
KEV 22-N0V*74 16:01 24575
ELF and ELF related tasXs for the NSW

The following Is a list of net yet completed ELF a nd ELF r elated
tasks required by SRI-ARC for Its NSW work, and our understanding of
the current status of these tasks, 1

The ELF KERNEL LA

We need a TEST and a TESTS Ctest specific) system call so we
can checK for the occurence of an event without being put to
sleep,

Statusi

The ELF EXEC

Status J

lal

la2

Dave petz has indicated that it would be trivial to
implement these two system calls, but has not yet gotten
around to doing it, 3a2a

lb

we need the ELF EXEC in a working and reliable state, lbl

We need to get a better understanding of the relationships that
exist between the ELF KERNEL, the ELF EXEC, and user processes
running on ELF, Specifically, it appears that from a users
point of view, some system calls are part of the KERNEL and
some system calls are part of the EXEC, Since it will
eventually be necessary for us to replace the ELF EXEC with an
NSW EXEC, we need to know how to separate the ELF EXEC into two
parts: i b 2

that part of the EXEC that implements system calls, and lb2a

that part of the EXEC that serves as the ELF command
interpreter, l b 2 b

1 b 3

The ELF EXEC is supposed to be fully operational by Dec, i,
and documentation on its structure has been promised, but no
date set for the documentation,

ELF Network programs 1°

we need a working NCP in ELF, lei

we need a working TELNET in ELF, l c 2

Status: . l c 3

1

KEV 22*N0V-74 16:01 24575
ELF ana ELF related tasks tor the NSW

The ELF NCP and TELNET programs are supposed to be fully
operational by Dec# 1, lc3a

ELF virtual Memory id

we need the virtual memory implementation of ELF# Without this
capability# only 28K of the memory on an 11 is usable, ldl

Status: 1 <32

The virtual memory features of ELF are not expected to be
ready until at least Jan, 1# 1975, ld2a

Loading ELF ie

We need to o© able to "boot load" ELF into an 11 from over the
network, iel

Status: i e 2

Eric Mader of BBN is currently working on this procedure,
However# his boot loading procedures appear to require the
use of experimental NCP programs, I am not sure of the
current state of his work with regards to completion of this
task, le2a

Loading User Programs If

we need to be able to load user processes from over the
network, There appear to be several ways to do this: lfi

1) Have a user FTP that runs on ELF that can get a remote
file and store it i n co re (by using the Inter Process Port
capabilites of ELF) rather than on a disk, This seems to be
the most desirable approach, Ifla

2) Have a server FTP that runs on ELF that can receive a
remote file and store it in core (by using the Inter Process
port capabilites of ELF) rather than on a disk, In this
case we would TELNET to the remote host that holds the file
we wish to load and then use FTP on the remote host to send
the file to ELF, lflb

3) Have a dedicated ELF process Ca process that is part of
the ELF operating system) that is always listening on a
specific socket for files sent to it from a remote host,
This process would then store the received file in core,
This seems to be the least desirable approach in that it
requires initiating action on a remote host and that the

2

ELF and ELF related tas^s for the NSW
KEV 22-NQV-74 16:01 24575

functions performed by this process are so similar to those
that would be performed by a user FTP that it seems
senseless to have a special separate process f l*lc

All of these methods seem to require the pre-existance of a
process that is waiting to load, via an IPP, the remote file.
It would be desirable to have a Cload) system call that would
set up this process witn the approriate address space and IPPs,
The FTP server or user process could then issue this sytem call
at the right time, lf2

Status: 1 f 3

Full server and user FTP processes are planned for ELF, but
will probably not be fully operational until Spring, 1975,
It appears that we will have to write our own code for the
process that will load remote files into core via IPPs, l£3a

ELF Debugging lg

We need the ELF debugging process, A debugging process, which
has the ability to monitor other processes, has been designed
for the ELF operating system, our debugging plans call for the
use of this process, lgl

Status! Ig2

Eric Nader of BBN is writing and implementing the ELF
debugging process. He thinks he will be finished around mid
December# 1975, ig2a

Space Allocation i n

Given the memory limitations of an li, it might be nice to have
system buffer pool calls, lhl

Status: lh2

ADR agreed at the recent NSW meeting to investigate this
path, lh2a

PCP li

We need the PCP routines for the implementation of the NSW, iii

Status: 112

SRI-ARC has most of the design wor* done and will be
starting implementation soon, li2a

3

KEV 22-NOV-74 16 s 01 24575
ELF and ELF related task s for the NSW

Documentation 13

There is a need for more documentation aooyt ELF f rom both a
user's point of view* and from a s y s t e m programmer ' s point of
view, 131

Status! *32

Dave Petz has plans for eventually getting around to doing
all the required documentation* however* it appears that as
usual in the programming world* documentation will not be
available until after many of the programming tasks are
completed, 132a

General Requirements 1*

In general we need an ELF tnat is reliable and bug free so we
can devote ourselves to NSw task without being sidetracked into
debugging of ELF, lkl

Status? Ik2

It is hard to make any statement about the reliability of a
system that is not yet in full operational use, lk2a

The following is Our understanding of which groups have
responsibility for tn« above tasks? 2

SCFL Tasks 2a

The ELF KERNEL 2al

The ELF EXEC 2a2

The ELF Network Programs 2a3

The ELF Virtual Memory Features 2a4

Documentation 2a5

SRI»»ARC Tasks 2b

Loading user Programs over the Network 2bl

We a s s u m e we have responsibiltiy for writing any user code
necessary for the leading of user programs? it is not clear
who has responsibiity for getting an FTP running or for
getting any new system calls needed for the support of
loading user programs oyer the network, 2bia

4

KEV 22"N0V»74 16501 24575
ELF and ELF related tasks for the NSW

P CP 2b2

ADR Tasks 2c

Memory Space Allocation 2c i

Maintainance of ELF after it is developed 2c2

BBN Tasks

Loading ELF over the Network

The ELF Debugging Process 2d2

Conclusions 3

It appears that the 4 programmers working on ELF are overburdened,
and that they are doing the best that is humanly possible, It may
be desirable to loan them an ADR person to assist in the current
development of ELF, (It's possible that this loaned person could
be assigned to assist in getting the needed documentation
completed,) 3a

At the recent CNQV, 5»6) NSW meeting ADR indicated that It would
like to freeze an NSW version of ELF, possibly as early as next
month, By that time, as indicated above, many of the features
needed by SFI»ARC for its tasks will not be available and
therefore to freeze an NSw version of ELF at this time seems
premature, 3b

5

*

KEV 22-N0V-74 16801 24575
ELF a rid ELF related tasks for the NSW

(J24575) 22-NCV-74 16|0ijjSs Titles Authorcsll Kenneth E, (Ken)
Vietor/KEvs Distributions /NPGC t INFO-ONLY]) RWWC I INFO-ONLY]) j
Sub-Coilectlonss SRI-ARC NPG» C lerics KEVs Origins < VICTOR,
ELF/UNIX,NLSsl, >i 22-N0V-74 15855 KEV > S I S # * # # I

JEW 22-NOV-74 16807 24576

PCF Data Structure Formats
PCpFMT Version 2

22«NOV»74

James E, White
Augmentation Research Center

Stanford Research institute
Menlo Par*# California 94025

PCPFMT specifies the defined data structure encodings for the
Procedure Call Protocol (PCP 24459#), with which the reader of
the present document is assumed familiar,

*#DRAFT** JEW 22 N o v 74 7849PM
JEW 2 2»NQV«74 16:07 24576

PCP Data structure Formats

(J245763 22-N0Y-74 16 :07 9 f ? > Title! ^uthor(s)! James E, CJim D
White/JEWi Sub-Collect ions s SPl-AFC* ClerK! JEWi origins <
WHITE, PCP-PCPFMT,NLS?4, >, 22-NOV-74 11859 JEW jm ####>

#*DRAFT»# JEto 22 NOV 74 7*49PM
JEW 22-N0V-74 16:07 24576

PCP Data structure Formats

PREFACE

The Procedure Call Protocol (PCP) Is an Inter-process and/or
inter-host protocol that permits a collection of processes within
one or more ARPANET hosts to communicate at the procedure call
level, in effect, it makes the component procedures of remote
software systems as accessible to the programmer as those within
his own system, PCP specifies both a virtual programming
environment (VPE) in which remote procedures may be assumed to
operate, as well as the inter-process exchanges that implement it, la

The Multi-Process Software System (MPS5) whose construction PCP
makes practical and of which the NSW is an example# consists of
collections of "procedures" and "data stores" called "packages"#
in one or more "processes"# interconnected in a tree structure by
"physical channels". Procedures within a process have free access
to the procedures (and data stores) of each process adjacent to it
in the tree structure, and may call upon them as if they were
local subroutines. Superimposed upon the tree structure is a more
general set of interconnections which give non-adjacent processes
in the tree the same kind of access to one another, lb

The MPSS is implemented by: lc

1) low-level protocols which provide the basic, inter-process
eommunicaton (IPC) facilities by which Channels are
implemented: an inter-host IPC protocol (PCPHST)# an
inter-Tenex-fork IPC Protocol (PCPFRK)# and data structure
format specifications for both connection types (PCPFMT5, lei

2) PCP Proper# which largely defines the VPE (especially# the
procedure call and return mechanism) and specifies the
inter-orocess control exchanges required to implement it, Ic2

3) a set of system packages# implemented within each process#
which augment PCP proper by providing mechanisms by which user
procedures can! call remote procedures (implemented by the
Procedure Interface Package# PIP)# manipulate remote data
stores (implemented by the PCP Support Package, psp), and
interconnect processes (implemented by the Process Management
package, PMP), lc3

4) user packages in each process, lc4

— 1 —

##DRAFT** JEW 22 NOV 74 7S49PM
JEW 22*NQV»74 16 J 07 24576

PCP Data structure Formats
Introduction

INTRODUCTION 2

This document defines a set of formats for PCP data structures;
each is appropriate for one or more physical channel types,
Formats are currently specified for channels on which the
following kinds of messages can be transmitted; 2a

1) a stream of characters 2ai

2) a stream of 36*bit binary words 2a2

••DRAFT** JEW 22 NOV 74 7j4gPM
JEW 22-NQV-74 16 t 07 24576

PCP Data structure Formats
The PCPTXT Format

THE PCPTXT FORMAT 3

Introduction 3a

Data structures nay be encoded according to PCPTXT when the
physical cha nnel allows messages which are ASCII text streams, 3al

Data Structure Format 3b

datastruc : '* = t'l Key]
(charstr/bitstr/integer/boolean/emoty/11st) 3b1

Key !•= datastruc 3bia

charstr !: = fC length lengthschar 3blb

length us Sdiglt 3blbl

digit u« one ot the digits 0-9 3blbla

char u» one of the 128 ASCII characters 3blb2

bitstr u® #B length *, lengthSC'O / '1) 3blc

integer us 'I Sdiglt 3bld

boolean u= #T / #F 3ble

empty u= fE 3blf

list U= *b length *, lengthsdatastruc 3blg

##DFAFT## JEW 22 NOV 74 7:4gPM
JEW 22-NQV-74 16:07 24576

PCP Data structure Formats
The PCPB36 Format

THE PCPB36 FORMAT

Introduction

Data structures may be encoded according to PCPB36 when the
physical channel allows messages which are streams of 36-bit
binary words,

Data Structure Encoding

Header C I word)
Bits 0-3 Data type

CHARSTRCO BOOLEANr3
BITSTR =1 EMPTY s4
INTEGERS LIST «5

Bits 4-5 Value encoding
CHARSTR

HEADERsO Value field:
Character count *n' CI
ASCII string CCn+4)/5

field:
count *n* CI word)
string CCn+35)/36 words)

ASCiz «l Value field:
SIXBITs2 Value field:

BITSTR
HEADERsO Value

Bit
Bit

INTEGER
TWOSCOMPLSO

value field:
BOOLEAN

FALSEsG CValue
TRUE si field

EMPTY not
NOTUSEDSO Used)

LIST
SPECIFIEDELEMENTS#0

Element count fn f

Elements
REPEATEDELEMENT«I

Element count 'n #

Element to be
REPEATEDHEADEF*2

Element count
Common Header
Element values

Bits 6-13 unused Czero)
Bits 14-17 Gross Key length
Bits 18-35 Gross value length

word)
words)

ASCIZ string
SIXBIT string Cl word)

Two's complement integer C l word)

Value field:
Cl word)

value field:
Cl word)

repeated
Value field:

fn # Cl word)
word) Cl

f GKL *
*GVL'

in
in

words
words

or
or

zero
zero

4

4 a

4al

4b

4b 1
4bla

4bial
4bla2
4bla3
4b 1 b

4hlbl
4b lb la

4blblal
4b lb 1a2
4blblb
4blblc
4blb2

4blb2a
4blb2a1
4bib2a2

4blb3
4btb3a

4bib3ai
4blb4

4blb4a
4blb4b
4blb5

4blb5a
4blb6

4blb6a
4blb6al
4blb6a2
4bib6b

4blb6bl
4b1b6 b 2
4blb6c

4blb6cl
4blb6c2
4blb6c3

4b 1C
4b 1 d
4ble

— 4 -

##DRAFT*# JEW 22 NOV 74 7j49PM

Key (GKL words)
Value (GVL words)

JEW 22-N0V-74 16 s 07
PCP Data structure Formats

The PCPB36 Format

24576

4b2
403

>

JEW 22-NQV-74 16809 24577
#DPAFT« JEW 22 NOV 74 7:50PM PCP ARPANET Inter-Host IPC
implementation

PREFACE 1

The Procedure Call Protocol (PCP) is an interprocess and/or
inter-host protocol that permits a collection of processes within
one or more ARPANET hosts to communicate at the procedure call
level, in effect# it makes the component procedures of remote
software systems as accessible to the programmer as those within
his own system, PCP specifies both a virtual programming
environment (VPE) in which remote procedures may be assumed to
operate# as well as the inter-process exchanges that implement it, la

The Multi-Process Software System (MPS5) whose construction PCP
makes practical and of which the NSW is an example# consists of
collections of "procedures" and "data stores" called "packages"#
in one or mere "processes"# interconnected in a tree structure by
"physical channels", Procedures within a process have free access
to the procedures (and data stores) of each process adjacent to it
in the tree structure, and may call upon them as if they were
local subroutines, Superimposed upon the tree structure is a more
general set of interconnections which give non»adjacent processes
in the tree the same kind of access to one another, lb

The MPSS is implemented by: ic

1) low-level protocols which provide the basic, inter-process
communicator (IPC) facilities by which channels are
implemented: an inter-host. IPC protocol CPCPHST)# an
inter-Tenex-fork IPC protocol (PCPFRK)# and data structure
format specifications for both connection types (PCPFMT), icl

2) PCP Proper# which largely defines the VPE (especially# the
procedure can and return mechanism) and specifies the
inter-process control exchanges required to implement it, lc2

3) a set of system packages# implemented within each process#
which augment PCP proper by providing mechanisms by which user
procedures can: call remote procedures (implemented by the
Procedure Interface Package# PIP)# manipulate remote data
stores (implemented by the PCP Support Package, psp), and
interconnect processes (implemented by the Process Management
Package, PN!P), lc3

4) user packages in each process, lc4

-1 -

JEW 22pNOV*74 16509
• ##DRAFT## JEW 22 NOV 74 7I50PM PCP ARPANET Inter»Host IPC

Implementation
Introduction

INTRODUCTION

This document defines an implementation# appropriate for mediating
communication between processes on different hosts within the
ARPANET# of the IPC primitives required by pep, PCPHST uses the
PCPB36 data structure format whenever both hosts are Tenex
systems# and the PCPTXT format otherwise, Both formats are
described in other documents#

The Connection Protocol

ARPANET processes on different hosts communicate by means of a
full"duplex Network connection on which both PCP and special
"IPC messages'' are transmitted,

PCPHST ports are specified b y the following

PORT# ==> %receive socket number% INTEGER

with the corresponding send socket understood to be numbered
one greater than the specified receive socket,

A Process transmits a PCP message by outputting on the
connection a special "prefix" followed by the message itself#
and then transmitting a Network interrupt (INS) to the remote
process via the local NCP, Upon receiving the interrupt# the
other process immediately extracts the message from the
connection,

IPC Messages

in addition to sending and receiving PCP messages# the
connected processes exchange via
messages which help to implement
PCP, The mechanisms for sending
identical# except for the prefix
the connectiont

the connections# special IPC
the IPC primitives required by
PCP and IPC messages are
which Preeeeds the message on

For PCPB36 For PCPTXTI

CPCP*03 (1 word)
ClPCsl] (1 word)

'P (1 character)
(1 character)

The currently-defined IPC messages are described in another
section of this document,

24577

2

2a

2b

2b 1

2b la

2b lal

2b lb

2b2

2c

2c 1

2cia
|

2c lb
2clc

2c 2

-»2»

*#DRAFT** JEW 22 NOV 74 7J50PM
implementation

JEW 22-NOV-7 4 16:09
PCP ARPANET Inter-Host IPC

IPC Implementation

24577

IPC IMPLEMENTATION 3

Create process 3a

CFTPRC (prcaddr -> poh, prcname) 3al

Tbis procedure allocates a table entry indexed by POH, infers
an ARPANET host address and contact socket number from PRCADDR,
and establishes a full-duplex NetworX connection with the
remote process via the ARPANET Initial Connection protocol
(ICP), The remote process Initializes itself and then returns
an INITACK IPC message to Its superior, specifying its generic
process name, which the procedure returns to its caller, 3a2

Each of the two simplex connections which result from the ICP
(connection handles to which are stored in the tabxe entry)
will be a 36-bit connection governed by the PCPB36 format, if
both the local and remote hosts are Tenex systems: otherwise,
each will be an 8*blt connection governed by PCPTXT, 3a3

Delete process 3b

DELPRC Cpoh) 3bl

This procedure outputs a TERM I PC message using one of the
connection handles stored in the table entry indexed by POH,
The inferior cleans up, returns a TERMACK m essage to its
superior which specifies the cost in cents of the process'
execution, end closes the NetworX connections from its end.
The local process deletes them from his end and deletes the
table entry, 3b2

Send message to process 3c

SNDMSG (poh* message) 3cl

This procedure outputs the PCP message MESSAGE u sing one of the
connection handles stored in the table entry indexed by POH, 3c2

Accept message from process 3d

PCVMSG Cpoh -> message) 3dl

This procedure awaits and then inputs the next PCP message
MESSAGE using one of the connection handles stored in the table
entry indexed by POH, and returns it to the caller, 3d2

m 3 —

#*DRAFT*# JEW 22 NOV 74
Implementation

7J50PM
JEW 22-NOV-74 16:09

PCP ARPANET Inter-Host IPC

IPC Implementation

24577

Create end of inter-process channel 3e

CFTCHNEND CPoh, re^port) 3el

This procedure issues in parallel via its NCP and waits for
acknowledgment of, a matched pair of Requests for Connection
CPFCs) specifyinq the local socket pair and remote host saved
by ALQPQF in the table entry indexed by POH, and the remote
socket pair specified by REMPQRT, Once the connections have
been established! the procedure saves their handles in the
table entry, 3e2

Delete end of inter-proce$s channel 3f

DELCHNEND (Poh) 3f1

This procedure closes from its end, the Network connections
whose handles are stored in the table entry indexed by POH, 3£2

Allocate local port 3g

ALOPOR C chntypmnu# remioc -> chntypsel, port# poh) 3gl

If both the local host and the host specified by REMLOC are
Tenex systems# this procedure selects from CHNTYPMNU the
INTERHOST channel type with a width of 36 (bits)# if it is
offered. Otherwise, it selects the INTERHOST channel type with
a width of 8, In either case, it saves the selection for
return to the caller as CHNTYPSEL, 3g2

The procedure then saves the remote process* host address and
the numbers of a send-receive socket pair which the local
process allocates# in a table entry indexed by POH, It then
returns the receive socket number to the caller as PORT# 3g3

Release local port 3h

RELPOR (poh) 3hl

This procedure releases the send-receive socket pair associated
with the table entry indexed by POH, and the table entry
itself, 3h2

-4-

•

••DRAFT## JEW 22 NOV 74
Implementation

7 J 50PM
• JEW 22-NOV-74 16 8 09 24577

PCP ARPANET Inter-Host IPC

IPC Messages

IPC MESSAGES 4

Acknowledge initialization of inferior process 4a

INITACK (prcname) 4al

This message, sent only from inferior to superior? acknowledges
the former's initialization and returns the generic process
name PRCNAME of the inferior process, 4a2

Formats 4a3

LIST C %opcode% INTEGER CINITACKSOJ# % prcnam e% CHARSTR) 4a3a

NOTE! in this and all subsequent descriptions of IPC
message formats# only the PCPTXT format (as implied by the
PCP data structure) is given, The format which applies when
the connection is governed by the PCPB36 format is the same
as specified in the PCPFRK document, 4a3b

Terminate 4b

TERM^C) 401

This message# sent only from superior to inferior# requests the
latter to terminate execution and respond with a TERMACK
message, 4p2

Format! 4o3

LIST (%opeede% INTEGER C TERM«i3) 4b3a

Acnowiedge termination of inferior fork 4c

TERMACK (cost) 4c1

This message, sent only from inferior to superior, acknowledges
the termination of the former and returns the cost of its use
in cents, 4c2

Format! 4c3

LIST (%opcode% INTEGER [TERMACK=S23 # %cost% INTEGER) 4c3a

,»5,»

##DPAFT** JEW 2 2 NOV 74
Implementation

7 J 50PM
JEW 22-NOV-74 16i09

PCP ARPANET Inter-Host IPC

IPC Messages

24577

Note protocol violation 4d

IPCERR (errcode# errmsg) 4dl

This message notifies the receiving process that the sending
process has witnessed it violate the IPC protocol, ERRCODE and
ERRMSG (which is optional) identify the error in program- and
human-readable form, respectively, 4d2

The superior process (if any) should at least log the error
report# and probably fcreaK off communication with the inferior, 4d3

Format? 4d4

LIST (%OPcode% INTEGER (ICPERR«3] # %errcode% INTEGER#
%errmsg% CHARSTR / EMPTY) 4d4a

No operation 4e

NOP C) 4e1

This message requests no operation and may be discarded without
action by the receiving process, 4e2

Format; 4e3

LIST (%opcode* INTEGER (NOPa4)) 4e3a

JP:V;r:

raMMI H
:

H | I • iWmmm

•

M i

' • • | .

1
• -

•

ill
;W • '

- V :J

H •
;

.

m:

iMBBMBI I 1 14

'•'• • • I

MHS§ ! xl

•

•

K
| v n

.

• - • m i 1 r
i : i . J v

SB I
> •

m i HH

JEW 22-NOV-74 16:09 - 24577

PCP ARPANET mter«H0st IPC Implementation
PCPHST Version '2

22-NCV-74

James E, White
Augmentation Research Center

Stanford Research Institute
Menlo Par*# California 94025

PCPHST is the implementation# for ARPANET inter«host
communication# of the IPC primitives required by the Procedure
Call Protocol CPCP -• 24459#)# with which the reader of the
present document is assumed familiar,

*#DRAFT## JEW 22 NOV 74 7j50PM
Implementation

JEW 22-NOV-74 16 S 09 24577
PCP ARPANET Inter-Host IPC

(J24577) 22-NCV-7 4 16109 f 9 9 9 Title? Author(S)? James E, (Jim)
Whlte/JEW? Sub-Collections? SRI-ARC > ClerK? JEW? Origin? <
WHITE, PCP»PCPHST,NLS|2# >, 22-NOV-74 12115 JEW ???; ####?

m 0 m

##DRAFT*# JEW 2 2 NOV 74 7|50PM
Implementation

JEW 22-N0V-74 16 s12
PCP Tenex Inter-Fork IPC

24578

PREFACE

The Procedure Call protocol (PCP) is an inter-process and/or
inter-host protocol that permits a collection of processes within
one or more ARPANET hosts to communicate at the procedure call
level, in effect, it makes the component Procedures of remote
software systems as accessible to the programmer as those within
his own system, PCP specifies both a virtual programming
environment (VPE) in which remote procedures may be assumed to
operate, as well as the inter-process exchanges that implement it, la

The Multi-Process Software System (MPSS) whose construction PCP
makes practical and of which the NSW is an example* consists of
collections of "procedures" and "data stores" called "packages",
in one or more "processes", interconnected In a tree structure by
"physical channels", Procedures within a process have free access
to the procedures (and data stores) of each process adjacent to it
in the tree structure, and may call upon them as if they were
local subroutines, Superimposed upon the tree structure is a more
general set of interconnections which give non-adjacent processes
in the tree the same kind of access to one another, lb

The MPSS is implemented bys lc

1) low-level protocols which provide the basic, inter-process
communicaton (IPC) facilities by which channels are
implemented! an inter-host IPC protocol (PCPHST), an
inter-Tenex-fork IPC protocol (PCPFRK), and data structure
format specifications for both connection types (PCPFMT), lei

2) PCP proper* which largely defines the VPE (especially* the
procedure call and return mechanism) and specifies the
inter-process control exchanges required to implement it, lc2

3) a set of system packages* implemented within each process*
which augment PCP proper by providing mechanisms by which user
procedures can! call remote procedures (implemented by the
Procedure Interface Package, PIP), manipulate remote data
stores (implemented by the PCP Support Packaqe, psp), and
interconnect processes (implemented by the Process Management
package, PMP), lc3

4) user packages in each process, lc4

— 1 -

##DRAFT*# JEW 22
implementation

NOV 74 7 l50PM PCP
JEW 22-»NOV«74 16 S12

Tenex Inter-Fork IPC
24578

Introduction

INTRODUCTION 2

This document defines an implementation# appropriate for mediating
communication between Tenex forks# of the IpC primitives required
by PCP, PCPFRK uses the PCP836 data structure format# described
in another document, 2a

NOTE? 2al

1) This implementation currently deals only with forks
within the same job, Direct PCP channels between forks
in different jobs within a single Tenex are therefore not
currently supported, 2ala

2) The implementation of the CRTCHNEND primitive described
here is predicated upon the implementation of job-global
fork handles in Tenex? PRCNQ in PRCLOC# IS such a fork
handle, in the absence of that monitor change# PCP will
not support direct channels between forks within the same
job (except# of course, between a fork and its direct
inferiors), 2alb

The Inter-Fork Window 2b

Connected forks communicate by means of shared pages in their
respective address spaces# the intersection of which
constitutes a "window" through which both PCP and special "IPC
messages" are transmitted, The window has the following
format? 2b1

LOCK (1 w crd). Window lock 2bla
AVAILABLE s«i Window is free 2biai
LOCKED S o Window is locked 2bla2
ENGUEUED > 0 window is locked and sought by other fork 2bla3

EDM (1 bit) End of message 2blb
TYPE (17 bits) Message type 2ble

PCF»0 2blci
IPCs 1 2blc2

LENGTH (18 bits) Length of MESSAGE in words 2bld
MESSAGE (remainder) Message 2ble

The Window Frotoeol 2c

The window is a half-duPlex communication device whose use is
controlled by means of the lock LOCK# and an interrupt channel
in each of the connected forks* PSI systems, 2cl

2

DF.AFT JEW 22 NOV 74 7J50PM
Implementation

JEW 22-NQV-74 16:12 24578
PCP Tenex Inter*Fork IPC

Introduction

PCPFFK ports are specified by the following?

PORT# ==> LIST (%page% INTEGER, %cnannel% INTEGER) 2clal

2c 1 a

where PAGE in the page number of the first page in the
fork's address space which is part of the window, and
CHANNEL is the number of the PSI channel which the fork has
allocated to the window, 2clb

A fork transmits a PCP message through the window by "locking"
the window? placing the message and its length in words in the
window's MESSAGE and LENGTH fields, respectively! setting the
TYPE field to PCP? raising the EQM bit? and interrupting the
other for*. The fork locks the window* either by adding one to
LOCK and finding the result LOCKED, or by receivinq a message
from the other fork, 2c2

Upon receiving the interrupt which signals the presence of a
message in the window, the other fork immediately removes the
message and "unlocks" the window, The fork unlocks the window
either by returning a message to the other fork, or by
exchanging the contents of LOCK for the value AVAILABLE and, if
LOCK is discovered to have been ENQUEUED, resetting LOCK to
LOCKED and sending a NOP IPC message (described below) to the
other fork, 2c3

Both forks agree to promptly unlock the window after each
message, in most cases even before the message is processed,
leaving the window available to either fork for transmission of
another messages, 2c4

IPC Messages 2d

in addition to sending and receiving PCP messages, the
connected forks exchange via the window, special IPC messages
which help to implement the IPC primitives required by PCP,
The mechanisms for sending PCP and IPC messages are identical,
except that the sender stores IPC, rather than PCP, in the
window's TYPE field. The eurrently*defined IPC messages are
described in another section of this document, 2d!

Muiti»Packet Messages 2e

Since the window is of finite size, some messages may overflow
the MESSAGE field, In such cases, the sender is permitted to
transmit the message in two or more "packets", The mechanisms
for sending a whole message and a packet of a message are

DPAFT JEW 22 NOV 74
implementation

7I50PM
JEW 22*N0V-74 16*12

PCP Tenex Jnter*Fork IPC

Introduction

24578

identical# except that in the latter case# the EDM bit is
raised only on the last packet# and the sender maintains
control of the window until that last packet has been sent,
The receiving IPC code must concatenate the packets to
reconstruct the full message, 2el

m 4 •»

••DRAFT#* JEW 22
Implementation

NOV 74 7 t 5 0PM
JEW 22-NOV-74 16112

PCP Tenex Inter-Fork IPC

IpC Implementation

24578

IPC IMPLEMENTATION

Create process

CRTPRC (prcaddr »> poh, prcname)

3

3a

3al

This procedure allocates a table entry Indexed by POH, infers a
8AV file name from PRCADDR# creates an inferior fork whose
handle it stores in the table entry, maps the file into the
inferior fork, stores the following parameters in the fork's
ACs ?

Superior's proposed window XWD SL,SU
Superior's interrupt channel number

3a2

3a2a
3a2b

and dispatches it at its entry point, SL and SU are page
numbers which define the segment of its address space which the
superior is prepared to devote to the window, The inferior
initializes itself and then returns via HALTF to its superior,
who extracts the following from the inferior's ACs?

Inferior's
Inferior's

proposed window XWD II,IJ
interrupt channel number

The procedure then establishes via the appropriate map
operations# the following compromise windows in the inferior's
and superior's address spaces, respectively?

XWD
XWD

IL#
SL,

IL
SL

MINIMUM
MINIMUM

(IU-IL,
(IU-IL#

SU-SL)
8U-SL)

3a3

3a3a
3a3b

3a4

3a4a
3a4b

stores the Parameters of the latter in the table entry, ana
restarts the inferior, At this point, initialization of the
window is complete. The inferior sends an INITACK IPC message
to the superior, specifying its generic process name, which the
procedure returns to its caller,

Delete process

DELPRC (poh)

This procedure transmits a TERM IPC message to the inferior
fork whose handle is stored in the table entry indexed by POH,
The inferior cleans up# returns a TERMACK message to its
superior which specifies the cost in cents of the process'
execution# and halts via HALTF, The local fork then deletes

3a5

3b

3b 1

• 5 *

*#DRAFT** JEW 22 NOV 74 7:50PM
Implementation

JEW 22-NOV-74 16:12 24578
PCP Tenex Inter-For)c IPC

IPC Implementation

the window# via the appropriate map operations: the fork
itself# via KFOFK: and the table entry# 3b2

6

##DFAFT** JEW 2 2
Implementation

NOV 74 7 S 50PM
JEW 22-NQV-74 16812

PCP Tenex Inter«Fork IPC
24578

IPC Implementation

Send message to process 3c

SNDMSG (pob# message) 3cl

This procedure transmits the PCP message MESSAGE to the for*
whose handle is stored in the table entry indexed by PQH, 3c2

Accept message from process 3d

RCVMSG (poh m> message) 3dl

This procedure awaits and then accepts the next PCP message
MESSAGE from the £ crk whose handle is st 0red in the table entry
indexed by POH# and returns it to the caller, 3d2

Create end of inter-process channel 3e

CRTCHNEND CPOh# remport) 3el

This procedure is a NOP if the remote fork's handle (saved by
ALOPOR i n the table entry indexed by POH) is smaller than the
local fork's, Otherwise# the procedure creates the window
arranged by ALOPOR (whose parameters are also stored in the
table entry)# using the appropriate map operations, 3e2

Delete end of inter*process channel 3f

DELCHNEND (Poh) 3f 1

This procedure is a NOP if the remote fork's handle (saved by
ALOPOR in the table entry indexed by POH) is smaller than the
local fork's. Otherwise# the procedure deletes the window
arranged by ALOPOR (whose parameters are stored also in the
table entry)# using the appropriate map operations, 3£2

m 7 *

*#DRAFT## JEW 22
Implementation

NOV 74 7850PM
JEW 22-NQV74 16 S12

PCP Tenex Inter»Fork IPC
24578

IPC Implementation

Allocate local port 3g

ALQPQR Cchntypmnu# remioc -> chntyosel# port# poh) 3gl

This procedure tentatively allocates for an IPC window, a
segment of the local fork's address space whose width is
probably a local constant, It then selects from CHNTYPMNU the
INTEPPFC channel type which maximizes the mininum of the
tentative window width and the window width offered in the
selection, Using the compromise channel width, the procedure
constructs a CHNTYPSEL for return to the caller, 3g2

The procedure then firmly allocates a window of the compromise
width and returns as PORT# the number of the first page in the
window and the number of a local PSI channel it allocates, in
a table entry indexed by POH# the procedure saves the window
parameters and the other fork's handle which it extracts from
REMLOC (whose HOSTADDR and J0BNO fields are known to match
those of the local fork), 3g3

Release local Port 3h

RELPOR (poh) 3hl

This procedure releases the window and PsI channel associated
with the table entry indexed by POH# and the table entry
itself, 3h2

8

DRAFT JEW 22
Implementation

NOV 74 7150PM
JEW 22*NQV-74 16 S 12 24578

PCF Tenex Inter-Fork IPC

IPC Messages

IPC ME SSAGES 4

Acknowledge initialization of inferior fork 4a

INITACK C prcname) 4ai

This message, sent only from inferior to superior# acknowledges
the former's initialization and returns the generic process
name PRCNAME of the inferior process, 4a2

Format! 4a3

opcode tlNITACKaO] CI word) 4a3a
prcname CASClz string) 4a3b

Terminate 4b

TERM () 4b1

This message# sent only from superior to inferior# requests the
latter to terminate execution and respond with a TERMACK
message, 4b2

Format* 4b3

opcode [TERMs13 (1 word) 4b3a

Acnowiedge termination of inferior fork 4c

TERMACK (cost) 4c1

This message, sent only from inferior to superior# acknowledges
the termination of the former and returns the cost of its use
in cents, 4c2

Format! 4c 3

opcode [TERMACK»2) CI word) 4c3a
cost Ct word) 4c3b

* 9 -

**DRAFT#* JEW 2 2 NOV 74 7:50PM
Implementation

JEW 22*NOV*74 16:12
POP Tenex Inter*ForK IPC

IPC Messages

24578

Note protocol violation 4d

XPCEPF (errcode, errmsg) . 4dl

This mssage notifies the receiving for* that the sending for*
has witnessed it violate the window protocol, ERPCODE and
ERRMSG (which is optional, i,e, may be null) identify the error
in program* and human*readable form, respectively, 4d2

The superior fork (if any) should at least log the error
report, and probably brea* off communication with the inferior, 4d3

Format: 4d4

opcode C ICPEFRs3) (1 word) 4d4a
errcode (1 word) 4d4b
errmsg (A5CIZ string) 4d4c

No operation 4e

NOP () 4el

This message requests no operation and may be discarded without
action by the receiving forX, It is used primarily, as
described earlier, to unlocX the window, 4e2

Format: 4e3

opcode CNQP«4J (l word) 4e3a

••10*

JEW 22-NOV-74 16112 24578

PCP Tenex Interior* IPC Implementation
PCPFPK Version 2

22-NOV-74

James E, White
Augmentation Research Center

Stanford Research institute
Menio Par*, California 94025

PCPFPK is the implementation* for Tenex interior* communication*
of the IPC primitives required by the Procedure Call Protocol CPCP
*- 24459,1, with which the reader of the present document is
assumed familiar.

DHAFT JEW 22 NOV 74
Implementation

7150PM
JEW 22»NOV*74 i6 512

PCP Tenex Inter^Fork IPC
24578

CJ24578) 22*NCV»74 16:12?:?* Titles Author(s)s James E. (Jim)
White/JEW? sub-Collections? SRl-ApC: Clerks JEW? Origins <
WHITE, PCP-PCPFBK.NLSiB# >, 22-N0V-74 12« 11 JEW ??:: ####?

• 0*

JEW 22-NQV-74 16ti8 24579

The Low-Level Debug Package
LLDBUG Version 2

22-NOV-74

James E, White
Augmentation Research Center

Stanford Research institute
Menlo Park, California 94025

LLDBUG is a debugging tool that operates within the setting
provided by the Procedure Call Protocol (PCp -- 24459,)# with
which the reader of the present document is assumed familiar.

JEW 22 NOV 74 7$50PM
JEW 22-NOV-74 16818 24579

The Low-Level Debug Package

CJ24579) 22-NOV-74 16 S 18 J f J J Title; Author(s)i James E, CJim)
White/JEW; Sub-Collect ions 8 SPI-APC; Clerk; JEW ; Origins <
WHITE # PCP"LLDBUG»NLS86, >, 22-NGV-74 13 8 24 JEW f t t f # # # # *

JEW 22 NOV 74 7850PM
JEW 22-NQV-74 16818 24579

The Low-Level Debug Package

PREFACE

The Procedure Call Protocol (PCP) Is an inter-process and/or
inter-host protocol that permits a collection of processes within
one or more ARPANET hosts to communicate at the procedure call
level, in effect, It makes the component procedures of remote
software systems as accessible to the programmer as those within
his own system, PCP specifies both a virtual programming
environment (VPE) in which remote procedures may be assumed to
operate, as well as the inter-process exchanges that implement It, la

The Multi-Process Software System (MPS5) whose construction PCP
makes practical and of which the NSW is an example, consists of
collections of "procedures" and "data stores" called "packages",
in one or mere "processes", interconnected in a tree structure by
"physical channels". Procedures within a Process have free access
to the procedures (and data stores) of each process adjacent to it
in the tree structure, and may call upon them as if they were
local subroutines. Superimposed upon the tree structure is a more
general set of interconnections which give non-adjacent processes
in the tree the same kind of access to one another, lb

The MPSS is implemented by8 lc

1) low-level protocols whicb provide the basic, inter-process
communicaton (IPC) facilities by which channels are
imoiementeds an inter-host IPC protocol (PCPHST), an
inter-Tenex-fork IPC protocol (PCPFRK), and data structure
format specifications for both connection types (PCPFMT), lcl

2) PCP Proper# which largely defines the VPE (especially, the
procedure can and return mechanism) and specifies the
inter-prccess control exchanges required to implement it, lc2

3) a set of system packages# implemented within each Process#
which augment PCP proper by providing mechanisms by which user
procedures can; call remote procedures (implemented by the
Procedure interface Package# PIP)# manipulate remote data
stores (implemented by the PCP Support Package, PSP), and
interconnect processes (implemented by the Process Management
Package, PMP), lc3

4) user packages in each process, lc4

-1 -

JEW 22 NOV 74 7jS0PM
JEW 22»NOV»7 4 16 1 18 24579

The Low-Leyel Debug Package
Introduction

INTRODUCTION 2

The Low*Level Debug Packaae (package name=LLDBUG) contains those
procedures and data stores which a remote process requires to
debug at the assembly-language level, any process known to the
local process, The package contains procedures for manipulating
and searching the process' address space# for manipulating and
searching its symbol tables# and for setting and removing
breakpoints from its address space,. Its data stores hold process
characteristics and state Information, and the contents of program
symbol tables, 2a

The procedures In this package are appropriately applied to any
process whose processors can each be usefully modelled as snared
code and#prlvate data in a single address space, 2b

Throughout this document, the following shorthands denote,
respectively, a program symbol# and an address in either absolute
or symbolic formi 2c

SYMBOL# ss> <tbmame> %symname% CHARSTR 2cl
ADDRESS# ss> INTEGER / LIST (SYMBOL## %Offset% INTEGER) 2c2

Recommended Process Development Strategy 2d

Each LLDBUG procedure manipulates a process known to the local
process via a handle specified as an argument to the procedure,
The local process can therefore be requested# via its QPNPRC-
procedure# to debug any process known to it (including itself,
its superior, a direct inferor, and processes which the
invoking process might make known to it via PMp's ITPPRCS
procedure), 2dl

In practice, however# the local Process is probably capable of
debug-level manipulation of only a subset of those processes,
in particular# its operating system may permit it to exert such
control only over inferior processes, A recommended
development strategy, therefore# is to run processes, at least
during the checkout stage# as a direct inferior of a special
debug process# provided specifically for that purpose, 2d2

• 2-

^ JEW 22 NOV 74 7:50PM
JEW 22-NOV-74 16818 24579

The Low-Level Debug Package
Procedures

Debug Preparations

PROCEDURES 3

Debug preparations 3 a

Open process for debugging 3*1

QPNPRC (ph) 3 a l a

This procedure opens for debugging, the process known to the
local process via PH, 3alb

Argument/result typess 3alc

Ph- INTEGER 3alcl

Close process after debugging . 3 a2

CLSPPC CPh) 3a2a

This procedure closes after debugging, the process known to
the local process via PH, 3a2b

Argument/result types* 3 a2c

ph* INTEGER 3a2cl

<

m 3 "

JEW 22-N0V-74 16 1 18 24579
JEW 22 NOV 74 7s50PM The LOW-Leyel Debug Package

Procedures
The Address Space

The Address Space

Read address space

RDGOPE (Ph# strtaddr# wrdcnt# encoding -> values)

This procedure retrieves from the address space of the
process known to the local process via PH# the current
contents VALUES of the contiguous block of WRDCNT words
beginning at address STRTADDR, ENCODING specifies the
manner in which the contents of each word are to be encoded
for return!

TEXT! as text (result type a CHARSTR)
CODE! as an executable instruction (result type =

CHARSTR)
INTEGER! as a signed integer (result type * INTEGER)
WORD! uninterpreted (result type a BITSTR)

Argument/result types!

ph -
strtaddr*
wrccnt -
encoding-
values -

INTEGER
ADDRESS*
INTEGER
INTEGER CTEXT=0
LIST (CHARSTR /

/ CODES1
INTEGER

/ INTEGER=2 /
BITSTFi ,.,)

WQFDS3)

Write address space

WRCORE (ph# strtaddr# *rdcnt# values# encoding)

This procedure replaces the current contents of the
contiguous block of WFDCNT words beginning at address
STRTADDR in the address space of the process known to the
local process via PH# with the new values VALUES, ENCODING
specifies the manner in which the new contents of each word
have been encoded by the invoking process (same as in
PDCORE) •

Argument/result types?

Ph •
strtaddr-
wrdent -
values
encoding*

INTEGER
ADDRESS* -
INTEGER
LIST (CHARSTR /
INTEGER CTEXTSO

INTEGER
/ CODESI

1 B ITSTR# ,# ,)
/ INTEGERS2 /

3b

3bl

3b 1 a

3blb

3blbi

3b!b2
3blb3
3blb4

3bic

3blcl
3b lc2
3blc3
3 b 1 c 4
3blc5

3b2

3b2a

WORDS 3 3

3b2b

3b2c

3b2cl
3b2c2
3b2c3
3b2c4
3b2c5

— 4 *

JEW 22-N0V-74 16:18 24579
JEW 22 NOV 74 7:50PM The Low-Level Debuq package

Procedures
The Address Space

Search address space 3b3

SEARCH (Ph, strtaddr# wrdcnt, value, encoding, mask ->
addrs) ' 3b3a

This procedure searches the contiguous block of WRDCNT words
beginning at address STPTADDR in the address space of the
process known to the local process via PH, for those words
ADDPS whose content matches VALUE, after both have been
ANDed with the m a s k MASK, ENCODING specifies the manner in
which the comparand VALUE has been encoded by the invoking
process (same as in WPCORE), 3b3b

Argument/result types! 3b3c

oh - INTEGEp 3b3c1
strtaddr- ADDRESS# 3b3c2
wrdcnt - INTEGER 3b3c3
value « CHAPSTR / INTEGEP / BITSTP 3b3c4
encoding- INTEGER (TEXTsO / C0DE=l / INTEGEP=2 / WGRDs3] 3b3c5
mask - BITSTR 3b3c6
addrs - LIST (ADDRESS*, ,,,) 3b3c7

-5-

JEW 22 NOV 74 7|50PM
JEW 22-NOV-74 16 j18

The Low*Level Debug package
Procedures

Symbol Tables

24579

Symbol tables 3c

Open symbol table 3cl

OPSYMT (Ph# tblname) 3ela

This procedure opens the symbol table TBLNAME for the
process known to the local process via PH, 3clb

Argument/result types! 3cle

ph * INTEGER 3clcl
tblname* CHARSTR 3clc2

Close symbol table 3c2

CLSYMT (Ph# tblname) 3c2a

This procedure closes the previously*opened symbol table
TBLNAME for the process known to the local process via PH, 3c2b

Argument/result types* 3c2c

Ph * INTEGER 3c2cl
tblname* CHARSTR 3c2c2

Create symbol 3c3

CRTSYM (Ph# symbol, value) 3c3a

This procedure adds the symbol SYMBOL with value VALUE to
one of the previousiy*opened symbol tables (implicitly named
by SYMBOL) for the process known to the local process via
PH, 3c3b

Argument/result types! 3c3c

ph * INTEGER 3c3c1
symbol* SYMBOL# 3c3c2
value * ADDRESS# 3c3c3

*6 *

JEW 22 NOV 74 7850PM
JEW 22-NQV-74 16318 24579

The Low-Level Debug Package
Procedures

Symbol Tables

Delete symbol

DELSYM C Phi symbol)

This orocedure deletes the symbol SYMBOL from one of the
previouslyopened symbol tables (implicitly named by SYMBOL)
for the process known to the local process via PH t

Argument/result types?

ph • INTEGER
symbol* SYMBOL*

Bead symbol value

RDSYM (ph, symbol *> value)

This procedure returns the value VALUE of the symbol SYMBOL
in one of the previously-opened symbol tables (implicitly
named by SYMBOL) for the process known to the local process
via PH,

Argument/result types?

Ph - INTEGER
symbol* SYMBOL*
value * INTEGER

write symbol value

WPSYM (ph, symbol, value)

This procedure assians the value VALUE to the symbol SYMBOL
in one of the previously-opened symbol tables (implicitly
named by SYMBOL) for the process known to the local process
via PH,

Argument/result types?

ph - INTEGER
symbol- SYMBOL*
value « A DDRESS*

3c 4

3e4a

3c4b

3c4c

3c4ci
3c4c2

3c5

3c5a

3c5b

3c5c

3c5cl
3 c 5 e 2
3c5c 3

3c6

3c6a

3c6b

3c6c

3c6c l
3c6c 2
3c6c 3

m 7 »

JEW 22 NOV 74 7|50PM
JEW 22*NQV«74 16 « 18 24579

The Low*LeyeI Debug Package
Procedures

symbol Tables

Fit value to symbol table

FITVAL (ph# comparand# tblname -> symbol# value)

This procedure returns the name SYMBOL and value VALUE of
the symbol# in the previously-opened symbol table TBLNAME
for the process known to the local process via PH
of its symbol tables# if TBLNAME is EMPTY)# whose
value is closest to COMPARAND,

Argument/result types*

Cor in any
current

P h INTEGER
comparand* ADDRESS#
tblname - CHARSTR / EMPTY
symbol • SYMBOL#
value - INTEGER

3c7

3c7a

3c7b

3c7c

3c7c 1
3c7c2
3c7c3
3c7c4
3c7c5

» 0«»

^ JEW 2 2 NOV 74 7;50PM
JEW 22.NOV-74 16118 24579

The Low-Level Debug Package
Procedures

Breakpoints

Breakpoints

Create breakpoint

SETBRK (ph* addr# pcdcnt)

This procedure sets a breakpoint at address ADDR in the
address space of the process known to the local process via
PH, The PCDCNTth time the breakpoint is reached by the
process, the breakpointed processor's state will be stored
in PPCSTA, the primitive!

NOTE (BRKPNT, LIST (ph, addr))

will be invoked (suspending
state will be restored from
execution,

the processor), the
PPCSTA, and it will

processor's
continue

The parameters returned by NOTE -- PH and ApDR -- specify,
respectively, the handle by which the breakpomtea process
is known to the local Process and the address in its address
space at which the breakpoint occurred,

Needless to say, the invoking process must lie along the
thread of control if it expects to intercept the NOTE, If a
second processor within the process encounters a breakpoint,
its NCTE will be delayed until the first is complete.

Argument/result types*

p h - INTEGER
addr » ADDRESS#
pcdcnt.. INTEGER

Delete breakpoint

PEMBRK (Ph # addr)

This procedure removes the breakpoint previously set at
address ADDR in the address space of the process known to
the local process via PH or, if ADDR is EMPTY, removes all
breakpoints from its address space,

Argument/result tyPes?

P h * INTEGER
addr- ADDRESS* / EMPTY

3d

3d 1

3dla

3dlb

3d 1 b 1

3dlc

3d 1 d

3dle

3dlf

3d 1 f 1
3dlf 2
3dif 3

3d2

3d2a

3d2b

3d2c

3d2c 1
3d2c2

m 9 •

24579

3d3

3d3a

3d3b

3d3c

3d3c 1
3d3c2
3 d 3 c 3

JEW 22 NOV 74 7L50PM
JEW 22-NOV-74 16 S18

The Low-Level Debug Package
Procedures

Breakpoints

Execute intruction

EXINST (Ph, inst, encoding)

This procedure# callable only while the process known to the
local process via PH has a breakpoint NOTE outstanding,
restores the breakpointed processor's state from PRCSTA,
executes the single instruction INST, and then updates
PRCSTA again, ENCODING specifies the manner in which INST
has been encoded by the invoking process (sa^e as in
WRCOFE)•

Argument/result types!

ph -
inst -
eneoding-

INTEGEp
CHAR5TF
INTEGER

/ INTEGER
CTEXTAO /

/ BITSTR
CODEs1 / INTEG£R=2 / WORDs33

-10-

JEW 22 NOV 74 7:50PM
JEW 22-NOV-74 16:18

The Low-Level Debug Package
Data Stores

24679
/

DATA STORES 4

PRCCHR Character 1stlcs of open processes 4a

This read-only data store contains certain characteristic
information about each open process, 4al

PRCCHR is somewhat process-dependent in format and content, but
alw ays contains at least the number of words ASIZE i n the
process's address space, apd the width WRPLEN in bits of each
word, The MAXLEN of each argument or result ot type BITSTR f or
LLDBUG procedures which apply to that process is given by
WRDLEN, as well, 4a2

Data structure type? 4a3

<prcchr> LIST C <%ph% INtEGER> LIST C<asize> INTEGER#
<wrdlen> INTEGER, any, ,,,)# ,,,) 4a3a

PRCSTA states of breakpeinted processes 4b
*

This data store contains the state of the currently
breakpointed processor in each open process, 4bl

PRCSTA is somewhat proeess-dependent in format and content, but
always contains at least the contents of the processor's
program counter PC and its general registers REGS (if any), 4b2

Data structure type: 4b3

<nrcsta> LIST (<%ph% INTEGER> LIST C<pe> ADDRESS#, <regs>
LIST CBITSTR, ,,,), any, ,,,) / EMPTY, ,,,) 4b3a

SYMTBS S y m b o l t a b l e s for open processes 4c

This read-only data store contains all of the open symbol
tables for each open process# giving the name SYMBOL and value
VALUE of each Symbol in each open table TBLNaMe, 4cl

Data structure type: 4c2

<symths> LIST (<%ph% INTEGER> LIST C<ttelname> LIST C<symbol>
%value% INTEGER, ,,,), # a #), ,,,) 4C2a

-11*

JBP 22-NOV-74 16:32 24580

The Executive Packaoe
EXEC Version 2

22-N0V-74

Jon postel
Augmentation Research Center

Stanford Research Institute
Menlo Par** California 94025

The Executive Package CEXEC) is a set of tool management and
measurement procedures that operates within the setting provided
by the Procedure Call Protocol (PCP •• 24459#)# with which the
reader of the present document is assumed familiar.

jBp 22^N0V-74 16832 24580
EXEC 2 / The Executive Package

1

JBP 22 NOV 74 7|51PM
JBP 22-NQV-74 16(32

The Executive Package
Preface

24580

PPEFACE

The Procedure Call Protocol CPCP) is an inter-process and/or
inter-host protocol that permits a collection of processes within
one or more ARPANET hosts to communicate at the procedure call
level. In effect, it makes the component procedures of remote
software systems as accessible to the programmer as those within
his own system, PCP specifies both a virtual programming
environment (VPE) in which remote procedures may be assumed to
operate, as well as the inter-process exchanges that implement it, 2a

The Multi-Process Software System (MPSS) whose construction PCP
makes practical and of which the NSW is an example, consists of
collections of "procedures" end "data stores" called "packages",
in one or more "processes", interconnected in a tree structure by
"physical channels", Procedures within a process have free access
to the procedures (and data stores) of each process adjacent to it
in the tree structure, and may call upon them as if they were
local subroutines, Superimposed upon the tree structure is a more
general set of interconnections which give non-adjacent processes
in the tree the same kind of access to one another, 2b

The MPSS is implemented by* 2c

1) low-level protocols which provide the basic, inter-process
communicator! (IPC) facilities by which channels are
implemented* an inter-host IPC protocol (PCPHsT), an
inter-Tenex-fork IPC protocol (PCPFHK), and data structure
format specifications for both connection types CPCPFMT), 2cl

2) PCP proper# which largely defines the vpE (especially, the
procedure can and return mechanism) and specifies the
inter-prccess control exchanges required to implement it # 2c2

3) a set of system packages, Implemented within each Process,
which augment PCP proper by providing mechanisms by which user
procedures can* call remote procedures (implemented by the
Procedure interface Package, PIP), manipulate remote data
stores (implemented by the PCP Support Package, PSP), and
interconnect processes (implemented by the Process Management
Package, PMP), 2c3

4) user packages in each process, 2c4

-1 -

JBP 22 NOV 74 7|5iPM
jBp 22»NOVp74 16:32

The Executive package
Introduction

INTRODUCTION 3

The Executive Packaae (package name c EXEC) contains the
procedures and data stores for user Identification# accounting#
and usage information on the tool bearing host where the Executive
Package resides, 3a

PROCEDURES ~ 4

Login process 4a

LOGIN (user# password# account) 4al

This procedure associates the use of this local process with a
USER for access control purposes# protected by the password
PASSWORD, and an account ACCOUNT for billing purposes, The
arguments USER and ACCOUNT are stored in the data store
USEPACCT, 4a2

Argument/resyit types; 4a3

user • CHARsTR 4a3a
password * CHARSTR 4a3b
account * CHAPSTR 4a3c

DATA STORES 5

COST Cost of usage 5a

This is a read-only data store which is a list of the
accumulated cost in cents by package for the usage since
creation of this process, when the cost associated with package
handle zero is read the total cost of all packages in the
process Is reported, 5al

Data structure type; 5a2

<COst> LIST C<lpkh%INTEGEF>%centS%INTEGER# ,.,) 5a2a

USERACCT User and account currently logged in 5b

This read-only data store contains the name and account of the
currently logged in user of this process. The values are set by
the LOGIN procedure, 5bl

Data structure type; 5b2

%

m 2 »

JBP 22»N0V*74 16 S 32 24580
JBP 22 NOV 74 7i5lPM The Executive Package

Data Stores

<useracct> LIST C<user>CHAFSTP / EMPTYt <account>CHAF5TF /
EMPTY) 5b2a

USAGE Usage statistics 5c

The current usage statistics of this host system are available
in this read-only data store, The usage is characterized by
such parameters as number of active users USEFS, free
core/disk space SPACE# cpu utilization CpU, and scheduled
downtime SCHD, 5cl

Data structure types 5c2

<usage> LIST (%users%lNTEGEP# %space%lNTKGER# %epu%INTEGEF#
%schd%CHARSTP) 5c2a

•3»

EXEC 2 / The Executive Packaqe
JBP 22-N0V74 16 S 32 24580

CJ24580) 22»NCV*74 16I32MM Title! Author(s)! Jonathan B,
Postei/JBP? Sufc-Coiiectionsi SRJ>ARCj Cleric! JBPj Origin! <
POSTEL, NSW-EXEC.NLSjlO, >, 22-NOV-74 16830 JBp n;S####8

JBP 22 NOV 74 7J5JPM
JBP 22-NOV-74 16S54 24581

NSW Host Protocol

• 0 w

JBP 22 NOV 74 7?5lPM
JBp 22-NOV-74 16:54

NSW Host Protocol
24581

NOTE? This document is a preliminary suggestion of constraints and
policies to be used in the impiemmentation of the standard ARPANET
host to host protocol for NSW uses. This specification is subject to
change as indicated by your commennts, 1

Introduction 2

The NSW higher level protocols assume that the host level protocol
will provide reliable transmission of messages which are delivered
in order, The host level protocol is assumed to contain flow
control mechanisms to prevent the senders of messages from
f l o o d i n g a receiver o f messages# The h o s t level P r o t o c o l is to
provide a mechanism for an "out of band" interrupt signal, 2a

The initial implementation of the NSW will use the standard host
to host protocol of the APPA N etwork, This is the protocol
specified in NIC 8246, 2b

Mckenzie, A# "Host/Host Protocol for the ARPA Network," Jan»72, 2bl

There will be some constraints placed on the implementations of
tnis protocol when used in the NSW, The main areas of constraint
are the policy used for determining when to send allocate
commands, and the policy on waiting for RFNMS, 2C

Allocation and buffer Policy 3

For each NSW receive connection the following allocation policy is
used, First define three constants? U, the upper bound? L, the
lower bound? and I # the increment. When the connection is first
opened the initial allocation is U, 3a

Also define three variables? A# the amount allocated? F, the free
space in the buffer? and B# the busy space in the buffer, 3b

Note that the free space is that space which is not committed#
the empty space consists of the free space and the allocated
but as yet unused space, 3bl

The sum A + F + B will always equal U, 3c

When data arrives allocated space is converted to busy space, When
data is consumed busy space is converted to free space, Thus the
amount allocated decreases until it reaches the lower bound, L« 3d

At this point a n a dditional allocation message is sent in the
amount of the free buffer space, but only if this is at least
equal to the minimum increment, I, 3e

*1-

JBP 22-N0V-74 16854 24581
JBP 22 NOV 74 7:51PM NSW Host Protocol

The following six quantities are the constants and variables
used in making decisions in this allocation policy, 3ei

U = upper bound 3ela
I s lower bound 3eit
X s minimum increment 3eic
A = amount allocated 3eid
F = amount free 3ele
B a amount busy 3e1f

The following four formulations describe the relationships
between these quantities, 3e2

[1] A + F + B s U 3e2a

C23 n data characters received 3e2b
A < *• A * n 3e2b1
B <• B + n 3e2b2

[33 n data characrers consumed 3e2c
B <* B » n 3e2cl
F <* F + n 3e2c2

[4] if A < or s L and F s or > I then 3e2d
Allocate F 3e2di
A <- A + F 3e2d2
F <- 0 3e2d3

The NSW will require that the size of the receive buffer for each
connection be at least 8000 bits# and this is therefore the
minimum value of U, L shall be one half U# and X shall be one
eighth u, 3f

U = 8000 bits, 3f 1

L s U/2 3f2

X « U/8 3f3

These values are specified here as an initial selection to
test the policy, It is expected that experience will show that
perhaps some other values would be better* if and when such a
determination is made these values will be respecified, 3f4

Ready for Next Message Policy 4

The host to host protocol specifications require that after
sending a message on a connection (link) the sending NCP should
wait for a FFNM before sending another message on that connection, 4a

«• 2 *

JBP 22 NOV 74 7l51PM
JBP 22-NOV-74 16 S 54

NSW Host Protocol
24581

Changes In the treatment of the link number field by the IMP have
made possible a different policy,

The lin* number field has been renamed the message identification
field and extended from 8 bits to 12 bits,

If the NOP uses the the additional four bits as a sequence counter
It could se^d several messages before receiving the RFNM for the
first message, a four bit cyclic sequence counter would allow up
to eight messages to be outstanding at a time.

The NSW hosts should use this policy of multiple outstanding
messages on 8 Connection for the connections used in the NSW,

The Leader of a Host to Host message is!

8 8 12 4

1 1
1 flags I
1 I

0 7 8

1 I
host 1 messaqe id 1

i I

1 1
5 6

2 2
7 8

The Message Id field is broken into the link number and
sequence number!

8 4

I 1 1
1 link # |seg#|
i J 1

0 7 8 1
1

For each NSW connection the NCP shall send messages using the
sequence number part of the identification field on a per
connection basis to identify the messages on that linX and use
the seouence number in the returned RFNM (or Incomplete
Transmission) to determine if the message has been delivered
and is no longer in the network,

Retransmission Policy

Each message transmitted on an NSW connection should oe saved
until a RFNM is returned for that message (as determined by the

4b

4c

4d

4e

4ei

4ela

4e2

4e2a

4e3

5

m 3 *»

^ JBP 22 NOV 74 7851PM
JBP 22»NOV«74 16854 24581

NSW Host Protocol

link: and sequence numbers), If instead of a FFNM an Incomplete
Transmission or Host Dead response is received* then that message
should be retransmitted K times, 5a

K is initially set to 10 5a 1

Note that the Allocation policy is a constraint on the receive side
of a connection that is completely within in the protocol and that it
is a policy that the send side must be prepared to accept, 6

Note also that the FFNM and petransmission policies are a
modification to the send side Only and cannot be detected by the
receive side, 7

Thus# these policies can be used by NSW host for their interactions
with both other NSW hosts and non NSW hosts, 8

m;y-,. •
.

• i

4 16854 24581

il

fy ;v:-

; • "f
Hi I $w

• al *

m • 1 1 WtM .:

Hf-'i

J& &

.

|

1 '&

% HI

.

. Mm .'.'mT

Mi

•m MMi

JBp 22*NOV-74 16854 24581

NSW Host Protocol
Version 2

22pN0V*74

Jon Postel
Augmentation Research Center

Stanford Research institute
Menlo Park# California 94025

The National software Works host level protocol is (in the
intitial version) a slightly constrained form of the standard AFPA
Network host to host protocol.

JBP 22 NOV 74 7 s SIPM
JBP 22-NOV-74 16854

NSW Host Protocol
24581

(J24561) 22.NCV-74 16 f54nM Title? Authorcs). Jonathan 8,
postel/jBpj Sub-Collectionsi SHI-ARC? Clerk: JBP? Origin? <
POSTEL, NSW-HOST.NLSf10, >, 22-NQV-74 131 46 JBP jjj? ####?

• • I»

FILE 2 / The File package
JBp 22-NOV-74 16:59 24582

1

JBP 22 NOV 74 7152PM
JBP 22-NOV-7 4 16J59

The File Package
Preface

245 8 2

PREFACE

The Procedure Call Protocol (PCP) is an inter-process and/or
inter-host protocol that permits a collection of processes within
one or more ARPANET hosts to communicate at the procedure call
level, in effect, it makes the component procedures of remote
software systems as accessible to the programmer as those within
his own system, PCP specifies both a virtual programming
environment (VPE) in which remote procedures may be assumed to
operate, as well as the inter-process exchanges that implement it.

The Multiprocess Software System (MPSS) whose construction PCP
makes practical and Of which the NSW is an example, consists of
collections of "procedures" and "data stores" called "packages"*
in one or mere "processes", interconnected in a tree structure by
"physical channels", Procedures within a process have free access
to the procedures (and data stores) of each process adjacent to it
in the tree structure, and may call upon them as if they were
local subroutines. Superimposed upon the tree structure is a more
general set of interconnections which give non-adjacent processes
in the tree the same kind of access to one another.

The MPSS is implemented byi

1) low-level protocols which provide the basic, inter^process
eommunicaton (IPC) facilities by which Channels are
implemented! an inter-host IPC protocol CPCPHsD* an
inter-Tenex*fork IPC protocol (PCPFRK)* and data structure
format specificati ons for both connection types CPCPFMT),

2) PCP proper* which largely defines the VPE (especially* the
procedure call and return mechanism) and specifies the
inter-precess control exchanges required to implement it,

3) a set of sYstem packages, implemented within each Process*
which augment PCP proper by providing mechanisms by which user
procedures can! call remote procedures (implemented by the
Procedure interface package, PIP), manipulate remote data
stores (implemented by the PCP Support Package, PSP), and
interconnect processes (implemented by the Process Management
package, PMP),

2a

2b

2C

2c 1

2c2

2c3

4) user packages in each process, 2c4

— 1 -

JBP 22 NOV 74 7?52PM
JBp 22-NOV-74 16 J 59 24582

The File package
Introduction

INTRODUCTION 3

The File package (package name a FP) contains those procedures and
data stores which a remote process requires to employ the file
storage and transfering services of the local process, The
package contains procedures for opening, closing, and listing
directories, for creating, deleting, and renaming files, ana for
outputting, updating, and deleting files ang elements of files,
It also contains data stores of directory and file descriptors, 3a

Files 3b

introduction 3bl

A "file" is a named PCP data structure? stored not in the
local process's address space, but on secondary storage, A
file thus has an indefinite lifetime, and in particular is
not destroyed by the deletion of its local process, Files
are manipulated via procedures provided by the file package,
rather than via the PCP Support Package's HDDATA and WRDATA
procedures, 3bia

A file, like any pCp data structure, can be arbitrarily
complex, 3b 1 b

There are a few data structures which win describe a very
large fraction of the files In actual use; for these files
the following structure types are identified? 3bic

1) Unstructured binary files 3bicl
seqfein* BITSTR 3bicia

2) Paged (ana possibly holey) binary files 3blc2
paged* LIST (%att%CHARSTR,
<%pgng%lNTEGER»%page%BlTSTR, 3blc2a

3) Unstructured text files 3blc3
seqtxt* CHARSTR 3blc3a

4) Record*structured text files 3blc4
rectxt* LIST (CHARSTR, ,,,) 3bic4a

Associated with a file is a "use type", it is expected that
there win be many use types, Some examples of use types
are? 3bid

NLS,SRC ibldl
COBOL s SRC 3bld2
COBOL,LIST 3bld3
360,REL 3bld4
TENEX,SAV 3bld5

-2*

JBP 22 NOV 74 7|52PM
JBp 22*NOV«»74 16 S 59 24582

The File package
Introduction

TECO•SRC 3bidfe
ANY,PRINT 3bld7

Use types would be utilized by the works manager when
preparing for tool use to check for consistency between the
intended use of the file and the input expected by the tool, 3ble

Use type mismatches could result in a call for a file
conversion procedure to be executed# which could create a
new file with the proper use type, 3blf

It is expected that there will be many use types which map
into a few structure types, 3big

Access Controls 3b2

The "creator" of a file can independently grant or refuse
the following types of access to iti 3b2a

1) READ: the right to read the file (with the GETFIL
procedure), 3b2ai

2) WRIT! the right to modifiy, delete, or rename the
file (with the PUTFIL# DELELM, QELFIL# and
RENFIL procedures), and 3b2a2

3) CTRL? the right to modify the access assignments
themselves, 3b2a3

to the following classes of users! 3b2b

1) CRT! the creator himself, 3b2bl
2) MEW! a directory member# i,e, anyone with its

password (described more fully later)# and 3b2b2
3) PUBi the general public, 3b2b3

The access assignments for the file are stored in the file's
"access descriptor"! 3b2c

ACCDSC# =S> LIST (crt# mem# pub) 3b2ci

crt* LIST (%read% BOOLEAN# %writ% BOOLEAN# %ctrl%
BOOLEAN) 3b2c2

mem* LIST (%read% BOOLEAN, %writ% BOOLEAN, %ctri%
BOOLEAN) 3b2c3

pub* LIST (% r e a d % BO OLEAN, % w r i t % B OOLEAN, % C t r l %
BOOLEAN) 3b2c4

The access descriptor is specified initially when the file
is created (via the CRTFIL procedure), and can be modified

» 3 *

JBP 22 NOV 74 7:$2PM
JBP 22*NOV-74 16:59

The File Package
Introduction

24582

any time thereafter by anyone with controlling access to the
file,

File Descriptors

Associated with every file is a secondary data structure
called a "file descriptor"* which contains information about
the file and which has the following format:

FILDSC# =s> LIST C

<use>
<crtor>
<accdsc>
<crdat>
<rddat>
<wrdat>
<acct>

%use type% CHARSTR,
%tile creator% CHARSTR,
^access descriptors ACCDSC#,
%creation date and time% CHARSTR,

time of last read% CHARSTR,
last write% CHARSTR

%date and
%date and
%account%

time of
CHARSTR)

3b2d

3b3

3b3a

3b3a 1

3b3ala
3te3alb
3b 3a1c
3b3ald
3b3aie
3b3al f
3b3alg

• 4 m

JBP 22 NOV 74 7j52PM
JBp 22*NOV«»74 16:59

The File Package
Introduction

24582

Directories 3c

introduction 3cl

The files within a process are partitioned into one or wore
"directories", Directories are referred to initially (in
the GFNDIR procedure) by name* and thereafter via a
"directory identifier"* or DID, A directory is "known" if
and only if it has been successfully "opened" Ci#e, if a DID
has been obtained for it), 3cia

NOTE: the "LOGIN directory" Cif any) implied by the
USERname last specified via EXEC'S LOGIN procedure is
always considered open (with DID=0) and need not* indeed
cannot, be explicitly opened or closed (with OPNDIR and
CLSDIR), 3clal

Access Controls 3c2

The "creator" of a directory can independently grant or
refuse the following types of access to it: 3c2a

1) PEADS the right to open and list the directory (with
the OPNDIR and LSTDIR procedures)* 3c2al

2) WRIT: the right to change the file names in the
directory (with the CRTFIL, DELFIL, or RENFIL
procedures)* and 3c2a2

3) CTRL• the right to modify the access assignments
themselves, 3c2a3

to the same classes of users to which file access can be
assigned, 3c2b

The access assignments for the directory are stored in the
directory's "access descriptor"* identical in form to a
file's access descriptor, The access descriptor is
specified initially when the directory is created, and can
be modified any time thereafter by anyone with controlling
access to the directory, 3c2c

*5 *

JBP 2 2-NOV-74 16:59 24582
JBP 22 MOV 74 7:52PM The File Package

Introduction

Directory Descriptors 3c3

Associated with every directory is a data structure called a
"directory descriptor"# which contains information about the
directory# and which has the following format: 3c3a

DIRDSC# s=> LIST (3c3al

<crtor> !file creator! CHARSTR, 3c3ala
< <accdsc> %access descriptor! ACCDSC*) 3c3alb

Identifying the Invoking process 3d

The local process identifies the invoking process# for purposes
of enforcing access controls for the directory itself# and for
files within it# whenever the directory is opened, The user
associated with the invoking process is taken to be# for
purposes of establishing or refuting his creatorship of the
directory# or of files within it# that specified in the most
recent invocation of EXEC'S LOGIN procedure, The invoking
process is identified as a directory member if it supplies the
©roper directory password in the OPNDIR p rocedure, 3dl

Some Similarities 3e

Files and directories bear a striking similarity to data stores
and packages, respectively. The similarity is so strong that
we define a shorthand for denoting an element of the file: 3el

FSELECTOR# ss> D5ELECT0R# 3ela

with FILENAME and DID# substituted in the definition for data
store key ang PKH# respectively, 3e2

$e define the following shorthand to denote a filename
FILENAME# aualified by the directory DID t hat contains it: 3e3

FILE* ==> LIST C% did% INTEGER# % filename% CHARSTR) 3e3a

and we define a list of files as: 3e4

FILELIST* :s> LIST C%fiiename% CHARSTR, i f l) 3e4a

• 5 m

JBP 22-NOV-74 16:59 24582
JBP 22 NOV 74 7:52PM The File Package

Procedures

PROCEDURES

Directory manipulation

Open directory

OPNDlp (dirname, password • > did)

provided the invoking process has read access to the
directory, this procedure opens the local processes
directory DIRNAME , and makes it known to the invoking
process via the handle DID,

If PASSWORD i s specified (correctly), the user associated
with the invoking process is identified as a directory
member (a tact considered in subsequent file access control
checks)•

Arqument/result types:

dirname - CHARsTR
password- CHARSTR / EMPTY
did - INTEGER

Close directory

CLSD IP (did)

This procedure closes the local process's previously-opened
directory, known via DID, and makes it again unknown.

Argument/result types:

did- INTEGER

List directory

LSTDIP (did, dst# dstype *> count# value)

Provided the invoking process has read access to the
directory, this procedure first outputs COUNT the number of

the directory, then a list of the files in the
identified by DID in the local process, in the

), to a destination DST

files in
directory <.nxcq wy uxu *
form LIST %filename% CHARSTR, I Mj,
whose nature is specified by DSTYPE:

4

4a

4a 1

4ala

4alb

4alc

4ald

4aldl
4aid2
4ald3

4a 2

4a2a

4a2b

4a2c

4a2cl

4a3

4a3a

FARM: the list is to be returned to the caller as VALUE
(i,e, as a result of the procedure),

4a3b

4a3bi

m 7 —

JBP 22 NOV 74 7 !52PM
JBp 22-NOV-74 16 8 59 24582

The File package
Procedures

FILE* the list is to replace the current value of an
element DSTELM of a file in one of the local
process's previously-opened directories
(implicitly named by DSTELM), 4a3b2

NETCs the list is to be transmitted via a network
connection# to socket SOCKET at host HOST# in one
of the following formats FORMAT! 4a3b3

PCPFRKi that defined by PCP for IPC of data
structures between Tenex forks Ca 36-bit
connection), 4a3b3a

PCPNET I that defined by PCP for IPC of data
structures between ARPANET processes (an
8-bit connection), 4a3b3b

CRLFi (for SEQTXT and RECTXT file elements only)
the text of the string# or of each string in
the list, terminated by CRLF# appended to the
connection's 8-oit byte stream, 4a3b3c

CHNLs the list is transmitted via the PCP channel
identified by the local process Port handle PORH,
(Ports and channels are discussed in the Process
Management Package document,) 4a3b4

Note that the actual format of the data transmitted between
processes is documented in "PCp Data structure
Formats CPCPFMT)", 4a3c

Argument/result types! 4a3d

d i d - INTEGER 4a3dl
d s t y p e * INTEGER C PARM»0 / FILESI / NETC=2 / CHNL=33 4a3d2

PARMj d s t - EMPTY 4a3d2a
FILE! d s t - %dst«lm% FSELECTDR* 4a3d2b
NETC* d s t - LIST (% h 0 S t % I NTEGER# % S o C k e t % IN TEGER#

%format% INTEGER £PCPFRK=0 / PCPNET=1 /
CRLFS2)) 4a3d2c

CHNL! d s t - % P o r h % I NTEGER 4a3d2d
c o u n t - INTEGER 4a3d3
v a l u e - FILELIST# / EMPTY 4a3d4

-8-

JBP 22 NOV 74 7f52PM
JBp 22-NOV-74 16 S 59

The File package
Procedures

24582

File manipulation

Create file

CRTFIL (did, count, filelist, accdsc)

Provided that the invoking process has write access to the
directory DID, this procedure creates a list of COUNT files
FILELIST with access descriptor ACCDSC in the directory
specified by DID in the local process. Note that the initial
content of this file is EMPTY«

Argument/result types!

did • INTEGER
count • INTEGER
filelist • FILELIST*
accdsc • ACCDSC*

Delete file

DELFIL (did, count, filelist)

Provided the invoking process has write access to the files
in FILELIST, and write access to the directory identified by
DID, this procedure deletes the COUNT files from the local
process,

Argument/result types?

did * INTEGER
count * INTEGER
filelist - FILELIST*

Rename file

RENFli (src»did, count, src»fllelist, dst»did, dst*filelist)

Provided the invoking process has write access to the files
in the source file list SRC»FILELIST and both the
directories specified by SRC«DID and DST*DID, this procedure
renames the source files to be the destination files
DST-FILELIST,

Argument/result types?

4b

4b i

4bla

4b lb

4b ic

4blcl
4blc2
4blc3
4blc4

4b2

4b2a

4b2b

4b2c

4b2cl
4b2c2
4b2c3

4b3

4b3a

src*did
count

INTEGER
INTEGER

4b3b

4b3c

4b3cl
4b3c2

• 9 •*

JBP 22 NOV 74 7?52PM
JBp 22-NQV-74 16 S 59

The File package
Procedures

24582

src-£Ueiist - FILELIST*
dst*did - INTEGER
dst-fiieiist - FILELIST*

Get unique file name

UNQFIL (aid# number -> filelist)

NUMBER new and unique filenames in directory DID in the
local process are returned to the invoking process.

Argument/result types?

did
number
fiieiist

Convert file

INTEGER
INTEGER
FILELIST*

CNVFli (file# newfiie, usetype, alg)

provided the invoking process has read access to the file
FILE and write access t© the directory for NEWFILE, and that
there is a conversion procedure for converting from the use
type and structure type of FILE to the use type USETYPE and
structure type desired as in dicated by the algorithm A LG#
the local process will perform the conversion and create the
new file NEWFILE.

It is expected that the conversion algorithms for tools with
use or structure types that at are at an uncommon will be
provided by the tool installer,

Argument/result types?

file
newfile
use type
alg

* FILE*
* FILE*
* CHARSTR
- CHARSTR

4b3c3
4b3c4
4b3c5

4b4

4b4a

4h4b

4 b 4 C

4b4c 1
4p4c2
4b4c3

4b5

4b5a

4b5b

4b5c

4b5d

4b5dl
4b5d2
4b5d3
4b5d4

*• i 0 *

JBP 22 NOV 74 7 5 5 2PM
JBP 22-NQV-74 16:59

The File Package
Procedures

24582

File element manipulation

Get file

GETFIL (fileeim, disp, dst, dstype -> value)

provided the invoking process has read access to the file,
this procedure outputs a copy of an element FILEELM (which
may be the whole file) of a file in one of the local
process's previously-opened directories (implicitly named by
FILEELM)# to a destination DST whose nature is specified by
DSTYPE:

PARM: the file element is to be returned to the caller
as VALUE ci,e, as a result of the procedure),

FILE: the file element is to replace the current value
of an element DSTELM of a file in one of the local
process's previousiy^opened directories
(implicitly named by DSTELM), The invoking
process must have write access to the destination
f ile,

The file element is either replaced by EMPTY (i te,
moved) or left unchanged (copied), according to
Disp, To move the element# the invoking process
must have write access to the file,

NETC: the file element is to be transmitted via a
network connection# to socket SOCKET at host HOST,
using format FORMAT (same as for LSTDIP),

CHNL: the file element is transmitted via a PCP channel
attached to the port identified by the port handle
PROH of the local process, (Channels and ports are
discussed in the Process Management Package
document,)

Argument/result types:

fileelm- FSELECTOR*
disp * INTEGER [DELETESQ / RETAIN*13
dstype - INTEGER [PARMSO / FILE*! / NETCs2 / CHNL®33

PARMi dst- EMPTY
FILE: dst- %dstelm% FSELECTOR*
NETC: dst- LIST (%hOSt% INTEGER,

4c

4c 1

4cla

4c lb

4clbl

4clb2

4clb3

4clb4

%format%
CRLFB2])

% S O C k e t % I NTEGER,
INTEGER C PCPFRKSO / PCPNET®1 /

4clb5

4c 1 c

4clcl
4clc2
4c 1 c 3

4cic3a
4clc3b

4clc3c

• 11"

JBP 22 NOV 74 7 152PM
JBp 22-NOV-74 16 S 59 24582

The File Package
Procedures

CHNLJ dst- %porh% INTEGER 4clc3d
value * any / EMPTY 4cic4

Put file 4c2

PUTFIL (tileeim, disp, src, srctype) 4c2a

Provided the invoking process has write access to the file,
this procedure replaces an element FILEELM (which may be the
whole file) of a file in one of the local process's
previously-opened directories (implicitly named by FILEELM),
from a source SRC whose nature is specified by SRCTYPEi 4c2b

PARMJ the source is SRC (i.e. an argument of the
procedure), 4c2bl

FILE* the source is the current value of an element
SRCELM of a file in one of the local process's
previously-opened directories (implicitly named by
SRCELM), The invoking process must have read
access to the source, 4c2b2

The source element is either replaced by EMPTy
Cl.e, moved) or left unchanqed (copied), according
to DiSP, To move the source element, the invoking
process must have write access to the source file, 4c2b3

NETCf the source will be transmitted via a network
connection, from socket SQCKET at host HOST, using
format FORMAT (same as for LSTDIR). 4c2b4

CHNLJ the file element is transmitted via a PCP channel
attached to the port Identified by the port handle
PORH of the local process, (Channels and ports are
discussed in the Process Management Package
document,) 4c2b5

Argument/result typesi 4c2c

fileelm- F5ELECT0R* 4c2cl
disp - INTEGER [DELETESQ / RETAINED 4c2c2
srctype- INTEGER (PARMBO / FILEBJ / NETC»2 / CHNL«3] 4c2c3

PARM8 src*. any 4C2C3a
FILE8 src- %srcelm% FSELECTOR# 4c2c3b
NETC8 sr c- LIST (%host% INTEGER, %SOC)cet% INTEGER,

%format% INTEGER (PCPFRKaO / PCPNET=i /
CRLFB2)) 4c2c3c

CHKLl src- %Porh% INTEGER 4c2c3d

-12-

JBP 22 NOV 74 7J&2PM
JBP 22

The
•NOV-74 i6 J 59
File Package

Procedures

24582

Get file structure type

GETS! (fileelm# dst, dstype •> value)

Provided the invoking process has read access to the file
named by FILEELM the structure of that file element is
returned as a "prototype" to destination DST as indicated by
DSTYPE# That is, a data structure of the same form as the
file element is returned* but the content of the data
structure is not meaningful and is reduced to the minimum,
The possible DSTYPEs are!

P A P M i the file element structure is to be returned to
the caller as VALUE (l#e, as a result of the
procedure), ,

FILE! the file element structure is to replace the
current value of a file element in one of the
local process's previously»opened directories
(implicitly named by DSTELM), The invoking
process must have write access to the destination
file,

NETCi the file element structure is to be transmitted
via a network connection# to socket SOCKET at host
HOST# in format FORMAT (see LSTDIR),

CHNLi the file element structure is transmitted via a
PCP channel attached to the port identified by the
port handle PRQH of the local process, (Channels
and ports are discussed in the Process Management
Package document#)

Argument/result types!

fileelm
dstype

PARM!
FILE!
NETC!

CHNLI
value

dst
dst*
dst*

F SELECTOR*
INTEGER (PARMaQ / FILE = 1 / NETC = 2 / CHNL 833

EMPTY
% d s t e l m % FS ELECTQR#
LIST (% h O S t % I NTEGER, % S O C k e t % I NTEGER,
% f o r m a t % INTEGER [PCPFRKaQ / PCPNETsl /

dst

%format%
CRLFa2))
%porh% INTEGER

4c3

4c3a

4c3b

4c3b 1

4c3b2

4c3b3

LIST (%fiiename% CHARSTR, ,,#) / EMPTY

4c3b4

4c3c

4c3cl
4c3c2

4c3c2a
4c3c2b

4c3c2c
4c3c2d
4c3c3

13

JBp 22-NOV-74 16159 24582
JBP 22 NOV 74 7i52PM The File Package

Procedures

Delete file element 4c4

DELELV (fileelff) 4c4a

provided the invoking process has write access to the file#
this procedure replaces an element FlLEELM of a file in one
of the local process's previously-opened directories
(implicitly named by FlLEELM) with EMPTY R 4c4b

Argument/result tvPes: 4c4c

fileelm- FSELECTOR* 4c4cl

•14*

JBP 72 NOV 74 7152PM
JBp 22-NQV-74 16859 24582

The File Package
Data Stores

DATA STORES 5

DESCS List of directory and file descriptors 5a

This data store is a list of the directory descriptors DiRDSCs #
and file descriptors FILDSCS for all files FILENAMES, for all
open directories DTDs with names DlRNAMEs within the local
process, It also contains for each directory# the user USER
who opened it# and his relationship REL to it, The data store
is read-only, except for the ACCDSC field of each directory and
file descriptor# which can be written by anyone with
controlling access to the directory or file, Sal

Data structure types 5a2

<descs> LIST C <dlrnaffle> LIST C% did% INTEGER# % dirdsc%
DIRDSC*# %usedse% LIST (%user% CHARSTR# %rel%
INTEGER [CRT=0 / MEMs 1 / PUB = 2l)# %fildscs% LIST
(<fiiename> %fiidsc% FILDSC## ,,,))# ,,,1 5a2a

»15*

JBP 22*NGV«7 4 16 5 59

The File Package
FP Version 2

22-NOV-74

jon Postel
Augmentation Research Center

Stanford Research Institute
Menle Par*# California 94025

The File package (FP) is a file manipulation tool that operates
within the setting provided toy the Procedure Call Protocol (PCP
24459,)* with which the reader of the present document Is assumed
familiar,

JBP 22-NOV-74 16 S 59 24582
FILE 2 / The File Package

CJ24582) 22-NCV-74 16?59???? Title? Author(s)? Jonathan B,
Postei/JBPt Sub-Collectionsi SRI-ARC? Clerk? JBP? Origin? <
POSTEL, NSW-FILE.NLSf18, >, 22-NOV-74 15153 JBP ????####?

BATCH 2 / The Batch Jcb Package
JBp 22-N0V-74 1? ! 0i 24583

1

*

0-

JBp 22-N0V-74 17!01 24583
JBP 22 NOV 74 7?52PM The Batch Job Package

PREFACE

The Procedure Call Protocol (PCP) Is an Inter-Process and/or
inter-host protocol that permits a collection of processes within
one or more ARPANET hosts to communicate at the procedure call
level, in effect, it makes the component procedures of remote
software systems as accessible to the programmer as those within
his own system, PCP specifies both a virtual programming
environment (VPE) in which remote procedures may be assumed to
operate, as well as the inter-process exchanges that implement it, 2a

The Multi-Process Software System (MPSS) whose construction PCP
makes practical and ot which the NSW is an example* consists of
collections of "procedures" and "data stores" called "packages"*
in one or more "processes"* interconnected in a tree structure by
"physical channels". Procedures within a process have free access
to the procedures (and data stores] of each process adjacent to it
in the tree structure, and may call upon them as if they were
local subroutines, Superimposed upon the tree structure is a more
general set of interconnections which give non-adjacent processes
in the tree the same kind of access to one another, 2b

The MPSS is implemented byj 2c

1) low-level protocols which provide the basic, inter-process
communicaton (IPC) facilities by which channels are
implemented? an inter-host IPC protocol (PCPHST)* an
inter-Tenex-fork IPC Protocol (PCPFRK)* and data structure
format specifications for both connection types (PCPFMT), 2cl

2) PCP proper* which largely defines the VPE (especially* the
procedure call and return mechanism.) and specifies the
inter-process control exchanges required to implement it, 2c2

3) a set of system packages* implemented within each proeess*
which augment PCP proper oy providing mechanisms by which user
procedures can? call remote procedures (implemented by the
Procedure interface Package* PIP)* manipulate remote data
stores (implemented by the PCP Support Package, PSp), and
interconnect processes (implemented by the Process Management
package, PMP), 2c3

4) user packages in each process, 2c4

- i *

JBP 22 NOV 74 7J52PM
JBp 22-NOV-74 17:01 24583

The Batch Job Package
Introduction

INTRODUCTION 3

The Batch Job Package (package namesBjP) contains those
procedures and data stores wnicn a remote process requires to
employ the batch processing services of this host, The package
contains procedures for creating and deleting batch jobs# for
retrieving or altering the status of a batch jo&# for controlling
the transmission of its input/output streams, and for
communicating with the batch system's operator# 3a

Thi s package is only implemented at a host that actually provides
a batch processing facility, 3b

PROCEDURES 4

Create batch job 4a

CRTjOB Unfiles# outfiies <•> jobld) 4al

This procedure queues a job for processing by the local
process's batch system, and returns the job identifier JQBID by
which the job is thereafter known, 4a2

The Procedure will retrieve the job's input files INFILES,
schedule the job for execution# and eventually return its
output files as requested by 0UTFILE5, 4a3

The batch input/outPut stream. t° which each file corresponds is
identified by STRHNAME, The following universal stream names
are defined (but not necessarily accepted by every local
process); other stream names may be defined and accepted by a
particular host process: 4a4

CRD: the job's primary card (input) stream# 4a4a
PRT: the job's primary print (output) stream# and 4a4b
PUN: the job's primary punch (output) stream; 4a4c

The local process is to retrieve/save each input/output file by
using the parameters supplied in the INFjLES/OuTFILES argument
to make calls to the appropriate file packages, 4a5

Argument/result types: 4a6

infiles " LIST (<strmname> src# ,••) 4a6a
outfiies- LIST (<strmname> dst# ,,,) 4a6b

-2

JBP 22 NOV 74 7*52PM
JBp 22-NOV-74 17*01 24583

The Batch Job Package
Procedures

src/dst - LIST c%host% INTEGER, %account-designator% LIST
C%user% CHARSTR, %password% CHARSTR, %acct%
CHARSTR), %workspace»designator% LIST C%dirname%
CHARSTR, %password% CHARSTR), %fiieelm%
FSELECTOR#, %dlSP% INTEGER, 4a6C

lObid - INTEGER 4a6d

Delete batch job 4b

DELJOB Cjobid) 4b1

This nrocedure deletes the previously-created batch job
identified by JGBID, Any input/output files that have yet to
be retrieved/returned are ignored/discarded, 4b2

Argument/result types* 4b3

jobid- INTEGER 4b3a

Cancel batch job 4c

CANJOB Cjobid) 4cl

This procedure cancels the execution phase (interrupting the
job's execution if necessary) of the previously-created job
identified by JGBID * The job rerrains in the batch system's
queue, and any output files generated by the job before its
cancellation wii^ be disposed of as previously specified, 4c2

Argument/result types* 4c3

jobid* INTEGER 4c3a

Retrieve batch job status 4d

STSJOB Cjobid -> status) 4dl

This procedure returns the status STATUS of the job identified
by J001D, The exact format and semantics of the status
information are vet to be determined, 4d2

Argument/result types* 4d3

jobid - INTEGER 4d3a
status- LIST CCHARSTR> ,.») 4d3b

• 3 m

JBP 22 NOV 74 7?52PM
JBP 22-NOV-74 17 J 01 24583

The Batch Job Package.
Procedures

Modify batch job 4e

MODJOB Cjobid# parms) 4el

This procedure modifies# in a host-dependent way# the
parameters PARMS of the of previously-created job identified by
JOBIP, 4e2

Argument/result types? 4e3

jobid- INTEGER 4e3a
parms- any 4e3b

Query batch system operator 4f

QRYQPR (message# rsvp -> reply) 4fi

This procedure transmits message MESSAGE to the batch system's
operator# and# if RSVP is TRUE# returns his reply REPLY, 4f2

Argument/result types? 4f3

message- CHARSTR 4f3a
rsvp - BOOLEAN 4f3b
reply - CHARSTR / EMPTY 4f3c

Execute remote-operator command 4g

EXECMD (command -> response) 4gl

This procedure executes the host-depen<3e nt remote-operator
command COMMAND# and returns the batch system's response to it, 4g2

Argument/result tYPes? 4g3

command - CHARSTR 4g3a
response- LIST (CHARSTR# ,,,) 4g3b

-4-

jBp 22"»N0V«*7 4 17 I 01 24583
JBP 22 NOV 74 7s52PM The Batch Job Package

Data Stores

DATA STORES * 5

This package contains no data stores, 5a

»5 •

JBp 22-NOV-74 17:01

The Batch Job Package
BJP Version 2

22-NOV-74

Jon Postel
Augmentation Research Center

Stanford Research institute
Menlo Park# California 94025

The Batch JOB P ackage operates within the setting provided by the
Procedure Call Protocol CPCP -- 24459#)# with which the reader of
the present document is assumed familiar,

BATCH 2 / The Batch job Package
JBP 22-NQV-74 17 I 01

CJ24583) 22-NCV-74 17:01??:: Title: Authorcs): Jonathan B,
Postex/JBPf sub-Coiiectionsj SRI-ARC: Clerk: JBPJ Origin? <
P0STEL, NSW-BATCHFNLS?6# >, 22-NOV-74 16:22 JBP ?:?:####?

BOXES 2 / Black Boxes m POP
JBP 22-NOV-74 17803 24584

1

m 0 •

JBp 22-NQV-74 17803 24584
JBP 22 NOV 74 7 }53PM Black Boxes In PCP

Introduction 2

The various black boxes described in "NSW Black Boxes" by
Milistein ard Warshall of l-Oct-74 CCADD-7410-01123 are cast in
POP calls, The intent here is to show how the functions described
in the black boxes document could be implemented using procedures
as defined in the PCF series of documents, This is not intended as
a soecification of the actual implementation of these functions
but only to further the understanding of procedure call protocol, 2a

Data structures 3

Introduction 3a

These data structure definitions parallel the definitions in
the black boxes document, and are used in the remainder of this
document to act as a shorthand in passing procedure arguments
and results, 3al

Account designator 3b

%acd% LIST C%user%CHARSTR, %passwora%CHARSTR, %account%CHAFSTR) 3bi

Host 3C

% h O S t%INTEGER 3c1

Workspace designator 3d

%wsd% LIST (%directory%CHApSTR# %passwora%CHARSTR) 3dl

Filename 3e

%filenarre% CHARSTF 3el

Filelist 3 £

%filelist% LIST C%filename%CHAFSTR, 3fl

Filepairs 3g

%filepairs% LIST (LIST (%src*filenamelCHARSTR,
%dst-fiiename%CHAPSTR3, ,»,) 3gi

File-id 3h

%£iie»id% LIST C%host%XNTEGER, wsd, %filename%CHARSTR) 3hl

JBP 22 NOV 74 7*53PM
JBP 22-NOV-74 17 5 03
Black Boxes in PCP

24584

Cost

% C O s t%INTEGLR

Condition/error code

Every pep return includes a condition or error code (see PCP or
PIP).

Procedures

Introduction

Shown in this section is an example implementation of the black
box functions, we would expect that the works Manager would
initially create processes and open the appropriate packages in
each tool bearing host. This initialization is shown in the
Prologue, and for completeness the closing of these packages
and processes is shown in an Epilogue,

The notation here is a slight simplification of the required
message format to*

Call C ph, pk, procname (arguments & results))

where *

3i

311

3 j

3 j 1

4

4a

ph
pk

* process handle
» package handle

procname » procedure name

Prologue

INITIALIZE (host, "file«oackage" «> ph, epk, fpk)

Once

Call (self, 0,

For each host

OPNPKS (PMP -> mpk))

4al

4a2

4a2a

4a2al

4a2ala
4a2alb
4a2alc

4b

4b 1

4bia

4blal

4b lb

Call (self, mpk, CRTPRC (SN host socket *> Ph))
Call (Ph, 0, OPNPKS (FP, EXEC -> fpk, epfc))
Call (ph, epk, LOGIN (acd))

4bibl
4blb2
4blb3

JBP 22 NOV 74 7j53PM
JBp 22-NQV-74 17103 24584
Black Boxes in PCP

Epilogue 4c

COMPLETE (PhD 4cl

For each host 4cia

Call (self, mpk# DELPRC (Ph -> costDD 4clal

Net file copy 4d

NETCOPY (sph, sfpk# sre-wsd# src-filename# dph# dfpk# dst-wsd#
access -> dst-filename) 4dl

Call (sph# sfpk# OPNDiP (src-wsd -> s r c -did)) 4dla
Call (dph# dfpk# OPNDIR (dst-wsd -> dst-did)) 4dlb
Call (dph# dfpk# UNOFXL (dst-did# "1" •> dst-f ilename)) 4dlc
Call (dph# dfpk# CRTFIL (dst-did# "1% dst-filename#
access)) 4dld
Call (self# mpk# CRTPHYCHN (sph# dph -> sporh# dporh#
pch)) 4die
Call (dph# dfpk# PUTFIL ((dst-did# dst-filename)#
"retain"# dporh# "chnl")) 4dif
Call (sph# s£px# GETFIL ((src-did# src-F ilename),
"retain"# sporh, "chnl")) 4dlg
Can (self# mpk, DELPHYCHN (pch) 4dlh
Call (sph, sfpk# CLSDIR (src-did)) 4dli
Call (dPh, dfPk# CLSDIR (dst-did)) 4dlj

Local file copy 4e

LOCALCOPY (Ph# fpk# src-wsd# src-filename# dst-wsd# access ->
dst-filename) 4el

Call (ph# fpk, OPNDIR (src-wsd -> src-did)) 4ela
Call (ph# fpk# OPNDIR (dst-wsd -> dst-did)) 4elP
Call (ph# fpk, UNQFIL Cdst-did# "1" -> dst-filename)) 4eic
Call (ph# fpk# CRTFIL (dst-did# "i"# dst-filename#
access)) 4eld
Call (ph# fpk, PUTFIL ((dst-did# dst-filename),
"retain"# (src-did# src-filename), "file")) 4eie
Call (ph# fpk, CLSDIR (src-did)) 4eif
Call (ph# fpk# CLSDIR (dst-did)) 4eig

-3-

JBP 22 NOV 74 7|53PM
JBP 22-NOV-74 17 J 03 24584
Biaek Boxes in PCP

Delete file 4f

DELETEFXLE (ph# £pk# wsd, filename) 4fl

Call Coh, fpk, QPNPJR (wsd -> did)) 4£la
Call (ph# fpk, DELFjL Cdid # »1»# filename)) 4flb
Call (ph, £ok, CLSDIR (did)) 4£lc

Delete all files 4 <3

DELETEWS (ph, fpk# wsd) 4Q1

Call (ph# fpk, OPNDIR (wsd -> did)) 4gla
Call (ph# fpk, LSTDiR C did^ EMPTY, "parm" «•> count,
filelist)) 4gib
can CPB, £PK, DELFIL (did, count, fiieiist)) 4glc
Call Cdph, dfPk, CLSDIR (did)) 4gld

Local file rrove 4h

LOCALMOVE (Ph# £pk, src-wsd, src-£ilenam©, dst-wsd ->
dst-filename) 4hl

Call (ph, fpk, OPNDIR (src-wsd -> src-did)) 4hia
Call (phi fpk, OPNDIR (dst-wsd -> dst-did)) 4hlb
Call (ph# fpk, UNQFIL (dst-did# "1" -> dst-filename)) 4hic
Call (ph# fpk, FENPJL Csrc*did, "l", src-filename,
dst-did, dst-£ilename)) 4hid
Can (Pfc# fPk # CLSDIR (src-did)) 4hie
Call (ph# fpk, CLSDIR (dst-did)) 4hlf

Move workspace 4i

MOVEWs.(Ph# fpk# src-wsd, dst-wsd, access -> filepairs) 4ii
can (Ph# fpk, OPNDIR (src-wsd -> did)) 4ila
Call (Ph# fpk, LSTDIR (did, EMPTY, "parm" -> count#
src-fiielist)) 4ilb
Call (ph# fpk, UNQFIL (did , count -> dit-filelist)) 4ilc
Call (ph# fpk, CRTFIL (did# count, dst-filelist#
access)) 4tid
Call (ph# fpk# RENFII (src-did# count# src-filelist#
dst-did# dit"filelist)) 4ile
Call (ph# fpk, CLSDIR (did)) 4iif

m 4 —

JBP 22»N0V«"7 4 17 :03 24584
JBP 22 NOV 74 7:53PM Biacfc Boxes in PCP

Get local catalogue 4j

GETCAT (ph., £PX, wsd »> filelist)
Call (ph, fpX, OPNDIR Cwsd -> did)) 4jla
Call (ph, fdX# LSTDIR (did, EMPTY, "parm" -> count,
filelisfc)) 4jib
Call (ph, £pK, CtSDXR (did)) 45lc

State probe 4X

STATE (ph *> usage) 4K1

Call (ph, 0, PDPATA ((self, epX, USAGE) -i> usage)) 4Kla

Accounting probe 41

ACCOUNT (ph *> cents) 411

Call (ph, 0, pDDATA (Cself, epic, COST) *> cents)) 411a

»5 *

OBp 22«NQV»74 17:03 24584
JBP 22 NOV 74 7:53PM Biack Boxes in PCP

Appendix

Introduction

in this appendix is presented a possible implementation of the
black box functions using the procedures defined in the PCP
documents, This is not the recommended implementation but is
shown only to promote an understanding of the procedure call
protocol,

Net file copy

NETCOPY (s rc-acd, src-host» src»wsd# sre*£ilename# dst-acd,
dst-host# dst*wsd# access *> dst*filename)

OPNPKS CPMP -> mpk))
CRTPFC CSN src^host socket »> sph))
CRTPRC C$N dst-host socket -> dph)3
OPNPKS (FP, EXEC -> sfpk, sepk))
OPNPKS (FP# EXEC -> dfpk, depk))
LOGIN (src-acd))
LOGIN (dst-acd))
OPNDIR Csrcwwsd -> sre-did))
OPNDIR, Cdst-wsd •> dst-did))
UNOFiL (dst-did# "1" *> dst-filename))
CRTFIL (dst-did# "1»# dsff ilename #

CRTPHYCHN Csoh# dph -> sporh# dporh#

PUTFIL ((dst-did# dst-£ilename),
"chni"))

GETFIL (Csrc-did# src-filename)#
" c h n 1") 3

DELPHYCHN Cphc3
DELPRC (sph -> scost))
DELPRC (dPh -> dcost)3

5

5a

Call (self# 0#
Call (self # mpk,
Call (self # mpk #
Call C sph # 0 #
Call (dph, 0,
Can (sph# sePk#
Call C dph, depk #
Call (sph, sfpk#
Call (dph# dfpk#
Call Cdph# dfpk#
Call (dph# dfpk#
access3 3
Call (self# mpk,
phc 3 3
Call C dph, dfpk,
"retain"# dporh#
Call C sph# sfpk#
"retain"# sporh#
Call (self # mpk,
Call (self # mpk.
Can (self# mpk,

file copy

'ALCOPY (aed # host
.•filename)

Call (self# 0#
Can (self# mok#
Call (Ph # 0#
Call (Ph# epk,
Call (ph# fpk,
Call (ph # fpk,
Call (Ph# fpk»

OPNPKS CPMP *> mpk)3
CRTPRC CSN host socket -> ph33
OPNPKS (FP# EXEC -> fpk, epk))
LOGIN (acd33
OPNDIR (src-wsd *> src-did3 3
OPNDiR (dst-wsd *> dst-did))
UNQFIL (dst-did# "1" -> dst*£ilename33

5al

5b

5b 1

5bia
5b lb
5blc
5b 1 d
5b 1 e
5b 1 f
5b 1 g
5blh
5b 1 i
5bl3

5b Ik

5b 11

5 b lm

5bln
5blo
5b lp
5blg

5c

5c 1

5c la
5C lb
5c lc
5c 1 d
5c le
5c 1 f
5c lg

-6-

JBP 22*NOV«74 17:03 24584
JBP 22 NOV 74 7:53PM Black Boxes in PCP

Call Cph# tpK# CRTFIL Cdst-did# "1"# dst»filename,
access)) 5c lh
Call Cph# fok, PUTFIL CCdst-did# dst*filename),
"retain"# (src-did # src-filename), "file")) 5cli
Call Cself# mpk, DELPPC Cph -> cost)) Scij

Delete file 5d

DELETEFILE Caed# host # wsd, filename <•> filename) 5dl

Call cself# 0# OPNPKS CPMP «»> mpk)) 5dla
Call cself, mpk, CRTPPC C$N host socket -> ph)) 5dlb
Call (Ph# 0# OPNPKS CFP# EXEC »> fpk# epk)) bdlc
Call (ph# epk# LOGIN (acd)) 5dld
Call (Ph# fpk# OPNDIR (wsd *> did)) 5dle
Call C ph# f pk , DELFIL (did# "1"# filename)) 1 5dlf
Call Cself# FFPK, DELPPC (ph «> cost)) 5dlg

Delete all files 5e

DELETERS Cacd# host # wsd) 5ei

Call (self, 0# OPNPKS CPMP • > mpk)), 5eia
Call Cself# mpk # CRTPPC C$N host socket *> ph)) 5eib
Call (ph# 0# OPNPKS (FP# EXEC -> fpk# epk)) 5eic
Call (ph# epk, LOGIN Cacd)) 5eid
Can (ph# fpk, OPNDIR (wsd -> did)) 5e 1 e
Call (ph# fpk, LSTDIR (did, EMPTY, "parm" «> count,
filelist)) Self
Call (ph# fpk, DELFXL (did, count, fileiist)) 5elg
Call (self# mpk # DELPRC (ph »> cost)) 5elh

Local file move 51

LOCALMGVE (acd # host# src*wsd, src*filename, dst^wsd ->
dst-filename) 5t 1

Call (self# 0# OPNPKS CPMP *> mpk)) 5tla
Call (self# mpk, CRTPPC C$N host socket »> ph)) 5f lb
Can (Ph# 0# OPNPKS CFP# EXEC -> fpk# epk)) 5f le
Call (Ph# epk # LOGIN (acd)) 5f id
Call (ph# fpk, OPNDIR (src-wsd *> src-did)) 5f le
Call (ph# fpk# OPNDIR Cdst»wsd •> dst-did)) 5f If
Call (ph# fpk# UNQFIL Cdst-did# "1" «> dst*filename)) 5f lg
Call (ph# fpk# PENFIL (src-did # "1", src»filename#
dst*did# dst»f ilename))
Call C self# mpk# DELPRC Cph -> cost))

5f lh
5 £ 1 i

m 7 »

JBP 22 NOV 74 7?53PM
jBp 22-NOV-74 17 s 03
Biack Boxes in PCP

24584

Move workspace

MQVEWS (acd, host# src»wsd, dst»wsd, access -> filepairs))

OPNPKS CPHP *> mpk))
CRTPRC C SN host socket -> ph))
OPNPKS (FP, EXEC -> fPk, epk))
LOGIN (acd))
OPNDIR Csrcwsd -> did))
LSTDIR Cdid, EMPTY, »parm» •> count,

UNQFXL Cdid , count *> dst-filelist))
CPTFIL (did, count, dst-fiieiist,

Call (self, 0,
Call (self, mpk,
Call cPh* 0,
Call (ph# epk,
Call (ph, £pk,
Call (ph, fpk,
src«»£ilellst))
Call Cph, fpk,
Call (ph, £pk,
access))
Call Cph, £pk, pENFXL Csrc-did, count, src-filelist,
dst-did, dst-filelist))
Call (self, jppk, DELPRC Cph •> cost))

Get local catalogue

GETCAT (acd, host, wsd *> filelist))

Call (self, 0,
Call (self# mpk,
Call (ph, 0,
Call (ph# epk,
Call (ph# fpk#
Call Cph, fpk,
filelist))
Call (self, rcpk,

OPNPKS (PMF •> rcpk))
CRTPRC CSN host socket «*> ph))
OPNPKS (FP, EXEC «> fpk, epk))
LOGIN (acd))
OPNDIR (wsd -> did))
LSTDIR (did, EMPTY, "parm" »> count,

DELPRC Cph -> cost))

State probe

STATE C acd, host «> usage)

Call (self, 0,
Call Cself, mpk,
Call (ph, 0,
Call (Ph, epk,

Call (ph, 0,

Call (self, nipk,

OPNPKS (PMP -> mpk))
CRTPRC CSN host socket •»> ph))
QPNPKS (EXEC -> epk))
LOGIN (acd))

RDDATA ((self, epk, USAGE) *> usage))

DEDPRC (Ph <*> cost))

5g

5gl

5gla
sgib
5glc
5gld
5gle

5glf
5glg

5gih

5 g i i
5gi j

5h

5hl

5hl a
5hlb
5hlc
5hl d
5hie

5hlf
5hlg

51

5 i 1

5ila
5 i lb
5 i lc
5ild
51 le
5 i 1 f
5ilg
5i lh

m 8 •"
I

JBP 22 NOV 74 7|53PM
JBP 22-NOV-74 17 S 03
BiacK Boxes in PCF

24584

Accounting probe 5J

ACCOUNT caed, host •> cents) 5jl

Call C self * 0# OPNPKS (PMP *> mpK)) 5 j la
Call (self# tfpK, CPTPPC (SN host socket *> ph)) 5 j lb
Call (Ph# o# OPNPKS (EXEC o ePk)) 5jlc
Call (Ph# epk# LOGIN (acd)) 5 j Id
» f a 53 le
Call (Ph# 0, RDDATA ((self# epk, COST) »> cents)) 53 i £
a a a 5 j lg
Call (self # »pK, DELPPC (ph »> cost)) 53 lh

jBp 22wNOV*74 17:03

BiacK Soxes in PCP
version 2

22«"NOV-7 4

Jon Postel
Augmentation Research Center

Stanford Research institute
Menlo Par*, California 94025

This document describes the mapping of the BlacX Boxes described
by Millstein & Marshall into the procedure calls defined by White
& Postel,

BOXES 2 / Black Boxes in PCP
JBp 22*NGV"74 17 J 03

(J24584) 22"NCV»7 4 17 s 0 3 f ?u Titlef Author(s)! Jonathan B,
Postei/jBpj Sub-Conections: SRI-ARC* Cierki jBPf Origin! <
POSTEL, NSW*BLACK"BOXES«NL5 J 1 3 * >, 22-NOV-74 16 S 28 JBP M M # # # # !

OCE 23«"»NQV>74 10:56
To PlacKo re wider distribution of his (31374#) paper

24585

MiKe? Just to say that I read and appreclatd your item* "Notes On
The Application 0t Th e Arc Utility At SHI", CGJOURNAl# 31374,),
Nicely written, good coverage -- PLUS, building up important dialogue
base i n r ecorded form, I'd like to seem more 0£ our interested
parties have an [info only) citation -• esp, jcn, jhb, and rll in our
Utility group? also it would seem that all of our architects would be
interested, and I personally don't see anything in the content that
would deter me from sharing it with any of them, UP to you, of
course, 1

DCE 23-NQV-74 10556 24585
To Placko re wider distribution of his (31374,) paper

CJ24585) 23-NQV74 10S56?m Title: Author(s); DOUQles C.
Engeibart/DCEf Distribution? /MAP2(C INFO-ONLY 3 3 ? Sub-Coiiectionss
SRI"ARC ? Clerks DCE?

DCE 23-NQV-74 11:07 24586
To Belleville re his report on ASME CAD session (24573#)

Bob: Just to say that 1 read and appreciate? your item# "Report On a
Presentation to the ASME (Amer# Soc, of Mechanical Eng)"# (GjdURNAL#
24573#)# It was nicely written and had good coverage •• PLUS#
building up important dialogue tease in recorded form, I #m putting a
copy of the memo in our "marketing" file# relating to future
evolution of AK'W working relationship with the CAD world? and I'm
also looking forward to some good discussions with you on that topic
soon # #

1

DCE 23-NOV.74 1H07 24586
To Belleville re his report on ASME CAD session C24573,J

(J245863 23-N0V-74 11s 07}s»j Titles AuthorCs): Douglas C,
Engeibart/DCE; Distribution: /NLB2([INFO-ONLY J) \ 5ub-CoiieetlonSi
SHI-AHCt Clerk: DCE:

DCE 23-N0V-74 11:07 24587
Tc Belleville re his report on ASME CAD session (31374,)

Bob: just to say that I read and appreciate! your item# "Report On a
Presentation tc the ASME (Amer, Soe, of Mechanical Eng)"# (GjOURNAL#
24573#), It was nicely written and had good coverage ** PLUS#
building UP important dialogue base in recorded form, I'M putting a
copy of the memo in our "marketing" file# relating to future
evolution of AKW working relationship with the CAD world: and I'm
also locking forward to some good discussions with you on that topic
soon,,

1

DCE 23-NOV-74 11S 07
To Belleville re his report on AsME CAD session (31374,)

CJ24587) 23-KCV-74 lif07im Title: AuthorCs): Douglas C,
Engeibart/DCE: Distributions /RLB2C I INFO-ONLY]) j Sub-Coiieetlonss
SRI-APC? Clerk: DCE:

•

DCE 23-N0V-74 11:25 24588
SNDMSG Copy: To Russell, re, ANET experiences for A RC/NLs

This responded to Russell's query, on LufcasiK's behalf, for comments
about our Net exoerience (qrist for LuKasiK's Dec talK, same meeting
where DicK will talK apparently).

DCE 23-N0V-74 11 s 25 24588
SNDMSG Copy? To Russell, re, ANET experiences for ARC/NLS

Dave? I taxe it that you want grist from me, bearing upon usage
experience with the ARPANET, especially from ARC'S experience, I'm
recounting some highlights in narrative style? let me Know if you
want more items, or more details, 1

In the very earliest davs of developing a Network Information Center
(NIC), I found an almost universal image in each PI that the
documentation en his systems was in embarrasingly poor shape? quite
evidently a threat to him, in exposing this inadequacy by opening his
resources to remote users, 2

In providing extensive services since the very earliest Net days,
our NIC learned how much harder it Is to serve the users of a
large Net than it is to serve local users of one's own center, 2a

Important point abot Nets, then, is that a new level of quality
is reauired in formal user services (documentation, training,
bug-reporting, advice, etc,). 2b

We also learned that a new level of quality is required in the
technicai-system service^ very noticeable lower tolerance to delays,
outage, bugs, etc, Some due to greater inconvenience to remote users
if they are cut off and can't easily find out what is happening.
Some is due to the lacx of personal contact -- user and server, not
knowing each other personally, don't have empathy for each other's
problems, 3

Earliest remarkable observation about ARPANET Community has to do
with impact on coeperativeness, working style, etc, Common problems
among developers brought people together, and the Net's communication
facilities even in the early days (shared files, TTY linking) made
collaboration easier, 4

Among the various research groups, particularly for the emerging
fellows who cut their teeth on Net projects, there was a marked
change over a period of a few years in their acceptance of other's
styles and ideas, and in their willingness to cooperate, 4a

To bolster this, earliest services developed in the NIC were to
support the collaborative flow of communications! memos, messages,
etc,? human Information Agents and Liaison assignments? and the
IDENT system that both helped distribute the communications and
aided people to locate people, 4b

Our continuing experience in providing hea vily knowledge-oriented
service over the Net constantly reaffirms how important it Js to
give special liaison, service, and/or training assignements to
local humans who have real identification with the served users,

1

DCE 23-NOV-74 ll!25 24588
SNDMSG Copy! To Russell, re, ANET experiences for ARC/NLS

It is also important to support their work via special
communicaticnss facilities, 4c

The first time we experienced the real power of a Network was in
1970 •« bootstrapping NLS and its support systems from our SDS*940 to
the present PDF-iO, cur software is all in structured form,
generated, stored, manipulated (and now debugged) within the NLS
"software workshop," we used our full kit of tools in the 940 to
prepare the new source code! shipped files across to Utah's PDP-10 to
debug, Programmer flipped back and forth between NLS source^code
work# compiler# debugger -- hack and forth betweeen machines -- from
his same display console, with very nearly the same ease as when
working on one machine, We set some sort of record for minimized
conversion (and upgrading) effort. 5

The next peak experience was in 1972, when we got DNLS working over
the Net using INLAC terminals (self-contained mini computer
programmed to handle the 2-dimensional display interaction, using
DNLS core processes in our host), 6

Before that, remote NLS users were all on typewriters, not a
particularly demanding use of ANET capability, and not really that
convincing for requiring a net as oppossed to diaiup phone
service. But here we got really quite acceptable level of
interactivity, with DNLS's apeclal two-dimensional text displays
-- a service that would be very expensive to provide if by
wideband private data lines, 6a

First instances then of what we call "shared-screen dialogue",
between people at ARC in Menlo Park and at RADC in Rome, New York,
working on highly interactive screens where each could point to
and control, simultaneously talking on the telephone -- like
sharing a blackboard, As far as I am concerned, that is one of
the key portents of what the Net can provide, 6b

The S20K price tag on an IMLAC is discouraging, Our $2500 Line
Processor device turns any suitable, iate-modei, high-speed
typewriter-like CRT display into a two-dimensional DNLS terminal,
Apparently these, when using 4800-baud modems on private wires into
the Tips, are the first cases where the Tips are being connected to
in this fashion, some technical problems that weren't uncovered
before, 7

ALso,
deliver

we are finding that the Net# via a TIP port, really doesn't
burst bandwidth as advertised, at least through very many

intermediate-IMP hops. The problem doesn't seem to hit the
file-transfer use, so we think it probably bears upon buffer sizes
in TIPs, 7a

2

DCE 23-NOV-74 I 1 s 25 24588
SNDMSG Copys To Russell# re, ANET experiences for ARC/NLS

we feel that the Network's steady Influence upon resource sharing,
upon multiple-host "tool systems," etc,, is haying a significant
impact upon the concepts and Practices of system design,
inter-process protocols# Control Meta Languages# Frontend-Backend
splits, etc, seem basic and important. The NSW Program is very
important in this respect• we expect that the Intelligent Terminal
Program should build upon this approach, 8

FADC undertook a technology-transfer experiment using NLSj three
years ago they began experimenting with typewriters through the NET,
They bought five IMLACS when they got their own TIP, They now use
five slots on 0FFICE-1 relatively heavily. Among the recent
extensions in application area has been toward heavy-document
publication. H a v e developed considerable pro ject-managem,ent usage;
branching into support to software engineers (and have begin to
contribute to NSW Program), 9

Technology transfer, at least in information-processing technology,
is uniauely aided by the Network, For the size and complexity of the
new generations of applications systems, user organizations couldn't
afford to import them to install in their local computer facilities
just for experimentation, The Network very much facilitates the
exploratory access, and comparative evaluation, 10

For ust in trying to facilitate a concurrent evolution of
knowedge-work augmentation know-how, along with its transfer into
the application world, the Network is an absolute necessity, 10a

be piped
10b

In the first place, exotic interactive services couldn't
into a client's offices practically in any other way,

In the second place, we couldn't run a solid service for such a
complex of tools without a contractor like TYMSHARE to support the
operating svstern? and we expect to have NLS service systems
runn*n9 In ma ny different facilities within a few years --
couldn't sensibly plan for this Cby a core of people based in a
non-profit outfit) without the Network, enabling us to maintain the
applications software, the documentation, the day-to-day user
communications support, etc,, from our central workshop terminals, 10c

In the third Place, the very tools for supporting collaborative
dialogue tnat are sucn a basic part of our "augmented knowledge
workshop" services, serve a key role in this whole transfer
process, Close dialogue between developers, documenters, trainers,
user-representative architects and manager-buyers, users, and
systems analysts, is necessary for the coherent evolution of
larae, complex systems, and also for the sensibly-staged transfer
into application oroanizaions, lOd

3

SNDMSG Ccpyi To Russell, ret ANET experiences for
DCE 23«N0V-74 11125 24588
ARC/NLS

The ARPANET Newsletter experience was quite noteworthy, Many people
contributed! distributed committee did the editorial work (via net
collaboration)! computer published for hardcopy distriution? on-line
access of "preprints" and final editions, The editorship of the
SIG»AI Newsletter# for several years, happened to be in SRl's AI
groupf they developed ana published a number of issues successfully
using NLS in this way, 11

The DoD internetting study Group made heavy use of NLS from late Aug
into Oct 74 to develop final report. Three different committees
working on one large report (total perhaps 700 pages)j heavy
revision, many cycles, Used terminals at SRI*wash already provided
under ARPA sopcrt to SRI Defense ENergy Prject! extra terminals
borrowed! SRI loaned offie space! DCA clericals trained and
supervised on the lob by ARC specialist! RADC skilled clerical
supervisor helped first week, 12

(Dave, you can better fill in about nature and dynamics of the
Study Group and any benefits from NLS support to the development
of the report's contents), 12a

The clerical team, directories, and working methods were set up
quickly and easily (fair amount of set-up negotiations and
arrangements done via wet dialogue), 12b

4

!<

OCE 23.-NOV-.74 1 1 :25 24588
SNDMSG Copy: Tc Russell# re, ANET experiences for ARC/NLS

CJ24588) 23-NCV-74 11:25, Title: Author(S): D 0uglas C,
Engeibart/DCE? Distribution: /RWw([INFO-ONLY]) JCN(C INFO-ONLY 3 3
t Sub-Coliecticns: SFtl-AFCj CierX: DCEj

DCE 23-NQV-74 1U43 24589
Question for Dirk re his (GJQUFNAL, 24543,)

DirM

The citation X got! 2

K19-09Q8 DVNl ASAS
Sent! 19-NQV74 08 8 26 CGJOURNAL# 24543# 1)
Note! C INFO-ONLY) 2a

Commentst This is a correction to 24454 2al

Three questions about it!

1) What dees the "ASAS" in the title mean? I checked and it
isn't an IDENT, I'd like titles to be more informative,

3

2) The journal file itself looks very interesting and esoteric#
but also something of a private nature, I couldn't find any
reader-guide to what# why, etc, of content, is it perchance a
periodic journalization of a private file of yours where you
happened to accidentlv have me on the distribution list? 3b

3) Your Comment citation to 24454 is very confusiong, (J24454)
happens to tee Sandy's "...A Spade is a Spade,," message, and your
citing it adds to the confusion of this whole journal entry, 3c

Puzzled recipient »•» Doug 4

DCE 23-N0V-74 11S43 24589
Question for Dirk re his CGJOUFNAL# 2454 3»)

CJ24589) 23-N0V.74 11!43|IH Titles AuthorCsJl Douglas C,
Engeihart/DCE; Distribution! /DVNC t INFO-ONLY 1) (Sub-Collectionsi
SFI-AFC ! clerk! DCE|

JEW 23*N0V-74 16 s 25 24590
Version 2 of the Procedure Call Protocol (PCP)

This note announces release 0t the second published version of the
Procedure Call Protocol -- PCP Version 2, Version 2 is SUBSTANTIALLY
different than version 1? it and all intermediate* informally
distributed PCF documents are obsoieted by this release. 1

Version 2 consists of the following documents. Each is available
on-line in two forms! as an NLS file and as a formatted text file,
The journal number (e,g, 24459) refers to the former, of course* and
the pathname (e,g, tSRl-ARC)<NLS>PCP,TXT) to the latter* accessible
via FTP usina USER»ANONYMOUS and PASSWGRD=GUEST (no account
required), Hardcopy is being forwarded by US Mail to all those who
have expressed an interest in PCP, If you don't receive a copy and
would like one of this and/or future releases* send a note to that
effect to WHITE$SRI»ARCI 2

PCP C24459*) "The Procedure Call Protocol" 2a

This document describes the virtual programming environment
provided by PCP* and the inter-process exchanges that implement
it, 2al

Pathname! [SRI-ARC]<NLS>PCP,TXT 2a2

PIP (24460,) "The procedure Interface Package" 2b

This document describes a package that runs in the setting
provided by PCP and that serves as a procedure-caiip-ievel
interface to PCP proper, It includes procedures for calling,
resuming, interrupting, and aborting remote procedures, 2bl

Pathname! (SRI-ARC)<NL5>PIP,TXT 2b2

PSP (24461*) "The PCP Support package" 2c

This document describes a package that runs in the setting
provided by PCP and that augments PCP proper* largely in the
area of data store manipulation, It includes procedures for
obtaining access to groups of remote procedures and data
stores* manipulating remote data stores* and creatlnq temporary
ones, 2cl

Pathname! [SRI-ARC]<NLS>PSP,TXT 2c2

PMP (24462*) "The process Management package" 2d

This document describes a package that runs in the setting
provided by pCp and that provides the necessary tools for
interconnecting two or more processes to form a multi-process
system (e,g, NSW), It includes procedures for creating*

1

JEW 2 3-NQV-74 16:25 24590
Version 2 of the Procedure Call Protocol (PCPD

deleting, logically ana physically interconnecting processes,
and for allocating and releasing processors* 2dl

Pathname: CSRL»ARC3 <NIS>PMP,TXT 2D2

PCPFMT (24576,5 "PCP Data structure Formats" 2e

This document defines formats for PCP data structures, each of
which is appropriate for one or more physical channel types* 2el

Pathname: (SRl*ARC]<NLS>PCpFMT,TXT 2e2

PCpHST (24577,5 "PCP ARPANET Inter-Host IPC Implementation" 2f

This document defines an implementation, appropriate for
mediating communication between Tenex forks, of the IPC
primitives required by PCP, 2fi

Pathname: (SRI-ARC 3<NLS>PCPHST #TXT 2f2

PCPFRK (24578,3 "PCP Tenex Inter-Fork IPC implementation" 2q

This document defines an implementation, appropriate for
mediating communication between processes on different hosts
within the ARPANET, of the IPC primitives required by PCP, 2gl

Pathname: C5RI-ARC3 <NLS>PCPFRK,TXT 2g2

The first document, PCP# is the place the interested reader should
start. It gives the required motivation for the Protocol and states
the substance of the Protocol proper, The reader may then, if he
chooses, read the next three documents: PIP, PSP, and PMP, The
latter has the most to offer the casual reader: the programmer faced
with coding in the PCP environment should read all three, The final
lew documents PCPFMT, PCPHST, and PCPFRK -- are of interest only
to the PCP impiementer, 3

2

4
>

JEW 23-NOV-74 16*25 24590
Version 2 of the Procedure Call Protocol (PCP)

CJ24590) 23"NOV-74 !6|25;;ii Title: Author(s)! Ja^es E # (J im)
White/JEW j Distribution! /SRI-ARCC C INFO-ONLY 1) Nswc C INFO-ONLY 3)
! Sub-Collections! SRI-ARC NSW! Clerfci JEW! Origins < WHITE,
PCP-COVER.NLS!5, ># 23-NOV-74 16U2 JEW ?!?!####!

)

Version 2 of NSW protocols
JBP 23-N0V-74 16830 24591

This note announces the release
several National Software Works
documents is labeled Version 2,

of the second published version of
(NSW) protocol documents. This set
Version 1, as well as all

of

Intermediate,
this release.

informally distributed NSW documents are obsoleted by

Several of these documents specify protocols or procedure packages
based on the Procedure Call protocol (PCP 24459,), with which the
reader is assumed familiar.

as journal items
document is

These documents are available online in two forms?
indicated by the link number (for example the HOST
journal item 24581)? and as ASCII text files by the indicated
pathname [for example the HOST document is text file HOSTiTXT
directory NLS at host SRl-ARei, The files may be reterived
SFI'AFC using the file transfer user name ANONyMQUS and
GUEST, no account number is needed,

in
from,

the password

Hardcopy is being forwarded by US Mail to all those who have
expressed an interest in NSW protocols,, If you don't receive a copy
and would like one of this and/Qr future releases * send a note to
that effect to WHXTEfSRl«ARCI

The specifications are contained in the following documents:

HOST "NSW Ho st Protocol" C 24581 ,)

This document describes the host level protocol used in the
NSW, The protocol is a slightly constrained version of the
standard ARPANET host to host protocol, The constraints ~
the allocation, RFNM wait, and retransmission policies.

5a

affect

CSRI-ARC)<NLS>HOST,TXT

EXEC "The Executive package" (24580,)

This document describes a package that runs in the setting
provided by PCP, It includes procedures and data stores for
user identification,, accounting, and usage information,

CSRI•ARC)<NL5>EXEC ,TXT

FILE "The File package" (24582*3

This document describes a package that runs in the setti n9
provided by pep, It includes procedures and data stores for
opening, closing
deleting
file elements between nroeesses

5al

5ai a

5b

5b 1

5bla

5c

provided by pep, It includes procedures and data stores
opening, closing, and listing directories, for creating,
deleting, and renaming files, and for transfering files
f f 1 t! A 1 OffOnt c K fit "ii a f> m

and
5c 1

1

JBp 23-NQV-74 16 S 30 24591
Version 2 of NSW protocols

[SRI-ARC)<NLS>FILE, TXT SCU

BATCH "The Batch Job Package" (24583,) 5d

This document describes a package that runs in the setting
provided by PCP, it includes procedures for creating and
deleting batch jobs, obtaining the status of a batch job, and
communicating with the operator of a batch processing host.
This package is implemented at the host that Provides the batch
processing facility, Sdl

[SRI-ARC]<NLS>BATCH.TXT 5dla

LLDBUG "The LowLevel Debug Package" (24579,) 5e

This document describes a package that runs in the setting
provided by PCP, It includes procedures for a remote process
to debug at the assembly-language level, any process known to
the local process. The package contains procedures for
manipulating and searching the process' address space, for
manipulating and searching its symbol tables, and for setting
and removing breakpoints from its address space, Its data
stores hold process characteristics and state information, and
the contents of program symbol tables,

[SRI-ARC3 <NLS>LLDBUG,TXT 5ela

BOXES "Black Boxes in pCp" (24584,) 5£

This document describes the transliteration of the biaek boxes
defined by Millstein and Marshall into the setting provided by
PCP, especially the File Package and the Executive Package, 5fl

[SRi-APC3<NLS>BOXES,TXT 5f la

2

Version 2 of NSW protocol s
JBp 23-NQV-7 4 16: 30 24591

CJ24591) 23-NCV-74 16:30:::? Title: Author(s): Jonathan B,
Postei/JBP? Distribution: /NSW(t INFO-ONLY 3) SRI-ARCC t INF0-GNLY])
? Sub^Conectiens: SRI-ARC NSW? Clerks JBP? Origins < PQSTEL,
NSW-COVER,NLS?5# >, 23-NOV-74 16126 JBP ?:::####:

RLL 24-N0V-74 17 s 57 24592
Documentation WeeKiy response » perhaps a monthly#

Pes (2457 2r) by DVN

RLL 24-NQV-74 17 J57 24592
Documentation weekly response * Perhaps a monthly,

Perhaps Biweekly would foe a better time span tor the Documentation
weekly (biweekly), X wish it good luck, The history of such
documentation reports has been rather filled by inactive reports,
would even consideer monthly since it might be less of a burden if
done that why and less of a burden on the reader to see what is
happoening in documentation,

i

RLL 24-NOV-74 17x57 24592
Documentation weekly response « Perhaps a monthly,

CJ24592) 24«N0Vw74 17157???? Titlei Author(S)
Lieberman/PLL? Distribution? /DIRTC C ACTION 3) ? Keywords?
Documentation? 5yb*Coilectionss SRI-ARC DIPT? Clerk? RLL?

SHL 25*N0V*74 07 S 36
Report on Documentation progress

It seems like It might also be a good Idea to send a copy of any
progress on documents to be used by OFFICER u sers to KWAC for one
thing to let the architects know what all is being done for them that
they often times don't realize. It might demonstrate a little better
what all their money is going for,,,

24593

1

1

SRL 25-NQV-74 07836 24593
Report on Documentation Progress

(J24593) 25*N0V»74 07 1 36ms Title
Distribution? /SRI-ARCC t ACTION 3) ?
SRL 1

AuthorCs)? Susan P# Lee/SPL?
Sub-Coliectionsi SRI-ARC f ClerK?

Visit to NSRDC on 15 Nov 74 by RLL

This is a contact report,

RLL 25*NQV»74 08839 24594

RLL 25-NOV-74 08 : 39 24594
Visit to NSRDC on 15 Nov 74 by RLL

(DATE) 15 Nov 74 1

(BY) Lieberman 2

(ATTENDEES) 3

Robert Lieberman (RLL) - SRI-ARC 3a

Thomas Rhodes (TRR) - NSRDC 3b

Frank Brigneli (FGB) » NSRDC 3C

Herb Ernst (HME) - NSRDC 3d

(MEDIUM) FACE-TO-FACE 4

(WHERE) NSRDC# Cardercck, Maryland 5

(ACTION-ITEMS) none 6

(DISTRIBUTION) DCE JCN RLL 7

(REMARKS) 8

In talking with Frank Brignoii# Tom Rhodes# and Herb Ernst I
learned several items pertinent to NSRDC# NAVSEC# Graphics# Data
Management# and Navy Networking, The following are my notes from
these Informal discussions with my former NSRDCers, 8a

NAVSEC 8b

pete Bono of NAVSEC is now mostly working on the Comrade
project (a data management system, query langauge# file
maintenance system for ship design engineers), He will return
to NLS after December 1974, No one else at NAVSEC is using or
near use of Nls, 8bl

Graphics 8c

Graphics at NSRDC seems to be rather inactive. The opinion is
that it is too costly and funding# therefore# has fallen off as
well as the interest at the management level. Even the
anticipated use of the GT-40 (an intelligent graphics
terminal) for graphics has been scraped, It is being used for
data analysis, 8cl

NLS Applications 8d

Basically NSRDC is using NLS for several reports and for

1

Visit to NSRDC on 15 Nov 74 by FLL
RLL 25-NOV-74 08139 24594

p r o j e c t c o o r d i n a t i o n . T h e y s e e m t o b e e x p l o r i n g s o m e new ways
of coordination among a geograhically distributed community,
just how sophisticated these techniques are I did not find out, 8dl

They expressed desire for the Line Processor as soon as
possible since they can immediately use it with a voice grade
2400 baud modem (Valdec, X think) on a dial-up phone, 8d2

NSRDC projects 8e

Data Management Engineering 8ei

This is a 3 to 5 year project now in its first year, 8ela

The objective is to come UP with ways of classifying,
organizing, engineering, and developing DMS, 8elb

Also they are interested in written procedures to develop,
establish, and use DMS, Beic

In addition, compiler-compiler methods and the like are
being studied, 8eld

Computer distributing problems will be looked at, hence
networking, communications, large data stores, etc, are
other possible avenues in this project, 8ele

Comrade 8e2

In the Comrade project some work is being done on the DMS
interface tor the ship design community, 8e2a

Networking 8e3

The Navy Networking project is full speed ahead with the
plan to connect all the Navy Labs, 6e3a

(DOCUMENTS) Hard copy given and received 9

(GIVEN) none 9a

(RECEIVED) none 9b

2

RLL 25-NOV-74 OB S 39 24594
Visit to NSRDC on 15 Nov 74 by RLL

CJ24594) 25-NCV-74 0S[39nt» Title! Author(S)! Robert N,
Lieberman/RLL; Distribution! /DCEI [INFO-ONLY]) JCN([INFO-ONLY])
I Keywords! NSRDC NAVSEC graphics Data Management Networking Marketing;
Sub-Collections 1 SRI-ARC; Clerki RLL;

Meeting at QNF with NSA, ONR on 7 Nov 74

This a contact report,

RLL 25-NQV-74 08:50 24595

RLL 25-NOV*74 08 S 50 24595
Meeting at ONP wit h NSA * ONP on 7 Nov 74

(DATE) 7 NOV 74 1

(BY) Lieberman 2

(ATTENDEES) Name of attendee (Idnum) - Organization acronym 3

Doualas Engelbart (SRI) 3a

Robert Lieberman (SRI) 3 b

Susan Lee (SRI) 3c

Dennis L, Mumaugh (SRI) 3d

David p, Smith (Ns A) 3e

Jim Popa (NSA) 3£

Pandy Simpson (ONP Code 431B) 3g

(MEDIUM) FACE-TO-FACE 4

(WHERE) ONP small conference room* Arlington* VA 5

(ACTION-ITEMS) 6

Meeting of SRI^APC TENEX/NLS expert with NSA and DEC people 6a

(DISTRIBUTION) DCE JCN FLL 7

(REMARKS) 8

We sat around and talked mainly with Dennis Mumaugh on the
potential of using NLs at NSA * 8a

In particular with the new PDP1080*(super fast CPU and several
goodies) They (NSA) are talking with DEC to procure a Tenex like
operating system, 8b

It seemed that the main reason for having the new machine would be
to put on NLS users, Thus it was important to know what
dependence on the Tenex operating system NLs had, we agreed that
someone from DEC* someone from NSA and someone from SRI-APC should
meet and discuss these technical interfaces, 8c

In summary it seems that NSA is truely hot on using NLS on one of
their own machines. Their Plans sound as if many people win he
involved in this community of users, 8d

1

Meeting at QNR with NSA, ONR on 7 Nov 74

(DOCUMENTS) Hare copy given and received

(GIVEN) none

(RECEIVED) none

RLL 25-NQV-74 08:50 24595

9

9a
i

2

Meeting at ONp with NSA# ONR on 7 Nov 74
RLL 25-NOV-74 08 i 50 24595

CJ24595) 25-NCV-74 08 1509 9 f v Title! Author(s): Robert N,
Lieberwan/RLL| Distribution! /JCNC C INFO-ONLY 3 3 DCE(t INFO-ONLY 3)
! Keywords! NSA marketing: Sub-Collections: SRI-ARC: Clerk: RLL?

RWW 25-NQV-74 10! 14 24596
Note on Computation for ARC N S W Development

The status of things relevant to obtaining computation and net access
for ARC NSW developments is the following? I will be qone on a trip
starting sun and would appreciate it if Martin could followup on the
items indicated bei 0w,

1) Bill Carlson informs me that he has told RML to rush an order for
the needed distant IMP S{ d e interfaces, Martin should followup on
this with RML,

2) The NBS loare r IMP interface wa s s upposed to be shipped last week,
Martin snouid followup on this also,

3) 111 finally has all t h e p a r t s f o r t h e o t h e r IMP i n t e r f a c e a n d i t
s h o u l d b e d e l i v e r e d t h i s weex, M a r t i n s h o u l d f o l l o w u p o n t h i s a l s o
as well as getting it p u r c h a s e d o n Capital e q u i p m e n t a s Cox a g r e e d
some months age,

4) Martin through Tom Little should check with DEC about how
delivery plans on coming for the other DEC equipment POP 11 printer
etc we have on order,

5) I d© not Know what the status of our terminal orders is, Martin
could you check?

6) Ed and Jake have been doing the internal wiring needed to hook
terminal to the 11 and assume that is all cool,

7) I do not know what the status of Line Processors is,

8) The status of POP Tenex power is not completely clear and know
that Jim is actively pursueing things with Tym share for a second ten
there and with ARPA about possibly keeping our machine a little
longer if needed, I have also talked with BBN and asked Ted Strollo
to send an official quote for service from them,

Ted thinks that about three months will be the minimum, He says
if all the people who have been talking with him buy what they say
they need, there will be more than 100% sold, He will reserve
time first purchase order order in the door,

BBN is not 100% certain their new machine will be up solid by Jan
1 but all the pieces are almost there.

Bob Millstein will buy about 15-20% there and about 8-10% from us
if we can give him a solid date and quote, Bill Carlson would
share that percent with us and other NSW users with MCA holding
option to use it if they get desoarate, Bob ran some experiments
with the new 132 scheduler and pie slicer using editing (S0S?3#
BCPL compiles loads and runs and found that about 5% was the lower

1

2

3

4

5

6

7

R

9

9a

9b

1

RWW 25-NOV-74 10814 24596
Note on Computation for ARC NSW Development

bound per user for satisfactory service, Less was unsatisfactory
and he did not try mere. The 5% was adequate no matter what else
was going on outside their piece of the pie no matter how many
other bad thing they loaded in. When they ran heavy compute bound
things in their piece of the pie (15%) there was degradation, 9c

At the end of this week I would like to review where the PDF 10
negotiations are at and see if we should not proceed to order
30-35% for three months from BBN, to cover any hole tht might
develop until Tymshae can get a second machine UP running Tenex, 9d

2

•

RWW 25-NOV-74 10(14 24596
Note on Computation for ARC NSW Development

(0245965 25-N0V-74 10|14|)((Title! AUthor(s)! Richard W,
Watson/pwwi Distribution! /MEHC t ACTION 3 3 JCNC t ACTION J) NPG([
INFO-ONLY 3) JBPC I INFO-ONLY 3) DCEC [INFO-ONLY J) DVN([INFO-ONLY
3 3 POOH(t INFO-ONLY J 3 KIRKC t INFO-ONLY 3 3 I SUb-Co11ections!
SRI-ARC NpG! ClerKl RWWJ

RWW 25-N0V-74 10826 24697
Important NLS and Journal Demo on Dec 6 from MIT

Friday Dec 6 I will be giving an Important NLS and Journal demo from
an IMLAC at MIT to Licklider, Kahn, the APA Message service
committee, and some DoD people from around 6:00 to 9;00 Pacific Time
(local here), The following things need doing.
1) X need to get checked out on the IMLAC.
2) we need to double check with MIT that they have the latest IMLAC
program and can run it to do all normal NLS functions, Bob
Belleville and I should get on the phone and double check this,
3) Jeff and Dave should be sure we have uptodate journal indices and
that they ae online,
4) I should probably have a backup account at Office 1 to use,
5) There should be someone knowledgable about things around hee at
the time to deal with questions and problems with IMLAC# Tenex# NLS,
Last time in Washington the demo was a mess ana I would like to avoid
the problems this time, Thanks Dick 1

1

RWw 25-NOV-74 10(26 24597
important NLS and journal Demo on Dec 6 from MIT

(J24597) 25-N0V-74 10(26;;)! Title! AuthorCsll Richard W,
WatSon/RWW) Distribution! /RI.B2C c ACTION]) EKM (C ACTION J) JCPC t
ACTION 1) DSM C [ACTION]) DCE([INFO-ONLY]) JCN(t INFO-ONLY])
CHIC t INFO-ONLY]) JDH(t INFO-ONLY]) (5Ub-ColleCtlonS! SRI-ARC(
Clerk! RWWf

	24575-24576

	24577

	24578

	24579

	24580-24581

	24582

	24583

	24584

	24585-24588

	24589-24592
	24593-24597

