE	cmp m	;RCB ID <> SID>keep scanning			
474 475	0574 C27A05	jnz fr\$t2	,KCB ID <> SID>keep scalling			
	0577 36FF	mvi m,0ffh	;else>mark it as unoccupied			
477	0579 C9	ret	; and bug out			
478	0377 CJ	Ict	, and bug but			
479	fr\$t2:					
480	$\Pi \psi t \Sigma$.					
	057A 19	dad d				
482		jmp fr\$t1	;keep goingit's in there somewhere			
483	20.2 00.000	JP 11411	,			
484						
485						
486	; Routi	ne to send a message of	on the network			
	,	0				

CP/M RMAC ASSEM 1.1 #010 NETWRKIF FOR SYSTEMS RUNNING ULCNET

487		; Input: HL =	point	er to message buffer
488				
489		send\$msg:		
490		-		
491	057E E5	push	h	

492	057F 364B	mv	i m,fmt\$byt	te ;set ulc\$net format byte
493	0.501.00		•	
494 495	0581 23	inx	h	;virtual circuit = requester ID
496	0582 23	inx	h	
497	0583 23	inx	h	
498				
499	0584 46	mov	b,m	;save function number
500			- 1	,
501	0585 23	inx	h	;get SIZ
502	0586 5E	mov	e,m	
503			,	
504	0587 1600	mvi	d,0	;normalize CP/NET to ULCnet length
505	0589 13	inx	d	
506	058A 13	inx	d	
507				
508	058B 70	mov	m,b	;put FNC in first message byte
509				
510	058C 2B	dcx	h	;store length
511	058D 72	mov	m,d	
512	058E 2B	dcx	h	
	058F 73	mov	m,e	
514				
	0590 C1	pop	b	;restore buffer pointer
516	0591 1620	mvi	,	
517	0593 C33705	jn	np conout\$j	mp ;blast that packet
518				
519	р. (¹			
520 521				age on the network
521 522	; input:	DE =	pointer to bu	ller
522	rcv\$me			
523 524	ιςνφιιίς	ssage.		
	0596 42	mov	b,d	
	0597 4B	mov		
	0598 C5	push		;save buffer pointer
	0599 1620	mvi		· · · · · · · · · · · · · · · · · · ·
	059B CD3405		all conin\$jn	
530			. 5	
531	059E E1	рор	h	
532	059F 3600	mvi	m,0	;FMT = 0 (requester to server)
533				
534	05A1 23	inx	h	
535	05A2 46	mov	b,m	;save rqstr ID = virtual circuit
536				
	05A3 3A3801	lc	la configtbl	
	05A6 77	mov	m,a	;DID = server ID
539	o - . -			
540	05A7 23	inx	h	
		1 1 1		
CP/M	RMAC ASSEM	1.1 ‡	FULL NETW	RKIF FOR SYSTEMS RUNNING ULCNET

541 05A8 5E mov e,m ;get low order length

542				
543	05A9 70	mov	m,b	;SID = requester ID
544				-
545	05AA 23	inx	h	
546	05AB 56	mov	d,m	;get hi order length
547	03AD 30	mov	u,111	,get in order tengui
	05 A C 1D		1	
548	05AC 1B	dcx	d	
549	05AD 1B	dcx	d	;normalize ULCnet to CP/NET SIZ
550				
551	05AE 23	inx	h	
552	05AF 46	mov	b,m	;get FNC
553			,	
554	05B0 73	mov	m,e	;store SIZ
555	050075	mov	111 , C	
	0501.00	1	1	
556	05B1 2B	dcx	h	T 1.4
557	05B2 70	mov	m,b	;store FNC
558				
559	05B3 C9	ret		;ULCnet message formatted
560				
561				
562				
563				
564				
	. NT - 4	.1. T/E T) ¹ D	
565	; Netwo	rk l/f f	Receiver Proc	Cess
566				
567				
568	setup:		• •	initialize NETWRKIF
569				
570	05B4 0603	mvi	b,nmb\$rqs	trs+1 ;loop counter for making n+1 queues
571	05B6 0E86		- 124	;make queue function code
		mv1	C.134	
572		mvi Ixi	c,134 d.acb\$in\$	· 1
572 573	05B8 11CA00	mvı lxi		· 1
573	05B8 11CA00			50
573 574				· 1
573 574 575	05B8 11CA00 makeq:	lxi	d,qcb\$in\$	50
573 574 575 576	05B8 11CA00 makeq: 05BB C5	lxi push	d,qcb\$in\$ b	50
573 574 575 576 577	05B8 11CA00 makeq: 05BB C5 05BC D5	lxi push push	d,qcb\$in\$ b d	50
573 574 575 576	05B8 11CA00 makeq: 05BB C5	lxi push push	d,qcb\$in\$ b	50
573 574 575 576 577	05B8 11CA00 makeq: 05BB C5 05BC D5	lxi push push	d,qcb\$in\$ b d	50
573 574 575 576 577 578	05B8 11CA00 makeq: 05BB C5 05BC D5	lxi push push	d,qcb\$in\$ b d	50
573 574 575 576 577 578 579 580	05B8 11CA00 makeq: 05BB C5 05BC D5 05BD CD3D05 05C0 E1	lxi push push ca pop	d,qcb\$in\$ b d all monx h	50
573 574 575 576 577 578 579 580 581	05B8 11CA00 makeq: 05BB C5 05BC D5 05BD CD3D05 05C0 E1 05C1 111A00	lxi push push c pop lxi	d,qcb\$in\$ d all monx h d,26	50
573 574 575 576 577 578 579 580 581 582	05B8 11CA00 makeq: 05BB C5 05BC D5 05BD CD3D05 05C0 E1 05C1 111A00 05C4 19	lxi push push c pop lxi dad	d,qcb\$in\$ b d all monx h	50
573 574 575 576 577 578 579 580 581 582 583	05B8 11CA00 makeq: 05BB C5 05BC D5 05BD CD3D05 05C0 E1 05C1 111A00	lxi push push c pop lxi	d,qcb\$in\$ d all monx h d,26	50
573 574 575 576 577 578 579 580 581 582 583 584	05B8 11CA00 makeq: 05BB C5 05BC D5 05BD CD3D05 05C0 E1 05C1 111A00 05C4 19 05C5 EB	lxi push push c: pop lxi dad xchg	d,qcb\$in\$ d all monx h d,26 d	50
573 574 575 576 577 578 579 580 581 582 583 584 585	05B8 11CA00 makeq: 05BB C5 05BC D5 05BD CD3D05 05C0 E1 05C1 111A00 05C4 19 05C5 EB 05C6 C1	lxi push push c pop lxi dad xchg pop	d,qcb\$in\$ d all monx h d,26 d	50
573 574 575 576 577 578 579 580 581 582 583 584 585 586	05B8 11CA00 makeq: 05BB C5 05BC D5 05BD CD3D05 05C0 E1 05C1 111A00 05C4 19 05C5 EB 05C6 C1 05C7 05	lxi push push c: pop lxi dad xchg pop dcr	d,qcb\$in\$ d all monx h d,26 d b	50
573 574 575 576 577 578 579 580 581 582 583 584 583 584 585 586 587	05B8 11CA00 makeq: 05BB C5 05BC D5 05BD CD3D05 05C0 E1 05C1 111A00 05C4 19 05C5 EB 05C6 C1	lxi push push c pop lxi dad xchg pop	d,qcb\$in\$ d all monx h d,26 d b	50
573 574 575 576 577 578 579 580 581 582 583 584 585 586	05B8 11CA00 makeq: 05BB C5 05BC D5 05BD CD3D05 05C0 E1 05C1 111A00 05C4 19 05C5 EB 05C6 C1 05C7 05	lxi push push c: pop lxi dad xchg pop dcr	d,qcb\$in\$ d all monx h d,26 d b	50
573 574 575 576 577 578 579 580 581 582 583 584 583 584 585 586 587	05B8 11CA00 makeq: 05BB C5 05BC D5 05BD CD3D05 05C0 E1 05C1 111A00 05C4 19 05C5 EB 05C6 C1 05C7 05	lxi push push c: pop lxi dad xchg pop dcr	d,qcb\$in\$ d all monx h d,26 d b z makeq	50
573 574 575 576 577 578 579 580 581 582 583 584 583 584 585 586 587 588	05B8 11CA00 makeq: 05BB C5 05BC D5 05BD CD3D05 05C0 E1 05C1 111A00 05C4 19 05C5 EB 05C6 C1 05C7 05 05C8 C2BB05 05CB 0E9A	lxi push push c: pop lxi dad xchg pop dcr jn mv	d,qcb\$in\$ d all monx h d,26 d b z makeq	50
573 574 575 576 577 578 579 580 581 582 583 584 583 584 585 586 587 588 589 590	05B8 11CA00 makeq: 05BB C5 05BC D5 05BD CD3D05 05C0 E1 05C1 111A00 05C4 19 05C5 EB 05C6 C1 05C7 05 05C8 C2BB05	lxi push push c: pop lxi dad xchg pop dcr jn mv	d,qcb\$in\$ b d all monx h d,26 d b z makeq i c,154	50
573 574 575 576 577 578 579 580 581 582 583 584 583 584 585 586 587 588 589 590 591	05B8 11CA00 makeq: 05BB C5 05BC D5 05BD CD3D05 05C0 E1 05C1 111A00 05C4 19 05C5 EB 05C6 C1 05C7 05 05C8 C2BB05 05CB 0E9A 05CD CD3D05	lxi push push c: pop lxi dad xchg pop dcr jn mv c:	d,qcb\$in\$ d all monx h d,26 d b z makeq i c,154 all monx	30 ;make all input and output queue(s)
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592	05B8 11CA00 makeq: 05BB C5 05BC D5 05BD CD3D05 05C0 E1 05C1 111A00 05C4 19 05C5 EB 05C6 C1 05C7 05 05C8 C2BB05 05CB 0E9A 05CD CD3D05	lxi push push c: pop lxi dad xchg pop dcr jn mv c: lxi	d,qcb\$in\$ b d all monx h d,26 d b b z makeq i c,154 all monx d,9	;write configuration table address
573 574 575 576 577 578 579 580 581 582 583 584 583 584 585 586 587 588 589 590 591 592 593	05B8 11CA00 makeq: 05BB C5 05BC D5 05BD CD3D05 05C0 E1 05C1 111A00 05C4 19 05C5 EB 05C6 C1 05C7 05 05C8 C2BB05 05CB 0E9A 05CD CD3D05 05D0 110900	lxi push push c: pop lxi dad xchg pop dcr jn mv c: lxi dad	d,qcb\$in\$ d all monx h d,26 d b b z makeq i c,154 all monx d,9 d	;write configuration table address ; into system data page, allowing
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592	05B8 11CA00 makeq: 05BB C5 05BC D5 05BD CD3D05 05C0 E1 05C1 111A00 05C4 19 05C5 EB 05C6 C1 05C7 05 05C8 C2BB05 05CB 0E9A 05CD CD3D05	lxi push push c: pop lxi dad xchg pop dcr jn mv c: lxi	d,qcb\$in\$ b d all monx h d,26 d b b z makeq i c,154 all monx d,9	;write configuration table address ; into system data page, allowing

CP/M RMAC ASSEM 1.1 #012 NETWRKIF FOR SYSTEMS RUNNING ULCNET

595	05D7 F3	di
596	05D8 73	mov m,e
597	05D9 23	inx h
598	05DA 72	mov m,d
599	05DB FB	ei
600		
600	05DC 2B	dcx h ;point to XIOS jump table page
602	05DC 2B 05DD 2B	dex h ,point to XIOS jump table page
603	05DE 2B	dcx h
604	05DF 66	mov h,m
605	05E0 2E00	mvi l,0
606		
607	05E2 110600	lxi d,6
608	05E5 19	dad d ;point to constat
609	05E6 223B05	shld constat
610		
611	05E9 23	inx h
612	05EA 23	inx h
613	05EB 23	inx h ;point to conin
614	05EC 223505	shld conin
615		
616	05EF 23	inx h
617	05F0 23	inx h
618	05F1 23	inx h
619	05F2 223805	shid conout ;point to conout
620	031 2 223003	sind conout ,point to conout
020		
	05E5 1620	myi d console\$num
621	05F5 1620	mvi d,console\$num
621 622	05F5 1620 05F7 CD3A05	mvi d,console\$num call constat\$jmp ;use constat to initialize ulcnet
621 622 623	05F7 CD3A05	call constat\$jmp ;use constat to initialize ulcnet
621 622 623 624	05F7 CD3A05 05FA 116600	call constat\$jmp;use constat to initialize ulcnetlxid,networkout;create network I/F output process
621 622 623 624 625	05F7 CD3A05 05FA 116600 05FD 0E90	call constat\$jmp;use constat to initialize ulcnetlxid,networkout;create network I/F output processmvic,144
621 622 623 624 625 626	05F7 CD3A05 05FA 116600	call constat\$jmp;use constat to initialize ulcnetlxid,networkout;create network I/F output process
621 622 623 624 625 626 627	05F7 CD3A05 05FA 116600 05FD 0E90 05FF CD3D05	call constat\$jmp ;use constat to initialize ulcnet lxi d,networkout ;create network I/F output process mvi c,144 call monx
621 622 623 624 625 626 627 628	05F7 CD3A05 05FA 116600 05FD 0E90	call constat\$jmp;use constat to initialize ulcnetlxid,networkout;create network I/F output processmvic,144
621 622 623 624 625 626 627 628 629	05F7 CD3A05 05FA 116600 05FD 0E90 05FF CD3D05 input:	call constat\$jmp ;use constat to initialize ulcnet lxi d,networkout ;create network I/F output process mvi c,144 call monx ;input process loop
621 622 623 624 625 626 627 628 629 630	05F7 CD3A05 05FA 116600 05FD 0E90 05FF CD3D05 input:	call constat\$jmp ;use constat to initialize ulcnet lxi d,networkout ;create network I/F output process mvi c,144 call monx
621 622 623 624 625 626 627 628 629 630 631	05F7 CD3A05 05FA 116600 05FD 0E90 05FF CD3D05 input: ; Find a	call constat\$jmp ;use constat to initialize ulcnet lxi d,networkout ;create network I/F output process mvi c,144 call monx ;input process loop free buffer
621 622 623 624 625 626 627 628 629 630	05F7 CD3A05 05FA 116600 05FD 0E90 05FF CD3D05 input:	call constat\$jmp ;use constat to initialize ulcnet lxi d,networkout ;create network I/F output process mvi c,144 call monx ;input process loop
621 622 623 624 625 626 627 628 629 630 631	05F7 CD3A05 05FA 116600 05FD 0E90 05FF CD3D05 input: ; Find a	call constat\$jmp ;use constat to initialize ulcnet lxi d,networkout ;create network I/F output process mvi c,144 call monx ;input process loop free buffer
621 622 623 624 625 626 627 628 629 630 631 632	05F7 CD3A05 05FA 116600 05FD 0E90 05FF CD3D05 input: ; Find a 0602 211F02	call constat\$jmp ;use constat to initialize ulcnet lxi d,networkout ;create network I/F output process mvi c,144 call monx ;input process loop free buffer lxi h,buf\$cb ;point to buffer control block
621 622 623 624 625 626 627 628 629 630 631 632 633	05F7 CD3A05 05FA 116600 05FD 0E90 05FF CD3D05 input: ; Find a 0602 211F02 0605 112202	callconstat\$jmp;use constat to initialize ulcnetlxid,networkout;create network I/F output processmvic,144;callcallmonx;input process loopfree bufferinput process looplxih,buf\$cb;point to buffer control blocklxid,msg\$buffers;point to base of buffer area
621 622 623 624 625 626 627 628 629 630 631 632 633 634	05F7 CD3A05 05FA 116600 05FD 0E90 05FF CD3D05 input: ; Find a 0602 211F02 0605 112202 0608 0603	callconstat\$jmp;use constat to initialize ulcnetlxid,networkout;create network I/F output processmvic,144;callcallmonx;input process loopfree bufferinput process looplxih,buf\$cb;point to buffer control blocklxid,msg\$buffers;point to base of buffer area
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635	05F7 CD3A05 05FA 116600 05FD 0E90 05FF CD3D05 input: ; Find a 0602 211F02 0605 112202	callconstat\$jmp;use constat to initialize ulcnetlxid,networkout;create network I/F output processmvic,144;callcallmonx;input process loopfree bufferinput process looplxih,buf\$cb;point to buffer control blocklxid,msg\$buffers;point to base of buffer area
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636	05F7 CD3A05 05FA 116600 05FD 0E90 05FF CD3D05 input: ; Find a 0602 211F02 0605 112202 0608 0603	call constat\$jmp;use constat to initialize ulcnetlxi d,networkout mvi c,144 call monx;create network I/F output process;input process loopfree bufferlxi h,buf\$cb lxi d,msg\$buffers mvi b,nmb\$bufs;point to buffer control block ;point to base of buffer area ;get total number of buffers
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638	05F7 CD3A05 05FA 116600 05FD 0E90 05FF CD3D05 input: ; Find a 0602 211F02 0605 112202 0608 0603 input2: 060A 7E	callconstat\$jmp;use constat to initialize ulcnetlxid,networkout;create network I/F output processmvic,144;callcallmonx;input process loopfree bufferjpoint to buffer control blocklxih,buf\$cb;point to buffer control blocklxid,msg\$buffers;point to base of buffer areamvib,nmb\$bufs;get total number of buffers
$\begin{array}{c} 621\\ 622\\ 623\\ 624\\ 625\\ 626\\ 627\\ 628\\ 629\\ 630\\ 631\\ 632\\ 633\\ 634\\ 635\\ 636\\ 637\\ 638\\ 639 \end{array}$	05F7 CD3A05 05FA 116600 05FD 0E90 05FF CD3D05 input: ; Find a 0602 211F02 0605 112202 0608 0603 input2: 060A 7E 060B 3C	call constat\$jmp ;use constat to initialize ulcnet lxi d,networkout ;create network I/F output process mvi c,144 call monx ;input process loop free buffer lxi h,buf\$cb ;point to buffer control block lxi d,msg\$buffers ;point to base of buffer area mvi b,nmb\$bufs ;get total number of buffers mov a,m inr a
$\begin{array}{c} 621\\ 622\\ 623\\ 624\\ 625\\ 626\\ 627\\ 628\\ 629\\ 630\\ 631\\ 632\\ 633\\ 634\\ 635\\ 636\\ 637\\ 638\\ 639\\ 640 \end{array}$	05F7 CD3A05 05FA 116600 05FD 0E90 05FF CD3D05 input: ; Find a 0602 211F02 0605 112202 0608 0603 input2: 060A 7E	callconstat\$jmp;use constat to initialize ulcnetlxid,networkout mvi;create network I/F output processmvic,144 call;input process loopfree buffer
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641	05F7 CD3A05 05FA 116600 05FD 0E90 05FF CD3D05 input: ; Find a 0602 211F02 0605 112202 0608 0603 input2: 060A 7E 060B 3C 060C C22306	call constat\$jmp;use constat to initialize ulcnetlxi d,networkout mvi c,144 call monx;create network I/F output processinput process loop;input process loopfree buffer;point to buffer control block ;point to base of buffer area ;get total number of buffersmov a,m inr a jnz input3;we found a free buffer>use it
$\begin{array}{c} 621\\ 622\\ 623\\ 624\\ 625\\ 626\\ 627\\ 628\\ 629\\ 630\\ 631\\ 632\\ 633\\ 634\\ 635\\ 636\\ 637\\ 638\\ 639\\ 640\\ 641\\ 642\end{array}$	05F7 CD3A05 05FA 116600 05FD 0E90 05FF CD3D05 input: ; Find a 0602 211F02 0605 112202 0608 0603 input2: 060A 7E 060B 3C 060C C22306 060F E5	callconstat\$jmp;use constat to initialize ulcnetlxid,networkout;create network I/F output processmvic,144;callcallmonx;input process loopfree bufferinput\$\$ input\$\$ ipoint to buffer control blocklxid,msg\$buffers;point to buffer control blocklxid,msg\$buffers;point to base of buffer areamvib,nmb\$bufs;get total number of buffersmova,m;we found a free buffer>use itpushh;point to next buffer
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643	05F7 CD3A05 05FA 116600 05FD 0E90 05FF CD3D05 input: ; Find a 0602 211F02 0605 112202 0608 0603 input2: 060A 7E 060B 3C 060F E5 0610 210601	call constat\$jmp ;use constat to initialize ulcnet lxi d,networkout ;create network I/F output process mvi c,144 call monx ;input process loop free buffer lxi h,buf\$cb ;point to buffer control block lxi d,msg\$buffers ;point to base of buffer area mvi b,nmb\$bufs ;get total number of buffers mov a,m inr a jnz input3 ;we found a free buffer>use it push h ;point to next buffer lxi h,buf\$len
$\begin{array}{c} 621\\ 622\\ 623\\ 624\\ 625\\ 626\\ 627\\ 628\\ 629\\ 630\\ 631\\ 632\\ 633\\ 634\\ 635\\ 636\\ 637\\ 638\\ 639\\ 640\\ 641\\ 642\end{array}$	05F7 CD3A05 05FA 116600 05FD 0E90 05FF CD3D05 input: ; Find a 0602 211F02 0605 112202 0608 0603 input2: 060A 7E 060B 3C 060C C22306 060F E5	callconstat\$jmp;use constat to initialize ulcnetlxid,networkout;create network I/F output processmvic,144;callcallmonx;input process loopfree bufferinput\$\$ input\$\$ ipoint to buffer control blocklxid,msg\$buffers;point to buffer control blocklxid,msg\$buffers;point to base of buffer areamvib,nmb\$bufs;get total number of buffersmova,m;we found a free buffer>use itpushh;point to next buffer

646 647	0615 E1	pop h	;point to next buffer control field
648	0616 23	inx h	
CP/M	RMAC ASSEM	1.1 #013 NETWR	KIF FOR SYSTEMS RUNNING ULCNET
649	0617.05	1 1	
650	0617 05	dcr b	;have we scanned all the buffers?
651 652	0618 C20A06	jnz input2	
653	061B 0E8E	mvi c,142	;uh oh, we're all clogged up
654	061D CD3D05	call monx	;dispatch and go sleepy bye for a bit
655	061D CD3D03	jmp input	;try again
656	0020 030200	Jinp input	,try uguin
657	input3:		
658	inp <i>ute</i> .		
659	0623 36FF	mvi m,0ffh	;found a buffer>mark it used
660		,	,
661	0625 D5	push d	
662		-	
663	; Receiv	ve the message	
664			
665	0626 CD9605	call rcv\$messa	ge
666			
667	0629 E1	pop h	
668	062A E5	push h	
669 670	062B 23	iny h	wheels requester table to see
670	062B 23 062C 23	inx h inx h	; check requester table to see ; whether the source requester
672	062C 23 062D 7E		; is logged-in
673	062E CD4805	mov a,m call scan\$table	
674	002L CD 1005	eun seunquore	
	0631 3C	inr a	
676	0632 CA4A06	jz input4	;not logged-in>go check for login
677			
678	input6:		
679			
680		lxi d,buf\$ptr	;else>update message buffer pointer
681	0638 19	dad d	
682	0(20 D1	1	
683	0639 D1	pop d	
684 685	063A 73 063B 23	mov m,e inx h	
686	063B 25 063C 72	inx h mov m,d	
687	003C 72	mov m,u	
688	063D 11FBFF	lxi d,uqcb-buf	\$ptr-1 ;point to the uqcb for this requester
689	0640 19	dad d	r
690	0641 EB	xchg	
691		C	
692	0642 0E8B	mvi c,139	;write the message to the queue
693	0644 CD3D05	call monx	
694			
695	0647 C30206	jmp input	;round and round we go

696				
697	input4:			;else>requester not logged-in
698				
699	064A D1	pop	d	
700	064B 13	inx	d	
701	064C 13	inx	d	
702	064D 13	inx	d	

CP/M RMAC ASSEM 1.1 #014 NETWRKIF FOR SYSTEMS RUNNING ULCNET

703 704	064E DA6006	jc i	-	bo; botable entries	mb the message if there's no left
705			,		
706	0651 1A	ldax d			
707	0652 FE40	cpi 64	ŀ	is it ;	login?
708	0654 C26006	jnz i	nput5		
709					
710	0657 1B	dcx d		;yes>	mark the control block with
711	0658 1A	ldax d		; the so	ource ID
712	0659 77	mov m,	a		
713					
	065A 1B	dcx d		;go do	the queue write
715	065B 1B	dcx d			
	065C D5	push d	• • • •		
717	065D C33506	jmp	input6		
718	innut5.			flog o "not	logged in" extended emen
719 720	input5:			, nag a not	logged in" extended error
720	0660 EB	xchg			
722	0661 23	inx h			
723	0662 3601	mvi m	1	·set S	SIZ=1
	0664 23	inx h	,1	,500	
	0665 36FF		1,0ffh	:set	return code to error
	0667 23	inx h	-,	,	
727	0668 360C		n,0ch	;fla	g extended error 12
728					
729	066A 11FAFF	lxi	d,fmt-m	isg-1	
730	066D 19	dad d		;point b	back at message start
731	066E 3601	mvi n	n,1	;forn	hat = 1
732					
733	0670 23	inx h		;swap D	ID and SID
734	0671 7E	mov a,	m		
	0672 23	inx h			
	0673 46	mov b,1			
737	0674 77	mov m,	a		
738	0675 2B	dcx h			
739	0676 70	mov m,	b		
740	0677 2B	dcx h			
741	0679 222501	ah1.1 :	n¢	uffort	www.ita huffon pointer to more more hard
742 743	0678 223501	shld i	προπτρρ	uffer\$ptr	;write buffer pointer to queue msg buf
743 744	067B 113101	lxi d	,uqcb\$ir	12tur2	write to the queue
744 745	067E 0E8B		,uqcban 2,139	ιφυαιφυ	;write to the queue
1 4 3			,157		

7	46	0680 CD3D05	call	monx	
7	47	0683 C30206	jmp	input	;try again
7	48				
7	49				
7	50				
7	51	; Networ	k I/F tra	ansmitter process	
7	52				
7	53	output:			
7	54				
7	55	0686 112B01	lxi	d,uqcb\$out\$0	;read the output queue>go sleepy
7	56	0689 0E89	mvi	c,137	; bye until some server process

CP/M RMAC ASSEM 1.1 #015 NETWRKIF FOR SYSTEMS RUNNING ULCNET

759 068E 2A2F01 lhld out\$buffer\$ptr 760 0691 EB xchg 761 0692 D5 push d ;save message pointer 762 763 0693 210300 lxi h,fnc ;get message function code 764 0696 19 dad d 765 0698 2B dcx 766 0698 2B dcx h 767 768 0699 FE41 cpi 65 ;is it a logoff? 769 069B C2A206 jnz output2 770 770 0 772 771 069E 7E mov a,m ;load SID 772 069F CC6D05 cz free\$restrstrbl ;yes>free up the server process 773 output2: 775 776 06A2 E1 pop h 778 06A4 CD7E05 call send\$msg ;send the message 778 06A4 CD7E05 call send\$msg ;bet = pointer - message buffer base 780 06A8 E11202 lxi d,msg\$buffers ;DE = pointer - message buffer base 783 06AE 011F02 lxi b,buf\$cb ;BC = DE/buf\$len + buf\$cb <th>757 758</th> <th>068B CD3D05</th> <th>call monx ; sends a response</th>	757 758	068B CD3D05	call monx ; sends a response
760 0691 EB xchg 761 0692 D5 push d ;save message pointer 762 763 0693 210300 lxi h,fnc ;get message function code 764 0696 19 dad d . . 764 0696 19 dad d . 765 0697 7E mov a,m . 766 0698 2B dcx h . 767 0698 C2A206 jnz output2 770 069B C2A206 jnz output2 771 069E 7E mov a,m ;load SID 772 069F CC6D05 cz free\$rqstr\$tbl ;yes>free up the server process 773 0tat2 . . . 776 06A2 E1 pop h . 777 06A3 E5 push h . 778 06A4 CD7E05 call send\$msg ;BC = pointer - message buffer base 780 06A8 112202 lxi d,msg\$buffers ;DE = pointer - message buffer base		068E 2A2F01	lhld_out\$buffer\$ptr
761 0692 D5 push d ;save message pointer 762 0693 210300 lxi h,fnc ;get message function code 764 0696 19 dad d 765 0697 7E mov a,m ; 766 0698 2B dcx h 767 0699 FE41 cpi 65 ; is it a logoff? 769 069B C2A206 jnz output2 770 069E 7E mov a,m ;load SID 772 069F CC6D05 cz free\$rqstr\$tbl ;yes>free up the server process 773 0642 E1 pop h push h 775 776 06A2 E1 pop h ;retrieve message pointer 778 06A4 CD7E05 call sen\$msg ;send the message 779 780 06A7 E1 pop h ;retrieve message pointer 781 8 06A8 CD4105 call dw\$sub ;BC = DE/buf\$len + buf\$cb 786 06AE 011F02 lxi b,buf\$cb ;BC = DE/buf\$len + buf\$cb 788 06AE 011F02 lxi <td></td> <td></td> <td>-</td>			-
762 1xi h,fnc ;get message function code 763 0693 210300 1xi h,fnc ;get message function code 764 0696 19 dad d 765 0697 7E mov a,m 766 766 0698 2B dcx h 767 0699 FE41 cpi 65 ;is it a logoff? 769 069B C2A206 jnz output2 770 0 771 069E 7E mov a,m ;load SID 772 069F CC6D05 cz free\$rqstr\$tbl ;yes>free up the server process 773 output2: 775 776 06A2 E1 pop h 774 output2: 775 776 06A7 E1 pop h ;retrieve message pointer 781 06A8 CD4105 call dw\$sub ;DE = pointer - message buffer base call dw\$sub 784 06AB CD4105 call dw\$sub ;BC = DE/buf\$len + buf\$cb 786 783 06AE 011F02 1xi b,buf\$cb ;BC = DE/buf\$len + buf\$cb 786 788 700 06			6
764 0696 19 dad d 765 0697 7E mov a,m 766 0698 2B dcx h 767 768 0699 FE41 cpi 65 ; is it a logoff? 769 069B C2A206 jnz output2 770 770 771 069E 7E mov a,m ; load SID 772 069F CC6D05 cz free\$rqstr\$tbl ; yes>free up the server process 773 774 output2: 775 776 06A2 E1 pop h 777 770 06A3 E5 push h . 778 06A4 CD7E05 call send\$msg ;send the message 779 780 06A7 E1 pop h ;retrieve message pointer 781 06A8 I12202 lxi d,msg\$buffers ;DE = pointer - message buffer base 783 06AB CD4105 call dw\$sub ;BC = DE/buf\$len + buf\$cb 784 789 06B1 7B mov a,e 789 06B1 7B mov a,e ;Z ora d 791 06B3 CAC106 jz output4 ;2 793			
764 0696 19 dad d 765 0697 7E mov a,m 766 0698 2B dcx h 767 768 0699 FE41 cpi 65 ; is it a logoff? 769 069B C2A206 jnz output2 770 770 771 069E 7E mov a,m ;load SID 772 069F CC6D05 cz free\$rqstr\$tbl ;yes>free up the server process 773 774 output2: 775 776 06A2 E1 pop h 777 770 06A3 E5 push h 778 778 06A4 CD7E05 call send\$msg ;send the message 779 780 06A7 E1 pop h ;retrieve message pointer 781 06A8 I12202 lxi d,msg\$buffers ;DE = pointer - message buffer base 783 06AB CD4105 call dw\$sub ;BC = DE/buf\$len + buf\$cb 784 780 06AE 011F02 lxi d,buf\$cb ;BC = DE/buf\$len + buf\$cb 784 780 06AE 011F02 ixi d,buf\$cb ;BC = DE/buf\$len + buf\$cb 786 791 06B3 CAC106 <td>763</td> <td>0693 210300</td> <td>lxi h,fnc ;get message function code</td>	763	0693 210300	lxi h,fnc ;get message function code
766 $0698 2B$ dcxh767 $0699 FE41$ cpi 65 ; is it a logoff?769 $069B C2A206$ jnzoutput2770 $069B C2A206$ jnzoutput2771 $069E 7E$ mova,m; load SID772 $069F CC6D05$ czfree\$rqstr\$tbl; yes>free up the server process773 774 output2:	764	0696 19	
767 768 0699 FE41 cpi 65 ; is it a logoff? 769 $069B$ C2A206jnzoutput2 770 771 $069E$ 7Emov a,m ; load SID 772 $069F$ CC6D05 cz free\$rqstr\$tbl; yes>free up the server process 773 774 output2: 775 776 $06A2$ E1poph 778 $06A4$ CD7E05call send\$msg; send the message 779 780 $06A7$ E1poph 780 $06A7$ E1poph; retrieve message pointer 781 781 $06A8$ 112202lxid,msg\$buffers; DE = pointer - message buffer base 783 $06A8$ CD4105calldw\$sub $8C = DE/buf$len + buf$cb78478506AE 011F02lxib,buf$cb; BC = DE/buf$len + buf$cb78606B1 7Bmova,e7867870utput3:78906B1 7Bmova,e7867870utput3:78906B1 7Bmova,e7867870utput3:78906B6 EBxchg78678778678779279678678778678779306B6 EBxchg7867867947867867867867947867867867867947867867867867650697 7Emov a,m$	765	0697 7E	mov a,m
7680699 FE41cpi65; is it a logoff?769069B C2A206jnzoutput2770771069E 7Emova,m;load SID772069F CC6D05czfree\$rqstr\$tbl;yes>free up the server process773774output2:;ree\$rqstr\$tbl;yes>free up the server process77577606A2 E1poph77706A3 E5pushh;retrieve message77978006A7 E1poph78006A7 E1poph;retrieve message pointer78178206A8 112202lxid,msg\$buffers;DE = pointer - message buffer base78306AB CD4105calldw\$sub;BC = DE/buf\$len + buf\$cb78478306B1 7Bmova,e79906B2 B2orad79106B3 CAC106jzoutput479279306B6 EBxchg79406B7 110601lxid,buf\$len	766	0698 2B	dcx h
769 $069B C2A206$ jnz $output2$ 770771 $069E 7E$ mov a,m ;load SID772 $069F CC6D05$ cz free\$rqstr\$tbl;yes>free up the server process773 $output2$:775776 $06A2 E1$ poph777 $06A3 E5$ pushh778 $06A4 CD7E05$ callsend\$msg780 $06A7 E1$ poph781 $06A8 112202$ lxid,msg\$buffers782 $06A8 CD4105$ calldw\$sub784 $06AB CD4105$ calldw\$sub785 $06AE 011F02$ lxib,buf\$cb786 $06B1 7B$ mov a,e 787output3: 788 789 788 790 $06B1 7B$ mov789 $06B1 7B$ mov a,e 790 $06B2 B2$ orad791 $06B3 CAC106$ jzoutput4792 793 $06B6 EB$ xchg794 $06B7 110601$ lxid,buf\$len	767		
770771069E 7Emova,m;load SID772069F CC6D05czfree\$rqstr\$tbl;yes>free up the server process773774output2:77577606A2 E1poph77706A3 E5pushh77806A4 CD7E05call send\$msg;send the message77978006A4 CD7E05call send\$msg;send the message78006A7 E1poph;retrieve message pointer78178206A8 112202lxid,msg\$buffers;DE = pointer - message buffer base78306AB CD4105calldw\$sub;BC = DE/buf\$len + buf\$cb78478506AE 011F02lxib,buf\$cb;BC = DE/buf\$len + buf\$cb786787output3:78878906B1 7Bmova,e79006B2 B2orad79106B3 CAC106jzoutput479279306B6 EBxchg79406B7 110601lxid,buf\$len	768	0699 FE41	cpi 65 ;is it a logoff?
771 $069E 7E$ mov a,m ; $load SID$ 772 $069F CC6D05$ cz free\$rqstr\$tbl;yes>free up the server process 773 $output2:$	769	069B C2A206	jnz output2
772 $069F CC6D05$ czfree\$rqstr\$tbl;yes>free up the server process773output2:774output2:775776 $06A2 E1$ pop h777 $06A3 E5$ push h778 $06A4 CD7E05$ call send\$msg780 $06A7 E1$ pop h781retrieve message pointer78178278406A8 CD410578506AE 011F02786lxi787output3:78878978906B1 7B780mov a,e79006B2 B279106B3 CAC10679279379306B6 EB79406B7 1106011xid,buf\$len	770		
773 1 1 1 1 774 0 utput2:775776 $06A2 E1$ $pop h$ 778 $06A4 CD7E05$ $call send$msg$ 780 $06A4 CD7E05$ $call send$msg$ 780 $06A7 E1$ $pop h$ 781 $retrieve$ message pointer781 $retrieve$ message pointer783 $06A8 CD4105$ $call dw$sub$ 784 $retrieve$ $retrieve$ 785 $06AE 011F02$ $lxi d,msg$buffers$ $;DE = pointer - message buffer base786retrieveretrieveretrieve787output3:retrieveretrieve788retrieveretrieveretrieve78906B17Bmov a,eretrieve79006B2 B2ora dretrieve79106B3 CAC106jzoutput4792retrieveretrieve79306B6 EBxchg7940697 110601lxi d,buflen	771		mov a,m ;load SID
774 output2: 775 776 06A2 E1 pop h 777 06A3 E5 push h 778 06A4 CD7E05 call send\$msg ;send the message 779 780 06A7 E1 pop h ;retrieve message pointer 780 06A7 E1 pop h ;retrieve message pointer 781 782 06A8 112202 lxi d,msg\$buffers ;DE = pointer - message buffer base 783 06AB CD4105 call dw\$sub 784 785 06AE 011F02 lxi b,buf\$cb ;BC = DE/buf\$len + buf\$cb 786 787 output3: 788 789 06B1 7B mov a,e 790 06B2 B2 ora d 791 06B3 CAC106 jz output4 792 793 06B6 EB xchg 794 06B7 110601 lxi d,buf\$len		069F CC6D05	cz free\$rqstr\$tbl ;yes>free up the server process
775776 $06A2 E1$ poph777 $06A3 E5$ pushh778 $06A4 CD7E05$ callsend\$msg780 $06A7 E1$ poph781782 $06A8 112202$ lxi783 $06AB CD4105$ calldw\$sub784785 $06AE 011F02$ lxi787output3:rest788789 $06B1 7B$ mov789 $06B1 7B$ mova,e790 $06B2 B2$ orad791 $06B3 CAC106$ jzoutput4792793 $06B6 EB$ xchg794 $06B7 110601$ lxid,buf\$len			
776 $06A2$ E1poph 777 $06A3$ E5pushh 778 $06A4$ CD7E05callsend\$msg;send the message 779 780 $06A7$ E1poph;retrieve message pointer 781 782 $06A8$ 112202lxid,msg\$buffers;DE = pointer - message buffer base 783 $06AB$ CD4105calldw\$sub 784 785 $06AE$ 011F02lxib,buf\$cb;BC = DE/buf\$len + buf\$cb 786 787 output3: 788 789 $06B1$ 7Bmova,e 790 $06B2$ B2orad 791 $06B3$ CAC106jzoutput4 792 793 $06B6$ EBxchg 794 $06B7$ 110601lxid,buf\$len		output2	
777 $06A3 E5$ push h778 $06A4 CD7E05$ call send\$msg779780 $06A7 E1$ pop h780 $06A7 E1$ pop h781782 $06A8 112202$ 783 $06AB CD4105$ call dw\$sub784785 $06AE 011F02$ 787output3:788789799 $06B1 7B$ mov a,e790 $06B2 B2$ ora d791 $06B6 EB$ xchg792793 $06B6 EB$ 794 $06B7 110601$ lxi d,buf\$len			
778 $06A4 \text{ CD7E05}$ call send\$msg;send the message779780 $06A7 \text{ E1}$ poph;retrieve message pointer781782 $06A8 112202$ lxid,msg\$buffers;DE = pointer - message buffer base783 $06AB \text{ CD4105}$ calldw\$sub;BC = DE/buf\$len + buf\$cb784785 $06AE 011F02$ lxib,buf\$cb;BC = DE/buf\$len + buf\$cb786787output3:788789 $06B1 7B$ mova,e790 $06B2 B2$ orad791 $06B3 \text{ CAC106}$ jzoutput4792793 $06B6 \text{ EB}$ xchg794 $06B7 110601$ lxid,buf\$len			
77978006A7 E1poph;retrieve message pointer78178206A8 112202lxid,msg\$buffers;DE = pointer - message buffer base78306AB CD4105calldw\$subsub78478506AE 011F02lxib,buf\$cb;BC = DE/buf\$len + buf\$cb786787output3:78878906B1 7Bmova,e79006B2 B2orad79106B3 CAC106jzoutput479279306B6 EBxchg79406B7 110601lxid,buf\$len			1
78006A7 E1poph;retrieve message pointer78178206A8 112202lxid,msg\$buffers;DE = pointer - message buffer base78306AB CD4105calldw\$sub;BC = DE/buf\$len + buf\$cb78478506AE 011F02lxib,buf\$cb;BC = DE/buf\$len + buf\$cb786787output3:78878906B1 7Bmova,e79006B2 B2orad79106B3 CAC106jzoutput479279306B6 EBxchg79406B7 110601lxid,buf\$len		06A4 CD7E05	call send\$msg ;send the message
781 11^{11} 11^{11} 782 $06A8$ 112202 $1xi$ $d,msg\$buffers$ $;DE = pointer - message buffer base78306ABCD4105calldw\$sub;BC = DE/buf\$len + buf\$cb78478506AE011F021xib,buf\$cb;BC = DE/buf\$len + buf\$cb786787output3:78878906B17Bmova,e79006B2B2orad79106B3CAC106jzoutput479279306B6EBxchg79406B71106011xid,buf\len			1
78206A8 112202lxid,msg\$buffers call;DE = pointer - message buffer base78306AB CD4105calldw\$sub;BC = DE/buf\$len + buf\$cb78478506AE 011F02lxib,buf\$cb;BC = DE/buf\$len + buf\$cb786787output3:78878906B1 7Bmova,e79006B2 B2orad79106B3 CAC106jzoutput479279306B6 EBxchg79406B7 110601lxi1xid,buf\$len		06A/EI	pop n ;retrieve message pointer
783 06AB CD4105 call dw\$sub 784 785 06AE 011F02 lxi b,buf\$cb ;BC = DE/buf\$len + buf\$cb 786		0619 112202	lvi d maathuffara
784 785 $06AE \ 011F02$ $1xi$ b,buf \$cb $;BC = DE/buf$ \$len + buf \$cb 786 787 $output3:$ 788 789 $06B1 \ 7B$ mov a,e 790 $06B2 \ B2$ ora d 791 $06B3 \ CAC106$ jz $output4$ 792 793 $06B6 \ EB$ $xchg$ 794 $06B7 \ 110601$ $1xi$ d,buf \$len			
785 06AE 011F02 lxi b,buf\$cb ;BC = DE/buf\$len + buf\$cb 786		00AB CD4105	call dw\$sub
786 787 output3: 788 789 06B1 7B mov a,e 790 06B2 B2 ora d 791 06B3 CAC106 jz output4 792 793 06B6 EB xchg 794 06B7 110601 lxi d,buf\$len		06AE 011E02	lvi b bufteb $:BC = DE/bufteb + bufteb$
787 output3: 788		00AL 011102	$\mathbf{M} = \mathbf{D} \mathbf{E} / \mathbf{D} \mathbf{U} + \mathbf{D} \mathbf{U}$
788 789 06B1 7B mov a,e 790 06B2 B2 ora d 791 06B3 CAC106 jz output4 792 793 06B6 EB xchg 794 06B7 110601 lxi d,buf\$len		output3	
789 06B1 7B mov a,e 790 06B2 B2 ora d 791 06B3 CAC106 jz output4 792		outputs	•
790 06B2 B2 ora d 791 06B3 CAC106 jz output4 792		06B1 7B	mov a e
791 06B3 CAC106 jz output4 792 06B6 EB xchg 793 06B7 110601 lxi d,buf\$len			
792 793 06B6 EB xchg 794 06B7 110601 lxi d,buf\$len			
793 06B6 EB xchg 794 06B7 110601 lxi d,buf\$len		0020 0110100	<u>j</u> 2 omp
794 06B7 110601 lxi d,buf\$len		06B6 EB	xchg
			-
795 06BA CD4105 call dw\$sub	795	06BA CD4105	call dw\$sub

796 06BD 0C inr c 797 06BE C3B106 imp output3 798 799 output4: 800 801 06C1 AF xra а 802 06C2 02 stax b ;free the buffer for re-use 803 804 06C3 C38606 jmp output ;transmission without end, amen 805 806 06C6 end CP/M RMAC ASSEM 1.1 #016 NETWRKIF FOR SYSTEMS RUNNING ULCNET BDOSADR 0000 53# 391 021F 351# 632 785 BUFCB BUFLEN 0106 72# 361 363 364 365 643 794 BUFPTR 0005 87# 88 680 688 0137 301# 537 594 CONFIGTBL 0535 371# 614 CONIN 0534 369# 529 CONINJMP CONOUT 0538 375# 619 0537 373# 517 CONOUTJMP CONSOLENUM 0020 60# 516 528 621 053B 379# 609 CONSTAT 053A 377# 622 CONSTATJMP DID 0001 67# 68 0541 397# 783 795 DWSUB 0000 66# 67 729 FMT FMTBYTE 004B 61# 492 0003 69# 70 763 FNC FREEROSTRTBL 056D 466# 772 0573 471# 482 FRT1 057A 474 479# FRT2 INOUTBUFFERPTR 0135 292 295# 742 0602 628# 655 695 747 INPUT INPUT2 060A 636# 651 0623 640 657# INPUT3 064A 676 697# INPUT4 INPUT5 0660 703 708 719# INPUT6 0635 678# 717 MAKEQ 05BB 574# 587 053D 389# 578 590 626 654 693 746 757 MONX 0005 71# 72 729 MSG **MSGBUFFERS** 0222 360# 633 782 NETSTKIN 0036 98 122# NETSTKOU 009A 136 160# NETWORKIN 0002 93# NETWORKOUT 0066 131# 624 **NMBBUFS** 0003 59# 232 238 351 360 634 0002 58# 184 198 212 251 260 269 304 317 322 NMBRQSTRS 327 335 339 343 425 438 570 OUTBUFFERPTR 012F 282 284# 759

OUTPUT 0686 167 753# 804 OUTPUT2 06A2 769 774# OUTPUT3 06B1 787# 797 06C1 791 799# OUTPUT4 00CA 172# 247 572 **QCBIN0** OCBIN1 00E4 185# 255 QCBOUT0 00FE 228# 281 291 RCBLEN 0007 88# 426 469 RCVMESSAGE 0596 523# 665 ROSTRID 0000 85# 86 ROSTRTABLE 011D 242# 424 437 468 0548 422# 673 SCANTABLE SCT1 0550 428# 435 SCT2 055C 440# 448 SCT3 056A 444 454# #017 NETWRKIF FOR SYSTEMS RUNNING ULCNET CP/M RMAC ASSEM 1.1 057E 489# 778 SENDMSG 05B4 129 568# SETUP 0002 68# 69 SID

SIZ 0004 70# 71 01EB 319 336# SRVR1PD SRVRSTK1 0155 318# SRVRSTKLEN 0096 315# 318 323 328 0000 76# 77 ULCFMT 0004 80# 81 ULCFNC ULCLENHI 0003 79# 80 ULCLENLO 0002 78# 79 ULCMSG 0005 81# **ULCVCIRC** 0001 77# 78 UQCB 0001 86# 87 688 UQCBINOUT0 0131 290# 744 UQCBOUT0 012B 280# 755

Listing F-3: ULCnet Data-link Layer MP/M XIOS Module

CP/M RMAC ASSEM 1.1 #001 ULCNET DATA LINK LAYER MP/M XIOS MODULE

1	title 'ULCNET Data Link Layer MP/M XIOS Module'
2	page 54
3	
4	·*************************************
5	;* This module must be linked into the server's XIOS. It is designed to *
6	;* run under MP/M for the Xerox 820, but should be easily customized. It $*$
7	;* contains the ULCnet interface modules DLIF and NIOD. The DLIF is an *
8	;* interface between the transport software contained in ULCIF.RSP and the *
9	;* data-link software contained in IPBMAIN.REL. The NIOD contains the actual*
10	* hardware drivers required to run ULCnet. The module IPBMAIN.REL must also;
11	;* be linked into the XIOS. *
12	•*************************************
13	

14	; This software is the result of a joint effort between					
15	;					
16	Digital Research, Inc.					
17	; P.O. Box 579					
18	; Pacific Grove, CA 93950					
19	; and					
20	; Keybrook Business Systems, Inc.					
21	; 2035 National Avenue					
22	; Hayward, CA 94545					
23						
24	; Conditional assembly control					
25	0.0000					
26 FFFF =	true equ Offffh					
27 0000 =	false equ not true					
28 20 EEEE	intermente como torre construction de la como intermente duisses					
29 FFFF =	interrupts equ true ; false=polled, true=interrupt-driven					
30 FFFF = 31 FFFF =	netstats equ true ; switch to gather network statistics slfclkd equ true ; supports self-clocked operation					
31 FFFF = 32	slfclkd equ true ; supports self-clocked operation					
32 33	; Linkage information					
33 34	, Linkage information					
35	public nconst,nconin,nconout ; XIOS console jump table entries					
36	public polldevice ; XIOS polling routine					
37	public setbaud, xmit, recv, initu; NIOD routines called by IPBMAIN					
38	public inituart,pgmuart					
39	public chkstat, netidle, initreev					
40	public wait, restuart, csniod					
41	public dsblxmit					
42	public dllbau,netadr					
43						
44	if interrupts					
45	public enblrecv,dsblrecv					
46	endif					
47						
48	extrn transmit, receive ; IPBMAIN routines and objects					
49	extrn gettcode,getrcode					
50	extrn csdll,dllon,regshrt					
51	extrn terrent,parentr,ovrentr					
52	extrn frmentr,incentr					
53	extrn xdos,const,conin,conout ; linkage back to the rest of XIOS					
54	extrn poldev					

CP/M RMAC ASSEM 1.1 #002 ULCNET DATA LINK LAYER MP/M XIOS MODULE

55 56 57 58 59	if interrupts extrn rtmochk ; IPBM extrn dlisr,reisr,niisr endif	IAIN interrupt routines
60 61 62 63	; Hardware definitions for the Z80-SI	O channel A - For the Xerox 820.

65	0003 = 002A =	baudsl equ 03h baudsh equ 2ah	; Usable baud rates: 9600, 19.2K asynch., ; 76.8K, 153.6K, 307.2K self-clocked
66			
67			d rate capability mask
68	2A03 =	bauds equ (bauds	sh*100h)+baudsl
69			
70	0000 =	baudgen equ 0	; External baud rate generator register
71	0006 =	siocmd equ 6	; Command/Mode register
72	0006 =	siostat equ 6	; Status register
73	0004 =	sioxmit equ 4	; Transmit register
74	0004 =	siorecv equ 4	; Receive register
75			
76	0002 =	xrdybit equ 2	; Transmit buffer empty status bit
77	0004 =	xrdymsk equ 4	; transmit buffer empty status mask
78	0000 =	rrdybit equ 0	; Receive buffer full status bit
79	0001 =	rrdymsk equ 1	; receive buffer full status mask
80	0003 =	carbit equ 3	; Net Idle detect bit position
81	0008 =	carmsk equ 8	; Net Idle detect mask
82	0030 =	errst equ 030h	; Error flag reset
83	0070 =	errbits equ 070h	; Error bit position mask
84	0004 =	pbit equ 4	; Parity error bit position
85	0010 =	pmsk equ 10h	; parity error mask
86	0005 =	obit equ 5	; Overrun error bit position
87	0020 =	omsk equ 20h	; overrun error mask
88	0006 =	fbit equ 6	; Framing error bit position
89	0040 =	fmsk equ 40h	; framing error mask
90	0003 =	selfbit equ 3	; Self clock bit position
91	0008 =	selfmsk equ 8	; slef clock bit mask
92	00EA =	dtron equ Oeah	; Turn on DTR
93	006A =	dtroff equ 06ah	; Turn off DTR
94	00C1 =	enarcy equ 0c1h	; Enable receive-clock
95	00C0 =	disrcv equ 0c0h	; Disable receive clock
96	000F =	enaslf equ 00fh	; Enable Self-clock mode
	004F =	disslf equ 04fh	; Disable Self-clock mode
98		1	
99	: S	IO Mode 2 interrupts	vector table
100	7 · -		
101	FF08 =	siov4 equ Off08h	; SIO port A xmit buffer empty
102		siov5 equ Off0al	
103	FF0C =	siov6 equ 0ff0cl	
104		siov7 equ Off0el	-
105			,r
106	0020 =	netcon equ 20h	; fake console number called by ULCIF for
107		-	work operations
108		, 1100	- r
- 50			

CP/M RMAC ASSEM 1.1 #003 ULCNET DATA LINK LAYER MP/M XIOS MODULE

109	; polling	equates	s	
110				
111 00	ulctx	equ	20h	; transmission poll number
112 00	ulcrx	equ	21h	; receive poll number
113	page	;		-

114 115 116 117 ; ULCnet Data Definitions 118 119 0000 netadr: ds 3 ;ULCnet network address 2 120 0003 dllbau: ds :baud rate mask 121 $122 \quad 0016 =$ timeval equ 22 ; WAIT routine time constant 123 ; 12 for 2.5 megahertz Z80 124 ; 22 for 4.0 megahertz Z80 125 126 dev\$table: ;polling device table 127 128 0005 9800 dw twait ;receive poll wait 129 0007 D300 ;transmit poll wait dw rwait (\$-dev\$table)/2130 0002 = num\$devices equ 131 132 0009 tcode: ds 1 ; Transmit Return code rcode: ds ; Receive Return code 133 000A 1 134 135 000B FF curbaud db 0ffh ; Current baud rate 136 137 138 000C 0102040810btbl: db 1,2,4,8,16,32,64,128 ; table to convert baud number codes 139 : into a bit mask 140 baudtbl: 141 ; async baud rate table 142 143 0014 0E db 0eh ; 9600 Baud 144 0015 0F db 0fh ; 19200 145 146 scbaudt: ; self-clock baud rate table 147 0 148 0016 00 db ; 62500 Baud - Not implemented 0dh ; 76800 Baud 149 0017 0D db db ; 125000 Baud - Not implemented 150 0018 00 0 151 0019 0E db 0eh ; 153600 Baud ; 250000 Baud - Not implemented 152 001A 00 db 0 153 001B 0F 0fh ; 307200 Baud db 154 155 if interrupts 156 001C 30144F156Asioiblk db 030h,14h,4fh,15h,06ah,13h,0c1h,11h,01h,10h,10h,30h 157 else sioiblk db 158 030h,14h,4fh,15h,06ah,13h,0c1h,11h,00h,10h,10h,30h endif 159 160 $161 \quad 000C =$ sioilen equ \$-sioiblk 162 163 page

CP/M RMAC ASSEM 1.1 #005 ULCNET DATA LINK LAYER MP/M XIOS MODULE

166167; ULCnet data-link interface code168169170; POLLDEVICE: Device polling routine.171; Input:172; C = device number to poll173; Output:174; A = 0 if not ready175; Offh if ready176177polldevice:1781790028 79170go 28 791711721731741751751761771781781791791761771781781791791701791701701711711721731741751751761771781791781791791711711711711721731741751751781791791711781791791711711711711721731731741751751761771781791791791710 <td< th=""><th>164</th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	164						
167; ULCnet data-link interface code168169170; POLLDEVICE: Device polling routine.171; Input:172; C = device number to poll173; Output:174; A = 0 if not ready175; Offh if ready176	165						
168169170; POLLDEVICE: Device polling routine.171; Input:172; $C = device number to poll173; Output:174; A = 0 if not ready175; Offh if ready176$	166						
169170; POLLDEVICE: Device polling routine.171; Input:172; C = device number to poll173; Output:174; A = 0 if not ready175; Offh if ready176177polldevice:178	167	; ULCr	iet data-	link interfa	ace cod	le	
170; POLLDEVICE: Device polling routine.171; Input:172; C = device number to poll173; Output:174; A = 0 if not ready175; Offh if ready176	168						
171:Input:172:C = device number to poll173:Output:174:A = 0 if not ready175:Offh if ready176.177polldevice:1781790028 79mov a,c ; if not a network poll, go to the real1800029 D620sui ulctx ; routine181002B DA0000jc poldev182183002E FE02cpi num\$devices ; check for poll number in bounds1840030 DA3600jc devok1851860033 3E00mvi a,01870035 C9ret1881901910036 6Fmov l,a1920037 2600mvi h,01930039 29dad h194195003A 110500ki d,dev\$table ; index into the poll routine table196003D 19dad d197.198003E 5Emov e,m199003F 23inx h2000040 56mov d,m ; get the routine address2012030042 E9pchl2030042 E9pchl204.205.206.207.208.208.209.200.201.202.203<	169						
172:C = device number to poll173:Output:174:A = 0 if not ready175:Offh if ready176177polldevice:.1781790028 79mov a,c ; if not a network poll, go to the real1800029 D620sui ulctx ; routine181002B DA0000jc poldev182183002E FE02cpi num\$devices ; check for poll number in bounds1840030 DA3600jc devok1851860033 3E00mvi a,01870035 C9ret188.1901910036 6Fmov l,a1920037 2600mvi h,01930039 29dad h194.195003A 110500lxi d,dev\$table ; index into the poll routine table196003D 19dad d197.198003E 5Emov e,m199003F 23inx h2000042 56mov d,m ; get the routine address2012020041 EBxchg2030.042 E9pchl204205.206.207.208.209.209.201.202.203.204.	170	; POLL	LDEVIC	E: Device	polling	g routine.	
173:Output:174: $A = 0$ if not ready175:Offh if ready176177polldevice:178.1790028 79mov a,c ; if not a network poll, go to the real1800029 D620sui ulctx ; routine181002B DA0000jc poldev182.183002E FE02cpi num\$devices ; check for poll number in bounds1840030 DA3600jc devok185.1860033 3E00mvi a,01870035 C9ret188.199devok:190.1910036 6Fmov 1,a1920037 2600mvi h,01930039 29dad h194.195003A 110500lxi d,dev\$table ; index into the poll routine table196003D 19dad d197.1980040 56mov d,m ; get the routine address1091011020041 EBxchg103104.105106.107.108.109.109.109.109.109.109.109.1003.1004.101.102. <td>171</td> <td>; In</td> <td>put:</td> <td></td> <td></td> <td></td> <td></td>	171	; In	put:				
174; $A = 0$ if not ready175;0ffh if ready176polldevice:177polldevice:1781791790028 79mov a,c ; if not a network poll, go to the real1800029 D620sui ulctx ; routine181002B DA0000jc poldev182122183002E FE02cpi num\$devices ; check for poll number in bounds1840030 DA3600jc devok185160033 3E001860033 3E00mvi a,01970035 C9ret188189devok:1900036 6Fmov l,a1920037 2600mvi h,01930039 29dad h19410500lxi d,dev\$table ; index into the poll routine table196003D 19dad d197179198003E 5Emov e,m199003F 23inx h2000040 56mov d,m ; get the routine address20120041 EBxchg2030042 E9pchl204205205206206206207;208; NCONST: Console status entry point. If register D = fake network	172	;	$\mathbf{C} = 0$	device num	ber to	poll	
175;Offh if ready176polldevice:177polldevice:1781790028 79mov a,c178iultx1790028 791790029 D620171sui172002B DA0000173jc174poldev175iultx176jc177poldev178iultx179002B FE02171num\$devices172cpi173iultx174iultx175iultx176iultx177iultx178iultx179iultx171iultx172iultx173iultx174iultx175iultx176iultx177iultx178iultx179iultx178iultx179iultx179iultx170iultx171iultx172iultx173iultx174iultx175iultx176iultx177iultx178iultx179iultx179iultx179iultx179iultx179iultx179iultx179iultx179iultx171iultx171iultx <td>173</td> <td>; 0</td> <td>utput:</td> <td></td> <td></td> <td></td> <td></td>	173	; 0	utput:				
176polldevice:177polldevice:178mov a,c1790028 79mov a,c1800029 D620sui ulctx181002B DA0000jc182poldev183002E FE02cpi <num\$devices< td="">1840030 DA3600jc185devok1860033 3E00mvi1870035 C9ret188devok:190141910036 6Fmov1930039 29194dad195003A 110500lxi196003D 19197dad1980040 56199mov199003F 23194inx1950042 551961040 561971040 561980040 56199003F 231941950042 E9195pchl196pchl197ins h1980042 E9199pchl199ispatch104ispatch105ispatch106ispatch107ispatch108ispatch109ispatch109ispatch109ispatch119ispatch120ispatch130ispatch131ispatch132ispatch133ispatch134ispatch135</num\$devices<>	174	;	$\mathbf{A} = 0$	0 if not re	eady		
177polldevice:1781790028 79mova,c; if not a network poll, go to the real1800029 D620suiulctx; routine181002B DA0000jcpoldev183002E FE02cpinum\$devices; check for poll number in bounds1840030 DA3600jcdevok1850033 3E00mvia,0; out-of-bounds>don't do anything1870035 C9ret188189devok:1900036 6Fmovl,a1920037 2600mvih,01930039 29dadh194195003A 110500lxi195003E 5Emove,m199003E 5Emovd199003F 23inxh2000040 56movd,m2120041 EBxchg2030042 E9pchl; dispatch204205;j205206;206207;207;;208; NCONST: Console status entry point. If register D = fake network	175	•	Of	fh if ready			
1781790028 79mova,c; if not a network poll, go to the real1800029 D620suiulctx; routine181002B DA0000jcpoldev182183002E FE02cpinum\$devices; check for poll number in bounds1840030 DA3600jcdevok1851860033 3E00mvia,0; out-of-bounds>don't do anything1870035 C9ret188188devok:1901910036 6Fmovl,a1920037 2600mvih,01930039 29dadh194195003A 110500lxi197dadd198003E 5Emove,m199003F 23inxh2000040 56movd,m211128xchg2032020041 EBxchg2030042 E9pchl204205206205206207208; NCONST: Console status entry point. If register D = fake network	176						
179 0028 79mova,c; if not a network poll, go to the real180 0029 D620suiulctx; routine181 $002B$ DA0000jcpoldev182183 $002E$ FE02cpinum\$devices; check for poll number in bounds184 0030 DA3600jcdevok1851860033 3E00mvia,0; out-of-bounds>don't do anything1870035 C9ret187188189devok:1900036 6Fmovl,a1920037 2600mvih,01930039 29dadh194194195195003A 110500lxid,dev\$table196003D 19dadd197003F 23inxh198003E 5Emove,m199003F 23inxh2000040 56movd,m2010041 EBxchg2020041 EBxchg2030042 E9pchl; dispatch204205;idispatch2053if idispatch2063if idispatch207if idispatchidispatch208if NCONST: Console status entry point. If register D = fake network	177	polldev	vice:				
1800029 D620sui ulctx; routine181002B DA0000jcpoldev182183002E FE02cpinum\$devices; check for poll number in bounds1840030 DA3600jcdevok1851860033 3E00mvia,0; out-of-bounds>don't do anything1870035 C9ret188189devok:1901910036 6Fmov1,a1920037 2600mvih,01930039 29dadh19410500lxid,dev\$table195003A 110500lxid,dev\$table198003E 5Emove,m199003F 23inxh2000041 EBxchg2030042 E9pchl204265206207;206207;208208; NCONST: Console status entry point. If register D = fake network	178	-					
180 0029 D620 sui ulctx; routine181 $002B \text{ DA0000}$ jcpoldev182183 $002E \text{ FE02}$ cpinum\$devices; check for poll number in bounds184 0030 DA3600 jcdevok185186 $0033 3E00$ mvia,0; out-of-bounds>don't do anything187 0035 C9 ret188189devok:1901910036 6Fmov1910036 6Fmovl,a1920037 2600mvih,01930039 29dadh19410500lxid,dev\$table195003A 110500lxid,dev\$table196003D 19dadd197198003E 5Emov198003E 5Emove,m199003F 23inxh2000040 56movd,m2010041 EBxchg2020041 EBxchg2030042 E9pchl204205206207;208; NCONST: Console status entry point. If register D = fake network	179	0028 79	mov	a,c	; if no	ot a network poll, go to the real	
182 r 183002E FE02cpinum\$devices; check for poll number in bounds1840030 DA3600jcdevok1851860033 3E00mvia,0; out-of-bounds>don't do anything1870035 C9ret188188189devok:1901910036 6Fmov1,a1920037 2600mvih,01930039 29dadh194195003A 110500lxi195003A 110500lxid,dev\$table196003D 19dadd197198003E 5Emov199003F 23inxh2000040 56movd,m20110001000j2020041 EBxchg2030042 E9pchl204205206207;208208; NCONST: Console status entry point. If register D = fake network	180	0029 D620	sui	ulctx			
182cpinum\$devices; check for poll number in bounds183002E FE02cpinum\$devices; check for poll number in bounds1840030 DA3600jcdevok1850033 3E00mvia,0; out-of-bounds>don't do anything1870035 C9ret188devok:1001910036 6Fmov1,a1920037 2600mvih,01930039 29dadh194dadd195003A 110500lxid,dev\$table196003D 19dadd197198003E 5Emov199003F 23inxh2000040 56movd,m20120030042 E9pchl2020041 EBxchg2030042 E9pchl204205206207;208208; NCONST: Console status entry point. If register D = fake network	181	002B DA0000	jc	poldev	,		
183002E FE02cpinum\$devices; check for poll number in bounds1840030 DA3600jcdevok185isolationdevok1860033 3E00mvia,0; out-of-bounds>don't do anything1870035 C9ret188isolationret189devok:isolation1900036 6Fmovi,a1910036 6Fmovi,a1920037 2600mvih,01930039 29dadh194isolationisolation195003A 110500lxid,dev\$table196003D 19dadd197isolationisolation198003E 5Emove,m199003F 23inxh2000040 56movd,m201isolationisolation2020041 EBxchg2030042 E9pchl204isolation205isolation206isolation207isolation208isolation status entry point. If register D = fake network	182		5	1			
184 0030 DA3600 jc devok 185 0033 3E00 mvi a,0 ; out-of-bounds>don't do anything 187 0035 C9 ret		002E FE02	cpi	num\$dev	vices	: check for poll number in bounds	
185 186 0033 3E00 mvi a,0 ; out-of-bounds>don't do anything 187 0035 C9 ret 188 189 devok: 190 191 0036 6F mov l,a 192 0037 2600 mvi h,0 193 0039 29 dad h ; multiply index by 2 194 195 003A 110500 lxi d,dev\$table ; index into the poll routine table 196 003D 19 dad d 198 003E 5E mov e,m 199 003F 23 inx h 200 0040 56 mov d,m ; get the routine address 201 202 0041 EB xchg 203 0042 E9 pchl ; dispatch 204 <			-			, i i i i i i i i i i i i i i i i i i i	
1860033 3E00mvia,0; out-of-bounds>don't do anything1870035 C9ret188189devok:1901910036 6Fmov1910036 6Fmov1,a1920037 2600mvih,01930039 29dadh194195003A 110500lxi195003A 110500lxid,dev\$table196003D 19dadd197198003E 5Emov198003E 5Emove,m199003F 23inxh2000040 56movd,m20114EBxchg2030042 E9pchl; dispatch204205206;207;;208; NCONST: Console status entry point. If register D = fake network			J -				
187 0035 C9 ret 188 devok: 190 191 191 0036 6F mov 192 0037 2600 mvi 193 0039 29 dad 194 195 003A 110500 195 003A 110500 lxi 196 003D 19 dad 197 198 003E 5E 198 003E 5E mov 199 003E 5E mov 193 0040 56 mov 194 200 1041 EB 203 0042 E9 pchl ; dispatch 204 205 206 207 ; 208 ; NCONST: Console status entry point. If register D = fake network		0033 3E00	mvi	a.0	: out	t-of-bounds>don't do anything	
188 189 devok: 190 191 0036 6F mov l,a 192 0037 2600 mvi h,0 193 0039 29 dad h ; multiply index by 2 194				,.	,		
189 devok: 190							
190 191 0036 6F mov l,a 192 0037 2600 mvi h,0 193 0039 29 dad h ; multiply index by 2 194		devok:					
1910036 6Fmov1,a1920037 2600mvih,01930039 29dadh194							
1920037 2600mvih,01930039 29dadh; multiply index by 2194		0036 6F	mov	1.a			
1930039 29dadh; multiply index by 2194195003A 110500lxid,dev\$table; index into the poll routine table196003D 19dadd198003E 5Emove,m199003F 23inxh2000040 56movd,m2012020041 EBxchg2030042 E9pchl; dispatch204205::205:::208:::208:::208:NCONST: Console status entry point. If register D = fake network							
194195 $003A \ 110500$ lxid,dev\$table <td; index="" into="" poll="" routine="" table<="" td="" the="">196$003D \ 19$dadd197198$003E \ 5E$move,m199$003F \ 23$inxh200$0040 \ 56$movd,m; get the routine address201202$0041 \ EB$xchg203$0042 \ E9$pchl; dispatch204205206;205;NCONST: Console status entry point. If register D = fake network</td;>					: multi	iply index by 2	
195 $003A \ 110500$ lxid,dev\$table <th; index="" into="" poll="" routine="" table<="" th="" the="">196$003D \ 19$dadd197198$003E \ 5E$move,m199$003F \ 23$inxh200$0040 \ 56$movd,m; get the routine address201202$0041 \ EB$xchg203$0042 \ E9$pchl; dispatch204205206;205;;206;;207;;208; NCONST: Console status entry point. If register D = fake network</th;>			and		,		
196003D 19dadd197198003E 5Emove,m199003F 23inxh2000040 56movd,m; get the routine address2012020041 EBxchg2030042 E9pchl; dispatch204205206;207;;208; NCONST: Console status entry point. If register D = fake network		003A 110500	lxi	d.dev\$ta	able :	: index into the poll routine table	
197 198 003E 5E mov e,m 199 003F 23 inx h 200 0040 56 mov d,m ; get the routine address 201 202 0041 EB xchg 203 0042 E9 pchl ; dispatch 204 205 206 ; 207 ; ; 208 ; NCONST: Console status entry point. If register D = fake network				,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	
198 003E 5E mov e,m 199 003F 23 inx h 200 0040 56 mov d,m ; get the routine address 201 202 0041 EB xchg 203 0042 E9 pchl ; dispatch 204 205 ; 206 ; ; 207 ; ; 208 ; NCONST: Console status entry point. If register D = fake network		0002 17	<i>und</i>	C.			
199 $003F 23$ inxh200 $0040 56$ movd,m; get the routine address201202 $0041 EB$ xchg203 $0042 E9$ pchl; dispatch204205206;206;;208; NCONST: Console status entry point. If register D = fake network		003E 5E	mov	e m			
2000040 56movd,m; get the routine address2012020041 EBxchg2030042 E9pchl; dispatch204205206				,			
201 202 0041 EB xchg 203 0042 E9 pchl ; dispatch 204 205 206 207 ; 208 ; NCONST: Console status entry point. If register D = fake network					• get	t the routine address	
2020041 EBxchg2030042 E9pchl204205206207208; NCONST: Console status entry point. If register D = fake network		001020	ino (<i>a,</i>	, 500		
2030042 E9pchl; dispatch204205206		0041 EB	xchg				
204 205 206 207 ; 208 ; NCONST: Console status entry point. If register D = fake network			-		· dispat	tch	
205206207208; NCONST: Console status entry point. If register D = fake network		0042 L)	pem		, uispa		
 206 207 ; 208 ; NCONST: Console status entry point. If register D = fake network 							
 ; ; NCONST: Console status entry point. If register D = fake network 							
208 ; NCONST: Console status entry point. If register D = fake network							
			NST. C	oncola statu	ic ontro	v point If register D – fake network	
JUV · · · · · · · · · · · · · · · · · · ·	208				•		
						nualization. Otherwise, go back to	
210 ; the real console routines.211		, l	ne rear (Lonsole rou	umes.		
		noonst					
212 nconst: 213		nconst.					

	0043 3E20 0045 BA	mvi a,netcon ; Check if network call
	0045 BA 0046 C20000	cmp d jnz const ; Jump to normal CONST if not network
CP/M	RMAC ASSEM	1.1 #006 ULCNET DATA LINK LAYER MP/M XIOS MODULE
218	0049 CD0000	call csdll ; Cold start the data link
	004C CD0000	call dllon ; Initialize the SIO Drivers
	004F AF	xra a ; Initialize all the short addresses
221 222	nxtado	4.
222	IIXtau	1.
	0050 3C	inr a
	0051 FE05	cpi 5 ; Check for last address
226	0053 C8	rz
227	0054 F5	push psw
	0055 CD0000	call regshrt
	0058 F1	pop psw
230 231	0059 C35000	jmp nxtadd ; Jump to process next address
231		
232	: NCC	DNIN: Console In entry point. If register $D =$ the fake network ID
234	•	then receive a network message, using polled status checks of
235	;	an interrupt-driven data-link. Otherwise, go back to the real
236	;	CONIN routine.
237		
238 239	nconii	1:
	005C 3E20	mvi a, netcon ; Check for network call
241	005E BA	cmp d
242	005F C20000	jnz conin ; Jump to normal CONIN if not network
243		
	0062 50	mov d,b ; Setup for PSRECEIVE
245	0063 59	mov e,c
246 247	rretry:	
248	neuy.	
	0064 AF	xra a ; Packet mode
	0065 010101	lxi b,257 ; Buffer size
251	0068 210000	lxi h,0 ; Infinite wait
	006B D5	push d ; Save buffer address for retry
	006C CDC100	call psrecv
	006F D1 0070 B7	pop d ; Restore buffer address
255 256	0070 B7 0071 C8	ora a rz ; Return if no error
250 257	00/1 00	
	0072 C36400	jmp rretry ; Jump to try again if error
259		
260		
261	; NCC	DNOUT: Console out entry point. If $D =$ fake console ID, send a network
262	;	message. Otherwise, just head for the real CONOUT routine.
263		

264 265 266	nconout	:		
260 267 268	0075 3E20 0077 BA	mvi cmp	a,netcon d	; Check for network call
	0078 C20000	jnz	conout	; Jump to normal CONOUT if not network
271	007B 50	mov	d,b	; Setup for PSXMIT

CP/M RMAC ASSEM 1.1 #007 ULCNET DATA LINK LAYER MP/M XIOS MODULE

272 273	007C 59	mov e,c		
273	tretry:			
275	ucuy.			
276	007D AF	xra a	· Pac	ket mode, wait for Net Idle
277	007E D5	push d	,	ve buffer address for retry
278	007F CD8800	·	sxmit	
279	0082 D1	pop d		tore buffer address
280	0083 B7	ora a	, ~	
281	0084 C8	rz	; Retur	n if no error
282			,	
283	0085 C37D00	jmp t	retry ;	Jump to retry if error
284		5 1	2	
285				
286	; PSXM	IIT: Transm	it the packe	t pointed at by DE. If carry flag is set
287	; t	hen don't wa	ait for the No	et to become idle.
288	;			
289	; Return	ns the compl	etion code in	n A:
290	;			
291	; 0	- Transm	ission ok an	d Data Link Ack Received
292	;			cast, no Ack required)
293	; 2	- Transm	ission OK b	ut no Data Link Ack received.
294	;			
295	; 4	- Other e	rror.	
296				
297	psxmit:			
298				
299	0088 CD0000	call tr	ansmit	; TRETCODE := TRANSMIT(TBUFPTR,)
300				
301	008B 0E83		83h	; Poll the transmitter for completion
302	008D 1E20		ulctx	
303	008F CD0000	call x	dos	
304	0002 2 4 0000	1.1. (. Detals sectors and
	0092 3A0900		ode	; Fetch return code
306	0095 C3CE00	jmp e	exitdl	
307	· TW/ A 1	T. Transmi	acion compl	ation noll routing
308 309	, I WAI		ssion comple	etion poll routine.
310	, . (Output:		
310	, C	-	not comple	te
312	,		complete	
312	,		complete	
515				

314	twait:		
315	0000 CD0000	11	A CETTOODE Varia and a
310	0098 CD0000	call gettcode	; A := GETTCODE - Xmit return code
318	009B 5F	mov e,a	; get return code processing vectore
319	009D 31 009C 1600	mvi d.0	, get return code processing vectore
320	009E 21A700	lxi h,trtbl	
321	00A1 19	dad d	
322			
323	00A2 5E	mov e,m	; dispatch on return code
	00A3 23	inx h	
325	00A4 66	mov h,m	

CP/M RMAC ASSEM 1.1 #008 ULCNET DATA LINK LAYER MP/M XIOS MODULE

326	00A5 6B	mov	l,e	
327	00A6 E9	pchl		
328		1		
329	; Ret	urn code di	spatch table	
330	,		1	
331	00A7 B700	trtbl: dw	psxret	; Good transmission
332	00A9 B700	dw	psxret	; No Data Link Ack
333	00AB B700	dw	psxret	; Too many collisions
334	00AD B700	dw	psxret	; Transmitter is disabled
335	00AF B500	dw	tsleep	; Transmitter is idle
336	00B1 B500	dw	tsleep	; Transmitter is in progress
337	00B3 B500	dw	tsleep	; Transmitter is waiting for ack
338			1	, C
339	tslee	p:		
340		L		
341	00B5 AF	xra	a	; Code for continue to sleep
342	00B6 C9	ret		
343				
344	psxr	et:	;]	Enter here if something happened
345	1		,	
346	00B7 D2BB0	0 jnc	twakeup	; Jump if no transmit error
347	00BA 2F	cma	Ĩ	; Else>Indicate error
348				
349	twak	eup:		
350				
351	00BB 320900	sta	tcode	; Store return code
352	00BE 3EFF	mvi	a,0ffh	; Signal poll successful
353	00C0 C9	ret		
354				
355				
356				
357	; PSI	RECV: Rec	eive a packe	t into buffer pointed at by DE. Length of
358	•	packet m	ust be less th	an length of buffer in BC. HL is the receive
359	• •	timeout c	ount.	-
360	• •			
361	• •	Upon ret	urn clear the	carry bit if a packet received and ACKed.
362	•	-		y error occured.
363	• •			

364 365				
366	psrecv:			
367				
368	00C1 CD0000	call	receive	; := RECEIVE(HL,DE,BC)
369				
370	00C4 0E83	mvi	c,83h	; Poll until receive complete
371	00C6 1E21	mvi	e,ulcrx	
372	00C8 CD0000	call	xdos	
373				
374	00CB 3A0A00	lda	rcode	; Fetch return code
375				
376	; Commo	on exit r	outine for re	eturning to the pseudo-console handler
377				
378	exitdl:			
379				

CP/M RMAC ASSEM 1.1 #009 ULCNET DATA LINK LAYER MP/M XIOS MODULE

380	00CE B7	ora	а	; Assume no error
381	00CF F0	rp		; Return if no error
382				
383	00D0 2F	cma		
384	00D1 37	stc		; Indicate error
385	00D2 C9	ret		
386				
387	; RWAI	T: Pol	l routine to de	tect receive status.
388	;			
389	; Ou	tput:		
390	;	$\mathbf{A} = 0$		not complete
391	;	Off	h if receive co	omplete
392				
393	rwait:			
394				
395	00D3 CD0000	ca	ll getrcode	; $A := GETRCODE$
396				
397	00D6 5F	mov	e,a	; form dispatch vector
398	00D7 1600	mvi	d,0	
399	00D9 21E200	lxi	h,rrtbl	
400	00DC 19	dad	d	
401				
402	00DD 5E	mov	e,m	; dispatch on receive completion code
403	00DE 23	inx	h	
404	00DF 66	mov	h,m	
405	00E0 6B	mov	l,e	
406	00E1 E9	pchl		
407				
408	; Receiv	e comp	oletion code di	spatch table
409				
410		bl: dw	rgood	; Good receive
411	00E4 F600	dw	rbad	; Bad receive
412	00E6 F600	dw	rbad	; Disabled
413				

414 if not interrupts 415 rbad ; Still idle after timeout dw 416 else 417 00E8 FA00 dw ridle ; Idle 418 endif 419 420 00EA EE00 dw rsleep ; Inprogress 421 00EC EE00 rsleep ; In progress and for us. dw 422 423 rsleep: 424 425 00EE AF ; Code for continue to sleep xra a 426 00EF C9 ret 427 428 rgood: 429 rwakeup: 430 431 00F0 320A00 sta rcode ; Store return code 432 00F3 3EFF a,0ffh ; Wake up code mvi 433 00F5 C9 ret

CP/M RMAC ASSEM 1.1 #010 ULCNET DATA LINK LAYER MP/M XIOS MODULE

434				
435	rbad:			
436				
437	00F6 2F	cma		; Code for error
438	00F7 C3F000	jmp	rwakeup	; Jump to wake up receive process
439				
440	if	interrupts		
441				
442	ridle:			
443				
444	00FA CD0000	call	rtmochk	; Check for timeout
445	00FD DAF600	jc	rbad	; if timeout, signal error
446	0100 C3EE00	jmp	rsleep	; Continue to wait if no timeout
447				
448	0103 C9	ret		
449				
450	en	dif		
451	pa	ge		

CP/M RMAC ASSEM 1.1 #011 ULCNET DATA LINK LAYER MP/M XIOS MODULE

452 453 454	: NIOD routines
455	, MOD Toutines
456	
457	
458	; SETBAUD: Set the baud rate based on the baud rate code in A. Do special
459	; logic for self-clocked mode.

460	•			
461	•	0 = 9	600 baud	
462	•	1 = 1	9200 baud	
463	•	9 = 7	6800 baud s	elf-clock
464	•	11= 1	153600 baud	l self-clock
465	•	13=3	307200 baud	l self-clock
466	•			
467	; If this	station	cannot hand	le the requested baud rate, then set
468	; the car	rry flag.		-
469				
470	setbaud	:		
471				
472	0104 E60F	ani	0fh	; mask all but the baud bits
473	0106 210B00	lxi	h,curbaud	; are we at the current baud rate?
474	0109 BE	cmp	m	
475	010A C8	rz	; ;	yes>all done
476				
477	010B 47	mov	b,a	; else>get baud rate generator value
	010C E607	ani	7	
479		mov	e,a	
	010F 1600	mvi	d,0	
481				
	0111 210C00	lxi	h,btbl	; point to vertical-to-horizontal decode
483	0114 19	dad	d :	table
			,	
484			,	
484 485	if	slfclk	xd	
484 485 486	0115 78	slfclk mov	cd a,b	
484 485 486 487	0115 78 0116 E608	slfclk mov ani	kd a,b selfmsk	; is this a self-clocked value?
484 485 486 487 488	0115 78 0116 E608 0118 C24001	slfclk mov ani jnz	cd a,b	
484 485 486 487 488 489	0115 78 0116 E608	slfclk mov ani jnz	kd a,b selfmsk	
484 485 486 487 488 489 490	0115 78 0116 E608 0118 C24001 ene	slfclk mov ani jnz dif	a,b selfmsk selfclkd	; is this a self-clocked value?
484 485 486 487 488 489 490 491	0115 78 0116 E608 0118 C24001 end 011B 3E03	slfclk mov ani jnz dif mvi	d a,b selfmsk selfclkd a,baudsl	
484 485 486 487 488 489 490 491 492	0115 78 0116 E608 0118 C24001 end 011B 3E03 011D A6	slfclk mov ani jnz dif mvi ana	a,b selfmsk selfclkd	; is this a self-clocked value?
484 485 486 487 488 489 490 491 492 493	0115 78 0116 E608 0118 C24001 end 011B 3E03 011D A6 011E 37	slfclk mov ani jnz dif mvi ana stc	a,b selfmsk selfclkd a,baudsl m	; is this a self-clocked value? ; get legal baud rate mask
484 485 486 487 488 489 490 491 492 493 494	0115 78 0116 E608 0118 C24001 end 011B 3E03 011D A6	slfclk mov ani jnz dif mvi ana	a,b selfmsk selfclkd a,baudsl m	; is this a self-clocked value?
484 485 486 487 488 489 490 491 492 493 494 495	0115 78 0116 E608 0118 C24001 end 011B 3E03 011D A6 011E 37 011F C8	slfclk mov ani jnz dif mvi ana stc rz	d a,b selfmsk selfclkd a,baudsl m ; r	; is this a self-clocked value? ; get legal baud rate mask
484 485 486 487 488 489 490 491 492 493 494 495 496	0115 78 0116 E608 0118 C24001 end 011B 3E03 011D A6 011E 37 011F C8 if	slfclk mov ani jnz dif mvi ana stc rz slfclk	a,b selfmsk selfclkd a,baudsl m ; r	; is this a self-clocked value? ; get legal baud rate mask eturn with error if its an illegal rate
484 485 486 487 488 489 490 491 492 493 494 495 496 497	0115 78 0116 E608 0118 C24001 end 011B 3E03 011D A6 011E 37 011F C8 if 0120 3E05	slfclk mov ani jnz dif mvi ana stc rz slfclk mvi	a,b selfmsk selfclkd a,baudsl m ; r	; is this a self-clocked value? ; get legal baud rate mask
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498	0115 78 0116 E608 0118 C24001 end 011B 3E03 011D A6 011E 37 011F C8 if 0120 3E05 0122 D306	slfclk mov ani jnz dif mvi ana stc rz slfclk mvi out	a,b selfmsk selfclkd a,baudsl m ; r ad a,5 siocmd	; is this a self-clocked value? ; get legal baud rate mask eturn with error if its an illegal rate ; else>switch off possible self-clock mode
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499	0115 78 0116 E608 0118 C24001 em 011B 3E03 011D A6 011E 37 011F C8 if 0120 3E05 0122 D306 0124 3E6A	slfclk mov ani jnz dif mvi ana stc rz slfclk mvi out mvi	a,b selfmsk selfclkd a,baudsl m ; r td a,5 siocmd a,dtroff	; is this a self-clocked value? ; get legal baud rate mask eturn with error if its an illegal rate
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500	0115 78 0116 E608 0118 C24001 end 011B 3E03 011D A6 011E 37 011F C8 if 0120 3E05 0122 D306	slfclk mov ani jnz dif mvi ana stc rz slfclk mvi out	a,b selfmsk selfclkd a,baudsl m ; r ad a,5 siocmd	; is this a self-clocked value? ; get legal baud rate mask eturn with error if its an illegal rate ; else>switch off possible self-clock mode
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501	0115 78 0116 E608 0118 C24001 end 011B 3E03 011D A6 011E 37 011F C8 if 0120 3E05 0122 D306 0124 3E6A 0126 D306	slfclk mov ani jnz dif mvi ana stc rz slfclk mvi out mvi out	a,b selfmsk selfclkd a,baudsl m ; r cd a,5 siocmd a,dtroff siocmd	; is this a self-clocked value? ; get legal baud rate mask eturn with error if its an illegal rate ; else>switch off possible self-clock mode ; disable DTR in SIO register 5
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502	0115 78 0116 E608 0118 C24001 em 011B 3E03 011D A6 011E 37 011F C8 if 0120 3E05 0122 D306 0124 3E6A 0126 D306 0128 3E04	slfclk mov ani jnz dif mvi ana stc rz slfclk mvi out mvi out mvi	a,b selfmsk selfclkd a,baudsl m ; r ad a,5 siocmd a,dtroff siocmd a,4	; is this a self-clocked value? ; get legal baud rate mask eturn with error if its an illegal rate ; else>switch off possible self-clock mode
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503	0115 78 0116 E608 0118 C24001 em 011B 3E03 011D A6 011E 37 011F C8 if 0120 3E05 0122 D306 0124 3E6A 0126 D306 0128 3E04 012A D306	slfclk mov ani jnz dif mvi ana stc rz slfclk mvi out mvi out mvi out	a,b selfmsk selfclkd a,baudsl m ; r ad a,5 siocmd a,dtroff siocmd a,4 siocmd	; is this a self-clocked value? ; get legal baud rate mask eturn with error if its an illegal rate ; else>switch off possible self-clock mode ; disable DTR in SIO register 5
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504	0115 78 0116 E608 0118 C24001 end 011B 3E03 011D A6 011E 37 011F C8 if 0120 3E05 0122 D306 0124 3E6A 0126 D306 0128 3E04 012A D306 012C 3E4F	slfclk mov ani jnz dif mvi ana stc rz slfclk mvi out mvi out mvi out mvi	a,b selfmsk selfclkd a,baudsl m ; r ad a,5 siocmd a,dtroff siocmd a,4 siocmd a,disslf	; is this a self-clocked value? ; get legal baud rate mask eturn with error if its an illegal rate ; else>switch off possible self-clock mode ; disable DTR in SIO register 5
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504	0115 78 0116 E608 0118 C24001 em 011B 3E03 011D A6 011E 37 011F C8 if 0120 3E05 0122 D306 0124 3E6A 0126 D306 0128 3E04 012A D306	slfclk mov ani jnz dif mvi ana stc rz slfclk mvi out mvi out mvi out	a,b selfmsk selfclkd a,baudsl m ; r ad a,5 siocmd a,dtroff siocmd a,4 siocmd	; is this a self-clocked value? ; get legal baud rate mask eturn with error if its an illegal rate ; else>switch off possible self-clock mode ; disable DTR in SIO register 5

CP/M RMAC ASSEM 1.1 #012 ULCNET DATA LINK LAYER MP/M XIOS MODULE

506		endif		
507				
508	0130 211400	lxi	h,baudtbl	; point to async baud rate table
509				

510 outbau: 511 512 0133 19 dad d ; get async baud rate value 513 0134 7E mov a.m 514 0135 D300 out baudgen ; load it into the baud rate generator ; NOTE: This is not a CTC 515 516 517 0137 210B00 lxi h,curbaud 518 013A 70 m,b ; set current baud byte mov 519 520 013B CD1E02 call wait ; allow the system to reach equilibrium 521 522 013E A7 ; return success ana а 523 013F C9 ret 524 525 if slfclkd 526 ; Throw SIO into self-clocked mode 527 528 selfclkd: 529 530 0140 3E2A mvi a,baudsh ; Is this a legal rate? 531 0142 A6 ana m 532 0143 37 stc 533 0144 C8 ; return an error if not rz 534 535 0145 3E04 mvi a,4 ; enable sync mode in register 4 536 0147 D306 siocmd out 537 0149 3E0F a.enaslf mvi 538 014B D306 siocmd out 539 540 014D 3E05 mvi a.5 ; enable DTR in register 5 siocmd 541 014F D306 out 542 0151 3EEA mvi a.dtron 543 0153 D306 siocmd out 544 545 0155 211600 h,scbaudt lxi ; point to baud rate table for self-clock mode 546 0158 C33301 outbau ; program the baud rate generator jmp 547 endif 548 549 ; DSBLXMIT: Disable the transmitter if in self clocked mode 550 551 552 dsblxmit: 553 554 slfclkd if curbaud ; are we in self-clocked mode? 555 015B 3A0B00 lda 556 015E E608 selfmsk ani 557 0160 C8 ; no-->don't bother rz 558 559 0161 3E05 mvi a.5 ; disable SIO from transmitting by disabling

CP/M RMAC ASSEM 1.1 #013 ULCNET DATA LINK LAYER MP/M XIOS MODULE

560	0163 D306	out siocmd ; DTR in register 5
561	0165 3E6A	mvi a,dtroff
562	0167 D306	out siocmd
563		
564	0169 3E05	mvi a,5 ; Enable receive by re-enabling DTR
565	016B D306	out siocmd
566		mvi a,dtron
567	016F D306	out siocmd
568		endif
569		
570	0171 C9	ret
571		
572		
573	; XI	MIT: Transmit the byte in A on network A.
574		
575 576	xmi	*•
577	XIIII	ı.
578		if not interrupts
579		push psw
580		
581	xmi	t1:
582		
583		in siostat ; don't overrun the transmitter if we're
584		ani xrdymsk ; interrupt-driven; wait for TxReady
585		jz xmitl
586		
587		pop psw
588		endif
589		
590	0172 D304	out sioxmit ; blast that byte
591	0174 C9	ret
592		
593		TON Designs a basis form Network A. Cat the same flag if them are
594	; KI	ECV: Receive a byte from Network A. Set the carry flag if there was
595 596	,	a receive error.
590 597	,	For Z80-SIO receive errors are handled by the special receive
598	•	condition interrupts.
599	,	
600	recy	/:
601		
602		if not interrupts
603		call netidle
604		jc rto ; set error condition if the net went idle
605		
606		in siostat ; else>wait until a character is in the
607		ani rrdymsk ; buffer
608		jz recv
609		
610		call chkstat ; check for receive errors
611		alsa
612 613	0175 A7	else
015	01/J A/	ana a ; clear carry flag

CP/M RMAC ASSEM 1.1 #014 ULCNET DATA LINK LAYER MP/M XIOS MODULE

614	en	dif		
615				
616	0176 DB04	in	siorecv	; input the character
617	0178 C9	ret		
618				
619	rto:		; set a	n error
620				
621	0179 AF	xra	a	
622	017A 37	stc		
623	017B C9	ret		
624 625				
625 626	· CUV		Charle arrow	status hits of a receive error. If not error then
626 627	, CHK			status bits of a receive error. If not error then
627 628	,			and return. Otherwise figure out which ncrement its counter and set the carry flag.
629	,			command to the UART.
630	,	1550C al.	l ellor leset	command to the OAKT.
631				
632	chkstat			
633	CIIKStat			
634	017C 3E01	mvi	a,1	; get error status from SIO read register 1
	017E D306	out	siocmd	, get error status from 510 fead fegister f
636		in	siostat	
637	0100 2 2 00		5105000	
	0182 E670	ani	errbits	
	0184 C8	rz		o error occurred>all done
640			,	
641	if	netsta	ats ; gat	her statistics on the type of error
642	0185 47	mov	h o	
	0105 -7	mov	b,a	
643	0186 E610	ani	o,a pmsk	
643 644	0186 E610			; not a parity error
644 645	0186 E610 0188 CA9101	ani jz	pmsk	
644 645 646	0186 E610 0188 CA9101 018B 210000	ani jz lxi	pmsk np h,parcntr	; else>
644 645 646 647	0186 E610 0188 CA9101	ani jz	pmsk np h,parcntr	
644 645 646 647 648	0186 E610 0188 CA9101 018B 210000	ani jz lxi	pmsk np h,parcntr	; else>
644 645 646 647 648 649	0186 E610 0188 CA9101 018B 210000	ani jz lxi	pmsk np h,parcntr	; else>
644 645 646 647 648 649 650	0186 E610 0188 CA9101 018B 210000 018E CD0000 np:	ani jz lxi cal	pmsk np h,parentr l incentr	; else>
644 645 646 647 648 649 650 651	0186 E610 0188 CA9101 018B 210000 018E CD0000 np: 0191 78	ani jz lxi cal mov	pmsk np h,parcntr l incentr a,b	; else>
644 645 646 647 648 649 650 651 652	0186 E610 0188 CA9101 018B 210000 018E CD0000 np: 0191 78 0192 E605	ani jz lxi cal mov ani	pmsk np h,parcntr l incentr a,b obit	; else> ; increment parity error counter
644 645 646 647 648 649 650 651 652 653	0186 E610 0188 CA9101 018B 210000 018E CD0000 np: 0191 78 0192 E605	ani jz lxi cal mov	pmsk np h,parcntr l incentr a,b	; else>
644 645 646 647 648 649 650 651 652 653 654	0186 E610 0188 CA9101 018B 210000 018E CD0000 np: 0191 78 0192 E605 0194 CA9D01	ani jz lxi cal mov ani jz	pmsk np h,parcntr l incentr a,b obit no	; else> ; increment parity error counter ; not an overrun
644 645 646 647 648 649 650 651 652 653 654 655	0186 E610 0188 CA9101 018B 210000 018E CD0000 np: 0191 78 0192 E605 0194 CA9D01 0197 210000	ani jz lxi cal mov ani jz lxi	pmsk np h,parcntr l incentr a,b obit no h,ovrentr	; else> ; increment parity error counter ; not an overrun ; else>
644 645 646 647 648 649 650 651 652 653 654 655 656	0186 E610 0188 CA9101 018B 210000 018E CD0000 np: 0191 78 0192 E605 0194 CA9D01 0197 210000	ani jz lxi cal mov ani jz lxi	pmsk np h,parcntr l incentr a,b obit no	; else> ; increment parity error counter ; not an overrun
644 645 646 647 648 649 650 651 652 653 654 655 656 657	0186 E610 0188 CA9101 018B 210000 018E CD0000 np: 0191 78 0192 E605 0194 CA9D01 0197 210000 019A CD0000	ani jz lxi cal mov ani jz lxi	pmsk np h,parcntr l incentr a,b obit no h,ovrentr	; else> ; increment parity error counter ; not an overrun ; else>
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658	0186 E610 0188 CA9101 018B 210000 018E CD0000 np: 0191 78 0192 E605 0194 CA9D01 0197 210000	ani jz lxi cal mov ani jz lxi	pmsk np h,parcntr l incentr a,b obit no h,ovrentr	; else> ; increment parity error counter ; not an overrun ; else>
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659	0186 E610 0188 CA9101 018B 210000 018E CD0000 np: 0191 78 0192 E605 0194 CA9D01 0197 210000 019A CD0000 no:	ani jz lxi cal mov ani jz lxi ca	pmsk np h,parentr l incentr a,b obit no h,ovrentr ll incentr	; else> ; increment parity error counter ; not an overrun ; else>
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660	0186 E610 0188 CA9101 018B 210000 018E CD0000 np: 0191 78 0192 E605 0194 CA9D01 0197 210000 019A CD00000 no: 019D 78	ani jz lxi cal mov ani jz lxi ca mov	pmsk np h,parcntr l incentr a,b obit no h,ovrentr ll incentr a,b	; else> ; increment parity error counter ; not an overrun ; else>
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661	0186 E610 0188 CA9101 018B 210000 018E CD0000 np: 0191 78 0192 E605 0194 CA9D01 0197 210000 019A CD0000 no: 019D 78 019D 78 019E E606	ani jz lxi cal mov ani jz lxi ca mov ani	pmsk np h,parcntr l incentr a,b obit no h,ovrentr ll incentr a,b fbit	; else> ; increment parity error counter ; not an overrun ; else> ; increment overrun counter
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661	0186 E610 0188 CA9101 018B 210000 018E CD0000 np: 0191 78 0192 E605 0194 CA9D01 0197 210000 019A CD00000 no: 019D 78	ani jz lxi cal mov ani jz lxi ca mov	pmsk np h,parcntr l incentr a,b obit no h,ovrentr ll incentr a,b fbit	; else> ; increment parity error counter ; not an overrun ; else>

664 665 666 667	01A3 210000 01A6 CD0000 nf:	lxi cal	h,frmentr l incentr	
		1 10		
CP/M	RMAC ASSEM I	.1 #0	15 ULCN	ET DATA LINK LAYER MP/M XIOS MODULE
668	enc	lif		
669				
670	01A9 3E30	mvi	a,errst	; reset error condition
	01AB D306	out	siocmd	
	01AD 37	stc	; 9	signal an error
673	01AE C9	ret		
674				
675				
676	. NETTI	NE. C	a if notwork	A is idle. If idle then set the communities
677 678	; NETIL	DLE: 26	e ii networi	k A is idle. If idle then set the carry flag.
679	netidle:			
680	netidie.			
681	01AF 3E10	mvi	a,10h	; reset interrupts
682		out	siocmd	, reset meericipus
	01B3 D306	out	siocmd	; do it twice to reject glitches on DCD
684				, <u> </u>
685	01B5 DB06	in	siostat	; is there a data-carrier detect?
686	01B7 E608	ani	carmsk	
687	01B9 C8	rz	; y	ves>net is in use>carry flag cleared
688				
	01BA AF	xra	a	
690	01BB CD0401	cal		, e , ,
	01BE 37	stc	; s	et net idle to true
	01BF C9	ret		
693 694				
695	if	interr	unte	
696	11	men	upts	
697	: ENBL	RECV:	Enable the	channel A receiver interrupts.
698	,			1
699	enblrecv	:		
700				
701		mvi	a,1	; enable interrupts on all characters
702		out	siocmd	
	01C4 3E11	mvi	a,011h	; NOTE: This mask would have to be 015h on
	01C6 D306	out	siocmd	; channel B
705	01C8 C9	ret		
706			Dischi d	abannal A nagainan internets
707	; DSRF	KEUV:	Disable the	channel A receiver interrupts.
708 709	dsblrecv	· •		
709	usbirecv	•		
710	01C9 3E01	mvi	a,1	; Disable interrupts on received characters
	01C9 5E01 01CB D306	out	a, i siocmd	; (Keep status interrupts enabled)
	01CD D306	out	siocmd	; NOTE: Channel B mask is 05h
				,

714	01CF C9	ret	
715			
716		endif	
717			
718			
719		; PGMUART:	Program the Network UART channel
720			-
721		pgmuart:	

CP/M RMAC ASSEM 1.1 #016 ULCNET DATA LINK LAYER MP/M XIOS MODULE

722 723 724 725 726 727 728 729 730	if	; program ; impleme ; to the ve	already has the SIO vector address med from channel B. Other entations will have to provide linkage ector area in the main XIOS, and vector offset into SIO write 2
731	01D0 210000	lxi h,niisr	; load status interrupt service routine vector
732	01D3 220AFF	shld siov5	
733	01D6 210000	lxi h,dlisr	; load transmit ISR vector
734	01D9 220CFF	shld siov6	
735	01DC 210000	lxi h,reisr	; load receiv ISR vector
736	01DF 220EFF	shld siov7	
737	en	dif	
738			
739	01E2 211C00	lxi h,sioiblk	; point to SIO initialization block
740	01E5 060C	mvi b,sioilen	; length of block
741	01E7 F3	di	
742			
743	pgm1:		
744			
745	01E8 7E		output the block to the SIO
746	01E9 D306	out siocmd	
747	01EB 23	inx h	
748	01EC 05	der b	
749	01ED C2E801	jnz pgm1	
750			
751	01F0 FB	ei	
752	01F1 AF		et up hailing baud rate = 9600
753	01F2 CD0401	call setbaud	
754	01F5 C9	ret	
755			
756			
757	; INITU		art for network A by issuing a reset command
758	;	and clearing out the r	eceive buffer.
759	••, ,		
760	inituart	•	
761	0156 2502		the black and a second bar of the C
762	01F6 3E03		disable the receiver through register 3
763	01F8 D306	out siocmd	

764	01FA 3EC0	mvi a,disrcv	
765	01FC D306	out siocmd	
766			
767	01FE DB06	in siostat	; is there a garbage byte?
768	0200 E601	ani rrdymsk	
769	0202 CA0A02	jz initu	; no>continue initialization
770			
771	0205 DB04	in siorecv	; else>eat the character
772	0207 C3F601	jmp inituart	; try again
773			
774	initu:		
775			

CP/M RMAC ASSEM 1.1 #017 ULCNET DATA LINK LAYER MP/M XIOS MODULE

776	0004 2520	•	,	1.4
	020A 3E30 020C D306	mvi	a,errst	; reset error conditions
777 778	020C D500	out	siocmd	
779	020E 3E03	mvi	a,3	; re-enable the receiver
	020E 5E05	out	siocmd	, re-enable the receiver
	0210 D300 0212 3EC1	mvi	a,enarcv	
782		out	siocmd	
783	0214 0500	out	sidema	
	0216 C9	ret		
785	0210 09	101		
786	: INITR	ECV: 1	Initialize a r	eceive operation
787	7			I I I I I I I I I I I I I I I I I I I
788	initrecv:			
789				
790	0217 CDF601	cal	l inituart	
791				
792	if	interr	upts	
793	021A CDC001	ca	ll enblrecy	; enable receiver interrupts
794	end	if		
795				
796	021D C9	ret		
797				
798				
799	; WAIT	- Wait	100 micro s	seconds
800	•			
801	wait:			
802	0015 2516			
803	021E 3E16	mvi	a,timeval	
804 805	** /*			
805	W:			
800	0220 3D	dcr	a ;	04
	0220 3D 0221 A7	ana	,	04
809	0221 R7 0222 C22002	jnz	w ,	; 12
810	0222 022002	JIIZ	:	, 12
811	0225 C9	ret		0 T-States total
812			, 0	
813				

 814 ; RESTUART: Reinitialize the UART to the way it was in the 815 ; original BIOS after completing the network operations 816 817 	
818restuart:8190226 C9ret; UART not used except by network820821	
 822 ; CSNIOD: Do any cold start initialization which is necessary. 823 ; Must at least return the value of BAUDS 824 ; If the network uses the printer port then set theh carry flag 825 ; otherwise clear it. 826 	
 827 csniod: 828 829 0227 01032A lxi b,bauds ; return the legal baud rates 	
CP/M RMAC ASSEM 1.1 #018 ULCNET DATA LINK LAYER MP/M XIOS MODULE	
830022A B7ora a; not using a printer port831022B C9ret832	
833 022C end CP/M RMAC ASSEM 1.1 #019 ULCNET DATA LINK LAYER MP/M XIOS MODULE	
BAUDGEN 0000 70# 514 BAUDS 2A03 68# 829 BAUDSH 002A 65# 68 530 BAUDSL 0003 64# 68 491 BAUDTBL 0014 141# 508 BTBL 000C 138# 482 CARBIT 0003 80# CARMSK 0008 81# 686 CHKSTAT 017C 39 610 632# CONIN 0000 53 242 CONOUT 0000 53 242 CONOUT 0000 53 269 CONST 0000 53 216 CSNIOD 0227 40 827# CURBAUD 0008 135# 473 517 555 DEVOK 0036 184 189# DEVTABLE 0005 126# 130 195 DISRCV 00C0 95# 764 DLSR 0000 58 733 DLLON 0003 42	

ENARCV 00C1 94# 781 000F 96# 537 ENASLF **ENBLRECV** 01C0 45 699# 793 0070 83# 638 ERRBITS ERRST 0030 82# 670 776 00CE 306 378# EXITDL FALSE 0000 27# FBIT 0006 88# 661 0040 89# FMSK FRMCNTR 0000 52 664 0000 49 395 GETRCODE 0000 49 316 GETTCODE INCCNTR 0000 52 647 656 665 0217 39 788# **INITRECV** 020A 37 769 774# INITU 01F6 38 760# 772 790 INITUART **INTERRUPTS** FFFF 29# 44 56 155 414 440 578 602 695 723 792 **NCONIN** 005C 35 238# 0075 35 265# NCONOUT 35 212# NCONST 0043 NETADR 0000 42 119# NETCON 0020 106# 214 240 267 NETIDLE 01AF 39 603 679# FFFF 30# 641 NETSTATS 01A9 662 667# NF NIISR 0000 58 731 NO 019D 653 658#

CP/M RMAC ASSEM 1.1 #020 ULCNET DATA LINK LAYER MP/M XIOS MODULE

NP 0191 644 649# **NUMDEVICES** 0002 130# 183 0050 222# 230 NXTADD OBIT 0005 86# 652 0020 87# **OMSK** OUTBAU 0133 510# 546 **OVRCNTR** 0000 51 655 PARCNTR 0000 51 646 PBIT 0004 84# PGM1 01E8 743# 749 PGMUART 01D0 38 721# PMSK 0010 85# 643 POLDEV 0000 54 181 0028 36 177# POLLDEVICE **PSRECV** 00C1 253 366# PSXMIT 0088 278 297# 00B7 331 332 333 334 344# PSXRET RBAD 00F6 411 412 415 435# 445 RCODE 000A 133# 374 431 0000 48 368 RECEIVE RECV 0175 37 600# 608 REGSHRT 0000 50 228

REISR 0000 58 735 RESTUART 0226 40 818# RGOOD 00F0 410 428# 00FA 417 442# RIDLE RRDYBIT 0000 78# 0001 79# 607 768 RRDYMSK RRETRY 0064 247# 258 00E2 399 410# RRTBL **RSLEEP** 00EE 420 421 423# 446 RTMOCHK 0000 57 444 0179 604 619# RTO 00D3 129 393# **RWAIT** RWAKEUP 00F0 429# 438 0016 146# 545 SCBAUDT 0003 90# SELFBIT SELFCLKD 0140 488 528# SELFMSK 0008 91# 487 556 SETBAUD 0104 37 470# 690 753 0006 71# 498 500 503 505 536 538 541 543 560 SIOCMD 562 565 567 635 671 682 683 702 704 712 713 746 763 765 777 780 782 001C 156# 158# 161 739 SIOIBLK SIOILEN 000C 161# 740 0004 74# 616 771 SIORECV SIOSTAT 0006 72# 583 606 636 685 767 FF08 101# SIOV4 SIOV5 FF0A 102# 732 SIOV6 FF0C 103# 734 FF0E 104# 736 SIOV7 SIOXMIT 0004 73# 590 FFFF 31# 485 496 525 554 SLFCLKD TCODE 0009 132# 305 351

CP/M RMAC ASSEM 1.1 #021 ULCNET DATA LINK LAYER MP/M XIOS MODULE

1

TERRCNT	0000 51
TIMEVAL	0016 122# 803
TRANSMIT	0000 48 299
TRETRY	007D 274# 283
TRTBL	00A7 320 331#
TRUE	FFFF 26# 27 29 30 31
TSLEEP	00B5 335 336 337 339#
TWAIT	0098 128 314#
TWAKEUP	00BB 346 349#
ULCRX	0021 112# 371
ULCTX	0020 111# 180 302
W 0	220 805# 809
WAIT	021E 40 520 801#
XDOS	0000 53 303 372
XMIT	0172 37 576#
XRDYBIT	0002 76#
XRDYMSK	0004 77# 584

Appendix G: Using CP/NET 1.2 with CORVUS OMNINET

Corvus OMNINET is an inexpensive, high-performance CSMA/CA networking system supporting up to 63 hosts on a one-megabit-per second, twisted-pair cable.

OMNINET host interface adaptors are intelligent coprocessors that deal with all aspects of network communication of the host in which they are installed, up to and including the transport layer of the ISO open system model. The sample SNIOS and NETWRKIF files following this discussion show one way to use Corvus engineering transporters to implement a CP/NET system.

G.1 The Corvus Engineering Transporter

The Corvus engineering transporter is a card for evaluating Corvus OMNINET with minimum modification to an existing Z-80 system. The transporter is not an end-user product, but it is similar enough in hardware design to most production systems using OMNINET to work with little modification.

General information about the Corvus transporter is presented here to help you understand the operation of the sample codes at the end of this appendix. For more information, refer to Corvus documentation.

Communication with the transporter hardware is simplified by the fact that the transporter is microprocessor-based, and uses autonomous DMA to access its host computer's memory directly. All communication between host and transporter is controlled by well organized data structures existing in host memory. The only port I/O the host ever does is the transmission, to the transporter hardware, of 24-bit pointer objects (as three serial bytes, most significant byte first) via an output port. Note that all Corvus multibyte objects are in most significant byte first order. These pointer objects refer to transporter command blocks, described in Table G-1.

 Table G-1. Transporter Command Block

Format: Field Size Explanation

OPERATION COMMAND CODE 8 bits Sends a message.

RESULT BLOCK POINTER 24 bits Gives the address of a data structure for the transporter to update with completion information.

SOCKET CODE 8 bits Defines which of the 4 virtual communication channels to use for this operation.

DATA BUFFER POINTER

24 bits Gives the address of a message buffer for this operation.

DATA LENGTH FIELD

16 bits

Gives the length of the message to be transmitted or maximum message length accepted, if this is a receive operation. The maximum length allowed for a single message packet is 2048.

CONTROL FIELD LENGTH

8 bits

Gives the length of an independent auxiliary message that can be sent to a special CONTROL buffer in the destination host at an address different from that of the destination message buffer. In the case of a receive command, this field specifies the largest such CONTROL message acceptable.

DESTINATION HOST

8 bits

Specifies network address of the target host. Legal network addresses are 0-63, or 255 for broadcast messages. A host's address is set by switches connected to the transporter hardware.

Not all fields are used by all commands, but the syntax of the command block is usually consistent, except in the case of special diagnostic commands.

The result pointer in the command block must contain the address of a large enough data structure in host memory to accept the completion information that the specified command produces. Note that the result block is associated with the operation the command block describes. If more than one operation is posted to the transporter hardware, each must have its own result block available.

Table G-2 describes a typical result block.

 Table G-2. Receive Result Block

Format: Field Size Explanation

OPERATION STATUS CODE

8 bits

Set to 254 by the transporter processor once it has read and accepted the command block. This field is later set by the transporter to a result code when it has completed the requested operation.

SOURCE HOST NUMBER

8 bits

Gives the network address of the node from which this message packet came.

ACTUAL DATA LENGTH

Gives the actual length of the message in the receive buffer.

CONTROL MESSAGE BUFFER

0-255 bytes

16 bits

A buffer large enough to accept any CONTROL message transmitted with the main message packet. The command block that points to this result block must allow such messages.

Up to four simultaneous receive operations can be in progress at any one time, waiting for messages for the four logical sockets in the host. Only one message can be posted for transmission at any one time, but this can be done even while four receive operations are pending. Messages from one node are only acceptable to another node if it has a receive command outstanding specifying the socket to which the message is directed.

In use, the host processor must build a command block, then post it to the transporter hardware by outputting one byte at a time of its 24-bit address to the transporter via an output port. The transporter uses an input ready status bit to synchronize this transfer. Command pointers can be transfers done at any time except while the transporter is processing a command block to transmit a message. That operation ties up the transporter until the message has been delivered, or the transporter has given up trying. Network latency is low, so the transporter is unavailable only briefly.

Once the transporter has read and accepted a command, it sets the operation status code in the result block to 254. It is advisable for the host to preset this byte to 255 before sending the transporter the pointer, so that the transporter can confirm that the command was accepted by checking for the change.

The host then polls all active result blocks, waiting for any operation status code to change to a value other than 0FEh. This change means the transporter has completed the operation associated with that result block, and data and result information are available. To simplify interpretation of results, all error codes are between 80h and 0FEh, and all success codes are less than 80h. Send and receive calls that succeed give the number of retries as a completion code, but this code is always less than 7Fh.

OMNINET transporter interfaces usually support generation of a host interrupt whenever the transporter writes to a result block. This relieves the host of having to poll result blocks for completion. To simplify OMNINET evaluation, the engineering transporter is not usually configured to use interrupts. The sample programs demonstrate the use of the transporter both without interrupts and with external interrupt hardware. Servers usually need interrupt hardware or an XIOS polling routine to achieve a usable throughput, but the sample drivers can be made to run without either if high throughput is not a goal.

The coprocessor interface structure the transporter uses is close to the ideal model of a perfect transport layer. The transporter hardware deals with all retries, message acknowledgments, packet sequencing checking, and error detection totally transparently to the host it serves. The data-structure

based message interface between the host and transport layer is useful even in implementing non-OMNINET interrupt-driven transport layers for CP/NET.

G.2 Implementation Structure

In the sample implementation, very few OMNINET features were needed. All CP/NET traffic is on one logical channel (SOCKET 2), leaving the others free for such non-CP/NET uses as providing bootstrap channels between diskless devices and optional processes to load them, providing non-CP/NET peripheral sharing routines or even supporting a second network operating system in concurrent use.

Because CP/NET processes its own control fields (message headers), the control message options are not used, and are set to zero. In the evaluation transporter, the most significant byte of the memory address is not used, and is always set to zero. Other hardware implementations can use this byte for segment control to allow the message buffers to be banked out, or for a 16-bit processor.

The network node ID of an OMNINET host is set by six switches on its transporter hardware. In this implementation, the NODE number is the CP/NET network ID. Set the ID of the SERVER to 00. A requester can have any other unique OMNINET ID code except 0FF hex. This ID code freedom is achieved by a routine in the NETWRKIF module that binds requester ID codes dynamically to processes in the SERVER.RSP module by tracking login and logoff messages. Hence, up to 63 requesters can be supported, as long as no more than NSLAVES are logged in at any one time. Because the transporter handles all low-level communication concerns, the NETWRKIF module is relatively compact; and 16 requesters are easily supported in most systems.

To simplify coding the interface modules, data structure constructor macros eliminate the need for typing all the definitions again and again for each requester. This technique requires that the indices into the resulting arrays of data structures be computed at run-time, but this is easy to do and, where possible, is part of initialization.

G.3 The SNIOS Implementation

The intelligent nature of the OMNINET interface makes coding the SNIOS a simple exercise. Allocate a set of prefabricated transporter command blocks and associated result blocks. Even though the requester never has more than one operation pending at a time, it is simpler to use separate command blocks for each needed operation type than to recycle the same command block.

Unfortunately, relocating 8080 assemblers like RMAC do not easily deal with relocation of multibyte pointers that are not in Intel standard memory order. It is simplest to set the result block pointers at initialization; that approach is used here.

After setting up these pointers, the NTWRKINIT routine posts a prebuilt

transporter command block called INITTCB to the transporter via the routine called OMNI\$STROBE. If the transporter does not accept the pointer, initialization aborts, and an error returns to the NDOS. If the transporter accepts the pointer, NTWRKINIT calls OMNI\$WFDONE to poll the result block associated with INITTCB until the transporter reports a completion. If the initialization operation succeeds, the node number presently set into the transporter's switches is found as a result code. If initialization fails, a value > 80h corresponding to an error code is found and returned to NTWRKINIT, and NTWRKINIT aborts and returns an error code to the NDOS. Otherwise, the node number returned is installed in configtbl, and the default message buffer's SID field, the requester ID and a banner print on the console, and a success code is returned to the NDOS.

The NTWRKERROR entry is functionally identical to NTWRKINIT except that it does not print a banner or requester ID code.

The NTWRKSTS, CNFGTBLADR, and NTWRKWBOOT routines are identical in function and operation to those used with other transport layers.

When the NDOS calls the SENDMSG routine, the BC register pair contains a pointer to the message to be sent on the network. This routine translates the CP/NET header information of that message into a form consistent with OMNINET, and then puts it into a prefabricated transporter command block called TXTCB. The CP/NET DID is used as the target node physical address on the network. The address of the whole message, including the CP/NET header, is placed in the buffer field of TXTCB after the pointer is rearranged into MSB, LSB sequence. The CP/NET SIZ field is adjusted to give the total message length, including the CP/NET header, and is placed in the appropriate field of the TXTCB.

The OMNINET interface primitives OMNI\$STROBE and OMNI\$WFDONE again post the command to the transporter and, if successful, await completion of the transmission operation. The completion code is transformed into a flag the NDOS expects. Because a very busy server might not have a buffer posted when the requester sends the message, even though 'the transporter does multiple retries by itself, a retry loop tries to send the message again, if necessary. In practice, retries are rare, but the retry loop is useful when debugging a server.

Like SENDMSG, the RECEIVEMSG routine is primarily an exercise in the translation of parameters and their transmission to the transporter. The operation of RECEIVEMSG is easily understood by reading its code, with one exception; if a receive is posted, and no message ever comes in, the transporter waits forever for a message. To simplify debugging and recovery from network errors, the OMNI\$WFDONE routine times out after about 20 seconds (on a 2 MHz processor) and returns an error flag to its caller. Most servers ordinarily respond in this time, so the RECEIVEMSG routine issues a cancel receive command to the transporter via a prefabricated command block called UNRXTCB. RECEIVEMSG then returns to the NDOS with an error code.

If the receive call is not cancelled, an unsolicited or late message might be written into host memory at the requested address long after the host is using that memory for something else. Most autonomous transport layers support this kind of cancellation. The implementation here is less than 280h bytes long, including the default 138-byte message buffer. If space is tight, the message printing and banner routines can be placed in the default buffer, a single transporter command block and result block can be recycled for all commands, and concessions to modularity can be made to yield an even smaller SNIOS.

G.4 The NETWRKIF Implementation Model

This sample OMNINET NETWRKIF uses a slightly different intermodule communication model from the one usually used to implement a serial asynchronous star network. Instead of using one process per server process to implement the network input and output, a single input process and a single output process route all messages. This type of structure is far more efficient for any party-line type of network interface hardware because fewer dispatches occur per transaction.

Those transactions that do occur take less time and far less code is required to implement the NETWRKIF. In addition, the structure is easier to understand and debug, and all traffic converges through one piece of code, allowing you to implement message routing extensions to your network.

This model is easily understood by studying the general function of the network receiver and transmitter process separately.

The network receiver process in this version is named SERVERX. It is responsible for collecting each incoming message as it arrives, identifying the server process it is for, and writing a pointer to the message into that process's input queue. In addition, SERVERX functions as a surrogate server process to advise requesters that are not logged in that they have no server process to use.

SERVERX uses run-time binding of requester ID codes to server processes. SERVERX does this by keeping a table of the input queue addresses of all the server processes it supports and the ID code of the requester currently logged in to each process. SERVERX examines each incoming messages SID field, and searches the table to find out whether SID is presently associated with a server process. If not, an error reply message is constructed in the same buffer that the message arrived in, and SERVERX writes this message directly to the network output process for transmission back to the requester.

For this process to function properly, SERVERX must track all login and logoff messages that pass through it. Every time a login message is received, SERVERX checks its mapping table to find out whether that requester is currently associated with a server process. If it is, no action is taken. If not, SERVERX tries to find an idle server entry in the table. Idle entries are shown in this table as in use by requester 255. If a free server entry is located, SERVERX enters the requester's ID into it, and then sends the login message to that server process's input queue. If none are available, an error reply message is constructed by SERVERX, and sent back to the requester.

Logoff messages are handled by finding that requester's server entry, marking it as empty (255), and then routing the logoff message to the server's input

queue. If that requester was never logged in in the first place, SERVERX sends it an error, as previously explained.

Because there is no way to know which server process an incoming message will be for at the time a buffer is posted to the transporter for a receive call, buffers are not permanently assigned to particular server processes. Instead, a list of empty buffers is kept in an MP/M II queue, and SERVERX obtains the buffers from the queue as needed and available for posting to the transporter.

The OMNINET primitives are similar to those used by the SNIOS, except that an MX queue ensures that the transporter is not in use by another process when SERVERX wants to post a command block pointer to it.

As the arrival time of the next message is unknown, SERVERX must be suspended while it waits for the next message to arrive. This can be done by an XDOS flag wait in the WF\$RXDONE OMNINET primitive or by delay-based polling. If your XIOS can be easily modified, another alternative is to add an XIOS polling routine.

Using the delay call to suspend the process drastically reduces network throughput because only 60 incoming messages can arrive per second.

The SERVETX process is extremely simple. It reads messages from a single input queue and posts them, using mutual exclusion, to the transporter. Because messages are quickly disposed of by the network, there is no point in suspending SERVETX. It uses a different completion routine than SERVERX, which merely waits until a completion code is received from the transporter, and then returns to its caller. To simplify debugging, a timeout is included to prevent a hardware or software problem from locking up the system.

Once SERVETX has finished sending the message, it returns the buffer that it was in to the free buffer management queue, making it available for SERVERX. SERVETX then goes back to read its input queue to wait for another message to process.

Theoretically, such a system can function with fewer buffers than server processes. But in practice, it is best to have at least one more buffer than the number of server processes in the pool to deal with messages such as failed login attempts that never get routed to a server.

The rest of the code in each process simply initializes data structures, creates queues, initializes hardware, and performs other routine tasks.

Note that the distribution version of CP/NET 1.2 does not work with this SERVETX process without a minor patch. SERVER.RSP must be patched to create output UQCBs with the same name for all server processes instead of making each queue name unique. Once this is done, all processes in SERVER.RSP direct their output to a single SERVETX process. Instructions for installing this patch are included in "CP/NET V1.2 Application Note 02".

G.5 Possible Improvements to NETWRKIF

This interface is by no means ideal. Little error recovery is done for registers that fail to log off. A watchdog timing process can be easily added to correct this problem. This process is not shown here, to simplify understanding of the OMNINET interface. But such a process is only needed in systems with more physical requesters than server processes to prevent their being locked up by departed users.

One possible improvement is to further reduce the number of dispatches per CP/NET transaction by using direct code to manage the buffer list, and using the transporter mutual exclusion function, instead of the MP/M II queue facility. The M/PM II queue facility is powerful and easy to use, but avoid using it in situations where dispatch overhead exceeds the time for which a process is likely to require suspension, unless the suspension is unavoidable for process synchronization reasons.

Another worthwhile improvement is to modify the NETWRKIF to minimize the period during which the server cannot respond to incoming messages, by seeing that the next buffer is more quickly posted for the next received message after a receive completion occurs. The present version does not do this until the incoming message has been processed by SERVERX. This causes unneeded network traffic because messages sent by requesters during this time are futile.

High-performance servers can make good use of two physical sets of transporter hardware, with different node addresses, on the same loop. Using two transporters can totally bypass the need to use MX techniques, because one transporter can be reserved solely for transmitting messages.

Interesting networks can be easily constructed by having more than one OMNINET loop, each with its own transporter. The SERVERX process associated with each loop can filter messages not intended for local SLVSPs to a second, third, or fourth SERVETX process associated with higher level loops. Such filtering bridges can be used to build hierarchical CP/NET systems of any degree of complexity.

Other processes can concurrently send and receive messages totally unrelated to the CP/NET context using the same transporter, as long as they honor the MXomni mutual exclusion queues, and do not use the same socket for their communication as CP/NET. These processes can implement a variety of supervisory and auxiliary functions, or they can implement additional concurrent virtual circuits that cooperating requesters can use for point-topoint traffic. Such point-to-point virtual circuits can be coordinated by CP/NET mail functions.

Listing G-1. Sample Slave Network I/O System for Corvus OMNINET

CP/M RMAC ASSEM 1.1 #001 SAMPLE SLAVE NETWORK I/O SYSTEM FOR CORVUS OMNINET 20 OCT 82

1	title 'Sample Slave Network I/O System for CORVUS OMNINET 20 Oct 82'
2	page 54
3	
4	;

5		•
6		· · · · · · · · · · · · · · · · · · ·
7		; SAMPLE SLAVE NETWORK IO SYSTEM FOR CP/NET 1.2 ;
8		; VERSION FOR CORVUS OMNINET "ENGINEERING" TRANSPORTER ;
9		; (Requires RMAC for assembly) ;
		, (Requires RWIRE for assembly) ,
10		, , , , , , , , , , , , , , , , , , ,
11		; COPYRIGHT (C) 1982 by VANO ASSOCIATES, INC. ;
12		; P.O. BOX 12730 ;
13		; New Brighton, MN 55112 ;
14		; U.S.A. ;
15		; (612) 631-1245 ;
16		; ALL RIGHTS RESERVED ;
17		· · · · · ·
18		; ANY USE OF THIS CODE without the imbedded copyright notice and ;
19		
		; banner is hereby strictly prohibited. ;
20		; ; ;
21		; Permission is hereby granted to Digital Research Inc. to use ;
22		; this source file for educational and illustrative purposes in ;
23		; conjunction with CP/Net 80 documentation. Any other use of ;
24		; this code without the EXPRESS WRITTEN PERMISSION of VANO ;
25		; ASSOCIATES INC. is hereby strictly prohibited. ;
26		
27		; This file is provided courtesy of: ;
28		, This me is provided courtesy of. ,
		, , , , , , , , , , , , , , , , , , ,
29		; R2E (Realisations Etude Electroniques) ;
30		; Z.A.I. de Courtaboeuf ;
31		; BP 73 91942 Les Ulis ;
32		; FRANCE ;
33		; ;
34		; who sponsored the development of one of its ancestors. ;
35		
36		:
37		,
38		; ***** CONSTANT DECLARATIONS *****
		, CONSTANT DECLARATIONS
39	0000	
40	0000 =	FALSE equ 0
41	FFFF =	TRUE equ not FALSE
42		
43		; configuration and option constants
44	0064 =	TXTRIES equ 100 ;Transmit message retries
45	008A =	BUFFSIZE equ 138 ;max default buffer size
46	0200 =	MAXMSG equ 512 ;largest message accepted by receiver
47	0080 =	SKT0 equ 80h ;legal omninet socket tokens
48	0000 = 0090 =	SKT0 equ 90h
		•
49	00A0 =	SKT2 equ 0a0h
50	00B0 =	SKT3 equ 0b0h
51	00A0 =	SOCKET equ SKT2 ;this SNIOS uses only channel 2
52		
53		; OMININET Constants
54		; Completion/return codes

CP/M RMAC ASSEM 1.1 #002 SAMPLE SLAVE NETWORK I/O SYSTEM FOR CORVUS OMNINET 20 OCT 82

 $55 \quad 0000 =$ 0 NOERR equ :done (no errors or retries) 56 00C0 = ETXOK equ 0c0h ;echo succeeded with no retries (not used here) 57 0080 = 80h :Transmit failed ETXFAIL equ 58 0081 =E2LONG equ 81h ;wouldn't fit in destination socket $59 \quad 0082 =$ ENOSKT equ 82h ;destination socket not set up $60 \quad 0083 =$ EBDCTL equ 83h ;bad control field length 61 0084 = EBDSKT equ 84h ;illegal socket number 62 0085 = ;invalid destination node number/socket in use EBDDES equ 85h 63 0086 = EBDNODE equ 86h ;bad node number in command (not 0-7fh or ffh) 64 00FE = ECMDOK equ 0feh ;command has been read by transporter 65 ; legal command tokens 66 0040 = SENDF equ 40h ;send message $67 \quad 00F0 =$ RCVF equ 0f0h ;set up receive socket 68 0010 = ENDRCVF equ 10h ;stop receive 20h ;initialize transporter 69 0020 = INITF equ 70 ; Transporter control ports 71 00F8 =NETBASE equ 0f8h ;base address of transporter IO interface 72 00F9 = TSTAT equ Netbase+1 ;ready status port 73 0010 = ;status mask for ready bit TCRDY equ 10h 00F8 = TDATA equ Netbase ;command block pointer port 74 75 76 Network Status Byte Constants ; 77 ; 78 0010 = ACTIVE 10h ;slave logged in on network equ $79 \quad 0002 =$ 2h ;error in received message RCVERR equ 80 0001 = SENDERR equ 1h ;unable to send message 81 82 CP/M BDOS function constants 83 0005 = BDOS equ ;absolute BDOS entry 5 PRINTF equ 84 0009 =9 ;print message function CONOUTF equ 2 ;output char in E to console 85 0002 =86 87 **General Constants** ; LF ;Line Feed 88 000A =equ 0ah 89 000D = CR 0dh ;Carriage Return equ 90 **** 91 ***** GENERATED CODE AND DATA BEGIN HERE 92 93 Public Jump vector for SNIOS entry points : ;network initialization 94 0000 C3F400 ntwrkinit jmp ntwrksts 95 0003 C34801 jmp ;network status 96 0006 C35201 jmp cnfgtbladr ;return config table addr 97 0009 C36701 sendmsg ;send message on network jmp 98 000C C3A601 receivemsg ;receive message from network jmp 99 000F C33801 :network error jmp ntwrkerror 100 0012 C35601 ntwrkwboot ;network warm boot jmp 101 102 Public Slave Configuration Table configtbl: 103 Network\$status: 104 105 0015 00 db ;network status byte 0 106 0016 00 slvid1: db 0 ;slave ID (from switches) 107 0017 000000000 db 0,0, 0,0, 0,0, 0,0; Disk map table for units A:-P:

CP/M RMAC ASSEM 1.1 #003 SAMPLE SLAVE NETWORK I/O SYSTEM FOR CORVUS OMNINET 20 OCT 82

109	0027 000000	00000 db 0,0), 0,0, 0,	0, 0,0
110	002F 000000	,		0, 0,0
111	0037 0000	db 0,0		;console device
112	0039 0000	db 0,0		;list device
113	003B 00	db 0		;buffer index
114	:			
	003C 00	dflt: db 0		;FMT (DEFAULT MESSAGE BUFFER)
116		db 0		;DID
117	003E 00	slvid2: db 0		;SID
118	003F 05	db 5		;FNC
119		db 0		;SIZ
	0041	ds 1		;MSG(0) List number
121	0042	ds BUFFSI		;MSG(1) MSG(128)
122	0012			,1156(1) 1156(126)
123				
123		**** PREFAR	RICATED	OMNINET TRANSPORTER COMMAND BLOCKS *****
125	,		Menteb	
125	;	Command block	for transmit	ting a message
120	, TX1		for transmit	ting a message
127		TXtcmd: db	SENDF	;command field
129	00CD 00	db 0		ts 16-24 of result block ptr
130	00CE 0000	TXtrslt: db	0,0	;result block pointer (MSB,LSB)
131	00D0 A0	TXtskt: db	SOCKET	• · · · · · · · · · · · · · · · · · · ·
131		db 0		ts 16-24 of message buffer ptr
132	00D2 0000	TXtmsg: db		;message buffer pointer (MSB,LSB)
133	00D2 0000 00D4 0000	TXtdlen: db	0,0	;data field length (MSB,LSB)
135	00D4 0000	TXtclen: db	0,0	;control field length
136		TXtdest: db	0	;Destination address (transport layers)
130		Result vector for	-	
138	, TX1	result:		hund block
139	00D8 00	TXrcode: db	0	;return code
140	0020.00	111100uc. ub	0	
141		Command block	for setting u	p a receive operation
142	, RX	tcb:	ior setting a	
	00D9 F0	RXtcmd: db	RCVF	;command field
	00DA 00	db 0		
145	00DB 0000	RXtrslt: db	0,0	;result block pointer (MSB,LSB)
146		RXtskt: db	SOCKET	
147		db 0	Secilli	
	00DF 0000	RXtmsg: dl	0,0	;message address (MSB,LSB)
149		RXtdlen: db	MAXMS	
	00E2 00		AXMSG an	
	00E3 00	RXtclen: db	0	;max control field length
	00E4 00	RXtdest: db	0	;(not used in a receive operation)
153		Result vector for		,
154	, RX	result:		
	00E5 00	RXrcode: db	0	;return code
	00E6 00	RXrsrce: db	0 0	;source HOST #
			-	,

```
file: ///C|...1\% 20 Roche\% 20 DRI\% 20 documents\% 20 conversion/CP\% 20 NET-80\% 20 Version\% 201.2\% 20 Reference\% 20 Manual/CPNETRM.TXT [2/6/2012 4:07:51 PM]
```

157 158	00E7 0000	RXrdlen:	db	0,0	;received message length (MSB,LSB)
159 160	; LIN	Command blo RXtcb:	ock for	r receive ca	ancel operation
160	00E9 10	UNRXtcmd:	db	ENDRO	CVF ;command field
	00EA 00	db	0	LIDIC	
102	0021100		Ũ		
CP/M OCT 8	RMAC ASSI 32	EM 1.1 #004	SAN	APLE SLA	VE NETWORK I/O SYSTEM FOR CORVUS OMNINET 20
163	00EB 0000	UNRXtrslt:	db	0,0	;result block pointer (MSB,LSB)
165		UNRXtskt:	db	SOCKE	
165	COLD MO	Result vector			
166	, UN	IRXresult:	101 100		
167	00EE 00	UNRXrcode:	db	0	;return code
168					
169	;	Command ble	ock for	r transporte	er initialization command
170		ITtcb:			
171	00EF 20	INITtemd:		INITF	;command field
172	00F0 00	db	0	0.0	
	00F1 0000			0,0	;result block pointer (MSB,LSB)
174 175	; INI	Result vector [Tresult:	for ini	luanzation	
175	00F3 00		db	0	;return code (if valid,=ID code)
170	0015 00	invitteode.	uu	0	,ietuin code (ii vand,-ii) code)
178					
179	;	**** PUB	LIC CO	ODE ENT	RIES BEGIN HERE ****
180	,				
181	;	Externally ac	cessed	routine to	initialize transporter
182	•	•	RNS A	=0 if succe	eeds, else 0ffh.)
183		vrkinit:			
	00F4 CD380		ntwrke		; init transporter, tcbs and id code
	00F7 D8	rc	::		n error if init fails
180	00F8 110601 00FB CDF0		initms, print\$	-	;else prinw slave ID and banner
	00FE 3A160		slvid1	onisg	
	0101 CDD6		prhex		;print slave ID
	0104 AF	xra a	r		l return to caller with a=0
191	0105 C9	ret		,	
192					
193		tmsg:			
	0106 0D0A5				S (c)1982 Vano Associates Inc.'
	012A 0D0A	534C41 db	CR	R,LF,'SLA'	VE ID = \$'
196					
197			aaaad	monting in	ite on no inite modulo
198 199	•	•			its or re-inits module eeds, else 0ffh.)
200	, ntx	vrkerror:			
	0138 AF	xra a			
	0139 321500		letworl	k\$status	;zero network status byte
	013C CDF5		omni		;init transporter, tcbs and id code
	013F D8	rc			y means error, A=0ffh
205	0140 321600) sta sl	vid1	;	update this slaves id in table

207 (0143 323E00 0146 AF 0147 C9 ; Ext	sta slvid2 xra a ret ternally accessed rout	;and default message ;and return with no error ine returns Network Status Byte in A
212 213	; ntwrksts 0148 211500	(also clears any err	or bits active)
	014B 46 014C 3EFC	mov b,m mvi a,not(RCV)	ERR or SENDERR)
CP/M R OCT 82	RMAC ASSEM 1 2	.1 #005 SAMPL	E SLAVE NETWORK I/O SYSTEM FOR CORVUS OMNINET 20
	014E A0	ana b	
	014F 77	mov m,a	
	0150 78	mov a,b	
220 C 221	0151 C9	ret	
221			
223	; Ext	ternally accessed rout	ine Returns Configuration Table Ptr in HL
224	cnfgtbla	ıdr:	
	0152 211500	lxi h,configtbl	
	0155 C9	ret	
227			
228	. E	4 11	in a selled much time the CCD is releaded
229 230		om disk. (Dummy pro	ine is called each time the CCP is reloaded
230 231	, ntwrkwł	· · · ·	cedule for now.)
	0156 115C01	lxi d,wboot\$ms	g;return via print\$msg
	0159 C3F001	jmp print\$msg	
234		J F8	
235	wboot\$r	msg:	
	015C 0D0A3C43	db CR,LF,	'\$'
237			
238		. 11 1 .	
239	; Ext	•	ine sends Message BC> on Network
240 241	•	(returns A=0 11 suc	ceeds, else A=0ffh.)
241 242	, · NC)TF that although the	OMNINET transporter does its own transport
242		0	ne does additional retries to deal with
244		-	posting receive calls since transport
245			ted in a very short real-time period.
246	sendmsg	-	
	0167 61		nove buffer pointer to Transporter ctrl block
	0168 68		note reversed byte order for Transporter.)
	0169 22D200	shld TXtmsg	
250 251 (; 016C 210400	lxi h,4 ;	get CP/Net message length from SIZ field
	016C 210400 016F 09	dad b	get er / i tel inessage teligui i tolli Siz itelu
	0170 6E	mov l,m	
	0171 2600	mvi h,0	

255	0173 110600	lxi d,6 ;add packet h	eader lgth to get actual size
256	0176 19	dad d ; of packet for	transport layer purposes
257	0177 7C	mov a,h ;swap bytes to	MSB, LSB order
258	0178 65	mov h,l	
259	0179 6F	mov l,a	
260	017A 22D400	shld TXtdlen ;store ler	ngth in TCB data length field
261	;		
262	017D 03	inx b ;get DID from a	nessage
263	017E 0A	ldax b	
264	017F 32D700	sta TXtdest ;put it into	TCB destination address field
265	;		
266	0182 116400	lxi d,TXTRIES ;use DE	as retry counter
267	;		
268	send\$a	ain: ;head of message	e transmission retry loop
269	0185 D5	push d	
270	0186 01CC00	lxi b,TXtcb ;send TCE	B pointer to transporter hardware

CP/M RMAC ASSEM 1.1 #006 SAMPLE SLAVE NETWORK I/O SYSTEM FOR CORVUS OMNINET 20 OCT 82

271 0189	CD2E02 call	omni\$strobe
272 0180	CD1 pop	d
	D DAA101 jc	snderr ; if not accepted, goto fatal error handler
274	• •	, , , , , , , , , , , , , , , , , , , ,
275 0190) 01D800 lxi	b,TXresult ;else poll result block until completion code
276 0193	3 D5 push	d ;is returned by hardware
277 0194	CD5C02 call	omni\$wfdone
278 0197	7 D1 pop	d
279	;	
280 0198	3 E680 ani	80h ;completion codes 80h-ffh are error codes
281 0194	AC8 rz	return 00 to caller if no errors
282	:	
283 019I	B 1B dcx	d ;else decrement retry counter
284 0190		a,e
285 019I	OB2 ora	d
286 019H	E C28501 jnz	send\$again ; retry transmit if any retries left
287	;	
288 01A	1 3E01 snderr: my	vi a,SENDERR ;goto common exit code to update error flags
289 01A	3 C3CE01 jmj	p nerr ;(part of receivemsg routine)
290		
291		
292	; Externally	accessed routine waits for a message directed to this node
293	; and returns	s it in the buffer BC>. To aid debugging, a timeout of
294	; about 20 se	econds (2 Mhz processor) is implemented that will return an
295	; error if no	message is received. That is long enough for most normal
296	; servers to 1	respond.
297	•	
298	; (RETURN	S A=0 if good msg, =0ffh if bad msg or timeout.)
299	receivemsg:	
300 01A		l,b ;swap buffer pointer bytes to MSB,LSB order
301 01A	7 61 mov	h,c
302 01A	8 22DF00 shlo	d RXtmsg ;put buffer ptr to its TCB field
303	•	

304 01AB 01D900 lxi b,RXtcb ;post control block address to hardware 305 01AE CD2E02 call omni\$strobe 306 01B1 DACC01 jc rxerr ;fatal error if hardware won't accept it 307 : b,RXresult 308 01B4 01E500 lxi 309 01B7 CD5C02 call omni\$wfdone ;else wait for a completion from hardware 310 01BA E680 ani 80h 311 01BC C8 ;return 00 to caller if no error reported rz 312 ; the rest is the fatal error handler for receive calls 313 01BD 01E900 lxi b,UNRXtcb ;otherwise cancel the receive call 314 01C0 CD2E02 call omni\$strobe ; (using prefabricated cancel command block) 315 01C3 D2CC01 ;If won't accept this command either, quit here inc rxerr 316 ; 317 01C6 01EE00 b,UNRXresult ;else wait for completion of cancel command lxi 318 01C9 CD5C02 omni\$wfdone ;ignore result (always fatal error return) call 319 01CC 3E02 a.RCVERR ;exit via code that updates status byte rxerr: mvi 320 321 This is also used by sendmsg to update Network\$status and return 0ffh h,Network\$status 322 01CE 211500 nerr: lxi 323 01D1 B6 ora m 324 01D2 77 ;update status mov m,a

CP/M RMAC ASSEM 1.1 #007 SAMPLE SLAVE NETWORK I/O SYSTEM FOR CORVUS OMNINET 20 OCT 82

325	01D3 3EFF	mvi	a,0ffh	
326	01D5 C9	ret	;1	eturn Offh to caller
327				
328				
329	;	**** UT	ILITY RC	OUTINES CALLED BY ABOVE BEGIN HERE *****
330				
331	;	prints A in	hex on con	nsole
332	01D6 F5	prhex: push	psw	
333	01D7 07	rlc		
334	01D8 07	rlc		
335	01D9 07	rlc		
336	01DA 07	rlc		
337	01DB CDDF	F01 cal	l nibl	;print high nibble
338	01DE F1	pop	psw	;and fall through to print low nibble
339				
340	01DF E60F	nibl: ani	0fh	
341	01E1 C630	adi	'0'	
342	01E3 FE3A	cpi	'9'+1	
343	01E5 DAEA	01 jc	printa	
344	01E8 C607	adi	7	
345	01EA 5F	printa: mov	e,a	
346	01EB 0E02	mvi	c,CONO	UTF
347	01ED C3050	0 jmp	BDOS	;print ascii and return
348				
349				
350	;	print messa	ge DE>	until \$ on console device
351	prir	it\$msg:	-	
352	01F0 0E09	mvi	c,PRINT	F ;prints \$ delimited string DE>
				_

353 01F2 C30500 **BDOS** ;bdos(printf,wboot\$msg) jmp 354 355 ***** LOW LEVEL OMNINET TRANSPORTER DRIVERS BEGIN HERE ***** 356 357 358 Initialize transporter and return its ID code in A or 0ffh if can't. Carry is also set if error, clear if no error. 359 360 ;initialize pointers in our control blocks omni\$init: 361 01F5 11D800 d,TXresult ;NOTE: this is done at run time to avoid lxi 362 01F8 63 mov h,e ; relocation problems caused by the need to ; have pointers for CORVUS transporter use 363 01F9 6A l,d mov ; in MSB, LSB form instead of 8080 format. 364 01FA 22CE00 shld TXtrslt 365 : 366 01FD 11E500 lxi d.RXresult 367 0200 63 mov h.e 368 0201 6A mov l.d 369 0202 22DB00 shld RXtrslt 370 371 0205 11EE00 d,UNRXresult lxi 372 0208 63 mov h,e 373 0209 6A 1,d mov 374 020A 22EB00 shld UNRXtrslt 375 376 020D 11F300 lxi d.INITresult 377 0210 63 mov h,e 378 0211 6A 1.d mov

CP/M RMAC ASSEM 1.1 #008 SAMPLE SLAVE NETWORK I/O SYSTEM FOR CORVUS OMNINET 20 OCT 82

379	0212 22F100	shld INITtrslt
380	;	
381	0215 01EF00	lxi b,INITtcb ;send init command block pointer to transporter
382	0218 CD2E02	call omnistrobe ;to reset it and get its ID code
383	021B 9F	sbb a ;in case of error, preset return code 0 or ff
384	021C D8	rc ;fatal error if hardware won't accept pointer
385	•	
386	021D 01F300	lxi b,INITresult ;else wait for result of operation
387	0220 CD5C02	call omni\$wfdone ;wait for done
388	0223 321600	sta slvid1 ;result code should be ID code so put in table
389	0226 323E00	sta slvid2 ;and in default message SID
390	•	
391	0229 07	rlc ;set CY=bit 7 of return code
392	022A 1F	rar ;so CY=1 if error
393	022B D0	rnc ;return with ID code if no error
394	022C 9F	sbb a ;else set carry=1 and A=0ffh and return
395	022D C9	ret
396		
397		
398	•	Sends the 16 bit POINTER in BC to the transporter hardware as
399		a 24 bit pointer (MSB first). Returns CY set if hardware will
400		not accept any byte in a reasonable time else CY clear.
401		\$strobe:

402 022E 210200 h,2 ;Find address of rslt block from TCB BC--> lxi 403 0231 09 ;pre-set result code in block to ff (busy) dad b 404 0232 7E mov a,m 405 0233 23 inx h 406 0234 6E mov l,m 407 0235 67 mov h.a 408 0236 36FF m,0ffh mvi 409 410 0238 AF ;MSB is always 0 xra а 411 0239 CD4302 omni\$st ;send bits 23-16 of pointer to hardware call 412 023C D8 ;(abort if timeout) rc 413 414 023D 78 ;send bits 15-8 of pointer to hardware mov a.b omni\$st 415 023E CD4302 call 416 0241 D8 ;(abort if timeout) rc 417 418 0242 79 ;send bits 7-0 of pointer to hardware mov a,c 419 ; (fall into omni\$st) 420 421 called by omni\$strobe to send one byte from A to transporter hardware returns CY set if hardware doesn't come ready in a reasonable time. 422 ; 423 omni\$st: 424 0243 F5 push psw ;save data for now :set timeout 425 0244 1150C3 lxi d,50000 426 omni\$st0: 427 0247 DBF9 TSTAT in ;read status port and check busy bit TCRDY 428 0249 E610 ani 429 024B CA5302 omni\$st1 ;if busy, go increment and test timeout jz 430 431 024E F1 ;else output the byte pop psw 432 024F D3F8 out TDATA to the transporter TCB pointer input register

CP/M RMAC ASSEM 1.1 #009 SAMPLE SLAVE NETWORK I/O SYSTEM FOR CORVUS OMNINET 20 OCT 82

433	0251 B7	ora	a
434	0252 C9	ret	;and return with no error shown (CY=0)
435	;		
436	omn	i\$st1:	;else
437	0253 1B	dcx	d
438	0254 7A	mov	a,d
439	0255 B3	ora	e
440	0256 C24702	jnz	z omni\$st0 ;loop back if not timed out yet
441	;		
442	0259 F1	pop	psw ;else
443	025A 37	stc	
444	025B C9	ret	;return error flag (CY=1)
445			
446			
447	;	waits till	timeout (about 20 secs) for result block BC> to show done
448	;	returns A	=returned status code. If timeout occurs, the returned
449	;	status wil	ll still be OFEH or OFFH.
450	omn	i\$wfdone:	

451 025C 11FFFF lxi d,0ffffh ;setup timeout counters 452 025F 2E14 1,20 mvi 453 454 omni\$wfdone1: 455 0261 0A ldax b ; is the result code still > 0 f 0 h? 456 0262 FEF0 cpi 0f0h 457 0264 D8 rc ;no, return to caller 458 459 0265 1B ;else decrement timeout dcx d 460 0266 7B mov a,e 461 0267 B2 d ora 462 0268 C26102 omni\$wfdone1 ;timeout yet? jnz 463 026B 2D dcr 1 464 026C C26102 jnz omni\$wfdone1 ;no, go back and check again 465 466 026F 0A ldax b ;yes, timeout ;return with completion code in A 467 0270 C9 ret 468 469 470 0271 end CP/M RMAC ASSEM 1.1 #010 SAMPLE SLAVE NETWORK I/O SYSTEM FOR CORVUS OMNINET 20 **OCT 82** ACTIVE 0010 78# BDOS 0005 83# 347 353 BUFFSIZE 008A 45# 121 0152 96 224# CNFGTBLADR CONFIGTBL 0015 103# 225 CONOUTF 0002 85# 346 000D 89# 194 195 236 CR 003C 115# DFLT 0081 E2LONG 58# EBDCTL 0083 60# **EBDDES** 0085 62# EBDNODE 0086 63# EBDSKT 0084 61# 00FE 64# ECMDOK ENDRCVF 0010 68# 161 ENOSKT 0082 59# ETXFAIL 0080 57# ETXOK 00C0 56# FALSE 0000 40# 41 INITF 0020 69# 171 0106 186 193# INITMSG 00F3 176# INITRCODE INITRESULT 00F3 175# 376 386 INITTCB 00EF 170# 381 INITTCMD 00EF 171# INITTRSLT 00F1 173# 379 000A 88# 194 195 236 LF MAXMSG 0200 46# 149 150 NERR 01CE 289 322#

NETBASE 00F8 71# 72 74 NETWORKSTATUS 0015 104# 202 214 322 NIBL 01DF 337 340# 0000 55# NOERR NTWRKERROR 0138 99 184 200# 00F4 94 183# NTWRKINIT NTWRKSTS 0148 95 213# NTWRKWBOOT 0156 100 231# OMNIINIT 01F5 203 360# **OMNIST** 0243 411 415 423# 0247 426# 440 **OMNISTO** 0253 429 436# OMNIST1 022E 271 305 314 382 401# **OMNISTROBE OMNIWFDONE** 025C 277 309 318 387 450# 0261 454# 462 464 OMNIWFDONE1 PRHEX 01D6 189 332# 01EA 343 345# PRINTA PRINTF 0009 84# 352 01F0 187 233 351# PRINTMSG 0002 79# 216 319 RCVERR **RCVF** 00F0 67# 143 RECEIVEMSG 01A6 98 299# RXERR 01CC 306 315 319# RXRCODE 00E5 155# **RXRDLEN** 00E7 157# CP/M RMAC ASSEM 1.1 #011 SAMPLE SLAVE NETWORK I/O SYSTEM FOR CORVUS OMNINET 20 **OCT 82** RXRESULT 00E5 154# 308 366 00E6 156# RXRSRCE RXTCB 00D9 142# 304 **RXTCLEN** 00E3 151# 00D9 143# RXTCMD **RXTDEST** 00E4 152# 00E1 149# **RXTDLEN** RXTMSG 00DF 148# 302 00DB 145# 369 RXTRSLT RXTSKT 00DD 146# SENDAGAIN 0185 268# 286 SENDERR 0001 80# 216 288 SENDF 0040 66# 128 SENDMSG 0167 97 246# SKT0 0080 47# 0090 48# SKT1 SKT2 00A0 49# 51 SKT3 00B0 50# 0016 106# 188 205 388 SLVID1 SLVID2 003E 117# 206 389 **SNDERR** 01A1 273 288# 00A0 51# 131 146 164 SOCKET TCRDY 0010 73# 428 00F8 74# 432 TDATA

TRUE FFFF 41# TSTAT 00F9 72# 427 TXRCODE 00D8 139# TXRESULT 00D8 138# 275 361 00CC 127# 270 TXTCB TXTCLEN 00D6 135# 00CC 128# TXTCMD 00D7 136# 264 TXTDEST TXTDLEN 00D4 134# 260 TXTMSG 00D2 133# 249 TXTRIES 0064 44# 266 00CE 130# 364 TXTRSLT TXTSKT 00D0 131# UNRXRCODE 00EE 167# UNRXRESULT 00EE 166# 317 371 UNRXTCB 00E9 160# 313 UNRXTCMD 00E9 161# UNRXTRSLT 00EB 163# 374 UNRXTSKT 00ED 164# WBOOTMSG 015C 232 235#

Listing G-2. Sample Server Network I/O for Corvus OMNINET

CP/M RMAC ASSEM 1.1 #001 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

$\frac{1}{2}$	title 'Sample Server Network I/F for CORVUS OMNINET 20-Oct-82' page 54
3	
4	•
5	• •
6	;
7	; SAMPLE MASTER NETWORK IO SYSTEM FOR CP/NET 1.2 ;
8	; VERSION FOR CORVUS OMNINET "ENGINEERING" TRANSPORTER ;
9	; (Requires RMAC for assembly) ;
10	; ;
11	; COPYRIGHT (C) 1982 by VANO ASSOCIATES, INC. ;
12	; P.O. BOX 12730 ;
13	; New Brighton, MN 55112 ;
14	; U.S.A. ;
15	; (612) 631-1245 ;
16	; ALL RIGHTS RESERVED ;
17	; ;
18	; ANY USE OF THIS CODE without the imbedded copyright notice ;
19	; is hereby strictly prohibited. ;
20	; ;
21	; Permission is hereby granted to Digital Research Inc. to use ;
22	; this source file for educational and illustrative purposes in ;
23	; conjunction with CP/Net 80 documentation. Any other use of ;
24	; this code without the EXPRESS WRITTEN PERMISSION of VANO ;
25	; ASSOCIATES INC. is hereby strictly prohibited. ;
26	; ;
27	; This file is provided courtesy of: ;
28	;

29 30		; R2E (Realisations Etude Electroniques) ; ; Z.A.I. de Courtaboeuf ;
31		; BP 73 91942 Les Ulis ;
32		; FRANCE ;
33		· · · · · · · · · · · · · · · · · · ·
34		; who sponsored the development of one of its ancestors. ;
35	:	
36		; Note that this version requires that the CP/NET SLAVESP ;
37		; process be properly patched to send all output traffic ;
38		; to output queue 0. For the current (1.2) beta release, the ;
39		; following patch is enough: ;
40		, following puter is chough.
41		, , , , , , , , , , , , , , , , , , ,
		; -a543
42		
43		; 0543 mvi a,30 ;
44		; 0545 jmp 34f ;
45		; Then resave the module and its bit map. ;
46		· · · · · · · · · · · · · · · · · · ·
47		;
48		، ۶
49		
50	FFFF =	YES equ Offffh
51	0000 =	NO equ not YES
52		1
53		; assembly mode switches
54	0000 =	DEBUG equ NO ;assemble for debugging with rdt
51	0000 -	blbees equinte in accuration for accuration accurate
CP/M	I RMAC A	SSEM 1.1 #002 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82
	I RMAC A FFFF =	SSEM 1.1#002SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82RSPequYES;assemble as a resident process
55		RSP equ YES ;assemble as a resident process
55	FFFF =	RSP equ YES ;assemble as a resident process
55 56 57	FFFF =	RSP equ YES ;assemble as a resident process INTERRUPT equ NO ;transporter can interrupt (advisable)
55 56 57 58	FFFF = 0000 =	RSP equ YES ;assemble as a resident process INTERRUPT equ NO ;transporter can interrupt (advisable) ; Logical Configuration constants
55 56 57 58 59	FFFF = 0000 = 0002 =	RSP equ YES ;assemble as a resident process INTERRUPT equ NO ;transporter can interrupt (advisable) ; Logical Configuration constants NSLAVES equ 2 ;maximum number of slaves supported
55 56 57 58 59 60	FFFF = 0000 = 0002 = 0096 =	RSPequYES; assemble as a resident processINTERRUPTequNO; transporter can interrupt (advisable);Logical Configuration constantsNSLAVESequ2;maximum number of slaves supportedSRVR\$STK\$SIZequ150;stack sizeneeded by SLVSPs
55 56 57 58 59 60 61	FFFF = 0000 = 0002 = 0096 = 0034 =	RSPequYES; assemble as a resident processINTERRUPTequNO; transporter can interrupt (advisable);Logical Configuration constantsNSLAVESequ2;maximum number of slaves supportedSRVR\$STK\$SIZequ150;stack sizeneeded by SLVSPsSRVR\$PD\$SIZequ52;PD size for SLVSPs
55 56 57 58 59 60 61 62	FFFF = 0000 = 0002 = 0096 = 0034 = 0118 =	RSPequYES; assemble as a resident processINTERRUPTequNO; transporter can interrupt (advisable);Logical Configuration constants, maximum number of slaves supportedSRVR\$STK\$SIZequ2; maximum number of slaves supportedSRVR\$STK\$SIZequ150; stack size needed by SLVSPsSRVR\$PD\$SIZequ52; PD size for SLVSPsBUFFSIZEequ280; maximum message buffer size
55 56 57 58 59 60 61 62 63	FFFF = 0000 = 0002 = 0096 = 0034 = 0118 = 0003 = 0003 = 0003 = 0003 = 0003 = 00003 = 00003 = 00000000	RSP equ YES ;assemble as a resident process INTERRUPT equ NO ;transporter can interrupt (advisable) ; Logical Configuration constants NSLAVES equ 2 ;maximum number of slaves supported SRVR\$STK\$SIZ equ 150 ;stack size needed by SLVSPs SRVR\$PD\$SIZ equ 52 ;PD size for SLVSPs BUFFSIZE equ 280 ;maximum message buffer size NMSG\$BUFFS equ 1+NSLAVES ;number of message buffers allocated
55 56 57 58 59 60 61 62 63 64	FFFF = 0000 = 0002 = 0096 = 0034 = 0118 = 0003 = 0040 = 0040 = 0000000000000000	RSPequYES;assemble as a resident processINTERRUPTequNO;transporter can interrupt (advisable);Logical Configuration constantsNSLAVESequ2;maximum number of slaves supportedSRVR\$STK\$SIZequ150;stack size needed by SLVSPsSRVR\$PD\$SIZequ52BUFFSIZEequ280;maximum message buffer sizeNMSG\$BUFFSequ1+NSLAVES;number of message buffers allocatedRX\$PRIORITYequ64;receive process priority
55 56 57 58 59 60 61 62 63 64 65	FFFF = 0000 = 0002 = 0096 = 0034 = 0118 = 0003 = 0040 = 0040 = 0000000000000000	RSP equ YES ;assemble as a resident process INTERRUPT equ NO ;transporter can interrupt (advisable) ; Logical Configuration constants NSLAVES equ 2 ;maximum number of slaves supported SRVR\$STK\$SIZ equ 150 ;stack size needed by SLVSPs SRVR\$PD\$SIZ equ 52 ;PD size for SLVSPs BUFFSIZE equ 280 ;maximum message buffer size NMSG\$BUFFS equ 1+NSLAVES ;number of message buffers allocated
55 56 57 58 59 60 61 62 63 64 65 66	FFFF = 0000 = 0002 = 0096 = 0034 = 0118 = 0003 = 0040 = 0040 = 0000000000000000	RSPequYES;assemble as a resident processINTERRUPTequNO;transporter can interrupt (advisable);Logical Configuration constantsNSLAVESequ2;maximum number of slaves supportedSRVR\$STK\$SIZequ150;stack sizeneeded by SLVSPsSRVR\$PD\$SIZequ52;PD size for SLVSPsBUFFSIZEequ280;maximum messagebuffer sizeNMSG\$BUFFSequ1+NSLAVESRX\$PRIORITYequ64;receiveprocess priorityTX\$PRIORITYequ63;usually higher than rx
55 56 57 58 59 60 61 62 63 64 65 66 67	FFFF = 0000 = 0002 = 0096 = 0034 = 0118 = 0003 = 0040 = 003F = 003F = 0003F = 0003F = 0003F = 0000000000	RSPequYES; assemble as a resident processINTERRUPTequNO; transporter can interrupt (advisable);Logical Configuration constantsNSLAVESequ2; maximum number of slaves supportedSRVR\$STK\$SIZequ150; stack size needed by SLVSPsSRVR\$PD\$SIZequ52; PD size for SLVSPsBUFFSIZEequ280; maximum message buffer sizeNMSG\$BUFFSequ1+NSLAVES; number of message buffers allocatedRX\$PRIORITYequ64; receive process priorityTX\$PRIORITYequ63; usually higher than rx;Physical configuration constants (FOR OUR INSTALLATION)
55 56 57 58 59 60 61 62 63 64 65 66 67 68	FFFF = 0000 = 0002 = 0096 = 0034 = 0118 = 0003 = 0040 = 003F = 003F = 00058	RSPequYES; assemble as a resident process itransporter can interrupt (advisable);Logical Configuration constants NSLAVESequ2; maximum number of slaves supported SRVR\$STK\$SIZSRVR\$STK\$SIZequ150; stack size needed by SLVSPs SRVR\$PD\$SIZequ52; PD size for SLVSPs BUFFSIZEBUFFSIZEequ280; maximum message buffer size NMSG\$BUFFSequ1+NSLAVES; number of message buffers allocated RX\$PRIORITY;Physical configuration constants (FOR OUR INSTALLATION) OMNI\$BASEequ0F8h; transporter base address
55 56 57 58 59 60 61 62 63 64 65 66 67 68	FFFF = 0000 = 0002 = 0096 = 0034 = 0118 = 0003 = 0040 = 003F = 00F8 = 00F8 = 00A0 =	RSPequYES; assemble as a resident processINTERRUPTequNO; transporter can interrupt (advisable);Logical Configuration constantsNSLAVESequ2NSLAVESequ2; maximum number of slaves supportedSRVR\$STK\$SIZequ150; stack size needed by SLVSPsSRVR\$PD\$SIZequ52; PD size for SLVSPsBUFFSIZEequ280; maximum message buffer sizeNMSG\$BUFFSequ1+NSLAVES; number of message buffers allocatedRX\$PRIORITYequ64; receive process priorityTX\$PRIORITYequ63; usually higher than rx;Physical configuration constants (FOR OUR INSTALLATION)OMNI\$BASEOMNI\$BASEequ0F8h; transporter base addressOMNI\$SOCKETequ0a0h; omninet transporter socket code (2)
55 56 57 58 59 60 61 62 63 64 65 66 67 68	FFFF = 0000 = 0002 = 0096 = 0034 = 0118 = 0003 = 0040 = 003F = 00F8 = 00F8 = 00A0 =	RSPequYES; assemble as a resident process itransporter can interrupt (advisable);Logical Configuration constants NSLAVESequ2; maximum number of slaves supported SRVR\$STK\$SIZSRVR\$STK\$SIZequ150; stack size needed by SLVSPs SRVR\$PD\$SIZequ52; PD size for SLVSPs BUFFSIZEBUFFSIZEequ280; maximum message buffer size NMSG\$BUFFSequ1+NSLAVES; number of message buffers allocated RX\$PRIORITY;Physical configuration constants (FOR OUR INSTALLATION) OMNI\$BASEequ0F8h; transporter base address
 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 	FFFF = 0000 = 0002 = 0096 = 0034 = 0118 = 0003 = 0040 = 003F = 00F8 = 00F8 = 00A0 =	RSPequYES; assemble as a resident processINTERRUPTequNO; transporter can interrupt (advisable);Logical Configuration constantsNSLAVESequ2; maximum number of slaves supportedSRVR\$STK\$SIZequ150; stack size needed by SLVSPsSRVR\$PD\$SIZequ52; PD size for SLVSPsBUFFSIZEequ280; maximum message buffer sizeNMSG\$BUFFSequ1+NSLAVES; number of message buffers allocatedRX\$PRIORITYequ64; receive process priorityTX\$PRIORITYequ63; usually higher than rx;Physical configuration constants (FOR OUR INSTALLATION)OMNI\$BASEequOMNI\$BASEequ06%; transporter base addressOMNI\$SOCKETequ8; XDOS flag for int. driven transporter
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70	FFFF = 0000 = 0002 = 0096 = 0034 = 0118 = 0003 = 0040 = 003F = 0078 = 00078 = 0008 = 0007 = 0007 = 0007 = 0007 = 0007 = 0007 = 0007 = 0007 = 0007 = 0007 = 0007 = 0007 = 0007 = 0007 = 000007 = 000007 = 000007 = 00007 = 00007 = 000007 = 000007 = 00000000	RSPequYES; assemble as a resident processINTERRUPTequNO; transporter can interrupt (advisable);Logical Configuration constantsNSLAVESequ2NSLAVESequ2; maximum number of slaves supportedSRVR\$STK\$SIZequ150; stack size needed by SLVSPsSRVR\$PD\$SIZequ52; PD size for SLVSPsBUFFSIZEequ280; maximum message buffer sizeNMSG\$BUFFSequ1+NSLAVES; number of message buffers allocatedRX\$PRIORITYequ64; receive process priorityTX\$PRIORITYequ63; usually higher than rx;Physical configuration constants (FOR OUR INSTALLATION)OMNI\$BASEequOMNI\$SOCKETequ0a0h; omninet transporter socket code (2)OMNI\$FLAGequ8;XDOS flag for int. driven transporterRST\$NUMequ7; interrupt level if interrupt driven
 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 	FFFF = 0000 = 0002 = 0096 = 0034 = 0118 = 0003 = 0040 = 003F = 0068 = 0007 = 0008 = 0007 = 0007 = 0007 = 0007 = 0007 = 00007 = 00007 = 00007 = 00007 = 00007 = 00007 = 00007 = 00007 = 00007 = 000007 = 000007 = 000007 = 00000000	RSPequYES; assemble as a resident processINTERRUPTequNO; transporter can interrupt (advisable);Logical Configuration constantsNSLAVESequ2NSLAVESequ2; maximum number of slaves supportedSRVR\$STK\$SIZequ150; stack size needed by SLVSPsSRVR\$PD\$SIZequ52; PD size for SLVSPsBUFFSIZEequ280; maximum message buffer sizeNMSG\$BUFFSequ1+NSLAVES; number of message buffers allocatedRX\$PRIORITYequ64; receive process priorityTX\$PRIORITYequ63; usually higher than rx;Physical configuration constants (FOR OUR INSTALLATION)OMNI\$BASEequOMNI\$SOCKETequ0a0h; omninet transporter socket code (2)OMNI\$FLAGequ8;XDOS flag for int. driven transporterRST\$NUMequ7; interrupt level if interrupt driven
 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 	FFFF = 0000 = 0002 = 0096 = 0034 = 0118 = 0003 = 0040 = 003F = 0068 = 0007 = 0008 = 0007 = 0007 = 0007 = 0007 = 0007 = 00007 = 00007 = 00007 = 00007 = 00007 = 00007 = 00007 = 00007 = 00007 = 000007 = 000007 = 000007 = 00000000	RSPequYES;assemble as a resident processINTERRUPTequNO;transporter can interrupt (advisable);Logical Configuration constantsNSLAVESequ2;maximum number of slaves supportedSRVR\$STK\$SIZequ150;stack size needed by SLVSPsSRVR\$PD\$SIZequ52;PD size for SLVSPsBUFFSIZEequ280;maximum message buffer sizeNMSG\$BUFFSequ1+NSLAVES;number of message buffers allocatedRX\$PRIORITYequ64;receive process priorityTX\$PRIORITYequ63;usually higher than rx;Physical configuration constants (FOR OUR INSTALLATION)OMNI\$BASEequOMNI\$BASEequ0678h;transporter base addressOMNI\$SOCKETequ8;XDOS flag for int. driven transporterRST\$NUMequ7;interrupt level if interrupt drivenINT\$VCTRequRST\$NUM * 8
 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 	FFFF = 0000 = 0002 = 0096 = 0034 = 0118 = 0003 = 0040 = 003F = 0040 = 003F = 0068 = 0007 = 0008 = 0007 = 0038 = 0007 = 0038 = 0007 = 0038 = 0007 = 0038 = 0007 = 0038 = 0007 = 0038 = 0007 = 0038 = 0007 = 0038 = 0007 = 0038 = 0007 = 0038 = 0007 = 0038 = 0007 = 0038 = 0007 = 0038 = 0007 = 0038 = 0007 = 0038 = 0007 = 00038 = 0007 = 00038 = 0007 = 00038 = 0007 = 00038 = 0007 = 00038 = 0007 = 00038 = 0007 = 00038 = 0007 = 00038 = 0007 = 00038 = 0007 = 00038 = 0007 = 00038 = 0007 = 00038 = 0007 = 00038 = 00078 = 0007 = 00038 = 0007 = 00038 = 00078 = 00038 = 00078 = 00078 = 00078 = 00078 = 00078 = 00078 = 00038 = 00078 = 000078 = 00078 = 00078 = 00078 = 00078 = 00078 = 00078 = 00078	RSPequYES; assemble as a resident processINTERRUPTequNO; transporter can interrupt (advisable);Logical Configuration constantsNSLAVESequ2NSLAVESequ2; maximum number of slaves supportedSRVR\$STK\$SIZequ150; stack size needed by SLVSPsSRVR\$PD\$SIZequ52; PD size for SLVSPsBUFFSIZEequ280; maximum message buffer sizeNMSG\$BUFFSequ1+NSLAVES; number of message buffers allocatedRX\$PRIORITYequ64; receive process priorityTX\$PRIORITYequ63; usually higher than rx;Physical configuration constants (FOR OUR INSTALLATION)OMNI\$BASEequ0F8h; transporter base addressOMNI\$SOCKETequ0a0h; omninet transporter socket code (2)OMNI\$FLAGequ8;XDOS flag for int. driven transporterRST\$NUMequ7; interrupt level if interrupt drivenINT\$VCTRequRST\$NUM * 8;transporter IO PORT constants for CORVUS "ENGINEERING" transporter
 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 	FFFF = 0000 = 0002 = 0096 = 0034 = 0118 = 0003 = 0040 = 003F = 0007 = 0008 = 0007 = 0008 = 0007 = 0038 = 00078 = 000	RSPequYES; assemble as a resident processINTERRUPTequNO; transporter can interrupt (advisable);Logical Configuration constantsNSLAVESequ2; maximum number of slaves supportedSRVR\$STK\$SIZequ150; stack size needed by SLVSPsSRVR\$PD\$SIZequ52; PD size for SLVSPsBUFFSIZEequ280BUFFSIZEequ280; maximum message buffer sizeNMSG\$BUFFSequ1+NSLAVES; number of message buffers allocatedRX\$PRIORITYequ64; receive process priorityTX\$PRIORITYequ63; usually higher than rx;Physical configuration constants (FOR OUR INSTALLATION)OMNI\$BASEequOMNI\$SOCKETequ040h; omninet transporter socket code (2)OMNI\$SPLAGequ8;XDOS flag for int. driven transporterRST\$NUMequ7; interrupt level if interrupt drivenINT\$VCTRequRST\$NUM * 8;transporter IO PORT constants for CORVUS "ENGINEERING" transporterOMNI\$DATAequOMNI\$BASE;transporter IO pont constants for CORVUS "ENGINEERING" transporter
$\begin{array}{c} 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 68\\ 69\\ 70\\ 71\\ 72\\ 73\\ 74\\ 75\\ 76\end{array}$	FFFF = 0000 = 0002 = 0096 = 0034 = 0118 = 0003 = 0040 = 003F = 0040 = 003F = 0007 = 0008 = 0007 = 0038 = 0007 = 0038 = 0007 = 0038 = 00078 = 000078 = 00078 = 00078 = 00078 = 00078 = 00078 = 00078 = 00078	RSPequYES;assemble as a resident processINTERRUPTequNO;transporter can interrupt (advisable);Logical Configuration constantsNSLAVESequ2NSLAVESequ2;maximum number of slaves supportedSRVR\$STK\$SIZequ150;stack size needed by SLVSPsSRVR\$PD\$SIZequ22;PD size for SLVSPsBUFFSIZEequ280;maximum message buffer sizeNMSG\$BUFFSequ1+NSLAVES;number of message buffers allocatedRX\$PRIORITYequ64;receive process priorityTX\$PRIORITYequ63;usually higher than rx;Physical configuration constants (FOR OUR INSTALLATION)OMNI\$BASEOMNI\$BASEequ08h;omninet transporter socket code (2)OMNI\$FLAGequ8;XDOS flag for int. driven transporterRST\$NUMequ7;interrupt level if interrupt drivenINT\$VCTRequRST\$NUM * 8;transporter IO PORT constants for CORVUS "ENGINEERING" transporterOMNI\$DATAequOMNI\$BASE ; TCB pointer data portOMNI\$STATequOMNI\$BASE + 1; status port
 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 	FFFF = 0000 = 0002 = 0096 = 0034 = 0118 = 0003 = 0040 = 003F = 003F = 006F8 = 0007 = 0008 = 0007 = 0038 = 0007 = 0038 = 00F8 = 00F9 = 0016 = 00F9 = 0010 = 0007 = 0010 = 0007 = 00007 = 0007 = 0007 = 0007 = 0007 = 0007 = 0007 = 0007 = 0007	RSPequYES; assemble as a resident processINTERRUPTequNO; transporter can interrupt (advisable);Logical Configuration constantsNSLAVESequ2; maximum number of slaves supportedSRVR\$STK\$SIZequ150; stack size needed by SLVSPsSRVR\$PD\$SIZequ52; PD size for SLVSPsBUFFSIZEequ280BUFFSIZEequ280; maximum message buffer sizeNMSG\$BUFFSequ1+NSLAVES; number of message buffers allocatedRX\$PRIORITYequ64; receive process priorityTX\$PRIORITYequ63; usually higher than rx;Physical configuration constants (FOR OUR INSTALLATION)OMNI\$BASEequOMNI\$SOCKETequ040h; omninet transporter socket code (2)OMNI\$SPLAGequ8;XDOS flag for int. driven transporterRST\$NUMequ7; interrupt level if interrupt drivenINT\$VCTRequRST\$NUM * 8;transporter IO PORT constants for CORVUS "ENGINEERING" transporterOMNI\$DATAequOMNI\$BASE;transporter IO pont constants for CORVUS "ENGINEERING" transporter

$\begin{array}{rrrr} 79 & 00FA = \\ 80 & 00FB = \\ 81 & 0001 = \\ 82 & 0001 = \\ 83 & 0000 = \\ 84 \end{array}$	OMNI\$ACKequOMNI\$BASE + 2;int ack port (any data write)OMNI\$MASKequOMNI\$BASE + 3;int mask port (b0, 1= enbl)OMNI\$PENDINGequ1;int pending (=1) in "OMNI\$ENABLEequ1;int enable mask commandOMNI\$DISABLEequ0;int disable mask command
84 85	DDOG and VDOG Equator
	; BDOS and XDOS Equates PRINTF equ 9 :message to console
86 0009 = 87 0084 = 6000	
87 0084 = 88 0085 =	1 , 6
88 0085 = 89 0086 =	1 , 6
90 0080 = 90 0089 =	
$90 \ 0089 =$ $91 \ 008B =$	
91 $008D =$ 92 $008D =$	
$92 \ 008D =$ 93 \ 008E =	DELAY equ 141 ;delay DSPTCH equ 142 ;dispatch
$93 \ 008E =$ 94 \ 0090 =	CREATEP equ 144 ;create process
95 0091 =	SET\$PRIORITY equ 145 ;set caller's priority
$96 \ 0093 =$	DETACH equ 147 ;detach console
97 009A =	SYDATAD equ 154 ;get system data page address
98	STDATAD equ 154 ,get system data page address
99	: MISC useful constants
100 000D =	CR equ Odh ;carriage return
$100 \ 000D =$ 101 000A =	LF equ Oah ;line feed
101 00011 -	Li oqu our ,into rocu
102	
104	codeseg:
105	if not RSP
106	; .PRL Initialization entry point for whole module
107	lxi sp,ServerxSTKTOP ;switch to rx process stack
108	mvi c,SET\$PRIORITY

CP/M RMAC ASSEM 1.1 #003 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

109	mvi e,RX\$PRIORITY
110	call bdos
111	if not DEBUG
112	mvi c,DETACH
113	call bdos ;detach console
114	endif; DEBUG
115	ret
116	
117	bdosadr:
118	dw codeseg - $100h + 5$; bdos entry pointer
119	else ; not RSP
120	; in an rsp, this is filled in by GENSYS and the rx process is created
121	; automatically
122	bdosadr:
123	0000 0000 dw 0000h
124	endif; not RSP
125	
126	page

127	7		
128			
129			
130			
131			
132	, 1 , ,		
132			
133	, e	,	
135		,	
136			
137	, I C	;	
138		,	
139		· ,	
140		;	
141			
142			
143			
144			
145		•	
146	6 ; the rest are ignored unless the error is the absence of a free ;		
147	; support process in which case a "NOT LOGGED IN" error is s	ent;	
148	8 ; by the receiver process to the offending slave. ;		
149	.9 ; ;		
150	in order to prevent clobbering the transporter when it is busy ;		
151	; transmitting, the receiver must be synchronized with the ;		
152	; transmit server. In this implementation, this is handled by ;		
153	; an MX Queue. ;		
	, un trift Queue.		
154			
	; ;		
154	54 ; ; ; 55 ;		
154 155	54 ; ; 55 ; <u> </u>		
154 155 156	54 ; ; ; 55 ; 56 ; 57		
154 155 156 157	 ; ;<		
154 155 156 157 158 159	 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		
154 155 156 157 158 159	 ; ;<		
154 155 156 157 158 159 160 161	 ; ;<		
154 155 156 157 158 159 160 161 162	i4 ; ; i55 ; ; i66 ; ; i77 ; ; i8 ; receiver server process descriptor (position dependent if RSP) i9 ServerxPD: i0 0002 0000 dw 0 ;link i1 0004 0040 db 0,RX\$PRIORITY ;status,priority i2 0006 6400 dw \$ + 94 ;stack pointer		
154 155 156 157 158 159 160 161 162 163	34 ; ; 35 ; ; 36 ; ; 37 ; receiver server process descriptor (position dependent if RSP) 39 ServerxPD: ; 30 0002 0000 dw 0 ; 30 0002 0000 dw 0 ; ; 30 0004 0040 db 0,RX\$PRIORITY ; ; ; 30 0008 5365727665 db 'ServeRX' ; ; name		
154 155 156 157 158 159 160 161 162 163 164	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
154 155 156 157 158 159 160 161 162 163 164 165	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
154 155 156 157 158 159 160 161 162 163 164 165 166	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
154 155 156 157 158 159 160 161 162 163 164 165 166 167	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168	 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169	 ; ;<	· 1	
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170	 ; ;<	· 1	
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171	 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	· 1	
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172	 ; ;<	· 1	
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173	 ; ;<	· 1	
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174	 ; ;<	· 1	
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175	 ; ;<	· 1	
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176	 ; ;<	s message.	
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175	 ; ;<	s message.	

```
179 dw 0
180 ??xx set ??xx + INQCB$SIZE
```

CP/M RMAC ASSEM 1.1 #005 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

```
181
                 endm
182 0066+AC04
                        DW
                              (INQCB \$ARRAY + ??XX)
183 0068+6A00
                        DW
                             $+2
184 006A+0000
                        DW = 0
                        DW (INQCB$ARRAY + ??XX)
185 006C+C604
                       DW
186 006E+7000
                             $+2
                       DW = 0
187 0070+0000
188
189
                 UQCB used by ServeRX to get free buffers from Q
190 0072 1E057600 gbuf$uqcb:
                                 dw
                                      buffQCB,newbuff
191 0076 0000
                 newbuff:
                             dw
                                   0
                                             ;message is a free buffer ptr from pool
192
193
                 UQCB used by ServeRX to get transporter from MX Q
194 0078 A8087C00 omnirx$uqcb: dw
                                        omniQ,rx$mx$msg
                 rx$mx$msg:
195 007C 0000
                                      0
                                dw
196
197
                 UQCB used by ServeRX to send error messages to outQ
198 007E E0048200 err$out$uqcb: dw outQCB,err$out$msg ;pointer, msgadr
199 0082
               err$out$msg: ds
                                  2
                                             ;used to send error messages
200
201
                 receiver transporter control block
202 0084 F0
                rxtcb: db
                            0f0h
                                           ;post read command
                    db
                          0
203 0085 00
                                       ;result hi (always 0)
204
             rxrsltp:
205 0086 0000
                     db
                           0.0
                                         ;result middle and low (NOT 8080 order)
206 0088 A0
                     db
                          OMNI$SOCKET
                                                 ;transporter message socket code
207 0089 00
                    db
                          0
                                       ;data pointer high (always 0)
                                          ;data pointer middle, low
208 008A 0000
                      db
                           0,0
209 008C 01
                     db
                          BUFFSIZE/256
                                               ;data max length hi
210 008D 18
                     db
                          BUFFSIZE and 255
                                                ;data max length lo
                      db
                                         ;ctrl lgth (0 for now), host (not used)
211 008E 0000
                           0.0
212
0,0,0,0,0,0,0,0
                                                 :result block for rx
214
215
216
217
                 Receiver server process initialization entry point
                                                                   ;
                     (initializes all of module)
218
219
                    InitRX: call
                                omni$init
                                             ;init hardware & get ID code from its switches
220 0098 CDCD08
221 009B 32FB02
                             configtbl+1 ; store ID in config table as master ID
                       sta
222
223 009E 0E86
                      mvi
                            c,MAKEQ
                                           ;create the free buffer Q
                            d, buffQCB
224 00A0 111E05
                       lxi
225 00A3 CDA408
                        call bdos
226
227 00A6 11AC04
                        lxi
                             d,inqcb$array
228 00A9 0E02
                            c,NSLAVES
                                            ;create input Qs (1/slave supported)
                      mvi
```

```
file:///Cl/...1%20Roche%20DRI%20documents%20conversion/CP%20NET-80%20Version%201.2%20Reference%20Manual/CPNETRM.TXT[2/6/2012 4:07:51 PM]
```

229	make\$ii	nQs:
230	00AB D5	push d
231	00AC C5	push b
232	00AD 0E86	mvi c,MAKEQ
233	00AF CDA408	call bdos
234	00B2 C1	pop b

CP/M RMAC ASSEM 1.1 #006 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

225	0000001	
	00B3 D1	pop d
236	00B4 211A00	lxi h,INQCB\$SIZE
237	00B7 19	dad d
238	00B8 EB	xchg
239	00B9 0D	der e
240	00BA C2AB00	jnz make\$inQs
241	;	
242	00BD 11E004	lxi d,outQCB ;create the output Queue (only 1)
243	00C0 0E86	mvi c,MAKEQ
244	00C2 CDA408	call bdos
245	:	
	, 00C5 11B901	lxi d,ServetxPD ;create the network output process
247	00C8 0E90	mvi c,CREATEP
248	00CA CDA408	call bdos
249		can odos
	, 00CD 0E9A	mvi c,SYDATAD ;get system data page address
250 251		
	00CF CDA408	
252	00D2 110900	lxi d,9
	00D5 19	dad d ;install config table address at sysdat(9)
	00D6 11FA02	lxi d,configtbl
255	00D9 73	mov m,e
256	00DA 23	inx h
257	00DB 72	mov m,d
258	;	
259	00DC 219000	lxi h,rxrslt ;initialize transporter command block result
260	00DF 55	mov d,l ;field to point to receive result block
261	00E0 5C	mov e,h ; (done at run time because of reversed byte
262		xchg ; order used by CORVUS.)
263	00E2 228600	shld rxrsltp
264		
265		
266	; Re	ceiver server process loop head
267	00E5 0E89 R2	Xloop: mvi c,READQ
268	00E7 117200	lxi d,gbuf\$uqcb
269	00EA CDA408	call bdos ;get a free message buffer from Q
270	;	
271	RXretry	
272	00ED 2A7600	lhld newbuff
273	00F0 5C	mov e,h
274	00F1 55	mov d,l
275	00F2 EB	xchg ;swap bytes for CORVUS command block
276	00F3 228A00	shid rxtcb+6 ;put buffer address pointer in rx tcb
277	•	
	00F6 117800	lxi d,omnirx\$uqcb ;read MX message from OMNINET HARDWARE MX Q

279 00F9 0E89 mvi c,READQ	
280 00FB CDA408 call bdos	
281 ; 282 ODEE 018400 being her talt and TCD and the handward	
282 00FE 018400 lxi b,rxtcb ;send TCB pointer to hardware	
283 0101 CDF508 call omni\$strobe 284 ;	
,	
2850104 F5pushpsw;return MX message2860105117800lxid,omnirx\$uqcb	
287 0108 0E8B mvi c,WRITEQ	
288 010A CDA408 call bdos	
CP/M RMAC ASSEM 1.1 #007 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-	82
289 010D F1 pop psw ;restore return code from omni\$strobe routine	
290 ;	
291 010E DAED00 jc RXretry ;no choice except to retry if not accepted	
292 ;	
293 0111 019000 lxi b,rxrslt ;wait for a completion from hardware	
294 0114 CD2309 call wfrxdone	
295 0117 E680 ani 80h ;if error on message, re-post buffer	
296 0119 C2ED00 jnz RXretry	
297 ;	
298 ; buffer contains a valid message at this point, so process it	
299 011C 2A7600 lhld newbuff ;get FMT to A	
300 011F7E mov a,m	
301 0120 23 inx h ;get SID to C	
302 0121 23 inx h 303 0122 4E mov c,m	
303 0122 4E mov c,m 304 ;	
305 0123 E6FE ani 0feh ;look for login/logoff messages	
306 0125 C24601 jnz RX12 ;message type 0 or 1?	
307 0128 23 inx h ;yes, check FNC	
308 0129 7E mov a,m	
309 012A FE40 cpi 40h ;login?	
310 012C C23801 jnz RX11 ;not login, go on	
311 012F CDA301 call logiton ;ELSE try to find a free SLVSP in table	
312 0132 C26C01 jnz RXl3 ;found one (or already logged in), go on	
313 0135 C34C01 jmp RX\$send\$err ;sorry,no free processes, go advise slave	
314 ;	
315 0138 FE41 RX11: cpi 41h ;logoff?	
316 013A C24601 jnz RX12 ;not logoff, go on	
317 013D CD9A01 call logitoff ;ELSE try to remove that slave from table	
318 0140 C26C01 jnz RX13 ;if successful, go on	
319 0143 C34C01 jmp RX\$send\$err ;otherwise go tell slave it wasn't logged in	
320 ; 321 0146 CD8001 PX12: call gat\$elven ::not login/logoff so gat slyen meg address	
321 0146 CD8001 RX12: call get\$slvsp ;not login/logoff so get slvsp msg address 322 0149 C26C01 jnz RX13 ; for that slave if it is logged in and go	
322 0149 C26C01 jnz RXI3 ; for that slave if it is logged in and go 323 ; send message to its Q else fall through	
325 , send message to its Q else fan through 324 ;	
325 ; this code sends a "NOT LOGGED IN" error message back to requester	
326 RX\$send\$err:	
327 014C 2A7600 lhld newbuff ;build an error message in the same buffer	
328 014F 228200 shld err\$out\$msg	
č	

	0152 3601	,	;FMT=1
	0154 23	inx h	
	0155 7E		swap DID and SID
	0156 23	inx h	
	0157 46	mov b,m	
	0158 77	mov m,a	
	0159 2B	dcx h	
	015A 70	mov m,b	ENC Caldalana
	015B 23		ave FNC field alone
	015C 23 015D 23	inx h inx h	
	015D 25 015E 3601		;SIZ=1
	0160 23	inx h	,512–1
	0160 25 0161 36FF	mvi m,0ffh	;message = 0FFH (extended error flag)
512	0101 5011	mvi m,om	, message – of the (extended error mag)
343	RMAC ASSEM 0163 23 0164 360C	1.1 #008 SAMPL inx h mvi m,12	E SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82 ;"NOT LOGGED IN" code
	0164 300C	,	qcb ;post to network transmitter process
	0169 C37801	jmp rxl4	;using common write Q code
347		Juip IXI+	, using common write Q code
348	; this c	code sends the messag	e address to the appropriate SLVSP Q
		RX13: lhld newbuf	
	016F EB		ut message ptr in UQCB message field
351	0170 73	mov m,e	
352	0171 23	inx h	
353	0172 72	mov m,d	
	0173 11FBFF		MSG + 1; index back to UQCB base address
	0176 19	dad d	
	0177 EB	xchg	
357	;		
358		xl4: mvi c,WRITE	
359	017A CDA408	call bdos	;send it to Queue
360 361	017D C3E500	jmp RXloop	;go back and get another buffer and continue
362			
363	· r0	utine dynamically ma	ps physical slave number passed in C
364			ss and returns its INUQCB message buffer addr
365			lags set if no room or not found, else NZ
366	, get\$slv		
367	-	-	A= requester ID
368		mvi b,NSLAVES	•
	0183 21B301	lxi h,idtbl	•
370	find\$m	atch: ;sea	rch till match or table end
371		cmp m	
372		jnz not\$match	; goto not\$match if not this one
	018A 23	inx h ;els	se match found, get ptr to SLVSP message
374		mov e,m	
375		inx h	
	018D 56		;its slvsp msg addr
377	018E 37	stc	
378	018F 9F	sbb a	

379	0190 C9	ret	;and return TRUE in A to caller
380	not\$mat	ch:	
381	0191 23	inx l	;no match, skip to next entry
382	0192 23	inx l	
383	0193 23	inx l	
384	0194 05	dcr ł	;any more entries?
385	0195 C28601	jnz	find\$match ;loop back until all searched
386	0198 AF	xra	;else return failure (A=00)
387	0199 C9	ret	
388			
389			
390	; rer	noves e	try (C=SID) from map table (but still returns msg ptr)
391	logitoff		
392	019A CD8001	cal	get\$slvsp
393	019D C8	rz	;not in table, just exit
394	019E 2B	dcx	n ;else mark entry as free and then exit
395	019F 2B	dcx	1
396	01A0 36FF	mvi	m,0ffh

CP/M RMAC ASSEM 1.1 #009 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

397	01A2 C9	ret
398		
399	; ins	talls entry (C=SID) in first free entry of map table and returns
400	; ms	g address. RETURNS A=0 if no space, else non-zero.
401	logiton:	
402	01A3 CD8001	call get\$slvsp ;see if already in table
403	01A6 C0	rnz ;if so, just use old entry
404	01A7 C5	push b ;else look for a free entry (CODE=FF)
405	01A8 0EFF	mvi c,0ffh
406	01AA CD8001	call get\$slvsp
407	01AD C1	pop b
408	01AE C8	rz ;no free entries, exit
409	01AF 2B	dcx h ;else enter SID in table and return success
410	01B0 2B	dcx h
411	01B1 71	mov m,c
412	01B2 C9	ret ;PSW is still correct from search
413		
414	; Sla	ave mapping table has one entry per SLVSP. First byte = SID
415	; of	the requester currently using SLVSP (0ffh if none). Next word is
416	; the	address of the message field of that SLVSP's input UQCB.
417	idtbl:	
418	0000 # ??xx	set 0
419	rep	ot NSLAVES
420	ď	b Offh
421	ď	w $(INUQCB + XQCBMSG + ??xx)$
422	??xx	set ??xx + UQCBLEN
423	ene	lm
424	01B3+FF	DB 0FFH
425	01B4+6A00	DW $(INUQCB + XQCBMSG + ??XX)$
426	01B6+FF	DB 0FFH
427	01B7+7000	DW (INUQCB + XQCBMSG + ??XX)
428		

430 431 432 433 434 This is the network transmitter server process module. NOTE THAT THE OMNINET TRANSPORTER MUST NOT BE DISTURBED ONCE 435 A TRANSMIT HAS BEEN POSTED UNTIL IT RETURNS A COMPLETION. 436 : 437 An MX Queue is used in this version to protect the transporter ; from other processes. 438 439 440 This process reads a message from the SLVSP output Q and when ; awakened by one posts that buffer for transmission via the 441 442 transporter to the requester. This process then waits until ; the transporter reports a completion as determined by the 443 wf\$txdone routine. The buffer pointer from that message is 444 then sent back to the FreeBuff Q and the process loops back for ; 445 another message from the SLVSP output Q. Transmitter errors ; 446 are considered the Transporter's problem and are ignored here. ; 447 448 449 450 Transmitter server process descriptor ServetxPD: 451 452 01B9 0000 dw 0 :link 0.TX\$PRIORITY 453 01BB 003F db ;status,priority \$+94454 01BD 1B02 dw ;stack pointer 'ServeTX ' 455 01BF 5365727665 db :name 456 01C7 00FF 0.0ffh db ;console, memseg 457 01C9 ds 82 ;reserved for MP/M use and as stack 458 021B 4302 InitTX ;stack top has startup PC dw 459 460 There is only one output queue (SLVSP --> NTWRKIF) **OUTUOCB:** 461 462 021D E0042102 UQCBNtwrkQO0: dw outQCB,outQMSG ;pointer, msgadr 0221 ds ;used to receive msg pointer from SLVSP 463 outQMSG: 2 464 used by ServeTX to return them to Q when done (used at init also) 465 466 0223 1E052702 pbuf\$uqcb: dw buffQCB,oldbuff 467 0227 0000 oldbuff: dw 0 ;msg is a freed buff ptr back to pool 468 469 UQCB used by ServeTX to get transporter from MX Q 470 0229 A8082D02 omnitx\$uqcb: dw omniQ,tx\$mx\$msg 471 022D 0000 tx\$mx\$msg: dw 0 472 473 transmitter transporter control block ;command 474 022F 40 txtcb: db 40h 475 0230 00 db 0 :result hi 476 txrsltp: 477 0231 0000 db 0.0 ;result middle and low 478 0233 A0 db **OMNI**\$SOCKET ;transporter message socket code

CP/M RMAC ASSEM 1.1 #010 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

479 480 481 482 483	0237 0000	db0,0,0;data ptr (MSB,SB,LSB)db0,0;length (MSB,LSB)db0;control lengthdb0;dest host
CP/M	RMAC ASSEM	1.1 #011 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82
484	023B 00000000	Otxrslt: db 0,0,0,0,0,0,0,0 ;result block for tx
485		
486	;	
487	;	
488	; Se	erveTX initialization entry point ;
489		
490 491	InitTX: 0243 215C05	
491 492	0245 215C05 0246 0E03	lxi h,msgbuffs ;preload the Free buffer Q with buffer ptrs mvi c,NMSG\$BUFFS ;from start of buffer space
493	freeloop	
	0248 222702	shld oldbuff
495	024B E5	push h
	024C C5	push b
497	024D 0E8B	mvi c,WRITEQ
498	024F 112302	lxi d,pbuf\$uqcb
499		call bdos
500	0255 C1	pop b
501		pop h
	0257 111801	lxi d,BUFFSIZE
503	025A 19	dad d
504 505	025B 0D 025C C24802	dcr c jnz freeloop
505 506	0250 024802	jnz freeloop
500	, 025F 213B02	lxi h,txrslt ;initialize TX Transporter Command Block
	0262 5C	mov e,h ;to point to TX Result Block
	0263 55	mov d,l
510	0264 EB	xchg
	0265 223102	shld txrsltp
512		
		erveTX process loop
514	TXloop	
	0268 0E89	mvi c,READQ ;wait for a message in network output Q lxi d,outuqcb
		call bdos
518	0200 CD/1400	
	0270 2A2102	lhld outQMSG
	0273 5C	mov e,h
521	0274 55	mov d,l ;put message buffer address in TX TCB
	0275 EB	xchg ;(NOTE, NOT (8080 byte order)
	0276 223502	shld txtcb+6
524	;	
	0279 13	inx d
	027A 1A 027B 323A02	ldax d ;set transport layer destination addr=DID sta txtcb + 11
527 528	027D 525A02	sta $txtcb + 11$
520	,	

529 027E 210300	lxi h,3	
530 0281 19	dad d	;calculate physical message length
531 0282 6E	mov l,m	;from SIZ field
532 0283 2600	mvi h,0	
533 0285 110600	lxi d,6	;put in TCB length field
534 0288 19	dad d	
535 0289 55	mov d,l	
536 028A 5C	mov e,h	
537 028B EB	xchg	

CP/M RMAC ASSEM 1.1 #012 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

538	028C 223702	shld txtcb+8
539	•	
540	028F 112902	lxi d,omnitx\$uqcb ;get transporter hardware MX message
541	0292 0E89	mvi c,READQ
542	0294 CDA408	call bdos
543	•	
544	TXretry:	
545	0297 012F02	lxi b,txtcb ;send TCB pointer to hardware
546	029A CDF508	call omni\$strobe ; if can't, not much else to do but try again
547	029D DA9702	jc TXretry ; (ALTHOUGH THIS IS A FATAL HARDWARE ERROR)
548	•	
549	02A0 013B02	lxi b,txrslt ;wait for transmit completion
550	02A3 CD3409	call wftxdone ;ignore errors here as no recovery possible
551	;	
552	02A6 112902	lxi d,omnitx\$uqcb
553	02A9 0E8B	mvi c,WRITEQ
554	02AB CDA408	call bdos ;release MX msg
555	;	
556	02AE 2A2102	Ihld outQMSG ;send the buffer back to FREEBUFF Q
557	02B1 222702	shld oldbuff
558	02B4 0E8B	mvi c,WRITEQ
559	02B6 112302	lxi d,pbuf\$uqcb
560	02B9 CDA408	call bdos
561	;	
562	02BC C36802	jmp txloop ;and go back and do it all with next msg
563		
564		
565	page	

CP/M RMAC ASSEM 1.1 #013 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

566	
567 O2I	BF 4E5457524Bcnote: db 'NTWRKIF (c)1982 VANO ASSOCIATES, INC ALL RIGHTS RESERVED'
568	·
569	·
570	; ;
571	; GLOBAL Master Configuration Table and storage ;
572	; (address must be installed on SysData page(9,10) at init.) ;
573	;
574	

575 configtbl: ;Master status byte 576 02FA 00 db 0 577 02FB 00 db 0 ;Master processor ID 578 02FC 02 db **NSLAVES** ;Maximum number of slaves supported db ;Number of logged in slaves 579 02FD 00 0 0 ;16 bit vector of logged in slaves 580 02FE 0000 dw ;Slave processor ID array 581 0300 ds 16 582 0310 5041535357 db 'PASSWORD' ;login password 583 584 builds Server stacks and initializes them with PD storage pointers 585 0000 # ??xx set 0 rept NSLAVES 586 ds SRVR\$STK\$SIZ - 2 587 dw srvr\$pd\$base + ??xx 588 ??xx set ??xx + SRVR\$PD\$SIZ 589 590 endm DS SRVR\$STK\$SIZ - 2 591 0318+ 592 03AC+4404 DW SRVR\$PD\$BASE + ??XX 593 03AE+ DS SRVR\$STK\$SIZ - 2 594 0442+7804 DW SRVR\$PD\$BASE + ??XX 595 596 allocates PD storage srvr\$pd\$base: 597 ds NSLAVES * SRVR\$PD\$SIZ 598 0444 599 600 601 602 INTERPROCESS QUEUES (both local and global) and COMMON data ; 603 604 605 606 ServeRX --> SLVSP message queues (INPUT), 1/slave support proc. 607 ; 608 001A = INQCB\$SIZE equ 26 ;constant used for index calculation ingcb\$array: :ARRAY BASE NAME 609 610 generate INQCBs as required 611 612 0030 # ??xx set '0' rept NSLAVES 613 614 ds 2 ;;link 4eh,74h,77h,72h ;;common name is NTwrkQI 615 db db 6bh,51h,49h ;;(macro can't do lower case) 616 db ??xx 617 ;;slave ID 2.1 ;;msglen, nmbmsgs 618 dw 619 ds 12 ;;MP/M pointers and buffers

CP/M RMAC ASSEM 1.1 #014 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

620	??xx	set	??xx + 1
621	if (??:	xx EQ	Q ('9'+1))
622	??xx	set	??xx + 7
623	endif		
624	en	dm	

DS 2 625 04AC+ 626 04AE+4E747772 DB 4EH,74H,77H,72H 627 04B2+6B5149 DB 6BH,51H,49H 628 04B5+30 DB ??XX 629 04B6+02000100 DW 2.1 DS 12 630 04BA+ DS 2 631 04C6+ 632 04C8+4E747772 DB 4EH,74H,77H,72H 633 04CC+6B5149 DB 6BH,51H,49H 634 04CF+31 DB ??XX 635 04D0+02000100 DW 2,1 636 04D4+ 12 DS 637 638 SLVSP --> NETWRKIF queue (OUTPUT) outQCB: ds 2 ;link 639 04E0 'NtwrkQO0' 640 04E2 4E7477726B db :name 641 04EA 02001000 dw 2.16 ;msglen, nmbmsgs 642 04EE ds 48 ;Used by MP/M 643 644 free buffer list management queue buffQCB: 645 2 646 051E ds :link 647 0520 4672656542 db 'FreeBuff' ;name 648 0528 02001000 dw 2.16 ;msglen, nmbmsgs 649 052C 48 ;reserved for MP/M ds 650 651 652 global message buffer pool ; NMSG\$BUFFS * BUFFSIZE 653 055C msgbuffs: ds 654 Utility Procedure to allow indirect BDOS/XDOS access as needed by RSP 655 656 08A4 2A0000 bdos: lhld bdosadr 657 08A7 E9 pchl 658 659 page

CP/M RMAC ASSEM 1.1 #015 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

660 661	
662	;
663	; ;
664	; low level omninet support routines ;
665	;
666	·
667	
668	; Transporter mutual exclusion QUEUE
669	08A8 omniQ: ds 2
670	08AA 4D586F6D6E db 'MXomniQ '
671	08B2 00000100 dw 0,1 ;msglen, nmsgs
672	08B6 ds 12 ;dqph,nqph,msgin,msgout,msgcnt,buff
673	
674	; UQCB used by omni\$init to load MX Q

08C2 A808C608 omni\$init\$uqcb: dw omniQ,init\$mx\$msg 675 676 08C6 0000 init\$mx\$msg: dw 0 677 678 679 Initialization transporter control block 680 inittcb: 681 08C8 20 db 20h :command 682 08C9 00 db 0 ;result hi 683 initrsltp: 08CA 0000 db 0,0 ;result middle and low 684 685 686 initrslt: 08CC 00 687 db 0 :result block for init 688 689 690 initializes transporter hardware and return its network ID code in A omni\$init: 691 692 08CD 11A808 lxi d,omniQ c,MAKEQ 693 08D0 0E86 mvi 694 08D2 CDA408 call bdos create hardware MX Q 695 08D5 11C208 d,omni\$init\$uqcb ;send it one message lxi 696 08D8 0E8B c,WRITEQ mvi 697 08DA CDA408 call bdos if INTERRUPT 698 699 call int\$init ;(optional) setup interrupt system 700 endif 701 08DD 21CC08 ;install result block pointer in initialization lxi h,initrslt 702 08E0 55 d.l :TCB mov ;NOTE: NOT 8080 order, MSB,LSB 703 08E1 5C mov e,h 704 08E2 EB xchg 705 08E3 22CA08 shld initrsltp 706 707 08E6 01C808 lxi b,inittcb ;post initialization command block to 708 08E9 CDF508 call omnistrobe :hardware 709 08EC D8 ;cy=1 means can't talk to hardware rc 710 711 08ED 01CC08 b.initrslt ;wait for a completion from operation lxi 712 08F0 CD2309 call omni\$wfdone 713 08F3 B7 ora a

CP/M RMAC ASSEM 1.1 #016 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

714	08F4 C9	ret		;return ID/result code to caller with flags set	
715					
716					
717	;	sends the	command	d block pointer in BC to transporter hardware	
718	omn	i\$strobe:			
719	08F5 210200	lxi	h,2	;first preset result code byte in	
720	08F8 09	dad	b	;result block TCB result field> to 0ffh	
721	08F9 7E	mov	a,m		
722	08FA 23	inx	h		
723	08FB 6E	mov	l,m		
724	08FC 67	mov	h,a		

	08FD 36FF mvi m,0ffh
726	;
727	08FF AF xra a ;send bits 23-16 of ptr to hardware (always 0)
728	0900 CD0A09 call omni\$st
	0903 D8 rc ;carry means can't talk to hardware
730	;
731	0904 78 mov a,b ;send bits 15-8 of ptr to hardware
732	0905 CD0A09 call omni\$st
733	0908 D8 rc
734	•
735	0909 79 mov a,c ;send bits 7-0 of ptr to hardware
736	;fall into omni\$st to send last byte
737	•
738	; called by omnistrobe to send one byte to transporter when ready
739	; (waits a reasonable time for transporter to come ready and if
740	; it doesn't, returns with carry set; this is a fatal error) returns
741	; cy=0 if succeeds
742	omni\$st:
	090A F5 push psw ;save data for now
	090B 1150C3 lxi d,50000 ;set timeout
745	omni\$st0:
	090E DBF9 in OMNI\$STAT ;see if transporter will accept byte
747	0910 E610 ani OMNI\$RDY
748	
740	
	0915 F1 pop psw ;else output the byte and return with CY=0
750	0916 D3F8 out OMNI\$DATA
751	0918 B7 ora a
	0919 C9 ret
753	omni\$st1:
	091A 1B dcx d ;loop back if not timeout yet
755	091B 7B mov a,e
	091C B2 ora d
	091D C20E09 jnz omni\$st0
	0920 F1 pop psw
759	0921 37 stc
760	0922 C9 ret ;else return CY=1 as error flag
761	
762	
763	; routine waits for a completion to occur on the result block
764	; pointed to by BC. This routine is used by the initialization
765	; and receiver processes. If there is no interrupt hardware in
766	; the system, ONLY ONE MESSAGE CAN BE RECEIVED PER CLOCK TICK of
767	; the system clock. This will considerably reduce server throughput

CP/M RMAC ASSEM 1.1 #017 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

768	; in most systems.			
769	omni\$wfdone:			
770	wfrxdone:			
771	0923 0A	ldax	b	;all completion codes are < 0f0h
772	0924 FEF0	cpi	0f0h	;see if already done before suspending caller
773	0926 D8	rc		;yes, return immediately
774	;	else suspe	end calle	r until a completion occurs

775	0927 C5 push b
776	if INTERRUPT
777	lxi d,OMNI\$FLAG ;wait for ISR to set flag
778	mvi c,FLAGWAITF
779	call bdos
780	else
781	0928 110100 lxi d,1 ;if no ISR, poll result block once/tick
782	092B 0E8D mvi c,DELAY
	092D CDA408 call bdos
784	endif
785	0930 C1 pop b
786	0931 C32309 jmp omni\$wfdone
787	
788	; As above but instead polls continually to give transmitter priority
789	; since transmitter usually unloads messages in less time than MP/M
790	; dispatch overhead, it is not worth suspending it.
791	; A timeout routine is included to avoid locking up system if hardware
792	; fails so diagnosing the problem is possible with RDT.
793	wftxdone:
794	0934 1150C3 lxi d,50000 ;initialize hardware fail timeout
795	0937 0A wftxd0: ldax b ;done yet?
796	0938 FEF0 cpi 0f0h
797	093A 3F cmc ;set up carry properly in case of return
798	093B D0 rnc ;yes, return to caller with result in A, CY=0
799	093C 1B wftxd1: dcx d ;if not timeout, loop back
800	093D 7B mov a,e
801	093E B2 ora d
802	093F C23709 jnz wftxd0
803	0942 37 stc
	0943 C9 ret ;else return to caller with CY=1 as error flag
805	
806	page

CP/M RMAC ASSEM 1.1 #018 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

807	
808	if INTERRUPT
809	· · · · · · · · · · · · · · · · · · ·
810	; Since the CORVUS "ENGINEERING" transporter has no interrupt hardware
811	; associated with it, the details of the interrupt initialization and
812	; service routines will vary from system to system. The skeleton of
813	; our code is provided here as a guide to understanding what is needed.
814	;
815	; Routine initializes interrupt hardware and attaches ISR to XIOS
816	; at run-time (in somewhat bizarre fashion.) It would be better
817	; to make your ISR a permanent part of your XIOS since if not
818	; used it does no harm to the system.
819	int\$init:
820	di
821	mvi a,(jmp) ;build jump in vector
822	sta (INT\$VCTR)
823	lxi h,omni\$isr
824	shld $(INT\$VCTR + 1)$; install new isr

825	out OMNI\$ACK ;clear interrupt latch
826	mvi a,OMNI\$ENABLE ;unmask transporter interrupt
827	out OMNI\$MASK
828	; this code does an extremely Klugey run-time linkage to needed XIOS routines
829	lhld 1 ;find CBOOT in MPM-II BIOS simulation table
830	mvi l,1
831	mov e,m
832	inx h
833	mov d,m
834	push d ;save to find exit\$reg.
835	· · · · · · · · · · · · · · · · · · ·
836	xchg ;need to go one more level to find real entry
837	inx h
838	mov e,m
839	inx h
840	mov d,m ;this is address of real CBOOT entry in XIOS
841	· · · · · · · · · · · · · · · · · · ·
842	lxi h,9 ;calculate PDISP entry from CBOOT address
843	dad d
844	shld pdisp ;and save it in local vector
845	;
846	lxi d,3 ;XDOS address is 3 bytes above PDISP
847	dad d
848	shld xd\$adr ;save it in a local vector
849	;
850	pop h ;get XIOS branch table address back
851	mvi 1,40h ;calculate address of EXIT\$REGION entry
852	mov e,m
853	inx h
854	mov d,m
855	xchg
856	shld exit\$region ;save it for later use in pre-empt routine
857	ei
858	ret
859	
860	; omninet isr sets the appropriate XDOS flag and causes a dispatch

CP/M RMAC ASSEM 1.1 #019 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

861	omni\$isr:
862	shld svhl
863	pop h
864	push psw ;save PSW and HL
865	shid svret ;save return address
866	lxi h,0 ;swap stacks
867	dad sp
868	shid systk
869	lxi sp,isr\$stk
870	push d ;save the other registers on new stack
871	push b
872	1
873	, out OMNI\$ACK ;clear interrupt latch
873 874	;

075	
875	lhld exit\$region ; do a PRE-EMPT by patching a RET into table
876	mov a,m ; (Very KLUGEY but there's no other way.)
877	push psw ; save what was in XIOS branch table entry
878	push h ; and put a RET there to prevent XDOS from
879	mvi m,(RET) ; re-enabling interrupts
880	;
881	mvi c,FLAGSETF ;call XDOS to set isr flag
882	mvi e,OMNI\$FLAG
883	call xdos
884	;
885	pop h
886	pop psw
887	mov m,a ;restore XIOS table entry
888	;
889	pop b ;pop interrupted registers
890	pop d
891	lhld svstk ;restore interrupted stack
892	sphl ;restore other regs. and exit
892	
	pop psw
894 805	lhld svret
895	push h
896	lhld svhl
897	db (JMP) ; via dispatcher
898	pdisp: dw 0 ;(link to dispatcher)
899	
900	xdos: db (JMP) ;special XDOS entry
901	xd\$adr: dw 0 ;for ISR use
902	
903	; ISR data areas
904	exit\$region:
905	dw 0 ;address of XDOS critical region exit routine
906	ds 64 ;isr stack space
907	isr\$stk:
908	svhl: dw 0 ;temporary reg storage
909	svret: dw 0
910	svstk: dw 0 ;careful, make sure all of .RSP is reserved
911	svstk. uw 0 ,caterul, make sure an or .KST is reserved
912	endif; of if INTERRUPT
	endir, of it interkori
913	
914 0944	end
CP/M RMAC	CASSEM 1.1 #020 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82
BDOS	08A4 110 113 225 233 244 248 251 269 280 288
	359 499 517 542 554 560 656# 694 697 779
	783
BDOSADR	0000 117# 122# 656
BUFFQCB	051E 190 224 466 645#
BUFFSIZE	0118 62# 209 210 502 653
CNOTE	02BF 567#
CODESEG	0000 104# 118
CONFIGTBI	

CR

000D 100#

0090 94# 247 CREATEP 0000 54# 111 DEBUG DELAY 008D 92# 782 DETACH 0093 96# 112 DSPTCH 008E 93# ERROUTMSG 0082 198 199# 328 ERROUTUQCB 007E 198# 345 FINDMATCH 0186 370# 385 FLAGSETF 0085 88# 881 FLAGWAITF 0084 87# 778 0248 493# 505 FREELOOP 0072 190# 268 **GBUFUQCB** GETSLVSP 0180 321 366# 392 402 406 01B3 369 417# IDTBL INITMXMSG 08C6 675 676# INITRSLT 08CC 686# 701 711 INITRSLTP 08CA 683# 705 INITRX 0098 167 220# 08C8 680# 707 **INITTCB** 0243 458 490# INITTX 04AC 177 182 185 227 609# INQCBARRAY 001A 180 236 608# INQCBSIZE **INTERRUPT** 0000 56# 698 776 808 0038 72# 822 824 INTVCTR 0066 174# 421 425 427 INUQCB 000A 101# LF LOGITOFF 019A 317 391# LOGITON 01A3 311 401# 00AB 229# 240 MAKEINQS 0086 89# 223 232 243 693 MAKEQ 055C 491 653# MSGBUFFS 0076 190 191# 272 299 327 349 NEWBUFF NMSGBUFFS 0003 63# 492 653 0000 51# 54 56 NO 0191 372 380# NOTMATCH **NSLAVES** 0002 59# 63 176 228 368 419 578 586 598 613 0227 466 467# 494 557 OLDBUFF OMNIACK 00FA 79# 825 873 68# 75 76 79 80 **OMNIBASE** 00F8 OMNIDATA 00F8 75# 750 **OMNIDISABLE** 0000 83# **OMNIENABLE** 0001 82# 826 OMNIFLAG 0008 70# 777 882 08CD 220 691# OMNIINIT

CP/M RMAC ASSEM 1.1 #021 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

OMNIINITUQCB 08C2 675# 695 OMNIMASK 00FB 80# 827 OMNIPENDING 0001 81# OMNIQ 08A8 194 470 669# 675 692 OMNIRDY 0010 77# 747 OMNIRXUQCB 0078 194# 278 286 OMNISOCKET 00A0 69# 206 478 090A 728 732 742# OMNIST OMNIST0 090E 745# 757 091A 748 753# OMNIST1 OMNISTAT 00F9 76# 746 08F5 283 546 708 718# OMNISTROBE OMNITXUQCB 0229 470# 540 552 **OMNIWFDONE** 0923 712 769# 786 04E0 198 242 462 639# OUTQCB OUTQMSG 0221 462 463# 519 556 021D 461# 516 OUTUQCB PBUFUQCB 0223 466# 498 559 PRINTF 0009 86# 0089 90# 267 279 515 541 READQ RSP FFFF 55# 105 RSTNUM 0007 71# 72 0138 310 315# RXL1 RXL2 0146 306 316 321# RXL3 016C 312 318 322 349# 0178 346 358# RXL4 00E5 267# 360 RXLOOP 007C 194 195# RXMXMSG RXPRIORITY 0040 64# 109 161 00ED 271# 291 296 RXRETRY 0090 213# 259 293 RXRSLT RXRSLTP 0086 204# 263 RXSENDERR 014C 313 319 326# RXTCB 0084 202# 276 282 0002 159# SERVERXPD SERVERXSTKTOP 0064 107 166# 01B9 246 451# SERVETXPD 0091 95# 108 SETPRIORITY 0444 588 592 594 597# SRVRPDBASE 0034 61# 589 598 SRVRPDSIZ 0096 60# 587 591 593 SRVRSTKSIZ SYDATAD 009A 97# 250 0268 514# 562 TXLOOP 022D 470 471# TXMXMSG 003F 65# 453 TXPRIORITY 0297 544# 547 TXRETRY 023B 484# 507 549 TXRSLT TXRSLTP 0231 476# 511 TXTCB 022F 474# 523 527 538 545 UQCBLEN 0006 171# 422 UQCBNTWRKQO0 021D 462# 0923 294 770# WFRXDONE WFTXD0 0937 795# 802 WFTXD1 093C 799#

CP/M RMAC ASSEM 1.1 #022 SAMPLE SERVER NETWORK I/F FOR CORVUS OMNINET 20-OCT-82

WFTXDONE0934550793#WRITEQ008B91#287358497553558696

XQCBMSG 0004 172# 354 421 425 427 YES FFFF 50# 51 55

EOF

CPNETTDA.WS4 (= CP/NET TDA Progress Report)

 "Management and Development Local Area Network Upgrade Prototype" T.J. Fouser
 DSN Data Systems Section

TDA Progress Report 42-69, March and April 1982, pp.14-19

(Retyped by Emmanuel ROCHE.) (Found on the Internet.)

Given the situation of having management and development users accessing a central computing facility, and given the fact that these same users have the need for local computation and storage, the utilization of a commercially available networking system such as CP/NET from Digital Research provides the building blocks for communicating intelligent microsystems to file and print services. The major problems to be overcome in the implementation of such a network are the dearth of intelligent communication front-ends for the microcomputers, and the lack of a rich set of management and software development tools.

1 Introduction

The purpose of this paper is to report on the progress of a research effort to study local area networks and the application of networking to administrative and developmental needs. A local area network (LAN) of communicating, intelligent workstations provides the users with enough localized computing power to perform tasks such as word-processing, program development, and other applicable implementation engineering work. The network with a particular node designated as the server, equipped with extra disk storage and one or more printers of different capabilities, provides the users with print server and file server functions. The research effort is directed toward investigation of commercially available microcomputer operating systems, CP/NET, CP/M, and MP/M. CP/M has become the industry-wide standard microcomputer operating system. MP/M is the multi-user, multiprogramming version of CP/M, and CP/NET is the networking interface between a user and his CP/M system and the server node operating with MP/M. CP/M, CP/NET, and MP/M are products and trademarks of Digital Research.

Figure 1. MADNET initial upgrade configuration

2 Background

The current configuration of the Management and Development Network (MADNET) is illustrated by the top portion of Figure 1. The system centers around dual MODCOMP 7870 computers, one of which supports the HAL/S software data base, three printers, and up to 26 users of the HAL/S software development effort. The other supports the work breakdown structure (WBS) data base, two printers,

and 28 management users. Each of the users has a MADNET standard, DEC VT-100 terminal, and runs the WBS software on the 7870, generating reports from the data base that are output to the printers. The VT-100 terminals were chosen since they could display 132 columns of output when generating reports, and are considered to be a constant in the upgrade process. With the existence of many VT-100 terminals which can be upgraded to CP/M personal computers with a commercially available product, and with the existence of many AODC computers, networking these systems together was primarily concerned with bringing up a server node with the desired peripherals, and fine tuning the network software for optimum performance.

3 Implementation effort

The lower portion of Figure 1 indicates the added CP/NET system. The dumb VT-100 terminals on the MODCOMP are upgraded with the addition of a Z80A CPU, 64-Kbytes RAM, floppy disk controller, parallel printer port, and four serial ports. These components are on two cards that are housed inside the VT-100 cabinet and connected to one or more floppy disk drives in a separate enclosure. The upgraded terminal runs CP/M at 4-MHz, and allows for dumb terminal emulation when needed for operating with the MODCOMP. The upgraded terminal can have an optional printer that serves as the CP/M list device. Communication to the network is provided through the additional serial I/O ports.

The central CP/NET node, the server, in the current prototype studies, consists of a Z80-based microcomputer running MP/M along with the CP/NET server software. The hardware is a Z80A running at 4-MHz with 64-Kbytes RAM, seven serial I/O ports, two single-sided single-density floppy disk drives, and one Morrow 26MB hard disk. The seven serial ports support two local consoles for MP/M operations, one serial printer port, and four serial ports for network communication. The communication with the nodes can occur at various baud rates. Currently, direct communications run at 9600 baud, and connections through modems run at 1200 baud.

Figure 2. Software/hardware layering

The software on the CP/NET server, as shown in Figure 2, consists of the standard MP/M system software and utilities, with additional CP/NET utilities and a customized extended I/O system (XIOS). The MP/M multiprogramming monitor control program provides a microcomputer environment with multiple consoles, each with multiprogramming capabilities. The standard MP/M features include spooling of print files to the printer, scheduling of programs to be run by date and time, and setting and viewing the current date and time. Each user at a console has the ability to start a process, detach the console from that process, and initiate another process. The ability of MP/M to support detached processes allows processes that are always in memory acting as a resource. The CP/NET software executes in this manner, providing support for node operations such as printer and disk accesses. The CP/NET server software adds capability to receive messages from the node and send messages to the nodes, with the ability to broadcast to all nodes. The XIOS provides the custom interface between the standard MP/M and CP/NET software and the hardware the system is running on.

The software on the CP/NET node consists of the standard CP/M and the network disk operating system (NDOS), which intercepts operating system calls that need to be redirected onto the network. The customized slave network I/O system (SNIOS) interfaces the standard software to the particular hardware configuration, and provides the communication over the network.

Figure 3. ISO Model mapping to CP/NET

The mapping of the CP/NET configuration to the International Organization for Standardization's Reference Model of Open Systems Interconnection (ISO OSI) is shown in Figure 3. The physical layer is the hardware that transfers the bits from one node to another, without regard for wether or not the collection of bits constitute a valid packet. The data layer picks the checksum out of the transmitted bitstream, and judges the integrity of the packet. These ISO Reference Model layers are implemented in the hardware and the customized XIOS in the server, and SNIOS in the nodes. The network, transport, session, and presentation layers of the Model are implemented in the standard CP/NET software, the NDOS in the nodes, and the node support processes in the server.

4 Operation of current prototype

The operation of the CP/NET local area network provides the user with print and file server functions. A typical session might be retrieving a file from the file server, performing the desired operations on the file such as editing or other computing, perhaps printing the file or processing it with printed report output, then restoring the file to the file server. Once the print file is generated, it is then sent to the print server for spooling and printing.

The applications of these functions include electronics mail, common software, off-loading of the editing function from the MODCOMP, and WBS off-loading and viewing. The utilization of data base management systems on the server provides for operations such as SRM, ECM, WAD, and action item accessing.

The use of the network as a print server allows operations to be performed with as little as possible impact on the user. The typical node has a slow and possibly noisy local printer or, more likely, has no printer at all. The local printer is used for print jobs that are short, or do not require a printer with special features not found on the local printer. To use the print server, the local user first equates the CP/M print device with the desired printer on the server, then uses the print device as usual. A program such as WordStar, generating printer output, would have that output intercepted by the NDOS, and rerouted to the network and on to the server where it would be automatically spooled for printing. When the printing is complete, the end-of-printfile message is sent to the server, triggering the despooling of the print file. The local user also uses the CP/M file transfer utility to send previously generated print files to the print server, where they are automatically spooled for printing.

The additional capabilities of the CP/NET must be stated in terms of utility to the users. For use as a file server, the network must be able to store the user's files such that they can be retrieved without undue delays. Speeds of the current configuration do not approach those of using the local disk, discouraging the use of the file server for temporary storage. The ease of this operation to the user also depends on the configuration of the user's hardware. If the node has a local printer that is letter quality and/or slow, sending large print files to the server is faster than printing the file at an effective baud rate of 300 to 1200 bps. If the local printer is fast and can produce the required quality, use of the print server would be of questionable value. The cost of equipping each node with such a printer may be prohibitive.

To determine the actual performance of the network file services, a "typical" file size was selected. The file is slightly larger than 6 Kbytes, which represents approximately four pages of typewritten material. Since a typical operation would include transferring from server to node, then node to server, both times were investigated. The nature of the environments of the server and the node made a significant difference in the times recorded. The critical times comprising the transfer consist of the time to get the data from the disk and transmit the data block (typically a 128-byte CP/M sector), and the time to store the block on the destination disk.

In the transmission from the server to the node, the transfer utility in the node, operating at the application layer in the ISO Model, starts the transfer by creating a new destination file on the local disk. The source file is requested to be opened, but this command is intercepted by the NDOS and redirected to the server over the network. The node then issues a series of "read next sector" commands which are also intercepted and passed along to the server. With each command, the server goes to the disk, reads the sector, and transmits the CP/M logical sector to the node. While the server disk sector is being read, the node processor, having nothing else to do, can take the data at almost a full 9600 baud. Once the 128 bytes of data has been received, the file transfer utility stores it in memory, from which it is written to the disk upon a full memory condition or end of file.

In the transmission from the node to the server, the operation is the reverse. The file transfer utility reads the file (or as much of the file as will fit) into memory. The utility then issues a series of commands that contain the 128-byte sectors, and request a "write next sector" operation. These commands are intercepted by the NDOS, and sent to the server over the network. Since the server must support activities of other nodes and from the local consoles, it cannot receive the data at a full 9600 baud. The reason for this is that characters arriving at a serial I/O port at 9600 baud arrive at 100microsecond intervals. With each character, an interrupt is generated to the server processor. The processor must identify the interrupting hardware, input the character, store it in the appropriate buffer, perform other housekeeping, then return to the interrupted process. This procedure consumes approximately 50 microseconds. It is easy to see that two nodes inputting data to the server could easily overrun the processor. To maintain reliable data transmission without losing data or having to retransmit many packets, a delay of approximately 8 milliseconds is inserted between each character that is transmitted. As a result, the best case transmission time for the "standard" 6-Kbyte file from the server to the node is approximately 40 seconds, and the node to server time is 85 seconds. The best case is when the server has no other node or local demands on it. With another node placing a similar demand on the server and with a local console actively listing a file, the server-tonode time goes from 40 up to 60 seconds, and the node-to-server time goes from 85 to 95 seconds. These times indicate some elasticity of the server in being able to accept the additional loading. With the 8-millisecond-per-character delay decreased to 6 milliseconds, the best-case server-to-node time decreases from 40 to 35 seconds, and the best-case node-to-server time decreases from 85 to 65 seconds. But when the load is added to the server, the communication breaks down due to lost messages. In an environment where there are up to 16 nodes making demands on the server, larger delay times for transmission to the server will be necessary.

5 Conclusions based on current status

The current implementation state of the prototype local area network has shown that the use of CP/NET software provides an acceptable networking environment in all respects, save one: speed of transmission time. The CP/NET software provides a standard, commercially available implementation of the ISO Model layers 3 through 6, providing full networking support for the application programs running on ISO Model layer seven. The customized implementations of layers 1 and 2 are solely dependent upon the available hardware for the physical layer and the implementations of the XIOS and SNIOS for the data link and network layers. The fact that the processor, particularly on the server but also on the nodes, spends so much time doing the byte-at-a-time I/O in these layers not only places a physical limitation on the network transfer speeds, but also deprives application processes of valuable compute time.

To make a CP/NET implementation of a local area network a viable alternative, the low-level communications tasks must be removed from the processor through the use of an intelligent or semi-intelligent communications front end.

6 Future directions

Communication with the nodes, which currently runs at an effective rate of less than 9600 baud, would be greatly enhanced by the addition of an intelligent data communications front end. The key problem is the fact that I/O to the network is performed through serial ports in a byte-at-a-time fashion. By performing the network I/O through a DMA operation to a board connected to Ethernet or some other high-speed medium such as broadband or fiberoptics, the communicating processes are relieved of much of the most time-consuming work. The processor, operating in the XIOS or SNIOS, no longer does the character I/O but, instead, simply indicates to the communications front end the memory location of the message. The communications front end takes the message through a DMA operation, sends it, receives the reply and places it in memory, only then notifying the processor that the reply has arrived. The processor, during this time, is free to perform other tasks. Operation of nodes with no local disks, previously unworkable due to the speed of the network, would now be more plausible.

The new version of MP/M, MP/M-II, provides additional features and capacities for the server node of the network. This version of the software supports up to 16 disk drives of up to 512 megabytes each, up to 16 printers, and up to 16 character I/O devices. Of the 16 character I/O devices, up to 8

can be local consoles to MP/M, and up to 15 can be CP/NET nodes. This version of MP/M provides file passwords, the ability to lock files and/or records within files for multiple user protection, automatic archive tagging for backing up files, and time/date stamping of files.

The development of software tools and managerial tools resident on the system will enhance the productivity of the users. The use of MP/M-II, a new version of MP/M, allows for up to 400 Kbytes of RAM, some of which could be used for a memory-resident data base manager and memory-resident virtual disk storage area. This arrangement would allow for the implementation of powerful data base management techniques.

New versions of CP/NET software will consist of ROMable system modules that allow the operation of network nodes that have no disk drives at all. This software, coupled with the higher-capacity communication links, will allow bringing needed managerial and developmental tools to users that have only a terminal to upgrade, and have no need for local disk storage.

Preliminary tests have indicated the plausibility of file transfer software that would interface the MODCOMP 7870 to the CP/NET server. This facility would provide needed off-loading of file editing, archiving and software development version control. Interfacing of CP/NET to the VAX 11/780 could be accomplished with the possible procurement of commercially available software packages that meet the corresponding ISO Model layers of the CP/NET software. Hardware and software drivers already exist that meet ISO Model layers 1 and 2 of the Ethernet specification for the VAX 11/780, MODCOMP, Multibus, and S-100 Bus.

EOF