

Converted from file "ULCNETPC.WS4"

file:///C|/...20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Ultra-Low-Cost%20Network/ULCNETPC.HTM[2/6/2012 11:16:09 AM]

ULCnetPC.WS4

- "Ultra-Low-Cost Network for Personal Computers"
 Ken Clements & Dave Daugherty
 BYTE, October 1981, p.50

(Retyped by Emmanuel ROCHE.)

Ten years ago, computer "hackers" listened with glee to predictions that
technological advances would soon allow them to buy their very own computers.
Indeed, the seers predicted, the computers of the future would fit into a
spare bedroom or basement, and wouldn't even require air conditioning. The
word went out: start saving $100,000 to be ready when that great time came.

The time came with a vengeance. Today, you can hardly take twenty paces around
a technical organization, school, or office without bumping into, or being
addressed by, yet another computer.

One of the sad outcomes of this exponential growth was creation of the
computer junkie, the unfortunate soul who went out and bought each of the
newest computers he or she could afford. The junkie ended up with a basement
full of equipment, and a computer habit that could be satisfied only by more
spending.

Just when the future was looking grim for these computer junkies, salvation
took form and appeared on college campuses. Perhaps the best explanation came
from a recruiter from the giant Xmumblex Corp, who took a young graduate aside
and whispered: "I have just one word for you: networks".

The big-computer companies and an army of computer scientists apparently will
be going network crazy for the next ten years. This development thrills the
computer junkies, because it provides more computer "stuff" to get excited
about. And, the junkies calculate, if they could get their own personal
networks going, they might be able to string together all the "coldware"
collecting dust in their basements.

What stops most people from going ahead with their own networks is complexity,
both in terms of cost and technical considerations. A typical coaxial network
"box" may be as difficult to build and interface as was the computer you
wanted to network. This stumbling block is particularly large for the computer
junkie who owns no two pieces of hardware that are the same. He must come up
with a new interface for each one.

But almost all those pieces of hardware have at least one RS-232C serial port.
RS-232C was designed to provide point-to-point communication, and it requires
some central manager "box" to produce a network. But, with as little as one
diode per port, two resistors for the ends, and a -12 Volt source, you can
turn RS-232C into ULCnet, the Ultra-Low-Cost Network.

Simple technique

The primary technique for this transformation is shown in Figure 1. It is
amazingly simple: just connect a diode in series with the transmit line, then
connect the receive line and the diode to your cable. At the ends of the
cable, you will need resistors to "pull down" the line to -12 Volt, and to
help soak up reflections. Serial communications via RS-232C are usually not
too fast, so the type of cable and exact terminations are not critical.

Converted from file "ULCNETPC.WS4"

file:///C|/...20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Ultra-Low-Cost%20Network/ULCNETPC.HTM[2/6/2012 11:16:09 AM]

 Figure 1. Simplest version of ULCnet

For most applications, it is easy to use shielded twisted-pair cable for the
network. This allows one of the wires in the pair to carry the -12 Volt needed
by the termination resistors at the end of the cable. An example of wiring the
termination is shown in Figure 2. This technique assumes that, somewhere along
the line, the black wire in the pair is connected to -12 Volt, and the shield
is grounded.

 Figure 2. ULCnet for two-wire shielded cable

When characters are sent through an ULCnet port, they are received at all the
ports on the network, including the port that did the sending. However, if two
or more ports send different messages at the same time, the transmitting ports
will each receive something other than what they sent: the logical OR of the
two messages. This allows an extremely important property, namely collision
detection (a property also used in Xerox's Ethernet).

The ULCnet uses the fact than an RS-232C port holds its transmit line at
negative voltage when not transmitting, and then pulses the transmit line
positive at the start of a character. The RS-232C standard defines a positive

Converted from file "ULCNETPC.WS4"

file:///C|/...20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Ultra-Low-Cost%20Network/ULCNETPC.HTM[2/6/2012 11:16:09 AM]

level as a transmitted 0, and a negative level as a binary 1. In other words,
a character starts with a 0, followed by a byte of code transmitted low-order
bit first. At least one binary 1 is inserted after each byte-long character,
and it is called the stop bit.

The termination resistors on the ULCnet provide the negative level, and each
port may "pull" the line to a positive level by the start pulse of a
character. In terms of bits, the resistors supply the 1s, and the ports supply
the 0s.

The speed and distance limits of the ULCnet come from a combination of the
drive-current limitations of an RS-232C port and the load each receiver puts
on the net. The limits lead to a three-way trade-off of distance, speed, and
number of receivers. For example, you might use the ULCnet at 19,200 bps (bits
per second) for six devices separated by 20 feet, or you might connect three
devices with two miles of wire and run at 300 bps.

Improvements

Some simple modifications can be made to expand the network capability. The
first modification gets the number of receivers out of the trade-off equation.
Figure 3 shows an alternate ULCnet connection in which an op amp (operational
amplifier) is used to buffer the incoming signal. This reduces to almost
nothing the load each node places on the network, thereby allowing as many
connections as desired on the network.

 Figure 3. Simple modifications expand network capacity

Some RS-232C ports have +12 Volt and -12 Volt supplied on pins 9 and 10 of
their DB-25 connector (these can be used to power the op amp). Most, however,
do not, so the user will need to run a pair of wires to the power supply of
the computer. If some other power source is used, the user must be sure its
ground reference is the same as pin 7 of the RS-232C port.

Figure 3 also shows a circuit that drives the DTR (Data Terminal Ready) input
of the RS-232C port. This circuit is used to detect activity on the network,
and it will assert (pull high) DTR if the network is busy. The circuit works
by charging C1, a 0.1 uF capacitor during the start bit of a character. The
capacitor will then discharge through the 330-kilohm resistor R1 when
characters are no longer being transmitted. The choice of values for these two
components is set by the slowest data rate to be used on the network. The

Converted from file "ULCNETPC.WS4"

file:///C|/...20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Ultra-Low-Cost%20Network/ULCNETPC.HTM[2/6/2012 11:16:09 AM]

choice shown was picked for 1200 bps operation. If 2400 bps is desired as the
lowest rate, then halve R1's value. The resistor can be scaled in this manner
for the lowest transfer rate desired. Table 1 suggests resistor values for
various data rates, but plan to experiment.

Table 1. Suggested resistor values

 Data rate (bps) Size of R1 (kilohm)
 --------------- -------------------
 1200 330
 2400 160
 4800 82
 9600 39
 19.2 K 22
 38.4 K 10
 76.8 K 5.1
 153.6 K 2.2

The purpose of the busy flag circuit shown in Figure 3 is to relieve the
software of checking the condition of the network, and to provide a signal
that can be used with an interrupt-driven system. (These techniques are
discussed later.)

Aiming for speed

Figure 4 is included for those who crave speed. Here, the drive limitation is
overcome by using a power FET (Field-Effect Transistor) to drive coaxial
cable. The cable can be either standard 50 Ohm coax, or the 75 Ohm coax
commonly used in cable TV operations. Whichever you choose, you must use a
matching resistor (50 Ohm or 75 Ohm) on each end of the cable.

 Figure 4. Fast version of ULCnet

Converted from file "ULCNETPC.WS4"

file:///C|/...20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Ultra-Low-Cost%20Network/ULCNETPC.HTM[2/6/2012 11:16:09 AM]

In this form of the ULCnet, the logical 0 is represented by a +12 Volt level,
and the logical 1 is at 0 Volt. The same busy-detect circuit is used, and all
of the network techniques will remain the same. This version of ULCnet is
included for those who have very fast controller devices on their ports, and
want to operate in the 50 Kbps to 1 Mbps range.

To make this fast version work, it is important to have a very solid source of
+12 Volt that can put out about one amp for a very short time. The fuse
included in Figure 4 is meant to shut down the connection if the computer
turns on the power FET and leaves it on. If not corrected, this error
condition would cause the entire network to halt.

One way to set up a network is shown in Figure 5. This setup would allow all
the computers to share the hard disk and the printer. The computer directly
connected to the hard disk and printer would be partially dedicated to
servicing the requests for these resources.

 +-----------------------------+
 | ┌───────────┐ ┌─────────┐ |
 | │ Hard disk │ │ Printer │ |
 | └─────┬─────┘ └────┬────┘ |
 | └───────┬──────┘ |
 | ┌─────┴────┐ | ┌──────────┐ ┌──────────┐
 | │ Computer │ | │ Computer │ │ Computer │
 | └─────┬────┘ | └─────┬────┘ └─────┬────┘
 +---------------│-------------+ │ │
 │ │ │
 ────────────────┴──────────────────────┴─────────────┴──────
 ULCnet
 ──

 Figure 5. One possible ULCnet configuration

Design issues

Now that we have discussed the hardware for the ULCnet, let us look at some of
the issues involved in designing software for the network. These issues are:
node-addressing concepts, message formats, task layering, low-level
transmission and reception, communication protocols and error recovery,
dialogue pipes, special types of networking communications, and networking
under multi-tasking operating systems.

First, let us define a node as any device connected to the ULCnet that has the
ability to transmit information, receive information, or both.

If there are more than two nodes on a network, some mechanism is needed to
uniquely specify the destination of transmitted information. This need is
fulfilled by assigning to each node a unique numeric address. A single digit
may be sufficient to specify the node for which a message is intended.

Many mechanisms can be used to inform the node's software of its particular
address. The possibilities include establishing a switch setting on an input
port, including the information in the software for each node (but each node
would then need a unique version of the network software), or having the
software query the user for an address during initialization.

An address does not necessarily have to be a number, as long as it can be
uniquely recognized. It could be a character string such as EVA or SHIRLEY,
but you must be willing to pay the cost of pattern matching in order to adopt
this scheme.

A nameserver mechanism allows the nicety of character strings for addresses
without sacrificing the advantage of number matching for decoding addresses.
The nameserver consists of a file and a program on a node with mass storage
that associates an ASCII (American Standard Code for Information Interchange)
string with an address number. The nameserver accepts requests for
registration, de-registration, and name queries.

Special generic addresses also can be set aside for special purposes. For
instance, the nameserver could be assigned a generic address to be used by all
nameserver-related messages, making it un-necessary to know which node the
nameserver is actually on.

Another generic address could be set aside to represent a broadcast message --
one that all nodes on the network would want to receive. A typical use of a
broadcast message is sending a company-wide memo to all employees on the
network. The generic address eliminates the need to address the same memo to
each person on the network.

Special types of nodes, such as mass-storage nodes or printers, can have their
own addresses. For example, the address M might be reserved for the printer
node. If there is only one printer on your network, M would mean that printer.
If there is more than one printer on the network, an additional field called

Converted from file "ULCNETPC.WS4"

file:///C|/...20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Ultra-Low-Cost%20Network/ULCNETPC.HTM[2/6/2012 11:16:09 AM]

the logical printer number could be used to specify the printer for which the
message is destined.

Message formats

A message is a pre-determined sequence of fields by which two nodes
communicate. A message normally consists of several parts: the header, the
body, and some kind of error-checking mechanism, such as checksum, at the end.

The structure allows for much variation. The basic component for constructing
a message usually is a byte. A field is defined as one or more bytes that
designate a particular section of a message. Typical fields in a message are
shown in Figure 6, and explained below.

 ┌─────┬────┬──────┬─────────┬──────┬─────────┬──────┬──────────┐
 │ SOT │ To │ From │ Message │ Byte │ Message │ Data │ Checksum │
 └─────┴────┴──────┴─────────┴──────┴─────────┴──────┴──────────┘

 Figure 6. Proposed message format

SOT: Start Of Transmission
This byte is useful for informing all receivers that the beginning of a
message is now on the network, and that the next byte will be the address
byte. Obviously, the byte must not be confused with bytes in the middle of a
message.

To Address:
The address of the intended receiver.

From Address:
The address of the node that transmitted the message. As will be shown later,
this field is important for sending acknowledgments back to the transmitter.

Message Number:
A unique number that distinguishes one message from the next. The usefulness
of this field will be illustrated in the sections of this article dealing with
duplicate messages.

Bytecount:
Tells a receiver how many bytes to expect in the message body. It can be used
as a receive loop counter, to be decremented each time a byte is received.
When the counter equals zero, the user knows the checksum byte will follow
immediately.

Message ID:
Distinguishes three types of messages within a network system. The data
message contains the essential information to be transmitted from one node to
another. The message acknowledgment acknowledges a data message, and the third
type of message, ACKACK, acknowledges a message acknowledgment.

Data:
Zero or more bytes of information that follow the Message ID.

Checksum:
The error-checking byte, computed as the n-bit sum of all the bytes in the
message (except the SOT byte and the checksum itself). The transmitter sums up
all the bytes in its transmitted message and "ships out" the lower n bits of
that sum as the last byte of the message. Meanwhile, the receiver does the
analogous operation on the message it receives. If all the characters were
received correctly, the receiver's lower n-bit sum should match the
transmitter's checksum.

Layering the tasks

The network software can be broken up into three separate layers for
implementation (see Figure 7). These layers are the basic transmitter and
receiver subroutines, the protocol layer, and the application program.
Breaking up the network software in this manner is useful, because it allows
the implementer to concentrate on a subset of network functions, without
having to give much consideration to the rest of the functions. As an added
benefit, the layered structure limits the software modifications needed in
order to bring up networking capability for particular network tasks and
particular machines.

 ┌───────────────────────────────────────┐
 │ Application Program │
 │ ┌───────────────────────────────────┐ │
 │ │ Protocol Layer │ │
 │ │ ┌───────────────────────────────┐ │ │
 │ │ │ Transmitter-Receiver Routines │ │ │

Converted from file "ULCNETPC.WS4"

file:///C|/...20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Ultra-Low-Cost%20Network/ULCNETPC.HTM[2/6/2012 11:16:09 AM]

 └─┴─┴───────────────────────────────┴─┴─┘

 Figure 7. Network protocol is based on the layer concept

As an example, let's say network software is to be brought up on two of the
same type of microcomputers, each having a different serial interface.
Subroutines in the transmitter/receiver layer that specifically deal with the
serial interface are the only parts of the network software that need
changing. On the other end, a printer-application program and a disk-write
program should be able to use the same protocol layer and transmitter/receiver
layer.

The transmitter

A buffer and a byte count are the necessary parameters this routine needs from
the protocol layer. The transmitter should neither know nor care what type of
message is in the buffer. First, the transmitter will need to know if anyone
else is currently using the network. In an interrupt environment, this can be
determined by a flag set when a character is received, and reset when a
carrier-detect interrupt occurs. If the flag is reset, therefore, it shows
that the network is not in use.

If the transmitter is to be implemented without the aid of interrupts, it will
be necessary to wait the length of time needed to receive one character (based
on the data-transfer rate). If no characters are received in this time, it is
assumed no one is in the middle of transmission.

Once it has been determined the network is not busy, the transmitter must send
out the SOT field. A potential "race" problem resulting in a collision could
occur at this point, since two transmitters could conceivably start this
transmission simultaneously.

Because the network is set up so that transmitters receive what they transmit,
the received character should always be compared to the character that was
just transmitted. If the two characters do not match, a collision has
occurred. Later, we will decide how to recover from such a collision.

Assuming the transmitter received what it transmitted, it continues to send
out bytes until all, including the checksum, have been sent. If the
transmitter is interrupt-driven, it may want to set a flag to inform the
protocol layer that transmission was successful. For a transmitter running
without interrupts, this information could be returned as a parameter to the
routine that called the transmitter.

The receiver

A receiver activated by interrupts will be able to synchronize with the
beginning of a message by the carrier-detect interrupt that occurs after the
end of any message. Receivers without interrupts or latched carrier-detect
pulses must repeatedly wait until a whole character time has gone by without
receiving anything. The next field to be received should be the SOT field. If
it is not, it will be necessary to go back to the previous step until an SOT
is detected.

Once the SOT is detected, the next field should be the Destination Address.
When this field is received, it should be compared with the receiver's own
address to determine whether the message is intended for this receiver. If
your network supports broadcast messages, all receivers must check to see if
the message is a broadcast message. Additionally, printer and disk storage
nodes must also check to see if the destination address is their generic
address. If no address match exists, the receiver should go back to hunting
for an SOT field (unless this receiver is a gossip monger).

If the message is addressed to a particular receiver, the address and all
subsequent bytes should be received and summed together for comparison with
the checksum byte at the end of the message. If your particular network uses
parity, the message should also be checked for each character received. The
receiver should not care what type of message was received; it should simply
inform the protocol layer of receipt. With an interrupt-driven receiver, a
flag can be set at completion to inform the protocol layer. Additional
information, such as whether any errors occurred during the message, could
also be communicated to the protocol layer via common memory. If the receiver
is not interrupt-driven, this information can be passed back as parameters to
the protocol layer.

The protocol layer

For the following discussion, source will be defined as the node that
transmitted the original message, and destination as the node to which the

Converted from file "ULCNETPC.WS4"

file:///C|/...20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Ultra-Low-Cost%20Network/ULCNETPC.HTM[2/6/2012 11:16:09 AM]

message was addressed.

When computer A sends a message to computer B, there is no guarantee that
computer B will receive it. Many things could go wrong. There might be a loose
connection somewhere. Computer B might not be running, or it might not be
listening to the network. Computer C could start transmitting at the same time
as computer A.

Protocol schemes detect and correct such situations. Protocol is basically a
conversation between a source and a destination, trying to ensure that what
the source transmitted was actually received by the destination.

The simplest protocol is one in which the source sends a message to a specific
destination and assumes the message arrived. If your network is in good
working order and you know that a particular destination is running properly,
this protocol will be sufficient most of the time. You probably would want to
use this protocol, for example, when you are sending messages to your friend
Carol, who is using computer B. If she is there, she will probably send a
message back, thereby acknowledging that she received your message. You would
also use this protocol for broadcast messages, to prevent the network from
getting jammed by everyone trying to send acknowledgments at the same time.

When you are doing things on your network, such as writing a file to a disk,
assuming the file got there is not enough. You need some real acknowledgment
that the file got to the disk. If no acknowledgment comes back from the
destination, or if the destination returns to the source an acknowledgment
stating that the disk is full, the source will have to take some error-
recovery measures. These are discussed later.

What happens if the destination receives a correct message and sends back an
acknowledgment that is not received by the source? In this case, the source
thinks its original message did not get through, but it actually did. To avoid
this situation, an acknowledgment of an acknowledgment received (ACKACK) can
be added to the protocol. If, after sending an acknowledgment, the destination
does not receive the ACKACK, it will have to take some kind of error-recovery
action.

What happens if the source receives the acknowledgment and sends the ACKACK,
but the destination does not receive the ACKACK? Somebody has got to have the
last word, and there can be no guarantee that a message and all its associated
protocol are transmitted and received successfully. Especially on a low-speed
network, the criterion for deciding how much protocol to use is "as little as
possible for a particular application". An intelligent system might provide
all three types of protocol (i.e., message, message-ACK, and message-ACK-
ACKACK) and allow the application program to decide which one to use.

Error recovery

What should be done when a message was sent and no acknowledgment came back?
Or when an acknowledgment was sent but no ACKACK came back? Both these cases
call for a timing mechanism. A source that transmitted something and is
expecting a reply from the destination must wait a certain amount of time for
that reply to come back. If the reply does not come back within that time, it
will be assumed an error condition exists.

How long should this time be? There is no way to guarantee that a destination
really did receive the message and will transmit an acknowledgment within the
time the source has set. The waiting time, then, should be more than long
enough to cover any reasonable situation.

Once the source has waited a set amount of time without receiving a reply, a
reasonable action would be to retransmit the original message at least once
more, and again wait the specified amount of time for a reply. The same
strategy could be used by the destination when it sends acknowledgments and
waits for an ACKACK. If you are doing your network without the aid of a
hardware timer, you will need a time-counting subroutine that continually
checks to see if a reply was received, and decrements the counter. If the
counter reaches 0 before a reply is received, then a timeout error exists. If
your software has access to a hardware timer, you can use it to set an
interrupt.

If no reply is received after repeated attempts to transmit a message, there
is nothing to do but give up and report the problem to the program that
initiated the network call.

This retransmission scheme introduces another problem. Suppose the source
sends a message that is received by the destination, but the destination sends
back an acknowledgment that is never received by the source. After timing out,
therefore, the source retransmits the original message, and the destination
receives it a second time. The Message Number field, along with the From
Address field, can be used to correct such situations.

All receivers should keep a list of the last n messages received. The list

Converted from file "ULCNETPC.WS4"

file:///C|/...20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Ultra-Low-Cost%20Network/ULCNETPC.HTM[2/6/2012 11:16:09 AM]

need contain only the message number and the From Address. When a new message
is received, the list should be examined for a match. If a duplicate is
detected, the message should be "dumped", but the appropriate response should
be sent back to the transmitter of the duplicate message. If the duplicate was
an original message, an acknowledgment should be sent back or, if the
duplicate message was an acknowledgment, an ACKACK should be sent back.

Collisions are another issue. Assuming that all transmitters check the state
of the network before starting transmission, collisions can happen only when
two or more transmitters start their transmissions within one character time
of each other. When collisions happen, all transmitters involved should
immediately stop transmitting and allow the network to return to the "not
busy" condition.

Now, some kind of mechanism is needed to tell colliding transmitters when they
can start transmitting again. If they all wait an equal amount of time, they
will collide again. Therefore, they must all wait different lengths of time.

One way to ensure this setup is to establish a priority order based on node
address. If a node with the address of 1 collides with a node with the address
of 3, then node 1 will wait one unit of time before attempting retransmission,
while node 3 will wait three units of time. One problem with this scheme is
that, under heavy load conditions where collisions are more frequent, nodes
with high address numbers may never be able to get a message through, because
they must wait so long after each collision.

A fairer scheme would be one in which each node has a random-number generator
guaranteed to create a unique sequence of random numbers. All nodes would then
have equal priority in retransmissions after collisions.

A typical application program

As an example of a typical application program, let us consider a request to a
filing system on a hard-disk node.

The "save" request would first want to send to the filing system a message
containing the file name and the number of sectors to be saved. The request
probably would ask the protocol layer to expect an acknowledgment, and allow
the protocol layer to take care of retransmissions, if necessary. Along with
the acknowledgment would come information from the filing system indicating
whether or not the request can be accommodated. It it cannot be accommodated,
the request program must report the failure to its caller.

If the request can be accommodated, the save request program must break up the
file to be saved into convenient blocks (probably a disk sector). When errors
occur during transmission, it is more economical to retransmit small blocks
than large ones. In either case, the save request should send an ACKACK to the
filing system to say it agrees to what the filing system considers the state
of the request.

Once the file has been partitioned into blocks, the save request should hand
them in sequence to its protocol layer for transmission to the filing system.
The request should ask its protocol layer to expect an acknowledgment for each
block transmitted. Each block should have a unique number that can be checked
by the filing system against block numbers already received. In this manner,
duplicate blocks can be dumped.

By the value of the last block number, both parties know when the file
transfer is completed. If implementation is done in a straightforward manner,
the last block number should equal the corresponding field in the original
request message.

The save request should ask the protocol layer to send an ACKACK to the filing
system when it submits the last block for transfer. Upon receipt of this
ACKACK, the filing system can be sure it will not be getting a retransmission
of the last block, and it can close the file and forget about the request.

When extended conversations are taking place between two nodes on the network
(as in the previous file transfer examples), the network can be made to appear
constantly busy by never allowing more than a character time to elapse between
messages. In this way, no other user on the network can interfere with the
conversation.

If the data rate is controlled by software on the two conversing nodes, you
might consider increasing the rate after the initial conversational link has
been established. The rate could be increased beyond what is normally
acceptable to every node on the network, but it must be changed back after the
conversation is completed. While the process is going on, every other node on
the network should recognize it as a network-error condition. Because the
nodes have not seen a transition from a busy network to a non-busy network,
they will not be looking for an SOT field anyway. This scheme can get a little
tricky when attempting to end a conversation, especially if the last
acknowledgment or ACKACK did not get through but the data rate on one node has

Converted from file "ULCNETPC.WS4"

file:///C|/...20Preservation/Emmanuel%20Roche%20DRI%20documents%20conversion/Ultra-Low-Cost%20Network/ULCNETPC.HTM[2/6/2012 11:16:09 AM]

already been reduced to its former value.

Multitasking environments

Networking in multitasking environments raises many issues that cannot be
considered here, but a few obvious ones should be pointed out.

The protocol layer probably should be set up as a process by introducing
another parameter to indicate whether the application program will "go to
sleep" waiting for a reply or acknowledgment. The protocol layer would then
have to give the application program a "wake up" by indicating whether the
message got through to the receiving process.

Since messages could in this way be addressed to one of several processes on a
node, the address fields for To and From addresses would need to be extended
to include a Process ID number.

The software design presented in this article reflects only one of many
possibilities.

Now that you have a taste of what networking is all about, you can experiment
and enjoy implementing your own ULCnet.

EOF

	ULCNETP1
	ULCNETP2
	ULCNETP3
	ULCNETP4
	ULCNETPC
	Local Disk
	Converted from file "ULCNETPC.WS4"

