
file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG0.TXT[2/7/2012 11:32:02 AM]

CCPMSG0.WS4 (Concurrent CP/M System Guide, Chapter 0)

(Retyped by Emmanuel ROCHE.)

(ROCHE> The "Release Note 01" additions are included.)

Digital Research
Concurrent CP/M
Operating System
Release 3.1
System Guide

First Edition: January 1984

Foreword

Concurrent CP/M can be configured as a single or multiple user, multitasking,
real-time operating system. It is designed for use with any disk-based
microcomputer using an Intel 8086, 8088, or compatible microprocessor with a
real-time clock. Concurrent CP/M is modular in design, and can be modified to
suit the needs of a particular installation.

Concurrent CP/M also can support many IBM Personal Computer Disk Operating
System (PC DOS) and MS-DOS programs. In addition, you can read and write to PC
DOS and MS-DOS disks. In this manual, the term "DOS" refers to both PC DOS and
MS-DOS.

The information in this manual is arranged in the order needed for use by the
system designer. Section 1 provides an overwiew of the Concurrent CP/M system.
Section 2 describes how to build a Concurrent CP/M system using the GENCCPM
utility. Section 3 contains an overview of the Concurrent CP/M Extended
Input/Output System (XIOS). XIOS Character Devices are covered in Section 4,
and Disk Devices in Section 5. Section 6 describes special character I/O
functions needed to support DOS programs.

A detailed description of the XIOS Timer Interrupt routine is found in Section
7. Section 8 deals with debugging the XIOS. Section 9 discusses the bootstrap
loader program necessary for loading the operating system from disk. Section
10 treats the utilities that the OEM must write in order to have a
commercially distributable system. Section 11 covers changes to end-user
documentation which the OEM must make if certain modifications to Concurrent
CP/M are performed. Appendix A discusses removable media considerations, and
Appendix B covers graphics implementation.

Many sections of this manual refer to the example XIOS. There are two examples
provided. One is a single user system to run on the IBM Personal Computer. The
other is a multi-user system running on a CompuPro 86/87 with serial
terminals. The single user example includes source code for windowing support
for a video mapped display. However, windowing is not required for the system.
The source code for both examples appears on the Concurrent CP/M distribution

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG0.TXT[2/7/2012 11:32:02 AM]

disk; we strongly suggest assembling the source files following the
instructions in Section 2, and referring often to the assembly listing while
reading this manual. Example listings of the Concurrent CP/M Loader BIOS and
Boot Sector can also be found on the release disk.

Digital Research supports the user interface and software interface to
Concurrent CP/M, as described in the "Concurrent CP/M Operating System User's
Guide" and the "Concurrent CP/M Operating System Programmer's Reference
Guide", respectively. Digital Research does not support any additions or
modifications made to Concurrent CP/M by the OEM or distributor. The OEM or
Concurrent CP/M distributor must also support the hardware interface (XIOS)
for a particular hardware environment.

The "Concurrent CP/M System Guide" is intended for use by system designers who
want to modify either the user or hardware interface to Concurrent CP/M. It
assumes that you have already implemented a CP/M-86 1.0 Basic Input/Output
System (BIOS), preferably on the target Concurrent CP/M machine. It also
assumes that you are familiar with these four manuals, which document and
support Concurrent CP/M:

- The "Concurrent CP/M Operating System User's Guide" documents the user's
interface to Concurrent CP/M, explaining the various features used to execute
applications programs and Digital Research utility programs.

- The "Concurrent CP/M Operating System Programmer's Reference Guide"
documents the applications programmer's interface to Concurrent CP/M,
explaining the internal file structure and system entry points -- information
essential to create applications programs that run in the Concurrent CP/M
environment.

- The "Concurrent CP/M Operating System Programmer's Utilities Guide"
documents the Digital Research utility programs programmers use to write,
debug, and verify applications programs written for the Concurrent CP/M
environment.

- The "Concurrent CP/M Operating System System Guide" documents the internal,
hardware-dependent structures of Concurrent CP/M.

Standard terminology is used throughout these manuals to refer to Concurrent
CP/M features. For example, the names of all XIOS function calls and their
associated code routines begin with "IO_". Concurrent CP/M system functions
available through the logically invariant software interface are called
"system calls". The names of all data structures internal to the operating
system or XIOS are capitalized: for example, XIOS Header and Disk Parameter
Block. The Concurrent CP/M system data segment is referred to as the SYSDAT
area, or simply SYSDAT. The fixed structure at the beginning of the SYSDAT
area, documented in Section 1.10 of this manual, is called "the SYSDAT DATA".

Table of Contents

1 System overview

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG0.TXT[2/7/2012 11:32:02 AM]

 1.1 Concurrent CP/M organization
 1.2 Memory layout
 1.3 Supervisor
 1.4 Real-time monitor
 1.5 Memory management module
 1.6 Character I/O manager
 1.7 Basic Disk Operating System
 1.8 Extended I/O System
 1.9 Re-entrancy in the XIOS
 1.10 SYSDAT segment
 1.11 Resident System Processes

2 Building the XIOS

 2.1 GENCCPM operation
 2.2 GENCCPM main menu
 2.3 System parameter menu
 2.4 Memory allocation menu
 2.5 GENCCPM RSP list menu
 2.6 GENCCPM OSLABEL menu
 2.7 GENCCPM disk buffering menu
 2.8 GENCCPM GENSYS option
 2.9 GENCCPM input files

3 XIOS overview

 3.1 XIOS Header and parameter table
 3.2 INIT entry point
 3.3 XIOS ENTRY
 3.4 Converting the CP/M-86 BIOS
 3.5 Polled devices
 3.6 Interrupt devices
 3.7 8087 exception handler
 3.8 XIOS system calls

4 Character devices

 4.1 Console control block
 4.2 Console I/O functions
 4.3 List device functions
 4.4 Auxiliary device functions
 4.5 IO_POLL function

5 Disk devices

 5.1 Disk I/O functions
 5.2 IOPB data structure
 5.3 Multisector operations on skewed disks
 5.4 Disk parameter header
 5.5 Disk parameter block

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG0.TXT[2/7/2012 11:32:02 AM]

 5.5.1 Disk parameter block worksheet
 5.5.2 Disk parameter list worksheet

 5.6 Buffer control block data area
 5.7 Memory disk application
 5.8 Multiple media support

6 PC-MODE character I/O

 6.1 Screen I/O functions
 6.2 Keyboard functions
 6.3 Equipment check
 6.4 PC-MODE IO_CONIN

7 XIOS TICK interrupt routine

8 Debugging the XIOS

 8.1 Running under CP/M-86

9 Bootstrap

 9.1 Components of track 0 on the IBM PC
 9.2 The bootstrap process
 9.3 The Loader BDOS and Loader BIOS function sets
 9.4 Track 0 construction
 9.5 Other bootstrap methods
 9.6 Organization of CCPM.SYS

10 OEM utilities

 10.1 Bypassing the BDOS
 10.2 Directory initialization in the FORMAT utility

11 End-user documentation

Appendixes

A Removable media
B Graphics implementation

Tables, figures, and listings

Tables

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG0.TXT[2/7/2012 11:32:02 AM]

1-1. Supervisor system calls
1-2. Real-time monitor system calls
1-3. Definitions for Figure 1-3
1-4. Memory management system calls
1-5. Character I/O system calls
1-6. BDOS system calls
1-7. SYSDAT DATA data fields

2-1. GENCCPM main menu options
2-2. System parameters menu options

3-1. XIOS header data fields
3-2. XIOS register usage
3-3. XIOS functions

4-1. Console control block data fields
4-2. List control block data fields

5-1. Extended error codes
5-2. IOPB data fields
5-3. DOS IOPB data fields
5-4. Disk parameter header data fields
5-5. Disk parameter block data fields
5-6. Extended disk parameter block data fields
5-7. BSH and BLM values
5-8. EXM values
5-9. Directory entries per block size
5-10. ALO, ALI values
5-11. PSH and PRM values
5-12. Buffer control block header data fields
5-13. DIRBCB data fields
5-14. DATBCB data fields

6-1. Alphanumeric modes
6-2. Graphics modes
6-3. Keyboard shift status
6-4. DOS equipment status bit map
6-5. Keyboard scan codes
6-6. Extended keyboard codes

10-1. Directory label data fields

Figures

1-1. Concurrent CP/M interfacing
1-2. Memory layout and file structure
1-3. Finding a process's memory
1-4. SYSDAT
1-5. SYSDAT DATA

2-1. GENCCPM main menu
2-2. GENCCPM help function screen 1

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG0.TXT[2/7/2012 11:32:02 AM]

2-3. GENCCPM help function screen 2
2-4. GENCCPM system parameters menu
2-5. GENCCPM memory allocation sample session
2-6. GENCCPM RSP list menu sample session
2-7. GENCCPM operating system label menu
2-8. GENCCPM disk buffering sample session
2-9. GENCCPM system generation messages
2-10. Typical GENCCPM command file

3-1. XIOS header

4-1. The CCB table
4-2. CCB's for two physical consoles
4-3. Console Control Block format
4-4. The LCB table
4-5. List Control Block (LCB)

5-1. Input/Output Parameter Block (IOPB)
5-2. DOS Input/Output Parameter Block (IOPB)
5-3. DMA address table for multisector operations
5-4. Disk Parameter Header (DPH)
5-5. DPH table
5-6. Disk Parameter Block format
5-7. Extended Disk Parameter Block format
5-8. Buffer Control Block header
5-9. Directory Buffer Control Block (DIRBCB)
5-10. Data Buffer Control Block (DATBCB)

8-1. Debugging memory layout
8-2. Debugging CCP/M under DDT-86 and CP/M-86
8-3. Debugging the XIOS under SID-86 and CP/M-86

9-1. Track 0 on the IBM PC
9-2. Loader organization
9-3. Disk parameter field initialization
9-4. Group Descriptors -- CCPM.SYS Header Record
9-5. CCPM system image and the CCPM.SYS file

10-1. Concurrent CP/M disk layout
10-2. Directory initialization without time stamps
10-3. Directory label initialization
10-4. Directory initialization with time stamps

Listings

3-1. XIOS header definition
3-2. XIOS function table
3-3. 8087 exception handler

5-1. Multisector operations
5-2. IOPB definition
5-3. Multisector unskewing
5-4. DPH definition

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG0.TXT[2/7/2012 11:32:02 AM]

5-5. SELDSK XIOS function
5-6. DPB definition
5-7. Extended DPB definition
5-8. BCB header definition
5-9. DIRBCB definition
5-10. DATBCB definition
5-11. Example RAMdisk implementation

10-1. Disk utility programming example

EOF

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG1.TXT[2/7/2012 11:32:02 AM]

CCPMSG1.WS4 (Concurrent CP/M System Guide, Chapter 1)

(Retyped by Emmanuel ROCHE.)

Section 1: System overview

Concurrent CP/M is a multitasking, real-time operating system. It can be
configured for one or more user terminals. Each user terminal can run multiple
tasks simultaneously on one or more virtual consoles. Concurrent CP/M supports
extended features, such as intercommunication and synchronization of
independently running processes. It is designed for implementation in a large
variety of hardware environments and, as such, you can easily customize it to
fit a particular hardware environment and/or user's needs.

Concurrent CP/M also supports DOS (PC DOS and MS-DOS) programs and media. The
XIOS support for DOS media is described in Section 5 of this manual. DOS
character I/O is described in Section 6.

Concurrent CP/M consists of three levels of interface: the user interface, the
logically invariant interface, and the hardware interface. The user interface,
which Digital Research distributes, is the Resident System Process (RSP)
called the "Terminal Message Process" (TMP). It accepts commands from the user
and either performs those commands that are built into the TMP or passes the
command to the operating system via the Command Line Interpreter (P_CLI). The
Command Line Interpreter in the operating system kernel either invokes an RSP
or loads a disk file in order to perform the command.

The logically invariant interface to the operating system consists of the
system calls as described in the "Concurrent CP/M Operating System
Programmer's Reference Guide". The logically invariant interface also connects
transient and resident processes with the hardware interface.

The physical interface, or XIOS (extended I/O system), communicates directly
with the particular hardware environment. It is composed of a set of functions
that are called by processes needing physical I/O. Section 3 through 6
describes these functions. Figure 1-1 shows the relationships among the three
interfaces.

 User
 |
 V
 +------------------------+
 | User Interface |
 | (TMP) |
 +------------------------+
 |
 V
 +------------------------+
 | Invariant Interface |

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG1.TXT[2/7/2012 11:32:02 AM]

 | (SUP RTM MEM CIO BDOS) |
 +------------------------+
 |
 V
 +------------------------+
 | Hardware Interface |
 | (XIOS) |
 +------------------------+
 |
 V
 Hardware Environment

 Figure 1-1. Concurrent CP/M interfacing

Digital Research distributes Concurrent CP/M with machine-readable source code
for both the user and example hardware interfaces. You can write a custom user
and/or hardware interface, and incorporate them by using the system generation
utility, GENCCPM. There are two example XIOSes supplied with the system. One
is written for the IBM Personal Computer, as a single user system with
multiple virtual consoles. The other XIOS is written for the CompuPro 86/87
with multiple serial terminals. The example XIOSes are designed to be examples
and not commercially distributable systems. Wherever a choice between clarity
and efficiency is necessary, the examples are written for clarity.

This section describes the modules comprising a typical Concurrent CP/M
operating system. It is important that you understand this material before you
try to customize the operating system for a particular application.

1.1 Concurrent CP/M organization

Concurrent CP/M is composed of six basic code modules. The Real-Time Monitor
(RTM) handles process-related functions, including dispatching, creation, and
termination, as well as the Input/Output system state logic. The Memory module
(MEM) manages memory and handles the Memory Allocate (M_ALLOC) and Memory Free
(M_FREE) system calls. The Character I/O module (CIO) handles all console and
list device functions, and the Basic Disk Operating System (BDOS) manages the
file system. These four modules communicate with the Supervisor (SUP) and the
Extended Input/Output System (XIOS).

The SUP module manages the interaction between transient processes, such as
user programs, and the system modules. All function calls go through a common
table-driven interface in SUP. The SUP module also contains the Program Load
(P_LOAD) and Command Line Interpreter (P_CLI) system calls.

The XIOS module handles the physical interface to a particular hardware
environment. Any of the Concurrent CP/M logical code modules can call the XIOS
to perform specific hardware-dependent functions. The names used in this
manual for the XIOS functions always begin with "IO_" in order to easily
distinguish them from Concurrent CP/M operating system calls.

All operating system code modules, including the SUP and XIOS, share a data

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG1.TXT[2/7/2012 11:32:02 AM]

segment called the "System Data Area" (SYSDAT). The beginning of SYSDAT is the
SYSDAT DATA, a well-defined structure containing public data used by all
system code modules. Following this fixed portion are local data areas
belonging to specific code modules. The XIOS area is the last of these code
module areas. Following the XIOS Area are Table Areas, used for the Process
Descriptors, Queue Descriptors, System Flag Tables, and other operating system
tables. These tables vary in size depending on options chosen during system
generation. See Section 2, "System generation".

The Resident System Processes (RSPs) occupy the area in memory immediately
following the SYSDAT module. The RSPs that you select at system generation
time become an integral part of the Concurrent CP/M operating system. For more
information on RSPs, see Section 1.11 of this manual, and the "Concurrent CP/M
Operating System Programmer's Reference Guide".

Concurrent CP/M loads all transient programs into the Transient Program Area
(TPA). The TPA for a given implementation of Concurrent CP/M is determined at
system generation time.

1.2 Memory layout

The Concurrent CP/M operating system area can exist anywhere in memory, except
over the interrupt vector area. You define the exact location of Concurrent
CP/M during system generation. The GENCCPM program determines the memory
locations of the system modules that make up Concurrent CP/M, based upon
system generation parameters and the size of the modules.

The XIOS must reside within SYSDAT. You must write the XIOS as an 8080 Memory
Model program, with both the code and data segment registers set to the
beginning of SYSDAT.

Figure 1-2 shows the relationship of the Concurrent CP/M system image to the
CCPM.SYS disk file structure.

 (Top of memory)
 +---------------+
 | |
 : : End of file --->+------------------+
 : : | CCPM.SYS |
 | TPA | | Extra Group |
 | | | (Used to hold |
 | | | GENCCPM options) |
 +---------------+<--- End of O.S. Area +------------------+
 | Disk Buffers |
 +---------------+<---- End of O.S. ---->+------------------+
 | RSPs | | |
 +---------------+-+ | CCPM.SYS |
 | Table Area | | | Data Group |
 +---------------+ | | |
 | XIOS | +---> within 64 KB | |
 +---------------+ | | |

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG1.TXT[2/7/2012 11:32:02 AM]

 | SYSDAT DATA | | | |
 +---------------+-+<---- XIOS --------->+------------------+
 | BDOS Code | Code & Data | |
 +---------------+ Segment | |
 | CIO Code | | |
 +---------------+ | |
 | MEM Code | | CCPM.SYS |
 +---------------+ | Code Group |
 | RTM Code | | |
 +---------------+ | |
 | SUP Code | | |
 +---------------+<--- Beginning of ---->+------------------+
 | | O.S. Area | CCPM.SYS |
 | TPA | | CMD File |
 : : | Header Record |
 : : +------------------+
 | | (Start of file)
 +---------------+0:0400h
 | Interrupt |
 | Vectors |
 +---------------+0:0000h

 Figure 1-2. Memory layout and file structure

1.3 Supervisor

The Concurrent CP/M Supervisor (SUP) manages the interface between system and
transient processes and the invariant operating system. All system calls go
through a common table-driven interface in SUP.

The SUP module also contains system calls that invoke other system calls, like
P_LOAD (Program Load) and P_CLI (Command Line Interpreter).

 Table 1-1. Supervisor system calls

 System call Number Hex
 ----------- ------ ---
 F_PARSE 152 98
 P_CHAIN 47 2F
 P_CLI 150 96
 P_LOAD 59 3B
 P_RPL 151 97
 S_BDOSVER 12 0C
 S_BIOS 50 32
 S_OSVER 163 A3
 S_SYSDAT 154 9A
 S_SERIAL 107 6B
 T_SECONDS 155 9B

1.4 Real-time monitor

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG1.TXT[2/7/2012 11:32:02 AM]

The Real-Time Monitor (RTM) is the multitasking kernel of Concurrent CP/M. It
handles process dispatching, queue and flag management, device polling, and
system timing tasks. It also manages the logical interrupt system of
Concurrent CP/M. The primary function of the RTM is transferring the CPU
resource from one process to another, a task accomplished by the RTM
dispatcher. At every dispatch operation, the dispatcher stops the currently
running process from execution and stores its state in the Process Descriptor
(PD) and User Data Area (UDA) associated with that process. The dispatcher
then selects the highest-priority process in the ready state and restores it
to execution, using the data in its PD and UDA. A process is in the ready
state if it is waiting for the CPU resource only. The new process continues to
execute until it needs an unavailable resource, a resource needed by another
process becomes available, or an external event (such as an interrupt) occurs.
At this time, the RTM performs another dispatch operation, allowing another
process to run.

The Concurrent CP/M RTM dispatcher also performs device polling. A process
waits for a polled device through the RTM DEV_POLL system call.

When a process needs to wait for an interrupt, it issues a DEV_WAITFLAG system
call on a logical interrupt device. When the appropriate interrupt actually
occurs, the XIOS calls the DEV_SETFLAG system call, which wakes up the waiting
process. The interrupt routine then performs a Far Jump to the RTM dispatcher,
which reschedules the interrupted process, as well as all other ready
processes that are not yet on the Ready List. At this point, the dispatcher
places the process with the highest priority into execution. Processes that
are handling interrupts should run at a better priority than non-interrupt-
dependent processes (the lower the priority number, the better the priority)
in order to respond quickly to incoming interrupts.

The system clock generates interrupts, clock ticks, typically 60 times per
second. This allows Concurrent CP/M to effect process time slicing. Since the
operating system waits for the tick flag, the XIOS TICK Interrupt routine must
execute a Concurrent CP/M DEV_SETFLAG system call at each tick (see Section 7,
"XIOS TICK Interrupt routine"), then perform a Far Jump to the SUP entry
point. At this point, processes with equal priority are scheduled for the CPU
resource in round-robin fashion, unless a better-priority process is on the
Ready List. If no process is ready to use the CPU, Concurrent CP/M remains in
the dispatcher until an interrupt occurs, or a polling process is ready to
run.

The RTM also handles queue management. System queues are composed of two
parts: the Queue Descriptor (which contains the queue name and other
parameters) and the Queue Buffer (which can contain a specified number of
fixed-length messages). Processes read these messages from the queue on a
first-in, first-out basis. A process can write to or read from a queue either
conditionally or unconditionally. If a process attempts a conditional read
from an empty queue, or a conditional write to a full one, the RTM returns an
error code to the calling process. However, an unconditional read or write
attempt in these situations causes the suspension of the process, until
theoperation can be accomplished. The kernel uses this feature to implement
mutual exclusion of processes from serially reusable system resources, such as
the disk hardware.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG1.TXT[2/7/2012 11:32:02 AM]

Other functions of the Real-Time Monitor are covered in the "Concurrent CP/M
Operating System Programmer's Reference Guide" under their individual
descriptions.

 Table 1-2. Real-Time Monitor system calls

 System call Number Hex
 ----------- ------ ---
 DEV_SETFLAG 133 85
 DEV_WAITFLAG 132 84
 DEV_POLL 131 83
 P_ABORT 157 9D
 P_CREATE 144 90
 P_DELAY 141 8D
 P_DISPATCH 142 8E
 P_PDADR 156 9C
 P_PRIORITY 145 91
 P_TERM 143 8F
 P_TERMCPM 0 00
 Q_CREATE 138 8A
 Q_CWRITE 140 8C
 Q_DELETE 136 88
 Q_MAKE 134 86
 Q_OPEN 135 87
 Q_READ 137 89
 Q_WRITE 139 8B

1.5 Memory management module

The Memory Management module (MEM) handles all memory functions. Concurrent
CP/M supports an extended model of memory management. Future releases of
Concurrent CP/M might support different versions of the Memory module,
depending on classes of memory management hardware that become available.

The MEM module describes memory partitions internally by Memory Descriptors
(MDs). Concurrent CP/M initially places all available partitions on the
Memory Free List (MFL). Once MEM allocates a partition (or set of contiguous
partitions), it takes that partition off the MFL and places it on the Memory
Allocation List (MAL). The Memory Allocation List contains descriptions of
contiguous areas of memory known as Memory Allocation Units (MAUs). MAUs
always contain one or more partitions. The MEM module manages the space within
an MAU in the following way: when a process requests extra memory, MEM first
determines if the MAU has enough unused space. If it does, the extra memory
requested comes from the process' own partition first.

A process can only allocate memory from a MAU in which it already owns memory,
or from a new MAU created from the MPL. If one process shares memory with
another, either can allocate memory from the MAU that contains the shared
memory segment. The MEM module keeps a count of how many processes "own" a
particular memory segment, to ensure that it becomes available within the MAU
only when no processes own it. When all of the memory within an MAU is free,

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG1.TXT[2/7/2012 11:32:02 AM]

the MEM module frees the MAU and returns its memory partitions to the MFL.

If the system for which Concurrent CP/M is being implemented contains memory
management hardware, the XIOS can protect a process' memory when it is not in
context. When the process is entering the operating system, all memory in the
system should be made Read-Write. When a process is exiting the operating
system, the process' memory should be made Read-Write, the operating system
memory (from CCPMSEG to ENDSEG) made Read-Only, and all other memory made non-
existent. Memory protection can be implemented within the XIOS by a routine
that intercepts the INT 224 entry point for Concurrent CP/M system calls, and
interrupt routines that handle attempted memory protection violations.

Figure 1-3 shows how to find a process' memory.

 SYSDAT: 0068h +--+--+
 RLR | o |
 +--+--+
 |
 00h V 02h 16h 18h 30h
 +--+--+-...-+-------+------+-...-+
 PD | | | (MEM) o | |
 +--+--+-...-+-------+------+-...-+
 |
 +----------------------------+
 00h V 02h 06h 08h 0Ah
 +---+--+-...-+-------+------+--+---+
 MSD | LINK | | (MAU) o | |
 +---+--+-...-+-------+------+--+---+
 | |
 V | (All MSDs pointing to a common
 Next MSD | MAU are grouped together.)
 (0 if none) |
 +------------------+
 00h V 02h 04h 06h 0Ah
 +--+--+---+---+---+----+-...-+
 MAU | | START | LENGHT | |
 +--+--+---+---+---+----+-...-+

 Figure 1-3. Finding a process' memory

 Table 1-3. Definitions for Figure 1-3

 Data Field Explanation
 ---------- -----------
 RLR Ready List Root; points to currently running process.
 PD Process Descriptor; describes a process.
 MEM MEM field of Process Descriptor.
 MSD Memory Segment Descriptor; describes a single memory
 allocation. A process may have many of these in a
 linked list. The MSD list pointed to by the MEM field
 describes all the successful memory allocations made
 by the process. Also, many MSDs may point to the same

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG1.TXT[2/7/2012 11:32:02 AM]

 MAU. All MSDs pointing to the same MAU are grouped
 together.
 MAU Memory Allocation Unit; describes a contiguous area of
 allocated memory. A MAU is built from one or more
 contiguous memory partitions. The START and LENGTH
 fields are the starting paragraph and number of
 paragraphs, respectively.

 Table 1-4. Memory management system calls

 System call Number Hex
 ----------- ------ ---
 M_ALLOC 128,129 80,81
 M_FREE 130 82

 MC_MAX 53 35
 MC_ABS 54 36
 MC_ALLOC 55 37
 MC_ALLOCABS 56 38
 MC_FREE 57 39
 MC_ALLFREE 58 3A

Note: The MC_MAX, MC_ABS, MC_ALLOC, MC_ALLOCABS, MC_FREE, and MC_ALLFREE
system calls internally execute the M_ALLOC and M_FREE system calls. They are
supported for compatibility with the CP/M-86 and MP/M-86 operating systems.

1.6 Character I/O manager

The Character Input/Output (CIO) module of Concurrent CP/M handles all console
and list device I/O, and interfaces to the XIOS, the PIN (Physical Input
Process) and the VOUT (Virtual OUTput process). There is one PIN for each user
terminal, and one VOUT for each virtual console in the system. An overview of
the CIO is presented in the "Concurrent CP/M Operating System Programmer's
Reference Guide", and XIOS Character Devices are described in Section 4 of
this manual. For details of the Console COntrol Block (CCB) and List Control
Block (LCB) data structures, see Section 4.1 and 4.3 respectively.

 Table 1-5. Character I/O system calls

 System calls Number Hex
 ------------ ------ ---
 C_ASSIGN 149 95
 C_ATTACH 146 92
 C_CATTACH 162 A2
 C_DELIMIT 110 6E
 C_DETACH 147 93
 C_GET 153 99
 C_MODE 109 6D
 C_RAWIO 6 06
 C_READ 1 01
 C_READSTR 10 0A

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG1.TXT[2/7/2012 11:32:02 AM]

 C_SET 148 94
 C_STAT 11 0B
 C_WRITE 2 02
 C_WRITEBLK 111 6F
 C_WRITESTR 9 09
 L_ATTACH 158 9E
 L_CATTACH 161 A1
 L_DETACH 159 9F
 L_GET 164 A4
 L_SET 160 A0
 L_WRITE 5 05
 L_WRITEBLK 112 70

1.7 Basic Disk Operating System

The Basic Disk Operating System (BDOS) handles all file system functions. It
is described in detail in the "Concurrent CP/M Operating System Programmer's
Reference Guide". Table 1-6 lists the Concurrent CP/M BDOS system calls.

 Table 1-6. BDOS system calls

 System call Number Hex
 ----------- ------ ---
 DRV_ACCESS 38 26
 DRV_ALLOCVEC 27 1B
 DRV_DPB 31 1F
 DRV_FLUSH 48 30
 DRV_GET 25 19
 DRV_GETLABEL 101 65
 DRV_LOGINVEC 24 18
 DRV_RESET 37 25
 DRV_ROVEC 29 1D
 DRV_SET 14 0E
 DRV_SETLABEL 100 64
 DRV_SETRO 28 1E
 DRV_SPACE 46 2E
 F_ATTRIB 30 1E
 F_CLOSE 16 10
 F_DELETE 19 13
 F_DMASEG 51 33
 F_DMAGET 52 34
 F_DMAOFF 26 1A
 F_ERRMODE 45 2D
 F_LOCK 42 2A
 F_MAKE 22 16
 F_MULTISEC 44 2C
 F_OPEN 15 0F
 F_PASSWD 106 6A
 F_READ 20 14
 F_READRAND 33 21
 F_RANREC 36 24
 F_RENAME 23 17

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG1.TXT[2/7/2012 11:32:02 AM]

 F_SFIRST 17 11
 F_SIZE 35 23
 F_SNEXT 18 12
 F_TIMEDATE 102 66
 F_TRUNCATE 99 63
 F_UNLOCK 43 2B
 F_USERNUM 32 20
 F_WRITE 21 15
 F_WRITERAND 34 22
 F_WRITEXFCB 103 67
 F_WRITEZF 40 28
 T_GET 105 69
 T_SET 104 68

1.8 Extended I/O system

The Extended Input/Output System (XIOS) handles the physical interface to
Concurrent CP/M. It is similar to the CP/M-86 BIOS module, but it is extended
in several ways. By modifying the XIOS, you can run Concurrent CP/M in a large
variety of different hardware environments. The XIOS recognizes two basic
types of I/O devices: character devices and disk drives. Character devices are
devices that handles one character at a time, while disk devices handle random
blocked I/O using data blocks sized from one physical disk sector to the
number of physical sectors in 16 Kilo-Bytes. Use of devices that vary from
these two models must be implemented within the XIOS. In this way, they appear
to be standard Concurrent CP/M I/O devices to other operating system modules
through the XIOS interface. Section 4 through 6 contain detailed descritions
of the XIOS functions, and the source code for two sample implementations can
be found in machine-readable form on the Concurrent CP/M OEM release disk.

1.9 Re-entrancy in the XIOS

Concurrent CP/M allows multiple processes to use certain XIOS functions
simultaneously. The system guarantees that only one process uses a particular
physical device at any given time. However, some XIOS functions handle more
than one physical device, and thus their interfaces must be re-entrant. An
example of this is the IO_CONOUT function. The calling process passes the
virtual console number to this function. There can be several processes using
the function, each writing a character to a different virtual console or
character device. However, only one process is actually outputting a character
to a given device at any time.

IO_STATLINE can be called more than once. The CLOCK process calls the
IO_STATLINE function once per second, and the PIN process will also call it on
screen switches, Ctlr-S, Ctrl-P, and Ctrl-O.

Since the XIOS file functions, IO_SELDSK, IO_READ, IO_WRITE, and IO_FLUSH are
protected by the MXdisk mutual exclusion queue, only one process may access
them at a time. None of these XIOS functions, therefore, need to be re-
entrant.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG1.TXT[2/7/2012 11:32:02 AM]

1.10 SYSDAT segment

The System Data Area (SYSDAT) is the data segment for all modules of
Concurrent CP/M. The SYSDAT segment is composed of three main areas, as shown
in Figure 1-4 below. The first part is the fixed-format portion, containing
global data used by all modules. This is the SYSDAT DATA. It contains system
variables (including values set by GENCCPM) and pointers to the various system
tables. The Internal Data portion contains fields of data belonging to
individual operating system modules. The XIOS begins at the end of this second
area of SYSDAT. The third portion of SYSDAT is the System Table Area, which is
generated and initialized by the GENCCPM system generation utility.

Figure 1-4 shows the relationships among the various parts of SYSDAT.

 +---------------+
 | Table Area |
 +---------------+
 | XIOS |
 0C00h: +---------------+
 | Internal Data |
 00B0h: +---------------+
 | (SYSDAT DATA) |
 0000h: +---------------+

 Figure 1-4. SYSDAT

Figure 1-5 gives the format of the SYSDAT DATA, and describes its data fields.

 +-----+-----+-----+-----+-----+-----+-----+-----+
 00h | SUP ENTRY | RESERVED |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 08h | RESERVED |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 10h | RESERVED |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 18h | RESERVED |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 20h | RESERVED |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 28h | XIOS ENTRY | XIOS INIT |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 30h | RESERVED |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 38h | DISPATCHER | PDISP |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 40h | CCPMSEG | RSPSEG | ENDSEG |RESER|NVCNS|
 | | | | -VED| |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 48h |NLCB |NCCB | N_ | SYS_| MMP |RESER| DAY |

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG1.TXT[2/7/2012 11:32:02 AM]

 | | |FLAGS| DISK| | -VED| FILE|
 +-----+-----+-----+-----+-----+-----+-----+-----+
 50h | TEMP|TICKS| LUL | CCB | FLAGS |
 | DISK| /SEC| | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 58h | MDUL | MFL | PUL | QUL |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 60h | | QMAU | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 68h | RLR | DLR | DRL | PLR |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 70h | RESERVED | THRDRT | QLR | MAL |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 78h | VERSION | VERNUM |CCPMVERNUM | TOD_DAY |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 80h | TOD | TOD | TOD |NCON |NLST |NCIO | LCB |
 | _HR | _MIN| _SEC| DEV | DEV | DEV | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 88h | OPEN_FILE |LOCK_|OPEN_|OWNER_8087 | RESERVED |
 | | MAX | MAX | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 90h | RESERVED |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 98h | RESERVED |XPCNS|
 +-----+-----+-----+-----+-----+-----+-----+-----+
 A0h | OFF_8087 | SEG_8087 | SYS_87_OF | SYS_87_SG |
 +-----+-----+-----+-----+-----+-----+-----+-----+

 Figure 1-5. SYSDAT DATA

Table 1-7. SYSDAT DATA data fields

Format: Data field
 Explanation

SUP ENTRY
Double-word address of the Supervisor entry point for intermodule
communication. All internal system calls go through this entry point.

XIOS ENTRY
Double-word address of the Extended I/O System entry point for intermodule
communication. All XIOS function calls go through this entry point.

XIOS INIT
Double-word address of the Extended I/O System initialization entry point.
System hardware initialization takes place by a call through this entry point.

DISPATCHER
Double-word address of the Dispatcher entry point that handles interrupt
returns. Executing a JUMPF instruction to this address is equivalent to
executing an IRET (Interrupt RETurn) instruction. The Dispatcher routine
causes a dispatch to occur, and then executes an Interrupt Return. All
registers are preserved, and one level of stack is used. The address in this

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG1.TXT[2/7/2012 11:32:02 AM]

location can be used by XIOS interrupt handlers for termination, instead of
executing an IRET instruction. The TICK interrupt handler (I_TICK in the
example XIOSes) ends with a Jump Far (JMPF) to the address in this location.
Usually, interrupt handlers that make DEV_SETFLAG calls end with a Jump Far to
the address stored in the DISPATCHER field. Refer to the example XIOS
interrupt routines and Section 3.5 and 3.6 for more detailed information.

PDISP
Double-word address of the Dispatcher entry point that causes a dispatch to
occur with all registers preserved. Once the dispatch is done, a RETF
instruction is executed. Executing a JMPF PDISP is equivalent to executing a
RETF instruction. This location should be used as an exit point whenever the
XIOS releases a resource that might be wanted by a waiting process.

CCPMSEG
Starting paragraph of the operating system area. This is also the Code Segment
of the Supervisor Module.

RSPSEG
Paragraph Address of the first RSP in a linked list of RSP Data Segments. The
first word of the data segment points to the next RSP in the list. Once the
system has been initialized, this field is zero. See the "Concurrent CP/M
Operating System Programmer's Reference Guide" section on debugging RSPs for
more information.

ENDSEG
First paragraph beyond the end of the operating system area, including any
buffers consisting of uninitialized RAM allocated to the operating system by
GENCCPM. These include the Directory Hashing, Disk Data, and XIOS ALLOC
buffers. These buffers areas, however, are not part of the CCPM.SYS file.

NVCNS
Number of Virtual CoNSoles, copied from the XIOS Header by GENCCPM.

NLCB
Number of List Control Blocks, copied from the XIOS Header by GENCCPM.

NCCB
Number of Character Control Blocks, copied from the XIOS Header by GENCCPM.

NFLAGS
Number of system flags, as specified by GENCCPM.

SYSDISK
Default system disk. The CLI (Command Line Interpreter) looks on this disk if
it cannot open the command file on the user's current default disk. Set by
GENCCPM.

MMP
Maximum Memory allocated per Process. Set during GENCCPM.

DAY FILE
Day File option. If this field is 0FFh, the operating system displays date and
time information when an RSP or CMD file is invoked. Set by GENCCPM.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG1.TXT[2/7/2012 11:32:02 AM]

TEMP DISK
Default temporary disk. Programs that create temporary files should use this
disk. Set by GENCCPM.

TICKS/SEC
The number of system ticks per second.

LUL
Locked Unused List. Link list root of unused Lock list items.

CCB
Address of the Character Control Block Table, copied from the XIOS Header by
GENCCPM.

FLAGS
Address of the Flag Table.

MDUL
Memory Descriptor Unused List. Link list root of unused Memory Descriptors.

MFL
Memory Free List. Link list root of free memory partitions.

PUL
Process Unused List. Link list root of unused Process Descriptors.

QUL
Queue Unused List. Link list root of unused Queue Descriptors.

QMAU
Queue buffer Memory Allocation Unit.

RLR
Ready List Root. Linked list of PDs that are ready to run.

DLR
Delay List Root. Linked list of PDs that are delaying for a specified number
of system ticks.

DRL
Dispatcher Ready List. Temporary holding place for PDs that have just been
made ready to run.

PLR
Poll List Root. Linked list of PDs that are polling on devices.

THRDRT
THReaD list RooT. Linked list of all current PDs on the system. The list is
threaded through the THREAD field of the PD, instead of the LINK field.

QLR
Queue List Root. Linked list of all System QDs.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG1.TXT[2/7/2012 11:32:02 AM]

MAL
Memory Allocation List. Link list of active memory allocation units. A MAU is
created from one or more memory partitions.

VERSION
Address, relative to CCPMSEG, of ASCII version string.

VERNUM
Concurrent CP/M version number (returned by the S_BDOSVER system call).

CCPMVERNUM
Concurrent CP/M version number (system call 163, S_OSVER).

TOD_DAY
Time Of Day. Number of days since 1 Jan, 1978.

TOD_HR
Time Of Day. Hour of the day.

TOD_MIN
Time Of Day. Minute of the hour.

TOD_SEC
Time Of Day. Second of the minute.

NCONDEV
Number of XIOS CONsole DEVices, copied from the XIOS Header by GENCCPM.

NLSTDEV
Number of XIOS LiST DEVices, copied from the XIOS Header by GENCCPM.

NCIODEV
Total Number of Character I/O DEVices (NCONDEV + NLSTDEV).

LCB
Offset of the List Control Block Table, copied from the XIOS Header by
GENCCPM.

OPEN_FILE
Open File Drive Vector. Designates drives that have open files on them. Each
bit of the word value represents a disk drive; the least significant bit
represents Drive A, and so on through the most significant bit, Drive P. Bits
which are set indicate drives containing open files.

LOCK_MAX
Maximum number of locked records per process. Set during GENCCPM.

OPEN_MAX
Maximum number of open disk files per process. Set during GENCCPM.

OWNER_8087
Process currently owning the 8087. Set to 0 if 8087 is not owned. Set to
0FFFFh if no 8087 present.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG1.TXT[2/7/2012 11:32:02 AM]

XPCNS
Number of Physical CoNSoles.

OFF_8087
OFFset of the 8087 interrupt vector in low memory.

SEG_8087
SEGment of the 8087 interrupt vector in low memory.

SYS_87_OF
OFfset of the default 8087 exception handler.

SYS_87_SG
SeGment of the default 8087 exception handler.

1.11 Resident System Processes

Resident System Processes (RSPs) are an integral part of the Concurrent CP/M
operating system. At system generation, the GENCCPM RSP List menu lets you
select which RSPs to include in the operating system. GENCCPM then places all
selected RSPs in a contiguous area of RAM, starting at the end of SYSDAT. The
main advantage of an RSP is that it is permanently resident within the
Operating System Area, and does not have to be loaded from disk whenever it is
needed.

Concurrent CP/M automatically allocates a Process Descriptor (PD) and User
Data Area (UDA) for a transient program, but each RSP is responsible for the
allocation and initialization of its own PD and UDA. Concurrent CP/M uses the
PD and QD structures declared within an RSP directly if they fall within 64 KB
of the SYSDAT segment address. If outside 64 KB, the RSP's PD and QD are
copied to a PD or QD allocated from the Process Unused List or the Queue
Unused List. In either case, the PD and QD of the RSP lie within 64 KB of the
beginning of the SYSDAT Segment. This allows RSPs to occupy more area than
remains in the 64 KB SYSDAT Segment.

Further details on the creation and use of RSPs can be found in the
"Concurrent CP/M Operating System Programmer's Reference Guide".

EOF

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG2.TXT[2/7/2012 11:32:03 AM]

CCPMSG2.WS4 (Concurrent CP/M System Guide, Chapter 2)

(Retyped by Emmanuel ROCHE.)

Section 2: System generation

The Concurrent CP/M XIOS should be written as an 8080 Memory model (mixed Code
and Data) program, and originated at location 0C00h using the ASM86 ORG
assembler directive. Once you have written or modified the XIOS source for a
particular hardware configuration, use the Digital Research assembler ASM-86
to generate an XIOS.CON file for use with GENCCPM:

 A>asm86 xios ; Assemble the XIOS
 A>gencmd xios 8080 ; Create XIOS.CMD from XIOS.H86
 A>ren xios.con=xios.cmd ; Rename XIOS.CMD to XIOS.CON

Then, invoke the GENCCPM program to produce a system image in the CCPM.SYS
file by typing the command:

 A>genccpm ; Generate system image

2.1 GENCCPM operation

You can generate a Concurrent CP/M system by running the GENCCPM program under
an existing CP/M or Concurrent CP/M system. GENCCPM builds the CCPM.SYS file,
which is an image of the Concurrent CP/M operating system. Then, you can use
DDT-86 or SID-86 to place the CCPM.SYS file in memory for debugging under
CP/M-86.

GENCCPM allows the user to define certain hardware-dependent variables, the
amount of memory to reserve for system data structures, the selection and
inclusion of Resident System Processes in the CCPM.SYS file, and other system
parameters. The first action GENCCPM performs is to check the current default
drive for the files necessary to construct the operating system image:

 - SUP.CON Supervisor Code Module
 - RTM.CON Real-Time Monitor Code Module
 - MEM.CON Memory Manager Code Module
 - CIO.CON Character Input/Output Code Module
 - BDOS.CON Basic Disk Operating System Code Module
 - XIOS.CON Extended Input/Output Code Module
 - SYSDAT.CON SYSDAT DATA and Internal Data modules
 of SYSDAT segment.
 - VOUT.RSP Virtual console OUTput process
 - PIN.RSP Physical keyboard INput process
 - TMP.RSP Terminal Message Process
 - CLOCK.RSP Clock process
 - DIR.RSP Directory process

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG2.TXT[2/7/2012 11:32:03 AM]

 - ABORT.RSP Abort process

Note: *.RSP = Resident System Process file. The VOUT, PIN, TMP, and CLOCK RSPs
are required for Concurrent CP/M to run. The RSPs listed are all distributed
with Concurrent CP/M.

If GENCCPM does not find the preceding CON files on the default drive, it
prints an error message on the console.

 Can't find these modules: <FILESPEC>...{<FILESPEC>}

where FILESPEC is the name of the missing file.

2.2 GENCCPM main menu

All of the GENCCPM Main Menu options have default values. When generating a
system, GENCCPM assumes the value shown in square brackets, unless you specify
another value. Any menu item that requires a yes or no response represents a
Boolean value, and can be toggled simply by entering the variable. For
example, entering VERBOSE in response to the GENCCPM prompt will change the
state of the VERBOSE variable from the default state, [Y], to the opposite
state.

In the GENCCPM Main Menu illustrated in Figure 2-1, all numeric values are in
hexadecimal notation.

 *** Concurrent CP/M 3.1 GENCCPM Main Menu ***

 help GENCCPM Help
 verbose [Y] More Verbose GENCCPM Messages
 destdrive [A:] CCPM.SYS Output To (Destination) Drive
 deletesys [N] Delete (instead of rename) old CCPM.SYS file

 sysparams Display/Change System Parameters
 memory Display/Change Memory Allocation Partitions
 diskbuffers Display/Change Disk Buffer Allocation
 oslabel Display/Change Operating System Label
 rsps Display/Change RSP List

 gensys I'm finished changing things, go GEN a SYStem

 changes?_

 Figure 2-1. GENCCPM main menu

If you type "help" in response to the GENCCPM Main Menu prompt "Changes?", as
shown in this example:

 Changes? help <cr>

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG2.TXT[2/7/2012 11:32:03 AM]

the program prints the following message on the Help Function Screen:

 *** GENCCPM Help Function ***
 =============================

 GENCCPM lets you edit and generate a system image from
 operating system modules on the default disk drive. A
 detailed explanation of each GENCCPM parameter may be
 found in the Concurrent CP/M System Guide, Section 2.

 GENCCPM assumes the default values shown within square
 brackets. All numbers are in Hexadecimal. To change a
 parameter, enter the parameter name followed by "=" and
 the new value. Type <cr> (carriage return) to enter the
 assignment. You can make multiple assignments if you
 separate them by a space. No spaces are allowed within
 an assignment. Example:

 Changes? verbose=N sysdrive=A: openmax=1A <cr>

 Parameter names may be shortened to the minimum
 combination of letters unique to the currently displayed
 menu. Example:

 Changes? v=N des=A: del=Y <cr>

 Press RETURN to continue...__

 Figure 2-2. GENCCPM help function screen 1

 Sub-menus (the last few options) are accessed by typing
 the sub-menu name followed by <cr>. You may enter
 multiple sub-menus, in which case each sub-menu will be
 displayed in order. Example:

 Changes? help sysparams rsps <cr>

 Enter <cr> alone to exit a menu, or a parameter name, "="
 and the new value to assign a parameter. Multiple
 assignments may be entered, as in response to the Main
 Menu prompt.

 Press RETURN to continue.__

 Figure 2-3. GENCCPM help function screen 2

Table 2-1 describes the remaining GENCCPM Main Menu options.

 Table 2-1. GENCCPM main menu options

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG2.TXT[2/7/2012 11:32:03 AM]

Format: Option
 Explanation

VERBOSE
The GENCCPM program messages are normally verbose. However, experienced
operators might want to limit them, in the interest of efficiency. Setting
VERBOSE to N (no) limits the length of GENCCPM messages to the absolute
minimum.

DESTDRIVE
The drive upon which the generated CCPM.SYS file is to reside. If no
destination drive is specified, GENCCPM assumes the currently logged drive as
the default.

DELETESYS
Delete, instead of rename, old CCPM.SYS file. Normally, GENCCPM renames the
previous system file to CCPM.OLD before building the new system image. By
specifying DELETESYS=Y, you cause GENCCPM to delete the old file instead. This
is useful when disk space is limited.

SYSPARAMS
Typing SYSPARAMS <cr> displays the GENCCPM System Parameter Menu. See Figure
2-4 and accompanying text.

MEMORY
Typing MEMORY <cr> displays the GENCCPM Memory Partition Menu. See Figure 2-5
and accompanying text.

DISKBUFFERS
Typing DISKBUFFERS <cr> displays the GENCCPM Disk Buffer Allocation Menu. See
Figure 2-7 and accompanying text.

OSLABEL
Typing OSLABEL <cr> displays the GENCCPM Operating System Label Menu. See
Figure 2-8 and accompanying text.

RSPS
Typing RSPS <cr> displays the GENCCPM RSPS List Menu. See Figure 2-6 and
accompanying text.

GENSYS
Typing GENSYS <cr> initiates the GENeration of the SYStem file. When using an
input file to specify system parameters, and the GENSYS command is not the
last line in the input file, GENCCPM goes into interactive mode and prompts
you for any additional changes. See Section 2.9, "GENCCPM input files", for
more information.

Note: To create the CCPM.SYS file, you must type in the GENSYS command, or
include it in the GENCCPM input file.

2.3 System parameters menu

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG2.TXT[2/7/2012 11:32:03 AM]

The GENCCPM System Parameters Menu is shown in Figure 2-3. You access this
menu by typing SYSPARAMS in response to the Main MEnu.

Note: All GENCCPM parameter values are in hexadecimal.

 Display/Change System Parameters Menu

 sysdrive [B:] System Drive
 tmpdrive [B:] Temporary File Drive
 cmdlogging [N] Command Day/File Logging at Console
 compatmode [Y] CP/M FCB Compatibility Mode
 memmax [4000] Maximum Memory per Process (paragraphs)
 openmax [20] Open Files per Process Maximum
 lockmax [20] Locked Records per Process Maximum

 osstart [1008] Starting Paragraph of Operating System
 nopenfiles [40] Number of Open Files and Locked Record Entries
 npdescs [14] Number of Process Descriptors
 nqcbs [20] Number of Queue Control Blocks
 qbufsize [400] Queue Buffer Total Size in bytes
 nflags [20] Number of System Flags
 Changes?__

 Figure 2-4. GENCCPM system parameter menu

Table 2-2. System parameters menu option

Format: Option
 Explanation

SYSDRIVE
The system drive where Concurrent CP/M looks for a transient program when it
is not found on the current default drive. All the commonly used transient
process can thus be placed on one disk under User Number 0, and are not needed
on every drive and user number. See the "Concurrent CP/M Operating System
User's Guide" for information on how the operating system performs file
searches.

TMPDRIVE
The drive entered here is used as the drive for temporary disk files. This
entry can be accessed in the System Data Segment by application programs as
the drive on which to create temporary files. The temporary drive should be
the fastest drive in the system, for example, the Memory Disk (or RAMdisk), if
implemented.

CMDLOGGING
Entering the response [Y] causes the generated Concurrent CP/M Command Line
Interpreter (CLI) to display the current time and how the command will be
executed.

COMPATMODE
CP/M FCB Compatibility Mode [Y]. When the default value [Y] is set, the

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG2.TXT[2/7/2012 11:32:03 AM]

operating system recognizes the compatibility attributes. Setting this
parameter to [N] makes the generated system ignore the compatibility
attributes. See the "Concurrent CP/M Operating System Programmer's Reference
Guide", Section 2.12, "Compatibility atributes", for more information on this
feature.

MEMMAX
Maximum Paragraph per Process [4000]. A process may make Concurrent CP/M
memory allocations. This parameter puts an upper limit on how much memory any
one process can obtain. The default shown here is 256 Kilo- (40000h) bytes.

OPENMAX
Maximum Open Files per Process [20]. This parameter specifies the maximum
number of files that a single process, usually one program, can open at any
given time. This number can range from 0 to 255 (0FFh) and must be less than
or equal to the total open files and locked records for the system. See the
explanation of the NOPENFILES parameter below.

LOCKMAX
MAximum Locked Records per Process [20]. This parameter specifies the maximum
number of records that a single process, usually one program, can lock at any
given time. This number can range from 0 to 255 (0FFh) and must be less than
or equal to the total open files and locked records for the system. See the
explanation of the NOPENFILES parameter in the SYSPARAMS Menu.

OSSTART
Starting Paragraph of the operating system [1008]. The starting paragraph is
where the CCPMLDR is to put the operating system. Code execution starts here,
with the CS register set to this value, and the IP register set to 0. The Data
Segment (DS) Register is set to the SYSDAT segment address. When first
bringing up and debugging Concurrent CP/M under CP/M-86, the answer to this
question should be 8 plus where DDT-86 running under CP/M-86 reads in the file
using the R command. The DDT-86 R command can also be used to read the
CCPM.SYS file to a specific memory location. After debugging the system, you
might want to relocate it to an address more appropriate to your hardware
configuration. This location, naturally, depends on where the Boot Sector and
Loader are placed, and how much RAM is used by ROM monitor or memory-mapped
I/O devices.

NOPENFILES
Total Open Files in System [40]. This parameter specifies the total size of
the System Lock List, which includes the total number of open disk files plus
the total number of locked records for all the processes executing under
Concurrent CP/M at any given time. This number must be greater than or equal
to the maximum open files per process (the OPENMAX parameter above) and the
maximum locked records per process (the LOCKMAX parameter above). It is
possible either to allow each process to use up the total System Lock List
space, or to allow each process to only open a fraction of the system total.
The first technique implies a situation where one process can forcibly block
others because it has consumed all the available Lock list items.

NPDESCS
Number of Process Descriptors [14]. For each memory partition, at least one
transient program can be loaded and run. If transient programs create child

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG2.TXT[2/7/2012 11:32:03 AM]

processes, or if RSPs extend past 64 KB from the beginning of SYSDAT, extra
Process Descriptors are needed. When first bringing up and debugging
Concurrent CP/M, the default for this parameter suffices. After the debug
phase, during system tuning, you can use the Concurrent CP/M SYSTAT Utility to
monitor the number of processes and queues in use by the system at any time.

NQCBS
Number of Queue Control Blocks [20]. The number of Queue Control Blocks should
be the maximum number of queues that may be created by transient programs or
RSPs outside of 64 KB from SYSDAT. The default value suffices during initial
system debugging.

QBUFSIZE
Size of Queue Buffer Area in Bytes [400]. The Queue Buffer Area is space
reserved for Queue Buffers. The size of the buffer area required for a
particular queue is the message length times the number of messages. The Queue
Buffer Area should be the anticipated maximum that transient programs will
need. Again, the default value will be adequate for initial system debugging.
Note that the Queue Buffer Area can be large enough (up to 0FFFFh) to extend
past the SYSDAT 64 KB boundary.

NFLAGS
Size of the flag table [20]. Flags are three-byte semaphores used by interrupt
routines. The number of flags needed depends on the design of the XIOS. More
information on using flags for interrupt devices can be found in Section 3,
under "Interrupt devices". See also the "Concurrent CP/M Operating System
Programmer's Reference Guide" on DEV_FLAGSET, DEV_FLAGWT.

2.4 Memory allocation menu

The Memory Allocation Partition Menu, shown in Figure 2-5, is an interactive
menu. When the menu if first displayed, it lists the current memory
partitions. If none have been specified, the list field is blank. Following
the list is the menu of options available. You may choose either to ADD to the
list of partitions, or to delete one or more partitions. Partition assignments
must be made by specifying either ADD or DELETE, followed by an equal sign,
the starting address and last address of the memory region to be partitioned,
and the size, in paragraphs, of each partition. All values must be in
hexadecimal notation, and separated by commas. An asterisk can be used to
delete all memory partitions. The Start and Last values are paragraph
addresses; multiply them by 16 (10h) to obtain absolute addresses. Similarly,
partition sizes are in paragraphs; multiply by 16 (10h) to obtain size in
bytes.

In the example below, all default memory partitions are first deleted
(DELETE=*). Then, two kinds of memory partitions are added to the list: 16 KB
(4000h) partitions from address 2400:0 to 4000:0, and 32 KB (8000h) partitions
from 4000:0 to 6000:0.

 Addresses Partitions (in paragraphs)
 # Start Last Size Qty

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG2.TXT[2/7/2012 11:32:03 AM]

 1. 400h 6000h 400h 17h

 Display/Change Memory Allocation Partitions
 add ADD memory partition(s)
 delete DELETE memory partition(s)

 Changes? delete=* add=2400,4000,400 add=4000,6000,800

 Addresses Partitions
 # Start Last Size Qty
 1. 2400h 4000h 400h 7h
 2. 4000h 6000h 800h 4h

 Display/Change Memory Allocation Partitions
 add ADD memory partition(s)
 delete DELETE memory partition(s)

 Changes? <cr>

 Figure 2-5. GENCCPM memory allocation sample session

Memory partitions are highly dependent on the particular hardware environment.
Therefore, you should carefully examine the defaults that are given, and
change them if they are inappropriate. The memory partitions cannot overlap,
nor can they overlap the operating system area. GENCCPM checks and trims
memory partitions that overlap the operating system, but does not check for
partitions that refer to non-existent system memory. GENCCPM does not size
existing memory, because the hardware on which it is running might be
different from the target Concurrent CP/M machine (this might be done by the
XIOS at initialization time). Error messages are displayed, in case of
overlapping or incorrectly sized partitions, but GENCCPM does not
automatically trim overlapping memory partitions. GENCCPM does not allow you
to exit the Main Menu or the Memory Allocation Menu if the memory partition
list is not valid.

The nature of your application dictates how you should specify the partition
boundaries in your system. The system never divides a single partition among
unrelated programs. If any given memory request requires a memory segment that
is larger than the available partitions, the system concatenates adjoining
partitions to form a single contiguous are of memory. The MEM module algorithm
that determines the best fit for a given memory allocation request takes into
account the number of partitions that will be used and the amount of unused
space that will be left in the memory region. This allows you to evaluate the
tradeoffs between memory allocation boundary conditions causing internal
versus external memory fragmentation, as described below.

External memory fragmentation occurs when memory is allocated in small
amounts. This can lead to a situation where there is plenty of memory, but no
contiguous area large enough to load a large program. Internal fragmentation
occurs when memory is divided into large partitions, and loading a small
program leaves large amounts of unused memory in the partition. In this case,
a large program can always load if a partition is available, but the unused
areas within the large partitions cannot be used to load small programs if all

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG2.TXT[2/7/2012 11:32:03 AM]

partitions are allocated.

When running GENCCPM, you can specify a few large partitions, many small
partitions, or any combination of the two. If a particular environment
requires running many small programs frequently and large programs only
occasionally, memory should be divided into small partitions. This simulates
dynamic memory management as the partitions become smaller. Large programs are
able to load, as long as memory has not become too fragemented. If the
environment consists of running mostly large programs, or if the programs are
run serially, the large-partition model should be used. The choice is not
trivial, and might require some experimentation before a satisfactory
compromise is attained. Typical solutions divide memory into 4 KB to 16 KB
partitions.

2.5 GENCCPM RSP list menu

The GENCCPM RSP (Resident System Process) List Menu is shown in Figure 2-6.
The example session illustrates excluding ABORT.RSP and MY.RSP from the list
of RSPs to be included in the system.

 RSPs to be included are:

 PIN.RSP DIR.RSP ABORT.RSP TMP.RSP
 VOUT.RSP CLOCK.RSP MY.RSP

 Display/Change RSP List

 include Include RSPs
 exclude Exclude RSPs

 Changes?__exclude=abort.rsp,my.rsp

 RSPs to be included are:

 PIN.RSP DIR.RSP VOUT.RSP CLOCK.RSP
 TMP.RSP

 Changes?__<cr>

 Figure 2-6. GENCCPM RSP list menu sample session

The GENCCPM RSP List Menu first reads the directory of the current default
disk, and lists all RSP files present. Responding to the GENCCPM prompt
"Changes?" with either an include or exclude command edits the list of RSPs to
be made part of the operating system at system generation time. The wildcard
(*:) file specification can be used with the include command to automatically
include all RSP files on the disk (see Figure 2-8 for example of use).

Note: The PIN, VOUT, and CLOCK RSPs must be included for Concurrent CP/M to
run.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG2.TXT[2/7/2012 11:32:03 AM]

2.6 GENCCPM OSLABEL menu

If you type "oslabel" in response to the main menu prompt, as shown in this
example:

 Changes? oslabel

the following screen menu appears on your screen:

 Display/Change Operating System Label
 Current message is:
 <null>

 Add lines to message. Terminate by entering only RETURN:

 Figure 2-7. GENCCPM operating system label menu

You can type any message at this point. This message is printed on each
virtual console when the system boots up. Note that, if the message contains a
$, GENCCPM accepts it, but it causes the operating system to terminate the
message when it is being printed. This is because the operating system uses
the C_WRITESTR function to print the message, and $ is the default message
terminator.

The XIOS might also print its own sign-on message during the INIT routine. In
this case, the XIOS message appears before the message specified in the
GENCCPM OSLABEL Menu.

2.7 GENCCPM disk buffering menu

Typing "diskbuffers" in response to the main menu prompt displays the GENCCPM
Disk Buffering Menu. Figure 2-8 shows a sample session:

 *** Disk Buffering Information ***
 Dir Max/Proc Data Max/Proc Hash Specified
 Drv Bufs Dir Bufs Bufs Dat Bufs -ing Buf Pgphs
 === ==== ======== ==== ======== ==== =========
 A: ?? 0 ?? 0 yes ??
 B: ?? 0 ?? 0 yes ??
 C: ?? 0 ?? 0 yes ??
 D: ?? 0 ?? 0 yes ??
 E: ?? 0 ?? 0 yes ??
 M: ?? 0 fixed fixed ??
 Total paragraphs allocated to buffers: 0
 Drive (<cr> to exit) ? a:
 Number of directory buffers, or drive to share with? 8

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG2.TXT[2/7/2012 11:32:03 AM]

 Maximum directory buffers per process [8] ? 4
 Number of data buffers, or drive to share with ? 4
 Maximum data buffers per process [4]? 2
 Hashing [yes] ? <cr>

 *** Disk Buffering Information ***
 Dir Max/Proc Data Max/Proc Hash Specified
 Drv Bufs Dir Bufs Bufs Dat Bufs -ing Buf Pgphs
 === ==== ======== ==== ======== ==== =========
 A: 8 4 4 2 yes 200
 B: ?? 0 ?? 0 yes ??
 C: ?? 0 ?? 0 yes ??
 D: ?? 0 ?? 0 yes ??
 E: ?? 0 ?? 0 yes ??
 M: ?? 0 fixed fixed ??
 Total paragraphs allocated to buffers: 200
 Drive (<cr> to exit) ? *:
 Number of directory buffers, or drive to share with? a:
 Number of data buffers, or drive to share with ? a:
 Hashing [yes] ? <cr>

 *** Disk Buffering Information ***
 Dir Max/Proc Data Max/Proc Hash Specified
 Drv Bufs Dir Bufs Bufs Dat Bufs -ing Buf Pgphs
 === ==== ======== ==== ======== ==== =========
 A: 8 4 4 2 yes 200
 B: shares A: shares A: yes 80
 C: shares A: shares A: yes 20
 D: shares A: shares A: yes 18
 E: shares A: shares A: yes 10
 M: shares A: fixed fixed 0
 Total paragraphs allocated to buffers: 2C8
 Drive (<cr> to exit) ? <cr>

 Figure 2-8. GENCCPM disk buffering sample session

In the sample session shown in Figure 2-8, GENCCPM is reading the DPH
addresses from the XIOS Header, and calculating the buffer parameters based
upon the data in the DPHs and the answers to its questions. GENCCPM only asks
questions for the relevant fields in the DPH that you have marked with 0FFFFh
values. See Section 5.4, "Disk Parameter Header", for a detailed explanation
of DPH fields and GENCCPM table generation. An asterisk can be used to specify
all drives, in which case GENCCPM applies your answers to the following
questions to all unconfigured drives.

Note that GENCCPM prints out how many bytes of memory must be allocates to
implement your disk buffering requests. You should be aware that disk
buffering declarations can significantly impact the performance and efficiency
of the system being generated. If minimizing the amount of memory occupied by
the system is an important consideration, you can use the Disk Buffering Menu
to specify a minimal disk buffer space. We have found, however, that the

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG2.TXT[2/7/2012 11:32:03 AM]

amount of Directory Hashing space allocated has the most impact on system
performance, followed by the amount of Directory Buffer space allocated. As
with the trade-offs in memory partition allocation discussed above, deciding
on the proper ratio of operating system space to performance requires some
experimentation.

Note also that, if DOS media is supported, directory hashing space must be
allocated for the DOS file allocation table (FAT). See Section 5.5.1 for
information on allocating enough space for the FAT and the hash table.

GENCCPM checks to see that the relevant fields in the DPHs are no longer set
to 0FFFFh. GENCCPM does not allow you to exit from the Main Menu until these
fields have been set using the Disk Buffering Menu.

2.8 GENCCPM GENSYS option

Finally, specifying the GENSYS option in answer to the main menu prompt causes
GENCCPM to generate the system image on the specified destination disk drive.
During the actual system generation, the following messages print out on the
screen:

 Generating new SYS file
 Generating tables
 Appending RSPs to system file
 Doing Fixups
 SYS image load map:
 Code starts at GGGGh
 Data starts at HHHHh
 Tables start at IIIIh
 RSPs start at JJJJh
 XIOS Buffers start at KKKKh
 End of OS at LLLLh

 Trimming memory partitions. New List: ^
 |
 Addresses Partitions |
 (in Paragraphs) Size How (Only if
 # Start Last (Paras.) Many necessary)
 1. AAAAh BBBBh XXXXh Yh |
 2. MMMMh NNNNh QQQQh Vh |
 V

 Wrapping up

 A>

 Figure 2-9. GENCCPM system generation messages

2.9 GENCCPM input files

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG2.TXT[2/7/2012 11:32:03 AM]

GENCCPM allows you to input all system generation commands from an input file.
You can also redirect the console output to a disk file. You use these GENCCPM
features by invoking it with command of the form:

 GENCCPM <filein >fileout

where "filein" is the name of the GENCCPM input line. Note that no spaces can
intervene between the greater-than or less-than sign and the file
specification. If this condition is not met, GENCCPM responds with the
message:

 REDIRECTION ERROR

The format of the input file is similar to a SUBMIT file; each command is
entered on a separate line, followed by a carriage return, exactly in the
order required during a manually operated GENCCPM session. The last command
can be followed by a carriage return and the command:

 <cr>
 gensys

to end the command sequence and generate the system. If the GENSYS command is
not present, GENCCPM queries the console for changes.

The following example illustrates the use of the GENCCPM input file. Assuming
that the input file specification is GENCCPM.IN, use the following command to
invoke GENCCPM:

 A>genccpm <genccpm.in

Figure 2-10 shows a typical GENCCPM command file:

 VERBOSE=N DESTDRIVE=D:
 SYSPARAMS
 OSSTART=4000 NPDESCS=20 QBUFSIZE=4FF TMPDRIVE=A: CMDLOGGING=Y
 <cr>
 MEMORY
 DELETE=* ADD=2400,4000,400 ADD=4000,6000,800
 <cr>
 DISKBUFFERS
 A:
 8
 4
 4
 2
 hashing
 *: ; For all remaining drive questions
 A: ; Share directory buffers with A:
 A: ; Share data buffers with A:
 hashing ; Hashing on all drives
 <cr>
 OSLABEL

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG2.TXT[2/7/2012 11:32:03 AM]

 Concurrent CP/M Version 1.21 04/15/83
 Hardware Configuration:
 A: 10 MB Hard Disk
 B: 5 MB Hard Disk
 C: Single-density Floppy
 D: Double-density Floppy
 M: Memory Disk
 <cr>
 GENSYS <cr> <---- Only if you do not want to be able
 to specify additional changes.

 Figure 2-10. Typical GENCCPM command file

After reading in the command file and optionally accepting any additional
changes you want to make, GENCCPM builds a system image in the CCPM.SYS file,
in the manner described in Section 2.1.

EOF

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG3.TXT[2/7/2012 11:32:04 AM]

CCPMSG3.WS4 (Concurrent CP/M System Guide, Chapter 3)

(Retyped by Emmanuel ROCHE.)

Section 3: XIOS overview

Concurrent CP/M Version 3.1, as implemented with one of the example XIOSes
discussed in Section 3.1, is configured for operation with the CompuPro with
at least two 8-inch floppy disk drives and at least 128 KB of RAM. All
hardware dependencies are concentrated in subroutines collectively referred to
as the Extended Input/Output System, or XIOS. You can modify these subroutines
to tailor the system to almost any 8086 or 8088 disk-based operating
environment. This section provides an overview of the XIOS, and variables and
tables referenced within the XIOS.

The following material assumes that you are familiar with the CP/M-86 BIOS. To
use this material fully, refer frequently to the example XIOSes found in
source code form on the Concurrent CP/M distribution disk.

Note: Programs that depend upon the interface to the XIOS must check the
version number of the operating system before trying direct access to the
XIOS. Future versions of Concurrent CP/M can have different XIOS interfaces,
including changes to XIOS function numbers and/or parameters passed to XIOS
routines.

The XIOS must fit within the 64 KB System Data Segment, along with the SYSDAT
and Table Area. Concurrent CP/M accesses the XIOS through the two entry points
INIT and ENTRY at offset 0C00h and 0C03h, respectively, in the System Data
Segment. The INIT entry point is for system hardware initialization only. The
ENTRY entry point is for all other XIOS functions. Because all operating
system routines use a Call Far instruction to access the XIOS through these
two entry points, the XIOS function routines must end with a Return Far
instruction. Subsequent sections describe the XIOS entry points and other
fixed data fields.

3.1 XIOS Header

The XIOS Header contains variables that GENCCPM uses when constructing the
CCPM.SYS file and that the operating system uses when executing. Figure 3-1
illustrates the XIOS Header.

 +------+------+------+------+------+------+------+------+
 0C00h | JMP INIT | JMP ENTRY | SYSDAT |
 +------+------+------+------+------+------+------+------+
 0C08h | SUPERVISOR | TICK | TICKS| DOOR | RESER|
 | | | _SEC| | -VED|
 +------+------+------+------+------+------+------+------+

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG3.TXT[2/7/2012 11:32:04 AM]

 0C10h | NPCNS| NVCNS| NCCB | NLCB | CCB | LCB |
 +------+------+------+------+------+------+------+------+
 0C18h | DPH(A) | DPH(B) | DPH(C) | DPH(D) |
 +------+------+------+------+------+------+------+------+
 0C20h | DPH(E) | DPH(F) | DPH(G) | DPH(H) |
 +------+------+------+------+------+------+------+------+
 0C28h | DPH(I) | DPH(J) | DPH(K) | DPH(L) |
 +------+------+------+------+------+------+------+------+
 0C30h | DPH(M) | DPH(N) | DPH(O) | DPH(P) |
 +------+------+------+------+------+------+------+------+
 0C38h | ALLOC |
 +------+------+

 Figure 3-1. XIOS Header

Table 3-1. XIOS Header data fields

Format: Data field
 Explanation

JMP INIT
XIOS Initialization Point. At system boot, the Supervisor module executes a
Call Far instruction to this location in the XIOS (XIOS Code Segment: 0C00h).
This call transfers control to the XIOS INIT routine, which initializes the
XIOS and hardware, then executes a Return Far instruction. The JMP INIT
instruction must be present in the XIOS.A86 file. For details of the INIT
routine, see Section 3.2, "INIT entry point".

JMP ENTRY
XIOS Entry Point. All access to the XIOS functions goes through the XIOS Entry
Point. The operating system executes a far call (CALLF) to this location in
the XIOS (XIOS Code Segment: 0C03h) whenever I/O is needed. This instruction
transfers control to the XIOS ENTRY routine, which calls the appropriate
function within the XIOS. Once the function is complete, the ENTRY routine
executes a Return Far to the operating system. The RETF instruction must be
present in the XIOS.A86 file. For details of the ENTRY routine, see Section
3.3, "XIOS ENTRY".

SYSDAT
The segment address of SYSDAT. It is in the Code Segment of the XIOS, to allow
access to data in SYSDAT while in interrupt routines and other areas of code,
where the Data Segment is unknown. For example, the following routine accesses
the current process' Process Descriptor:

 DSEG ; of XIOS
 ORG 0068h ; Point to RLR field of SYSDAT
RLR RW 1 ; Does not generate a hex value
;
 CSEG ; of XIOS
 PUSH DS ; Save XIOS Data Segment
 MOV DS,CS:SYSDAT ; Move the SYSDAT segment address into DS
 MOV BX,RLR ; Move the current process' PD address
 (...) ; into BX and perform operation.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG3.TXT[2/7/2012 11:32:04 AM]

 (...) ; (See Figure 1-5 for explanation of RLR)
 POP DS ; Restore the XIOS Data Segment

This variable is initialized by GENCCPM.

SUPERVISOR
Far address (double-word pointer) of the Supervisor Module entry point.
Whenever the XIOS makes a system call, it must access the operating system
through this entry point. GENCCPM initializes this field. Section 3.8, "XIOS
system calls", describes XIOS register usage and restrictions.

TICK
Set Tick Flag Boolean. The Timer Interrupt routine uses this variable to
determine whether the DEV_SETFLAG system call should be called to set the
TICK_FLAG. Initialize this variable to zero (00h) in the XIOS.CON file.
Concurrent CP/M sets this field to 0FFh whenever a process is delaying. The
field is reset to zero (00h) when all processes finish delaying. See the
"Concurrent CP/M Operating System Programmer's Reference Guide" for details on
the DEV_SETFLAG and P_DELAY system calls. See Section 7 of this manual, "XIOS
TICK interrupt routine", for more information on the XIOS usage of TICK.

TICKS_SEC
Number of Ticks per Second. This field must be initialized in the XIOS.CON
file, to be the number of ticks that make up one second as implemented by this
XIOS. GENCCPM copies this field into the SYSDAT DATA. Application programmers
can use TICKS_SEC to determine how many ticks to delay in order to delay one
second. See Section 7, "XIOS TICK interrupt routine", for more information.

DOOR
Global Door Open Interrupt Flag. This field must be set to 0FFh by the drive
door open interrupt handler routine if the XIOS detects that any drive door
has been opened. The BDOS checks this field before every disk operation, to
verify that the media is unchanged. If a door has been opened, the XIOS must
also set the Media Flag in the DPH associated with the drive.

NPCNS
Number of Physical CoNSoles. Initialize this field to the number of physical
consoles, or user terminals connected to the system. This number does not
include extra I/O devices. GENCCPM uses this value, and creates a PIN process
for each physical console. It also copies NPCNS into the XPCNS field of the
SYSDAT DATA.

NVCNS
Number of Virtual CoNSoles. Initialize this field to the number of virtual
consoles supported by the XIOS in the XIOS.CON file. GENCCPM creates a TMP and
a VOUT process for each virtual console. GENCCPM copies NVCNS into the NVCNS
field of the SYSDAT DATA.

NCCB
Number of Logical Consoles. Initialize this field to the number of virtual
consoles plus the number of Character I/O devices supported by the XIOS.
Character I/O devices are devices accessed through the console system calls of
Concurrent CP/M (functions whose mnemonic begins with "C_"), but whose console
numbers are beyond the range of the virtual consoles. Application programs

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG3.TXT[2/7/2012 11:32:04 AM]

access the character I/O devices by setting their default console number to
the character I/O device's console number, and using the regular console
system calls of Concurrent CP/M. See the C_SET system call as descibed in the
"Concurrent CP/M Operating System Programmer's Reference Guide". GENCCPM
copies this field into the NCCB field of the SYSDAT DATA.

NLCB
Number of List Control Blocks. Initialize this field in the XIOS.CON file to
equal the number of list devices supported by the XIOS. A list deive is an
output-only device, typically a printer. GENCCPM copies this field into the
NLCB field of the SYDAT DATA.

CCB
Offset of the Console Control Block Table. Initialize this filed in the
XIOS.CON file to be the address of the CCB Table in the XIOS. A CCB Entry in
the Table must exist for each of the consoles indicated in NCCB. Each entry in
the CCB Table must be initialized as described in Section 4.11 of this manual,
"Console Control Block". GENCCPM copies this field into the CCB field of the
SYSDAT DATA.

LCB
Offset of the List Control Block. This field is initialized in the XIOS.CON
file to be the address of the LCB Table in the XIOS. There must be an LCB
Entry for each of the List devices indicated in NLST. Each entry must be
initialized as described in Section 4.3, "List device functions". GENCCPM
copies this field into the LCB field of the SYSDAT DATA.

DPH(A)-DPH(P)
Offset of initial Disk Parameter Header (DPH) for drives A through P,
respectively. If the value of this field is 0000h, the drive is not supported
by the XIOS. GENCCPM uses the DPH Table to initialize specific fields in the
DPHs when it automatically creates BCBs and buffers. If the relevant DPH
fields are not initialized to 0FFFFh, GENCCPM assumes that the BCBs and
buffers are defined by data already initialized in the XIOS.

ALLOC
This value is initialized in the XIOS to the size, in paragraphs, of an
uninitialized RAM buffer area to be reserved for the XIOS by GENCCPM. When
GENCCPM creates the CCPM.SYS image, it sets this field in the CCPM.SYS file to
the starting paragraph (segment value) of the XIOS uninitialized buffer area.
This value may then be used by the XIOS for based or indexed addressing into
the buffer area. Typically, the XIOS uses this buffer area for the virtual
console screen maps, programmable function key buffers, and non-disk-related
I/O buffering. GENCCPM allocates this uninitialized RAM immediately following
the system image and any system disk data or directory hashing buffers.
Because the XIOS buffer area is not included in the CCPM.SYS file, it can be
of any desired size without affecting system load time performance. If the
ALLOC field is initialized to zero in the XIOS.CON file, GENCCPM allocates no
buffer RAM, and leaves ALLOC set to zero in the system image.

Listing 3-1 illustrates the XIOS Header definition:

;**

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG3.TXT[2/7/2012 11:32:04 AM]

;* *
;* XIOS Header Definition *
;* *
;**

 CSEG
 ORG 0C00h

 JMP init ; System initialization
 JMP entry ; XIOS entry point

sysdat DW 0 ; SYSDAT Segment
supervisor RW 2
;
;--
;
 DSEG
 ORG 0C0Ch

tick DB false ; Tick enable flag
ticks_sec DB 60 ; # of ticks per second
door DB 0 ; Global drive door open INT flag
rsvd DB 0 ; Reserved for operating system use

npcns DB 4 ; Number of physical consoles
nvcns DB 8 ; Number of virtual consoles
nccb DB 8 ; Total number of CCBs
nlst DB 1 ; Number of list devices

ccb DW OFFSET ccb0 ; Offset of the first CCB
lcb DW OFFSET lcb0 ; Offset of the first LCB

 ; Disk parameter header offset table
dph_tbl DW OFFSET dph0 ; Drive A
 DW OFFSET dph1 ; B
 DW 0,0,0 ; C,D,E
 DW 0,0,0 ; F,G,H
 DW 0,0,0 ; I,J,K
 DW 0 ; L
 DW OFFSET dph2 ; M
 DW 0,0,0 ; N,O,P

alloc DW 0

3.2 INIT entry point

The XIOS initialization routine entry point, INIT, is at offset 0C00h from the
beginning of the XIOS code module. The INIT process calls the XIOS
Initialization routine during system initialization. The sequence of events
from the time CCPM.SYS is loaded into memory until the RSPs are created is
important for understanding and debugging the XIOS.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG3.TXT[2/7/2012 11:32:04 AM]

The Loader loads CCPM.SYS into memory at the absolute Code Segment location
contained in the CCPM.SYS file Header, and initializes the CS and DS registers
to the Supervisor code segment and the SYSDAT, respectively. At this point,
the Loader executes a JMPF to offset 0 of the CCPM.SYS code, and begins the
initialization code of the Concurrent CP/M SUP module as described below. When
loading CCPM.SYS under DDT-86 or SID-86, use the R command and set the code
and data segments manually before beginning execution. You cannot use the E
command, because it initializes the data segment base page to incorrect
values. See Section 8 of this manual, "Debugging the XIOS".

1. The first step of initialization in the SUP is to set up the INIT process.
The INIT process performs the rest of system initialization at a priority
equal to 1.

2. The INIT process calls the initialization routines of each of the other
modules with a Far Call instruction. The first instruction of each code module
is assumed to be a JMP instruction to its initialization routine. The XIOS
initialization routine is the last of these modules called. Once this call is
made, the XIOS initialization code is never used again. Thus, it can be
located in a directory buffer or other uninitialized data area.

3. As shown in the example XIOS listing, the initialization routine must
initialize all hardware and interrupt vectors. Interrupt 224 is saved by the
SUP module, and restored upon return from the XIOS. Because DDT-86 uses
interrupts 1, 3, and 225, do not initialize them when debugging the XIOS with
DDT-86 running under CP/M-86. On each context switch, interrupt vectors 0, 1,
3, 4, 224, and 225 are saved and restored as part of a process' environment.

4. The XIOS initialization routine can optionally print a message to the
console before it executes a Far Return instruction upon completion. Note that
each TMP prints out the string addressed by the VERSION variable in the SYSDAT
DATA. This string can be changed using the OSLABEL Menu in GENCCPM.

5. Upon return from the XIOS, the SUP initialization routine, running under
the INIT process, creates some queues and starts up the RSPs. Once this is
done, the INIT process terminates.

The XIOS INIT routine should initialize all unused interrupts to vector to an
interrupt trap routine that prevents spurious interrupts from vectoring to an
unknown location. The example XIOS handles uninitialized interrupts by
printing the name of the process that caused the interrupt, followed by an
uninitialized interrupt error message. Then, the interrupting process is
unconditionally terminated.

Concurrent CP/M saves Interrupt Vector 224 prior to system initialization, and
restores it following execution of the XIOS INIT routine. However, it does not
store or alter the Non-Maskable Interrupt (NMI) vector, INT 2. Setting NMI is
also the responsibility of the XIOS. The example XIOS first initializes all
the Interrupt Vectors to the uninitialized interrupt trap, then initializes
specifically used interrupts.

Note: When debugging the XIOS with DDT-86 running under CP/M-86, do not
initialize Interrupt Vectors 1, 3, and 225. The example XIOSes have a debug
flag that is tested by the INIT routine for this purpose.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG3.TXT[2/7/2012 11:32:04 AM]

3.3 XIOS ENTRY

All accesses to the XIOS after initialization go through the ENTRY routine.
The entry point for this routine is at offset 0C03h from the beginning of the
XIOS code module. The operating system accesses the ENTRY routine with a Far
Call to the location offset 0C03h bytes from the beginning of the SYSDAT
Segment. When the XIOS function is complete, the ENTRY routine returns by
executing a Far Return instruction, as in the example XIOSes. On entry, the AL
register contains the function number of the routine being accessed, and
registers CX and DX contain arguments passed to that routine. The XIOS must
maintain all segment registers through the call. This means that the CS, DS,
ES, SS, and SP registers are maintained by the functions being called.

 Table 3-2. XIOS register usage

 Registers on Entry

 AL = function number
 BX = PC-MODE parameter
 CX = first parameter
 DX = second parameter
 DS = SYSDAT segment
 ES = User Data Area
 AH, SI, DI, BP, DX, CX are undefined

 Registers on Return

 AX = return or XIOS error code
 BX = AX
 DS = SYSDAT segment
 ES = User Data Area
 SI, DI, BP, DX, CX are undefined

All XIOS functions, with the exception of disk functions, use the register
conventions shown above.

The segment registers (DS and ES) must be preserved through the ENTRY routine.
However, when calling the SUP from within the XIOS, the ES register must equal
the UDA of the running process, and DS must equal the System Data Segment.
Thus, if the XIOS is going to perform a string move or other code using the ES
register, it must preserve ES using the stack, as in the following example:

 PUSH ES
 MOV ES, Segment_Address
 ...
 REP MOVSW
 ...
 POP ES

In the example XIOSes, the XIOS function routines are accessed through a
function table with the function number being the actual table entry. Table 3-

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG3.TXT[2/7/2012 11:32:04 AM]

3 lists the XIOS function numbers and the corresponding XIOS routines;
detailed explanations of the functions appear in the referenced sections of
this manual. Listing 3-2 is an example XIOS ENTRY Jump Table.

Table 3-3. XIOS functions

Function number XIOS routine (full name)
=============== ============

Console functions -- Section 4.2

Function 0 IO_CONST CONsole STatus
Function 1 IO_CONIN CONsole INput
Function 2 IO_CONOUT CONsole OUTput
Function 7 IO_SWITCH Switch screen
Function 8 IO_STATLINE Display STATus LINE

List device functions -- Section 4.3

Function 3 IO_LSTS LiST Status
Function 4 IO_LSTOUT LiST OUTput

Other character devices -- Section 4.4

Function 5 IO_AUXIN AUXiliary INput
Function 6 IO_AUXOUT AUXiliary OUTput

Poll device function -- Section 4.5

Function 13 IO_POLL Poll device

Disk functions -- Section 5.1

Function 9 IO_SELDSK SELect DiSK
Function 10 IO_READ Read disk
Function 11 IO_WRITE Write disk
Function 12 IO_FLUSH Flush buffers
Function 35 IO_INT13_READ Read DOS disk
Function 36 IO_INT13_WRITE Write DOS disk

PC-MODE character functions -- Section 6
--
Function 30 IO_SCREEN Get/set Screen mode
Function 31 IO_VIDEO Video I/O
Function 32 IO_KEYBD Keyboard mode
Function 33 IO_SHFT SHiFT status
Function 34 IO_EQCK EQuipment ChecK

;--
; XIOS function table
;--
functab DW io_const ; 0 - console status
 DW io_conin ; 1 - console input

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG3.TXT[2/7/2012 11:32:04 AM]

 DW io_conout ; 2 - console output
 DW io_listst ; 3 - list status
 DW io_list ; 4 - list output
 DW io_auxin ; 5 - auxillary input
 DW io_auxout ; 6 - auxillary out
 DW io_switch ; 7 - switch screen
 DW io_statline ; 8 - display status line
 DW io_seldsk ; 9 - select disk
 DW io_read ;10 - read sector
 DW io_write ;11 - write sector
 DW io_flushbuf ;12 - flush buffers
 DW io_poll ;13 - poll device
 DW io_ret ;14 - dummy return
 DW io_ret ;15 - dummy return
 DW io_ret ;16 - dummy return
 DW io_ret ;17 - dummy return
 DW io_ret ;18 - dummy return
 DW io_ret ;19 - dummy return
 DW io_ret ;20 - dummy return
 DW io_ret ;21 - dummy return
 DW io_ret ;22 - dummy return
 DW io_ret ;23 - dummy return
 DW io_ret ;24 - dummy return
 DW io_ret ;25 - dummy return
 DW io_ret ;26 - dummy return
 DW io_ret ;27 - dummy return
 DW io_ret ;28 - dummy return
 DW io_ret ;29 - dummy return
 DW io_screen ;30 - get/set screen mode
 DW io_video ;31 - video I/O
 DW io_keybd ;32 - keyboard info
 DW io_shft ;33 - shift status
 DW io_eqck ;34 - equipment check
 DW io_int13_read ;35 - read DOS disk
 DW io_int13_write ;36 - write DOS disk

Listing 3-2. XIOS function table

3.4 Converting the CP/M-86 BIOS

The implementation of Concurrent CP/M described below assumes that you have
written and fully debugged a CP/M-86 BIOS on the target Concurrent CP/M
machine. This is desirable for the following reasons:

- The implementation of CP/M-86 on the target Concurrent CP/M machine greatly
simplifies debugging the XIOS, using DDT-86 or SID-86.

- A CP/M-86 or a running Concurrent CP/M system is required for the initial
generation of the Concurrent CP/M system when using GENCCPM.

- You can use the CP/M-86 BIOS as a basis for the contruction of the target
Concurrent CP/M XIOS.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG3.TXT[2/7/2012 11:32:04 AM]

To transform the CP/M-86 BIOS to the Concurrent CP/M XIOS, you must make the
following principal changes. Details of the changes given in the following
list can be found in the referenced sections of this manual, and in the
example XIOSes found on the Concurrent CP/M distribution disk. Often, it is
easier to start with the example Concurrent CP/M XIOS and replace the
hardware-dependent code with the corresponding drivers from the existing CP/M-
86 BIOS. However, there are several important changes, also outlined below,
that you must make to the CP/M-86 drivers before they work in the Concurrent
CP/M XIOS.

1. Change the BIOS Jump Table to use only the two XIOS entry points, INIT and
ENTRY. Concurrent CP/M assumes that these entry points to be unconditional
jump instructions to the corresponding routines. The INIT routine takes the
place of the CP/M-86 cold start entry point, and is only invoked once, at
system initialization time. The ENTRY routine is the single entry point
indexing into all XIOS functions, and replaces the BIOS Jump Table. Concurrent
CP/M accesses the ENTRY routine with the XIOS function number in the AL
register. The example XIOS then uses the value in the AL register as an index
into a function table, to obtain the address of the corresponding function
routine.

2. Add a SUP module interface routine, to enable the XIOS to execute
Concurrent CP/M system calls. The XIOS is within the operating system area,
and already uses the User Data Area stack; therefore, the XIOS cannot make
system calls in the conventional manner. See Section 3.8, "XIOS system calls".

3. Modify the console routines to reflect the IO_CONST, IO_CONIN, IO_CONOUT,
IO_LSTS, and IO_LISTOUT specifications. Note that the register conventions for
Concurrent CP/M are different from CP/M-86 and MP/M-86.

4. Rewrite the CP/M-86 disk routines to conform to the IO_SELDSK, IO_READ,
IO_WRITE, and IO_FLUSH specifications.

5. Change all polled devices to use the Concurrent CP/M DEV_POLL system call.
See Sections 4.5, "IO_POLL function"; 3.5, "Polled devices"; and Section 6 of
the "Concurrent CP/M Operating System Programmer's Reference Guide".

6. Change all interrupt-driven device drivers to use the Concurrent CP/M
DEV_WAITFLAG and DEV_SETFLAG system calls. See Sections 3.6, "Interrupt
devices"; 7, "XIOS TICK interrupt routine"; and section 6 of the "Concurrent
CP/M Operating System Programmer's Reference Guide".

7. Change the structure of the Disk Parameter Header (DPH) and Disk Parameter
Block (DPB) data structures referenced by the XIOS disk driver routines. See
Sections 5.4, "Disk Parameter Header" and 5.5, "Disk Parameter Block".

8. Remove the Blocking/Deblocking algorithms from the XIOS disk drivers. The
Concurrent CP/M BDOS now handles the blocking/deblocking function. The XIOS
still handles sector translation.

9. Change the disk routines to reference the Input/Output Parameter Block
(IOPB) on the stack. See Section 5.2, "IOPB data structure". Modify the disk
driver routine to handle multisector reads and writes.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG3.TXT[2/7/2012 11:32:04 AM]

10. Rewrite the console and list driver code to handle virtual consoles and,
possibly, multiple physical consoles. Details of the virtual console system
are given in Section 4, "Character devices".

11. Implement the TICK interrupt routine (see I_TICK in the example XIOSes).
This routine is used for process dispatching, maintaining the P_DELAY system
call, and waking up the CLOCK process RSP. See Section 7, "XIOS TICK interrupt
routine".

3.5 Polled devices

Polled I/O device drivers in the CP/M-86 BIOS typically execute a small
compute-bound instruction loop, waiting for a ready status from the I/O
device. This causes the driver routine to spend a significant portion of CPU
execution time looping. To allow other processes use of the CPU resource
during hardware wait periods, the Concurrent CP/M XIOS must use a system call,
DEV_POLL, to place the polling process on the Poll List. After the DEV_POLL
call, the dispatcher stops the process, and calls the XIOS IO_POLL function
every dispatch until IO_POLL indicates that the hardware is ready. The
dispatcher then restores the polling process to execution, and the process
returns from the DEV_POLL call. Since the process calling the DEV_POLL
function does not remain in ready state, the CPU resource becomes available to
other processes until the I/O hardware is ready.

To do polling, a process executing an XIOS function calls the Concurrent CP/M
DEV_POLL system call with a poll device number. The dispatcher then calls the
XIOS IO_POLL function with the same poll device number. The example XIOS uses
the poll device number to index into a table of poll routine entry points,
calls the appropriate poll function, and returns the I/O device status to the
dispatcher.

3.6 Interrupt devices

As in the case of polled I/O devices, an XIOS driver handling an interrupt-
driven I/O device should not execute a wait loop or halt instruction while
waiting for an interrupt to occur.

The Concurrent CP/M XIOS handles interrupt-driven devices by using
DEV_WAITFLAG and DEV_SETFLAG system calls. A process that needs to wait for an
interrupt to occur makes a DEV_WAITFLAG system call with a flag number. The
system stops this process until the desired XIOS interrupt handler routine
makes a DEV_SETFLAG system call with the same flag number. The waiting process
then continues execution. The interrupt handler follows the steps outlined
below, executing a Far Jump to the Dispatcher entry point. The interrupt
handler can also perform an IRET instruction when it is done. However, jumping
directly to the Dispatcher gives a little faster response to the process
waiting on the stack, and is logically equivalent to the IRET instruction.

If interrupts are enabled within an interrupt routine, a TICK interrupt can

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG3.TXT[2/7/2012 11:32:04 AM]

cause the interrupt handler to be dispatched. This dispatch could make
interrupt response time unacceptable. To avoid this situation, do not re-
enable interrupts within the interrupt handlers, or only jump to the
dispatcher when not in another interrupt handler routine.

Interrupt handlers under Concurrent CP/M differ from those in an 8080
environment, due to machine architecture differences. Study the TICK interrupt
handler in the example XIOSes carefully. During initial debugging, it is not
recommended that interrupts be implemented, until after the system works in a
polled environment. An XIOS interrupt handler routine must perform the
following basic steps:

1. Do a stack switch to a local stack. The interrupted process might not have
enough stack space for a context save.

2. Save the register environment of the interrupted process, or at least the
registers that will be used by the interrupt routine. Usually, the registers
are saved on the local stack established in step (1) above.

3. Satisfy the interrupting condition. This can include resetting the
hardware, and performing a DEV_SETFLAG system call to notify a process that
the interrupt for which it was waiting has occurred.

4. Restore the register environment of the interrupted process.

5. Switch back to the original stack.

6. Either a Jump Far to the dispatcher or an Interrupt Return (IRET)
instruction must be executed to return from the interrupt routine. Note the
above discussion on which return method to use for different situations.
Usually, when interrupts are not re-enabled within the interrupt handler, a
Jump Far to the dispatcher is executed on each system tick, and after a
DEV_SETFLAG call is made. Otherwise, if interrupts are re-enabled, an IRET
instruction is executed.

Note: DEV_SETFLAG is the only Concurrent CP/M system call an interrupt routine
may call. This is because the DEV_SETFLAG call is the only system call the
operating system assumes has no process context associated with it.
DEV_SETFLAG must enter the operating system through the SUP entry point at
SYSDAT:0000h, and cannot use INT 224.

3.7 8087 exception handler

The default for the Concurrent CP/M system is to provide no support for the
8087 coprocessor. This section explains what must be done to provide support
for the 8087 chip. To support the 8087, the XIOS initialization code must
initialize some fields in the SYSDAT area. The XIOS must also contain a
default exception handler, to handle any interrupts from the 8087. The system
is structured so that a programmer can write an individual exception handler
for the 8087.

The XIOS initialization code must first check for the presence of the 8087

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG3.TXT[2/7/2012 11:32:04 AM]

chip by using the FNINIT instruction. If it is present, the following fields
in SYSDAT must be set up:

 SEG_8087, OFF_8087 Must be set to the segment and offset
 of the 8087 interrupt vector.

 SYS_87_SG, SYS_87_OF Must be set to the segment and offset
 of the XIOS default exception handler.

 OWNER_8087 Must be set to 0 to indicate that there
 is an 8087 present in the system. The
 default value if 0FFFFh, which indicates
 no 8087. 0FFFFh is put in this field by
 the SUP initialization code.

The 8087 interrupt vector must also be set to the segment and offset of the
XIOS default exception handler.

Any exception handler for the 8087 must perform its functions in a certain
order, to guarantee program integrity in a multitasking environment. The
following is an outline of the example default 8087 exception handler. See
Listing 3-3 for the code of the example.

1. Save the 8086 environment.

2. Save the 8087 environment.

3. Clear the 8087 IR (status word).

4. Disable 8087 interrupts.

5. Acknowledge the interrupt (hardware dependent).

6. Look at the OWNER_8087 field, and performs the desired action. Note that
8086 interrupts are currently OFF. Do not perform any action that would turn
them back on yet. The default exception handler uses the OWNER_8087 field to
terminate the process on a sever error.

7. Restore the 8086 environment.

8. Restore the 8087 environment with clear status. This re-enables the 8087
interrupts.

9. Execute an IRET instruction to return, and re-enable the 8086 interrupts.

If the 8087 environment is not restored before 8086 interrupts are enables and
an interrupt occurs (for example, TICK), a different 8087 process can gain
control of the 8087 and swap in its 8087 context. On a second interrupt, or on
an IRET instruction, the 8086-running process that happened to be executing
the exception handler code will be brought back into 8086 context, and will
write over the new 8087 context.

All 8087 processes are initialized by the system with the address of the
default exception handler. If a process wants to use its own exception

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG3.TXT[2/7/2012 11:32:04 AM]

handler, it must initially overwrite the 8087 interrupt vector with the
address of its own exception handler. On each context switch, the 8087
interrupt vector is saved and restored as part of the 8087 process'
environment.

The hardware-dependent address of the 8087 interrupt vector is provided in the
SEG_8087 and OFF_8087 fields of the system data area.

An individual exception handler must follow the same sequence of events
described for the default handler. Failure to do so will have unpredictable
results on the system. If possible, make this default interrupt handler re-
entrant.

ndpint:

;==
; 8087 Default Exception Handler
;==
;
; This is the example default exception handler.
; It is assumed that, if the 8087 programmer has enabled
; 8087 interrupts and has specified exception flags in
; the control word, then the programmer has also included
; an exception handler, to take specific actions in
; response to these conditions.
; This handler ignores non-severe errors (overflow, etc),
; and terminates processes with severe errors (divide by
; zero, stack violation).

 PUSH DS ; Save current data segment
 MOV DS,sysdat ; Get XIOS data segment
 MOV ndp_ssreg,SS ; Stack switch for 8086 env
 MOV ndp_spreg,SP ;
 MOV SS,sysdat ;
 MOV SP,OFFSET ndp_tos ; Save 8086 registers
 PUSH AX ;
 PUSH BX ;
 PUSH CX ;
 PUSH DX ;
 PUSH DI ;
 PUSH SI ;
 PUSH BP ;
 PUSH ES ;
 MOV ES,sysdat ; Now, save 8087 env
 FNSTENV env_8087 ; Save 8087 Process Info
 FWAIT ;
 FNCLEX ; Clear 8087 interrupt request
 XOR AX,AX ;
 FNDISI ; Disable 8087 interrupts
 MOV AL,020h ; Send int ack's - 1 for slave
 OUT 060h,AL ;
 MOV AL,020h ; - 1 for master PIC
 OUT 058h,AL ;

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG3.TXT[2/7/2012 11:32:04 AM]

 CALL in_8087 ; Check 8087 error condition
 ; If error is severe,
 ; process will abort.
 MOV BX,OFFSET env_8087 ; Clear 8087 status word
 MOV BYTE PTR 2[BX],0 ; For env restore
 POP ES ; Restore 8086 env
 POP BP ;
 POP SI ;
 POP DI ;
 POP DX ;
 POP CX ;
 POP BX ;
 POP AX ;
 MOV SS,ndp_ssreg ; Switch to previous stack
 MOV SP,ndp_spreg ;
 FLDENV env_8087 ; Restore 8087 environment
 FWAIT ; with good status.
 POP DS ; Restore previous data segment
 IRET ;
;
in_8087:
 MOV BX,owner_8087 ; Get the Process Descriptor
 TEST BX,BX ; Check if owner has
 JZ end_87 ; already terminated.
 MOV SI,OFFSET env_8087 ; If severe error, terminate
 MOV AX,statusw[SI] ; If not, return and continue
 TEST AX,03Ah ; 3A = under/overflow, precision,
 JNZ end_87 ; and denormalized operand.
 OR p_flag[BX],080h ; Must be zero divide or invalid
 ; operation (stack error).
 ; Turn on terminate flag
end_87:
 RET

Listing 3-3. 8087 exception handler

3.8 XIOS system calls

Routines in the XIOS cannot make system calls in the conventional manner of
executing an INT 224 instruction. The conventional entry point to the SUP does
a stack switch to the User Data Area (UDA) of the current process. The XIOS is
considered within the operating system, and a process entering the XIOS is
already using the UDA stack. Therefore, a separate entry point is used for
internal system calls.

Location 0003h of the SUP code segment is the entry point for internal system
calls. Register usage for system calls through this entry point is similar to
the conventional entry point. They are as follows:

Entry: CX = System call number
 DX = Parameter
 DS = Segment address if DX is an offset to a structure

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG3.TXT[2/7/2012 11:32:04 AM]

 ES = User Data Area

Return: AX = BX = Return
 CX = Error code
 ES = Segment value if system call returns an offset and segment.
 Otherwise, ES is unaltered and equals the UDA upon return.
 DX, SI, DI, BP are not preserved

The only differences between the internam and user entry points are the CX and
ES registers on entry. For the internal call, CH must always be 0. ES must
always point to the User Data Area of the current process. The UDA segment
address can be obtained through the following code:

 ORG 0068h
rlr RW 1 ; Ready List Root in SYSDAT
;
 ORG (XIOS code segment)
 MOV SI,rlr
 MOV ES,10h[SI]

Note: On entry to the XIOS, ES is equal to the UDA segment address. The ES
register must equal the UDA on return from any XIOS function called by the
XIOS ENTRY routine. Interrupt routines must restore ES and any other altered
registers to their value upon entry to the routine, before performing an IRET
instruction or a JMPF to the dispatcher.

EOF

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG4.TXT[2/7/2012 11:32:05 AM]

CCPMSG4.WS4 (Concurrent CP/M System Guide, Chapter 4)

(Retyped by Emmanuel ROCHE.)

Section 4: Character devices

This section describes the XIOS functions necessary for Character I/O. Some
additional functions, described in Section 6, "PC-MODE character I/O" are
needed to run DOS programs.

Concurrent CP/M treats all serial I/O devices as consoles. Serial I/O devices
are divided into two categories: virtual consoles and extra I/O devices. Each
virtual console is assigned to a specific physical console or user terminal.
Associated with each serial I/O device (virtual console or extra I/O device)
is a Console Control Block (CCB). The serial I/O devices and CCBs are numbered
relative to zero. Each process contains, in its Process Descriptor, the number
of its default console. The default console can be either a virtual console or
an extra serial I/O devices.

Concurrent CP/M can be configured in a number of different ways by changing
the CCB table in the XIOS. It can be configured for one or more user terminals
(physical consoles), and extra I/O devices. The number of virtual consoles
assigned to each user terminal is set in the CCB table. Up to 256 serial I/O
devices can be implemented, depending on the specific application.

The XIOS Header defines the size and location of the CCB table. In the header,
the CCB field points to the beginning of the CCB table. The NCCB field
contains the number of entries in the CCB table. The NVCNS field tells how
many of the CCBs are virtual consoles. See "XIOS Header" in Section 3 for more
information.

The XIOS might or might not maintain a buffer containing the screen contents
and cursor position for each virtual console, depending on how the system is
to appear to the user. Keep in mind that this buffer can be over 4 KB per
virtual console. Practical considerations of memory space might require
keeping the number of virtual consoles reasonably small if buffers are
maintained. Also, note that, if the user terminals are connected to serial
ports, the time to update the screen for a screen switch can be up to 2
seconds. One example XIOS has eight virtual consoles, divided among multiple
serial terminals.

By convention, the first NVCNS serial I/O devices are the virtual consoles.
The NVCNS parameter is located in the XIOS Header. The XPCNS field tells how
many user terminals there are. XPCNS must be less than or equal to NVCNS.
XPCNS does not include extra I/O devices. Consoles beyond the last virtual
console represent other serial I/O devices. When a process makes a console I/O
call with a console number higher than the last virtual console, it references
the Console Control Block for the called device number. Therefore, a CCB for
each serial I/O device is absolutely necessary.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG4.TXT[2/7/2012 11:32:05 AM]

List Devices under Concurrent CP/M are output-only. The XIOS must reserve and
initialize a List Control Block for each list output device. When a process
makes a list device XIOS call, it references the appropriate LCB.

4.1 Console Control Block

A Console Control Block Table must be defined in the XIOS. There must be one
CCB for each virtual console and character I/O device supported by the XIOS,
as indicated by the NCCB variable in the XIOS Header. The table must begin at
the address indicated by the CCB variable in the XIOS Header.

 +---------------+ +-------------+
 | CCB |------>| CCB 0 | (virtual console 0)
 | (XIOS Header) | +-------------+
 +---------------+ ...
 ...
 +-------------+
 | CCB NVCNS-1 | (last virtual console)
 +-------------+
 | CCB NVCNS | (first extra character
 +-------------+ I/O device)
 ...
 ...
 +-------------+
 | CCB NCCB-1 | (last extra character
 +-------------+ I/O device)

 Figure 4-1. The CCB Table

The number of CCBs used for virtual consoles equals the NVCNS field in the
XIOS Header. Any additional CCB entries are used for other character devices
to be supported by the XIOS. The CCB entries are numbered starting with zero,
to match their logical console device numbers. Therefore, the last CCB in the
CCB Table is the (NCCB-1)th CCB.

Each CCB corresponding to a virtual console has several fields which must be
initialized, either when the XIOS is assembled or by the XIOS INIT routine.
These fields allow you to choose the configuration of the virtual consoles.
The PC field indicates the Physical Console this virtual console is assigned
to. The VC field is the Virtual Console number. This number must be unique
within the system. The LINK field points to the CCB of the next virtual
console assigned to this physical console. The last virtual console assigned
to each physical console should have the LINK field set to zero (0000h).
Figure 4-2 shows a diagram of the CCBs for a system with two physical
consoles, with three and two virtual consoles assigned, respectively. For CCBs
outside the virtual console range corresponding to extra I/O devices, these
fields must all be initialized to zero (00h), except for the PC field. Also,
initialize to zero (00h) all fields marked RESERVED in Figure 4-3.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG4.TXT[2/7/2012 11:32:05 AM]

 +-------+------+------+
 | CCB 0 | PC 0 | VC 0 |
 +-------+------+------+
 +---| LINK |
 | +---------------------+
 | +-------+------+------+
 +-->| CCB 1 | PC 0 | VC 1 |
 +-------+------+------+
 +---| LINK |
 | +---------------------+
 | +-------+------+------+
 +-->| CCB 2 | PC 0 | VC 2 |
 +-------+------+------+
 0<--| LINK |
 +---------------------+
 +-------+------+------+
 | CCB 3 | PC 1 | VC 3 |
 +-------+------+------+
 +---| LINK |
 | +---------------------+
 | +-------+------+------+
 +-->| CCB 4 | PC 1 | VC 4 |
 +-------+------+------+
 0<--| LINK |
 +---------------------+

 Figure 4-2. CCBs for two physical consoles

 +-----+-----+-----+-----+-----+-----+-----+-----+
 00h | OWNER | RESERVED |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 08h |MIMIC| | PC | VC | RESERVED | STATE |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 10h | MAXBUFSIZE| RESERVED |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 18h | RESERVED |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 20h | RESERVED |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 28h | LINK | RESERVED |
 +-----+-----+-----+-----+

 Figure 4-3. Console Control Block format

Table 4-1. Console Control Block data fields

Format: Data field
 Explanation

OWNER
Address of the Process Descriptor of the process that currently owns the
virtual console or character I/O deive. This field is used by the XIOS Status
Line function (IO_STATLINE) to find the name of the current owner. Initialiaze

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG4.TXT[2/7/2012 11:32:05 AM]

this field disply to zero (0000h). If the value in this field is zero when
Concurrent CP/M is running, no process owns the device.

MIMIC
This field indicates which list device receives the characters typed on the
virtual console when the Ctrl-P command is in effect. MIMIC must be
initialized to 0FFh. Note that this list device is not necessarily the same as
the default list device indicated in the Process Descriptor whose address is
in the OWNER field of the CCB. Consider the following interaction at the
console:

 A>printer The TMP's PD has a 0 in its LIST field.
 Printer Number = 0
 A>^P Printer echo to list device 0.
 A>printer 2 The TMP's PD has a 2 in its LIST field.
 Printer Number = 2
 A>pip lst:=letter.prn LETTER.PRN is sent to list device 2.
 Printer echo is still going to list
 device 0, echoing the last two commands.

The example status line routine distinguishes between the default list device
and the Ctrl-P list device by displaying:

 Printer=2

for the default list device, and

 ^P=0

after the last command in the illustration above.

PC
Physical console number.

VC
Virtual console number. Virtual console numbers must be unique within the
system.

STATE
The least significant bit of this field indicates the background mode of the
virtual console. The XIOS Status Line function routine uses this information
to display the background mode for the current foreground console. This bit
has the following values:

 0 background is dynamic
 1 background is buffered

The STATE field can be initialized to 0 or 1 on each virtual console, to
specify the background mode at system startup. The Concurrent CP/M VCMODE
utility allows the user to change the background mode.

MAXBUFSIZE
The MAXBUFSIZE field indicates the maximum size of the buffer file used to
store characters when a background virtual console is in buffered mode. When a

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG4.TXT[2/7/2012 11:32:05 AM]

virtual console is placed in background mode by the user, a temporary file is
created on the temporary drive, containing console output sent to the virtual
console. These files are named VOUTx.$$$, where "x" equals the number of the
associated virtual console. The MAXBUFSIZE field is the maximum size to which
this file can grow. If this maximum is reached, the drive is Read-Only, or
there is no more free space on the drive, subsequent console output causes the
background process attached to the virtual console to be stopped. The
MAXBUFSIZE parameter is in Kilobytes, and must be initialized in the XIOS CCB
entries. The Concurrent CP/M VCMODE utility allows the user to change this
value. The legal range for MAXBUFSIZE is 1 to 8191 decimal (1FFFFh).

LINK
Address of the next CCB assigned to the same physical console. Zero (0000h) if
this is the last or only virtual console for this physical console.

4.2 Console I/O functions

A major difference between the Concurrent CP/M XIOS and the CP/M-86 BIOS
drivers is how they wait for an event to occur. In CP/M-86, a routine
typically goes into a hard loop to wait for a change in status of a device, or
executes a Halt (HLT) instruction to wait for an interrupt. In Concurrent
CP/M, this does not work. It can be of some use, however, during the very
early stages of debugging the XIOS.

Basically, two ways to wait for a hardware event are used in the XIOS. For
non-interrupt-driven devices, use the DEV_POLL method. For interrupt-driven
devices, use the DEV_SETFLAG/DEV_FLAGWAIT method. These are both ways in ways
in which a process waiting for an external event can give up the CPU resource,
allowing other processes to run concurrently. For detailed explanations of the
DEV_POLL, DEV_FLAGWAIT, and DEV_SETFLAG system calls, see Section 6 of the
"Concurrent CP/M Operating System Programmer's Reference Guide".

IO_CONST Console input status

Return the input status of the specified serial I/O device.

Entry Parameters:
 Register AL: 00h
 DL: Serial I/O device number

Returned Values:
 Register AL: 0FFh if character ready,
 00h if no character ready
 BL: Same as AL
 ES, DS, SS, SP preserved

The IO_CONST routine returns the input status of the specified character I/O
device. This function is only called by the operating system for console
numbers greater than NVCNS-1, in other words, only for devices which are not
virtual consoles. If the status returned is 0FFh, then one or more characters

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG4.TXT[2/7/2012 11:32:05 AM]

are available for input from the specified device.

IO_CONIN Console input

Return a character from the console keyboard, or a serial I/O device.

Entry Parameters:
 Register AL: 01h
 DL: Serial I/O device number

Returned Values:
 Register AH: 00h if returning character data
 AL: Character

 AH: 0FFh if returning a switch screen request
 AL: Virtual console requested

 BX: Same as AX in all cases
 ES, DS, SS, SP preserved

Because Concurrent CP/M supports the full 8-bit ASCII character set, the
parity bit must be masked off from input devices which use it. However, it
should not be masked off if valid 8-bit characters are being input.

You choose the key or combination of keys that represent the virtual consoles
by the implementation of IO_CONIN. One of the example XIOSes uses the function
keys F1 through F3 to represent the virtual consoles assigned to each user
terminal.

IO_CONIN must check for PC-MODE. PC-MODE is enabled whenever DOS programs are
running. It is enabled or disabled by the IO_KEYBD (Function 32) call. If PC-
MODE is enabled, all function keys are passed through to the calling process.
If it is disabled, function keys that do not have an associated XIOS function
are usually ignored on input. See Section 6.2, "Keyboard functions" for
information on the IO_KEYBD call.

IO_CONOUT Console output

Display and/or output a character to the specified device.

Entry Parameters:
 Register AL: 02h
 CL: Character to send
 DL: Virtual console to send to

Returned Values: NONE
 ES, DS, SS, SP preserved

The XIOS might or might not buffer background virtual consoles, depending on
the user interface desired, memory constraints, and methods of updating the

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG4.TXT[2/7/2012 11:32:05 AM]

terminals. This section describes how the example XIOSes handle virtual
consoles.

The example XIOSes buffer all virtual consoles. All virtual consoles have a
screen image area in RAM. This image reflects the current contents of the
screen, both characters and attributes. Each screen image is contained in a
separate segment.

Each virtual console also has a Screen Structure associated with it. This
structure contains the segment address of the screen image, the cursor
location (offset in the segment), and any other information needed for the
screen. This structure can be expanded to support additional hardware
requirements, such as color CRTs.

For a screen-buffered implementation, when a character is given to IO_CONOUT,
it performs the following operations:

1. Look up the screen structure for this virtual console, and get the segment
address of the screen image.

2. Update the image, including all changes caused by escape sequences. This
could involve changes to the characters on the screen (clear screen), the
cursor location (home), or the attributes of the individual characters
(inverse video).

3. If this console is in the foreground and on a serial terminal, put the
character out to the physical terminal. This requires looking up the true
physical console number.

When a process calls this function with a device number higher than the last
virtual console number, the character should be sent directly to the serial
device number that the CCB represents.

Note that, for screen buffering, it is necessary to buffer 25 lines when in
PC-MODE, but only 24 lines otherwise. The PC-MODE flag is set by Function 32,
"IO_KEYBD", which is described in Section 6.2, "Keyboard functions".

IO_SWITCH Switch screen

Place the current virtual console into the background, and the specified
virtual console into the foreground.

Entry Parameters:
 Register AL: 07h
 DL: Virtual console number to switch to

Returned Values: NONE
 ES, DS, SS, SP preserved

When IO_SWITCH is called, the XIOS copies the screen image in memory to the
physical screen. It must move the cursor on the physical screen to the proper
position for the new foreground console.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG4.TXT[2/7/2012 11:32:05 AM]

IO_SWITCH is responsible for doing a flagset to restart a background process
that is waiting to go into graphics mode. If the process' screen is to be
switched into the foreground, do a flagset on the flag that was used by
IO_SCREEN to flagwait the process. See Section 6.1 , "Screen I/O functions",
for more information on IO_SCREEN.

IO_SWITCH will be implemented differently for machines with video RAM (such as
the IBM Personal Computer) and serial terminals. For IBM Personal Computers,
the screen switch can be done by doing a block move from the screen image to
the video RAM, and a physical cursor positioning. A serial terminal must be
updated by sending a character at a time, with insertion of escape sequences
for the attribute changes.

Concurrent CP/M calls IO_SWITCH only when there is no process currently in the
XIOS performing console output to either the foreground virtual console being
switched out or the background virtual console being switched into the
foreground. Therefore, the XIOS never has to update a screen while
simultaneously switching it form foreground to background, or vice versa.

One of the example IO_SWITCH routines performs the following operations:

1. Get the screen structure and image segment for the new virtual console.

2. Find the physical console number for this virtual console.

3. If this is a video-mapped console, save the current display by doing a
block move. If it is a serial terminal, clear the physical screen and home the
cursor.

4. If this is a video-mapped display, do a block move of the new screen image
to the video RAM, and reposition the cursor. If it is a serial terminal, send
each character to the physical screen. Check each character's attribute byte,
and send any escape sequences necessary to display the characters with the
correct attributes.

IO_STATLINE Display status line

Display specified text on the status line.

Entry Parameters:
 Register AL: 08h
 CX: If 0000h, continue to update the normal status line.
 If CX = offset, print string at DX:CX.
 If 0FFFFh, resume normal status line display.
 DL: Physical console to display status line on (if CX = 0)
 DX: Segment address of optional string (if CX <> 0)

Retruned Values: NONE
 ES, DS, SS, SP preserved

When IO_STATLINE is called with CX = 0, the normal status information is

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG4.TXT[2/7/2012 11:32:05 AM]

displayed by IO_STATLINE on the physical console specified in DL. The normal
status line typically consists of the foreground virtual console number, the
state of the foreground virtual console, the process that owns the foreground
virtual console, the removable-media drives with open files, whether Ctrl-P,
Ctrl-S, or Ctrl-O are active, and the default printer number. The IO_STATLINE
function in the example XIOSes display some of the above information. Usually,
when IO_STATLINE is called, DL is set to the physical console to display the
status line on. You must translate this to the current (foreground) virtual
console before getting the information for the status line (such as the
process owning the console). The status line can be modified, expanded to any
size, or displayed in a different are than the status line implemented in the
example XIOSes. A common addition to the status line is a time-of-day clock.

A status line is strongly recommended. However, if there are only 24 lines on
the display device, you might choose not to implement a status line. In this
case, IO_STATLINE can just return when called.

The normal status line is updated once per second by the CLOCK RSP. If there
is more than one user terminal connected to the system, this update occurs
once per second on a round-robin basis among the physical terminals. Thus, if
four terminals are connected, each one is updated every four seconds by the
CLOCK RSP.

The operating system also requests normal status line updates when screen
switches are made, and when Ctrl-P, Ctrl-S, or Ctrl-O change state. The XIOS
might call IO_STATLINE from other routines, when some value displayed by the
status line changes.

Note: IO_STATLINE re-entrancy depends, in part, on having separate buffers for
each physical console.

The IO_STATLINE routine should not display the status line on a user terminal
that is in graphics mode. It should check the same variables as IO_SCREEN
(Function 30). IO_SCREEN is described in Section 6.1, "Screen I/O functions".

IO_STATLINE also should not display on a console that is in PC-MODE. Check the
variable set by Function 32, "IO_KEYBD", to see if a console is in PC-MODE.
See Section 6.2, "Keyboard functions", for information on Function 32.

Most calls to IO_STATLINE to update the status line have DL set to the
physical terminal that is to be updated. When IO_STATLINE is called with CX
not equal to 0000h or 0FFFFh, then CX is assumed to be the byte offset and DX
the paragraph address of an ASCII string to print on the status line. This
special status line remains on the screen until another special status line is
requested, or IO_STATLINE is called with CX = 0FFFFh. While a special status
line is being displayed, calls to IO_STATLINE with CX = 0000h are ignored.
When IO_STATLINE function is called with CX = 0FFFFh, the normal status line
is displayed, and subsequent calls with CX = 0000h cause the status line to be
updated with current information.

When IO_STATLINE is called to display a special status line, DL does not
contain the physical console number. The physical console number can be
obtained by the following method:

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG4.TXT[2/7/2012 11:32:05 AM]

1. Get the address of SYSDAT.

2. Look at the RLR (Ready List Root). The first process on the list is the
current process.

3. Look at the Process Descriptor (pointed to by RLR). The P_CNS field
contains the virtual console number of the current process. See the
"Concurrent CP/M Operating System Programmer's Reference Guide" for a
description of the Process Descriptors.

4. Look up the CCB for this virtual console, and find the physical console
number in it.

A process calling IO_STATLINE with a special status line (DX:CX = address of
the string) must call IO_STATLINE before termination with CX = 0FFFFh.
Otherwise, the normal status line is never shown again. There is no provision
for a process to find out which status line is being displayed.

4.3 List device functions

A List Control Block (LCB), similar to the CCB, must be defined in the XIOS
for each list device supported. The number of LCBs must equal the NLCB
variable in the XIOS Header. The LCB Table begind with LCB zero, and ends with
LCB NLCB-1, according to their logical list device names.

 +---------------+ +-------------+
 | LCB |------>| LCB 0 | (list device 0)
 | (XIOS Header) | +-------------+
 +---------------+ ...
 ...
 +-------------+
 | LCB NLCB-1 | (last list device)
 +-------------+

 Figure 4-4. The LCB Table

 +-----+-----+-----+-----+-----+-----+-----+-----+
 00h | OWNER | RESERVED |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 08h |RESER| MSOU|
 | -VED| -RCE|
 +-----+-----+

 Figure 4-5. List Control Block (LCB)

Table 4-2. List Control Block data fields

Format: Field
 Explanation

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG4.TXT[2/7/2012 11:32:05 AM]

OWNER
Address of the PD of the process that currently owns the list device. If no
process currently owns the list device, then OWNER = 0. If OWNER = 0FFFFh,
this list device is mimicking a console device that is in Ctrl-P mode.

MSOURCE
If OWNER = 0FFFFh, MSOURCE contains the number of the console device this list
device is mimicking; otherwise, MSOURCE = 0FFh.

Note: MSOURCE must be initialized to 0FFh. All other LCB fields must be
initialized to 0.

IO_LSTS List status

Return list output status.

Entry Parameters:
 Register AL: 03h
 DL: List device number

Returned Values:
 Register AL: 0FFh if device ready
 00h if device not ready
 AH: 90h if device ready
 10h if device not ready
 BL: Same as AL
 BH: Same as AH
 ES, DS, SS, SP preserved

The IO_LSTS function returns the output status of the specified list device.

IO_LSTOUT List output

Output character to specified list device.

Entry Parameters:
 Register AL: 04h
 CL: Character
 DL: List device number

Returned Values: NONE
 ES, DS, SS, SP preserved

The IO_LSTOUT function sends a character to the specified list device. List
device numbers start at 0. It is the responsiblity of the XIOS device driver
to zero the parity bit for list devices that require it.

4.4 Auxiliary device functions

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG4.TXT[2/7/2012 11:32:05 AM]

These XIOS functions are accessible only through the Concurrent CP/M S_BIOS
system call. Software that uses this call can access the AUX: device by
placing the appropriate parameters in the Bios Descriptor. For further
information, see the "Concurrent CP/M Operating System Programmer's Reference
Guide" under the S_BIOS system call.

If you choose not to implement the AUX: device, then the IO_AUXOUT function
can simply return, while IO_AUXIN should return a character 26 (1Ah), Ctrl-Z,
indicating end of file.

IO_AUXIN Auxiliary input

Input a character from the auxiliary device.

Entry Parameters:
 Register AL: 05h

Returned Values:
 Register AL: Character
 ES, DS, SS, SP preserved

IO_AUXOUT Auxiliary output

Output a character to the auxiliary device.

Entry Parameters:
 Register AL: 06h
 CL: Character

Returned Values: NONE
 ES, DS, SS, SP preserved

4.5 IO_POLL function

IO_POLL Poll device

Poll specified device, and return status.

Entry Parameters:
 Register AL: 0Dh (13)
 DL: Poll device number

Returned Values:
 Register AL: 0FFh if ready,
 00h if not ready
 BL: Same as AL

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG4.TXT[2/7/2012 11:32:05 AM]

 ES, DS, SS, SP preserved

The IO_POLL function interrogates the status of the device indicated by the
poll device number, and returns its current status. It is called by the
dispatcher.

A process polls a device only if the Concurrent CP/M DEV_POLL system call has
been made. The poll device number used as an argument for the DEV_POLL system
call is the same number that the IO_POLL function receives as a parameter.
Typically, only the XIOS uses DEV_POLL. The mapping of poll device numbers to
actual physical devices is maintained by the XIOS. Each polling routine must
have a unique poll device number. For instance, if the console is polled, it
must have different poll device numbers for console input and console output.

The sample XIOSes show the IO_POLL function taking the poll device number as
an index to a table of poll functions. Once the address of the poll routine is
determined, it is called and the return values are used directly for the
return of the IO_POLL function.

EOF

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

CCPMSG5.WS4 (Concurrent CP/M System Guide, Chapter 5)

(Retyped by Emmanuel ROCHE.)

Section 5: Disk devices

In Concurrent CP/M, a disk drive is any I/O device that has a directory and is
capable of reading and writing data in 128-byte logical sectors. The XIOS can,
therefore, treat a wide variety of peripherals as disk drives if desired. The
logical structure of a Concurrent CP/M disk drive is presented in detail in
Section 10, "OEM utilities". CP/M can also support PC DOS and MS-DOS disks.
The term "DOS" refers to both PC DOS and MS-DOS.

This section discusses the Concurrent CP/M XIOS disk functions, their input
and output parameters, associated data structures, and calculation of values
for the XIOS disk tables.

5.1 Disk I/O functions

Concurrent CP/M performs disk I/O with a single XIOS call to the IO_READ and
IO_WRITE functions. These functions reference disk parameters contained in an
Input/Output Parameter Block (IOPB), which is located on the stack, to
determine which disk drive to access, the number of physical sectors to
transfer, the track and sector to read and write, and the DMA offset and
segment address involved in the I/O operation. See Section 5.2, "IOPB data
structure". Prior to each IO_READ or IO_WRITE call, the BDOS initializes the
IOPB.

If a physical error occurs during an IO_READ or IO_WRITE operation, the
function routine should perform several retries (10 is recommended), to
attempt to recover from the error before returning an error condition to the
BDOS.

The Disk I/O routine interfaces in the Concurrent CP/M XIOS are quite
different from those in the CP/M-86 BIOS. The SETTRK, SETSEC, SETDMA, and
SETDMAB XIOS functions no longer exist because IO_READ or IO_WRITE have
absorbed their functions. WBOOT, HOME, SECTRAN, GETSEGB, GETIOB, and SETIOB
are not used by any routines outside the I/O system, and so have been dropped.
Also, hard loops within the disk routines must be changed to make either
DEV_POLL or DEV_WAITFLAG system calls. See Section 3.5, "Polled devices"; 4.5,
"IO_POLL function"; and 3.6, "Interrupt devices". For initial debugging,
Concurrent CP/M runs with the CP/M-86 BIOS physical sector read and write
routines, with the addition of an IOPB-referencing routine, multisector
read/write capability, and modification to handle the new DPH and DPB
structures. Once the system runs well, all hard loops should be changed to
either DEV_POLL or DEV_WAITFLAG system calls. See also the discussion in
Section 3.5, "Polled devices", and 3.6, "Interrupt devices", of this manual.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

IO_SELDSK Select disk

Select the specified disk drive.

Entry Parameters:
 Register AL: 09h
 CL: Disk drive number
 DL: (bit 0): 0 if first select

Returned Values:
 Register AX: Offset of DPH if no error (00h if invalid drive)
 BX: Same as AX
 ES, DS, SS, SP preserved

The IO_SELDSK function checks if the specified disk drive is valid, and
returns the address of the corresponding Disk Parameter Header if the drive is
valid. The specified disk drive number is 0 for drive A, 1 for drive B, up to
15 for drive P. On each disk select, IO_SELDSK must return the offset of the
selected drive's Disk Parameter Header, relative to the SYSDAT segment
address.

If there is an attempt to select a non-existent drive, IO_SELDSK returns 00h
in AL as an error indicator. Although IO_SELDSK must return the Disk Parameter
Header (DPH) address for the specified drive on each call, postpone the actual
physical disk select operation until an I/O function, IO_READ or IO_WRITE, is
performed. This is due to the fact that disk select operations can take place
without a subsequent disk operation, and thus disk access might be
substantially slower using some disk controllers.

IO_SELDSK must return a DPH containing the address of the Disk Parameter Block
(DPB). The DPB must be properly formatted to reflect the type of media
supported by the selected drive. On a first time select, this function must
determine if this disk is a CP/M disk, or a DOS disk. For CP/M media, return a
regular DPB. For a DOS disk, return an extended DPB. See Section 5.5, "Disk
Parameter Block", for more information on the two DPB formats. See Section
5.8, "Multiple media support", for more information on generating a system
that supports both types of disks.

On entry to IO_SELDSK, you can determine whether it is the first time the
specified disk has been selected. Register DL, bit 0 (least significant bit),
is a zero if the drive has not been previously selected. This information is
of interest in systems that read configuration information from the disk to
dynamically set up the associated DPH and DPB. See Section 5.8, "Multiple
media support". If register DL, bit 0, is a one, IO_SELDSK must return a
pointer to the same DPH as it returned on the initial select.

IO_READ Read sector

Read sector(s) defined by the IOPB.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

Entry Parameters: IOPB filled in (on stack)
 Register AL: 0Ah (10)

Returned Values:
 Register AL: 00h if no error
 01h if physical error
 0FFh if media density has changed
 AH: Extended error code (Table 5-1)
 BL: Same as AL
 BH: Same as AH
 ES, DS, SS, SP preserved

The IO_READ function transfers data from disk to memory , according to the
parameters specified in the IOPB. The disk Input/Output Parameter Block
(IOPB), located on the stack, contains all required parameters, including
drive, multisector count, track, sector, DMA offset, and DMA segment, for disk
I/O operations. See Section 5.2, "IOPB data structure". If the multisector
count is equal to 1, the XIOS should attempt a single physical sector read,
based upon the parameters in the IOPB. If a physical error occurs, the read
function should return a 1 in AL and BL, and the appropriate extended error
code in AH and BH. The XIOS should attempt several retries (10 is recommended)
before giving up and returning an error condition.

For disk drivers with auto density select, IO_READ should immediately return
0FFh if the hardware detects a change in media density. The BDOS then performs
an IO_SELDSK system call for that drive, re-initializing the drive's parameter
tables, in order to avoid writing erroneous data to disk.

If the multisector count is greater than 1, the IO_READ routine is required to
read the specified number of physical sectors before returning to the BDOS.
The IO_READ routine should attempt to read as many physical sectors as the
specified drive's disk controller can handle in one operation. Additional
calls to the disk controller are required when the disk controller cannot
transfer the requested number of sectors in a single operation. If a physical
error occurs during a multisector read, the read function should return a 1 in
AL and BL, and the appropriate extended error code in AH and BH.

If the disk controller hardware can only read one physical sector at a time,
the XIOS disk driver must make the number of single physical-sector reads
defined by the multisector count. In any case, when more than one call to the
controller is made, the XIOS must increment the sector number and add the
number of bytes in each physical sector to the DMA address for each successive
read. If, during a multisector read, the sector number exceeds the number of
the last physical sector of the current track, the XIOS has to increment the
track number and reset the sector number to 0. This concept is illustrated in
Listing 5-1, part of a hard disk driver routine.

In this example, if the multisector count is zero, the routine returns with an
error. Otherwise, it immediately calls the read/write routine for the present
sector and puts the return code passed from it in AL. If there is no error,
the multisector count is decremented. If the multisector count now equals
zero, the read or write is finished and the routine returns. If not, the
sector to read or write is incremented. If, however, the sector number now
exceeds the number of sectors on a track (MAXSEC), the track number is

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

incremented and the sector number set to zero. The routine then performs the
number of reads or writes remaining to equal the multisector count, each time
adding the size of a physical sector to the DMA offset passed to the disk
controller hardware.

Table 5-1. Extended error codes

Code Meaning
---- -------
80h Attachment failed to respond
40h Seek operation failed
20h Controller has failed
10h Bad CRC
 8h DMA overrun
 4h Sector not found
 3h Write protect disk error
 2h Address mark not found
 1h Bad command

Listing 5-1 illustrates multisector operations:

;**
;*
;* Common code for hard disk read and write
;*
;**

hd_io:
 push es ; Save UDA
 cmp mcnt,0 ; If multisector count = 0
 je hd_err ; Return error
hdiol:
 call iohost ; Read/write physical sector
 mov al,retcode ; Get return code
 or al,al ; If not 0
 jnz hd_err ; Return error
 dec mcnt ; Decrement multisector count
 jz return_rw ; If mcnt = 0 return
 mov ax,sector ;
 inc ax ; Next sector
 cmp ax,maxsec ;
 jb same_trak ; Is sector < max sector
 inc track ; No: next track
 xor ax,ax ; Initialize sector to 0
same_trak:
 mov sector,ax ; Save sector number
 add dmaoff,secsiz ; Increment DMA offset by sector size
 jmps hdiol ; Read/write next sector
hd_err:
 mov al,1 ; Return with error indicator
return_rw:
 pop es ; Restore UDA
 ret ; Return with error code in AL

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

;**
;*
;* IOHOST performs the physical reads and write to
;* the physical disk.
;*
;**

iohost:
 ...
 ...
 ret

 Listing 5-1. Multisector operations

IO_INT13_READ Read DOS sector

Read DOS sector(s) defined by the IOPB.

Entry Parameters: DOS IOPB filled in (on stack)
 Register AL: 23h (35)

Returned Values:
 Register AL: 00h if no error
 01h if physical error
 0FFh if media density has changed
 AH: Extended error code (Table 5-1)
 BL: Same as AL
 BH: Same as AH
 ES, DS, SS, SP preserved

IO_INT13_READ emulates DOS' interrupt 13 read disk operation. It reads a DOS
disk as specified by the DOS format IOPB. It is used on DOS media only. It
operates like IO_READ, except for the different IOPB. The DOS IOPB is defined
in Section 5.2, "IOPB data structure".

IO_WRITE Write sector

Write sector(s) defined by the IOPB.

Entry Parameters: IOPB filled in (on stack)
 Register AL: 0Bh (11)

Returned Values:
 Register AL: 00h if no error
 01h if physical error
 02h if Read/Only disk
 0FFh if media density has changed
 AH: Extended error code (Table 5-1)
 BL: Same as AL

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

 BH: Same as AH
 ES, DS, SS, SP preserved

The IO_WRITE function transfers data from memory to disk, according to the
parameters specified in the IOPB.This function works in much the same way as
the read function, with the addition of a Read/Only disk return code. IO_WRITE
should return this code when the specified disk controller detects a write-
protected disk.

IO_INT13_WRITE Write DOS sector

Write DOS sector(s) defined by the IOPB.

Entry Parameters: DOS IOPB filled in (on stack)
 Register Al: 24h (36)

Returned Values:
 Register AL: 00h if no error
 01h if physical error
 02h if Read/Only disk
 0FFh if media density has changed
 AH: Extended error code (Table 5-1)
 BL: Same as AL
 BH: Same as AH
 ES, DS, SS, SP preserved

IO_INT13_WRITE is similar to IO_WRITE. It uses a DOS IOPB, and writes to a DOS
disk. It emulates DOS' interrupt 13 write dunction. The DOS IOPB is defined in
Section 5.2, "IOPB data structure".

IO_FLUSH Flush buffers

Write pending I/O system buffers to disk.

Entry Parameters:
 Register AL: 0Ch (12)

Returned Values:
 Register AL: 00h if no error
 01h if physical error
 02h if Read/Only disk
 AH: Extended error mode (Table 5-1)
 BL: Same as AL
 BH: Same as AH
 ES, DS, SS, SP preserved

The IO_FLUSH function indicates that all blocking/deblocking buffers or disk-
caching buffers used by the I/O system should be flushed, written to the disk.
This does not include the LRU buffers that are managed by the BDOS. This
function is called whenever a process terminates, a file is closed, or a disk

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

drive is reset. The XIOS must return the error codes for the IO_FLUSH function
in register AX after 10 recovery attempts, as described in the IO_READ
function.

5.2 IOPB data structure

The purpose of this and the following sections is to present the organization
and construction of tables and data structures within the XIOS that define the
characteristics of the Concurrent CP/M disk system. Since there is no
Concurrent CP/M GENDEF utility, you must code the XIOS DPHs and DPBs by hand,
using values calculated from the information presented below.

The disk Input/Output Parameter Block (IOPB) contains the necessary data
required for the IO_READ and IO_WRITE functions. IO_INT13_READ and
IO_INT13_WRITE use a variation of the IOPB, called the DOS IOPB. It is
described at the end of this section. These parameters are located on the
stack, and appear at the example XIOS IO_READ and IO_WRITE function entry
points, as described below. The IOPB example in this section assumes that the
ENTRY routine calls the read or write routines through only one level of
indirection; therefore, the XIOS has placed only one word on the stack. RETADR
is reserved for this local return address to the ENTRY routine. The XIOS disk
drivers may index or modify IOPB parameters directly on the stack, since they
are removed by the BDOS when the function call returns. Typically, the IOPB
fields are defined relative to the BP and SS registers. The first instruction
of the IO_READ and IO_WRITE routines sets the BP register equal to the SP
register for indexing into the IOPB. Listing 5-2 illustrates this.

 +-------+-------+
 +14 | DRV | MCNT |
 +-------+-------+
 +12 | TRACK |
 +-------+-------+
 +10 | SECTOR |
 +-------+-------+
 +8 | DMASEG |
 +-------+-------+
 +6 | DMAOFF |
 +-------+-------+
 +4 | RETSEG |
 +-------+-------+
 +2 | RETOFF | <== SP value at XIOS ENTRY
 +-------+-------+
 SP+0 | RETADR | <== SP value at disk routines
 +-------+-------+

 Figure 5-1. Input/Output Parameter Block (IOPB)

Table 5-2. IOPB data fields

Format: Data field

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

 Explanation

DRV
Logical Drive Number. The Logical Drive Number specifies the logical disk
drive on which to perform the IO_READ or IO_WRITE function. The drive number
may range from 0 to 15, corresponding to drives A through P, respectively.

MCNT
Multisector Count. To transfer logically consecutive disk sectors to or from
contiguous memory locations, the BDOS issues an IO_READ or IO_WRITE function
call with the multisector count greater than 1. This allows the XIOS to
transfer multiple sectors in a single disk operation. The maximum value of the
multisector count depends on the physical sector size, ranging from 128 with
128-byte sectors to 4 with 4096-byte sectors. Thus, the XIOS can transfer up
to 16 KB directly to or from the DMA address in a single operation. For a more
complete explanation of multisector operations, along with example code and
suggestions for implementation within the XIOS, see Section 5.3, "Multisector
operations on skewed disks".

TRACK
Logical Track Number. The Track Number defines the logical track for the
specified drive to seek. The BDOS defines the Track Number relative to 0, so
for disk hardware which defines track numbers beginning with a physical track
of 1, the XIOS needs to increment the track number before passing it to the
disk controller.

SECTOR
Sector Number. The Sector Number defines the logical sector for a read or
write operation on the specified drive. The sector size is determined by the
parameters PSH and PHM defined in the Disk Parameter Block. See Section 5.5,
"Disk Parameter Block". The BDOS defines the Sector Number relative to 0. For
disk hardware that defines sector numbers beginning with a physical sector of
1, the XIOS will need to increment the sector number before passing it to the
disk controller. If the specified drive uses a skewed-sector format, the XIOS
must translate the sector number according to the translation table specified
in the Disk Parameter Header.

DMASEG, DMAOFF
DMA Segment and DMA Offset. The DMA Offset and Segment define the address of
the data to transfer for the read or write operation. This DMA address may
reside anywhere in the 1-Megabyte address space of the 8086/8088
microprocessor. If the disk controller for the specified drive can only
transfer data to and from a restricted address area, the IO_READ and IO_WRITE
functions must block move the data between the DMA address and this restricted
area before a write or following a read operation.

RETSEG, RETOFF
BDOS Return Segment and Offset. The BDOS Return Segment and Offset are the Far
Return address from the XIOS to the BDOS.

RETADR
Local Return Address. The local return address returns to the ENTRY routine in
the example XIOS.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

Listing 5-2 illustrates the IOPB definition, and how the IOPB is used in the
IO_READ and IO_WRITE routines.

;**
;*
;* IOPB Definition
;*
;**
;
; Read and Write disk parameter equates
;
; At the disk read and write function entries,
; all disk I/O parameters are on the stack,
; and the stack at these entries appears as
; follows:
;
; +-------+-------+
; +14 | DRV | MCNT | Drive and Multisector count
; +-------+-------+
; +12 | TRACK | Track number
; +-------+-------+
; +10 | SECTOR | Physical sector number
; +-------+-------+
; +8 | DMA_SEG | DMA segment
; +-------+-------+
; +6 | DMA_OFF | DMA offset
; +-------+-------+
; +4 | RET_SEG | BDOS return segment
; +-------+-------+
; +2 | RET_OFF | BDOS return offset
; +-------+-------+
; SP+0 | RET_ADR | Local ENTRY return address
; +-------+-------+ (Assumes one level of call
; from ENTRY routine.)
;
; These parameters can be indexed and modifided
; directly on the stack, and will be removed
; by the BDOS after the function is complete.

drive equ byte ptr 14[bp]
mcnt equ byte ptr 15[bp]
track equ word ptr 12[bp]
sector equ word ptr 10[bp]
dma_seg equ word ptr 8[bp]
dma_off equ word ptr 6[bp]

;**

;=======
io_read: ; Function 11: Read sector
;=======
; Reads the sector on the current disk, track and
; sector into the current DMA buffer.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

; entry: parameters on stack
; exit: AL = 00h if no error occured
; AL = 01h if an error occured
; AL = 0ffh if density change detected
; ALL SEGMENT REGISTERS PRESERVED:
; CS,DS,ES,SS must be preserved though call

 mov bp,sp ; Set BP for indexing into IOPB
 ...
 ...
 ret

;========
io_write: ; Function 12: Write disk
;========
; Write the sector in the current DMA buffer
; to the current disk on the current
; track in the current sector.

; entry: CL = 0 - Defered Writes
; CL = 1 - non-defered writes
; CL = 2 - def-wrt 1st sect unalloc blk
; exit: AL = 00h if no error occured
; AL = 01h if error occured
; AL = 02h if read only disk
; AL = 0ffh if density change detected
; ALL SEGMENT REGISTERS PRESERVED:
; CS,DS,ES,SS must be preserved though call

 mov bp,sp ; Set BP for indexing into IOPB
 ...
 ...
 ret

Figure 5-2 shows the DOS IOPB used by IO_INT13_READ and IO_INT13_WRITE. It is
similar to the regular IOPB. The DOS IOPB fields are defined in Table 5-3.

 +-------+-------+
 +14 | DRV | MCNT |
 +-------+-------+
 +12 | TRACK | HEAD |
 +-------+-------+
 +10 | SECTOR| 00 |
 +-------+-------+
 +8 | DMASEG |
 +-------+-------+
 +6 | DMAOFF |
 +-------+-------+
 +4 | RETSEG |
 +-------+-------+
 +2 | RETOFF | <== SP value at XIOS ENTRY
 +-------+-------+
 SP+0 | RETADR | <== SP value at disk routines

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

 +-------+-------+

 Figure 5-2. DOS Input/Output Parameter Block (IOPB)

Table 5-3. DOS IOPB data fields

Format: Data field
 Explanation

TRACK
Track or cylinder number. This number must be in the range 0 - 39.

HEAD
Head number. This number must be 0 or 1.

SECTOR
Sector number. This number must be in the range 1 - 8.

All other DOS IOPB data fields are the same as the regular IOPB defined in
Table 5-2.

5.3 Multisector operations on skewed disks
--

On many implementations of older Digital Research operating systems, disk
performance is improved through sector skewing. This technique logically
numbers the sectors on a track such that they are not sequential. An example
of this is the standard Digital Research 8-inch disk format, where the sectors
are skewed by a factor of 6. The following discussion illustrates how to
optimize disk performance on skewed disks with multisector I/O requests.

Concurrent CP/M supports multiple-sector read and write operations at the XIOS
level, to minimize rotational latency on block disk transfers. You must
implement the multiple-sector I/O facility in the XIOS by using the
multisector count passed in the IOPB.

When the disk format uses a skew table to minimize rotational latency for
single-record transfers, it is more difficult to optimize transfer time for
multisector operations. One method of doing this is to have the XIOS
read/write function routine translate each logical sector number into a
physical sector number. Then, it creates a table of DMA addresses with each
sector's DMA address indexed into the table by the physical sector number.

As a result, the requested sectors are sorted into the order in which they
physically appear on the track. This allows all of the required sectors on the
track to be transferred in as few disk rotations as possible. The data from
each sector must be separately transferred to or from its proper DMA address.
If, during a multisector data transfer, the sector number exceeds the number
of the last physical sector of the current track, the XIOS will have to
increment the track number and reset the sector number to 0. It can then
complete the operation for the balance of sectors specified in the IO_READ or
IO_WRITE function call. See the example accompanying the IO_READ function.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

 SECTOR PHYSICAL ASSOCIATED
 INDEXES DMA ADDRESS

 00 DMA_ADDR_0
 01 DMA_ADDR_1

 N DMA_ADDR_N

 Figure 5-3. DMA address table for multisector operations

If an error occurs during a multisector transfer, the XIOS should return the
error immediately to terminate the read or write BDOS function call.

In Listing 5-3, common read/write code for an XIOS disk driver, the routine
gets the DPH address by calling the IO_SELDSK function. It checks to verify a
non-zero DPH address, and returns if the address is invalid (zero). Then, the
disk parameters are taken from the DPH and DPB, and stored in local variables.
Once the physical record size is computed from DPB values, the DMA address
table can be initialized. The INITDMATBL routine fills the DMA address table
with 0FFFFh word values. The size of the DMA table equals one word greater
than the number of sectors per track, in case the sectors index relative to 1
for that particular drive. If the multisector count is zero, the routine
returns an error. Otherwise, the sector number is compared to the number of
sectors per track, to determine if the track number should be incremented ,
and the sector number set to zero. If this is the case, the sectors for the
current track are transferred, and the DMA address table is re-initialized
before the next tracks are read or written.

The current sector number is moved into AX, and a check is made on the
translation table offset address. If this value is zero, no translation table
exists and translation is not performed; the sector number is translated and
used to index into the DMA address table. The current DMA address, incremented
by the physical sector size if a multisector operation, is stored in the table
for use by the RW_SECTS routine. Local values, beginning with i, are
initialized for the various parameters needed by the disk hardware, and the
disk driver routine is called.

Listing 5-3 illustrates multisector unskewing:

;**
;*
;* Disk I/O Equates
;*
;**

xlt equ 0 ; Translation table offset in DPH
dpb equ 8 ; Disk parameter block offset in DPH
spt equ 0 ; Sectors per track offset in DPB
psh equ 15 ; Physical shift factor offset in DPB

;**

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

;*
;* Disk I/O Code Area
;*
;**

read_write: ; Unskews and reads or writes multisectors
;==========
; input: SI = read or write routine address
; output: AX = return code

 mov cl,drive ;
 mov dl,1 ;
 call seldsk ; Get DPH address
 or bx,bx ;
 jnz dsk_ok ; Check if valid
ret_error:
 mov al,1 ; Return error if not
 ret ;
dsk_ok:
 mov ax,xlt[bx] ;
 mov xltbl,ax ; Save translation table address
 mov bx,dpb[bx] ;
 mov ax,spt[bx] ;
 mov maxsec,ax ; Save maximum sector per track
 mov cl,psh[bx] ;
 mov ax,128 ;
 shl ax,cl ; Compute physical record size
 mov secsiz,ax ; and save it.
 call initdmatbl ; Initialize DMA offset table
 cmp mcnt,0 ;
 je ret_error ;
rw_1:
 mov ax,sector ; Is sector < max sector/track ?
 cmp ax, maxsec ;
 jb same_trk ;
 call rw_sects ; No: read/write sectors on track
 call initdmatbl ; Re-initialize DMA offset table
 inc track ; Next track
 xor ax,ax ;
 mov sector,ax ; Initialize sector to 0
same_trk:
 mov bx,xltbl ; Get translation table address
 or bx,bx ;
 jz no_trans ; If xlt <> 0
 xlat al ; translate sector number.
no_trans:
 xor bh,bh ;
 mov bl,al ; Sector # is used as the index
 shl bx,1 ; into the DMA offset table.
 mov ax,dmaoff ;
 mov dmatbl[bx],ax ; Save DMA offset in table
 add ax,secsiz ; Increment DMA offset by the
 mov dmaoff,ax ; physical sector size.
 inc sector ; Next sector

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

 dec mcnt ; Decrement multisector count
 jnz rw_1 ; If mcnt <> 0, store next sector DMA

rw_sects: ; Read/write sectors in DMA table
;--------
 mov al,1 ; Preset error code
 xor bx,bx ; Initialize sector index
rw_s1:
 mov di,bx ;
 shl di,1 ; Compute index into DMA table
 cmp word ptr dmatbl[di],0FFFFh
 je no_rw ; No if invalid entry
 push bx! push si ; Save index and routine address
 mov ax,track ; Get track # from IOPB
 mov itrack,ax ;
 mov isector,bl ; Sector # is index value
 mov ax,dmatbl[di] ; Get DMA offset from table
 mov idmaoff,ax ;
 mov ax,dmaseg ; Get DMA segment from IOPB
 mov idmaseg,ax ;
 call si ; Call read/write routine
 pop si! pop bx ; Restore routine address and index
 or al,al ;
 jnz err_ret ; If error occurred, return
no_rw:
 inc bx ; Next sector index
 cmp bx,maxsec ; If not end of table
 jbe rw_s1 ; Go read/write next sector
err_ret:
 ret ; Return with error code in AL

initdmatbl: ; Initialize DMA offset table
;----------
 mov di,offset dmatbl ;
 mov cx,maxsec ; Length = maxsec + 1 Sectors may
 inc cx ; be index relative to 0 or 1.
 mov ax,0FFFFh ;
 push es ; Save UDA
 push ds ;
 pop es ;
 rep stosw ; Initialize table to 0FFFFh
 pop es ; Restore UDA
 ret

;**
;*
;* Disk I/O Data Area
;*
;**

xltbl dw 0 ; Translation table address
maxsec dw 0 ; Max sectors per track
secsiz dw 0 ; Sector size
dmatbl rw 50 ; DMA address table

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

 Listing 5-3. Multisector unskewing

5.4 Disk Parameter Header

Each disk drive has an associated Disk Parameter Header (DPH) that contains
information about the dive and provides a scratchpad area for certain Basic
Disk Operating System (BDOS) operations.

 +---+---+---+---+---+---+---+---+
 00h | XLT | 00_00 | 00| MF| 00_00 |
 +---+---+---+---+---+---+---+---+
 08h | DPB | CSV | ALV | DIRBCB|
 +---+---+---+---+---+---+---+---+
 10h | DATBCB| TBLSEG|
 +---+---+---+---+

 Figure 5-4. Disk Parameter Header (DPH)

Table 5-4. Disk Parameter Header data fields

Format: Field
 Explanation

XLT
Translation Table Address. The translation Table Address defines a vector for
logical-to-physical sector translation. If there is no sector translation (the
physical and logical sector numbers are the same), set XLT to 0000h. Disk
drives with identical sector skew factors can share the same translation
tables. This address is not referenced by the BDOS, and is only intended for
use by the disk driver routines. Usually, the translation table contains one
byte per physical sector. If the disk has more than 256 sectors per track, the
sector translation must consist of two bytes per physical sector. It is
advisable, therefore, to keep the number of physical sectors per logical track
to a reasonably small value, to keep the translation table from becoming too
large. In the case of disks with multiple heads, compute the head number from
the track address, rather than the sector address.

00-00
Scratch Area. The 5 bytes of zeros (00) are a scratch area which the BDOS uses
to maintain various parameters associated with the drive. They must be
initialized to zero by the INIT routine or the load image.

MF
Media Flag. The BDOS resets MF to zero when the drive is logged in. The XIOS
must set this flag to 0FFh if it detects that the operator has opened the
drive door. It must also set the global door open flag in the XIOS Header at
the same time. If the flag is set to 0FFh, the BDOS checks for a media change
before performing the next BDOS file operation on that drive. Note that the

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

BDOS only checks this flag when first making a system call, and not during an
operation. Normally, this flag is onlu useful in systems that support door
open interrupts. If the BDOS determines that the drive contains a new disk,
the BDOS logs out this drive, and resets the MF field to 00h.

Note: If this flag is used, removable disk performance can be optimized as if
it were a permanent drive. See the description of the CKS field in the Section
5.5, "Disk Parameter Block".

DPB
Disk Parameter Block Address. The DPB field contains the address of a Disk
Parameter Block that describes the characteristics of the disk drive. The Disk
Parameter Block itself is described in Section 5.5, "Disk Parameter Block".
The DPB must describe the type of disk (CP/M or DOS). See IO_SELDSK in Section
5.1, "Disk I/O functions", and Section 5.8, "Multiple media support" for more
information.

CSV
Checksum Vector Address. The Checksum Vector Address defines a scratchpad area
that the system uses for checksumming the directory to detect a media change.
This address must be different for each Disk Parameter Header. There must be
one byte for every 4 directory entries (or 128 bytes of directory). In other
words, Length(CSV) = (DRM/4)+1. (DRM is a field in the Disk Parameter Block
defined in Section 5.5, "Disk Parameter Block".) If CKS in the DPB is 0000h or
8000h, no storage is reserved, and CSV may be zero. Values for DRM and CKS are
calculated as part of the DPB Worksheet. If this field is initialized to
0FFFFh, GENCCPM will automatically create the checksum vector and initialize
the CSV field in the DPH.

ALV
Allocation Vector Address. The Allocation Vector Address defines a scrachpad
area which the BDOS uses to keep disk storage allocation information. This
address must be different for each DPH. The Allocation Vector must contain two
bits for every allocation block (one byte per 4 allocation blocks) on the
disk. Or, Length(ALV) = ((DSM/8)+1)*2. The value of DSM is calculated as part
of the DPB worksheet. If the CSV field is initialized to 0FFFFh, GENCCPM
automatically creates the Allocation Vector in the SYSDAT Table Area, and sets
the ALV field in the DPH.

DIRBCB
Directory Buffer Control Block Header Address. This field contains the offset
address of the DIRBCB Header. The Directory Buffer Control BlockHeader
contains the directory buffer link list root for this drive. See Section 5.6,
"Buffer Control Block Data Area". The BDOS uses directory buffers for all
accesses of the disk directory. Several DPHs can refer to the same DIRBCB, or
each DPH can reference an independent DIRBCB. If this field is 0FFFFh, GENCCPM
automatically creates the DIRBCB Header, DIRBCBs, and the Directory Buffer for
the drive, in the SYSDAT Table Area. GENCCPM then sets the DIRBCB field to
point to the DIRBCB Header.

DATBCB
Data Buffer Control Block Header Address. This field contains the offset
address of the DATBCB Header. The Data Buffer Control Block Header contains
the data buffer link list root for this drive (see Section 5.6, "Buffer

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

Control Block Data Area"). The BDOS uses data buffers to hold physical
sectors, so that it can block and deblock logical 128-byte records. If the
physical record size of the media associated with a DPH is 128 bytes, the
DATBCB field of the DPH can be set to 0000h and no data buffers are allocated.
If this field is 0FFFFh, GENCCPM automatically creates the DATBCB Header and
DATBCBs, and allocates space for the Data Buffers in the area following the
RSPs.

TBLSEG
Table Segment. The Table Segment contains the segment address of a table used
for directory hashing with CP/M disks, and as a File Allocation Table (FAT)
for DOS disks. For drives that support both media, it must be large enough to
hold either one. If this field is set to 0FFFFh, GENCCPM will automatically
create the appropriate data structures following the RSP area. The size of the
table is based on the DRM (Directory Maximum) field in the DPB. For support of
both media, the DRM field must be set to a dummy value when GENCCPM is run to
create the correct size table. See Section 5.5.1, "Disk Parameter Block
Worksheet", for information on setting the DRM value. The BDOS assumes the
table offset to be zero.

Hashing is optional for CP/M disks, but the table segment must be allocated
for DOS media. Thus, for any drive that supports DOS disks, hashing must be
specified in GENCCPM. If directory hashing is not used (CP/M media only used
in this drive!), set HSTBL to zero. Including a hash table dramatically
improves disk performance. Each DPH using hashing must reference a unique hash
table. If a hash table is desired, Length(hash_table) = 4*(DRM+1) bytes. DRM
is computed as part of the DPB Worksheet. In other words, each entry in the
hash table must hold four bytes for each directory entry of the disk. If this
field is 0FFFFh, GENCCPM will automatically create the appropriate data
structures following the RSP area.

Note: The data areas for the Data Buffers and Hash Tables are not part of the
CCPM.SYS file made by GENCCPM.

Listing 5-4 illustrates the DPH definition:

;**
;*
;* DPH Definition
;*
;**

xlt equ word ptr 0
mf equ byte ptr 5
dpb equ word ptr 8
csv equ word ptr 10
alv equ word ptr 12
dirbcb equ word ptr 14
datbcb equ word ptr 16
tblseg equ word ptr 18

dpbase equ offset $; Base of Disk Parameter Headers

dpe0 dw xlt0 ; Translate table

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

 db 0,0,0 ; Scratch area
 db 0 ; Media flag
 db 0,0 ; Scratch area
 dw dpb0 ; Dsk parm block
 dw 0FFFFh ; Check
 dw 0FFFFh ; Alloc vectors
 dw 0FFFFh ; Dir buff cntrl blk
 dw 0FFFFh ; Data buff cntrl blk
 dw 0FFFFh ; Hash table segment

 Listing 5-4. DPH definition

Given n disk drives, the DPHs can be arranged in a table whose first row of 20
bytes corresponds to drive 0, with the last row corresponding to drive n-1.
The DPH Table has the following format:

 For automatic table generation by GENCCPM,
 set these fields to 0FFFFh:
 | | | | |
 DPH_TBL: V V V V V
 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 00h |XLT00|0000h|0000h|0000h|DPB00|CSV00|ALV00|DIR00|DAT00|HST00|
 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 01h |XLT01|0000h|0000h|0000h|DPB01|CSV01|ALV01|DIR00|DAT00|HST01|
 +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 (and so forth)

 Figure 5-5. DPH Table

where the label DPH_TBL defines the offset of the DPH Table in the XIOS.

The IO_SELDSK function, defined in Section 5.1, "Disk I/O functions", returns
the offset of the DPH from the beginning of the SYSDAT segment for the
selected drive. The sequence of operations in Listing 5-5 returns the table
offset, with a 0000h returned if the selected drive does not exist.

;**
;*
;* Disk I/O Code Area
;*
;**

;=========
io_seldsk: ; Function 7: Select Disk
;=========
; entry: CL = disk to be selected
; DL = 00h if disk has not been previously selected
; = 01h if disk has been previously selected
; exit: AX = 00h if illegal disk
; = offset of DPH relative from
; XIOS Data Segment
; ALL SEGMENT REGISTERS PRESERVED:

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

; CS,DS,ES,SS must be preserved though call

 xor bx,bx ; Get ready for error
 cmp cl,15 ; Is it a valid drive ?
 ja sel_ret ; If not, just exit
 mov bl,cl ;
 shl bx,1 ; Index into the DPH's
 mov bx,dph_tbl[bx] ; Get DPH address from table
 ; in XIOS Header.
 or dl,dl ; First time select?
 jnz sel_ret ; No: exit
 mov ch,0 ; Yes: set up DPH
 mov si,cx ;
 shl si,1 ;
 call word ptr sel_tbl[si]
sel_ret:
 mov ax,ax ;
 ret ;

 Listing 5-5. SELDSK XIOS function

The Translation Vectors, XLT00 through XLTn-1, whose offsets are contained in
the DPH Table, as shown in Figure 5-5, "DPH Table", are located elsewhere in
the XIOS, and correspond one-for-one with the logical sector numbers zero
through the sector count-1.

5.5 Disk Parameter Block

The Disk Parameter Block (DPB) contains parameters that define the
characteristics of each disk drive. The Disk Parameter Header (DPH) points to
a DPB, thereby giving the BDOS necessary information on how to access a disk.
Several DPHs can address the same DPB if their drive characteristics are
identical.

When a drive supports both CP/M and DOS media, the IO_SELDSK routine must
determine the type of media currently in the drive, and return a DPH with a
pointer to a DPB with the correct values. The standard CP/M DPB is shown in
Figure 5-6, "Disk Parameter Block format". For DOS media, the standard DPB is
extended, as shown in Figure 5-7, "Extended Disk Parameter Block format". Each
field of the standard DPB is described in Table 5-5, "Disk Parameter Block
data fields". The extended DPB is described in Table 5-6, "Extended Disk
Parameter Block data fields". A worksheet is included, to help you calculate
the value for each field.

 +-----+-----+-----+-----+-----+-----+-----+-----+
 00h | SPT | BSH | BLM | EXM | DSM | DRM..
 +-----+-----+-----+-----+-----+-----+-----+-----+
 08h ..DRM | AL0 | AL1 | CKS | OFF | PSH |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 10h | PRM |
 +-----+

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

 Figure 5-6. Disk Parameter Block format

Table 5-5. Disk Parameter Block data fields

Format: Field
 Explanation

SPT
Sectors Per Track. The number of Sectors Per Track equals the total number of
physical sectors per track. Physical sector size is defined by PSH and PHM.

BSH
Allocation Block Shift. This value is used by the BDOS to easily calculate a
block number, given a logical record number, by shifting the record number BSH
bits to the right. BSH is determined by the allocation bloxk size chosen for
the disk drive.

BLM
Allocation Block Mask. This value is used by the BDOS to easily calculate a
logical record offset within a given block though masking a logical record
number with BLM. The BLM is determined by the allocation block size.

EXM
Extent Mask. The Extent Mask determines the maximum number of 16 KB logical
extents contained in a single directory entry. It is determined by the
allocation block size and the number of blocks.

DSM
Disk Storage Maximum. The Disk Storage Maximum defines the total storage
capacity of the disk drive. This equals the total number of allocation blocks
for the drive, minus 1. DSM must be less than or equal to 7FFFh. If the disk
uses 1024-byte blocks (BSH=3, BLM=7), DSM must be less than or equal to 255.

DRM
Directory Maximum. The Directory Maximum defines the total number of directory
entries on this disk drive. This equals the total number of directory entries
that can be kept in the allocation blocks reserved for the directory, minus 1.
Each directory entry is 32 bytes long. The maximum number of blocks that can
be allocated to the directory is 16, which determines the maximum number of
directory entries allowed on the disk drive. At system generation time, DRM
must be set to allow enough space in TBLSEG for both the hash table and the
FAT, if both CP/M and DOS media can be used in the drive. See Section 5.5.1,
"Disk Parameter Block Worksheet", for information on how to calculate the
value for system generation.

AL0, AL1
Directory Allocation Vector. The Directory Allocation Vector is a bit map that
is used to quickly initialize the first 16 bits of the Allocation Vector that
is built when a disk drive is logged in. Each bit, starting with the high-
order bit of AL0, represents an allocation block being used for the directory.
AL0 and AL1 determine the amount of disk space allocated for the directory.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

CKS
Checksum Vector Size. The Checksum Vector Size determines the required length,
in bytes, of the directory checksum vector addressed in the Disk Parameter
Header. Each byte of the checksum vector is the checksum of 4 directory
entries or 128 bytes. A checksum vector is required for removable media, in
order to insure the integrity of the drive. The high-order bit in the CKS
field indicates a permanent drive, and allows far better performance by
delaying writes.Typically, hard disk systems have the value 8000h, indicating
no checksumming and permanent media. On machines that can detect the door open
for removable media, a special case occurs where checksumming is only done
when the Media Flag (MF) byte in the DPH is set to 0FFh. Normally, the disk is
treated like a permanent drive, allowing more optimal use. In this case,
adding 8000h to the CKS value indicates a permanent drive with checksumming.

OFF
Track Offset. The Track Offset is the number of reserved tracks at the
beginning of the disk. OFF is equal to the zero-relative track number on which
the directory starts. It is through this field that more than one logical disk
drive can be mapped onto a single physical drive. Each logical drive has a
different Track Offset, and all drives can use the same physical disk drivers.

PSH
Physical Record Shift Factor. The Physical Record Shift Factor is used by the
BDOS to quickly calculate the physical record number from the logical record
number. The logical record number is shifted PSH bits to the right to
calculate the physical record.

Note: In this context, physical record and physical sector are equivalent
terms.

PRM
Physical Record Mask. The Physical Record Mask is used by the BDOS to quickly
calculate the logical record offset within a physical record, by masking the
logical record number with the PRM value.

;**
;*
;* DPB Definition
;*
;**

spt equ word ptr 0
bsh equ word ptr 2
blm equ byte ptr 3
exm equ byte ptr 4
dsm equ word ptr 5
drm equ word ptr 7
al0 equ byte ptr 9
al1 equ byte ptr 10
cks equ word ptr 11
off equ word ptr 13
psh equ word ptr 15
prm equ byte ptr 16

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

dpb0 equ offset $; Disk Parameter Block
 dw 26 ; Sectors per track
 db 3 ; Block shift
 db 7 ; Block mask
 db 0 ; Extnt mask
 dw 242 ; Disk size - 1
 dw 63 ; Directory max
 db 192 ; Alloc0
 db 0 ; Alloc1
 dw 16 ; Check size
 dw 2 ; Offset
 db 0 ; Phys sec shift
 db 0 ; Phys sec mask

 Listing 5-6. DPB definition

Figure 5-7 shows the extended DPB; Table 5-6 describes its fields.

 +-----+-----+-----+-----+-----+-----+-----+-----+
 00h | EXTFLAG | NFATS | NFATRECS | NCLSTRS |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 08h | CLSIZE | FATADD | SPT | BSH | BLM |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 10h | EXM | DSM | DRM | AL0 | AL1 | CKS..
 +-----+-----+-----+-----+-----+-----+-----+-----+
 18h ..CKS | OFF | PSH | PHM |
 +-----+-----+-----+-----+-----+

 Figure 5-7. Extended Disk Parameter Block format

Table 5-6. Extended Disk Parameter Block data fields

Format: Field
 Explanation

EXTFLAG
Extended DPB Flag. The Extended DPB Flag is used to determine the media format
currently in the drive. If EXTFLAG is set to 0FFFFh, the drive contains DOS
media. For CP/M media, the first field in the DPB is SPT (Sectors Per Track),
and the DPB is not extended.

NFATS
Number of File Allocation Tables. This is the number of file allocation tables
contained on the DOS disk. Multiple copies of the FAT can be kept on the disk
as a backup if a read or write error occurs.

NFATRECS
Number of File Allocation Table Records. The number of physical sectors in the
file allocation table.

NCLSTRS

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

Number of Clusters. The number of clusters on the DOS disk. Cluster 2 is the
first data cluster to be allocated following the directory, and cluster
NCLSTRS-1 is the last available cluster on the disk.

CLSIZE
Cluster Size. The number of bytes per data cluster. This must be a multiple of
the physical sector size.

FATADD
File Allocation Table Address. The physical record number of the first file
allocation table on the DOS disk.

SPT
Sectors Per Track. Same as CP/M (See Table 5-5, "Disk Parameter Block data
fields").

BSH
Allocation Block Shift Factor. Same as CP/M. Used with BLM and DSM to define
media capacity to CP/M. See Table 5-5, "Disk Parameter Block data fields".

BLM
Allocation Block Mask. See BSH.

EXM
Extent Mask. Must be zero (00h) for DOS media.

DSM
Disk Storage Maximum. See BSH.

DRM
Directory Maximum. The number of entries-1 in the root directory. At system
generation time, DRM must be set to allow enough space in TBLSEG for both the
hash table and the FAT if both CP/M and DOS media can be used in the drive.
See Section 5.5.1, "Disk Parameter Block Worksheet", for information on how to
calculate the value for system generation.

AL0, AL1
Not used for DOS media.

CKS
Checksum Vector Size. Same as CP/M (See Table 5-5, "Disk Parameter Block data
fields").

OFF
Track Offset. Same as CP/M (See Table 5-5).

PSH
Physical Record Shift Factor. Same as CP/M (See Table 5-5).

PRM
Physical Record Mask. Same as CP/M (See Table 5-5).

;**

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

;*
;* Extended DPB Definition
;*
;**

extflag equ word ptr 0
nfats equ word ptr 2
nfatrecs equ word ptr 4
nclstrs equ word ptr 6
clsize equ word ptr 8
fatadd equ word ptr 10
spt equ word ptr 12
bsh equ word ptr 14
blm equ byte ptr 15
exm equ byte ptr 16
dsm equ word ptr 17
drm equ word ptr 19
al0 equ byte ptr 21
al1 equ byte ptr 22
cks equ word ptr 23
off equ word ptr 25
psh equ word ptr 27
prm equ byte ptr 28

dpb0 equ offset $; Disk Parameter Block
 dw 0FFFFh ; DOS media: Extended DPB
 dw 2 ; Number of FATs
 dw 6 ; Number FAT sectors
 dw 500 ; Number of clusters
 dw 1024 ; Cluster Size
 dw 1 ; Sector address of FAT
 dw 26 ; Sectors per track
 db 3 ; Block shift
 db 7 ; Block mask
 db 0 ; Extnt mask
 dw 499 ; Disk size - 1
 dw 67 ; Directory max
 db 0 ; Alloc0
 db 0 ; Alloc1
 dw 17 ; Check size
 dw 0 ; Offset
 db 0 ; Phys sec shift
 db 0 ; Phys sec mask

 Listing 5-7. Extended DPB definition

5.5.1 Disk Parameter Block Worksheet

This Worksheet is intended to help you create a Disk Parameter Block
containing the specifications for the particular disk hardware that you are
implementing. After calculating the disk parameters according to the
directions given above, enter the value into the disk parameter list following

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

the Worksheet. That way, all the values that you have calculated will be in
one place for a convenient reference. The following steps, which result in
values to be placed in the DPB, are labeled "field in Disk Parameter Block".

In this worksheet, the fields common to both DPBs are calculated first, then
the fields for the extended (DOS) DPB.

<A> Allocation Block Size

Concurrent CP/M allocates disk space in a unit known as an allocation block.
This is the minimum allocation of disk space given to a file. This value may
be 1024, 2048, 4096, 8192, or 16384 decimal bytes, or 400h, 800h, 1000h,
2000h, or 4000h bytes, respectively. Values for DOS disks might differ from
this range. Choosing a large allocation block size allows more efficient usage
of directory space for large files, and allows a greater number of directory
entries. On the other hand, a large allocation block size increases the
average wasted space per disk file. This is the allocated disk space beyond
the logical end of a disk file. Also, choosing a smaller block size increases
the size of the allocation vectors, because there is a greater number of
smaller blocks on the same size disk. Several restrictions on the block size
exist. If the block size is 1024 bytes, there cannot be more than 255 blocks
present on a logical drive. In other words, if the disk is larger than 256 KB,
it is necessary to use at least 2048-byte blocks.

 BSM Block SHift field in Disk Parameter Block
<C> BLM BLock Mask field in Disk Parameter Block

Determine the values of BSH and BLM from the following table, given the value
<A>.

 Table 5-7. BSH and BLM values

 <A> BSH BLM
 ----- --- ---
 1,024 3 7
 2,048 4 15
 4,096 5 31
 8,192 6 63
 16,384 7 127

Note: Values for DOS disks might extend beyond this range.

<D> Total Allocation Blocks

Determine the total number of allocation blocks on the disk drive. The total
available space on the drive, in bytes, is calculated by multiplying the total
number of tracks on the disk, minus reserved operating system tracks, by the
number of sectors per track and the physical sector size. This figure is then
divided by the allocation block size determined in <A> above. This latter
value, rounded down to the next lowest integer value, is the Total Allocation
Blocks for the drive.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

<E> DSM Disk Size Max field in Disk Parameter Block

The value of DSM equals the maximum number of allocation blocks that this
particular drive supports, minus 1.

Note: The product (Allocation Block Size)*(DSM+1) is the total number of bytes
that the drive holds, and must be within the capacity of the physical disk,
not counting the reserved operating system tracks.

<F> EXM EXtent Mask field in Disk Parameter Block

For CP/M, obtain the value of EXM from the following table, using the values
of <A> and <E>. (N/A = Not Available.) For DOS, EXM must be zero.

 Table 5-8. EXM values

 If <E> is If <E> is greater
 <A> less than 256 than or equal to 256
 ----- ------------- --------------------
 1,024 0 N/A
 2,048 1 0
 4,096 3 1
 8,192 7 3
 16,384 15 7

<G> Directory Blocks

Determine the number of Allocation Blocks reserved for the directory. This
value must be between 1 and 16.

<H> Directory Entries per Block

From the following table, determine the number of directory entries per
Directory Block, given the Allocation Block size, <A>.

 Table 5-9. Directory entries per block size

 <A> # entries
 ----- ---------
 1,024 32
 2,048 64
 4,096 128
 8,192 256
 16,384 512

<I> Total Directory Entries

Determine the total number of Directory Entries by multiplying <G> by <H>.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

<J> DRM DiRectory Max field in Disk Parameter Block

Determine DRM by subtracting 1 from <I>. This is the value that must be in the
DRM field at run time.

The DRM field is also used by GENCCPM to allocate the hash table for CP/M, or
the FAT for DOS. If both types of media are allowed in the drive, DRM must be
set to allocate the space needed for the largest of the hash table or the FAT.
The value (I-1) calculated above will allocate the correct amount of space for
the CP/M hash table. The value to allocate space for the FAT is calculated by:

 DRM := (NFATRECS * 2 ^ PSH * 128) / 4

The values for this equation can be found in <T>, and <P> calculated below.
Set DRM to the largest of the two values for system generation. Set it to I-1
at run time.

<K> AL0, AL1 Directory Allocation vector 0, 1 field in Disk Parameter Block

For CP/M disks, determine AL0 and AL1 from the following table, given the
number of Directory Blocks, <G>. DOS disks do not use these fields.

 Table 5-10. AL0, AL1 values

 <G> AL0 AL1
 --- ---- ----
 1 80h 00h
 2 0C0h 00h
 3 0E0h 00h
 4 0F0h 00h
 5 0F8h 00h
 6 0FCh 00h
 7 0FEh 00h
 8 0FFh 00h
 9 0FFh 80h
 10 0FFh 0C0h
 11 0FFh 0E0h
 12 0FFh 0F0h
 13 0FFh 0F8h
 14 0FFh 0FCh
 15 0FFh 0FEh
 16 0FFh 0FFh

<L> CKS ChecKSum field in Disk Parameter Block

Determine the size of the checksum vector. If the disk drive media is
permanent, then the value should be 8000h. If the disk drive media is
removable, the value should be ((<I>-1)/4)+1. If the disk drive media is
removable and the Media Flag is implemented (door open can be detected through
interrupt), CKS should equal (((<I>-1)/4)+1)+8000h. The checksum vector should

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

be CKS bytes long, and addressed in the DPH.

<M> OFF OFFset field in Disk Parameter Block

The OFF field determines the number of tracks that are skipped at the
beginning of the physical disk. The BDOS automatically adds this to the value
of TRACK in the IOPB, and this can be used as a mechanism for skipping
reserved operating system tracks, or for partitioning a large disk into
smaller logical drives.

<N> Size of Allocation Vector

In the DPH, the Allocation Vector is addressed by the ALV field. The size of
this vector is determined by the number of Allocation Blocks. Each byte in the
vector represents four blocks, or Size of Allocation Vector = ((<E>/8)+1)*2.

<O> Physical Sector Size

Specify the Physical Sector Size of the disk drive. Note that the Physical
Sector Size must be greater than or equal to 128, and less than 4096 or the
Allocation Block Size, whichever is smaller. This value is typically the
smallest unit that can be read or written to the disk. This field must be
filled in for PC-MODE.

<P> PSH Physical record SHift field in Disk Parameter Block
<Q> PRM Physical Record Mask field in Disk Parameter Block

Determine the values of PSH and PRM from the following table, given the
Physical Sector Size. These fields must be filled in for PC-MODE.

 Table 5-11. PSH and PRM values

 <O> PSH PRM
 --- --- ---
 128 0 0
 256 1 1
 512 2 3
 1024 3 7
 2048 4 15
 4096 5 31

<R> EXTFLAG DPB Extended Flag

If this is the DPB for a DOS disk, the DPB is an extended DPB, and this field
must be 0FFFFh.

<S> NFATS Number of File Allocation Tables

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

This field must be set to the number of File Allocation Tables of the disk
currently in the drive.

<T> NFATRECS Number of FAT Records

This field is the number of physical sectors in the File Allocation Table.
This value can be calculated from the number of clusters <U> and the physical
sector size <O> using the following formula:

 <T> := (<U> * 1.5 + <O> - 1) / <O>

<U> NCLSTRS Number of Clusters

This field is the number of clusters on the DOS disk.

<V> CLSIZE Cluster Size

This field is the number of bytes per cluster. Clusters are similar to CP/M
allocation blocks. See <A> above.

<W> FATADD File Allocation Table Address

This field is the physical sector number of the first file allocation table on
the DOS disk.

5.5.2 Disk Parameter List Worksheet

<A> Allocation block size __________
 BSH field in Disk Parameter Block __________
<C> BLM field in Disk Parameter Block __________
<D> Total Allocation Blocks __________
<E> DSM field in Disk Parameter Block __________
<F> EXM field in Disk Parameter Block __________
<G> Directory Blocks __________
<H> Directory Entries per Block __________
<I> Total Directory Entries __________
<J> DRM field in Disk Parameter Block __________
<K> AL0, AL1 fields in Disk Parameter Block __________
<L> CKS field in Disk Parameter Block __________
<M> OFF field in Disk Parameter Block __________
<N> Size of ALlocation Vector __________
<O> Physical Sector Size __________
<P> PSH field in Disk Parameter Block __________
<Q> PRM field in Disk Parameter Block __________
<R> EXTFLAG field in Disk Parameter Block __________
<S> NFATS field in Disk Parameter Block __________
<T> NFATRECS field in Disk Parameter Block __________
<U> NCLSTRS field in Disk Parameter Block __________

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

<V> CLSIZE field in Disk Parameter Block __________
<W> FATADD field in Disk Parameter Block __________

5.6 Buffer Control Block data area

The Buffer Control Block (BCBs) locate physical record buffers for the BDOS.
BCBs are usually generated automatically by GENCCPM. The BDOS uses the BCB to
manage the physical record buffers during processing. More than one Disk
Parameter Header (DPH) can specify the same list of BCBs. The BDOS
distinguishes between two kinds of BCBs, directory buffers, referenced by the
DIRBCB field of the DPH, and data buffers, referenced by DATBCB field of the
DPH.

The DIRBCB and DATBCB fields each contain the offset address of a Buffer
Control Block Header. The BCB Header contains the offset of the first BCB in a
linked list of BCBs. Each BCB has a LINK field containing the address of the
next BCB in the list, or 0000h if it is the last BCB. All BCB Headers and BCBs
must reside within the SYSDAT segment.

 +-------+-------+-------+
 | BCBLR | MBCBP |
 +-------+-------+-------+

 Figure 5-8. Buffer Control Block Header

Table 5-12. Buffer Control Block Header data fields

Format: Field
 Explanation

BCBLR
Buffer Control Block List Root. The Buffer Control Block List Root points to
the first BCB in a linked list of BCBs.

MBCBP
Maximum BCBs per Process. The MBCBP is the maximum number of BCBs that the
BDOS can allocate to any single process at one time. If the number of BCBs
required by a process is greater than MBCBP, the BDOS reuses BCBs previously
allocated to this process on a least-recently-used (LRU) basis.

Listing 5-8 illustrates the BCB Header definition:

;**
;*
;* BCB Header Definition
;*
;**

bcblr equ word ptr 0
mbcbp equ byte ptr 2

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

dirbcb dw dirbcb0 ; BCB List Head
 db 4 ; Max # BCBs/Process

 Listing 5-8. BCB Header definition

Figure 5-9 shows the format of the Directory Buffer Control Block:

 +-----+-----+-----+-----+-----+-----+-----+-----+
 00h | DRV | RECORD | WFLG| SEQ | TRACK |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 08h | SECTOR | BUFOFF | LINK | PDADR |
 +-----+-----+-----+-----+-----+-----+-----+-----+

 Figure 5-9. Directory Buffer Control Block (DIRBCB)

Table 5-13. DIRBCB data fields

Format: Field
 Explanation

DRV
Logical Drive Number. The Logical Drive Number identifies the disk drive
associated with the physical sector contained in the buffer. The initial value
of the DRV field must be 0FFh. If DRV = 0FFh, then the BDOS considers that the
buffer contains no data, and is available for use.

RECORD
Record Number. The Record Number identifies the logical record position of the
current buffer for the specified drive. The record number is relative to the
beginning of the logical disk, where the first record of the directory is
logical record number zero.

WFLG
Write Pending Flag. The BDOS sets the Write Pending Flag to 0FFh to indicate
that the buffer contains unwritten data. When the data are written to the
disk, the BDOS sets the WFLG to zero to indicate that the buffer is no longer
dirty.

SEQ
Sequential Access Counter. The BDOS uses the Sequential Access Counter during
blocking and deblocking, to detect whether the buffer is being accessed
sequentially or randomly. If sequential access is used, the BDOS allows re-use
of the buffer to avoid consumption of all buffers during sequential I/O.

TRACK
Logical Track Number. The TRACK is the logical track number for the current
buffer.

SECTOR
Physical Sector Number. SECTOR is the logical sector number for the current
buffer.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

BUFOFF
Buffer Offset. For DIRBCBs, this field equals the offset address of the buffer
within SYSDAT.

LINK
Link to next DIRBCB. The Link field contains the offset address of the next
BCB in the linked list, or 0000h if this is the last BCB in the linked list.

PDADR
Process Descriptor Address. The BDOS uses the Process Descriptor Address to
identify the process which owns the current buffer.

The buffer associated with the BCB must be large enough to accomodate the
largest physical record (equivalent to physical sector) associated with any
DPH referencing the BCBs. The initial value of the DRV field must be 0FFh.
When the DRV field contains 0FFh, the BDOS considers that the buffer
contains no data and is available for use. When WFLG equals 0FFh, the buffer
contains data that the BDOS has to write to the disk before the buffer is
available for other data.

Dirctory BCBs never have the BCB WFLG parameter set to 0FFh, because directory
buffers are always written immediately. The BDOS postpone only data buffers
write operations. Thus, only data BCBs can have dirty buffers.

The data and directory BCBs must be separate. This is to ensure that a buffer
with a clear WFLG is available when the BDOS verifies the directory. If all
the buffers contain new data (WFLG set to 0FFh), the BDOS has to perform a
write before it can verify that the disk media has changed. This could result
in data being written on the wrong disk inadvertently. The following listing
illustrates the DIRBCB definition:

;**
;*
;* DIRBCB Definition
;*
;**

drv equ byte ptr 0
record equ byte ptr 1
wflg equ byte ptr 4
seq equ byte ptr 5
track equ word ptr 6
sector equ word ptr 8
bufoff equ word ptr 10
link equ word ptr 12
pdadr equ word ptr 14

dirbcb0 db 0FFh ; Drive
 rb 3 ; Record
 rb 1 ; Pending
 rb 1 ; Sequence
 rw 1 ; Track

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

 rw 1 ; Sector
 dw dirbuf0 ; Buffer Offset
 dw dirbcb1 ; Link
 rw 1 ; PD Address

 Listing 5-9. DIRBCB definition

Figure 5-10 shows the format of the Data Buffer Control Block (DATBCB):

 +-----+-----+-----+-----+-----+-----+-----+-----+
 00h | DRV | RECORD | WFLG| SEQ | TRACK |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 08h | SECTOR | BUFSEG | LINK | PDADR |
 +-----+-----+-----+-----+-----+-----+-----+-----+

 Figure 5-10. Data Buffer Control Block (DATBCB)

The DATBCB is identical to the DIRBCB, except for the BUFSEG field described
in Table 5-14.

Table 5-14. DATBCB data fields

Format: Field
 Explanation

BUFSEG
Buffer Segment. For BCBs describing data buffers, this field equals the
segment address of the Data Buffer. The offset address of the buffer is
assumed to be zero. The actual buffer can be anywhere in memory, on a paragrah
boundary that is not in the system TPA.

Listing 5-10 illustrates the DATBCB definition:

;**
;*
;* DATBCB Definition
;*
;**

drv equ byte ptr 0
record equ byte ptr 1
wflg equ byte ptr 4
seq equ byte ptr 5
track equ word ptr 6
sector equ word ptr 8
bufseg equ word ptr 10
link equ word ptr 12
pdadr equ word ptr 14

datbcb0 db 0FFh ; Drive
 rb 3 ; Record
 rb 1 ; Pending

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

 rb 1 ; Sequence
 rw 1 ; Track
 rw 1 ; Sector
 dw dirbuf0 ; Buffer Segment
 dw dirbcb1 ; Link
 rw 1 ; PD Address

 Listing 5-10. DATBCB definition

5.7 Memory disk application

A memory disk (or RAMdisk, or "M disk") is a prime example of the ability of
the Basic Disk Operating System to interface to a wide variety of disk drives.
A memory disk uses an area or RAM to simulate a small capacity disk drive,
making a very fast temporary disk. The M disk can be specified by GENCCPM as
the temporary drive. The example XIOS implements an M disk for the IBM PC.
This section discusses a similar M disk implementation, as shown in Listing 5-
11.

In Listing 5-11, the M disk memory space begins at the 0C000h paragraph
boundary, and extends for 128 KB, through the 0DFFFh paragraph. It is assumed
that the XIOS INIT routine calls the INIT_M_DSK code, which initializes the
directory area of the M disk, the first 16 KB, to 0E5h.

Both the M disk READ and WRITE routines first call the MDISK_CALC routine.
This code calculates the paragraph address of the current sector in memory,
and the number of words of data to read or write. The number of sectors per
track for the M disk is set to 8, simplifying the calculation of the sector
address to a simple shift-and-add operation. The multisector count is
multiplied by the length of a sector, to give the number of words to transfer.

The READ_M_DISK routine gets the current DMA address from the IOPB on the
stack and, using the parameters returned by the MDISK_CALC routine, block-
moves the requested data to the DMA buffer. The WRITE_M_DISK routine is
similar, except for the direction of data transfer.

A Disk Parameter Block for the M disk, illustrated at the end of the example,
is provided for reference. A hash table is provided, in order to increase
performance to the maximum. However, this field can be set to zero, if
directory hashing is not desirable due to space limitations.

Listing 5-11 illustrates an M disk implementation:

;**
;* M Disk Equates
;**

mdiskbase equ 0C000h ; Base paragraph address of M disk

;**
;* M Disk Initialization
;**

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

init_m_dsk:
 mov cx,mdiskbase ;
 push es ;
 mov es,cx ;
 xor di,di ;
 mov ax,0E5E5h ; Check if already initialized
 cmp es:[di],ax ;
 je mdisk_end ;
 mov cx,2000h ; Initialize 16 KB of M disk
 rep stos ax ; directory to 0E5h.
mdisk_end:
 pop es ;
 eret ;

;**
;* M Disk Code
;**

;=======
io_read: ; Function 11: Read sector
;=======
; Reads the sector on the current disk, track and
; sector into the current DMA buffer.

; entry: parameters on stack
; exit: AL = 00h if no error occured
; AL = 01h if an error occured
; AL = 0ffh if density change detected
; ALL SEGMENT REGISTERS PRESERVED:
; CS,DS,ES,SS must be preserved though call

read_m_disk:
;-----------
 call mdisk_calc ; Calculate byte address
 push es ; Save UDA
 les di,dword ptr dmaoff ; Load destination DMA offset
 xor si,si ; Setup source DMA address
 push ds ; Save current DS
 mov ds,bx ; Load pointer to sector in memory
 rep movsw ; Execute move of 128 bytes....
 pop ds ; then restore user DS register.
 pop es ; Restore UDA
 xor ax,ax ; Return with good return code
 ret ;

;========
io_write: ; Function 12: Write disk
;========
; Write the sector in the current DMA buffer
; to the current disk on the current
; track in the current sector.

; entry: CL = 0 - Deferred Writes

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

; CL = 1 - non-deferred writes
; CL = 2 - def-wrt 1st sect unalloc blk
; exit: AL = 00h if no error occured
; AL = 01h if error occured
; AL = 02h if read only disk
; AL = 0FFh if density change detected
; ALL SEGMENT REGISTERS PRESERVED:
; CS,DS,ES,SS must be preserved though call

write_m_disk:
;------------
 call mdisk_calc ; Calculate byte address
 push es ; Save UDA
 mov es,bx ; Setup destination DMA segment
 xor di,di ; Destination offset
 push ds ; Save user segment register
 lds si,dword ptr dmaoff ; Load source DMA offset
 rep movsw ; Move from user to disk in memory
 pop ds ; Restore user segment pointer
 pop es ; Restore UDA
 xor ax,ax ; Return no error
 ret ;

mdisk_calc:
;----------
; entry: IOPB variables on the stack
; exit: BX = sector paragraph address
; CX = length in words to transfer
;
; Assume MDISK DPB describes a disk with a physical
; sector size of 128, 8 sectors to a 1K track.
; Avoid deblocking by setting the logical sector size (128)
; equal to the physical sector size.

 mov bx,track ; Pickup track number
 mov cl,3 ; Times eight for relative
 shl bx,cl ; sector number.
 mov cx,sector ; Plus sector
 add bx,cx ; gives relative sector number.
 mov cl,3 ; Times eight for paragraph of
 shl bx,cl ; sector start.
 add bx,m_diskbase ; Plus base address of disk in memory
 mov cx,64 ; Length in words for move
 mov al,mcnt ; of one sector.
 xor ah,ah ;
 mul cx ; Length * multisector count
 mov cx,ax ;
 cld ;
 ret ;

;**
;* M Disk -- Disk Parameter Block
;**

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

dpb0 equ offset $; Disk Parameter Block
 dw 8 ; Sectors Per Track
 db 3 ; Block Shift
 db 7 ; Block Mask
 db 0 ; Extnt Mask
 dw 126 ; Disk Size - 1
 dw 31 ; Directory Max
 db 128 ; Alloc0
 db 0 ; Alloc1
 dw 0 ; Check Size
 dw 0 ; Offset
 db 0 ; Phys Sec Shift
 db 0 ; Phys Sec Mask

xlt5 equ 0 ; No Translate Table
als5 equ 16*2 ; Allocation Vector Size
css5 equ 0 ; Check Vector Size
hss5 equ (32 * 4) ; Hash Table Size

 Listing 5-11. Example M disk implementation

5.8 Multiple media support

Disk access is controled by a number of data structures, that describe various
parameters of the disk. Some of these parameters are set in the code of the
XIOS, others are filled in by GENCCPM. when a particular disk drive can have
more than one type of disk in it (for example, different densities, or CP/M
and DOS disks), some of these parameters must be set at run time. Thise
section explains how these parameters are set up, and which ones must be
changed at run time.

Each disk drive is described by a Disk Parameter Header (DPH) that gives
addresses for several data structures needed in using the disk, including the
Disk Parameter Block (DPB). The DPB describes the disk in more detail, such as
the size of the directory and the total storage capacity of the drive. The
information in the DPB will be different if a different density or format disk
is used.

The DPH is located by the DPH(A) through DPH(P) pointers in the XIOS Header.
See Section 3.1, "XIOS Header", for more information on these pointers. The
fields in the DPH can be filled in by hard coding the values in the XIOS or,
if they are set to 0FFFFh, GENCCPM will calculate and fill in the values.
GENCCPM also allocates space for the needed buffers and vectors.

If a drive supports more than one type of media, the buffers allocated must be
large enough to hold the information needed for any of the possible media.
This may require creating a dummy DPH and DPB for GENCCPM, to use while
allocating the buffers. For DOS and CP/M disks, the same table area (pointed
to by TBLSEG in the DPH) is used for the hash table (CP/M) and the FAT (DOS).
The space GENCCPM allocates for this is based on the DRM value in the DPB. See
Section 5.5.1, "Disk Parameter Block Worksheet", for information on setting

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG5.TXT[2/7/2012 11:32:06 AM]

DRM.

Auto Density Support is the ability to support different types of media on the
same drive. Some floppy disk drives can read many different disk formats. Auto
Density Support enables the XIOS to determine the density of the diskette when
the IO_SELDSK function is called, and to detect a change in density when the
IO_READ or IO_WRITE functions are called.

To implement Auto Density Support for both CP/M and DOS media, the XIOS disk
driver must include a DPB for each disk format expected, or routines to
generate proper DPB values automatically in real time. It must also be able to
determine the type and format of the disk when the IO_SELDSK function is
called for the first time, set the DPH to address the DPB that describes the
media, and return the address of the DPH to the BDOS. If unable to determine
the format, the IO_SELDSK function can return a zero, indicating that the
select operation was not successful. On all subsequent IO_SELDSK calls, the
XIOS must continue to return the address of the same DPH; a return value of
zero is only allowed on the initial IO_SELDSK call.

Once the IO_SELDSK routine has determined the format of the disk, the IO_READ
and IO_WRITE routines assume that this format is correct, until an error is
detected. If an XIOS function encounters an error and determines that the
media has been changed to another format, it must abandon the operation and
return 0FFh to the BDOS. This prompts the BDOS to make another initial
IO_SELDSK call to re-establish the media type. XIOS routines must not modify
the drive's DPH or DPB until the IO_SELDSK call is made. This is because the
BDOS can also determine that the media has changed, and can make an initial
IO_SELDSK call, even though the XIOS routines have not detected any change.

EOF

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG6.TXT[2/7/2012 11:32:07 AM]

CCPMSG6.WS4 (Concurrent CP/M System Guide, Chapter 6)

(Retyped by Emmanuel ROCHE.)

Section 6: PC-MODE character I/O

This section describes functions that must be implemented in the XIOS to
support PC-MODE. These functions emulate some of the IBM PC interrupts,
allowing DOS programs to run.

There are seven functions that must be added to the XIOS to support PC-MODE.
These are functions 30 through 36. This chapter describes functions 30 through
34, that are used for character I/O. Functions 35 and 36 are for disk I/O, and
are described in Section 5, "Disk devices". Note that the XIOS function table
must be extended for these functions. See Section 3.3, "XIOS ENTRY", for more
information on the function table.

Implementing these functions requires data structures similar to those used in
screen buffering. See Section 4.2, "Console I/O functions", for more
information on screen buffering. Screen buffering is assumed in the
descriptions of all the routines in this chapter.

6.1 Screen I/O functions

Function 30, IO_SCREEN, returns the current screen mode, or sets the screen to
a certain mode. The mode tells whether the screen is displaying text or
graphics, and the screen size. Function 31, IO_VIDEO, provides functions for
getting and setting the cursor position and attributes, as well as scrolling
the screen and writing characters. This function emulates 8 of the 16
subfunctions of DOS' interrupt 10.

IO_SCREEN Get/set screen

Get or set the current screen

Entry Parameters:
 Register AL: 1Eh (30)
 CH: 00h = Set,
 01h = Get
 CL: Mode if CH = 00h (Set)
 DL : Virtual console number

Returned Values:
 Register AX: Mode if CH = 1 (Get)
 0FFFFh if mode not supported (Set)
 0FFFEh if bad parameters (Set)

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG6.TXT[2/7/2012 11:32:07 AM]

 0000h if successful (Set)
 ES, DS, SS, SP preserved

IO_SCREEN can be called to either return the current screen mode (Get) or to
set the screen to a certain mode (Set). Set is indicated by a zero in CH, Get
is indicated by a 1 in CH. IO_SCREEN is called to operate on a virtual
console, indicated by DL. The sample XIOSes keep a record of the mode of each
virtual console in the screen structure. The screen mode must be initialized
to a non-zero value when the system is initialized. This function is also used
for GSX support. See Appendix B, "Graphics implementation".

When IO_SCREEN is called to set the screen mode (CH = 0), CL contains the mode
in the following format:

 CH CL
 +-----+---+---+
 | 00h | x | y |
 +-----+---+---+

where "y" indicates the alphanumeric modes, and "x" indicates graphics modes.
Either x or y will have a value, the other will be zero. The alphanumeric
modes (values for y) are shown in Table 6-1. The graphics modes (values for x)
are shown in Table 6-2. The value 1 (general alphanumeric, or general graphic
mode) comes from the GSX graphics system's GIOS, to indicate a mode switch.
The GIOS does its own hardware initialization.

If the calling process is in the background and wants to set its mode to
graphics, IO_SCREEN must flagwait the process. The corresponding flagset takes
place in the IO_SWITCH routine, when the process' virtual console is switched
to the foreground. For further information on the IO_SWITCH routine, see
Section 4.2, "Console I/O functions".

Set should initialize the hardware, if necessary.

When IO_SCREEN is called with CH = 1 (Get), it returns the screen mode (from
the screen structure) in the following format:

 CH CL
 +--------+---+---+
 | # Cols | x | y |
 +--------+---+---+

where "# Cols" is the number of columns on the screen, "x" is the graphics
mode (Table 6-2), and "y" is the alphanumeric mode (Table 6-1).

 Table 6-1. Alphanumeric modes

 Y value Meaning
 ------- -------
 1 General alphanumeric mode
 2 40 x 25 monochrome
 3 40 x 25 color
 4 80 x 25 monochrome
 5 80 x 25 color

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG6.TXT[2/7/2012 11:32:07 AM]

 6 - 8 Reserved
 9 80 x 25 monochrome card
 10 - 15 Reserved

 Table 6-2. Graphics modes

 X value Meaning
 ------- -------
 1 General graphics mode
 2 320 x 200 color
 3 320 x 200 monochrome
 4 640 x 200 monochrome
 5 - 15 Reserved

IO_VIDEO (function 31) emulates 8 of the 16 subfunctions of DOS' interrupt 10.
It will set and read the cursor position, scroll the screen, set and read
attributes, and write characters to the screen.

IO_VIDEO Video Input/Output

Manipulate the video screen.

Entry Parameters:
 Register AL: 1Fh (31)
 BL: Subfunction number
 CX: Input parameter (see below)
 DX: Input parameter (see below)

Returned Values: Depends on subfunction. See below.
 ES, DS, SS, SP preserved

Set Cursor Type (BL = 1)

Entry: CH = starting row for cursor
 CL = end row for cursor

Exit: None

A rwo is a row of pixels used to generate a character. In this case, the
character is the cursor.

Set Cursor Position (BL = 2)

Entry: CH = row
 CL = column
 DL = virtual console number

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG6.TXT[2/7/2012 11:32:07 AM]

Exit: None

This function sets the cursor position to the specified row and column. It
updates the cursor position in the screen structure for the specified virtual
console. It also updates the physical screen, if this virtual console is in
the foreground.

Read Cursor Position (BL = 3)

Entry: DL = virtual console number

Exit: AH = row
 AL = column

This function returns the current cursor position for the virtual console from
the screen structure.

Scroll up (BL = 6)

Entry: CX = segment of parameter structure
 DX = offset of parameter structure

Exit: None

This function accesses the parameter structure, and scrolls up the specified
window on the virtual console. The window is specified by giving the row and
column of the upper left and lower right corners of the rectangle. If the
number of lines to scroll is 0, the window should be cleared. The parameter
structure is as follows:

 +-------+-------+
 00h | A |
 +-------+-------+
 02h | B | RSVD |
 +-------+-------+
 04h | (row) C (col) |
 +-------+-------+
 06h | (row) D (col) |
 +-------+-------+
 08h | VC |
 +-------+

where:

 A = number of lines
 B = attribute of blank lines
 C = row, column of upper left
 D = row, column of upper right
 VC = Virtual Console number

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG6.TXT[2/7/2012 11:32:07 AM]

If screen buffering is implemented, scrolling must take place in the screen
buffer. If the virtual console is in the foreground, and the physical console
is a serial terminal, the display must also be updated. Parameter B contains
the attributes desired for the new blank lines to be added in the window. The
method of displaying the scrolled window on the physical console depends on
the hardware.

Scroll Down (BL = 7)

Entry: CX = segment of parameter structure
 DX = offset of parameter structure

Exit: None

This function accesses the parameter structure, and scrolls down the specified
window on the virtual console, similar to the previous subfunction. The
parameter structure is as follows:

 +-------+-------+
 00h | A |
 +-------+-------+
 02h | B | RSVD |
 +-------+-------+
 04h | (row) C (col) |
 +-------+-------+
 06h | (row) D (col) |
 +-------+-------+
 08h | VC |
 +-------+

where:

 A = number of lines
 B = attribute of blank lines
 C = row, column of upper left
 D = row, column of upper right
 VC = Virtual Console number

Refer to "Scroll Up" above for more information.

Read Attribute/Character (BL = 8)

Entry: DL = Virtual Console number

Exit: AH = attribute
 AL = character

This function accesses the screen structur for the virtual console, and
returns the character and the attribute byte for the current cursor position.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG6.TXT[2/7/2012 11:32:07 AM]

In the example XIOSes, this subfunction involves: 1) Using the virtual console
number to look up the screen structure. 2) Get the screen buffer and cursor
position from the screen structure. 3) Look up the screen buffer, and use the
cursor position as an offset to get the current character and attribute byte.

Write Attribute/Character (BL = 9)

Entry: CX = segment of parameter structure
 DX = offset of parameter structure

Exit: None

This function writes a character and an attribute byte to a screen image. The
new character and attribute are written at the current cursor position, and
the cursor position moved to the new character. This may involve handling an
end of line or end of screen condition. Any number of the same character and
attributes can be written by specifying the count in CX. If this virtual
console is in the foreground, and the physical console is a serial terminal,
it must be updated with the new characters and attributes. The parameter
structure is as follows:

 +-------+-------+
 00h | RSVD | A |
 +-------+-------+
 02h | RSVD | B |
 +-------+-------+
 04h | C |
 +-------+-------+
 06h | RESERVED |
 +-------+-------+
 08h | VC |
 +-------+

where:

 A = character
 B = attributes
 C = number of characters to repeat
 VC = Virtual Console number

Write Character (BL = 10)

Entry: CX = segment of parameter structure
 DX = offset of parameter structure

Exit: None

This function writes a character to the screen buffer at the current cursor
position, with the same attribute(s) as the previous character. The character
can be repeated by specifying a count in C. If the virtual console is in the

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG6.TXT[2/7/2012 11:32:07 AM]

foreground, and the physical console is a serial terminal, it must also be
updated. The parameter structure is as follows:

 +-------+-------+
 00h | RSVD | A |
 +-------+-------+
 02h | RESERVED |
 +-------+-------+
 04h | C |
 +-------+-------+
 06h | RESERVED |
 +-------+-------+
 08h | VC |
 +-------+

where:

 A = character
 C = number of characters to repeat
 VC = Virtual Console number

Set Color Palette (BL = 11)

Entry: CX = segment of parameter structure
 DX = offset of parameter structure

Exit: None

This function has meaning only for 320 by 200 color graphics. For the palette
color ID, in A below, 0 selects the background color, while 1 selects the
palette to be used. The parameter structure is as follows:

 +-------+-------+
 00h | RESERVED |
 +-------+-------+
 02h | A | B |
 +-------+-------+
 04h | RESERVED |
 +-------+-------+
 06h | RESERVED |
 +-------+-------+
 08h | VC |
 +-------+

where:

 A = palette color ID (0-127)
 B = color value to be used with that color ID
 VC = Virtual Console number

Write Dot (BL = 12)

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG6.TXT[2/7/2012 11:32:07 AM]

Entry: CX = segment of parameter structure
 DX = offset of parameter structure

Exit: None

This function lets you write a dot to the location specified by the values of
C and D in the parameter structure. If bit 7 of the color value in A is 1,
then the color value is exclusive ORed with the current contents of the dot.
The parameter structure is as follows:

 +-------+-------+
 00h | RSVD | A |
 +-------+-------+
 02h | RESERVED |
 +-------+-------+
 04h | C |
 +-------+-------+
 06h | D |
 +-------+-------+
 08h | VC |
 +-------+

where:

 A = color value
 B = column value
 C = row number
 VC = Virtual Console number

Read Dot (BL = 13)

Entry: CX = segment of parameter structure
 DX = offset of parameter structure

Exit: AL = the dot read

This function lets you read a dot from the location specified by the values of
C and D in the parameter structure. The parameter structure is as follows:

 +-------+-------+
 00h | RSVD | RSVD |
 +-------+-------+
 02h | RESERVED |
 +-------+-------+
 04h | C |
 +-------+-------+
 06h | D |
 +-------+-------+
 08h | VC |
 +-------+

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG6.TXT[2/7/2012 11:32:07 AM]

where:

 C = column number
 D = row number
 VC = Virtual Console number

Write Serial Character (BL = 14)

Entry: CL = character
 DL = virtual console number

Exit: None

This function writes a character to the screen image at the current cursor
position, and to the physical screen if the virtual console is in the
foreground. It functions similarly to "Write Character" (above), but does not
allow repeated character. This is a Teletype write, and does not allow escape
sequences.

6.2 Keyboard functions

These two functions are used for handling function keys and the shift status
of the keyboard when running in PC-MODE.

IO_KEYBD Keyboard mode

Enable/disable PC-MODE.

Entry Parameters:
 Register AL: 20h (32)
 CL: 1 = enable
 2 = disable
 DL: Virtual Concole number

Returned Values:
 Register AX: 0000h if OK
 0FFFFh if error
 ES, DS, SS, SP preserved

IO_KEYBD is a signal to tell whether PC-MODE is active or not. When it is
enabled, the console is running a PC program, and several functions must
behave differently. These differences have to do with the function keys on the
keyboard, and the 25th line on the screen.

Enabling or disabling IO_KEYBD tells IO_CONIN (See Section 4.2, "Console I/O
functions") whether to pass function keys to the caller or not. Normally
(disabled), all function keys not used by the XIOS (those that do not have an

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG6.TXT[2/7/2012 11:32:07 AM]

associated function, such as screen switch) are ignored on input. If IO_KEYBD
is enabled, IO_CONIN must pass all 16-bit function key codes to the caller.
See Section 6.4, "PC-MODE IO_CONIN".

Many PC applications use the 25th line of the display. Thus, when you are in
PC-MODE, IO_STATLINE must not display. See Section 4.2, "Console I/O
functions", for more information on IO_STATLINE.

This variable can also be used in the XIOS for any other functions that need
to know if a console is in PC-MODE. For example, it could be used to indicate
if 24 or 25 lines need to be buffered.

IO_SHFT Shift status

Return shift status.

Entry Parameters:
 Register AL: 21h (33)
 DL: Virtual Console number

Returned Values:
 Register AL: Shift status
 ES, DS, SS, SP preserved

IO_SHFT emulates IBM PC interrupt 16 subfunction 2. It returns a bit map
showing the status of certain keys on the keyboard. The bit map is shown in
Table 6-3.

 Table 6-3. Keyboard shift status

 Bit Meaning
 --- -------
 7 Insert state is active
 6 Caps lock state has been toggled
 5 Num lock state has been toggled
 4 Scroll lock state has been toggled
 3 Alternate shift key depressed
 2 Control shift key depressed
 1 Left shift key depressed
 0 Right shift key depressed

6.3 Equipment check

IO_EQCK Equipment check

Return equipment status.

Entry Parameters:
 Register AL: 22h (34)

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG6.TXT[2/7/2012 11:32:07 AM]

Returned Values:
 Register AX: DOS bit map (Table 6-3)
 ES, DS, SS, SP preserved

IO_EQCK emulates DOS' interrupt 11. It returns a subset of DOS' standard bit
map that describes the state of the equipment. This bit map is shown in Table
6-4.

 Table 6-4. DOS equipment status bit map

 Bit Meaning
 --- -------
 14, 15 Number of printers attached
 13 Not used
 12 Game I/O attached
 11 - 9 Number of RS-232C cards attached
 8 Not used
 7, 6 Number of floppy disk drives
 5, 4 Initial video mode
 3, 2 Planar RAM size
 1 Not used
 0 IPL from floppy

6.4 PC-MODE IO_CONIN

When a virtual console is in PC-MODE (see IO_KEYBD in Section 6.2, "Keyboard
functions"), IO_CONIN must return extended codes for certain function keys.
Most characters are returned as their ASCII code in AL, and their scan code in
AH. The scan codes for all keys are shown in Table 6-5, "Keyboard scan codes".
Extended keys are returned as a nul (00h) in AL and an extended code in AH.
The exetended keys and the value to be returned in AH are shown in Table 6-6,
"Extended keyboard codes".

 Table 6-5. Keyboard scan codes

 Key Scan code
 --- ---------
 A 30
 B 48
 C 46
 D 32
 E 18
 F 33
 G 34
 H 35
 I 23
 J 36
 K 37
 L 38
 M 39
 N 49

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG6.TXT[2/7/2012 11:32:07 AM]

 O 24
 P 25
 Q 16
 R 19
 S 31
 T 20
 U 22
 V 47
 W 17
 X 45
 Y 21
 Z 44
 1 (!) 2
 2 (@) 3
 3 (#) 4
 4 ($) 5
 5 (%) 6
 6 (^) 7
 7 (&) 8
 8 (*) 9
 9 (() 10
 0 ()) 11
 - (_) 12
 = (+) 13
 [({) 26
] (}) 27
 ; (:) 39
 ' (") 40
 ` (~) 41
 , (<) 51
 . (>) 52
 / (?) 53
 \ (|) 54
 Esc 1
 Ctrl 29
 Shift (left) 42
 Shift (right) 54
 Alt 56
 Caps Lock 58
 Num Lock 69
 Scroll Lock 70
 Enter 28
 Tab 15
 Backspace 14

 Numeric Keypad:

 Home (7) 71
 cursor up (8) 72
 Pg Up (9) 73
 cursor left (4) 75
 (5) 76
 cursor right (6) 77
 End (1) 79

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG6.TXT[2/7/2012 11:32:07 AM]

 cursor down (2) 80
 Pg Dn (3) 81
 Ins (0) 82
 Del (.) 83
 * (PrtSc) 55
 - 74
 + 78

 Function Keys:

 F1 59
 F2 60
 F3 61
 F4 64
 F5 63
 F6 64
 F7 65
 F8 66
 F9 67
 F10 68

 Table 6-6. Extended keyboard codes

 Character AH Function
 --------- -- --------
 Ctrl 3 3 Nul character
 |<-- 15 Reverse tab
 Ins 82 Insert
 Del 83 Delete
 | 72 Cursor Up
 <-- 75 Cursor Left
 --> 77 Cursor Right
 | 80 Cursor Down
 Home 71 Cursor Home
 Ctrl Home 119 Control Home
 Ctrl <-- 115 Reverse word
 Ctrl --> 116 Advance word
 Pg Dn 81 Page Down
 Ctrl Pg Dn 118 Control Page Down
 Pg Up 73 Page Up
 Ctrl Pg Up 132 Control Page Up
 End 79 End
 Ctrl End 117 Control End
 Ctrl PrtSc 114 Print screen
 F1 59 Function key F1
 F2 60 Function key F2
 F3 61 Function key F3
 F4 62 Function key F4
 F5 63 Function key F5
 F6 64 Function key F6
 F7 65 Function key F7
 F8 66 Function key F8
 F9 67 Function key F9

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG6.TXT[2/7/2012 11:32:07 AM]

 F10 68 Function key F10
 Shift F1 84 Function key F11
 Shift F2 85 Function key F12
 Shift F3 86 Function key F13
 Shift F4 87 Function key F14
 Shift F5 88 Function key F15
 Shift F6 89 Function key F16
 Shift F7 90 Function key F17
 Shift F8 91 Function key F18
 Shift F9 92 Function key F19
 Shift F10 93 Function key F20
 Ctrl F1 94 Function key F21
 Ctrl F2 95 Function key F22
 Ctrl F3 96 Function key F23
 Ctrl F4 97 Function key F24
 Ctrl F5 98 Function key F25
 Ctrl F6 99 Function key F26
 Ctrl F7 100 Function key F27
 Ctrl F8 101 Function key F28
 Ctrl F9 102 Function key F29
 Ctrl F10 103 Function key F30
 Alt F1 104 Function key F31
 Alt F2 105 Function key F32
 Alt F3 106 Function key F33
 Alt F4 107 Function key F34
 Alt F5 108 Function key F35
 Alt F6 109 Function key F36
 Alt F7 110 Function key F37
 Alt F8 111 Function key F38
 Alt F9 112 Function key F39
 Alt F10 113 Function key F40
 Alt A 30 Alt A
 Alt B 48 Alt A
 Alt C 46 Alt C
 Alt D 32 Alt D
 Alt E 18 Alt E
 Alt F 33 Alt F
 Alt G 34 Alt G
 Alt H 35 Alt H
 Alt I 23 Alt I
 Alt J 36 Alt J
 Alt K 37 Alt K
 Alt L 38 Alt L
 Alt M 50 Alt M
 Alt N 49 Alt N
 Alt O 24 Alt O
 Alt P 25 Alt P
 Alt Q 16 Alt Q
 Alt R 19 Alt R
 Alt S 31 Alt S
 Alt T 20 Alt T
 Alt U 22 Alt U
 Alt V 47 Alt V
 Alt W 17 Alt W

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG6.TXT[2/7/2012 11:32:07 AM]

 Alt X 45 Alt X
 Alt Y 21 Alt Y
 Alt Z 44 Alt Z
 Alt 1 120 Alt 1
 Alt 2 121 Alt 2
 Alt 3 122 Alt 3
 Alt 4 123 Alt 4
 Alt 5 124 Alt 5
 Alt 6 125 Alt 6
 Alt 7 126 Alt 7
 Alt 8 127 Alt 8
 Alt 9 128 Alt 9
 Alt 0 129 Alt 0
 Alt - 130 Alt -
 Alt + 131 Alt +

EOF

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG7.TXT[2/7/2012 11:32:08 AM]

CCPMSG7.WS4 (Concurrent CP/M System Guide, Chapter 7)

(Retyped by Emmanuel ROCHE.)

Section 7: XIOS TICK interrupt routine

The XIOS must continually perform two DEV_SETFLAG system calls. Once every
system tick, the system tick flag must be set if the TICK Boolean in the XIOS
Header is 0FFh. Once every second, the second flag must be set. This requires
the XIOS to contain an interrupt-driven tick routine that uses a hardware
timer to count the time intervals between successive system ticks and seconds.

The recommended tick unit is a period of 16.67 milliseconds, corresponding to
a frequency of 60 Hz. When operating on 50 Hz power, use a 20-millisecond
period. The system tick frequency determines the dispatch rate for compute-
bound processes. If the frequency is too high, an excessive number of
dispatches occurs, creating a significant amount of additional system
overhead. If the frequency is too low, compute-bound processes monopolize the
CPU resource for longer period.

Concurrent CP/M uses Flag #2 to maintain the system time and day in the TOD
structure in SYSDAT. The CLOCK process performs a DEV_WAITFLAG system call on
Flag #2, and thus wakes up once per second to update the TOD structure. The
CLOCK process also calls the IO_STATLINE XIOS function, to update the status
line once per second. If the system has more than one physical console, one
physical console is updated each second. Thus, if four physical consoles are
connected, each one will be updated once every four seconds.

The CLOCK process is an RSP, and the source code is distributed in the OEM
kit. Any functions needing to be performed on a per-second basis can simply be
added to the CLOCK.RSP.

After performing the DEV_SETFLAG calls described above, the XIOS TICK
interrupt routine must performs a Jump Far to the dispatcher entry point. This
forces a dispatch to occur, and is the mechanism by which Concurrent CP/M
effects process dispatching. The double-word pointer to the dispatcher entry
used by the TICK interrupt is located at 0038h in the SYSDAT DATA. Please see
Section 3.6, "Interrupt devices", for more information on writing XIOS
interrupt routines.

EOF

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG8.TXT[2/7/2012 11:32:08 AM]

CCPMSG8.WS4 (Concurrent CP/M System Guide, Chapter 8)

(Retyped by Emmanuel ROCHE.)

Section 8: Debugging the XIOS

This section suggests a method of debugging Concurrent CP/M, requiring CP/M-86
running on the target machine, and a remote console. Hardware-dependent
debugging techniques (ROM monitor, in-circuit emulator) available to the XIOS
implementor can certainly be used, but are not described in this manual.

Implement the first cut of the XIOS using all polled I/O devices, all
interrupts disabled (including the system TICK) and Interrupt Vectors 1, 3,
and 225 (which are used by DDT-86 and SID-86) un-initialized. Once the XIOS
functions are implemented as polling devices, change them to interrupt-driven
I/O devices, and test them one at a time. The TICK interrupt routine is
usually the last XIOS routine to be implemented.

The initial system can run without a TICK interrupt, but has no way of forcing
CPU-bound tasks to dispatch. However, without the TICK interrupt, console and
disk I/O routines are much easier to debug. In fact, if other problems are
encountered after the TICK interrupt is implemented, it is often helpful to
disable the effects of the TICK interrupt, to simplify the environment. This
is accomplished by changing the TICK routine to execute an IRET instead of
jumping to the dispatcher, and not allowing the TICK routine to perform flag
set system calls.

When a routine must delay for a specific amount of time, the XIOS usually
makes a P_DELAY system call. An example is the delay required after the disk
motor is turned on until the disk reaches operational speed. Until the TICK
interrupt is implemented, P_DELAY cannot be called, and an assembly language
time-out loop is needed. To improve performance, replace these time-outs with
P_DELAY system calls after the tick routine is implemented and debugged. See
the MOTOR_ON routine in the example XIOSes for more details.

8.1 Running under CP/M-86

To debug Concurrent CP/M under CP/M-86, CP/M-86 must use a console separate
from the console used by Concurrent CP/M. Usually, a terminal is connected to
a serial port and the console input, console output, and console status
routines in the CP/M-86 BIOS are modified to use the serial port. The serial
port thus becomes the CP/M-86 console. Load DDT-86 under CP/M-86 using the
remote console, and read the CCPM.SYS image into memory using DDT-86. The
Concurrent CP/M XIOS must not re-initialize or use the serial port hardware
that CP/M-86 is using.

It is somewhat difficult to use DDT-86 to debug an interrupt-driven virtual
console handler. Because the DDT-86 debugger operates with interrupts left

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG8.TXT[2/7/2012 11:32:08 AM]

enabled, unpredictable results can occur.

Values in the CP/M-86 BIOS memory segment table must not overlap memory
represented by the Concurrent CP/M memory partitions allocated by GENCCPM.
CP/M-86, in order to read the Concurrent CP/M system image under DDT-86,must
have in its segment tables the area of RAM that the Concurrent CP/M system is
configured to occupy. See Figure 8-1.

 +-------------------+
 CCP/M transient / | |
 program area / | |
 defined by \ | |
 GENCCPM. \ | |
 +-------------------+
 CP/M transient / | CCPM.SYS | --> CCP/M O.S. image
 program area / | |
 + +-------------------+
 described in \ | DDT86 |
 BIOS. \ | |
 +-------------------+
 | CPM.SYS | --> CP/M O.S. image
 +-------------------+
 Memory address 0: | Interrupt Vectors |
 +-------------------+

 Figure 8-1. Debugging memory layout

Any hardware that is shared by both systems is usually not accessible to CP/M-
86 after the Concurrent CP/M initialization code has executed. Typically, this
prevents you from getting out of DDT-86 and back to CP/M-86, or executing any
disk I/O under DDT-86.

The technique for debugging an XIOS with DDT-86 running under CP/M-86 is
outlined in the following steps:

1. Run DDT-86 on the CP/M-86 system.

2. Load the CCPM.SYS file under DDT-86 using the R command and the segment
address of the Concurrent CP/M system minus 8 (the length in paragraphs of the
CMD file Header Record). The segment address is specified to GENCCPM with the
OSSTART option. Set up the CS and DS registers with the A-BASE values found in
the CMD file Header Record. See the "Concurrent CP/M Operating System
Programmer's Reference Guide" description of the CMD file Header Record.

3. The addresses for the XIOS ENTRY and INIT routines can be found in the
SYSDAT DATA, at offsets 0028h for ENTRY, and 002Ch for INIT. These routines
will be at offsets 0C03h and 0C00h, relative to the data segment in DS.

4. Begin execution of the CCPM.SYS file at offset 0000h in the code segment.
Breakpoints can then be set within the XIOS for debugging.

In the following figure, DDT-86 is invoked under CP/M-86, and the file

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG8.TXT[2/7/2012 11:32:08 AM]

CCPM.SYS is read into memory, starting at paragraph 1000h. The OSSTART command
in GENCCPM was specified with a paragraph address of 1008h when the CCPM.SYS
file was generated. Using the DDT-86 D(ump) command, the Header Record of the
CCPM.SYS file is displayed. As shown, the A-BASE fields are used for the
initial CS and DS segment register values. The following lines printed by
GENCCPM also show the initial CS and DS values:

 Code starts at 1008
 Data starts at 161A

Two G(o) commands with breakpoints are shown, one at the beginning of the XIOS
INIT routine, and the other at the beginning of the ENTRY routine. These
routines can now be stepped through, using the DDT-86 T(race) command. See the
"Concurrent CP/M Operating System Programmer's Utilities Guide" for more
information on DDT-86.

A>ddt86
DDT86
-rccpm.sys,1000:0
 START END
1000:0000 1000:ED7F
-d0
1000:0000 01 12 06 08 10 12 06 00 00 02 B9 08 1A 16 B9 08
 +-+-+ +-+-+
-xcs | |
CS 0000 1008 <-------+ |
DS 0000 161A <----------------------------------+
SS 0051 .
-lds:0C00
161A:0C00 JMP 1E2E
161A:0C03 JMP 0C3B
-g,ds:0C00 ; Set a brakpoint at XIOS INIT
*161A:0C00 ; The INIT routine may now be debugged
-g,ds:0C03 ; Set a breakpoint at XIOS ENTRY
*161A:0C03 ; The XIOS function being called is ENTRY now

 Figure 8-2. Debugging CCP/M under DDT-86 and CP/M-86

When using SID-86 and symbols to debug the XIOS, extend the CCPM.SYS file to
include un-initialized data area not in the file. This ensures that the
symbols are not written over while in the debugging session. Assuming the same
CCPM.SYS file as the preceding, use the following commands to extend the file.

A>sid86
SID86
#rccpm.sys,1000:0 ; Read CCPM.SYS file
 START END
1000:0000 1000:ED7F
#xcs
CS 0000 1008
DS 0000 161A
SS 0051 .

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG8.TXT[2/7/2012 11:32:08 AM]

#sw44
161A:0044 XXXX . ; Set ENDSEG value in SYSDAT DATA
#wccpm.sys,1000:0,XXXX:0 ; Write larger CCPM.SYS file
#e ; Release memory
#rccpm.sys,1000:0 ; Read in larger file
 START END
1000:0000 YYYY:XXXX
#e*xios ; Get XIOS.SYM file
SYMBOLS
#lds:0C00 ; And start debugging
161A:0C00 JMP 1E2E
161A:0C03 JMP 0C3B
#g,ds:0C00 ; Set a brakpoint at XIOS INIT
*161A:0C00 ; The INIT routine may now be debugged
#g,ds:0C03 ; Set a breakpoint at XIOS ENTRY
*161A:0C03 ; The XIOS function being called is ENTRY now

 Figure 8-3. Debugging the XIOS under SID-86 and CP/M-86

The preceding procedure, to extend the file, only needs to be performed once
after the CCPM.SYS file is generated by GENCCPM.

EOF

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG9.TXT[2/7/2012 11:32:09 AM]

CCPMSG9.WS4 (Concurrent CP/M System Guide, Chapter 9)

(Retyped by Emmanuel ROCHE.)

Section 9: Bootstrap Adaptation

This section discusses the example bootstrap procedure for Concurrent CP/M on
the IBM Personal Computer. This example is intended to serve as a basis for
customization to different hardware environments.

9.1 Components of Track 0 on the IBM PC

Both Concurrent CP/M and CP/M-86 for the IBM Personal Computer reserve track 0
of the 5-1/4 inch floppy disk for the bootstrap routines. The rest of the
tracks are reserved for directory and file data. Track 0 is divided into two
areas, sector 1 which contains the Boot Sector, and sectors 2-8 which contain
the Loader. Figure 9-1 shows the layout of track 0 of a Concurrent CP/M boot
disk for the IBM Personal Computer.

 +--------------+
 Sector 1 | Boot Sector |
 +--------------+
 Sector 2 | Loader |
 | ... |
 | ... |
 Sector 8 | ... |
 +--------------+

 Figure 9-1. Track 0 on the IBM PC

The Boot Sector is brought into memory on reset or power-on by the IBM PC's
ROM monitor. The Boot Sector then reads in all of track 0, and transfers
control to the Loader.

The Loader is a simple version of Concurrent CP/M that contains sufficient
file processing capability to read the CCPM.SYS file, which contains the
operating system image, from the boot disk to memory. When the Loader
completes its operation, the operating system image receives control, and
Concurrent CP/M begins execution.

The Loader consists of three modules: the Loader BDOS, the Loader Program, and
the Loader BIOS. The Loader BDOS is an invariant module used by the Loader
Program to open and read the system image file from the boot disk. The Loader
Program is a variant module that opens and reads the CCPM.SYS file, prints the
Loader sign-on message, and transfers control to the system image. The Loader
BIOS handles the variant disk I/O functions for the Loader BDOS. The term
"variant" indicates that the module is implementation-specific. The layout of

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG9.TXT[2/7/2012 11:32:09 AM]

the Loader BDOS, the Loader Program, and the Loader BIOS is shown in Figure 9-
2 below. The three-entry jump table at 0900h is used by the Loader BDOS to
pass control to the Loader Program and the Loader BIOS.

Note: The Loader for the IBM PC example begins in sector 2 of track 0, and
continues up to sector 8, along with the rest of the Loader BDOS, the Loader
Program, and the Loader BIOS.

 Offsets from
 Loader BDOS
 +----------------+
 | Loader BIOS |
 +----------------+
 | Loader Program |
 0909h: +----------------+
 0906h: | JMP LOADP |
 0903h: | JMP ENTRY |
 0900h: | JMP INIT |
 +----------------+
 | Loader BDOS |
 0000h: +----------------+

 Figure 9-2. Loader Organization
 (Sectors 2 through 8, Track 0 on IBM PC)

9.2 The Bootstrap Process

The sequence of events in the IBM PC after power-on is discussed in this
section. Except for the functions that are performed by the IBM ROM monitor,
the following process can be generalized to other 8086/8088 machines.

First, the ROM monitor reads sector 1, track 0 on drive A to memory location
0000:7C00h on power-on or reset. The ROM then transfers control to location
0000:7C00h by a JMPF (jump far) instruction. The Boot Sector program uses the
ROM monitor to check for at least 160K of memory contiguous from 0. The ROM
monitor is then used to read in the remainder of track 0 to memory location
2600:0000h (152K). Control is transferred to location 2620:0000h, which is the
beginning of the second sector of track 0 and the beginning of the Loader.
(Each sector is 512 bytes, or 20h paragraphs long.) The source code for the
Boot Sector program can be found in the file BOOT.A86 on the Concurrent CP/M
distribution disk.

The exact location in memory of the Boot Sector and the Loader depend on the
hardware environment and the system implementor. However, the Boot Sector must
transfer control to the Loader BDOS with a JMPF (jump far) instruction, with
the CS register set to the paragraph address of the Loader BDOS, and the IP
register set to 0. Thus, the Loader BDOS must be placed on a paragraph
boundary. In the example loader, the Loader BDOS begins execution with a CS
register set to 2620h, and the IP register set to 0000h.

The Loader BDOS sets the DS, SS, and ES registers equal to the CS register,

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG9.TXT[2/7/2012 11:32:09 AM]

and sets up a 64-level stack (128 bytes). The three Loader modules (the Loader
BDOS, Program, and BIOS) execute using an 8080 memory model (mixed code and
data). It is assumed that the Loader BDOS, the Loader Program, and the Loader
BIOS will not require more than 64 levels of stack. If this is not true, then
the Loader Program and/or the Loader BIOS must perform a stack switch when
necessary. The jump table at 0900h is an invariant part of the Loader, though
the destination offsets of the jump instructions may vary.

After setting up the segment registers and the stack, the Loader BDOS performs
a CALLF (call far) to the JMP INIT instruction at CS:0900h. The INIT entry is
for the Loader BIOS, to perform any hardware initialization needed to read the
CCPM.SYS file. Note that the Loader BDOS does not turn interrupts on or off,
so, if they are needed by the Loader, they must be turned on by the Boot
Sector or the Loader BIOS. The example Loader BIOS executes an STI (Set
Interrupt Enable Flag) instruction in the Loader BIOS INIT routine.

The Loader BIOS returns to the Loader BDOS by executing a RETF (return far)
instruction. The Loader BDOS next initializes interrupt vector 224 (0E0h), and
transfers control to the JMP LOADP instruction at 0906h, to start execution of
the Loader Program.

The Loader Program opens and reads the CCPM.SYS file using the Concurrent CP/M
system calls supported by the Loader BDOS. The Loader Program transfers
control to Concurrent CP/M through the "JMPF (jump far) CCPM" instruction at
the end of the Loader Program, thus completing the loader sequence. The
following sections discuss the organization of the CCPM.SYS file and the
memory image of Concurrent CP/M.

9.3 The Loader BDOS and Loader BIOS Function Sets

The Loader BDOS has a minimum set of functions required to open the system
image file and transfer it to memory. These functions are invoked as under
Concurrent CP/M by executing a INT 224, and are documented in the "Concurrent
CP/M Programmer's Reference Guide". The functions implemented by the Loader
BDOS are in the following list. Any other function, if called, will return a
0FFFFh error code in registers AX and BX.

 Func# CL Function Name (CP/M-86) Concurrent CP/M
 ---------- ------------- ---------------
 14 0Eh Select Disk DRV_SET
 15 0Fh Open File F_OPEN
 20 14h Read Sequential F_READ
 26 1Ah Set DMA Offset F_DMAOFF
 32 20h Set/Get User Number F_USERNUM
 44 2Ch Set Multisector Count F_MULTISEC
 51 33h Set DMA Segment F_DMASEG

Blocking/Deblocking has been implemented in the Loader BDOS, as well as
multisector disk I/O. This simplifies writing and debugging the Loader BIOS,
and improves the system load time. File LBDOS.H86 includes the Loader BDOS.

The Loader BIOS must implement the minimum set of functions required by the

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG9.TXT[2/7/2012 11:32:09 AM]

Loader BDOS to read a file.

 Func# AL Function Name (Concurrent CP/M...)
 ---------- -------------
 9 09h IO_SELDSK (select disk)
 10 0Ah IO_READ (read physical sectors)

To invoke IO_SELDSK or IO_READ in the Loader BIOS, the Loader BDOS performs a
CALLF (call far) instruction to the jump instruction at ENTRY (0903h).

The Loader BIOS functions are implemented in the same way as the corresponding
XIOS functions. Therefore, the code used for the Loader BIOS may, with a few
exceptions, be a subset of the system XIOS code. For example, the Loader BIOS
does not use the DEV_WAITFLAG or DEV_POLL Concurrent CP/M system functions.
Certain fields in the Disk Parameter Headers and Disk Parameter Blocks can be
initialized to 0, as in Figure 9-3:

 Disk Parameter Header
 +---------------+----+----+--------+
 00h | XLT 0000 | 00 | 00 | 0000 |
 +----+-------+--+----+----+----+---+
 08h | DPB 0000 | 0000 DIRBCB |
 +----+-------+--+------------------+
 10h | DATBCB 0000 |
 +---------------+

 Disk Parameter Block
 +----------+-----+-----+-----+-----------+------
 00h | SPT | BSH | BLM | EXM | DSM | DRM...
 +-----+----+-----+-----+-----+-----+-----+-----+
 08h ..DRM | 00 | 00 | 0000 | OFF | PSH |
 +-----+----+-----+-----------+-----------+-----+
 10h | PHM |
 +-----+

 Figure 9-3. Disk Parameter Field Initialization

The Loader Program and Loader BIOS may be written as separate modules, or
combined in a single module as in the example Loader. The size of these two
modules can vary as dictated by the hardware environment and the preference of
the system implementor. The LOAD.A86 file contains the Loader Program and the
Loader BIOS. LOAD.A86 appears on the Concurrent CP/M release disk, and may be
assembled and listed for reference purposes.

The Loader Program and the Loader BIOS are in a contiguous section of the
Loader, to reduce the size of the Loader image. Grouping the variant code
portions of the Loader into a single module allows the implementation of
nonfile-related functions in the most size-efficient manner. The example
Loader BIOS implements the IO_CONOUT function, in addition to IO_SELDSK and
IO_READ. This Loader BIOS can be expanded to support keyboard input to allow
the Loader Program to prompt for user options at boot time. However, the only
Loader BIOS functions invoked by the Loader BDOS are IO_SELDSK and IO_READ,
any other Loader BIOS functions must be invoked directly by the Loader

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG9.TXT[2/7/2012 11:32:09 AM]

Program.

9.4 Track 0 Construction

Track 0 for the example IBM PC bootstrap is constructed using the following
procedure: the Boot Sector is 0200h (512) bytes long, and is assembled with
the command:

 A>asm86 boot

This results in the file BOOT.H86, which becomes a binary CMD file with the
command:

 A>gencmd boot 8080

The LOAD.A86 file, containing the Loader Program and the Loader BIOS, is
assembled using the command:

 A>asm86 load

The Loader BDOS starts at 0000h, and ends at 0900h. The LOAD module starts at
0900h, and ends at 0E00h. This equals the size of the 7 sectors remaining
after the Boot Sector. The IBM PC disk format has eight 0200h-byte (512-byte)
sectors, or 1000h (4K) bytes per track. Subtracting 0200h, the length of the
Boot Sector, we get 0E00h. The LOADER.H86 file, containing the Loader BIOS,
Loader Program, and Loader BIOS, is constructed using the command:

 A>pip loader.h86=lbdos.h86,load.h86

Next, a binary CMD file is created from LOADER.H86 with GENCMD:

 A>gencmd loader 8080

This results in the file LOADER.CMD with a header record defining the 8080
memory model. Note that this CMD file is not directly executable under any
CP/M operating system, but can be debugged as outlined below. Next, the
BOOT.CMD and LOADER.CMD files are combined into a track image. Use DDT-86 or
SID-86 to do this:

 A>ddt86 ; or sid86
 -Rboot.cmd ;
 START END ; "aaaa" is paragraph where
 aaaa:0000 aaaa:027F ; DDT-86 places BOOT.CMD.
 -Wtrack0,80,107F ; Create the 4K file TRACK0,
 ; without a CMD header record.
 -Rtrack0 ; Read the 4K TRACK0 file into memory
 START END ;
 bbbb:0000 bbbb:0FFF ; TRACK0 starts at paragraph "bbbb"
 -Rloader.cmd ; Read LOADER.CMD to another
 START END ; area of memory.
 zzzz:0000 zzzz:0E7F ; LOADER.CMD starts at paragraph "zzzz"
 -Mzzzz:80,0E7F,bbbb:0200 ; Move the Loader to where sector 2

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG9.TXT[2/7/2012 11:32:09 AM]

 ; starts in the track image.
 -Wtrack0,bbbb:0,0FFF ; Write the track image to
 ; the file TRACK0.

The final step is to place the contents of TRACK0 onto track 0. The TCOPY
example program accomplishes this with the following command:

 A>tcopy track0

Scratch diskettes should be used for testing the Boot Sector and Loader. TCOPY
is included as the source file TCOPY.A86, and needs to be modified to run in
hardware environments other than the IBM PC. TCOPY only runs under CP/M-86,
and cannot be used under Concurrent CP/M.

The Loader can be debugged separately from the Boot Sector under DDT-86 or
SID-86, using the following commands:

 A>ddt86 ; or sid86
 -Rloader.cmd ;
 START END ; "aaaa" is paragraph where
 aaaa:0000 aaaa:0E7F ; DDT-86 places the Loader.
 -Haaaa,8 ; Add 8 paragraphs, to skip over CMD
 yyyy,zzzz ; header record. aaaa + 8 = yyyy
 -Xcs ;
 CS 0000 yyyy ; Set CS for debugging
 -L0900 ; IP is set to 0 by DDT-86 or SID-86
 ...
 ...
 ...

The L0900 command lists the jumps to INIT, ENTRY, and LOADP, to verify that
the Loader Program and the Loader BIOS are at the correct offsets. Breakpoints
can now be set in the Loader Program and Loader BIOS. The Boot Sector can be
debugged in a similar manner, but sectors 2 through 8 need to contain the
Loader image if the "JMPF (jump far) LOADER" instruction in the Boot Sector is
to be executed.

9.5 Other Bootstrap Methods

The preceding three sections outline the operation and steps for constructing
a bootstrap loader for Concurrent CP/M on the IBM PC. Many departures from
this scheme are possible, and they depend on the hardware environment and the
goals of the implementor. The Boot Sector can be eliminated if the system ROM
(or PROM) can read in the entire Loader at reset. The Loader can be eliminated
if the CCPM.SYS file is placed on system tracks and the ROM can read in these
system tracks at reset. However, this scheme usually requires too many system
tracks to be practical. Alternatively, the Loader can be placed into a PROM
and copied to RAM at reset, eliminating the need for any system tracks. If the
Boot Sector and the Loader are eliminated, any initialization normally
performed by the two modules must be performed in the XIOS initialization
routine.

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG9.TXT[2/7/2012 11:32:09 AM]

9.6 Organization of CCPM.SYS

The CCPM.SYS file, generated by GENCCPM, and read by the Loader, consists of
the seven CON files and any included RSP files. The CCPM.SYS file is prefixed
by a 128-byte CMD file Header Record, which contains the following two Group
Descriptors:

 G-Form G-Length A-Base G-Min G-Max
 ------ -------- ------ ----- -----
 01h xxxx 1008h xxxx xxxx
 02h xxxx (varies) xxxx xxxx

 Figure 9-4. Group Descriptors -- CCPM.SYS Header Record

The first Group Descriptor represents the O.S. Code Group of the CCPM.SYS
file, and the second represents the Data. The preceding Code Group Descriptor
has an A-Base load address at paragraph 1008h, or "paragraph:byte" address of
1008:0000h. The A-Base value in the Data Group Descriptor varies according to
the modules included in this group by GENCCPM. The load address value shown
above is only an example. The CCPM.SYS file can be loaded and executed at any
address where there is sufficient memory space. The entire CCPM.SYS file
appears on disk as shown in Figre 9-5.

 Image in Memory Image in CCPM.SYS
 (High Memory)
 ENDSEG -->+---------------+
 | Disk Buffers | (End of File)
 +---------------+<--------------+---------------+
 | RSPs | | |
 | (TMP, CLOCK) | | |
 RSPSEG -->+---------------+ | |
 ^ | O.S. | | |
 | | Table Space | | CCPM.SYS |
 System | | | DATA GROUP |
 Data | XIOS Code | 0C00h | |
 Area | and Data | (XIOS) | |
 | +---------------+<------------->| |
 v | O.S. Data | | |
 +---------------+<------------->+---------------+
 | O.S. Code | XIOS | CCPM.SYS |
 | | (CS:,DS:) | CODE GROUP |
 OSSEG -->+---------------+ +---------------+
 Low Memory | CCPM.SYS |
 | HEADER RECORD |
 +---------------+
 (Start of File)

 Figure 9-5. CCPM System Image and the CCPM.SYS File

The CCPM.SYS file is read into memory by the Loader, beginning at the address

file:///C|/...rvation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSG9.TXT[2/7/2012 11:32:09 AM]

given by Code Group A-Base (in the example shown above, paragraph address
1008h), and control is passed to the Supervisor INIT function when the Loader
Program executes a JMPF (jump far) instruction to 1008:0000h. The Supervisor
INIT must be entered with CS set to the value found in the A-Base field of the
Code Group Descriptor, the IP register equal to 0, and the DS register equal
to the A-Base found in the Data Group Descriptor.

EOF

file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSGA.TXT[2/7/2012 11:32:09 AM]

CCPMSGA.WS4 (Concurrent CP/M SYstem Guide, Appendix A)

(Retyped by Emmanuel ROCHE.)

Appendix A: Removable media

All disk drives are classified under Concurrent CP/M as having either
permanent or removable media. Removable-media drives support media changes;
permanent drives do not. Setting the high-order bit of the CKS field of the
drive's DPB marks the drive as a permanent-media drive. See Section 5.5, "Disk
Parameter Block".

The BDOS file system makes two important distinctions between permanent and
removable-media drives. If a drive is permanent, the BDOS always accepts the
contents of physical record buffers as valid. It also accepts the results of
hash table searches on the drive.

BDOS handling of removable-media drives is more complex. Because the disk
media can be changed at any time, the BDOS discards directory buffers before
performing most system calls involving directory searches. By re-reading the
disk directory, the BDOS can detect media changes. When the BDOS reads a
directory record, it computes a checksum for the record, and compares it to
the current value in the drive's checksum vector. If the values do not match,
the BDOS assumes that the media has been changed, aborts the system call
routine, and returns an error code to the calling process. Similarly, the BDOS
must verify an un-successful hash table search for a removable-media drive by
accessing the directory. The point to not is that the BDOS can only detect a
media change by reading the directory.

Because of the frequent necessity of directory access on removable-media
drives, there is a considerable performance overhead on these drives, compared
to permanent drives. Another disadvantage is that, since the BDOS can detect
media removal only by a directory access, inadvertantly changing media during
a disk write operation results in writing erroneous data onto the disk.

If, however, the disk drive and controller hardware can generate an interrupt
when the drive door is opened, another option for preventing media change
errors becomes available. By using the following procedure, the performance
penalty for removable-media drives is practically eliminated.

1. Mark the drive as permanent by setting the value of the CKS field in the
drive's DPB to 8000h plus the total number of directory entries divided by 4.
For example, you would set the CKS for a disk with 96 directory entries to
8018h.

2. Write a Door Open interrupt routine, that sets the DOOR field in the XIOS
Header and the DPH Media Flag for any drive signalling an open door condition.

The BDOS checks the XIOS Header DOOR flag on entry to all disk-related XIOS
function calls. If the DOOR flag is not set, the BDOS assumes that the

file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSGA.TXT[2/7/2012 11:32:09 AM]

removable media has not been changed. If the DOOR flag is set (0FFh), the BDOS
checks the Media Flag in the DPH of each currently logged-in drive. It then
reads the entire directory of the drive to determine whether the media has
been changed before performing any operations on the drive. The BDOS also
temporarily reclassifies the drive as a removable-media drive, and discards
all directory buffers, to force all subsequent directory-related operations to
access the drive.

In summary, using the DOOR and Media Flag facilities with removable-media
drives offers two important benefits. First, performance of removable-media
drives is enhanced. Second, the integrity of the disk system is greatly
improved, because changing media can at no time result in a write error.

EOF

file:///C|/...vation/Emmanuel%20Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20System%20Guide/CCPMSGB.TXT[2/7/2012 11:32:10 AM]

CCPMSGB.WS4 (Concurrent CP/M System Guide, Appendix B)

(Retyped by Emmanuel ROCHE.)

Appendix B: Graphics implementation

Concurrent CP/M can support graphics on any virtual console assigned to a
physical console that has graphics capabilities. Support is provided in the
operating system for GSX, that has it own separate I/O system, the GIOS. The
GIOS does its own hardware initialization to put a physical console in
graphics mode. A graphics process that is in graphics mode cannot run on a
background console, because this would cause the foreground console to change
to graphics mode. Also, whenever the foreground console is initialized for
graphics, you cannot switch the screen to another virtual console. The
following points need to be kept in mind when writing an XIOS for a system
that will support graphics.

- IO_SCREEN (function 30) will be called by the GIOS when it wants to change
a virtual console to graphics or alphanumeric mode. If the virtual console is
in the background and graphics is requested, IO_SCREEN must flagwait the
process. If the virtual console is in the foreground, change the screen mode,
and allow the process to continue. You must reserve at least one flag for each
virtual console for this purpose. See Section 6.1, "Screen I/O functions", for
more information on IO_SCREEN.

- IO_SWITCH (function 7) must flagset any process that was flagwaited by
IO_SCREEN when its virtual console is switched to the foreground. When a
foreground console is in graphics mode, IO_SWITCH will not be called, because
PIN calls Function 30 (Get), ignoring the switch key if the screen is in
graphics mode. Thus, while a graphics process is running in graphics mode in
the foreground, it is not possible to switch screens. For more information on
IO_SWITCH, see Section 4.2, "Console I/O functions".

- IO_STATLINE (function 8) must not display the status line on a console that
is in graphics mode. This can be done by checking the same variable in the
screen structure that Function 30 returns as the screen mode. For more
information on IO_STATLINE, see Section 4.2, "Console I/O functions".

EOF

	CCPMSG0
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Concurrent CPM System Guide\CCPMSG0.TXT

	CCPMSG1
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Concurrent CPM System Guide\CCPMSG1.TXT

	CCPMSG2
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Concurrent CPM System Guide\CCPMSG2.TXT

	CCPMSG3
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Concurrent CPM System Guide\CCPMSG3.TXT

	CCPMSG4
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Concurrent CPM System Guide\CCPMSG4.TXT

	CCPMSG5
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Concurrent CPM System Guide\CCPMSG5.TXT

	CCPMSG6
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Concurrent CPM System Guide\CCPMSG6.TXT

	CCPMSG7
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Concurrent CPM System Guide\CCPMSG7.TXT

	CCPMSG8
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Concurrent CPM System Guide\CCPMSG8.TXT

	CCPMSG9
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Concurrent CPM System Guide\CCPMSG9.TXT

	CCPMSGA
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Concurrent CPM System Guide\CCPMSGA.TXT

	CCPMSGB
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Concurrent CPM System Guide\CCPMSGB.TXT

