
file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG0.TXT[2/7/2012 11:29:34 AM]

CCPMPRG0.WS4 (Concurrent CP/M Programmer's Reference Guide, Chapter 0)

(Retyped by Emmanuel ROCHE.)

Digital Research
Concurrent CP/M
Operating System
Release 3.1
Programmer's Reference Guide

First Edition: January 1984

Foreword

Concurrent CP/M is a multi- or single-user operating system targeted
specifically for the Intel 8086/8088 family of microprocessors. It supports
multiple CP/M programming environments, each implemented on a virtual console.
A different task runs concurrently in each environment.

This manual describes the invariant programming interface to Concurrent CP/M.
It supports the applications programmer who must create applications programs
that run in the Concurrent CP/M environment.

Section 1 offers an overview of the entire operating system.

Section 2 describes the structure of the Concurrent CP/M file system.

Section 3 explains the format, structure, and uses of the transient commands
in the Conncurrent CP/M environment.

Section 4 explains the creation of transient command files in the Concurrent
CP/M environment.

Section 5 documents the structure and creation of resident system processes or
resident command files permanently installed in the Concurrent CP/M
environment.

Section 6 describes all the Concurrent CP/M system calls.

Concurrent CP/M is supported and documented through four manuals:

- The "Concurrent CP/M Operating System User's Guide" (hereinafter cited as
"Concurrent CP/M User's Guide") documents the user's interface to Concurrent
CP/M, explaining the various features used to execute applications programs
and Digital Research utility programs.

- The "Concurrent CP/M Operating System Programmer's Reference Guide"
(hereinafter cited as "Concurrent CP/M Programmer's Reference Guide")
documents the applications programmer's interface to Concurrent CP/M,
explaining the internal file structure and system entry points, information

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG0.TXT[2/7/2012 11:29:34 AM]

that is essential for creating applications programs that run in the
Concurrent CP/M environment.

- The "Concurrent CP/M Operating System Programmer's Utilities Guide"
(hereinafter cited as "Programmer's Utilities Guide") documents the Digital
Research utility programs that programmers use to write, debug, and verify
applications programs written for the Concurrent CP/M environment.

- The "Concurrent CP/M Operating System System Guide" (hereinafter cited as
"Concurrent CP/M System Guide") documents the internal, hardware-dependent
structures of Concurrent CP/M.

Table of Contents

1 Concurrent CP/M system overview

 1.1 Introduction
 1.2 Supervisor (SUP)
 1.3 Real-Time Monitor (RTM)
 1.3.1 Process Descriptor
 1.3.2 Queue management
 1.3.3 System timing management
 1.4 Memory module (MEM)
 1.5 Basic Disk Operating System (BDOS)
 1.6 Character I/O module (CIO)
 1.7 Virtual console screen management
 1.8 Extended Input/Output System (XIOS)
 1.9 Terminal Message Processes (TMP)
 1.10 Transient programs
 1.11 System call calling conventions
 1.12 SYSTAT: System status

2 The Concurrent CP/M file system

 2.1 File system overview
 2.1.1 File-access system calls
 2.1.2 Drive-related system calls
 2.2 File naming convention
 2.3 Disk drive and file organization
 2.4 File Control Block definition
 2.4.1 FCB initialization and usage
 2.4.2 File attributes
 2.4.3 Interface attributes
 2.5 User Number conventions
 2.6 Directory labels and XFCBs
 2.7 File passwords
 2.8 File date and time stamps: SFCBs
 2.9 File pen modes
 2.10 File security
 2.11 Extended file locking
 2.12 Compatibility attributes

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG0.TXT[2/7/2012 11:29:34 AM]

 2.13 Multisector I/O
 2.14 Concurrent file access
 2.15 File byte counts
 2.16 Record blocking and deblocking
 2.17 Reset, access, and free drive
 2.18 BDOS Error handling

3 Transient commands

 3.1 Transient Program load and exit
 3.1.1 Shared code
 3.1.2 8087 support
 3.1.3 8087 Exception handling
 3.2 Command file format
 3.3 Base Page initialization
 3.4 Parent/Child relationships
 3.5 Direct video mapping

4 Command file generation

 4.1 Transient execution models
 4.1.1 The 8080 Memory model
 4.1.2 The Small Memory model
 4.1.3 The Compact Memory model
 4.2 GENCMD
 4.3 Intel Hexadecimal file format

5 Resident System Process generation

 5.1 Introduction to RSPs
 5.2 RSP Memory models
 5.2.1 8080 Model RSP
 5.2.2 Small Model RSP
 5.3 Multiple copies of RSPs
 5.3.1 8080 Model
 5.3.2 Small Model
 5.3.3 Small Model with Shared Code
 5.4 Creating and initializing an RSP
 5.4.1 The RSP Header
 5.4.2 The RSP Process Descriptor
 5.4.3 The RSP User Data Area
 5.4.4 The RSP Stack
 5.4.5 The RSP Command Queue
 5.4.6 Multiple processes within an RSP
 5.5 Developing and debugging an RSP

6 System calls

 6.1 System call summary
 6.2 Concurrent CP/M system calls

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG0.TXT[2/7/2012 11:29:34 AM]

 6.2.1 Console I/O system calls
 6.2.2 Device system calls
 6.2.3 Disk drive system calls
 6.2.4 File-access system calls
 6.2.5 List device I/O system calls
 6.2.6 Memory system calls
 6.2.7 Process/Program system calls
 6.2.8 Queue system calls
 6.2.9 System information system calls

Appendixes

A System call summary by function number
B ASCII and hexadecimal conversions
C Error codes
D ECHO.A86 listing
E 8087 Exception handling
Glossary
Index

Tables

1-1. Registers used by system calls

2-1. File system calls
2-2. Valid filename delimiters
2-3. Filetype conventions
2-4. Drive capacity
2-5. FCB field definitions
2-6. File Attribute definitions
2-7. BDOS interface attributes F5' and F6'
2-8. Directory Label field definitions
2-9. XFCB field definitions
2-10. Password protection modes
2-11. Compatibility Attribute definitions
2-12. BDOS Physical Errors
2-13. BDOS Extended Errors
2-14. BDOS Error Codes
2-15. BDOS Physical and Extended Erros

3-1. Group Descriptors
3-2. Group Descriptor fields

4-1. Concurrent CP/M Memory Models
4-2. Intel Hex field definitions

6-1. System call categories
6-2. Concurrent CP/M system calls
6-3. System call summary
6-4. Data structures index

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG0.TXT[2/7/2012 11:29:34 AM]

6-5. CX error code reports
6-6. ACB field definitions
6-7. C_RAWIO calling values
6-8. Console buffer field definitions
6-9. C_READSTR line-editing characters
6-10. DPB field definitions
6-11. PFCB definitions
6-12. FCB initialization
6-13. MCB field definitions
6-14. MPB field definitions
6-15. APB field definitions
6-16. Command line buffer field definitions
6-17. PD field definitions
6-18. UDA field definitions
6-19. CPB field definitions
6-20. QPB field definitions
6-21. QD field definitions
6-22. SYSDAT Table data fields
6-23. TOD field definitions

A-1. System call summary by function number

B-1. ASCII symbols
B-2. ASCII conversion table

Figures

1-1. Concurrent CP/M virtual/physical environments
1-2. Concurrent CP/M functional modules

2-1. FCB -- File Control Block
2-2. Directory Label format
2-3. XFCB -- Extended File Control Block
2-4. Directory Record with SFCB
2-5. SFCB subfields
2-6. Disk system reset

3-1. CMD file Header Record
3-2. Group Descriptor format
3-3. Concurrent CP/M Base Page values

4-1. Initial program stack
4-2. Concurrent CP/M 8080 Memory Model
4-3. Concurrent CP/M Small Memory Model
4-4. Concurrent CP/M Compact Memory Model
4-5. Intel Hexadecimal file format

5-1. 8080 and Small RSP Models
5-2. RSP Head format
5-3. RSP command queue message
5-4. RSP Data Segment

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG0.TXT[2/7/2012 11:29:34 AM]

6-1. ACB -- Assign Control Block
6-2. Console Buffer format
6-3. Drive, R/O, or Login Vector structure
6-4. DPB -- Disk Parameter Block
6-5. Disk free space field format
6-6. PFCB -- Parse File Control Block
6-7. MCB -- Memory Control Block
6-8. MPB -- Memory Parameter Block
6-9. MFPB -- M-FREE Parameter Block
6-10. APB -- Abort Parameter Block
6-11. CLI Command Line buffer
6-12. PD -- Process Descriptor
6-13. UDA -- User Data Area
6-14. CPB -- Call Parameter Block
6-15. QPB -- Queue Parameter Block
6-16. QD -- Queue Descriptor
6-17. BDOS Version Number format
6-18. BIOS Descriptor format
6-19. Operating System Version Number format
6-20. SERIAL Number format
6-21. SYSDAT Table
6-22. TOD Time-Of-Day structure

Listings

6-1. Memory Control Block definition
6-2. Memory Parameter Block definition
6-3. Queue Parameter Block definition

D-1. ECHO.A86

E-1. 8087 Exception handling

EOF

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG1.TXT[2/7/2012 11:29:34 AM]

CCPMPRG1.WS4 (Concurrent CP/M Programmer's Reference Guide, Chapter 1)

(Retyped by Emmanuel ROCHE.)

Section 1: Concurrent CP/M system overview
--

1.1 Introduction

Concurrent CP/M is a multi- or single-user, multitasking operating system that
lets you run multiple programs simultaneously by initiating tasks on two or
more terminals or virtual consoles. Applications programs have access to
system calls used by Concurrent CP/M to control the multiprogramming
environment. As a result, Concurrent CP/M supports extended features, such as
communication among and synchronization of independently running processes.
Figure 1-1 depicts the relationships between application programs, virtual
environments, virtual consoles, and the user terminal.

 +---------+----------------+
 | Logical : Physical |
 | OS : I/O system |
 +-------------+--\+------+......+-----\+---------+ |
 | Application |--/| Virtual :-----/| Virtual | |
 | program | | environment : : | console | |
 | N |/--| N :/-----| N | |
 +-------------+\--+------+......+\-----+---------+ |
 : : |
 +-------------+--\+------+......+-----\+---------+ |
 | Application |--/| Virtual :-----/| Virtual | |
 | program | | environment : : | console | |
 | 2 |/--| 2 :/-----| 2 | |
 +-------------+\--+------+......+\-----+---------+ |
 | : |
 +-------------+--\+------+......+----------------------\+----------+
 | Application |--/| Virtual :----------------------/| Physical | |
 | program | | environment : : | | console |
 | 1 |/--| 1 :/----------------------| |
 +-------------+\--+------+......+\----------------------+----------+
 | : |
 +-------------+--\+------+......+-----\+---------+ |
 | Terminal |--/| Virtual :-----/| Virtual | |
 | Message | | environment : : | console | |
 | Process 0 |/--| 0 :/-----| 0 | |
 +-------------+\--+------+......+\-----+---------+ |
 | : |
 +---------+-------+-+------+
 /\ /\ /\ | |
 || || || | |
 +---------------------+| || || | |
 |+---------------------+ || || | |

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG1.TXT[2/7/2012 11:29:34 AM]

 || +--------------+| || | | |
 || |+--------------+ || | |
 || || +-----+| | |
 || || |+-----+ | |
 || || || | |
 \/ \/ \/ \ /
 +-------+ +-------+ +-------+ +----------+
 | Disk | | Disk | | Disk | | Hardcopy |
 | drive | | drive |...| drive | | printer |
 | A | | B | | P | +----------+
 +-------+ +-------+ +-------+

 Figure 1-1. Concurrent CP/M virtual/physical environments

In the Concurrent CP/M environment, there is an important distinction between
a program and a process. A program is simply a block of code residing
somewhere in memory or on disk; it is essentially static. A process, on the
other hand, is a dynamic entity. You can think of it as a logical machine that
executes not only the program code, but also the operating system routines
necessary to support the program's functions.

When Concurrent CP/M loads a program, it creates a process associated with the
loaded program. Subsequently, it is the process, rather than the program, that
obtains access to the system's resources. Thus, Concurrent CP/M monitors the
process, not the program. This distinction is a subtle one, but vital to your
understanding of system operation as a whole.

Processes running under Concurrent CP/M fall into two categories: transient
processes and Resident System Processes (RSPs). Transient processes run
programs loaded into memory from disk in response to a user command or system
calls made by another process. Resident System Process run code that is a part
of the operating system itself. RSPs become an integral part of the operating
system image during system generation. They are immediately available to
perform operating system tasks. For example, the CLOCK process is an RSP that
maintains the time of day within the operating system.

The following list briefly summarizes Concurrent CP/M's capabilities.

- Interprocess communication, synchronization, and mutual exclusion functions
are provided by system queues.

- A logical interrupt mechanism using flags allows Concurrent CP/M to
interface with any physical interrupt structure.

- System timing function enable process running under Concurrent CP/M to
compute elapsed times, delay execution for specified intervals, and to access
and set the current date and time.

- Shared file system allows multiple programs to access common data files
while maintaining data integrity.

- Shared code support eliminates program loading of another copy of the same
program, and conserves memory space.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG1.TXT[2/7/2012 11:29:34 AM]

- 8087 support takes advantage of fast 8087 math instructions.

- Virtual console handling lets a single user run multiple programs, each in
its own console environment.

- Real-time process control allows communications and data acquisition without
loss of information.

Functionally, Concurrent CP/M is composed of several distinct modules, as
shown in Figure 1-2.

 +------------+ +------------+
 | Aplication | | Terminal |
 | processes | | Message |
 | | | Process XX |
 +------------+ +------------+
 || ||
 \/ \/
 +---+
 | OS Supervisor |
 +---+
 || || || ||
 \/ \/ \/ \/
 +-----------+ +-------+ +---------+ +---------+
 | Character | | Basic | | Memory | | Real- |
 | I/O | | Disk | | pool | | Time |
 | module | | OS | | manager | | Monitor |
 +-----------+ +-------+ +---------+ +---------+
 : : : : || || ||
 V V V V || || ||
 +---------+ || || ||
 | Virtual | || || ||
 | console | || || ||
 | session | || || ||
 | manager | || || ||
 +---------+ || || ||
 || || || ||
 \/ \/ \/ \/
 +---+
 | : : : |
 | : Extended I/O System : |
 | : : : |
 +-------+---+
 ^ | ^ ^
 | | +-----------+ |
 | +--------+ | |
 V V V +-----+-----+
 +---------+ +----------+ +----------+ | Interrupt |
 | System | | Hardcopy | | Diskette | | control |
 | console | | printer | | drives | | logic |
 +---------+ +----------+ +----------+ +-----------+

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG1.TXT[2/7/2012 11:29:34 AM]

 Figure 1-2. Concurrent CP/M functional modules

- The Supervisor (SUP)
- The Real-Time Monitor (RTM)
- The Memory Management module (MEM)
- The Character I/O module (CIO)
- The Virtual Console Screen Manager
- The Basic Disk Operating System (BDOS)
- The Extended I/O System (XIOS)
- The Terminal Message Process (TMP)

The SUP module handles miscellaneous system calls, such as returning the
version number or the address of the System Data Area. SUP also calls other
system calls, when necessary.

The RTM module monitors the execution of running processes, and arbitrates
conflicts for the system's resources.

The MEM module allocates and frees memory upon demand from executing
processes.

The CIO module handles all character I/O for console and list devices in the
system.

The Virtual Console Screen Manager extends the CIO to support virtual console
environments.

The BDOS is the hardware-independent module that contains the logically
invariant portion of the file system for Concurrent CP/M. The BDOS file system
is explained in detail in Section 2, "The Concurrent CP/M file system".

The XIOS is the hardware-dependent module that defines the interface of
Concurrent CP/M to a specific hardware environment. See the "Concurrent CP/M
System Guide" for an explanation of the XIOS.

When Concurrent CP/M is executing a single program on a single virtual
console, its speed approximates that of CP/M-86. But, when multiple processes
are running on several virtual consoles, the execution of each individual
process slows according to the proportion of I/O to CPU resources it requires.
A process that performs a large amount of I/O in proportion to computing
exhibits only minor speed degradation. This also applies to a process that
performs a large amount of computing, but runs concurrently with other
processes that are largely I/O-bound. On the other hand, significant speed
degradation occurs when more than one compute-bound process is running.

1.2 Supervisor (SUP)

The Supervisor module (SUP) manages the interface between processes and the
operating system kernel. It also manages internal communication between
operating system modules. All system calls, whether they originate from a
transient process or internally from another system module, go through a

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG1.TXT[2/7/2012 11:29:34 AM]

common table-driven function interface in SUP. SUP also handles the P_LOAD
(Load Process) and P_CLI (Call Command Line Interpreter) system calls.

1.3 Real-Time Monitor (RTM)

The Real-Time Monitor (RTM) is the real-time multitasking nucleus of
Concurrent CP/M. The RTM performs process dispatching, queue management, flag
management, device polling, and system timing tasks. User programs can also
call many of the RTM system calls used to perform these tasks.

1.3.1 Process dispatching

Although Concurrent CP/M is a multiprocess operating system, only one process
has access to the CPU resource at any given time. Unless you specifically
write a program to communicate or synchronize execution with other processes,
a process is unaware of other processes competing for system resources.

The primary task of the RTM is to transfer, or dispatch, the CPU resource from
one process to another. The RTM module called the Dispatcher performs this
task. The RTM maintains two data structures, the Process Descriptor (PD) and
the User Data Area (UDA), for each process running under Concurrent CP/M. The
Dispatcher uses these data structures to save and restore the current state of
each running process.

Each process in the system resides in one of three states: ready, running, or
suspended. A ready process is one that is waiting for the CPU resource only. A
running process is one that the CPU is currently executing. A suspended
process is one that is waiting for a system resource or specified event, such
as the occurrence of an interrupt, an indication that polled hardware is
ready, or the expiration of a delay period.

Any existing process is represented on a system list. The Dispatcher removes a
process from one list, and places it on another. The Process Descriptor of the
currently running process is the first entry on the Ready List. Other
processes ready to run are represented on the Ready List, in order of
priority. Suspended processes are on other system lists, depending on why the
processes were suspended.

A dispatch operation can be summarized as follows:

1. The Dispatcher suspends the process from execution, and stores its current
state in the Process Descriptor and the UDA.

2. The Dispatcher places the process on an appropriate system list, depending
on why the Dispatcher was called. For example, if a process is to delay for a
certain number of system ticks, its Process Descriptor is placed on the Delay
List. When a process releases a resource, the process is usually placed back
on the Ready List. If another process is waiting for the resource, that
process is taken off its current system list and also placed on the Ready
List.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG1.TXT[2/7/2012 11:29:34 AM]

3. The highest priority process on the Ready List is chosen for execution. If
two or more processes have the same priority, the process that has waited the
longest executes first.

4. The Dispatcher restores the state of the selected process from its Process
Descriptor and UDA, and gives it the CPU resource.

5. The process executes until it needs a busy resource, a resource needed by
another process becomes available, or an interrupt occurs. At this point, a
dispatch occurs, allowing another process to run.

Only processes on the Ready List are eligible for selection during dispatch.
By definition, a process is on the Ready List if it is waiting only for the
CPU resource. Processes waiting for other system resources cannot execute
until the resources that they require are available. Concurrent CP/M blocks a
process from executing if it is waiting for:

 - a queue message, so it can complete a Q_READ operation.

 - space to become available in a queue, so it can complete a Q_WRITE
operation.

 - a console or list device to become available.

 - a specified number of system clock ticks before it can be removed
from the system Delay List.

 - an I/O event to complete.

These situations are discussed in greater detail in the following sections.

A running process not needing a resource and not releasing one runs until an
interrupt causes a dispatch. While not all interrupts cause dispatches, the
system clock generates interrupts every clock tick, and forces a dispatch each
time. Clock ticks usually occur 60 times a second (approximately every 16.67
milliseconds in the USA, every 20 milliseconds, or 50 times a second, in
Europe), and allow time sharing within a real-time environment.

Concurrent CP/M is a priority-driven system. This means that, during a
dispatch, the operating system gives the CPU resource to the process with the
best priority. The Dispatcher allots equal shares of the system's resources to
processes with the same priority. With priority dispatching, the system never
passes control to a lower-priority process if there is a higher-priority
process on the Ready List. Because high-priority, compute-bound processes tend
to monopolize the CPU resource, it is best to reduce their priority, to avoid
degrading overall system performance.

1.3.2 Queue management

Queues perform several critical functions for processes running under
Concurrent CP/M. A process can use a queue for communicating with another

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG1.TXT[2/7/2012 11:29:34 AM]

process, synchronizing its execution with that of another process, and for
exclusion of other processes from protected system resources. A process can
make, open, delete, read from, or write to a queue with system calls similar
to those used to manage disk files.

Each system queue consists of two parts: the queue descriptor, and the queue
buffer. Concurrent CP/M implements these special data structures as memory
files that contain room for a specified number of fixed-length messages.

When the Q_MAKE system call creates a queue, this queue is assigned a unique
8-character name. As the name "queue" implies, messages are read from a queue
on a first-in, first-out basis.

A process can read from or write to a queue conditionally or unconditionally.
If the queue is empty when a conditional read is performed, or full when a
conditional write is performed, the system returns an error code to the
calling process. On the other hand, if a process attempts an unconditional
queue operation in these circumstances, the system suspends it from exection
until the operation becomes possible.

More than one process can wait to read or write a queue message from the same
queue at the same time. When these operations become possible, the system
restores the highest priority process first; processes with the same priority
are restored on a first-come, first served basis.

Mutual exclusion queues are a special type of queue under Concurrent CP/M.
They contain one message of zero length, and their names follow a convention,
beginning with the uppercase letters "MX". A mutual exclusion queue acts as a
binary semaphore, ensuring that only one process uses a resource at any time.

Access to a resource protected by a mutual exclusion queue takes place as
follows:

1. A process issues an unconditional Q_READ call to the MX queue protecting
the resource, thereby suspending itself if the message is not available.

2. When the message becomes available, the process accesses the protected
resource. Note that, from the time the process issues the unconditional read,
any other process attempting to access the same resource is suspended.

3. The process writes the zero-length message back to the queue when it has
finished using the protected resource, thus freeing the resource for other
processes.

As an example, the system mutual exclusion queue, MXdisk, ensures that
processes cannot access the file system simultaneously. Note that the BDOS,
not the application software, executes the preceding series of queue calls.
Therefore, the mutual exclusion process is transparent to the programmer, who
is only responsible for originating the disk system calls.

Mutual exclusion queues differ from normal queues in another way. When a
process reads a message from a mutual exclusion queue, the RTM notes the
Process Descriptor address within the Queue Descriptor. This establishes the
owner of the queue message. If the operating system aborts the process while

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG1.TXT[2/7/2012 11:29:34 AM]

it owns the mutual exclusion message, the RTM automatically writes the message
back to all mutual exclusion queues whose messages are owned by the aborted
process. This grants other processes access to protected resources owned by
the aborted process.

1.3.3 System timing functions

Concurrent CP/M's timing system calls include keeping the time of day and
delaying the execution of a process for a specified period of time. An
internal process called CLOCK provides the time of day for the system. This
process issues DEV_WAITFLAG system calls on the system's one second flag, Flag
2. When the XIOS Tick Interrupt Handler sets this flag, it initiates the CLOCK
process, which then increments the internal time and date.

Subsequently, the CLOCK process makes another DEV_WAITFLAG call, and suspends
itself until the flag is set again. Concurrent CP/M provides system calls that
allow you to set and access the internal date and time. In addition, the file
system uses the internal time and date to record when a file was updated,
creater or last accessed.

The P_DELAY system call replaces the typical programmed delay loop for
delaying process execution. P_DELAY requires that Flag 1, the system tick
flag, be set approximately every 16.67 milliseconds, or 60 times a second in
the USA (20 milliseconds and 50 times a second in Europe); the XIOS Tick
Interrupt Handler also sets this flag. When a process makes a P_DELAY system
call, it specifies the number of ticks for which the operating system is to
suspend it from execution. The system maintains the address of the Process
Descriptor for the process on an internal Delay List, along with its current
delay tick count. When a DEV_SETFLAG call occurs, setting Flag 1, the tick
count is decremented. When the delay count goes to zero, the system removes
the process from the Delay List, and places it on the Ready List.

Note: The length of a tick might vary from installation to installation. For
instance, in Europe, a tick is commonly 20 milliseconds, yielding 50 ticks per
second. The description of the P_DELAY system call in Section 6, "System
calls", describes how to determine the correct number of ticks to delay 1
second.

1.4 Memory module (MEM)

Concurrent CP/M supports an extended, fixed partition model of memory
management; the Memory Module handles all memory management system calls. In
practice, the exact method that the operating system uses to allocate and free
memory is transparent to the application program. Therefore, you should take
care to write code independent of the memory management model; use only
Concurrent CP/M specific memory system calls described in Section 6, "System
calls".

1.5 Basic Disk Operating System (BDOS)

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG1.TXT[2/7/2012 11:29:34 AM]

Except for auxiliary device support, the Concurrent CP/M BDOS is an upward-
compatible version of the single-tasking CP/M-86 BDOS. It handles file
creation and deletion, facilitates sequential or random file access, and
allocates and frees disk space. In most cases, CP/M-86 programs that make BDOS
calls for I/O can run under Concurrent CP/M without modification. Concurrent
CP/M's BDOS is extended to provide support for multiple virtual consoles and
list devices. In addition, the file system is extended to provide services
required in a multitasking environment. The major extensions to the file
system are:

- File locking. Files opened under Concurrent CP/M cannot be opened or deleted
by other tasks. This feature prevents accidental conflicts with other tasks.

- Shared access to files. As a special option, independent users can open the
same file in shared or unlocked mode. Concurrent CP/M supports record locking
and unlocking commands for files opened in this mode, and protects files
opened in shared mode from deletion by other tasks.

- Date Stamps. The BDOS optionally supports two time and date stamps, one
recording when a file is updated, and the other recording when the file was
created or last accessed.

- Password Protection. The password protection feature is optional at either
the file or drive level. The operator or applications program assigns disk
drive passwords, while application programs can assign file protection
passwords in several modes.

- Extended Error Module. Besides the default error mode, Concurrent CP/M has
two optional error-handling modes that return an error code to the calling
process, in the event of an unrecoverable disk error.

1.6 Character I/O module (CIO)

The Character I/O module handles all console and list I/O. Under Concurrent
CP/M, every character I/O device is associated with a data structure called a
Console Control Block (CCB) or a List Control Block (LCB). These data
structures reside in the XIOS. The CCB contains the current owner, status
information, line editing variables, and the root of a linked list of Process
Descriptors (PDs) that are waiting for access. More than one process can wait
for access to a single console. These processes are maintained on a linked
list of Process Descriptors in priority order. The LCBs contain similar
information about the list devices. See the "Concurrent CP/M System Guide" for
more information about LCBs and CCBs.

1.7 Virtual console screen management

Virtual console screen management is coordinated by four separate modules: the
CIO, the PIN (Physical INput) and VOUT (Virtual OUTput) processes, and the

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG1.TXT[2/7/2012 11:29:34 AM]

XIOS. The line editing associated with the C_READSTR call is performed in the
CIO. The PIN process handles keyboard input for all the virtual consoles; it
also traps and implements the Ctrl-C, Ctrl-S, Ctrl-Q, Ctrl-P, and Ctrl-O
functions. The VOUT process spools console output from processes running on
background buffered mode consoles, and handshakes with the PIN process to
display spooled console output when the background console is brought to the
foreground. The XIOS decides which special keys represent the virtual
consoles, and returns a special code from IO_CONIN when you request a screen
switch. The XIOS also implements any screen saving and restoring when screens
are switched. See the "Concurrent CP/M System Guide" and the discussion of the
IO_SWITCH function.

The PIN process reads the keyboard by directly calling the XIOS IO_CONIN
function. This is the only place in the operating system IO_CONIN is called.
The PIN scans the input stream from the keyboard for switch screen requests
and the special function keystrokes Ctrl-C, Ctrl-S, Ctrl-Q, Ctrl-P, and Ctrl-
O. All other keyboard input is written to the VINQ (Virtual console INput
Queue) associated with the foreground virtual console. The data in the VINQ
becomes a type-ahead buffer for each virtual console, and is returned to the
process attached to that console as it performs console input.

When PIN sees a Ctrl-C, it calls P_ABORT to abort the process attached to the
virtual console, flushes the type-ahead buffer in the VINQ, turns off Ctrl-S,
and performs a DRV_RESET call for each logged-in drive. The P_ABORT call
succeeds when the Process Keep flag is not ON, saving the Terminal Message
Processes (refer to P_CREATE for information on the Process Descriptor). The
DRV_RESET calls affect only the removable media drives, as specified in the
CKS field of the Disk Parameter Blocks in the XIOS (refer to the "Concurrent
CP/M System Guide" for further details on Disk Parameter Blocks).

Ctrl-S stops any output to the screen. Ctrl-S stays set when a virtual console
is switched to the background.

Ctrl-O discards any console output to the virtual console. Ctrl-O is turned
off when any other key is subsequently pressed, except for the keys
representing the virtual consoles.

Ctrl-P echoes console output to the default list device specified in the LIST
field of the process descriptor attached to the virtual console. If the list
device is attached to a process, a "PRINTER BUSY" message appears.

All of the above control keys can be disabled by the C_MODE call. When one of
the above control characters is disabled with C_MODE or when the process
owning the virtual console is using the C_RAWIO call, the PIN does not act on
the control character, but instead writes it to the VINQ. It is thus possible
to read any of the above control characters from an application program. These
control keys are discussed in depth in the "Concurrent CP/M User's Guide".

1.8 Extended Input/Output System (XIOS)

The XIOS module is similar to the CP/M-86 Basic Input/Output System (BIOS)
module, but it is extended in several ways. Primitive operations, such as

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG1.TXT[2/7/2012 11:29:34 AM]

console I/O, are modified to support multiple virtual consoles. Several new
primitive system calls, such as DEV_POLL, support Concurrent CP/M's additional
features, including elimination of wait loops for real-time I/O operations.

1.9 Terminal Message Processes (TMP)

The Concurrent CP/M Terminal Message Processes (TMP) are resident system
processes that accept command lines from the virtual consoles, and call the
Command Line Interpreter (CLI) to execute them. The TMP prints the prompt on
the virtual consoles.

Each virtual console has an independent TMP defining that console's
environment, including default disk, user number, printer, and console.

1.10 Transient programs

Under Concurrent CP/M, a transient program is one that is not system-resident.
The system must load such programs from disk into available memory each time
they execute. The command file of a transient program is identified by the
filetype CMD. When you enter a command at the console, the operating system
searches on disk for the appropriate CMD file, loads it, and initiates it.
Concurrent CP/M supports three different execution models for transient
programs: the 8080 Model, the Small Model, and the Compact Model. Sections
4.1.1 through 4.1.3 describe these models in detail.

1.11 System call calling conventions

When a Concurrent CP/M process makes a system call, it loads values into the
registers shown in Table 1-1, and initiates Interrupt 224 (via the INT 224
instruction), reserved by the Intel Corporation for this purpose.

 Table 1-1. Registers used by system calls

 Entry Parameters:
 Register CL: System call number
 DL: Byte parameter
 or DX: Word parameter
 or Address: Offset
 DS: Address: Segment

 Returned Values:
 Register AL: Byte return
 or AX: Word return
 or Address: Offset
 ES: Address: Segment
 BX: Same as AX
 CX: Error code

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG1.TXT[2/7/2012 11:29:34 AM]

Concurrent CP/M preserves the contents of registers SI, DI, BP, SP, SS, DS,
and CS through the operating system calls. The ES register is preserved when
it is not used to hold a return segment value. Error codes returned in CX are
shown in Table 6-5, "CX error codes".

1.12 SYSDAT: System status

The SYSTAT utility is a development tool that shows the internal state of
Concurrent CP/M. SYSTAT describes memory allocation, current processes, system
queue activity, and many informative parameters associated with these system
data structures. Furthermore, SYSTAT presents two views: either a static
snapshot of system activity, or a continuous, real-time window into Concurrent
CP/M.

You can specify SYSTAT in one of two modes. If you know which display you
want, you can specify it in the invocation, using an option shown in the menu
below. If you do not specify an option, select a display from this menu by
typing:

 A>systat <cr>

The screen clears, and the main menu appears:

 Which Option?

 H(elp)
 M(emory)
 O(verview)
 P(rocesses - All)
 Q(ueues)
 U(ser Processes)
 C(onsoles)
 E(xit)
 ->_

Press the appropriate letter to obtain a display.

When you select H(elp), the HELP file demonstrates the proper syntax and
available syntax:

 To use SYSTAT with the menu: At the system prompt type SYSTAT <CR>

 To use SYSTAT without the menu: At the system prompt type the command

 SYSTAT [option] -or-
 SYSTAT [option C] -or-
 SYSTAT [option C ##]

 -where-

 -> option =
 M(emory) P(rocesses) O(verview) C(onsoles)

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG1.TXT[2/7/2012 11:29:34 AM]

 U(ser) P(rocesses) Q(ueues) H(elp)

 -> C = Continuous display
 ## = 1-2 digits indicating the period,
 in seconds, between display refreshes.

 Type any letter to return to the menu.

The M, P, Q, and U and C options ask you if you prefer a continuous display.
If you type "y", Concurrent CP/M asks for a time interval, in seconds, and
then displays a real-time window of information. If you type "n", a static
snapshot of the requested information appears. In either case, press any key
to return to the menu.

The M(emory) option displays all memory potentially available to you, but it
does not display restricted memory. The partitions are listed in memory-
address order. Length parameter is shown in paragraph values.

The O(verview) option displays an overview of the system parameters, as
specified at system generation time. The display is not continuous.

The P(rocess) option displays all system processes, and the resources they are
using.

The Q(ueues) option displays all system queues, listing queue readers,
writers, and owners.

The U(ser Processes) option displays only user-initiated processes, in the
same format as the P(rocess) option.

The C(onsoles) option displays console information; that is, background,
foreground, buffered, suspended, purging, Ctrl-Q, and so on.

The E(xit) option returns you to system level from the menu, as does Ctrl-C.

EOF

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

CCPMPRG2.WS4 (Concurrent CP/M Programmer's Reference Guide, Chapter 2)

(Retyped by Emmanuel ROCHE.)

Section 2: The Concurrent CP/M file system
--

The Basic Disk Operating System (BDOS) file system supports from one to
sixteen logical drives. Each logical drive has two regions: a directory area
and a data area. The directory area defines the files that exist on the drive
and identifies the data area space that belongs to each file. The data area
contains the file data defined by the directory.

The directory area consists of sixteen logically independent directories.
These directories are identified by user numbers 0 through 15. During
execution, a process runs with a system parameter called the user number set
to a single value. The user number specifies the current active directories
for all drives on the system. For example, the Concurrent CP/M DIR utility
displays only files within a directory selected by the current user number.

The file system automatically allocates directory and data area space when a
process creates or extends a file, and returns previously allocated space to
free space when a process deletes or truncates a file. If no directory or data
space is available for a requested operation, the BDOS returns an error code
to the calling process. The allocation and retrieval of directory and data
space is transparent to the calling process. As a result, you need not be
concerned with directory and drive organization when using the file system
calls.

An eight-character filename and a three-letter filetype field identify each
file in a directory. Together, these fields must be unique for each file
within a directory. However, files with the same filename and filetype can
reside in different user directories without conflict. Processes can also
assign an eigth-character password to a file, to protect it from unauthorized
access.

All system calls that involve file operations specify the requested file by
filename and filetype. For some system calls, multiple files can be specified
by a technique called "ambiguous reference". This technique uses question
marks and asterisk as wildcards characters to give the file system a pattern
to match as it searches a directory.

The file system supports two categories of system calls: file-access system
calls and drive-related system calls. The file-access system calls have
mnemonics beginning with "F_", and the drive-related system calls have
mnemonics beginning with "DRV_". The next two sections introduce the file
system calls.

2.1.1 File-access system calls

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

Most of the file-access system calls can be divided into two groups: system
calls that operate on files within a directory and system calls that operate
on records within a file. However, the file-access category also includes
several miscellaneous functions that either affect the execution of other
file-access system calls or are commonly used with them.

System calls in the first file-access group include calls to search for one or
more files, delete one or more files, rename or truncate a file, set file
attributes, assign a password to a file, and compute the size of a file. Also
included in this group are system calls to open a file, to create a file, and
to close a file.

The second file-access group includes system calls to read or write records to
a file, either sequentially or randomly, by record position. BDOS read and
write system calls transfer data in 128-byte units, which is the basic record
size of the file system. This group also includes system calls to lock and
unlock records, and thereby allows multiple processes to have coordinated
access to records within a commonly accessed file.

Before making read, write, lock, or unlock system calls for a file, you must
first open or create the file. Creating a file has the side effect of opening
the file for record access. In addition, because Concurrent CP/M supports
three different modes of opening files (Locked, Unlocked, and Read-Only),
there can be other restrictions on system calls in this group that are related
to the open mode. For example, you cannot write to a file that you have opened
in Read-Only mode.

After a process has opened a file, access to the file by other processes is
restricted until the file is closed. Again, the exact nature of the
restrictions depends on the open mode. However, in all cases, the file system
does not allow a process to delete, rename, or change a file's attributes if
another process has opened the file. Thus, the F_CLOSE system call performs
two steps to terminate record access to a file. It permanently records the
current status of the file in the directory, and removes the open-file
restrictions limiting access to the file by other processes.

The miscellaneous file-access system calls include calls to set the current
user number, set the DMA address, parse an ASCII file specification, and set a
default password. This group also includes system calls to set the BDOS
Multisector Count and the BDOS Error Mode. The BDOS Multisector Count
determines the number of 128-byte records to be processed by the read, write,
lock, and unlock system calls. The Multisector Count can range from 1 to 128;
the default value is one. The BDOS Error Mode determines whether the file
system intercepts certain errors or returns on all errors to the calling
process.

2.1.2 Drive-related system calls

BDOS drive-related system calls select the default drive, compute a drive's
free space, interrogate drive status, and assign a directory label to a drive.
A drive's directory label controls whether the file system enforces file

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

password protection for files in the directory. It also specifies whether the
file system is to perform date and time stamping of files on the drive.

This category also includes system calls to reset specified drives, and to
control whether other processes can reset particular drives. When a drive is
reset, the next operation on the drive re-activates it by logging it in.
Logging in a drive initializes the drive for directory and file operations.
The purpose of a drive reset call is to prepare for a media change on drives
that support removable media. Under Concurrent CP/M, drive reset calls are
conditional. A process cannot reset a drive if another process has a file open
on the drive.

The following table summarizes the BDOS file system calls.

 Table 2-1. File system calls

 Mnemonic Description
 -------- -----------
 DRV_ACCESS Access drive
 DRV_ALLOCVEC Get drive allocation vector
 DRV_ALLRESET Reset all drives
 DRV_DPB Get Disk Parameter Block address
 DRV_GET Get default drive
 DRV_GETLABEL Get Directory Label
 DRV_FLUSH Flush data buffers
 DRV_FREE Free drive
 DRV_LOGINVEC Return Logged In Vector
 DRV_RESET Reset drive
 DRV_ROVEC Return R/O Vector
 DRV_SETLABEL Set Directory Label
 DRV_SET Set (select) drive
 DRV_SETRO Set drive to Read-Only
 DRV_SPACE Get free space on drive

 F_ATTRIB Set file's attributes
 F_CLOSE Close file
 F_DELETE Delete file
 F_DMASEG Set DMA Segment
 F_DMAGET Get DMA Segment
 F_DMAOFF Set DMA Offset
 F_ERRMODE Set BDOS Error Mode
 F_LOCK Lock record in file
 F_MAKE Make a new file
 F_MULTISEC Set BDOS Multisector Count
 F_OPEN Open file
 F_PARSE Parse filename
 F_PASSWD Set default password
 F_RANDREC Return record number for file Read-Write
 F_READ Read record sequentially from file
 F_READRAND Read random record from file
 F_RENAME Rename file
 F_SIZE Compute file size
 F_SFIRST Directory search first
 F_SNEXT Directory search next

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

 F_TIMEDATE Return file time/date stamps password mode
 F_TRUNCATE Truncate file
 F_UNLOCK Unlock record in file
 F_USERNUM Set/Get directory User Number
 F_WRITE Write record sequentially into file
 F_WRITERAND Write random record into file
 F_WRITEXFCB Write file's XFCB
 F_WRITEZF Write random record with Zero Fill

The following section contains information on important topics related to the
file system. Read these sections carefully before attempting to use the system
calls described individually in Section 6, "System calls".

2.2 File naming conventions

Under Concurrent CP/M, a file specification consists of four parts: a drive
specifier, the filename field, the filetype fields, and the file password
field. The general format for a command line specification is shown below:

 {d:}filename{.typ}{;password}

The drive specifier field specifies the drive where the file is located. The
filename and filetype fields identify the file. The password field specifies
the password if a file is password-protected.

The drive, type, and password fields are optional, and delimiters are required
only specifying their associated fields. The drive specifier can be assigned a
letter from A to P, where the actual drive letters supported on a given system
are determined by the XIOS implementation. When the drive letter is not
specified, the current default drive is assumed.

The filename and password fields can contain one to eight non-delimiter
characters. The filetype field can contain one to three non-delimiter
characters. All three fields are left justified and padded with blanks, if
necessary. Omitting the optional type or password fields implies a field
specification of all blanks.

Under Concurrent CP/M, the P_CLI system call interprets ASCII command lines
and loads programs. The P_CLI system call makes F_PARSE system calls to parse
file specifications from a command line. F_PARSE recognizes certain ASCII
characters as delimiters when it parses a file specification. These characters
are shown in Table 2-2.

 Table 2-2. Valid filename delimiters

 ASCII Hex equivalent
 ----- --------------
 null 00h
 space 20h
 ENTER 0Dh ("<--+" key)
 tab 09h ("-->|" key)
 : 3Ah (colon)

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

 . 2Eh (full stop)
 ; 3Bh (semicolon)
 = 3Dh (equal sign)
 , 2Ch (comma)
 [5Bh (left square bracket)
] 5Dh (right square bracket)
 < 3Ch (less sign)
 > 3Eh (more sign)
 | 7Ch (vertical bar)

The F_PARSE system call also excludes all control characters from the file
specification fields, and translate all lowercase letters to uppercase.

Avoid using parentheses and the backslash character, "\", in the filename and
filetype fields, because they are commonly used delimiters. Use asterisk and
question mark characters, "*" and "?", only to make an ambiguous file
reference. When F_PARSE encounters an asterisk in a filename or filetype
field, it pads the remainder of the field with question marks. For example, a
filename of "X*.*" is parsed to "X???????.???". The BDOS F_SFIRST, F_SNEXT,
and F_DELETE system calls match a question mark in the filename or filetype
fields to the corresponding position of any directory entry belonging to the
current user number. Thus, a search operation for "X???????.???" finds all the
files in the current user directory beginning with a "X". Most other file-
access BDOS system calls treat the presence of a question mark in the filename
or filetype fields as an error.

It is not mandatory to follow the file naming conventions of Concurrent CP/M
when you create or rename a file with BDOS system calls directly from an
application program. However, the conventions must be used if the file is to
be accessed from a command line. For example, the P_CLI system call cannot
locate a command file in the directory if its filename or filetype field
contains a lowercase letter.

As a general rule, the filetype field names the generic category of a
particular file, and the filename field distinguishes individual files within
each category. Although they are generally arbitrary, Table 2-3 lists come of
the generic filetype categories that have been established.

 Table 2-3. Filetype conventions

 Filetype Description
 -------- -----------
 A86 8086 assembler source file
 ASC ASCII characters file
 ASM 8080 assembler source file
 BAK Back-up file
 BAS BASIC source file
 BSX BASEX source file
 CBL COBOL source file
 CMD 8086 command file
 COM 8080 command file
 CON CCP/M Module
 DAT Data file
 DRD DR DRAW file

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

 DRG DR GRAPH file
 FCL FOCAL source file
 H86 8086 hex file
 HEX 8080 hex file
 INT Intermediate file
 L86 8086 library file
 LIB 8080 library file
 LSP Lisp source file
 LOG Logo source file
 LST List file
 PAS Pascal source file
 PLI PL/I source file
 PRL Page ReLocatable file
 PRN Printer file
 REL Relocatable file
 RSP Resident System Process
 SPR System Page Relocatable
 STC STOIC source file
 SUB SUBMIT file
 SYM Symbol file
 SYS System file
 TEX TEX formatter source file
 WS4 WordStar 4 word processor filec
 $$$ Temporary file

2.3 Disk drive and file organization

The file system can support up to 16 logical drives, identified by the letters
A through P. A logical drive usually corresponds to a physical drive on the
system, particularly for physical drives that support removable media such as
floppy disks. High-capacity hard disks, however, are commonly divided into
multiple logical drives. If a disk contains system tracks reserved for the
boot loader, these tracks precede the tracks of the disk mapped by the logical
drive. In this manual, references to drives mean logical drives, unless
explicitly stated otherwise.

The maximum file size supported on a drive is 32 megabytes. The maximum
capacity of a drive is determined by the data block size specified for the
drive in the XIOS. The data block size is the basic unit in which the BDOS
allocates space to files. Table 2-4 displays the relationship between data
block size and total drive capacity.

 Table 2-4. Drive capacity

 Data block size Maximum drive capacity
 --------------- ----------------------
 1 KB 256 KB
 2 KB 64 MB
 4 KB 128 MB
 8 KB 256 MB
 16 KB 512 MB

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

Each drive is divided into two regions: a directory area and a data area. The
directory area contains from one to sixteen blocks located at the beginning of
the drive. The actual number is set in the XIOS. Directory entries residing in
this area define the files that exist on the drive. In addition, the directory
entries belonging to a file identify the data blocks in the drive's data area
that contains the file's records. The directory area is logically subdivided
into sixteen independent directories identified as user 0 through 15. Each
independent directory shares the actual directory area on the drive.

Each disk file may consist of a set of up to 262,144 (40000h) 128-byte
records. Each record of a file is identified by its position in the file. This
position is called the record's Random Record Number. If a file is created
sequentially, the first record has a position of zero, while the last record
has a position one less than the number of records in the file. Such a file
can be read sequentially, beginning at record zero, or randomly by record
position. Conversely, if a file is created randomly, records are added to the
file by specific position. A file created in this way is called "sparse" if
positions exist within the file where a record has not been written.

The BDOS automatically allocates data blocks to a file, to contain the file's
records on the basis of the record positions consumed. Thus, a sparse file
that contains two records, one at position zero, the other at position
262,143, consumes only two data blocks in the data area. Sparse files can be
created and accessed only randomly, not sequentially. Note that any data block
allocated to a file is permanently allocated until the file is deleted or
truncated. These are the only mechanisms supported by the BDOS for releasing
data blocks belonging to a file.

Source files under Concurrent CP/M are treated as a sequence of ASCII
characters, where each line is followed by a carriage return/line-feed
sequence, 0Dh followed by 0Ah. Thus, a single 128-byte record could contain
several lines of source text. The end of an ASCII file is denoted by a Ctrl-Z
character (1Ah), or a real end-of-file, returned by the BDOS read system call.
Note that these source file conventions are not supported in the file system
directly, but are followed by Concurrent CP/M utilities such as TYPE and ASM-
86. In addition, Ctrl-Z characters embedded within other types of files, such
as CMD files, do not signal end-of-file.

2.4 File Control Block definition

The File Control Block (FCB) is a system data structure that serves as an
important channel for information exchange between a process and BDOS file-
access system calls. A process initializes an FCB to specify the drive
location, filename and filetype fields, and other information that is required
to make a file-access call. For example, in an F_OPEN system call, the FCB
specifies the name and location of the file to be opened. In addition, the
file system uses the FCB to maintain the current state and record position of
an open file. Some file-access system calls use special fields within the FCB
for invoking options. Other file-access system calls use the FCB to return
data to the calling program. All BDOS random I/O system calls require the
calling process to specify the Random Record Number in a 3-byte field at the
end of the FCB.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

When a process makes a BDOS file-access system call, it passes an FCB address
to the BDOS. This address has two 16-bit components: register DX (which
contains the offset) and register DS (which contains the segment). The length
of the FCB data area depends on the BDOS system call. For most system calls,
the minimum length is 33 bytes. For the F_READRAND, F_WRITERAND, F_WRITEZF,
F_LOCK, F_UNLOCK, F_RANDREC, F_SIZE, and F_TRUNCATE system calls, the minimum
FCB length is 36 bytes. When the F_OPEN or F_MAKE system calls open a file in
Unlocked mode, the FCB must bet at least 35 bytes long. Figure 2-1 displays
the FCB data structure in two formats.

 +----+------+------+----+----+----+----+--------+----+----+----+----+
 | DR | NAME | TYPE | EX | CS | RS | RC | D0-D15 | CR | R0 | R1 | R2 |
 +----+------+------+----+----+----+----+--------+----+----+----+----+
 00 01... 09... 12 13 14 15 16... 32 33 34 35

 +----+----+----+----+----+----+----+----+
 00h | DR | F1 F2 F3 F4 F5 F6 F7 |
 +----+----+----+----+----+----+----+----+
 08h | F8 | T1 T2 T3 | EX | CS | RS | RC |
 +----+----+----+----+----+----+----+----+
 10h | D0 D1 D2 D3 D4 D5 D6 D7 |
 +----+----+----+----+----+----+----+----+
 18h | D8 D9 D10 D11 D12 D13 D14 D15|
 +----+----+----+----+----+----+----+----+
 20h | CR | R0 | R1 | R2 |
 +----+----+----+----+

 Figure 2-1. FCB -- File Control Block

The fields in the FCB are defined as follows:

Table 2-5. FCB field definitions

Format: Field
 Definition

DR
Drive Code (0-16).
0 -> use default drive for file
1 -> auto disk select drive A
2 -> auto disk select drive B
16 -> auto disk select drive P

F1...F8
Contains the filename in ASCII uppercase, with high bit = 0, F1', ..., F8'
denote the high-order bit of these positions, and called "attribute bits".

T1,T2,T3
Contains the filetype in ASCII uppercase, with high bit = 0, T1', T2', and T3'
denote the high-order bit of these positions, and are also called "attribute
bits".

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

T1' = 1 -> Read-Only file,
T2' = 1 -> System file,
T3' = 1 -> File has been archived.

EX
Contains the current extent number. This field is initialized to 0 by the
calling process, but it can range from 0 to 31 during file I/O.

CS
Contains the FCB checksum value for open FCBs.

RS
Reserved for internal system use.

RC
Record count for extent EX. This field takes on values from 0 to 255 (values
greater than 128 imply a record count of 128).

D0...D15
Normally, filled in by Concurrent CP/M, and reserved for system use. Also used
to specify the new filename and filetype, with the F_RENAME system call.

CR
Current record to read or write in a sequential file operation. This field is
normally set to zero by the calling process when a file is opened or created.

R0,R1,R2
Optional Random Record Number, in the range 0-262,143 (0-3FFFFh). R0,R1,R2
constitute an 18-bit value, with low byte R0, middle byte R1, and high byte
R2.

Note: The 2-byte File ID is returned in bytes R0 and R1 of the FCB when a file
is successfully opened in Unlocked mode (refer to Section 2.10, "File
security").

2.4.1 FCB initialization and usage

The calling process must initialize bytes 0 through 11 of the referenced FCB
before making the following file-access system calls: F_ATTRIB, F_DELETE,
F_MAKE, F_OPEN, F_RENAME, F_SFIRST, F_SIZE, F_SNEXT, F_TIMEDATE, F_TRUNCATE,
and F_WRITEXFCB. Normally, the DR field specify the drive location of the
file, and the name and type fields specify the name of the file. You must also
set the EX field of the FCB before calling F_MAKE, F_OPEN, F_SFIRST, and
F_WRITEXFCB. Except for the F_WRITEXFCB system call, you can usually set this
field to zero. Note that the F_RENAME system call requires the calling process
to place the new filename and filetype in bytes D1 through D11.

The remaining file-access calls that use FCBs require an FCB that has been
initialized by a prior file-access system call. For example, the F_SNEXT
system call expects an FCB initialized by a prior F_SFIRST call. In addition,
the F_LOCK, F_READ, F_READRAND, F_UNLOCK, F_WRITERAND, and F_WRITEZF system
calls require an FCB that has been activated for record operations. Under

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

Concurrent CP/M, only the F_OPEN and F_MAKE system calls can activate an FCB.

If you intend to process a file sequentially from the beginning, using the
F_READ and F_WRITE system calls, you must set the CR field to zero before you
make your first read or write call. In addition, when you make an F_LOCK,
F_READRAND, F_UNLOCK, F_WRITERAND, or F_WRITEZF system call, you must set
bytes R0 through R2 of the FCB to the requested Random Record Number. The
F_TRUNCATE system call also requires the FCB random record field to be
initialized.

The F_SFIRST, F_SNEXT, and F_DELETE system calls support multiple or ambiguous
reference. In general, a question mark in the filename, filetype, or EX fields
matches all values in the corresponding positions of directory entries during
a directory search operation. File directory entries maintained in the
directory area of each disk drive have the same format as FCBs, except for
byte 0, which contains the file's user number, and bytes 32 through 35, which
are not present. The search system calls, F_SFIRST and F_SNEXT, also recognize
a question mark in the FCB DR field, and, if specified, they return all
directory entries on the disk, regardless of user number, including empty
entries. A directory FCB that begins with 0E5h is an empty or erased directory
entry.

When the F_OPEN and F_MAKE system calls activate an FCB for record operations,
they copy the FCB's matching directory entry from disk, excluding byte 0, into
the FCB in memory. In addition, these system calls compute and store a
checksum value in the CS field of the FCB. During subsequent record operations
on the file, the file system uses this checksum field to verify that the FCB
has not been modified by the calling process in an illegal way. Thus, all
read, write, lock, and unlock operations on a file must specify a valid
activated FCB; otherwise, the BDOS returns a checksum error. The BDOS performs
this checking to protect the integrity of the file system. In general, you
should not modify bytes 0 through 31 of an open FCB, except to set interface
attributes (see Section 2.4.3, "Interface attributes"). Other restrictions
related to activated FCBs are discussed in Section 2.10, "File security".

The BDOS updates the memory copy of the FCB during file processing, to
maintain the current position within the file. During file operations, the
BDOS also updates the memory copy of the FCB, to close the allocation of data
blocks to the file. At the termination of file processing, the F_CLOSE system
call permanently records this information on disk.

Note that the BDOS does not record the data blocks allocated to a file during
write operations in the disk directory until the calling process issues an
F_CLOSE call. Therefore, a process that creates or modifies files must close
the files at the termination of files processing. Otherwise, data might be
lost.

2.4.2 File attributes

The high-order bits of the FCB filename (F1', ..., F8') and filetype fields
(T1', T2', T3') are called "attribute bits". Attribute bits are 1-bit Boolean
fields, where "1" indicates "ON" or "TRUE", and "0" indicates "OFF" or

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

"FALSE". Attribute bits indicate two kinds of attributes within the file
system: file attributes, and interface attributes. The file attributes are
described in this section. Section 2.4.3 describes interface attributes.

The file attribute bits, F1', ..., F4', and T1', T2', T3', indicate that a
file has a defined attribute. These bits are recorded in a file's directory
FCB. File attributes can be set or reset only by the F_ATTRIB system call.
When the F_MAKE system call creates a file, it initializes all file attributes
to zero. A process can interrogate file attributes in an FCB activated by the
F_OPEN system call, or in directory FCBs returned by the F_SFIRST and F_SNEXT
system calls.

Note: The file system ignores the file attribute bits when it attempts to
locate a file in the directory.

The file system defines file attributes T1', T2', and T3' as follows:

Table 2-6. File Attribute definitions

Format: Attribute
 Definition

T1': Read-Only attribute
This attribute, if set, prevents write operations to a file.

T2': System attribute
This attribute, if set, identifies the file as a Concurrent CP/M system file.
The Concurrent CP/M DIR utility does not usually display System files. In
addition, user-zero system files can be accessed on a Read-Only basis from
other user numbers.

T3': Archive attribute
User-written archive programs use this attribute. When an archive program
copies a file to back-up storage, it sets the archive attribute of the copied
files. The file system automatically resets the archive attribute of a
directory entry when writing to the directory entry's region of a file. An
archive program can test this attribute in each of the file's directory
entries, using the F_SFIRST and F_SNEXT system calls. If all directory entries
have the archive attribute set, the file has not been modified since the
previous archive. The Concurrent CP/M PIP utility supports file archiving.

File attributes F1' through F4' of command files are defined as Compatibility
Attributes under Concurrent CP/M (see Section 2.12, "Compatibility
attributes"). However, for all other files, attributes F1' through F4' are
available for definition by the user.

2.4.3 Interface attributes

The interface attributes are F5', F6', F7', and F8'. These attributes cannot
be used as file attributes. Interface attributes F5' and F6' request options
for BDOS file-access system calls. Table 2-7 lists the F5' and F6' attribute

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

definitions for the system calls that define interface attributes. Note that
the F5' = 0 and F6' = 0 definitions are not listed if their definition simply
implies the absence of the associated option.

Table 2-7. BDOS interface attributes F5' and F6'

Format: System call
 Attribute

F_ATTRIB
F5' = 1 : Maintain extended file lock
F6' = 1 : Set file byte count

F_CLOSE
F5' = 1 : Partial close
F6' = 1 : Extend file lock

F_DELETE
F5' = 1 : Delete file XFCBs only, and maintain extended file lock

F_LOCK
F5' = 0 : Exclusive Lock
F5' = 1 : Shared Lock
F6' = 0 : Lock existing records only
F6' = 1 : Lock logical records

F_MAKE
F5' = 0 : Open in Locked mode
F5' = 1 : Open in Unlocked mode
F6' = 1 : Assign password to file

F_OPEN
F5' = 0 : Open in Locked mode
F5' = 1 : Open in Unlocked mode
F6' = 0 : Open in mode specified by F5'
F6' = 1 : Open in Read-Only mode

F_RENAME
F5' = 1 : Maintain extended file lock

F_TRUNCATE
F5' = 1 : Maintain extended file lock

F_UNLOCK
F5' = 1 : Unlock all locked records

Section 6, "System calls", details the above interface attribute definitions
for each of the preceding system calls. Note that the BDOS always resets
interface attributes F5' and F6' before returning to the calling process.
Interface attributes F7' and F8' are reserved for internal use by the file
system.

2.5 User Number conventions

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

The Concurrent CP/M user facility divides each drive directory into sixteen
logically independent directories, designated as "user 0" through "user 15".
Physically, all user directories share the directory area of a drive. In most
other aspects, however, they are independent. For example, files with the same
name can exist on different user numbers of the same drive with no conflicts.
However, a single file cannot extend across more than one user number.

Only one user number is active for a specific process at one time. For this
process, the current user number applies to all drives on the system.
Furthermore, the FCB format does not contain a field that can override the
current user number. As a result, all file and directory operations reference
only directory entries associated with the current user number.

However, it is possible for a process to access files on different user
numbers, by setting the user number to the file's user number with the
F_USERNUM system call before issuing the BDOS call. However, if a process
attempts to read or write to a file under a user number different from the
user number that was active when the file was opened, the file system returns
an FCB checksum error.

When the P_CLI system call initiates a transient process or Resident System
Process (described in detail in Section 5, "Resident System Processes
generation"), it sets the user number to the default value established by the
process issuing the P_CLI system call. The sending process is usually the TMP.
However, the sending process can be another process, such as a transient
program that makes a P_CHAIN call. A transient process can change its user
number by making an F_USERNUM call. Changing the user number in this way does
not affect the command line user number displayed by the TMP. Thus, when a
transient process that has changed its user number terminates, the TMP
restores and displays the original user number in the command line prompt when
it regains control.

User 0 has special properties under Concurrent CP/M. The file system
automatically opens files listed under user zero but requested under another
user number if the file is not present under the current user number, and if
the file on user zero has the system attribute (T2') set. This convention
allows utilites, including overlays and any other commonly accessed files, to
reside on user zero, but remains available to other users. This eliminates the
need to copy commonly used utilities to all user numbers on a directory, and
gives the Concurrent CP/M manager control over which files are directly
accessible to the different user areas.

2.6 Directory Labels and XFCBs

The file system includes three special types of FCBs: the directory label, the
XFCB (described in this section), and the SFCB (described in detail in Section
2.8, "File date and time stamps: SFCBs").

The directory label specifies for its drive whether password support is to be
activated, and if date and time stamping for files is to be performed. The

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

format of the directory label is shown below in Figure 2-2.

 +----+------+------+----+----+----+----+----------+-----+-----+
 | DR | Name | Type | DL | S1 | S2 | RC | Password | TS1 | TS2 |
 +----+------+------+----+----+----+----+----------+-----+-----+
 00 01... 09... 12 13 14 15 16... 25... 29...

 Figure 2-2. Directory Label format

The fields in the Directory Label are defined as follows:

Table 2-8. Directory Label field definitions

Format: Field
 Definition

DR
Drive Code (0-16).
0 -> use default drive for file
1 -> auto disk select drive A
2 -> auto disk select drive B
16 -> auto disk select drive P

Name
Directory Label name.

Type
Directory Label type.

DL
Directory Label data byte.
Bit 7 : Enable password support
Bit 6 : Perform access time stamping
Bit 5 : Perform update time stamping
Bit 4 : Peform create time stamping
Bit 0 : Directory Label exists
(Bit references are right to left, relative to 0.)

S1, S2, RC
Reserved for system use.

Password
8-byte password field (encrypted).

TS1
4-byte creation time stamp field.

TS2
4-byte update time stamp field.

Only one directory label can exist in a drive's directory area. The directory
label name and type fields are not used to search for a directory label; they

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

can be used to identify a disk.

You can use the DRV_SETLABEL system call to create a directory label or update
its fields. This system call can also assign a password to a directory label.
The directory label password, if assigned, cannot be circumvented, whereas
file password protection on a drive is an option controlled by the directory
label. Thus, access to the directory label password provides the ability to
bypass password protection on the drive.

Note: The file system provides no specific system call to read the directory
label FCB directly. However, you can read the directory label data byte
directly with the BDOS system call DRV_GETLABEL. In addition, you can use the
BDOS search system calls F_SFIRST and F_SNEXT to find a directory label. You
can identify the directory label by a value of 32 (20h) in byte 0 of the
directory FCB.

The XFCB is an Extended FCB that can optionally be associated with a file in
the directory. If present, it contains the file's password and password mode.
The format of the XFCB is shown below in Figure 2-3.

 +----+------+------+----+----+----+----+----------+-----+------+
 | DR | Name | Type | PM | S1 | S2 | RC | Password | RESERVED |
 +----+------+------+----+----+----+----+----------+-----+------+
 00 01... 09... 12 13 14 15 16... 25... 29...

 Figure 2-2. Directory Label format

The fields in the XFCB are defined as follows:

Table 2-9. XFCB field definitions

Format: Field
 Definition

DR
Drive Code (0-16).
0 -> use default drive for file
1 -> auto disk select drive A
2 -> auto disk select drive B
16 -> auto disk select drive P

Name
Filename field.

Type
Filetype field.

PM
Password Mode.
Bit 7 : Read mode
Bit 6 : Write mode

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

Bit 5 : Delete mode
(Bit references are right to left, relative to 0.)

S1, S2, RC
Reserved for system use.

Password
8-byte password field (encrypted).

Reserved
8-byte area reserved for future use.

An XFCB can be created only on a drive that has a directory label, and only if
the directory label enables password protection. For drives in this state,
there are two ways to create an XFCB for a file: with the F_MAKE system call
or the F_WRITEXFCB system call. The F_MAKE system call creates an XFCB if the
calling process requests that a password be assigned to the created file. The
F_WRITEXFCB system call creates an XFCB when it is called to assign a password
to an existing file. You can identify an XFCB in the directory by a value of
16 (10h) + N in byte 0 of the FCB, where N equals the user number.

2.7 File passwords

There are two ways to assign passwords to a file: by the F_MAKE system call or
by the F_WRITEXFCB system call. You can also change a file's password or
password mode with the F_WRITEXFCB system call if you can supply the original
password. Note that you cannot change a file's password or password mode if
password protection for the drive is disabled by the directory label. However,
even if you cannot supply a file's password, you can delete a file's XFCB,
thereby removing its password protection, if password protection is disabled
on the drive.

The Concurrent CP/M BDOS provides password protection in one of three modes
when password support is enabled by the directory label. Table 2-10 shows the
difference in access level allowed to BDOS system calls when the password is
not supplied.

 Table 2-10. Password protection mode

 Mode Access level allowed without password
 ---- -------------------------------------
 (1) Read Cannot be read, modified, or deleted.
 (2) Write Can be read, but not modified or deleted.
 (3) Delete Can be read and modified, but not deleted.

If a file is password protected in Read mode, a process must supply the
password to open the file. Processes cannot write to a file protected in
Write mode without the password. A file protected in Delete mode allows read
and write access, but a process must specify the password to delete or
truncate the file, rename the file, or to modify the file's attributes. Thus,
password protection in mode 1 implies mode 2 and 3 protection, and mode 2

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

protection implies mode 3 protection. All three modes require the user to
specify the password to delete or truncate the file, rename the file, or to
modify the file's attributes.

If a process supplies the correct password or the directory label disables
password protection, then access to the BDOS system calls is the same as for a
file that is not password-protected. In addition, the F_SFIRST and F_SNEXT
system calls are not affected by file passwords. The following BDOS system
calls test for passwords:

 DRV_SETLABEL
 F_ATTRIB
 F_DELETE
 F_OPEN
 F_RENAME
 F_WRITEXFCB
 F_TRUNCATE

The BDOS maintains file passwords in the XFCB and directory label in encrypted
form. To make a BDOS system call for a file that requires a password, a
process must place the password in the first eight bytes of the current DMA,
or make it the default password with the F_PASSWD system call, before making
the system call.

Note: The BDOS maintains the assigned default password for each process.
Child processes inherit the default password of their parent process. You can
set a given TMP's default password using the SET command; all programs loaded
by this TMP inherit the same default password.

2.8 File date and time stamps: SFCBs

The Concurrent CP/M file system uses a special type of directory entry called
an "SFCB" to record date and time stamps for files. When a directory has been
initialized for date and time stamping, SFCBs reside in every fourth position
of the directory. Each SFCB maintains the date and time stamps for the
previous three directory entries, as shown in Figure 2-4.

 +----+--+
 | | FCB 1 |
 | | FCB 2 |
 | | FCB 3 |
 +----+-----------+-----------+-----------+----+
 | 21 | Stamps | Stamps | Stamps | // |
 | | for FCB 1 | for FCB 2 | for FCB 3 | // |
 +----+-----------+-----------+-----------+----+
 Byte #: 0 1 11 21 31 32

 Figure 2-4. Directory record with SFCB

This figure shows a 128-byte directory record containing an SFCB. Directory

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

records have four directory entries, each 32 bytes long; SFCBs always occupy
the last 32-byte entry in the directory record.

The SFCB itself contains five fields. The first field is a single byte
containing the value 21h; this field identifies the SFCB within the directory.
The next three fields, called the "SFCB subfields", are each 10 bytes in
length, and contain the date and time stamps for their corresponding FCB
entries in the directory record. The last byte of the SFCB is reserved for
system use. Figure 2-5 shows the detail of the SFCB subfields.

 +---------------+---------------+----------+----------+
 | Create/Access | Update | Password | Reserved |
 | time and date | time and date | mode | |
 +---------------+---------------+----------+----------+
 Byte #: 0 4 8 9 10

 Figure 2-5. SFCB subfields

An SFCB subfield only contains valid information if its corresponding FCB in
the directory record is an extent zero FCB. This FCB is a file's first
directory entry. For password protected files, the SFCB subfield also contains
the password mode of the file; the password mode field is zero for files
without password protection. You can read SFCBs by making F_SFIRST and F_SNEXT
system calls. In addition, you can make an F_TIMEDATE system call to retrieve
the date and time stamps and password mode of a specified file. Refer to the
T_GET system call definition in Section 6, "System calls", for the description
of the format of a date and time stamp field.

Concurrent CP/M supports three kinds of file stamping: create, access, and
update. Create stamps record when the file was created, access stamps record
when the file was last opened, and update stamps record the last time the file
was modified. Create and access stamps share the same field. As a result, file
access stamps overwrite any create stamps.

The directory label of a properly initialized disk determines the type of date
and time stamping for files on the drive. The INITDIR utility initializes a
directory for date and time stamping by placing an SFCB in every fourth
directory entry. Disks not initialized in this way cannot support date and
time stamping. In addition, date and time stamping is not performed if the
disk's directory label is absent or does not specify date and time stamping,
or if the disk is Read-Only.

Note that the directory label is also time stamped, but these stamps are not
made in an SFCB; time stamps fields in the last eight bytes of the directory
label show when it was created and last updated. Access stamping is not
supported for directory labels.

The BDOS file system uses the system date and time when it records a date and
time stamp. This value is maintained in a field in the SYSDAT part of the
System Data Segment. The DATE utility sets the system time and date (refer to
the "Concurrent CP/M User's Guide" for details on using DATE).

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

2.9 File open modes

The file system provides three different modes for opening files. They are
defined below.

Locked mode

A process can open a file in Locked mode only if the file is not currently
opened by another process, and the file is not a Read-Only file (attribute T1'
set). Once open in Locked mode, no other process can open the file until it is
closed. Thus, if a process successfully opens a file in Locked mode, that
process owns the file until the file is closed or the process terminates.
Files opened in Locked mode support read and write operations unless the file
is password-protected in Write mode, and the process is issuing the F_OPEN
call cannot supply the password. In this case, the BDOS allows only read
operations to the file.

If a file opened in Locked mode is a Read-Only file, the F_OPEN system call
automatically changes the open mode to Read-Only mode. Read-Only mode is
described below.

Note: Locked mode is the Default mode for opening files under Concurrent CP/M.

Unlocked mode

A process can open a file in Unlocked mode if the file is not currently open,
or if another process has already opened the file in Unlocked mode. This mode
allows more than one process to open the same file. Files opened in Unlocked
mode support read and write operations unless the file is a Read-Only file
(attribute T1' set) or the file is password-protected in Write mode and the
process issuing the F_OPEN call cannot supply the password.

When opening a file in Unlocked mode, a process must reserve 35 bytes in the
FCB because the F_OPEN system call returns a 2-byte value called the "File ID"
in the R0 and R1 bytes of the FCB. The File ID is a required parameter for the
F_LOCK and F_UNLOCK system calls. These BDOS system calls work only for files
opened in Unlocked mode.

Read-Only mode

A process can open a file in Read-Only mode if the file is not currently
opened by another process or if another process has opened the file in Read-
Only mode. This mode allows more than one process to open the same file for
Read-Only access.

The F_OPEN system call performs the following steps for files opened in Locked
or Read-Only mode. If the current user number is non-zero, and the file to be

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

opened does not exist under the current user number, the F_OPEN system call
searches the user zero directory for the file. If the file exists under user
zero and has the system attribute T2' set, the BDOS opens the file under user
zero. The open mode is automatically forced to Read-Only when this is done.

The F_OPEN and F_MAKE system calls use FCB interface attributes F5' and F6' to
specify the open mode. The interface attribute definitions for these functions
are listed in Table 2-7.

Note: The F_MAKE system call does not allow opening the file in Read-Only
mode.

2.10 File security

In general, the security measures implemented in the file system prevent
accidental collisions between running processes. It is not possible to provide
total security under Concurrent CP/M because the file system maintains file
allocation information in open FCBs in the user's memory regio, and Concurrent
CP/M does not require memory protection. However, the file system is designed
to ensure that multiple processes can share the same file system without
interfering with each other by:

 - performing checksum verifications of open FCBs
 - monitoring all open files and locked records via the system Lock
 List.

The BDOS validates the checksum of user FCBs before all I/O operations to
protect the integrity of the file system from corrupted FCBs. The F_OPEN and
F_MAKE system calls compute and assign checksums to FCBs. The F_READRAND,
F_READ, F_WRITERAND, F_WRITEZF, F_WRITE, F_LOCK, and F_UNLOCK system calls
subsequently verify and recompute the checksums when they change the FCB. The
F_CLOSE system call also verifies FCB checksums. Note that FCB verifications
by these system calls can be disabled (see Section 2.12, "Compatibility
attributes"), but Concurrent CP/M's file security is reduced when this is
done. If the BDOS detects an FCB checksum error, it does not perform the
requested command. Instead, it either returns to the calling process with an
error code or, if the system call is F_CLOSE and the BDOS Error mode is in the
default state (see Section 2.18, "BDOS Error handling"), it terminates the
calling process with an error message.

Concurrent CP/M uses a system data structure, called the "Lock List", to
manage file opening and record locking by running processes. Each time a
process opens a file or locks a record successfully, the file system allocates
an entry in the system Lock List to record the fact. The file system uses the
following information to:

 - prevent a process from deleting, truncating, renaming, or updating the
 attributes of another process' open file.

 - prevent a process from opening a file currently opened by another
 process, unless both processes open the file in Unlocked or Read-Only
 mode.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

 - prevent a process from resetting a drive on which another process has
 an open file.

 - prevent a process from reading, writing, or locking a record currently
 locked by another process. Refer to Section 2.14, "Concurrent file
 access", for more information on record locking and unlocking.

The file system only verifies whether another process has the FCB-specified
file open for the following file-access system calls: F_OPEN, F_MAKE,
F_DELETE, F_RENAME, F_ATTRIB, and F_TRUNCATE. For file-access system calls
that require an open FCB, the FCB checksum controls whether the calling
process can use the FCB. By definition, a valid FCB checksum implies that the
file has been successfully opened and an entry for the file resides in the
system Lock List.

The most common way a process releases a lock entry for an open file is by
closing the file. A close operation is permanent if it causes the removal of
the file's open Lock List entry. The file system invalidates the FCB checksum
field on permanent close operations, to prevent continued open file operations
with the FCB.

However, not all close operatons are permanent. For example, if a process
makes multiple F_OPEN or F_MAKE calls to an open file, a matching number of
F_CLOSE calls must be made before the file system permanently closes the file.
Of course, if you only open a file once, a single close operation permanently
closes the file. In addition, a process can optionally make partial F_CLOSE
calls to a file by setting interface attribute F5'. A partial close operation
does not affect the open state of a file. In the above example, a partial
close operation would not count against an F_OPEN or F_MAKE call. A partial
close operation simply updates the directory to reflect the current state of
the file.

As a general rule, under Concurrent CP/M a process should close files as soon
as it no longer needs them, even if it has not modified them. While a process
has a file open, access by other processes to the file is restricted. For
example, after a process has opened a file in Locked mode, the file cannot be
opened by other processes until the file is closed or the process terminates.

Furthermore, space in the system Lock List is limited. If a process attempts
to open a file and no space remains in the system Lock List,or if the process
exceeds the open file limit, the BDOS denies the open request and usually
terminates the calling process. You can change the way the file system handles
this error by making an F_ERRMODE system call. Note that the size of the
system Lock List and the process open file limit are GENCCPM parameters.

There are several other situations where the file system removes open file
entries from the system Lock List for a process. For example, if a process
makes an F_DELETE call for a file it has open in Locked mode, the file system
deletes the file and also purges the file's entry from the system Lock List.
Deleting an open file is not recommended under Concurrent CP/M but it is
supported for files opened in Lock mode, to provide compatibility with
software written under earlier releases of MP/M and CP/M. The file system does
not allow deletion of a file opened in Unlocked or Read-Only mode.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

To ensure that the process does not use the open FCB corresponding to the
deleted file, the file system subsequently checks all open FCBs for the
process. Each open FCB is checked the next time it is used with a file-access
system call that requires an open FCB. If a Lock List entry exists for the
file, the BDOS allows the operation to proceed; if not, it indicates that the
file has been purged and the file system returns an FCB checksum error.

The file system performs this verification of a process' open FCBs whenever it
purges an open file entry from the system Lock List. The following list
describes these situations:

 - A process makes an F_ATTRIB, F_DELETE, F_RENAME, or F_TRUNCATE system
 call to a file it has open in Locked mode. These operations cannot be
 performed on a file open in Unlocked or Read-Only mode.

 - A process issues a DRV_FREE call for a drive on which it has an open
 file.

 - The BDOS detects a change in media on a drive that has open files.
 This is a special case because a process cannot control the occurrence
 of this situation, and because it can impact more than one process.
 Refer to Section 2.17, "Reset, access, and free drive", for more
 details on this situation.

Open FCB verification can affect performance because each verification
operation requires a directory search operation. In general, you should avoid
such situations when creating new programs for Concurrent CP/M.

2.11 Extended file locking

Extended file locking enables a Concurrent CP/M process to maintain a lock on
a file after the file is permanently closed. This facility allows a process to
set the attributes, delete, rename, or truncate a file without interference
from other processes. In addition, this technique avoids the problems
associated with using these system calls on open files (see Section 2.10,
"File security").

A process can also re-open a file with an extended lock and continue open file
processing. To illustrate how extended file locking might be used, a process
can close an open file, rename the file, re-open the file under its new name,
and continue with file operations without ever losing the file's Lock List
itema and control over the file.

A process can only specify extended file locking for a file it has opened in
Locked mode. To extend a file's lock, set interface attribute F6' when closing
the file. The F_CLOSE system call interrogates this attribute only when it is
closing a file permanently. Thus, interface attribute F5', signifying a
partial close, must be reset when the F_CLOSE call is made. In addition, the
close operation must be permanent. If a process has opened a file N times, the
F_CLOSE system call ignores the F6' attribute until the file is closed for the
Nth time.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

Note that the access rules for a file with extended lock are identical to the
rules for a file open in Locked mode. In addition, you cannot extend the lock
of a Read-Only file (attribute T1' set), because a Read-Only file cannot be
opened in Locked mode.

To maintain an extended file lock through an F_ATTRIB, F_RENAME, or F_TRUNCATE
system call, set interface attribute F5' of the referenced FCB when making the
call. The BDOS honors this attribute only if the file has been closed with an
extended lock. Setting attribute F5' also maintains an extended file lock for
the F_DELETE system call, but setting this attribute also changes the nature
of the delete operation to an XFCB-only delete. If successful, all four of
these system calls delete a file's extended lock item if they are called with
attribute F5' reset. However, the extended lock item is not deleted if they
return with an error code.

You can make an F_OPEN call to resume record operations on a file with an
extended lock. Note that you can also change the open mode when you re-open
the file. The following example illustrates the use of extended locks.

1. Open file EXLOCK.TST in Locked mode.

2. Perform read and write operations on the file EXLOCK.TST using the open
FCB.

3. Close file EXLOCK.TST with interface attribute F6' set to retain the file's
lock item.

4. Use the F_RENAME system call to change the name of the file to EXLOCK.NEW
with interface attribute F5' set to retain the file's extended lock item.

5. Re-open the file EXLOCK.NEW in Locked mode.

6. Perform read and write operations on the file EXLOCK.NEW, using the open
FCB.

7. Close file EXLOCK.NEW again with interface attribute F6' set to retain the
file's lock item.

8. Set the Read-Only attribute and release the file's lock item by making an
F_ATTRIB system call with interface attribute F5' reset.

At this point, the file EXLOCK.NEW becomes available for access by another
process.

2.12 Compatibility attributes

Compatibility attributes provide a mechanism to modify some of the Concurrent
CP/M file security rules for specific command files. Concurrent CP/M includes
this facility because some programs developed under earlier Digital Research
operating systems do not run properly under Concurrent CP/M. Most of the
problems encountered by these programs occur because they were designed for

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

single-tasking operating systems where file security is not required. For
example, a program might close a file and then continue reading and writing to
the file. Under CP/M-86, this does not cause a problem. However, under
Concurrent CP/M, the file system intercepts open file operations with a de-
activated FCB to ensure the integrity of the file system. With compatibility
attributes, you have a tool for dealing with these kinds of situations.

You should use compatibility attributes only with existing programs that run
properly under CP/M or CP/M-86. Do not use compatibility attributes with new
programs that you develop under Concurrent CP/M.

Compatibility attributes are defined as file attributes F1' through F4' of
program (CMD) files. You can use the Concurrent CP/M SET utility to set these
file attributes from the command line. However, setting a command file's
compatibility attributes has no effect unless the GENCCPM COMPATMODE option
has been selected during system generation. If this has been done, the P_CLI
system call interrogates file attributes F1' through F4' of the command file
during program loading, and modifies the Concurrent CP/M file security rules
for the loaded program.

The Concurrent CP/M BDOS defines the Compatibilty Attributes as shown below.

Table 2-11. Compatibility attribute definitions

Format: Attribute
 Definition

F1'
Modify the rules for Locked mode.

When a process running with F1' set opens a file in Locked mode, it can
perform read and write operations to the file as normal. However, to other
processes on the system, it appears as if the file was opened in Read-Only
mode. Thus, another process running with F1' set can open the same file in
Locked mode and also perform write operations to the file. In addition, if a
process with F1' reset attempts to open the file in Locked or Read-Only mode,
the open attempt is allowed but the open mode is forced to Read-Only.
Furthermore, write operations are not allowed when the process has F1' reset.

This compatibility mode is designed to allow multiple copies of the same
program to run concurrently, even though the program might make read and write
calls to a common file that it has opened in Locked mode. In addition, this
compatibility mode allows other programs not in this compatibility mode to
access the file on a Read-Only basis. Note that record locking is not
supported for this modified open mode. In addition, to be safe, make all
static files such as program and help files Read-Only if you use this
compatibility attribute.

There is an alternative to sing this attribute if a program only makes read
calls to the common file. By setting the file's Read-Only attribute, you force
the open mode to Read-Only when the file is opened in Locked mode.

F2'
Change F_CLOSE to partial close.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

Processes running with F2' set only make partial F_CLOSE system calls. This
attribute is intended for programs that close a file to update the directory
but continue to use the file. A side effect of this attribute is that files
opened by a process are not released from the system Lock List until the
process terminates. When using this attribute, it might be necessary to set
the system Lock List parameters to higher values when you generate a system
with GENCCPM.

F3'
Ignore close checksum errors.

This attribute changes the way the F_CLOSE system call handles Close Checksum
errors. Normally, the file system prints an error message on the console and
terminates the calling process. However, if this attribute is set, the F_CLOSE
system call ignores the checksum error and performs the close operation. This
interface attribute is intended for programs that modify an open FCB before
closing a file.

F4'
Disable FCB Checksum verification for read and write operations.

Setting this attribute also sets attributes F2' and F3'. This attribute is
intended for programs that modify open FCBs during read and write operations.
Use this attribute very carefully, and only with software known to work,
because it effectively disables Concurrent CP/M's file security.

Use the Concurrent CP/M SET utility to specify the combination of
compatibility attributes that you want set in the program's command file. For
example,

 A>SET filename [F1=ON]
 A>SET filename [F1=ON,F3=ON]
 A>SET filename [F4=ON]

If you have a program that runs under CP/M or CP/M-86 but does not run
properly under Concurrent CP/M, use the following guidelines to select the
proper compatibility attributes for the program:

 - If the program ends with the "File Currently Opened" message when
 multiple copies of the program are run, set compatibility attribute
 F1', or place all common static files under User 0 with the system and
 Read-Only attributes set.

 - If the program terminates with the message "Close Checksum Error", set
 compatibility attribte F3'.

 - If the program terminates with an I/O error, try running the program
 with attribute F2' set. If the problem persists, then try attribute
 F4'. Use attribute F4' only as a last resort.

2.13 Multisector I/O

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

The BDOS file system provides the capability to read or write multiple 128-
byte records in a single BDOS system call. This multisector facility can be
visualized as a BDOS burst mode, enabling a process to complete multiple I/O
operations without interference from other running processes. In addition, the
BDOS file system bypasses, when possible, all intermediate record buffering
during multisector I/O operations. Data is transferred directly between the
calling process' memory and the drive. The BDOS also informs the XIOS when it
is reading or writing multiple records on a drive. The XIOS can use this
information to further optimize the I/O operation, resulting in even better
performance. As a result, the use of this facility in an application program
can improve its performance and also enhance overall system throughput,
particularly when performing sequential I/O.

The number of records that can be transferred with multisector I/O ranges from
1 to 128. This value, called the "BDOS Multisector Count", can be set by the
F_MULTISEC system call. The P_CLI system call sets the Multisector Count to 1
when it initiates a transient program for execution. Note that the greatest
potential performance increases are obtained when the Multisector Count is set
to 128. Of course, this requires a 16 KB buffer. The Concurrent CP/M PIP
utility performs its sequential I/O with a Multisector Count of 128.

The Multisector Count determines the number of operations to be performed by
the following BDOS system calls:

 - F_READ and F_WRITE system calls
 - F_READRAND, F_WRITERAND, and F_WRITEZF
 - F_LOCK and F_UNLOCK

If the Multisector Count is N, calling one of the above system calls is
equivalent to making N system calls. With the exception of disk I/O errors
encountered by the XIOS, if an error interrupts a multisector read or write
operations, the file system returns the number of 128-byte records
successfully transferred in register AH. Section 3.14, "Concurrent file
access", describes how the Multisector Count affects the F_LOCK and F_UNLOCK
system calls.

2.14 Concurrent file access

Concurrent CP/M supports two open modes, Read-Only and Unlocked, which allow
concurrently running processes to access common files for record operations.
The Read-Only open mode allows multiple processes to read from a common file,
but processes cannot write to a file open in this mode. Thus, files remain
static when they are opened in Read-Only mode. The Unlocked open mode is more
complex, because it allows multiple processes to read and write records to a
common file. As a result, Unlocked mode has some important differences from
the other open modes.

When a process opens a file in Unlocked mode, the file system returns a 2-byte
field called the "File ID" in the R0 and R1 bytes of the FCB. The File ID is a
required parameter of Concurrent CP/M's record locking system calls, F_LOCK

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

and F_UNLOCK, which are only supported for files open in Unlocked mode. Note
that these system calls return a successful error code if they are called for
files opened in Locked mode. However, they perform no action in this case,
because, by definition, the calling process has the entire file locked.

The F_LOCK and F_UNLOCK system calls allow a process to establish and release
temporary ownership to particular records within a file. You must set the FCB
Random Record field and place the File ID in the first two bytes of the
current DMA Buffer before making these calls. The file system locks and
unlocks records in units of 128 bytes, which is the standard Concurrent CP/M
record size. The number of records locked or unlocked is controlled by the
BDOS Multisector Count, which can range from 1 to 128 (see Section 2.13,
"Multisector I/O"). In order to simplify the discussion of record locking and
unlocking, the following paragraphs assume that the Multisector Count is one.
However, as discussed later in this section, the more general case of multiple
record locking and unlocking is a simple extension of the single record case.

The F_LOCK system call supports two types of lock operations: exclusive locks
and shared locks. Interface attibute F5' specifies the type of lock. F5' = 0
requests an exclusive lock; F5' = 1 requests a shared lock. If a process locks
a record with an exclusive lock, other processes cannot read, write, or lock
the record. The locking process, however, can access the record with no
restrictions. You should use this type of lock when exclusive control over a
record is required.

If a process locks a record with a shared lock, other processes cannot write
to the record or make an exclusive lock of the record. However, other
processes are allowed to read the record and make their own shared locks on
the record. No process, including the locking process, can write to a record
with a shared lock. Shared locks are useful when you want to ensure that a
record does not change, but you want to allow other processes to read the
record.

The F_LOCK system call also lets you change the lock of a record if there is
no conflict. For example, you can convert an exclusive lock into a shared lock
with no restrictions. On the other hand, a process cannot convert a record's
shared lock to an exclusive lock if another process has a shared lock on the
record.

The F_LOCK system call has another option, specified by interface attribute
F6', which controls whether a record must exist in order to be locked. If you
make an F_LOCK system call with F6' = 0, the file system returns an error code
if the specified record does not exist within the file. Setting F6' to 1
requests a logical lock operation. Logical lock operations are only limited by
the maximum Concurrent CP/M file size of 32 megabytes, which corresponds to a
maximum Random Record Number of 262,143 (3FFFFh). You can use logical locks to
control extending a shared file.

The F_UNLOCK system call is similar to the F_LOCK call, except that it removes
locks instead of creating them. There are few restrictions on unlock
operations. Of course, a process can only remove locks that it has made. The
F_UNLOCK system call has one option, controlled by interface attribute F5'. If
F5' is set to 1, the F_UNLOCK system call removes all locks for the file made
by the calling process. Otherwise, it removes the locks specified by the

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

Random Record field and the BDOS Multisector Count. Note that the F_CLOSE
system call also removes all locks for a file on permanent close operations.

If the BDOS Multisector Count is greater than one, the F_LOCK and F_UNLOCK
system calls perform multiple record locking or unlocking. In general,
multiple record locking and unlocking can be viewed as a sequence of N
independent operations, where N equals the Multisector Count. However, if an
error occurs on any record within the sequence, no locking or unlocking is
performed. For example, both F_LOCK and F_UNLOCK perform no action and return
an error code if the sum of the FCB Random Record Number and the BDOS
Multisector Count is greater than 262,144. As another example, the F_LOCK
system call also returns an error code if another process has an exclusive
lock on any record within the sequence.

When a process makes an F_LOCK system call, the file system allocates a new
entry in the system Lock List to record the lock operation and associate it
with the calling process. A corresponding F_UNLOCK system call removes the
locked entry from the list. While the lock entry exists in the system Lock
List, the file system enforces the restrictions implied by the lock item.

Because each lock item includes a record count field, a multiple lock
operation normally results in the creation of a single new entry. However, if
the file system must split an existing lock entry to satisfy the lock
operation, an additional entry is required. Similarly, an unlock operation can
require the creation of a new entry if a split is needed. Thus, in the worst
case, a lock operation can require two new lock entries and an unlock
operation can require one. Note that lock item splitting can be avoided by
locking and unlocking records in consistent units.

These considerations are important because the Lock List is a limited resource
under Concurrent CP/M. The file system performs no action and returns an error
code if insufficient available entries exist in the system Lock List to
satisfy the lock or unlock request. In addition, the number of lock items a
single process is allowed to consume is a GENCCPM parameter established at
system generation time. The file system also returns an error code if this
limit is exceeded.

The file system performs several special operations for read and write system
calls to a file open in Unlocked mode. These operations are required because
the file system maintains the current state of an open file in the calling
process' FCB. When multiple processes have the same file open, FCBs for the
same file exist in each process' memory. To ensure that all processes have
current information, the file system updates the directory immediately when an
FCB for an unlocked file is changed. In addition, the file system verifies
error situations such as end-of-file, or reading unwritten data with the
directory before returning an error. As a result, read and write operations
are less efficient for files open in Unlocked mode when cmpared to equivalent
operations for files opened in Locked mode.

2.15 File byte counts

Although the logical record size of Concurrent CP/M is restricted to 128

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

bytes, the file system does provide a mechanism to store and retrieve a byte
count for a file. This facility can identify the last byte of the last record
of a file. The F_SIZE system call returns the Random Record Number, + 1, of
the last record of a file.

The F_ATTRIB system call can set a file's byte count. This is an option
controlled by interface attribute F6'. Conversely, the F_OPEN system call can
return a file's byte count to the CR field of the FCB. The F_SFIRST and
F_SNEXT system calls also return a file's byte count. These system calls
return the byte count in the CS field of the FCB returned in the current DMA
Buffer.

Note that the file system does not acces or update the byte count value in
BDOS read or write system calls. However, the F_MAKE system call does set the
byte count value to zero when it creates a file in the directory.

2.16 Record blocking and deblocking

Under Concurrent CP/M, the logical record size for disk I/O is 128 bytes. This
is the basic unit of data transfer between the operating system and running
processes. However, on disk, the record size is not restricted to 128 bytes.
These records, called "physical records", can range from 128 bytes to 4 KB in
size. Record blocking and deblocking is required on systems that support
drives with physical record sizes larger than 128 bytes.

The process of building up physical records drom 128-byte logical records is
called "record blocking". This process is required in write operations. The
reverse process of breaking up physical records into their component 128-byte
logical records is called "record deblocking". This process is required in
read operations. Under Concurrent CP/M, record blocking and deblocking is
normally performed by the BDOS.

Record deblocking implies a read-ahead operation. For example, if a process
reads a logical record that resides at the beginning of a physical record, the
entire physical record is read into an internal buffer. Subsequent BDOS read
calls for the remaining logical records access the buffer instead of the disk.
Conversely, record blocking results in the postponement of physical write
operations but only for data write operations. For example, if a transient
program makes a BDOS write call, the logical record is placed in a buffer
equal in size to the physical record size. The write operation on the physical
record buffer is postponed until the buffer is needed in another I/O
operation. Note that, under Concurrent CP/M, directory write operations are
never postponed.

Postponing physical record write operations has implications for some
application programs. For programs that involve file updating, it is often
critical to guarantee that the state of the file on disk parallels the state
of the file in memory after an update operation. This is only an issue on
drives where physical write operations are postponed because of record
blocking and deblocking. If the system should crash while a physical buffer is
pending, data would be lost. To prevent this loss of data, the F_FLUSH system
call can be called to force the write of any pending physical buffers

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

associated with the calling process.

Note: The file system discards all pending physical data buffers when a
process terminates. However, the file system automatically makes an F_FLUSH
call in the F_CLOSE system call. Thus, it is sufficient to make an F_CLOSE
system call to ensure that all pending physical buffers for that file are
written to the disk.

2.17 Reset, access, and free drive

The BDOS system calls DRV_ALLRESET, DRV_RESET, DRV_ACCESS, and DRV_FREE allow
a process to control when to re-initialize a drive directory for file
operations. This process of initializing a drive's directory is called
"logging-in the drive".

When you start Concurrent CP/M, all drives are initialized to the reset state.
Subsequently, as processes reference drives, the file system automatically
logs them in. Once logged-in, a drive remains in the logged-in state until it
is reset by the DRV_ALLRESET or DRV_RESET system calls, or a media change is
detected on the drive. If the drive is reset, the file system automatically
logs in the drive again the next time a process references it. The file system
logs in a drive immediately when it detects a media change on the drive.

Note that the DRV_ALLRESET and DRV_RESET system calls have similar effects,
except that the DRV_ALLRESET system call affects all drives on the system. You
can specify the combination of drives to reset with the DRV_RESET system call.

Logging-in a drive consists of several steps. The most important step is the
initialization of the drive's allocation vector. The allocation vector records
the allocation and de-allocation of data blocks to files, as files are
created, extended, deleted, and truncated. Another function performed during
drive log-in is the initialization of the directory checksum vector. The file
system uses the checksum vector to detect media changes on a drive. Note that
permanent drives, which do not support media changes, usually do not have
checksum vectors.

Under Concurrent CP/M, the DRV_RESET operation is conditional. The file system
cannot reset a drive for a process if another process has an open file on the
drive. However, the exact action taken by a DRV_RESET operation depends on
whether the drive to be reset is permanent or removable.

Concurrent CP/M determines whether a drive is permanent or removable by
interrogating a bit in the drive's Disk Parameter Block (DPB) in the XIOS. A
high-order bit of "1" in the DPB Checksum Vector Size field designates the
drive as permanent. A drive's Removable or Non-removable designation is
critical to the reset operation described below.

The BDOS first determines whether there are any files currently open on the
drive to be reset. If there are none, the reset takes place. If there are open
files, the action taken by the reset operation depends on whether the drive is
removable and whether the drive is Read-Only or Read-Write. Note that only the
DRV_SETRO system call can set a drive to Read-Only. Following log-in, a drive

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

is always Read-Write.

If the drive is a permanent drive and if the drive is not Read-Only, the reset
operation is not performed, but a successful result is returned to the calling
process.

However, if the drive is removable or set to Read-Only, the file system
determines whether other processes have open files on the drive. If they do,
then it denies DRV_RESET operation and returns an error code to the calling
process.

If all the open files on a removable drive belong to the calling process, the
process is said to own the drive. In this case, the file system performs a
qualified reset on the drive and returns a successful result. This means that
the next time a process accesses this drive, the BDOS performs the log-in
operation only if it detects a media change on the drive. The logic flow of
the drive reset operation is shown in Figure 2-6.

 +------------+ Yes
 | Open files |------+
 | on drive ? | |
 +-----+------+ |
 | No V
 | +-------------+ Yes
 | | Drive |------+
 | | removable ? | |
 | +-----+-------+ |
 | | No |
 | V |
 | +-----+-------+ Yes |
 | | Drive R/O ? |------+
 | +-----+-------+ |
 | | No |
 V V V
 +-------+ +--------+ +------------+ Yes
 | Reset | | Do not | | Open files |------+
 | drive | | reset | | belong to | |
 +---+---+ | drive | | another | |
 | +---+----+ | process ? | | |
 | | +-----+------+ |
 | | | No |
 | | V |
 | | +-----------+ |
 | | | Qualified | |
 | | | reset | |
 | | | performed | |
 | | +-----+-----+ |
 V | | V
 +---------+ | | +--------+
 | Disk | | | | Disk |
 | reset |<-------+--------------+ | reset |
 | success | | denied |
 +---------+ +--------+

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

 Figure 2-6. Disk system reset

If the BDOS detects a media change on a drive after a qualified reset, it
purges all open files on the drive from the system Lock List and subsequently
verifies all open FCBs in file operations for the owning process (refer to
Section 2.10, "File security", for details of FCB verification).

In all other cases where the BDOS detects a media change on a drive, the file
system purges all open files on the drive from the system Lock List, and flags
all processes owning a purged file for automatic open FCB verification.

Note: If a process references a purged file with a BDOS command that requires
an open FCB, the file system returns to the process with an FCB Checksum
error.

The primary purpose of the drive reset functions is to prepare for a media
change on a drive. Because a drive reset operation is conditional, it allows a
process to test whether it is safe to change disks. Thus, a process should
make a successful drive reset call before prompting the user to change disks.
In addition, you should close all your open files on the drive, particularly
files that you have written to, before prompting the user to change disks.
Otherwise, you might lose data.

The DRV_ACCESS and DRV_FREE system calls perform special actions under
Concurrent CP/M. The DRV_ACCESS system call inserts a dummy open file item
into the system Lock List for each specified drive. While that item exists in
the system Lock List, no other process can reset the drive. The DRV_FREE
system call purges the Lock List of all items, including open file items,
belonging to the calling process on the specified drives. Any subsequent
reference to those files by a BDOS system call requiring an open FCB results
in an FCB Checksum error return.

The DRV_FREE system call has two important side effects. First of all, any
pending blocking/deblocking buffers on a specified drive that belong to the
calling process are discarded. Secondly, any data blocks that have been
allocated to files that have not been closed are lost. Be sure to close your
files before making this system call.

The DRV_SETRO system call is also conditional under Concurrent CP/M. The file
system does not allow a process to set a drive to Read-Only if another process
has an open file on the drive. This applies to both removable and permanent
drives.

A process can prevent other processes from resetting a Read-Only drive by
opening a file on the drive or by issuing a DRV_ACCESS call for the drive, and
then making a DRV_SETRO system call. Executing DRV_SETRO before the F_OPEN or
DRV_ACCESS call leaves a window in which another process could set the drive
back to Read-Write. While the open file or dummy item belonging to the process
resides in the system Lock List, no other process can reset the drive to take
it out of Read-Only status.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

2.18 BDOS Error handling

The Concurrent CP/M file system has an extensive error handling capability.
When an error is detected, the BDOS responds in one of three ways:

 1. It can return to the calling process with return codes in the AX
 register identifying the error.

 2. It can display an error message on the console, and terminate the
 process.

 3. It can display an error message on the console, and return an error
 code to the calling process, as in method 1.

The file system handles the majority of errors it detects by method 1. Two
examples of this kind of error are the "File Not Found" error for the F_OPEN
system call, and the "Reading Unwritten Data" error for the F_READ call. More
serious errors, such as disk I/O errors, are normally handled by method 2.
Errors in this category, called "physical and extended errors", can also be
reported by methods 1 and 3 under program control.

The BDOS Error mode, which has three states, determines how the file system
handles physical and extended errors. In the default state, the BDOS displays
the error message and terminates the calling process (method 2). In Return
Error mode, the BDOS returns control to the calling process with the error
identified in the AX register (method 1). In Return and Display Error mode,
the BDOS returns control to the calling process with the error identified in
the AX register and also displays the error message at the console (method 3).

While both return modes protect a process from termination because of a
physical or extended error, the Return and Display mode also allows the
calling process to take advantage of the built-in error reporting of the file
system. Physical and extended errors are displayed on the console in the
following format:

 CP/M Error on d: error message
 BDOS Function = bb File = filename.typ

where "d" is the letter of the drive selected when the error condition occurs;
"error message" identifies the error; "nn" is the BDOS Function number, and
"filename.typ" identifies the file specified by the BDOS function. If the BDOS
function did not involve an FCB, the file information is omitted.

Tables 2-12 and 2-13 detail BDOS physical and extended error messages.

Table 2-12. BDOS physical errors

Format: Message
 Meaning

Disk I/O
The "Disk I/O" error results from an error condition returned to the BDOS from
the XIOS module. The file system makes XIOS read and write calls to execute

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

BDOS file-access system calls. If the XIOS read or write routine detects an
error, it returns an error code to the BDOS, causing this error message.

Invalid Drive
The "Invalid Drive" error also results from an error condition returned to the
BDOS from the XIOS module. The BDOS makes an XIOS Select Disk call before
accessing a drive to perform a requested BDOS function. If the XIOS does not
support the selected disk, it returns an error code resulting in this error.

Read/Only File
The BDOS returns the "Read/Only File" error message when a process attempts to
write to a file with the R/O attribute set.

Read/Only Disk
The BDOS returns the Read/Only Disk error "message when a process makes a
write operation to a disk that is in Read-Only status. A drive can be placed
in Read-Only status explicitly with the DRV_SETRO system call.

Table 2-13. BDOS extended errors

Format: Message
 Meaning

File Opened in Read/Only Mode
The BDOS returns the "File Opened in Read/Only Mode" error message when a
process attempts to write to a file opened in Read-Only mode. A process can
open a file in Read-Only mode explicitly by setting FCB interface attribte
F6'. In addition, if a process opens a file in LOcked mode, the file system
automatically forces the open mode to Read-Only mode when:

- the process opens a file with the Read-Only attribute set.

- the current user number is not zero, and the process opens a user zero file
with the system attribute set.

The BDOS also returns this error if a process attempts to write to a file that
is password-protected in Write mode, and it did not supply the correct
password when it opened the file.

File Currently Open
The BDOS returns the "File Currently Open" error message when a process
attemps to delete, rename, or modify the attributes of a file opened by
another process. The BDOS also returns this error when a process attempts to
open a file in a mode incompatible with the mode in which the file was
previously opened by another process or by the calling process.

Close Checksum Error
The BDOS returns the "Close Checksum Error" message when the BDOS detects a
chacksum error in the FCB passed to the file system with an F_CLOSE call.

Password Error
The BDOS returns the "Password Error" message when passwords are required and
the password is not supplied or is incorrect.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

File Already Exists
The BDOS returns the "FIle Already Exists" error message for the F_MAKE and
F_RENAME system calls when the BDOS detects a conflict on filename and
filetype.

Illegal ? in FCB
The BDOS returns the "Illegal ? in FCB" error message when the BDOS detects a
"?" character in the filename or filetype of the passed FCB for the F_ATTRIB,
F_OPEN, F_RENAME, F_TIMEDATE, F_WRITEXFCB, F_TRUNCATE, and F_MAKE system
calls.

Open File Limit Exceeded
The BDOS returns the "Open File Limit Exceeded" error message when a process
exceeds the process file lock limit specified by GENCCPM. The F_OPEN, F_MAKE,
and DRV_ACCESS system calls can return this error.

No Room in System Lock Limit
The BDOS returns the "No Room in System Lock List" error message when no room
for new entries exists within the system Lock List. The F_OPEN, F_MAKE, and
DRV_ACCESS system calls can return this error.

The following paragraphs describe the error return code conventions of the
file system calls. Most file system calls fall into three categories in regard
to return codes; they return an error code, a directory code, or an error
flag. The error conventions let programs written for CP/M-86 run without
modification.

The following BDOS system calls return a logical error in register AL:

 F_LOCK
 F_READ
 F_READRAND
 F_UNLOCK
 F_WRITE
 F_WRITERAND
 F_WRITEZF

Table 2-14 lists error code definitions for register AL.

Table 2-14. BDOS error codes

 Code Definition
 ---- ----------
 00h Function successful
 01h Reading unwritten date
 No available directory space (Write Sequential)
 02h No available data block
 03h Cannot close current extent
 04h Seek to unwritten extent
 05h No available directory space
 06h Random Record Number out of range
 * 08h Record locked by another process

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

 (restricted to files opened in Unlocked mode)
 09h Invalid FCB (previous BDOS F_CLOSE system call
 returned an error code, and invalidated the FCB)
 0Ah FCB Checksum error
 * 0Bh Unlocked file unallocated block verify error
 ** 0Ch Process record lock limit exceeded
 ** 0Dh Invalid File ID
 ** 0Eh No room in system Lock List
 0FFh Physical error: refer to register AH

 * = Returned only for files opened in Unlocked mode.
 ** = Returned only by the F_LOCK and F_UNLOCK system
 calls for files opened in Unlocked mode.

For BDOS read and write system calls, the file system also sets register AH
when the returned error code is a value other than zero or 0FFh. In this case,
register AH contains the number of 128-byte records successfully read or
written before the error was encountered. Note that register AH can only
contain a non-zero value if the calling process has set the BDOS Multisector
Count to a value other than one; otherwise, register AH is always set to zero.
On successful system calls (Error Code = 0), register AH is also set to zero.
If the Error Code if 0FFh, register AH contains a physical error code (see
Table 2-15, "BDOS physical and extended errors").

The following BDOS system calls return a directory code in register AL:

 DRV_SETLABEL
 F_ATTRIB
 F_CLOSE
 F_DELETE
 F_MAKE
 F_OPEN
 F_RENAME
 F_SIZE
 F_SFIRST
 F_SNEXT
 F_TIMEDATE
 F_TRUNCATE
 F_WRITEXFCB

The directory code definitions for register AL follow:

 00h-03h = successful function
 0FFh = unsuccessful function

With the exception of the F_SFIRST and F_SNEXT system calls, all functions in
this category return with the directory code set to zero upon a successful
return. However, for these two system calls, a successful directory code
identifies the relative starting position of the directory entry in the
calling process' current DMA Buffer.

If a process uses the F_ERRMODE system call to place the BDOS in Return Error
mode, the following system calls return an error flag in register AL on
physical errors:

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

 DRV_GETLABEL
 DRV_ACCESS
 DRV_SET
 DRV_SPACE
 DRV_FLUSH

The error flag definition for register AL follows:

 00h = successful function
 0FFh = physical error: refer to register AH

The BDOS returns non-zero values in register AH to identify a physical or
extended error if the BDOS Error mode is in one of the return modes. Except
for system calls that return a Directory Code, register AL equal to 0FFh
indicates that register AH identifies the physical or extended error. For
functions that return a Directory Code, if register AL equals 255, and
register AH is not equal to zero, register AH identifies the physical or
extended error. Table 2-15 shows the physical and extended error codes
returned in register AH.

Table 2-15. BDOS physical and extended errors

 Code Explanation
 ---- -----------
 01h Disk I/O Error: permanent error
 02h Read/Only Disk
 03h Read/Only File, File Opened in Read/Only Mode,
 File Password Protected in Write Mode,
 and Correct Password Not Specified
 04h Invalid Drive: drive select error
 05h File Currently Open in an incompatible mode
 06h Close Checksum Error
 07h Password Error
 08h File Already Exists
 09h Illegal ? in FCB
 0Ah Open File Limit Exceeded
 0Bh No Room in System Lock List

The following two system calls represent a special case, because they return
an address in register AX:

 DRV_ALLOCVEC
 DRV_DBP

When the calling process is in one of the BDOS return error modes and the BDOS
detects a physical error for these system calls, it returns to the calling
process with registers AX and BX set to 0FFFFh. Otherwise, they return no
error code.

Under Concurrent CP/M, the following system calls also represent a special
case:

 DRV_ALLRESET

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG2.TXT[2/7/2012 11:29:35 AM]

 DRV_RESET
 DRV_SETRO

These system calls return to the calling process with registers AL and BL set
to 0FFh if another process has an open file or has made a DRV_ACCESS call that
prevents the reset or write protect operation. If the calling process is not
in Return Error mode, these system calls also display an error message
identifying the process that prevented the requested operation.

EOF

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG3.TXT[2/7/2012 11:29:37 AM]

CCPMPRG3.WS4 (Concurrent CP/M Programmer's Reference Guide, Chapter 3)

(Retyped by Emmanuel ROCHE.)

Section 3: Transient commands

3.1 Transient program load and exit

A transient program is a file of type CMD that is loaded from disk and resides
in memory only during its operation. A resident system process is a file of
type RSP that is included in Concurrent CP/M during system generation. Section
4 describes the three system memory models that determine the initial values
of segment registers in transient processes.

You can initiate a transient process by entering a command at a system
console. The console's TMP (Terminal Message Processor) then calls the Command
Line Interpreter system call (refer to the P_CLI system call), and passes to
it the command line entered by the user. If the command is not an RSP, then
the P_CLI system call locates and the loads the proper CMD file. P_CLI then
calls the F_PARSE system call to parse up to two filenames following the
command, and place the properly formatted FCBs at locations 005Ch and 006Ch in
the Base Page of the initial Data Segment.

The P_CLI system call initializes memory, the Process Descritor, and the User
Data Area (UDA), and allocates a 96-byte stack area, independent of the
program, to contain the process' initial stack. If 8087 processing is required
(see Section 3.1.2, "8087 support"), P_CLI allocates an additional 96 bytes
for the UDA. Concurrent CP/M divides the DMA address into the DMA segment
address and the DMA offset. P_CLI initializes the default DMA segment to the
value of the initial data segment, and the default DMA offset to 0080h.

The P_CLI system call creates the new process with a P_CREATE system call, and
sets the initial stack so that the process can execute a Far Return
instruction to terminate. A process can also ends when it calls DRV_ALLRESET
or P_TERM.

You can also terminate a process by typing a single Ctrl-C during console
input. See C_MODE for details of enabling/disabling Ctrol-C. Ctrl-C, when
typed at the system prompt ("A>"), forces a DRV_RESET call for each logged-in
drive. This operation only affects removale media drives.

Note: Additional UDA space is allocated for 8087 processing only if the
process is initialized by the P_CLI or P_LOAD system call. Other processes
(such as RSPs) that require 8087 processing and do not use P_CLI or P_LOAD
must allocate this additional UDA space themselves.

3.1.1 Shared code

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG3.TXT[2/7/2012 11:29:37 AM]

Concurrent CP/M allows processes to share program code. This capability of
sharing program code avoids un-necessary program loading of a code segment
already in memory, and conserves memory space, since multiple copies of the
same program code do not have to occupy different memory space. During program
load of a "sharable" program code, the system allocates the code group
separately from the rest of the program. This code group is maintained in
memory, even after the program has terminated. Subsequent loading of the same
program does not load the code group, but uses the existing one instead.
Obviously, programs written with separate code and data can take advantage of
this feature.

The system maintains a shared code group in memory until a memory request or a
reset drive forces its release. The system maintains shared code groups in
memory in Least Recently Used (LRU) order on the Shared Code List. If a memory
request is made that cannot be satisfied, the list is drained, one at a time,
until the memory request is satisfied, or the Shared Code List is emptied. If
a drive is reset, the system purges all code groups from the Shared Code List
loaded from that drive.

A shared code program is flagged by the value 09h in the G_Type field of the
Code Group Descriptor in the CMD file Header Record (see Section 3.2, "Command
file format"). The user may set this field by using the CHSET utility (see
"Concurrent CP/M User's Guide"). Note that programs using the 8080 Memory
model cannot be set to shared code.

3.1.2 8087 support

Concurrent CP/M provides optional 8087 support for systems that use the 8087
processor. This support is indicated by the Program Flag, byte 127 (7Fh), of
the CMD file Header Record. Setting bit 6 (bit 0 is least significant bit) of
the Program Flag indicates optional 8087 support, which means that, if the
8087 is present, the program uses it; otherwise, the program will emulate it.
If bit 5 of the Program Flag is set, it indicates that the 8087 must be
present in order for the program to run. If no 8087 is present and bit 5 of
the Program Flag is set, the system returns an error when it tries to load the
program. The CHSET utility can be used to set the program's header record for
optional or required 8087 support.

If you use the P_CLI or P_LOAD system call to initiate and execute a process,
the system allocates and extra 96 bytes to the UDA for 8087 support. If you
require 8087 support and do not use the P_CLI or P_LOAD system call, you must
specifically allocate this additional 96 bytes to the UDA, turn on the 8087
flag in the PD, and initialize the CW and SW fields in the 8087 UDA extension
(see description of these fields in Section 6, "System calls", under the
P_CREATE system call).

3.1.3 8087 exception handling

Although the system provides its own 8087 exception handling routine, the user

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG3.TXT[2/7/2012 11:29:37 AM]

might want to write his own 8087 exception handler. Appendix E includes
instructions and information required by the user to write his own 8087
exception handler, with a sample listing of an 8087 exception handler routine.

3.2 Command file format

A CMD file consists of a 128-byte Header Record, followed immediately by the
memory image. The command file Header Record is composed of 8 group
descriptors (GDs), each 9 bytes long. Each group descriptor describes a
portion of the program to be loaded. The format of the Header Record is shown
in Figure 3-1.

 +------+------+------+------+------+-------+-----+------+------+
 | GD 1 | GD 2 | GD 3 | GD 4 | GD 5 | GD 6 | GD 7 | GD 8 | |
 +------+------+------+------+------+------+------+------+------+
 <------------------------- 128 bytes -------------------------->

 Figure 3-1. CMD file Header Record format

In Figure 3-1, "GD 1" through "GD 8" represent group descriptors. Each group
descriptor corresponds to an independently loaded program unit, and has the
format shown in Figure 3-2.

 0h 1h 3h 5h 7h 9h
 +--------+----------+--------+-------+-------+
 | G_Type | G_Length | A_Base | G_Min | G_Max |
 +--------+----------+--------+-------+-------+

 Figure 3-2. Group Descriptor format

G-Type determines the group descriptor type. The valid group descriptors have
a G_Type in the range 1 through 8, as shown in Table 3-1. All other values are
reserved for system use. For a given CMD file Header Record, only a Code Group
and one of any other type can be included.

If a program uses either the Small or Compact Model, the code group is
typically pure; that is, it is not modified during program execution.

 Table 3-1. Group Descriptors

 G-Type Group Type
 ------ ----------
 1 Code Group (non-shared)
 2 Data Group
 3 Extra Group
 4 Stack Group
 5 Auxiliary Group # 1
 6 Auxiliary Group # 2
 7 Auxiliary Group # 3

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG3.TXT[2/7/2012 11:29:37 AM]

 8 Auxiliary Group # 4
 9 Code Group (shared)

All remaining values in the group descriptor are given in increments of 16-
byte paragraph units, with an assumed low-order 0 nibble to complete the 20-
bit address.

Table 3-2. Group Descriptor fields

Format: Field
 Description

G-Length
Gives the number of paragraphs in the group. Given a G-Length of 0080h, for
example, the size of the group is 0800h = 2048 bytes.

A-Base
Defines the base paragraph address for a non-relocatable group

G-Min/G-Max
define the minimum and maximum size of the memory area to allocate to the
group.

The memory model described by a Header Record is implicitly determined by the
Group Descriptors (refer to Section 4.1, "Transient execution models"). The
8080 Memory Model is assumed when only a code group is present, because no
independent data group is named. The Small Memory Model is assumed when both a
code and data group are present but no additional Group Descriptors occur.
Otherwise, the Compact Memory Model is assumed when the CMD file is loaded.

3.3 Base Page initialization

The Concurrent CP/M Base Page contains default values and locations
initialized by the P_CLI and P_LOAD system calls, and used by the transient
process.

The Base Page occupies the regions from offset 0000h trough 00FFh relative to
the initial data segment, and contains the values shown in Figure 3-3.

 bytes: Lo Mi Hi Lo Hi
 0 1 2 3 4 5 6
 +----+----+----+------+-----+----------+
 0000h | Code Length | Code Base | M80 |
 +----+----+----+------+-----+----------+
 0006h | Data Length | Data Base | Reserved |
 +----+----+----+------+-----+----------+
 000Ch | Extra Length | Extra Base | Reserved |
 +----+----+----+------+-----+----------+
 0012h | Stack Length | Stack Base | Reserved |
 +----+----+----+------+-----+----------+
 0018h | Aux 1 Length | Aux 1 Base | Reserved |

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG3.TXT[2/7/2012 11:29:37 AM]

 +----+----+----+------+-----+----------+
 001Eh | Aux 2 Length | Aux 2 Base | Reserved |
 +----+----+----+------+-----+----------+
 0024h | Aux 3 Length | Aux 3 Base | Reserved |
 +----+----+----+------+-----+----------+
 002Ah | Aux 4 Length | Aux 4 Base | Reserved |
 +----+----+----+------+-----+----------+
 0030h | Bytes 0030h through 004Fh are not |
 | currently used, and are reserved |
 | for future use by Digital Research. |
 +----+----+----+------+-----+----------+
 0050h |Driv| PW1 Addr| P1Len| PW2 Addr |
 +----+----+----+------+-----+----------+
 0056h |P2Ln| Reserved for future use |
 +----+----+----+------+-----+----------+
 005Ch | Default File Name 1 |
 +----+----+----+------+-----+----------+
 006Ch | Default File Name 2 |
 +----+----+----+------+-----+----------+
 007Ch | CR | RND Record Numb| |
 +----+----+----+------+-----+----------+
 0080h | Default 128-byte DMA Buffer |
 +----+----+----+------+-----+----------+

 Figure 3-3. Concurrent CP/M Base Page values

The fields in the Base page are defined as follows:

- The M80 byte is a flag indicating whether the 8080 Memory Model was used
during load. The values of the flag ae defined as:

 1 = 8080 Model
 0 = not 8080 Model

If the 8080 Model is used, the code length never exceeds 0FFFFh.

- The bytes marked "Aux 1" through "Aux 4" corresponds to a set of four
optional independent groups that might be required for programs that execute
using the Compact Memory Model. The initial values of these descriptors are
derived from the Header Record in the memory image file.

- Length is stored using the Intel convention: Low, Middle, and High bytes.

- Base refer to the paragraph address of the beginning of the segment.

- The drive byte identifies the drive from which the transient program was
read. 0 designates the default drive, while a value of 1 through 16 identifies
drives A through P.

- Password 1 Addr (bytes 0051h-0052h) contains the address of the password
field of the first command tail operand in the default DMA Buffer at 0080h.
The P_CLI system call sets this field to 0 if no password is specified.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG3.TXT[2/7/2012 11:29:37 AM]

- P1 Len (byte 0053h) contains the length of the password field for the first
command tail operand. The P_CLI system call sets this to 0 if no password is
specified.

- Password 2 Addr (bytes 0054h-0055h) contains the address of the password
field of the second command tail operand in the default DMA Buffer at 0080h.
The P_CLI system call sets this field to 0 if no password is specified.

- P2 Len (byte 0056h) contains the length of the password field for the second
command tail operand. The P_CLI system call sets this field to 0 if no
password is specified.

- File Name 1 (bytes 005Ch-0067h) is initialized by the P_CLI system call for
a transient program from the first command tail operand of the command line.

- File Name 2 (bytes 006Ch-0077h) is initialized by the P_CLI system call for
a transient program from the second command tail operand of the command tail.

Note: File Name 1 can be used as part of a File Control Block (FCB) beginning
at 005Ch. To preserve File Name 2, copy it to another location before using
the FCB in file I/O system calls.

- The CR field (byte 007Ch) contains the current record position used in
sequential file operations with the FCB at 005Ch.

- The optional Random Record Number (bytes 007Dh-007Fh) is an extension of the
FCB at 005Ch, used in random record processing.

- The Default DMA Buffer (bytes 0080h-00FFh) contains the command tail when
the P_CLI system call loads a transient program.

3.4 Parent/Child relationships

Under Concurrent CP/M, when one process creates another process, there is a
parent/child relationship between them. The child process inherits most of the
default values of the parent process. This includes the default disk, user
number, console, list device, and password. The child process also inherits
interrupt vectors 0, 1, 3, 4, 224, and 225, which the parent process
initialized.

3.5 Direct video mapping

Processes which bypass Concurrent CP/M Character I/O system calls and use a
video map or screen buffer directly cannot be monitored by the system, and
continue to display characters on the screen evence when running in the
background. Consequently, any screen displayed by the program in the
foreground console is interspersed with characters displayed by the program in
the background using direct video map I/O. To avoid the screen problems
created by using direct video I/O, set bit 3 of the Program Flag to indicate
to the system that the process is to be put in suspend mode whenever it is

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG3.TXT[2/7/2012 11:29:37 AM]

running in the background and may continue running only when it is switched to
the foreground. The CHSET utility (see the "Concurrent CP/M User's Guide") can
be used to set bit 3 of the Program Flag.

Note that bypassing the system Character I/O system calls negates the
concurrency of a process, since the system suspends it from running (if bit 3
of Program Flag is set) unless it is running in the foreground.

EOF

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG4.TXT[2/7/2012 11:29:37 AM]

CCPMPRG4.WS4 (Concurrent CP/M Programmer's Reference Guide, Chapter 4)

(Retyped by Emmanuel ROCHE.)

Section 4: Command file generation

4.1 Transient execution models

When the program is loaded, the initial values of the segment registers, the
instruction pointer, and the stack pointer are determined by the specific type
of memory model used by the transient process, indicated in the CMD file
Header Record.

There are three memory models; the 8080 Memory model, the Small Memory model,
and the Compact Memory model.

 Table 4-1. Concurrent CP/M Memory Models

 Model Group Relationships
 ----- -------------------
 8080 Model Code and Data Groups Overlap
 Small Model Independent Code and Data Groups
 Compact Model Three or More Independent Groups

The 8080 Model supports programs which are directly translated from CP/M-80
where code and data areas are intermixed. The 8080 Model consists of one group
that contains all the code, data, and stack areas. Segment registers are
initialized to the starting address of the region containing this group. The
segment registers can, however, be managed by the application program during
execution, so that multiple segments in the code group can be addressed.

The Small Model is similar to that defined by Intel, where the program
consists of an independent code group and a data group. The Small Model is
suitable for use by programs where code and data is easily separated. Note
again that the code and data groups often consist of, but are not restricted
to, 64K byte segments.

The Compact Model occurs when any of the extra, stack, or auxiliary groups are
present in programs. Each group can consist of one or more segments, but if
any group exceeds 64 KB in size, or if auxiliary groups are present, then the
application program must manage its own segment registers during execution, in
order to address all code and data areas.

The three models differ primarily in how the operating system initializes the
segment registers when it loads a transient process. The P_LOAD system call
determines the memory model used by a transient program by examining the
program group usage, as described in the following sections.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG4.TXT[2/7/2012 11:29:37 AM]

For all models, the system initializes an internal 96-byte stack area. The
first two words of this stack are reserved for the double word return, for
termination by a Far Return instruction. The initial program stack for all
models is shown in Figure 4-1 below.

 +---------------+
 | Ret Segment |
 Far Return Address +---------------+
 SS:SP --------------> | Ret Offset |
 +---------------+
 | |
 | 92 Bytes |
 | |
 | |
 +---------------+

 Figure 4-1. Initial program stack

The transient program can terminate by using the P_TERMCPM or P_TERM system
call, or by executing a Far Return instruction when the SS and SP still point
to the initial program stack.

4.1.1 The 8080 Memory Model

The 8080 Model is assumed when the transient program contains only a code
group. In this case, the Command Line Interpreter (P_CLI) system call
initializes the CS, DS, and ES registers to the beginning of the code group,
and sets the SS and SP registers to a 96-byte initial stack area that it
allocates.

Note: The P_CLI system call initializes the stack so that, if the process
executes a Far Return instruction, it terminates. This system call sets the
Instruction Pointer (IP) register to 0100h, thus allowing base page values at
the beginning of the code group. Following program load, the 8080 Model
appears as shown in figure 4-2.

 +---------------+
 | Code/Data |
 | |
 | ... |
 | |
 | Code/Data |
 CS:IP --> 0100h +---------------+
 | Base Page |
 CS:0, DS:0, ES:0 --> 0000h +---------------+

 Figure 4-2. Concurrent CP/M 8080 Memory Model

The intermixed code and data areas are indistinguishable. The Base Page
values are described in Section 3.3, "Base Page initialization". The following
ASM-86 example shows how to code an 8080 Model transient program.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG4.TXT[2/7/2012 11:29:37 AM]

 CSEG
 ORG 0100h
 ...
 ... (code)
 ...
 endcs EQU $
 ;------------------------
 DSEG
 ORG OFFSET endcs
 ...
 ... (data)
 ...
 ;------------------------
 END

4.1.2 The Small Memory Model

The Small Model is assumed when the transient program contains both a code and
data group. (In ASM-86, all code is generated following a CSEG directive.
Data is defined following a DSEG directive, with the origin of the data
segment independent of the code segment.) In this model, the P_CLI system call
sets the CS to the beginning of the code group, the IP to 0000h, the DS and ES
registers to the beginning of the data group, and the SS and SP registers
to a 96-byte initial stack area that it initializes. Following program load,
the Small Model appears as shown in figure 4-3.

 +-------+
 | |
 | ... |
 | |
 +-------+ | DATA |
 | | | |
 | ... | 0100h +-------+
 | | | Base |
 | CODE | | Page |
 | | DS:0, ES:0 --> 0000h +-------+
 CS:0, IP:0 --> 0000h +-------+

 Figure 4-3. Concurrent CP/M Small Memory Model

The machine code begins at CS+0000h, the Base Page values begin at DS+0000h,
and the data area starts at DS+0100h. The following ASM-86 example shows how
to code a Small Model transient program.

 CSEG
 ...
 ... (code)
 ...
 ;------------------------
 DSEG
 ORG 0100h
 ...

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG4.TXT[2/7/2012 11:29:37 AM]

 ... (data)
 ...
 ;------------------------
 END

4.1.3 The Compact Memory Model

The Compact Model is assumed when code and data groups are present, along with
one or more of the remaining stack, extra, or auxiliary groups. In this case,
the P_CLI system call sets the CS, DS, and ES registers to the base addresses
of their respective areas, with the IP set to 0000h, and the SS and SP
registers set to a 96-byte stack area allocated by this system call.

Figure 4-4 shows the initial configuration of segments in the Compact Model.
The values of the various segment registers can be changed during execution,
by loading from the initial values placed in Base Page. This allowing access
to the entire memory space.

 +-------+
 +---------+ | |
 | | | DATA | +-------+
 | ... | | | | |
 | | +-------+ | ... |
 CS,IP | CODE | | BASE | | |
 | | | PAGE | | DATA |
 0000h +---------+ DS:0000h +-------+ ES:0000h +-------+

 Figure 4-4. Concurrent CP/M Compact Memory Model

If the transient program intends to use the stack group as a stack area, the
SS and SP registers must be set upon entry. The SS and SP registers remain in
the initial stack area, even if a stack group is defined.

Although it appears that the SS and SP registers should be set to address the
stack group, there are two contradictions. First, the transient program might
be using the stack group as a data area. In that case, the stack values set by
the P_CLI system call to allow a Far Return to terminate a transient program
could overwrite data in the stack area. Second, the SS register would
logically be set to the base of the group, while the SP would be set to the
offset of the end of the group. However, if the stack group exceeds 64 KB, the
address range from the base to the end of the group exceeds a 16-bit offset
value.

The following ASM-86 example shows how to code a Compact Model transient
program.

 CSEG
 ...
 ... (code)
 ...
 ;------------------------
 DSEG

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG4.TXT[2/7/2012 11:29:37 AM]

 ORG 0100h
 ...
 ... (data)
 ...
 ;------------------------
 ESEG
 ...
 ... (more data)
 ...
 ;------------------------
 SSEG
 ...
 ... (stack area)
 ...
 ;------------------------
 END

4.2 GENCMD

The GENCMD utility creates a CMD file from an input H86 file. GENCMD does not
alter the original H86 file. The GENCMD invocation has the following form:

 GENCMD filename {parameter-list}

where the filename corresponds to the H86 input file with an assumed (and
unspecified) file type of H86. GENCMD accepts optional parameters to
specifically identify the 8080 Memory Model and to describe memory
requirements of each segment group. The GENCMD parameters are listed following
the filename, as shown in the command line above, where the parameter-list
consists of a sequence of keywords (shown below) and values separated by
commas or blanks.

 8080 CODE DATA EXTRA STACK X1 X2 X3 X4

The 8080 keyword forces a single code group, so that the P_LOAD system call
sets up the 8080 Memory Model for execution, thus allowing intermixed code and
data in a single segment. The form of this command is

 GENCMD filename 8080

The remaining keywords follow the filename or the 8080 option, and define
specific memory requirements for each segment group, corresponding one-to-one
with the segment groups defined in the previous section. In each case, the
values corresponding to each group are enclosed in square brackets and
separated by commas. Each value is a hexadecimal number representing a
paragraph address or segment length in paragraph units denoted by hhhh,
prefixed by a single letter which defines the meaning of each value:

 Ahhhh Load the group at absolute location hhhh
 Bhhhh The group starts at hhhh in the hex file
 Mhhhh The group requires a minimum of hhhh * 16 bytes
 Xhhhh The group can address a maximum of hhhh * 16 bytes

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG4.TXT[2/7/2012 11:29:37 AM]

Generally, the CMD file Header Record values are derived directly from the H86
file, and the parameters shown above need not be included. The following
situations, however, require the use of GENCMD parameters:

8080 Keyword
The 8080 keyword is included whenever ASM-86 is used in the conversion of
CP/M-80 programs to the 8086/8088 environment when code and data are
intermixed within a single 64 KB segment, regardless of the use of CSEG and
DSEG directives in the source program.

Absolute Address
An absolute address (a hexadecimal value) must be given for any group that
must be located at an absolute location. This value is not ususally specified,
as Concurrent CP/M cannot ensure that the required memory region is available.
In that case, the CMD file cannot be loaded.

Beginning Address of Groups
The B value is used when GENCMD processes a hex file produced by Intel's OH86,
or a similar utility program that contains more than one group. The output
from OH86 consists of a sequence of data records with no information to
identify code, data, extra, stack, or auxiliary groups. In this case, the B
value marks the beginning address of the group named by the keyword, causing
GENCMD to load data following this address to the named group (refer to the
examples below). Thus, the B value is usually used to mark the boundary
between code and data segments when no segment information is included in the
hex file. Files produced by ASM-86 do not require the use of the B value,
because segment information is included in the H86 file.

Minimum Memory Value
The M value (minimum memory value) is included only when the hex records do
not define the minimum memory requirements for the named group. Generally, the
code group size is determined precisely by the data records loaded into the
area. The total space required for the group is defined by the range between
the lowest and highest data byte addresses. The data group, however, might
contain uninitialized storage at the end of the group. Thus, no data records
are present in the hex file that define the highest referenced data item. The
highest address in the data group can be defined within the source program by
including the ASM-86 directive DB 0 as the last data item in the assembly
language source file. Alternatively, the M value can be included to allocate
the additional space at the end of the group. Similarly, the stack, extra, and
auxiliary group sizes must be defined using the M value, unless the highest
addresses within the groups are implicitly defined by data records in the hex
file.

Maximum Memory Size
The maximum memory size, given by the X value, is generally used when
additional free memory might be needed for such purposes as I/O buffers or
symbol tables. If the data area size is fixed, then the X parameter need not
be included. In this case, the X value is assumed to be the same as the M
value. The value XFFFF allocates the largest memory region available but, if
used, the transient program must be aware that a three-byte length field is
produced in the Base Page for this group, where the high-order byte may be
non-zero. Programs converted directly from CP/M-80 or programs that use a 2-

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG4.TXT[2/7/2012 11:29:37 AM]

byte pointer to address buffers should restrict this value to XFFF or less,
producing a maximum allocation length of 0FFF0h bytes.

The following GENCMD command line transforms the file X.H86 into the file
X.CMD with the proper header record:

 A>gencmd x code[a40] data[m30,xfff]

In this case, the code group is forced to paragraph address 0040h, or
its equivalent, byte address 0400h. The data group requires a minimum of 0300h
bytes, but can use up to 0FFF0h bytes, if available.

Assuming a file Y.H86 exists on drive B containing Intel hex records with no
interspersed segment information, the command

 A>gencmd b:y data[b30,m20] extra[b50] stack[m40] x1[m40]

produces the file Y.CMD on drive B by selecting records beginning at address
0000h, and less than 0300h, for the Code Segment, with records starting at
0300h, and less than 0500h, allocated to the Data Segment. The Extra Segment
is filled from records beginning at 0500h and higher, while the Stack and
Auxiliary Segment #1 are uninitialized areas requiring a minimum of 0400h
bytes each. In this example, the data area requires a minimum of 0200h bytes.
Note again that the B value need not be included if the Digital Research ASM-
86 assembler is used.

4.3 Intel hexadecimal file format

GENCMD input must be in Intel hexadecimal format produced by both the Digital
Research ASM-86 assembler and the standard Intel OH86 utility program. (Refer
to Intel document #9800639-03 entitled "MCS-86 Software Development Utilities
Operating Instructions for ISIS-II Users".) The CMD file produced by GENCMD
contains a Header Record defining the memory model and memory size
requirements for loading and executing the CMD file.

An Intel hexadecimal file consists of the traditional sequence of ASCII
records, where the beginning of the record is marked by an ASCII colon (":"),
and each subsequent digit position contains an ASCII hexadecimal digit in the
range 0-9 or A-F.

There are four kinds of hexadecimal record formats. The Start Address Record
specifies the starting address of the execution file. The Extended Address
Record specifies the bits 4-19 of the Segment Base Address, where bits 0-3 of
the SBA are zero. The Data Record contains a string of hexadecimal ASCII code
that represents a portion of the 8086 memory image. The End-Of-File Record
specifies the end of the object file.

Figure 4-5 shows the four record formats, their fields, and the contents of
these fields. The fields are defined in Table 4-2.

 Starting Address Record

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG4.TXT[2/7/2012 11:29:37 AM]

 +---+----+------+----+------+---+
 | : | 04 | 0000 | 03 | HHHH | B |
 +-+-+-+--+--+---+-+--+--+---+-+-+
 | | | | | |
 | | | | | +--> Checksum
 | | | | +--------> C-Seg
 | | | +--------------> Rec Type
 | | +--------------------> Zeroes
 | +--------------------------> Rec Len
 +------------------------------> Rec Mark

 Extended Address Record
 +---+----+------+----+------+---+
 | : | 02 | 0000 | 02 | HHHH | B |
 +-+-+-+--+--+---+-+--+--+---+-+-+
 | | | | | |
 | | | | | +--> Checksum
 | | | | +--------> USBA
 | | | +--------------> Rec Type
 | | +--------------------> Zeroes
 | +--------------------------> Rec Len
 +------------------------------> Rec Mark

 Data Record
 +---+----+------+----+------+---+
 | : | HH | HHHH | 00 | DATA | B |
 +-+-+-+--+--+---+-+--+--+---+-+-+
 | | | | | |
 | | | | | +--> Checksum
 | | | | +--------> Data bytes
 | | | +--------------> Rec Type
 | | +--------------------> Ld Addr
 | +--------------------------> Rec Len
 +------------------------------> Rec Mark

 End-Of-File Record
 +---+----+------+----+---+
 | : | 00 | 0000 | 01 | B |
 +-+-+-+--+--+---+-+--+-+-+
 | | | | |
 | | | | +---------> Checksum
 | | | +--------------> Rec Type
 | | +--------------------> Zeroes
 | +--------------------------> Rec Len
 +------------------------------> Rec Mark

 Figure 4-5. Intel hexadecimal file format

Table 4-2. Intel hexadecimal field definitions

Format: Field
 Contents

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG4.TXT[2/7/2012 11:29:37 AM]

Rec Mark
Specifies start of record.

Rec Len
Record Length 00-FF (0-255 in decimal).

Zeroes
Extended Address Record: 0000h
Starting Address Record: 0000h
End-Of-File Record: 0000h

Ld Addr
Data Record: SBA offset defining address of byte 0 of data.

Rec Type
00 = Data Record
01 = End-Of-File Record
02 = Extended Address Record
03 = Starting Address Record

The following are output from ASM-86 only:

81 = same as 00, data belongs to Code Segment
82 = same as 00, data belongs to Data Segment
83 = same as 00, data belongs to Stack Segment
84 = same as 00, data belongs to Extra Segment

85 = paragraph address for absolute Code Segment
86 = paragraph address for absolute Data Segment
87 = paragraph address for absolute Stack Segment
88 = paragraph address for absolute Extra Segment

(85, 86, 87, and 88 are Digital Research extensions.)

C-Seg
Four hexadecimal digits specifying the Code Segment address. The high-order
and low-order digits are the 10th and 13th characters of the record,
repesctively.

USBA
Four hexadecimal digits specifying the Upper Segment Base Address. The high-
order and low-order digits are the 10th and 13th characters of the record,
respectively.

Data
Pairs of hexadecimal digits representing the ASCII code for each data byte.
The high-order digit is the first digit of each pair.

Checksum
Extended Address Record: Checksum of Rec Len, Zeroes, Rec Type, and USBA
fields.
Starting Address Record: Checksum of Rec Len, Zeroes, Rect Type, C-Seg, and IP
fields.
Data Record: Checksum of Rec Len, Ld Addr, Rec Type, and data fields.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG4.TXT[2/7/2012 11:29:37 AM]

Ed-Of-File Record: Contains ASCII code 4646h, checksum of Rec Len, Zeroes, and
Rec Type fields.

All characters preceding the colon (":") for each record are ignored. See
"MCS-86 Absolute Object File Formats", published by Intel, for additional
information on hexadecimal file record format.

EOF

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG5.TXT[2/7/2012 11:29:38 AM]

CCPMPRG5.WS4 (Concurrent CP/M Programmer's Reference Guide, Chapter 5)

(Retyped by Emmanuel ROCHE.)

Section 5: Resident System Process generation

5.1 Introduction to RSPs

Resident System Process are programs that become part of the Concurrent CP/M
operating system. They can be useful in several ways: to create a turnkey
system, autoloading programs when Concurrent CP/M is booted; to build
customized user interfaces or shells at the consoles, for monitoring hardware
not supported in the XIOS; and to avoid disk loading time for frequently-used
commands.

The source code for the ECHO RSP is included in Appendix D. Study this listing
carefully while reading this section. The discussion of the P_CREATE system
call in Section 6, "System calls", is also helpful in understanding RSPs.

Resident System Processes are included in Concurrent CP/M during system
generation. GENCCPM searches the directory for all files with the filetype
RSP, and prompts the user to choose whether it is to be included in the
generated system file, CCPM.SYS. An RSP file is created by generating a CMD
file and renaming it with an RSP filetype. The GENCCPM program is documented
in the "Concurrent CP/M System Guide".

5.2 RSP memory models

Under Concurrent CP/M, there are two basic memory models for RSPs. They are
similar to the 8080 Model and the Small Model of transient programs. However,
several important distinctions exist between the transient program and RSP
memory models. The RSP has no equivalent to the Base Page of the transient
program's Data Segment. The RSP is responsible for its own Process Descriptor
(PD) and User Data Area (UDA). The RSP must also allocate an additional 96
bytes at the end of the User Data Area if 8087 processing is required. The
system creates and initializes these data structures for the transient
programs automatically at load time. RSPs, on the other hand, must initialize
these structures within their own Data Segments (see P_CLI and P_CREATE system
calls for PD and UDA descriptions).

Note that Concurrent CP/M does not support Compact Model RSPs. Extra and Stack
Segments must be part of the Data Segment.

Although there is no Base Page in an RSP, there is an RSP Header that must
exist at offset 0000h of the Data Segment. In the 8080 Model, this implies
that the RSP Header is in the Code Segment. The RSP Header and the associated
data structures are discussed in Section 5.4, "Creating an initializing an

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG5.TXT[2/7/2012 11:29:38 AM]

RSP".

5.2.1 8080 Model RSP

The 8080 Model consists of mixed code and data. When the system gives control
of the CPU to an 8080 Model RSP, it initializes the Code, Data, Extra, and
Stack Segment registers to the same value. Use GENCCPM with the 8080 option to
generate an 8080 Model RSP. GENCCPM assumes the 8080 Model if the CMD file
Header Record of the RSP has a single Code Group Descriptor, and no other
Group Descriptors (refer to Section 3.2, "Command file format"). When
discussing an 8080 Model RSP, any reference to the Data Segment also refers to
the Code Segment.

5.2.2 Small Model RSP

The Small Model RSP implies separate Code and Data Segments. Before the system
gives control of the CPU to a Small Model RSP, it initializes the Data, Extra,
and Stack Segment Registers to the Data Segment address, while the Code
Segment register is initialized to the Code Segment address. There is no
guarantee where GENCCPM will place the Code Segment in memory relative to the
Data Segment. The CMD file Header Record for this kind of RSP must have both
Data and Code Group Descriptors.

 Small Model
 +------------+ <-- High
 | |
 8080 Model | Data |
 +------------+ | |
 | Mixed | +------------+
 | Code | | RSP Header |
 | and | DS --> +------------+
 | Data | | |
 +------------+ | Code |
 | RSP Header | | |
 CS, DS --> +------------+ CS --> +------------+ <-- Low

 Figure 5-1. 8080 and Small RSP Models

5.3 Multiple copies of RSPs

At system generation, GENCCPM can make up to 255 extra copies of an RSP, such
that each copy generates a separate process running under Concurrent CP/M.
GENCCPM accomplishes this by making multiple copies of the RSP, and
initializing each to be a separate RSP. The number of copies made by GENCCPM
can be fixed, or made dependent on a byte value in the System Data Area. To
determine the number of copies to make, GENCCPM looks at two fields in the RSP
Header. The format of the RSP Header is shown in Figure 5-2.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG5.TXT[2/7/2012 11:29:38 AM]

 Byte: 00h 02h 04h 05h 10h
 +---+---+----+----+-----+----------+
 | LINK | SDATVAR | NCP | RESERVED |
 +---+---+----+----+-----+----------+

 Figure 5-2. RSP Header format

If the SDATVAR field is non-zero, it is used as an offset of a byte value in
the System Data Area, which contains the number of copies to be generated. The
offset should indicate a value that is set by the user during system
generation. The TMP RSP uses this feature by placing the offset of the NVCNS
(Number of Virtual CoNSoles) field into the SDATVAR field. This way, a TMP is
generated for each System Console specified by the user. If SDATVAR is 0, then
the NCP byte in the RSP Header is used as the number of extra copies to make.
If both of these fields in the RSP Header are 0, then no extra copies are
made, and only a single RSP is created. The ECHO RSP is an example of the
latter.

If the number of extra copies is determined by GENCCPM to be greater than 0,
each copy of the RSP is given a unique copy number. The copy number is placed
in the NCP field, and the ASCII equivalent is appended to the end of the
Process Descriptor NAME field of each copy. If there is not enough space for
the number in the PD NAME, part of the PD NAME is over written. For the
example TMP RSP, GENCCPM makes the specified number of copies, and changes the
NAME field in each copy to be TMP0, TMP1, TMP2, ..., and sets the NCP field to
0, 1, 2, ..., respectively.

5.3.1 8080 Model

When GENCCPM makes copies of an 8080 Model RSP, the CS, DS, ES, and SS fields
in each copy's User Data Area are set to the paragraph address where the RSP
is in memory after loading.

5.3.2 Small Model

If multiple copies of a Small Model RSP are to be generated, GENCCPM copies
both the Code and Data Groups of the RSP, if the MEM field of the Process
Descriptor is 0. See the P_CREATE system call for a description of the Process
Descriptor format. GENCCPM sets the UDA fields CS to the Code Segment of the
RSP, and DS, ES, and SS to the Data Segment of the RSP.

5.3.3 Small Model with Shared Code

If a Small Model RSP has a non-zero MEM field in its Process Descriptor, the
Code Segment is assumed to be re-entrant. When copies are made of this type of

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG5.TXT[2/7/2012 11:29:38 AM]

RSP, only the Data Group is copied. GENCCPM sets the UDA CS field for each
copy to the paragraph address of the one Code Segment for the RSPs. The DS,
ES, and SS, in each copied Data Segment, are set by GENCCPM to the paragraph
address of the Data Segment for that particular copy.

5.4 Creating and initializing an RSP

An RSP that is to be invoked from a console, or through the P_CLI system call,
must create a special queue called an "RSP Command Queue". Such an RSP is
called a "Command RSP". This type of RSP usually performs some initialization
routine, and then goes into a loop. The initialization routine consists of
creating and opening an RSP Command Queue, as well as changing the priority to
the default transient process priority. (Priority values with regard to RSPs
are discussed below.)

The first step of the loop reads a message from the RSP Command Queue. The
process that writes the message to the RSP Command Queue activates the
associated RSP. After the RSP returns from the Q_READ system call, it obtains
the system resources it needs, such as the calling process' console.
Typically, the RSP process is assigned the console process by the CLI after
the CLI has succeeded in writing the command tail to the RSP Queue. This is
only true if the RSP Process Descriptor name matches the RSP Command Queue
name. Refer to the P_CLI (Call Command Line Interpreter) system call
description for information about how the CLI handles a command.

When the RSP completes its activities for the given command, it releases any
system resources it has acquired, including the console, and restarts the loop
by reading from its RSP Command Queue. A Command RSP is a single process, and
is a serially reusable resource; in other words, the RSP acts on one message
at a time. When several processes attempt to invoke a single Command RSP, they
wait as described in the Q_READ and Q_CREAD system call in Section 6, "System
calls". Refer to these, and to the Q_WRITE and Q_CWRITE system call for
further details.

Note: It is certainly possible to create RSPs that are invoked differently.

The format of the RSP Command Queue Message is shown below.

 Byte: 00h 02h 082h
 +-----------+--------------------------+
 | PDADDRESS | COMMAND TAIL (129 bytes) |
 +-----------+--------------------------+

 Figure 5-3. RSP Command Queue Message

The PDADDRESS is the offset relative to the System Data Area segment of the
Process Descriptor of the process calling the RSP. A program that wants to
invoke an RSP and is forming an RSP Command Queue Message, can find its
Process Descriptor address by calling the P_PADR system call. The COMMAND TAIL
usually contains what the TMP sends to the CLI, minus the command name, and is

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG5.TXT[2/7/2012 11:29:38 AM]

terminated with a zero byte.

When a command is entered at a console, the TMP performs a P_CLI system call.
The P_CLI system call attempts to open a queue that has the RSP Flag ON, and
has the same name as the command sent to the CLI. If the Q_OPEN is successful,
the P_CLI system call attempts to assign the calling process' console to a
process with the same name as the command. The P_CLI system call then creates
an RSP Command Queue Message with the command tail sent to the CLI from the
TMP, and writes it to the RSP Command Queue (refer to the discussion of the
P_CLI and Q_WRITE system calls in Section 6, "System calls"). A transient
program can use a Command RSP in the same manner, by writing directly to the
appropriate RSP Command Queue. An advantage of using the P_CLI system call is
that it looks for an RSP first, and only searches on disk for a CMD file if
the RSP is not found.

When an RSP reads an RSP Command Queue Message, it often needs information
about the calling process, such as which console, list device, drive, or user
number to use. If an RSP is invoked through the P_CLI system call, the RSP is
assigned the calling process' console, but if the RSP Command Queue is written
to directly, the calling process might or might not assign its console to the
RSP. A Command RSP can use the PD address in the Command RSP Message to find
out what the default devices of the calling process are. The RSP should
release any resources it assigns to itself when it is finished.

The beginning of the RSP Data Segment has a fixed formatr starting at offset
0. This data structure is the RSP Header. Note that, in the 8080 Model, the
RSP Header is also in the Code Segment. After the RSP Header is a Process
Descriptor starting at offset 0010h. A User Data Area and a stack must also be
within the Data Segment, with the UDA placed at a paragraph boundary relative
to the beginning of the Data Segment. If system calls assuming a default DMA
Buffer are used, a 128-byte DMA Buffer must also exist. The DMA OFFSET field
in the User Data Area should be set to the address of the DMA Buffer. When the
process is created by Concurrent CP/M, the DMA SEGMENT field is initialized to
the same value as the DS register. The DMA SEGMENT and OFFSET can also be set
by calling F_DMASEG and F_DMAOFF once the RSP is running. The beginning of the
RSP Data Segment is shown in Figure 5-4.

 : :
 : Program Data :
 : and RSP Stack :
 : :
 +---------------+ 01A0h
 | Optional 8087 |
 | UDA extension |
 +---------------+ 0140h
 | User Data Area|
 +---------------+ 0040h
 | Process Descr.|
 +---------------+ 0010h
 | RSP Header |
 DS --> +---------------+ 0000h

 Figure 5-4. RSP Data Segment

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG5.TXT[2/7/2012 11:29:38 AM]

The RSP Header must be located at offset zero in the RSP Data Segment, the RSP
Process Descriptor must be at offset 0010h, and the RSP User Data Area must
begin on an even paragraph boundary.

5.4.1 The RSP Header

As discussed in Section 5.2, "RSP memory models", the number of copies made of
an RSP is dependent on the values of the SDATVAR and NCP fields in the RSP
Header. If no copies are desired, these fields must be zero. As a convenience,
when Concurrent CP/M creates the RSP process, the LINK field in the RSP Header
is set to the paragraph address of the System Data Area. The System Data Area
can always be obtained by an RSP or transient program with the S_SYSDAT system
call.

5.4.2 The RSP Process Descriptor

The RSP Process Descriptor should be initialized to zeroes, except for the
PRIORITY, FLAGS, NAME, and USA SEGMENT fields. The PRIORITY field is usually
initialized to 190. This is higher than transient programs and TMPs (200 and
198, respectively), but lower than the INIT process, which has a priority of
1. The description of the P_PRIORITY system call in Section 6, "System calls",
contains more information about system priority assignments.

Starting an RSP at a priority of 190 ensures that the RSP is able to create
and open an RSP Command Queue before it can be invoked through a TMP. RSPs
such as ECHO usually set their priority to 200 after creating and opening
their RSP Command Queue, and before attempting to read from the queue.

Note: There are no guarantees about the order in which the RSP processes are
created by the Concurrent CP/M operating system. If one RSP must run before
another, it must have a higher priority. Such is the case when one RSP uses a
resource created by a second RSP; the second must run (at least during
initialization) with a priority higher than the first.

The Process Descriptor SYS and KEEP Flags can be initialized in the RSP Data
Segment (refer to P_CREATE in Section 6, "System calls", for further flag
details). The SYS Flag allows a process to read and write to and from
restricted system queues. This is discussed below with regard to RSP Command
Queues. The KEEP Flag signals to the operating system that this process cannot
be terminated. This flag is necessary if an RSP is not to be terminated when a
Ctrl-C is typed on a console being used by the RSP. The 8087 Flag tells the
system that a process is actively using the 8087 processor.

The NAME field of the RSP's Process Descritor is 8 bytes long. It is assumed
to be left-justified and padded with blanks on the right. If an RSP Command
Queue is going to be used to invoke the RSP through the CLI, the PD must have
the same uppercase name as the Command Queue. The UDA field in the Process
Descriptor must be the offset in paragraphs of the UDA relative to the RSP

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG5.TXT[2/7/2012 11:29:38 AM]

Data Segment. GENCCPM restores the UDA field in the Process Descriptor to the
actual UDA paragraph address when the system is generated.

If the PD field name is not the same as the Command Queue, the console is not
assigned to the RSP by the CLI.

5.4.3 The RSP User Data Area

The User Data Area must have its SP field set to the offset of a three-word
IRET structure, in the RSP's Data Segment. The offset is relative to the
beginning of the Data Segment. The first of the three words is the offset of
the code entry point for the RSP, relative to the beginning of the RSP Code
Segment. Concurrent CP/M executes an IRET instruction to start the RSP using
these three words for the IP, CS, and Flag registers, respectively. The CS
value on the stack is initialized to be the CS field of the UDA, while the
Flag value is set to 0200h (interrupts ON). The RSP stack must come
immediately before these three words.

The initial values of the AX, BX, CX, DX, DI, SI, and BP registers are taken
from the appropriate fields in the UDA.

The DMA OFFSET field should be set to the offset of the DMA Buffer in the
RSP's Data Segment. Except for the SP and DMA OFFSET fields, and possibly the
AX, BX, CX, DX, DI, SI, and BP fields, the remainder of the UDA fields should
be initialized to 0. The CS, DS, ES, and SS fields are set by GENCCPM, as
discussed in Section 5.3, "Multiple copies of RSPs".

If you include the 8087 extension in the UDA, you must initialize the CW field
(Control Word) to 03FFh, and the SW (Status Word) field to 0 before system
generation.

5.4.4 The RSP Stack

The RSP must reserve space for its stack, which is assumed to lie within the
RSP's Data Segment. This stack must be large enough to accommodate what the
RSP code needs, plus four levels (eight bytes) to handle possible hardware
interrupts. We highly recommend that you reserve more than four extra levels
of stack.

The SP field in the RSP's UDA points to the top of this stack; the top
contains the three-word IRET instruction discussed above.

5.4.5 The RSP Command Queue

The RSP's Command Queue contains information that determines when it begins
execution, and to which console it is attached. If an RSP is to be accessible
from a console via the TMP, the Command Queue name must be in uppercase. The
FLAGS field in the RSP Command Queue Descriptor must have the RSP bit ON. If

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG5.TXT[2/7/2012 11:29:38 AM]

this flag is not ON, the CLI will not write a message to the RSP Command
QUeue, and instead attempts to load a transient program. The KEEP Flag should
be set ON to protect the RSP QUEUE from inadvertent use of the Q_DELETE system
call.

The RESTRICTED Flag (refer to the Q_MAKE system call in Section 6, "System
calls") makes a queue accessible only by privileged processes. Privileged
process have the SYS Flag ON in their Process Descriptor. If the RESTRICTED
Flag is ON in an RSP Command Queue, then only privileged processes can invoke
the related RSP. A lowercase letter in the RSP Command Queue name and the
RESTRICTED Flag provides two methods of filtering access to an RSP QUEUE.

The Queue Descriptor of the RSP Command Queue must have a message length of
131 bytes. The format of this message is shown above. The number of messages
is usually 1. If the Queue Descriptor is within 64 KB of the beginning of the
System Data Area, buffer space for the Queue Descriptor must be allocated in
the RSP. The BUFFER field in the Queue Descriptor must be the offset of this
buffer, relative to the beginning of the RSP's Data Segment. The buffer size
is the message length times the number of messages, usually 131 bytes.

Note: The queue buffer should be before the Queue Descriptor within the RSP
Data Segment.

An RSP can certainly create other queues, besides the RSP Command Queue used
with Command RSPs. However, any queue an RSP creates that lie within 64 KB of
the System Data Area must have a buffer area pointed to by the BUFFER field in
its Queue Descriptor. To be safe, the buffer should come before the Queue
Descriptor in the RSP's Data Segment. It is assumed that the BUFFER field
points to a buffer that is also within 64 KB of the System Data Area. If the
Queue Descriptor is farther than 64 KB from the System Data Area, Concurrent
CP/M uses buffer space in the System Data Area. Refer to the Q_MAKE system
call in Section 6, "System calls", for further details.

In order to open the RSP Command Queue and subsequently read from it, a Queue
Parameter Block and its associated buffer must be allocated in the RSP's Data
Segment. These structures are treated just as in a transient process. For any
queues created by an RSP, it is stressed that the queue buffer areas
associated with the Queue Descriptor and the Queue Parameter Block are
separate, distinct areas of storage.

5.4.6 Multiple processes within an RSP

An RSP can create child processes by calling the P_CREATE system call. Note
that, if the Process Descriptor of the process being created is within 64 KB
of the beginning of the System Data Area, the PD structure is used directly by
Concurrent CP/M. Otherwise, the PD structure is copied into the PD table in
the System Data Area.

5.5 Developing and debugging an RSP

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG5.TXT[2/7/2012 11:29:38 AM]

The first RSP that you attempt should be very simple, on the order of
complexity of the ECHO RSP listed in Appendix D. New RSPs should be developed
and debugged as if they were transient processes, such as Concurrent CP/M CMD
utilities, then converted into RSPs.

An RSP debugging session should proceed like an XIOS debugging session: first,
load CP/M-86, then invoke DDT-86, and then bring up Concurrent CP/M. The
"Concurrent CP/M System Guide" provides more information about running
Concurrent CP/M under CP/M-86.

After reading in the CCPM.SYS file under DDT-86, find the RSPREG field of the
System Data Segment (SYSDAT). The paragraph address of the SYSDAT is found in
the A_BASE field of the Data Group Descriptor in the CCPM.SYS command file
Header Record. The CMD file Header Record is described in Section 3.2,
"Command file format", and the SYSDAT area is described in the S_SYSDAT system
call in Section 6, "System calls". The RSPSEG field contains the paragraph
address of the Data Segment of the first RSP in a linked list of the RSPs
included by GENCCPM.

By using the Display Memory (D) command of DDT-86 to show memory at the
segment RSPSEG, the name of the first RSP can be identified in the RSP's
Process Descriptor. The LINK field in the RSP Header, which will be the first
word in the RSPSEG segment, is the paragraph value of the next RSP's Data
Segment. A zero in the LINK field means the end of the list of RSPs. Note that
linkage information is lost once Concurrent CP/M is initialized. The LINK
field of the RSP Header contains the System Data Segment once an RSP begins
execution.

Once the RSP to be debugged is located, the initial code entry point can also
be found. A discussed previously, the SP field in the RSP's UDA is the offset
from the beginning of the RSP's Data Segment of the three-word IRET structure.
The first word of the IRET structure contains the initial value of the IP
register when Concurrent CP/M creates the RSP process. The initial value of
the CS register is in the CS field also in the RSP's UDA. Once this is done,
you can set break points in the RSP, similar to setting break points in XIOS
system calls.

EOF

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

CCPMPRG6.WS4 (Concurrent CP/M Programmer's Reference Guide, Section 6)

(Retyped by Emmanuel ROCHE.)

Section 6: System calls

This section describes the Concurrent CP/M system calls in tabular form. It is
intended both as an introduction to the calls, and as a reference for use
during programming. You should be familiar with the material in Sections 1
through 5 before proceeding.

The first table, Table 6-1, describes the categories of Concurrent CP/M system
call and their general uses. Table 6-2 summarizes the Concurrent CP/M system
calls. Use it as a quick reference to find the system call that you need while
programming. The system calls are broken down into functional groups.
Immediately following is Table 6-3, a cross-reference showing the system calls
in numerical order. Table 6-4 is an index providing the page numbers and
fugure titles of commonly used data structures. Table 6-5 lists the error
codes returned in register CX.

Table 6-1. System call categories

Format: Category
 Use

"C_" = Console System Calls
The Console System Calls handle I/O operations for virtual consoles on a
character, string, and line basis, attach and detach consoles from processes,
and return or change the number corresponding to the default virtual console.

"DEV_" = Device System Calls
The Device System Calls deal with flags and polling in managing system
resources.

"DRV_" = Disk Drive System Calls
The Disk Drive System Calls manage Concurrent CP/M logical drives.

"F_" = File-Access System Calls
The File-Access System Calls include calls that operate on files within a
directory, calls that operate on records within files, and miscellaneous
system calls related to file I/O.

"L_" = List Device System Calls
The List Device System Calls write characters or strings to the default list
device, attach or detach the default list device from calling processes, and
return or change the number corresponding to the default list device.

"M_" = MP/M-86 Memory Management System Calls
The "M_" Memory Management System Calls are included for compatibility with
MP/M-86. These calls allocate and free memory segements according to the MP/M-

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

86 segmentation algorithm.

"MC_" = CP/M-86 Memory Management System Calls
The "MC_" Memory Management System Calls allocate and free memory segments
according to the CP/M-86 segmentation algortihm.

"P_" = Process/Program System Calls
The Process/Program System Calls create and terminate processes, call other
processes, and perform other operations on processes.

"Q_" = Queue Management System Calls
The Queue Management System Calls create, delete, open, read from, and write
to queues.

"S_" = System Calls
The System Calls return various types of system data, such as version numbers
and addresses.

"T_" = Time System Calls
The Time System Calls set the system calendar and clock, and return the time
from them in hours and minutes, or in hours, minutes, and seconds.

Table 6-2. Concurrent CP/M system calls

Dec Mnemonic Definition
--- ------- ----------

Console I/O system calls

149 C_ASSIGN Assign default virtual console to another process.

146 C_ATTACH Establish ownership of the default virtual console to
 the calling process; suspend process until console
 becomes available.

162 C_CATTACH Conditionally establish ownership of the default
 virtual console by the calling process; return an
 error message if the device is unavailable.

110 C_DELIMIT Set or return current String Output Delimiter. Used
 with C_WRITESTR.

147 C_DETACH Detach default virtual console from the calling
 process.

153 C_GET Return the virtual console number of the calling
 process.

109 C_MODE Set or return Console Mode.

 6 C_RAWIO Perform Raw mode I/O with the default virtual console.

 1 C_READ Read a character from the default virtual console.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

 10 C_READSTR Read an edited line from the default virtual console.

148 C_SET Set or change the default virtual console for the
 calling process.

 11 C_STAT Obtain the input status of the default virtual
 console.

 2 C_WRITE Write a character to the default virtual console.

111 C_WRITEBLK Write a specified number (block) of characters to the
 default virtual console.

 9 C_WRITESTR Write a string to the default virtual console, until
 delimiter.

Device system calls

131 DEV_POLL Poll a non-interrupt-driven device.

133 DEV_SETFLAG Set a system flag.

132 DEV_WAITFLAG Wait for a system flag to be set before restoring the
 current process.

Disk drive system calls

 38 DRV_ACCESS Indicate access to specified drives.

 27 DRV_ALLOCVEC Get the address of the disk Allocation Vector.

 13 DRV_ALLRESET Reset all disk drives.

 31 DRV_DPB Return the segment and offset address of the Disk
 Parameter Block for the default disk of the calling
 process.

 48 DRV_FLUSH Write internal pending blocking/deblocking data
 buffers to disk.

 39 DRV_FREE Relinquish access to specified drives.

 25 DRV_GET Return the default drive of the calling process.

101 DRV_GETLABEL Return the directory label data byte for the specified
 drive.

 24 DRV_LOGINVEC Return bit map of logged-in disk drives.

 37 DRV_RESET Reset the specified drives.

 29 DRV_ROVEC Return bit map vector of drives set to Read-Only.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

 14 DRV_SET Set default drive of calling process.

100 DRV_SETLABEL Set or update a directory label.

 28 DRV_SETRO Set the default drive to Read-Only.

 46 DRV_SPACE Return unallocated space on the specified drive.

Disk file system calls

 30 F_ATTRIB Set file attributes.

 16 F_CLOSE Close file.

 19 F_DELETE Delete file.

 52 F_DMAGET Return segment and offset address of Direct Memory
 Address buffer.

 26 F_DMAOFF Set the Direct Memory Access offset address.

 51 F_DMASEG Set Direct Memory Address buffer segment address.

 45 F_ERRMODE Set the BDOS Error mode.

 42 F_LOCK Lock record within file opened in Unlocked mode.

 22 F_MAKE Create file.

 44 F_MULTISEC Set the BDOS Multisector Count.

 15 F_OPEN Open file for record access.

152 F_PARSE Parse an ASCII string, and initialize an FCB.

106 F_PASSWD Set the default password.

 36 F_RANDREC Set the Random Record Number field in the FCB from the
 sequential record position.

 20 F_READ Read record sequentially.

 33 F_READRAND Read random record.

 23 F_RENAME Rename file.

 17 F_SFIRST Search for first matching directory FCB that matches
 the specified FCB.

 35 F_SIZE Return the size of a file.

 18 F_SNEXT Search for next matching directory FCB that matches
 the FCB specified in the F_SFIRST system call.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

102 F_TIMEDATE Return file's data and time stamps, and password mode.

 99 F_TRUNCATE Truncate file to the specified Random Record Number.

 43 F_UNLOCK Remove record locks.

 32 F_USERNUM Set or return the default user number of the calling
 process.

 21 F_WRITE Write record sequentially.

 34 F_WRITERAND Write random records.

103 F_WRITEXFCB Create or update file's XFCB.

 40 F_WRITEZF Write random records, and zero fill any previously
 unallocated data blocks.

List device system calls

158 L_ATTACH Establish ownership of the default list device by the
 calling process; suspend the process until the device
 is available.

161 L_CATTACH Conditionally establish ownership of the default list
 device by the calling process; return error code if
 the device is unavailable.

159 L_DETACH Relinquish ownership of the default list device.

164 L_GET Return the default list device number of the calling
 process.

160 L_SET Change the default list device for the calling
 process.

 5 L_WRITE Write a character to the default list device.

112 L_WRITEBLK Write the specified number of characters (block) to
 the default list device.

MP/M-86 compatible memory allocation system calls

128 M_ALLOC Allocate the memory segment between the sizes
 specified in the Memory Parameter Block to the calling
129 (same as 128) process.

130 M_FREE Free the specified memory segment.

CP/M-86 compatible memory allocation system calls

 56 MC_ABSALLOC Allocate a specified amount of RAM, as above, but
 beginning at a specific address.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

 54 MC_ABSMAX Allocate the maximum amount of RAM available at a
 specified address.

 58 MC_ALLFREE Free all memory owned by the calling process.

 55 MC_ALLOC Allocate a segment of RAM, as specified in the Memory
 Control Block, to the calling process.

 57 MC_FREE Free an area of RAM beginning at a specified address,
 and extending to the end of the previously allocated
 memory area.

 53 MC_MAX Allocate the maximum amount of RAM available in the
 system.

Process/Program system calls

157 P_ABORT Terminate a process specified by name or Process
 Descriptor address.

 47 P_CHAIN Load, initialize, and jump to the program specified in
 the DMA Buffer.

150 P_CLI Interpret and execute the specified command line by
 calling the Command Line Interpreter (CLI).

144 P_CREATE Create a subprocess.

141 P_DELAY Suspend the calling process for a specified number of
 system clock ticks.

142 P_DISPATCH Force a dispatch operation; give up the CPU resource
 to the highest priority process ready to run.

 59 P_LOAD Load the specified CMD file in memory; return its Base
 Page segment address.

156 P_PDADR Return the address of the Process Descriptor of the
 calling process.

145 P_PRIORITY Set the priority of the calling process.

151 P_RPL Invoke a system call from a Resident Procedure
 Library.

143 P_TERM Terminate the calling process.

 0 P_TERMCPM Terminate calling process unconditionally, release all
 owned resources.

Queue system calls

138 Q_CREAD Conditionally read a message from a system queue;
 return error code if a message is not available.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

140 Q_CWRITE Conditionally write a message to a system queue;
 return an error code if space is not available.

136 Q_DELETE Delete a system queue.

134 Q_MAKE Create a system queue.

135 Q_OPEN Open a system queue for subsequent queue operations.

137 Q_READ Read a message from a system queue; suspend calling
 process until message is available.

139 Q_WRITE Write a message to a system queue; suspend calling
 process until space becomes available.

System information system calls

 12 S_BDOSVER Return BDOS version number, CPU and operating system
 type.

 50 S_BIOS Call specified CP/M-86 BIOS Character I/O routine.

163 S_OSVER Return type and version number of Concurrent CP/M.

107 S_SERIAL Return the Concurrent CP/M system serial number.

154 S_SYSDAT Return address of the System Data Segment (SYSDAT).

Time system calls

105 T_GET Obtain the system calendar and clock (hours and
 minutes only).

155 T_SECONDS Return current system date and time; hours, minutes,
 seconds.

104 T_SET Set internal system calendar and clock to specified
 value.

6.1 System call summary

Table 6-3 lists the Concurrent CP/M system calls in summary form, including
the parameters that a process must pass when calling the system call, and the
values that the system returns to the process.

Appendix A, "System calls summary by function number", lists the Concurrent
CP/M system calls by function number, and includes all the information in
Table 6-3.

Table 6-3. System call summary by name

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

Mnemonic Dec Input parameters Returned values
-------- --- ---------------- ---------------
C_ASSIGN 149 DX = .ACB AX = Rtn Code
C_ATTACH 146 none none
C_CATTACH 162 none AX = Rtn Code
C_DELIMIT 110 DL = Out Delim none
 = 0FFFFh AL = Out Delim
C_DETACH 147 none none
C_GET 153 none AL = console #
C_MODE 109 DX = Con Mode none
 = 0FFFFh AX = Con Mode
C_SET 148 DL = console # none
C_RAWIO 6 see def see def
C_READ 1 none AL = char
C_READSTR 10 DX = .Buffer see def
C_STAT 11 none AL = 1 if ready, 0 if not
C_WRITE 2 DL = char none
C_WRITEBLK 111 DX = .CHCB none
C_WRITESTR 9 DX = .Buffer none

DEV_POLL 131 DL = Device none
DEV_SETFLAG 133 DL = Flag AX = Rtn Code
DEV_WAITFLAG 132 DL = Flag AX = Rtn Code

DRV_ACCESS 38 DX = Drive Vector none
DRV_ALLOCVEC 27 none ES:AX = Alloc Addr
DRV_ALLRESET 13 none see def
DRV_DPB 31 none ES:AX = DPB Addr
DRV_FLUSH 48 none see def
DRV_FREE 39 DX = Drive Vector none
DRV_RESET 25 none AL = Cur Drive
DRV_GETLABEL 101 DX = Drive # AL = Label Data Byte
DRV_LOGINVEC 24 none AX = Login Vector
DRV_RESET 37 DX = Drive Vector AL = Err Code
DRV_ROVEC 29 none AX = R/O Vector
DRV_SET 14 AL = Drive # see def
DRV_SETLABEL 100 DX = .FCB AL = Dir Code
DRV_SETRO 28 none see def
DRV_SPACE 46 DL = Drive # see def

F_ATTRIB 30 DX = .FCB see def
F_CLOSE 16 DX = .FCB AL = Dir Code
F_DELETE 19 DX = .FCB AL = Dir Code
F_DMAGET 52 none ES:AX = DMA Addr
F_DMAOFF 26 DX = .DMA none
F_DMASEG 51 DX = .DMA Seg none
F_ERRMODE 45 DL = Error Mode none
F_LOCK 42 DX = .FCB AL = Err Code
F_MAKE 22 DX = .FCB AL = Dir Code
F_MULTISEC 44 DL = # of Records AL = Rtn Code
F_OPEN 15 DX = .FCB AL = Dir Code
F_PARSE 152 DX = .PFCB see def
F_PASSWD 106 DX = .Password none
F_RANDREC 36 DX = .FCB R0,R1,R2

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

F_READ 20 DX = .FCB AL = Err Code
F_READRAND 33 DX = .FCB AL = Err Code
F_RENAME 23 DX = .FCB AL = Dir Code
F_SFIRST 17 DX = .FCB AL = Dir Code
F_SIZE 35 DX = .FCB R0,R1,R2 & AL = Dir Code
F_SNEXT 18 none AL = Dir Code
F_TIMEDATE 102 DX = .XFCB AL = Dir Code
F_TRUNCATE 99 DX = .FCB see def
F_UNLOCK 43 DX = .FCB AL = Err Code
F_USERNUM 32 DL = 0FFh (Get) AL = User #
 = User # (Set) none
F_WRITE 21 DX = .FCB AL = Err Code
F_WRITERAND 34 DX = .FCB AL = Err Code
F_WRITEXFCB 103 DX = .XFCB AL = Dir Code
F_WRITEZF 40 DX = .FCB AL = Err Code

L_ATTACH 158 none none
L_CATTACH 161 none AX = Rtn Code
L_DETACH 159 none none
L_GET 164 none AL = List #
L_SET 160 DL = List # none
L_WRITE 5 DL = char none
L_WRITEBLK 112 DX = .CHCB none

M_ALLOC 128 DX = .MPB AX = Rtn Code
M_ALLOC 129 Same as above Same as above
M_FREE 130 DX = .MPB none

MC_ABSALLOC 56 DX = .MCB see def
MC_ABSMAX 54 DX = .MCB see def
MC_ALLFREE 58 none none
MC_ALLOC 55 DX = .MCB see def
MC_FREE 57 DX = .MCB see def
MC_MAX 53 DX = .MCB see def

P_ABORT 157 DX = .ABP AX = Rtn Code
P_CHAIN 47 see def none
P_CLI 150 DX = .CLBUF none
P_CREATE 144 DX = .PD none
P_DELAY 141 DX = # ticks none
P_DISPATCH 142 none none
P_LOAD 59 DX = .FCB AX = BP Addr
P_PDADR 156 none ES:AX = PD Addr
P_PRIORITY 145 DL = Priority none
P_RPL 151 DX = .CPB AX = result
P_TERM 143 DL = Term Code AX = Rtn Code
P_TERMCPM 0 none AX = Rtn Code

Q_CREAD 138 DX = .QPB AX = Rtn Code
Q_CWRITE 140 DX = .QPB AX = Rtn Code
Q_DELETE 136 DX = .QPB AX = Rtn Code
Q_MAKE 134 DX = .QD none
Q_OPEN 135 DX = .QPB AX = Rtn Code
Q_READ 137 DX = .QPB none

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

Q_WRITE 139 DX = .QPB

S_BDOSVER 12 none AX = Version #
S_BIOS 50 DX = .BD AX = BIOS Rtn
S_OSVER 163 none AX = Version #
S_SERIAL 107 DX = .serial # serial #
S_SYSDAT 154 none ES:AX = Sys Data Addr

T_GET 105 DX = .TOD AL = seconds
T_SECONDS 155 DX = .TOD TOD filled in
T_SET 104 DX = .TOD none

Note: System calls, 3, 4, 7, and 8 are not supported by Concurrent CP/M.

Conventions used in Table 6-3:

= Number
ACB = Assigned Control Block
APB = Abort Parameter Block
Addr = Address
BD = BIOS Descriptor
BP = Base Page
Char = ASCII Character
CHCB = CHaracter Control Block
CLBUF = Command Line BUFfer
CPB = Call Parameter Block
Con = Console
Cur = Current
Delim = Delimiter
Dir = Directory
DMA = Direct Memory Address
Err = Error
FCB = File Control Block
MCB = Memory Control Block
MPB = Memory Parameter Block
Num = Number
Out = Output
PD = Process Descriptor
PFCB = Parse Filename Control Block
QD = Queue Descriptor
QPB = Queue Parameter Block
Rec = Record
Rtn = Return
Sys = System
Term = Termination
TOD = Time Of Day
Vect = Vector

Uppercase mnemonics refer to Data structures; see the function definition. A
"." before a Data Structure means the byte offset of the Data Structure. A
Return Code is either 0 for success, or 0FFFFh to indicate failure. When the
Return Code in AX is 0FFFFh, CX is the Error Code (see Table 6-5). An Error
Code returned in AL is specific to the BDOS system call that was made.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

Table 6-4. Data structures index

Figure Title Page
------ ----- ----
2-1 FCB -- File Control Block
2-2 Directory Label Format
2-3 XFCB -- Extended File Control Block
2-4 Directory Record with SFCB
2-5 SFCB Subfields
2-6 Disk System Reset

3-1 CMD file Header Record format
3-2 Group Descriptor format
3-3 Concurrent CP/M Base Page values

4-1 Initial program stack
4-2 Concurrent CP/M 8080 Memory Model
4-3 Concurrent CP/M Small Memory Model
4-4 Concurrent CP/M Compact Memory Model
4-5 Intel hexadecimal file format

5-1 8080 and Small RSP Models
5-2 RSP Header format
5-3 RSP Command Queue Message
5-4 RSP Data Segment

6-1 ACB -- Assign Control Block
6-2 Console Buffer format
6-3 Drive, R/O, or Login Vector structure
6-4 DPB -- Disk Parameter Block
6-5 Disk Free Space Field format
6-6 PFCB -- Parse Filename Control Block
6-7 MCB -- Memory Control Block
6-8 MPB -- Memory Parameter Block
6-9 MFPB -- M_FREE Parameter Block
6-10 APB -- Abort Parameter Block
6-11 CLI Command Line Buffer
6-12 PD -- Process Descriptor
6-13 UDA -- User Data Area
6-14 CPB -- Call Parameter Block
6-15 QPB -- Queue Parameter Block
6-16 QD -- Queue Descriptor
6-17 BDOS Version Number format
6-18 BIOS Descriptor format
6-19 Operating Systems Version Number format
6-20 SERIAL Number format
6-21 SYSDAT Table
6-22 TOD Time-Of-Day Structure

Table 6-5. CX error code reports

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

Dec Hex Error report
--- --- ------------
 0 00 No error
 1 01 System call not implemented
 2 02 Illegal system call number
 3 03 Cannot find memory
 4 04 Illegal flag number
 5 05 Flag overrun
 6 06 Flag underrun
 7 07 No unused Queue Descriptors
 8 08 No free queue buffer
 9 09 Cannot find queue
10 0Ah Queue in use

12 0Ch No free Process Descritors
13 0Dh No queue access
14 0Eh Empty queue
15 0Fh Full queue
16 10h CLI queue missing
17 11h No 8087 in system
18 12h No unused Memory Descriptors
19 13h Illegal console number
20 14h No Process Descriptor match
21 15h No console match
22 16h No CLI process
23 17h Illegal disk number
24 18h Illegal filename
25 19h Illegal filetype
26 1Ah Character not ready
27 1Bh Illegal Memory Descriptor
28 1Ch Bad return from BDOS load
29 1Dh Bad return from BDOS read
30 1Eh Bad return from BDOS open
31 1Fh Null command
32 20h Not owner of resource
33 21h No CSEG in load file
34 22h Process Descriptor exists on Thread Root
35 23h Could not terminate process
36 24h Cannot attach to process
37 25h Illegal list device number
38 26h Illegal password

40 28h External termination occurred
41 29h Fixup error upon load
42 2Ah Flag set ignored

6.2 Concurrent CP/M system calls

This section presents detailed information on the Concurrent CP/M system
calls. Read the entire section through before attempting to use the system
calls in a program, as many of them interact with one another.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

6.2.1 Console I/O system calls

C_ASSIGN

Assign default virtual console to another process.

Entry Parameters:
 Register CL: 149 (95h)
 DX: ACB Address -- Offset
 DS: ACB Address -- Segment

Returned Values:
 Register AX: 0000h if assign OK,
 0FFFFh on Failure
 BX: Same as AX
 CX: Error Code

 +-------+-------+-------+-------+
 00h | CNS | MATCH | PD |
 +-------+-------+-------+-------+-------+-------+-------+-------+
 04h | NAME |
 +-------+-------+-------+-------+-------+-------+-------+-------+

 Figure 6-1. ACB -- Assign Control Block

Table 6-6. ACB field definitions

Format: Field
 Definitions

CNS
Console to assign.

MATCH
Boolean; if 0FFh, the process being assigned the console must have the CNS as
its default console for a successful assign. If 00h, no check is made.

PD
Process ID of the process being assigned the console. If this field is zero, a
search is made of the Thread List for a process whose name is NAME. This field
must be either zero or a valid Process ID. If this value is not a valid ID? an
error occurs.

NAME
8-byte process name to search for. An error occurs if a process by this name
does not exist.

The C_ASSIGN system call directly assigns the specified console to a specified
process. This system call overrides the normal mechanism of the C_ATTACH and
C_DETACH system calls. The system call returns an error code if a process

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

other than the calling process owns the console. The system call ignores other
processes waiting to attach to the specified console, and they continue to
wait until the current owner either calls the C_DETACH system call, or
terminates.

Refer to Table 6-5 for a list of error codes returned in CX.

C_ATTACH

Establish ownership of the default virtual console to the calling process;
suspend process until console becomes available.

Entry Parameters:
 Register CL: 146 (92h)

The C_ATTACH system call attaches the default console to the caling process.
If the console is already owned by the calling process, or if it is not owned
by another process, the C_ATTACH system call immediately returns with
ownership established and verified. If another process owns the console, the
calling process waits until the console becomes available.

Refer to Table 6-5 for a list of error codes returned in CX.

C_CATTACH

Conditionally establish ownership of the default virtual console by the
calling process; return an error message if the device is unavailable.

Entry Parameters:
 Register CL: 162 (0A2h)

Returned Values:
 Register AX: 0000h if attach OK,
 0FFFFh on Failure
 BX: Same as AX
 CX: Error Code

The C_CATTACH system call attaches the default console of the calling process,
only if the console is currently un-attached.

If the console is currently attached to another process, the system call
returns a value of 0FFh, indicating that the console could not be attached.
The system call returns a value of 0 to indicate that either the console is
already attached, or that it was unattached and a successful attach operation
was made.

Refer to Table 6-5 for a list of error codes returned in CX.

C_DELIMIT

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

Set or return current String Output Delimiter. Used with C_WRITESTR.

Entry Parameters:
 Register CL: 110 (6Eh)
 DX: 0FFFFh (Get)
 or DL: Output Delimiter (Set)

Returned Values:
 Register AL: Output Delimiter (no value if Set)
 BL: Same as AL

A program can set or interrogate the current Output Delimiter by calling
C_DELIMIT. If register DX = 0FFFFh, then the current Output Delimiter is
returned in register AL. Otherwise, C_DELIMIT sets the Output Delimiter to the
value in register DL.

C_DELIMIT sets the string delimiter for C_WRITESTR. When a new process is
created, the default delimiter value is set to a dollar sign ("$"). The
default delimiter is not inherited from the parent process.

C_DETACH

Detach default virtual console from the calling process.

Entry Parameters:
 Register CL: 147 (93h)

Returned Values:
 Register AX: 0000h if detach OK,
 0FFFFh on Failure
 BX: Same as AX
 CX: Error Code

The C_DETACH system call detaches the default console from the calling
process. If the default console is not attached to the calling process, no
action is taken. If other processes are waiting to attach to the console, the
process with the highest priority attaches the console. If there is more than
one process with the same priority waiting for the console, it is given to the
queue writing processes on a first-come, first-serve basis.

Refer to Table 6-5 for a list of error codes returned in CX.

C_GET

Return the virtual console number of the calling process.

Entry Parameters:
 Register CL: 153 (99h)

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

Returned Values:
 Register AL: Console number
 BL: Same as AL

The C_GET system call returns the default console number of the calling
process.

C_MODE

Set or return Console Mode.

Entry Parameters:
 Register CL: 109 (6Dh)
 DX: 0FFFFh (Get)
 or Console Mode (Set)

Returned Values:
 Register AX: Console Mode (or no value)
 BX: Same as AX

A process can set or interrogate the Console Mode by calling C_MODE. If
register DX = 0FFFFh, then the current Console Mode is returned in register
AX. Otherwise, C_MODE sets the Console Mode to the value contained in register
DX.

The Console Mode is a 16-bit system parameter that determines the action of
certain Console I/O functions. Note that the Console Mode bits are numbered
from right to left. The Console Mode is set to zero when a new process is
created; it is not inherited from its parent. The definition of the Console
Mode is:

 Bit 0 = 0 --> Normal status for C_STAT.
 1 --> Ctrl-C only status for C_STAT.

 Bit 1 = 0 --> Enable stop scroll, start scroll support.
 1 --> Disable stop scroll (Ctrl-S), start scroll (Ctrl-Q)
 support.

 Bit 2 = 0 --> Normal console output mode.
 1 --> Raw console output mode. Disables tab expansion for
 C_WRITE, C_WRITESTR, and C_WRITEBLK. Also disables printer
 echo (Ctrl-P) support.

 Bit 3 = 0 --> Enable Ctrl-C program termination.
 1 --> Disable Ctrl-C program termination.

 Bit 7 = 0 --> Enable Ctrl-O console output byte bucket.
 1 --> Disable Ctrl-O console output byte bucket.

C_RAWIO

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

Perform Raw mode I/O with the default virtual console.

Entry Parameters:
 Register CL: 6 (06h)
 DL: 0FFh (Input/Status)
 or 0FEh (Status)
 or 0FDh (Input)
 or Character (Output)

Returned Values:
 Register AL: (Input/Status)
 00h (if no character)
 Character
 (Status)
 00h = No character
 0FFh = Ready
 (Input)
 Character
 (Output)
 No return value
 BL: Same as AL

The C_RAWIO system call allows the calling process to do raw I/O to its
default console. Concurrent CP/M verifies that the calling process owns its
default console before allowing any I/O.

A process calls the C_RAWIO system call by passing one of three different
values shown in Table 6-7.

Table 6-7. C_RAWIO calling values

Value Description
----- -----------
0FFh Console input status command (if no character is ready, a 00h is
 returned, else the character is returned).

0FEh Console status command (on return, register AL contains 00h if no
 character is ready; otherwise, it contains 0FFh.

0FDh Console input command (if no character is ready, the calling process
 waits until one is typed). Input characters are not echoes to the
 screen.

ASCII character If the parameter is less than 0FDh, the C_RAWIO system call
 assumes register DL contains a valid ASCII character, and
 sends it to the console.

The C_RAWIO system call places the calling process in Raw mode. The Ctrl-C,
Ctrl-P, Ctrl-S, and Ctrl-O characters are not acted on by the PIN (Physical
Input Process), but are passed on to the calling process when C_RAWIO is used.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

Note: If the virtual console is in Ctrl-S mode, and the process that owns the
virtual console then performs a C_RAWIO call, the Ctrl-S state is reset.
Characters read with C_RAWIO are not echoed on the screen, thus allowing
passwords and so forth to be entered in a secure manner.

C_READ

Read a character from the default virtual console.

Entry Parameters:
 Register CL: 1 (01h)

Returned Values:
 Register AL: Character
 BL: Same as AL

The C_READ system call reads a character from the default console of the
calling process. Before attempting the read, Concurrent CP/M internally
verifies the ownership of the console. If the calling process does not own the
console, it relinquishes the CPU resource until the calling process can attach
to the console. Typically, a process that is created through the P_CLI system
call owns its default console when it begins execution.

C_READ echoes characters read from the console. This includes the carriage
return, line feed, and backspace characters. It expands tab characters (Ctrl-
I) in columns of eight characters.

C_READ ignores the termination character (Ctrl-C) if the calling process
cannot terminate (refer to the P_TERM system call). C_READ does not return
until a character is typed on the console. The system suspends the calling
process until a character is ready.

C_READSTR

Read an edited line from the default virtual console.

Entry Parameters:
 Register CL: 10 (0Ah)
 DX: BUFFER Address -- Offset
 DS: BUFFER Address -- Segment

The C_READSTR system call reads characters from the calling process' default
console, and places them into the specified buffer. The format of the buffer
is shown in Figure 6-2. C_READSTR performs line-editing system calls on the
line as it is read from the console; it completes a line and return upon
receiving a terminator character (carriage return or line feed) from the
console, or when the maximum number of characters is reached. As in the C_READ
system call, C_READSTR echoes all graphic characters read from the console.
Concurrent CP/M verifies that the calling process owns its default console
before allowing I/O to begin.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

 0 1 2 MAX+2
 +-----+-------+-----------...--+
 | MAX | NCHAR | CHARACTERS... |
 +-----+-------+-----------...--+

 Figure 6-2. Console buffer format

Table 6-8. Console buffer field definition

Format: Field
 Definition

MAX
Maximum number of characters that can be read into the buffer. This value must
be initialized before calling the C_READSTR system call.

NCHAR
Actual number of characters read into the buffer as filled in by the C_READSTR
system call.

CHARACTERS
Actual characters read from the console, as filled in by the C_READSTR system
call.

C_READSTR recognizes a number of special characters used in editing the input
line, as well as a set of special characters that actually control the calling
process.

Table 6-9. C_READSTR line-editing characters

Format: Character
 Function

RUB/DEL
Removes the last character from the line, and echoes it.

(Ctrl-E)
Echoes new line, a carriage return (Ctrl-M) and a line feed (Ctrl-J) to the
screen, but does not affect the line buffer.

BACKSPACE (Ctrl-H)
Removes the last character from the line, and backspaces over that character.

TAB (Ctrl-I)
Echoes enough spaces to place the next character position at a tab stop. Tab
stops are fixed at every eight character of the physical line.

LINE FEED (Ctrl-J)
Terminates the input line. The C_READSTR system call does not echo a
terminating character, nor does it place the character in the line buffer.

CARRIAGE RETURN (Ctrl-M) "ENTER"

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

Terminates the input line.

REDRAW (Ctrl-R)
Retypes the current line after echoing a new line.

(Ctrl-U)
Removes all of the current line from the line buffer, echoes a new line, and
starts all over again.

(Ctrl-X)
Removes all of the current line from the line buffer, and echoes enough
backspaces to return to the beginning of the line.

C_SET

Set or change the default virtual console for the calling process.

Entry Parameters:
 Register CL: 148 (94h)
 DL: Console Number

Returned Values:
 Register AX: 0000h if successful,
 0FFFFh on Failure
 BX: Same as AX
 CX: Error Code

The C_SET system call changes the calling process' default console to the
value specified. If the console number specified is not one supported by this
particular implementation of Concurrent CP/M, the system call return an error
code, and does not change the default console.

Refer to Table 6-5 for a list of error codes returned in CX.

C_STAT

Obtain the input status of the default virtual console.

Entry Parameters:
 Register CL: 11 (0Bh)

Returned Values:
 Register AX: 01h if character ready,
 00h if not ready
 BL: Same as AL

The C_STAT system call checks to see if a character has been typed at the
default console. If the calling process is not attached to its default
console, the C_STAT system call causes a dispatch to occur and return 00h (the
Not Ready condition).

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

This system call sets the console to the Non-raw mode, allowing recognition of
special control characters, such as the terminate character, Ctrl-C. Use
C_RAWIO to obtain console status in Raw mode.

Note: If bit 0 is set in the Console Mode word, using the C_MODE function
call, C_STAT only returns AL = 01h when a Ctrl-C is typed on the default
console.

Entry Parameters:
 Register CL: 149 (95h)
 DX: ACB Address -- Offset
 DS: ACB Address -- Segment

Returned Values:
 Register AX: 0000h if assign OK,
 0FFFFh on Failure
 BX: Same as AX
 CX: Error Code

C_WRITE

Write a character to the default virtual console.

Entry Parameters:
 Register CL: 2 (02h)
 DL: ASCII character

The C_WRITE system call writes the specified character to the calling process'
default console. As in the C_READ system call, Concurrent CP/M verifies that
the calling process owns its default console before performing the operation.
On output, C_WRITE expands tabs in columns of eight characters.

C_WRITEBLK

Write a specified number (block) of characters to the default virtual console.

Entry Parameters:
 Register CL: 111 (6Fh)
 DX: CHCB Address -- Offset

C_WRITEBLK sends the character string located by the CHaracter Control Block,
CHCB, addressed in register pair DX to the console. If the Console Mode is in
the Default state, C_WRITEBLK expands tab characters, Ctrl-I, in columns of
eight characters.

The CHCB format is:

 bytes 0-1 : Offset of character string
 bytes 2-3 : Segment of character string
 bytes 4-5 : Length of character string to print

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

C_WRITESTR

Write a string to the default virtual console, until delimiter.

Entry Parameters:
 Register CL: 9 (09h)
 DX: String Address -- Offset
 DS: String Address -- Segment

The C_WRITESTR system call prints an ASCII string starting at the indicated
string address, and continuing until it reaches a dollar sign ("$") character
(24h). "$" is the default string delimiter, and can be changed by the
C_DELIMIT system call. C_WRITESTR writes this string to the calling process'
default console.

Concurrent CP/M verifies that the calling process owns the console before
writing the string. C_WRITESTR sets the console to a Non-raw state, and
expands tabs in columns of eight characters, as does the C_WRITE system call.

Use the C_WRITESTR system call whenever possible, rather than the single-
character system calls. The CPU overhead involved in handling the first
character is the same as that for a single-character system call, but
subsequent characters require as little as one-fifth the CPU overhead.

6.2.2 Device system calls

DEV_POLL

Poll a non-interrupt-driven device.

Entry Parameters:
 Register CL: 131 (83h)
 DL: Device number

Returned Values:
 Register AX: 0000h on Success,
 0FFFFh on Failure
 BX: Same as AX
 CX: Error Code

The DEV_POLL system call is used by the XIOS to poll non interrupt-driven
devices. It should be used whenever the XIOS is waiting for a non interrupt
event. The calling process relinquishes the CPU, and allows Concurrent CP/M to
poll the device at every dispatch. The XIOS contains routines for each polling
device number. These routines are called through the DEV_POLL system call, and
they return whether the device is ready or not. When the device is ready,
DEV_POLL restores the calling process to the Run state and returns. Upon
return, the calling process knows the device is ready.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

Refer to Table 6-5 for a list of error codes returned in CX.

DEV_SETFLAG

Set a system flag.

Entry Parameters:
 Register CL: 133 (85h)
 DL: Flag number

Returned Values:
 Register AX: 0000h on Success,
 0FFFFh on Failure
 BX: Same as AX
 CX: Error Code

The DEV_SETFLAG system call is used by interrupt routines to notify the system
that a logical interrupt has occurred. A process waiting for this flag is
placed back into the Run state. If there is no process waiting, then the next
process to wait for this flag returns successfully, without relinquishing the
CPU. The system call detects an error if the flag has already been set, and no
process has done a DEV_WAITFLAG call to reset it.

Note: If a process waiting for a specific flag to be set is aborted, the next
DEV_SETFLAG call is ignored and an error code is returned in CX. In this case,
the interrupt handler should continue to set call DEV_SETFLAG until it
successfully sets the flag IP, and AX = 0 on return.

Refer to Table 6-5 for a list of error codes returned in CX.

DEV_WAITFLAG

Wait for a system flag to be set before restoring the current process.

Entry Parameters:
 Register CL: 132 (84h)
 DL: Flag number

Returned Values:
 Register AX: 0000h on Success,
 0FFFFh on Failure
 BX: Same as AX
 CX: Error Code

The DEV_WAITFLAG system call is used by a process to wait for an interrupt.
The process relinquishes the CPU until an interrupt routine calls the
DEV_SETFLAG system call, which places the waiting process in the Run state.
When the DEV_WAITFLAG returns to the calling process, the interrupt has
occurred, or an error has occurred. An error occurs when a process is already

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

waiting for the flag. If the flag was set before DEV_WAITFLAG was called, the
routine returns successfully without relinquishing the CPU. This routine is
usually used by the XIOS. The mapping between types of interrupts and flag
numbers is maintained in the XIOS, although Concurrent CP/M reserves flags 0,
1, 2, and 3 for system use.

Refer to Table 6-5 for a list of error codes returned in CX.

6.2.3 Disk drive system calls

The Drive Vector, Read-Only Vector, and Login Vector are referenced or
returned by several Concurrent CP/M Disk Drive system calls. The Drive, Read-
Only, or Login vectors are 16-bit values specifying one or more drives, where
the least significant bit corresponds to drive A, and the high-order bit
corresponds to the sixteenth drive, labeled P. The format of the Drive, Read-
Only, and Login vectors is illustrated below:

 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 DRV | P O N M L K J I H G F E D C B A |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 Figure 6-3. Drive, Read-Only, or Login vectors structure

DRV_ACCESS

Indicate access to specified drives.

Entry Parameters:
 Register CL: 38 (26h)
 DX: Drive Vector

Returned Values:
 Register AL: Return Code
 AH: Extended Error
 BX: Same as AX

The DRV_ACCESS system call inserts a special open file item into the system
Lock List for each specified drive. While the item exists in the Lock List,
the drive cannot be reset by another process. The calling process passes the
drive vector in register DX. The format of the drive vector is discussed at
the beginning of Section 6.2.3, "Disk drive system calls".

The DRV_ACCESS system call inserts no items if insufficient free space exists
in the Lock List to support all the new items, or if the number of items to be
inserted puts the calling process over the Lock List open file maximum. If the
BDOS Error mode is in the default mode (refer to the F_ERRMODE system call),
the file system displays a message at the console identifying the error, and
terminates the calling process. Otherwise, DRV_ACCESS returns to the calling
process with register AL set to 0FFh, and register AH set to one of the

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

following hexadecimal values:

 0Ah = Open file limit exceeded
 0Bh = No room in system Lock List

On successful calls, DRV_ACCESS returns with register AL set to 00h.

DRV_ALLOCVEC

Get the address of the disk Allocation Vector.

Entry Parameters:
 Register CL: 27 (1Bh)

Returned Values:
 Register AX: Alloc Address -- Offset
 BX: Same as AX
 ES: Alloc Address -- Segment

Concurrent CP/M maintains an allocation vector in memory for each active disk
drive. Some programs use the information provided by the allocation vector to
determine the amount of free data space on a drive. Note, however, that the
allocation information can be inaccurate if the drive has been marked Read-
Only.

The DRV_ALLOCVEC system call returns the address of the allocation vector for
the currently selected drive. If a physical error is encountered when the BDOS
Error mode is in one of the return modes (refer to the F_ERRMODE system call),
DRV_ALLOCVEC returns the value 0FFFFh in AX.

You can use the DRV_SPACE system call to directly return the number of free
128-byte records on a drive. The Concurrent CP/M utility, SHOW, finds a
drive's free space by using the DRV_SPACE system call.

DRV_ALLRESET

Reset all disk drives.

Entry Parameters:
 Register CL: 13 (0Dh)

Returned Values:
 Register AL: 00h if Successful,
 0FFh on Failure
 BL: Same as AL

The DRV_ALLRESET system call restores the file system to a reset state, where
all the disk drives are set to Read-Write (refer to the DRV_SETRO and
DRV_ROVEC system calls), the default disk is set to drive A, and the default
DMA address is reset to offset 0080h, relative to the current DMA segment

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

address. This system call can be used, for example, by an application program
that requires disk changes during operation. You can also use the DRV_RESET
system call for this purpose.

This system call is conditional under Concurrent CP/M. If another process has
a file open on any of the drives to be reset, and the drive is also Read-Only
or removable, the DRV_ALLRESET system call is denied, and none of the
specified drives are reset (see Section 2.17, "Reset, access, and free
drive").

Upon return, if the reset operation is successful, DRV_ALLRESET sets register
AL to 00h. Otherwise, it sets register AL to 0FFh. If the BDOS is not in one
of the return error modes (refer to the F_ERRMODE system call), the file
system displays an error message at the console identifying the process owning
the first open file that caused the DRV_ALLRESET to be denied.

DRV_DPB

Return the segment and offset address of the Disk Parameter Block for the
default disk of the calling process.

Entry Parameters:
 Register CL: 31 (1Fh)

Returned Values:
 Register AX: DPB Address -- Offset (0FFFFh on Physical Error)
 BX: Same as AX
 ES: DPB Address -- Segment

DRV_DPB returns the address of the XIOS-resident Disk Parameter Block (DPB)
for the currently selected drive. The calling process can use this address to
extract the disk parameter values.

If a physical error is encountered when the BDOS Error mode is one of the
Return Error modes (refer to the F_ERRMODE system call), DRV_DPB returns the
value 0FFFFh.

The Disk Parameter Block (DPB) contains the parameters that define the actual
disk.

 +-----+-----+-----+-----+-----+-----+-----+-----+
 00h | SPT | BSH | BLM | EXM | DSM | DRM..
 +-----+-----+-----+-----+-----+-----+-----+-----+
 08h ..DRM | AL0 | AL1 | CKS | OFF | PSH |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 10h | PRM |
 +-----+

 Figure 6-4. DPB -- Disk Parameter Block

Table 6-10. DPB field definitions

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

Format: Field
 Definition

SPT -- Sectors Per Track
The number of Sectors Per Track equals the total number of physical sectors
per track. Physical sector size is defined by PSH and PRM, described below.

BSH -- Allocation Block Shift Factor
BLM -- Allocation Block Mask
The data allocation block size determines the values of the data allocation
Block Shift Factor and the allocation Block Mask. The Block Shift factor
equals the the logarithm base two of the block logical size in 128-byte
records, or BSH = LOG2 (BLS). The Block Mask equals the number of 128-byte
records in an allocation Block minus 1, or BLM = (2**BSH-1). Refer to the
"Concurrent CP/M System Guide" for valid block sizes, and BSH and BLM values.

EXM -- Extent Mask
The data block allocation size and the number of disk allocation blocks
determine the value of the Extent Mask. The Extent Mask determines the maximum
number of 16 KB extents that can be contained in a directory entry. It is
equal to the maximum number of 16 KB extents per directory entry minus one.
Refer to the "Concurrent CP/M System Guide" for EXM values.

DSM -- Disk Storage Maximum
The Disk Storage Maximum defines the total storage capacity of the drive. This
is equal to the total number of allocation blocks minus one for the drive. DSM
must be less than or equal to 7FFFh. If the disk uses 1024 bytes blocks (BSH =
3, BLM = 7), DSM must be less than or equal to 00FFh.

DRM -- Directory Maximum
The Directory Maximum defines the total number of directory entries for the
drive. This is equal to the total number of directory entries minus one, that
can be kept on this drive. The directory requires 32 bytes of disk per entry.
The maximum directory allocation is 16 blocks, where the block size is
determined by BSH and BLM.

AL0 -- Allocation Vector 0
AL1 -- Allocation Vector 1
The Directory Allocation Vectors determine the reserved directory allocation
blocks.

CKS -- Checksum Vector Size
The Checksum Vector Size determines the required length of the directory
checksum vector and the number of directory entries that the BDOS will
checksum. The Checksum Vector Size is equal to the number of directory entries
divided by 4, or CKS = (DRM+1)/4. If the media is fixed, CKS might be zero, no
storage needs to be reserved, and the BDOS does not calculate directory
checksums for the drive.

The high-bit of CKS (that it, >= 8000h) is set if the referenced drive is
considered to be a non-removable media drive. Note that this modifies the
rules for resetting the drive. For more information, refer to Section 2.15,
"File byte counts".

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

OFF -- Track Offset
The Track Offset is the number of reserved tracks at the beginning of the
disk. OFF is equal to the track number on which the directory starts.

PSH -- Physical Record Shift Factor
The Physical Record Shift Factor ranges from 0 to 5, corresponding to physical
record sizes of 128, 256, 512, 1 KB, 2 KB, or 4 KB. It is equal to the
logarithm base two of the physical record size divided by 128, or LOG2
(sector_size/128).

PRM -- Physical Record Mask
The Physical Record Mask ranges from 0 to 31, corresponding to physical record
sizes of 128, 256, 512, 1 KB, 2 KB, or 4 KB. It is equal to the physical
sector size divided by 128 minus 1, or (sector_size/128)-1.

For more information on DPB parameters, refer to the "Concurrent CP/M System
Guide", Section 5.4, "Creating and initializing an RSP".

DRV_FLUSH

Write internal pending blocking/deblocking data buffers to disk.

Entry Parameters:
 Register CL: 48 (30h)
 DL: Purge Flag

Returned Values:
 Register AL: Error Flag
 AH: Permanent Error
 BX: Same as AX

The DRV_FLUSH system call forces the write of any write-pending records
contained in internal blocking/deblocking buffers. If register DL is set to
0FFh, DRV_FLUSH also purges all active data buffers after performing the
writes. Programs that provide write with read verify support needed to purge
internal buffers, to ensure that verifying reads actually access the disk,
instead of returning data resident in internal data buffers. The Concurrent
CP/M PIP utility is an example of such a program.

Upon return, the system call sets register AL to 00h if the flush operation is
successful. If a physical error is encountered, DRV_FLUSH performs different
actions, depending on the BDOS Error mode (refer to the F_ERRMODE system
call). If the BDOS Error mode is in the default mode, the system displays a
message at the console identifying the error, and terminates the calling
process. Otherwise, it returns to the calling process with register AL set to
0FFh, and register AH set to one of the following physical error codes:

 01h = Disk I/O Error : permanent error
 02h = Read-Only Disk

DRV_FREE

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

Relinquish access to specified drives.

Entry Parameters:
 Register CL: 39 (27h)
 DX: Drive Vector

The DRV_FREE system call purges the system Lock List of all file and locked
record items that belong to the calling process on the specified drives.
DRV_FREE passes the drive vector in register DX.

DRV_FREE does not close files associated with purged open file Lock List
items. In addition, if a process references a purged file with a BDOS system
call requiring an open FCB, the system call returns a checksum error. A file
that has been written to should be closed before making a DRV_FREE call to the
file's drive, or data can be lost. Refer to Section 2.17, "Reset, acces, and
free drive", for more information on this system call.

DRV_GET

Return the default drive of the calling process.

Entry Parameters:
 Register CL: 25 (19h)

Returned Values:
 Register AL: Drive Number
 BL: Same as AL

The DRV_GET system call returns the calling process' currently selected
default disk number. The disk numbers range from 0 through 15, corresponding
to drives A through P.

DRV_GETLABEL

Return the directory label data byte for the specified drive.

Entry Parameters:
 Register CL: 101 (65h)
 DL: Drive

Returned Values:
 Register AL: Directory Label Data Byte
 AH: Physical Error
 BX: Same as AX

The DRV_GETLABEL system call returns the directory label data byte for the
specified drive. The calling process passes the drive number in register DL
with 0 for drive A, 1 for drive B, continuing through 15 for drive P in a full

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

16-drive system. The format of the directory label data byte is shown below:

 bit 7 : Require passwords for password protected files
 6 : Perform access time and date stamping
 5 : Perform update time and date stamping
 4 : Perform create time and date stamping
 0 : Directory label exists on drive

 (Bit 0 is the least significant bit.)

DRV_GETLABEL returns the directory label data byte to the calling process in
register AL. Register AL equal to 00h indicates that no directory label exists
on the specified drive. If the system call encounters a physical error when
the BDOS Error mode is in one of the return error modes (refer to the
F_ERRMODE system call), it returns with register AL set to 0FFh, and register
AH set to one of the following:

 01h = Disk I/O Error : permanent error
 04h = Invalid Drive : drive select error

DRV_LOGINVEC

Return bit map of logged-in disk drives.

Entry Parameters:
 Register CL: 24 (18h)

Returned Values:
 Register AX: Login Vector
 BX: Same as AX

The DRV_LOGINVEC system call returns the Login Vector in register AX. The
Login Vector is a 16-bit value with the least significant bit corresponding to
drive A, and the high-order bit corresponding to the 16th drive, drive P. A 0
bit indicates that the drive is not logged-in, while a 1 bit indicates that
the drive is logged-in. Refer to the beginning of Section 6.2.3, "Disk drive
system calls", for a complete description of the Login Vector.

DRV_RESET

Reset the specified drives.

Entry Parameters:
 Register CL: 37 (25h)
 DL: Drive Vector

Returned Values:
 Register AL: Return Code
 BL: Same as AL

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

The DRV_RESET system call is used to programmatically restore specified
removable media drives to the reset state (a reset drive is not logged in, and
is in Read-Write status). The passed parameter in register DX is a 16-bit
vector of drives to be reset, where the least significant bit corresponds to
drive A, and the high-order bit corresponds to the sixteenth drive, labeled P.
Bit values of 1 indicate that the specified drive is to be reset. Refer to
Section 2.17, "Disk drive system calls", for more information regarding the
use of this system call.

This system call is conditional under Concurrent CP/M. If another process has
a file open on any of the drives to be reset, the DRV_RESET system call is
denied, and none of the drives are reset.

Upon return, if the reset operation is successful, DRV_RESET sets register AL
to 00h. Otherwise, it sets register AH to 0FFh. If the BDOS Error mode is not
in Return Error mode (refer to the F_ERRMODE system call), the system displays
an error message at the console, identifying the process owning the first open
file that caused the DRV_RESET request to be denied.

DRV_ROVEC

Return bit map vector of drives set to Read-Only.

Entry Parameters:
 Register CL: 29 (1Dh)

Returned Values:
 Register AX: Read-Only Vector
 BX: Same as AX

The DRV_ROVEC system call returns a bit vector indicating which drives have
the temporary Read-Only bit set. The Read-Only bit can only be set by a
DRV_SETRO call.

Note: When the file system detects a change in the media on a drive, it
automatically logs in the drive, and sets it to Read-Write.

The format of the Read-Only Vector is analogous to that of the Login Vector.
The least significant bit corresponds to drive A; the most significant bit
corresponds to drive P. For a complete description of the Read-Only Vector,
refer to the beginning of this section.

DRV_SET

Set default drive of calling process.

Entry Parameters:
 Register CL: 14 (0Eh)
 DL: Selected Disk

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

Returned Values:
 Register AL: Error Flag
 AH: Physical Error
 BX: Same as AX

The DRV_SET system call designates the specified disk drive as the default
disk for subsequent BDOS file operations. Set the DL register to 0 for drive
A, 1 for drive B, continuing through 15 for drive P. DRV_SET also logs in the
designated drive if it is currently in the reset state. Logging in a drive
activates the drive's directory for file operations.

FCBs that specify drive code zero (DR = 00h) automatically reference the
currently selected default drive. FCBs with drive code values between 1 and
16, however, ignore the selected default drive, and directly reference drives
A through P.

Upon return, register AL equal to 00h indicates that the select operation was
successful. If a physical error is encountered, DRV_SET performs different
actions depending on the BDOS Error mode (refer to the F_ERRMODE system call).

If the BDOS Error mode is in the default mode, the system displays a message
at the console, identifying the error, and terminates the calling process.
Otherwise, DRV_SET returns to the calling process with register AL set to
0FFh, and register AH set to one of the following physical error codes:

 01h = Disk I/O Error : permanent error
 04h = Invalid Drive : drive select error

DRV_SETLABEL

Set or update a directory label.

Entry Parameters:
 Register CL: 100 (64h)
 DX: FCB Address -- Offset
 DS: FCB Address -- Segment

Returned Values:
 Register AL: Directory Code
 AH: Physical or Extended Error
 BX: Same as AX

The DRV_SETLABEL system call creates a directory label, or updates the
existing directory label for the specified drive. The calling process passes
the address of an FCB containing the name, type, and extent fields to be
assigned to the directory label. The name and type fields of the referenced
FCB are not used to locate the directory label in the directory; they are
simply copied into the updated or created directory label. Byte 12 of the FCB
contains the user's specification of the directory label data byte.

The definition of the directory label data byte is:

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

 bit 7 : Require passwords for password protected files
 6 : Perform access time and date stamping
 5 : Perform update time and date stamping
 4 : Perform create time and date stamping
 0 : Assign a new password to the directory label

 (Bit 0 is the least significant bit.)

If the currently directory label is password protected, the correct password
must be placed in the first 8 bytes of the current DMA, or have been
previously established as the default password (refer to the F_PASSWD system
call). If bit 0 of the directory label data byte is set to 1, it indicates
that a new password for the directory label has been placed in the second 8
bytes of the current DMA.

The DRV_SETLABEL system call also requires that the referenced directory
contains SFCBs in order to activate date and time stamping on the drive. If an
attempt is made to activate date and time stamping when no SFCBs exist, the
DRV_SETLABEL system call returns an error code, and performs no action. The
Concurrent CP/M INITDIR untility initializes a directory for date and time
stamping by placing an SFCB in every fourth entry of the directory.

Upon return, the DRV_SETLABEL system call returns a directory code in register
AL with the value 00h if the directory label create or update was successful,
or 0FFh if no space existed in the referenced directory to create a directory
label. It also returns 0FFh if date and time stamping was requested, and the
referenced directory did not contain SFCBs. Register AH is set to 00h in all
of these cases.

If a physical or extended error is encountered, the DRV_SETLABEL system call
performs different actions, depending on the BDOS Erro mode (refer to the
F_ERRMODE system call). If the BDOS Error mode is in the default mode, the
file system displays a message at the console identifying the error, and
terminates the calling process. Otherwise, the DRV_SETLABEL system call
returns to the calling process with register AL set to 0FFh, and register AH
set to one of the following physical or extended error codes:

 01h = Disk I/O Error : permanent error
 02h = Read-Only Disk
 04h = Invalid Drive : drive select error
 07h = Password Error

DRV_SETRO

Set the default drive to Read-Only.

Entry Parameters:
 Register CL: 28 (1Ch)

Returned Values:
 Register AL: Return Code
 BL: Same as AL

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

The DRV_SETRO system call provides temporary write protection for the
currently selected disk, by marking the drive as Read-Only. No process can
write to a disk that is in the Read-Only state. You must perform a successful
DRV_RESET operation to restore a Read-Only drive to the Read-Write state
(refer to the DRV_ALLRESET and DRV_RESET system calls).

The DRV_SETRO system call is conditional under Concurrent CP/M. If another
process has an open file on the drive, the operation is denied, and the system
call returns the value 0FFh to the calling process. Otherwise, it returns a
00h. If the BDOS Error mode is not in Return Error mode (refer to the
F_ERRMODE system call), the file system displays an error message at the
console, identifying the process owning the first open file that caused the
DRV_SETRO request to be denied.

Note that a drive in the Read-Only state cannot be reset by a process if
another process has an open file on the drive.

DRV_SPACE

Return unallocated space on the specified drive.

Entry Parameters:
 Register CL: 46 (2Eh)
 DL: Drive

Returned Values:
 Register AL: Error Flag
 AH: Physical Error
 BX: Same as AX
 First 3 bytes of DMA Buffer filled in.

The DRV_SPACE system call determines the number of free sectors (128-byte
records) on the specified drive. The calling process passes the drive number
in register DL, with 0 for drive A, 1 for B, continuing through 15 for drive
P. DRV_SPACE returns a binary number in the first 3 bytes of the current DMA
Buffer. This number is returned in the format shown in Figure 6-5.

 +-----+-----+-----+
 | FS0 | FS1 | FS2 |
 +-----+-----+-----+

 FS0 = low byte
 FS1 = middle byte
 FS2 = high byte

 Figure 6-5. Disk free space field format

Note that the returned free space might be inaccurate if the drive has been
marked Read-Only.

Upon return, DRV_SPACE sets register AL to 00h, indicating that the operation

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

was successful. However, if the BDOS Error mode is one of the return modes
(refer to the F_ERRMODE system call), and a physical error occurs, it sets
register AL to 0FFh, and register AH to one of the following values:

 01h = Disk I/O Erro : permanent error
 04h = Invalid Drive : drive select error

6.2.4 Disk file system calls

Most file-access system calls reference a File Control Block (FCB). This data
structure is illustrated in Figure 2-1, "FCB -- File Control Block". Refer to
Section 2.4, "File Control Block definition", for a comprehensive explanation
of the FCB data structure, its initialization, and usage.

F_ATTRIB

Set file attributes.

Entry Parameters:
 Register CL: 30 (1Eh)
 DX: FCB Address -- Offset
 DS: FCB Address -- Segment

Returned Values:
 Register AL: Directory Code
 BL: Same as AL

By calling the F_ATTRIB system call, a process can modify a file's attributes,
and sets its last record byte count. Other BDOS system calls can interrogate
these file parameters, but only F_ATTRIB can change them. The file attributes
that can be set or reset by F_ATTRIB are F1' through F4', Read-Only (T1'),
System (T2'), and Archive (T3'). The specified FCB contains a filename with
the appropriate attributes set or reset. The calling process must ensure that
it does not specify an ambiguous filename. Also, if the specified file is
password protected, the correct password must be placed in the first eight
bytes of the current DMA Buffer, or have been previously established as the
default password (refer to the F_PASSWD system call).

Interface attribute F5' specified whether an extended file lock is to be
maintained after the F_ATTRIB call. Interface attribute F6' specifies if the
specified file's byte count is to be set. The interface attribute definitions
are listed below:

 F5' = 0 : Do not maintain an extended file lock (default)
 = 1 : Maintain an extended file lock
 F6' = 0 : Do not set byte count (default)
 = 1 : Set byte count

If F5' is set and the referenced FCB specifies a file with an extended file
lock, the calling process maintains the lock on the file. Otherwise, the file
becomes available to other processes on the system. Section 2.11, "Extended

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

file locking", describes extended file locking in detail.

If interface attribute F6' is set, the calling process must set the CR field
of the referenced FCB to the new byte count value. A process can access a
file's byte count value with the BDOS F_OPEN, F_SFIRST, and F_SNEXT system
calls. File byte counts are described in Section 2.15, "File byte counts".

F_ATTRIB searches the FCB specified directory for an entry belonging to the
current user number that matches the FCB specified name and type fields. The
system call then updates the directory to contain the selected indicators and,
if interface attribute F6' is set, the specified byte count value. Note that
the last record byte count is maintained in the byte 13 of a file's directory
FCB.

File attributeS T1', T2', and T3' are defined by Concurrent CP/M as described
in Section 2.4.2, "File attributes". Attributes F1' through F4' of command
files are defined as Compatibility Attributes, as described in Section 2.12,
"Compatibility attributes". However, for all other files, attributes F1'
through F4' are available for definition by the user. Attributes F5' through
F8' are reserved as Interface Attributes, and cannot be used as file
attributes. Interface attributes are described in Section 2.4.3, "Interface
attributes".

An F_ATTRIB system call is not performed if the referenced FCB specifies a
file currently open for another process. It is performed, however, if the
referenced file is open by the calling process in Locked mode. However, the
file's lock entry is purged when this is done, and the file system prevents
continued read and write operations on the file. F_ATTRIB does not set the
attributes of a file currently open in Read-Only or Unlocked mode for any
process.

Making an F_ATTRIB system call for an open file can adversely affect the
performance of the calling process. For this reason, you should close an open
file before you call the F_ATTRIB system call.

Upon return, F_ATTRIB returns a directory code in register AL with the value
00h if the system call is successful, or 0FFh if the file specified by the
referenced FCB is not found. Register AH is set to 00h in both cases.

If a physical or extended error is encountered, the F_ATTRIB system call
performs different actions, depending on the BDOS Error mode (refer to the
F_ERRMODE system call). If the BDOS Error mode is in the default mode, the
file system displays a message at the console identifying the error, and
terminates the process. Otherwise, it returns to the calling process with
register AL set to 0FFH, and register AH set to one of the following physical
or extended error codes:

 01h = Disk I/O Error : permanent error
 02h = Read-Only Disk
 04h = Invalid Drive : drive select error
 05h = File open by another process
 07h = Password Error
 09h = Illegal ? in FCB

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

F_CLOSE

Close file.

Entry Parameters:
 Register CL: 16 (10h)
 DX: FCB Address -- Offset
 DS: FCB Address -- Segment

Returned Values:
 Register AL: Directory Code
 AH: Physical or Extended Error
 BX: Same as AX

The F_CLOSE system call performs the inverse operation of the F_OPEN system
call. The referenced FCB must have been previously activated by a successful
F_OPEN or F_MAKE system call. Interface attributes F5' and F6'specify how the
file is to be closed, as shown below:

 F5' = 0, F6' = 0 --> Default close
 = 0, = 1 --> Extend File Lock
 = 1, = 0 --> Partial Close
 = 1, = 1 --> Partial Close

The F_CLOSE system call performs the following steps, regardless of the
interface attribute specification. First, it verifies that the referenced FCB
has a valid checksum. If the checksum is invalid, F_CLOSE performs no action,
and returns an error code.

If the checksum is valid and the referenced FCB contains new information
because of write operations to the FCB, F_CLOSE permanently records the new
information in the directory. If the FCB does not contain new information, the
directory update step is bypassed. However, F_CLOSE always attempts to locate
the FCB's corresponding entry in the directory, and returns an error code if
the directory entry cannot be found.

If the F_CLOSE system call successfully performs the above steps, it performs
different actions, depending on how the interface attributes are set. In
default close operations, F_CLOSE decrements the file's open count, which is
maintained in the file's system Lock List entry. If the open count decrements
to zero, it indicates that the number of default close operations for the file
matches the number of open operations.

If the open count decrements to zero, F_CLOSE permanently closes the file by
performing the following steps. First of all, it removes the file's item from
the system Lock List. If the FCB is opened in Unlocked mode, it also purges
all record locks belonging to the file from the system Lock List. In addition,
F_CLOSE invalidates the FCB's checksum, to ensure that the referenced FCB is
not subsequently used with BDOS system calls that require an open FCB (for
example, F_WRITE).

If the open count does not decrement to zero, F_CLOSE simply returns to the

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

calling process, and the file remains open.

For partial close operations, F_CLOSE does not decrement the file's open
count, and returns to the calling process. The file always remains open
following a partial close request.

Closing a file with an extended file lock modifies the way F_CLOSE performs a
permanent close. F_CLOSE only honors an extended lock request on a permanent
close of a file opened in Locked mode. If these conditions are satisfied,
F_CLOSE invalidates the FCB's checksum, but maintains the lock item. Thus,
although the file is permanently closed, other processes cannot access the
file. Section 2.11, "Extended file locking", describes extended file locking
in detail.

Upon return, the F_CLOSE system call returns a directory code in register AL
with the value 00h if the close operation is successful, or 0FFh if the file
is not found. Register AH is set to 00h in both of these cases.

If a physical or extended error is encountered, the F_CLOSE system call
performs different actions, depending on the BDOS Error mode (refer to the
F_ERRMODE system call). If the BDOS Error mode is in the default mode, the
file system displays a message identifying the error at the console, and
terminates the calling process. Otherwise, the F_CLOSE system call returns to
the calling process with register AL set to 0FFH, and register AH set to one
of the following physical or extended error codes:

 01h = Disk I/O Error : permanent error
 02h = Read-Only Disk
 04h = Invalid Drive : drives select error
 06h = Close Checksum Error

F_DELETE

Delete file.

Entry Parameters:
 Register CL: 19 (13h)
 DX: FCB Address -- Offset
 DS: FCB Address -- Segment

Returned Values:
 Register AL: Directory Code
 AH: Physical or Extended Error
 BX: Same as AX

The F_DELETE system call removes files and/or XFCBs that matches the FCB
addressed in register DX. The filename and filetype fields can contain
wildcard file specifications (question marks in bytes 1 through 11), but byte
0 cannot be a wilcard, as it can be in the F_SFIRST and F_SNEXT system calls.
Interface attribute F5' specifies the type of delete operation to be
performed, as shown below:

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

 F5' = 0 : Standard delete (Default mode)
 = 1 : Delete only XFCB's, and maintain an extended file lock

If any of the files specified by the referenced FCB are password protected,
the correct password must be placed in the first eight bytes of the current
DMA Buffer, or it must have been previously established as the default
password (refer to the F_PASSWD system call).

For standard delete operations, the F_DELETE system call removes all directory
entries belonging to files that match the referenced FCB. All disk directory
and data space owned by the deleted files is returned to free space, and
becomes available for allocation to other files. Directory XFCBs that were
owned by the deleted files are also removed from the directory. If interface
attribute F5' of the FCB is set to 1, F_DELETE deletes only the directory
XFCBs matching the referenced FCB.

Note: If any of the files matching the input FCB specification fail the
password check, are Read-Only, or are currently open by another process, then
F_DELETE deletes no files or XFCBs. This applies to both types of delete
operations.

Interface attribute F5' also specifies whether an extended file lock is to be
maintained after the F_DELETE call. If F5' is set and the referenced FCB
specifies a file with an extended lock, the calling process maintains the lock
on the file. Section 2.11, "Extended file locking", describes extended file
locking in detail.

A process can delete a file, that it currently has open, if the file is opened
in locked mode. However, the BDOS returns a checksum error if the process
makes a subsequent reference to the file with a BDOS system call requiring an
open FCB. A process cannot delete files open in Read-Only or Unlocked mode.

Deleting an open file can adversely affect the performance of the calling
process. For this reason, you should close an open file before you delete it.

Upon return, the F_DELETE system call returns a directory code in register AL
with the value 00h if the delete is successful, or 0FFh if no file matching
the referenced FCB is found. Register AH is set to 00h in both of these cases.
If a physical or extended error is encountered, F_DELETE performs different
actions, depending on the BDOS Error mode (refer to the F_ERRMODE system
call).

If the BDOS Error mode is in the default mode, the file system displays a
message identifying the error at the console, and terminates the calling
process. Otherwise, it returns to the calling process with register AL set to
0FFH, and register AH set to one of the following physical or extended error
codes:

 01h = Disk I/O Error : permanent error
 02h = Read-Only Disk
 03h = Read-Only File
 04h = Invalid Drive : drive select error
 05h = File opened by another process,
 or open in Read-Only or Unlocked mode.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

 07h = Password Error

F_DMAGET

Return segment and offset address of Direct Memory Address buffer.

Entry Parameters:
 Register CL: 52 (34h)

Returned Values:
 Register AX: DMA Address -- Offset
 BX: Same as AX
 ES: DMA Address -- Segment

F_DMAGET returns the current DMA Base Segment address in ES, with the current
DMA Offset in AX.

F_DMAOFF

Set the Direct Memory Access offset address.

Entry Parameters:
 Register CL: 26 (1Ah)
 DX: DMA Address -- Offset

DMA is an acronym for "Direct Memory Access", which is often used with disk
controllers that directly access the memory of the computer to transfer data
to and from the disk subsystem. Under Concurrent CP/M, the current DMA is
usually defined as the buffer in memory where a record resides before a disk
write, and after a disk read operation. If the BDOS Multisector Count is equal
to one (refer to the F_MULTISEC system call), the size of the buffer is 128
bytes. However, if the BDOS Multisector Count is greater than one, the size of
the buffer must equal N * 128, where N equals the Multisector Count.

Some BDOS system calls also use the current DMA to pass parameters, and to
return values. For example, BDOS system calls that check and assign file
passwords require that the password be placed in the current DMA Buffer. As
another example, DRV_SPACE returns its results in the first 3 bytes of the
current DMA. When the current DMA is used in this context, the size of the
buffer is memory is determined by the specific requirements of the system
call.

When the P_CLI system call initiates a transient progra, it sets the DMA
offset to 0080h, and the DMA Segment, or Base, to its initial Data Segment.
DRV_ALLRESET also sets the DMA offset to 0080h. The F_DMAOFF system call can
change this default value to another memory address. The DMA address remains
at its current value until it is changed by an F_DMASEG, F_DMAOFF, or
DRV_ALLRESET call.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

F_DMASEG

Set Direct Memory Address buffer segment address.

Entry Parameters:
 Register CL: 51 (33h)
 DX: DMA Segment Address

F_DMASEG set the segment value of the current DMA Buffer address. The word
parameter in DX is a paragraph address, and is used with the DMA offset value
to specify the 20-bit address of the DMA Buffer. Refer to the F_DMAOFF system
call for additional information.

Note that, upon initial program loading, the default DMA base is set to the
address of the user's data segment (the initial value of DS), and the DMA
offset is set to 0080h (which provides access to the default buffer in the
Base Page).

F_ERRMODE

Set the BDOS Error mode.

Entry Parameters:
 Register CL: 45 (2Dh)
 DL: BDOS Error Mode

The BDOS Error mode is a system parameter maintained for each running process,
that determines how the file system handles physical and extended errors.
Physical and extended errors are described in Section 2.18, "BDOS Error
handling". The BDOS Error mode has three states: the Default mode, the Return
Error mode, and the Return and Display mode.

If a physical or extended error occurs when the BDOS Error mode is in the
default mode, the BDOS displays a system message at the console identifying
the error, and terminates the calling process.

If a physical or extended error occurs when the BDOS Error mode is in Return
Error mode, the BDOS sets register AL to 0FFH, places an error code
identifying the physical or extended error in register AH, and returns to the
calling process.

If a physical or extended error occurs when the BDOS Error mode is in Return
and Display mode, the BDOS displays the system message before returning to the
calling process, and sets registers AH and AL as in the Return Error mode.

The F_ERRMODE system call sets the BDOS Error mode for the calling process to
the mode specified in register DL. If register DL is set to 0FFh, the mode is
set to Return Error mode. If register DL is set to 0FEh, the mode is set to
Return and Display mode. If register DL is set to any other value, the mode is
set to the default mode.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

F_LOCK

Lock record within file opened in Unlocked mode.

Entry Parameters:
 Register CL: 42 (2Ah)
 DX: FCB Address -- Offset
 DS: FCB Address -- Segment

Returned Values:
 Register AL: Error Code
 AH: Physical Error
 BX: Same as AX

The F_LOCK system call allows a process to establish temporary ownership to
particular records within a file. This system call is only supported for files
open in Unlocked mode. If it is called for a file open in Locked or Read-Only
mode, no locking action is performed, and a successful result is returned.
This provides compatibility between Concurrent CP/M and CP/M-86.

The calling process passes the address of an FCB in which the random record
field is filled with the Random Record Number of the first record to be
locked. The number of records to be locked is determined by the BDOS
Multisector Count (refer to the F_MULTISEC system call). The current DMA must
also contain the 2-byte File ID returned by F_OPEN or F_MAKE when the
referenced FCB was opened. Note that the File ID is only returned by the
F_OPEN and F_MAKE system call when the Open mode is Unlocked.

Interface attribute F5' specifies the type of lock to perform. Interface
attribute F6' specifies whether records have to exist in order to be locked.
The F_LOCK interface attribute definitions are listed below:

 F5' = 0 : Exclusive lock (default)
 = 1 : Shared lock
 F6' = 0 : Lock existing records only (default)
 = 1 : Lock logical records

These options are described in detail in Section 2.14, "Concurrent file
locking".

F_LOCK verifies that a locking conflict with another process does not exist
for each of the records to be locked. However, if F_LOCK is called with
attribute F6' reset, it also verifies that each record number to be locked
exists within the specified file. Both tests are made before any records are
locked.

Most F_LOCK requests require a new entry in the BDOS system Lock List. If
there is insufficient space in the system Lock List to satisfy the lock
request, or if the process record lock limit is exceeded, then F_LOCK does not
lock any records, and returns an error code to the calling process.

Upon return, the F_LOCK system call sets register AL to 00h if the lock

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

operation is successful. Otherwise, register AL contains one of the following
error codes:

 01h = Reading unwritten data
 03h = Cannot close current extent
 04h = Seek to unwritten extent
 06h = Random Record Number out of range
 08h = Record locked by another process
 0Ah = FCB Checksum error
 0Bh = Unlocked file verification error
 0Ch = Process record Lock List limit exceeded
 0Dh = Invalid File ID
 0Eh = No Room in system Lock List
 0FFh = Physical error : refer to register AH

The system call returns error code 01h when it accesses a data block that has
not been previously written.

The system call returns error code 03h when it cannot close the current extent
prior to moving to a new extent.

The system call returns error code 04h when it accesses an extent that has not
been created.

The system call returns error code 06h when byte 35 (R2) of the referenced FCB
is greater than 3.

The system call returns error code 08h if the specified record is locked by
another process with an incompatible lock type.

The system call returns error code 0Ah if the referenced FCB failed the FCB
Checksum test.

The system call returns error code 0Bh if the BDOS cannot locate the
referenced FCB's directory entry when attempting to verify that the FCB
contains current information.

The system call returns error code 0Ch if performing the lock request would
require that the process consume more than the maximum allowed number of
system Lock List entries.

The system call returns error code 0Dh when an invalid File ID is placed at
the beginning of the current DMA.

The system call returns error code 0Eh when the system Lock List is full and
performing the lock request would require at least one new entry.

The system call returns error code 0FFh if a physical error is encountered,
and the BDOS Error mode is either Return Error mode, or Return and Display
Error mode (refer to the F_ERRMODE system call). If the Error mode is in the
default mode, the system displays a message at the console identifying the
physical error, and terminates the calling process. When the system call
returns a physical error to the calling process, it is identified by register
AH as shown below:

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

 01h = Disk I/O Error : permanent error
 04h = Invalid Drive : drive select error

F_MAKE

Create file.

Entry Parameters:
 Register CL: 22 (16h)
 DX: FCB Address -- Offset
 DS: FCB Address -- Segment

Returned Values:
 Register AL: Directory Code
 AH: Physical or Extended Error
 BX: Same as AX

The F_MAKE system call creates a new directory entry for a file under the
current user number. It also creates an XFCB for the file if the referenced
drive has a directory label that enables password protection on the drive, and
the calling process assigns a password to the file.

The calling process passes the address of the FCB with byte 0 of the FCB
specifying the drive, bytes 1 through 11 specifying the filename and filetype,
and byte 12 set to extent number. Byte 12, the EX field, is usually set to
00h. Byte 32 of the FCB, the CR field, must be initialized to 00h, before or
after the F_MAKE call, if the intent is to write sequentially from the
beginning of the file.

Interface attribute F5' specifies the mode in which the file is to be opened.
Interface attribute F6' specifies whether a password is to be assigned to the
created file. The interface attributes are summarized below:

 F5' = 0 : Open in Locked mode (default)
 = 1 : Open in Unlocked mode
 F6' = 0 : Do not assign password (default)
 = 1 : Assign password to created file

When attribute F6' is set to 1, the calling process must place the password in
the first 8 bytes of the current DMA Buffer, and set byte 9 of the DMA Buffer
to the password mode. Note that F_MAKE only interrogates attribute F6' if the
referenced drive's directory label has enabled password support. The XFCB
Password mode is summarized below:

 XFCB Password mode

 Bit 7 = Read mode
 6 = Write mode
 5 = Delete mode

The F_MAKE system call returns with an error code if the referenced FCB names

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

a file that currently exists in the directory under the current user number.
If there is any possibility of duplication, an F_DELETE call should precede
the F_MAKE call.

If the make file operation is successful, it activates the referenced FCB for
record operations (opens the FCB) and initializes both the directory entry and
the referenced FCB to an empty file. It also computes a checksum and assigns
it to the FCB. BDOS system calls that require an open FCB (for example,
F_WRITE) verify that the FCB Checksum is valid before performing their
operation. If the file is opened in Unlocked mode, F_MAKE also sets bytes R0
and R1 in the FCB to a two-byte value called the "File ID". The File ID is a
required parameter for the BDOS Lock Record and Unlock Record system calls.
Note that the F_MAKE system call initializes all file attributes to 0.

The BDOS file system also creates an open file item in the system Lock List to
record a successful F_MAKE oeration. While this item exists, no other process
can delete, rename, truncate, or set the file attributes of this file.

A creation and/or update stamp is made for the created file if the referenced
drive contains a directory label that enables creation and/or update time and
date stamping, and the FCB extent number is equal to 0.

F_MAKE also creates an XFCB for the created file if the referenced drive
conains a directory label that enables password protection, interface
attribute F6' of the FCB is 1, and the FCB is an extent zero FCB. In addition,
F_MAKE also assigns the password and password mode placed in the first nine
bytes of the DMA to the XFCB.

Upon return, the F_MAKE system call returns a directory code in register AL
with the value 00h if the make operation is successful, or 0FFh if no
directory space is available. Register AH is set to 00h in both cases.

If a physical or extended error is encountered, the F_MAKE system call
performs different actions, depending on the BDOS Error mode (refer to the
F_ERRMODE system call). If the BDOS Error mode is in the default mode, the
system displays a message at the console identifying the error, and terminates
the process. Otherwise, it returns to the calling process with register AL set
to 0FFh, and register AH set to one of the following physical or extended
error codes:

 01h = Disk I/O Error : permanent error
 02h = Read-Only Error
 04h = Invalid Drive : drive select error
 08h = File Already Exists
 09h = Illegal ? in FCB
 0Ah = Open File Limit Exceeded
 0Bh = No Room in system Lock List

F_MULTISEC

Set the BDOS Multisector Count.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

Entry Parameters:
 Register CL: 44 (2Ch)
 DL: Numbers of Sectors

Returned Values:
 Register AL: Return Code
 BL: Same as AL

The F_MULTISEC system call provides logical record blocking under Concurrent
CP/M. It enables a process to read and write from 1 to 128 logical records of
128 bytes at a time during subsequent BDOS read and write system calls. It
also specifies the number of 128-byte records to be locked or unlocked by the
F_LOCK and F_UNLOCK system calls.

F_MULTISEC sets the Multisector Count value for the calling process to the
value passed in register DL. Once set, the specified Multisector Count remains
in effect until the calling process makes another F_MULTISEC system call, and
changes the value. Note that the P_CLI system call sets the Multisector Count
to one when it initializes a transient process.

The Multisector COunt affects BDOS error reporting for the BDOS read and write
system calls. With the exception of physical errors, if an error occurs during
these system calls and the Multisector Count is greater than one, the system
returns the number of records successfully processed in register AH.

Upon return, the system call sets register AL to 00h if the specified value is
in the range of 1 to 128. Otherwise, it sets register AL to 0FFh.

F_OPEN

Open file for record access.

Entry Parameters:
 Register CL: 15 (0Fh)
 DX: FCB Address -- Offset
 DS: FCB Address -- Segment

Returned Values:
 Register AL: Directory Code
 AH: Physical or Extended Error
 BX: Same as AX

The F_OPEN system call activates the FCB for a file that exists in the disk
directory under the currently active user number or user zero. The calling
process passes the address of the FCB, with byte 0 of the FCB specifying the
drive, bytes 1 through 11 specifying the filename and filetype, and byte 12
specifying the extent. Byte 12 is usually set to zero.

Interface attributes F5' and F6' of the FCB specify the mode in which the file
is to be opened, as shown below:

 F5' = 0, F6' = 0 --> Open in Locked mode (Default mode)

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

 = 0, = 1 --> Open in Read-Only mode
 = 1, = 0 --> Open in Unlocked mode
 = 1, = 1 --> Open in Read-Only mode

If the file is password protected in Read mode, the correct password must be
placed in the first eight bytes of the current DMA, or have been previously
established as the default password (refer to the F_PASSWD system call). If
the current record field of the FCB, CR, is set to 0FFh, the F_OPEN system
call returns the byte count of the last record of the file in the CR field.
The last record byte count for a file can be set using the F_ATTRIB system
call.

Note: The calling process must set the CR field of the FCB to 00h if the file
is to be accessed sequentially from the first record.

The F_OPEN system call performs the following steps for files opened in Locked
or Read-Only mode. If the current user is non-zero and the file to be opened
does not exist under the current user number, the F_OPEN system call searches
user 0 for the file. If the file exists under user 0 and has the system
attribute (T2') set, the file is opened under user 0. The Open mode is
automatically set to Read-Only when this is done.

The F_OPEN system call also performs the following action for files opened in
locked mode. If the file has the Read-Only attribute (T1') set, the Open mode
is automatically set to Read-Only. Note that Read-Only mode implies that the
file can be concurrently accessed by other processes if they also open the
file in Read-Only mode.

If the open operation is successful, F_OPEN activates the user's FCB for
record operations as follows: F_OPEN copies the relevant directory information
from the matching directory FCB into bytes D0 through D15 of the FCB. It also
computes a checksum and assigns it to the FCB. All BDOS system calls that
require an open FCB (for example, F_READ) verify that the FCB Checksum is
valid before performing their operation.

If the file is opened in Unlocked mode, the F_OPEN system call sets bytes R0
and R1 of the FCB to a two-byte value called the "File ID". The File ID is a
required parameter for the F_LOCK and F_UNLOCK system calls. If the Open mode
is forced to Read-Only, F_OPEN sets interface attribute F8' to 1 in the user's
FCB. In addition, the system call sets attribute F7' to 1 if the eferenced
file is password protected in Write mode and the correct password was not
passed in the DMA or did not match the default password. The BDOS does not
support write operations for an activated FCB if interface attribute F7' or
F8' is set to 1.

The BDOS file system also creates an open file item in the system Lock List to
record a successful open file operation. While this item exists, no other
process can delete, rename, or modify the file's attributes. In addition, this
item prevents other processes from opening the file if the file is opened in
Locked mode. It also requires that other processes match the file's Open mode
if the file is opened in Unlocked or Read-Only mode. This item remains in the
system Lock List until the file is permanently closed or until the process
that opened the file terminates.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

When the open operation is successful, the F_OPEN system call also makes an
access time and date stamp for the opened file when the following conditions
are satisfied: the referenced drive has a directory label that requests access
date and time stamping, the FCB extent field is equal to zero, and the
referenced drive is Read-Write.

Upon return, F_OPEN returns a directory code in register AL with the value 00h
if the open is successful, of 0FFh if the file is not found. Register AH is
set to 0 in both of these cases. If a physical or extended error is
encountered, the F_OPEN system call performs different actions, depending on
the BDOS Error mode (refer to the F_ERRMODE system call). If the BDOS Error
mode is in the default mode, the system displays a message identifying the
error at the console, and terminates the process. Otherwise, F_OPEN returns to
the calling process with register AL set to 0FFh, and register AH set to one
of the following physical or extended error codes:

 01H = Disk I/O Error : permanent error
 04h = Invalid Drive : drive select error
 05h = File is open by another process, or by the current process in an
 incompatible mode.
 07h = Password Error
 09h = Illegal ? in FCB
 0Ah = Open File Limit Exceeded
 0Bh = No Room in system Lock List

F_PARSE

Parse an ASCII string, and initialize an FCB.

Entry Parameters:
 Register CL: 152 (98h)
 DX: FCB Address -- Offset
 DS: FCB Address -- Segment

Returned Values:
 Register AX: 0FFFFh if error
 0000h if end of filename string
 0000h if end of lineaddress of next item to parse
 BX: Same as AX
 CX: Error Code

 +----------+--------+
 | FILENAME | FCBADR |
 +----------+--------+

 Figure 6-6. PFCB -- Parse Filename Control Block

Table 6-11. PFCB field definitions

Format: Field
 Description

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

FILENAME
Offset of an ASCII file specification to parse. The offset is relative to the
same Data Segment as the FCB.

FCBADR
Offset of a File Control Block to initialize. The offset is relative to the
same Data Segment as the PFCB.

The F_PARSE system call parses an ASCII file specification (FILENAME) and
prepares a File Control Block (FCB). The calling process passes the address of
a data structure called the Parse Filename Control Block (PFCB) in registers
DX and DS. The PFCB contains the offset of the ASCII filename string, followed
by the offset of the target FCB.

F_PARSE assumes the file specification to be in the following form:

 {D:}FILENAME{.TYP}{;PASSWORD}

where those items enclosed in curly brackets are optional.

The F_PARSE system call parses the first file specification it finds in the
input string. First of all, it eliminates leading blanks and tabs. F_PARSE
then assumes the file specification ends on the first delimiter it encounters
that is out of context with the specific field it is parsing. For instance, if
it finds a colon (":"), and it is not the second character of the file
specification, the colon delimits the whole file specification.

The F_PARSE system call recognizes the following characters as delimiters:

 space
 tab
 carriage return ("ENTER")
 null (00h)
 ; (semicolon) -- except before password field
 = (equal)
 < (less than)
 > (greater than)
 . (period) -- except after filename, and before filetype
 : (colon) -- except before filename, and after drive
 , (comma)
 | (vertical bar)
 [(left square bracket)
] (right square bracket)

If the F_PARSE system call encounters a non-graphic character in the range 1
through 31 not listed above, it treats the character as an error.

The F_PARSE system call initializes the specified FCB as shown in Table 6-12.

Table 6-12. FCB initialization

Format: Byte number
 Explanation

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

Byte 0
The drive field is set to the specified drive. If the drive is not specified,
the default value is used. 0=default, 1=A, 2=B, etc.

Bytes 1-8
The name is set to the specified filename. All letters are converted to
uppercase. If the name is not eight characters long, the remaining bytes in
the filename field are padded with blanks. If the filename has an asterisk
("*"), all remaining bytes in the filename field are filled with question
marks ("?"). The system call returns an error if the filename is more than
eight bytes long.

Bytes 9-11
The type is set to the specified filetype. If no type is specified, the type
field is initialized to blanks. All letters are converted to uppercase. If the
type is not three characters long, the remaining bytes in the filetype field
are padded with blanks. If an asterisk is encountered, all remaining bytes are
filled in with question marks. The system call returns an error if the type
field is more than 3 bytes long.

Bytes 12-15
Filled in with zeros.

Bytes 16-23
The password field is set to the specified password. If no password is
specified, this field is initialized to blanks. If the password is not eight
characters long, remaining bytes are padded with blanks. All letters are
converted to uppercase. The system call returns an error if the password field
is more than eight bytes long.

Bytes 24-31
Reserved for system use.

If an error occurs, F_PARSE returns 0FFFFh in register AX indicating the
error.

On a successful parse, the F_PARSE system call checks the next item in the
FILENAME string. It scans for the first character that follows trailing balnks
and tabs. If the character is a line feed (0Ah), a carriage return (0Dh), or a
null character (00h), it returns a 0 indicating the end of the FILENAME
string. If the next character is a delimiter, it returns the address of the
delimiter. If the next character is not a delimiter, it returns the address of
the first trailing blank or tab.

If the F_PARSE system call is to be used to parse a subsequent filename in the
FILENAME string, the returned address should be advanced over the delimiter
before placing it in the PFCB.

Refer to Table 6-5 for a list of error codes returned in CX.

F_PASSWD

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

Set the default password.

Entry Parameters:
 Register CL: 106 (6Ah)
 DX: Password Address -- Offset
 DS: Password Address -- Segment

The F_PASSWD system call allows a process to specify a password value before a
file protected by the password is accessed. When the file system accesses a
password protected file, it checks the current DMA and the default password
for the correct value. If either value matches the file's password, full
access to the file is allowed.

Concurrent CP/M maintains a default password for each process running on the
system. A new process inherits its initial default password from its parent,
the process creating the new process.

Note: Changing the default password does not affect other processes currently
running on the system.

To make an F_PASSWD call, the calling process passes the adress of an 8-byte
field containing the password.

F_RANDREC

Set the Random Record Number field in the FCB from the sequential record
position.

Entry Parameters:
 Register CL: 36 (24h)
 DX: FCB Address -- Offset
 DS: FCB Address -- Segment

Returned Values:
 Random Record field of FCB set

The F_RANDREC system call returns the Random Record Number of the next record
to be accessed from a file that has been read or written sequentially to a
particular point. The system call returns this value in the Random Record
field, bytes R0, R1, and R2, of the addressed FCB. The F_RANDREC system call
can be useful in two ways.

First, it is often necessary to initially read and scan a sequential file, to
extract the positions of various key fields. As each key is encountered,
F_RANDREC is called to compute the random record position for the data
corresponding to this key. If the data unit size is 128 bytes, the resulting
record number minus one is placed into a table with the key for later
retrieval.

After scanning the entire file and tabularizing the keys and their record
numbers, you can move directly to a particular record by performing a random

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

read using the corresponding Random Record Number that was saved earlier. The
scheme is easily generalized when variable record lengths are involved,
because the program need only store the buffer-relative byte position along
with the key and record number in order to find the exact starting position of
the keyed data at a later time.

F_RANDREC can also be used when switching from a sequential read or write to a
random read or write. A file is sequentially accessed to a particular point in
the file, F_RANDREC is called to set the record number, and subsequent random
read and write operations continue from the next record in the file.

F_READ

Read record sequentially.

Entry Parameters:
 Register CL: 20 (14h)
 DX: FCB Address -- Offset
 DS: FCB Address -- Segment

Returned Values:
 Register AL: Error Code
 AH: Physical Error
 BX: Same as AX

The F_READ system call reads the next 1 to 128 128-byte records from a file
into memory, beginning at the current DMA address. The BDOS Multisector Count
(refer to the F_MULTISEC system call) determines the number of records to be
read. The default is one record. The addressed FCB must have been previously
activated by an F_OPEN or F_MAKE system call.

F_READ reads each record from the current record (CR) field in the FCB,
relative to the current extent, then automatically increments the CR field to
the next record position. If the CR field overflows, then F_READ automatically
opens the next logical extent, and resets the CR field to zero for the next
read operation. The calling process must set the CR field to 00h following the
open call, if the intent is to read sequentially from the beginning of the
file.

Upon return, the F_READ system call sets register AL to zero if the read
operation is successful. Otherwise, register AL contains an error code
identifying the error, as shown below:

 01h = Reading unwritten data (end-of-file)
 08h = Record locked by another process
 09h = Invalid FCB
 0Ah = FCB Checksum error
 0Bh = Unlocked file verification error
 0FFh = Physical error, refer to register AH

The system call returns error code 01h if no data exists at the next record
position of the file. The no data situation is usually encountered at the end

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

of a file. However, it can also occur if you try to read a data block that has
not been previously written, or an extent that has not been created. These
situations are usually restricted to files created or appended with the BDOS
random write system calls (F_WRITERAND and F_WRITEZF).

The system call returns error code 08h if the calling process attempts to read
a record locked by another process with an exclusive lock. This error code is
only returned for files opened in Unlocked mode.

The system call returns error code 09h if the FCB is invalidated by a previous
F_CLOSE system call that returned an error.

The system call returns error code 0Ah if the referenced FCB failed the FCB
Checksum test.

The system call returns error code 0Bh if the BDOS cannot locate the FCB's
directory entry when attempting to verify that the referenced FCB contains
current information. The system call only returns this error for files opened
in Unlocked mode.

The system call returns error code 0FFh if a physical error is encountered and
the BDOS Error mode is in one of the return modes (refer to the F_ERRMODE
system call). If the Error mode is in the default mode, the system displays a
message at the console identifying the physical error, and terminates the
calling process. When the system call returns a physical error to the calling
process, it is identified by register AH as shown below:

 01h = Disk I/O Error : permanent error
 04h = Invalid Drive : drive select error

On all error returns, except for physical error returns (AL = 0FFh), F_READ
sets register AH to the number of records successfully read before the error
was encountered. This value can range from 0 to 127, depending on the current
BDOS Multisector Count. It is always set to zero when the Multisector Count is
equal to one.

F_READRAND

Read random record.

Entry Parameters:
 Register CL: 33 (21h)
 DX: FCB Address -- Offset
 DS: FCB Address -- Segment

Returned Values:
 Register AL: Error Code
 AH: Physical Error
 BX: Same as AX

The F_READRAND system call is similar to the F_READ system call, except that
the read operation takes place at a particular Random Record Number, selected

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

by the 24-bit value constructed from the three-byte, R0, R1, R2, field
beginning at position 33 of the FCB. Note that the sequence of 24 bits is
storead with the least signifcant byte first, R0, the middle byte next, R1,
and the high byte last, R2. The Random Record Number can range from 0 to
262,143. This corresponds to a maximum value of 3 in byte R2.

To read a file with the F_READRAND system call, the calling process must first
open the base extent, extent 0. This ensures that the FCB is properly
initialized for subsequent random access operations. The base extent might or
might not contain any allocated data.

The F_READRAND system call reads the record specified by the random record
field into the current DMA address. F_READRAND automatically sets the FCB
extent and current record number values, EX and CR, but, unlike the F_READ
system call, it does not advance the current record number. Thus, a subsequent
F_READRAND call re-reads the same record. After a random read operation, a
file can be accessed sequentially, starting from the current randomly accessed
position. However, the last randomly accessed record is re-read or re-written
when switching from random to sequential mode.

If the BDOS Multisector Count is greater than one (refer to the F_MULTISEC
system call), F_READRAND reads multiple consecutive records into memory
beginning at the current DMA. F_READRAND automatically increments the R0, R1,
R2 fields of the FCB to read each record. However, it restores the FCB's
Random Record Number to the first record's value upon return to the calling
process.

Upon return, F_READRAND sets register AL to 00h if the read operation is
successful. Otherwise, register AL contains one of the following error codes:

 01h = Reading unwritten data
 03h = Cannot close current extent
 04h = Seek to unwritten extent
 06h = Random Record Number out of range
 08h = Record locked by another process
 0Ah = FCB Checksum error
 0Bh = Unlocked file verification error
 0FFh = Physical error : refer to register AH

The system call returns error code 01h when it accesses a data block not
previously written. This may indicate an end-of-file (EOF) condition.

The system call returns error code 03h when it cannot close the current extent
prior to moving to a new extent.

The system call returns error code 04h when a read random operation accesses
an extent that has not been created.

The system call returns error code 06h when byte 35 (R2) of the referenced FCB
is greater than 3.

The system call returns error code 08h if the calling process attempts to read
a record locked by another process with an exclusive lock. This error code is
only returned for files opened in Unlocked mode.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

The system call returns error code 0Ah if the referenced FCB failed the FCB
Checksum test.

The system call returns error code 0Bh if the BDOS cannot locate the FCB's
directory entry when attempting to verify that the referenced FCB contains
current information. The system call only returns this error for files open in
Unlocked mode.

The system call returns error code 0FFh if a physical error is encountered and
the BDOS Error mode is in one of the Return modes (refer to the F_ERRMODE
system call). If the Error mode is in the default mode, the file system
displays a message at the console identifying the physical error, and
terminates the calling process. When a physical error is returned to the
calling process, it is identified by the four low-order bits of register AH,
as shown below:

 01h = Disk I/O Error : permanent error
 04h = Invalid Drive : drive select error

On all error returns, except for physical error returns, AL = 0FFh, F_READRAND
sets register AH to the number of records successfully read before the error
was encountered. This value can range from 0 to 127, depending on the current
BDOS Multisector Count. It is always set to zero when the Multisector Count is
equal to one.

F_RENAME

Rename file.

Entry Parameters:
 Register CL: 23 (17h)
 DX: FCB Address -- Offset
 DS: FCB Address -- Segment

Returned Values:
 Register AL: Directory Code
 AH: Physical or Extended Error
 BX: Same as AX

The F_RENAME system call uses the referenced FCB to change all directory
entries of the file specified by the drive and filename in bytes 0 to 11 of
the FCB to the filename specified in bytes 17 through 27.

If the file specified by the first filename is password protected, the correct
password must be placed in the first eight bytes of the current DMA Buffer, or
have been previously established as the default password (refer to the
F_PASSWD system call).

The calling process must also ensure that the filenames specified in the FCB
are valid and un-ambiguous, and that the new filename does not already exist
on the drive. F_RENAME uses the drive code at byte 0 of the FCB to select the

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

drive. The drive code at byte 16 of the FCB is ignored.

Interface attribute F5' specifies whether an extended file lock is to be
maintained after the F_ATTRIB call, as shown below:

 F5' = 0 --> Do not maintain an extended file lock (default)
 = 1 --> Maintain an extended file lock

If F5' is set and the referenced FCB specifies a file with an extended file
lock, the calling process maintains the lock on the file. Otherwise, the file
becomes available to other processes on the system. Section 2.11, "Extended
file locking", describes extended file locking in detail.

A process can rename a file that it has open if the file is open in Locked
mode. However, the BDOS returns a checksum error if the process subsequently
references the file with a system call requiring an open FCB. A file open in
Read-Only or Unlocked mode cannot be renamed by any process.

Renaming an open file can adversely affect the performance of the calling
process. For this reason, you should close an open file before you rename it.

Upon return, the F_RENAME system call returns a directory code in register AL
with the value 00h if the rename is successful, or 0FFh if the file named by
the first filename in the FCB is not found. Register AH is set to 00h in both
of these cases.

If a physical or extended error is encountered, the F_RENAME system call
performs different actions, depending on the BDOS Error mode (refer to the
F_ERRMODE system call). If the BDOS Error mode is in the default mode, the
system displays a message at the console identifying the error, and terminates
the process. Otherwise, it returns to the calling process with register AL set
to 0FFh, and with register AH set to one of the following physical or extended
error codes:

 01h = Disk I/O Error : permanent error
 02h = Read-Only Error
 03h = Read-Only File
 04h = Invalid Drive : drive select error
 05h = File open by another process
 07h = Password Error
 08h = File Already Exists
 09h = Illegal ? in FCB

F_SFIRST

Search for first matching directory FCB that matches the specified FCB.

Entry Parameters:
 Register CL: 17 (11h)
 DX: FCB Address -- Offset
 DS: FCB Address -- Segment

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

Returned Values:
 Register AL: Directory Code
 AH: Physical or Extended Error
 BX: Same as AX

The F_SFIRST system call scans the directory for a match with the referenced
FCB. Two types of searches can be performed. For standard searches, the
calling process initializes bytes 0 through 12 of the referenced FCB, with
byte 0 specifying the drive directory to be searches, bytes 1 through 11
specifying the file or files to be searched for, and byte 12 specifying the
extent. Byte 12 is usually set to 00h. An ASCII question mark (63, or 3Fh) in
any of the bytes 1 through 12 matches all entries on the directory in the
corresponding position. This facility, called "ambiguous file reference", can
be used to search for multiple files on the directory. When called in the
standard mode, F_SFIRST scans for the first file entry in the specified
directory that matches the FCB and belongs to the current user number.

The F_SFIRST system call also initializes the F_SNEXT system call. After the
F_SFIRST system call has located the first directory entry matching the
referenced FCB, F_SNEXT can be called repeatedly to locate all remaining
matching entries. In terms of execution sequence, however, the F_SNEXT call
must follow either a F_SFIRST or F_SNEXT call with no other intervening BDOS
file-access system calls.

If byte 0 of the referenced FCB is set to a question mark, F_SFIRST ignores
the remainder of the referenced FCB, and locates the first directory entry
residing on the current default drive. All remaining directory entries can be
located by making multiple F_SNEXT calls. This type of search operation is not
usually made by application programs, but it does provide complete flexibility
to scan all directory entries. Note that this type of search operation must be
performed to access a drive's directory label.

Upon return, the F_SFIRST system call returns a directory code in register AL
with the value 0 to 3 if the search is successful, or 0FFh if a matching
directory entry is not found. Register AH is set to zero in both of these
cases. For successful searches, the current DMA is also filled with the
directory record containing the matching entry, and the relative starting
position is AL * 32. The directory information can be extracted from the
buffer at this position.

If the directory has been initialized for date and time stamping, then an FCB
resides in every fourth directory entry, and successful directory codes are
restricted to the values 0 to 2. For successful searches, if the matching
directory record is an extent zero entry, and if an SFCB resides at offset 96
within the current DMA Buffer, then the contents of (DMA Address + 96) = 21h,
and the SFCB contains the time and date stamp information, and password mode,
for the file. This information is located at the relative starting position of
97 + (AL * 10) within the current DMA, in the following format:

 0-3 : Create or Access Date and Time Stamp field
 4-7 : Update Date and Time Stamp field
 8 : Password Mode field

Refer to Section 2.8, "File date and time stamps: SFCBs", for more information

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

about SFCBs.

If a physical error is encountered, the F_SFIRST system call performs
different actions, depending on the BDOS Error mode (refer to the F_ERRMODE
system call). If the BDOS Error mode is in the default mode, the system
displays a message at the console identifying the error, and terminates the
process. Otherwise, it returns to the calling process with register AL set to
0FFh, and with register AH set to one of the following physical error codes:

 01h = Disk I/O Error : permanent error
 04h = Invalid Drive : drive select error

F_SIZE

Return the size of a file.

Entry Parameters:
 Register CL: 35 (23h)
 DX: FCB Address -- Offset
 DS: FCB Address -- Segment

Returned Values:
 Register AL: Directory Code
 AH: Physical or Extended Error
 BX: Same as AX
 Random Record field of FCB set

The F_SIZE system call determines the virtual file size. This is the address
of the record immediately following the end of the file. The virtual size of a
file corresponds to the physical size if the file is written sequentially. If
the file is written in random mode, gaps might exist in the allocation, and
the file might contain fewer records than the indicated size. For example, if
a single record with record number 262,143, the Concurrent CP/M maximum, is
written to a file using the F_WRITERAND system call, then the virtual size of
the file is 262,144 records, even though only one data block is actually
allocated.

To compute file size, the calling process passes the address of an FCB with
bytes R0, R1, and R2 present. The F_SIZE system call sets the random record
field of the FCB to the Random Record Number + 1 of the last record in the
file. If the R2 byte is set to 04h, and R0 and R1 are both zero, then the file
contains the maximum record count, 262,144.

A process can append data to the end of an existing file, by calling F_SIZE to
set the random record position to the end of the file, and then performing a
sequence of random writes.

Note: The file need not be open in order to use F_SIZE. However, if the file
is open in Locked mode and it has been extended by the calling process, the
file must be closed before F_SIZE is called. Otherwise, F_SIZE returns an
incorrect file size. F_SIZE returns the correct size for files open in
Unlocked mode and Read-Only mode.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

Upon return, F_SIZE returns a 00h in register AL if the file specified by the
referenced FCB is found, or a 0FFh in register AL if the file is not found.
Register AH is set to 00h in both cases.

If a physical or extended error is encountered, F_SIZE performs different
actions, depending on the BDOS Error mode (refer to the F_ERRMODE system
call). If the BDOS Error mode is in the default mode, the system displays a
message at the console identifying the error, and terminates the process.
Otherwise, F_SIZE returns to the calling process with register AL set to 0FFh,
and with register AH set to one of the following physical or extended error
codes:

 01h = Disk I/O Error : permanent error
 04h = Invalid Drive : drive select error
 09h = Illegal ? in FCB

F_SNEXT

Search for next matching directory FCB that matches the FCB specified in the
F_SFIRST system call.

Entry Parameters:
 Register CL: 18 (12h)

Returned Values:
 Register AL: Directory Code
 AH: Physical or Extended Error
 BX: Same as AX

The F_SNEXT system call is identical to F_SFIRST, except that the directory
scan continues from the last entry that was matched. F_SNEXT returns a
directory code in register AL, analogous to F_SFIRST.

Note: In execution sequence, a F_SNEXT call must follow either an F_SFIRST or
another F_SNEXT with no other intervening BDOS file-access system calls.

F_TIMEDATE

Return file's data and time stamps, and password mode.

Entry Parameters:
 Register CL: 102 (66h)
 DX: FCB Address -- Offset
 DS: FCB Address -- Segment

Returned Values:
 Register AL: Directory Code
 AH: Physical Error
 BX: Same as AX

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

The F_TIMEDATE system call returns the time and date stamp information, and
password mode, for the specified file in byte 12, and bytes 24 through 31, of
the specified FCB. The calling process passes the address of an FCB in which
the drive, filename, and type fields have been defined.

If F_TIMEDATE is successful, it sets the following fields in the referenced
FCB:

 Byte 12 -- Password mode field

 Bit 7 = Read mode
 6 = Write mode
 5 = Delete mode

 Byte 12 equal to 0 indicates that the file has not been assigned a
 password.

 Byte 24-27 = XFCB Create or Access time stamp field
 Byte 28-31 = XFCB Update time stamp field

Upon return, F_TIMEDATE returns a directory code in register AL with the value
00h if the operation is successful, or 0FFh if the specified file is not
found. Register AH is set to 00h in both of these cases.

If a physical or extended error is encountered, F_TIMEDATE performs different
actions, depending on the BDOS Error mode (refer to the F_ERRMODE system
call). If the BDOS Error mode is in the default mode, the system displays a
message at the console identifying the error, and terminates the process.
Otherwise, F_TIMEDATE returns to the calling process with register AL set to
0FFh, and with register AH set to one of the following physical error codes:

 01h = Disk I/O Error : permanent error
 04h = Invalid Drive : drive select error
 09h = Illegal ? in FCB

F_TRUNCATE

Truncate file to the specified Random Record Number.

Entry Parameters:
 Register CL: 99 (63h)
 DX: FCB Address -- Offset

Returned Values:
 Register AL: Directory Code
 AH: Physical or Extended Error
 BX: Same as AX

The F_TRUNCATE system call sets the last record of the Random Record Number
contained in the referenced FCB. The calling program passes the address of the
FCB in register DX, with byte 0 of the FCB specifying the drive, bytes 1

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

through 11 specifying the filename and filetype, and bytes 33 through 35 (R0,
R1, and R2) specifying the last record of the file. The last record number is
a 24-bit value, stored with the least significant byte first (R0), the middle
byte next (R1), and the high byte last (R2). This value can range from 0 to
262,143 (3FFFFh).

If the file specified by the referenced FCB is password protected, the correct
password must have been placed in the first eight bytes of the current DMA
Buffer, or have been previously established as the default password (refer to
the F_PASSWD system call).

Interface attribute F5' specifies whether an extended file lock is to be
maintained after the F_TRUNCATE call, as shown below:

 F5' = 0 --> Do not maintain an extended file lock (default)
 = 1 --> Maintain an extended file lock

If F5' is set and the referenced FCB specifies a file with an extended file
lock, the calling process maintains the lock on the file. Otherwise, the file
becomes available to other processes on the system. Section 2.11, "Extended
file locking", describes extended file locking in detail.

F_TRUNCATE requires that the Random Record Number field of the referenced FCB
specify a value less than the current file size. In addition, if the file is
sparse, the random record field must specify a region of the file where data
exists.

A process can truncate a file that it currently has open if the file is opened
in Locked mode and the file has not been extended during the open session.
However, the BDOS returns a checksum error if the process makes a subsequent
reference to the file with a BDOS system call requiring an open FCB. A process
cannot truncate files open in Read-Only or Unlocked mode.

Truncating an open file is not recommended under Concurrent CP/M. F_TRUNCATE
truncates a file based on the file's state in the directory. If a process
attempts to truncate at a region of the file that has been allocated in memory
but has not been recorded in the directory, F_TRUNCATE returns an error. Even
when successful, an open file truncate can adversely affect the performance of
the calling process. For these reasons, you should close an open file before
you truncate it.

After completion, F_TRUNCATE returns a directory code in register AL with the
value 00h if the operation is successful, or 0FFh if the file is not found or
if the record number is invalid. In both cases, register AH is set to 00h.

If a physical or extended error is encountered, F_TRUNCATE performs different
actions, depending on the BDOS Error mode (refer to the F_ERRMODE system
call). If the BDOS Error mode is in the default mode, a message identifying
the error is displayed at the console, and the program is terminated.
Otherwise, F_TRUNCATE returns to the calling program with register AL set to
0FFh, and register AH set to one of the following physical or extended error
codes:

 01H = Disk I/O Error : permanent error

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

 02h = Read/Only Disk
 03h = Read/Only File
 04h = Invalid Drive : drive select error
 05h = File Currently Open
 06h = Close Checksum Error
 07h = Password Error
 08h = File Already Exists
 09h = Illegal ? in FCB
 0Ah = Open File Limit Exceeded
 0Bh = No Room in system Lock List

F_UNLOCK

Remove record locks.

Entry Parameters:
 Register CL: 43 (2Bh)
 DX: FCB Address -- Offset
 DS: FCB Address -- Segment

Returned Values:
 Register AL: Error Code
 AH: Physical Error
 BX: Same as AX

The F_UNLOCK system call unlocks one or more consecutive records previously
locked by the F_LOCK system call. This system call is only supported for files
open in Unlocked mode. If it is called for a file open in Locked or Read-Only
mode, no unlocking action occurs, and a successful result is returned. Record
locking and unlocking is described in detail in Section 2.14, "Concurrent file
locking".

The calling process passes the address of an FCB in which the Random Record
field if filled with the Random Record Number of the first record to be
unlocked. The number of records to be unlocked is determined by the BDOS
Multisector Count (refer to the F_MULTISEC system call). The current DMA must
contain the 2-byte File ID returned by the F_OPEN or F_MAKE system call when
the referenced FCB was opened. Note that the File ID is only returned by
F_OPEN or F_MAKE when the file open mode is Unlocked.

If interface attribute F5' is set to 1, F_UNLOCK unlocks all locked records
belonging to the calling process. The F_UNLOCK interface attribute definition
is listed below:

 F5' = 0 --> Unlock records specified by Random Record Number and
 BDOS Multisector Count (default)
 = 1 --> Unlock all locked records

F_UNLOCK ignores the FCB Random Record field and the BDOS Multisector Count
when F5' is set.

F_UNLOCK does not unlock a record that is currently locked by another process.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

However, the system call does not return an error if a process attempts to do
that. Thus, if the Multisector Count is greater than one, F_UNLOCK unlocks all
records locked by the calling process, skipping those records locked by other
processes.

Some F_UNLOCK requests require a new entry in the BDOS system Lock List. If
there is insufficient space in the system Lock List to satisfy the F_UNLOCK
request, or if the process record Lock List limit is exceeded, then F_UNLOCK
does not unlock any records, and returns an error code to the calling proces.

Upon return, F_UNLOCK sets register AL to 00h if the unlock operation was
successful. Otherwise, register AL contains one of the following error codes:

 01h = Reading unwritten data
 03h = Cannot close current extent
 04h = Seek to unwritten extent
 06h = Random Record Number out of range
 0Ah = FCB Checksum error
 0Ch = Process record Lock List limit exceeded
 0Dh = Invalid File ID
 0Eh = No Room in system Lock List
 0FFh = Physical error : refer to register AH

The system call returns error code 01h when it accesses a data block which has
not been previously written.

The system call returns error code 03h when it cannot close the current extent
prior to moving to a new extent.

The system call returns error code 04h when it accesses an extent that has not
been created.

The system call returns error code 06h when byte 35 (R2) of the referenced FCB
is greater than 3.

The system call returns error code 0Ah if the referenced FCB failed the FCB
Checksum test.

The system call returns error code 0Ch if performing the unlock request would
require that the process consume more than the maximum allowed number of
system Lock List entries.

The system call returns error code 0Dh when an invalid File ID is placed at
the beginning of the current DMA.

The system call returns error code 0Eh when the system Lock List is full and
performing the unlock request would require at least one new entry.

The system call returns error code 0FFh if a physical error is encountered and
the BDOS Error mode is one of the return modes (refer to the F_ERRMODE system
call). If the Error mode is the Default mode, the system displays a message at
the console identifying the physical error, and terminates the calling
process. When the system call returns a physical error to the calling process,
it is identified by register AH as shown below:

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

 01h = Disk I/O Error : permanent error
 04h = Invalid Drive : drive select error

F_USERNUM

Set or return the default user number of the calling process.

Entry Parameters:
 Register CL: 32 (20h)
 DL: 0FFh (Get)
 or User Number (to Set)

Returned Values:
 Register AL: Current User Number (if Get)
 BL: Same as AL

A process can change or interrogate its current default user number by calling
F_USERNUM. If register DL = 0FFh, then the system call returns the value of
this user number in register AL. The value can range from 0 to 0Fh. If
register DL is not 0FFh, then the system call changes the default user number
to the value in DL, modulo 10h (the high nibble of DL is masked off).

Under Concurrent CP/M, a new process inherits its initial default user number
from its parent, the process creating the new process. Changing the default
user number does not change the user code of the parent. On the other hand,
all child processes of the calling process inherit the new user number.

This convention is demonstrated by the operation of the TMP. When a command is
typed, a new process is created with the same user number as that of the TMP.
If this new process changes its user number, the TMP is unaffected. Once the
new process terminates, the TMP displays the same user number in its prompt
that it displayed before the command was entered and the child process was
created.

F_WRITE

Write record sequentially.

Entry Parameters:
 Register CL: 21 (15h)
 DX: FCB Address -- Offset
 DS: FCB Address -- Segment

Returned Values:
 Register AL: Error Code
 AH: Physical Error
 BX: Same as AX

The F_WRITE system call writes 1 to 128 128-byte data records beginning at the

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

current DMA address into the file named by the specified FCB. The BDOS
Multisector Count (refer to the F_MULTISEC system call) determines the number
of 128-byte records that are written. The default is one record. An F_OPEN or
F_MAKE system call must have previously activated the referenced FCB.

F_WRITE places the record into the file at the position indicated by the CR
byte of the FCB, and then automatically increments the CR byte to the next
record position. If the CR field overflows, the system call automatically
opens or creates the next logical extent, and resets the CR field to 00h in
preparation for the next write operation. If F_WRITE is used to write to an
existing file, then the newly written records overlay those already existing
in the file. The calling process must set the CR field to 00h following an
F_OPEN or F_MAKE system call if the intent is to write sequentially from the
beginning of the file.

F_WRITE makes an update date and time stamp for the file if the following
conditions are met: the referenced drive has a directory label that requests
update date and time stamping, and the file has not already been stamped for
update by a previous F_MAKE or F_WRITE system call.

Upon return, the F_WRITE system call sets register AL to zero if the write
operation is successful. Otherwise, register AL contains an error code
identifying the error, as shown below:

 01h = No available directory space
 02h = No available data block
 08h = Record locked by another process
 09h = Invalid FCB
 0Ah = FCB Checksum error
 0Bh = Unlocked file verification error
 0FFh = Physical error : refer to register AH

The system call returns error code 01h when it attempts to create a new extent
that requires a new directory entry and no available directory entries exist
on the selected disk drive.

The system call returns error code 02h when it attempts to allocate a new data
block to the file, and no un-allocated data blocks exist on the selected disk
drive.

The system call returns error code 08h if the calling process attempts to
write to a record locked by another process, or a record locked by the calling
process in Shared mode. The system call returns this error only for files
open in Unlocked mode.

The system call returns error code 09h if the FCB is invalidated by a previous
F_CLOSE system call that returned an error.

The system call returns error code 0Ah if the referenced FCB failed the FCB
Checksum test.

The system call returns error code 0Bh if the BDOS cannot locate the FCB's
directory entry when attempting to verify that the referenced FCB contains
current information. The system call returns this error only for files open in

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

Unlocked mode.

The system call returns error code 0FFh if a physical error was encountered
and the BDOS is in Return mode, or Return and Display Error mode (refer to the
F_ERRMODE system call). If the Error mode is in the Default mode, the system
displays a message at the console identifying the physical error, and
terminates the calling process. When the system call returns a physical error
to the calling process, it is identified by register AH as shown below:

 01h = Disk I/O Error : permanent error
 02h = Read/Only Disk
 03h = Read/Only File, or
 File Opened in Read/Only Mode, or
 File password protected in Write mode
 04h = Invalid Drive : drive select error

On all error returns, except for physical error returns (AL = 0FFh), F_WRITE
sets register AH to the number of records successfully written before the
error was encountered. This value can range from 0 to 127, depending on the
current BDOS Multisector Count. It is always set to zero when the Multisector
Count is equal to one.

F_WRITERAND

Write random records.

Entry Parameters:
 Register CL: 34 (22h)
 DX: FCB Address -- Offset
 DS: FCB Address -- Segment

Returned Values:
 Register AL: Error Code
 AH: Physical Error
 BX: Same as AX

The F_WRITERAND system call is analogous to the F_READRAND system call, except
that data is written to the disk from the current DMA address. If the disk
extent and/or data block where the data is to be written is not already
allocated, the BDOS automatically performs the allocation before the write
operation continues.

In order to write to a file using the F_WRITERAND system call, the calling
process must first open the base extent, extent 0. This ensures that the FCB
is properly initialized for subsequent random access operations. If the file
is empty, the calling process must create the base extent with the F_MAKE
system call before an F_WRITERAND system call. The base extent might or might
not contain data, but it records the file in the directory, so that it can be
displayed by the Concurrent CP/M DIR utility. If a process does not open
extent 0 and allocates data to some other extent, the file is invisible to the
DIR utility.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

The F_WRITERAND system call sets the logical extent and current record
positions to correspond with the random record being written, but does not
change the Random Record Number. Ths, sequential read or write operations can
follow a random write, with the current record being re-read or re-written as
the calling process switches from random to sequential mode.

F_WRITERAND makes an update date and time stamp for the file if the following
conditions are met: the referenced drive has a directory label that requests
update date and time stamping, and the file has not already been stamped for
update by a previous F_MAKE or F_WRITE system call.

Upon return, the F_WRITERAND system call sets register AL to 00h if the write
operation is successful. Otherwise, register AL contains one of the following
error codes:

 02h = No available data block
 03h = Cannot close current extent
 05h = No available directory space
 06h = Random Record Number out of range
 08h = Record locked by another process
 0Ah = FCB Checksum error
 0Bh = Unlocked file verification error
 0FFh = Physical error : refer to register AH

The system call returns error code 02h when it attempt to allocate a new data
block to the file. No un-allocated data blocks exist on the selected disk
drive.

The system call returns error code 03h when it cannot close the current extent
before moving to a new extent.

The system call returns error code 05h when it attempts to create a new extent
that requires a new directory entry and no available directory entries exist
on the selected disk drive.

The system call returns error code 06h when byte 35 (R2) of the referenced FCB
is greater than 3.

The system call returns error code 08h if the calling process attempts to
write to a record locked by another process, or a record locked by the
calling process in Shared mode. The system call returns this error only
for files open in Unlocked mode.

The system call returns error code 0Ah if the referenced FCB failed the FCB
Checksum test.

The system call returns error code 0Bh if the BDOS cannot locate the FCB's
directory entry when attempting to verify that the referenced FCB contains
current information. The system call returns this error only for files open in
Unlocked mode.

The system call returns error code 0FFh if a physical error is encountered and
the BDOS Error mode is in one of the Return modes (refer to the F_ERRMODE
system call). If the Error mode is in the default mode, the system displays a

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

message at the console identifying the physical error, and terminates the
calling process. When a physical error is returned to the calling process, it
is identified by register AH, as shown below:

 01h = Disk I/O Error : permanent error
 02h = Read/Only Disk
 03h = Read/Only File, or
 File Opened in Read/Only Mode, or
 File password protected in Write mode
 04h = Invalid Drive : drive select error

On all error returns, except for physical error returns, AL = 0FFh,
F_WRITERAND sets register AH to the number of records successfully written
before the error was encountered. This value can range from 0 to 127,
depending on the current BDOS Multisector Count. It is always set to zero when
the Multisector Count is equal to one.

F_WRITEXFCB

Create or update file's XFCB.

Entry Parameters:
 Register CL: 103 (67h)
 DX: FCB Address -- Offset
 DS: FCB Address -- Segment

Returned Values:
 Register AL: Directory Code
 AH: Physical or Extended Error
 BX: Same as AX

The F_WRITEXFCB system call creates a new XFCB, or updates the existing XFCB
for the specified file. The calling process passes the address of an FCB in
which the drive, name, type, and extent fields have been defined. The FCB
extent field, if set, specifies the password mode and whether a new password
is to be assigned to the file. The format of the extent field byte is shown
below:

 FCB byte 12 (EX) -- XFCB password mode

 Bit 7 = Read mode
 6 = Write mode
 5 = Delete mode
 0 = Assign new password to the file

If the FCB is currently password protected, the correct password must reside
in the first 8 bytes of the current DMA, or have been previously established
as the default password (refer to the F_PASSWD system call). If bit 0 is set
to 1, the new password must reside in the second 8 bytes of the current DMA.

Note: The F_WRITEXFCB system call does not create or update an XFCB if the
XFCB specifies a file open by another process. However, a process can update

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

or create an XFCB for a file that it has open in Locked mode.

Upon return, F_WRITEXFCB returns a directory code in register AL with the
value 00h if the XFCB create or update was successful. F_WRITEXFCB returns
0FFh in register AL if no directory label existed on the specified drive, or
the file specified in the FCB was not found, or no space existed in the
directory to create an XFCB, or if the drive is not password enabled.
F_WRITEXFCB also returns 0FFh if passwords are not enabled by the specified
drive's directory label. Register AH is set to 00h in all of these cases.

If a physical or extended error is encountered, F_WRITEXFCB performs different
actions, depending on the BDOS Error mode (refer to the F_ERRMODE system
call). If the BDOS Error mode is in the default mode, the system displays a
message at the console identifying the error, and terminates the calling
process. Otherwise, F_WRITEXFCB returns to the calling process with register
AL set to 0FFh, and register AH set to one of the following physical or
extended error codes:

 01h = Disk I/O Error : permanent error
 02h = Read-Only Disk
 04h = Invalid Drive : drive select error
 05h = File open by another process, or open in Read/Only or
 Unlocked mode.
 07h = Password Error
 09h = Illegal ? in FCB

F_WRITEZF

Write random records, and zero fill any previously unallocated data blocks.

Entry Parameters:
 Register CL: 40 (28h)
 DX: FCB Address -- Offset
 DS: FCB Address -- Segment

Returned Values:
 Register AL: Error Code
 AH: Physical Error
 BX: Same as AX

The F_WRITEZF system call is similar to the F_WRITERAND system call, with the
exception that it fills a previously un-allocated data blocks with zeros (00h)
before writing the record. If this system call has been used to create a file,
records accessed by an F_READRAND system call that contain all zeros identify
un-written random records. Un-written random records in allocated data blocks
of files created using the F_WRITERAND system call contain un-initialized
data.

6.2.5 List device system calls

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

L_ATTACH

Establish ownership of the default list device by the calling process; suspend
the process until the device is available.

Entry Parameters:
 Register CL: 158 (9Eh)

The L_ATTACH system call attaches the default list device of the calling
process. If the list device is already attached to some other process, the
calling process relinquishes the CPU until the other process detaches from the
list device. When the list device becomes free, and the calling process is the
highest priority process waiting for the list device, the attach operation
occurs.

Refer to Table 6-5 for a list of error codes returned in CX.

L_CATTACH

Conditionally establish ownership of the default list device by the calling
process; return error code if the device is unavailable.

Entry Parameters:
 Register CL: 161 (0A1h)

Returned Values:
 Register AX: 0000h if Attach OK,
 0FFFFh on Failure
 BX: Same as AX
 CX: Error Code

The L_CATTACH system call attaches the default list device of the calling
process only if the list device is currently available.

If the list device is currently attached to another process, the system call
returns a value of 0FFh, indicating that the list device could not be
attached. The system call returns a value of 00h to indicate that either the
list device is already attached to the process, or that it was un-attached,
and a successful attach operation was made.

Refer to Table 6-5 for a list of error codes returned in CX.

L_DETACH

Relinquish ownership of the default list device.

Entry Parameters:
 Register CL: 159 (9Fh)

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

Returned Values:
 Register AX: 0000h if Attach OK,
 0FFFFh on Failure
 BX: Same as AX
 CX: Error Code

The L_DETACH system call detaches the default list device of the calling
process. If the list device is not currently attached, no action takes place.

Refer to Table 6-5 for a list of error codes returned in CX.

L_GET

Return the default list device number of the calling process.

Entry Parameters:
 Register CL: 164 (0A4h)

Returned Values:
 Register AL: List Device Number
 BL: Same as AL

The L_GET system call returns the default list device number of the calling
process.

L_SET

Change the default list device for the calling process.

Entry Parameters:
 Register CL: 160 (0A0h)
 DL: List Device Number

Returned Values:
 Register CX: Error Code

The L_SET system call sets the default list device for the calling process.

Refer to Table 6-5 for a list of error codes returned in CX.

L_WRITE

Write a character to the default list device.

Entry Parameters:
 Register CL: 5 (05h)
 DL: Character

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

The L_WRITE system call writes the specified character to the default list
device of the calling process. Before writing the character, the system
internally calls L_ATTACH to verify that the calling process owns its default
list device.

L_WRITEBLK

Write the specified number of characters (block) to the default list device.

Entry Parameters:
 Register CL: 112 (70h)
 DX: CHCB Address -- Offset

L_WRITEBLK sends the character string specified in the CHaracter Control Block
(CHCB) and addressed in register DX to the logical list device, LST:. The CHCB
format is:

 Bytes 0-1 : Offset of character string
 2-3 : Segment of character string
 4-5 : Length of character string to print

6.2.6 Memory system calls

MP/M-86 compatible memory allocation system calls

There are two classes of Memory System Calls in Concurrent CP/M. The first
class supports the MP/M-86 memory allocation scheme and contains two system
calls, M_ALLOC and M_FREE. The second class contains six system calls,
MC_ABSALLOC, MC_ABSMAX, MC_ALLFREE, MC_ALLOC, MC_FREE, and MC_MAX. These
system calls support the CP/M-86 memory allocation scheme.

Note: The CP/M-86 memory calls are also supported under MP/M-86.

Many of the Memory system calls use the Memory Control Block (MCB) or the
Memory Parameter Block (MPB) to pass parameters to and from the operating
system. The format, structure and example programming equates for these data
structures are presented below, along with example listings.

 +------+--------+-----+
 | BASE | LENGTH | EXT |
 +------+--------+-----+

 Figure 6-7. MCB -- Memory Control Block

Table 6-13. MCB field definitions

Format: Field
 Definition

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

BASE
The Segment Address of the beginning of the specified memory segment.

LENGTH
Length of the Memory Segment in paragraphs. The LENGTH field is set to the
number of paragraphs wanted.

EXT
The EXT field is unused, but must be available.

;**
;*
;* Memory Control Block definition
;*
;**

mcb_base equ word ptr 0
mcb_length equ word ptr mcb_base + word
mcb_ext equ byte ptr mcb_length + word

mcb_len equ mcb_ext + byte

 Listing 6-1. Memory Control Block definition

 +----+----+----+----+----+----+----+----+----+----+
 | START | MIN | MAX | * 0000h | * 0000h |
 +----+----+----+----+----+----+----+----+----+----+

 Figure 6-8. MPB -- Memory Parameter Block

Table 6-14. MPB field definitions

Format: Field
 Description

START
If non-00h, an absolute request at this paragraph.

MIN
Minimum memory needed (paragraphs)

MAX
Maximum memory wanted (paragraphs)

* 0000h
These fields must be 00h; they are used internally.

;**
;*
;* Memory Parameter Block definition
;*

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

;**

mpb_start equ word ptr 0
mpb_min equ word ptr mpb_start + word
mpb_max equ word ptr mpb_min + word
mpb_pdadr equ word ptr mpb_max + word
mpb_flags equ word ptr mpb_pdadr + word

mpb_len equ mpb_flags + word

; MPB_FLAGS definition

mf_load equ 0001h
mf_share equ 0002h
mf_code equ 0004h

 Listing 6-2. Memory Parameter Block definition

M_ALLOC

Allocate the memory segment between the sizes specified in the Memory
Parameter Block to the calling process.

Entry Parameters:
 Register CL: 128, 129 (80h, 81h)
 DX: MPB Address -- Offset
 DS: MPB Address -- Segment
 MPB filled in

Returned Values:
 Register AX: 0000h on Success,
 0FFFFh on Failure
 BX: Same as AX
 CX: Error Code
 MPB_Start filled in

The M_ALLOC system call allows a program to allocate extra memory. A
successful allocation allocates a contiguous memory segment, whose length is
at least the MIN, and no more than the MAX, number of paragraphs specified in
the MPB. The START field of the MPB is modified to be the starting paragraph
of the memory segment. The MIN and MAX fields are modified to be the length of
the memory segment in paragraphs. Memory Segments can be explicitly released
through the M_FREE system call; Concurrent CP/M also releases all memory owned
by a process at termination.

Note: MIN and MAX fields must be explicitly filled in. The MAX value must be
greater than, or equal to, the MIN value.

Refer to Table 6-5 for a list of error codes returned in CX.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

M_FREE

Free the specified memory segment.

Entry Parameters:
 Register CL: 130 (82h)
 DX: MFPB Address -- Offset
 DS: MFPB Address -- Segment

Returned Values:
 Register AX: 0000h on Success,
 0FFFFh on Failure
 BX: Same as AX
 CX: Error Code

 +---------+---------+
 | START | * 0000h |
 +---------+---------+

 Figure 6-9. MFPB -- M_FREE Parameter Block

The M_FREE system call releases memory, starting at the START paragraph, to
the end of a single previously allocated segment that contains the START
paragraph. If the START paragraph is the same as that returned in the MPB of a
memory allocation call, then M_FREE releases the whole memory segment. The "*
0000h" field must be initialized to zero.

Refer to Table 6-5 for a list of error codes returned in CX.

CP/M-86 compatible memory allocation system calls

MC_ABSALLOC

Allocate a specified amount of RAM, as above, but beginning at a specific
address.

Allocate the maximum amount of RAM available at a specified address.

Entry Parameters:
 Register CL: 56 (38h)
 DX: MCB Address -- Offset
 DS: MCB Address -- Segment

Returned Values:
 Register AL: 0000h on Success,
 0FFFFh on Failure
 BL: Same as AL
 CX: Error Code

The MC_ABSALLOC system call allocates a memory area that starts at the address

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

specified by the BASE field. The memory area's length is specified by the
LENGTH field of the MCB. Upon return, register AL contains a 00h if the
request was successful, and a 0FFh if the memory could not be allocated. If
the calling process already owns the requested memory, no error is returned.
This assures compatibility with CP/M-86.

Refer to Table 6-5 for a list of error codes returned in CX.

MC_ABSMAX

Allocate the maximum amount of RAM available at a specified address.

Entry Parameters:
 Register CL: 54 (36h)
 DX: MCB Address -- Offset
 DS: MCB Address -- Segment
 MCB_Base filled in
 MCB_Length set to maximum number of paragraphs wanted

Returned Values:
 Register AL: 0000h on Success,
 0FFFFh on Failure
 BL: Same as AL
 CX: Error Code
 MCB_Length set to actual number of paragraphs allocated

In CP/M-86, system call 54 does not allocate memory but, under Concurrent
CP/M, this system call allocates memory because other processes are competing
for common memory. For compatibility with CP/M-86, MC_ABSALLOC (system call
56) does not return an error if there is a memory segment allocated at the
absolute address.

MC_ABSMAX is used to allocate the largest possible region at the absolute
paragraph boundary given by the BASE field of the MCB, for a maximum of LENGTH
paragraphs. If the allocation is successful, the system call sets the LENGTH
to the actual length. Upon return, register AL has the value 0FFh if no memory
is available at the absolute address, and 00h if the request was successful.

Refer to Table 6-5 for a list of error codes returned in CX.

MC_ALLFREE

Free all memory owned by the calling process.

Entry Parameters:
 Register CL: 58 (3Ah)

In the Concurrent CP/M environment, the MC_ALLFREE system call releases all of
the calling process' memory, except the User Data Area (UDA). This system call
is useful for system processes, and for sub-processes that share the memory of

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

another process.

Note: This system call should not be used by processes running programs loaded
into the Transient Program Areas (TPAs).

MC_ALLOC

Allocate a segment of RAM, as specified in the Memory Control Block, to the
calling process.

Entry Parameters:
 Register CL: 55 (37h)
 DX: MCB Address -- Offset
 DS: MCB Address -- Segment
 MCB_Length filled in

Returned Values:
 Register AL: 0000h on Success,
 0FFFFh on Failure
 BL: Same as AL
 CX: Error Code
 MCB_Base filled in

The MC_ALLOC system call allocates a memory area whose size is the LENGTH
field of the MCB. MC_ALLOC returns the base paragraph address of the allocated
region in the user's MCB. Upon return, register AL contains a 00h if the
request was successful, and a 0FFh if the memory could not be allocated.

Refer to Table 6-5 for a list of error codes returned in CX.

MC_FREE

Free an area of RAM beginning at a specified address, and extending to the end
of the previously allocated memory area.

Entry Parameters:
 Register CL: 57 (39h)
 DX: MCB Address -- Offset
 DS: MCB Address -- Segment
 MCB_Base and MCB_Ext filled in

Returned Values:
 Register AL: 0000h on Success,
 0FFFFh on Failure
 BL: Same as AL
 CX: Error Code

The MC_FREE system call is used to release memory areas allocated to the
program. The value of the EXT field of the MCB controls the operation of this
system call. If EXT = 0FFh, then the system call releases all memory areas

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

allocated by the calling program. If the EXT field is 00h, the system call
releases the memory area beginning at the specified BASE and ending a the end
of the previously allocated memory segment.

Refer to Table 6-5 for a list of error codes returned in CX.

MC_MAX

Allocate the maximum amount of RAM available in the system.

Entry Parameters:
 Register CL: 53 (35h)
 DX: MCB Address -- Offset
 DS: MCB Address -- Segment
 MCB_Length contains the maximum number of paragraphs wanted

Returned Values:
 Register AL: 0000h on Success,
 0FFFFh on Failure
 BL: Same as AL
 CX: Error Code
 MCB_Base filled in
 MCB_Length set to actual number of paragraphs allocated

In CP/M-86, system call 53 does not allocate memory but, under Concurrent
CP/M, this system call allocates memory because other processes are competing
for common memory. For compatibility with CP/M-86, MC_ABSALLOC (system call
56) does not return as error if there is a memory segment allocated at the
absolute address.

MC_MAX allocates the largest available memory region that is less than or
equal to the LENGTH field of the MCB in paragraphs. If the allocation is
successful, the system call sets the BASE to the base paragraph address of the
available area, and LENGTH to the paragraph length. Upon return, register AL
has the value 0FFh if no memory is available, and 00h if the request was
successful. The system call sets the EXT to 1 if there is additional memory
for allocation, and 0 if no additional memory is available.

Refer to Table 6-5 for a list of error codes returned in CX.

6.2.7 Process/Program system calls

P_ABORT

Terminate a process specified by name or Process Descriptor address.

Entry Parameters:
 Register CL: 157 (9Dh)
 DX: APB Address -- Offset

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

 DS: APB Address -- Segment
 APB filled in

Returned Values:
 Register AX: 0000h on Success,
 0FFFFh on Failure
 BX: Same as AX
 CX: Error Code

 +------+------+------+------+------+------+
 00h | PD | TERM | CNS | *00h |
 +------+------+------+------+------+------+------+------+
 06h | NAME |
 +------+------+------+------+------+------+------+------+

 Figure 6-10. APB -- Abort Parameter Block

Table 6-15. APB field definitions

Format: Field
 Definition

PD
Process Descriptor offset of the process to be terminated. If this field is
zero, a match is attempted with the NAME and CNS fields to find the process.
If this field is non-zero, the NAME and CNS fields are ignored.

TERM
Termination Code. This field corresponds to the termination code of the P_TERM
system call. If the low_order byte of TERM is 0FFh, P_ABORT can abort a
specified system process; if the termination code is not 0FFh, the system call
can only terminate a user process. (A system process is identified by the
System flag in the Process Descriptor's FLAG field.)

CNS
Default console of process to be aborted. If the PD field is 0, the P_ABORT
system call scans the Thread List for a PD with the same NAME and CNS fields
as specified in the APB. P_ABORT only aborts the first process that it finds.
Subsequent calls must be made to abort all processes with the same NAME and
CNS.

*00h
This field is reserved for sustem use, and must be set to zero.

NAME
Name of the process to be aborted. Combined with the CNS field, the NAME field
is used to find the process to be aborted. This is only used if the PD filed
is 0.

The P_ABORT system call permits a process to terminate another specified
process. The calling process passes the address of a data structure called an
"Abort Parameter Block", initialized as described above.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

If the Process Descriptor address is know, it can be filled in, and the
process name and console can be omitted. Otherwise, the Process Descriptor
address field should be a 00h, and the process name and console must be
specified. In either case, the calling process must supply the termination
code, which is the same parameter passed to the P_TERM system call.

Refer to Table 6-5 for a list of error codes returned in CX.

P_CHAIN

Load, initialize, and jump to the program specified in the DMA Buffer.

Entry Parameters:
 Register CL: 47 (2Fh)
 DMA Buffer: Command Line

Returned Values:
 Register AX: 0FFFFh = Could not find Command

The P_CHAIN system call provides a means of chaining from one program to the
next without operator intervention. Although there is no passed parameters for
this call, the calling process must place a command line terminated by a 00h
byte in the default DMA Buffer.

Under Concurrent CP/M, the P_CHAIN system call releases the memory of the
calling process before executing the command. The command is processed in the
same manner as the P_CLI system call. If the command warrants the loading of a
CMD file and the memory released is large enough for the new program,
Concurrent CP/M loads the new program into the same memory area as the old
program. The new program is run by the same process that ran the old program.
The name of the process is changed to reflect the new program being run.

Parameter passing between the old and new programs is accomplished through the
use of disk files, queues, or the command line. The command line is parsed and
placed in the Base Page of the new program, in the manner documented in the
P_CLI system call.

The P_CHAIN system call returns an error if no CMD file is found. If a CMD
file is found, and an error occurs after it is successfully opened, the
calling process terminates, as its memory has been released.

P_CLI

Interpret and execute the specified command line by calling the Command Line
Interpreter (CLI).

Entry Parameters:
 Register CL: 150 (96h)
 DX: CLBUF Address -- Offset
 DS: CLBUF Address -- Segment

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

Returned Values:
 Register AX: 0000h on Success,
 0FFFFh on Error
 CX: Error Code

 0 1 129
 +------+--------...-+------+
 | *00h | COMMAND... | *00h |
 +------+--------...-+------+

 Figure 6-11. CLI command line buffer

Table 6-16. Command line buffer field definitions

Format: Field
 Definition

*00h
Must be set to zero for system use.

COMMAND
1-128 ASCII characters terminated with a null (00h) character.

The P_CLI system call obtains an ASCII command from the Command Line Buffer
(CLBUF), and then executes it. If the calling process is attached to its
default virtual console, the P_CLI system call assigns the virtual console to
either the newly created process, or to the Resident System Process (RSP) that
acts on the command. The calling process must re-attach to its default virtual
console before accessing it.

P_CLI calls F_PARSE to parse the command line. If an error occurs in F_PARSE,
P_CLI returns to the calling process with the error code set to the same code
that F_PARSE returned.

If there is no disk specification for the command, P_CLI tries to open a
system queue with the same name as the command. If the open operation is
successful, and the queue is an RSP-type queue, P_CLI then writes the command
tail to the RSP queue. If the queue is full, the system call returns an error
code to the calling process. The P_CLI function also attempts to assign the
calling process' virtual console to a process with the same name as the RSP
queue. If the RSP queue cannot be found, the CLI assumes that the command is
on disk, and continues.

The P_CLI system call opens a file with the filename being the command, and
the filetype being "CMD". If the command has an explicit disk specification,
and the F_OPEN system call fails, P_CLI returns an error code to the calling
process. If there is no disk specification with the command, P_CLI attempts to
open the command file on the system disk. If the F_OPEN system call succeeds,
P_CLI checks the file to verify that the System attribute is ON. This search
order is discussed in Section 2.9.2, "File attributes", of the "Concurrent
CP/M User's Guide". If this second F_OPEN fails, or if the Dir attribute is
ON, P_CLI returns an error code to the calling process.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

Once the P_CLI system call succeeds in opening the command file, it calls the
P_LOAD system call. The P_LOAD system call finds, and then loads the file into
an appropriate memory space. If P_LOAD encounters any errors, the P_CLI system
call returns to the calling process with the error code set by the P_LOAD
system call.

A successful load operation establishes the command file in memory, with its
Base Page partially initialized. The P_CLI system call then continues parsing
the command tail, to set up the Base Page values from 0050h to 00FFh.

P_CLI initializes an unused Process Descriptor from the internal PD Table, a
UDA (expanded UDA if 8087 processing is required), and a 96-byte stack area.
The UDA and stack are dynamically allocated from memory. P_CLI then calls the
P_CREATE system call. If P_CLI encounters an error in any of these steps, it
releases all memory segments allocated for the new command, as well as the
Process Descriptor, and then returns with the appropriate error code set.

Once the P_CREATE system call returns successfuly, the P_CLI system call
assigns the calling process' default virtual console to the new process, and
then returns.

The calling process should set its priority to less than the TMP (198), if it
wants to attach to the virtual console after the created process releases it.
Once the calling process has succesfully re-attached, it should set its
priority back to 200.

Refer to Table 6-5 for a list of error codes returned in CX.

P_CREATE

Create a subprocess.

Entry Parameters:
 Register CL: 144 (90h)
 DX: PD Address -- Offset
 DS: PD Address -- Segment
 PD filled in

Returned Values:
 Register AX: 0000h on Success,
 0FFFFh on Failure
 BX: Same as AX
 CX: Error Code

The P_CREATE system call allows a process to create a subprocess within its
own memory area. The child process shares all memory owned by the calling
process at the time of the P_CREATE call. If the Process Descriptor (PD) is
outside of the operating system area, the system copies it into a PD from the
internal PD Table. The system call returns an error code if there are no more
unused PDs in the table.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

The User Data Area (UDA) can be anywhere in memory, but is required to be on a
paragraph boundary. The only time the system copies the PD is if it is not
within 64 KB of the System Data Segment.

Process Descriptors, as well as Queue Descriptors and Queue Buffers, are
required to be within the System Data Segment, because they are linked
together on various system lists, or are used by more than one process.
Because of this, they cannot be in the Transient Process Area (TPA), where
they cannot be protected.

More than one process can be created by a single P_CREATE call if the LINK
field of the PD is non-zero. In this case, it is assumed to point to another
PD within the same Data Segment. After it creates the first process, the
system call checks the Process Descriptor's LINK field. Using this linked list
of PDs, a single P_CREATE call can create multiple processes.

Note: The P_CREATE system call does not check the validity of the PD addresses
passed by the calling process. An invalid PD address can cause Concurrent CP/M
to crash if no hardware memory protection is available on the system.

Refer to Table 6-5 for a list of error codes returned in CX.

 +------+------+------+------+------+------+------+------+
 00h | LINK | THREAD | STAT | PRIOR| FLAG |
 +------+------+------+------+------+------+------+------+
 08h | NAME |
 +------+------+------+------+------+------+------+------+
 10h | UDA | DISK | USER | RESERVED | MEM |
 +------+------+------+------+------+------+------+------+
 18h | RESERVED | PARENT |
 +------+------+------+------+------+------+------+------+
 20h | CNS | RESERVED | LIST | Rsrvd| SFLAG |
 +------+------+------+------+------+------+------+------+
 28h | RESERVED |
 +------+------+------+------+------+------+------+------+

 Figure 6-12. PD -- Process Descriptor

Table 6-17. PD field definitions

Format: Field
 Definition

LINK
Link field for insertion on current system list. If this field's initial value
is non-zero, it is assumed to point to another PD. This field is used to
create more than one process with a single Create Process call.

THREAD
Link field for insertion on Thread List. Initialized to be zero (0000h).

STAT
Current Process activity. Initialized to be zero (00h). Activity codes are
listed below:

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

 00h RUN
 The process is ready to run. The STAT field is always in this state
 when a process is examining its own Process Descriptor. The PD is on
 the Ready List. The currently running process is always at the head of
 Ready List.

 01h POLL
 The process is polling a device. The PD is on the Poll List.

 02h DELAY
 The process is delaying for a specified number of system tacks. The PD
 is on the Delay List.

 06h Read Queue
 The process is waiting to read a message from a system queue that is
 empty. The PD is on the Read Queue List whose root is in the Queue
 Descriptor of the system queue involved.

 07h Write Queue
 The process is waiting to write a message to a system queue whose
 buffer is full. The PD is on the Write Queue List, whose root is in
 the Queue Descriptor of the system queue involved.

 08h FLAGWAIT
 The process is waiting for a system flag to be set. The PD is in the
 flag table entry of the flag it is waiting for.

 09h CIOWAIT
 The process is waiting to attach to a Character I/O device (console or
 list), while another process owns it. The PD in on CQUEUE list whose
 root is in the Character Control Block of the device in question.

PRIOR
Current priority. Process scheduling is done based on this field. Typical user
programs run at a priority of 200. 0 is the best priority, and 255 is the
worst priority. The following is a list of priority assignments used by most
Concurrent CP/M systems. User processes priorities should be from 200-254.

 1 Initialization Process
 2-31 Interrupt Handlers
 32-63 System Processes
 64-190 Undefined
 191-197 Undefined
 198 Terminal Message Process
 199 Undefines
 200 Default Priority for Transients
 201-254 User Processes
 255 Idle Process

FLAG
Bit field of flags determining run-time characteristics of a process.
Initialize as needed. All undocumented flags are used internally, or are
reserved for system use.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

 0001h SYS
 System Process. Has privileged access to various features of
 Concurrent CP/M. This process can only be terminated if the
 termination code is 0FFh. This process can access restricted system
 queues. This flag is turned off if the calling process is not a system
 process.

 0002h KEEP
 This process cannot be terminated. This flag is turned off if the
 calling process is not a system process.

 0004h KERNEL
 This process resides within the operating system. This flag is turned
 off if the PD is not within the operating system.

 0010h TABLE
 This PD is copied into the PD from the PD table. When this process
 terminates, the PD is recycled into the PD table.

 8000h 8087
 This process is n 8087-running process.

NAME
Process Name. Eight bytes, all eight bits of each byte are used for matching
process names.

UDA
Segment address of this process' User Data Area. Initialized to be the number
of paragraphs from the beginning of the calling process' Data Segment. The
User Data Area contains process information that is not needed between
processes. It also contains the System Stack of each process. Refer to the UDA
description below.

DISK
Current default disk.

USER
Current default user number.

MEM
Root of linked list of Memory Segment Descriptors that are owned by this
process. Initialized to zero, except for re-entrant or shared code RSPs.

SFLAG
Second Flag. If bit 0 of SFLAG (01h) is set, the system suspends this process
whenever it is switched out to the background, and runs it only when it is
switched in to the foreground.

PARENT
Process that created this process. The P_CREATE system call sets this value at
process creation. The parent field is set to zero if the parent terminates
before the child.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

CNS
Current default console's number. Initialized to be the default console
number.

LIST
Current default list device's number. Initialized to be the default list
device number.

RESERVED
Reserved for internal use. These fields must be initialized to zero (00h).

 +------+------+------+------+------+------+------+------+
 00h | RESERVED | DMA OFFSET | RESERVED |
 +------+------+------+------+------+------+------+------+
 08h | RESERVED |
 +------+------+------+------+------+------+------+------+
 10h | RESERVED |
 +------+------+------+------+------+------+------+------+
 18h | RESERVED |
 +------+------+------+------+------+------+------+------+
 20h | AX | BX | CX | DX |
 +------+------+------+------+------+------+------+------+
 28h | DI | SI | BP | RESERVED |
 +------+------+------+------+------+------+------+------+
 30h | RESERVED | SP | RESERVED |
 +------+------+------+------+------+------+------+------+
 38h | INT 0 | INT 1 |
 +------+------+------+------+------+------+------+------+
 40h | RESERVED | INT 3 |
 +------+------+------+------+------+------+------+------+
 48h | INT 4 | RESERVED |
 +------+------+------+------+------+------+------+------+
 50h | CS | DS | ES | SS |
 +------+------+------+------+------+------+------+------+
 58h | INT 224 | INT 225 |
 +------+------+------+------+------+------+------+------+
 60h | RESERVED |
 +------+------+------+------+------+------+------+------+
 68h | |
 : USER SYSTEM STACK :
 0F8h | | 0FFh
 +------+------+------+------+------+------+------+------+
 100h | CW | SW | RESERVED |
 +------+------+------+------+ |
 108h | |
 | RESERVED |
 : (Optional 8087 Extension) :
 158h | | 15Fh
 +------+------+------+------+------+------+------+------+

 Figure 6-13. UDA -- User Data Area

The length of the UDA is 256 bytes (352 bytes if 8087 processing is required),

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

and it must begin on a paragraph boundary.

Table 6-18. UDA field definition

Format: Field
 Definition

DMA OFFSET
The initial DMA OFFSET for the new process. The segment address of the DMA is
assumed to be the same as the initial Data Segment (refer to DS below).

AX,BX,CX,DX,DI,SI,BP
The initial register values for the new process. These are typically set to
zero.

SP
The initial stack pointer for the new process. The stack pointer is relative
to the initial Stack Segment (refer to SS below). The initial stack of the new
process must be initialized with the offset of the first instruction to be
executed by the new process. The word that the stack pointer points to is the
initial instruction pointer. Two words must follow the initial IP, which is
filled in with the initial Code Segment (refer to CS below) and the initial
flags. The initial flags are set to 0200h, which means that interrupts are ON,
and all other flags are OFF. Concurrent CP/M starts a new process by executing
an Interrupt Return instruction with the initial stack.

Note: This stack area is distinct from the User System Stack at the end of the
UDA.

 Stack Initialization Area

 Low Memory
 ...
 stack area
 ...
 SS SP IP
 0 (CS)
 0 (Flags)

INT 0, INT 1, INT 3, INT 4
The initial interrupt vectors for the first five interrupts types can be set
by filling in these fields. The first word of each field is the Instruction
Pointer (IP), and the second word is the Code Segment (CS) for a list of the
interrupt routine that services these interrupts. Those fields that are zero
are initialized to be the same as the calling processes interrupt vectors.
These fields are typically initialized to be 0.

CS, DS, ES, SS
The initial segment addresses for the new process are taken from these fields.
Those fields that are zero are initialized to be the same as the calling
process' Data Segment.

INT 224, INT 225
Interrupts 224 and 225 are used to communicate with Concurrent CP/M by typical

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

programs. These interrupt vectors are initialized to be the same as the
calling process if these values are zero. The ability to change these values
allows a run-time system to intercept Concurrent CP/M calls that its children
make. The suggested protocol is to keep INT 225 pointing to the Concurrent
CP/M entry point, and changing INT 224 to point to an internal routine. When a
child process does an INT 224, the internal routine can filter calls to
Concurrent CP/M, using INT 225 for the actual Concurrent CP/M call.

RESERVED
All reserved fields are used internally, and must be initialized to zero.

USER SYSTEM STACK
This is the stack area used by the process when it is in the operating system.
The SP variable in the UDA should not point to this area.

CW (*)
Control Word for 8087 processor. Processes bypassing the P_CLI or P_LOAD
system call must set this word to 03FFh.

SW (*)
Status Word for 8087 processor. Processes bypassing the P_CLI or P_LOAD system
call must set this word to 0000h.

(*) = Part of optional 8087 Extension. If the 8087 flag is set in the SFLAG
field, this 6-paragraph extension must be included for the 8087 environment.

P_DELAY

Suspend the calling process for a specified number of system clock ticks.

Entry Parameters:
 Register CL: 141 (8Dh)
 DX: Number of System Ticks

The P_DELAY system call causes the calling process to wait until the specified
number of system ticks has occurred. The P_DELAY system call avoids the
necessity of programmed delay loops. It allows other processes to use the CPU
resource, while the calling process waits.

The length of the system teck varies among installations. A typical system
tick is 60 Hz (16.67 milliseconds) in the USA. In Europe, it is likely to be
50 Hz (20 milliseconds). The exact length of the system tick can be obtained
by reading the TICKS/SEC value from the System Data Segment (refer to the
S_SYSDAT system call).

There is up to one tick of uncertainty in the exact amount of time delayed.
This is due to the P_DELAY system call being called asynchronously from the
actual time base. The P_DELAY system call is guaranteed to delay the calling
proces at least the number of ticks specified. However, when the calling
process is rescheduled to run, it might wait quite a bit longer if there are
higher priority processes waiting to run. The P_DELAY system call is used
primarily by programs that need to wait specific amounts of time for I/O

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

events to occur. Under these conditions, the calling process usually has a
very high priority level. If a process with a high priority calls the P_DELAY
system call, the actual delay is typically within a system tick of the amount
of time wanted.

P_DISPATCH

Force a dispatch operation; give up the CPU resource to the highest priority
process ready to run.

Entry Parameters:
 Register CL: 142 (8Eh)

The P_DISPATCH system call forces a reschedule of processes that are waiting
to run. Normally, dispatches occur at every system tick interrupt (usually 60
times a second), and whenever a process releases a system resource.
Dispatching also occurs whenever a process needs a system resource that is not
currently available. A CPU-bound process runs for no more than one system tick
before a dispatch is forced. The dispatch occurs at the next system tick.

The Concurrent CP/M Dispatcher is priority driven, with round-robin scheduling
of equivalent-priority processes. When a process calls the P_DISPATCH system
call, it is rescheduled, so that processes with higher or equivalent
priorities are given the CPU before the calling process obtains it again. The
calling process regains control of the CPU resource when it becomes the
highest priority process again.

P_LOAD

Load the specified CMD file in memory; return its Base Page segment address.

Entry Parameters:
 Register CL: 59 (3Bh)
 DX: FCB Address -- Offset
 DS: FCB Address -- Segment

Returned Values:
 Register AX: Base Page Address (0FFFFh on Error)
 BX: Same as AX
 CX: Error Code

The P_LOAD system call loads a disk CMD-type file into memory. Upon entry,
register DX contains the offset, relative to DS, of a successfully opened FCB
that specifies the CMD file to load. Upon return, register AX has the value
0FFFFh if the program load failed. Otherwise, AX contains the paragraph
address of the Base Page belonging to the loaded program. The paragraph
address and length of each group loaded from the CMD file is found in the Base
Page. See Sections 3.2, "Command file format", and 3.3, "Base Page
initialization".

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

Note that, before calling P_LOAD, the calling process must establish the DMA
address of where the CMD file to be loaded. This is accomplished with F_DMASEG
and F_DMAOFF.

Note: Open the CMD file in Read-Only mode, and close it once the load is
completed.

Refer to Table 6-5 for a list of error codes returned in CX.

P_PDADR

Return the address of the Process Descriptor of the calling process.

Entry Parameters:
 Register CL: 156 (9Ch)

Returned Values:
 Register AX: PD Address -- Offset
 BX: Same as AX
 ES: PD Address -- Segment

The P_PDADR system call obtains the address of the calling process' Process
Descriptor. For a description of the format of the Process Descriptor, refer
to the P_CREATE system call.

P_PRIORITY

Set the priority of the calling process.

Entry Parameters:
 Register CL: 145 (91h)
 DL: Priority

The P_PRIORITY system call sets the priority of the calling process to the
specified value. This system call is useful in situations where a process
needs to have a high priority during an initialization phase, but afterwards
can run at a lower priority.

The best or highest priority is 00h, while the worst or lowest priority is
0FFh. Transient processes are initialized to run at 0C8h (200) by the P_CLI
system call.

P_RPL

Invoke a system call from a Resident Procedure Library.

Entry Parameters:
 Register CL: 151 (97h)

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

 DX: CPB Address -- Offset
 DS: CPB Address -- Segment

Returned Values:
 Register AX: 0001h if RPL not found,
 RPL return parameter
 BX: Same as AX
 CX: Error Code
 ES: RPL return segment if address

 +------+------+------+------+------+------+------+------+
 | NAME |
 +------+------+------+------+------+------+------+------+
 | PARAM |
 +------+------+

 Figure 6-14. CPB -- Call Parameter Block

Table 6-19. CPB field definitions

Format: Field
 Definition

NAME
Name of Resident Procedure, eight ASCII characters.

PARAM
Parameter to send to the Resident Procedure.

P_RPL permits a process to call a system call in an optional Resident
Procedure Library (RPL).

P_RPL opens a system queue with the specified name. If the Q_OPEN system call
succeeds, P_RPL checks the queue to verify that it is an RPL-type queue. If
either the Q_OPEN fails, or if it is not an RPL-type queue, P_RPL returns to
the calling process with an error code.

P_RPL reads a message from the queue that contains the address of the
specified system call. It then places the PARAM field of the CPB in register
DX, and places the calling process' Data Segment address in register DS. P_RPL
performs a Far Call instruction to the address it obtains from the queue
message. Upon return from the RPL, the system call copies the BX register to
the AX register, and then returns to the calling process.

Note: The P_RPL system call does not write the address of the Resident
Procedure back to the queue. The Resident Procedure itself must do this. If
the Resident Procedure is to be re-entrant, it must write the message into the
queue upon entry. If it is to be serially re-usable, the procedure must write
the message just before returning.

Refer to Table 6-5 for a list of error codes returned in CX.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

P_TERM

Terminate the calling process.

Entry Parameters:
 Register CL: 143 (8Fh)
 DL: Termination Code

Returned Values:
 Register AX: 0FFFFh on Failure
 BX: Same as AX
 CX: Error Code

The P_TERM system call terminates the calling process. If the termination code
is not 0FFh, the system call can only terminate a user process. If the
termination code is 0FFh, the system call can terminate the calling process,
even though the process' System flag is ON. P_TERM cannot terminate a process
with the Keep flag ON. If the termination is successful, the system call
releases the mutual exclusion queues owned by the process. It also releases
all memory segments owned by the process, and returns the Process Descriptor
to the PD table.

A process can own one or more of the following resources: memory segments,
consoles, printers, mutual exclusion messages, and system Lock List entries
(that record open files and locked records). When a process terminates and
releases its resources, these resources become available to other processes on
the system. For example, if a terminating process releases a system console,
the console is usually given back to the console's TMP. This occurs when the
TMP is the highest priority process waiting for the console.

If the system call returns to the calling process, the P_TERM call has failed
for one of two reasons. Either the process has the Keep flag ON, or it has the
System flag ON, and the termination code is not 0FFh.

P_TERMCPM

Terminate calling process unconditionally, release all owned resources.

Entry Parameters:
 Register CL: 0 (00h)

Returned Values:
 Register AX: 0FFFFh on Failure
 BX: Same as AX
 CX: Error Code

The P_TERMCPM system call terminates the calling process, releasing all system
resources owned by the process.

P_TERMCPM is implemented internally by calling P_TERM with the termination
code set to 00h.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

Under CP/M-86, the P_TERMCPM system call has a further argument that allows a
process not to release its memory. This argument places a piece of code into
memory that becomes an interface for later programs. Concurrent CP/M does not
include this option. Memory segments are not recovered by the system until all
processes that own the memory segment have released it.

Refer to Table 6-5 for a list of error codes returned in CX.

6.2.8 Queue system calls

Queue system calls under Concurrent CP/M use the Queue Parameter Block data
structure to pass parameters to and from the operating system. Listing 6-3
shows the structure of the Queue Parameter Block and the equates for its
fields.

 +------+------+------+------+------+------+------+------+
 | * 0000h | QUEUEID | * 0000h | BUFFER |
 +------+------+------+------+------+------+------+------+
 | NAME |
 +------+------+------+------+------+------+------+------+

 Figure 6-15. QPB -- Queue Parameter Block

Table 6-20. QPB field definitions

Format: Field
 Definition

* 0000h
Reserved for internal use; must be initialized to zero.

QUEUEID
Queue number field; filled in by a Q_OPEN operation.

BUFFER
Offset address of Queue Message Buffer.

NAME
Name of Queue for Q_OPEN operation.

;**
;*
;* QPB -- Queue Parameter Block definition
;*
;* +----+----+----+----+----+----+----+----+
;* 00h | 0000h | QUEUEID | 0000h | BUFFER |
;* +----+----+----+----+----+----+----+----+
;* 08h | NAME |
;* +----+----+----+----+----+----+----+----+
;*

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

;* QUEUEID -- Queue ID, address of QD
;* BUFFER -- Address to read/write into/from
;* NAME -- Name of queue (for open only)
;*
;**

qpb_0 equ word ptr 0
qpb_queueid equ word ptr qpb_0 + word
qpb_buffer equ word ptr qpb_queueid + 4
qpb_name equ byte ptr qpb_buffer + word

qpb_len equ qpb_name + qnamsiz
qnamsiz equ 8

 Listing 6-3. Queue Parameter Block definition

Q_CREAD

Conditionally read a message from a system queue; return error code if a
message is not available.

Entry Parameters:
 Register CL: 138 (8Ah)
 DX: QPB Address -- Offset
 DS: QPB Address -- Segment
 QPB_QueueID filled in by previous Q_OPEN
 QPB_Buffer set to message buffer offset

Returned Values:
 Register AX: 0000h on Success,
 0FFFFh on Failure
 BX: Same as AX
 CX: Error Code
 Message in buffer

The Q_CREAD system call is analogous to the Q_READ system call, but it returns
an error code if there are not enough messages to read, instead of waiting for
another process to write to the queue.

Refer to Table 6-5 for a list of error codes returned in CX.

Q_CWRITE

Conditionally write a message to a system queue; return an error code if space
is not available.

Entry Parameters:
 Register CL: 140 (8Ch)
 DX: QPB Address -- Offset
 DS: QPB Address -- Segment

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

 QPB_QueueID filled in by previous Q_OPEN
 QPB_Buffer set to message buffer offset
 Message in current DMA Buffer

Returned Values:
 Register AX: 0000h on Success,
 0FFFFh on Failure
 BX: Same as AX
 CX: Error Code

The Q_CWRITE system call is analogous to the Q_WRITE system call, but it
returns an error code if there is not enough system queue buffer space for the
message to be written, instead of waiting for another process to read from the
queue.

Refer to Table 6-5 for a list of error codes returned in CX.

Q_DELETE

Delete a system queue.

Entry Parameters:
 Register CL: 136 (88h)
 DX: QPB Address -- Offset
 DS: QPB Address -- Segment
 QPB_QueueID filled in by a previous Q_OPEN call

Returned Values:
 Register AX: 0000h on Success,
 0FFFFh on Failure
 BX: Same as AX
 CX: Error Code

The Q_DELETE system call removes a system queue from the system. The system
returns error codes if the queue cannot be deleted, or if the queue has not
been opened prior to the Q_DELETE call.

Refer to Table 6-5 for a list of error codes returned in CX.

Q_MAKE

Create a system queue.

Entry Parameters:
 Register CL: 134 (86h)
 DX: QD Address -- Offset
 DS: QD Address -- Segment
 QD filled in

Returned Values:

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

 Register AX: 0000h on Success,
 0FFFFh on Failure
 BX: Same as AX
 CX: Error Code

 +------+------+------+------+------+------+------+------+
 | * 0000h | * 0000h | FLAGS | NAME...
 +------+------+------+------+------+------+------+------+
 ...NAME | MSGLEN |
 +------+------+------+------+------+------+------+------+
 | NMSGS | * 0000h | * 0000h | * 0000h |
 +------+------+------+------+------+------+------+------+
 | * 0000h | BUFFER |
 +------+------+------+------+

 Figure 6-16. QD -- Queue Descriptor

Table 6-21. Queue Descriptor field definition

Format: Field
 Definition

* 0000h
For internal use. Must be initialized to zero.

FLAGS
Queue Flags. The bits are defined as follows:

 0001h = Mutual exclusion queue
 0002h = Cannot be deleted
 0004h = Restricted to system processes
 0008h = RSP message queue
 0010h = Used internally
 0020h = RPL address queue
 0040h = Used internally
 0080h = Used internally

Remaining flags reserved for future use.

NAME
8-byte queue name. All 8 bits of each character are matched on a Q_OPEN call.

MSGLEN
Number of bytes in each logical message.

NMSGS
Maximum number of logical messages to be supported. If the number of messages
written to the queue equals this maximum, no more messages are allowed until a
message is read.

BUFFER
Address of the queue buffer. This buffer must be (NMSGS * MSGLEN) bytes long.
The address is an offset relative to the DS register. This field is unused if

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

the QD resides outside of the System Data Segment. Typically, this field is 0
if the queue is being created by a transient program. RSPs that creates queues
must initialize this field to poin to a buffer. The Data Segment of an RSP's
queue is considered part of the System Data Segment, unless it is beyond 64 KB
of the beginning of the System Data Segment.

Every system queue under Concurrent CP/M is associated with a Queue Descriptor
that resides within the Concurrent CP/M System Data Segment. In the Q_MAKE
system call, the calling process passes the address of a Queue Descriptor. If
this Queue Descriptor is within the Concurrent CP/M System Data Segment, the
system uses it directly for the System Queue. If the Queue Descriptor is
outside of the System Data Segment, the system obtains a Queue Descriptor from
an internal Queue Descriptor table. If there are no unused Queue Descriptors
in the internal table, the system call returns an error code.

Refer to Table 6-5 for a list of error codes returned in CX.

The buffer for a system queue must also reside within the System Data Area.
For non-zero length buffers, resident buffers are used directly. The system
obtains a buffer from the Queue Buffer Area if the buffer does not reside
within the System Data Segment. The size of the buffer is calculated from the
NMSGS and MSGLEN fields. The system call returns an error code if there is not
enough unused buffer area left to accomodate this new buffer.

All system queues must have unique names. The system call returns an error
code if a system queue already exists by the given name.

Under Concurrent CP/M, all system queues must be explicitly opened (refer to
the Q_OPEN system call) before being used to read or write messages, or to
delete the queue.

Q_OPEN

Open a system queue for subsequent queue operations.

Entry Parameters:
 Register CL: 135 (87h)
 DX: QPB Address -- Offset
 DS: QPB Address -- Segment
 QPB_Name filled in

Returned Values:
 Register AX: 0000h on Success,
 0FFFFh on Failure
 BX: Same as AX
 CX: Error Code
 QPB_QueueID filled in

All system queues under Concurrent CP/M must be explicitly opened before a
read, write, or delete operation can be done. The Q_OPEN system call examines
each existing system queue, and attempts to match the name in the QPB with the
name of a system queue. All eight bytes of the name must match for a

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

successful open. All bits of each byte are examined. If the open operation is
successful, the Q_OPEN system call modifies the Queue ID field of the QPB.
Once the queue is opened, subsequent reads, writes, or a delete are allowed.

Refer to Table 6-5 for a list of error codes returned in CX.

Q_READ

Read a message from a system queue; suspend calling process until message is
available.

Entry Parameters:
 Register CL: 137 (89h)
 DX: QPB Address -- Offset
 DS: QPB Address -- Segment
 QPB_QueueID filled in by previous Q_OPEN
 QPB_Buffer set to message buffer offset

Returned Values:
 Register AX: 0000h on Success,
 0FFFFh on Failure
 BX: Same as AX
 CX: Error Code

The Q_READ system call reads a message from a system queue that was previously
opened by the calling process. The system call returns an error code if the
queue was not previously opened, ot if the system queue has been deleted since
the Q_OPEN call. If there are not enough messages to read from the queue, the
calling process waits until another process writes into the queue before
returning.

Refer to Table 6-5 for a list of error codes returned in CX.

Q_WRITE

Write a message to a system queue; suspend calling process until space becomes
available.

Entry Parameters:
 Register CL: 139 (8Bh)
 DX: QPB Address -- Offset
 DS: QPB Address -- Segment
 QDPB_QueueID filled in by previous Q_OPEN
 QPB_Buffer set to message buffer offset

Returned Values:
 Register AX: 0000h on Success,
 0FFFFh on Failure
 BX: Same as AX
 CX: Error Code

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

The Q_WRITE system call writes a message to a system queue that was previously
opened by the calling process. The system call returns an error code if the
queue was not previously opened, or if the system queue has been deleted since
the Q_OPEN call. If there is not enough buffer space in the queue, the calling
process waits until another process reads from the queue before writing to the
queue and returning.

Refer to Table 6-5 for a list of error codes returned in CX.

6.2.9 System information system calls

S_BDOSVER

Return BDOS version number, CPU and operating system type.

Entry Parameters:
 Register CL: 12 (0Ch)

Returned Values:
 Register AL: 31h (BDOS Version 3.1)
 AH: 14h (Concurrent CP/M)
 BX: Same as AX

The S_BDOSVER system call returns the BDOS file system version number,
allowing version-independent programming.

 AL High Nibble = BDOS Version Number
 AL Low Nibble = BDOS Revision Level
 AH High Nibble = CPU Type : 0 = 8080, 1 = 8086
 AH Low Nibble = OS Type : 0 = CP/M
 1 = MP/M
 2 = CP/M with networking
 3 = MP/M with networking
 4 = Concurrent CP/M
 5 = Reserved
 6 = Concurrent CP/M with networking
 7 to 0Eh = Reserved

 Figure 6-17. BDOS Version Number format

S_BIOS

Call specified CP/M-86 BIOS Character I/O routine.

Entry Parameters:
 Register CL: 50 (32h)
 DX: BIOS Descriptor Address -- Offset
 DS: BIOS Descriptor Address -- Segment

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

Returned Values:
 Register AX: BIOS Return
 BX: Same as AX

 +------+------+------+------+------+
 | FUNC | CX | DX |
 +------+------+------+------+------+

 Figure 6-18. BIOS Descriptor format

The S_BIOS system call is provided under Concurrent CP/M for compatibility
with programs generated under CP/M-86 that use this system call (Function 50).
Under Concurrent CP/M, only routines that interface with character devices are
supported. The arguments to character routines such as CONIN and LIST must be
converted to those appropriate for the Concurrent CP/M XIOS. Refer to the
"Concurrent CP/M System Guide" for further information about the XIOS.

Note: Calls to the XIOS Console Status, Input, and Output system calls do not
go to the XIOS if the referenced device is a virtual console.

S_OSVER

Return type and version number of Concurrent CP/M.

Entry Parameters:
 Register CL: 163 (0A3h)

Returned Values:
 Register AX: Version Number (1431h)
 BX: Same as AX
 CX: Error Code

The S_OSVER system call provides information that allows version_independent
programming. The system call returns a two-byte value, with AH set to 14h for
Concurrent CP/M, and AL set to the Concurrent CP/M version level. The AH
register contains a value set to the type of operating system. A value of
1431h indicates Concurrent CP/M 3.1.

Refer to Table 6-5 for a list of error codes returned in CX.

 AL High Nibble = Concurrent CP/M Version Number
 AL Low Nibble = Concurrent CP/M Revision Level
 AH High Nibble = CPU Type : 0 = 8080, 1 = 8086
 AH Low Nibble = OS Type : 0 = CP/M
 1 = MP/M
 2 = CP/M with networking
 3 = MP/M with networking
 4 = Concurrent CP/M
 5 = Reserved
 6 = Concurrent CP/M with networking
 7 to 0Eh = Reserved

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

 Figure 6-19. Operating System Version Number format

S_SERIAL

Return the Concurrent CP/M system serial number.

Entry Parameters:
 Register CL: 107 (6Bh)
 DX: Serial Address -- Offset
 DS: Serial Address -- Segment

Returned Values:
 Serial Number filled in

 +---+---+---+---+---+---+
 | 0 | 1 | 2 | 3 | 4 | 5 |
 +---+---+---+---+---+---+

 Figure 6-20. Serial Number format

S_SERIAL returns the Concurrent CP/M serial number to the addressed, 6-byte
Serial field as a 6-byte ASCII numeral.

S_SYSDAT

Return address of the System Data Segment (SYSDAT).

Entry Parameters:
 Register CL: 154 (9Ah)

Returned Values:
 Register AX: Sysdat Address -- Offset
 BX: Same as AX
 ES: Sysdat Address -- Segment

The S_SYSDAT system call returns the address of the System Data Segment of the
calling process. The System Data Segment contains all Process Descriptors,
Queue Descriptors, the roots of system lists, and other internal data that
Concurrent CP/M uses.

Figure 6-21 illustrates the SYSDAT DATA and its fields.

 +-----+-----+-----+-----+-----+-----+-----+-----+
 00h | SUP ENTRY | RESERVED |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 08h | RESERVED |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 10h | RESERVED |
 +-----+-----+-----+-----+-----+-----+-----+-----+

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

 18h | RESERVED |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 20h | RESERVED |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 28h | XIOS ENTRY | XIOS INIT |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 30h | RESERVED |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 38h | DISPATCHER | PDISP |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 40h | CCPMSEG | RSPSEG | ENDSEG |RESER|NVCNS|
 | | | | -VED| |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 48h |NLCB |NCCB | N_ | SYS_| MMP |RESER| DAY |
 | | |FLAGS| DISK| | -VED| FILE|
 +-----+-----+-----+-----+-----+-----+-----+-----+
 50h | TEMP|TICKS| LUL | CCB | FLAGS |
 | DISK| /SEC| | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 58h | MDUL | MFL | PUL | QUL |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 60h | | QMAU | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 68h | RLR | DLR | DRL | PLR |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 70h | RESERVED | THRDRT | QLR | MAL |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 78h | VERSION | VERNUM |CCPMVERNUM | TOD_DAY |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 80h | TOD | TOD | TOD |NCON |NLST |NCIO | LCB |
 | _HR | _MIN| _SEC| DEV | DEV | DEV | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 88h | OPEN_FILE |LOCK_|OPEN_|OWNER_8087 | RESERVED |
 | | MAX | MAX | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 90h | RESERVED |
 +-----+-----+-----+-----+-----+-----+-----+-----+
 98h | RESERVED |XPCNS|
 +-----+-----+-----+-----+-----+-----+-----+-----+
 A0h | OFF_8087 | SEG_8087 | SYS_87_OF | SYS_87_SG |
 +-----+-----+-----+-----+-----+-----+-----+-----+

 Figure 6-21. SYSDAT DATA

Table 6-22. SYSDAT DATA field definitions

Format: Field
 Explanation

SUP ENTRY
Double-word address of the Supervisor entry point for intermodule
communication. All internal system calls go through this entry point.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

XIOS ENTRY
Double-word address of the Extended I/O System entry point for intermodule
communication. All XIOS function calls go through this entry point.

XIOS INIT
Double-word address of the Extended I/O System initialization entry point.
System hardware initialization takes place by a call through this entry point.

DISPATCHER
Double-word address of the Dispatcher entry point that handles interrupt
returns. Executing a JMPF instruction to this address is equivalent to
executing an Interrupt RETurn instruction. The Dispatcher routine causes a
dispatch to occur, and then executes an Interrupt Return. All registers are
preserved, and one level of stack is used. This location should be used as an
exit point by all XIOS interrupt handlers that use the DEV_SETFLAG system
call.

PDISP
Double-word address of the Dispatcher entry point that causes a dispatch to
occur with all registers preserved. Once the dispatch is done, a RETF
instruction is executed. Executing a JMPF PDISP is equivalent to executing a
RETF instruction. This location should be used as an exit point whenever the
XIOS releases a resource that might be wanted by a waiting process.

CCPMSEG
Starting paragraph of the operating system area. This is also the Code Segment
of the Supervisor Module.

RSPSEG
Paragraph Address of the first RSP in a linked list of RSP Data Segments. The
first word of the data segment points to the next RSP in the list. Once the
system has been initialized, this field is zero.

ENDSEG
First paragraph beyond the end of the operating system area, including any
buffers consisting of un-initialized RAM allocated to the operating system by
GENCCPM. These include the Directory Hashing, Disk Data, and XIOS ALLOC
buffers. These buffers areas, however, are not part of the CCPM.SYS file.

NVCNS
Number of Virtual CoNSoles, copied from the XIOS Header by GENCCPM.

NLCB
Number of List Control Blocks, copied from the XIOS Header by GENCCPM.

NCCB
Number of Character Control Blocks, copied from the XIOS Header by GENCCPM.

NFLAGS
Number of system flags, as specified by GENCCPM.

SYSDISK
Default system disk. The CLI (Command Line Interpreter) looks on this disk if
it cannot open the command file on the user's current default disk. Set during

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

GENCCPM.

MMP
Maximum Memory allocated per Process. Set during GENCCPM.

DAY FILE
Day File option. If this field is 0FFh, the operating system displays date and
time information when an RSP or CMD file is invoked. Set during GENCCPM.

TEMP DISK
Default temporary disk. Programs that create temporary files should use this
disk. Set during GENCCPM.

TICKS/SEC
The number of system ticks per second.

LUL
Locked Unused List. Link list root of unused Lock list items.

CCB
Address of the Character Control Block Table, copied from the XIOS Header by
GENCCPM.

FLAGS
Address of the Flag Table.

MDUL
Memory Descriptor Unused List. Link list root of unused Memory Descriptors.

MFL
Memory Free List. Link list root of free memory partitions.

PUL
Process Unused List. Link list root of unused Process Descriptors.

QUL
Queue Unused List. Link list root of unused Queue Descriptors.

QMAU
Queue buffer Memory Allocation Unit.

RLR
Ready List Root. Linked list of PDs that are ready to run.

DLR
Delay List Root. Linked list of PDs that are delaying for a specified number
of system ticks.

DRL
Dispatcher Ready List. Temporary holding place for PDs that have just been
made ready to run.

PLR
Poll List Root. Linked list of PDs that are polling on devices.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

THRDRT
THReaD list RooT. Linked list of all current PDs on the system. The list is
threaded through the THREAD field of the PD, instead of the LINK field.

QLR
Queue List Root. Linked list of all System QDs.

MAL
Memory Allocation List. Link list of active memory allocation units. A MAU is
created from one or more memory partitions.

VERSION
Address, relative to CCPMSEG, of ASCII version string.

VERNUM
BDOS version number (returned by the S_BDOSVER system call).

CCPMVERNUM
Concurrent CP/M version number (system call 163, S_OSVER).

TOD_DAY
Time Of Day. Number of days since 1 Jan, 1978.

TOD_HR
Time Of Day. Hour of the day.

TOD_MIN
Time Of Day. Minute of the hour.

TOD_SEC
Time Of Day. Second of the minute.

NCONDEV
Number of XIOS CONsole DEVices, copied from the XIOS Header by GENCCPM.

NLSTDEV
Number of XIOS LiST DEVices, copied from the XIOS Header by GENCCPM.

NCIODEV
Total Number of Character I/O DEVices (NCONDEV + NLSTDEV).

LCB
Offset of the List Control Block Table, copied from the XIOS Header by
GENCCPM.

OPEN_FILE
Open File Drive Vector. Designates drives that have open files on them. Each
bit of the word value represents a disk drive; the least significant bit
represents Drive A, and so on through the most significant bit, Drive P. Bits
which are set indicate drives containing open files.

LOCK_MAX
Maximum number of locked records per process. Set during GENCCPM.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

OPEN_MAX
Maximum number of open disk files per process. Set during GENCCPM.

OWNER_8087
Specifies 8087 information. If set to 0FFFFh, the system assumes that there is
no 8087 in the system. If set to 0, there is an 8087 but no one owns it. If
set to any other value, the system assumes that this value is the PD offset of
the 8087 current process.

XPCNS
Number of Physical CoNSoles.

OFF_8087
OFFset of the 8087 interrupt vector in low memory.

SEG_8087
SEGment of the 8087 interrupt vector in low memory.

SYS_87_OF
OFfset of the default 8087 exception handler.

SYS_87_SG
SeGment of the default 8087 exception handler.

6.2.10 Time system calls

T_GET

Obtain the system calendar and clock (hours and minutes only).

Entry Parameters:
 Register CL: 105 (69h)
 DX: TOD Address -- Offset
 DS: TOD Address -- Segment

Returned Values:
 Register AL: Seconds
 TOD filled in (Days, Hours, and Minutes only)

 +------+------+------+------+------+
 | DAY | HOUR | MIN | SEC |
 +------+------+------+------+------+

 Figure 6-22. TOD -- Time-Of-Day structure

Table 6-23. Time-Of-Day field definitions

Format: Field
 Definition

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

DAY
The number of days since 31 December 1977. The day is stored as a 16-bit
integer.

HOUR
The current hour of the current day. The hour is represented as a 24 hour
clock in 2 binary coded decimal (BCD) digits.

MIN
The current minute of the current hour. The minute is stored as 2 BCD digits.

SEC
The current second of the current minute. The second is stored as 2 BCD
digits.

The T_GET system call obtains the system internal time and date. The calling
process passes the address of a 4-byte data structure that receives the time
and date values. This system call is equivalent to the T_SECONDS system call,
except that it does not return the SECONDS field of the internal time.

T_SECONDS

Return current system date and time; hours, minutes, seconds.

Entry Parameters:
 Register CL: 155 (9Bh)
 DX: TOD Address -- Offset
 DS: TOD Address -- Segment

Returned Values:
 TOD filled in (Days, Hours, Minutes, and Seconds)

The T_SECONDS system call returns the current encoded time and date (including
seconds) in the TOD structure passed by the calling process.

T_SET

Set internal system calendar and clock to specified value.

Entry Parameters:
 Register CL: 104 (68h)
 DX: TOD Address -- Offset
 DS: TOD Address -- Segment

The T_SET system call sets the system internal time and date. The calling
process passes the address of a 4-byte structure containing the time and date
specification.

The date is represented as a 16-bit integer, with day 1 corresponding to

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRG6.TXT[2/7/2012 11:29:39 AM]

January 1, 1978. The time is represented as 2 bytes hours and minutes stored
as 2 BCD digits.

Under Concurrent CP/M, this system call also sets the second field of the
system time and date to 00h.

EOF

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRGA.TXT[2/7/2012 11:29:43 AM]

CCPMPRGA.WS4 (Concurrent CP/M Programmer's Reference Guide, Appendix A)

(Retyped by Emmanuel ROCHE.)

Appendix A: System call summary by function number
--

This appendix lists the Concurrent CP/M system calls by function number
including the parameters a process must pass when calling the function, and
the values that the function returns to the process.

Table A-1. System call summary by function number

Dec Mnemonic Input parameters Returned values
--- -------- ---------------- ---------------
 0 P_TERMCPM none AX = Rtn Code
 1 C_READ none AL = char
 2 C_WRITE DL = char none

 5 L_WRITE DL = char none
 6 C_RAWIO see def see def

 9 C_WRITESTR DX = .Buffer none
 10 C_READSTR DX = .Buffer see def
 11 C_STAT none AL = 1 if ready, 0 if not
 12 S_BDOSVER none AX = Version #
 13 DRV_ALLRESET none see def
 14 DRV_SET AL = Drive # see def
 15 F_OPEN DX = .FCB AL = Dir Code
 16 F_CLOSE DX = .FCB AL = Dir Code
 17 F_SFIRST DX = .FCB AL = Dir Code
 18 F_SNEXT none AL = Dir Code
 19 F_DELETE DX = .FCB AL = Dir Code
 20 F_READ DX = .FCB AL = Err Code
 21 F_WRITE DX = .FCB AL = Err Code
 22 F_MAKE DX = .FCB AL = Dir Code
 23 F_RENAME DX = .FCB AL = Dir Code
 24 DRV_LOGINVEC none AX = Login Vector
 25 DRV_GET none AL = Cur Drive
 26 F_DMAOFF DX = .DMA none
 27 DRV_ALLOCVEC none ES:AX = Alloc Addr
 28 DRV_SETRO none see def
 29 DRV_ROVEC none AX = R/O Vector
 30 F_ATTRIB DX = .FCB see def
 31 DRV_DPB none ES:AX = DPB Addr
 32 F_USERNUM DL = 0FFh (Get) AL = User #
 = User # (Set) none
 33 F_READRAND DX = .FCB AL = Err Code
 34 F_WRITERAND DX = .FCB AL = Err Code
 35 F_SIZE DX = .FCB R0,R1,R2 & AL = Dir Code
 36 F_RANDREC DX = .FCB R0,R1,R2

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRGA.TXT[2/7/2012 11:29:43 AM]

 37 DRV_RESET DX = Drive Vector AL = Err Code
 38 DRV_ACCESS DX = Drive Vector none
 39 DRV_FREE DX = Drive Vector none
 40 F_WRITEZF DX = .FCB AL = Err Code

 42 F_LOCK DX = .FCB AL = Err Code
 43 F_UNLOCK DX = .FCB AL = Err Code
 44 F_MULTISEC DL = # of Records AL = Rtn Code
 45 F_ERRMODE DL = Error Mode none
 46 DRV_SPACE DL = Drive # see def
 47 P_CHAIN see def none
 48 DRV_FLUSH none see def

 50 S_BIOS DX = .BD AX = BIOS Rtn
 51 F_DMASEG DX = .DMA Seg none
 52 F_DMAGET none ES:AX = DMA Addr
 53 MC_MAX DX = .MCB see def
 54 MC_ABSMAX DX = .MCB see def
 55 MC_ALLOC DX = .MCB see def
 56 MC_ABSALLOC DX = .MCB see def
 57 MC_FREE DX = .MCB see def
 58 MC_ALLFREE none none
 59 P_LOAD DX = .FCB AX = BP Addr

 99 F_TRUNCATE DX = .FCB see def
100 DRV_SETLABEL DX = .FCB AL = Dir Code
101 DRV_GETLABEL DX = Drive # AL = Label Data Byte
102 F_TIMEDATE DX = .XFCB AL = Dir Code
103 F_WRITEXFCB DX = .XFCB AL = Dir Code
104 T_SET DX = .TOD none
105 T_GET DX = .TOD AL = seconds
106 F_PASSWD DX = .Password none
107 S_SERIAL DX = .serial # serial #

109 C_MODE DX = Con Mode none
 = 0FFFFh AX = Con Mode
110 C_DELIMIT DL = Out Delim none
 = 0FFFFh AL = Out Delim
111 C_WRITEBLK DX = .CHCB none
112 L_WRITEBLK DX = .CHCB none

128 M_ALLOC DX = .MPB AX = Rtn Code
129 M_ALLOC Same as above Same as above
130 M_FREE DX = .MPB none
131 DEV_POLL DL = Device none
132 DEV_WAITFLAG DL = Flag AX = Rtn Code
133 DEV_SETFLAG DL = Flag AX = Rtn Code
134 Q_MAKE DX = .QD none
135 Q_OPEN DX = .QPB AX = Rtn Code
136 Q_DELETE DX = .QPB AX = Rtn Code
137 Q_READ DX = .QPB none
138 Q_CREAD DX = .QPB AX = Rtn Code
139 Q_WRITE DX = .QPB
140 Q_CWRITE DX = .QPB AX = Rtn Code

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRGA.TXT[2/7/2012 11:29:43 AM]

141 P_DELAY DX = # ticks none
142 P_DISPATCH none none
143 P_TERM DL = Term Code AX = Rtn Code
144 P_CREATE DX = .PD none
145 P_PRIORITY DL = Priority none
146 C_ATTACH none none
147 C_DETACH none none
148 C_SET DL = console # none
149 C_ASSIGN DX = .ACB AX = Rtn Code
150 P_CLI DX = .CLBUF none
151 P_RPL DX = .CPB AX = result
152 F_PARSE DX = .PFCB see def
153 C_GET none AL = console #
154 S_SYSDAT none ES:AX = Sys Data Addr
155 T_SECONDS DX = .TOD TOD filled in
156 P_PDADR none ES:AX = PD Addr
157 P_ABORT DX = .ABP AX = Rtn Code
158 L_ATTACH none none
159 L_DETACH none none
160 L_SET DL = List # none
161 L_CATTACH none AX = Rtn Code
162 C_CATTACH none AX = Rtn Code
163 S_OSVER none AX = Version #
164 L_GET none AL = List #

Conventions used in Appendix A:

= Number
ACB = Assigned Control Block
APB = Abort Parameter Block
Addr = Address
BD = BIOS Descriptor
BP = Base Page
Char = ASCII Character
CHCB = CHaracter Control Block
CLBUF = Command Line BUFfer
CPB = Call Parameter Block
Con = Console
Cur = Current
Delim = Delimiter
Dir = Directory
DMA = Direct Memory Address
Err = Error
FCB = File Control Block
MCB = Memory Control Block
MPB = Memory Parameter Block
Num = Number
Out = Output
PD = Process Descriptor
PFCB = Parse Filename Control Block
QD = Queue Descriptor
QPB = Queue Parameter Block
Rec = Record

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRGA.TXT[2/7/2012 11:29:43 AM]

Rtn = Return
Sys = System
Term = Termination
TOD = Time Of Day
Vect = Vector

EOF

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRGB.TXT[2/7/2012 11:29:43 AM]

CCPMPRGB.WS4 (Concurrent CP/M Programmer's Reference Guide, Appendix B)

(Retyped by Emmanuel ROCHE.)

Appendix B: ASCII and hexadecimal conversions

ASCII stands for American Standard Code for Information Interchange. The code
contains 96 printing and 32 non-printing characters used to store data on a
disk. Table B-1 defines ASCII symbols; Table B-2 lists the ASCII and
hexadecimal conversions. Table B-2 includes binary, decimal, hexadecimal, and
ASCII conversions.

Table B-1. ASCII Symbols

Symbol Meaning Symbol Meaning
------ ------- ------ -------
ACK acknowledge FS file separator
BEL bell GS group separator
BS backspace HT horizontal tabulation
CAN cancel LF line feed
CR carriage return NAK negative acknowledge
DC device control NUL null
DEL delete RS record separator
DLE data link escape SI shift in
EM end of medium SO shift out
ENQ enquiry SOH start of heading
EOT end of transmission SP space
ESC escape STX start of text
ETB end of transmission SUB substitute
ETX end of text SYN synchronous idle
FF form-feed US unit separator
 VT vertical tabulation

Table B-2. ASCII Conversion Table

 Binary Decimal Hexa ASCII
-------- ------- ---- -----
00000000 0 0 NUL (Ctrl-@)
00000001 1 1 SOH (Ctrl-A)
00000010 2 2 STX (Ctrl-B)
00000011 3 3 ETX (Ctrl-C)
00000100 4 4 EOT (Ctrl-D)
00000101 5 5 ENQ (Ctrl-E)
00000110 6 6 ACK (Ctrl-F)
00000111 7 7 BEL (Ctrl-G)
00001000 8 8 BS (Ctrl-H)
00001001 9 9 HT (Ctrl-I)
00001010 10 A LF (Ctrl-J)

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRGB.TXT[2/7/2012 11:29:43 AM]

00001011 11 B VT (Ctrl-K)
00001100 12 C FF (Ctrl-L)
00001101 13 D CR (Ctrl-M)
00001110 14 E SO (Ctrl-N)
00001111 15 F SI (Ctrl-O)
00010000 16 10 DLE (Ctrl-P)
00010001 17 11 DC1 (Ctrl-Q)
00010010 18 12 DC2 (Ctrl-R)
00010011 19 13 DC3 (Ctrl-S)
00010100 20 14 DC4 (Ctrl-T)
00010101 21 15 NAK (Ctrl-U)
00010110 22 16 SYN (Ctrl-V)
00010111 23 17 ETB (Ctrl-W)
00011000 24 18 CAN (Ctrl-X)
00011001 25 19 EM (Ctrl-Y)
00011010 26 1A SUB (Ctrl-Z)
00011011 27 1B ESC (Ctrl-[)
00011100 28 1C FS (Ctrl-\)
00011101 29 1D GS (Ctrl-])
00011110 30 1E RS (Ctrl-^)
00011111 31 1F US (Ctrl-_)
00100000 32 20 (SPACE)
00100001 33 21 !
00100010 34 22 "
00100011 35 23 #
00100100 36 24 $
00100101 37 25 %
00100110 38 26 &
00100111 39 27 '
00101000 40 28 (
00101001 41 29)
00101010 42 2A *
00101011 43 2B +
00101100 44 2C ,
00101101 45 2D -
00101110 46 2E .
00101111 47 2F /
00110000 48 30 0
00110001 49 31 1
00110010 50 32 2
00110011 51 33 3
00110100 52 34 4
00110101 53 35 5
00110110 54 36 6
00110111 55 37 7
00111000 56 38 8
00111001 57 39 9
00111010 58 3A :
00111011 59 3B ;
00111100 60 3C <
00111101 61 3D =
00111110 62 3E >
00111111 63 3F ?
01000000 64 40 @

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRGB.TXT[2/7/2012 11:29:43 AM]

01000001 65 41 A
01000010 66 42 B
01000011 67 43 C
01000100 68 44 D
01000101 69 45 E
01000110 70 46 F
01000111 71 47 G
01001000 72 48 H
01001001 73 49 I
01001010 74 4A J
01001011 75 4B K
01001100 76 4C L
01001101 77 4D M
01001110 78 4E N
01001111 79 4F O
01010000 80 50 P
01010001 81 51 Q
01010010 82 52 R
01010011 83 53 S
01010100 84 54 T
01010101 85 55 U
01010110 86 56 V
01010111 87 57 W
01011000 88 58 X
01011001 89 59 Y
01011010 90 5A Z
01011011 91 5B [
01011100 92 5C \
01011101 93 5D]
01011110 94 5E ^
01011111 95 5F _
01100000 96 60 '
01100001 97 61 a
01100010 98 62 b
01100011 99 63 c
01100100 100 64 d
01100101 101 65 e
01100110 102 66 f
01100111 103 67 g
01101000 104 68 h
01101001 105 69 i
01101010 106 6A j
01101011 107 6B k
01101100 108 6C l
01101101 109 6D m
01101110 110 6E n
01101111 111 6F o
01110000 112 70 p
01110001 113 71 q
01110010 114 72 r
01110011 115 73 s
01110100 116 74 t
01110101 117 75 u
01110110 118 76 v

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRGB.TXT[2/7/2012 11:29:43 AM]

01110111 119 77 w
01111000 120 78 x
01111001 121 79 y
01111010 122 7A z
01111011 123 7B {
01111100 124 7C |
01111101 125 7D }
01111110 126 7E ~
01111111 127 7F DEL

EOF

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRGC.TXT[2/7/2012 11:29:43 AM]

CCPMPRGC.WS4 (Concurrent CP/M Programmer's Reference Guide, Appendix C)

(Retyped by Emmanuel ROCHE.)

Appendix C: Error codes

Table C-1. Concurrent CP/M error codes

Code # Definition
------ ----------
 0 No error
 1 Function not implemented
 2 Illegal function number
 3 Can't find memory
 4 Illegal system flag number
 5 Flag overrun
 6 Flag underrun
 7 No unused queue desciptors left in QD table
 8 No unused queue buffer area left
 9 Can't find queue
 10 Queue in use

 12 No unused process descriptors left in process descriptor table
 13 Queue access denied
 14 Empty queue
 15 Full queue
 16 CLI queue missing
 17 No 8087 in system
 18 No unusued memory descriptors left in memory descriptor table
 19 Illegal console number
 20 Can't find process descriptor by name
 21 Console does not match
 22 No CLI process
 23 Illegal disk number
 24 Illegal file name
 25 Illegal file type
 26 Character not ready
 27 Illegal memory descriptor
 28 Bad load
 29 Bad read
 30 Bad open
 31 Null command
 32 Not owner
 33 No code segment in load file
 34 Active process descriptor
 35 Can't terminate
 36 Can't attach
 37 Illegal list device number
 38 Illegal paswword

 40 External termination occurred

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRGC.TXT[2/7/2012 11:29:43 AM]

 41 Fixup error upon load
 42 Flag set ignored

EOF

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRGD.TXT[2/7/2012 11:29:44 AM]

CCPMPRGD.WS4 (Concurrent CP/M Programmer's Reference Guide, Appendix D)

(Retyped by Emmanuel ROCHE.)

Appendix D: ECHO.A86 listing

Listing D-1. ECHO.A86

; ECHO.A86
; --------
;
; Concurrent CP/M 3.1 -- ECHO.RSP
;
; Print command tail to console.
;
; Generation:
; A>asm86 echo
; A>gencmd echo
; A>ren ECHO.RSP=ECHO.CMD
;
;--
;
ccpmint equ 224 ; CCP/M entry interrupt
;
c_writestr equ 9 ; Print string
q_make equ 134 ; Create queue
q_open equ 135 ; Open queue
q_read equ 137 ; Read queue
q_write equ 139 ; Write queue
p_priority equ 145 ; Set priority
c_detach equ 147 ; Detach console
c_set equ 148 ; Set default console
;
PDlen equ 48 ; Length of Process Descriptor
;
p_cns equ byte ptr 20h ; Default CoNSole
p_disk equ byte ptr 12h ; Default disk
p_user equ byte ptr 13h ; Default user
p_list equ byte ptr 24h ; Default list
;
ps_run equ 0 ; PD run status
pf_keep equ 2 ; PD nokill flag
;
rsp_top equ 0 ; RSP offset
rsp_pd equ 10h ; PD offset
rsp_uda equ 40h ; UDA offset
rsp_bottom equ 140h ; End RSP Header
;
qf_rsp equ 8 ; Queue RSP flag
;

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRGD.TXT[2/7/2012 11:29:44 AM]

;--
 CSEG ; Small Memory Model
 ORG 0000h
;--
;
ccpm: int ccpmint
 ret
;
;--
;
main: mov cl,q_make! mov dx,offset qd ; Create ECHO queue
 call ccpm ;
 mov cl,q_open! mov dx,offset qpb ; Open ECHO queue
 call ccpm ;
 mov cl,p_priority! mov dx,200 ; Set priority to normal
 call ccpm ;
 mov es,sdatseg ; ES points to SYSDAT
loop: ; Forever
 mov cl,q_read! mov dx,offset qpb ; Read command tail from queue
 call ccpm ;
 mov bx,PDadr ; Set default values from PD
; mov dl,es:p_disk[bx] ; P_DISK = 0-15
; inc dl! mov disk,dl ; Make disk = 1-16
; mov dl,es:p_user[bx] ;
; mov user,dl ;
; mov dl,es:p_list[bx] ;
; mov list,dl ;
 mov dl,es:p_cns[bx] ;
 mov console,dl ;
; mov dl,console ; Set default console
 mov cl,c_set ;
 call ccpm ;
;
; Scan command tail and look for '$' or 0.
; When found, replace with cr,lf,'$'.
;
 lea bx,cmdtail! mov al,'$'! mov ah,0
 mov dx,bx! add dx,131 ;
nextchar:
 cmp bx,dx! ja endcmd ;
 cmp [bx],al! je endcmd ; '$' ?
 cmp [bx],ah! je endcmd ; 0 ?
 inc bx! jmps nextchar ;
endcmd:
 mov byte ptr [bx],13 ; Carriage Return
 mov byte ptr 1[bx],10 ; Line-Feed
 mov byte ptr 2[bx],'$' ; String terminator
 lea dx,cmdtail! mov cl,c_writestr ; Write command tail to console
 call ccpm ;
 mov dl,console! mov cl,c_detach ; detach console
 call ccpm ;
 jmps loop ; Done, get next command
;
;--

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRGD.TXT[2/7/2012 11:29:44 AM]

 DSEG
;--
;
 ORG rsp_top
;
sdatseg dw 0,0,0
 dw 0,0,0
 dw 0,0
;
;--
;
 ORG rsp_pd
;
pd dw 0,0 ; Link, thread
 db ps_run ; Status
 db 190 ; Priority
 dw pf_keep ; Flags
 db 'ECHO ' ; Name
 dw offset uda/10h ; UDA Seg
 db 0,0 ; Disk, user
 db 0,0 ; Load disk, user
 dw 0 ; Mem
 dw 0,0 ; Dvract, wait
 db 0,0 ;
 dw 0 ;
 db 0 ; Console
 db 0,0,0 ;
 db 0 ; List
 db 0,0,0 ;
 dw 0,0,0,0 ;
;
;--
;
 ORG rsp_uda
;
uda dw 0,offset DMA,0,0 ; 0
 dw 0,0,0,0 ;
 dw 0,0,0,0 ; 10h
 dw 0,0,0,0 ;
 dw 0,0,0,0 ; 20h
 dw 0,0,0,0 ;
 dw 0,0,offset stack_tos,0 ; 30h
 dw 0,0,0,0 ;
 dw 0,0,0,0 ; 40h
 dw 0,0,0,0 ;
 dw 0,0,0,0 ; 50h
 dw 0,0,0,0 ;
 dw 0,0,0,0 ; 60h
;
;--
;
 ORG rsp_bottom
;
qbuf rb 131 ; Queue buffer

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRGD.TXT[2/7/2012 11:29:44 AM]

;
qd dw 0 ; Link
 db 0,0 ; Net, org
 dw qf_rsp ; Flags
 db 'ECHO ' ; Name
 dw 131 ; Message length
 dw 1 ; nmsgs
 dw 0,0 ; DQ, NQ
 dw 0,0 ; msgcnt, msgout
 dw offset qbuf ; Buffer address
;
dma rb 128
;
stack dw 0CCCCh,0CCCCh,0CCCCh
 dw 0CCCCh,0CCCCh,0CCCCh
 dw 0CCCCh,0CCCCh,0CCCCh
 dw 0CCCCh,0CCCCh,0CCCCh
 dw 0CCCCh,0CCCCh,0CCCCh
stack_tos dw offset main ; Start offset
 dw 0 ; Start segment
 dw 0 ; Init flags
;
PDadr rw 1 ; QPB buffer
;
cmdtail rb 129 ; Starts here
 db 13,10,'$' ; Terminators
;
qpb db 0,0 ; Must be zero
 dw 0 ; Queue ID
 dw 1 ; nmsgs
 dw offset PDadr ; Buffer address
 db 'ECHO ' ; Name to open
;
console db 0 ;
; disk db 0 ;
; user db 0 ;
; list db 0 ;
;
;--
;
 END

EOF

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRGE.TXT[2/7/2012 11:29:44 AM]

CCPMPRGE.WS4 (Concurrent CP/M Programmer's Reference Guide, Appendix E)

(Retyped by Emmanuel ROCHE.)

Appendix E: 8087 exception handling

This appendix includes an example of an 8087 interrupt handling routine, to
demonstrate the requirements for using the 8087 processor. Refer to Intel's
"IAPX 86,88 User's Manual" for a description of 8087 exception handling, in
the section on "8087 Numeric Data Processor".

In order to guarantee the data integrity for each 8087 process in the
multitasking environment, any user-defined exception handler must adhere to a
minimum sequence of steps within the exception handler:

1. Save the 8086 environment of the 8086-running process.

2. Save the environment of the 8087-running process. The OWNER_8087 field in
SYSDAT will contain the offset of the 8087_running process (see description of
SYSDAT in Section 6, "System calls", with the S_SYSDAT system call).

3. Clear the 8087 interrupt request bit in the status word.

4. Disable the 8087 interrupts.

5. Clear the PIC interrupt (this instruction is hardware-dependent).

6. At this point, you might want to modify the 8087 environment image saved in
step 2 above.

7. Before enabling the 8086 interrupts, restore the 8087 environment with its
status word's interrupt request bit cleared. If the environment is not
restored before 8086 interrupts are enabled, and an interrupt occurs (like a
tick), a different 8087 process can gain control of the 8087 and swap in its
8087 context. On a second interrupt, or on an IRET instruction, the 8086-
running process that happened to be executing the exception handler code is
brought back into 8086 context and writes over the new 8087 context.

The user program, which uses its own exception handler, must replace the
system's interrupt vector with its own. Once this is done, the system swaps
this vector into memory every time the program comes back into 8087 context.
The address of the interrupt vector is in the SYSDAT table at offset 00A0h
(the description of the SYSDAT Table in included in the description of the
S_SYSDAT system call in Section 6, "System calls").

The default exception handler aborts those 8087 programs that have enabled
8087 interrupts and that generate a severe error (such as stack underrun,
divide by zero, and so forth). Any other errors are ignored by the default
exception handler.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRGE.TXT[2/7/2012 11:29:44 AM]

ndpint: ; 8087 interrupt routine
;======

; This exception handler is non-specific, and is meant as an example
; default. It is assumed that, if the 8087 programmer has enabled
; 8087 interrupts and has specified exception flags in the control
; word, then the programmer has also included an exception handler
; to take specific actions within the program before continuing in
; the 8087. This handler will ignore non-severe errors (overflow, etc)
; and will terminate processes with severe errors (divide by zero,
; stack violation).

 push ds ; Save current Data Segment
 mov ds,sysdat ; Get XIOS Data Segment
 mov ndp_SSreg,ss ; Do stack switch for 8086 environment
 mov ndp_SPreg,sp ; Save
 mov ss,sysdat ;
 mov sp,offset ndp_tos ; Save the 8086 registers
 push ax! push bx ;
 push cx! push dx ;
 push di! push si ;
 push bp! push es ;
 mov es,sysdat ; Now, save the 8087 environment
 FNSTENV env_8087 ; Save 8087 process info
 FWAIT ;
 FNCLEX ; Clear its INT request bit
 xor ax,ax ;
 FNDISI ; Disable its interrupts
 mov al,20h ; Send 2 interrupts acknowledges:
 out 60h,al ; one for master PIC, one for slave.
 mov al,20h ;
 out 58h,al ; IN_8087 will check the 8087 error
 call in_8087 ; condition. If error is severe,
 ; it will abort; else, it will
 ; return with no changes.
 mov bx,offset env_8087 ; Clear its status word for env restore
 mov byte ptr 2[bx],0 ;
 pop es! pop bp ; Restore the 8086 environment
 pop si! pop di ;
 pop dx! pop cx ;
 pop bx! pop ax ;
 mov ss,ndp_SSreg ; Switch back to previous stack
 mov sp,ndp_SPreg ;
 FLDENV env_8087 ; Restore 8087 env with good status
 FWAIT ;
 pop ds ; Restore previous Data Segment
 iret ;
;
in_8087:
;-------

; Entry: DS = SYSDAT
; Only user-specified error conditions generate interrupts from the 8087.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRGE.TXT[2/7/2012 11:29:44 AM]

 mov bx,owner_8087 ; Get the Process Descriptor
 test bx,bx ; Check if owner has already
 jz end_87 ; terminated.
 mov si,offset env_8087 ; If it is a severe error, terminate
 mov ax,statusw[si] ;
 ; If not severe, return and continue
 test ax,3Ah ; 3A = under/overflow, precision,
 jnz end_87 ; and denormalized operand.
 or p_flag[bx],80h ; Not 3A = zero divide or invalid
 ; operation (stack error).
end_87:
 ret ;

 Listing E-1. 8087 exception handling

EOF

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRGG.TXT[2/7/2012 11:29:45 AM]

CCPMPRGG.WS4 (Concurrent CP/M Programmer's Reference Guide, Appendeis G)

(Retyped by Emmanuel ROCHE.)

Glossary

Base Page
Memory region between 0000h and 0100h, relative to the beginning of the Data
Segment, used to hold system parameters. Base Page serves primarily as an
interface region between user programs. Note that, in the 8080 Memory Model,
the Code and Data are intermixed in the Code Segment.

BCD
Accronym for "Binary Coded Decimal". Representation of decimal numbers using
binary digits. See Table B-2, in Appendix B, "ASCII and hexadecimal
conversions", for representations of ASCII codes.

BDOS
Basic Disk Operating System. The BDOS manages the Concurrent CP/M file
structure, and executes most of the Concurrent CP/M system calls.

block
Basic unit of disk space allocation under Concurrent CP/M. Each disk drive has
a fixed block size (BLS) defined in its disk Parameter Block in the XIOS. The
block size can be 1, 2, 4, 8, or 16 KB of consecutive bytes. Blocks are
numbered relative to zero on a disk. Blocks are not shared between files.

Boolean
Variable that can have only two values; usually interpreted as true/false or
on/off.

CheckSum Vector (CSV)
Contiguous data area in the XIOS with one byte for each directory sector to be
checked, that is, CKS bytes. A Checksum Vector is initialized and maintained
for each logged-in drive. Each directory access by the system results in a
checksum calculation that is compared with that in the Checksum Vector. If
there is a discrepancy, the drive is set to Read-Only status. This prevents
the user from inadvertently switching disks without logging in the new disk
with a Ctrl-C. If not logged in, the new disk is treated the same as the old
one, and you can destroy data on it if you write to it.

CIO
Character Input/Ouput module. The CIO module handles all character I/O to and
from consoles and list devices.

CLI
Command Line Interpreter. The P_CLI system call interprets the command
requested in a command line, and performs the system calls needed to open a
process, load the command file, and execute the code.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRGG.TXT[2/7/2012 11:29:45 AM]

CMD
Filetype for Concurrent CP/M command files. These are machine language object
modules ready to be loaded and executed. Any file with this filetype can be
executed by simply typing its filename after the drive prompt ("A>"). For
example, the program PIP.CMD can be executed by simply typing "pip".

command
Set of instructions that are executed when the command name is typed after the
system prompt ("A>"). These instructions can be built in the Concurrent CP/M
system, or can reside on disk as a file of type CMD. Concurrent CP/M commands
consist of three parts: the command name, the command tail, and a carriage
return.

console
Primary I/O device used by Concurrent CP/M. The console usually consists of a
CRT screen for displaying output, and a keyboard for input.

control character
Non-printing ASCII character produced on the console by holding down the
"Ctrl" (control) key while striking the character key. Ctrl-H means "hold down
Ctrl and press H". Control characters are sometimes indicated using the up-
arrow symbol ("^"), so Ctrl-H can be represented as ^H. Certain control
characters are treated as special commands by Concurrent CP/M.

default buffer
128-byte buffer maintained at 0080h in the Base Page. When the CLI loads a CMD
file, it initializes this buffer to the command tail, that is, any characters
typed after the CMD file name. The first byte at 0080h contains the length of
the command tail, while the command tail itself begins at 0081h. A binary zero
terminates the command tail value. The "I" command under DDT-86 initializes
this buffer in the same way as the CLI.

default FCB
One of two FCBs maintained at 005Ch and 006Ch in the Base Page. The P_CLI
system call initializes the first default FCB from the first delimited field
in the command tail, and initializes the second default FCB from the next
field in the command tail.

delimiters
ASCII characters used to separate constituent parts of a file specification.
The P_CLI system call recognizes certain delimiter characters, as : . = ; < >
_ ' blank and carriage return ("ENTER"). Several Concurrent CP/M commands also
treat ; [] () , and $ as delimiter characters. It is advisable to avoid the
use of delimiter characters and lowercase characters in filenames.

directory
Portion of a disk containing entries for each file on the disk, and locations
of the blocks allocated to the files. Each file directory entry is in the form
of a 32-byte FCB, although one file can have several entries, depending on its
size. The maximum number of directory entries supported is specified in the
drive's Disk Parameter Block.

directory entry
32-byte entry associated with each disk file. A file can have more than one

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRGG.TXT[2/7/2012 11:29:45 AM]

directory entry associated with it. There are four directory entries per
directory sector. Directory entries can also be referred to as directory FCBs.

disk, diskette
Magnetic media used for mass storage of data in the computer system. The term
"disk" can refer to a diskette, a removable cartridge disk, or a fixed hard
disk.

Disk Parameter Block (DPB)
Table residing in the XIOS that defines the characteristics of a drive in the
disk subsystem used with Concurrent CP/M. The address of the DPB is in the
Disk Parameter Header, at DPbase + 0Ah. Drives with the same characteristics
can use the same DPB. However, each logical drive must have its own Disk
Parameter Header and DPB. The address of the drive's Disk Parameter Header
must be returned in registers HL when the BDOS calls the SELDSK entry point in
the XIOS. DRV_DPB returns the DPB address.

Disk Parameter Header (DPH)
16-byte area in the XIOS containing information about the disk drive and a
scratchpad area for certain BDOS operations. See the "Concurrent CP/M System
Guide" for further details.

extent (EX)
16 KB consecutive bytes in a file. Extents are numbered from 0 to 31. One
extent can contain 1, 2, 4, w8, or 16 blocks. EX is the extent number field of
an FCB, and is a one-byte field at FCB+12, where FCB labels the first byte in
the FCB. Depending on the Block Size (BLS) and the maximum Data Block Number
(DSM), a directory entry contains 1, 2, 4, 8, or 16 extents. The EX field is
usually set to 0 by the user, but contains the current extent number during
file I/O. The term "Extent Folding" describes directory entries containing
more than one extent. In CP/M version 1.4, each FCB contained only one extent.

FCB
See "File Control Block".

file
Collection of data containing from zero to 242,144 records. Each record
contains 128 bytes, and can contain either binary or ASCII data. Files
consist of one or more 16 KB extent, with 128 records per extent.

File Control Block (FCB)
Thirty-six consecutive bytes maintained and updated by system calls for file
I/O. The FCB fields are described in Section 2.4, "File Control Block
definition".

hex file format
Absolute output of ASM-86 for the Intel 8086. A H86 file contains a sequence
of absolute records, which give a load address and byte values to be stored,
starting at the load address (refer to Section 4.3, "Intel hexadecimal file
format").

I/O
Acronym for "Input/Output" operations, or routines handling the input and
output of data in the computer system.

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRGG.TXT[2/7/2012 11:29:45 AM]

logical drive
Logically distinct region of a physical drive. A physical drive can be divided
into one or more logical drives, and designated with specific drive references
(such as "A:" or "C:"). Thus, at the user interface, it appears that there are
several disks in the system.

MEM
Memory Module. The Memory Module handles all memory management calls by
methods transparent to your applications program.

parse
Separate a command tail into its syntactic parts.

queue
Data structure used by the file system to keep track of system information,
such as processes ready to run, locked files, and resources in use by
processes. Processes also use queues to communicate with one another. The BDOS
system calls create and maintain queues.

Read-Only
Condition in which a logical disk drive can be read, but not written to. A
drive can be set to Read-Only status by using the SET utility. This protects
the user from switching disks without executing a disk reset. Files can also
be set to Read-Only status with the SET utility or the F_ATTRIB system call.
Read-Only is often abbreviated as "R/O".

record
Smallest unit of data in a disk file that can be read or written. A record
consists of 128 consecutive bytes whose byte displacement in a file is the
product of the Record Number times 128. A 128-byte record in a file occupies
one 128-byte sector on the diskette. If the blocking and deblocking algorithm
is used, several records can occupy each disk sector.

re-entrant code
Code that can be used by one process while another is already executing it.
Re-entrant code must not be self-modifying; it must be pure code that does not
contain data. The data for re-entrant code can be kept in a separate data
area, or placed on the stack.

RSP
Reserved System Process. An RSP is a Concurrent CP/M utility included within
Concurrent CP/M during the execution of GENCCPM.

RTM
Real-Time Monitor. The RTM is the nucleus of Concurrent CP/M, managing queues
and flags, polling devices, and dispatching and suspending processes.
Application programs gain access to RTM functions through system calls.

sector
Unit of data read from and written to the disk by the XIOS. The sector size is
dependent on the disk drive hardware, and is usually a power of two, such as
256, 512, 1024, or 2048 bytes. These disk sectors are referred to as "Host
Sectors".

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRGG.TXT[2/7/2012 11:29:45 AM]

source file
ASCII text file usually created with a text editor that is an input file to a
program, such as a compiler, assembler, or a text formatter.

stack
Reserved area of memory where the processor saves the return address when it
receives a Call instruction. When the processor encounters a Return
instruction, it restores the current address on the stack to the Instruction
Pointer. Data such as the contents of the registers can also be saved on the
stack, on a first-in, last-out basis. The Push instruction places data on the
stack, and the Pop instruction removes it. 8086 stacks are 16-bits wide;
instructions operating on the stack add and remove stack items one word at a
time. An item is pushed onto the stack by decrementing the stack pointer (SP)
by 2, and writing the item at the SP address. In other words, the stack grows
downward in memory.

SUP
The Supervisor (SUP) manages communications between processes and the
operating system kernel, and between other operating system modules. All
system calls are intercepted by the SUP.

track
Concentric ring on the disk; the standard IBM single density disks have 77
tracks. Each track consists of a fixed number of numbered sectors. Tracks are
numbered from 0 to one less than the number of tracks on the disk. Data on the
disk media is accessed by combinations of track and sector numbers.

TMP
Terminal Message Processes. The TMPs are Resident System Processes that
intercept command lines from the virtual consoles, check for errors, and pass
on executable requests to the CLI. The TMP prints the prompt and some system
error messages on your console. Each virtual console has an independent TMP
heading defining the console's environment, including the default disk, user
number, and console.

transient command file
File of type CMD stored on disk. Such files must be loaded into the system
each time they are executed, and therefore execute more slowly than Resident
System Processes (RSPs), which are an integral part of the operating system
and execute rapidly. Transient commands are created with the GENCMD utility;
RSPs are included in the operating system during execution of GENCCPM.

user
logically distinct subdivision of the directory. Each directory can be divided
into 16 user numbers.

wildcard
A "?" or "*" character. The BDOS directory search calls matches "?" with any
single character, and "*" with multiple characters. Refer to the F_SFIRST and
F_SNEXT system calls in Section 6, "System calls", for further details.

XIOS
Extended Input/Output System. In Concurrent CP/M, the BDOS is the invariant

file:///C|/...Roche%20DRI%20documents%20conversion/Concurrent%20CPM%20Programmers%20Reference%20Guide/CCPMPRGG.TXT[2/7/2012 11:29:45 AM]

file-handling system, which operates independent of the hardware
implementation. The XIOS is the customizable I/O interface configured for your
hardware system by the system manufacturer. The XIOS is similar to the BIOS in
CP/M and CP/M-86, but it has been extended to implement virtual consoles and
associated features.

EOF

	CCPMPRG0
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Concurrent CPM Programmers Reference Guide\CCPMPRG0.TXT

	CCPMPRG1
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Concurrent CPM Programmers Reference Guide\CCPMPRG1.TXT

	CCPMPRG2
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Concurrent CPM Programmers Reference Guide\CCPMPRG2.TXT

	CCPMPRG3
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Concurrent CPM Programmers Reference Guide\CCPMPRG3.TXT

	CCPMPRG4
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Concurrent CPM Programmers Reference Guide\CCPMPRG4.TXT

	CCPMPRG5
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Concurrent CPM Programmers Reference Guide\CCPMPRG5.TXT

	CCPMPRG6
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Concurrent CPM Programmers Reference Guide\CCPMPRG6.TXT

	CCPMPRGA
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Concurrent CPM Programmers Reference Guide\CCPMPRGA.TXT

	CCPMPRGB
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Concurrent CPM Programmers Reference Guide\CCPMPRGB.TXT

	CCPMPRGC
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Concurrent CPM Programmers Reference Guide\CCPMPRGC.TXT

	CCPMPRGD
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Concurrent CPM Programmers Reference Guide\CCPMPRGD.TXT

	CCPMPRGE
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Concurrent CPM Programmers Reference Guide\CCPMPRGE.TXT

	CCPMPRGG
	Local Disk
	C:\Users\Luanne\Documents\SISIG\Corporate Histories Document Preservation\Emmanuel Roche DRI documents conversion\Concurrent CPM Programmers Reference Guide\CCPMPRGG.TXT

