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ULCnetPC.WS4
------------

- "Ultra-Low-Cost Network for Personal Computers"
   Ken Clements & Dave Daugherty
   BYTE, October 1981, p.50

(Retyped by Emmanuel ROCHE.)

Ten  years  ago,  computer "hackers" listened with glee  to  predictions  that 
technological advances would soon allow them to buy their very own  computers. 
Indeed,  the  seers predicted, the computers of the future would  fit  into  a 
spare  bedroom  or basement, and wouldn't even require air  conditioning.  The 
word went out: start saving $100,000 to be ready when that great time came.

The time came with a vengeance. Today, you can hardly take twenty paces around 
a  technical  organization, school, or office without bumping into,  or  being 
addressed by, yet another computer.

One  of  the  sad  outcomes of this exponential growth  was  creation  of  the 
computer  junkie,  the unfortunate soul who went out and bought  each  of  the 
newest  computers he or she could afford. The junkie ended up with a  basement 
full  of equipment, and a computer habit that could be satisfied only by  more 
spending.

Just  when the future was looking grim for these computer  junkies,  salvation 
took form and appeared on college campuses. Perhaps the best explanation  came 
from a recruiter from the giant Xmumblex Corp, who took a young graduate aside 
and whispered: "I have just one word for you: networks".

The big-computer companies and an army of computer scientists apparently  will 
be  going network crazy for the next ten years. This development  thrills  the 
computer  junkies,  because it provides more computer "stuff" to  get  excited 
about.  And,  the  junkies calculate, if they could  get  their  own  personal 
networks  going,  they  might be able to string together  all  the  "coldware" 
collecting dust in their basements.

What stops most people from going ahead with their own networks is complexity, 
both in terms of cost and technical considerations. A typical coaxial  network 
"box"  may  be  as difficult to build and interface as was  the  computer  you 
wanted to network. This stumbling block is particularly large for the computer 
junkie  who owns no two pieces of hardware that are the same. He must come  up 
with a new interface for each one.

But almost all those pieces of hardware have at least one RS-232C serial port. 
RS-232C was designed to provide point-to-point communication, and it  requires 
some  central manager "box" to produce a network. But, with as little  as  one 
diode  per  port, two resistors for the ends, and a -12 Volt source,  you  can 
turn RS-232C into ULCnet, the Ultra-Low-Cost Network.

Simple technique
----------------

The  primary  technique for this transformation is shown in Figure  1.  It  is 
amazingly simple: just connect a diode in series with the transmit line,  then 
connect  the  receive  line and the diode to your cable. At the  ends  of  the 
cable,  you  will need resistors to "pull down" the line to -12 Volt,  and  to 
help  soak up reflections. Serial communications via RS-232C are  usually  not 
too fast, so the type of cable and exact terminations are not critical.
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        Figure 1. Simplest version of ULCnet

For  most applications, it is easy to use shielded twisted-pair cable for  the 
network. This allows one of the wires in the pair to carry the -12 Volt needed 
by the termination resistors at the end of the cable. An example of wiring the 
termination is shown in Figure 2. This technique assumes that, somewhere along 
the line, the black wire in the pair is connected to -12 Volt, and the  shield 
is grounded.

        Figure 2. ULCnet for two-wire shielded cable

When characters are sent through an ULCnet port, they are received at all  the 
ports on the network, including the port that did the sending. However, if two 
or more ports send different messages at the same time, the transmitting ports 
will  each receive something other than what they sent: the logical OR of  the 
two  messages. This allows an extremely important property,  namely  collision 
detection (a property also used in Xerox's Ethernet).

The  ULCnet  uses  the fact than an RS-232C port holds its  transmit  line  at 
negative  voltage  when not transmitting, and then pulses  the  transmit  line 
positive at the start of a character. The RS-232C standard defines a  positive 
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level as a transmitted 0, and a negative level as a binary 1. In other  words, 
a character starts with a 0, followed by a byte of code transmitted  low-order 
bit  first. At least one binary 1 is inserted after each byte-long  character, 
and it is called the stop bit.

The  termination resistors on the ULCnet provide the negative level, and  each 
port  may  "pull"  the  line  to a positive level by  the  start  pulse  of  a 
character. In terms of bits, the resistors supply the 1s, and the ports supply 
the 0s.

The  speed  and distance limits of the ULCnet come from a combination  of  the 
drive-current  limitations of an RS-232C port and the load each receiver  puts 
on  the net. The limits lead to a three-way trade-off of distance, speed,  and 
number of receivers. For example, you might use the ULCnet at 19,200 bps (bits 
per  second) for six devices separated by 20 feet, or you might connect  three 
devices with two miles of wire and run at 300 bps.

Improvements
------------

Some  simple modifications can be made to expand the network  capability.  The 
first modification gets the number of receivers out of the trade-off equation. 
Figure 3 shows an alternate ULCnet connection in which an op amp  (operational 
amplifier)  is  used  to buffer the incoming signal. This  reduces  to  almost 
nothing  the  load each node places on the network, thereby allowing  as  many 
connections as desired on the network.

        Figure 3. Simple modifications expand network capacity

Some  RS-232C  ports have +12 Volt and -12 Volt supplied on pins 9 and  10  of 
their DB-25 connector (these can be used to power the op amp). Most,  however, 
do  not, so the user will need to run a pair of wires to the power  supply  of 
the  computer. If some other power source is used, the user must be  sure  its 
ground reference is the same as pin 7 of the RS-232C port.

Figure 3 also shows a circuit that drives the DTR (Data Terminal Ready)  input 
of  the RS-232C port. This circuit is used to detect activity on the  network, 
and  it will assert (pull high) DTR if the network is busy. The circuit  works 
by  charging C1, a 0.1 uF capacitor during the start bit of a  character.  The 
capacitor  will  then  discharge  through  the  330-kilohm  resistor  R1  when 
characters are no longer being transmitted. The choice of values for these two 
components  is  set by the slowest data rate to be used on  the  network.  The 
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choice shown was picked for 1200 bps operation. If 2400 bps is desired as  the 
lowest rate, then halve R1's value. The resistor can be scaled in this  manner 
for  the  lowest transfer rate desired. Table 1 suggests resistor  values  for 
various data rates, but plan to experiment.

Table 1. Suggested resistor values

        Data rate (bps) Size of R1 (kilohm)
        --------------- -------------------
                1200            330
                2400            160
                4800             82
                9600             39
                19.2 K           22
                38.4 K           10
                76.8 K            5.1
               153.6 K            2.2

The  purpose  of  the busy flag circuit shown in Figure 3 is  to  relieve  the 
software  of  checking the condition of the network, and to provide  a  signal 
that  can  be  used with an interrupt-driven  system.  (These  techniques  are 
discussed later.)

Aiming for speed
----------------

Figure 4 is included for those who crave speed. Here, the drive limitation  is 
overcome  by  using  a power FET (Field-Effect Transistor)  to  drive  coaxial 
cable.  The  cable  can be either standard 50 Ohm coax, or  the  75  Ohm  coax 
commonly  used  in cable TV operations. Whichever you choose, you must  use  a 
matching resistor (50 Ohm or 75 Ohm) on each end of the cable.

        Figure 4. Fast version of ULCnet
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In this form of the ULCnet, the logical 0 is represented by a +12 Volt  level, 
and the logical 1 is at 0 Volt. The same busy-detect circuit is used, and  all 
of  the  network techniques will remain the same. This version  of  ULCnet  is 
included  for those who have very fast controller devices on their ports,  and 
want to operate in the 50 Kbps to 1 Mbps range.

To make this fast version work, it is important to have a very solid source of 
+12  Volt  that  can put out about one amp for a very  short  time.  The  fuse 
included  in  Figure 4 is meant to shut down the connection  if  the  computer 
turns  on  the  power  FET and leaves it on.  If  not  corrected,  this  error 
condition would cause the entire network to halt.

One  way to set up a network is shown in Figure 5. This setup would allow  all 
the  computers to share the hard disk and the printer. The  computer  directly 
connected  to  the  hard  disk and printer would  be  partially  dedicated  to 
servicing the requests for these resources.

        +-----------------------------+
        | ┌───────────┐   ┌─────────┐ |
        | │ Hard disk │   │ Printer │ |
        | └─────┬─────┘   └────┬────┘ |
        |       └───────┬──────┘      |
        |         ┌─────┴────┐        |  ┌──────────┐  ┌──────────┐
        |         │ Computer │        |  │ Computer │  │ Computer │
        |         └─────┬────┘        |  └─────┬────┘  └─────┬────┘
        +---------------│-------------+        │             │
                        │                      │             │
        ────────────────┴──────────────────────┴─────────────┴──────
                                ULCnet
        ────────────────────────────────────────────────────────────

        Figure 5. One possible ULCnet configuration

Design issues
-------------

Now that we have discussed the hardware for the ULCnet, let us look at some of 
the  issues involved in designing software for the network. These issues  are: 
node-addressing   concepts,   message  formats,   task   layering,   low-level 
transmission  and  reception,  communication  protocols  and  error  recovery, 
dialogue  pipes,  special types of networking communications,  and  networking 
under multi-tasking operating systems.

First, let us define a node as any device connected to the ULCnet that has the 
ability to transmit information, receive information, or both.

If  there  are more than two nodes on a network, some mechanism is  needed  to 
uniquely  specify  the destination of transmitted information.  This  need  is 
fulfilled  by assigning to each node a unique numeric address. A single  digit 
may be sufficient to specify the node for which a message is intended.

Many  mechanisms can be used to inform the node's software of  its  particular 
address.  The possibilities include establishing a switch setting on an  input 
port,  including the information in the software for each node (but each  node 
would  then  need  a unique version of the network software),  or  having  the 
software query the user for an address during initialization.

An  address  does not necessarily have to be a number, as long as  it  can  be 
uniquely  recognized. It could be a character string such as EVA  or  SHIRLEY, 
but you must be willing to pay the cost of pattern matching in order to  adopt 
this scheme.

A  nameserver mechanism allows the nicety of character strings  for  addresses 
without  sacrificing the advantage of number matching for decoding  addresses. 
The  nameserver consists of a file and a program on a node with  mass  storage 
that associates an ASCII (American Standard Code for Information  Interchange) 
string   with  an  address  number.  The  nameserver  accepts   requests   for 
registration, de-registration, and name queries.

Special  generic  addresses also can be set aside for  special  purposes.  For 
instance, the nameserver could be assigned a generic address to be used by all 
nameserver-related  messages,  making it un-necessary to know which  node  the 
nameserver is actually on.

Another generic address could be set aside to represent a broadcast message -- 
one  that all nodes on the network would want to receive. A typical use  of  a 
broadcast  message  is  sending a company-wide memo to all  employees  on  the 
network.  The generic address eliminates the need to address the same memo  to 
each person on the network.

Special types of nodes, such as mass-storage nodes or printers, can have their 
own  addresses. For example, the address M might be reserved for  the  printer 
node. If there is only one printer on your network, M would mean that printer. 
If  there is more than one printer on the network, an additional field  called 
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the logical printer number could be used to specify the printer for which  the 
message is destined.

Message formats
---------------

A  message  is  a  pre-determined  sequence  of  fields  by  which  two  nodes 
communicate.  A  message normally consists of several parts: the  header,  the 
body, and some kind of error-checking mechanism, such as checksum, at the end.

The structure allows for much variation. The basic component for  constructing 
a  message  usually is a byte. A field is defined as one or  more  bytes  that 
designate  a particular section of a message. Typical fields in a message  are 
shown in Figure 6, and explained below.

        ┌─────┬────┬──────┬─────────┬──────┬─────────┬──────┬──────────┐
        │ SOT │ To │ From │ Message │ Byte │ Message │ Data │ Checksum │
        └─────┴────┴──────┴─────────┴──────┴─────────┴──────┴──────────┘

        Figure 6. Proposed message format

SOT: Start Of Transmission
This  byte  is  useful for informing all receivers that  the  beginning  of  a 
message  is  now on the network, and that the next byte will  be  the  address 
byte.  Obviously, the byte must not be confused with bytes in the middle of  a 
message.

To Address:
The address of the intended receiver.

From Address:
The address of the node that transmitted the message. As will be shown  later, 
this field is important for sending acknowledgments back to the transmitter.

Message Number:
A  unique number that distinguishes one message from the next. The  usefulness 
of this field will be illustrated in the sections of this article dealing with 
duplicate messages.

Bytecount:
Tells a receiver how many bytes to expect in the message body. It can be  used 
as  a  receive loop counter, to be decremented each time a byte  is  received. 
When  the  counter equals zero, the user knows the checksum byte  will  follow 
immediately.

Message ID:
Distinguishes  three  types  of messages within a  network  system.  The  data 
message contains the essential information to be transmitted from one node  to 
another. The message acknowledgment acknowledges a data message, and the third 
type of message, ACKACK, acknowledges a message acknowledgment.

Data:
Zero or more bytes of information that follow the Message ID.

Checksum:
The  error-checking  byte, computed as the n-bit sum of all the bytes  in  the 
message (except the SOT byte and the checksum itself). The transmitter sums up 
all  the bytes in its transmitted message and "ships out" the lower n bits  of 
that  sum  as the last byte of the message. Meanwhile, the receiver  does  the 
analogous  operation  on the message it receives. If all the  characters  were 
received   correctly,  the  receiver's  lower  n-bit  sum  should  match   the 
transmitter's checksum.

Layering the tasks
------------------

The  network  software  can  be  broken up  into  three  separate  layers  for 
implementation  (see  Figure 7). These layers are the  basic  transmitter  and 
receiver  subroutines,  the  protocol  layer,  and  the  application  program. 
Breaking  up the network software in this manner is useful, because it  allows 
the  implementer  to  concentrate on a subset of  network  functions,  without 
having  to give much consideration to the rest of the functions. As  an  added 
benefit,  the  layered structure limits the software modifications  needed  in 
order  to  bring  up networking capability for particular  network  tasks  and 
particular machines.

        ┌───────────────────────────────────────┐
        │         Application Program           │
        │ ┌───────────────────────────────────┐ │
        │ │          Protocol Layer           │ │
        │ │ ┌───────────────────────────────┐ │ │
        │ │ │ Transmitter-Receiver Routines │ │ │
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        └─┴─┴───────────────────────────────┴─┴─┘

        Figure 7. Network protocol is based on the layer concept

As  an example, let's say network software is to be brought up on two  of  the 
same  type  of  microcomputers,  each having  a  different  serial  interface. 
Subroutines in the transmitter/receiver layer that specifically deal with  the 
serial  interface  are  the  only parts of  the  network  software  that  need 
changing.  On  the other end, a printer-application program and  a  disk-write 
program should be able to use the same protocol layer and transmitter/receiver 
layer.

The transmitter
---------------

A buffer and a byte count are the necessary parameters this routine needs from 
the protocol layer. The transmitter should neither know nor care what type  of 
message  is in the buffer. First, the transmitter will need to know if  anyone 
else is currently using the network. In an interrupt environment, this can  be 
determined  by  a  flag set when a character is received,  and  reset  when  a 
carrier-detect  interrupt  occurs. If the flag is reset, therefore,  it  shows 
that the network is not in use.

If the transmitter is to be implemented without the aid of interrupts, it will 
be necessary to wait the length of time needed to receive one character (based 
on the data-transfer rate). If no characters are received in this time, it  is 
assumed no one is in the middle of transmission.

Once it has been determined the network is not busy, the transmitter must send 
out  the SOT field. A potential "race" problem resulting in a collision  could 
occur  at  this  point, since two transmitters could  conceivably  start  this 
transmission simultaneously.

Because the network is set up so that transmitters receive what they transmit, 
the  received  character should always be compared to the character  that  was 
just  transmitted.  If  the  two characters do  not  match,  a  collision  has 
occurred. Later, we will decide how to recover from such a collision.

Assuming  the transmitter received what it transmitted, it continues  to  send 
out  bytes  until  all,  including  the  checksum,  have  been  sent.  If  the 
transmitter  is  interrupt-driven,  it may want to set a flag  to  inform  the 
protocol  layer  that transmission was successful. For a  transmitter  running 
without  interrupts, this information could be returned as a parameter to  the 
routine that called the transmitter.

The receiver
------------

A  receiver  activated  by interrupts will be able  to  synchronize  with  the 
beginning  of a message by the carrier-detect interrupt that occurs after  the 
end  of  any message. Receivers without interrupts or  latched  carrier-detect 
pulses  must repeatedly wait until a whole character time has gone by  without 
receiving anything. The next field to be received should be the SOT field.  If 
it  is not, it will be necessary to go back to the previous step until an  SOT 
is detected.

Once  the SOT is detected, the next field should be the  Destination  Address. 
When  this  field is received, it should be compared with the  receiver's  own 
address  to  determine whether the message is intended for this  receiver.  If 
your  network supports broadcast messages, all receivers must check to see  if 
the  message  is a broadcast message. Additionally, printer and  disk  storage 
nodes  must  also  check to see if the destination address  is  their  generic 
address.  If no address match exists, the receiver should go back  to  hunting 
for an SOT field (unless this receiver is a gossip monger).

If  the  message is addressed to a particular receiver, the  address  and  all 
subsequent  bytes should be received and summed together for  comparison  with 
the  checksum byte at the end of the message. If your particular network  uses 
parity,  the message should also be checked for each character  received.  The 
receiver  should not care what type of message was received; it should  simply 
inform  the  protocol layer of receipt. With an interrupt-driven  receiver,  a 
flag  can  be  set  at completion to inform  the  protocol  layer.  Additional 
information,  such  as whether any errors occurred during the  message,  could 
also be communicated to the protocol layer via common memory. If the  receiver 
is not interrupt-driven, this information can be passed back as parameters  to 
the protocol layer.

The protocol layer
------------------

For  the  following  discussion,  source will be  defined  as  the  node  that 
transmitted  the  original message, and destination as the node to  which  the 
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message was addressed.

When  computer  A sends a message to computer B, there is  no  guarantee  that 
computer B will receive it. Many things could go wrong. There might be a loose 
connection  somewhere.  Computer B might not be running, or it  might  not  be 
listening to the network. Computer C could start transmitting at the same time 
as computer A.

Protocol  schemes detect and correct such situations. Protocol is basically  a 
conversation  between a source and a destination, trying to ensure  that  what 
the source transmitted was actually received by the destination.

The simplest protocol is one in which the source sends a message to a specific 
destination  and  assumes  the message arrived. If your  network  is  in  good 
working order and you know that a particular destination is running  properly, 
this protocol will be sufficient most of the time. You probably would want  to 
use  this protocol, for example, when you are sending messages to your  friend 
Carol,  who  is using computer B. If she is there, she will  probably  send  a 
message back, thereby acknowledging that she received your message. You  would 
also  use  this protocol for broadcast messages, to prevent the  network  from 
getting jammed by everyone trying to send acknowledgments at the same time.

When  you are doing things on your network, such as writing a file to a  disk, 
assuming  the file got there is not enough. You need some real  acknowledgment 
that  the  file  got to the disk. If no acknowledgment  comes  back  from  the 
destination,  or  if the destination returns to the source  an  acknowledgment 
stating  that  the  disk is full, the source will have  to  take  some  error-
recovery measures. These are discussed later.

What  happens if the destination receives a correct message and sends back  an 
acknowledgment  that is not received by the source? In this case,  the  source 
thinks its original message did not get through, but it actually did. To avoid 
this  situation, an acknowledgment of an acknowledgment received (ACKACK)  can 
be added to the protocol. If, after sending an acknowledgment, the destination 
does not receive the ACKACK, it will have to take some kind of  error-recovery 
action.

What  happens if the source receives the acknowledgment and sends the  ACKACK, 
but the destination does not receive the ACKACK? Somebody has got to have  the 
last word, and there can be no guarantee that a message and all its associated 
protocol are transmitted and received successfully. Especially on a  low-speed 
network, the criterion for deciding how much protocol to use is "as little  as 
possible  for a particular application". An intelligent system  might  provide 
all  three  types of protocol (i.e., message,  message-ACK,  and  message-ACK-
ACKACK) and allow the application program to decide which one to use.

Error recovery
--------------

What  should be done when a message was sent and no acknowledgment came  back? 
Or  when an acknowledgment was sent but no ACKACK came back? Both these  cases 
call  for  a  timing mechanism. A source that  transmitted  something  and  is 
expecting a reply from the destination must wait a certain amount of time  for 
that reply to come back. If the reply does not come back within that time,  it 
will be assumed an error condition exists.

How long should this time be? There is no way to guarantee that a  destination 
really did receive the message and will transmit an acknowledgment within  the 
time  the  source has set. The waiting time, then, should be  more  than  long 
enough to cover any reasonable situation.

Once  the source has waited a set amount of time without receiving a reply,  a 
reasonable  action would be to retransmit the original message at  least  once 
more,  and  again  wait the specified amount of time for  a  reply.  The  same 
strategy  could be used by the destination when it sends  acknowledgments  and 
waits  for  an  ACKACK. If you are doing your network without  the  aid  of  a 
hardware  timer,  you will need a time-counting  subroutine  that  continually 
checks  to  see if a reply was received, and decrements the  counter.  If  the 
counter reaches 0 before a reply is received, then a timeout error exists.  If 
your  software  has  access  to a hardware timer, you can use  it  to  set  an 
interrupt.

If  no reply is received after repeated attempts to transmit a message,  there 
is  nothing  to  do but give up and report the problem  to  the  program  that 
initiated the network call.

This  retransmission  scheme introduces another problem.  Suppose  the  source 
sends a message that is received by the destination, but the destination sends 
back an acknowledgment that is never received by the source. After timing out, 
therefore,  the source retransmits the original message, and  the  destination 
receives  it  a  second time. The Message Number field, along  with  the  From 
Address field, can be used to correct such situations.

All  receivers  should keep a list of the last n messages received.  The  list 
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need contain only the message number and the From Address. When a new  message 
is  received,  the  list should be examined for a match.  If  a  duplicate  is 
detected, the message should be "dumped", but the appropriate response  should 
be sent back to the transmitter of the duplicate message. If the duplicate was 
an  original  message,  an  acknowledgment should be  sent  back  or,  if  the 
duplicate message was an acknowledgment, an ACKACK should be sent back.

Collisions  are another issue. Assuming that all transmitters check the  state 
of  the network before starting transmission, collisions can happen only  when 
two  or more transmitters start their transmissions within one character  time 
of  each  other.  When collisions happen,  all  transmitters  involved  should 
immediately  stop  transmitting and allow the network to return  to  the  "not 
busy" condition.

Now, some kind of mechanism is needed to tell colliding transmitters when they 
can  start transmitting again. If they all wait an equal amount of time,  they 
will collide again. Therefore, they must all wait different lengths of time.

One  way to ensure this setup is to establish a priority order based  on  node 
address. If a node with the address of 1 collides with a node with the address 
of 3, then node 1 will wait one unit of time before attempting retransmission, 
while  node 3 will wait three units of time. One problem with this  scheme  is 
that,  under heavy load conditions where collisions are more  frequent,  nodes 
with high address numbers may never be able to get a message through,  because 
they must wait so long after each collision.

A fairer scheme would be one in which each node has a random-number  generator 
guaranteed to create a unique sequence of random numbers. All nodes would then 
have equal priority in retransmissions after collisions.

A typical application program
-----------------------------

As an example of a typical application program, let us consider a request to a 
filing system on a hard-disk node.

The  "save"  request would first want to send to the filing system  a  message 
containing  the file name and the number of sectors to be saved.  The  request 
probably  would ask the protocol layer to expect an acknowledgment, and  allow 
the  protocol layer to take care of retransmissions, if necessary. Along  with 
the  acknowledgment would come information from the filing  system  indicating 
whether or not the request can be accommodated. It it cannot be  accommodated, 
the request program must report the failure to its caller.

If the request can be accommodated, the save request program must break up the 
file to be saved into convenient blocks (probably a disk sector). When  errors 
occur  during transmission, it is more economical to retransmit  small  blocks 
than large ones. In either case, the save request should send an ACKACK to the 
filing  system to say it agrees to what the filing system considers the  state 
of the request.

Once  the file has been partitioned into blocks, the save request should  hand 
them in sequence to its protocol layer for transmission to the filing  system. 
The request should ask its protocol layer to expect an acknowledgment for each 
block transmitted. Each block should have a unique number that can be  checked 
by  the filing system against block numbers already received. In this  manner, 
duplicate blocks can be dumped.

By  the  value  of  the last block number, both parties  know  when  the  file 
transfer is completed. If implementation is done in a straightforward  manner, 
the  last  block number should equal the corresponding field in  the  original 
request message.

The save request should ask the protocol layer to send an ACKACK to the filing 
system  when  it  submits the last block for transfer. Upon  receipt  of  this 
ACKACK, the filing system can be sure it will not be getting a  retransmission 
of the last block, and it can close the file and forget about the request.

When extended conversations are taking place between two nodes on the  network 
(as in the previous file transfer examples), the network can be made to appear 
constantly busy by never allowing more than a character time to elapse between 
messages.  In  this way, no other user on the network can interfere  with  the 
conversation.

If  the data rate is controlled by software on the two conversing  nodes,  you 
might  consider increasing the rate after the initial conversational link  has 
been  established.  The  rate  could be  increased  beyond  what  is  normally 
acceptable to every node on the network, but it must be changed back after the 
conversation is completed. While the process is going on, every other node  on 
the  network  should recognize it as a network-error  condition.  Because  the 
nodes  have not seen a transition from a busy network to a  non-busy  network, 
they will not be looking for an SOT field anyway. This scheme can get a little 
tricky  when  attempting  to  end  a  conversation,  especially  if  the  last 
acknowledgment or ACKACK did not get through but the data rate on one node has 
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already been reduced to its former value.

Multitasking environments
-------------------------

Networking  in  multitasking environments raises many issues  that  cannot  be 
considered here, but a few obvious ones should be pointed out.

The  protocol  layer  probably should be set up as a  process  by  introducing 
another  parameter  to indicate whether the application program  will  "go  to 
sleep"  waiting for a reply or acknowledgment. The protocol layer  would  then 
have  to  give the application program a "wake up" by indicating  whether  the 
message got through to the receiving process.

Since messages could in this way be addressed to one of several processes on a 
node,  the address fields for To and From addresses would need to be  extended 
to include a Process ID number.

The  software  design  presented in this article reflects  only  one  of  many 
possibilities.

Now that you have a taste of what networking is all about, you can  experiment 
and enjoy implementing your own ULCnet.
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