
file:///C|/...s%20conversion/Display%20Manager-80%20version%201.0%20article/Display%20Manager-80%20version%201.0%20article.txt[2/7/2012 11:38:01 AM]

DM80.WS4 (= Display Manager-80 version 1.0 article)

- "Display Manager from DRI"
 Alan Simpson
 "Microsystems", February 1984, p.96

(Retyped by Emmanuel ROCHE.)

Most professional programmers wince a bit when they hear the term "I/O code."
Not because writing code for data entry screens and reports is difficult, but
rather because it is a boring and tedious task. Typically, the programmer
designs displays on graph paper, then laboriously writes line after line of
code to format displays on the screen and printer. The process becomes even
more unpleasant if the program is to be used with many different terminals.
The programmer then needs to take into consideration the control codes for
various CRTs. This is a very time-consuming process, particularly if one plans
on making one's software compatible with 50 different terminals. Most
professional programmers get around some of the tedium by writing general-
purpose I/O routines, and storing displays and terminal codes on data files.

Digital Research has come up with an even better method. You, the programmer,
buy Display Manager, then you "draw" your input and output displays directly
on the screen, exactly as you wish them to appear at runtime. Display Manager
then takes care of writing the I/O functions, storing displays on a data file,
and providing control codes for a variety of terminals. Sounded good to me, so
I thought I would give it a try.

Display Manager (DM-80) is one of Digital Research Incorporated's ("DRI")
"Productivity Tools" (ROCHE> The other one is "Access Manager", providing ISAM
(Indexed Sequential Access Method) to DRI's compiled languages.), and works
with any of their 8-bit programming languages (CB-80, Pascal/MT+, or PL/1-80),
and 16-bit languages, including Pascal/MT+, CB-86, PL/1-86, and DRC. Version
1.0 of DM-80, the one I used for this review, supports 55 different terminals,
and allows the programmer to include extra terminals. Display Manager also
includes a program written in CB-80 (CBASIC Compiler Version 2) that allows
the end user to install the program to his particular terminal. DM-80 requires
that you use CP/M, CP/NET, or MP/M, and have at least 40 Kilobytes available
in the Transient Program Area of your main memory. Display Manager will also
run under PC DOS with any of the DRI 16-bit programming language.

Using Display Manager

When I first received DM-80, I read the manual from cover to cover. Like most
software manuals, the DM-80 manual tends to be more descriptive than tutorial.
The first thought that came to mind after reading the manual was "What?" The
manual is about 100 pages in length, with the usual addenda that tell you what
the manual forgot to mention, as well as changes that have been made since the
printing of the manual (yes, even though this is Version 1.0). At first, I was
dubious as to whether or not this product was truly going to help increase my

file:///C|/...s%20conversion/Display%20Manager-80%20version%201.0%20article/Display%20Manager-80%20version%201.0%20article.txt[2/7/2012 11:38:01 AM]

productivity. Since I have already developed a number of my own canned
functions to handle I/O screens, it seemed unlikely that learning this new and
seemingly complex tool would be worth the effort. When I actually sat down and
used DM-80, I found it much easier to use than expected, and well worth
learning.

Using DM-80 is essentially a 3-step process: 1) Install DM-80 to your
particular terminal; 2) Create and edit displays using the DM-80 editor; and
3) Write the application programs that access the displays. I will discuss my
experiences with each step in the process.

1. Installation

Installing DM-80 to your particular CRT is a simple process, unless you happen
to be using 5 1/4" disks. DM-80 is delivered on two 8" disks, and one needs to
do quite a bit of wading through the manual to determine exactly which files
must be resident on disk during the various phases of designing screens. I
managed to get DM-80 up and running on a single-sided double-density (180K)
disk through a little trial and error. Once you have the correct files on
disk, the rest is easy. DM-80 is menu-driven, and the program itself is
somewhat tutorial.

If you are using one of the DM-80 supported terminals, installing the program
is as simple as selecting that terminal from a menu of choices. Of the 55
terminals that DM-80 supports, many are different models from the same
manufacturer. For purposes of brevity, I will just list the manufacturers
here:

A.B.M.
A.D.D.S.
Apple
Beehive
Control Data
Cromemco
Digital Equipment Corporation (DEC)
Direct
Hazeltine
Heath
Hewlett-Packard
I.S.C.
Lear-Siegler
Microterm
Osborne
Radio Shack (Tandy)
Soroc
Teleray
Televideo
Toshiba
Vector Graphic
Visual Technology
Xerox
Zenith

file:///C|/...s%20conversion/Display%20Manager-80%20version%201.0%20article/Display%20Manager-80%20version%201.0%20article.txt[2/7/2012 11:38:01 AM]

If you are not using one of the supported terminals, you will have to provide
the control codes for a custom terminal. This is not difficult, provided that
the custom terminal has enough documentation to supply the appropriate codes.
The DM-80 manual has a simple questionnaire to fill out about custom terminal
characteristics. Then, the install program asks the same questions that the
questionnaire did, and you fill in the blanks. The installation program has a
very convenient test capability that allows you to check, to make sure you
have installed a custom terminal properly. It does so by trying each function
(clear screen, position cursor, reverse video, etc.) on the screen, and asking
if the function worked correctly. If you discover a mistake during the test
phase, you can edit the terminal codes using a reinstall option. Once you have
DM-80 installed for your system, you can begin creating displays.

2. Creating displays

I never thought I would see the day I would actually enjoy creating I/O
screens. DM-80 changed that, by allowing me to draw and edit displays on the
screen in an interactive, visual manner.

When you call up Display Manager's editor, it asks if you want to edit an
existing display, or create a new one. If you create a new one, it must have a
unique number, as this number is used by the application program for finding
the display. When you are ready to create your display, the editor presents a
blank screen with the cursor in the upper left-hand corner, and you can just
start drawing your display on the screen as you wish it to appear to the user
at runtime.

The manual tends to make this process more difficult than it is. There are
well over 40 distinct control-key commands (some 3 characters long!) that the
editor uses. Personally, my brain's RAM space for storing control-key
sequences is just about full, but DRI was quite considerate in making
memorization a bit easier. For instance, many of the control-key sequences are
identical to those used in other software packages (^V toggles insert mode,
^OC centers, while ^A, ^S, ^E, ^D, ^X, ^S, ^F move the cursor about on the
screen, etc.). DRI also provides abbreviated reference cards, kindly laminated
in clear plastic, for quick reference. When you first start designing
displays, however, be prepared to do a good deal of wading through the manual.
Control-key definitions are interspersed throughout the text, and the
reference cards are too brief for first-time use.

When you are developing a display, you simply type out the prompts, headings,
and borders where you want them to appear on the screen. You can also enter a
control key command to specify that either an input or output field be
displayed. You can easily move text and fields about the screen, as you zero
in on just the format you wish. You can also include template characters in
input fields, such as "(___)________" for phone numbers. Then, you can
determine visual characteristics for the various fields in a simple and
pleasant manner. To do so, simply position the cursor at the beginning of a
field, and enter a control key command to call up the status window. The
following then appears on the screen.

file:///C|/...s%20conversion/Display%20Manager-80%20version%201.0%20article/Display%20Manager-80%20version%201.0%20article.txt[2/7/2012 11:38:01 AM]

 Field No. Row Col Len Posts Type-INPUT
 000 000 000 000 YY *rr,cc* nn

 Validate :X: X,A,C,D,F,I,U Beep :N: N,Y
 Format :L: L,R,N,0-9,C,M AutoRet:N: N,Y

 End input---Cursor :N: BadC :N: FKey :N: N,Y

 :N: :N: :N: :N: :N: :N: :N: :N: N,Y
 Invs Half Invr Flsh Undl Usr1 Usr2 Usr3

This window presents the DM-80 default characteristics for a single input
field on the screen display. You can use the default characteristics for this
field, or change them by simply moving the cursor about the status window. Of
course, you can change default characteristics also.

The top line of the status window presents the field number (automatically
assigned as the display is being designed), the row, column, and length of the
field, whether or not it is surrounded by blank spaces (posts), and the type
of field (INPUT or OUTPUT). The letters rr and cc are the row and column
numbers of the cursor's present position on the screen, and nn is the number
of fields in the display.

The Validate prompt allows the programmer to provide error checking with the
simple press of a key. The options are X (accepts any printable character), A
(accepts only alpha characters), C (all characters, including control
characters), D (decimal numbers only), F (allows Function keys only), I
(integer only), and U (same as X, but input is changed to uppercase). Beep
determines whether or not an illegal entry by the user causes the terminal's
bell to ring (Y/N).

Format for the fields can be L (left-justify), R (right-justify), N (numeric
output), 0-9 (number of digits to the left of the decimal point), C (send
control keys to the screen), and M (money fields with leading dollar [or other
currency] sign and 2 digits to the right of the decimal point).

The AutoRet option determines whether data entry terminates when the field's
capacity is full (Y/N). The End-Input options allow the programmer to specify
various methods for terminating data entry. If cursor is selected (Y), then
the terminal's up/down arrow keys terminate data entry for the field. If BadC
is Y, any illegal character for the field terminates entry for that field.
FKey terminates entry if a Function key is entered.

The remaining options Invs, Half, Invr, Flsh, Undl, Usr1, Usr2, Usr3 allow the
programmer to specify visual attributes for a field. By filling in a Y above
an option, the programmer can cause the field to be invisible, half intensity,
inverse video, underlined, or flashing. The programmer can also define up to 3
user-defined visual attributes, and include these in various fields.

The whole procedure is simple and fast. You just draw the display as you want
it to appear to the end user at runtime, then set the cursor to the beginning
of each input and output field, and use the status window to determine the
basic characteristics and visual attributes of the individual field. Any
programmer who has ever written I/O code to include as many options as Display

file:///C|/...s%20conversion/Display%20Manager-80%20version%201.0%20article/Display%20Manager-80%20version%201.0%20article.txt[2/7/2012 11:38:01 AM]

Manager provides will probably see that this is a far quicker and easier
method. I was certainly convinced.

As if this were not enough, Digital Research took it a step further, and made
Display Manager self-documenting. Once the display is created, the programmer
can store a print-image ASCII file of the display on a disk file. This image
file can be pulled directly into most word-processing systems, to ease the
development of a user's manual. Also, the disk file contains detailed
documentation for each field in the display, which helps with the technical
documentation, as well as with debugging and modification. The final step in
the process is to link your displays with your application program.

3. Write the application program

Once the displays have been designed, you need to write the actual programs
that will use the displays. Display Manager adds the following functions to
the programmer's present language:

INITDM
Initializes the application program to use a specific terminal's control codes
and capabilities.

OPENDIS
Opens a DM-80 display file.

RETDM
Returns visual attributes supported by a given CRT, so the programmer knows
which of DM-80's options are readily available for a particular CRT.

CLRSCR
Clear-the-screen command.

CURS
Set cursor to visible or invisible.

DISPD
Places a display from the display file onto the screen.

CLSDIS
Closes a display file.

For managing the actual fields in the display from the application program,
DM-80 provides the following functions:

POSF
Position the cursor to a given field.

NXTF
Positions the cursor to the next field.

SETF
Modifies the visual attributes of a field during runtime.

file:///C|/...s%20conversion/Display%20Manager-80%20version%201.0%20article/Display%20Manager-80%20version%201.0%20article.txt[2/7/2012 11:38:01 AM]

RETF
Returns the field position, length, and type.

PUTF
Outputs data to the current field.

GETF
Accepts and validates data entered to a field by the end user.

UPDF
Updates and validates data entered for a field.

ENDF
Determines how user ends data entry.

RESF
Resumes operation at last field.

The syntax for using most of DM-80's functions (using CB-80 as an example) is:

 integer variable = FUNCTION (integer expression)

Since DM-80 uses functions rather than commands, it is the programmer's
responsibility to determine whether or not a function is successful, and to
return an error message describing the problem to the user, should an error
occur. This adds a bit of bulk to an application program, but then again, it
does provide the programmer with some flexibility in handling errors.

There are some minor annoying inconsistencies among the functions that the
programmer must deal with. For example, some functions return a zero when the
function is successful (Boolean false?), and negative value when the function
is unsuccessful (Boolean true?). Some functions, like the CURS function, allow
various numeric arguments (e.g., 0-3), but the value must be expressed as a
string. Other functions do not use strings for numeric aguments. Until you get
used to the exact syntax of the various functions, plan on doing a bit of
debugging. You may find some of the syntax awkward and counter-intuitive at
first.

The final step is to write the program in the language of your choice, and use
the various DM-80 routines to access displays and manage field data. In your
source program, you need to include DM-80's prewritten functions. For example,
in CB-80, you need to include the command:

 %INCLUDE dm80extr.bas

Digital Research provides external functions for all the supported languages.
Then, when you link the compiled code, you need to include the DM-80
relocatable library as an overlay. In CB-80, the command to do so is:

 A>LK80 testprog,dm80cb80.irl

Digital Research provides runtime libraries for each of the supported
languages. The manual provides sample programs written in CB-80, Pascal/MT+,

file:///C|/...s%20conversion/Display%20Manager-80%20version%201.0%20article/Display%20Manager-80%20version%201.0%20article.txt[2/7/2012 11:38:01 AM]

and PL/1-80 as useful examples of programming techniques.

Incidentally, once the source code is written and is capable of putting
displays on screen, the end user can use control keys or arrow keys to move
the cursor about on the screen. DM-80 defaults to both the ANSI standard keys
for moving the cursor about (^H, ^J, ^K, ^L), as well as the more popular ^S,
^X, ^E, ^D keys. The programmer needs not write any code to provide these
capabilities.

Similar products

To my knowledge, there are no products similar to Display Manager for
compilable languages. Ashton-Tate's dBase II, however, includes a program
called ZIP that provides a capability similar to, but not as flexible as, DM-
80. Both ZIP and dBase II have one advantage over DM-80 and the DRI compilable
languages: they are easier to use. With ZIP, the programmer draws the display
on the screen, and follows prompts with the actual field or variable name that
the prompt will be expecting. The programmer can also place commands on the
screen that will later be embedded in the source code. ZIP then generates
source code for the screen displays.

The programmer pays a heavy price for this ease of use, however, and here is
where Display Manager shows its true advantages. First, DM-80 can be used with
high-performance native-code compilers, whereas ZIP can only be used with
dBase II, a slow-running interpretive language. For the independent software
developer, DM-80 allows the user to write programs that will run on just about
any 8- or 16-bit based systems, and Digital Research does not charge royalties
to the developer. ZIP and dBase II narrow the market to customers who already
own dBase II, unless the developer is willing to pay some rather astronomical
"royalty" fees ($70-$100 per copy!) to Ashton-Tate for a runtime package that
allows non-dBase II owners to use the package. Unfortunately, the dBase II
runtime package slows the applications programs down even further. Also, dBase
II is a very high-level database management system which, while providing
powerful commands, robs the more sophisticated programmer of some lower-level
flexibility, such as arrays, mathematical functions, and the ability to have
more than 2 data files active at any time. Basically, if you are already an
experienced programmer and you prefer a compilable language, DM-80 is your
best bet. If not, perhaps ZIP and dBase II are preferable.

Recommendation

I found DM-80 to be a very powerful and productive programming tool. It is
also a pleasure to work with, though somewhat awkward at first. I would
recommend it highly to any professional programmer who is already fluent in
any of the DRI compilable languages. I would especially recommend DM-80 to
anyone thinking about writing marketable software, as it will greatly reduce
the labor inherent in making your programs compatible with a variety of
terminals.

Display Manager is available from Digital Research, and costs $400 for the 8-

file:///C|/...s%20conversion/Display%20Manager-80%20version%201.0%20article/Display%20Manager-80%20version%201.0%20article.txt[2/7/2012 11:38:01 AM]

bit version, $500 for the 16-bit version. You can call Digital Research at
(...) for a dealer or distributor nearest you.

EOF

	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Display Manager-80 version 1.0 article\Display Manager-80 version 1.0 article.txt

