KEV 22«N0OV=74 16301

‘ELF and ELF related tasks for the NSW

The following is a list of net vet completed ELF and ELF related
tasks required by SRI=-ARC for {ts NSW work, and oulr understanding of
the current status of these tasks,

The ELF KERNEL

Wwe need a TEST and a TESTS (test specific) system call so we
ean check for the occurence of an event without peing put to
sleep,

Status!
pave Retz has indicated that it would be trivial to

implement thege two system calls, but has not vet gotten
around to deing it,

The ELF EXEC

we need the ELF EXEC in a working and reliable state,

We need to get a better understanding of the relationships that
exist between the ELF KERNEL, the ELF EXEC, and user processes
running en ELF, Specifically, it appears that from a users
point of view, some system calls are part of the KERNEL and
sOme system calls are part of the EXEC, Since it will
eventyally be necessary fOr us to replace the ELF EXEC with an
NSW EXEC, we need to know how to separate the ELF EXEC into two
partsi

that part of the EXEC that implements system calls, and

that part of the EXEC that serves as the ELF command
interpreter,

Status?
The ELF EXEC is supposed to be fully operational by Dec, 1,

and decumentation on its structure has pbeen promised, but no
date set for the documentation,

ELF Network Programs

we need a working NCP in ELF,
we need a working TELNET in ELF,

Statust

24575

ia

lal

1a2

1a2a
ib

ibl

ib2

ib2a

ib2b

ib3

ib3a
ic
1cl
ic2

le3

KEV 22=N0OV=74 16301
.ELF and ELF related tasks for the NSW

The ELF NCP and TELNET programs are supposed to be fully
operational by Dec, 1.,

ELF Virtual Memory

We need the virtual memory implementation of ELF, Without this
capability, only 28K of the memory on an 11 is usable,

Statusi

The virtual memory features of ELF are not expected to be
ready until at least Jan, 1, 1975,

Loading ELF

We need to be able to "boot load" ELF into an 11 fyrom over the
network,

Status:t

Eric mader of EBN is currently working on this procedure,
However, his boot leading procedures appear to reqguire the

. use of experimental NCP programs, I am not sure of the
current state of his work with regards to completion of this
task,

Loading User Programs

We need t0 be able to load user processes from over the
network, There appear to be several ways to do thisi

1) Haye & user FTP that runs on ELF that can get a remote
file and store it i, core (by using the Inter Process Port
capabilites of ELF) rather than on a disk, This seems to be
the mest desirable approach,

2) Have a serveyr FTP that runs on ELF that can recelve a
remote file and store it in core (by using the Inter Process
port capabilites of ELF) rather than on a disk, In this
case we Would TELNET to the remote host that holds the file
we wish to load and then use FTP on the remote host to send
the file to ELF,

3) Have a dedicated ELF process (a process that is part of
the ELF operating system) that i{s always listéning on a
specific socket for files sent to {t from a remote host,
This process would then store the received file in core,
This seems to be the least desirable approach in that it
. requires initi{ating action on a remote host and that the

24575

ic3a

id

1d1

142

{d2a

ie

iel

le2

ie2a

1£

1£1

1f1a

1£1b

KEV 22«NQV=74 161014
.ELF and ELF related tasks for the NSW

functions performed by this process are so similar to those
that would be performed by a user FTP that it seems
senseless to have a special separate process,

All of these methods seem to require the preeexistance of a
process that is waiting to load, via an IPP, the remote file,
It would be desiraple to have a (load) system call that would
set up this process witn the approriate address space and IPPs,
The FTP server or user process could then {ssue this sytem call
at the right time,

Status!
Full server and user FTP processes are planned for ELF, but
will probably not be fully operationa)l uyntil Spring, 1975,
It appears that we will have to write oyr own code fOr the
process that will load remote files into core via IPPs,
ELF Debugging
we need the ELF debugging process, A debugging process, which
has the ability to monitor other processes, has been designed
. for the ELF operating system, Our debudging plans call for the
use of this process,
Status?
Eriec Mader of BRN is writing and implementing the ELF
debugging process, He thinks he will be finished around mid
December, 1975,
Space Allocation

Given the memory limitations of an 11, it might be nice to have
system buffer pool calls,

statusi

ADR agreed at the recent NSW meeting to investigate this
path,

PCP

We need the PCP routines for the implementation o0f the NSW,

Status:
SRI=ARC has most of the design work done and will be
. starting implermentation soon,

24575

1flc

1£2
1£3

1£3a

ig

1g1

192

1g2a

ih

ini

ih2

ih2a
14
111
112

1i2a

KEV 22=NOV=74 16301 24575

‘ELF and ELF related tasks for the NSW

DPocumentatien 13 ‘
|
There is a need for more documentation apouyt ELF from both a
user’s poeint of view, and from a system programmer’s point of |
view, 131

statust 132

Dave Retz has plans for eventually getting around to deing

all the required doesumentation, however, it appears that as

usval in the programming woerld, documentation wWill not be

available until after many of the programming tasks are

completed, 132a

General Reguirements 1k

In general we need an ELF that is reliable and bug free so we
can devote ourselves to NSW task without being sidetracked into

We assume we haye responsibiltiy for writing any user code

necessary for the leading of user programs) it is not clear

who has responsibilty for getting an FTP running or for
. getting any new system calls needed for the support of

debugging of ELF, ik1
Status? 1x2
' It i{s hard to make any statement about the reliability of a
system that is not vet in fyll operational yse, 1k2a
The following is Our understanding of which groups have
responsibility for tnhe above taskst 2
SCRL Tasks 2a |
The ELF KERNEL 2al
The ELF EXEC 2a2
The ELF Network Programs 2a3
The ELF Virtyal Memory Features 2a4
pocumentation 2as
SRI=ARC Tasks 2b !
Loading User Programs pQver the Network 2bi |
|
|
1

loading user programs Over the network, 2bla

KEY 22=N0V=74 16301
‘ELF and ELF related tasks for the NSW

PCP
ADR Tasks
Memory Space Allocation
Maintainance of ELF after it is developed
BBN Tasks
Loading ELF over the NetwoOrk
The ELF Debugging Process
Conclusions

It appears that the 4 programmers working on ELF are overburdened,
and that they are doing the best that {s humanly possible, It may
be desirable to loan them an ADR person to assist in the current
development of ELF, (It’s possible that this lecaned person could
be assigned to assist in getting the needed documentation
completed,)

. At the recent (NOV, 5«6) NSW meeting ADR indicated that it would
like to freeze an NSW version of ELF, pessibly as early as next
menth, By that time, as indicated above, many of the features
needed by SRI=ARC for its tasks will not be available and
therefore to freeze an NSw version of ELF at this time seems
prematyre,

24575

2b2
2c
2c!
2¢2
2d
241

2d2

la

3b

KEV 22«N0OV=74 163101

’ELF and ELF related tasks for the NSW

(J24575) 22=N0OV=74 16101333 Title: Author(s): Kenneth E, (Ken)

Vietor/KEV) Distributiony /NPG([INFO=ONLY]) RWW([INFO=ONLY])
SubeCollectionst SRI=ARC NPG) Clerk: KEV) Origint < VICTOR,
ELF/UNIX,NLSy1, >, 22=NOV=74 15155 KEV jppppesés)

24575

JEW 22=N0V=74 163107 24576

PCF Data Structure Formats
PCPFMT Version 2

22=N0VeT74

James E, White
Augmentation Research Center

Stanford Research Institute
Menle Park, California 94025

PCPFMT specifles the defined data structure encodings for the
Procedure Call Protocol (PCP == 24459,), with which the reader of
the present document is assumed familiar,

JEw 22=N0y=74 16307 24576
.**DRAFTH JEW 22 NOV 74 7149PM PCP pata Structure Formats

(J24576) 22=~NCV=T74 16307311 Title: Author(s): James E, (Jim)
White/JEW; SubsCollections: SRI=ARC; Clerk: JEW) origing <
WHITE, PCP=PCPFMT,NLS14, >, 22=N0OV=T74 11:59 JEW j11) $468)

JEW 22=N0OVwe74 16307
.“DRAFTN JEW 22 NOV 74 7:149PM PCP Data Structure Formats

PREFACE

The Procedure Call Protocol (PCP) is an intereprocess and/or
interehost protocol that permits a collection of processes within
one or more ARPANET hosts to communicate at the procedure call
level, In effect, it makes the component procedures of remote
software systelMs as accessible to the programmer as those within
his own system, PCP specifies both a virtual programming
environment (VPE) in which remote procedures may be assumed to
Operate, as well as the intereprocess exchanges that implement it,

The Multi=Process Software System (MPSS) whose construction PCP
makes practical and of which the NSW is an example, consists of
collections of "procedures" and "data stores" called "packages",
in one or mere "processes", interconnected in a tree structure by
"physical channels", Procedures within a process have free access
to the procedures (and data stores) of each process adjacent to it
in the tree structure, and may call upon them as if they were
local subroutines, Suyperimposed upon the tree structure is a more
general set of interconnections which give non~adjacent processes
in the tree the same kind of access to one another,

The MPSS {s implemented by

1) lowelevel protocols which provide the basic, inter=process
communicaton (IPC) facilities by which channels are
implementedt an interehost IPC protocol (PCPHST), an
inter=Tenex=fork IPC protoeco)l (PCPFRK), and data structure
format specifications for both connection types (PCPFMT),

2) PCP proper, which largely defines the VPE (especially, the
procedure call and return mechanism) and specifies the
inter=process contrel exchances reguired to implement {t,

3) a set of gYstem packages, implemented within each process.,
which augment PCP proper by providing mechanisms by whiech user
procedures cany call remote procedures (implemented by the
Procedure Interface Package, PIP), manipulate remote data
stores (implemented py the PCP Support Package, PSP), and
interconnect processes (implemented by the Process Management
package, PMP),

4) user packages in eaeh process,

JEW 22=N0OV=74 16107
#*#DRAFT## JEW 22 NOV 74 7:149PM PCP Data Structure Formats
‘ Introduction

INTRODUCTION
This document defines a2 set of formats for pCP data structures;
each is appreopriate for one or more physical channel types,
Formats are currently specified for channels on which the
following kinds of messagdes Can be transmitted:
1) a stream of characters

2) a stream of 36+hit binary words

24576

2a
2al

2az2

JEW 22«N0Ve74 16307
##DRAFT#% JEW 22 NOV 74 7149PM PCP Data Structure Formats
‘ The PCPTXT Format

THE PCPTXT FORMAT
Introduction

Data struyctures may be encoded according to PCPTXT when the
physical chanpnel allows messages which are ASCII text streanms,

Data Structure Format

datastrue $i= [*: key)
(charstr/bitstr/integer/boolean/empty/list)

key ti= datastruc
charstr $11= ‘C length *, lengthschar

length 1312 sdigit

digit 11= one of the digits 0=9
char i1= one of the 128 ASCII characters
‘ bitstr 3:= ‘B length *, lengths(’0 / *1)

integer 113 I (’«] sdioit
boolean 132 *T / *F
empty jt8 °F

list 1t 'L length *, lengthsdatastrue

24576

3a

3al

3b

3bl
3bla
3blb
3bibl
3bibia
3bib2
iblc
3bld
ible
3bif

3big

JEW 22«N0OVe74 16307
#»#DRAFT## JEW 22 NOV 74 73149PM PCP Data Structure Formats
‘ The PCPB36 Format

THE PCPE36 FORMAT
Introdyction

Data structures may be encoded according to PCPB36 when the
physical chapnel allows messages which are streams of 36=bit
binary words,

Data Structuyre Encoding

Header (1 word)
Bits 0=3 Data type
CHARSTR=0 BOOLEAN=23
BITSTR =1 EMPTY =4
INTEGER=2 LIST =5
Bits 4«5 Value encoding
CHARSTR
HEADER=0 Valuye field:
Character count 'n’ (1 word)
ASCII string ((n+4)/5 words)

ASCIZ =1 Value fieldy ASCIZ string
. SIXBIT=2 Value fields SIXBIT string (i word)
BITSTR
HEADER=0 Vvalye field;
Bit coynt *n’ (1 word)
Bit string ((N+35)/36 words)
INTEGER
TWOSCOMPL=O ‘
value field: Two's complement integer (i1 word)
BOCLEAN
FALSE=0 (Valye
TRUE =1 fleld
EMPTY not
NOTUSED=0 used)
LIST

SPECIFIEDELEMENTS=0 VvValue field:
Element count *n’ (1 word)
Elements

REPEATEDELEMENT=I] value field:
Element count *n* (1 word)
Element to be repeated

REPEATEDHEADER=2 value field:
Element couynt ’n’ (1 word)
common Header (1 word)

Element values
Bits 613 Unused (zero)
Bits 1417 Gross key length *GKL® in words or zero
. Bits 18«35 Gross value length *GVL’ in words or zero

24576

4a

d4al
4b

4p i
4bla
4blal
4blaz
4pla3l
4bib
4bibi
4pibila
4biblal
4biblaz
4bibib
4bliblc
4bib2
4bib2a
4bib2al
dbib2a?2
4pib3
4bib3a
4bib3al
4bib4
4bibda
4bibéb
4pibs
4bibSa
4b1bb
4blbea
4bibé6al
4blbb6a2
4bib6b
4bibbbl
4bibbb2
dbib6eC
dbib6cd
4blbbc?2
4bibbec3
dbilce
4b1d
4ble

JEW 22«N0OVe74 16307 24576
##DRAFT#+ JEW 22 NOV 74 7:149PM PCP Data Structyre Formats
‘ The PCPB36 Format

Key (GKL words) 4b2
value (GVL words) 4b3

24576

JEW 22«N0OV=74 16107

JEW 22«N0OVe74 16309
##DRAFT#% JEW 22 NOV 74 7:50PM PCP ARPANET IntereHest IPC
Implementation

PREFACE

The Procedure Call Protocol (PCP) is an intereprocess and/or
inter=host protocol that permits a collection of processes within
one or more ARPANET hosts to commynicate at the procedure call
level, 1In effect, it makes the component procedures of remote
software systeMs as accessible to the programmer as those within
his own system, PCP specifies both a virtual programming
environment (VPE) in which remote procedures may pe assumed to
operate, as well as the intereprocess exchanges that implement it,

The Multi=Process Software System (MPSS) whose construction PCP
makes practical and of which the NSW is an example, consists of
collections of "procedures" and "data stores" called "packages",
in one or mere "processes", interconnected {n a tree structure by
"physical channels", Procedures within a process have free access
to the procedures (and data stores) of each process adjacent to it
in the tree structure, and may call upen them as if they were
lecal subroytines, SyperimpoOsed uypon the tree structure is a more
general set of interconnections which give non~adjacent processes
in the tree the same kind of access to one another,

The MPSS s implemepnted by

1) lowelevel protocols which provide the basic, intereprocess
communicaton (IPC) facilities by which Channels are
implemented; an inter«host IPC proteocol (PCPHST), an
intere«Tenexefork IPC protoco) (PCPFRK), and data structure
format specifications for both connection types (PCPFMT),

2) PCP proper, whiech largely defines the VPE (especially, the
procedure call and retyrn mecnanism) and specifies tpe
inter=preocess control exchanges reguired to implement it,

3) a set 0f systeM™ packages, implemented within each process,
which augment PCP proper by providing mechanisms by which user
procedures cant call remote procedures (implemented by the
Procedure Interface Package, PIP), manipuylate remote data
stores (implemented by the PCP Support Package, PSP), and
interconnect processes (implemented by the Process Management
package, PMP),

4) user packages in each pProcess,

JEW 22«NOVe74 16:09

##DRAFT#% JEW 22 NOV 74 7150PM PCP ARPANET Inter=Heost IPC
Implementation

Introduction
INTRODUCTION

This document defines an {mplementation, appropriate for mediating
communication between processes on different hosts within the
ARPANET, of the IPC primitives required by PCP, PCPHST uses the
PCPB36 data structure format whenever both hosts are Tenex
systems, and the PCPTXT format otherwise, Both formats are
described in other dccuments,

The Connection Protocol

ARPANET processes on different hests communicate by means of a
fullwduplex Network connection on which poth PCP and speclal
"IPC messages" are transmitted,

PCPHST ports are specified by the following:
PORT# ==> jrecelve socket number% INTEGER

with the corresponding send socket understood to be numbered
one greater than the srecified receive socket,

A process transmits a PCP message by outputting on the
connection a special "prefix" followed by the message itself,
and then transmitting a Network interrupt (INS) to the remote
process via the lccal NCP, Upon receiving the interrupt, the
other precess immediately extracts the message from the
connectien,

IPC Messages

In addition to sending and receiving PCP messages, the
connected processes exchange via the connections, special IPC
messages which help to {mplement the IPC primitives required by
PCP, The mechanisms for sending PCP and IPC messages are
identical, except for the prefix which preceeds the message on
the connections

For PCPB36 For PCPTXT:
(PCP=0] (1 word) P (1 character)
(IPC=1] (1 werd) v (1 character)

The currently=defined IPC messages are described in another
section ef this decument,

wlw

24577

2a

2b

2b1
2bia

2blal

2blb

2b2
2¢

2¢1
2Cla
2¢ib
2cic

2¢2

JEW 22=N0OVe74 16309

##DRAFT## JEW 22 NOV 74 73150PM PCP ARPANET Inter=Host IPC
Implementation

IPC Implementation

IPC IMPLEMENTATION
Create process
CRTPRC (precaddr => poh, prcname)

This procedure allocates a table entry indexed by POH, infers
an ARPANET host address and contact socket numper from PRCADDR,
and estaplishes a fulleduplex Network connection with the
remote process via the ARPANET Initial Connection ProtecCel
(ICP), The remote process initializes itself and then returns
an INITACK IPC message to its superior, specifying its generic
process name, which the procedure returns to its caller,

Each of the two simplex connections which result f£rom the ICP
(connecticn handles to which are stored in the tabje entry)
will be & 36#bit connection governed by the PCpB36 format, if
both the local and remote hosts are Tenex systems) otherwise,
each will be an Bepit connection geverned by PCPTXT,

Delete process
DELPRC (peh)
This procedure ocutputs a TERM IPC messade using one of the
connectien handles stored in the table entry indexed by POH,
The inferior cleans up, returns a TERMACK message to its
superior which specifies the cost in cents of the process’
execution, and cloeses the Network connections from its end,
The local process deletes them from his end and deletes the
table entrvy,

Send message tO pProcess
SNDMSG (poh, mMessage)

This procedure outputs the PCP message MESSAGE using one of the
connectien handles stored in the table entry indexed by POH,

Accept Message from procegs
RCVMSG (poh => message)
This procedure awaits and then inputs the next PCP message

MESSAGE using one of the connection handles stored in the table
entry indexed by POH, and returns {t to the caller,

24577

ja

3al

3a2

3a3
ib
3ibl

3b2
3c

3c!

3¢2
id
341

3d2

#*#DRAFT## JEW 22 NOV 74 7:50PM
Implementation

JEW 22=«N0OVe=74 16309
PCP ARPANET IntereHost IPC

IPC Implementation

Create end of interwprocess channel

CRTCHNEND (Poh, remport)

This procedure issues in parallel via its NCP and waits for
acknowledgment of, a matched pair of Reguests for Connection
(RFCs) specifyinag the loca)l socket pair and remote host saved
by ALOPCR in the table entry indexed by POH, and the remote
socket pair specified by REMPORT, Once the connections have
been established, the procedure saves their handles in the
table entry,

Delete end ¢f inter=process channel

DELCHNEND (pPoh)

This procedure closes from its end, the Network connections
whose handles are stored in the table entry indexed by POH,

Allocate local port

ALOPOR (echntypmnu, remloc => chntypsel, port, poh)

If both the local host and the host specified py REMLOC are
Tenex systems, this procedure selects from CHNTYPMNU the
INTERHOST channel type with a width of 36 (bits), 1f it is
offered, Otherwise, it selects the INTERHOST channel type with
a width of 8, 1In either case, it saves the selection for
return te the caller as CHNTYPSEL,

The procedure then saves the remote process” host address and
the numbers of a sende~receive socket pair whicn the local
process allocates, in a table entry indexed by POH, It then
returns the receive soeket number to the caller as PORT,

Releagse local port

RELPOR (poh)

This procedure releases the sendereceive socket pair assoclated
with the table entry indexed by POH, and the table entry
itself,

245717

3e
3el

3e2
3 &

3f1

3f2
3g
3g1

3g3
3nh

3ni

3n2

"JEW 22=N0V=74 16309

##DRAFT#% JEW 22 NOV 74 7:150PM PCP ARPANET Inter=Host IPC
Implementation

IPC Messages

IPC MESSAGES
Acknowledge initialization of inferior process
INITACK (prcname)
This message, sent only from inferior to superior, acknowledges
the former’s initialization and returns the generic precess
name PRCNAME of the inferioer process,
Formati
LIST (%opcodes INTEGER ([INITACK=0), %prcname% CHARSTR)
NOTE; In this and all subsequent descriptions of IPC
message formats, only the PCPTXT format (as implied by the
PCP data structure) is given, The foOormat which applies when
the connection i{s governed by the PCPR36 format is the same
as specified in the PCPFRK document,
Terminate
TERM ()
This message, gent only from superior to inferior, requests the
latter to términate eXecution and respond with a TERMACK
message,
Format:
LIST (%opcode% INTEGER [TERM=1))
Acnowledge termination of inferijor fork
TERMACK (cost)
This message, sent only from inferior to syperjior, acknowledges
the termination of the former and returns the cost Of {ts use
in cents,
Formati

LIST (%opcode% INTEGER [TERMACK=2), %cost% INTEGER)

wSw

245177

4a

d4al

4a2
4a3
4a3a

4a3b
4b

4ol

4p2
4p3
4b3a
dc

4eci

4c?2
4c3l

4cla

##DRAFT## JEW 22 NOV 74 7150PNM

JEW 22«N0Ve74 16309
PCP ARPANET Inter=Host IPC

Implementation

IPC Messages

Note protocel violatien

Ne

IPCERR (errcode, errmsqg)

This message notifies the receiving process that the sending
process has witnessed it violate the IPC protocol, ERRCODE and
ERRMSG (which i{s optional) identify the error in programs and
humane=readable form, respectively,

The suyperior process (if any) should at least 10g the error
report, and probably break off communication with the inferior,

Formats

LIST (%opcode% INTEGER [ICPERR=3), %errcodeg INTEGER,
%errmsg% CHARSTR / EMPTY)

operation
NOP ()

This message requests no operation and may be discarded without
action by the receiving process,

Fermat:

LIST (%opcodes INTEGER ([NOP=4])

.6-

24577

4d

4d1

442

4d3

4d4

4d4a
4e

del

4e2
4e3

4ela

JEW 22«NDVe74 16:09 24577

JEW 22«N0OVe74 16109 - 24577

PCP ARPANET Inter=Host IPC Implementation
PCPHST Version ‘2

22=N0VeT74

James E, White
Augmentation Research Center

Stanford Research Institute
Menlo Park, California 94025

PCPHST i{s the implementation, for ARPANET interw=host

communicatien, of the IPC primitives required by the Procedure

Call Protoccl (PCP == 24459,), with which the reader of the
‘ present document is assumed familiar,

JEW 22=NDV=74 16309 24577
#*#DRAFT#% JEW 22 NOV 74 7:50PM PCP ARPANET Interw=Hest IPC
Implementation

(J24577) 22«N0OV=74 16309331 Titlet Author(s)s James E, (Jim)
White/JEW) SubeCollectionss SRI=~ARC) Clerk: JEW) Origing <
WHITE, PCPePCPHST,NLS)2, >, 22«NOV«74 12115 JEW 31139 LA RN

JEW 22=N0V=74 16112

##DRAFT## JEW 22 NOV 74 7:50PM PCP Tenex IntersFork IPC
Implementation

PREFACE

The Procedure Call Protocol (PCP) is an intereprocess and/or
inter=nost protocol that permits a collection of processes within
one or more ARPANET hosts to commynicate at the procedure call
level, 1In effect, it makes the component procedures Of remote
software systemMs as accessible to the programmer as those within
his own system, PCP specifies both a virtual programming
environment (VPE) in which remote procedyres may he assumed to
operate, as well as the inter=process exchanges that implement {t,

The Multi=Process Software System (MPSS) whose construction PCP
makes practical and of which the NSW i{s an example, consists of
¢collections of "procedures" and "data stores" called "packages",

in one or mere "processes", interconnected in a tree structure by
"physical channels", Proecedures within a process have free access
to the procedures (and data stores) of each process adjacent to it
in the tree structure, and may call upon them as {f they were
local subroutines, Superimposed upon the tree structure {s a more
general set of interconnections which give non=adjacent processes
in the tree the same kind of access to one another,

The MPSS is implemented by;

1) lowslevel protocols which provide the basic, intereprocess
conmunicaton (IPC) facilities by which Channels are
implemented: an interehost IPC protocol (PCPHST), an
inter~Tenex=fork IPC protoco)l (PCPFRK), and data structure
format specifications for both connection types (PCPFMT),

2) PCP proper, whiech largely defines the VPE (especially, the
procedure call and retyrn mechanism) and specifies the
interwprocess control exchanges required to implement it,

3) a set of systelM packages, implemented within each process.
which augment PCP proper by providing mechanisms by which user
procedures cant call remote procedures (implemented by the
Procedure Interface Package, PIP), manipulate remote data
stores (implemented by the PCP Support Package, PSP), and
interconnect processes (implemented by the Process Management
package, PMP),

4) user packages in each process,

24578

1a

ib

ic

el

1c2

1c3

ic4

##DRAFT#+ JEW 22 NOV 74 73150PM

JEW 22=NOVe=74 16312
PCP Tenex Inter=Fork IPC

Implementation

INTRODUCTION

Introduction

This document defines an implementation, appropriate for mediating
communicatien between Tenex forks, of the IPC primitives reguired

by PCP,

PCFPFRK uses the pCPB36 data structuyre format, described

in another document,

NOTE?

1)

2)

This implementation currently deals only with forks
within the same job, Direct PCP channels between forks
in different jobs within a single Tenex are therefore not
currently supported,

The implementation of the CRTCHNEND primitive described
here is predicated upon the implementation 0f jobmglobal
fork handles in Tenex) PRCNO in PRCLOC# IS such a fork
handle, In the absence o0f that monitor change, PCP will
net support direct channels between forKs within the same
job (except, of ecourse, between a fork and its direct
inferiors),

The Inter~Fork Window

connected forks communicate by means of shared pages in their
respective address spaces, the intersection of whiech
constitutes a "window" through whieh both PCP and special "IPC
messages" are transmitted, The window has the following
format$

LOCK (1 word) Window lock

AVAILABLE =w1 Wipndow is free
LOCKED = 0 Window is locked
ENCGUEUED > 0 Window is locked and sought by other fork

EOM (1 bit) End of message
TYPE (17 bits) Message type
PCF=0
IPCsl .
LENGTH (18 bi{ts) Length of MESSAGE in words

MESSAGE (remainder) Message

The Window Frotocol

The windew is a halfedyplex commynication device whOse use is
controlled by means of the lock LOCK, and an interrupt channel
in each cf the connected forks’ PSI systenms,

24578

2a
2ai

2ala

2aib

2b

2b1

2bla
2blal
2bla2
2bla3l
2bib
2bic
2bicy
2blec?2
2b1ld
2ble

2¢

2c1

JEW 22«N0OV=74 16112
#*#DRAFT*# JEW 22 NOV 74 7150PM PCP Tenex InterwFork IPC

Implementation
Introduction

PCPFRK ports are specified by the following}
PORT# ==> LIST (%page% INTEGER, %channelg% INTEGER)

where PAGE in the page number of the first page in the
fork*s address space which (s part of the window, and
CHANNEL is the number Of the PSI channel which the fork has
allocated to the window,

A fork transmits a PCP message through the window by "locking"
the windew) placing the message and {ts length in words in the
windew®s MESSAGE and LENGTH flelds, respectively; setting the
TYPE field to PCP! raising the EOM bity and interrupting the
other fork, The fork loecks the window: either by adding one to
LOCK and finding the result LOCKED, or by receiving a message
¢rom the other fork,

Upon receiving the interrupt which signals the presence of a
message in the window, the other fork immediately removes the
message and "unlocks" the windoew, The fork unlocks the window

. either by returning a message to the other fork, or by
exchanging the contents of LOCK for the value AVAILABLE and, if
LOCK is discovered to have been ENQUEUED, resetting LOCK to
LOCKED and sending a NoP IPC message (described below) te the
other fork,

Both forks agree to proemptly unlock the window after each
message, in mOsSt cases even before the message {s processed,
leaving the window avajilable to either fork for transmission of
another messages,

IPC Messages

In addition to sending and receiving PCP messages, the
connected forks exchange via the window, special IPC messages
which help to implement the IPC primitives required by PCP,
The mechanisms for sending PCP and IPC messages are ldentical,
except that the sender stores IPC, rather than PCP, in the
window’s TYPE field, The currentlyedefined IPC messages are
described in another section of this document,

Multi=Packet Messages

Since the window is of finite size, some messages may overflow

the MESSAGE field, 1In such cases, the sender {s permitted to

transmit the message in twWwe or more '"packets", The mechanisms
‘ for sending a wheole message and a8 packet of a message are

24578

2cla
2clal

2¢ib

2¢2

2¢3

2c4

2d

241

2e

JEW 22=N0V=74 16312
##DRAFT#% JEW 22 NOV 74 7150PM PCP Tenex Inter=Fork IPC

Implementation
Intreduction

identical, except that in the latter case, the EOM bit is
raised only on the last packet, and the gsender maintains
control of the windew until that last packet has been sent,
The receiving IPC code must concatenate the packets to
reconstruct the full message,

24578

2el

##DRAFT#% JEW 22 NOV 74 7:150PM
Implementation

JEW 22=N0OV=74 16112
PCP TeneX Inter=Fork IPC

IpC Implementation

IPC IMPLEMENTATION

Create process

CRTPRC (precaddr > poh, prename)

This procedure allocates a table entry indexed by POH, infers a
SAV f£ile name from PRCADDR, creates an inferior fork whose
handle it stores in the table entry, maps the file into the
inferior fork, stores the following parameters in the fork'’s
ACs1

0 Superjior’s proposed window XwD SL,SU
1 Superior’s interrupt channel number

and dispatches it at its entry point, SL and SU are page
nuMpers which define the segment of its address space which the
superior is prepared te devote to the window, The inferior
initializes {tself and then returns via HALTF to its superior,
who extracts the following from the inferior’s ACsi:

0 Inferior’s proposed window XWD IL,IU
1 Inferior’s interrupt channel number

The procedure then establishes via the appropriate map
operations, the fcocllowing compromise windows in the inferior’s
and superior’s address spaces, respectively!

XWD IL, IL % MINIMUM (IUeIL, SU=SL)
XWD SL, SL + MINIMUM (IU=IL, SU=SL)

stores the parameters of the latter in the table entry, and
restarts the inferior, At this point, initialization of the
window is ecomplete, The inferior sends an INITACK IPC message
to the syperior, specifyina its generic process name, which the
procedure returns to its caller,

Delete process

DELPRC (poh)

This procedure transmits a8 TERM IPC message to the inferior
fork wheose handle is stored in the table entry indexed by POH,
The inferior cleans up, returns a TERMACK message to its
superior which speeifies the cost in cents of the process’
execution, and halts via HALTF, The local fork then deletes

24578

3a
3al

3a2

3a2a
3a2b

3a3

Jala
3aib

3a4

3a4a
3aa4b

3as
3b

bl

JEW 22«N0OVw74 16312

#*#DRAFT#% JEW 22 NOV 74 7:50PM PCP Tenex Inter=Fork IPC
Implementation

IPC Implementation

the windew, via the appropriate map operations) the fork
itself, yia KFORK) and the table entry,

mh™

24578

3b2

¥%DRAFT#% JEW 22 NOV 74 7:50PM
Implementation

JEW 22=NOV=74 16312
PCP TeneXx Inter=Fork IPC

IpC Implementation

Send message tO process
SNDMSG (poh, message)

This procedure transmits the PCP message MESSAGE to the fork
whose handle {s stored in the takle entry indexed by POH,

Accept message from process
RCYMSG (poh «> message)

This procedure awaits and then accepts the next PCP message

MESSAGE from the fork whese handle is stored in the table entry

indexed by POH, and returns it to the caller,
Create end of intersprocess channel
CRTCHNEND (poh, remport)

This procedure is a NOP if the remote fork’s handle (saved by
ALOPOR in the table entry indexed by POH) {s smaller than the
local fork*s, Otherwise, the procedure createg the window
arranged by ALOPOR (whose parameters are also stored in the
table entry), using the appropriate map operations,

Delete end ef intereprocess channel
DELCHNEND (poh)

This procedure is a NOp {f the remote fork’s handle (saved by
ALOPOR in the table entry indexed py POH) is smaller than the
local fork*s, Otherwise, the procedure deleteg the window
arranged by ALOPOR (whese parameters are stored also in the
table entry), using the appropriate map operations,

24578

3c

3ecl

3¢2
3d

3dil

342
3e
el

3e2
3f
3f€1

3£2

JEW 22«N0OV=74 16112
*#DRAFT#» JEW 22 NOV 74 7:150PM PCP Tenex IntereFork IPC

Implementation
IpC Implementation

Allocate local port
ALOPOR (ehntypmnu, remloc => ¢hntypsel, port, poh)

This procedure tentatively allocates for an IPC window, a
segment of the local fork’s address space whose width is
probably a local constant, It then selects from CHNTYPMNU the
INTERPRC channel type which maximizes the mininum of the
tentative window width and the window width offered {n the
selection, Using the compromise channel width, the procedure
constructs @ CHNTYPSEL for return to the caller,

The Procedyle then firmly allocates a window 0¢ the compromise
width ané returns as PORT, the number of the £i{rst page in the
window and the nuymber of a local PSI channel it allocates, In
a table entry indexed by POH, the procedyre saves the window
parameters and the other fork’s handle which it extracts from
REMLOC (whose HOSTADDR and JOBNO fields are Known to matech
those of the local fork),

Release local port
RELPOR (poh)
This procedure releases the window and PSI channel associated

with the table entry indexed by POH, and the table entry
itself,

24578

39
3gl

3g2

3g3
3h
3ni

3h2

JEW 22=N0OV=74 16312
+#DRAFT#% JEW 22 NOV 74 7:50PM PCP Tenex Inter=Fork IPC
Implementation

IPC Messages

IPC MESSAGES
Acknowledgoe initialization of inferior fork
INITACK (precname)
This message, sent only from inferior to superior, acknowledges
the former*s initialization and returns the generic process
name PRCNAME of the inferior process,
Format:

opcode [INITACK=0) (1 word)
prename (ASCIZ string)

Terminate
TERM ()
This message, sent only from guperior tO inferior, requests the
‘ latter te terminate execution and respond with a TERMACK
message,
Formatt
opcode (TERM&1] (1 word)
Acnowledge terminaticn of inferior fork
TERMACK (cost)
This message, sent only from inferior to superior, acknowledges
the termination of the former and returns the cost of its use
in cents,

Formatt

opcode [TERMACK=2) (1 word)
cost (1 word)

24578

4a
4al

4a2
4a3

4a3ia
4aib

4b

4bl

4p2
4b3
4b3a
4c

4aci

4c?2
4c3

4cla
4cib

JEW 22«N0V=74 16312 24578

##DRAFT#% JEW 22 NOV 74 7350PM . PCP Tenex Inter=Fork IPC
. Implementation

IPC Messages

Note protocel violation 4d

No

IPCERR (errcode, errmsaqg) 4d1

This mssage notifies the receiving fork that the sending fork
has witnessed it violate the window protocol, ERRCODE and
ERRMSG (which {s opticnal, i,e, may be null) identify the error

in programes and humanereadable form, respectively, 442

The superior fork (if any) should at least log the error

report, and probably break off communication with the inferior, 4d3

Formats 4d4
opcode [ICPERR=3) (1 word) 4d4a
errcode t1 word) 4d4b
errmse (ASCIZ string) 4d4c

operation 4e

NOP () del

This message reguests no oOperation and mMay be discarded without
action by the receiving fork, It is used primarily, as

described earlier, to ynlock the window, 4e?2
Formae! 4el
opcode [NOP=4) (1 word) 4ela

wi0w

JEW

22=NOV=74 161312

24578

JEW 22=NOV=74 163112 24578

PCP TeneX Inter=Fork IPC Implementation
PCPFRK Version 2

22=N0Ve=74

James E, White
Augmentation Research Center

Stanford Research Institute
Menle Park, California 94025

PCPFRK is the implementation, for Tenex inter=fork commynication,
of the IPC primitives reguired by the Procedure Call Protocel (PCP

ww 24459,), with which the reader of the present document is
assumed familiar,

Implementation

(J24578) 22«NCV=T74 163123113
White/JEW; Sube=Collections:

."DRAFT** JEW 22 NOV 74 7150PM

Title:
SRI=ARC)
WHITE, PCP=PCPFRK,NLS38, >, 22«N0OVe74 12111 JEW 3119 keee)

JEW 22=N0V=74 16112 24578
PCP TeneXx Inter=rork IPC

Author(s): James E, (Jim)

JEW) Origing <

JEW 22«N0OV=74 16118

The LoweLevel Debug Package
LLDBUG Versien 2

22«N0V=74

James E, White
Augmentation Research Center

Stanford Research Institute
Menle Park, California 94025

LLDBUG is a debugging tool that operates within the setting
provided by the Proeceduyre Call Protocol (PCP == 24459,), with
Whieh the reader of the present document is assumed familiar,

24579

JEw 22«N0OVy=74 16318
.sz 22 NOV 74 7:50FPM The Low=Level Debug Package

(J24579) 22=NCV=74 162183113 Title; Author¢s)t James E, (Jim)
White/JEW; Sube=Collectionst SRI=ARC) Clerkt JEW} Origing <
WHITE, PCP=LLDRUG,NLS36s >, 22=N0V=74 133124 JEW 3117} taeyy

24579

JEW 22=N0OV=74 16118
‘JEW 22 NOV 74 7150PM The Low=Level Debug Package

PREFACE

The Procedure Call Protocel (PCP) is an intereprocess and/or
interehost protocol that permits a collection of processes within
one or more ARPANET hosts to communicate at the procedure call
leyel, 1In effect, it makes the component procedures of remote
software systems as accessible to the programmer as those within
his own system, PCP specifies both a virtual programming
environment (VPE) in which remote procedures may be assumed to
operate, as well as the intere.process exchanges that implement i{t,

The Multi=Process Software System (MPSS) whose construction PCP
makes practical and of which the NSW {s an example, consists of
collections of "procedures" and "data storesg" called "packages",
in one or mere "processes", interconnected in a tree structure by
"physical channels", Procedures within a process have free access
to the procedures (and data stores) of each process adjacent to it
in the tree structure, and may call upon them as {f they were
local subroutines, Superimposed upon the tree structure is a more
general set of interconnections which give non~adjacent processes
in the tree the same kind of access to one another,

. The MPSS is implemented by:

1) lowelevel protogols whiech provide the basic, inter=process
communicaton (IPC) facilities by which channels are
implemented; an interehest IPC protocol (PCPHST), an
inter«Tenex=forgk IPC protocol (PCPFRK), and data structure
format specifications for both connecticn types (PCPFMT),

2) PCP proper, which largely defines the VPE (especially, the
procedyre call and retyrn mechanism) and specjifies tne
intere=precess control exchanges required to implement it,

3) a set of gystemM packages, implemented within each proOcess,
which augment PCP proper by providing mechanisms by which user
procedures cani call remote procedures (implemented by the
Procedure Interface Package, PIP), manipulate remote data
stores (implemented by the PCP Support Package, PSP), and
interconnect processes (implemented by the Process Management
Package, PMP),

4) user packagdes in eaech process,

24579

1a

ib

ic

iel

1c2

1¢3
icd

JEW 22=N0OV=74 163118 24579
JEW 22 NOV 74 7350PM The Low=Leyel Debug Package
. Introduction

INTRODUCTION 2

The Low=Level Debug Packace (package name=LLDBUG) contains those
procedures and data stores which a remote process requires to

debug at the assemblyelanguage level, any process Known to the

local process, The package contains procedyres for manipulating

and searching the process’ address space, for manipulating and

searching its sympbol tables, and for setting and removing

breakpoints from its address space,, Its data stores hold process
characteristics and state information, and the contents of prodram

symbol tables, Za

The procedures in this package are appropriately applied to any
process whose precessors can each be usefully modelled as shared
code and,private data in a single address Space, 2b

Throeughout this document, the following shorthands denote,
respectively, a program symbol, and an address in either absolute

or symbolic formi 2¢
SYMBOL# ==> <tblname> %symname% CHARSTR 2cl

‘ ADDRESS# ==> INTEGER / LIST (SYMBOL#, $0ffset% INTEGER) 2¢2
Recommended Process Development Strategy 24

Each LLDRUG proceduyre manipulates a process known to the local

process via a handle specified as an arguyment to the procedure,

The local process can therefore be requested, via its OPNPRC:
procedure, to debug any process Known to it (including itself,

its superior, a direct inferor, and processes which the

inveoking process might make known to it via PMP’s ITDPRCS

procedure), 241

In practice, however, the local process is propably capable of
debugmlevel manipulation of only a subset of those processes,

In particular, its operating system may permit it to exert such
eontrel enly over inferior processes, A recommended

development strategy, therefore, is to run processes, at least

during the checkout stage, as a direct inferior of a special

debug precess, provided specifically for that purpose, 242

JEW 22=N0OV=74 16118

JEW 22 NOV 74 7:50PM The Low=Leyel Debug Package
‘ Procedures
Debug Preparations

PROCEDURES
Debug Preparations
Open process for debugging
OPNPRC (ph)

This procedure opens for debuaging, the process known to the
local process via PH,

Argument/resuylt typPest!
ph+= INTEGER
Close process after debugging ‘
CLSPRC (pPh)

This procedyre closes after debuygging, the process known to
. the lecal process via PH,

Arqument/result types!

phe INTEGER

24579

3a
Jal

Jala

3alb
Jalc
Jalcl
3a2

3a2a

3a2b
3az2c

KEVIB!

JEW 22«NOV=74 16118

JEW 22 NOV 74 7150PM The Low=Leyel Debug Fackage
. Procedures
The Address Space

The Address Space
Read address space
RDCORE (ph, strtaddr, wrdent, encoding «> values)

This procedure retrieves from the address space of the
process Known to the local process via PH, the current
contents VALUES of the contiguous block of WRDCNT words
beginning at address STRTADDR, ENCODING specifies the
manner in which the contents of each word are to be encoded
for returni

TEXT; as text (result type = CHARSTR)

CODE} as an executable instruction (result type =
CHARSTR)

INTEGER: as a signed integer (result type = INTEGER)

WORD? yninterpreted (result type = BITSTR)

Argument/result types!

. ph = INTEGER

strtaddr= ADDRESS#

wrdent = INTEGER

encodinge INTEGER [TEXT=0 / CODE=1 / INTEGER=2 / WORD=3]
values = LIST (CHARSTR / INTEGER / BITSTR) ,44)

Write address space
WRCORE (ph, strtaddy, Wrdent, values, encoding)

This procedure replaces the current contents of the
conticuous block of WRDCNT words beginning at address
STRTADDR in the address space of the process known to the
local process via PH, with the new values VALUES, ENCODING
specifies the manner in which the new contents of each word
have been encoded by the invoking process (same as in
RDCORE),

Argument/resuylt tvPes!

ph = INTEGER
strtaddr= ADDRESS# =
wrdent = INTEGER
values = LIST (CHARSTR / INTEGER / BITSTRs 444)
‘ encoding= INTEGER [TEXT=0 / CODE=i / INTEGER=2 / WORD=1)

wile

24579

3b
3bl

3bla

3blb
3blb1l

3b1b2
3bip3
3bib4

3bic

ibicl
3blc2
3blc3
Ibicé
3blch

3b2

3b2a

3b2b
ib2c

3b2el
3b2e2
3b2e3
3b2c4
3b2c5

Procedures

JEW 22«N0OVe74 16118 24579 |
|
The Address Space |

.JEW 22 NOV 74 7:150PM The Low=Level Debug Package

Search address space 3b3

SEARCH (Ph, strtaddr, wrdent, value, encoding, mask =>
addrs) | 3b3a

This procedure searches the contiguoug block of WRDCNT words
beginning at address STRTADDR {n the address space of the
process kKnown to the local precess via PH, for those words
ADDRS whose content matches VALUE, after both have been
ANDed with the mask MASK, ENCODING specifies the manner in
which the comparand VALUE has been encoded by the invoking

process (same as in WRCORE), 3b3b
Argqument/result types! 3ib3c

ph = INTEGER 3p3cl

strtaddr= ADDRESS# 3p3c?2

vrdent « INTEGER 3p3c3

value = CHARSTR / INTEGER / BITSTR 3b3c4

encedinges INTEGER [(TEXT=0 / CODE=1 / INTEGER=2 / WORD=3) 3b3cS

. mask = BITSTR 3b3ice
addrs » LIST (ADDRESS%*, ,,,) 3b3c?

JEW 22«~N0OVe74 16318

JEW 22 NOV 74 7:150PM The Low=Leéyel Debug Package
‘ Procedures
Symbol Tables

Symbol tables
Open symbol table
OPSYMT (Ph, tbhlname)

This procedure opens the symbol table TBLNAME for the
process Known to the local process via PH,

Argument/result types!

eh » INTEGER
tblname= CHARSTR

Close symbol tahle
CLSYMT (Ph, thlname)

This procedure closes the previously=opened symbol table
TBLNAME for the process known to the jlocal process via PH,

‘ Argument/result typest

Ph = INTEGER
tbinames CHARSTR

Create symbol
CRTSYM (Ph, symbol, valuye)
This procedyre adds the symbol SYMBOL with value VALUE to
one ¢f the previously=opened symbol tables (implicitly named
by SYMBOL) for the process known to the local process via
PH,
Argument/result typest

ph = INTEGER

syrbole SYMBOL#
value = ADDRESS#*

24579

ic
3el

3cla

3cib
iclce

3cicl
3cic2

3e2

3c2a

3c2b
3c2c

3c2¢}
Jc2c2

3c3

3cia

3c3b
3cic
3c3cl

Jele2
3c3cl

.JEW 22 NOV 74 17:50PM

JEW 22=N0OVe74 16318

The Low=Level Debug Fackage
Progcedures

Symbol Tables

Delete symbol

DELSYM (Phs sympbol)
This procedure deletes the symbol SYMBOL frem one of the

previcusly=opened symbol tables (implieitly named by SYMBOL)
for the process Known te the local process via PH,

Argument/result tvpes!

ph = INTEGER
symbole SYMBOL#

Read symbol value

RDSYM (ph, Symbol => valuye)

This procedure returns the value VALUE of the symbol SYMBOL
in one of the previouslyesopened symbol tables (implicitly
named by SYMBOL) for the process known to the local process
via PH,

Argyment/result typesi
eh = INTEGER

symbols SYMEOL#
valuye = INTEGER

write symbol value

WRSYM (ph, symbol, yalue)

This procedure assigns the value VALUE to the symbol SYMBOL
in one of the previously~opened symbol tables (implicitly
named by SYMBOL) for the process known to the local process
via PH,

Argument/reésult types:
ph = INTEGER

symbole SYMBOL# '
value « ADDRESS#

24579

3c4

icda

3c4b
3c4c

3cdcel
3cdc?2

3¢5

3c5a

3¢Shb
3¢cS5e
3c5¢cl
debe2
3c5¢3
3¢k

icéa

3¢céb
3cke
3céey

3¢cbc2
3che3

JEW 22=NOVe=74 16118

JEW 22 NOV 74 73150PM The Low=Leyel Debug Package
’ Procedures
symbol Tables

Fit valuye to symbol taple
FITVAL (ph, comparand, tblname => symbol, Value)

This procedure returns the name SYMBOL and value VALUE of
the symbol, in the previously=mopened symbol table TBLNAME
for the process known to the local process via PH (or in any
of its symbol tables, if TBLNAME is EMPTY), whose current
value is closest to COMPARAND,

Argument/result types:

ph = INTEGER
comparand= ADDRESS#
tblname « CHARSTR / EMPTY
symbol = SYMBOL#

value = INTEGER

24579

3e?

ic7a

3¢7h
3c7c

3c7¢l
3c7c2
3c7¢3
3c7c4
3¢7¢5

JEW 22=«N0V=74 16118

JEW 22 NOV 74 7:50PM The Low=Leyel Debug Package
. Procedures
Breakpoints

Breakpoints
Create breakpoint
SETRRK (ph, addr, pedent)

This precedure sets a breakpoint at address ADDR in the
address space of the process known to the local process via
PH, The PCDCNTth time the breakpoint is reached by the
process, the breakpointed processor®s state will be stored
in PRCSTA, the primitiveg

NOTE (BRKPNT, LIST (ph, addr))

will be invoked (suspending the processor), the processor’s
state will be restored from PRCSTA, and it will continue
execution,

The parameters returned by NOTE == PH and ApDDR == specify,
respectively, the handle by which the breakpointed process

‘ i{s knewn to the local process and the address in {ts address
space at which the breakpoint occurred,

Needless t© say, the invoking process Myst lie along the
thread of control if it expects to intercept the NOTE, 1If a
second processor within the process encounters a breakpoint,
its NOTE will be delayed until the first is complete,
Argument/result types!

ph = INTEGER

addr = ADDRESS#

pcdent= INTEGER

Delete breakpoint

REMBRK (Ph, addr)
This proceduyre remoyes the breakpoint previously set at
address ADDR in the address space of the process known to
the leocal process via PH or, if ADDR is EMPTY, removes all
breakpoints from {ts address space,

Argument/result tyPes!

ph = INTEGER
. addr~ ADDRESS# / EMPTY

»Ow

24579

3d
3d1

3dla

3dib

3dibl

3dic

3did

3dle
3d1¢f
3d1€1
3d41¢€£2
3d41¢£€3
342

3d2a

3d2b
3d2c

3d2ct
3d2c?2

JEW 22=N0OVe74 16:18

JEW 22 NOV 74 7150PM The Low=Leével Debug Package
’ Procedures
Breakpoints

Execute intruction
EXINST (Ph, inst, encoding)

This procedure, callable only while the process known to the
local process via PH has a breakpoint NOTE ocutstanding,
restores the breakpointed processor’s state from PRCSTA,
eXxecutes the single instruction INST, and then updates
PRCSTA again, ENCODING specifies the manner in whiech INST
has been encoded by the invoking process (same as in
WRCORE) ,

Argument/resuylt tvpes!
ph = INTEGER

inst = CHARSTR ¢/ INTEGER / BITSTR
encodinge INTEGER [TEXT=0 / CODE=1 / INTEGER=2 / WORD=3)

-10-

24579

343

3d3a

3d3b
3d3c¢
3d3c!

ld3c?2
3d3c3

JEW 22=N0V=74 16318
JEW 22 NOV 74 7150PM The Low=Levyel Debug Package
. ' pata Stores

DATA STORES
PRCCHR Characteristics of open processes

This readwonly data store contains certain characteristic
information about each open process,

PRCCHR is somewhat processedependent in format and content, but
always contains at least the number of words ASIZE in the
process’s address space, and the width WRDLEN {n bits of each
word, The MAXLEN of each argument or result of¢ type BITSTR for
LLDBUG procedures which apply t0 that process i{s given by
WRDLEN, as well,

Data structure typet

<prechr> LIST (<%ph% INTEGER> LIST (<asize> INTEGER,
<wrdlen> INTEGER, @nv: sesl? ses)

PRCSTA states of breakpointed processes

‘ This data store contains the state of the currently
breakpointed processor in each open process,

PRCSTA is somewhat processedependent in format and content, but
always centains at least the contents of the processor’s
program counter PC and {its general registers REGS (if any),
Data structure type}

<presta> LIST (<gphg INTEGER> LIST (<pc> ADDRESS#, <regs>
LIST (BITSTR, ,ea)r @NYy see) 7/ EMPTY) 440)

SYMTES Syrbol tables for open processes
This read=only data store contains all Of the open symbol
tables for each open process, giving the name SYMBOL and valye
VALUE of each symbol in each open table TBLNAME,
pata structure typel

<symtps> LIST (<%ph% INTEGER> LIST (<thlname> LIST (<symbol>
tvaluQ‘ INTEGER, senlde |.|)' vee)d

mile

24579

4a

4al

4a?2

4a3

4ala

4b

4b1i

4b2

4b3

4b3la

4C

4ci

ac?2

4c2a

JEW 22«N0OVe74 16318 24579

sl2%

JBP 22=NOVe=74 16132 24580

The EXecutive Package
EXEC Version 2

22=N0V=74

Jon Postel
Aughmentation Research Center

Stanford Research Institute
Menle Park, California 94025

The Executive Package (EXEC) is a set of tool management and
measurement procedures that operates within the setting provided
by the Procedure Call Protocol (PCP == 24459,), with which the
reader of the present document {s assumed familiar,

JBP 22«N0Ve74 16132 24580

.EXEC 2 / The Executive Package

JBP 22«NOV=74 16332 24580

JBP 22 NOV 74 7:51PM The Executive Package
. Preface

PREFACE 2

The Procedure Call Protocol (PCP) is an intereprocess and/or

inter=host protocol that permits a collection of processes within

one or more ARPANET hosts teo communicate at the procedure call

level, In effect, it makes the component procedures of remote

software systems as accessible to the programmer as those within

his own system, PCP specifies both a virtual programming

environment (VPE) in which remote procedurés may be assumed to

operate, as well as the intereprocess exchanges that i{mplement {t, 2a

The MultieProcess Software System (MPSS) whose construction PCP

makes practical and of which the NSW is an example, Consists of
collections of "procedures" and "data stores" called "packages",

in one or more "processes", interconnected {n a tree structure by
"physical channels", Procedures within a process have free access

to the procedures (and data stores) of each process adjacent to it

in the tree structure, and may call upon them as {f they were

local subroytines, Superimposed uypon the tree structure is a more
general set 0f interconnections which give non=adjacent processes

in the tree the same kind of access to one another, 2b

' The MPSS is implemented by! 2¢

1) lowelevel protocols whieh provide the basic, interweprocess
communicaton (IPC) facilities by which channels are

implementedt! an interehost IPC protocol (PCPHST), an

intersTenex=fork IPC protoco)l (PCPFRK), and data structure

format specifications for both connection types (PCPFMT), 2c!

2) PCP propey, which largely defines the VPE (especially, the
procedure call and return mechanism) and specifies the
intereprecess control exchanges required to implement {t, 2¢c2

3) a set of system packages, implemented within each process,

which augment PCP proper by providing mechanisms by which user
procedures cany call remote procedures (implemented by the

Procedure Interface Package, PIP), manipylate remote data

stores (implemented by the PCP Support Package, PSP), and

interconnect processes (implemented by the Process Management

package, PMP), 2¢3

4) user packages in eaeh process, 2¢4

JBP 22=N0VeT74 16332
JBP 22 NOV 74 7:51PM The Executive Package
‘ Introduction

INTRODUCTION
The Executive Package (package name = EXEC) contains the
precedyres and data stores for user identification, accounting,
and usage information on the tool bearing host where the Executive
Package resides,
PROCEDURES
Login process
LOGIN (yser, password, aeccount)
This procedure assocliates the use of this local process with a
USER for access control purposes, protected by the password
PASSWORD, and an account ACCOUNT for billing purposes, The

arguments USER and ACCOUNT are stored in the data store
USERACCT,

Argument/resylt typesj
‘ user = CHARSTR
passwerd =~ CHARSTR
account « CHARSTR
DATA STORES
COST Cost of usage
This is a read=only data store which is a list of the
accumulated cost in cents by package for the usage since
creation of this process, when the cost assoclated with package
handle zero is read the total cost of all packages in the
process is reported,
Data strycture typet
<cost> LIST (<R¥pkhSINTEGER>%CentsSINTEGER, ,4,)
USERACCT User and account currently logged in
This read=only data store contains the name and account of the
currently logged in uyser of this process, The values are set by
the LOGIN procedure,

Data structure tvpe}

24580

3a

4a

4al

4a2
4a3
4a3a

4a3b
4aic

5a

5al
5a2
5a2a

Sb

5p1

Sb2

JBP 22=NQV=74 16132
JBP 22 NOV 74 7151PM The Executive Package
. Data Stores

<useracct> LIST (<user>CHARSTR / EMPTY, <account>CHARSTR /
EMPTY)

USAGE Usagde statisties

The current usagde statistics of this host system are avallable
in this readeonly data store, The usage {s characterized by
such parameters as number of active users USERS, free
core/disk space SPACE, cpu utilization CPU, and scheduled
downtime SCHD,

Data structure type

<usage? LIST (fusers3INTEGER, $spacesINTEGER, %CPu%INTEGER,
$SschdsCHARSTR)

24580

5b2a

5¢

5¢1

5¢2

5¢2a

JBP 22«N0Ve74 16132

24580

JBP 22#N0V=74 16132 24580
.EXEC 2 / The Executive Package

(J24580) 22=NCV=74 1631323313 Title:t Author(¢s): Jenathan B,
Postel /JBP) Sub=Collectionst SRI=ARCj); Clerk: JBP}) Origint <
POSTEL, NSW=EXEC,NLSp10, >, 22=N0OV=74 16330 JBP pissassdy

JBP 22=N0OV=74 16154 24581
.JBP 22 NOV 74 7151PM NSW Host Protocol

JBP 22«N0OV~=74 16354
‘JBP 22 NOV 74 T7151PM NSW Host Protocol

NOTE: This document is a prelimimary suggestion of constraints and
policies to be used in the implemmentation of the standard ARPANET
host to host protocol fer NSW uses, This specification is subject to
change as indicated by your commennts,

Introduction

The NSW higher level protocols assume that the host level protocol
will provide reliable transmission of messages which are delivered
in order, The host level protocol is assumed to contain flow
control mechanisms tC preyvent the senders Of messages from
flooding a receiver of messages, The host level protocel is to
provide a mechanism for an "out of band" interrupt signal,

The initial implementation of the NSW will use the standard host
to host protocol of the ARPA Network, This is the protocol
specified in NIC 8246,

Mckenzie, A, "Host/Host Protocol for the ARPA Network," Jan=72,

There will pe some constraints placed on the implementations of
this protocel when used in the NSW, The main areas of constraint

’ are the policy used for determining when to send allocate

commands, and the policy on waiting for RFNMS,
Allocation and buffer Policy

For each NSw receive connection the following allocation policy is
used, First define three constantsy U, the upper bound) L, the
lower bound) and I, the increment, When the connection is first
opened the initial allocation i{s U,

Algo define three variabless A, the amount allocated; F, the free
space in the buffer;y and B, the busy space in the buffer,

Nete that the free space is that space which is not committed,
the empty space consists of the free space and the allocated
but as vet unused space,

The sum A + F + B will always eaual U,

when data arrives allocated space is converted to busy space, When
data is consumed bhusy space is converted to free gpace, Thus the
amount allocatéd decreases until it reaches the lower bound, L,

At this poipt a@pn additienal allecation message is sent in the
amount of the free buffer space, but only if this is at least

. equal to the minimum increment, I,

wle

24581

2a

2b

2bl

2¢

3a

3b

ibi

ic

3d

3e

JBP 22«N0OVe74 16854 24581
‘JBP 22 NOV 74 7:54FM NSW Host Protocol

The follewing six quantities are the constants and variables

used in making decisions in this allocation policy, el
|
U = ypper bound 3ela |
L = lower bound Jelp
I = minimum increment Jeic
A = amount alloccated deiad
F = amount free 3ele
B = amount busy delf
The follewing four formulations describe the relationships
between these quantities, 3Je2
(i) A + F + B =U Je2a
[2) n data characters received 3e2b
A €= A = n 3e2bl
B <= B +n 3e2b2
[3) n data characrers consumed le2c
B €= B » n 3e2c!
¥ Qe F +n Je2c?2
‘ (4] 1f A S or = L and F = or > I then Je2d
Allocate F 3e2d!
A<= A &+ F 3e2d2
F <= 0 3e2d3

The NSW will require that the size of the receive buffer for each
connection be at least 8000 bits, and this is therefore the
mini{mum value of U, L shall be one half U, and I shall be one

eiohth U, 3f
U = 8000 bits, 3f1
L = U/2 3f£2
I = U/8 3£3

These values are specified here as an injitial selection to

test the policy, It is expected that experience will show that |
perhaps some other valuyes would be better, if and when such a |
determination is made these values will be respecified, 3f4 |

Ready for Next Message Folicy 8
The host to host protocol specifications require that after

sending a message on a connection (link) the sending NCP should
. wait for a RFNM before sending another message on that connectioen, 4a

w2e

JBP 22=N0OV=T74 16354
.JBP 22 NOV 74 7:51PM NSW Host Protocol

Changes in the treatment of the link number field by the IMP have
made possible @ different policy,

The link nurber field has been renaMed the messade ldentificatioen
field and extended from 8 pits to 12 pits,

If the NCP uses the the additional four bits as a segquence counter
it could sepnd several messages before receiving the RFNM for the
first message, A four bit ecycliec sequence counter would allew up
te eight messages to pe cutstanding at a time,

The NSW hosts shoyld uyse this policy of multiple outstanding
messages on & Connection for the connections used in the NSW,

The Leader of a Host top Host message is?

] B 12 -
LR L L R L L L L T P R R R L L LR TR
| | | | !
| f£lags | host | message id | !
| | | | |

#emeserenjiresarernfionnrpreennenjirensf
‘I’ 0 7 8 11 3243
5 6 <L P!

The Message Id field is broken into the link number and
secueénce numberl

8 4

$ommnonnnnionnnd
| l |
! 1link # |seq#|
l | |

$¥vmmvavnenmivennd

0 AR S
1

For each NSW connection the NCP shall send messages using the
sequence number part of the identification field on a per
connectien basis to identify the messages on that link and use
the seguence number in the returned RFNM (or Incomplete
Transmission) to determine if the message has peen delivered
and is nc longer in the network,

Retransmission PFelicy
Each message transmitted on an NSW connection should be saved
. until a RFNM {8 returned for that message (as determined by the

m3e

24581

4b

ac

4d

4e

del

4ela

de?

4e2a

del

JBP 22=NOV=74 163154 24581
.JBP 22 NOV 74 7351PM NSW Host Protocol

link and segquence numbers), If instead of a RFNM an Incomplete
Transmission or Host Dead response is received, then that message
should be retransmitted K times, Sa

K is initially set to 10, 5al

Note that the Allocation policy is a constraint on the receive side
of a connection that is completely within in the protocol and that it
is a policy that the send side must be prepared to accept, 6

Note also that the RFNM and Retransmission policies are a
modification te the send side only and cannot be detected by the
receive side, 7

Thus, these policies can be ysed by NSW host for their interactions
with both other NSW hosts and non NSW hosts, 8

JBP 22=N0OVe74 16354 24581

JBP 22=NOVe74 16154 24581

NSW Host Protocol
Version 2

22=N0QV=74

Jon Postel
Augmentation Research Center

Stanford Research Institute
Menlo Park, California 94025

The National Software Works host level protoeceol is (in the
intitial version) a sliaghtly constrained form of the standard ARPA
. Network host teo host protocol,

JBP 22«N0OVe=74 163154 24581
‘JBP 22 NOV 74 T7i151PM NSW Host ProtocCol

(J24581) 22«NCVeT74 163545319 Title; Author(s)s; Jonathan B,
postel /JBP;y SubeCo0llectionst SRI=ARC; Clerkt: JBPy Origin; <
POSTEL, NSWeHOST,NLS310, >, 22«N0OVe74 13146 JBP 333} EERN

.-1-

.FILE 2 / The File Package

JBP 22=«N0OVe74 16159

24582

JBP 22=NOV=74 16159

JBP 22 NOV 74 7152PM The Flle Package
‘ Preface

PREFACE

The Procedure Call Protocol (PCP) is an intereprocess and/or
inter=host protocol that permits a collection of processes within
one or more ARPANET hests to communicate at the procedure call
leyel, 1In effect, it makes the component procedures of remote
software systems as accessible to the programmer as those within
his own system, PCP specifies both a virtual programming
environment (VPE) in which remote procedures may pbe assumed to
operate, as well as the intere-process exchanges that implement i{t,

The Multi-Preocess Software System (MPSS) whose coOnstruction PCP
makes practical and ©f which the NSW {s an example, consists of

, Collections of "proceduresg" and "data stores" called "packages",
in one or mere "processes", interconnected in a tree structure by
"physical chanhels", Procedures within a process have free access
to the procedures (and data stores) of each process adjacent to it
in the tree structure, and may call upon them as i{f they were
local subroutines, Superimposed upon the tree structyre is a more
general set of interconneections whieh give nonwadjacent processes
in the tree the same kind of access to one another,

. The MPSS is implemented byi

1) lowelevel Protocols which provide the basic, inter=process
communjicaton (IPC) facjlities by which channels are
implementedi an interehost IPC protocol (PCPHST), an
inter~Tenex=£fO0rkK IPC protocol (PCPFRK), and data structure
format speclfications for both connection types (PCPFMT),

2) PCP proper, which largely defines the VPE (especlally, the
procedure call and retuyrn mechanism) and specifies the
inter=precess control exchanges required to implement it,

3) a set of gystem packageg, implemented within each process,
which augment PCP proper by providing mechanisms by which user
procedures cani call remote procedures (implemented by the
Procedure Interface Package, PIP), manipuylate remote data
stores (implemented by the PCP Support Package, PSP), and

interconnect processes (implemented by the Process Management
Package, PMP),

4) uSer prackages in eaeh process,

24582

28

2b

2¢

2¢1

2¢2

2c3
2¢c4

JBP 22=N0V=74 16159
JBP 22 NOV 74 7352PM The File Package
‘ Introduction

INTRODUCTION

The File Packagde (package name = FP) econtains those procedures and
data stores which & remote process reguires to employ the file
storage ancd transfering services of the local process, The
package contains procedures for opening, clesing, and listing
directories, for creating, deleting, and renaming files, and for
outputting, updating, and deleting files and elements of files,

It also contains data stores of directory and file descriptors,

Files
Introduction
A "file" is a named PCP data structure, stored not in the
local process”s address space, but on secondary storage, A
file thus has an indefinite lifetime, and in particular is
not destroyed by the deletion of its local process, Flles
are manipulated via procedures provided by the file package,
rather than via the PCP Support Package’s RDDATA and WRDATA
procedures,
‘ A file, like any PCP data structure, can be arbjtrarily

complex,

There are a few data structures which will describe a very
large fraction of the files in actual usej for these files
the following structure types are i{dentified:

1) Unstructured pinary files
seapin= BITSTR

2) Paged (and possibly holey) binary files
pagede LIST (%att3CHARSTR,
CEPINOoYINTEGER>%page$BITSTR) 44.)

3) Unstructured text files
segtXt= CHARSTR

4) Recordestructured text files
rectXte LIST (CHARSTR, 444)

Associated with a file is a "use type", It (s expected that
there will be many use types, Some examples of use types
arep

NLS,SRC
COBOL,SRC
COBOL,LIST

360,REL
. TENEX,SAV

24582

3a
3b

3b1

ibila

3bib

3pbic

ibict
3bicia
3bilc2

3bic2a
3bic3
3pic3a
3bic4d
3bic4a

3bid

ibldl
ibld2
3b1d3
3bld4
3b1d5

JBP 22=N0V=74 16159

JBP 22 NOV 74 73152PM The Fille Package
. Introduction
TECO,SRC 3bidé
ANY,PRINT 3b1dY

Use types would be ytilized by the works manager when
preparing for tool use to check for consistency between the
intended use of the file and the input expected by the tool, 3ble

Use type mismatches could result in a call for a file
conversion procedure to be executed, which could create a |
new file with the proper use type, 3bif ;

It is expected that there will be many yse types which map |
into a few struecture types, ibig |

Access Centrols 3b2

The "ereator" of a file can independently grant or refuse
the fellowing types of access to (it} ib2a

1) READ} the right to read the file (with the GETFIL

procedyre), ! ib2al
. 2) WRIT: the right to modifiy, delete, or rename the
file (with the PUTFIL, DPELELM, DELFIL, and
RENFIL procedures), and 3b2a2
3) CTRL: the right to modify the access assignments
themselves, 3b2a3l

to the following classes of userst 3b2b

1) CRTy the creator himselgf, 3p2b1
2) MEMi a directory member, i,e, anyone with its

password (described more fully later), and 3b2b2
3) PUBy the general publie, 3b2b3

The access assiagnments for the file are stored {n the file’s
naccess descriptor": 3b2¢

ACCDSC# =s> LIST (ert, mem, pub) 3b2¢y

erte LIST (%ready BOOLEAN, %writs% BOOLEAN, %ctrl%

BOOLEAN) _ 3b2c2
meme LIST (%reads BOOLEAN, %writs BOOLEAN, %ctrls

BOOLEAN) 3b2c3
pube LIST (%reads BOOLEAN, swrit% BOOLEAN, %ctrls

BOOLEAN) 3b2c4

The access descriptor is specified initially when the file
. is created (via the CRTFIL procedure), and can be modified

JBP 22«N0Ve74 16359
JBP 22 NOV 74 T7:152PM The File Package
. Introduction

anv time thereafter by anvone with controlling access to the
file,

File Descriptors

Associated with every file is a secondary data structure
called a "file descriptor", which contains {nformation about
the file and which has the following formaty

FILDSC# ==> LIST ¢(

<use> %$use type% CHARSTR,

<ertor> %file creators CHARSTR,

<acedsc> saccess descriptors ACCDSCw,

<crdat> screation date and time% CHARSTR,
<rddat> %date and time of last read% CHARSTR,
<wrdat> sdate and time of last writeg CHARSTR,
cacct> $account% CHARSTR)

24582

3b2d

3b3

3b3a
3Ip3al

3b3ala
3p3alb
3b3alc
3b3ald
3b3ale
3b3ailf
3b3alg

.\JBP 22 NOV 74 7:152PM

Directories

Introduction

JBP 22=N0OV=74 16359
The File Package
Introduction

The f£iles within a process are partitioned into one or more
"directories", Directories are referred to initially (in
the OPNDIR procedyre) by name, and thereafter via a
"directory identifier", or DID, A directory is "known" 1if
and only if it has been successfully "opened" (i,e, if a DID
has been obtained for it),

NOTE: the "LOGIN directory" (if any) implied by the
USERname last specified via EXEC’s LOGIN procedure is
always considered open (with DID=0) and need not, indeed
cannot, be explicitly opened or closed (with OPNDIR and

CLSDIR),

Access Centrols

The "creator" of a directory can independently grant or
refuse the following types of access to it!

1) READ: the rignht to open and list the directory (with
the OPNDIR and LSTDIR pProcedures),

2) WRIT: the right to echange the file names in the
directory (with the CRTFIL, DELFIL, or RENFIL

¢ and

3) CTRL: the right to modify the access assignments

procedyres)

themselves,

to the same classes of users to which f£ile access can be

assigned,

The access assignments for the directory are stored in the
directory’s "access descriptor", jdentjcal {n form to a

file’s access descriptor,
specified i{nitially when the directory is created, and can
pe medified any time thereafter by anyone with controlling

access to the directory,

wSe

The access descriptor {is

24582

3ic

3ct

3cia

3cilal

3c2

3c2a

3c2al

3c2a2
3c2a3

3c2b

3c2e

JRP 22=N0OVe=74 16159 24582
JBP 22 NOV 74 T152PM The File Package
' Introduction

Directory Descriptors 3¢3

Associated with every directory is a data structure called a
"directory descriptor", which contains informatjon about the

directory, and which has the following formati 3cia
DIRDSC# ==> LIST ¢(3cial

<crtor> %file creator% CHARSTR, 3c3ala

+ €acecdsc> saccess descriptory ACCDSC#) 3c3alb
Identifving the Invoking Precess 3d

The local process identifies the inyoking process:, for purposes
of enforeing access controls for the directory itself, and for
files within it, whenever the directory is opened, The user
assoclated with the inveking process is taken to be, for |
purpeses of establishing or refuting his creatorship of the
directory, or of files within it, that specified in the most
recent invecation of EXEC’s LOGIN proceduyre, The invoking
process {s identified as a directory memper {f it supplies the

. proper directory password in the OPNDIR procedure, 3d1

Some Similarities 3e

Files and directories bear a striking similarity to data stores
and packages, respectively, The similarity is so strong that

we define a shorthand for denoting an element of the file: el I
FSELECTOR# ==> DSELECTOR#* 3ela
|
with FILENAME and DID, substituted in the definition for data |
store key and PKH, respectively, 3e2
we define the following shorthand to denote a filename
FILENAME, qualified by the directory DID that contains it¢ el
FILE# ==> LIST (%did% INTEGER, %filename% CHARSTR) jela
and we define a list of filles as! 3e4

FILELIST# ==> LIST (%filename% CHARSTR, ,,,) 3eda

JBP 22«N0OV=74 16159

JBP 22 NOV 74 7:52PM The File Package
. Procedures

PROCEDURES
Directory manipulation
Open directory
OPNDIR (dirname, password => did)
Provided the invoking process has read access to the
directory, this procedure opens the local process’s

directery DIRNAME, and makes it known to the invoking
process via the handle DID,

If PASSWORD is specified (correctly), the user associated
with the inveoking process is identified as a directory
member (& fact considered in subsequent file access control
cheeks),

Argument/result types?t

dirname = CHARSTR
. passworde CHARSTR / EMPTY
dié = INTEGER
Close directory
CLSDIR (did)

This procCedure closes the local process’s previously~opened
directory, known via DID, and makes it again unknown,

Argument/result types!

did= INTEGER
List directory
LSTDIR (did, dst, dstype => goynt, value)

Provided the invoking process has read access to the
directory, this procedure first outputs COUNT the number of
files in the directory, then a list of the files in the
directory identified by DID in the lo0ca)l process, in the
form LIST %filenames CHARSTR, ,.,.)s, to a degtination DST
whose nature i{s speecified by DSTYPE!:

({,e, as a result of the proceduyre),

. PARM: the list is to be returned to the caller as VALUE

24582

4a
4ai

4ala

4alb

4aic
4ald
4aldl
4ald2
43l1d3
4a2

4a2a

4a2b
4a2c
d4a2c!
4a3

4aja

4a3ib

4a3bl

‘JBP 22 NOV 74 7352PM

JBP 22~NOV=74 16359 24582
The File Package
Procedures

FILE: the list i{s to replace the current value of an
element DSTELM of a file in one of the local
process’s previously~opened directories
(implicitly named by DSTELM), 4a3b?2

NETC: the list is to be transmitted via a network
connection, to socket SOCKET at host HOST, in one
0f the following formats FORMAT! 4a3pl

PCPFRK}

PCPNET}

CRLF1

that defined by PCP for IPC of data
structures between Tenex forks (a 36=bit
connection), 4a3ibla

that defined by PCP for IPC of data
structures between ARPANET processes (an
Bebit connection), 4a3bib

(for SEQTXT and RECTXT file elements only)

the text of the string, or of each string in

the 1ist, terminated by CRLF, appended to the
connection’s 8wbit byte stream, 4a3bic

. CHNL: the list (s transmitted via the PCP channel
identified by the local process Port handle PORH,
(Ports and channels are discussed in the Process
Management Package document,) 4ai3bé

Noge that the actyal format O0f the data transmicted between
processes 1s documented in "PCp Data Structure

Formats (PCPFMT)n, 4aic
Argument/resylt typrest 4alid
did = INTEGER 4a3di
dstypes INTEGER (PARM=0 / FILE=y / NETC=2 / CHNL=3) 4a3d2
PARMs dste EMPTY 4a3d2a

FILE) dste= %dstelm% FSELECTOR# 4a3d2b

NETCt dste LIST (%hoSt% INTEGER, %socket% INTEGER,

$formaty INTEGER (PCPFRK=0 / PCPNET=1 /

CRLF=2)) 4aijd2ce

CHNLy dst= %porh% INTEGER 4a3d2d

count = INTEGER 4a3d3

value = FILELIST# / EMPTY 4a3d4
.8.

JBP 22«~N0OVe=74 16159

JBP 22 NOV 74 7152PM The File Package
’ Procedures

File manipulation
Create file
CRTFIL (did, count, filelist, accdsc)
Provided that the invoking process has write access to the
directory DID, this proOocedure creates a list of COUNT files
FILELIST with access descripter ACCDSC in the directory
specified by DID in the local process, Note that the initial
content 0f this file is EMPTY,
Argument/resylt types!
dié = INTEGER
count = INTEGER
filelist = FILELIST*
accdsc = ACCDSC#
pelete file
‘ DELFIL (did, count, filelist)
Provided the invoking process has write acCess to the files
in FILELIST, and write access to the directory identified by

DID, this procedure deletes the COUNT f£iles from the local
process,

Argument/result tvpes?

dié = INTEGER

count « INTEGER

filellst = FILELIST#

Rename file

RENFIL (sreedid, count, srcefilelist, dstedid, dstwfilelist)
Provided the invoking process has write access to the files
in the source file 1ist SRCeFILELIST and both the
directories specified by SRCeDID and DSTeDID, this procedure
renames the source files to be the destination files
DST=FILELIST,

Argument/result tvpes!

srcwdld = INTEGER
‘ count = INTEGER

wOw

24582

4b
4p1l

4bla

4bib
dbic
dplel
dpbic?2
4bic3
4bic4
4b2

4b2a

4b2b
db2¢c
dp2ci
4p2c?2
db2c3
4b3

4bla

4b3b
4bic

4blci
4b3c2

JBP 22=N0OV=74 163159
JBP 22 NOV 74 7:52PM The File Package
. Procedures

srcefilelist = FILELIST»
dstedid = INTEGER
dstefilelist = FILELIST#»

Gget unique file name
UNQFIL (did, number => filelist)

NUMBER nmew and uynigue filenames in directory DID in the
local process are returned to the invoking process,

Argument/result tvpes:

did = INTEGER
nurker = INTEGER
filelist = FILELIST#*

Convert file
CNVFIL (file, newfile, usetype, alg)

‘ Provided the inveoking process has read access to the file
FILE and write access tp the directory for NEWFILE, and that
there is a conversion procedure for converting from the use
type and structuyre type of FILE to the yse type USETYPE and
structure type desired as indicated by the algorithm ALG,
the lecal process will perform the conversion and create the
new file NEWFILE,

It is exPected that the conyersion algorithms for tools with
use or structure types that at are at all uncommon will be
provided by the tool installer,

Argyment/resylt types!

fille = FILE#*
newfile » FILE#®
usetype = CHARSTR
alg w CHARSTR

24582

4b3c3
4b3c4
4b3ch

4b4

4b4a

4b4b
4b4c
4b4c!
dpdc?2
4b4c3
4p5

4b5a

4bSb

4b5¢
4b5d

4p5d1
4p5d2
4p5d3
4b5d4

JBP 22=NOV=74 16359

.JBP 22 NOV 74 7:152PM The File Package

Procedures

File element manipulation

Get file

GETFIL (fileelm, disp, dst, dstype > value)

Provided the invoking process has read access to the file,
this procedure outputs a copy of an elemepnt FILEELM (which
may be the whole file) of a £ile {n one of the local
process’s previouslywopened directories (implicitly named by
FILEELM), to a destination DST whose nature is specified by
DSTYPE

PARM: the file element is to be returned to the caller
as VALUE ¢i,e, as a result of the procedure),

FILE: the file element is to replace the current value
of an element DSTELM of a file in one of the local
process’s previously=opened directories
(implicitly named by DSTELM), The invoking
process must have write access to the destination
file,

The file element i5 either replaced by EMPTY (i,e,
moved) or l1eft unchanged (copied), according to
DISp, To move the element, the invoking process
must nave write access to the file,

NETC: the file element {8 to be transmitted via a
network connection, to socket SOCKET at host HOST,
using format FORMAT (same as for LSTDIR),

CHNL: the file element {s transmitted via a PCP channel
attached to the port identified by the port handle
PROH of the local process, (Channels and ports are
discussed in the Process Management Package
document,)

Argyment/resylt typest

fileelm= FSELECTOR#
disp » INTEGER [DELETE=0 / RETAIN=1])
dstype = INTEGER [PARM=0 / FILE={ / NETC=2 / CHNL=3)
PARM: dstw= EMPTY
FILE: dste %dstelm$% FSELECTOR#
NETC: dste LIST (%host% INTEGER, %socket% INTEGER,
g$formats INTEGER (PCPFRK=0 / PCPNET=1 /
CRLF=2))

nil=

24582

4c
dci

4cila

4¢1b

4cibl

4clb2

4clbl

4clb4

4cibs
dcice

4cicy
dclc2
4cic3
4cicia
4cicib

4cicie

JBP 22=NDV=74 16159 24582

JBP 22 NOV 74 7152PM The File Package
‘ Procedures
CHNL! dste %porh% INTEGER 4cilc3d
value = any / EMPTY 4cicéd
Put file dc?2
PUTFIL (fi{leelm, disp, src, srctype) 4c2a

Provided the invoking process has write access to the file,

this procedure replaces an element FILEELM (which may be the

whole file) of a file in one of the local pProcess’s
previcusly=opened directories (implicitly named by FILEELM),

from a source SRC whose nature {s specified by SRCTYPE: 4c2b

PARM: the source is SRC (i{.,e, an argument of the
proceduyre), 4c2b1

FILE! the source is the current valuye of an element
SRCELM of a file in one of the local process’s
previously=opened directories (implicitly named by
SRCELM), The invoking process must have read
access to the source, 4c2p2

‘ The source element is eitheyr replaced by EMPTY
({,e, moved) or left unchanged (copied), according
to DISP, Te move the source element, the inveking
process must have write access to the source file, 4cZb3

NETC1 the source will be transmitted via a network
connection, from socket SOCKET at host HOST, using
format FORMAT (same as for LSTDIR), dc2b4

CHNL? the file element is transmitted via a PCP channel
attached to the port identified by the port handle
FORH of the local process, (Channels and ports are
discussed in the Process Management Package

document,) 4c2p5
Argument/resuylt types! 4c2c
fileelm= FSELECTOR# 4c2cd
disp = INTEGER [DELETE=s0 / RETAIN=1]) dc2c?2
sretype= INTEGER (PARM=0 / FILE=] / NETC=2 / CHNL=3) 4c2c¢3
PARM: Srce any 4c2c3a

FILE: Srce gsSrcelmg FSELECTOR# 4c2cl3b

NETCt srce= LIST (%host% INTEGER, %socket% INTEGER,
- %formats INTEGER [(PCPFRK=0 / PCPNET=1 /

CRLF=2]) 4c2cice
. CHNLt srce fporh% INTEGER 4c2cid

wi2=

‘JBP 22 NOV 74 7152

Get file stru
GETST (£fi1
Proviced t

named by F
returned a

JBP 22=N0Ve74 16159
PM The File Package
Procedures

cture tvpe
eelm, dst, dstype => value)
he invoking process has read access to the file

ILEELM the structure of that file element is
§ a "prototyre" to destination DST as indicated by

DSTYPE, That is, a data structure Oof the same form as the

flle eleme
structure

nt is retyrned, but the content 0f the data
is not meaningfuyl and is reduced to the minimuym,

The pessible DSTYPEs aret

PARM}

FILE}

NETCq

CHNL1}

Argument/r

fileelm

dstype
PARM
FILE
NETC

CHNL
value

the file element structure is to be returned to
the caller as VALUE (1 e, as a result of the
procedure),

the file element structure 1is to replace the
current value of a file element in one of the
local process’s previously=opened directories
(implicitiy named by DSTELM), The invoking
process must have write access to the destination
file,

the file element stryctyre is to be transmitted
via a network connection, to socket SOCKET at host
HOST, in format FORMAT (see LSTDIR),

the file elemMent structuyre is transmitted via a
PCP channel attached to the port identified by the
port handle PROH of the local process, (Channels
and ports are discussed in the Process Management
Package document,)

esult types!

» FSELECTOR#
= INTEGER [PARM=0 / FILE=y{ / NETC=2 / CHNL=3)

} dste EMPTY

! dste $dstelm$ FSELECTOR#»

{ dste LIST (%host% INTEGER, %socxet$% INTEGER,
sformaty INTEGER (PCPFRK=0 / PCPNET=1 /
CRLF=2))

! dst= %porh% INTEGER

 LIST (3filenames CHARSTR, ,,4) / EMPTY

»i3m

24582

4c3

4c3a

4cib

4eci3pi

4c3b2

4c3b3

4cinid
4cic

4eclcy
4c3c2
4c3c2a
4c3c2b

4c3c2ce
4c3c2d
4c3cl

JBP 22«N0OV=74 16359

JBP 22 NOV 74 7:152PM The File Package
. Procedures

Delete file element
DELELM (fileelm)
Provided the invoking process has write access to the file,
this procedure replaces an element FILEELM of a file in one
of the local process’s previously=opened directories
(implicitly named by FILEELM) with EMPTY,
Argument/result tvpPes!

flleelm= FSELECTOR#

wid=

24582

4céd

4c4a

4c4b
4céc

dcécl

JBP 22«NDV=74 16159

JBP 22 NOV 74 7152PM The File Package
. pData Stores

DATA STORES
DESCS List of directory and file descriptors

This data store is a list of the directory descriptors DIRDSCs,
and file descriptors FILDSCS for all files FILENAMEs, for all
open directories DIDs with names DIRNAMEs within the local
process, It also contains for each directory, the user USER
who opened it, and his relationship REL to it, The data store
is readecnly, except for the ACCDSC field of each directery and
file descriptor, which can be written by anyone with
econtrolling access to the directory or file,

Data strycture type!

<descs> LIST (<dirname> LIST (%did% INTEGER, %dirdscs
DIRDSC*, %usedsc% LIST (%users CHARSTR, %rel%
INTEGER (CRT=0 / MEM={ / PUB=2)), %fildscs% LIST
(¢<filename> ‘flldlc‘ FILDSC#, uoo))u |o.)

wif=

24582

5a

5al

5a2

5a2a

JBP 22«~N0OV=74 163159 24582

JBP 22«N0OV=74 16159 24582

The Fille Package
FP Versien 2

22=N0V=T74

Jon Postel
Augmentation Research Center

Stanford Research Institute
Menle Park, California 94025

The File Packade (FP) is a file manipuylation tool that operates
within the setting provided by the Procedure Call Protocol (PCP ==
24459,), with whieh the reader of the present document is assumed
familiar,

JBP 22=NOV=74 16159 24582

.FILE 2 / The File Package

(J24582) 22=N0V=74 16259111 Title: Author(s)i: Jonathan B,
Postel/JBPy SubeCollectionst SRI=ARC) Clerkt JBP) Origint <
POSTEL, NSW=FILE, NLS$18, >, 22=«N0OV=74 15153 JBP)il st&s)

JBP 22=N0OVe74 17301 24583

‘BATCH 2 / The Batch Job Packaqge

0o

.JBP 22 NOV 74 7:152PM

JBP 22=N0OV=74 17:01
The Batch Job Package

PREFACE

The Procedure Call Protocol (PCP) is an inter=process and/or
inter=host protocol that permits a collection of processes within
one or more ARPANET hosts to communicate at the procedure call
level, 1In effect, it makes the component procedures of remote
software systems as accessible to the programmer as those within
his own system, PCP specifies both a virtual programming
environment (VPE) in which remote procedures may be assumed to
operate, as well as the inter=process exchanges that implement {t,

The Multi=Process Software System (MPSS) whose construction PCP
makes practical angd of which the NSW is an example, consists of
collections of "procedures" and "data stores" called "packages",
in one or more "processes", interconnected in a tree structure by
"physical channels", Procedures within a process have free access
to the procedures (and data stores) of each process adjacent to it
in the tree structure, and may call upon them as i{f they were
local subroutines, Superimposed upon the tree structure is a more
general set of interconnections which give nen=adjacent processes
in the tree the same kind of access to one another,

The MPSS {s implemepnted byi

1) lowelevel protececls which provide the basic, interwprecess
communicaton (IPC) facilities by which Channels are
implemented; an inter~host IPC protocol (PCPHST), an
inter=Tenex=fork IPC protoco)l (PCPFRK), and data structure
format specifications for both connection types (PCPFMT),

2) PCP propery whieh larcely defines the VPE (especlally, the
procedure call and return mechanism) and specifies the
inter=process control exchanges required to implement it,

3) a set of gsYstem packages, implemented within each process,
which augment PCP proper by providing mechanisms by which user
procedures caniy call remote procedures (implemented by the
Procedure Interface Package, PIP), manipulate remote data
stores (implemented by the PCP Support Package, PSP), and
interconnect processes (implemented by the Process Management
Package, PMP),

4) usSer packages in each process,

24583

2a

2b
2¢C

2¢c!

2¢2

2¢c3
2c4

JBP 22«N0QV=74 17101 24583

JBP 22 NOV 74 7:152PM The Batch Job Packadge
’ Introduction

INTRODUCTION 3

The Bateh Job Package (package name=zBJP) containg those

procedures and data stores which a remote process requires to

employ the batch processing services of this host, The package

contains precedures for creating and deleting batech jobs, for

retrieving cr altering the status of a patch jop, for controlling |
the transmission of {ts input/output streams, and for I

communicating with the batch system’s operator, 3a
This package is only implemented at a host that actually provides

4 batch processing facility, ib

PROCEDURES e

Create batch job 4a

CRTJOB (inflles, outfiles => jobid) 4al

This procedure gueues a job for processing by the local
process’s batCh system, and returns the job {dentifier JOBID by
‘ which the job i{s thereafter known, 4a2

The Procedure will retrieve the job’s inpuyt f£iles INFILES,
schedyle the job for execution, and eventually return its
output files as requested by OUTFILES, 4a3

The batch iNput/outPut Stream t0 which each file corresponds is
identified by STRMNAME, The following universal stream names
are defined (but not necessarily accepted by every local
process); other stream names may be defined and accepted by a

particular host process! 4a4
CRDt the job’s primary card (input) stream, 4ada
PRT: the job’s primary print (output) stream, and 4a4b
PUN: the job’s primary punch (output) stream) 4adc

The loca)l process {s to retrieve/save each inpuyt/output f£ile by
using the parameters supplied in the INFILES/OUTFILES argument

to make calls to the appropriate file packages, 4as
Argument/resylt typest 4a6
infiles = LIST (<strmname> Src, oo’ 4aba

outfiles® LIST (<strmname> dsSts ,9¢¢)) 4abb

JBP 22=N0OV=T74 17101
JBP 22 NOV 74 7152PM The Batch Job Package
. Procedures

srcs/dst = LIST (%host% INTEGER, saccountedesignatorg LIST
(%user% CHARSTR, %password% CHARSTR, %acct$y
CHARSTR), gworkspace=designatory LIST (gdirnames
CHARSTR, gpassword% CHARSTR), %fileelm%
FSELECTOR#, %disp% INTEGER,

jobid = INTEGER

Delete bateh job
DELJOB (jobld)
This procedure deletes the previously=created patch job
identified by JOBID, AnY input/output f£iles that have yet to
be retrieved/returned are ignored/discarded,
Argument/result typesg
jobide INTEGER
Cancel batch job

. CANJOE (dobid)

This procedure cancels the execution phase (interrupting the
job*s execution if necessary) of the previously=created job
identified by JCBID, The job remains in the batch system’s
aqueue, and any output files generated by the job before its
cancellation wily be disposed of as previously speciflied,
Argument/result typess
jobides INTEGER

Retrieye batch job status
STSJOB (jobid => status)
This precedure returns the status STATUS of the job identified
by JOBID, The exact format and semantics of the status
information are vet to be determined,

Argument/result typess

jopid = INTEGER
statuse® LIST (CHARSTRy ,44)

24583

4a6¢
4a6d

4b

4bi

4bh2
4b3
4b3a
4c¢

4cl

4c2
4c3
4cia
4d
4dl

4d2
443

4d3a
4ad3b

JBP 22=N0V=74 17301

JBP 22 NOV 74 7:152PM The Batch Job Fackage.
. Procedures

Modify batch job
MODJOB (jobld, parms)
This procedure modifies, in a hoste=dependent way, the
parameters PARMS of the of previously=created job identified by
JOBID,
Argument/result typess

jobide INTEGER
parms= any

Query batch system operator
QRYOPR (message, rsvp => reply)

This procedure transmits Message MESSAGE to the batch system’s
operator, and, if RSVP is TRUE, returns his reply REPLY,

Argument/result typest

‘ message= CHARSTR

|
’ rsvp = BOOLEAN
reply = CHARSTR / EMPTY

Execute remecte~operator command
EXECMD (command => response)

This procedure executes the hostedependent remptempoperator
command COMMAND, and returns the batch system’s response to it,

Arguyment/resylt typesi

command = CHARSTR
response™ LIST (CHARSTR, ,44)

wiw

24583

4e

del

de?
del

4ela
4eldb

4f

41

4£2
4£3
4f3a
4£3b
4f3c
49

4gl

402
4g3

dgla
4g3b

JBP 22«NOV=74 17301 24583
JBP 22 NOV 74 7152FPM The Batch Job Package
‘ pData Stores

DATA STCRES . 5

This package contains no data stores, 5a

JBP 22-NOV=74 17301

24583

JBP 22=NOVe74 17101 24583

The Batch Job Package
BJP Version 2

22=N0V=74

Jon Postel
Auamentation Research Center

Stanford Research Institute
A Menle Park, California 94025

The Batch Job Fackage operates within the setting provided by the
Procedure Call Protocol (PCP == 24459,), with which the reader of
' the present document is assumed familiar,

JBP 22=-N0V=74 173;01 24583
’BATCH 2 / The Ratch Job Package

(J24583) 22<NCV=74 17:0113831 Titles Author(s): Jonathan B,
Poste)l/JBP) Subk=Collections: SRI=ARCy Clerk: JBP} Origing <
POSTEL, NSWeBATCH,NLS:6, >, 22=N0V=74 16222 JBP 113788 #)

JBP 22«=NOV=74 17103 24584

‘BUXES 2 / Black Boxes {in PCP

w0=

JBP 22=NOV=74 17103

.JBP 22 NOV 74 73153PM Black Boxes in PCP

Introduyuction

The various black boxes described in "NSW Black Boxes" by
Millstein and Warshall of 1=0Octe=74 [CADD=7410~0112) are cast in
PCP calls, The intent here i{s to show how the functions described
in the black boxes document could be implemented ysing procedures
as defined in the PCF series of documents, This is not intended as
a specification of the actual implementation of these fuynctions
but only to further the understanding of procedure call protocol,

Data structures

Introdyction
Thege data structure definitions parallel the definitions in
the black boxes document, and are used in the remainder of this
document to act as a2 shorthand in passing procedure arguments
and results,
Account designator
%acd% LIST (%user3CHARSTR, %password%CHARSTR, %acCount%CHARSTR)
Host
$host%INTEGER
Workspace designator
swsd% LIST (sdirectorysCHARSTR, %passwordsCHARSTR)
Filename
$filename% CHARSTR
Filelist
gfilelists LIST (%filenamesCHARSTR) ,,,)
Fillepairs

sfilepairs% LIST (LIST (%srce=filenameiCHARSTR,
gdstefilename%CHARSTR), ,4,.)

File~id
$file=i1d% LIST (%hostRINTEGER, wsd, %filename%CHARSTR)

24584

2a

3a

Jal
3b
b1
3c
3ci
3d
34l
3e
3el
3f
31

ig

391
3h

3ni

JBP 22=NOV=74 17:03 24584

.JBP 22 NOV 74 7153PM Black Boxes in PCP
Cost 31
%$CostSINTEGER 31t
Condition/error code 33

Every pcp return includes a condition or error code (see PCP or
PIP), 351
Proceduyres ! B
Introduction 4a

shown in this section {s an example implementation of the black
box functions, we would expect that the works Manager would
initially create processes and open the appropriate packages in
each tool bearing host, This initialization is shown in the
Prologye, and for completeness the closing of these packages

and processes is shown {n an Epiloguye, 4al
The notation here is a slight simplification of the required

message format totl 4a?2

. Call ¢ phy pks, procname (arguments & results)) 4ala

wherel 4a2al

ph = process handle 4a2ala

pk = package handle 4a2alb

procname = procedure name 4a2alc

Preologue 4p

INITIALIZE (host, "fileepackage" => ph, epk, fpk) 4p1

Once 4bjla

Call (self, O, OPNPKS (PMP => mpk)) dblal

For each host 4bib

Call (self, mpPk, CRTPRC (sN nhost socket => Ph)) dbibl

calil (ph, 0, OPNPKS (FP, EXEC => fpk, epPk)) 4b1ib2

call (ph, epk, LOGIN (acd)) 4bip3

JBP 22=N0OVe74 17103
.JBP 22 NOV 74 7353PM Black Boxes in PCP

Epilogue
COMPLETE (ph)
For each host
Call (self, mpk, DELPRC (ph => cost))
Net file copy

NETCOPY (sph, sfpk, sre=wsd, srcefilename, dph, dfpk, dst=wsd,
access => dste=filenaMme)

call (sph, sfpk, OPNDIR (srcewsd => src=did))
Call (éph, dfpk, OPNDIR (dstewsd => dst=did))
Call (dph, dfpk, UNQFIL (dstwdid, "i1" => dst=filename))
call (dph, dfpk, CRTFIL (dstedid, "i1", dst=filename,
access))
call (self, mpk, CRTPHYCHN (sph, dph => sporh, dporh,
pch))
call (dph, dfpk, PUTFIL ((dst=did, dst=filename),
"retain", dporh, "ernl")) :

‘ call (sph, sfpk, GETFIL ((src=did, srcefilename),
"retain", sporh, "chnl"))
call (self, mpk, DELPHYCHN (peh)
Call (sph, sfpk, CLSDIR (srce=did))
Call (dph, dfPk, CLSDIR (dstedid))

Local file copy

LOCALCOPY (Ph, fpK, sre=wsd, src=filename, dstwwsd, access =>
dstefilename)

call (phe fpk, OPNDIR (srce=wsd => srcwdid))

call (ph. fpk, OPNDIR (dste=wsd => dstwdid))

call (phy fpk, UNQFIL (dstedid, "i" => dstefllename))
call (ph. fpk, CRTFIL (dst=did, "i1", dstefilename,
access))

call (phy fpk, PUTFIL ((dstwdid, dstefilename),
"retain", (sre=did, srcefilename), "file"))

Call (phy fpk, CLSDIR (sre=did))

Call (phy fpk, CLSDIR (dstedid))

24584

4c
4ci
4cla
4clal

44

4dl
4dla
4d1b
4dic
4dld
4die
4d1f
4diag
4din
4dii
4419

de

del

4ela
delb
delc

4eld
4ele

4elf
4elg

.JBP 22 NOV 74 T153FPM

Delete file

JBP 22=N0V=74 17303
Black Boxes in PCP

DELETEFILE (ph, fpk, wsd, filename)

call (ph, tpk, OPNDIR
Call (ph, fpk, DELFIL
Call (eh, fpk, CLSDIR

Delete all files

DELETEWS (ph, fpk, wsd)

call (ph, fpk, OPNDIR
Call (phy fpk, LSTDIR
filelist))
call (phy fPk, DELFIL
call (dph, dfpk, CLSDIR

Local file moye

LOCALMOVE (ph, fpK, sre=wsd,
dst=filename)

OPNDIR
call (eh, fok, OPNDIR
call (ph fpk, UNGFIL
Call (phy fpk, RENFIL

dstwdid, dstefilename))

Call (ph, fpk, CLSDIR

call (ph, fpk, CLSDIR
Moyve workspace

MOVEWS. (ph, fpk, srcwewsd,

call (Ph., fpk, OPNDIR
call (Phy fpk, LSTDIR
srcefilelist))

call (eh fpk, UNQFIL
call (phe fpk, CRTFIL
access))

call (phs fpk, RENFIL

dstedid, dstefilelisgt))
Call (phe fpk, CLSDIR

(wsd =>» did))
(did, "y1", filename))
(did))

(wsd => did))
(did, EMPTY, "parm" => count,

(did, count, fileilist))
(did))

srcefilename, dstewsd =>

(srcewsd => srew=did))

(dstwwsd > dstedid))

(dst=did, "1" => dst=filename))
(sre=did, "i1", sre~filename,

(srcmdid))
(dstwedid))

dstewsd, access => filepairs)

(sre=wsd => did))
(did, EMPTY, "parm" => count,

(did , count => dgtwfilelist))
(did, count, dst=filelist,

(src=did, count, sre~filelist,

(did))

wie

24584

4¢f
4f1
4fla
4£1b
4fic
49
g1
4gla
4ailb
4gic
4g91d

4h

4n1
4hia
4nib
4nic
4hid
énge
4nit

41

411
4ila

411b
411c

4i1d

411e
411 ¢

.JBP 22 NOV 74 7:53PM

Get local catalogue

JBP 22«N0OV=74 17303
Black Boxes in PCP

GETCAT (ph, £Pk, wsd => fllelist)

Call (phy fpk,
call (phy fok,
filelist))
call (ph, fpk,
State probe
STATE (ph => usage)
Call (ph, 0,
Accounting probe
ACCOUNT (ph => cents)

call (ph, 0,

OPNDIR (wsd => did))
LSTDIR (did, EMPTY, "parm" => count,

CLSDIR (did))

RDDATA ((self, epk, USAGE) => usage))

RDDATA ((self, epk, COST) =»> Cents))

24584

43

431
4j1a

431b
4jic

4K
4x1
d4kia
4l
411

411a

‘JBP 22 NOV 74 7353PM

Appendix

Introdyction

JBP 22«N0OVe=74 17303
Black Boxes i{n PCP

In this appendix is presented a possible implementation of the
black box functions using the procedures defined in the PCP
documents, This {s not the recommended implementation but is
shown only to promote an understanding of the procedure call
protocol,

Net file copy

NETCOPY (srcweacd,
dst=host, dste=wsd,

call (self, 0,
Call (self, mpk,
Call (self, mpk,
Call (sph, O,
Call c¢¢eh, O,
Cayl (seh, sSepk,
call c¢dph, depk,
‘ call (sph, sfpk,
call (dph, dfpk,
Call (éph, dfpk,
Call (dph, dfpk,
access))
call (self, mpk,
phe))
call (dph, dfpk,
"retain'", dporh,
call (sph, sfpk,
"retain'", sporh,
call (self, mpk,
Call (self, mpk,
call (self, mpk,
Local file copy
LOCALCOPY (acd, host,
dstefilename)
Call (self, 0,
Caj) (self, mpk,
call (eh, 0,
call (phy epk,
call (ph» fpk,
Call (phy fpk,
. call (Phy £PK,

src=host, srce=wsd, srcefilename, dst=acd,
access => dstefilename)

OPNPKS (PMP => mpk))

CRTPRC (8N srcehost socket => sph))
CRTPRC (SN dst=host socket => dph))
nOPNPKS (FP, EXEC => sfpk, sepk))
DPNPKS (FP, EXEC =» dfpk, depk))
LOGIN (srcw=acd))

LOGIN (dste=acd))

OPNDIR (srcwwsd > srcwdid))

OPNDIR (dst=wsd => dst=did))

UNQFIL (dst=did, "1" => dst~filename))
CRTFIL (dst=did, "i", dstewfilename,

CRTPHYCHN (sph, dph => sporh, dporh,

PUTFIL ((dstedid, dst-filename),

"ehnl"))

GETFIL ((srcedid, src=filename),

"ehnli"))

DELPHYCHN (phe)
DELPRC (sph => scost))
DELPRC (dph => dcost))

srceysd, Srge=filename, dsteysd, access =>

OPNPKS (PMP => mpk))

CRTPRC (SN host socket => ph))

OPNPKS (FP, EXEC => fpk, epk))

LOGIN (acd))

OPNDIR (srceysd => srcwdid))

OPNDIR (dstewsd => dstwdid))

UNQFIL (dstedid, "1" => dstefilename))

mh-

24584

5a

5al

S5b

Sbl

Skbia
Sbib
Sbilc
S5bild
5bile
S5bif
5big
Sblh
5bii
5bi}j

5bik
5bil
Sbim

Spin
Splo
Sblp
5bilq

5S¢

S5ci

S5cla
5Cib
Scic
5cid
S5cle
5clf
Scilg

‘JBP 22 NOV 74 73153PM

Ccall (ph, fpk,
access))

call (ph, fpk,
"retain", (sre=did,

Call (self, mpk,

Delete file

DELETEFILE (acd, host, wsd,

JBP 22=N0OV=74 173103
Black Boxes in PCP

CRTFIL (dste=did, "1", dst=filenanme,
PUTFIL ((dst=did, dst=filename),

srcefilename), "file"))
DELPRC (ph => cost))

filename => filename)

call (self, 0, ODPNPKS (PMP => mpk))
call (self, mpk, CRTPRC (8N host socket => ph))
call (ph, 0, OPNPKS (FP, EXEC => fpk, epk))
call (Ph: epk, LOGIN (acd))
call (phy fok, OPNDIR (wsd => did))
call (ph, fpk, DELFIL (did, "i", filename))
call (sel¢, mpk, DELPRC (ph => cost))
Delete all files
DELETEWS (acd, host, wsd)
‘ call (self, 0, OPNPKS (PMP => mpk)),
call (self, mpk, CRTPRC (8N host socket => ph))
Call (phy 0, DPNPKS (FP, EXEC => fpk, epk))
Call (ph, epk, LOGIN (aed))
call (phy fpk, OPNDIR (wsd > did))
| call (ph, fpk, LSTDIR (did, EMPTY, "parm" =>» count,
| gilelist))
call (ph, fpk, DELFIL (did, count, filelist))
| call (self, mpk, DELPRC (ph => gost))

Local file mrove

LOCALMOVE (acd, hest,

dstefilename)
call (self, O,
call (self, mpk,
call (ph, 0,
‘ call (ph, epk,
| call (ph, fpk,
| call (phs £pk,
call (phy fpk,
C!ll (Phl tpk'

srcewsd, srcefilename, dsteawsd =>

OPNPKS (PMP => mpk))

CRTPRC (8N host socket => ph))

OPNPKS (FP, EXEC => £pk, epk))

LOGIN (acd))

OPNDIR (srce=wsd => srecwdid))

OPNDIR (dstewsd => dst=did))

UNQFIL (dstedid, "1" => dst=filename))
RENFIL (srece=did, "i", sre=filenanme,

dstwdid, dstefilename))

call (self, mpk,

DELPRC (ph => cost))

24584

S5cih

{7 8
5¢1)

5d
5d1

5dla
5dlb
Sdle
5did
S5dle
'5d1f
S5dig

5e
S5el

Sela
5elb
Seic
S5eid
Sele

Self
Selg
5elh

S5f

5¢1

5f1a
5¢1b
5flc
5€1d
5fle
Sf1f
5flg

S5€1lh
5f£11

JBP 22=NOVe74 173103 24584

‘JBP 22 NOV 74 7:53PM Black Boxes {n PCP

Move workspace 5g
MOVEWS (acd, host, srcewsd, dstewsd, access => filepairs)) Sgl
call (self, 0, OPNPKS (PMP => mpk)) 5gla
call (self, mpk, CRTPRC (SN host sOcket => ph)) 5glb
call (Phy 0, OPNPKS (FP, EXEC => fpk, epk)) 5agilc
call (phy epk, LOGIN (acd)) 5gid
call (ephy fpk, OPNDIR (srcw=wsd => did)) 5a0le

call (ph, fpk, LSTDIR (did, EMPTY, "parm' => count,
srewfilelist)) 5g1f
Call (ph, fpk, UNQFIL (did , count => dstefilelist)) 5919

Call (ph, fpk, CRTFIL (did, count, dst=filelist,

access)) 5gih

Call (ph, fpk, RENFIL (srece=did, count, srcefilelist,
dstwdid, dst=filelist)) 5g1i
Call (self, mpk, DELPRC (ph «> cost)) 5913
Get loca)l catalogue 5h
GETCAT (acd, host, wsd => filelist)) 5hi
‘ call (self, 0, OPNPKS (PMP »> mpk)) shia
call (self, mpk, CRTPRC (SN host sOcket => ph)) 5hib
Call (phy 0, OPNPKS (FP, EXEC => fpk, epk)) Shic
Call (phs epk, LOGIN (aed)) Shid
call (ph fpk, OPNDIR (wsd => did)) Shie

call (phy fpk, LSTDIR (did, EMPTY, "parm" =3 count,
filelist)) 5hif
call (self, mpk, DELPRC (ph > cost)) 5hig
State probe 51
STATE (acd, host => usage) 511
Call (self, 0, OPNPKS (PMP => mpk)) 511a
Call (self, mpk, CRTPRC (8N host socket => ph)) 5{1b
call (phy 0, NDPNPKS (EXEC => epk)) 5ilc
Call (Phy epk, LOGIN cacd)) 5i1d
v 5i1e
call (ph, 0, RDDATA ((self, epk, USAGE) => uysage)) 511f
'S 5ilg
call (self, mpk, DELPRC (ph => cost)) 5iin

wl=

‘JBP 22 NOV 74

Accounting
ACCOUNT

Call
Call
call
call

call

Call

7:153PM

probe

JBP 22«N0OV=74 17103
Black Boxes in PCP

tacd, host => cents)

(Selfo 0'
(Phy 0,
(Ph, epk,

(ph, 0,

(Selfo mpK,

OPNPKS (PMP «> mpk))

CRTPRC (SN host socket => ph))
OPNPKS (EXEC => ePk))

LOGIN (aed))

RDDATA ((self, epk, COST) => cents))

DELPRC (ph => cost))

24584

59
531

5ila
541b
5ilc
5914
5ile
531¢
5319
53ih

JBP 22=NOV=74 17103

24584

JBP 22«N0OVe74 17103 24584

Black Boxes in PCP
version 2

22=N0V=74

Jon Pestel
Augmentation Research Center

!
I
| Stanford Research Institute
l Menlo Park, California 94025

This document describes the Mapping of the Black BOxes described
‘ py Millstein & Warshall into the proceduyre calls defined by White

& Postel,

JBP 22=~N0OV=74 17:03 24584

'BOXES 2 / Black Boxes in PCP

(J24584) 22«NOV=74 171031311 Titlet: Author(s): Jonathan B,
Poste)l /JBPy SubeCojlectionsy SRI=ARCy Cilerk: JUBP) Origing <
POSTEL, NSWeBLACK=BOXES,NLS313, >, 22=N0OV=74 163128 JBP st

DCE 23=N0OV=74 103156 24585
‘To Placko re wider distribution of his (31374,) paper

Mikeg: Just to say that I read and appreciatd your item, "Notes On

The Application Of The Arec Utility At SRI", (GJOURNAL, 31374,),

Nicely written, good coverage == PLUS, building up important dialogue

base in recorded form, 1’d 1ike to seem more of our interested

parties nave an [(info only) citation == esp, jen, jhb, and rill in our
Utility groupy alse it would seem that all of our architects would be
interested, and I personally don’t see anything in the content that

wvould deter me from sharing {t with any of them, Up to you, of

course, 1

|
I
|
|
|
|

; DCE 23=NOV=74 10356 24585
.To Placko re wider distribution of his (31374,) paper

(J24585) 23=N0V=74 10:563813 Title: Author(s): Douaglas C,
Engelbart/DCE; Distribution: /MAP2([INFO=ONLY)) ; Sub=Collectionst
SRI~ARC; Clerk: DCE)

DCE 23=NOV=74 113107 24586
"ro Belleville re his report on ASME CAD session (24573,)

Bob: Just to say that I read and appreciatd your item, "Report On a
Presentation te the ASME (Amer, Soc, of Mechanical Eng)", (GJOURNAL,
24573,), It was nicely written and had good coverage == PLUS,

puilding up important dialegue base in recorded form, I"m putting a

copy of the merc in our "marketing" file, relating to future

evolution of AKW working relationship with the CAD world; and I'm

also looking forward to some good discussions with You on that topic

soon,, 1

DCE 23=N0OV=74 11307 24586
.To Belleville re his report on ASME CAD session (24573,)

(J24586) 23=N0V=74 1110713133 Title: Author(s): Douglas C,
Engelbart/DCEs Distributiont /RLB2([INFO=ONLY)]) ; Sub=Collections:
SRI=ARC; Clerk: DCE;

DCE 23=NOV=74 11307
"ro Belleville re his report on ASME CAD session (31374,)

Bobt Just te say that I read and appreciatd your item, "Report On a
Presentation te the ASME (Amer, Soc, of Mechanical Eng)", (GJOURNAL,
24573,), It was nicely written and had good coverage == PLUS,
building up impertant dialogue base {n recorded form, I’m putting a
copy of the mermo in our "marketing" file, relating to future
evolution of AKW working relationship with the CAD worldy and I'm
also locking forward to some good discussions with You on that teplc
soon,,

24587

DCE 23=NOV=74 11107
‘To Belleville re his report on ASME CAD session (31374,)

(J24587) 23=N0V=74 1130731813 Title: Author(s): Douglas C,
Engelbart/DCEy Distributiont /RLB2([INFO=ONLY]) Sube=Collections:?
SRI=ARC; Clerk: DCEj

24587

DCE 23=NOV=74 11:25 24588
‘SNDMSG Copy: Te Russell, re, ANET experiences ¢or ARC/NLS

This responded to Russell’s guery, on Lukasik®s behalf, for comments
about our Net experience (grist for Lukasik’s Dec talk, same meeting
where Dick will talk apparently),

DCE 23=-NOV=74 11325

‘SNDMSG Copyt Te RUssell, re, ANET experjiences for ARC/NLS

Dave; I take it that yoy want grist from me, bearing upon usage
experience with the ARPANET, especially from ARC’Ss experience, I’m
recoynting some highlights in narrative stylej let me know if you
want more {tems, Or more details,

In the very earliest davs of developing a Network Information Center
(NIC), I found an almost universal image in each PI that the
documentation on his systems was in embarrasingly poor shapej quite
evidently a threat to him, in exposing this inadequacy by opening his
resources to remote users,

In providing extensive services since the very earliest Net days,
our NIC learned how much harder it i{s to serve the users of a
large Net than it is to serve local users of onefs own center,

Important point abot Nets, then, is that a new level of quality
is reaguired in formal user services (documentation, training,
bugereporting, advice, ete,),

We algo learned that a new level of quality is required in the
technicale-system service; very noticeable lower tolerance to delays,
ocutage, bugs, etc, Some duye to greater inconvenience to remote users
{f they are cut off and can’t easily find out what is happening,

Some {s dye to the lack of personal contact == user and server, not
knowing each other personally, don’t have empathy for each other's
problems,

Earliest remarkable observation about ARPANET Community has to do
with impact on cooperativeness, working stvle, etc, Commen problems
among developers brought people together, and the Net*s communication
facilities even in the early days (shared files, TTY linking) made
collaboration easlier,

Among the yarious researeh groyps, particularly for the emerging
fellows who cut their teeth om Net prejects, there was a marked
change over a period of a few years in their acceptance of other’s
styles and {deas, and in their willinaness to cooperate,

To bolster this, earliest services develored in the NIC were to
Support the collaberative flow of communications: memos, messages,
etc,y) human Information Agents and Liaison assignments;) and the
IDENT system that both helped distribute the commynications and
ajided people t0 locate peobdle,

Our continying experjence in providing heayily knowledge=oriented
service over the Net constantly reaffirms how important {t is to
give special liaison, service, and/er training assignements to
local humans who have real identification with the served users,

2a

2b

4a

4b

DCE 23=N0OV=74 11125
.SNDMSG CopY: Te Russell, re, ANET experiences for ARC/NLS

It is alsec important to support their work via special
communicatienss faciljities,

The first time we experienced the real power of a Network was in
1970 == bootstrapping NLS and its support systems from our SDS=940 to
the present PDF=10, OQur software i{s all in structuyred form,
generated, stored, manipulated (and now depbugged) within the NLS
"software workshop," We used our full kit of tools {n the 940 to
prepare the new source codej shipped files across to Utanh's PDP=10 to
debug, Programmer flipped back and forth between NLS source=code
work, compller, debugger == hack and forth betweeen machines == from
his same display console, with very nearly the same ease as when
working on one machine, We set some sort of record for minimized
conversion (and upgrading) effort,

The next peak experience was in 1972, when we got DNLS working over
the Net usina IMLAC terminals (self=contained mini computer
programmed to handle the 2~dimensional display interaction, using
DNLS core processes in cur host),

Before that, remote NLS users were all on typewriters, not a
particularly demanding use of ANET capability, and not really that

‘ convineing for requiring a net as oppoessed to dialup phone
service, But here we got really quite acceptable level of
interactivity, with DNLS’s apecial twoedimensiona)l text displays
»» a service that would be very expensive to provide {f by
wideeband private data lines,

First instances then of what we call "shared«screen dialogue",
between people at ARC in Menlo Park amd at RALDC in Rome, New Yeork,
werking on highly interactive screens where each could point to
and control, simultaneously talking on the telephone == like
sharing a blackboard, As far as I am concerned, that is one of
the key portents of what the Net can provide,

The $20K price tag on an IMLAC {s discouraging, Our $2500 Line
Processor device turns any suitabje, late=mode), high=speed
typewriter~like CRT display into a two=dimensional DNLS terminal,
Apparently these, when using 4800=baud modems on private wires into
the TIpS, are the first cases where the TIPS are being connected to
in this fashion, Some technical problemg that weren’t uncovered
before,

ALso, We are finding that the Net, via a TIP port, really doesn't
deliver burst bandwidth as advertised, at least through very many
intermediate~IMP hops, The problem deesn’t seem to hit the
flle=transfer Use, so we think it probably bears upon buffer sizes

‘ in TIPs,

24588

4c

ba

6b

Ta

DCE 23=NOV=74 113125 24588
.SNDMSG Copy: To Russell, re, ANET experiences for ARC/NLS

we feel that the Network’s steady influence upon resoyrce sharing,
upon muyltiple=host "tool systems," ete,, is haying a significant
impact upon the coOncepts and practices of system design,
Interwprocess protocols, Control Meta Languages, Frontend=Backend
splits, etc, seem basic and {mportant, The NSW Program {s very
important in this respect, We expect that the Intelligent Terminal
Program should bulld upen this approach, 8

RADC undertook a technologyetransfer experiment using NLSj three
vears ado they be@an experimenting with typewriters through the NET,
They bought five IMLACs when they got their own TIP, They now use
five slots on OFFICEw~{ rejatively heavi{ly, Among the recent
extensions in application area has been toward heavysdocument
publication, Kave developed considerable projectmmanagement usagej
branching intoc support to software engineers (and hayve begin to
contribute to NSW Program), 9

Technology transfer, at least in informatione=processing technoloagy,
is uniguely aided by the Network, For the size and complexity of the
new generations of applications systems, user organizations coyldn‘t
afford to import them t0 install in their local compyter facilities
just for experimentation, The NetwOork very much facilitates the
.exploratory access, and comparative evaluation, 10

For uss in trying to facilitate a concurrent evolution of
Knowedgewwork augmentation know=how, along with its transfer into
the application world, the Network is an absolute necessity, 10a

In the first place, exotic interactive services couldn’t be piped
inteo a client’s offices practically in any other way, 10b

In the second place, we ecouldn’t run a solid service for such a
complex of tools without a contractor like TYMSHARE to support the
operating system; and we expeect to have NLS service systems
running in many different facilities within a few years ==
couldn*t sensibly plan for this (by a core of people based in a
nonwprofit cutfit) without the Network enabling us to maintain the
applications software, the documentation, the daystow=day user
communicatiens support, etc,, from eur central workshop terminals, 10c

In the third place, the very tools for suPporting collaborative
diajogue that are such a basic part of our "augmented knowledge
workshop" services, serve a Key role in this whole transfer
process, Close dialogye between developers, docuymenters, trainers,
usermrepresentative architects and managere=buyers, users, and
systems analysts, is necegsary for the coherent eyolution of
large, complex systeMs, and also fOr the sensiblyestaged transfer
‘ into application organizajions, 104

DCE 23«NOVe74 11325 24588
‘SNDMSG Copys Te Russell, re, ANET experiences for ARC/NLS

The ARPANET Newsletter experience was quite noteworthy, Many people
contributedy distributed committee did the editorial work (via net
collaboration); computer published for hardecopy distriution; oneline
access of "preprints" and f£inal editions, The editorship of the
SIGeAl Newsletter, for several vears, happened to be in SRI’s AI
group) they developed and published a number of issues successfully
using NLS in this way, 11

The DoD Internetting Study Group made heavy use ©of NLS from late Aug
into Oet 74 to develop final report, Three different committees
working on one large report (total perhaps 700 pages): heavy
revision, many cycles, Used terminals at SRI=Wash already provided
under ARPA sppoert to SRI pDefense ENergy Prject; extra terminals
borrowed;y SRI loaned offie spacej) DCA clericals trained and
supervised on the job by ARC specialist; RADC skilled clerical
supervisor helped first week, 12

(Dave, yeu can better £111 in about nature and dynamics of the
Study Group and any benefits from NLS support to the development
of the report’s contents), 12a

The clerical team, directories, and working methods were set up

‘ quieckly and easily (falr amount of seteup negotiations and

arrangements done via Net dialogue), 12b

DCE 23=NOV=74 11325 24588
‘SNDMSG Copyvt Te RUssell, re, ANET experiences for ARC/NLS

(J24588) 23«NCVw74 1132533313 Title: Author(s): Douglas C,
Engelbart/DCE; Distributiont /RWW([INFO=ONLY)) JCN([INFO=ONLY])
y SubeCollectionst SRI=ARC) Clerk: DCEy

DCE 23=NOV=74 11343

.Ouesuon ¢or Dirk re his (GJOURNAL, 24543,)

Dirkg

The citation I goti

K19=0908 DVNi ASAS
Sent!i 19=NOV=74 08326 (GJOURNAL, 24543, 1)
Note: [INFO=ONLY]

comments: This is a correction to 24454,

Three questions about it

1) What deces the "ASAS" in the title mean? I checked and it
isn’t an IDENT, 1I'd like titles to be more informative,

2) The journal file itself looks very interesting and esoteric,
but also something of a private nature, I couldn’t £ind any
reader=guide to what, why, ete, of content, IS it perchance a
periodic Journalization of a private file of yours where you
happened te accidently have me on the distribution list?

3) Your Comment citation to 24454 {s very confusiong, (J24454)
happens to be Sandy’s ",,,A Spade is a Spade,," Message, and your
citing it adds t© the confysion of this whole Journal entry,

Pyzzled recipient == DOyg

24589

2a

2al

3a

3b

3c

DCE 23«NOV=74 113143 24589

.ouestion for DirkK re his (GJOURNAL, 24543,)

(J24589) 23=N0OV=T74 11143311 Title: Author(s): Deouglas C,
Engelbart/DCEy Distributiont /DVN([INFD=ONLY 1) j SubeCollections:
SRI=ARC) Clerks DCE;

JEW 23«NOVe74 16325
.Verslon 2 of the Procedure Call Protocol (PCP)

This note announces release of the second published version of the
Procedure Call Protocel == PCP Version 2, Version 2 is SUBSTANTIALLY
different than version 1) {t and all intermediate, informally
distribyted PCP documents are obsoleted by this release,

version 2 consists Of the following documents, Each is available
on=li{ne in two formsg as an NLS file and as a formatted text file,
The Jouyrnal number (e,g, 24459) refers to the former, 0of course, and
the pathname (e,9, [SRI=ARCI<NLS>PCP,TXT) to the latter, accessible
via FTP using USERSANONYMOUS and PASSWORD=GUEST (no account
required), Hardcopy is beinag forwarded by US Mail to all those who
have expressed an interest in PCP, 1If vou don‘’t receive a copy and
would like one of this and/or future releases, send a note to that
effect to WHITEQGSRI=ARC}H

PCP (24459,) "The Proecedure Call Protocol"

This document describes the virtual programming environment
provided by PCP, and the interwprocess exchanges that implement
it,

Pathname: [SRI=ARC)<NLS>PCP,TXT
‘ PIP (24460,) "The Procedure Interface Package!"

This docuyment desCribes a package that runs in the setting
provided by PCP and tphat Serves as a procedurescallelevel
interface to PCP proper, It includes procedures for calling,
resuming, interrupting, and abcorting remote procedures,

Pathnamey [SRI=ARC)<NLS>PIP,TXT
PSP (24461,) "The PCP Support Package"

This document describes a package that runs in the setting
provided by PCP and that augments PCP proper, largely in the
area of data store manipulation, It includes procedures for
obtaining access to groups of remote procedures and data
stores, ranipulating remote data stores, and creating temporary
ones,

Pathnamei (SRI=ARCI<NLS>PSP,TXT

PMP (24462,) "The process Management Package"
This decumént describes a package that runs in the setting
provided by PCP and that provides the necessary tools for

{nterconnecting two or more processes to form a multieprocess
. system (e,g, NSW), It includes procedyres for creating,

24590

2a

2al
232

2b

2bl
2b2

2¢

2cl
2e¢2
24

JEW 23=NOV=74 16325 24590
.Version 2 of the Procedure Call Protocol (PCP)

deleting, logically and physically interconnecting processes,

and for allocating and releasing processors, 2d1

Pathname; [SRI=ARC)<NLS>PMP,TXT 2d2
PCPFMT (24576,) "PCP Data Structure Formats" 2e

This document defines formats for PCP data structures, each of

which is appropriate for one or more physical channel types, 2el

Pathnamep [(SRI«ARC)<NLS>PCPFMT,TXT 2e2
PCPHST (24577,) "pCP ARPANET IntereHost IPC Implementation" 2f

This document defines an implemeéntation, appropriate for
mediating communication between Tenex forks, of the IPC

primitives required by PCP, | 2€1
Pathname: [SRI-ARC)I<NLS>PCPHST,TXT 2£2
PCPFRK (24578,) "PCP Tenex Inter=Fork IPC Implementation" 29
‘ This decument defines an implementation, appropriate for
mediating communication between processes on different hosts
within trhre ARPANET, of the IPC primitives required by PCP, 291
Pathnamey [SRI=ARC]I<NLS>PCPFRK,TXT 292

The first document, PCP:, is the place the interested reader should

start, It agives the reauired motivation for the Protocol and states

the substance of the Protocol proper, The reader may then, if he

chooses, read the nmext three documentsy PIP, PSP, and PMP, The

latter has the most to offer the casual reader; the programmer faced

with coding in the FCP envirenment should read all three, The final

few documents =« PCPFMT, PCPHST, and PCPFRK == are of interest only

to the PCP implementer, 3

JEW 23«NOVe74 16125 24590

.Version 2 0f the Procedure Call Protocol (PCP)

Title: Author(s): James E, (Jim)

/8RI=ARC([INFO=ONLY]) NsW([INFO=ONLY])
Origint < WHITE,

(J24590) 23«N0OV=74 1631253131
White/JEW) Distributiont
} SubeCollections:

PCP=COVER ,NLS1S, 2,

SRI=ARC NSW) Clerki JEW}
23=NDVeT74 16112 JEW prpp8¥ss

JBP 23=NOV=74 16330

‘Version 2 of NSW protocols

This note announces the release of the second published version of
severa)l National Seftware Works (NSW) protocol documents, This set of
documents is labeled Version 2, Version i, as well as all
intermediate, informally distributed NSW documents are opsoleted by
this release,

several of these dpcumepts specify protoCols or procedure packages
based on the Procedure Call Protocol (PCP == 24459,), with which the
reader i{s assumed familliar,

These documents are available online in two forms: as journal items
indicated by the link number (for example the HOST document is
journal item 24581)) and as ASCII text files by the indicated
pathname [for example the HOST document {s text file HOST,TXT in
directory NLS at host SRI=ARC), The files may be reterived from
SRI=ARC using the file transfer user name ANONYMOUS and the password
GUEST, no account number is needed,

Hardecopy is being forwarded py US Mail to all those who have
expressed an interest inm NSW protocols,, If You don’t recelve a copy
and would like one of this and/or future releases, send a note to
that effect to WHITERSRI=ARC}

'The speclifications are contained in the folloWing documents:

HOST "NSy Host Proteoecol" (24581%,)

This decument describes the host level protocol used in the
NSW, The protocel is a slightly constrained version of the
standard ARPANET host to host protoecol, The constraints affect
the allocation, RFNM walt, and retransmission policies,

[SRI=ARC] ¢NLS»>HOST,TXT
EXEC "The Execuytive package" (24580,)
This document describes a package that runps in the setting
proyvided by PCP, It includes procedures and data stores for
user identification, accounting, and usage information,
[SRI=ARC]<NLS»EXEC,TXT
FILE "The File package" (24582,)
this decupent describes a package that rups ip the settipng
provided by PCP, It includes procedyres and data stores for
opening, closing, and listing directories, for creating,

deleting, and renaming files, and for transfering files and
file elements between processes,

24591

5a

5al
5ala

Sb

S5pi

Sbia

5¢

Seci

JBP 23=N0OV=74 16130 24591
.Veruon 2 of NSW protocels

[SRI=ARC]CNLS>FILE,TXT 5cla
BATCH "The Batch Job Package" (24583,) 5d

This document describes a package that runs in the setting
proyided by PCP, It includes procedyres for Creating and
deleting bateh jobs, obtaining the status of a batch jeb, and
communicating with the operator of a batch processing host,
This package {s implemented at the host that provides the batch

—

processinag facilitv, S5dl
[SRI=ARC)<NLS>BATCH,TXT 5dia
LLDRUG "The LOw=Level Debug Package" (24579,) Se /

This document describes a package that runs in the setting

provided by PCP, It includes procedures for a remote process

to debuc at the assembly=language level, any process kKnown te

the local process, The package contains procedures for

manipulating and searching the process’ address space, for

manipulating and searching its symbol tables, and for setting

and removing breakpoints from its address space, Its data :

. stores hold process characteristics and state information, and
the contents of program symbel tables, S5el |
[SRI=ARC)<NLS>LLDBUG,TXT Sela
BOXES "Black Boxes in pCp" (24584,) 5¢ |

This decument describes the transiiteration of the bjack boxes
defined by Millstein and warshall into the setting provided by |
PCP, especially the File Package and the Executive Package, 5¢€1 .

[SRI=ARC)<NLS>BOXES,TXT

-
.

.Version 2 of NSW protocels

JBP 23=NOVe74 16330 24591

(J24591) 23=NOV=74 16130139 Title: Author(s): Jonathan B,
Postel/JBPy Distributions /NSW([INFO«ONLY]) SRI=ARC([INFO~ONLY])
3 SubeCollectionss SRI=ARC NSWjy Clerki JBP) Origin: < POSTEL,
NSW=COVER,NLS35, >, 23«NOVe74 16126 JBP jppppédset)

RLL 24-NOVe=74 17157 24592

.Documentation Weekly response = Perhaps a monthly,

Ret (24572,) by DVN

RLL 24=NQV=74 17357
.Documentation Weekly response =~ Perhaps a monthly,

Perhaps Biweekly would be a better time span for the Documentation
weekly (biweekly), 1 wish it good luck, The history of such
documentation reports has been rather filled by inactive reports, I
would even consideer monthly since it might be less of a burden {f
done that why and less 0f a burden on the reader to see what is
happpening in documentation,

24592

RLL 24=N0OVe=74 17157 24592
.Docurnentation Wweekly response = Perhaps a monthly,

(J24592) 24=N0Vm74 171587331 Title: Author(s): Robert N,
Lieberman/RLLs Distributions /DIRTC([ACTION]) Keywords:
Documentationy; Sube=Collectionst: SRI=~ARC DIRTj Clerk; RLLjy

SRL 25=N0V=74 07336 24593
‘Report en Docurentation Progress

It seems like it might also be a good idea to send a copy of any

progress on documents to be ysed by OFFICE=]1 users to KWAC for one

thing to let the architects know what all is being done for them that

they often times don’t realize, It might demonstrate a little better

what all their money is going for,.. 1

.Report on Docurentation Prodgress

SRL 25«N0OV=74 07336 24593

(J24593) 25=N0OV=74 07136133 Titlet Auther(s): Susan R, Lee/SRLj

Distributions /SRI=ARC([ACTION))
SRL}

) SubeCollections?

SRI=ARCy Clerk:

.Visit to NSRpC on 15 Nov 74 by RLL

This i{s a contact report,

RLL 25«N0V=74 08339

24594

RLL 25=NOV=74 08339

.Visit to NSRDC on 15 Nov 74 by RLL

(DATE) 15 Nov 74

(BY) Lieberman

(ATTENDEES)
Robert Lieberman (RLL) = SRI=ARC
Thomas Rhodes (TRR) = NSRDC
Frank Brignell (FGB) = NSRDC
Herb Ernst (HME) = NSRDC

(MEDIUM) FACE=TO=FACE

(WHERE) NSRDC, Carderock, Maryland

(ACTION=ITEMS) none

(DISTRIBUTION) DCE JCN KLL

’ (REMARKS)

In talking with Frank Brignoli, Tom Rhodes, and Herb Ernst I
learned several items pertinent to NSRDC, NAVSEC, Graphics, Data
Management, and Navy Networking, The following are my notes from
thegse informal discussions with my former NSRDCers,

NAVSEC

Pete Bone of NAVSEC {s now mostly working on the Comrade
project (a data mapagement system, gquery lancayge, file
maintenance systemr for ship design enaineers), He will return
to NLS after December 1974, No cne else at NAYSEC is using eor
near use of NLS,

Graphics

Graphics at NSRDC seems to be rather inactive, The opinion is
that it is too Costly and funding, therefore, has fallen off as
well as the interest at the management level, Even the
anticipated yse of the GT=40 (an intellicent graphics
terminal) for graphics has been scraped, It is being used for
data analysis,

NLS Applications

Basically NSRDC {s using NLS for several reports and for

24594

la
ib
3¢

3d

Ba

8b

8pb1

8c

Bel

gd

RLL 25«NOV=74 08139

.Vilit to NSRDC en 15 Nov 74 by RLL

preject coordination, They seem to be exploring some new ways
of coordination amenc a geograhically distributed community,
Just how sophisticated these techniques are I did not £ind out,
They expressed desire for the Line Processor as soon as
possible since they can immediately use it with a voice grade
2400 pauyd modem (Valdec, I think) on a dial=up phone,
NSRDC projects

pata Management Engineering

This {s a 3 to 5 year project now in {ts first year,

The objective is to come yp with ways of classifying,
organizing, engineering, and developing DMS,

Also they are interested in written procedures to develop,
establish, and use DMS,

In addition, compiler=compiler methods and the like are
peing studied,

. Computer distriputing problems will be looked at, hence
networking, communications, large data stores, etc, are
other possible avenues in this project,

Comrade

In the Comrade project some work is being done on the DMS
interface for the ship design community,

Networking

The Navy Networking project is full speed apead with the
plan to Connect all the Navy Labs,

(DOCUMENTS) Hard copvy given and received
(GIVEN) none

(RECEIVED) none

24594

8dl

B8d2
ge
el

gBela

Belb

gelc

geld

fele

Be2

BezZa
8e3

ge3ja

9a

9b

RLL 25«NOV=74 0B339 24594

.Visit to NSRDC on 15 Nov 74 by RLL

(J24594) 25=NCV=74 083139331 Titlet Author(s): Robert N,
/DCE([INFO=ONLY]) JCN([INFO=ONLY])

Lieberman/RLLy Distribution:
NSRDC NAVSEC graphics Data Management Networking Marketing;

;} Keywords:
Sube=Collectionst SRI=ARC) Clerk: RLL)

RLL 25«N0Ve=74 08350 24595
‘ Meeting at ONR with NSA, ONR on 7 Nov 74

This a contact report,

RLL 25=N0OVy=74 083150 24595
.Meetinq at ONR with NSA, ONR on 7 Nov 74

(DATE) 7 NOV 74 1
(BY) Lieberman 2
(ATTENDEES) Name of attendee (Idnum) = Organization acronym 3
Douglas Engelbart (SRI) 3a
Robert Lieberman (SRI) 3b
Susan Lee (SRI) c
Dennis L, Mumaugh (SRI) 3d
David R, Smith (NSA) 3e
Jim Popa (NSA) it
Randy Simpson (ONR Code 431B) g
(MEDIUM) FACE=TO=FACE 3
. (WHERE) ONR small conference room, Arlington, VA 5
(ACTION«ITEMS) 6
Meeting of SRI-ARC TENEX/NLS expert with NSA and DEC people 6a
(DISTRIBUTION) DCE JCN RLL 7
(REMARKS) 8

We sat around and talked mainly with Dennis Mumaugh on the
potential of using NLS at NSA, Ba

In particular with the new PDP1080,(super fast CPU and several
goodies) They (NSA) are talking with DEC tpo procure a Tenex like
operating system, 8b

It seemed that the main reason for having the new machine would be

to put on NLS users, Thus it was important to kno¥ what

dependence ecn the Tenex operating system NLS had, We agreed that

someone fror DEC, someone from NSA and someone from SRI~ARC should

meet and discuss these technical interfaces, Be

In summary {t Seems that NSA is truely hot on using NLS on one of
their own machines, Their plans sound as {f many people will be
‘ involved in this community of ysers, 8d

RLL 25=NOV=74 08350 24595

.Meetinq at ONR with NSA, ONR on 7 Nov 74

(DOCUMENTS) Hard copy given and received 9
(GIVEN) none 9a
(RECEIVED) none 9b

RLL 25«N0V=74 083150 24595

.Meeting at ONR with NSA, ONR Oon 7 Nov 74

(J24598) 25=NCV=74 08:50111 Title; Author(s): Rebert N,
Lieberman/RLLy Distribution: /JCN([INFO=ONLY]) DCE([INFO=ONLY])
} Keywordst NSA marketing; Sube=Collections: SRI«ARC) Clerkt: RLL;

RWW 25=N0OVe74 10314 24596
. Note on Computation for ARC NSW Development

The status of thinas relevant to obtaining computation and net access

for ARC NSW developments is the followings I will be gone on a trip

starting Sun and would appreciate it if Martin could followup on the

items {ndicated below, 1

1) Bill Carlson informs me that he has told RML to rush an order for
the Needed distant IMP sjde interfaces, Martin should followup on
this with RML, 2

2) The NBS loaner IMP intepface yas subpposed to be shipped last week,
Martin should followWup on this also, 3

3) 11l firally has all the parts for the other IMP interface and it

should be delivered this week, NMartin should followyp on this also

as well as getting it purchased on Capital equipment as Cox agreed

some months age, 4

4) Martin through Tom Little should check with DEC about how
delivery plans on coming for the other DEC equipment PDP 11 printer

etc we have on order, 5
§) I dp not Kpew What the status of our terminal orders is, Martin

' could you check? 6
6) Ed and Jake have been doing the internal wiring needed to hook
terminal to the {1 and assume that is all cool, 7
7) I do not knew what the status of Line Processors is, B

8) The Status c¢f PDP Tenex power is not completely clear and Know

that Jim is actively pursueing things with Tymghare for a second ten

there and with ARPA about possibly kKeeping our machine a little

longer i{f needed, I have also talked with BBN and asked Ted Strollo

te send an official quete for service from them, 9

Ted thinks that about three months will be the minimum, He says

if all the people whe have been talking with him puy what they say

they need, there will be more than 100% sold, He will reserve

time £irst purchase order order in the door, 9a

BBN is not 100% certain their new machine will be up solid by Jan
{ but all the pileces are almost there, 9b

Bob Millstein will buy about 15=20% there and about 8«10% from us
if we can give nim a solid date and gquote, Bill Carlson would
share that percent with us and other NSW users with MCA holding
option to use it if they get desparate, Bob ran some experiments
with the new 132 scheduler and ple slicer using editing (8087),
. BCPL compiles loads and runs and found that about 5% was the lower

RWW 25=NOV=74 10314 24596
. Note on Computation for ARC NSW Development

bound per user for satisfactory service, Less was unsatisfactory

and he did not try mere, The 5% was adeguate no matter what else

was going on outside their plece of the pie no matter how many

other bad thing they loaded in, When they ran heavy compute bound

things in their piece of the pie (15%) there was degradation, 9¢

At the end of this week I would like to review where the PDP 10
negotiations are at and see if we should not procCeed to order

30«35% for three months from BBN, to cover any hole tht might

develop until Tymshae can get a second machine up running Tenex, 9d

RWW 25=N0OV=74 10314 24596
‘ Note on Computation for ARC NSW Development

(J24596) 25«N0V=74 10114311 Title: Author(s): Richard W,
Watson/RWW) Distributiony /MEHC [ACTION]) JCN(C [ACTION)) NPG((
INFO=ONLY)) JBP([INFO=ONLY]) DCE([INFO«ONLY)) DVN([INFO=ONLY
]) POOK([INFO=ONLY)) KIRK([INFOwONLY]) 3 Sup=Collections:
SRI=ARC NPGjy Clerk: RWW)

RWW 25=N0OV=74 10126

. Important NLS and Journal Demo on Dec 6 grom MIT

Friday Dec 6 I will be eiving an important NLS and Jeurnal deme from
an IMLAC at MIT to Licklider, Kahn, the APA Message Service
committee, and some DoD people from around 6300 to 9300 Pacific Time
(1oca) here), The following things need doing,

1) I need to get checked out on the IMLAC,

2) We need to double check with MIT that they have the latest IMLAC
program and can run {t te do all normal NLS functions, Bob
Belleville and I should get on the phone and double check this,

3) Jeff and pave should be sure we have yptodate Journal indices and
that they ae online,

4) 1 should prebably have a backKuyp account at Office 1 to use,

5) There should be someone Knowledgable about things arouynd hee at
the time to deal with questions and problems with IMLAC, Tenex, NLS,
rast time in washington the demo was a mess and I woyld like to avold
the problems this time, Thanks Dick

24597

RWW 25«N0OVe=74 10126

‘ Important NLS and Journal Demo on Dec 6 from MIT

(J24597) 25=N0V=74 10126311 Titlet Author(s)i Richard W,

Watson/RWWy Distriputiony /RLB2([ACTION)) EKM([ACTION]) JCP([
ACTION)) DSM([ACTION]) DCE¢ [INFO=ONLY)) JCN([INFO=ONLY])

CHI([INFO«ONLY)) JDH(¢ [INFOeONLY]) » Sub=Collections: SRI=ARC)
Clerks RWW)

24597

	24575-24576

	24577

	24578

	24579

	24580-24581

	24582

	24583

	24584

	24585-24588

	24589-24592
	24593-24597

