
file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG0.TXT[2/6/2012 4:23:18 PM]

CPMPPUG0.WS4 (Edited by Emmanuel ROCHE.)

 Programmer's Utilities Guide
 for the
 CP/M-86
 Family of
 Operating Systems

 Copyright (c) 1983

 Digital Research
 P.O. Box 579
 160 Central Avenue
 Pacific Grove, CA 93950
 (408) 649-3896
 TWX 910 360 5001

 All Rights Reserved

COPYRIGHT

Copyright (c) 1982, 1983 by Digital Research. All rights reserved. No part of
this publication may be reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or computer language, in any
form or by any means, electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written permission of Digital Research,
Post Office Box 579, Pacific Grove, California, 93950.

This manual is, however, tutorial in nature. Thus, the reader is granted
permission to include the example programs, either in whole or in part, in his
own programs.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the
contents hereof and specifically disclaims any implied warranties of
merchantability or fitness for any particular purpose. Further, Digital
Research reserves the right to revise this publication and to make changes
from time to time in the content hereof without obligation of Digital Research
to notify any person of such revision or changes.

TRADEMARKS

CP/M-86 is a registered trademark of Digital Research. Concurrent CP/M-86,
MP/M-86, CB86, RASM-86, XREF-86, LINK-86, LIB-86, SID-86, and PL/I-86 are
trademarks of Digital Research. Intel is a registered trademark of Intel

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG0.TXT[2/6/2012 4:23:18 PM]

Corporation. MCS-86 is a trademark of Intel Corporation.

The <Programmer's Utilities Guide for the CP/M-86 Family of Operating System>
was prepared using the Digital Research TEX Text Formatter and printed in the
United States of America.

Second Edition: February 1983

Foreword

This manual describes several utility programs that aid programmers and system
designers in the software development process. Collectively, these utilities
allow you to assemble 8086 assembly language modules, link them together to
form a program that runs, and generate a cross-reference map of the variables
used in a program. You can also use these utilities to create and manage your
own libraries of subroutines and program modules, as well as create large
programs by breaking them into separate overlays.

The <Programmer's Utilities Guide> assumes that you are familiar with the
CP/M-86, MP/M-86, or Concurrent CP/M-86 operating system environment. It also
assumes that you are familiar with the basic elements of 8086 assembly
language programming.

RASM-86 is an assembler that translates 8086 assembly language statements
into a relocatable object file in the Intel format. RASM-86 facilities include
assembly of Intel 8086 mnemonics, assembly-time expressions, conditional
assembly, page formatting of listing files, and powerful code-macro
capabilities.

Section 1 describes the overall operation of RASM-86 and its optional run-time
parameters. Section 2 describes elements of RASM-86 assembly language,
including the character set, delimiters, constants, identifiers, operators,
expressions, and statements.

Section 3 describes the various RASM-86 directives that control the assembly
process. Section 4 contains a brief description of the RASM-86 instructions
for data transfer, mathematical operations, string manipulation, control
transfer, and processor control. Section 5 describes the code-macro facilities
of RASM-86.

Section 6 describes XREF-86, an assembly language cross-reference program used
with RASM-86. Section 7 describes LINK-86, the linkage editor that combines
relocatable object modules into an absolute file that runs under CP/M-86,
MP/M-86, or Concurrent CP/M-86. Section 8 describes how to use LINK-86 to
produce overlays. Section 9 explains how to use LIB-86, the software librarian
that creates and manages libraries.

The appendixes contain a complete list of error messages output by each of the
utility programs.

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG0.TXT[2/6/2012 4:23:18 PM]

Table of Contents

1 Introduction to RASM-86

1.1 Assembler Operation
1.2 Invoking RASM-86
1.3 Optional Run-time Parameters
1.4 Halting RASM-86

2 Elements of RASM-86 Assembly Language

2.1 RASM-86 Character Set
2.2 Tokens and Separators
2.3 Delimiters
2.4 Constants

2.4.1 Numeric Constants
2.4.2 Character Strings

2.5 Identifiers

2.5.1 Keywords
2.5.2 Symbols and Their Attributes

2.6 Operators

2.6.1 Operator Examples
2.6.2 Operator Precedence

2.7 Expressions
2.8 Statements

3 Assembler Directives

3.1 Segments
3.2 The Segment Directive

3.2.1 <segment name>
3.2.2 <align type>
3.2.3 <combine type>
3.2.4 <class name>

3.3 The GROUP Directive
3.4 The ORG Directive
3.5 The END Directive
3.6 The NAME Directive
3.7 The PUBLIC Directive
3.8 The EXTRN Directive
3.9 The IF, ELSE, and ENDIF Directives

3.10 The EQU Directive

3.11 The DB Directive

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG0.TXT[2/6/2012 4:23:18 PM]

3.12 The DW Directive
3.13 The DD Directive
3.14 The RS Directive
3.15 The RB Directive
3.16 The RW Directive
3.17 The RD Directive

3.18 The EJECT Directive
3.19 The NOIFLIST and IFLIST Directives
3.20 The NOLIST and LIST Directives
3.21 The PAGESIZE Directive
3.22 The PAGEWIDTH Directive
3.23 The SIMFORM Directive
3.24 The TITLE Directive
3.25 The INCLUDE Directive

4 The RASM-86 instruction Set

4.1 Introduction
4.2 Data Transfer Instructions
4.3 Arithmetic, Logical, and Shift Instructions
4.4 String Instructions
4.5 Control Transfer Instructions
4.6 Processor Control Instructions

5 Code-macro Facilities

5.1 Introduction to Code-macros
5.2 Specifiers
5.3 Modifiers
5.4 Range Specifiers
5.5 Code-macro Directives

5.5.1 SEGFIX
5.5.2 NOSEGFIX
5.5.3 MODRM
5.5.4 RELB and RELW
5.5.5 DB, DW and DD
5.5.6 DBIT

6 XREF-86

6.1 Introduction
6.2 Invoking XREF-86

7 LINK-86

7.1 Introduction
7.2 Invoking LINK-86
7.3 Halting LINK-86
7.4 Definitions
7.5 The Link Process

7.5.1 Phase 1 - Collection

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG0.TXT[2/6/2012 4:23:18 PM]

7.5.2 Phase 2 - Positioning

7.6 LINK-86 Command Options
7.7 CMD File Options

7.7.1 GROUP, CLASS, SEGMENT
7.7.2 ABSOLUTE, ADDITIONAL, MAXIMUM
7.7.3 ORIGIN
7.7.4 FILL/NOFILL

7.8 SYM File Options

7.8.1 LOCALS/NOLOCALS
7.8.2 LIBSYMS/NOLIBSYMS

7.9 MAP File Options
7.10 L86 File Options
7.11 Command Input File Options
7.12 I/0 Options

7.12.1 $Cd - Command
7.12.2 $Ld - Library
7.12.3 $Md - Map
7.12.4 $Od - Object
7.12.5 $Sd - Symbol

7.13 Command Line Errors

8 Overlays

8.1 Introduction
8.2 Writing Programs that Use Overlays

8.2.1 Overlay Method 1
8.2.2 Overlay Method 2
8.2.3 General Overlay Constraints

8.3 Command Line Syntax

9 LIB-86

9.1 LIB-86 Operation
9.2 Halting LIB-86
9.3 LIB-86 Command Options
9.4 Creating and Updating Libraries

9.4.1 Creating a New Library
9.4.2 Adding to a Library
9.4.3 Replacing a Module
9.4.4 Deleting a Module
9.4.5 Selecting a Module

9.5 Displaying Library Information

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG0.TXT[2/6/2012 4:23:18 PM]

9.5.1 Cross-reference File
9.5.2 Library Module Map
9.5.3 Partial Library Maps

9.6 LIB-86 Commands on Disk

9.7 Redirecting I/O

Appendixes

A Mnemonic Differences from the Intel Assembler
B Reserved words
C RASM-86 Instruction Summary
D Code-macro Definition Syntax
E Sample Program
F RASM-86 Error messages
G LINK-86 Error Messages
H LIB-86 Error Messages
I XREF-86 Error Messages

Tables

1-1. RASM-86 Run-time Parameters
1-2. RASM-86 Command Line Examples

2-1. Separators and Delimiters
2-2. Radix Indicators for Constants
2-3. String Constant Examples
2-4. Register Keywords
2-5. RASM-86 Operators
2-6. Precedence of Operations in RASM-86

3-1. Default Segment Names
3-2. Default Align Types
3-3. Default Class name for Segments

4-1. Operand Type Symbols
4-2. Flag Register Symbols
4-3. Data Transfer Instructions
4-4. Effects of Arithmetic Instructions on Flags
4-5. Arithmetic Instructions
4-6. Logical and Shift Instructions
4-7. String Instructions
4-8. Prefix Instructions
4-9. Control Transfer Instructions
4-10. Processor Control Instructions

5-1. Code-macro Operand Specifiers
5-2. Code-macro Operand Modifiers

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG0.TXT[2/6/2012 4:23:18 PM]

7-1. LINK-86 Usage of Class Names
7-2. LINK-86 Command Options
7-3. CMD File Option Parameters
7-4. Default Values for CMD File Options

9-1. LIB-86 Filetypes
9-2. LIB-86 Command Line Options

A-1. Mnemonic Differences
B-1. Reserved Words
C-1. RASM-86 Instruction Summary
F-1. RASM-86 Non-recoverable Errors
F-2. RASM-86 Diagnostic Error Messages
G-1. LINK-86 Error Messages
H-1. LIB-86 Error Messages
I-1. XREF-86 Error Messages

Figures

1-1. RASM-86 Source and object Files

6-1. XREF-86 Operation

7-1. LINK-86 Operation
7-2. Combining Segments with the Public Combine Type
7-3. Combining Segments with the Common Combine Type
7-4. Combining Segments with Stack Combination
7-5. Combining Segments using the Align Type
7-6. Paragraph Alignment
7-7. The Effect of Grouping Segments
7-7a. Segments without Group
7-7b. Segments within a Group

8-1. Using Overlays in a Large Program
8-1a. Without Overlays
8-1b. Separate Overlays
8-2. Tree Structure of Overlays

9-1. LIB-86 Operation

Listing

E-1. Sample Program APPE.A86

EOF

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG1.TXT[2/6/2012 4:23:18 PM]

Section 1

Introduction to RASM-86

1.1 Assembler Operation

RASM-86 processes an 8086 assembly language source file in three passes and
produces an 8086 machine language object file. RASM-86 can optionally produce
three output files from one source file as shown in Figure 1-1.

 LIST FILE
 +--> (FILENAME.LST)
 |
 SOURCE FILE ----> RASM-86 --+--> OBJECT FILE
 (FILENAME.A86) | (NAME.OBJ)
 |
 +--> SYMBOL FILE
 (FILENAME.SYM)

Figure 1-1. RASM-86 Source and Object Files

The LST list file contains the assembly language listing with any error
messages. The OBJ object file contains the object code in Intel 8086
relocatable object format. The SYM symbol file lists any user-defined symbols.

The three files have the same filename as the source file. For example, if the
name of the source file is BIOS88.A86, RASM-86 produces the files BIOS88.OBJ,
BIOS88.LST, and BIOS88.SYM.

1.2 Invoking RASM-86

Invoke RASM-86 with a command in the form:

 RASM86 source file ($ optional parameters)

The filespec has the form:

 [d:]filename[.typ]

where

d: is an optional drive specification denoting the source file's
 location. The drive specification is not needed if the source is on
 current drive.

filename is a valid CP/M-86 filename of 1 to 8 characters.

typ is a valid filetype of 1 to 3 characters, usually A86.

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG1.TXT[2/6/2012 4:23:18 PM]

RASM-86 accepts a source file with any filetype. If you omit the filetype from
the command line, RASM-86 searches the directory for the specified filename
with the filetype A86.

The following are some examples of valid RASM-86 commands:

 A>rasm86 b:bios88

 A>rasm86 bios88.a86 $ aa ob pb sb

 A>rasm86 d:test

Once invoked, RASM-86 responds with the message:

 --
 RASM-86 Assembler 04-Feb-87 CP/M-86 Version 1.4
 Serial No. XXXX-0000-654321 All Rights Reserved
 Copyright (C) 1982-86 Digital Research, EDC.
 --

where 1.4 is the RASM-86 version number. RASM-86 then attempts to open the
source file. If the file does not exist on the designated drive or does not
have the correct filetype, RASM-86 displays the message:

 NO FILE

and stops processing.

By default, RASM-86 creates the output files on the currently logged-in disk
drive. However, you can redirect the output files by using the optional
parameters, or by a drive specification in the source filename. In the latter
case, RASM-86 directs the output files to the drive specified in the source
filename.

When the assembly is complete, RASM-86 displays the message:

 END OF ASSEMBLY. NUMBER OF ERRORS: n USE FACTOR: pp%

The Use Factor indicates how much of the available Symbol Table space was
actually used during the assembly. The Use Factor is expressed as a decimal
percentage ranging from 0 to 99.

1.3 Optional Run-time Parameters

The dollar sign character, $, denotes an optional string of run-time
parameters. A parameter is a single-letter followed by a single-letter device
name specification. The parameters are shown in Table 1-1.

Table 1-1. RASM-86 Run-time Parameters

Parameter Specifies Valid Arguments

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG1.TXT[2/6/2012 4:23:18 PM]

--------- --------- ---------------
 A Source file device A, B, C, ..., P
 L Local symbols in object file O (upper-case "o", not zero)
 O object file device A ..., P, Z
 P List file device A ..., P, X, Y, Z
 S Symbol file device A ..., P, X, Y, Z

All the parameters are optional, and you can enter them in the command line in
any order. Enter the dollar sign only once at the beginning of the parameter
string. Spaces can separate parameters, but are not required. However, no
space is permitted between a parameter and its device name.

If you specify an invalid parameter in the parameter list, RASM-86 displays
the message:

 SYNTAX ERROR

RASM-86 then echoes the command tail up to the point where the error occurs
and follows with a question mark. (Appendix F contains the complete list of
RASM-86 error messages.)

A device name must follow the parameters A, O, P, and S. The devices are
labeled as follows:

 A, B, C, ... P or X, Y, Z

Device names A through P specify disk drives A through P, respectively. X
specifies the user console, CON:, Y specifies the list device, LST:, and Z
suppresses output, NUL:.

If you direct the output to the console, you can temporarily stop the display
at any time by typing a CTRL-S, and then restart it by typing CTRL-Q.

The LO parameter directs RASM-86 to include LOcal symbols in the object file
so that they appear in the SYM file created by LINK 86. Otherwise, only public
symbols appear in the SYM file. You can use the SYM file with the symbolic
instruction debugger, SID-86, to simplify program debugging.

Table 1-2. RASM-86 Command Line Examples

Command Line Result
------------ ------
rasm86 io Assembles file IO.A86 and produces IO.OBJ, IO.LST, and
 IO.SYM, all on the default drive.

rasm86 io.asm $ ad sz Assembles file IO.ASM on drive D and produces IO.LST
 and IO.OBJ. Suppresses the symbol file.

rasm86 io $ py sx Assembles file IO.A86, produces IO.OBJ, and sends
 listing directly to printer. Also outputs symbols on
 console.

rasm86 io $ lo Includes local symbols in IO.OBJ.

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG1.TXT[2/6/2012 4:23:18 PM]

1.4 Halting RASM-86

You can halt the assembly at any time by pressing any key on the console
keyboard. When you press a key, RASM-86 responds with the question:

 STOP RASM-86 (Y/N)?

If you type Y, RASM-86 immediately stops processing, and returns control to
the operating system. Type N to cause RASM-86 to resume processing.

EOF

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG2.TXT[2/6/2012 4:23:19 PM]

Section 2

Elements of RASM-86 Assembly Language

2.1 RASM-86 Character Set

RASM-86 recognizes a subset of the ASCII character set. The valid characters
are the alphanumerics, special characters, and non-printing characters shown
below:

 A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z
 a b c d e f g h i j k l m n o p q r s t u v w x y z
 0 1 2 3 4 5 6 7 8 9

 + - * / = () [] ; ' . ! , _ : @ $?

 space, tab, carriage return, and line-feed

RASM-86 treats lower-case letters as upper-case except within strings. Only
alphanumerics, special characters, and spaces can appear in a string.

2.2 Tokens and Separators

A token is the smallest meaningful unit of a RASM-86 source program, much as a
word is the smallest meaningful unit of a sentence. Adjacent tokens within the
source are commonly separated by a blank character or space. Any sequence of
spaces can appear wherever a single space is allowed. RASM-86 recognizes
horizontal tabs as separators, and interprets them as spaces. RASM-86 expands
tabs to spaces in the list file. The tab stops are at each eighth column.

2.3 Delimiters

Delimiters mark the end of a token, and add special meaning to the
instruction; separators merely mark the end of a token. When a delimiter is
present, separators need not be used. However, using separators after
delimiters can make your program easier to read.

Table 2-1 describes RASM-86 separators and delimiters. Some delimiters are
also operators; these are explained in greater detail in Section 2.6.

Table 2-1. Separators and Delimiters

Character Name Use
--------- ---- ---
 20H space separator

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG2.TXT[2/6/2012 4:23:19 PM]

 09H tab legal in source files, expanded in list files

 CR carriage-return terminates source lines

 LF line-feed legal after CR; if in source lines, it is
 interpreted as a space

 ; semicolon starts comment field

 : colon identifies a label; also used in segment
 override specification

 . period forms variables from numbers

 $ dollar sign notation for present value of location
 counter; legal, but ignored in identifiers or
 numbers

 + plus arithmetic operator for addition

 - minus arithmetic operator for subtraction

 * asterisk arithmetic operator for multiplication

 / slash arithmetic operator for division

 @ at legal in identifiers

 _ underscore legal in identifiers

 ! exclamation logically terminates a statement, allowing
 point multiple statements on a single source line

 ' apostrophe delimits string constants

2.4 Constants

A constant is a value known at assembly time that does not change while the
assembled program is running. It can be either an integer or a character
string.

2.4.1 Numeric Constants

A numeric constant is a 16-bit value in one of several bases. The base, called
the radix of the constant, is denoted by a trailing radix indicator. The radix
indicators are shown in Table 2-2.

Table 2-2. Radix Indicators for Constants

 Indicator Constant Type Base

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG2.TXT[2/6/2012 4:23:19 PM]

 --------- ------------- ----
 B or b binary 2
 O or o octal 8
 Q or q octal 8
 D or d decimal 10
 H or h hexadecimal 16

RASM-86 assumes that any numeric constant that does not terminate with a radix
indicator is a decimal constant. Radix indicators can be upper- or lower-case.

A constant is thus a sequence of digits followed by an optional radix
indicator where the digits are in the range for the radix. Binary constants
must be composed of zeros and ones. Octal digits range from 0 to 7; decimal
digits range from 0 to 9. Hexadecimal constants contain decimal digits and the
hexadecimal digits A (10D), B (11D), C (12D), D (13D), E (14D), and F (15D).
The leading character of a hexadecimal constant must be a decimal digit, so
that RASM-86 cannot confuse a hex constant with an identifier. The following
are valid numeric constants;

 1234 1234D 1100B 1111000011110000B
 1234H 0FFEH 3377O 13772Q
 33770 0FE3H 1234d 0ffffh

2.4.2 Character Strings

A character string constant is a string of ASCII characters delimited by
apostrophes. All RASM-86 instructions that allow numeric constants as
arguments accept only one- or two-character constants as valid arguments. All
instructions treat a one-character string as an 8-bit number, and a two-
character string as a 16-bit number. The value of the second character is in
the low-order byte, and the value of the first character is in the high-order
byte.

The numeric value of a character is its ASCII code. RASM-86 does not translate
case in character strings, so you can use both upper- and lower-case letters.
Note that RASM-86 allows only alphanumerics, special characters, and spaces in
character strings.

A DB directive is the only RASM-86 statement that can contain strings longer
than two characters (see Section 3.8). The string cannot exceed 255 bytes. If
you want to include an apostrophe in the string, you must enter it twice.
RASM-86 interprets the two keystrokes '' as a single apostrophe. Table 2-3
shows valid character strings and how they appear after processing.

Table 2-3. String Constant Examples

 String in source text As processed by RASM-86
 --------------------- -----------------------
 'a' a
 'Ab''Cd' Ab'Cd
 'I like CP/M' I like CP/M
 '''' '

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG2.TXT[2/6/2012 4:23:19 PM]

 'ONLY UPPER CASE' ONLY UPPER CASE
 'only lower case' only lower case

2.5 Identifiers

The following rules apply to all identifiers:

1) Identifiers can be up to 80 characters long.

2) The first character must be alphabetic, one of the special characters
 ?, @, or the underscore character _.

3) Any subsequent characters can be either alphabetic, numeric, or the
 special characters ?, @, _, or $. RASM-86 ignores the special
 character $ in identifiers, so that you can use it to improve
 readability in long identifiers. For example, RASM-86 treats the
 identifier interrupt$flag as interruptflag.

There are two types of identifiers. The first type are keywords that have
predefined meanings to RASM-86. The second type are symbols you define. The
following are all valid identifiers:

 NOLIST
 WORD
 AH
 Third_street
 How_are_you_today
 variable@number@1234567890

2.5.1 Keywords

Keywords are reserved for use by RASM-86; you cannot define an identifier
identical to a keyword. Appendix B contains the complete list of keywords.

RASM-86 recognizes five types of keywords:

 1) instructions
 2) directives
 3) operators
 4) registers
 5) predefined numbers

Section 4 defines the 8086 instruction mnemonic keywords and the actions they
initiate. Section 3 discusses RASM-86 directives. Section 2.6 defines
operators. Table 2-4 lists the RASM-86 keywords that identify 8086 registers.

Three keywords, BYTE, WORD, and DWORD, are predefined numbers. The values of
these numbers are 1, 2, and 4, respectively. RASM-86 also associates a Type
attribute with each of these numbers. The keyword's Type attribute is equal to
the keyword's numeric value.

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG2.TXT[2/6/2012 4:23:19 PM]

Table 2-4. Register Keywords

Register Size Numeric
 Symbol (bytes) Value Meaning
-------- ------- ----- -------
 AH 1 100B Accumulator High Byte
 BH 1 111B Base Register High Byte
 CH 1 101B Count Register High Byte
 DH 1 110B Data Register High Byte

 AL 1 000B Accumulator Low Byte
 BL 1 011B Base Register Low Byte
 CL 1 001B Count Register Low Byte
 DL 1 010B Data Register Low Byte

 AX 2 000B Accumulator (full word)
 BX 2 011B Base Register (full word)
 CX 2 001B Count Register (full word)
 DX 2 010B Data Register (full word)

 BP 2 101B Base Pointer
 SP 2 100B Stack Pointer

 SI 2 110B Source Index
 DI 2 111B Destination Index

 CS 2 01B Code Segment Register
 DS 2 11B Data Segment Register
 SS 2 10B Stack Segment Register
 ES 2 00B Extra Segment Register

2.5.2 Symbols and Their Attributes

A symbol is a user-defined identifier that has attributes specifying the kind
of information that the symbol represents. Symbols fall into three categories:

 1) variables
 2) labels
 3) numbers

Variables identify data stored at a particular location in memory. All
variables have the following three attributes:

 1) Segment tells which segment was being assembled when the variable was
 defined.

 2) Offset tells how many bytes there are between the beginning of the
 segment and the location of this variable.

 3) Type tells how many bytes of data are manipulated when this variable
 is referenced.

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG2.TXT[2/6/2012 4:23:19 PM]

A segment can be a code segment, a data segment, a stack segment, or an extra
segment, depending on its contents and the register that contains its starting
address (see Section 3.2). The segment's starting address is a number between
0 and 65,535D. This number indicates the paragraph in memory to which the
current segment is assigned, either when the program is assembled, when it is
linked, or when it is loaded.

The offset of a variable is the address of the variable relative to the
starting address of the segment. The offset can be any number between 0 and
0FFFFH or 65,535D.

A variable has one of the following Type attributes:

 BYTE
 WORD
 DWORD

BYTE specifies a one-byte variable; WORD, a two-byte variable, and DWORD, a
four-byte variable. The DB, DW, and DD directives define variables as these
three types (see Section 3). For example, a variable is defined when it
appears as the name for a storage directive:

 my_variable db 0

You can also define a variable as the name for an EQU directive referencing
another variable, as shown below:

 another-variable EQU my_variable

Labels identify locations in memory that contain instruction statements. They
are referenced with jumps or calls. All labels have two attributes, segment
and offset.

Label segment and offset attributes are essentially the same as variable
segment and offset attributes. A label is defined when it precedes an
instruction. A colon separates the label from instruction. For example,

 my_label: add ax,bx

A label can also appear as the name for an EQU directive referencing another
label. For example,

 another-label EQU my_label

You can also define numbers as symbols. RASM-86 treats a number symbol as
though you have explicitly coded the number it represents. For example,

 Number-five EQU 5
 MOV AL,Number-five

is equivalent to:

 MOV AL,5

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG2.TXT[2/6/2012 4:23:19 PM]

Section 2.6 describes operators and their effects on numbers and number
symbols.

2.6 Operators

RASM-86 operators fall into the following categories:

 arithmetic
 logical
 relational
 segment override
 variable manipulators and creators

Table 2-5 defines the RASM-86 operators. In this table, a and b represent two
elements of the expression. The validity column defines the type of operands
the operator can manipulate. The vertical bar character "|" separates
alternatives.

In this table, "number" refers to an absolute number which is a number whose
value is known at assembly-time, such as a numeric constant. A relocatable
number is a number whose value is unknown at assembly-time, because it can
change during the linking process. For example, the offset of a variable
located in a segment that will be combined with some other segments at link-
time is a relocatable number.

Table 2-5. RASM-86 Operators

Syntax Result Validity
------ ---------------------------- --------

Logical Operators

a XOR b bit-by-bit logical EXCLUSIVE a, b = number
 OR of a and b
a OR b bit-by-bit logical OR of a a, b = number
 and b
a AND b bit-by-bit logical AND of a a, b = number
 and b
NOT a logical inverse of a: all 0s a = 16-bit number
 become 1s, 1s become 0s

Relational Operators

a EQ b returns 0FFFFH if a = b, a, b = unsigned numbers; or
 otherwise 0 labels, variables, or
 relocatable numbers defined in
 the same segment
a LT b returns 0FFFFH if a < b, a, b = unsigned numbers; or
 otherwise 0 labels, variables, or
 relocatable numbers defined in
 the same segment

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG2.TXT[2/6/2012 4:23:19 PM]

a LE b returns 0FFFFH if a <= b, a, b = unsigned numbers; or
 otherwise 0 labels, variables, or
 relocatable numbers defined in
 the same segment
a GT b returns 0FFFFH if a > b, a, b = unsigned numbers; or
 otherwise 0 labels, variables, or
 relocatable numbers defined in
 the same segment
a GE b returns 0FFFFH if a >= b, a, b = unsigned numbers; or
 otherwise 0 labels, variables, or
 relocatable numbers defined in
 the same segment
a NE b returns 0FFFFH if a <> b, a, b = unsigned numbers; or
 otherwise 0 labels, variables, or
 relocatable numbers defined in
 the same segment

Arithmetic Operators

a + b arithmetic sum of a and b a = number, variable, label,
 relocatable number, or
 external
 b = number

a - b arithmetic difference of a = number, variable, label,
 a and b relocatable number or external
 b = number; or variable,
 label, or relocatable number
 in the same segment as "a"

a * b does unsigned multipli- a, b = number
 cation of a and b

a / b does unsigned division of a, b = number
 a and b

a MOD b returns remainder of a / b a, b = number

a SHL b returns the value that a, b = number
 results from shifting a
 to left by an amount b

a SHR b returns the value that a, b = number
 results from shifting a
 to the right by an
 amount b

+ a gives a a = number

- a gives 0-a a = number

Segment Override

<seg reg>: overrides assembler's choice <seg reg> = CS, DS, SS, or ES

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG2.TXT[2/6/2012 4:23:19 PM]

<addr exp> of segment register

Variable Manipulators, Creators

SEG a creates a number whose a = label | variable
 value is the segment
 value of the variable or
 label a
OFFSET a creates a number whose a = label | variable
 value is the offset
 value of the variable or
 label a
TYPE a creates a number. If a = label | variable
 the variable a is of type
 BYTE, WORD or DWORD, the
 value of the number is 1,
 2, or 4, respectively
LENGTH a creates a number whose a = variable
 value is the length
 attribute of the variable
 a. The length attribute
 is the number of bytes
 associated with the
 variable
LAST a if LENGTH a > 0, then a = variable
 LAST a = LENGTH a - 1;
 if LENGTH a = 0, then
 LAST a = 0
a PTR b creates virtual variable a = BYTE | WORD
 or label with type of a | DWORD
 and attributes of b b = <addr exp>

 offset attribute of a.
 Segment attribute is
 current data segment

$ creates label with offset no argument
 equal to current value of
 location counter; segment
 attribute is current
 segment

2.6.1 Operator Examples

Logical operators accept only numbers as operands. They perform the Boolean
logic operations AND, OR, XOR, and NOT. For example,

 00FC mask equ 0fch
 0080 signbit equ 80h
 0000 B180 mov cl,mask and signbit
 0002 B003 mov al,not mask

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG2.TXT[2/6/2012 4:23:19 PM]

Relational operators treat all operands as unsigned numbers. The relational
operators are EQ (equal), LT (less than), LE (less than or equal), GT (greater
than), GE (greater than or equal), and NE (not equal). Each operator compares
two operands and returns all ones (0FFFFH) if the specified relation is true,
and all zeros if it is not. For example,

 000A limit1 equ 10
 0019 limit2 equ 25
 0004 B8FFFF mov ax,limit1 lt limit2
 0007 B80000 mov ax,limit1 gt limit2

Addition and subtraction operators compute the arithmetic sum and difference
of two operands. The first operand can be a variable, label, or number. For
addition, the second operand must be a number. For subtraction, the second
operand can be a number, or it can be a variable or label in the same segment
as the first operand. When a number is added to a variable or label, the
result is a variable or label with an offset whose numeric value is the second
operand plus the offset of the first operand. Subtraction from a variable or
label returns a variable or label whose offset is the first operand's offset,
decremented by the number specified in the second operand. For example,

 0002 count equ 2
 0005 disp1 equ 5
 000A FF flag db offh
 000B 2EA00B00 mov al,flag+1
 000F 2E8A0E0F00 mov cl,flag+disp1
 0014 B303 mov bl,disp1-count

The multiplication and division operators *, /, MOD, SHL, and SHR accept only
numbers as operands. * and / treat all operators as unsigned numbers. For
example,

 0016 BE5500 mov si,256/3
 0019 B310 mov bl,64/4
 0050 buffersize equ 80
 001B B8A000 mov ax,buffersize * 2

Unary operators accept both signed and unsigned operators, as shown below.

 001E B123 mov cl,+35
 0020 B007 mov al,2--5
 0022 B2F4 mov dl,-12

When manipulating variables, RASM-86 decides which segment register to use.
You can override this choice by specifying a different register with the
segment override operator. The syntax for the override operator is

 segment register:address expression

where the segment register is CS, DS, SS, or ES. For example,

 0024 368B472D mov ax,ss:wordbuffer[bx]
 0028 268B0E5B00 mov cx,es:array
 002D 26A4 movs byte ptr [di],es:[si]

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG2.TXT[2/6/2012 4:23:19 PM]

A variable manipulator creates a number equal to one attribute of its variable
operand. SEG extracts the variable's segment value; OFFSET, its offset value;
TYPE, its type value (1, 2, or 4), and LENGTH, the number of bytes associated
with the variable. LAST compares the variable's LENGTH with zero. If LENGTH is
greater than zero, LAST decrements LENGTH by one. If LENGTH equals zero, LAST
leaves it unchanged. Variable manipulators accept only variables as operators.
For example,

 002D 000000000000 wordbuffer dw 0,0,0
 0033 0102030405 buffer db 1,2,3,4,5
 0038 B80500 mov ax,length buffer
 003B B80400 mov ax,last buffer
 003E B80100 mov ax,type buffer
 0041 B80200 mov ax,type wordbuffer

The PTR operator creates a virtual variable or label valid only during the
execution of the instruction. PTR makes no changes to either of its operands.
The temporary symbol has the same Type attribute as the left operator, and all
other attributes of the right operator as shown below.

 0044 C60705 mov byte ptr [bx], 5
 0047 8A07 mov al,byte ptr [bx]
 0049 FF04 inc word ptr [si]

The period operator "." creates a variable in the current Data segment. The
new variable has a segment attribute equal to the current Data segment and an
offset attribute equal to its operand.

Its operand must be a number. For example,

 004B A10000 mov ax, .0
 004E 268B1E0040 mov bx, es: .4000h

The dollar sign operator "$" creates a label with an offset attribute equal to
the current value of the location counter. The label segment value is the same
as the current segment. This operator takes no operand. For example,

 0053 E9FDFF jmp $
 0056 EBFE jmps $
 0058 E9FD2F jmp $+3000h

2.6.2 Operator Precedence

Expressions combine variables, labels, or numbers with operators. RASM-86
allows several kinds of expressions (see Section 2.7). This section defines
the order in which RASM-86 performs operations if more than one operator
appears in an expression.

RASM-86 evaluates expressions from left to right, but evaluates operators with
higher precedence before operators with lower precedence. When two operators
have equal precedence, RASM-86 evaluates the leftmost operator first. Table 2-

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG2.TXT[2/6/2012 4:23:19 PM]

6 shows RASM-86 operators in order of increasing precedence.

You can use parentheses to override the precedence rules. RASM-86 first
evaluates the part of an expression enclosed in parentheses. If you nest
parentheses, RASM-86 evaluates the innermost expressions first. For example,

 15/3 + 18/9 = 5 + 2 = 7
 15/(3 + 18/9) = 15/(3 + 2) = 15/5 = 3
 (20*4) + ((27/9 - 4/2)) = (20*4) + (3 - 2) = 80 + 1 = 81

Note that RASM-86 allows five levels of nested parentheses.

Table 2-6. Precedence of Operations in RASK-86

Order Operator Type Operators
----- ------------- ---------
 1 Logical XOR, OR
 2 Logical AND
 3 Logical NOT
 4 Relational EQ, LT, LE, GT, GE, NE
 5 Addition/subtraction +, -
 6 multiplication/division *, /, MOD, SHL, SHR
 7 Unary +, -
 8 Segment override <segment override>:
 9 Variable manipulators, SEG, OFFSET, PTR,
 creators TYPE, LENGTH, LAST
 10 Parentheses/brackets (), []
 11 Period and Dollar . $

2.7 Expressions

RASM-86 allows address, numeric, and bracketed expressions. An address
expression evaluates to a memory address and has three components:

 1) a segment value
 2) an offset value
 3) a type

Both variables and labels are address expressions. An address expression is
not a number, but its components are numbers. You can combine numbers with
operators such as PTR to make an address expression.

A numeric expression evaluates to a number. It contains no variables or
labels, only numbers and operands.

Bracketed expressions specify base- and index-addressing modes. The base
registers are BX and BP, and the index registers are DI and SI. A bracketed
expression can consist of a base register, an index register, or both.

Use the "+" operator between a base register and an index register to specify
both base- and index-register addressing. For example,

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG2.TXT[2/6/2012 4:23:19 PM]

 mov variable[bx],0
 mov ax,[bx+di]
 mov ax,[si]

2.8 Statements

Statements can be instructions or directives. RASM-86 translates instructions
into 8086 machine language instructions. RASM-86 does not translate directives
into machine code. Directives simply tell RASM-86 to perform certain
functions.

You must terminate each assembly language statement with a carriage-return
(CR) and line-feed (LF), or with an exclamation point. RASM-86 treats these as
an end-of-line. You can write multiple assembly language statements without
comments on the same physical line, and separate them with exclamation points.
Only the last statement on a line can have a comment because the comment field
extends to the physical end of the line.

Section 3 describes the RASM-86 instruction set in detail. The syntax for an
instruction statement is

 [label:] [prefix] mnemonic [operand(s)] [;comment]

where the fields are defined as:

label A symbol followed by a colon defines a label at the current
 value of the location counter in the current segment. This
 field is optional.

prefix Certain machine instructions such as LOCK and REP can prefix
 other instructions. This field is optional.

mnemonic A symbol defined as a machine instruction, either by RASM-86
 or by an EQU directive. This field is optional unless preceded
 by a prefix instruction. If you omit this field, no operands
 can be present, although the other fields can appear. Section
 4 describes the RASM-86 mnemonics.

operand(s) An instruction mnemonic can require other symbols to represent
 operands to the instruction. Instructions may have zero, one,
 or two operands.

comment Any semicolon appearing outside a character string begins a
 comment. A comment ends with a carriage-return. This field is
 optional, but you should use comments to facilitate program
 maintenance and debugging.

Section 3 describes the RASM-86 directives. The syntax for a directive
statement is

 [name] directive operand(s) [;comment]

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG2.TXT[2/6/2012 4:23:19 PM]

where the fields are defined as:

name Names are legal for CSEG, DSEG, ESEG, SSEG, GROUP, DB, DW,
 DD, RB, RW, RD, RS, and EQU directives. The name is required
 for the EQU and GROUP directives, but it is optional for the
 other directives. Unlike the label field of an instruction,
 the name field of a directive is never terminated with a
 colon.

directive One of the directive keywords defined in Section 3.

operand(s) Analogous to the operands for instruction mnemonics. Some
 directives, such as DB and DW allow any operand; others have
 special requirements.

comment Exactly as defined for instruction statements.

EOF

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG3.TXT[2/6/2012 4:23:19 PM]

Section 3

Assembler Directives

Assembler directives control the assembly process by performing functions such
as assigning portions of code to logical segments, requesting conditional
assembly, defining data items, allocating memory, specifying listing file
format, and including source text from external files.

Section 2.8 shows the general syntax for directive statements. The following
sections give the specific syntax and explanation for each directive
statement. In the general syntax line for each statement, square brackets []
enclose optional arguments, and user-supplied arguments are shown in angle
brackets <>.

Assembler directives are grouped into the following categories:

segment control:
 CSEG DSEG ESEG SSEG GROUP

linkage control:
 NAME PUBLIC EXTRN END

conditional assembly:
 IF ELSE ENDIF

symbol definition:
 EQU

data definition and memory allocation:
 DB DW DD RS RB RW RD

output listing control:
 EJECT IFLIST/NOIFLIST LIST/NOLIST PAGESIZE
 PAGEWIDTH SIMFORM TITLE

miscellaneous:
 INCLUDE ORG

3.1 Segments

The 8086 CPU can address one megabyte (1,048,576 bytes) of memory. This entire
address space can be subdivided into an arbitrary number of smaller units
called segments. These can be up to 64K bytes in length. Each segment is
comprised of contiguous memory locations that make up a logically independent
and separately addressable unit. Each segment must have a base address that
specifies its starting location in the memory space. Each segment base address
must begin on a boundary divisible by 16, but there are no other restrictions
on segment boundaries.

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG3.TXT[2/6/2012 4:23:19 PM]

Every location in the memory space has a physical address and a logical
address. A physical address is a 20-bit value that specifies a unique byte
location within the memory space. A logical address is the combination of a
16-bit segment base value and a 16-bit offset value. The offset value is the
address relative to the base of the segment. At run-time, every memory
reference is the combination of a segment base value and an offset value that
produces a 20-bit physical address. Note that a physical address can be
contained in more than one logical segment.

The CPU can access four segments at a time. The base address of each segment
is contained in a segment register. The CS register points to the current Code
segment that contains instructions. The DS register points to the current Data
segment that usually contains program variables. The SS register points to the
current Stack segment where stack operations such as temporary storage or
parameter passing are performed. The ES register points to the current Extra
segment that also typically contains data.

RASM-86 segment directives allow you to divide your assembly language source
program into segments that correspond to the memory segments into which the
resulting object code is eventually loaded at run-time.

The size and type of segments you use in a program determine the type of
memory execution model used by the operating system. You can intermix all of
the code and data in a single 64K segment, or you can have separate Code and
Data segments, each up to 64K in length. With RASM-86, you can also create an
arbitrary number of Code, Data, Stack, and Extra segments to more fully use
the address space of the 8086 processor. You can therefore have more than 64K
of code or data by using several segments and managing the segments with the
assembler directives.

3.2 The Segment Directive

Every instruction and variable in a program must be contained in a segment.
Instruction statements must be assigned to the Code Segment, but directive
statements can be assigned to any segment. Create a segment and name it by
using the following Segment directive.

 [<segment name>]<segment>[<align type>][<combine type>][<'class name'>]

where <segment> is one of the following:

 CSEG (Code Segment)
 DSEG (Data Segment)
 ESEG (Extra Segment)
 SSEG (Stack Segment)

For example,

 DATASEG DSEG PARA 'DATA'
 CODE1 CSEG BYTE
 XYZ DSEG WORD COMMON

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG3.TXT[2/6/2012 4:23:19 PM]

3.2.1 <segment name>

The <segment name> can be any valid RASM-86 identifier. If you do not specify
a <segment name>, RASM-86 supplies a default name. Table 3-1 shows the default
names.

Table 3-1. Default Segment Names

Segment Directive Default Name
----------------- ------------
 CSEG CODE
 DSEG DATA
 ESEG EXTRA
 SSEG STACK

Once you use a Segment directive, RASM-86 assigns statements to the specified
segment until it encounters another Segment directive. RASM-86 combines all
segments with the same <segment name>, even if they are not contiguous in the
source code.

3.2.2 <align type>

The <align type> allows you to specify to the linkage editor a particular
boundary for the segment. The linkage editor uses this alignment information
to combine segments when it produces an executable file. You can specify one
of four different types:

 BYTE (byte alignment)
 WORD (word alignment)
 PARA (paragraph alignment)
 PAGE (page alignment)

If you specify an <align type>, it must be with the first definition of the
segment. You can omit the <align type> on subsequent Segment directives that
name the same segment, but you cannot change the original value. If you do not
specify an <align type>, RASM-86 supplies a default value. Table 3-2 shows the
default values.

Table 3-2. Default Align Types

Segment Directives Default Align Type
------------------ ------------------
 CSEG BYTE
 DSEG WORD
 ESEG WORD
 SSEG WORD

BYTE alignment means that the segment begins at the next byte following the
previous segment.

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG3.TXT[2/6/2012 4:23:19 PM]

WORD alignment means that the segment begins on an even boundary. An even
boundary is a hexadecimal address ending in 0,2,4,6,8,A,C, or E. In certain
cases, WORD alignment can increase execution speed because the CPU takes only
one memory cycle when accessing word-length variables within a segment aligned
on an even boundary. Two cycles are needed if the boundary is odd.

PARA (paragraph) alignment means that the segment begins on a paragraph
boundary, that is, an address whose four low-order bits are zero.

PAGE alignment means that the segment begins on a page boundary, an address
whose low-order byte is zero.

3.2.3 <combine type>

The <combine type> determines how the linkage editor can combine the segment
with other segments with the same <segment name>. You can specify one of five
different types:

 1) PUBLIC
 2) COMMON
 3) STACK
 4) LOCAL
 5) nnnn (absolute segment)

If you specify a <combine type>, it must be with the first definition of the
segment. You can omit the <combine type> on subsequent Segment directives that
name the same segment, but you cannot change the original type. If you do not
specify a <combine type>, RASM-86 supplies the default type, PUBLIC.

PUBLIC means that the linkage editor can combine the segment with other
segments that have the same name. All such segments with <combine type> PUBLIC
are concatenated in the order they are encountered by the linkage editor, with
gaps, if any, determined by the <align type> of the segment.

COMMON means that the segment shares identical memory locations with other
segments of the same name. offsets inside a COMMON segment are absolute unless
the segment is contained in a GROUP (see Section 3.3).

The STACK <combine type> is similar to PUBLIC, in that the storage allocated
for STACK segments is the sum of the STACK segments from each module. But,
instead of concatenating segments with the same name, the linkage editor
overlays STACK segments against high memory, because stacks grow downward from
high addresses to low addresses when the program runs.

LOACL means that the segment is local to the program being assembled, and the
linkage editor will not combine it with any other segments.

For an absolute segment, RASM-86 determines the load-time position of the
segment during assembly, rather than allowing its position to be determined by
the linkage editor, or at load-time.

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG3.TXT[2/6/2012 4:23:19 PM]

3.2.3 <class name>

The <class name> can be any valid RASM-86 identifier. The <class name> is a
means of identifying segments that are to be placed in the same section of the
CMD file created by LINK-86. Unless overriden by a GROUP directive or an
explicit command in the LINK-86 command line, LINK-86 places segments into the
CMD file it creates as shown in Table 3-3.

Table 3-3. Default Class Name for Segments

Segment Directive Default Class Name Section of CMD File
----------------- ------------------ -------------------
 CSEG CODE CODE
 DSEG DATA DATA
 ESEG EXTRA EXTRA
 SSEG STACK STACK

3.3 The GROUP Directive

 <group name> GROUP <segment name 1>,<segment name 2>

The GROUP directive instructs RASM-86 to combine the named segments into a
collection called a group whose length can be up to 64K. Offsets within any of
the segments of a group are relative to the beginning of the group rather than
the beginning of the segment.

The order of the <segment names> in the directive is the order in which the
linkage editor arranges the segments in the CMD file.

3.4 The ORG Directive

 ORG <numeric expression>

The ORG directive sets the offset of the location counter in the current
segment to the value specified in the numeric expression. You must define all
elements of the expression before using the ORG directive, and the expression
must evaluate to an absolute number.

The <numeric expression> is relative to the location counter within the
segment at load-time. Thus, if you use an ORG statement in a segment that the
linkage editor does not combine with other segments at link-time, such as
LOCAL or absolute segments, then <numeric expression> indicates the actual
offset within the segment.

However, if the segment is combined with others at link-time, such as PUBLIC
segments, then <numeric expression> is not an absolute offset. It is relative
to the beginning part of the segment from the program being assembled.

Use of groups can result in more efficient code, because a number of segments

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG3.TXT[2/6/2012 4:23:19 PM]

can be addressed from a single segment register without having to change the
contents of the segment register.

3.5 The END Directive

 END [<start label>]

The END directive marks the end of a source file. RASM-86 ignores any
subsequent lines. The END directive is optional, and if omitted, RASM-86
processes the source file until it finds an end-of-file character (1AH).

The optional <start label> serves two purposes. First, it defines the current
module as the main program. When LINK-86 links modules together, only one can
be a main program. The <start label> also indicates where the program is to
start executing after it is loaded. If <start label> is omitted, program
execution begins at the beginning of the first CSEG from the files linked.

3.6 The NAME Directive

 NAME '<module name>'

The NAME directive assigns a name to the object module generated by RASM-86.
The '<module name>' can be any valid identifier. If you do not specify a
module name with the NAME directive, RASM-86 assigns the source filename to
the object module. Both LINK-86 and LIB-86 use object module names to identify
object modules.

3.7 The PUBLIC Directive

 PUBLIC <name>[,<name>,...]

The PUBLIC directive instructs RASM-86 that the names defined as PUBLIC can be
referenced by other programs which are linked together. Each name must be a
label, variable, or a number that is defined within the program being
assembled.

3.8 The EXTRN Directive

 EXTRN <external id>[,<external id>,...]

The EXTRN directive tells RASM-86 that each <external id> can be referenced in
the program being assembled but is defined in some other program. The
<external id> consists of two parts: a symbol and a type. The symbol can be a
variable, label, or number.

Type is one of the following:

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG3.TXT[2/6/2012 4:23:19 PM]

 Variables:

 BYTE
 WORD
 DWORD

 Labels:

 NEAR
 FAR

 Numbers:

 ABS

For example,

 EXTRN FCB:BYTE,BUFFER:WORD,INIT:FAR,MAX:ABS

RASM-86 determines the Segment attribute of external variables and labels from
the segment containing the EXTRN directive. Thus, an EXTRN directive for a
given symbol must appear within the segment in which the symbol is defined in
some other module.

3.9 The IF, ELSE, and ENDIF Directives

 IF <numeric expression>
 < source line 1 >
 < source line 2 >
 ...
 < source line n >
 [ELSE]
 < alternate source line 1 >
 < alternate source line 2 >
 ...
 < alternate source line n >
 ENDIF

The IF and ENDIF directives allow you to conditionally include or exclude a
group of source lines from the assembly. The optional ELSE directive allows
you to specify an alternative set of source lines. You can use these
conditional directives to assemble several different versions of a single
source program. You can nest IF directives to five levels.

When RASM-86 encounters an IF directive, it evaluates the numeric expression
following the IF keyword. You must define all elements in the numeric
expression before you use them in the IF directive. If the value of the
expression is nonzero, then RASM-86 assembles <source line 1> through <source
line n>. If the value of the expression is zero, then RASM-86 lists all the
lines, but does not assemble them.

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG3.TXT[2/6/2012 4:23:19 PM]

If the value of the expression is zero, and you specify an ELSE directive
between the IF and ENDIF directives, RASM-86 assembles the alternative source
lines.

3.10 The EQU Directive

 symbol EQU <numeric expression>
 symbol EQU <address expression>
 symbol EQU <register>
 symbol EQU <instruction mnemonic>

The EQU (equate) directive assigns values and attributes to user-defined
symbols. Do not put a colon after the symbol name. once you define a symbol,
you cannot redefine the symbol with a subsequent EQU or another directive. You
must also define any elements used in numeric or address expressions before
using the EQU directive.

The first form assigns a numeric value to the symbol. The second assigns a
memory address. The third form assigns a new name to an 8086 register. The
fourth form defines a new instruction subset. The following are examples of
these four forms.

 0005 FIVE EQU 2*2+1
 0033 NEXT EQU BUFFER
 0001 COUNTER EQU CX
 MOVVV EQU MOV
 005D 8BC3 MOVVV AX,BX

3.11 The DB Directive

 [symbol] DB <numeric expression>[,<numeric expression>,...]
 [symbol] DB <string constant>[,<string constant>,...]

The DB directive defines initialized storage areas in byte format. RASM-86
evaluates numeric expressions to 8-bit values and sequentially places them in
the object file. RASM-86 places string constants in the object file according
to the rules defined in Section 2.4.2. Note that RASM-86 does not perform
translation from lower- to upper-case within strings.

The DB directive is the only RASM-86 statement that accepts a string constant
longer than two bytes. You can add multiple expressions or constants,
separated by commas, to the definition as long as it does not exceed the
physical line length.

Use an optional symbol to reference the defined data area throughout the
program. The symbol has four attributes: the segment and offset attributes
determine the symbol's memory reference; the type attribute specifies single
bytes, and the length attribute tells the number of bytes reserved.

The following statements show DB directives with symbols:

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG3.TXT[2/6/2012 4:23:19 PM]

 005F 43502F4D2073 TEXT DB 'CP/M system',0
 797374656D00
 006B AA DB 'a' + 80H
 006C 0102030405 X DB 1,2,3,4,5
 0071 B90C00 MOV CX,LENGTH TEXT

3.12 The DW Directive

 [symbol] DW <numeric expression>[,<numeric expression>,...]
 [symbol] DW <string constant>[,<string constant>,...]

The DW directive initializes two-byte words of storage. The DW directive
initializes storage the same way as the DB directive, except that each numeric
expression, or string constant, initializes two bytes of memory with the low-
order byte stored first. The DW directive does not accept string constants
longer than two characters.

The following are examples of DW statements:

 0074 0000 CNTR DW 0
 0076 63C166C169C1 JMPTAB DW SUBR1,SUBR2,SUBR3
 007C 010002000300 DW 1,2,3,4,5,6
 040005000600

3.13 The DD Directive

 [symbol] DD <address expression>[,<address expression>,...]

The DD directive initializes four bytes of storage. The offset attribute of
the address expression is stored in the two lower bytes; the segment attribute
is stored in the two upper bytes. Otherwise, DD follows the same procedure as
DB. For example,

 CSEG
 0000 6CC100006FC1 LONG_JMPTAB DD ROUT1,ROUT2
 0000
 0008 72C1000075C1 DD ROUT3,ROUT4
 0000

3.14 The RS Directive

 [symbol] RS <numeric expression>

The RS directive allocates storage in memory but does not initialize it. The
numeric expression gives the number of bytes to reserve. Note that the RS
directive does not give a type Byte attribute to the optional symbol. For
example,

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG3.TXT[2/6/2012 4:23:19 PM]

 0010 BUF RS 80
 0060 RS 4000H
 4060 RS 1

3.15 The RB Directive

 [symbol] RB <numeric expression>

The RB directive allocates byte storage in memory without any initialization.
The RB directive is identical to the RS directive except that it gives the
type Byte attribute to the optional symbol.

3.16 The RW Directive

 [symbol] RW <numeric expression>

The RW directive allocates two-byte word storage in memory but does not
initialize it. The numeric expression gives the number of words to be
reserved. For example,

 4061 BUFF RW 128
 4161 RW 4000H
 C161 RW 1

3.17 The RD Directive

 [symbol] RD <numeric expression>

The RD directive reserves a double word (four bytes) of storage but does not
initialize it. For example,

 C163 DWTAB RD 4
 C173 RD 1

3.18 The EJECT Directive

 EJECT

The EJECT directive performs a page eject during printout. The EJECT directive
is printed on the first line of the next page.

3.19 The NOIFLIST and IFLIST Directives

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG3.TXT[2/6/2012 4:23:19 PM]

 NOIFLIST
 IFLIST

The NOIFLIST directive suppresses the printout of the contents of conditional
assembly blocks that are not assembled. The IFLIST directive resumes printout
of these blocks.

3.20 The NOLIST and LIST Directives

 NOLIST
 LIST

The NOLIST directive suppresses the printout of lines following the directive.
The LIST directive restarts the listing.

3.21 The PAGESIZE Directive

 PAGESIZE <numeric expression>

The PAGESIZE directive defines the number of lines on each printout page. The
default page size is 66 lines.

3.22 The PAGEWIDTH Directive

 PAGEWIDTH <numeric expression>

The PAGEWIDTH directive defines the number of columns printed across the page
of the listing file. The default page width is 120 unless the listing is
routed directly to the console; then the default page width is 79.

3.23 The SIMFORM Directive

 SIMFORM

The SIMFORM directive replaces a form-feed (FF) character in the list file
with the correct number of line-feeds (LF). Use this directive when directing
a list file to a printer that is unable to interpret the form-feed character.

3.24 The TITLE Directive

 TITLE <string constant>

RASM-86 prints the string constant defined by a TITLE directive statement at
the top of each printout page in the listing file. The title character string

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG3.TXT[2/6/2012 4:23:19 PM]

can be up to 30 characters in length. For example,

 TITLE 'CP/M monitor'

3.25 The INCLUDE Directive

 INCLUDE <filename>

The INCLUDE directive includes another RASM-86 source file in the source text.
For example,

 INCLUDE EQUALS.A86

You can use the INCLUDE directive when the source program is large and resides
in several files. Note that you cannot nest INCLUDE directives; that is, a
source file called by an INCLUDE directive cannot contain another INCLUDE
directive.

If the file named in the INCLUDE directive does not have a filetype, RASM-86
assumes the filetype to be A86. If you do not specify a drive name with the
file, RASM-86 assumes the drive containing the source file.

EOF

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG4.TXT[2/6/2012 4:23:20 PM]

Section 4

The RASM-86 Instruction Set

4.1 Introduction

The RASM-86 instruction set includes all 8086 machine instructions. Section
2.8 gives the general syntax for instruction statements. The following
sections define the specific syntax and required operand types for each
instruction, without reference to labels or comments. The instruction
definitions are presented in tables for easy reference.

For a more detailed description of each instruction, see the Intel MCS-86
Assembly Language Reference Manual. For descriptions of the instruction bit
patterns and operations, see the Intel MCS-86 User's Manual.

The instruction-definition tables present RASM-86 instruction statements as
combinations of mnemonics and operands. A mnemonic is a symbolic
representation for an instruction; its operands are its required parameters.
Instructions can take zero, one, or two operands. When two operands are
specified, the left operand is the instruction's destination operand, and the
two operands are separated by a comma.

The instruction-definition tables organize RASM-86 instructions into
functional groups. In each table, the instructions are listed alphabetically.
Table 4-1 shows the symbols used in the instruction-definition tables to
define operand types.

Table 4-1. Operand Type Symbols

Symbol Operand Type
------ ------------
numb any numeric expression

numb8 any numeric expression that evaluates to an 8-bit number

acc accumulator register, AX or AL

reg any general purpose register that is not a segment register

reg16 a 16-bit general purpose register that is not a segment
 register

segreg any segment register: CS, DS, SS, or ES

mem any address expression with or without base- and/or index-
 addressing modes, such as:
 variable
 variable+3
 variable[bx]

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG4.TXT[2/6/2012 4:23:20 PM]

 variable[SI]
 variable[BX+SI]
 [BX]
 [BP+DI]

simpmem any address expression without base- and index-
 addressing modes, such as:
 variable
 variable+4

mem|reg any expression symbolized by reg or mem

mem|regl6 any expression symbolized by mem|reg, but must be 16 bits

label any address expression that evaluates to a label

lab8 any label that is within +/- 128 bytes distance from the
 instruction

The 8086 CPU has nine single-bit Flag registers that reflect the state of the
processor. You cannot access these registers directly, but you can test them
to determine the effects of an executed instruction upon an operand or
register. The effects of instructions on Flag registers are also described in
the instruction-definition tables, using the symbols shown in Table 4-2 to
represent the nine Flag registers.

Table 4-2. Flag Register Symbols

Symbol Meaning
------ -------
 AF Auxiliary Carry Flag
 CF Carry Flag
 DF Direction Flag
 IF Interrupt Enable Flag
 OF Overflow Flag
 PF Parity Flag
 SF Sign Flag
 TF Trap Flag
 ZF Zero Flag

4.2 Data Transfer Instructions

There are four classes of data transfer operations:

 1) general purpose
 2) accumulator specific
 3) address-object
 4) flag

Only SAHF and POPF affect flag settings. Note in Table 4-3 that if acc = AL, a
byte is transferred, but if acc = AX, a word is transferred.

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG4.TXT[2/6/2012 4:23:20 PM]

Table 4-3. Data Transfer Instructions

Syntax Result
------ ------
IN acc,numb8 transfer data from input port given by numb8 (0-255)
 to accumulator
IN acc,DX transfer data from input port given by DX register (0-
 0FFFFH) to accumulator
LAHF transfer flags to the AH register
LDS reg16,mem transfer the segment part of the memory address (DWORD
 variable) to the DS segment register; transfer the
 offset part to a general purpose 16-bit register
LEA reg16,mem transfer the offset of the memory address to a 16-bit
 register
LES reg16,mem transfer the segment part of the memory address to the
 ES segment register; transfer the offset part to a 16-
 bit general purpose register
MOV reg,mem|reg move memory or register to register
MOV mem|reg,reg move register to memory or register
MOV mem|reg,numb move immediate data to memory or register
MOV segreg,mem|reg16 move memory or register to segment register
MOV mem|reg16,segreg move segment register to memory or register
OUT numb8,acc transfer data from accumulator to output port (0-255)
 given by numb8
OUT DX,acc transfer data from accumulator to output port (0-
 0FFFFH) given by DX register
POP mem|reg16 move top stack element to memory or register
POP segreg move top stack element to segment register; note that
 CS segment register is not allowed
POPF transfer top stack element to flags
PUSH mem|reg16 move memory or register to top stack element
PUSH segreg move segment register to top stack element
PUSHF transfer flags to top stack element
SAHF transfer the AH register to flags
XCHG reg,mem|reg exchange register and memory or register
XCHG mem|reg,reg exchange memory or register and register
XLAT mem|reg perform table lookup translation, table given by
 mem|reg, which is always BX. Replaces AL with AL
 offset from BX.

4.3 Arithmetic, Logical, and Shift Instructions

The 8086 CPU performs the four basic mathematical operations in several ways.
It supports both 8- and 16-bit operations, and also signed and unsigned
arithmetic.

Six of the nine flag bits are set or cleared by most arithmetic operations to
reflect the result of the operation. Table 4-4 summarizes the effects of
arithmetic instructions on flag bits. Table 4-5 defines arithmetic
instructions. Table 4-6 defines logical and shift instructions.

Table 4-4. Effects of Arithmetic Instructions on Flags

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG4.TXT[2/6/2012 4:23:20 PM]

Flag Bit Result
-------- ------
 CF is set if the operation results in a carry out of (from
 addition) or a borrow into (from subtraction) the high-order
 bit of the result; otherwise CF is cleared.

 AF is set if the operation results in a carry out of (from
 addition) or a borrow into (from subtraction) the low-order
 four bits of the result; otherwise AF is cleared.

 ZF is set if the result of the operation is zero; otherwise ZF is
 cleared.

 SF is set if the result is negative.

 PF is set if the modulo 2 sum of the low-order eight bits of the
 result of the operation is 0 (even parity); otherwise PF is
 cleared (odd parity).

 OF is set if the operation results in an overflow; the size of
 the result exceeds the capacity of its destination.

Table 4-5. Arithmetic Instructions

Syntax Result
------ ------
AAA adjust unpacked BCD (ASCII) for addition - adjusts AL
AAD adjust unpacked BCD (ASCII) for division - adjusts AL
AAM adjust unpacked BCD (ASCII) for multiplication -
 adjusts AX
AAS adjust unpacked BCD (ASCII) for subtraction - adjusts
 AL
ADC reg,mem|reg add (with carry) memory or register to register
ADC mem|reg,reg add (with carry) register to memory or register
ADC mem|reg,numb add (with carry) immediate data to memory or register
ADD reg,mem|reg add memory or register to register
ADD mem|reg,reg add register to memory or register
ADD mem|reg,numb add immediate data to memory or register
CBW convert byte in AL to word in AX by sign extension
CMP reg,mem|reg compare memory or register with register
CMP mem|reg,reg compare register with memory or register
CMP mem|reg,numb compare data constant with memory or register
CWD convert word in AX to double word in DX/AX by sign
 extension
DAA decimal adjust for addition, adjusts AL
DAS decimal adjust for subtraction, adjusts AL
DEC mem|reg subtract 1 from memory or register
DIV mem|reg divide (unsigned) accumulator (AX or AL) by memory or
 register. If byte results, AL = quotient, AH =
 remainder. If word results, AX quotient, DX =
 remainder
IDIV mem|reg divide (signed) accumulator (AX or AL) by memory or
 register - quotient and remainder stored as in DIV

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG4.TXT[2/6/2012 4:23:20 PM]

IMUL mem|reg multiply (signed) memory or register by accumulator
 (AX or AL). If byte, results in AH, AL. If word,
 results in DX, AX.
INC mem|reg add 1 to memory or register
MUL mem|reg multiply (unsigned) memory or register by accumulator
 (AX or AL). Results stored as in IMUL.
NEG mem|reg two's complement memory or register
SBB reg,mem|reg subtract (with borrow) memory or register from
 register
SBB mem|reg,reg subtract (with borrow) register from memory or
 register
SBB mem|reg,numb subtract (with borrow) immediate data from memory or
 register
SUB reg,mem|reg subtract memory or register from register
SUB mem|reg,reg subtract register from memory or register
SUB mem|reg,numb subtract data constant from memory or register

Table 4-6. Logical and shift instructions

Syntax

AND reg,mem|reg perform bitwise logical AND of a register and memory
 or register
AND mem|reg,reg perform bitwise logical AND of memory or register and
 register
AND mem|reg,numb perform bitwise logical AND of memory or register and
 data constant
NOT mem|reg form one's complement of memory or register
OR reg,mem|reg perform bitwise logical OR of a register and memory or
 register
OR mem|reg,reg perform bitwise logical OR of memory or register and
 register
OR mem|reg,numb perform bitwise logical OR of memory or register and
 data constant
RCL mem|reg,1 rotate memory or register 1 bit left through carry
 flag
RCL mem|reg,CL rotate memory or register left through carry flag,
 number of bits given by CL register
RCR mem|reg,1 rotate memory or register 1 bit right through carry
 flag
RCR mem|reg,CL rotate memory or register right through carry flag,
 number of bits given by CL register
ROL mem|reg,1 rotate memory or register 1 bit left
ROL mem|reg,CL rotate memory or register left, number of bits given
 by CL register
ROR mem|reg,1 rotate memory or register 1 bit right
ROR mem|reg,CL rotate memory or register right, number of bits given
 by CL register
SAL mem|reg,1 shift memory or register 1 bit left, shift in low-
 order zero bit
SAL mem|reg,CL shift memory or register left, number of bits given by
 CL register, shift in low-order zero bits
SAR mem|reg,1 shift memory or register 1 bit right, shift in high-
 order bit equal to the original high-order bit

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG4.TXT[2/6/2012 4:23:20 PM]

SAR mem|reg,CL shift memory or register right, number of bits given
 by CL register, shift in high-order bits equal to the
 original high-order bit
SHL mem|reg,1 shift memory or register 1 bit left, shift in low-
 order zero bit. Note that SHL is a different mnemonic
 for SAL.
SHL mem|reg,CL shift memory or register left, number of bits given by
 CL register, shift in low-order zero bits. Note that
 SHL is a different mnemonic for SAL.
SHR mem|reg,1 shift memory or register 1 bit right, shift in high-
 order zero bit
SHR mem|reg,CL shift memory or register right, number of bits given
 by CL register, shift in high-order zero bits
TEST reg,mem|reg perform bitwise logical AND of a register and memory
 or register - set condition flags but do not change
 destination.
TEST mem|reg,reg perform bitwise logical AND of memory or register and
 register - set condition flags, but do not change
 destination.
TEST mem|reg,numb perform bitwise logical AND of memory or register and
 data constant - set condition flags but do not change
 destination.
XOR reg,mem|reg perform bitwise logical exclusive OR of a register and
 memory or register
XOR mem|reg,reg perform bitwise logical exclusive OR of memory or
 register and register
XOR mem|reg,numb perform bitwise logical exclusive OR of memory or
 register and data constant

4.4 String Instructions

String instructions take zero, one, or two operands. The operands specify only
the operand type, determining whether the operation is on bytes or words. If
there are two operands, the source operand is addressed by the SI register and
the destination operand is addressed by the DI register. The DI and SI
registers are always used for addressing. Note that, for string operations,
destination operands addressed by DI must always reside in the Extra Segment
(ES).

The source operand is usually addressed by the DS register. However, you can
designate a different register by using a segment override prefix. For
example,

 MOVS WORD PTR[DI],CS:WORD PTR[SI]

Table 4-7. String instructions

Syntax Result
------ ------
CMPS mem|reg,mem|reg subtract source from destination, affect flags, but do
 not return result
CMPSB an alternate mnemonic for CMPS that assumes a byte

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG4.TXT[2/6/2012 4:23:20 PM]

 operand
CMPSW an alternate mnemonic for CMPS that assumes a word
 operand
LODS mem|reg transfer a byte or word from the source operand to the
 accumulator
LODSB an alternate mnemonic for LODS that assumes a byte
 operand
LODSW an alternate mnemonic for LODS that assumes a word
 operand
MOVS mem|reg,mem|reg move 1 byte (or word) from source to destination
MOVSB an alternate mnemonic for MOVS that assumes a byte
 operand
MOVSW an alternate mnemonic for MOVS that assumes a word
 operand
SCAS mem|reg subtract destination operand from accumulator (AX or
 AL), affect flags, but do not return result
SCASB an alternate mnemonic for SCAS that assumes a byte
 operand
SCASW an alternate mnemonic for SCAS that assumes a word
 operand
STOS mem1reg transfer a byte or word from accumulator to the
 destination operand
STOSB an alternate mnemonic for STOS that assumes a byte
 operand
STOSW an alternate mnemonic for STOS that assumes a word
 operand

Table 4-8 defines prefixes for string instructions. A prefix repeats its
string instruction the number of times contained in the CX register, which is
decremented by 1 for each iteration. Prefix mnemonics precede the string
instruction mnemonic in the statement line.

Table 4-8. Prefix Instructions

Syntax Result
------ ------
REP repeat until CX register is zero
REPE repeat until CX register is zero, and
 zero flag (ZF) is not zero
REPNE repeat until CX register is zero, and
 zero flag (ZF) is zero
REPNZ equal to REPNE
REPZ equal to REPE

4.5 Control Transfer Instructions

There are four classes of control transfer instructions:

 1) calls, jumps, and returns
 2) conditional jumps
 3) iteration control
 4) interrupts

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG4.TXT[2/6/2012 4:23:20 PM]

All control transfer instructions cause program execution to continue at some
new location in memory, possibly in a new code segment. The transfer may be
absolute, or it can depend upon a certain condition. Table 4-9 defines control
transfer instructions. In the definitions of conditional jumps, "above" and
"below" refer to the relationship between unsigned values. "Greater than" and
"less than" refer to the relationship between signed values.

Table 4-9. Control Transfer Instructions

Syntax Result
------ ------
CALL label push the offset address of the next instruction on the
 stack, jump to the target label
CALL mem|regl6 push the offset address of the next instruction on the
 stack, jump to location indicated by contents of
 specified memory or register
CALLF label push CS segment register on the stack, push the offset
 address of the next instruction on the stack (after
 CS), jump to the target label
CALLF mem push CS register on the stack, push the offset address
 of the next instruction on the stack, jump to location
 indicated by contents of specified double word in
 memory
INT numb8 push the flag registers (as in PUSHF), clear TF and IF
 flags, transfer control with an indirect call through
 any one of the 256 interupt-vector elements - uses
 three levels of stack
INTO if OF (the overflow flag) is set, push the flag
 registers (as in PUSHF), clear TF and IF flags,
 transfer control with an indirect call through
 interrupt-vector element 4 (location 10H). If the OF
 flag is cleared, no operation takes place
IRET transfer control to the return address saved by a
 previous interrupt operation, restore saved flag
 registers, as well as CS and IP. Pops three levels of
 stack
JA lab8 Jump if "not below or equal" or "above" ((CF or ZF)=0)
JAE lab8 jump if "not below" or "above or equal" (CF=0)
JB lab8 jump if "below" or "not above or equal" (CF=1)
JBE lab8 jump if "below or equal" or "not above" ((CF or ZF)=1)
JC lab8 same as JB
JCXZ lab8 jump to target label if CX register is zero
JE lab8 jump if "equal" or "zero"(ZF=1)
JG lab8 jump if "not less or equal" or "greater" (SF xor OF)
 or ((ZF)=0)
JGE lab8 jump if "not less" or "greater or equal" ((SF xor
 OF)=0)
JL lab8 jump if "less" or "not greater or equal" ((SF xor
 OF)=1)
JLE lab8 jump if "less or equal" or "not greater" (SF xor OF)
 or ZF)=1)
JMP label jump to the target label

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG4.TXT[2/6/2012 4:23:20 PM]

JMP mem|regl6 jump to location indicated by contents of specified
 memory or register
JMPF label jump to the target label possibly in another code
 segment
JMPS lab8 jump to the target label within +/- 128 bytes from
 instruction
JNA lab8 same as JBE
JNAE lab8 same as JB
JNB lab8 same as JAE
JNBE lab8 same as JA
JNC lab8 same as JNB
JNE lab8 jump if "not equal" or "not zero" (ZF=O)
JNG lab8 same as JLE
JNGE lab8 same as JL
JNL lab8 same as JGE
JNLE lab8 same as JG
JNO lab8 jump if "not overflow" (OF=0)
JNP lab8 jump if "not parity" or "parity odd" (PF=0)
JNS lab8 jump if "not sign" (SF=0)
JNZ lab8 same as JNE
JO labB jump if "overflow" (OF=1)
JP lab8 jump if "parity" or "parity even" (PF=1)
JPE lab8 same as JP
JPO lab8 same as JNP
JS lab8 jump if "sign" (SF=1)
JZ lab8 same as JE
LOOP lab8 decrement CX register by one, jump to target label if
 CX is not zero
LOOPE lab8 decrement CX register by one, jump to target label if
 CX is not zero and the ZF flag is set - "loop while
 zero" or "loop while equal"
LOOPNE lab8 decrement CX register by one, jump to target label if
 CX is not zero and ZF flag is cleared - "loop while
 not zero" or "loop while not equal"
LOOPNZ lab8 same as LOOPNE
LOOPZ lab8 same as LOOPE
RET return to the address pushed by a previous CALL
 instruction, increment stack pointer by 2
RET numb return to the address pushed by a previous CALL,
 increment stack pointer by 2+numb
RETF return to the address pushed by a previous CALLF
 instruction, increment stack pointer by 4
RETF numb return to the address pushed by a previous CALLF
 instruction, increment stack pointer by 4+numb

4.6 Processor Control Instructions

Processor control instructions manipulate the flag registers. Moreover, some
of these instructions synchronize the 8086 CPU with external hardware.

Table 4-10. Processor Control Instructions

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG4.TXT[2/6/2012 4:23:20 PM]

Syntax Results
------ -------
CLC clear CF flag
CLD clear DF flag, causing string instructions to auto-
 increment the operand registers
CLI clear IF flag, disabling maskable external interrupts
CMC complement CF flag
ESC numb8,mem|reg do no operation other than compute the effective
 address and place it on the address bus (ESC is used
 by the 8087 numeric coprocessor.) numb8 must be in the
 range 0-63
HLT cause 8086 processor to enter halt state until an
 interrupt is recognized
LOCK PREFIX instruction, cause the 8086 processor to assert
 the bus-lock signal for the duration of the operation
 caused by the following instruction. The LOCK prefix
 instruction can precede any other instruction. Bus-
 lock prevents coprocessors from gaining the bus; this
 is useful for shared-resource semaphores
NOP no operation is performed
STC set CF flag
STD set DF flag, causing string instructions to auto-
 decrement the operand registers
STI set IF flag, enabling maskable external interrupts
WAIT cause the 8086 processor to enter a wait state if the
 signal on its TEST pin is not asserted.

EOF

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG5.TXT[2/6/2012 4:23:21 PM]

Section 5

Code-macro Facilities

5.1 Introduction to Code-macros

RASM-86 does not support traditional assembly language macros, but it does
allow you to define your own instructions using the Code-macro directive.
RASM-86 assembles code-macros wherever they appear in assembly language code,
but there the similarity to traditional macros ends.

Traditional assembly-language macros contain assembly-language instructions,
but a RASM-86 code-macro contains only code-macro directives. Traditional
assembly language macros are usually defined in the Symbol Table; RASM-86
code-macros are defined in the assembler's internal Symbol Table.

A traditional macro simplifies the repeated use of the same block of
instructions throughout a program, but a code-macro sends a bit stream to the
output file, and in effect adds a new instruction to the assembler.

RASM-86 treats a code-macro as an instruction, so that you can invoke code-
macros by using them as instructions in your program. The following example
shows how to invoke MYCODE, an instruction defined by a code-macro.

 XCHG BX,WORD3
 MYCODE PARM1,PARM2
 MUL AX,WORD4

Note that MYCODE accepts two operands that are its formal parameters. When you
define MYCODE, RASM-86 classifies these two operands as to type, size, etc.
The names of formal parameters are not fixed, so RASM-86 replaces them with
the names or values supplied as operands when you invoke the code-macro. The
formal parameters are placeholders that indicate where and how the operands
are to be used.

A code-macro definition takes the general form:

 Code-Macro <name> [<formal parameter list>]
 code-macro body
 EndM

where the optional <formal parameter list> is defined:

 <formal name>:<specifier letter>[<modifier letter>][<range>]

If you specify a formal parameter list, the specifier letter is required but
the modifier letter is optional. Possible specifiers are A, C, D, E, M, R, S,
and X. Possible modifier letters are b, d, w, and sb. RASM-86 ignores case
except within strings, but (for clarity) this section shows specifiers in
upper-case, and modifiers in lower-case. Following subsections describe

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG5.TXT[2/6/2012 4:23:21 PM]

specifiers, modifiers, and the optional range in greater detail.

The body of the code-macro describes the bit pattern and formal parameters.
Only the following directives are legal within code macros:

 SEGFIX
 NOSEGFIX
 MODRM
 RELB
 RELW
 DB
 DW
 DD
 DBIT

These directives are unique to code-macros. The code-macro directives DB, DW,
and DD that appear to duplicate RASM-86 directives DB, DW, and DD have
different meanings in code-macro context. These directives are discussed in
detail in Section 5.5.5.

CodeMacro, EndM, and the code-macro directives are all reserved words. The
formal definition syntax for a code-macro is defined in Backus-Naur-like form
in Appendix D. The following examples are typical code-macro definitions.

 CodeMacro AAA
 DB 37H
 EndM

 Codemacro DIV divisor:Eb
 SEGFIX divisor
 DB 6FH
 MODRM divisor
 EndM

 CodeMacro ESC opcode:Db(0,63),src:Eb
 SEGFIX src
 DBIT 5(1BH),3(opcode(3))
 MODRM opcode,src
 EndM

5.2 Specifiers

Every formal parameter must have a specifier letter that indicates what type
of operand is needed to match the formal parameter. Table 5-1 defines the
eight possible specifier letters.

Table 5-1. Code-macro Operand Specifiers

Letter Operand Type
------ ------------
 A Accumulator register, AX or AL.
 C Code, a label expression only.

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG5.TXT[2/6/2012 4:23:21 PM]

 D Data, a number to be used as an immediate value.
 E Effective address, either an M (memory address) or
 an R (register).
 M Memory address. This can be either a variable or
 a bracketed register expression.
 R A general register only.
 S Segment register only.
 X A direct memory reference.

5.3 Modifiers

The optional modifier letter is a further requirement on the operand. The
meaning of the modifier letter depends on the type of the operand. For
variables, the modifier requires the operand to be of type b for byte, w for
word, d for double-word, and sb for signed byte. For numbers, the modifiers
require the number to be of a certain size: b for -256 to 255 and w for other
numbers. Table 5-2 summarizes code-macro modifiers.

Table 5-2. Code-macro Operand Modifiers

Variables Numbers
----------------------- --------------------
Modifier Type Modifier Size
--------- ------- -------- ----
 b byte b -256 to 255
 w word w anything else
 d dword
 sb signed byte

5.4 Range Specifiers

The optional range is specified within parentheses by either one expression or
two expressions separated by a comma. The following are valid formats:

 (numberb)
 (register)
 (numberb,numberb)
 (numberb,register)
 (register,numberb)
 (register,register)

Numberb is an 8-bit number, not an address. The following example specifies
that the input port must be identified by the DX register:

 CodeMacro IN dst:Aw,port:Rw(DX)

The next example specifies that the CL register is to contain the count of
rotation:

 CodeMacro ROR dst:Ew,count:Rb(CL)

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG5.TXT[2/6/2012 4:23:21 PM]

The last example specifies that the opcode is to be immediate data, and can
range from 0 to 63 inclusive:

 CodeMacro ESC opcode:Db(0,63),adds:Eb

5.5 Code-macro Directives

Code-macro directives define the bit pattern and make further requirements on
how the operand is to be treated. Directives are reserved words, and those
that appear to duplicate assembly language instructions have different
meanings within a code-macro definition. Only the nine directives defined here
are legal within code-macro definitions.

5.5.1 SEGFIX

SEGFIX instructs RASM-86 to determine whether a segment-override prefix byte
is needed to access a given memory location. If so, it is output as the first
byte of the instruction. If not, RASM-86 takes no action. SEGFIX has the form:

 SEGFIX <formal name>

where <formal name> is the name of a formal parameter that represents the
memory address. Because it represents a memory address, the formal parameter
must have one of the specifiers E, M, or X.

5.5.2 NOSEGFIX

Use NOSEGFIX for operands in instructions that must use the ES register for
that operand. This applies only to the destination operand of these
instructions: CMPS, MOVS, SCAS, STOS. NOSEGFIX has the form:

 NOSEGFIX segreg,<formname>

where segreg is one of the segment registers ES, CS, SS, or DS, and <formname>
is the name of the memory-address formal parameter that must have a specifier
E, M, or X. No code is generated from this directive, but an error check is
performed. The following is an example of NOSEGFIX use:

 CodeMacro MOVS si_ptr:Ew,di_ptr:Ew
 NOSEGFIX ES,di_ptr
 SEGFIX si_ptr
 DB 0A5H
 EndM

5.5.3 MODRM

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG5.TXT[2/6/2012 4:23:21 PM]

This directive instructs RASM-86 to generate the MODRM byte that follows the
opcode byte in many of the 8086's instructions. The MODRM byte contains either
the indexing type or the register number to be used in the instruction. It
also specifies which register is to be used, or gives more information to
specify an instruction.

The MODRM byte carries the information in three fields. The mod field occupies
the two most significant bits of the byte, and combines with the register
memory field to form 32 possible values: 8 registers and 24 indexing modes.

The reg field occupies the three next bits following the mod field. It
specifies either a register number or three more bits of opcode information.
The meaning of the reg field is determined by the opcode byte.

The register memory field occupies the last three bits of the byte. It
specifies a register as the location of an operand, or forms a part of the
address-mode in combination with the mod field described above.

For further information about the 8086's instructions and their bit patterns,
see the Intel 8086 Assembly Language Programming Manual and the Intel 8086
Family User's Manual. MODRM has the forms:

 MODRM <form name>,<form name>
 MODRM NUMBER7,<form name>

where NUMBER7 is a value 0 to 7 inclusive, and <form name> is the name of a
formal parameter. The following examples show how to use MODRM:

 CodeMacro RCR dst:Ew,count:Rb(CL)
 SEGFIX dst
 DB 0D3H
 MODRM 3,dst
 EndM

 CodeMacro OR dst:Rw,src:Ew
 SEGFIX src
 DB 0BH
 MODRM dst,src
 EndM

5.5.4 RELB and RELW

These directives, used in IP-relative branch instructions, instruct RASM-86 to
generate a displacement between the end of the instruction and the label that
is supplied as an operand. RELB generates one byte and RELW two bytes of
displacement. The directives have the following forms:

 RELB <form name>
 RELW <form name>

where <form name> is the name of a formal parameter with a C (code) specifier.

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG5.TXT[2/6/2012 4:23:21 PM]

For example,

 CodeMacro LOOP place:Cb
 DB 0E2H
 RELB place
 EndM

5.5.5 DB, DW, and DD

These directives differ from those that occur outside code-macros. The
directives have the following forms:

 DB <form name> | NUMBERB
 DW <form name> | NUMBERW
 DD <form name>

where NUMBERB is a single-byte number; NUMBERW is a two-byte number, and <form
name> is a name of a formal parameter. For example,

 CodeMacro XOR dst:Ew,src:Db
 SEGFIX dst
 DB 81H
 MODRM 6,dst
 DW src
 EndM

5.5.6 DBIT

This directive manipulates bits in combinations of a byte or less. The form is

 DBIT <field description>[,<field description>]

where a <field description> has two forms:

 <number><combination>
 <number>(<form name>(<rshift>))

where <number> ranges from 1 to 16, and specifies the number of bits to be
set. <combination> specifies the desired bit combination. The total of all the
<numbers> listed in the field descriptions must not exceed 16.

The second form shown above contains <form name>, a formal parameter name that
instructs the assembler to put a certain number in the specified position.
This number normally refers to the register specified in the first line of the
code-macro. The numbers used in this special case for each register are:

 0 = 0000 AL ES AX (= AL + AH)
 1 = 0001 CL CS CX (= CL + CH)
 2 = 0010 DL SS DX (= DL + DH)
 3 = 0011 BL DS BX (= BL + BH)

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG5.TXT[2/6/2012 4:23:21 PM]

 4 = 0100 AH SP
 5 = 0101 CH BP
 6 = 0110 DH SI
 7 = 0111 BH DI

<rshift>, which is contained in the innermost parentheses, specifies a number
of right shifts. For example, 0 specifies no shift; 1 shifts right one bit; 2
shifts right two bits, and so on. The definition below uses this form.

 CodeMacro DEC dst:Rw
 DBIT 5(9H),3(dst(0))
 EndM

The first five bits of the byte have the value 9H. If the remaining bits are
zero, the hex value of the byte is 48H. If the instruction

 DEC DX

is assembled, and DX has a value of 2H, then 48H + 2H = 4AH, which is the
final value of the byte for execution. If this sequence is present in the
definition

 DBIT 5(9H),3(dst(l))

then the register number is shifted right once, and the result is 48H + 1H =
49H, which is erroneous.

EOF

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG6.TXT[2/6/2012 4:23:21 PM]

Section 6

XREF-86

6.1 Introduction

XREF-86 is an assembly language cross-reference utility program that creates a
cross-reference file showing the use of symbols throughout the program. XREF-
86 accepts two input files created by RASM-86. XREF-86 assumes these input
files have the filetypes of LST and SYM respectively, and they both reside on
the same disk drive. XREF-86 creates one output file with the filetype XRF.
Figure 6-1 illustrates XREF-86 operation.

 FILENAME.LST ---+
 (LISTING FILE) |
 +--> XREF-86 ---> FILENAME.XRF
 FILENAME.SYM ---+ (CROSS-REFERENCE FILE)
 (SYMBOL TABLE FILE)

 Figure 6-1. XREF-86 Operation

6.2 invoking XREF-86

Invoke XREF-86 with the command form:

 XREF86 <filename>

XREF-86 reads <filename>.LST line by line, attaches a line number prefix to
each line, and writes each prefixed line to the output file <filename>.XRF.
During this process, XREF-86 scans each line for any symbols that exist in the
file <filename>.SYM.

After completing this copy operation, XREF-86 appends to <filename>.XRF a
cross-reference report that lists all the line numbers where each symbol in
<filename>.SYM appears. XREF-86 flags with a # character each line number
reference where the referenced symbol is the first token on the line.

XREF-86 also lists the value of each symbol, as determined by RASM-86 and
placed in the Symbol Table file <filename>.SYM.

When you invoke XREF-86, you can include an optional drive specification with
the filename. When you invoke XREF-86 with a drive name preceding the
<filename>, it searches for the input files and creates the output file on the
specified drive. Otherwise, XREF-86 associates the files with the default
drive.

XREF-86 also allows you to direct the output file to the default list device
instead of to <filename>.XRF. To redirect the output to the printer, add the

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG6.TXT[2/6/2012 4:23:21 PM]

string "$p" to the command line. For example,

 A>xref86 bios $p

EOF

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG7.TXT[2/6/2012 4:23:22 PM]

Section 7

LINK-86

7.1 Introduction

LINK-86 is the Digital Research linkage editor that combines relocatable
object files into a command file that runs under any of the Digital Research
family of 8086-based operating systems. The object files can be produced by
Digital Research's 8086 language translators such as RASM-86, PL/I-86 and
CB86, or by other translators that produce object files using a compatible
subset of the Intel 8086 object module format.

LINK-86 accepts two types of object files. The first type is an object file
containing a single object module. This type generally has the filetype OBJ,
and is produced by a language translator. The second type is a library file
which is an indexed library of object modules. A library file has a filetype
L86, and is generated by the library manager, LIB-86, in the Intel 8086 object
module format. LINK-86 can search such a library file and select only those
modules needed by the other programs being linked.

LINK-86 produces three files:

 1) A Command (CMD) File
 2) A Symbol Table (SYM) File
 3) A Map (MAP) File

The CMD file contains a memory image of the program that runs directly under
CP/M-86, MP/M-86, and Concurrent CP/M-86. The SYM file contains a list of
symbols from the object files, and their offsets, and is suitable for use with
SID-86, the Digital Research Symbolic Instruction Debugger. The MAP file
contains information about the layout of the CMD file.

LINK-86 displays any unresolved symbols at the console. Unresolved symbols are
those that have been referenced but not defined in the files being linked.
These symbols must be resolved before the program will run properly, unless
you are linking overlays (see Section 8).

Upon completion of processing, LINK-86 displays the size of each of the
sections of the CMD file, and the Use Factor, which is a decimal percentage
indicating the amount of available memory used by LINK-86.

Figure 7-1 illustrates LINK-86 operation.

 OBJ 1 (Object File)--+
 +----+ +-- CMD (Command File)
 OBJ n (Object File)--+ | | or
 | +-- OVR (Overlay File)
 L86 1 (Library File)--+ | |
 +---+-- LINK-86 --+

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG7.TXT[2/6/2012 4:23:22 PM]

 L86 n (Library File)--+ | +-- SYM (Symbol Table File)
 | |
 INP (Input Command File)--+ +-- MAP (Module Map File)

 Figure 7-1. LINK-86 Operation

7.2 Invoking LINK-86

You invoke LINK-86 with a command of the form:

 LINK86 {file} = file1{,file2,...,filen}

If you enter a filename to the left of the equal sign, LINK-86 creates the
output files with that name and the appropriate filetypes. For example, the
command

 A>link86 myfile = parta,partb,partc

creates MYFILE.CMD and MYFILE.SYM.

If you omit the new filename, LINK-86 creates the output files using the first
filename in the command line. For example, the command

 A>link86 parta,partb,partc

creates the files PARTA.CMD and PARTA.SYM.

You can also instruct LINK-86 to read its command line from a file, thus
making it possible to store long or commonly used link commands on the disk
(see Section 7.11).

7.3 Halting LINK-86

You can halt LINK-86 during processing by pressing any console key. LINK-86
displays the message:

 STOP LINK-86 (Y/N)?

If you type Y, LINK-86 immediately stops processing and returns control to the
operating system. Typing N causes LINK-86 to resume processing.

7.4 Definitions

This section uses the following terms to describe how LINK-86 processes object
files and creates the CMD file.

Term Description
------- -----------

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG7.TXT[2/6/2012 4:23:22 PM]

Segment A Segment is a collection of code or data bytes whose length
 is less than 64K. A segment is the smallest unit that LINK-86
 manipulates when creating the CMD file.

Segment name* A Segment name can be any valid RASM-86 identifier. LINK-86
 combines all segments with the same segment name from separate
 object files.

Class name* A Class name can be any valid RASM-86 identifier. LINK-86 uses
 the class name to position the segment in the correct section
 of the command file.

<Align type>* The <Align type> indicates on what type of boundary the
 segment is to begin. The Align types are byte, word,
 paragraph, and page. LINK-86 uses the align type in two ways:
 first, when it combines parts of segments from separate files,
 and second, when it combines segments into groups or sections
 of the CMD file.

<Combine type>* The <Combine type> determines how LINK-86 can combine parts of
 segments with the same name from different files. The Combine
 types are: public, common, stack, absolute, and local.

Section A section is one of up to eight parts of an CMD file, any one
 of which can be up to one megabyte in length. Note: In the
 documentation for Digital Research's 8086-based operating
 systems, each part of a CMD file is described by a Group
 Descriptor. The term "section" is used here, instead of Group
 Descriptor, to avoid confusion with the term "group", defined
 below.

Group* A Group is a collection of segments whose total length is less
 than 64K, and thus is addressable from a single segment
 register. Groups allow you to break up a program into
 segments, while still allowing the segments to be addressed
 without changing the contents of a segment register. This
 technique results in shorter and faster code than addressing
 segments with 32-bit pointers.

* If you program in a high-level language, the compiler automatically assigns
the Segment name, Class name, Group, Align type, and Combine type. If you
program in assembly language, refer to Section 3 for a description of how to
assign these attributes.

7.5 The Link Process

The link process involves two distinct phases: collecting the segments in the
object files, and then positioning them in the CMD file.

7.5.1 Phase 1 - Collection

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG7.TXT[2/6/2012 4:23:22 PM]

In Phase 1, LINK-86 first collects segments having the same Segment name and
Class name from the separate files being linked, and then combines the
segments according to the align and combine attributes.

For example, suppose there are three object files, FILEA.OBJ, FILEB.OBJ, and
FILEC.OBJ, and each file defines a segment named Dataseg with the statement:

 dataseg dseg

Figure 7-2 illustrates how LINK-86 combines this segment using the Public
Combine type.

 +-------------+ +
 | DATASEG (C) | 150H |
 +-------------+ |
 | DATASEG (B) | 200H + = 450H
 +-------------+ |
 | DATASEG (A) | 100H |
 +-------------+ +

 Figure 7-2. Combining Segments with the Public Combine Type

LINK-86 combines these segments by concatenating the parts of the segments
found in the separate object files with the appropriate space between the
parts indicated by the Align type (see below). Public is the most common
Combine type, and RASM-86, as well as most high-level language compilers,
produces it as a default.

Figure 7-3 illustrates the Common Combine type. Suppose the three files
FILEA.OBJ, FILEB.OBJ, and FILEC.OBJ each contain a segment named Dataseg
defined with the statement:

 dataseg dseg common

LINK-86 combines these segments so that all parts of the segments from the
separate files being linked have the same low address in memory. Note that
this corresponds to a common block in high-level languages.

 +-------------------+ +
 | DATASEG (A, B, C) | + = 200H
 +-------------------+ +

 Figure 7-3. Combining Segments with the Common Combine Type

Figure 7-4 illustrates the Stack Combine type. LINK-86 combines these segments
so that the total length of the segment is the sum of the parts from the
separate files being linked, including any intersegment gaps due to the Align
type. However, all the parts share the same high address since stacks grow
downward from high memory.

For example, suppose the three files FILEA.OBJ, FILEB.OBJ, and FILEC.OBJ each
contain a segment named Stkseg. Figure 7-4 illustrates how they are combined

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG7.TXT[2/6/2012 4:23:22 PM]

by LINK-86.

 SP +-------------------+ + High
 starts | Stkseg (A) (100H) | |
 here +-------------------+ |
 | Stkseg (B) (150H) | |
 +-------------------+ |
 | Stkseg (C) (200H) | + = 450H
 +-------------------+ |
 | | |
 | | |
 | | |
 SS: +-------------------+ + Low

 Figure 7-4. Combining Segments with Stack Combination

The Align type indicates on what type of boundary the segment begins, and thus
determines the amount of space LINK-86 leaves between parts of segments of the
same name. For example, suppose the three files FILEA.OBJ, FILEB.OBJ, and
FILEC.OBJ each contain a segment named Dataseg. Figure 7-4 illustrates how
LINK-86 uses the Align type to combine these segments.

 +-------------+
 | Dataseg (C) |
 +-------------+
 0-255 bytes
 +-------------+
 | Dataseg (B) |
 +-------------+
 0-255 bytes
 +-------------+
 | Dataseg (A) |
 +-------------+

 Figure 7-5. Combining Segments using the Align Type

In Figure 7-5, the gap between the segments is determined by the Align type,
and can be up to 255 bytes in length. For example, there is no gap if the
Align type is byte. This produces the most compact code.

If the Align type is word, LINK-86 adds a one-byte gap, if necessary, to
ensure that the next part of the segment begins on a word boundary. Word is
the default Align type for Data segments, since the 8086 processor performs
faster memory accesses for word-aligned data.

The gap required for paragraph-aligned segments can be up to 15 bytes, while
page-aligned segments can require up to 255 bytes.

Figure 7-6 illustrates a specific example. Suppose the segment Dataseg has the
paragraph Align type. Suppose also that Dataseg has a length of 129H in FILEA,
10EH in FILEB, and 13AH in FILEC. As shown, LINK-86 combines the segments to
ensure that each segment begins on a paragraph boundary.

 +-------------+ 379H

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG7.TXT[2/6/2012 4:23:22 PM]

 | Dataseg (C) |
 +-------------+ 240H
 2 bytes
 +-------------+ 23DH
 | Dataseg (B) |
 +-------------+ 130H
 7 bytes
 +-------------+ 128H
 | Dataseg (A) |
 +-------------+ 0

 Figure 7-6. Paragraph Alignment

LINK-86 does not align segments that have an Absolute Align type because these
segments have their load-time memory location determined at translation time.

Segments with the Local Combine type cannot be combined. LINK-86 displays an
error message if the files being linked contain multiple local segments with
the same name.

7.5.2 Phase 2 - Positioning

In Phase 2, LINK-86 combines segments that are members of groups, again using
the Align type to determine intersegment gaps. Figure 7-7 illustrates how
LINK-86 combines segments into groups.

 +--------------------------+N+45:1FF +--------------------+N:64F
 | Dataseg 3 (200H) VAR: 50 | | Dataseg 3 VAR: 500 |
 +--------------------------+ N+45:0 +--------------------+ N:450
 | | N+10:34F | | N:44F
 | Dataseg 2 (350H) | | Dataseg 2 |
 | | N+10:0 | | N:100
 +--------------------------+ N:FF +--------------------+ N:FF
 | Dataseg 1 (100H) | | Dataseg 1 |
 +--------------------------+ N:0 +--------------------+ N:0

 7-7a. Segments Without Groups 7-7b. Segments Within A Group

 Figure 7-7. The Effect of Grouping Segments

In Figure 7-7, N:0 is the base address where the segments are loaded at run-
time (paragraph N, offset 0). Figure 7-7a shows that each segment not
contained in a group begins at offset zero, and thus can be up to 64K in
length. The offset of any given location, in this case the variable VAR, is
relative to the base of the segment. Thus, in order to access the variable,
VAR, at run-time, the program must load a segment register with the base of
the segment Dataseg3 because LINK-86 assigns VAR an offset of 50H.

In Figure 7-7b, the same Segments are combined in a group. The offsets of the
segments are now cumulative, and thus cannot extend past 0FFFFH. The offset of
VAR is 500H relative to the base of the group. At run-time, the program does
not need to change a segment register to point to Dataseg3, but can access VAR

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG7.TXT[2/6/2012 4:23:22 PM]

directly using the segment register that points to the base of the group.

After combining segments into groups, LINK-86 assigns each segment to a
section of the CMD file as follows:

 1) Segments belonging to the group CGROUP are placed in the CODE section
 of the CMD file.

 2) Segments belonging to the group DGROUP are placed in the DATA section
 of the CMD file. Note that the group names CGROUP and DGROUP are
 automatically generated by PL/I-86, CB86, and other high-level
 language compilers.

 3) If there are any segments that have not been processed according to
 (1) and (2), LINK-86 places them in the CMD file according to their
 class name, as shown in Table 7-1. This table also shows the RASM-86
 segment directives that produce the class names as defaults.

 4) Segments that have not been processed by any of the above means are
 omitted from the CMD file, because LINK-86 does not have sufficient
 information to position them.

You can override the way LINK-86 positions segments by using command line
options, as described in Section 7.7.

Table 7-1. LINK-86 Usage of Class Names

Class Name CMD File Section Segment Directive (RASM-86)
---------- ---------------- ---------------------------
CODE CODE CSEG
DATA DATA DSEG
EXTRA EXTRA ESEG
STACK STACK SSEG
X1 * X1
X2 * X2
X3 * X3
X4 * X4

* There is no segment directive that produces this class name as a default;
you must supply it explicitly.

7.6 LINK-86 Command options

When you invoke LINK-86, you can specify command line options that control the
link operation. Each command option falls into one of several categories,
depending on the type of file it affects.

The first category of command options affects the contents of the CMD file,
and therefore applies to the entire link operation. The second category of
options affects the SYM and MAP files. These options act as toggles that turn
on and off as LINK-86 processes the command line from left to right. The third
category of options affects the Library and Input files, and therefore applies

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG7.TXT[2/6/2012 4:23:22 PM]

only to one file in the command line.

Table 7-2 shows the LINK-86 command options including the abbreviation for
each.

Table 7-2. LINK-86 Comand Options

Option Abbr. Meaning
------ ----- -------
CODE C controls contents of CODE
 section of CMD file
DATA D controls contents of DATA
 section of CMD file
EXTRA E controls contents of EXTRA
 section of CMD file
STACK ST controls contents of STACK
 section of CMD file
X1 X1 controls contents of X1
 section of CMD file
X2 X2 controls contents of X2
 section of CMD file
X3 X3 controls contents of X3
 section of CMD file
X4 X4 controls contents of X4
 section of CMD file
FILL F zero fill and include
 uninitialized data in CMD file
NOFILL NOF do not include
 uninitialized data in CMD file
INPUT I read command line from disk file
MAP M create a MAP file
LIBSYMS LI include symbols from
 library files in SYM file
NOLIBSYMS NOLI do not include symbols from
 library files in SYM file
LOCALS LO include local symbols in SYM file
NOLOCALS NOLO do not include local symbols in SYM file
SEARCH S search library and only link
 modules referenced

You enclose command options in square brackets immediately following a
filename. For example,

 A>link86 test1 [map], test2 [nolocals]

You can use spaces to improve the readability of the command line, and you can
put more than one option in square brackets by separating them with commas.
For example,

 A>link86 test1 [map, nolocals], test2 [locals]

The following subsections describe the function and syntax for each of the
command options.

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG7.TXT[2/6/2012 4:23:22 PM]

The following subsections describe the function and syntax for each of the
command options.

7.7 CMD File Options

The following command options affect the contents of the CMD file that LINK-86
creates:

 CODE DATA STACK EXTRA
 X1 X2 X3 X4
 FILL NOFILL

Note that these options can appear after any filename in the command line.

The first eight options control the way LINK-86 places segments in the CMD
file, and the contents of the CMD file header. The FILL and NOFILL options
tell LINK-86 what to do with uninitialized data that can occur at the end of a
section of the CMD file.

A CMD file consists of a 128-byte header record followed by up to eight
sections, any one of which can be up to 1 megabyte in length. These sections,
called CODE, DATA, STACK, EXTRA, X1, X2, X3, and X4, correspond to the LINK-86
command options. The header contains information such as the length of each
section of the CMD file, its minimum and maximum memory requirements, and its
load address. This information is used by the operating system to properly
load the file (see the <CP/M-86 Operating System System Guide>).

When you link object modules created by a Digital Research compiler such as
CB86, or PL/I-86, the linkage editor generates some prefix code at the
beginning of the CMD file. If you are linking RASM-86 modules only, you can
use the NOPREFIX option and cause LINK-86 to suppress generation of this
prefix code.

Each of the options that affect the CMD file sections must be followed by one
or more parameters enclosed in square brackets. Table 7-3 shows the
parameters, their abbreviations, and meanings.

Table 7-3. CMD File Option Parameters

Parameter Abbr. Meaning
---------- ----- -------
ABSOLUTE AB absolute load address for CMD file section
ADDITIONAL AD additional memory allocation for
 the CMD file section
CLASS C classes to be included in CMD file section
GROUP G groups to be included in CMD file section
MAXIMUM M maximum memory allocation for
 the CMD file section
ORIGIN O origin of first segment in CMD file section
SEGMENT S segments to be included in CMD file section

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG7.TXT[2/6/2012 4:23:22 PM]

7.7.1 GROUP, CLASS, SEGMENT

The GROUP, CLASS, and SEGMENT parameters each contain a list of groups,
classes, or segments that you want LINK-86 to place into the indicated section
of the CMD file. For example, the command

 A>link86 test [code [segment [code1, code2], group [xyz]]]

instructs LINK-86 to place the segments CODE1, CODE2, and all the segments in
group XYZ into the CODE section of the file TEXT.CMD.

7.7.2 ABSOLUTE, ADDITIONAL, MAXIMUM

The ADDITIONAL and MAXIMUM parameters tell LINK-86 the values to place in the
CMD file header. These parameters override the default values that LINK-86
usually uses. Each parameter is a hexadecimal number enclosed in square
brackets. Table 7-4 shows the default values.

Each parameter is a hexadecimal number enclosed in square brackets. The
ABSOLUTE parameter indicates the absolute paragraph address where the
operating system loads the indicated section of the CMD file at run-time. The
ADDITIONAL parameter indicates the amount of additional memory, in paragraphs,
required by the indicated section of the CMD file. The program could use this
memory for Symbol Table space or I/O buffers that are needed at run-time, but
are not included in the source program, and thus are not in the OBJ file. The
MAXIMUM parameter indicates the maximum amount of memory needed by the
indicated section of the CMD file.

For example, the command

 A>link86 test [data [add [100],max [1000]], code [abs[40]]]

creates the file TEST.CMD whose header contains the following information:

1) The DATA section requires at least 100H paragraphs in addition to the
 data in the CMD file.

2) The DATA section can use up to 1000H paragraphs of memory.

3) The CODE section must load at absolute paragraph address 40H.

7.7.3 Origin

The ORIGIN parameter is a hexadecimal value that indicates the byte offset
where the indicated section of the CMD file should begin. LINK-86 assumes a
default ORIGIN value of 0 for each section, except the DATA section which has
a default value of 100H to reserve space for the Base Page (see the <CP/M-86
Operating System System Guide>).

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG7.TXT[2/6/2012 4:23:22 PM]

Table 7-4 summarizes the default values for each of the command options and
parameters.

Table 7-4. Default Values for CMD File Options and Parameters

 OPTION GROUP CLASS SEGMENT ABSOLUTE ADDITIONAL MAXIMUM ORIGIN
 ------ ------ ----- ------- -------- ---------- ------- ------
 CODE CGROUP CODE CODE 0 0 0 0
 DATA DGROUP DATA DATA 0 0 1000H* 100H
 STACK STACK STACK 0 0 0 0
 EXTRA EXTRA EXTRA 0 0 0 0
 X1 X1 X1 0 0 0 0
 X2 X2 X2 0 0 0 0
 X3 X3 X3 0 0 0 0
 X4 X4 X4 0 0 0 0

 *If there is a DGROUP; otherwise 0.

7.7.4 FILL/NOFILL

The FILL and NOFILL options tell LINK-86 what to do with uninitialized data
that can occur at the end of a section of the CMD file. The FILL option
directs LINK-86 to include this uninitialized data in the CMD file, and fill
it with zeros. The NOFILL option directs LINK-86 to omit the uninitialized
data from the CMD file. The FILL option usually results in a larger CMD file,
but the LINK-86 operation is usually faster when FILL is enabled. The default
is FILL. Note that these options apply only to uninitialized data at the end
of a section of the CMD file. Uninitialized data which is not at the end of a
section is always zero filled and included in the CMD file.

7.8 SYM File Options

The following command options affect the contents of the SYM file that LINK-86
creates:

 LOCALS
 LIBSYMS
 NOLOCALS
 NOLIBSYMS

These options must appear in the command line after the specific file or files
to which they apply. These options remain in effect until you change them, as
LINK-86 processes the command line from left to right.

7.8.1 LOCALS/NOLOCALS

The LOCALS option directs LINK-86 to include local symbols in the SYM file if
they are present in the object files being linked. The NOLOCALS option directs

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG7.TXT[2/6/2012 4:23:22 PM]

LINK-86 to ignore local symbols in the object files. The default option is
LOCALS. For example, the command

 A>link86 test1 [nolocals], test2 [locals], test3

creates a SYM file containing local symbols from TEST2.OBJ and TEST3.OBJ, but
not from TEST1.OBJ.

7.8.2 LIBSYMS/NOLIBSYNS

The LIBSYMS option directs LINK-86 to include in the SYM file any symbols that
come from a library that is searched during the link operation. The NOLIBSYMS
option directs LINK-86 not to include those symbols in the SYM file.
Typically, such a library search involves the Run-time Subroutine Library of a
high-level language such as PL/I-86. Because the symbols in such a library are
usually of no interest to the programmer, the default is NOLIBSYMS.

7.9 MAP File Options

The MAP option directs LINK-86 to create a MAP file that contains information
about the segments in the CMD file. The amount of information that LINK-86
puts into the MAP file is controlled by the optional parameters:

 OBJMAP NOOBJMAP
 L86MAP NOL86MAP
 ALL

that are enclosed in brackets following the MAP option. The OBJMAP parameter
directs LINK-86 to put segment information about OBJ files into the MAP file.
The NOOBJMAP parameter suppresses this information. Similarly, the L86MAP
switch directs LINK-86 to put segment information from L86 files into the MAP
file. The NOL86MAP parameter suppresses this information. The ALL parameter
directs LINK-86 to put all the information into the MAP file.

Once you instruct LINK-86 to create a MAP file, you can change the parameters
to the MAP option at different points in the command line. For example,

 A>LINK86 FINANCE [MAP[ALL]],SCREEN,GRAPH.L86[S,MAP[NOL86MAP]]

If you specify the MAP option with no parameters, LINK-86 uses OBJMAP and
NOL86MAP as defaults.

7.10 L86 File Options

The SEARCH option directs LINK-86 to search the preceding file and include in
the CMD file only those modules which satisfy external references from other
modules. Note that LINK-86 does not search L86 files automatically. If you do
not use the SEARCH option after a library file name, LINK-86 includes all the

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG7.TXT[2/6/2012 4:23:22 PM]

modules in the library file when creating the CMD file. For example, the
command

 A>link86 test1, test2, math.l86 [search]

creates the file TEST1.CMD by combining the object files TEST1.OBJ, TEST2.OBJ,
and any modules from MATH.L86 that are referenced in TEST1.OBJ or TEST2.OBJ.

The modules in the library file do not have to be in any special order. LINK-
86 makes multiple passes through the library index when attempting to resolve
references from other modules.

7.11 Input File Options

The INPUT option directs LINK-86 to obtain further command line input from the
indicated file. Other files can appear in the command line before the input
file, but the input file must be the last filename on the command line. LINK-
86 stops scanning the command line, entered from the console, when it
encounters this option. Note that you cannot nest command input files. That
is, a command input file cannot contain the INPUT option.

The input file consists of filenames and options just like a command line
entered from the console. For example, the file TEST.INP might include the
lines:

 MEMTEST=TEST1,TEST2,TEST3,
 IOLIB.L86[S],MATH.L86[S],
 TEST4,TEST5[LOCALS]

To direct LINK-86 to use this file for input, enter the command

 A>LINK86 TEST[INPUT]

If no file type is specified for an input file, LINK-86 assumes INP.

7.12 I/O Options

The $ option controls the source and destination devices under LINK-86. The
general form of the $ option is:

 $td

where t is a type and d is a drive specifier.

LINK-86 recognizes five types:

 C - Command File (CMD or OVR)
 L - Library File (L86)
 M - Map File (MAP)
 O - Object File (OBJ or L86)

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG7.TXT[2/6/2012 4:23:22 PM]

 S - Symbol File (SYM)

The drive specifier can be a letter in the range A thru P corresponding to one
of sixteen logical drives, or one of the following special characters:

 X - Console
 Y - Printer
 Z - Byte bucket

When you use the $ option, you cannot separate the td character pair with
commas. However, you must use a comma to set off any $ options from other
options. For example, the three command lines shown below are equivalent:

 A>link86 part1[$sz,$od,$lb],part2

 A>link86 part1[$szodlb],part2

 A>link86 part1[$sz od lb],part2

The value of a $ option remains in effect until it is changed as LINK-86
processes the command line from left to right. This is useful when linking
overlays (see Section 8). For example, the command

 A>link86 root (ov1[$sz])(ov2)(ov3)(ov4[$sa])

suppresses the SYM file generated when OV1, OV2 and OV3 are linked. When LINK-
86 links OV4, it places the SYM file on drive A.

7.12.1 $Cd - Command

LINK-86 normally generates the CMD file on the same drive as the first object
file in the command line. The $C option instructs LINK-86 to place the CMD
file on the drive specified by the character following the $C, or to suppress
the generation of a command file if you specify $CZ. This option also applies
to OVR files if you are using LINK-86 to create overlays (see Section 8).

7.12.2 $Ld - Library

LINK-86 normally searches on the default drive for Run-time Subroutine
Libraries that are linked automatically. The $L option directs LINK-86 to
search the specified drive for these library files.

7.12.3 $Md - Map

LINK-86 normally generates the Map file on the same drive as the CMD file. The
$M option instructs LINK-86 to place the Map file on the drive specified by
the character following the $M. Specify $MX to send the Map file to the
console.

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG7.TXT[2/6/2012 4:23:22 PM]

7.12.4 $Od - Object

LINK-86 normally searches for the OBJ or L86 files that you specify in the
command line on the default drive, unless such files have explicit drive
prefixes. The $O option allows you to specify the drive location of multiple
OBJ or L86 files without adding an explicit drive prefix to each filename. For
example, the command

 A>link86 p[$od],q,r,s,t,u.l86,b:v

tells LINK-86 that all the object files except the last one are located on
drive D. Note that this does not apply to files that are searched
automatically (see Section 7.12.2).

7.12.5 $Sd - Symbol

LINK-86 normally generates a Symbol file on the same drive as the CMD file.
The $S option directs LINK-86 to place the Symbol file on the drive specified
by the character following the $S, or to suppress the generation of a symbol
file if you specify $SZ.

7.13 Command Line Errors

If LINK-86 detects any kind of command line error, it prints the message

 SYNTAX ERROR

echoes the command tail up to the point where the error occurs, and follows it
with a question mark.

For example,

 A>link86 a, b, c; d
 SYNTAX ERROR
 A, B, C;?

 A>link86 longfilename
 SYNTAX ERROR
 LONGFILEN?

EOF

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG8.TXT[2/6/2012 4:23:22 PM]

Section 8

Overlays

8.1 Introduction

This section describes how to use LINK-86 to create programs comprised of
separate files called overlays. The advantage of overlays is that they share
the same memory locations, so you can write large programs that run in a
limited memory environment.

Overlays are also important if you are programming in a high-level language
because most compilers generate OBJ files that assume the Small memory model
(see Section 7.5.2). The Small model means that when you link the OBJ files
with the Run-time Subroutine Library (RSL), the size of the code or data in
the CMD file must be 64K or less.

You can have multiple OBJ files, each of which has less than 64K code or data,
but you cannot link them together with the RSL to create a CMD file with more
than 64K of code or data. LINK-86 outputs an error message if you attempt to
do so (see Appendix G). Thus, the compiler determines the upper limit on the
size of any program, but the size limit is not encountered until link-time.

By using a modular design, you can write a large program so that it need not
reside in memory all at once. For example, many application programs are menu-
driven, with the user selecting one of a number of functions to perform.
Because the functions are separate and invoked sequentially, there is no
reason for them to reside in memory simultaneously. When one of the functions
is complete, control returns to the menu portion of the program, from which
the user selects the next function. Using overlays, you can divide such a
program into separate subprograms, which can be stored on disk and loaded only
when required.

Figure 8-1 illustrates the concept of overlays. Suppose a menu-driven
application program consists of three separate user-selectable functions. If
each function requires 30K of memory, and the menu portion requires 10K, then
the total memory required for the program is 100K as shown in Figure 8-1a.
However, if the three functions are designed as overlays as shown in Figure 8-
1b, the program requires only 40K because all three functions share the same
memory locations.

 +------------+ +
 | Function 3 | 30K |
 +------------+ |
 | Function 2 | 30K |
 +------------+ + = 100K +--------+ +--------+ +--------+ +
 | Function 1 | 30K | | Func.1 | | Func.2 | | Func.3 | |
 +------------+ | +--------+-+--------+-+--------+ + = 40K
 | Menu | 10K | | Menu | |
 +------------+ + +------------------------------+ +

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG8.TXT[2/6/2012 4:23:22 PM]

 8-1a. Without Overlays 8-1b. Separate Overlays

 Figure 8-1. Using Overlays in a Large Program

You can also create nested overlays in the form of a tree structure, where
each overlay can call other overlays up to a maximum nesting level determined
by the Overlay Manager. Section 8.3 describes the command line syntax for
creating nested overlays.

Figure 8-2 illustrates such an overlay structure. The top of the highest
overlay determines the total amount of memory required. In Figure 8-2, the
highest overlay is SUB4. Note that this is substantially less memory than
would be required if all the functions and subfunctions had to reside in
memory simultaneously.

 +-------+
 | |
 +-------+ +-------+ +-------+ | Sub 4 |
 | Sub 1 | | Sub 2 | | Sub 3 | | |
 +---+---+ +---+---+ +---+---+ +---+---+
 | | | |
 +-------+-------+ +-------+-------+
 | |
 +-----------+---+ +---------------+ +---+-----------+
 | Function 1 | | Function 2 | | Function 3 |
 +-------+-------+ +-------+-------+ +-------+-------+
 | | |
 +-------------------+-------------------+
 |
 +---------------------------+---------------------------+
 | Menu |
 +---+

 Figure 8-2. Tree Structure of Overlays

8.2 Writing Programs that Use Overlays

There are two ways to write programs that use overlays. The first method
involves no special coding, but has two restrictions. The first restriction is
that all overlays must be on the default drive. The second restriction is that
the overlay names are determined at translation-time and cannot be changed at
run-time.

The second method requires a more involved calling sequence, but does not have
either of the restrictions of the first method.

8.2.1 Overlay Method 1

To use the first method, you declare an overlay as an external label in the

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG8.TXT[2/6/2012 4:23:22 PM]

module where it is referenced. The overlay itself is simply a program that
ends with a RET instruction.

For example, the following RASM-86 program is a root module having one
overlay:

; ROOT.A86
; --------
;
 CSEG
 EXTRN overlay1:near
root: mov bx,offset root_message
 mov cl,9 ; Print string function number
 int 224 ; Ask BDOS to do it
 mov bx,offset overlay_message
 call overlay1 ; Call the overlay
 retf ; Return to the Operating System
;
 DSEG
root_message DB 'root',0DH,0AH,'$'
overlay_message DB 'overlay 1',0DH,0AH,'$'
;
 END

with the overlay OVERLAY1.A86 defined as follows:

; OVERLAY1.A86
; ------------
;
 CSEG
overlay1:mov cl,9 ; Print string function number
 int 224 ; passed as parameter.
 ret ; Return to root module

Note that when you pass parameters to an overlay, you must ensure that the
number and type of the parameters agree between the calling program and the
overlay itself.

When the program runs, ROOT.CMD first displays the message 'root' at the
console. The CALL statement then transfer control to the Overlay Manager. The
Overlay Manager loads the file OVERLAY1.OVR from the default drive and
transfers control to it.

When the overlay receives control, it displays the message 'overlay 1' at the
console. OVERLAY1 then returns control directly to the statement following the
CALL statement in ROOT.CMD. The program then continues from that point.

If the requested overlay is already in memory, the Overlay Manager does not
reload it before transferring control.

The following constraints apply to Overlay Method 1:

 1) The label used in the CALL statement is the actual name of the OVR
 file loaded by the Overlay Manager, so the two names must agree.

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG8.TXT[2/6/2012 4:23:22 PM]

 2) The name of the entry point to an overlay need not agree with the name
 used in the calling sequence. You should use the same name to avoid
 confusion.

 3) The Overlay Manager loads overlays only from the drive that was the
 default drive when the root module began execution. The Overlay
 Manager disregards any changes in the default drive that occur after
 the root module begins execution.

 4) The names of the overlays are fixed. To change the names of the
 overlays, you must edit, reassemble, and relink the program.

 5) No non-standard statements are needed. Thus, you can postpone the
 decision on whether or not to create overlays until link-time.

8.2.2 Overlay Method 2

In some applications, it is useful to have greater flexibility with overlays,
such as the ability to load overlays from different drives, or the ability to
determine the name of an overlay from the console or a disk file at run-time.

To do this, a program must declare an explicit entry point into the Overlay
Manager as follows:

 EXTRN ?ovlay:near

This entry point requires two parameters. The first is the offset of a 10-
character string specifying the name of the overlay to load with an optional
drive code in the standard format: "d:filename".

The second parameter is the Load Flag. If the Load Flag is 1, the Overlay
Manager loads the specified overlay whether or not it is already in memory. If
the Load Flag is 0, then the Overlay Manager loads the overlay only if it is
not already in memory.

Note that the parameters are not passed in registers or on the stack, but as
shown in the code sequence below, they follow the statement:

 CALL ?ovlay

in the Code Segment.

Using this method, the example illustrating Method 1 appears as follows:

; ROOT2.A86
; ---------
;
 CSEG
 EXTRN ?ovlay:near ; Entry point of Overlay Manager
root: mov bx,offset root_message
 mov cl,9 ; Print string function number

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG8.TXT[2/6/2012 4:23:22 PM]

 int 224 ; Ask BDOS to do it
 mov bx,offset overlay_message
 call ?ovlay ; Call the Overlay Manager
 DW overlay_name ; Offset of overlay name
 DB 0 ; Load Flag
 ret ; Return to the Operating System
;
 DSEG
root_message DB 'root',0DH,0AH,'$'
overlay_message DB 'overlay 1',0DH,0AH,'$'
overlay_name DB 'OVERLAY1 ' ; Name of overlay to load (10 chars)
;
 END

The file OVERLAY1.A86 is the same as the previous example.

At run-time, the statement:

 CALL ?ovlay

directs the Overlay Manager to load OVERLAY1.OVR from the default drive,
because that is the current value of the variable "overlay_name", and then
transfers control to it. When OVERLAY1.OVR finishes processing, control
returns to the statement following the invocation.

In this example, the variable "overlay_name" is assigned the value "OVERLAY1".
However, you could also supply the overlay name as a character string from
some other source, such as the console.

The following constraints apply to Overlay Method 2:

1) You can specify a drive code, so the Overlay Manager can load overlays from
drives other than the default drive. If you do not specify a drive code, the
Overlay Manager uses the default drive as described in Method 1.

2) If you pass any parameters to the overlay, they must agree in number and
type with the parameters expected by the overlay.

8.2.3 General Overlay Constraints

The following general constraints apply when you use LINK-86 to create
overlays:

 1) Each overlay has only one entry point. The Overlay Manager assumes
 that this entry point is at the load address of the overlay.

 2) You cannot make a forward (upward) reference from a module to entry
 points in overlays higher on the tree. The only exception is a
 reference to the main entry point of the overlay as described above.
 You can make backward (downward) references to entry points in
 overlays lower on the tree or in the root module.

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG8.TXT[2/6/2012 4:23:22 PM]

 3) Common segments that are declared in one module cannot be initialized
 by a module higher in the tree. LINK-86 ignores any attempts to do so.

 4) You can nest overlays to a depth of 5 levels.

 5) The Overlay Manager uses the default buffer located at 80H in the Data
 Segment, so user programs should not depend on data stored in this
 buffer.

8.3 Command Line Syntax

You specify overlays in the LINK-86 command line by enclosing each overlay
specification in parentheses. You must explicitly include the Overlay Manager
in the command line, unless you are writing in a high-level language such as
PL/I-86 or CB86. In that case, the Overlay Manager is automatically included
from the Run-time Subroutine Library of the language you are using.

You can specify an overlay in one of the following forms:

 A>link86 root,ovlmgr(overlay1)
 A>link86 root,ovlmgr(overlay1,part2,part3)
 A>link86 root,ovlmgr(overlay1=part1,part2,part3)

The first form produces the file OVERLAY1.OVR from the file OVERLAY1.OBJ. The
second form produces the file OVERLAY1.OVR from OVERLAY1.OBJ, PART2.OBJ and
PART3.OBJ. The third form produces the file OVERLAY1.OVR from PART1.OBJ,
PART2.OBJ and PART3.OBJ.

In the command line, a left parenthesis indicates the start of a new overlay
specification, and also indicates the end of the group preceding it. All files
to be included at any overlay must appear together, without any intervening
overlay specifications. You can use spaces to improve readability, and commas
to separate parts of a single overlay. However, do not use commas to set off
the overlay specifications from the root module or from each other.

For example, the following command line is invalid:

 A>link86 root(overlay1),moreroot,ovlmgr

The correct command is:

 A>link86 root,moreroot,ovlmgr(overlay1)

To nest overlays, you must specify them in the command line with nested
parentheses. For example, the following command line creates the overlay
system shown in Figure 8-2:

 A>link86 menu,ovlmgr(func1(sub1)(sub2))(func2)(func3(sub3)(sub4))

EOF

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG9.TXT[2/6/2012 4:23:23 PM]

Section 9

LIB-86

LIB-86 is a utility program for creating and maintaining library files that
contain 8086 object modules. These modules can be produced by Digital
Research's 8086 language translators such as RASM-86, PL/I-86, and CB86, or by
any other translators that produce modules in Intel's 8086 object module
format.

You can use LIB-86 to create libraries, as well as append, replace, select, or
delete modules from an existing library. You can also use LIB-86 to obtain
information about the contents of library files.

9.1 LIB-86 Operation

When you invoke LIB-86, it reads the indicated files and produces a Library
file, a Cross-reference file, or a Module map file as indicated by the command
line. When LIB-86 finishes processing, it displays the Use Factor, which is a
decimal number indicating the percent of the available memory that LIB-86 used
during processing. Figure 9-1 shows the operation of LIB-86.

 OBJ 1 (Object File)--+
 +---+
 OBJ n (Object File)--+ | +-- L86 (Library File)
 | |
 L86 1 (Library File)--+ | |
 +--+-- LIB-86 --+-- MAP (Module Map File)
 L86 n (Library File)--+ | |
 | +-- XRF (Cross-reference File)
 INP (Input Command File) +

 Figure 9-1. LIB-86 Operation

Table 9-1 shows the filetypes that LIB-86 recognizes.

Table 9-1. LIB-86 Filetypes

 Type Usage
 ---- -----
 INP Input Command File
 L86 Library File
 MAP Module Map File
 OBJ object File
 XRF Cross-reference File

9.2 Halting LIB-86

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG9.TXT[2/6/2012 4:23:23 PM]

You can halt LIB-86 during processing by pressing any console key. LIB-86
displays the message:

 STOP LIB-86 (Y/N)?

If you type Y, LIB-86 immediately stops processing and returns control to the
operating system. Typing N causes LIB-86 to resume processing.

9.3 LIB-86 Command options

When you invoke LIB-86, you can specify optional parameters in the command
line that control the operation. Table 9-2 shows the LIB-86 command options.
You can abbreviate each option keyword by truncating on the right, as long as
you include enough characters to prevent ambiguity. Thus, EXTERNALS can be
abbreviated EXTERN, EXT, EX, or simply E. The following sub-sections describe
the function of each command option.

Table 9-2. LIB-86 Command Line Options

Option Purpose Abbr.
------ ------- -----
DELETE Delete a Module from a Library file D
EXTERNALS Show EXTERNALS in a Library file E
INPUT Read commands from Input file I
MAP Create a Module Map MA
MODULES Show Modules in a Library file MO
NOALPHA Show Modules in order of occurrence N
PUBLICS Show PUBLICS in a Library file P
REPLACE Replace a Module in a Library file R
SEGMENTS Show Segments in a Module SEG
SELECT Select a Module from a Library file SEL
XREF Create a Cross-reference file X

9-4 Creating and Updating Libraries

You can create or update libraries using a command line of the general form:

 LIB86 <library file> = <file 1> {[switches]}{,<file 2>, ..., <file n>}

LIB-86 creates a Library file with the filename given by <library file>. If
you omit the filetype, LIB-86 creates the Library file with filetype L86.

LIB-86 reads the files specified by <file 1> through <file n> and produces the
library file. If <file 1> through <file n> do not have a specified filetype,
LIB-86 assumes a default filetype of OBJ. The files to be included can contain
one or more modules; that is, they can be OBJ or L86 files, or a combination
of the two.

Modules in a library need not be in any particular order, because LINK-86

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG9.TXT[2/6/2012 4:23:23 PM]

searches the library as many times as necessary to resolve references.
However, LINK-86 runs much faster if the order of modules in the library is
optimized. To do this, remove as many backward references as possible (modules
which reference public symbols that are declared in earlier modules in the
library) so that LINK-86 can search the library in a single pass.

Module names are assigned by language translators. The method for assigning
module names varies from translator to translator, but is generally either the
filename or the name of the main procedure.

9.4.1 Creating a New Library

To create a new library, enter the name of the library, then an equal sign
followed by the list of the files you want to include, separated by commas.
For example,

 A>lib86 newlib = a,b,c

 A>lib86 newlib.l86 = a.obj,b.obj,c.obj

 A>lib86 math = add,sub,mul,div

The first two examples are equivalent.

9.4.2 Adding to a Library

To add a module or modules to an existing library, specify the library name on
both sides of the equal sign in the command line. The library name appears on
the left of the equal sign as the name of the library you are creating. The
name also appears on the right of the equal sign, with the names of the other
file or files to be appended. For example,

 A>lib86 math = math.l86,sin,cos,tan

 A>lib86 math = sqrt,math.l86

9.4.3 Replacing a Module

LIB-86 allows you to replace one or more modules without rebuilding the entire
library from the individual object files. The command for replacing a module
or modules in a library has the general form:

 LIB86 <new library> = <old library> [REPLACE [<replace list>]]

where <new library> is the name of the file that LIB86 creates; <old library>
is the name of the file (that can be the same as <new library>) containing the
module you want to replace; and <replace list> contains one or more module
names of the form:

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG9.TXT[2/6/2012 4:23:23 PM]

 <module name> = <file name>

For example, the command

 A>lib86 math = math.l86 [replace [sqrt=newsqrt]]

directs LIB-86 to create a new file MATH.L86 using the existing MATH.L86 as
the source, replacing the module SQRT with the file NEWSQRT.OBJ. If the name
of the module being replaced is the same as the file that replaces it, you
need to enter the name only once. For example, the command

 A>lib86 math = math.l86 [replace [sqrt]]

replaces the module SQRT with the file SQRT.OBJ in the Library file MATH.L86.

You can effect multiple replaces in a single command by using commas to
separate the names. For example,

 A>lib86 new = math.l86 [replace [sin=newsin,cos=newcos]]

Note that you cannot use the command options DELETE and SELECT in conjunction
with REPLACE.

LIB-86 displays an error message if it cannot find any of the specified
modules or files (see Appendix H).

9.4.4 Deleting a Module

The command for deleting a module or modules from a library has the general
form:

 LIB86 <new library> = <old library> [DELETE [<module specifiers>]]

where <module specifiers> can contain either the names of single modules, or
groups of modules, which are specified using the name of the first and the
last modules of the group, separated by a hyphen ("-"). For example,

 A>lib86 math = math.l86 [delete [sqrt]]

 A>lib86 math = math.l86 [delete [add, sub, mul, div]]

 A>lib86 math = math.l86 [delete [add - div]]

You cannot use the command options REPLACE and SELECT in conjunction with
DELETE.

LIB-86 displays an error message if it cannot find any of the specified
modules in the library.

9.4.5 Selecting a Module

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG9.TXT[2/6/2012 4:23:23 PM]

The command for selecting a module or modules from a library has the general
form:

 LIB86 <new library> = <old library> [SELECT [<module specifiers>]]

where <module specifiers> can contain either the names of single modules, or
groups of modules, which are specified using the name of the first and the
last modules of the group, separated by a hyphen ("-"). For example,

 A>lib86 arith = math.l86 [select [add, sub, mul, div]]

 A>lib86 arith = math.l86 [select [add - div]]

You cannot use the command options DELETE and REPLACE in conjunction with
SELECT.

LIB-86 displays an error message if it cannot find any of the specified
modules in the library.

9.5 Displaying Library Information

You can use LIB-86 to obtain information about the contents of a library. LIB-
86 can produce two types of listing files: a Cross-reference file and a
Library Module Map. Normally, LIB-86 creates these listing files on the
default drive, but you can route them directly to the console or the printer
by using the command options described in Section 9.7.

9.5.1 Cross-reference File

You can create a file containing the Cross-reference listing of a library with
the command:

 LIB86 <library name> [XREF]

LIB-86 produces the file <library name>.XRF on the default drive, or you can
redirect the listing to the console or the printer.

The Cross-reference file contains an alphabetized list of all Public,
External, and Segment name symbols encountered in the library. Following each
symbol is a list of the modules in which the symbol occurs. LIB-86 marks the
module or modules in which the symbol is defined with a pound sign, #, after
the module name. Segment names are enclosed in slashes, as in /CODE/. At the
end of the cross-reference listing, LIB-86 indicates the number of modules
that were processed.

9.5.2 Library Module Map

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG9.TXT[2/6/2012 4:23:23 PM]

You can create a Module Map of a library using the command:

 LIB86 <library name> [MAP]

LIB-86 produces the file <library name>.MAP on the default drive, or you can
redirect the listing to the console or the printer.

The Module Map contains an alphabetized list of the modules in the Library
file. Following each module name is a list of the segments in the module and
their lengths. The Module Map also includes a list of the Public symbols
defined in the module, and a list of the External symbols referenced in the
module. At the end of the Module Map listing, LIB-86 indicates the number of
modules that were processed.

LIB-86 normally alphabetizes the names of the modules in the Module Map
listing. You can use the NOALPHA switch to produce a map listing the modules
in the order in which they occur in the library. For example,

 A>lib86 math.l86 [map,noalpha]

9.5.3 Partial Library Maps

You can use LIB-86 to create partial library maps in two ways. First, you can
create a map with only module names, Segment names, Public names, or External
names using one of the commands:

 LIB86 <library name> [MODULES]
 LIB86 <library name> [SEGMENTS]
 LIB86 <library name> [PUBLICS]
 LIB86 <library name> [EXTERNALS)

You can also combine the SELECT command with any of the map producing commands
described above, or the XREF command. For example,

 A>lib86 math.l86 [map,noalpha,select [sin,cos,tan]]

 A>lib86 math.l86 [xref,select [sin,cos,tan]]

9.6 LIB-86 Commands on Disk

For convenience, LIB-86 allows you to put long or commonly used LIB-86 command
lines in a disk file. Then, when you invoke LIB-86, a single command line
directs LIB-86 to read the rest of its command line from a file. The file can
contain any number of lines consisting of the names of files to be processed
and the appropriate LIB-86 command options. The last character in the file
must be a normal end-of-file character (1AH).

To direct LIB-86 to read commands from a disk file, use a command of the
general form:

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG9.TXT[2/6/2012 4:23:23 PM]

 LIB86 <file name> [INPUT]

If <file name> does not include a filetype, LIB-86 assumes filetype INP.

As an example, the file MATH.INP might contain the following:

 MATH = ADD [$OC],SUB,MUL,DIV,
 SIN,COS,TAN,
 SQRT,LOG

Then the command

 A>lib86 math [input]

directs LIB-86 to read the file MATH.INP as its command line. You can include
other command options with INPUT, but no other filenames can appear in the
command line after the INP file. For example,

 A>lib86 math [input,xref,map]

9.7 Redirecting I/O

LIB-86 assumes that all the files it processes are on the default drive, so
you must specify the drive name for any file that is not on the default drive.
LIB-86 creates the L86 file on the default drive unless you specify a drive
name. For example,

 A>lib86 e:math = math.l86,d:sin,d:cos,d:tan

LIB-86 also creates the MAP and XRF files on the same drive as the L86 file it
creates, or the same drive as the first object file in the command line if no
library is created.

You can override the LIB-86 defaults by using the following command options:

 $Md - MAP file destination drive
 $Od - OBJ or L86 source file location
 $Xd - XRF file destination drive

where d is a drive name (A-P). For the MAP and XRF files, d can be X or Y,
indicating console or printer output, respectively. You can also put multiple
I/O options after the dollar sign. For example,

 A>lib86 trig [map,xref,$ocmyxy] = sin,cos,tan

The $O switch remains in effect as LIB-86 processes the command line from left
to right, until it encounters a new $O switch. This feature can be useful if
you are creating a library from a number of files, the first group of which is
on one drive, and the remainder on another drive. For example,

 A>lib86 biglib = a1 [$oc],a2, ..., a50 [$od],a51, ..., a100

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUG9.TXT[2/6/2012 4:23:23 PM]

EOF

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUGA.TXT[2/6/2012 4:23:23 PM]

Appendix A

Mnemonic Differences from the Intel Assembler

RASM-86 uses the same instruction mnemonics as the Intel 8086 assembler except
for explicitly specifying far and short jumps, calls, and returns. The
following table shows the four differences:

Table A-1. Mnemonic Differences

Mnemonic Function RASM-86 Intel
------------------------- ------- -----
Intra-segment short jump: JMPS JMP
Inter-segment jump: JMPF JMP
Inter-segment return: RETF RET
Inter-segment call: CALLF CALL

EOF

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUGB.TXT[2/6/2012 4:23:24 PM]

Appendix B

Reserved Words

Table B-1. Reserved Words

Predefined Numbers

BYTE WORD DWORD

Operators

AND LAST MOD OR SHR
EQ LE NE PTR TYPE
GE LENGTH NOT SEG XOR
GT LT OFFSET SHL

Assembler Directives

CODEMACRO ELSE GROUP NOLIST RS
CSEG END IF ORG RW
DB ENDIF IFLIST PAGESIZE SIMFORM
DD ENDM INCLUDE PAGEWIDTH SSEG
DSEG EQU LIST PUBLIC TITLE
DW ESEG NAME RB
EJECT EXTRN NOIFLIST RD

Code-macro Directives

DB DD MODRM RELB SEGFIX
DBIT DW NOSEGFIX RELW

8086 Registers

AH BL CL DI ES
AL BP CS DL SI
AX BX CX DS SP
BH CH DH DX SS

Default Segment Names

CODE DATA EXTRA STACK

Segments Descriptors

BYTE LOCAL PARA STACK
COMMON PAGE PUBLIC WORD

External Descriptors

ABS DWORD NEAR

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUGB.TXT[2/6/2012 4:23:24 PM]

BYTE FAR WORD

EOF

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUGC.TXT[2/6/2012 4:23:24 PM]

Appendix C

RASM-86 Instruction Summary

Table C-1. RASM-86 Instruction Sumary

Mnemonic Description Section
-------- ----------- -------
AAA ASCII adjust for Addition 4.3
AAD ASCII adjust for Division 4.3
AAM ASCII adjust for Multiplication 4.3
AAS ASCII adjust for Subtraction 4.3
ADC Add with Carry 4.3
ADD Add 4.3
AND And 4.3
CALL Call (intra segment) 4.5
CALLF Call (inter Segment) 4.5
CBW Convert Byte to Word 4.3
CLC Clear Carry 4.6
CLD Clear Direction 4.6
CLI Clear Interrupt 4.6
CMC Complement Carry 4.6
CMP Compare 4.3
CMPS Compare Byte or Word (of string)4.4
CMPSB Compare Byte (of string) 4.4
CMPSW Compare Word (of string) 4.4
CWD Convert Word to Double Word 4.3
DAA Decimal Adjust for Addition 4.3
DAS Decimal Adjust for Subtraction 4.3
DEC Decrement 4.3
DIV Divide 4.3
ESC Escape 4.6
HLT Halt 4.6
IDIV Integer Divide 4.3
IMUL Integer Multiply 4.3
IN Input Byte or Word 4.2
INC Increment 4.3
INT Interrupt 4.5
INTO Interrupt on Overflow 4.5
IRET Interrupt Return 4.5
JA Jump on Above 4.5
JAE Jump on Above or Equal 4.5
JB Jump on Below 4.5
JBE Jump on Below or Equal 4.5
JC Jump on Carry 4.5
JCXZ Jump on CX Zero 4.5
JE Jump on Equal 4.5
JG Jump on Greater 4.5
JGE Jump on Greater or Equal 4.5
JL Jump on Less 4.5
JLE Jump on Less or Equal 4.5

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUGC.TXT[2/6/2012 4:23:24 PM]

POP Pop 4.2
POPF Pop Flags 4.2
PUSH Push 4.2
PUSHF Push Flags 4.2
RCL Rotate through Carry Left 4.3
RCR Rotate through Carry Right 4.3
REP Repeat 4.4
REPE Repeat While Equal 4.4
REPNE Repeat While Not Equal 4.4
REPNZ Repeat While Not Zero 4.4
REPZ Repeat While Zero 4.4
RET Return (intra segment) 4.5
RETF Return (inter segment) 4.5
ROL Rotate Left 4.3
ROR Rotate Right 4.3
SAHF Store AH into Flags 4.2
SAL Shift Arithmetic Left 4.3
SAR Shift Arithmetic Right 4.3
SBB Subtract with Borrow 4.3
SCAS Scan Byte or Word (of string) 4.4
SCASB Scan Byte (of string) 4.4
SCASW Scan Word (of string) 4.4
SHL Shift Left 4.3
SHR Shift Right 4.3
STC Set Carry 4.6
STD Set Direction 4.6
STI Set Interrupt 4.6
STOS Store Byte or Word (of string) 4.4
STOSB Store Byte (of string) 4.4
STOSW Store Word (of string) 4.4
SUB Subtract 4.3
TEST Test 4.3
WAIT Wait 4.6
XCHG Exchange 4.2
XLAT Translate 4.2
XOR Exclusive Or 4.3

EOF

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUGD.TXT[2/6/2012 4:23:24 PM]

Appendix D

Code-macro Definition Syntax

<codemacro> ::= CODEMACRO <name> [<formal$list>]
 [<listofmacro$directives>j
 EndM

<name> ::= IDENTIFIER

<formal$list> ::= <parameter$descr>[{,<parameter$descr>}]

<parameter$descr> ::= <form$name>:<specifier$letter>
 <modifier$letter>[(<range>)]

<specifier$letter> ::= A | C | D | E | M | R | S | X

<modifier$letter> ::= b | w | d | sb

<range> ::= <single$range>|<double$range>

<single$range> ::= REGISTER | NUMBERB

<double$range> ::= NUMBERB,NUMBERB | NUMBERB,REGISTER |
 REGISTER,NUMBERB | REGISTER,REGISTER

<listofmacro$directives> ::= <macro$directive>
 {<macro$directive>}

<macro$directive> ::= <db> | <dw> | <dd> | <segfix> |
 <nosegfix> | <modrm> | <relb> |
 <relw> | <dbit>

<db> ::= DB NUMBERB | DB <form$name>
<dw> ::= DW NUMBERW | DW <form$name>
<dd> ::= DD <form$name>

<segfix> ::= SEGFIX <form$name>

<nosegfix> ::= NOSEGFIX <form$name>

<modrm> ::= MODRM NUMBER7,<form$name> |
 MODRM <form$name>,<form$name>
<relb> ::= RELB <form$name>
<relw> ::= RELW <form$name>
<dbit> ::= DBIT <field$descr>{,<field$descr>}

<field$descr> ::= NUMBER15 (NUMBERB) |
 NUMBER15 (<form$name> (NUMBERB))

<form$name> ::= IDENTIFIER

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUGD.TXT[2/6/2012 4:23:24 PM]

NUMBERB is 8-bits
NUMBERW is 16-bits
NUMBER7 are the values 0, 1, ..., 7
NUMBER15 are the values 0, 1, ..., 15

EOF

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUGE.TXT[2/6/2012 4:23:25 PM]

Appendix E

Sample Program

CP/M RASM-86 1.4 Source: APPE.A86 Terminal Input/Output Page 1

 TITLE 'Terminal Input/Output'
 PAGESIZE 59
 PAGEWIDTH 78
 SIMFORM
 ;
 ;---- Terminal I/O Subroutines ----
 ;
 ; The following subroutines
 ; are included:
 ;
 ; CONSTAT -- console status
 ; CONIN -- console input
 ; CONOUT -- console output
 ;
 ; Each routine requires CONSOLE NUMBER
 ; in the BL-register
 ;
 ; +------------+
 ; | Jump Table |
 ; +------------+
 ;
 CSEG
 ;
 jmp_tab:
 0000 E90600 0009 jmp constat
 0003 E91C00 0022 jmp conin
 0006 E92F00 0038 jmp conout
 ;
 ; +------------------+
 ; | I/O port numbers |
 ; +------------------+
 ;
 ; Terminal 1:
 ;
 0010 instat1 EQU 10H ; Input status port
 0011 indata1 EQU 11H ; Input port
 0011 outdata1 EQU 11H ; Output port
 0001 readyinmask1 EQU 01H ; Input ready mask
 0002 readyoutmask1 EQU 02H ; Output ready mask
 ;
 ; Terminal 2:
 ;
 0012 instat2 EQU 12H ; Input status port
 0013 indata2 EQU 13H ; Input port

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUGE.TXT[2/6/2012 4:23:25 PM]

 0013 outdata2 EQU 13H ; Output port

CP/M RASM-86 1.4 Source: APPE.A86 Terminal Input/Output Page 2

 0004 readyinmask2 EQU 04H ; Input ready mask
 0008 readyoutmask2 EQU 08H ; Output ready mask
 ;
 ; +---------+
 ; | CONSTAT |
 ; +---------+
 ;
 ; Entry: BL-reg = terminal number
 ; Exit: AL-reg = 0 if not ready
 ; 0FFH if ready
 ;
 constat:
 0009 53E84700 0054 push bx! call okterminal
 constat1:
 000D 52 push dx
 000E B600 mov dh,0 ; Read status port
 0010 8A970000 R mov dl,instatustab [BX]
 0014 EC in al,dx
 0015 22870600 R and al,readyinmasktab [BX]
 0019 7402 001D jz constatout
 001B B0FF mov al,0FFH
 constatout:
 001D 5A5B0AC0C3 pop dx! pop bx! or al,al! ret
 ;
 ; +-------+
 ; | CONIN |
 ; +-------+
 ;
 ; Entry: BL-reg = terminal number
 ; Exit: AL-reg = read character
 ;
 0022 53E82E00 0054 conin: push bx! call okterminal
 0026 E8E4FF 000D conin1: call constat1 ; Test status
 0029 74FB 0026 jz conin1
 002B 52 push dx ; Read character
 002C B600 mov dh,0
 002E 8A970200 R mov dl,indatatab [BX]
 0032 EC in al,dx
 0033 247F and al,7FH ; Strip parity bit
 0035 5A5BC3 pop dx! pop bx! ret
 ;
 ; +--------+
 ; | CONOUT |
 ; +--------+
 ;

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUGE.TXT[2/6/2012 4:23:25 PM]

CP/M RASM-86 1.4 Source: APPE.A86 Terminal Input/Output Page 3

 ; Entry: BL-reg = terminal number
 ; AL-reg = character to print
 ;
 0038 53E81800 0054 conout: push bx! call okterminal
 003C 52 push dx
 003D 50 push ax
 003E B600 mov dh,0 ; Test status
 0040 8A970000 R mov dl,instatustab [BX]
 conout1:
 0044 EC in al,dx
 0045 22870800 R and al,readyoutmasktab [BX]
 0049 74F9 0044 jz conout1
 004B 58 pop ax ; Write byte
 004C 8A970400 R mov dl,outdatatab [BX]
 0050 EE out dx,al
 0051 5A5BC3 pop dx! pop bx! ret
 ;
 ; +------------+
 ; | OKTERMINAL |
 ; +------------+
 ;
 ; Entry: BL-reg = terminal number
 ;
 okterminal:
 0054 0ADB or bl,bl
 0056 740A 0062 jz error
 0058 80FB03 cmp bl,length instatustab + 1
 005B 7305 0062 jae error
 005D FECB dec bl
 005F B700 mov bh,0
 0061 C3 ret
 ;
 0062 5B5BC3 error: pop bx! pop bx! ret ; Do nothing
 ;
 ;------ End of Code Segment -----
 ;
 ; +--------------+
 ; | Data Segment |
 ; +--------------+
 ;
 DSEG
 ;
 ; +------------------------+
 ; | Data for each terminal |
 ; +------------------------+

CP/M RASM-86 1.4 Source: APPE.A86 Terminal Input/Output Page 4

 ;

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUGE.TXT[2/6/2012 4:23:25 PM]

 0000 1012 instatustab DB instat1,instat2
 0002 1113 indatatab DB indata1,indata2
 0004 1113 outdatatab DB outdata1,outdata2
 0006 0104 readyinmasktab DB readyinmask1,readyinmask2
 0008 0208 readyoutmasktab DB readyoutmask1,readyoutmask2
 ;
 ;------ End of File -------------
 ;
 END

End of assembly. Number of errors: 0. Use factor: 1%

EOF

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUGF.TXT[2/6/2012 4:23:25 PM]

Appendix F

RASM-86 Error Messages

RASM-86 displays two kinds of error messages:

 non-recoverable errors
 diagnostics

Non-recoverable errors occur when RASM-86 is unable to continue assembling.
Table F-1 lists the non-recoverable errors RASM-86 can encounter during
assembly.

Table F-1. RASM-86 Non-recoverable Errors

Error Message Cause
------------- -----
NO FILE RASM-86 cannot find the indicated source or INCLUDE
 file on the indicated drive.

DISK FULL There is not enough disk space for the output files.
 You should either erase some unnecessary files or get
 another disk with more room and run RASM-86 again.

DIRECTORY FULL There is not enough directory space for the output
 files. You should either erase some unnecessary files
 or get another disk with more directory space and run
 RASM-86 again.

DISK READ ERROR RASM-86 cannot properly read a source or INCLUDE file.
 This is usually the result of an unexpected end-of-
 file. Correct the problem in your source file.

CANNOT CLOSE RASM-86 cannot close an output file. You should take
 appropriate action after checking to see if the
 correct disk is in the drive and that the disk is not
 write-protected.

SYMBOL TABLE OVERFLOW There is not enough memory for the Symbol Table.
 Either reduce the length or number of symbols, or
 reassemble on a system with more memory available.

SYNTAX ERROR A parameter in the command tail of the RASM-86 command
 was specified incorrectly.

Diagnostic messages report problems with the syntax and semantics of the
program being assembled. When RASM-86 detects an error in the source file, it
places a numbered ASCII error message in the listing file in front of the line
containing the error. If there is more than one error in the line, only the
first one is reported. Table F-2 shows the RASM-86 diagnostic error messages
by number, and gives a brief explanation of the error.

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUGF.TXT[2/6/2012 4:23:25 PM]

Table F-2. RASM-86 Diagnostic Error messages

Error Message Meaning
------------- -------
ERROR NO: 0 ILLEGAL FIRST ITEM

 The first item on a source line is not a valid
 identifier, directive, or mnemonic. For example,

 1234H

ERROR NO: 1 MISSING PSEUDO INSTRUCTION

 The first item on a source line is a valid identifier,
 and the second item is not a valid directive that can
 be preceded by an identifier. For example,

 THIS IS A MISTAKE

ERROR NO: 2 ILLEGAL PSEUDO INSTRUCTION

 Either a required identifier in front of a pseudo
 instruction is missing, or an identifier appears
 before a pseudo instruction that does not allow an
 identifier.

ERROR NO: 3 DOUBLE DEFINED VARIABLE

 An identifier used as the name of a variable is used
 elsewhere in the program as the name of a variable or
 label. For example,

 X DB 5
 X DB 123H

ERROR NO: 4 DOUBLE DEFINED LABEL

 An identifier used as a label is used elsewhere in the
 program as a label or variable name. For example,

 LAB3: MOV BX,5
 LAB3: CALL MOVE

ERROR NO: 5 UNDEFINED INSTRUCTION

 The item following a label on a source line is not a
 valid instruction. For example,

 DONE: BAD INSTR

ERROR NO: 6 GARBAGE AT END OF LINE - IGNORED

 Additional items were encountered on a line when RASM-

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUGF.TXT[2/6/2012 4:23:25 PM]

 86 was expecting an end of line. For example,

 NOLIST 4
 MOV AX,4 RET

ERROR NO: 7 OPERAND(S) MISMATCH INSTRUCTION

 Either an instruction has the wrong number of
 operands, or the types of the operands do not match.
 For example,

 MOV CX,1,2
 X DB 0
 MOV AX,X

ERROR NO: 8 ILLEGAL INSTRUCTION OPERANDS

 An instruction operand is improperly formed. For
 example,

 MOV [BP+SP],1234
 CALL BX+l

ERROR NO: 9 MISSING INSTRUCTION

 A prefix on a source line is not followed by an
 instruction. For example,

 REPNZ

ERROR NO: 10 UNDEFINED ELEMENT OF EXPRESSION

 An identifier used as an operand is not defined or has
 been illegally forward referenced. For example,

 JMP X
 A EQU B
 B EQU 5
 MOV AL,B

ERROR NO: 11 ILLEGAL PSEUDO OPERAND

 The operand in a directive is invalid. For example,

 X EQU OAGH
 TITLE UNQUOTED STRING

ERROR NO: 12 NESTED IF ILLEGAL - IF IGNORED

 The maximum nesting level for IF statements has been
 exceeded.

ERROR NO: 13 ILLEGAL IF OPERAND - IF IGNORED

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUGF.TXT[2/6/2012 4:23:25 PM]

 Either the expression in an IF statement is not
 numeric, or it contains a forward reference.

ERROR NO: 14 NO MATCHING IF FOR ENDIF

 An ENDIF statement was encountered without a matching
 IF statement.

ERROR NO: 15 SYMBOL ILLEGALLY FORWARD REFERENCED - NEGLECTED

 The indicated symbol was illegally forward referenced
 in an ORG, RS, EQU or IF statement.

ERROR NO: 16 DOUBLE DEFINED SYMBOL - TREATED AS UNDEFINED

 The identifier used as the name of an EQU directive is
 used as a name elsewhere in the program.

ERROR NO: 17 INSTRUCTION NOT IN CODE SEGMENT

 An instruction appears in a segment other than a CSEG.

ERROR NO: 18 FILE NAME SYNTAX ERROR

 The filename in an INCLUDE directive is improperly
 formed. For example,

 INCLUDE FILE.A86X

ERROR NO: 19 NESTED INCLUDE NOT ALLOWED

 An INCLUDE directive was encountered within a file
 already being included.

ERROR NO: 20 ILLEGAL EXPRESSION ELEMENT

 An expression is improperly formed. For example,

 X DB 12X
 DW (4 *)

ERROR NO: 21 MISSING TYPE INFORMATION IN OPERAND(S)

 Neither instruction operand contains sufficient type
 information. For example,

 MOV [BX],10

ERROR NO: 22 LABEL OUT OF RANGE

 The label referred to in a call, jump, or loop
 instruction is out of range. The label can be defined
 in a segment other than the segment containing the
 instruction. In the case of short instructions (JMPS,

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUGF.TXT[2/6/2012 4:23:25 PM]

 conditional jumps, and loops), the label is more than
 128 bytes from the location of the following
 instruction.

ERROR NO: 23 MISSING SEGMENT INFORMATION IN OPERAND

 The operand in a CALLF or JMPF instruction (or an
 expression in a DD directive) does not contain segment
 information. The required segment information can be
 supplied by including a numeric field in the segment
 directive as shown:

 CSEG 1000H
 X:
 JMPF X
 DD X

ERROR NO: 24 ERROR IN CODEMACRO BUILDING

 Either a code-macro contains invalid statements, or a
 code-macro directive was encountered outside a code-
 macro.

ERROR NO: 25 NO MATCHING IF FOR ELSE

 An ELSE statement was encountered without a matching
 IF statement.

EOF

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUGG.TXT[2/6/2012 4:23:26 PM]

Appendix G

LINK-86 Error Messages

During the course of operation, LINK-86 can display error messages. The error
messages and a brief explanation of their cause are described in Table G-1.

Table G-1. LINK-86 Error Messages

Error Message Meaning
------------- -------
CANNOT CLOSE

 LINK-86 cannot close an output file. You should take
 appropriate action after checking to see if the
 correct disk is in the drive, and that the disk is not
 write-protected.

DIRECTORY FULL

 There is not enough directory space for the output
 files. You should either erase some unnecessary files
 or get another disk with more directory space, and run
 LINK-86 again.

DISK READ ERROR

 LINK-86 cannot properly read a source or object file.
 This is usually the result of an unexpected end-of-
 file. Correct the problem in your source file.

DISK WRITE ERROR

 A file cannot be written properly, probably due to a
 full disk.

MULTIPLE DEFINITION

 The indicated symbol is defined as PUBLIC in more than
 one module. Correct the problem in the source file,
 and try again.

NO FILE

 LINK-86 cannot find the indicated source or object
 file on the indicated drive.

OBJECT FILE ERROR

 LINK-86 detected an error in the object file. This is
 caused by a translator error or by a bad disk file.

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUGG.TXT[2/6/2012 4:23:26 PM]

 Try regenerating the file.

SEGMENT ATTRIBUTE ERROR

 The <Align type> or <Combine type> of the indicated
 segment is not the same as the type of the segment in
 a previously linked file. Regenerate the object file
 after changing the segment attributes as needed.

SEGMENT COMBINATION ERROR

 An attempt is made to combine segments that cannot be
 combined, such as LOCAL segments. Change the segment
 attributes and re-link.

SYMBOL TABLE OVERFLOW

 LINK-86 ran out of Symbol Table space. Either reduce
 the number or length of symbols in the program, or
 re-link on a system with more memory available.

SYNTAX ERROR

 LINK-86 detected a syntax error in the command line,
 probably due to an improper filename or an invalid
 command option. LINK-86 echoes the command line up to
 the point where it found the error. Retype the command
 line or edit the INP file.

TARGET OUT OF RANGE

 The target of a fixup cannot be reached from the
 location of the fixup. (What is a "fixup"? It is not
 in the index...)

UNDEFINED SYMBOLS

 The symbols following this message are referenced, but
 not defined in any of the modules being linked.

VERSION 2 REQUIRED

 LINK-86 needs a version 2 file system or later, due to
 its use of the random I/O functions.

EOF

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUGH.TXT[2/6/2012 4:23:26 PM]

Appendix H

LIB-86 Error Messages

LIB-86 can produce the following error messages during processing. With each
message, LIB-86 displays additional information appropriate to the error, such
as the filename or module name, to help isolate the location of the problem.

Table H-1. LIB-86 Error Messages

Error Message Meaning
------------- -------
CANNOT CLOSE LIB-86 cannot close an output file. You should take
 appropriate action, after checking to see if the
 correct disk is in the drive and that the disk is not
 write-protected.

DIRECTORY FULL There is not enough directory space for the output
 files. You should either erase some unnecessary files
 or get another disk with more directory space and run
 LIB-86 again.

DISK FULL There is not enough disk space for the output files.
 You should either erase some unnecessary files or get
 another disk with more room, and run LIB-86 again.

DISK READ ERROR LIB-86 cannot properly read a source or object file.
 This is usually the result of an unexpected end-of-
 file. Correct the problem in your source file.

INVALID COMMAND OPTION LIB-86 encountered an unrecognized option in the
 command line. Retype the command line or edit the INP
 file.

MODULE NOT FOUND The indicated module name, which appeared in a
 REPLACE, SELECT, or DELETE switch, cannot be found.
 Retype the command line or edit the INP file.

MULTIPLE DEFINITION The indicated symbol is defined as PUBLIC in more than
 one module. Correct the problem in the source file,
 and try again.

NO FILE LIB-86 cannot find the indicated file.

OBJECT FILE ERROR LIB-86 detected an error in the object file. This is
 caused by a translator error or a bad disk file. Try
 regenerating the file.

RENAME ERROR LIB-86 cannot rename a file. Check that the disk is
 not write-protected.

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUGH.TXT[2/6/2012 4:23:26 PM]

SYMBOL TABLE OVERFLOW There is not enough memory for the Symbol Table.
 Reduce the number of options in the command line (MAP
 and XREF each use Symbol Table space), or use a system
 with more memory.

SYNTAX ERROR LIB-86 detected a syntax error in the command line,
 probably due to an improper filename or an invalid
 command option. LIB-86 echoes the command line up to
 the point where it found the error. Retype the command
 line or edit the INP file.

VERSION 2 REQUIRED LIB-86 needs a version 2 file system or later, due to
 its use of the random I/O functions.

EOF

file:///C|/...uel%20Roche%20DRI%20documents%20conversion/CPM-86%20Plus%20Programmers%20Utilities%20Guide/CPMPPUGI.TXT[2/6/2012 4:23:26 PM]

Appendix I

XREF-86 Error Messages

During the course of operation, XREF-86 can display error messages. Table I-1
shows the error messages and a brief explanation of their cause.

Table I-1. XREF-86 Error Messages

Error Message Meaning
------------- -------
CANNOT CLOSE XREF-86 cannot close an output file. You should take
 appropriate action after checking to see if the
 correct disk is in the drive, and that the disk is not
 write-protected.

DIRECTORY FULL There is not enough directory space for the output
 files. You should either erase some unnecessary files
 or get another disk with more directory space, and run
 XREF-86 again.

DISK FULL There is not enough disk space for the output files.
 You should either erase some unnecessary files or get
 another disk with more room, and run XREF-86 again.

NO FILE XREF-86 cannot find the indicated file on the
 indicated drive.

SYMBOL FILE ERROR XREF-86 issues this message when it reads an invalid
 SYM file. Specifically, a line in the SYM file that is
 not terminated with a carriage-return line-feed causes
 this error message.

SYMBOL TABLE OVERFLOW XREF-86 ran out of Symbol Table space. Either reduce
 the number or length of symbols in the program, or
 rerun on a system with more memory.

EOF

	CPMPPUG0
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Programmers Utilities Guide\CPMPPUG0.TXT

	CPMPPUG1
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Programmers Utilities Guide\CPMPPUG1.TXT

	CPMPPUG2
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Programmers Utilities Guide\CPMPPUG2.TXT

	CPMPPUG3
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Programmers Utilities Guide\CPMPPUG3.TXT

	CPMPPUG4
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Programmers Utilities Guide\CPMPPUG4.TXT

	CPMPPUG5
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Programmers Utilities Guide\CPMPPUG5.TXT

	CPMPPUG6
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Programmers Utilities Guide\CPMPPUG6.TXT

	CPMPPUG7
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Programmers Utilities Guide\CPMPPUG7.TXT

	CPMPPUG8
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Programmers Utilities Guide\CPMPPUG8.TXT

	CPMPPUG9
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Programmers Utilities Guide\CPMPPUG9.TXT

	CPMPPUGA
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Programmers Utilities Guide\CPMPPUGA.TXT

	CPMPPUGB
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Programmers Utilities Guide\CPMPPUGB.TXT

	CPMPPUGC
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Programmers Utilities Guide\CPMPPUGC.TXT

	CPMPPUGD
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Programmers Utilities Guide\CPMPPUGD.TXT

	CPMPPUGE
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Programmers Utilities Guide\CPMPPUGE.TXT

	CPMPPUGF
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Programmers Utilities Guide\CPMPPUGF.TXT

	CPMPPUGG
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Programmers Utilities Guide\CPMPPUGG.TXT

	CPMPPUGH
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Programmers Utilities Guide\CPMPPUGH.TXT

	CPMPPUGI
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\CPM-86 Plus Programmers Utilities Guide\CPMPPUGI.TXT

