A FORMAL DESCRIPTION OF APL

IBM PHILADELPHIA SCIENTIFIC CENTER
Data Processing Division R. H LATHWELL & J. E. MEZEI
TECH. REPORT NO. 320-3008 NOVEMBER 1971

t

t

te

.

t
t

t ® % 3202911 CE. Lemke & K. Spielberg, Direct Search Zero-One and

.

PHILADELPHIA SCIENTIFIC CENTER
TECHNICAL REPORTS

320-2900 K. Spielberg. An Algorithm for the Simple Plant Loca-
tion Problem with Some Side Conditions, 48 p.,
November 1967 ‘

320-2901 J. Greenstadt, Variations on Variable-Metric Methods,
23 p., May 1967

320-2902 Y. Bard, A Function Maximization Method with Ap-
plication to Parameter Estimation, 16 p., June 1967

® * 320-2903 A.M. Bomberault & W.W. White, Scheduling Empty
Box Cars, 23 p.. December 1966

320-2904 B.D. Gavril, S.C.U. Special Control Unit Information
Brief No. 1, 12 p., July 1967

320-2905 B.D. Garrii, S.C.U. Special Control Unit Information
Brief No. 2, 29 p., July 1967

320-2906 O. Gurel & L. Lapidus, Stability Via Liapunov’s Second
Method, 54 p., July 1967

320-2907 O. Gurel, Stability Analysis of N-Dimensional Systems
Through Topology of Velocity-Space, 29 p., August
1967

320-2908 E.S. Savas, Computers in Urban Air Pollution Control
Systems, 51 p., August 1967

(Elliptic Case), 27 p., August 1967

* 320-2910 H Eisenpress & J. Greenstadt, The Estimation of Non-
Linear Econometric Systems, 15 p., August 1967

Mixed Integer Programming, 62 p., September 1967
320-2912 J. Greenstadt. A Richocheting Gradient Method for
Non-Linear Optimization, 26 p., September 1967

320-2913 Y. Bard, On a Numerical Instability of Davidon-Like
Methods. 4 p.. September 1947

320-2914 J Greenstadt, Cell Discretization 111 - Treatment of Dis-

crete Equations (Hyperbolic and Parabolic Case), 13 p.,
September 1967

+8 * 320-2915 J Rubin, Optimal Classification into Groups - An Ap-
proach for Solving the Taxonomy Problem, 62 p.,
November 1967

t 320-2916 S.G. Hahn. On the Optimal Cutting of Defective Glass
Sheets, 20 p.. October 1967

¥ 320-2917 R.G. Loomis, & JJ. Lorenzo, Experiments in Mapping
with a Geo Space Plotter, 18 p., September 1967

t 320-2918 L.S. Woo, An Algorithm for Straight Line Representa-
tion of Simple Planar Graphs, 19 p., October 1967

t 320-2919 O. Gurel & L. Lapidus, The Maximum Principle and
Discrete Systems, 22 p., November 1967

t ® 3202920 M Guignard, Generalized Kuhn-Tucker Conditions for
Mathematical Programming in a Banach Space, 17 p.,
November 1967

t® 320-2921 O. Gurel, Marker Layout Problem Via Graph Theory,

42 p., January 1968
+ * 320-2922 H.P. Friedman & J. Rubin, On Some Invariant Criteria
for Grouping Data, 69 p., November 1967
* 320-2923 P.G. Comba, A Language for 3-Dimensional Geometric
Processing - Written Form, 40 p., December 1967
t * 320-2924 P.G. Comba, A Procedure for Detecting Intersections
of 3-Dimensional Objects, 18 p., January 1968
B 320-2925 A.R. Colville, Mathematical Programming Codes, 25 p.,
January 1968

320-2926 A.R.D. Norman & M.J. Dowling, Railroad Car Inven-
tory: Empty Woodrack Cars on the Louisville and
Nashville, 69 p., June 1967

f

B 320-2927 G. Gordon, The Development of Simulation Languages,
34 p., January 1968

t 320-2928 F. Freudenstein & L.S. Woo, Kinematics of the Human
Knee Joint, 30 p., January 1968

t 320-2929 K. Spielberg, Plant Location With Generalized Search

Origin, 32 p., March 1968

t® 320-2930 J.F. Raimond, An Algorithm for the Exact Solution of
the Machine Scheduling Problem, 40 p., March 1968

320-2909 J. Greenstadt, Cell Discretization Il - Discrete Equations

e

twe

.'

tw
Tu

-

320-2931 R. Shareshian & K. Spielberg, The Mixed Integer Algori-
thm of N. Driebeek, 18 p., July 1966

320-2932 R. Shareshian, A Modification of the Mixed Integer Al-
gorithm of N. Driebeek, |1 p..July 1966

320-2933 Y. Bard, Production-Transportation-Marketing Model,
22 p., October 1966

320-2934 J. Greenstadt, Further Experiments in Triangularizing
Matrices, 19 p., November 1966

320-2935 G. Gordon & K. Zelin, A Simulation Study of Emergency
Ambulance Service in New York City, 37 p., February 196£

320-2936 B.D. Gavril, S.C.U. Special Control Unit Information
Brief No. 3, xx+ 173 p., March 1968

320-2937 O. Gurel & L. Lapidus, A Guide to Methods for the Gene-
ration of Liapunov Functions, 82 p., March 1968

320-2938 K. Spielberg, Enumerative Methods for Integer and Mixed
Integer Programming, 115 p., March 1968

320-2939 89 6l'gzley. Mesh Analysis of Piping Systems, 136 p., March
1

320-2940 R.G. Loomis, A Design Study on Graphics Support in a
FORTRAN Environment, 33 p., May 1966

320-2941 J. Greenstadt, On the Problem of Fairing, 58 p., December
1966

320-2942 J. Greenstadt, On the Relative Efficiencies of Gradient
Methods, 16 p., January 1967

320-2943 O. Gurel & M.M. Salah, Stability Analysis Reports,
Report No. 1, 25 p., Report No. 2, 16 p., February 1967

320-2944 J. Greenstadt, Cell Discretization | - Variational Basis, 27 p.,
February 1967

320-2945 O. Gurel, Additional Considerations on Marker Layout
Problem Via Graph Theory, 34 p., April 1968

320-2946 D W. Webber & W.W. Whire, Ag Algorithm for Solving
Large Structured Linear Programming Problems, 28 p.,
April 1968

320-2947 L.S. Woo & F. Freudenstein, On the Curves of Synthesis
in Plane, Instantaneous Kinematics, 40 p., May 1968
320-2948 Y. Bard & J.L. Greenstadt, A Modified Newton Method
for Optimization with Equality Constraints, 13 p., May 1968
320-2949 A R. Colville, A Comparative Study on Nonlinear Program-
ming Codes, 77 p., June 1968

320-2950 O. Gurel & M. Guignard, Structure of Constrained Opti-
mality With Respect to Higher Order Derivatives, 25 p.,
June 1968

320-2951 H. Salkin & K. Spielberg, Adaptive Binary Programming,
90 p., June 1968

320-2952 A.M. Bomberault & W.W. White, Networks and Trans-
portation: The Empty Freight Car Allocation Problem,
58 p., July 1968

320-2953 L.S. Woo, Type Synthesis in Plane Linkages, 39 p., July
1966

320-2954 S. Poley & C. Strauss, A Three Dimensional Piping De-
sign Program, 30 p., July 1968

320-2955 Y. Bard, Comparison of Gradient Methods for the Solu-

tion of Nonlinear Parameter Estimation Problems, 58 p.,
September 1968

320-2956 H. Eisenpress & A. Bomberault, Efficient Symbolic Dif-
ferentiation using PL/I-Formac, 25 p., September 1968

320-2957 O. Gurel, Stability of the Pair (X,f), 14 p., November
1968

320-2958 S. Gorenstein, Printing Press Scheduling for Multi-Edi-
tion Periodicals, 22 p., November 1968

320-2959 C. Hao, L. Woo, V. Vitagliano, & F. Freudenstein,
Analysis of Control-Mechanism Performance Criteria
for an Above Knee-Leg Prosthesis, 51 p., December 1968

320-2960 E. Balas, Project Scheduling with Resource Constraints,
23 p., January 1969

320-2961 O. Gurel & L. Lapidus, Topology of Velocity-Space for
Stability Analysis, 12 p., January 1969

320-2962 J. Cord, Generalized Upper Bounds with Upper Bounded!
Variables, 47 p., January 1969

IBM PHILADELPHIA SCIENTIFIC CENTER TECHNICAL REPORT NO. 320-3008 NOVEMBER 1971

A FORMAL DESCRIPTION OF APL *

R. H. LATHWELL

J. E. MEZEI

PHILADELPHIA SCIENTIFIC CENTER
IBM CORP.
3401 MARKET STREET, PHILADELPHIA, PENNSYLVANIA, 19104

This paper was prepared for COLLOQUE APL,
held in Paris, France, September 9 and 10, 1971;
and appears in the proceedings of that conference.

ABSTRACT

APL primitives are formally defined by APL/360
functions. The description is formal in two senses:
primitives are completely and exactly defined for all
cases, and the functions are executable on APL/360 and

are hence working models.

The descriptions can be used to compare and evaluate
APL implementations in two ways:

1. Implemented primitives should produce the same
results as the corresponding definitions.

2. Any implementation should properly execute the
definitions.

INTRODUCTION

This is a description of the primitives of APL. They are
defined by APL\360 functions which describe them to the
approximate extent of the implementation of APL\360. The APL\360

User's Manual is the principal reference, and familiarity with it
is assumed.

The description is formal in two senses: primitives are
defined completely and exactly for all cases; and the functions
which form the description are executable and hence are working
models. Our intent was to describe the primitives of APIL more
completely and more rigorously than does the APL\360 User's Manual,
but we did not intend the description to be documentation for any
specific implementation. Hence, we have tended to ignore
machine-dependent and system-design considerations such as library
structures and the mechanics of function definition.

This description can be used to compare and evaluate
implementations in two ways:

1. With the exception of machine and system dependencies,
implemented primitives should behave like the correspcnding
definitions for the same arguments.

2. Since the functions forming the descriptions are themselves
executable APL, any implementation should execute them
properly.

APL was chosen as the language for the description because it
allows short and concise yet complete and precise definitions. L
is deficient primarily in primitives for constructing and
manipulating arrays with components more complicated than scalars;
this deficiency makes it impossible to formally define and simulate
APL indexing.

2 APL SYNTAX

We have chosen not to include a formal definition of function
definition and statement parsing because such a definition adds
detail which is really not reguired for understanding. Such a
definition would in fact be a complete APL interpreter.

APL SYNTAX

The formal syntax of APL is relatively simple. Essentially,
a program consists of a sequence of statements which can be parsed
into simple expressions. Expressions and statements can be
informally defined as follows:

c is a numeric or character constant,

N is an undefined name or a variable or a (],
174 is a variable,

E is an expression,

F is a function,

P is a primitive function (see note 1),

S is a primitive scalar dyadic function,

H is a statement label,

L is a semi-colon list.

An expression, F, has one of the forms:

C

H

74

F niladic

F E monadic

PLE] E (see note 1)
EF E dyadic

E P[E] E (see note 1)
S/E reduction
S/LE] E

S\EZ scan

S\XLE] &

B o .S E outer product

E S.S E inner product

ELL] subscripted (see note 2)
N<E specification
VLL]<«E

A statement has one of the forms:

E (see note 3)
H:E

+E branch
H:>FE

INFORMAL DEFINITIONS 3

Notes:

l. See Table 1 for those primitives for which a subscript has
meaning.

2. The semi-colon 1list [in V[L] and E[L] is of the form
ERBrt sieruiity where the number of semicolons must be “1+ppV and
“1+ppE respectively. Any of the expressions in the list may be
elided, implying all permissible values for that subscript
position in ascending seguence.

3. When an expression E does not contain a specification or branch
as the function of least precedence, it is assumed that [J« was
elided on the left, and that the value, if any, of the
expression is to be displayed.

Order of evaluation. The relative precedence of functions in an
expression is positional rather than attributive: precedence
increases from left to right. Parentheses may be used to delimit
expressions, and the arguments of a function must be evaluated
before the function can be evaluated. The rule governing the order
of evaluation within a statement is this: The rightmost function
whose arguments are available (i.e. have been evaluated or require
no evaluation) is evaluated. Thus, for example, the commutativity
of + is maintained in expressions of the form

(A«Ax2)+A, equivalent to A+4+«Ax2
2&a) Sy 3 2 1 (evaluation order)

INFORMAL DEFINITIONS

The arguments and results of APL functions are scalars or
arrays of scalars; a scalar is a number or a character.
Characters are distinguished from numbers in that no arithmetic
functions are defined on them. Most current implementations
require that all scalars forming an array be of the same type, but
this restriction is not essential. In this paper, the only test
which prevents mixing numbers and characters is the test in
COMMACHECK. However, no mixed numeric and character constants yet
exist in APL, and some of the functions here make the (usually
trivial) assumption that an argument is of uniform type.

A vector is a sequence of scalars, formed either by writing
a constant vector, by catenation, or by an expression involving a
vector. The reshape function, p, can be used to reshape its right
argument into an array which has the dimensions specified by the
left argument. The elements of the result are filled in principal
order (right-most subscript changing fastest) with scalars chosen
in principal order from the right argument. If the right argument
is exhausted, it is repeated cyclically.

4 INFORMAL DEFINITIONS

Examples:
4p1 2 3
1 W258 31

2 3p1 2 34 5 6

sLod
4 5 6

The monadic function p returns a vector of the dimensions of

its argument. If B is the result of an expression, then:
pB is a vector of dimensions of the axes of B,
ppB is the number of axes of B, and
x/pB is the number of elements in B.

Specification, the APL primitive function denoted by the
symbol « forms an association between the right argument and the
left argument (which must be a name). The result of a
specification expression is the right argument. If the name to

the left of the « is indexed, then only the elements designated by
the indices are affected.

Indexing is a function which selects a subarray from an APL
array, and is the only function currently permitted in the left
argument of specification. Vector Indexing is the process of
selecting particular components of a vector. If ¥ is a vector and
I is a scalar such that IeipX, then X[I] selects the scalar element
of X located by (I=1pX)/X. If I is not a scalar then the elements
of X[I] are obtained by evaluating the scalar for each element of

I. In all cases, pX[I] is equal to pI.

the vector X is Xx[01; in ;-§£;§ig—15§§gigg, it 18 ¥l ~ FEQ 18

the value of the index origin, then all indexing can be expressed
in origin zero as X[I-0].

In general, the components of any array 4 can be selected by
the expression A[L] where L is a semi-colon list containing pp4
list elements (which may be arrays) separated by “1+pp4
semi-colons. If L.is. of the form' [id:Kij.ers then p4A[L] 1is

(pI),(pd)s(pK)yesue

If all of the elements of [are scalars, and M is the vector
formed by catenating these scalars (i.e. M«I,J,K,...), then, in
terms of vector indexing, the indicated component of A is obtained
by (,4)[(pA)1M-0] (origin zero).

An item of L may be elided, i.e., the four sequences [; ;;
;] and [] are all valid. When the Ith position is vacant, then the
value 1(pA)[I] meaning a vector of all permissible values in this
position in ascending order is assumed. When any of the elements
is not a scalar, the result is determined by applyinc the scalar
case to all combinations taking one scalar from each list element.

when an index appears to the left of specification in the
form ALL]+~V, the conformability requirement is
A/(pV)=(pI),(pd),(pK), ...

INFORMAL DEFINITIONS 5

Function E¥ggg;ign. A defined function consists of a header and a
sequence o statements. Statements are numbered sequentially
beginning with 1, and the header is referred to as statement 0.
Function headers, local variables, and statement labels are
described in detail in the APL\360 User's Manual. Functions are
executed beginning with statement 1 and, at the completion of any
statement, proceeding with the next in succession. This segquence
may be altered by a branch statement. A branch statement is a
statement formed by the character + followed by an expression. The
result of this expression must be a scalar or a vector, ana if
non-empty, the first element X must be an integer. If Xell
(origin 1), where N is the number of statements in the function,
then the next statement executed will be statement X. Otherwise,
the function terminates, and execution resumes at the point where
the function was invoked. If the result of the expression to the
right of the + is an empty vector, then the sequence of execution
is not changed, and execution proceeds with the succeeding
statement. Execution of a function terminates after the last
statement of a function unless it is a branch.

External Appearance. The external appearance of APL, which is
described in detail in the APL\360 User's Manual, will not be
treated formally. The notation used in the definitions is APL\360.
APL\360 has many important concepts which we have not treated
formally, but which nevertheless are important to the utility of

an implementation. We have ignored the library organization and
system commands. One very important notion is visual fidelity.
The appearance of a typewritten line corresponds as closely as
possible to the internal representation of that line. Typing

errors are corrected in such a way that the statement of correction
and the correction are both clear and legible.

Errors are handled in APL\360 in a way which facilitates
recovery and interaction. All errors are detected during
execution, even though it 1is possible to detect some errors
earlier. When an error occurs, no action other than suspension of
execution is taken. The user is then free to examine the situation
at the point where the error occurred, and may correct the error
and resume execution if he desires. The place and manner in which
errors are detected are shown in each function, and the action
following detection consists of printing the type of error and then
terminating execution. The functions usually show the detection of
errors by a sequence of tests rather than by single more

complicated expressions. This was done in order to preserve as
much information as possible about the errors to ease possible
changes in messages. For example, it might be desirable to

differentiate LEFT DOMAIN and RIGHT DOMAIN errors.

Arithwetic and Fuzz. One of the principal underlying assumptions
of APL is that the arithmetic primitives are defined on the entire
continuous domain of real numbers, and that arithmetic is exact.
We have tended to follow this assumption in the formal definitions,
so that, even though the notation is APL\3€0, division, floor,
ceiling, and the relationals are assumed to be exact.

6 INFORMAL DEFINITIONS

The notion of fuzziness has proved to be so useful in hiding
the minor errors caused by finite precision and inexact

representation, that we have included it in definitions of floor,
ceiling, and the relationals. The definitions are such that
mathematical identities are preserved. For example, A<B always

implies B2A.

Programming Conventions. Since the primary intent was to
communicate the definitions of APL primitives, we have tended to
disregard execution efficiency. The functions are meant to be
executed, and in order to provide as much information as possible
about their execution through the APL\360 tracing facilities, we
have minimized the use of multiple specifications and have avoided
the use of specification in a branch statement. The use of
indexing has been restricted to the indexing of vectors by scalars

or vectors.

The primitive functions which are currently considered part
of APL are shown in Table 1. All of these have been represented by
functions except for: the simple arithmetic functions + - x %,
monadic and dyadic p, indexing, specification, and branching. The
arithmetic functions have their usual mathematical definitions; the
others are treated informally below.

Approximating Transcendental Functions. We have given simple
series or continued-fraction approximations for the transcendental
functions in order to present executable functions. These
approximations are not particularly accurate and are not
recommended for implementation. In general, approximating
functions should be designed and tailored for the specific host
hardware.

Loops and Tests. In general, the order in which loops are
executed, as well as the order in which tests are made, is
unimportant. For example, when a scalar function is extended to
the scalar elements of an array, it doesn't matter which elements
are chosen first, as long as all elements of the result are
correctly calculated and stored. Thus, unless a loop contains an
expression which clearly depends on the sequence followed by the
induction variable, no inherent meaning should be ascribed to the
order. This is also true for some sequences of statements.

APL PRIMITIVE FUNCTIONS

__MONADIC DYADIC

Sym | Type Function Type Function
+ s MPLUS sp =

= s NEGATE sp =

X s SIGNUM sp -

: s RECIP sp -

[s TCL, FCL s MAX

L s TFL, FFL s MIN

* s ETO s EXP

® s LN s LOG

| s ABS s RES

: s SHRIEK s BC

? 1] ROLL mo DEAL

o s PITIMES s CIRCLE
e s NOT u -

A u - s AND

v u - s OR

* u - s NAND

» u - s NOR

< u - s FLT

< u - s FLE

= u - s FEQ

2 u - s FGE

> u - s FGT

z u - s FNE

p mp - mp -

s m RAVEL mi COMMA
1 mo XGEN mo XOF

+ u - m TAKE

¥ u - m DROP

4 mio GRADEUP u -

¥ mio GRADEDOWN u -

/ u - mi COMPRESS
\ u - mi EXPAND
¢ mi REVERSE mi ROTATE
Q m MTRANSPOSE mo TRANSPOSE
€ u - m MEMBER
1 u - m DECODE
T u - m ENCODE
B] m MMD m DMD

- u — p -

Types:

TOoOr-3 0

scalar function
mixed function

index has meaning and is origin dependent

function is origin dependent

primitive to this report, no formal defini-

tion given

no definition exists

TABLE 1. APL Primitive Functions

VARIABLES

Dyadic Identity Left-
Function Element Right

Times x
Plus
Divide
Minus
Power
Logarithm
Maximum
Minimum
Residue
Circle
Out of

Or

And

Nor

Nand
Equal

Not equal
Greater
Not less
Less

Not greater

1]
= OO
il =

(¢)
b=
WO IO

e Q=== @ % 1 o+
O 0 O
o = o]
®©0xx o

Apply

for
logical
arguments
only

AANYVREI3IT><
= OR OO o
e Rl) o 1 o M L
R

e o

TABLE 2. Identity Elements of
Dyadic Scalar Functions

VARIABLES

Global Variables. The following variables are parameters to the

execution of APL expressions, and can be examined and modified by
the user.

o3}
I

the last random number generated in ROLL. An integer such
that (B20)AB<P

¥ - the number of bits ignored in comparisons.
0 - the value of the index origin, a scalar 0 or 1.

The following represent values which are usually determined by
hardware:

€ = the character set. In APL\360, there are 256 distinct
characters. Approximately 150 of these have associated
printing graphics.

VB - the floating-point number base.

WL - the number of digits in the floating-point fraction.

P and @ are parameters of the random number generator. In APL\ 360
they are 1+2x31 and 7*5 respectively. Generally, P is chosen
to be the largest prime which can be stored in the machine
accumulator and ¢ is a primitive root of P.

VARIABLES 9

The remaining global variables are used by the definitions to save
and pass information:

F - a character scalar which contains the APL symbol corresponding
to the scalar dyadic function represented by the example
function F,.

F1 - the identity element of the scalar dyadfc function represented

by F.

¢ - a character scalar which contains the APL symbol which denotes
the scalar dyadic function represented by the example function
G.

I - a scalar integer which is used by AXIS to pass a subscript
value to an indexable function. 0=pI is used to indicate an
elided index, and therefore each function which uses a

function index must set <10 before terminating.

Local Variables. The following conventions are used for naming
local variables:

Z - the function result.
A - the left argument.

B - the right argument.
I - axis of application.
RVLA = LA

RVLB = ,B

RVLZ = ,2

CA = x/A

CB = x/B

CZ = x/2

LA = pA

LB = pB

LZ = p2

XLA = (pA)[I]

XLB = (pB)LI]

XLz = (p2Z)[I]

TCA = x/I+pA

TCB = x/I¥pB

TCZ = x/I¥pZ

10

SCALAR FUNCTIONS

The scalar functions are those functions, like +, which are defined
on scalars and give a scalar result.
to arrays by the adverb functions IP, 0P, R, SCAN, and SD,

V Z<ABS B

ASCALAR FUNCTION Z+|B
Z+B[-B

Z«<MPLUS B
ASCALAR FUNCTION Z<«+B
Z<0+B

Z+«NEGATE B
ASCALAR FUNCTION Z+-B
2«0-B

Z«SIGNUM B
ASCALAR FUNCTION Z+xB
Z+«(B>0)-B<0

Z<«RECIP B
ASCALAR FUNCTION Z+:B
Z+«1:B

Z«A MIN B

ASCALAR FUNCTION: Z+AlB
Z+4A

+0 IF A<B

Z+B

Z«A MAX B

ASCALAR FUNCTION Z+A[lB
Z+A

+0 IF A2B

Z+B

Z«+A AND B

ASCALAR FUNCTION Z<+AAB
'DOMAIN' ERROR~Ae 0 1
'"DOMAIN' ERROR~Be 0 1
Z+«ALB

Z«A OR B

ASCALAR FUNCTION Z+AVB
'DOMAIN' ERROR~Ae 0 1
'DOMAIN' ERROR~Be 0 1
Z«A[B

SCALAR FUWNCTIONS

These functions are extended

SCALAR FUNCTIONS

[1]
[2]
[3]
[4]
[51]
[6]
[7]
[8]
[9]
[10]
[11]
£3i2
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]

v

Z«<A NAND B

ASCALAR FUNCTION Z<Aw~B
Z<~AANB

Z+<A NOR B

ARSCALAR FUNCTION Z<«AW~B
Z+~AVB

Z«<NOT B

ASCALAR FUNCTION Z<«~B
'"DOMAIN' ERROR~Be 0 1
Z+1-B

Z«PITIMES B

ASCALAR FUNCTION Z+OB
Z+Bx3,141592653589793
Z+<SHRIEK B

ASCALAR FUNCTION Z+!'B
AUSES:FACT

"DOMAIN' ERROR 0=TYPE B
'DOMAIN' ERROR(B<0)AB=LB
Z+«FACT B

Z<ROLL B

ASCALAR FUNCTION Z+?B
AaGLOBAL VARIABLES:B 0 P @
"DOMAIN' ERROR 0=TYPE B
'DOMAIN' ERROR(02B)VB=|B
B«P|BxQ

Z«0+|BxB+P

Z«A BC B3;Ci;ANI:BNI;CNI
RSCALAR FUNCTION Z2<A!B
RUSES : FACT

'DOMAIN' ERROR 0=TYPE A
'"DOMAIN' ERROR 0=TYPE B
C+B-4A

ANI+(A<0)AA=LA
BNI<«(B<0)AB=|B
CNI«(C<0)AC=LC

'"DOMAIN' ERROR BNIAA=|A
Z2+0

+0 IF(BNIAANIACNI)V(~BNI)AANIVCNI
+>GAMMA IF(A=|LA)VvBz|lB
A«<(|A)L|B-4

Z+1
L:»0 IF 0=4

Z+«ZxB:A

B<«B-1

A<A-1

+L

GAMMA :Z+(FACT B):(FACT A)xFACT C

b2 SCALAR FUNCTIONS

V Z«LN B
[1] ASCALAR FUNCTION Z+®B
[2] 'DOMAIN ' ERROR B<O0
[3] B«B-1 A
[4] Z+B+1+B+2+B+3+(4xB)+4+(uUxB):+5+(9%xB)26

V Z«ETO B
[1] ASCALAR FUNCTION Z+xB
[2] Z+1:1-B+14B32-B:3+Bt2-B3:5+B+2

V Z2«A LOG B
[1] ASCALAR FUNCTION Z<+A®B
[2] Z+«(®B) :04

Exponentiation of Negative Numbers. When A<0 in AxB, the function
RAPPROX is used to determine whether B can be approximated by a
rational number of the form P:Q. If it cannot be, then the result
is -(|A)*B. 1If it can, and @ is even, then A*B is not defined. 1If
@ is odd and P is even, the result is (|4)*B, and if both P and @
are odd, the result is -(|4)*B, RAPPROX returns a 2 2 matrix. The
two elements of the last column specify the parity of P and ¢
respectively, 0 meaning even and 1 denoting odd. LEf B iig
irrational, then the result of RAPPROX is 2 2p 1.

V Z«A EXP B

(1] ASCALAR FUNCTION Z+A=xB
[2] aUSES :RAPPROX

[3] +S IF A20

[u] P<, 0 1 +RAPPROX B

[5] '"DOMAIN ' ERROR 0=1+P
[61 Z+«(1%x14P)x*xBxe|A
=7 +0
[B] S:Z«xBx®A
'

V P«RAPPROX X;iN;E;B;T
1] ARUSES:FUZZ
[2] Pt Y 200= 1 2

[3] N<10
[4] E«FUZZ
[5] B+X

[6] IT:»0 IF BsE
[7] +IR IF 02N<«N-1

[8] T+1:B

[e] X«LT

[10] P+¢P

[11] PL;2]«P[;212P[;1]A2]|X
[12] B+TP-X%X

[13] E<+«FUZZ+ExTxT

5T R 3 i

[15] IR:P+ 2 2 p 1
v

SCALAR FUNCTIONS 13

FACT is wused by SHRIEK and BC, It is similar to the gamma
function, but differs in that it is defined for negative integers.
! is used on lines 15 and 19 to calculate the gamma function in the
domain from 0 to 1.

V Z<FACT B;I;U;F
[1] Z+1
(2] F«B-LB
[3] +NEG1 IF B<O0
[4] I+«1+F
s U«1+B

(6] L
(7] NEG1:I+1+B
(B8] UsF

[9] L:»E IF U=I

[10] Z<«ZxI

[11] I<«I+1

(121 +L

[13] E:+NEG2 IF B<0

[14] =»0 IF O=F

(151 Z<€Zx!'F

[16] =0

[17] NEG2:2+:Z

[18] =0 IF 0=F

[18] Z+«(Zx!F):F
v

V Z+«A RES B
[1] ASCALAR F
[2] Z+B
[3] +0 IF(0=A)v0=5
[4] T«Ax 1%(xA)=xB
(5] C<|A
[6] L:+E IF 0<C-|2
£7] Z+«2-1
L8] +L
[9] E:»0 IF(xA)=xB
[10]1 Z<Z+A4

v

A AR 6
UNCTION Z+A|B

V Z+«A CIRCLE B

{515] ASCALAR FUNCTION Z<+AOB
(20 "DOMAIN' ERROR~Ac 8+115
[3] +(L7,L6,L5,L4,L3,02,L1,L0,L1,02,03,L4,L5,L6,L7)[A+8]
[4] L7:2<ATANH B

[5] +0

[6] L6:2+ACOSH B

[7] +0

[B] L5:Z2+ASINI B

L£9l +0

[10] Lu4:Z+«CIRCLEY B

[22] =0

[12] L3:Z+«ARCTAN B

(13] =0

[14] L2:Z+«ARCCOS B

[15]1 =0

{161 L1:Z+«ARCSIN B

[27] =0

[18] L0O:2+CIRCLEO B
[19] =0

14 SCALAR FUNCTIONS
[20] L1:2+«SIN B
(213 30
[22] L2:2+«C0S B
[23]1 =0
[24] L3:Z2«TAN B
[25] =0
[26] L4:2«CIRCLEY4 B
[27] +0
[28] L5:2«SINH B
[29] =0
[30] L6:Z2«COSH B
[31] =0
[32]) L7:2+«TANH B
Z+«ATANH B;B2
[1] ASCALAR FUNCTION Z+ 70B
[2] 'DOMAIN' ERROR 1<|B
231 B2+BxB
[4] Z«B+1-B2+3-4xB2:5-9xB2+7-16xB2:9-25xB2+11-36%xB2:13
Z«ACOSH B
[1] ASCALAR FUNCTION Z+ 60B
[27] 'DPMAIN' ERROR 1>B
[3] 7«®B+ 4OB
Z«ASINH B;X;X2
(1] ARSCALAR FUNCTION Z+« 50B
[2] Z+«(®(|B)+40B)x 1%B<0
Z«CIRCLEY4 B
[1] ASCALAR FUNCTION Z+ 4OB
(2] 'DOMAIN' ERROR 1>|B
[3] Z<(1+4BxB)*0.5
2<«ARCTAN B;X;X2
[1] RSCALAR FUNCTION 2+ 30B
[2] X+|B
[3] X2«XxX
[4] Z+X:1+4X2+3+4xX2:5+9xX2+7+16x%xX2%9
[5] Z+«Zx 1%xB<0
Z+<ARCCOS B
(1] ASCALAR FUNCTION Z+ 20B
[21] 'DOMAIN' ERROR 1<|B
(3] 72+(00.5)- 10|B
[u) +0 IF O<B
[5] Z«(01)-2

SCALAR FUNCTIONS THAT USE FUZ2 15

V Z<«ARCSIN B;3;X;X2 &
1] ASCALAR FUNCTION Z+ 10B
*DOMAIN' ERROR 1<|B

[3] X2«XxX
[4] Z«((1—X2)*0.5)xX:1—2XX2%3-QXX2%S—1QXX2%7-12xX?:9

V Z<«CIRCLEO B
ASCALAR FUNCTION Z+00B
'DOMAIN' ERROR 1<|B
Z+(1-BxB)*0.5

mrerm
W N =
)

vV Z«SIN B H 5
(1] ASCALAR FUNCTION Z+10OB
[2] C+1+2%x 1+115
[3] Z+-/(B*xC):!C

vV Z+C0S B
1] ASCALAR FUNCTION Z+20B
] Z+10(00.5)-B

V Z«TAN B
ASCALAR FUNCTION Z+30B
Z«(10B):208

=M
N
—

V Z<«CIRCLEY B

[1] ASCALAR FUNCTION Z+40OB
[2] Z+(1+BxB)*0.5

v

V Z«SINH B
[1] ASCALAR FUNCTION Z+50B
[2] Z+0.5x-/*xB,-B

v

V Z<COSH B
[1] ASCALAR FUNCTION Z2+60OB
£2] Z«0.5%+/*B,-B

V Z«TANH B
[1] ASCALAR FUNCTION Z+70B
2] Z+(508)+60B

SCALAR FUNCTIONS THAT USE FUZZ

The p;imary use of 'fuzz occurs in floor, ceiling, and the
relat}onals. The f1r§t two functions below define absolute and
relative fuzz, respectively. The three global variables used have
the following meanings:

NB The base used to represent the floating-point fraction. In
System/360, the base is 16.

=<
o]

The number of digits, base VB, forming the floatino-point
ﬁraleon. In System/360, the number of digits in the fraction
is -

encoding, and 3

16 SCALAR FUNCTIONS THAT USE FUZZ
¥ The number of bits, or binary digits, to be ignored in
comparisons. As the functions demonstrate, this notion is
valid on machines which do not wuse binary
Wilkinson error analysis techniques are valid.
V Z<FUZZ
I 50 AGLOBAL VARIABLES:N NB WL
[2] Z+((2*xN)-1)xNB*-WL
v
V Z2«A RFUZZ B
[1] RGLOBAL VARIABLES:NB
[2] RUSES:FUZZ
[3] ARELATIVE FUZZ

Z«FUZZxNB*x[NBe®(|A)[|B

True ceiling and true floor have been included for illustration and

emphasis in the other functions.

(1]
(2]
(3]
(4]
[5]
[e]
(7]

v

Z«<TCL B
ATRUE CEILING
Z<B+1|-B

Z«TFL B
ATRUE FLOOR
2+«B-1|B

Z+«FCL B

ASCALAR FUNCTION Z<[B
AUSES:FUZZ FGT TFL FEQ TCL
Z+«FUZZ<|B

+0 IF~Z

Z«<TCL B

+0 IF(B FGT TFL B)VB FEQ 2
Z«TFL B

Z<«FFL B

ASCALAR FUNCTION Z+«lB
RUSES:FUZZ TFL FLT TCL FEQ
Z+«FUZZ<|B

+0 IF~Z

Z«<TFL B

+0 IF(B FLT TCL B)VB FEQ Z
Z«<TCL B

Z«A FLT B

RSCALAR FUNCTION Z<A<B
ARUSES:RFUZZ

Z«A<B-A RFUZZ B

Z+A FLE B

ASCALAR FUNCTION Z+A<B
RUSES:RFUZZ

Z+A<B+A RFUZZ B

ADVERB FUNCTIONS |

V 2+«A FEQ B
[1] ASCALAR FUNCTION Z+A=B
(2] AUSES :RFUZZ
3l Z+(A RFUZZ B)=|A-B

V Z«A FGE B
[1] RSCALAR FUNCTION Z+A2B
[2] RUSES:RFUZZ
£37] Z+«A2B-A RFUZZ B

V Z+A FGT B
[1] ASCALAR FUNCTION Z+A>B
[2] AUSES:RFUZZ
[3] Z+«A>B+A RFUZZ B

V Z<«A FNE B
(1] ASCALAR FUNCTION Z+AzB
[2] AUSES:RFUZZ
[3] Z+«(A RFUZZ B)<|A-B

ADVERB FUNCTIONS

Scalar functions can be extended to arrays in four ways: Simple
Scalar Extension, Reduction, Outer Products, and Inner Products.

Scalar Extension. This function extends scalar functions to arrays
element by element. The scalar function is represented by the
function £ which may be any of the scalar dyadic functions. 5D
performs conformability and general domain checks, but assumes that
F will detect most domain errors.

V Z2«A SD B;CZ3;RVLZ3;RVLA;RVLB;I
=15 RGLOBAL VARIABLES:F
[2] AUSES:F

[3] "DOMAIN' ERROR(O0=2TYPE A)A~Fe'z=!
4] '"DOMAIN' ERROR(Q#TYPE B)A~Fe'=z=!
[5] +SINGULAR IF(1=x/pA)Vi1=x/pB

[6] "RANK' ERROR(ppd)=zppB

79 "LENGTH' ERRORV/(pA)=pB

[8] +L1 IF~0epA

[3] Z<A

fi10] =0

[11] SINGULAR:+(ASINGULAR ,BSINGULAR) IF((12x/pB)V(ppA)<ppB),
(12x/pA)V(ppA)>ppB

[12]) -=»L1

[13] ASINGULAR:+L2 IF 0=x/pB
[14] 2«38

[15] =0

[16] L2:A+«(pB)pA

L17]) =>L1

[18] BSINGULAR:~+L3 IF 0#x/pA
[19] 2Z<«A

[20] =0

18 ADVERB FUNCTIONS

[21]) L3:B«(pA)pB

[22] L1:CZ+x/pA

[23] RVLZ+«CZpO

[24] RVLA+,A

[25] RVLB<+,B

[26] I<«0

[27] LOOP:I+I+1

[28] =+END IF I>CZ

[29] RVLZLIJ+«RVLALI] F RVLBLI]

[30] -~+LOOP

[31] END:Z2+«(pA)pRVLZ
v

Reduction. SREDUCTION performs vector reduction. # extends vector
reduction to higher arrays and performs error checkina. The scalar
dyadic function which is reducing is represented by ¥ F contains

the character symbol which denotes the reducing function, and El is
the value of the corresponding identity element.

F/LI1X 1is represented here as R I AXIS X with appropriate
specifications of F, £, and Fi,

V Z<R B;LZ;CB;XLB;RVLZ;RVLB;TCB;V;E;M;J;K;I
W L AGLOBAL VARIABLES: F F1
[2] AUSES :0KINDEX SREDUCTION
[3] I+OKINDEX B

[4] '"DOMAIN' ERROR(Q=zTYPE B)A~Fe'=z='
[5] +L1 IF O=ppB

[6] B+,B

[71] I«,1

(8] L1:LZ+«((1+I)+pB),I¥pB
(9l XLB+(pB)[I]

[10] ~+L2 IF 0=XLB

[11] 'DOMAIN' ERROR Fe'@¥#O'
[12] Z+«LZpF1 '
(231 L3

[14] L2:2<«LZpB

[15] L3:CB+x/pB

[16] =0 IF(0=CB)v1=XLB
{17] RVLZ+«,2

[18] RVLB+«,B

[19] TCB<x/I+pB

[20] V<«TCBx 1+1XLB

[21] E<TCBx 1+XLB

[22] M<«Jd+1

[23] OUTER:K<«1

[24] INNER:RVLZ[M1«SREDUCTION RVLBLJ+V]
[25] K<K+1

[26] J+«J+1

[27] M<«M+1

[28]1 -INNER IF K<TCB

[29] J+J+E

[30] -OUTER IF J<CB

[31] Z<«LZpRVLZ

ADVERB FUNCTIONS 19

V Z«SREDUCTION B ;J
[1] AUSES :F
[2] J«(10)ppB
[3] Z2<B[J]
[4] L:d«J-1
[5] +0 IF J=0
[&1] Z+BLJ] F 2
[7] +[

Outer Product. ¥ represents the scalar dyadic function in 4 °.F B

- - o
and £ contains the character symbol which denotes the function.

V Z«A OP B;iCA;CR;CZ3RVLZ :RVLA;RVLB s 343K
AGLOBAL VARIABRLEG:F
AUSES:F
'"DOMATHN' ERROE(Q=TYPH A)A~Fe'z="
'"DOMAIN' ERROR(O=TYPE B)A~Fe'z="
CA«x /pA
CB<x /pB
CZ<CAxCB
RVLZ+CZpO
+END IF 0=CZ

1 RVLA«,A

1 RVLB<+,B

] J<M<0

] QUTER:J<«dJ+1

1 =END IF J>CA

] K<0

] INNER:K<K+1

] +INCREMENT IF K>CB

] RVLZIM+K]1<«RVLA(J] F RVLBLK]

1 ->INNER

1 INCREMENT :M«M+CB

] -OUTER

] END:2+((pA),pB)oRVLZ

p-
v

e Y S I Ay Yy MY M It Mt raTraaT T MM r
[N T o o S N N S Sy Sy SR R e L% 4 I S PO S B
N OWE 00U E WD R O A e e e e

Inner Products. Inner products of the form 4 F.C B and decode
expressions 4i1B are closely related and are combined here. The
main function, BASEPROD, distinguishes inner product from decode by
the value of the global variable I, which is set in DECODE and IP.
BASEPROD in turn uses R to reduce or SDECODE for 1 between
conforming vectors. F and ¢ denote the first and second inner
product functions, and F is the identity element of 7.

V 2«A IP B
515 AGLOBAL VARIABLES:I
£2] AlJSES :BASEPROD
[3] I<«?2
[4] Z«A BASEPROD B

v

V Z+A DECODE B
[1] AGLOBAL VARIABLES:I
[21 AUSES : BASEPROD
[3] I+1
[4] Z+«A BASEPROD B

20

ADVERB FUNCTIONS

L1
(2]
L£3]
4]
(5]
(6]
[7]
[el
[3]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

(9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
£31)
[32]
[33]
[34]
[35]
[36]
[37]
[38]

V Z«A SDECODE B;U;I
U«(pA)lpB
A+UpA
B«UpB
I+1
Z«B[1]
L:I«I+1
+0 IF U<I
Z«B[I1+2xA[I]
+[

V 2<A BASEPROD B;LLA;FLB;LZ;CZ;RVLZ;VA;TCB;VB
aGLOBAL VARIABLES:I F1 G
AUSES:G R SDECODFE
I+l
I+10
+TP1 IF I>1
"DOMAIN' ERROR 0=TYPE A
'DOMAIN' ERROR 0=TYPE B
+L1
IP1:'DOMAIN' ERROR(0=2TYPE A)A~Ge'=z='
'"DOMAIN' ERROR(0=TYPE B)A~Ge'=='
L1:»L2 IF 0=ppA
A+ A
L2:>L3 IF 0=ppB
B«,B
L3:LLA+ 14p4A
FLB+141pB
VLENGTH' ERROR(12LLA)A(1=FLB)ALLA=*FLB
LZ«(1+pA),1+%pB
IP2:RVLZ«(x/LZ)pF1xI>1
L4y:+END IF 0=x/(pA),pB
VA< 1+1LLA
TCB+x/1+pB
VB«TCBx 1+1FLB
CA«<x/pA
RVLA<«,A
RVLB+ ,B
J+~M+0
QUTER : K<1
INNER:>IP3 IF I>1
RVLZIM+K1«RVLA[J+VA] SDECODE RVLBLK+VE]
+L5
IP3:RVLZIM+K]1+R RVLALJ+VA] G RVLB[K+VB]
L5:K+«K+1
+INNER IF K<TCB
M+M+TCB
J<J+LLA
+QUTER IF J<CA
END:2<LZpRVLZ
v

sRVLA;RVLB;Jd ;M3 K1

MIXED FUNCTIONS 21

MIXED FUNCTIONS

Mixed functions generally operate on the structure of their
arguments rather than on the values of the elements. Some mixed
functions can be written with a subscript in expressions of the
form 4 F[I] B and F[I] B. We represent these expressions, using an
auxiliary function, as A F I AXIS B and F I AXIS B respectively.
Eliding I AXIS is analagous to eliding [I].

Catenation. A4,[I]B is represented by 4 COMMA I AXIS B

V Z2«A COMMA B;L;I
AGLOBAL VARIABLES:I
RUSES:CAT COMMACHECK
I+«A COMMACHECK B
LAMIRATE :~CATENATE IF I=|1I
+(ASCALAR ,BSCALAR) IF(0=ppA),0=ppB
"RANK' ERROR(ppA)=ppB
"LENGTH' ERRORvV/(pA)=pB
+>BSCALAR

LOmMNO0OWU &5 W=
E WK P O e e e e e e

et o e e) e L

AS
+L1
BSCALAR:L+pA
Li:L«((LE)+L),1,(LT)+L
I«[TI
A<LpA
B«LpB
CATENRATE :
Z+A CAT

«I

P et el e h s B el s I s 2 s B e B B 2o 3 an B e S B o 0¥ s

[o

~on

E

V Z+«A COMMACHECK B
L1] AGLOBAL VARIABLES:IL

[2] Z+IL

[:3i) I+10

[4] '"DOMAIN' ERROR(TYPE A)=TYPE B
(5] 'ITNDEX' ERROR 0=2TYPE 7

(6] "INDEX' ERROR 2<ppl

[7] '"INDEX' ERROR 1<x/p2

[8] +L2 IF 0=2x/p2

(9] Z+0,5

[10] -»0 IF(0=ppA)AO=ppB

[11] Z<«(ppA)lppB

P20 %0

(13] L2:'INDEX' ERROR Z<0

[14] 'TNDEX' ERROR Z2z21+(ppA)lppB

V Z+«A CAT B3;R;LZ;NOTI;LA;LB;RD ;WA 3;WB 3;CZ3;RVLZ ;RVLA;RVLB;TCZ;VA;
VB3dJ s KM T
=) AGLOBAL VARIABLES:IL
[2] I+«
[3] I«10
[4] R«(ppA)lppB
55 LZ+Rp0
[6] NOTI«((I-1)41R), I+ R
[7] LA+pA
[8] LB+<pB

22

MIXED FUNCTIONS

[g]
[10]
[21]
(121
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
251
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[s0]
[u41]
[42]
[43]
[44]
[45]
[u46]
[47]
(48]
[u9]
[50]
(511
[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]

+(ASCALAR,BSCALAR) IF(0=ppA),0=ppB

RD+(ppA)-ppB
"RANK' ERROR 1<|RD
+(RD1,RD1) IF(RD=1),RD="1

'LENGTH' ERRORV/(LA=LB)[NOTI]

LZ[NOTI)«LALNOTI]
WA<LALI]

WB<LB[TI]

+L1

RD1:'LENGTH' ERRORV/LALNOTI1=LB

LZ[NOTI]+LB
WA<LALI]
WB+1

+L1

RD1:'LENGTH' ERRORV/LA=LB[NOTI]

LZINOTI1<LA
WA<1
WB<LB[I]
+L1

ASCALAR:LZINOTI1«LA«LBINOTI]

WA+<1
WB+LB[I]
+L1

BSCALAR:LZ[NOTI1+LB<«LALNOTI]

WA<LALI]

WB+1
L1:LZ[I1«WA+WB
+L2 IF 0=zWA
Z+LZpB

+0
L2:+L3 IF 0=WB
2«LZpA

+0
L3:C2+x/L2Z

+Ly IF 0=CZ
Z«LZpTYPE A

+0
L4 :RVLZ+«CZpTYPE A
RVLA«(x/LA)pA
RVLB+«(x/LB)pB
TCZ+x /I+LZ
WA<WAXTCZ
WB<WBxTCZ

VA+ 1+1WA

VB+ 1+1WB
JeK«M+1
LOOP:RVLZIM+VAI<~RVLALJ+VA]
M<M+WA

J+J+WA
RVLZ[M+VB1«RVLBLK+VB]
M<~M+WB

K+«K+WB

+LOOP IF M<CZ
Z<LZpRVLZ

MIXED FUNCTIONS

Compression.

(1] ARUSES :0KINDEX
[2] I<OKINDEX B
[3] +L1 IF 0zppB
(4] B+(I+,1)pB
[5] L1:+TEST IF 1=x/pA
[8] A«(pB)[I]pA
[7] +[2
[8] TEST:'RANK' ERROR 1=zppA
[9] "LENGTH' ERROR(pB)[Il=pA
[10] L2:'DOMAIN' ERROR~A/Ae 0 1
[11] LZ<pB
[12] LZ[I]++/A
[13] L3 IF(0x+/A)A((pA)=+/A)A0=x/pB
[14] 2Z«LZpB
[15] =0
[16] L3:TCB+x/I+pB
[17] V<« 1+17CB
[18] CZ<x/L2
[19] RVLZ<«CZpTYPE B
[20] XLB<«(pB)[I]
[21] RVLB+«,B
[22] J«M<«1
[23] OUTER:K<1
[24] INNER:-SKIP IF~A[K]
[25] RVLZI[M+V]+RVLB[J+V]
[26] M+«M+TCR
[27] SKIP:K«K+1
[28] J<«J+TCB
[29] ->INNER IF K<XLB
[30] <OQUTER IF M<CZ
[31]1 Z<«LZpRVLZ
v
Expansion. 4\[I]B is represented by 4 EXPAND I AXIS B
V Z+A EXPAND B;LZ;TCB;V;CZ3;RVLZ;RVLE ;LA ;J ;M3;K;I
[1] RUSES:0OKINDEX
{21l I+OKINDEX B
[3] +L1 IF O=ppB
[4] B«(I+,1)pB
[5] L1:-TEST IF 1=x/pA
[6] A< A
[7] +L2
[8] TEST:'RANK' ERROR 1=ppd
[8] L2:'DOMAIN' ERROR~A/Ae 0 1
[10] 'LENGTH' ERROR(pB)[Il=+/A
[11] L2Z+«pB
[12] LZ[I]l+«pA
[13] =+L3 IF(pA)=z+/A
[14] Z<B
[15]1 -0
[16] L3:~+Lu4 IF(0=+/A)A0=x/pB
[17] 2Z<«LZpTYPE B

V Z2+A COMPRESS B;XLB;LZ;TCB;V;CZ;RVLZ3;RVLB;dJ ;M;K;I

+0

A/[I]B is represented by A COMPRESS I AXIS B

MIXED FUNCTIONS

24

[19] L4:TCB<+x/I+pB
[20] V<"1+.17CB
£21] CZexX/E?
[22] RVLZ<«CZpTYPE B
[23] LA<pA
[24] RVLB+,B
[25] dJ«M<«1
[26] OUTER:K+1
[27] INNER:+SKIP IF~A[K]
[28] RVLZIM+V]I<RVLB[J+V]
[29] J<«J+TCB
[30] SKIP:K<K+1
[31] M<«M+TCB
[32] +INNER IF K<LA
[33] -OQUTER IF M<C2Z
[34] Z<«LZpRVLZ

v

Deal. A47B is represented by A DEAL B

Two algorithms are used. The first, lines 13 through 19, requires
A iterations and B words of storage. The second, lines 20 through
257; requires at least 4 iterations but only A words of storage.
The decision on 1line 10 reflects the relative costs of the two
algorithms in APL\360.

V Z2«A DEAL B;I;J
[t ARGLOBAL VARIABLES:Q
[2] AUSES:ROL

[3] 'RANK' ERROR 1=x/p4
(4] 'RANK' ERROR 1=x/pB
(5] 'DOMAIN' ERROR 0=2TYPE A
[6] '"DOMAIN' ERROR(A<0)VAzlA
(7] 'DOMAIN' ERROR 0=TYPE B
[8] 'DOMAIN' ERROR B=#lB
(9] '"DOMAIN' ERROR A>B

[10] -SHORT IF A<|B:16
[11] Z+«(0-1)+:B

[12] SEND IF A=0

A3 7+0

[14] LOOP:J«1+I+(ROLL B-I)-0
[15] I<I+1

[16]1 2[I,J1<«zZ[J,I]
[17] =LOOP IF A>I

[18] END:Z«A42Z

[19] -0

[20] SHORT:Z<10

[21] OUTER:»0 IF A=pZ
[22] INNER:I<ROLL B
[23] <+INNER IF IeR
[24] 2Z+«2,I

[25] -OUTER

MIXED FUNCTIONS 25

Matrix Division. BB and ABB are represented by MMD B and 4 DMD B
respectively.

If B is a non-singular matrix, then Z<«<A@EB is such that 4=B+.xZ. If
B is over-specified, then Z is a least squares solution. §B is the
matrix inverse of B. The function is more completely described in
"The Solution of Linear Systems of Eguations and Linear Least
Squares Problems in APIL", M.A. Jenkins, Philadelphia Scientific
Center technical report number 320-2989.

v Z«MMD B
[1] Z«((114pB)o.=114pB)EB
v

V Z<A DMD B:PsLA2;LB2;F:T;Jd;M2;I2:M1;T1;SIGMA;ALFAU
(1] 'DOMAIN' ERROR 02TYPE A
[2] 'DOMAIN' ERROR 0=TYFPE B
[3] 'RANK' ERROR 2=ppB
(4] "RANK' ERROR~(ppA)e 1 2
[5] VLENGTH' ERROR(14pA)=14p0B
[6] 'LENGTH' ERROR(14pB)<1+4pB
[7] LA2+,1
(el +0N IF 1=pph
(9] LA2«14pA
[10]) ON:LB2+«1+pB
“[11] -+AHEAD IF(0=2LA2)A0=LB2
{121 2Z+«(LB2,LA2)p0O
[13] =FIN
[14] AHEAD:P<«114pB
(15] P<:[/[1]|B:Q(dpBE)pl/I|B
[16] B<«Bx(pB)pF
[17] B+«B,A
18] I=<=0
[19] LOOP:J+I
[20] I+I+1
[21] =END IF LB2<I
[22] M2«l/[111(0,-LA2)+(J,J)+B
[23] 'DOMAIN' ERROR FUZZ=[/M2
[(24] I2+«J+M2:1[/M2
[25] PLI.I2]«P(I2,I1]
{261 Bf i1 I2)«Bl:I2,1I]
[27] Mi«|J+B[;I]
[28] Ii1«J+M1[/M1
[29] BLI,T1;]«B[I1,I;]
[30] SIGMA<+/(J+B[;I]1)*2
[31] ALFA+(1%x0<B[I;I]1)xSIGMAx0.5
[32] U«BLI;I]-ALFA
[33] BlJ+114pB:I+11+4pBl«((J,I)4B)-(U,I+B[;I])e .x(:SIGMA-BLI;I]x
ALFA)x(U,I¥BL;I]1)+.x(J,I)+B
[34] BI[I;I]<«ALFA
[35] -+LOOP
[36] END:Z2«(LB2,LA2)p0
[37] I<«(10)pl+LB?2
[38] QBACK:I<«I-1
E3all =RE TF Q=1
[40] 20I;:)«((LB24B[I;1)-(LB24B[I;]1)+.%xZ):BLI;I]
[41] -—+@QBACK
[42] RE:2+Z[AP;1%xQ($pZ)pF
[43] FIN:»0 IF 1=zpp4
[uul Z<«,2

MIXED FUNCTIONS

26

Take and Drop. AtB and A+B are represented by 4 TAKE B and
A DROP B respectively.

V 2+«A TAKE B
[1] AUSES:TAKECHECK TAKER
{02 TAKECHECK
[3] Z+A TAKER B y

V Z+A DROP B
[1] A USES: TAKER TAKECHECK
[2] TAKECHECK
(3] A+(1%0<A)x0[(pB)-14
[4] Z+A TAKER B

V TAKECHECK

[1] RGLOBAL VARIABLES:A B
[2] '"DOMAIN' ERROR 0=TYPE A
[3] 'RANK' ERROR 2<ppA

[4] A<, A

[5] 'DOMAIN' ERRORV/A=z|A
[6] +L1 IF 0=ppB

=7 "LENGTH' ERROR(ppB)=pA
[8] +0

[3] L1:B<«((pA)p1)pB

v

+SL3P3RVI

t~

B3RVLZ

N

V Z«A TAKER B;LZ;LB;QB;QZ3;L;C;BI;ZI; :J;:5B:8
[1] A+, A
[2] Lz« |A
[3] LB+pB
[4] +L1 IFV/LZ=LB
£S5 Z+B
[6] +0
[7] L1:2«LZpTYPE B
[8] +0 IF(0=x/LZ)v0=x/LB
[9] @B+«(A<0)x0[LB-LZ
[10] @QZ+«(A<0)x0[LZ-LB
[11] L<«LZLLB
[12] C+x/L
[13] BI+ZI+Cp1
[14] J<«ppB
[15] SB+«SZ<«SL+1
[16] LOOP:P<«L[J]|L(T1+1C)=SL
[17] BI+«BI+SBxQB[J]+P
[18] ZI«ZI+SZxQ2Z[J]1+P
[19] SB<«SBxLB[J]
[20] Sz+5zxL2[d] '
[21] BSL«SLxL[J]
[22] Jd«J-1
[23]1 -+LOOP IF J>0
[24] RVLZ+,Z
[25] RVLB+,B
[26] RVLZ[ZI)<«RVLBIBI]
[27] Z<«LZpRVLZ

MIXED FUNCTIONS

Encode.

Vv
[1]
[2]
[3]
(4]
[51]
[6]
[71
[8]
[9]
[10]
[11]
[12]
[13]
[14]
$1:51
[16]
1470
[18]
[19]
[20]
[21]
£22]
[23]
[24]
[251]
[26]
[271]
v

v

v

Membership and
A MEMBER E and
line 15 of XOF to indicate a fuzze

v
(1]
(2]

v

Z+<A ENCODE B;LZ;CA;CB;E;VA;VZ;RVLZ;RVLA;RVLB;J;M;K

AUSES : SENCODE

"DOMAIN' ERROR 0=TYPE A
'‘DOMAIN' ERROR 0=TYPE B

LZ+(pA),pB
CZ+x /L2
CB«x /pB

+L1 IF 0=CZ
Z2+LZp0

+0

L1:~+L2 IF O=zppA

A+, A

L2:E+x/1+pA

VA<Ex 1+111pA
VZ+<CBxVA
RVYLZ+~CZp0
RVLA<+ A
RVLB+«,B
J+~M+0

OUTER :K+1
INNER:RVLZIM

K«K+1

+INNER IF K<CB
M<M+CB

Jed+1

+QUTER IF J<E
Z«LZpRVLZ

+0

Z<«A SENCODE B;I
Z«(I+pA)p0

L:+REM IF A[I]=0

zZ[1]«AlI]|B

+0\ IF I'=1
B+(B-Z[I]):ALT]
+0 IF 0=B

J<I-1

+L

REM:2[I]+B

Z+A MEMBER B

AGLOBAL VARIABLES:0
Z«((p,B)+0-1)2(,B)14

ATE is represented by A4 ENCODE B.

+K+VZ1«RVLALJ+VA] SENCODE RVLBLKX]

represented by
¢ is used on

AeB and A B
The function FE

d comparison.

Inverse Index.
4 XOF B respectively.

28

MIXED FUNCTIONS

V Z«A XOF Bi;LA;CB;RVLZ;RVLB;J ;K
[1] AGLOBAL VARIABLES:0
2 AUSES:FEQ
[3] 'RANK' ERROR 1=ppé4
[4] +L1 IF(0=pA)AO0=x/pB
[5] Z+<(pB)p0
[6] +0
[7] Li1:LA<pA
[8] CB+x/pB
(9] RVLZ+«CBpQ
[10] RVLB<,B
[11] J<«O
[12] QUTER:J+J+1
[13] -+END IF J>CB
[14] K<O
[15] INNER:K+K+1
[16] -=EXTRA IF K>LA
[17] -INNER IF~A[K] FEQ RVLBLJ]
[18] EXTRA:RVLZ[JJ«K+0-1
[19] -OUTER
[20] END:Z+«(pB)pRVLZ
v

Index Generation. 1B is represented by XGEN B.

V Z+XGEN B;d
(1] RGLOBAL VARIABLES:Q

[2] '"DOMAIN' ERROR 0=TYPE B
[3] '"RANK' ERROR 1#x/pB

[4] '"DOMAIN' ERROR Bzl |B
[5] Z<Bp0

[&] J+0

[7] L:J«J+1
[8] +0 IF J>B
[g] ZLJl«J+0-1
[10] =L

v

Transpose. §8 and 44B are represented by MTRANSFOSE B

A TRANSPOSE B respectively.

and

V Z<«MTRANSPOSE B;LB;U;J;LZ;W;CZ;T;RVLZ;RVLB;RZ;S;I;K

[1] +L1 IF 1<x/pB
[2] Z<B

[3] +0

[4] L1:LB+«pB

[5] U«1+J<«ppB

[6] LZ«W+JpCZ+1
(7] LOOP:LZ[U-J]+«LB[J]
[8] T«CZxLBLJ]

[9] WLU-J1«T+C2Z
[10] CZ+<T

[11] J+«J-1

[12] =LOOP IF J>0
[13] W<W-CZ

[14] RVLZ+«CZpTYPE B
[15] RVLB<«,B

[16] RZ<+ppB

[(17] S<+«RZpI+«d+1

MIXED FUNCTIONS 29

[18] MAINLOOP:K<RZ
[19] RVLZLJI+RVLB[IT]
[20] SEEK:S[K]«1+S[K]
[21] -BACKUP IF LZ[K1<S[K]
[22] I<«I+WL[K]

[23] J«J+1

[24] ->MAINLOOP

[25] BACKUP:5[K]«1
[26] K+K-1

[27] =SEEK IF 0<K
[28] Z+LZpRVLZ

V Z2+«A TRANSPOSE B;LB3;RB3;RZ ;J sW1;W2;3;LZ2;;M;CZ3CL3I 3;BI

(1] AGLOBAL VARIABLES:Q

[2] '"DOMAIN' ERROR 0=7YPE A
[3] '"RANK' ERROR 2<ppA

L4] A+ A

[5] YLENGTH' ERROR(ppB)=pd
[6] +L1 IFvV/A=1ppB

[7] Z<B

[8] >0

[9]1 L1:'DOMAIN' ERRORV/(AzLA)VvA<Q
[10] A<«A+1-0

[

111 RZ+[/4A

[12] 'DOMAIR' ERRORV/~(\RZ)eh
[13] LB+pB

[14] RB+ppB

[15] Wi«(J<«RB)p1

[16] LOOP1:Wi1lJ-11«WA[J IxLBLJ]
[17] J+J-1

[18] =LOOP1 IF 1<J

[19] LZ+«W2+«RZp~Jd+1

[20] LOOP2:M«J=4

[21] L2[J]1<«l/M/LB

[22] W2lJ]l«+/M/W1

[23] J+Jd+1

[24] -LOOP2 IF J<RZ

[251 €2Z+«x/LZ

[26] L2 TF 0£C7Z

[27] Z<LZpTYPE B

[28] =0
[29] L2:CL+ 1+1CZ
[30]1 I+«RZ

[31] BI+«CZpO
[32] LOOP:BI«BI+W2[I1xLZ[I]|CL
[33] CL<lCL:LZ[I]
[34] I<«I-1
[35] =+LOOP IF 0<I
[36] Z<«LZp(,B)[1+BI]
v

Ravel. ,B is represented by RAVEL B.

V Z«RAVEL B
3 Z«(x/pB)pB
v

30 MIXED FUNCTIONS
Rotate. A¢[IlB is represented by A ROTATE I AXIS B.
V 2+«A ROTATE B;CB;XLB;NXLB;TCB;V;E;RVLZ;RVLB;RVLAJ ;M;K:1
[1] AUSES:SROTATE OKINDEX
[2] I«0OKINDEX B
[3] 'DOMAIN' ERROR 0=TYPE A
[4] "DOMAIN' ERROR 1eA=lA
[s5] CB+«x /pB
(6] XLB+(pB)[I]
[7] NXLB<((1+I)4pB),I+pB
(8] +TEST IF 12x/pA
[9] A+NXLBpA
(10] L1
[(11] TEST:'RANK' ERROR(pNXLB)=ppA
(12] 'LENGTH' ERRORV/NXLB=pA
[13] L1:+L2 IF(1€0=XLB|A)A(1=2x/XLB)A0=(CB
[14] Z+B
[15] =0
[16] L2:TCB+x/I+pB
[17] V«TCBx 1+1XLB
(18] E<«TCBx 1+XLB
[19] RVLZ<«CBpTYPE B
[20] RVLB+,B
[21] RVLA+«,A
[22] J+M<«1
[23] QUTER:K+«1
[24] INNER:RVLZ[J+V1+RVLALM] SROTATE RVLBL[J+V]
[25] K<«K+1
[26] J«J+1
[27] M<M+1
(28] +INNER IF KsSTCB
[29] J<«J+E
[30] +OUTER IF J<CB
[31]1 2Z+«(pB)pRVLZ
v
V 2+A SROTATE B;D;M
£12 D<pB
[2] M«D|A
[3] Z+BL(M+1D-M) , 1M]

Index check.
functions to check the validity of
assumed value if the index is elided.

V Z«OKINDEX B

an index

1.3 AGLOBAL VARIABLES:IL
[2] 2«

[£3] I+10

[4] YINDEX' ERROR 02TYPE 2
[5] 'INDEX' ERROR 2<ppZ
[6] 2«,2

£7] +L IF 0<p2

[8] +0 IF 0=ppB

[9] Z+ppB

[10] =0

[11] L:'INDEX' ERROR 1<pZ
[12] YINDEX'" ERROR~ZeippB

v

The following function is used by mixed indexable

and to supply an

MONADIC INDEXABLE MIXED FUNCTIONS 31

MONADIC INDEXABLE MIXED FUNCTIONS

The monadic functions & ¥ ¢ and scan are all similar in that they
are indexed and they preserve the structure of the argument.
MINDEXED is the common control function.

V Z«A MINDEXED B;CB;XLB;RVLZ;RVLB;TCB;V;E;J;K;I
[1] aUSES:SREVERSE GRADE SSCAN OKINDEX
[2] I+«0OKINDEX B
[31] Z«B
[ul CB+<x/pB
[5] +0 IF 0=CB
[6] +L1 IF Ae 1 4
73 Z+(pB)p1l
(8] Li:XLB+«(pB)[I]
[3] ARFOR SCALAR B XLB=10
[10] +0 IF 1=x/XLB
[114]1 RVLZ+RVLB+,B
[12] TCB+x/I+pB
[13] V<TCBx 1+1XLB
[14] E<TCBx 1+XLB
[15] Jd+<«1
[16] OUTER:K+1
[17] INNER:*(REVERSE,GRADEUP,GRADEDOWN,SCAH) IF A=14
(18] REVERSE:RVLZ[J+V]+«SREVERSE RVLB[J+V]
[19] =+L2
[20] GRADEUP:RVLZ[J+V1+1 GRADE RVLB[J+V]
(24} =52
[22] GRADEDOWN :RVLZ[J+V 1«2 GRADE RVLBLJ+V]
£23d° 02
[24] SCAN:RVLZ[J+V]<SSCAN RVLBLJ+V]
[25] L2:K+K+1
[26] J+J+1
[27] -—INNER IF K<TCB
[28] J<«J+E
[29] +OUTER IF JsCB
[30] Z<(pB)pRVLZ

Gradeup and Gradedown. ACI1B and V[I]B are represented py
GRADEUP I AXIS B and GRADEDOWN I AXIS B respectively. GRADE 1s
called by MINDEXED to perform the appropriate vector grade.

V Z+<GRADEUP B
[1] AUSES :MINDEXED
[2] "DOMAIN' ERROR 0=TYPE B
[£31] Z+2 MINDEXED B

vV Z<«GRADEDOWN B
[1] AUSES:MINDEXED
[2] ‘DOMAIN' ERROR C=TYPE B
[:8d Z+3 MINDEXED B

32 MONADIC INDEXABLE MIXED FUNCTIONS

V 2+«A GRADE B;U;d ;K;C
17 A A=1 FOR 4, A=2 FOR ¥
[21] AGLOBAL VARIABLES:Q
[3] U+pB
[4] Z+d+«1
[5] OUTER:J«J+1
[6] +END IF U<d
[7] C+«B[J]
[8] K<d
[9] INNER:K<K-1
[10] =+EX IF 0=K
[11] -+INNER IF((B[K1>C),BL[K1<C)[A]
[12] EX:2+(K42),J ,K+2
[13] C«B[Kk+1]
[14] B[K+11+B[J]
(151 BL[J1+«C
[16] -OUTER
[17] END:2+«(0-1)+2
v

Reversal. ®[I1B is represented by REVERSE I AXIS B. SREVERSE 1is
called by MINDEXED to perform a vector reversal.

V Z<REVERSE B
[1] AUSES :MINDEXED
£2] Z«1 MINDEXED B
v

V Z«SREVERSE B
(1] Z+«B[(1+pB)-1pBl]
v

Scan. F\[I]B is represented by SCAN I AXIS B. F, called from
SSCAN, represents a dyadic scalar function. F contains the
character symbol which denotes F. S5CAN is called by MINDEXED to

perform a vector scan.

V Z+«SCAN B
[1] AGLOBAL VARIABLES:F
[2] AUSES :MINDEXED
[3] 'DOMAIN' ERROR(0=TYPE B)A~Fe'=='
[u4] Z<4 MINDEXED B

V Z+«SSCAN B;d ;K
[1] RUSES:F
24 J<pB
(31 Z+«B
(4] OUTER:K+J
[5] INNER:K+<K-1
[6] +L IF K=0
Ryl Z[LJ1«2[K] F 2[J]
[8] +INNER
[9] L:J+«J-1
[10] -QUTER IF J>1
v

AUXILIARY FUNCTIONS 33

AUXILIARY FUNCTIONS
AXIS is used to represent function subscripting.

TYPE returns a space if its argument contains characters, otherwise
it returns zero.

IF and ERROR are used for convenience. The third line of EREOR
(not strictly APL) in APL\360 causes a return to the last level of
immediate execution.

F and G are' used to represent scalar dyadic functions in reduction,
scan, and inner and outer products.

V Z+«A AXIS B
[1] RGLOBAL VARIABLES:0 I

[2] 'INDEX' ERROR 0=TYPE A
[3] I+«A+1-0
[u] Z+B
v
V 2+«TYPE B
1) RGLOBAL VARIABLES:C
[2] Zt
3] +0 IFv/,BeC
[4] Z+0
v
V Z+«A IF B
1] Z«B/A
v

V A ERROR B
(1] +0 IP~v/B
(2] A,'ERROR'
Ui U [, -

V Z«<A F B
[1] Z+A+B

V Z«A G B
[1] Z+AxB

34

INDEX

INDEX OF FUNCTION DEFINITIONS

ABS
ACOSH
AND
ARCCOS
ARCSIN
ARCTAN
ASINH
ATANH
AXIS
BASEPROD
BC

CAT
CIRCLE
CIRCLEO
CIRCLEY
CIRCLEY4
COMMA
COMMACHECK
COMPRESS
coS
COSH
DEAL
DECODE
DMD
DROP
ENCODE
ERROR
ETO

EXP
EXPAND
F

FACT
FCL

FEQ

FFL

FGE

FGT

FLE

FLT

FNE
FUZZ

G

GRADE
GRADEDOWN
GRADEUP
IF

IP

LN

10
14
10
14
15
14
14
14
33
20
Il
21
13
15
15
14
21
21
23
15
15
24
19
25
26
27
33
12
12
23
33
13
16
e 5
16
17
17
16
16
17
16
33
32
31
31
33
19
12

LOG

MAX
MEMBER
MIN
MINDEXED
MMD
MPLUS
MTRANSPOSE
NAND
NEGATE
NOR

NOT
OKINDEX
OP

OR
PITIMES
R
RAPPROX
RAVEL
RECIP
RES
REVERSE
RFUZZ
RCLL
ROTATE
SD
SDECODE
SENCODE
SHRIEK
SIGNUM
SIN

SINH
SREDUCTION
SREVERSE
SROTATE
SSCAN
TAKE
TAKECHECK
TAKER
TAN

TANH

TCL

TFL
TRANSPOSE
TYPE
XGEN

XOF

12
10
27
10
31
25
10
28
10
10
10
10
30
19
10
11
18
22
29
10
13
32
16
£ 1
30
1l
20
27
11
10
15
15
19
32
30
32
26
26
26
15
15
16
16
29
33
28
28

BIBLIOGRAPHY 35

ACKNOWLEDGEMENTS

Many people contributed functions and advice. In particular,
H. J. Smith Jr. carefully studied the functions and suggested
several useful revisions. We are grateful to those people, both in
IBM and elsewhere, who read the draft and passed along their
comments and suggestions.

BIBLIOGRAPHY

1. Falkoff, A. D., "Formal Description of Processes - The First

Step in Design Automation," Proceedings of the SHARE Design
Automation Workshop, June, 1965,

2. Falkoff, A. D., "Criteria for a System Design Language," Report

on NATQ Science Committee Conference on Software Engineering
Tecbpnigues, 1970.

3. Falkoff, A. D., and K. E. Iverson, APL\360 User's Mapual, IBM
Corporation, 1968.

4. Falkoff, A. D., K. E. Iverson, and E. H. Sussenguth, "A Formal
Description of System/360," IBM Systems Journal, Vol.3, No. 3,
1964.

5. Hutchinson, D. W., "A New Uniform Pseudo-Random Number Gener-
ator," CACM 9, 432-433, }966.

6. Iverson, Kenneth E., A Programming Languagde, John Wiley and
Sons, 1962.

7. Iverson, Kenneth E., "Formalism in Programming Languages," CACM
7, 80-88, 1964.

TECHNICAL REPORT INDEXING INFORMATION

—

. AUTHOR(S): 9. INDEX TERMS FOR THE IBM SUBJECT INDEX:
Lathwell, R. H. and J. E. Mezei

&)

. TITLE:

A Formal Description of APL
3. ORIGINATING DEPARTMENT:

Philadelphia Scientific Center

APL

Formal Description

4. REPORT NUMBER: 21 - Programming
320-3008
5a. NO.OF PAGES 5b. NO. OF REFERENCES
35 7
6a. DATE COMPLETED 6b. DATE OF INITIAL PRINTING | 6c. DATE OF LAST PRINTING
November 1971 November 1971
7. ABSTRACT

APL primitives are formally defined by APL/360
functions. The description 1is formal in two senses:
primitives are completely and exactly defined for all
cases, and the functions are executable on APL/360 and
are hence working models.

The descriptions can be used to compare and evaluate
APL implementations in two ways:

1. Implemented primitives should produce the same
results as the corresponding definitions.

2. Any implementation should properly execute the
definitions.

8. DISTRIBUTION LIMITATIONS:

PUBLICATIONS

(previously appeared as Technical Reports)
(as of May 1971)

BALINSKI, M. & K. SPIELBERG, “Methods for Integer Programming: Alge-
braic,Combinatorial and Enumerative,” Progress in Operations Research,

V.III; Relationship between Operations Research and the Computer, (edited
by J. Amofsky)._rohn Wiley & Sons, 195-292, 1969 [320-2938]

EARD, Y., “On a Numerical Instability of Davidon-Like Methods,”” Math. of
Computation, V. 22, No.103, 665-666, July 1968 (320-2913]

BARD, Y. & J. GREENSTADT, A Modified Newton Method for Optimiza-
tion with Equality Constraints,”” OPTIMIZATION - Symp. of the Inst. of
Mathematics and Its Applications, Univ. of Keele, England, 1968 (edited by
R, Fletcher , A.E.R.E. Harwell), Academic Press, 299-307, 1969 [320-2948)

BARD, Y., “'Proof that Hk-(.“ for the Ey Correction,” (an ﬂpendix to
“Variations on Variable-Metric Methods” by J. Greenstadt), Math. of Compu-
tation, V. 24, No, 109, 19-22, January 1970 [320-2901]

BARD, Y., “Comparison of Gradient Methods for the Solution of Non-
Linear Parameter Estimation Problems,” SIAM J. of Numer. Anal., V.7,
157-186, 1970 [320-2955)

BARD, Y., & L. LAPIDUS, “Nonlinear System Identification,” I & EC
Fundamentals, V.9, 628-633, 1970 [320-2980]

BALAS, E.,"Project Scheduling with Resource Constraints,” Applications
of Mathematical Programming Techniques (edited by E.M.L. Beale), English
niversities Press, 187-200, 1970 [320-2960]

BALAS, E., “Machine Sequencing: Disjunctive Graphs and Degree-Con-
strained Subgraphs,” Naval Research Logistics Quarterly, V.17, 1-9, 1970
[320-2971]

COLVILLE, A.R.," A Comparative Study of Nonlinear Programming Codes,"”
Proc. of the Princeton Symposium on Mathematical Programming (edited by
H.W. Kuhn), Princeton University Press, 487-502, 1970 [320-2949]

COMBA, P.G., A Language for Three-Dimensional Geometry," IBM Syst. .,
V.7, Nos.3 & 4, 292-306, 1969 [320-2923]

COMBA, P.G., “A Procedure for Detecting Intersections of Three-Dimen-
sional Objects,” J. of ACM, V.15, No. 3, 354-366, July 1968 [320—2924]

EISENPRESS, H. & J. GREENSTADT, “The Estimation of Nonlinear Econo-
metric Systems,”’ Econometrica, V.34, No.4, 851-861, October 1966
[320-2910]

FREUDENSTEIN, F. & L. WOO, “Kinematics of the Human Knee Joint,"
Bull. of Math. Biophysics, V.31, No.2, 215-232, June 1969 [320-2928]

FRIEDMAN, H.P. &]J. RUBIN, “On Some Invariant Criteria for Grouping
Data,"” Amer.Statist. Assoc. J., V.62, 1159-1178, December 1969
[320-2922]

GORDON, G. & KZELIN"A Study of Emergency Ambulance Service in
New York City,” Trans. of the N.Y. Acad.of Sciences, Series I, V.32, No. 4,
414-427, April 1970 [320-2935]

GORENSTEIN, §., "*Printing Press Scheduling for Multi-Edition Periodicals,”
Mgmt. Sci., V. 16, No. 6, B-373-B-383, February 1970 [320-2958]

GREENSTADT, J., “*A Ricocheting Gradient Method for Nonlinear Optimi-
zation,” SIAM . of Appl. Math., V.14, No. 3, 429-445, May 1966
[320-2912)

GREENSTADT,]., “On the Relative Efficiencies of Gradient Methods,”
Math. of Computation, V.21, No.99, 360-367, July 1967 [320-2942]

GREENSTADT,].,"*Variations on Variable-Metric Methods,” Math. of Com-
putation, V.24, No.109, 1-19, January 1970 [320-2901]

GRIGORIADIS, M.D., “A Dual Generalized Upper Bounding Technique,”
Mgmt, Sci., V.17, No.5, 269-284, January 1971 [320-2973]

GUIGNARD, M,, “Generalized Kuhn-Tucker Conditions for Mathematical
Pro; ming Problems in a Banach Space,” SIAM J. of Control, V.7, No.2,
232-241, May 1969 [320-2920]

GUREL, O. & L. LAPIDUS, “Stability Via Liapunov’s Second Method, " Ind.
& Eng. Chem., V.60, No.6, 13-26, June 1968 [320-2906]

GUREL, O. & L. LAPIDUS, “The Maximum Principle and Discrete Systems,”
Ind. & Eng. Chem. Fund, V.7, 617-621, November 1968 [320-29y19]

GUREL, 0., “Stability of the Pair (X,f),"” Notices of the Amer. Math. Soc.,
V.15, No.5, 774-775, 1968 [320-2957]

GUREL, O. & L. LAPIDUS, " A Guide to Methods for Generation of Liapunov
Functions, Ind. & Eng.Chem,, V.61, No.3, 30-41, March 1969 [320-2937]

GUREL, O., “Marker Layout Problem Via Graxh 'I'heor{,“Compuﬁng Meth-
ods in Optimization Problems-2, (edited by L.A.Zadeh, L.W. Neustadt & A.
V.Balakrishnan), Academic Press, 133-141, 1969 [320-2921] v

GUREL, 0., “Qualitative Study of Unstable Behavior of Cancerous Cells," |
Cancer, V.24, No.5, 945-947, November 1969 [320-2976]

GUREL, O. & L. LAPIDUS, *“Topology of Velocity-Space for Stability Ana-
lysis,” Int'l. J. of Control, V.11, No.1, 19-26, 1970 [320-2961]

HAHN, §., “On the Optimal Cutting of Defective Glass Sheets,” rations
Research, V.16, No.6, 1100-1114, November-December 1968 [320-2916]

LEMKE, C. & K. SPIELBERG;'Direct Search Algorithms for Zero-One and
Mixed Integer Programming,” Operations Research, V.15, No.5, 892-914,
October 1967 [320-2911]

LOOMIS, R. &]. LORENZO, " Experiments in Mapping with a Geo Space
Plotter,” Urban & Regional Information Systems for Social Programs, (edited
by John E. Rickert), Center for Urban Regionalism, Kent State University,

Ohio, 219-232, 1947 [320-2917]

LOURIE, J., “Loom Constrained Designs: An Algebraic Solution,"Proceed-
ings of the 24th Nat'l.Conf. ACM, ACM Publication No.P-69, 185-192,
1967 [320-2969

LOURIE, ., “The Computation of Connected Regions in Interactive Graph-
ics,” Proceedings of the 24th Nat'l. Conf. ACM, ACM Publication No.P-69,
369-377, 1969 [320-2975)

RAIMOND, J., “Minimaximal Paths in Disjunctive Graphs by Direct Search,"
IBM J. of Res. & Development, V.13, No.4, 391-399, July 1969 [320-2930]

RUBIN, J., “Optimal Classification into Groups: An Approach to Solving the
Taxonomy Problem,”]. of Theoret.Biol,, V.15, 103-144, 1967 [320-2915]

SAVAS, E.S., “Computers in Urban Air Pollution Control Systems,” 1) Pro-
ceedings of the IBM Scientific Computin Symg,. on Water and Air Resource
Mgmt., Oct. 23-25, 1967, Yorktown Heights, N.Y., 141-173;2) Socio-Econo-
mic Planning Science, V.1, 157-183, 1967;3) Ekistics, 45-64, 1968
[320-2908]

SPIELBERG, K., “Algorithms for the Simple Plant Location Problem with
Some Side Conditions," Operations Research, V.17,No.1, 85-111, January-
February 1969 [320-2900]

SPIELBERG, K.,*Plant Location with Generalized Search Origin” Mgmt.
Sci., V.16, No.3, 165-178, November 1969 [320-2929]

STRAUSS, C.M. & S. POLEY, *A Three-Dimensional Piping Design Program,’
IFIPS Conf. Proceedings, Edinburg, Scotland, 1968, Information Processing
68- North Holland Publishing Co., Amsterdam, 1431-1440, 1969 [320-2954)

. WHITE, W. & A. BOMBERAULT, “A Network Algorithm for Empty Freight

Car Allocation,” IBM Sys.J., V.8, No.2, 147-169, 1969 [320-2952]
WOO, L., “Type Synthesis of Plane Linkages,”].Eng. for Ind., Trans. of
ASME, V.89(B), 159-162, February 1967 [320-2953]

WOO, L., “An Algorithm for Straight Line Representation of Simple Planar -
Graphs,” J. of the Franklin Institute, V.287, No.3, 197-208, M[arc 1969]
320-2918

WOO, L. & F. FREUDENSTEIN, **On the Curves of Synthesis in Plane, In-
stantaneous Kinematics,” Proceedings of the 12th Int'l. Cong. of Appl. Mech-

nics, Stanford Unlvem'?', Aug. 26-31, 1969, (edited by M. Hetenyi & W.G. 4
Vincenti), Springer-Verlag, 400-414, 1969 [320-2947]

WOO, L. & F. FREUDENSTEIN, “Application of Line Geometry to Theo-
retical Kinematics and the Kinematic Analysis of Mechanical Systems,” J. of
Mechanisms, Vol.5, 417-460, 1970 [320-2982]

t® 3202963
| 3202964
320-2965
320-2966
320-2967
320-2968

t 320-2969
3202970

T ® 3202971
u> 320.2972

T 320-2973
t® 3202974
t® 3202975
t 320.2976
320-2977
320-2978

t 320-2979
T 320-2980
320.2981

T 320.2982

% 320.2983

320-2984

320-2985

320-2986
320-2987

320-2988
320-2989
320-2990

$ 3202991

t+ 320-2992
320-2993

320-2994

t 320.2995

320-2996

TECHNICAL REPORTS

(continued)
O. Gurel, The Structure of the Genetic Code, } 320-2997 L. H. Scott, E. Wrathall, & S. Poley, A Railroad Freight
28 p., January 1969 Operations Control System, 22 p., December 1970
S. Gorenstein, Generating Random Normal 320-2998 D. Goldfarb, Modification Mcthods for Inverting Matrices
Numbers, 19 p., February 1969 ;nd Solvir;g_]Systems of Linear Algebraic Equations, 58 p.,

1971

O. Gurel, Circular Graph of Marker Layout, T
635, ;.!‘,b,,'.':,, e B u ket L igomt 3202999 . Gorenstein, S. Poley, & W. W. White, On the Sched-
W. White, Dynamic Transshipment Networks: uling of Railroad Freight Opcrations, 21 p., January 1971
e Al;orlithm and Its Ap lifnion to the Dis: 320-3000 M. Guignard & K. Spielberg, The State Enumeration

tribution of Empty Containers, 40 p., February 1969
F. Freudenstein, V. Vitagliano, L. Woo & C. Hao,
Dynamic Response of Mechanical Systems, 29+p.,
March 1969

Proceedings of the Third Annual Technical

M ment Science/Operations Research

Conference, 206+p., April 1969

J. Lourie, Loom-Constrained Design: An Algebraic
Solution, 32 p., April 1969

L. Bodin, The Catalogue Ordering Problem-2,

33 p., April 1969

E. Balas, Machine Sequencing: Disjunctive Graphs

and Degree-Constrained Subgraphs, 31 p., April 1969
J. Colmin & K. Spielberg, Branch and Bound Schemes
for Mixed Integer Programming, 27 p., May 1969

M. Grigoriadis, A Dual Generalized Upper Bounding
Technique, 38 p., June 1969

L. Bodin & T. Roefs, Determination of the Operati
Policy of a General Reservoir System, 24 p., June 1969
J. Lourie, The Computation of C ted Regions in
Interactive Graphics, 26 p., June 1969

O. Gurel, %lulinlive Study of Unstable Behavior of
Cancerous Cells, 9 p., July 1969

S. Gorenstein, An Algorithm for Project (Job) Sequencing
with Resource Constraints, 60 p., July 1969

G. Moreau & P. Tarbe de Saint Hardouin, Marker Layout
Problem:
C. Lemke, H. Salkin & K. Spielberg, Set Coverix‘ by Single
Branch Enumeration with Linear Progr ing Subprobl

51 p., October 1969

Y. Bard & L. idus, On Nonlinear System Identification,
21 p., October 1969

O. Gurel, Algebraic Theory of Scheduling, 32 p.,

November 1969

L. Woo & F. Freudenstein, Application of Line Geome

to Theoretical Kinematics and the Kinematic Analysis o
Mechanical Systems, 103 p., November 1969

O. Gurel, Fundamental Weak Topologies in Living Systems,
18 p., March 1970

H. Hellerman & Y. Ron, A Time Sharing System
Simulation and Its Validation, 36 p., April 1970
O. Gurel, Functional Groups of Amino .\cids and
Structural Groups in the Genetic Code, 14 p.,
April 1970

A. Falkoff & K. Iverson, The Use of Computers in
Teaching Mathematics, 10 p., April 1970

O. Gurel, Cancer: An Unstable Biodynamic Field,
22 p., April 1970,

P. Berry, A. Falkoff & K. Iverson, Using the Com-
puter to Compute: A Direct But Neglected Approach
to Teaching Mathematics, 20 p., May 1970

M. Jenkins, The Solution of Linear Systems of Equa-
tions and Linear Least Squares Problems in APL,

14 p., June 1970

W. W. White, On the Computational Status of Mathe-
matical Programming, 61 p., June 1970

J. Greenstadt, A Variable-Metric Method Using No
Derivatives, 24 p., June 1970

M. Grigoriadis, A Projective Method for a Class of
Structured Nonlinear Programming Problems,
142 p., June 1970

W. W. White & E. Wrathall, A System for Railroad
Traffic Scheduling, 101 p., August 1970

K. M. Brown & J. E. Dennis, Jr., Derivative Free
Analogues of the Levenberg-Marquardt and Gauss
Algorithms for Nonlinear Least Squares Approximation,
21 p., August 1970

S. Gorenstein, Programming for Economic Lot Sizes
with Precedences between ltems - An Assembly Model,
76 p.. October 1970)
M. Grigoriadis & W. W. White, A Partitinmnr
for the Multicommodity Network Flow Proble
October 1970

Algorithm
m, 25 p.,

An Experimental Attempt, 67 p., September 1969

Method for Mixed Zero-One Programming,

21 p.,
February 1971

320-3001 K. Iverson, Elementary Algebra, 320 p., June 1971
320-3002 Z. J. Ghandour, Formal Systems and Analysis, 28 p.,
June 1971
320-3003 J. E. Mezei, Structure in the Travelling Salesman’s
Problem The Shklar Algorithm, 30 p., September 1971
320-3004 . Rubin, A Technique for the Solution of Massive
Set Covering Problems with Application to Airline
Crew Scheduling, 26 p., September 1971
t 320-3005 T. More, Jr., An Interactive Method for Algebraic
Proofs, 89 p., September 1971
320-3006 J. Rubin, Airline Crew Scheduling - the Non-
Mathematical-Problem, 14 p., September 1971
320-3007 A. D. Falkoff, A Survey of APL File and 10 Systems
in IBM, 13 p., November 1971
t 320-3008 R. H. Lathwell &]. E. Mezei, A Formal Description
of APL, 35 p.. Novembe: 1971
320-301v K. E. Iverson, ArL in Exposition, 66 p., January 1972
320-3011 M. D. Grigoriadis & W. White, Computational
Experience with a Multicommaodity Network
Flow Algorithm, 33p., February 1972
320-3012 W. White, Mathematical Programming, Multi-
commodity Flows and Communication Nets,
22p., April 1972
320.3013 K. Spielberg, Minimal Preferred Variable Reduction for
Zero-One Programming, 21 p., July 1972
320-3014 K. E. Iverson, Introducing APL to Teachers, 25 p., July 1972
320-3015 E. E. McDomnell, Integer Functions of Complex Numbers,
with Applications, 18 p., February 1973
320-3016 T. More, Jr., Notes on the Development of a Theory
of Arrays, 83 p., May 1973
320-3017 T. More, Jr., Notes on the Axioms for a Theory of
Arrays, 58 p., May 1973
320-3018 R. Spence, Resistive Circuit Theory, 191 p.,
March 1973
320-3019 K. E. Iverson, An Introduction to APL for Scientists
and Engineers, 26 p., March 1973
320-3020 P. C. Berry, G. Bartoli, C. Dell’Aquila, & V. Spadavecchia,
APL and Insight: The Use of Programs to represent
Concepts in Teaching, 89 p., March 1973
320-3022 A. D. Falkoff & K. E. Iverson, C ication i
ot i 17}'{;" Moy G905 n, Communication in APL
320-3023 M. M. Halpern, Studies in APL: Algebra, Scan,
Arithmetic, Permutations, 35 p., June 1973
320-3024 K. Spielberg, A. Minimal Inequality Branch-Bound
Metod 18 oo June 1973 Jualiey
320-3025 M. M. Guignard & K. Spielberg, A Realization of the
State Enumeration Procedure, 13 p., June 1973
320-3027

:

]
L
¢

R. S. Com:-harsky, A. Rauch & W. W. White, Large Scale
Mathematical Programming in an APL Environment,
21 p., October 1973

‘Appeared In a professional publication, see abstract.

No copies of either the report or reprint are available from the PSC.
Report Is out of print., No copies are available from the PSC,
Reprinting of reports originally Issued with different numbers,

IBM Cambridge Scientific Center IBM Houston Scientific Center IBM Los Angeles Scientific Center 1BM Palo Alto Scientific Canter 1BM Philadalphia Scientific Center
545 Technology Squars 6900 Fannin Street 1930 Century Park W. 2670 Hanover Strest 3401 Markat Street
Cambridge, Massachusetts 02139 Houston, Texas 77025 Los Angales, California 90067 Palo Alto, California 84304 Philadelphia, Pennsylvania 19104

