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ABSTRACT

APL primitives are formally defined by APL/360
functions. The description is formal in two senses:
primitives are completely and exactly defined for all
cases, and the functions are executable on APL/360 and

are hence working models.

The descriptions can be used to compare and evaluate
APL implementations in two ways:

1. Implemented primitives should produce the same
results as the corresponding definitions.

2. Any implementation should properly execute the
definitions.




INTRODUCTION

This is a description of the primitives of APL. They are
defined by APL\360 functions which describe them to the
approximate extent of the implementation of APL\360. The APL\360

User's Manual is the principal reference, and familiarity with it
is assumed.

The description is formal in two senses: primitives are
defined completely and exactly for all cases; and the functions
which form the description are executable and hence are working
models. Our intent was to describe the primitives of APIL more
completely and more rigorously than does the APL\360 User's Manual,
but we did not intend the description to be documentation for any
specific implementation. Hence, we have tended to ignore
machine-dependent and system-design considerations such as library
structures and the mechanics of function definition.

This description can be used to compare and evaluate
implementations in two ways:

1. With the exception of machine and system dependencies,
implemented primitives should behave like the correspcnding
definitions for the same arguments.

2. Since the functions forming the descriptions are themselves
executable APL, any implementation should execute them
properly.

APL was chosen as the language for the description because it
allows short and concise yet complete and precise definitions. L
is deficient primarily in primitives for constructing and
manipulating arrays with components more complicated than scalars;
this deficiency makes it impossible to formally define and simulate
APL indexing.




2 APL SYNTAX

We have chosen not to include a formal definition of function
definition and statement parsing because such a definition adds
detail which is really not reguired for understanding. Such a
definition would in fact be a complete APL interpreter.

APL SYNTAX

The formal syntax of APL is relatively simple. Essentially,
a program consists of a sequence of statements which can be parsed
into simple expressions. Expressions and statements can be
informally defined as follows:

c is a numeric or character constant,

N is an undefined name or a variable or a (],
174 is a variable,

E is an expression,

F is a function,

P is a primitive function (see note 1),

S is a primitive scalar dyadic function,

H is a statement label,

L is a semi-colon list.

An expression, F, has one of the forms:

C

H

74

F niladic

F E monadic

PLE] E (see note 1)
EF E dyadic

E P[E] E (see note 1)
S/E reduction
S/LE] E

S\EZ scan

S\XLE] &

B o .S E outer product

E S.S E inner product

ELL] subscripted (see note 2)
N<E specification
VLL]<«E

A statement has one of the forms:

E (see note 3)
H:E

+E branch
H:>FE
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Notes:

l. See Table 1 for those primitives for which a subscript has
meaning.

2. The semi-colon 1list [ in V[L] and E[L] is of the form
ERBrt sieruiity where the number of semicolons must be “1+ppV and
“1+ppE respectively. Any of the expressions in the list may be
elided, implying all permissible values for that subscript
position in ascending seguence.

3. When an expression E does not contain a specification or branch
as the function of least precedence, it is assumed that [J« was
elided on the left, and that the value, if any, of the
expression is to be displayed.

Order of evaluation. The relative precedence of functions in an
expression is positional rather than attributive: precedence
increases from left to right. Parentheses may be used to delimit
expressions, and the arguments of a function must be evaluated
before the function can be evaluated. The rule governing the order
of evaluation within a statement is this: The rightmost function
whose arguments are available (i.e. have been evaluated or require
no evaluation) is evaluated. Thus, for example, the commutativity
of + is maintained in expressions of the form

(A«Ax2)+A, equivalent to A+4+«Ax2
2&a) Sy 3 2 1 (evaluation order)

INFORMAL DEFINITIONS

The arguments and results of APL functions are scalars or
arrays of scalars; a scalar is a number or a character.
Characters are distinguished from numbers in that no arithmetic
functions are defined on them. Most current implementations
require that all scalars forming an array be of the same type, but
this restriction is not essential. In this paper, the only test
which prevents mixing numbers and characters is the test in
COMMACHECK. However, no mixed numeric and character constants yet
exist in APL, and some of the functions here make the (usually
trivial) assumption that an argument is of uniform type.

A vector is a sequence of scalars, formed either by writing
a constant vector, by catenation, or by an expression involving a
vector. The reshape function, p, can be used to reshape its right
argument into an array which has the dimensions specified by the
left argument. The elements of the result are filled in principal
order (right-most subscript changing fastest) with scalars chosen
in principal order from the right argument. If the right argument
is exhausted, it is repeated cyclically.
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Examples:
4p1 2 3
1 W258 31

2 3p1 2 34 5 6

sLod
4 5 6

The monadic function p returns a vector of the dimensions of

its argument. If B is the result of an expression, then:
pB is a vector of dimensions of the axes of B,
ppB is the number of axes of B, and
x/pB is the number of elements in B.

Specification, the APL primitive function denoted by the
symbol « forms an association between the right argument and the
left argument (which must be a name). The result of a
specification expression is the right argument. If the name to

the left of the « is indexed, then only the elements designated by
the indices are affected.

Indexing is a function which selects a subarray from an APL
array, and is the only function currently permitted in the left
argument of specification. Vector Indexing is the process of
selecting particular components of a vector. If ¥ is a vector and
I is a scalar such that IeipX, then X[I] selects the scalar element
of X located by (I=1pX)/X. If I is not a scalar then the elements
of X[I] are obtained by evaluating the scalar for each element of

I. In all cases, pX[I] is equal to pI.

the vector X is Xx[01; in ;-§£;§ig—15§§gigg, it 18 ¥l ~ FEQ 18

the value of the index origin, then all indexing can be expressed
in origin zero as X[I-0].

In general, the components of any array 4 can be selected by
the expression A[L] where L is a semi-colon list containing pp4
list elements (which may be arrays) separated by “1+pp4
semi-colons. If L.is. of the form' [id:Kij.ers then p4A[L] 1is

(pI),(pd)s(pK)yesue

If all of the elements of [ are scalars, and M is the vector
formed by catenating these scalars (i.e. M«I,J,K,...), then, in
terms of vector indexing, the indicated component of A is obtained
by (,4)[(pA)1M-0] (origin zero).

An item of L may be elided, i.e., the four sequences [; ;;
;] and [] are all valid. When the Ith position is vacant, then the
value 1(pA)[I] meaning a vector of all permissible values in this
position in ascending order is assumed. When any of the elements
is not a scalar, the result is determined by applyinc the scalar
case to all combinations taking one scalar from each list element.

when an index appears to the left of specification in the
form ALL]+~V, the conformability requirement is
A/(pV)=(pI),(pd),(pK), ...
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Function E¥ggg;ign. A defined function consists of a header and a
sequence o statements. Statements are numbered sequentially
beginning with 1, and the header is referred to as statement 0.
Function headers, local variables, and statement labels are
described in detail in the APL\360 User's Manual. Functions are
executed beginning with statement 1 and, at the completion of any
statement, proceeding with the next in succession. This segquence
may be altered by a branch statement. A branch statement is a
statement formed by the character + followed by an expression. The
result of this expression must be a scalar or a vector, ana if
non-empty, the first element X must be an integer. If Xell
(origin 1), where N is the number of statements in the function,
then the next statement executed will be statement X. Otherwise,
the function terminates, and execution resumes at the point where
the function was invoked. If the result of the expression to the
right of the + is an empty vector, then the sequence of execution
is not changed, and execution proceeds with the succeeding
statement. Execution of a function terminates after the last
statement of a function unless it is a branch.

External Appearance. The external appearance of APL, which is
described in detail in the APL\360 User's Manual, will not be
treated formally. The notation used in the definitions is APL\360.
APL\360 has many important concepts which we have not treated
formally, but which nevertheless are important to the utility of

an implementation. We have ignored the library organization and
system commands. One very important notion is visual fidelity.
The appearance of a typewritten line corresponds as closely as
possible to the internal representation of that line. Typing

errors are corrected in such a way that the statement of correction
and the correction are both clear and legible.

Errors are handled in APL\360 in a way which facilitates
recovery and interaction. All errors are detected during
execution, even though it 1is possible to detect some errors
earlier. When an error occurs, no action other than suspension of
execution is taken. The user is then free to examine the situation
at the point where the error occurred, and may correct the error
and resume execution if he desires. The place and manner in which
errors are detected are shown in each function, and the action
following detection consists of printing the type of error and then
terminating execution. The functions usually show the detection of
errors by a sequence of tests rather than by single more

complicated expressions. This was done in order to preserve as
much information as possible about the errors to ease possible
changes in messages. For example, it might be desirable to

differentiate LEFT DOMAIN and RIGHT DOMAIN errors.

Arithwetic and Fuzz. One of the principal underlying assumptions
of APL is that the arithmetic primitives are defined on the entire
continuous domain of real numbers, and that arithmetic is exact.
We have tended to follow this assumption in the formal definitions,
so that, even though the notation is APL\3€0, division, floor,
ceiling, and the relationals are assumed to be exact.
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The notion of fuzziness has proved to be so useful in hiding
the minor errors caused by finite precision and inexact

representation, that we have included it in definitions of floor,
ceiling, and the relationals. The definitions are such that
mathematical identities are preserved. For example, A<B always

implies B2A.

Programming Conventions. Since the primary intent was to
communicate the definitions of APL primitives, we have tended to
disregard execution efficiency. The functions are meant to be
executed, and in order to provide as much information as possible
about their execution through the APL\360 tracing facilities, we
have minimized the use of multiple specifications and have avoided
the use of specification in a branch statement. The use of
indexing has been restricted to the indexing of vectors by scalars

or vectors.

The primitive functions which are currently considered part
of APL are shown in Table 1. All of these have been represented by
functions except for: the simple arithmetic functions + - x %,
monadic and dyadic p, indexing, specification, and branching. The
arithmetic functions have their usual mathematical definitions; the
others are treated informally below.

Approximating Transcendental Functions. We have given simple
series or continued-fraction approximations for the transcendental
functions in order to present executable functions. These
approximations are not particularly accurate and are not
recommended for implementation. In general, approximating
functions should be designed and tailored for the specific host
hardware.

Loops and Tests. In general, the order in which loops are
executed, as well as the order in which tests are made, is
unimportant. For example, when a scalar function is extended to
the scalar elements of an array, it doesn't matter which elements
are chosen first, as long as all elements of the result are
correctly calculated and stored. Thus, unless a loop contains an
expression which clearly depends on the sequence followed by the
induction variable, no inherent meaning should be ascribed to the
order. This is also true for some sequences of statements.



APL PRIMITIVE FUNCTIONS

__MONADIC DYADIC

Sym | Type Function Type Function
+ s MPLUS sp =

= s NEGATE sp =

X s SIGNUM sp -

: s RECIP sp -

[ s TCL, FCL s MAX

L s TFL, FFL s MIN

* s ETO s EXP

® s LN s LOG

| s ABS s RES

: s SHRIEK s BC

? 1] ROLL mo DEAL

o s PITIMES s CIRCLE
e s NOT u -

A u - s AND

v u - s OR

* u - s NAND

» u - s NOR

< u - s FLT

< u - s FLE

= u - s FEQ

2 u - s FGE

> u - s FGT

z u - s FNE

p mp - mp -

s m RAVEL mi COMMA
1 mo XGEN mo XOF

+ u - m TAKE

¥ u - m DROP

4 mio GRADEUP u -

¥ mio GRADEDOWN u -

/ u - mi COMPRESS
\ u - mi EXPAND
¢ mi REVERSE mi ROTATE
Q m MTRANSPOSE mo TRANSPOSE
€ u - m MEMBER
1 u - m DECODE
T u - m ENCODE
B] m MMD m DMD

- u — p -

Types:

TOoOr-3 0

scalar function
mixed function

index has meaning and is origin dependent

function is origin dependent

primitive to this report, no formal defini-

tion given

no definition exists

TABLE 1. APL Primitive Functions




VARIABLES

Dyadic Identity Left-
Function Element Right

Times x
Plus
Divide
Minus
Power
Logarithm
Maximum
Minimum
Residue
Circle
Out of

Or

And

Nor

Nand
Equal

Not equal
Greater
Not less
Less

Not greater

1]
= OO
il =

(¢)
b=
WO IO

e Q=== @ % 1 o+
O 0 O
o = o]
®©0xx o

Apply

for
logical
arguments
only

AANYVREI3IT><
= OR OO o
e Rl ) o 1 o M L
R

e o

TABLE 2. Identity Elements of
Dyadic Scalar Functions

VARIABLES

Global Variables. The following variables are parameters to the

execution of APL expressions, and can be examined and modified by
the user.

o3}
I

the last random number generated in ROLL. An integer such
that (B20)AB<P

¥ - the number of bits ignored in comparisons.
0 - the value of the index origin, a scalar 0 or 1.

The following represent values which are usually determined by
hardware:

€ = the character set. In APL\360, there are 256 distinct
characters. Approximately 150 of these have associated
printing graphics.

VB - the floating-point number base.

WL - the number of digits in the floating-point fraction.

P and @ are parameters of the random number generator. In APL\ 360
they are 1+2x31 and 7*5 respectively. Generally, P is chosen
to be the largest prime which can be stored in the machine
accumulator and ¢ is a primitive root of P.
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The remaining global variables are used by the definitions to save
and pass information:

F - a character scalar which contains the APL symbol corresponding
to the scalar dyadic function represented by the example
function F,.

F1 - the identity element of the scalar dyadfc function represented

by F.

¢ - a character scalar which contains the APL symbol which denotes
the scalar dyadic function represented by the example function
G.

I - a scalar integer which is used by AXIS to pass a subscript
value to an indexable function. 0=pI is used to indicate an
elided index, and therefore each function which uses a

function index must set <10 before terminating.

Local Variables. The following conventions are used for naming
local variables:

Z - the function result.
A - the left argument.

B - the right argument.
I - axis of application.
RVLA = LA

RVLB = ,B

RVLZ = ,2

CA = x/A

CB = x/B

CZ = x/2

LA = pA

LB = pB

LZ = p2

XLA = (pA)[I]

XLB = (pB)LI]

XLz = (p2Z)[I]

TCA = x/I+pA

TCB = x/I¥pB

TCZ = x/I¥pZ
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SCALAR FUNCTIONS

The scalar functions are those functions, like +, which are defined
on scalars and give a scalar result.
to arrays by the adverb functions IP, 0P, R, SCAN, and SD,

V Z<ABS B

ASCALAR FUNCTION Z+|B
Z+B[ -B

Z«<MPLUS B
ASCALAR FUNCTION Z<«+B
Z<0+B

Z+«NEGATE B
ASCALAR FUNCTION Z+-B
2«0-B

Z«SIGNUM B
ASCALAR FUNCTION Z+xB
Z+«(B>0)-B<0

Z<«RECIP B
ASCALAR FUNCTION Z+:B
Z+«1:B

Z«A MIN B

ASCALAR FUNCTION: Z+AlB
Z+4A

+0 IF A<B

Z+B

Z«A MAX B

ASCALAR FUNCTION Z+A[lB
Z+A

+0 IF A2B

Z+B

Z«+A AND B

ASCALAR FUNCTION Z<+AAB
'DOMAIN' ERROR~Ae 0 1
'"DOMAIN' ERROR~Be 0 1
Z+«ALB

Z«A OR B

ASCALAR FUNCTION Z+AVB
'DOMAIN' ERROR~Ae 0 1
'DOMAIN' ERROR~Be 0 1
Z«A[B

SCALAR FUWNCTIONS

These functions are extended



SCALAR FUNCTIONS

[1]
[2]
[3]
[4]
[51]
[6]
[7]
[8]
[9]
[10]
[11]
£3i2
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]

v

Z«<A NAND B

ASCALAR FUNCTION Z<Aw~B
Z<~AANB

Z+<A NOR B

ARSCALAR FUNCTION Z<«AW~B
Z+~AVB

Z«<NOT B

ASCALAR FUNCTION Z<«~B
'"DOMAIN' ERROR~Be 0 1
Z+1-B

Z«PITIMES B

ASCALAR FUNCTION Z+OB
Z+Bx3,141592653589793
Z+<SHRIEK B

ASCALAR FUNCTION Z+!'B
AUSES:FACT

"DOMAIN' ERROR 0=TYPE B
'DOMAIN' ERROR(B<0)AB=LB
Z+«FACT B

Z<ROLL B

ASCALAR FUNCTION Z+?B
AaGLOBAL VARIABLES:B 0 P @
"DOMAIN' ERROR 0=TYPE B
'DOMAIN' ERROR(02B)VB=|B
B«P|BxQ

Z«0+|BxB+P

Z«A BC B3;Ci;ANI:BNI;CNI
RSCALAR FUNCTION Z2<A!B
RUSES : FACT

'DOMAIN' ERROR 0=TYPE A
'"DOMAIN' ERROR 0=TYPE B
C+B-4A

ANI+(A<0)AA=LA
BNI<«(B<0)AB=|B
CNI«(C<0)AC=LC

'"DOMAIN' ERROR BNIAA=|A
Z2+0

+0 IF(BNIAANIACNI)V(~BNI)AANIVCNI
+>GAMMA IF(A=|LA)VvBz|lB
A«<(|A)L|B-4

Z+1
L:»0 IF 0=4

Z+«ZxB:A

B<«B-1

A<A-1

+L

GAMMA :Z+(FACT B):(FACT A)xFACT C
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V Z«LN B
[1] ASCALAR FUNCTION Z+®B
[2] 'DOMAIN ' ERROR B<O0
[3] B«B-1 A
[4] Z+B+1+B+2+B+3+(4xB)+4+(uUxB):+5+(9%xB)26

V Z«ETO B
[1] ASCALAR FUNCTION Z+xB
[2] Z+1:1-B+14B32-B:3+Bt2-B3:5+B+2

V Z2«A LOG B
[1] ASCALAR FUNCTION Z<+A®B
[2] Z+«(®B) :04

Exponentiation of Negative Numbers. When A<0 in AxB, the function
RAPPROX is used to determine whether B can be approximated by a
rational number of the form P:Q. If it cannot be, then the result
is -(|A)*B. 1If it can, and @ is even, then A*B is not defined. 1If
@ is odd and P is even, the result is (|4)*B, and if both P and @
are odd, the result is -(|4)*B, RAPPROX returns a 2 2 matrix. The
two elements of the last column specify the parity of P and ¢
respectively, 0 meaning even and 1 denoting odd. LEf B iig
irrational, then the result of RAPPROX is 2 2p 1.

V Z«A EXP B

(1] ASCALAR FUNCTION Z+A=xB
[2] aUSES :RAPPROX

[3] +S IF A20

[u] P<, 0 1 +RAPPROX B

[5] '"DOMAIN ' ERROR 0=1+P
[61 Z+«( 1%x14P)x*xBxe|A
=7 +0
[B] S:Z«xBx®A
'

V P«RAPPROX X;iN;E;B;T
1] ARUSES:FUZZ
[2] Pt Y 200= 1 2

[3] N<10
[4] E«FUZZ
[5] B+X

[6] IT:»0 IF BsE
[7] +IR IF 02N<«N-1

[8] T+1:B

[e] X«LT

[10] P+¢P

[11] PL;2]«P[;212P[;1]A2]|X
[12] B+TP-X%X

[13] E<+«FUZZ+ExTxT

5T R 3 i

[15] IR:P+ 2 2 p 1
v
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FACT is wused by SHRIEK and BC, It is similar to the gamma
function, but differs in that it is defined for negative integers.
! is used on lines 15 and 19 to calculate the gamma function in the
domain from 0 to 1.

V Z<FACT B;I;U;F
[1] Z+1
(2] F«B-LB
[3] +NEG1 IF B<O0
[4] I+«1+F
s U«1+B

(6] L
(7] NEG1:I+1+B
(B8] UsF

[9] L:»E IF U=I

[10] Z<«ZxI

[11] I<«I+1

(121 +L

[13] E:+NEG2 IF B<0

[14] =»0 IF O=F

(151 Z<€Zx!'F

[16] =0

[17] NEG2:2+:Z

[18] =0 IF 0=F

[18] Z+«(Zx!F):F
v

V Z+«A RES B
[1] ASCALAR F
[2] Z+B
[3] +0 IF(0=A)v0=5
[4] T«Ax 1%(xA)=xB
(5] C<|A
[6] L:+E IF 0<C-|2
£7] Z+«2-1
L8] +L
[9] E:»0 IF(xA)=xB
[10]1 Z<Z+A4

v

A AR 6
UNCTION Z+A|B

V Z+«A CIRCLE B

{515] ASCALAR FUNCTION Z<+AOB
(20 "DOMAIN' ERROR~Ac 8+115
[3] +(L7,L6,L5,L4,L3,02,L1,L0,L1,02,03,L4,L5,L6,L7)[A+8]
[4] L7:2<ATANH B

[5] +0

[6] L6:2+ACOSH B

[7] +0

[B] L5:Z2+ASINI B

L£9l +0

[10] Lu4:Z+«CIRCLEY B

[22] =0

[12] L3:Z+«ARCTAN B

(13] =0

[14] L2:Z+«ARCCOS B

[15]1 =0

{161 L1:Z+«ARCSIN B

[27] =0

[18] L0O:2+CIRCLEO B
[19] =0
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[20] L1:2+«SIN B
(213 30
[22] L2:2+«C0S B
[23]1 =0
[24] L3:Z2«TAN B
[25] =0
[26] L4:2«CIRCLEY4 B
[27] +0
[28] L5:2«SINH B
[29] =0
[30] L6:Z2«COSH B
[31] =0
[32]) L7:2+«TANH B
Z+«ATANH B;B2
[1] ASCALAR FUNCTION Z+ 70B
[2] 'DOMAIN' ERROR 1<|B
231 B2+BxB
[4] Z«B+1-B2+3-4xB2:5-9xB2+7-16xB2:9-25xB2+11-36%xB2:13
Z«ACOSH B
[1] ASCALAR FUNCTION Z+ 60B
[27] 'DPMAIN' ERROR 1>B
[3] 7«®B+ 4OB
Z«ASINH B;X;X2
(1] ARSCALAR FUNCTION Z+« 50B
[2] Z+«(®( |B)+40B)x 1%B<0
Z«CIRCLEY4 B
[1] ASCALAR FUNCTION Z+ 4OB
(2] 'DOMAIN' ERROR 1>|B
[3] Z<( 1+4BxB)*0.5
2<«ARCTAN B;X;X2
[1] RSCALAR FUNCTION 2+ 30B
[2] X+|B
[3] X2«XxX
[4] Z+X:1+4X2+3+4xX2:5+9xX2+7+16x%xX2%9
[5] Z+«Zx 1%xB<0
Z+<ARCCOS B
(1] ASCALAR FUNCTION Z+ 20B
[21] 'DOMAIN' ERROR 1<|B
(3] 72+(00.5)- 10|B
[u) +0 IF O<B
[5] Z«(01)-2
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V Z<«ARCSIN B;3;X;X2 &
1] ASCALAR FUNCTION Z+ 10B
*DOMAIN' ERROR 1<|B

[3] X2«XxX
[4] Z«((1—X2)*0.5)xX:1—2XX2%3-QXX2%S—1QXX2%7-12xX?:9

V Z<«CIRCLEO B
ASCALAR FUNCTION Z+00B
'DOMAIN' ERROR 1<|B
Z+(1-BxB)*0.5

mrerm
W N =
)

vV Z«SIN B H 5
(1] ASCALAR FUNCTION Z+10OB
[2] C+1+2%x 1+115
[3] Z+-/(B*xC):!C

vV Z+C0S B
1] ASCALAR FUNCTION Z+20B
] Z+10(00.5)-B

V Z«TAN B
ASCALAR FUNCTION Z+30B
Z«(10B):208

=M
N
—

V Z<«CIRCLEY B

[1] ASCALAR FUNCTION Z+40OB
[2] Z+(1+BxB)*0.5

v

V Z«SINH B
[1] ASCALAR FUNCTION Z+50B
[2] Z+0.5x-/*xB,-B

v

V Z<COSH B
[1] ASCALAR FUNCTION Z2+60OB
£2] Z«0.5%+/*B,-B

V Z«TANH B
[1] ASCALAR FUNCTION Z+70B
2] Z+(508)+60B

SCALAR FUNCTIONS THAT USE FUZZ

The p;imary use of 'fuzz occurs in floor, ceiling, and the
relat}onals. The f1r§t two functions below define absolute and
relative fuzz, respectively. The three global variables used have
the following meanings:

NB The base used to represent the floating-point fraction. In
System/360, the base is 16.

=<
o]

The number of digits, base VB, forming the floatino-point
ﬁraleon. In System/360, the number of digits in the fraction
is -




encoding, and 3

16 SCALAR FUNCTIONS THAT USE FUZZ
¥ The number of bits, or binary digits, to be ignored in
comparisons. As the functions demonstrate, this notion is
valid on machines which do not wuse binary
Wilkinson error analysis techniques are valid.
V Z<FUZZ
I 50 AGLOBAL VARIABLES:N NB WL
[2] Z+((2*xN)-1)xNB*-WL
v
V Z2«A RFUZZ B
[1] RGLOBAL VARIABLES:NB
[2] RUSES:FUZZ
[3] ARELATIVE FUZZ

Z«FUZZxNB*x[NBe®( |A)[ |B

True ceiling and true floor have been included for illustration and

emphasis in the other functions.

(1]
(2]
(3]
(4]
[5]
[e]
(7]

v

Z«<TCL B
ATRUE CEILING
Z<B+1|-B

Z«TFL B
ATRUE FLOOR
2+«B-1|B

Z+«FCL B

ASCALAR FUNCTION Z<[B
AUSES:FUZZ FGT TFL FEQ TCL
Z+«FUZZ<|B

+0 IF~Z

Z«<TCL B

+0 IF(B FGT TFL B)VB FEQ 2
Z«TFL B

Z<«FFL B

ASCALAR FUNCTION Z+«lB
RUSES:FUZZ TFL FLT TCL FEQ
Z+«FUZZ<|B

+0 IF~Z

Z«<TFL B

+0 IF(B FLT TCL B)VB FEQ Z
Z«<TCL B

Z«A FLT B

RSCALAR FUNCTION Z<A<B
ARUSES:RFUZZ

Z«A<B-A RFUZZ B

Z+A FLE B

ASCALAR FUNCTION Z+A<B
RUSES:RFUZZ

Z+A<B+A RFUZZ B
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V 2+«A FEQ B
[1] ASCALAR FUNCTION Z+A=B
(2] AUSES :RFUZZ
3l Z+(A RFUZZ B)=|A-B

V Z«A FGE B
[1] RSCALAR FUNCTION Z+A2B
[2] RUSES:RFUZZ
£37] Z+«A2B-A RFUZZ B

V Z+A FGT B
[1] ASCALAR FUNCTION Z+A>B
[2] AUSES:RFUZZ
[3] Z+«A>B+A RFUZZ B

V Z<«A FNE B
(1] ASCALAR FUNCTION Z+AzB
[2] AUSES:RFUZZ
[3] Z+«(A RFUZZ B)<|A-B

ADVERB FUNCTIONS

Scalar functions can be extended to arrays in four ways: Simple
Scalar Extension, Reduction, Outer Products, and Inner Products.

Scalar Extension. This function extends scalar functions to arrays
element by element. The scalar function is represented by the
function £ which may be any of the scalar dyadic functions. 5D
performs conformability and general domain checks, but assumes that
F will detect most domain errors.

V Z2«A SD B;CZ3;RVLZ3;RVLA;RVLB;I
=15 RGLOBAL VARIABLES:F
[2] AUSES:F

[3] "DOMAIN' ERROR(O0=2TYPE A)A~Fe'z=!
4] '"DOMAIN' ERROR(Q#TYPE B)A~Fe'=z=!
[5] +SINGULAR IF(1=x/pA)Vi1=x/pB

[6] "RANK' ERROR(ppd)=zppB

79 "LENGTH' ERRORV/(pA)=pB

[8] +L1 IF~0epA

[3] Z<A

fi10] =0

[11] SINGULAR:+(ASINGULAR ,BSINGULAR) IF((12x/pB)V(ppA)<ppB),
(12x/pA)V(ppA)>ppB

[12]) -=»L1

[13] ASINGULAR:+L2 IF 0=x/pB
[14] 2«38

[15] =0

[16] L2:A+«(pB)pA

L17]) =>L1

[18] BSINGULAR:~+L3 IF 0#x/pA
[19] 2Z<«A

[20] =0
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[21]) L3:B«(pA)pB

[22] L1:CZ+x/pA

[23] RVLZ+«CZpO

[24] RVLA+,A

[25] RVLB<+,B

[26] I<«0

[27] LOOP:I+I+1

[28] =+END IF I>CZ

[29] RVLZLIJ+«RVLALI] F RVLBLI]

[30] -~+LOOP

[31] END:Z2+«(pA)pRVLZ
v

Reduction. SREDUCTION performs vector reduction. # extends vector
reduction to higher arrays and performs error checkina. The scalar
dyadic function which is reducing is represented by ¥ F contains

the character symbol which denotes the reducing function, and El is
the value of the corresponding identity element.

F/LI1X 1is represented here as R I AXIS X with appropriate
specifications of F, £, and Fi,

V Z<R B;LZ;CB;XLB;RVLZ;RVLB;TCB;V;E;M;J;K;I
W L AGLOBAL VARIABLES: F F1
[2] AUSES :0KINDEX SREDUCTION
[3] I+OKINDEX B

[4] '"DOMAIN' ERROR(Q=zTYPE B)A~Fe'=z='
[5] +L1 IF O=ppB

[6] B+,B

[71] I«,1

(8] L1:LZ+«(( 1+I)+pB),I¥pB
(9l XLB+(pB)[I]

[10] ~+L2 IF 0=XLB

[11] 'DOMAIN' ERROR Fe'@¥#O'
[12] Z+«LZpF1 '
(231 L3

[14] L2:2<«LZpB

[15] L3:CB+x/pB

[16] =0 IF(0=CB)v1=XLB
{17] RVLZ+«,2

[18] RVLB+«,B

[19] TCB<x/I+pB

[20] V<«TCBx 1+1XLB

[21] E<TCBx 1+XLB

[22] M<«Jd+1

[23] OUTER:K<«1

[24] INNER:RVLZ[M1«SREDUCTION RVLBLJ+V]
[25] K<K+1

[26] J+«J+1

[27] M<«M+1

[28]1 -INNER IF K<TCB

[29] J+J+E

[30] -OUTER IF J<CB

[31] Z<«LZpRVLZ
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V Z«SREDUCTION B ;J
[1] AUSES :F
[2] J«(10)ppB
[3] Z2<B[J]
[4] L:d«J-1
[5] +0 IF J=0
[&1] Z+BLJ] F 2
[7] +[

Outer Product. ¥ represents the scalar dyadic function in 4 °.F B

- - o
and £ contains the character symbol which denotes the function.

V Z«A OP B;iCA;CR;CZ3RVLZ :RVLA;RVLB s 343K
AGLOBAL VARIABRLEG:F
AUSES:F
'"DOMATHN' ERROE(Q=TYPH A)A~Fe'z="
'"DOMAIN' ERROR(O=TYPE B)A~Fe'z="
CA«x /pA
CB<x /pB
CZ<CAxCB
RVLZ+CZpO
+END IF 0=CZ

1 RVLA«,A

1 RVLB<+,B

] J<M<0

] QUTER:J<«dJ+1

1 =END IF J>CA

] K<0

] INNER:K<K+1

] +INCREMENT IF K>CB

] RVLZIM+K]1<«RVLA(J] F RVLBLK]

1 ->INNER

1 INCREMENT :M«M+CB

] -OUTER

] END:2+((pA),pB)oRVLZ

p-
v

e Y S I Ay Yy MY M It Mt raTraaT T MM r
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Inner Products. Inner products of the form 4 F.C B and decode
expressions 4i1B are closely related and are combined here. The
main function, BASEPROD, distinguishes inner product from decode by
the value of the global variable I, which is set in DECODE and IP.
BASEPROD in turn uses R to reduce or SDECODE for 1 between
conforming vectors. F and ¢ denote the first and second inner
product functions, and F is the identity element of 7.

V 2«A IP B
515 AGLOBAL VARIABLES:I
£2] AlJSES :BASEPROD
[3] I<«?2
[4] Z«A BASEPROD B

v

V Z+A DECODE B
[1] AGLOBAL VARIABLES:I
[21 AUSES : BASEPROD
[3] I+1
[4] Z+«A BASEPROD B
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L1
(2]
L£3]
4]
(5]
(6]
[7]
[el
[3]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

(9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
£31)
[32]
[33]
[34]
[35]
[36]
[37]
[38]

V Z«A SDECODE B;U;I
U«(pA)lpB
A+UpA
B«UpB
I+1
Z«B[1]
L:I«I+1
+0 IF U<I
Z«B[I1+2xA[I]
+[

V 2<A BASEPROD B;LLA;FLB;LZ;CZ;RVLZ;VA;TCB;VB
aGLOBAL VARIABLES:I F1 G
AUSES:G R SDECODFE
I+l
I+10
+TP1 IF I>1
"DOMAIN' ERROR 0=TYPE A
'DOMAIN' ERROR 0=TYPE B
+L1
IP1:'DOMAIN' ERROR(0=2TYPE A)A~Ge'=z='
'"DOMAIN' ERROR(0=TYPE B)A~Ge'=='
L1:»L2 IF 0=ppA
A+ A
L2:>L3 IF 0=ppB
B«,B
L3:LLA+ 14p4A
FLB+141pB
VLENGTH' ERROR(12LLA)A(1=FLB)ALLA=*FLB
LZ«( 1+pA),1+%pB
IP2:RVLZ«(x/LZ)pF1xI>1
L4y:+END IF 0=x/(pA),pB
VA< 1+1LLA
TCB+x/1+pB
VB«TCBx 1+1FLB
CA«<x/pA
RVLA<«,A
RVLB+ ,B
J+~M+0
QUTER : K<1
INNER:>IP3 IF I>1
RVLZIM+K1«RVLA[J+VA] SDECODE RVLBLK+VE]
+L5
IP3:RVLZIM+K]1+R RVLALJ+VA] G RVLB[K+VB]
L5:K+«K+1
+INNER IF K<TCB
M+M+TCB
J<J+LLA
+QUTER IF J<CA
END:2<LZpRVLZ
v

sRVLA;RVLB;Jd ;M3 K1
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MIXED FUNCTIONS

Mixed functions generally operate on the structure of their
arguments rather than on the values of the elements. Some mixed
functions can be written with a subscript in expressions of the
form 4 F[I] B and F[I] B. We represent these expressions, using an
auxiliary function, as A F I AXIS B and F I AXIS B respectively.
Eliding I AXIS is analagous to eliding [I].

Catenation. A4,[I]B is represented by 4 COMMA I AXIS B

V Z2«A COMMA B;L;I
AGLOBAL VARIABLES:I
RUSES:CAT COMMACHECK
I+«A COMMACHECK B
LAMIRATE :~CATENATE IF I=|1I
+(ASCALAR ,BSCALAR) IF(0=ppA),0=ppB
"RANK' ERROR(ppA)=ppB
"LENGTH' ERRORvV/(pA)=pB
+>BSCALAR

LOmMNO0OWU &5 W=
E WK P O e e e e e e

et o e e ) e L

AS
+L1
BSCALAR:L+pA
Li:L«((LE)+L),1,(LT)+L
I«[TI
A<LpA
B«LpB
CATENRATE :
Z+A CAT

«I

P et el e h s B el s I s 2 s B e B B 2o 3 an B e S B o 0¥ s

[ o

~on

E

V Z+«A COMMACHECK B
L1] AGLOBAL VARIABLES:IL

[2] Z+IL

[:3i) I+10

[4] '"DOMAIN' ERROR(TYPE A)=TYPE B
(5] 'ITNDEX' ERROR 0=2TYPE 7

(6] "INDEX' ERROR 2<ppl

[7] '"INDEX' ERROR 1<x/p2

[8] +L2 IF 0=2x/p2

(9] Z+0,5

[10] -»0 IF(0=ppA)AO=ppB

[11] Z<«(ppA)lppB

P20 %0

(13] L2:'INDEX' ERROR Z<0

[14] 'TNDEX' ERROR Z2z21+(ppA)lppB

V Z+«A CAT B3;R;LZ;NOTI;LA;LB;RD ;WA 3;WB 3;CZ3;RVLZ ;RVLA;RVLB;TCZ;VA;
VB3dJ s KM T
=) AGLOBAL VARIABLES:IL
[2] I+«
[3] I«10
[4] R«(ppA)lppB
55 LZ+Rp0
[6] NOTI«((I-1)41R), I+ R
[7] LA+pA
[8] LB+<pB
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[g]
[10]
[21]
(121
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[ 23]
[24]
251
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[s0]
[u41]
[42]
[43]
[44]
[45]
[u46]
[47]
(48]
[u9]
[50]
(511
[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]

+(ASCALAR,BSCALAR) IF(0=ppA),0=ppB

RD+(ppA)-ppB
"RANK' ERROR 1<|RD
+(RD1,RD1) IF(RD=1),RD="1

'LENGTH' ERRORV/(LA=LB)[NOTI]

LZ[NOTI)«LALNOTI]
WA<LALI]

WB<LB[TI]

+L1

RD1:'LENGTH' ERRORV/LALNOTI1=LB

LZ[NOTI]+LB
WA<LALI]
WB+1

+L1

RD1:'LENGTH' ERRORV/LA=LB[NOTI]

LZINOTI1<LA
WA<1
WB<LB[I]
+L1

ASCALAR:LZINOTI1«LA«LBINOTI]

WA+<1
WB+LB[I]
+L1

BSCALAR:LZ[NOTI1+LB<«LALNOTI]

WA<LALI]

WB+1
L1:LZ[I1«WA+WB
+L2 IF 0=zWA
Z+LZpB

+0
L2:+L3 IF 0=WB
2«LZpA

+0
L3:C2+x/L2Z

+Ly IF 0=CZ
Z«LZpTYPE A

+0
L4 :RVLZ+«CZpTYPE A
RVLA«(x/LA)pA
RVLB+«(x/LB)pB
TCZ+x /I+LZ
WA<WAXTCZ
WB<WBxTCZ

VA+ 1+1WA

VB+ 1+1WB
JeK«M+1
LOOP:RVLZIM+VAI<~RVLALJ+VA]
M<M+WA

J+J+WA
RVLZ[M+VB1«RVLBLK+VB]
M<~M+WB

K+«K+WB

+LOOP IF M<CZ
Z<LZpRVLZ
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Compression.

(1] ARUSES :0KINDEX
[2] I<OKINDEX B
[3] +L1 IF 0zppB
(4] B+(I+,1)pB
[5] L1:+TEST IF 1=x/pA
[8] A«(pB)[I]pA
[7] +[2
[8] TEST:'RANK' ERROR 1=zppA
[9] "LENGTH' ERROR(pB)[Il=pA
[10] L2:'DOMAIN' ERROR~A/Ae 0 1
[11] LZ<pB
[12] LZ[I]++/A
[13] L3 IF(0x+/A)A((pA)=+/A)A0=x/pB
[14] 2Z«LZpB
[15] =0
[16] L3:TCB+x/I+pB
[17] V<« 1+17CB
[18] CZ<x/L2
[19] RVLZ<«CZpTYPE B
[20] XLB<«(pB)[I]
[21] RVLB+«,B
[22] J«M<«1
[23] OUTER:K<1
[24] INNER:-SKIP IF~A[K]
[25] RVLZI[M+V]+RVLB[J+V]
[26] M+«M+TCR
[27] SKIP:K«K+1
[28] J<«J+TCB
[29] ->INNER IF K<XLB
[30] <OQUTER IF M<CZ
[31]1 Z<«LZpRVLZ
v
Expansion. 4\[I]B is represented by 4 EXPAND I AXIS B
V Z+A EXPAND B;LZ;TCB;V;CZ3;RVLZ;RVLE ;LA ;J ;M3;K;I
[1] RUSES:0OKINDEX
{21l I+OKINDEX B
[3] +L1 IF O=ppB
[4] B«(I+,1)pB
[5] L1:-TEST IF 1=x/pA
[6] A< A
[7] +L2
[8] TEST:'RANK' ERROR 1=ppd
[8] L2:'DOMAIN' ERROR~A/Ae 0 1
[10] 'LENGTH' ERROR(pB)[Il=+/A
[11] L2Z+«pB
[12] LZ[I]l+«pA
[13] =+L3 IF(pA)=z+/A
[14] Z<B
[15]1 -0
[16] L3:~+Lu4 IF(0=+/A)A0=x/pB
[17] 2Z<«LZpTYPE B

V Z2+A COMPRESS B;XLB;LZ;TCB;V;CZ;RVLZ3;RVLB;dJ ;M;K;I

+0

A/[I]B is represented by A COMPRESS I AXIS B
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[19] L4:TCB<+x/I+pB
[20] V<"1+.17CB
£21] CZexX/E?
[22] RVLZ<«CZpTYPE B
[23] LA<pA
[24] RVLB+,B
[25] dJ«M<«1
[26] OUTER:K+1
[27] INNER:+SKIP IF~A[K]
[28] RVLZIM+V]I<RVLB[J+V]
[29] J<«J+TCB
[30] SKIP:K<K+1
[31] M<«M+TCB
[32] +INNER IF K<LA
[33] -OQUTER IF M<C2Z
[34] Z<«LZpRVLZ

v

Deal. A47B is represented by A DEAL B

Two algorithms are used. The first, lines 13 through 19, requires
A iterations and B words of storage. The second, lines 20 through
257; requires at least 4 iterations but only A words of storage.
The decision on 1line 10 reflects the relative costs of the two
algorithms in APL\360.

V Z2«A DEAL B;I;J
[t ARGLOBAL VARIABLES:Q
[2] AUSES:ROL

[3] 'RANK' ERROR 1=x/p4
(4] 'RANK' ERROR 1=x/pB
(5] 'DOMAIN' ERROR 0=2TYPE A
[6] '"DOMAIN' ERROR(A<0)VAzlA
(7] 'DOMAIN' ERROR 0=TYPE B
[8] 'DOMAIN' ERROR B=#lB
(9] '"DOMAIN' ERROR A>B

[10] -SHORT IF A<|B:16
[11] Z+«(0-1)+:B

[12] SEND IF A=0

A3 7+0

[14] LOOP:J«1+I+(ROLL B-I)-0
[15] I<I+1

[16]1 2[I,J1<«zZ[J,I]
[17] =LOOP IF A>I

[18] END:Z«A42Z

[19] -0

[20] SHORT:Z<10

[21] OUTER:»0 IF A=pZ
[22] INNER:I<ROLL B
[23] <+INNER IF IeR
[24] 2Z+«2,I

[25] -OUTER
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Matrix Division. BB and ABB are represented by MMD B and 4 DMD B
respectively.

If B is a non-singular matrix, then Z<«<A@EB is such that 4=B+.xZ. If
B is over-specified, then Z is a least squares solution. §B is the
matrix inverse of B. The function is more completely described in
"The Solution of Linear Systems of Eguations and Linear Least
Squares Problems in APIL", M.A. Jenkins, Philadelphia Scientific
Center technical report number 320-2989.

v Z«MMD B
[1] Z«((114pB)o.=114pB)EB
v

V Z<A DMD B:PsLA2;LB2;F:T;Jd;M2;I2:M1;T1;SIGMA;ALFAU
(1] 'DOMAIN' ERROR 02TYPE A
[2] 'DOMAIN' ERROR 0=TYFPE B
[3] 'RANK' ERROR 2=ppB
(4] "RANK' ERROR~(ppA)e 1 2
[5] VLENGTH' ERROR(14pA)=14p0B
[6] 'LENGTH' ERROR(14pB)<1+4pB
[7] LA2+,1
(el +0N IF 1=pph
(9] LA2«14pA
[10]) ON:LB2+«1+pB
“[11] -+AHEAD IF(0=2LA2)A0=LB2
{121 2Z+«(LB2,LA2)p0O
[13] =FIN
[14] AHEAD:P<«114pB
(15] P<:[/[1]|B:Q(dpBE)pl/I|B
[16] B<«Bx(pB)pF
[17] B+«B,A
18] I=<=0
[19] LOOP:J+I
[20] I+I+1
[21] =END IF LB2<I
[22] M2«l/[111(0,-LA2)+(J,J)+B
[23] 'DOMAIN' ERROR FUZZ=[ /M2
[(24] I2+«J+M2:1[ /M2
[25] PLI.I2]«P(I2,I1]
{261 Bf i1 I2)«Bl:I2,1I]
[27] Mi«|J+B[;I]
[28] Ii1«J+M1[/M1
[29] BLI,T1;]«B[I1,I;]
[30] SIGMA<+/(J+B[;I]1)*2
[31] ALFA+( 1%x0<B[I;I]1)xSIGMAx0.5
[32] U«BLI;I]-ALFA
[33] BlJ+114pB:I+11+4pBl«((J,I)4B)-(U,I+B[;I])e .x(:SIGMA-BLI;I]x
ALFA)x(U,I¥BL;I]1)+.x(J,I)+B
[34] BI[I;I]<«ALFA
[35] -+LOOP
[36] END:Z2«(LB2,LA2)p0
[37] I<«(10)pl+LB?2
[38] QBACK:I<«I-1
E3all =RE TF Q=1
[40] 20I;:)«((LB24B[I;1)-(LB24B[I;]1)+.%xZ):BLI;I]
[41] -—+@QBACK
[42] RE:2+Z[AP;1%xQ($pZ)pF
[43] FIN:»0 IF 1=zpp4
[uul Z<«,2



MIXED FUNCTIONS

26

Take and Drop. AtB and A+B are represented by 4 TAKE B and
A DROP B respectively.

V 2+«A TAKE B
[1] AUSES:TAKECHECK TAKER
{02 TAKECHECK
[3] Z+A TAKER B y

V Z+A DROP B
[1] A USES: TAKER TAKECHECK
[2] TAKECHECK
(3] A+( 1%0<A)x0[(pB)-14
[4] Z+A TAKER B

V TAKECHECK

[1] RGLOBAL VARIABLES:A B
[2] '"DOMAIN' ERROR 0=TYPE A
[3] 'RANK' ERROR 2<ppA

[4] A<, A

[5] 'DOMAIN' ERRORV/A=z|A
[6] +L1 IF 0=ppB

=7 "LENGTH' ERROR(ppB)=pA
[8] +0

[3] L1:B<«((pA)p1)pB

v

+SL3P3RVI

t~

B3RVLZ

N

V Z«A TAKER B;LZ;LB;QB;QZ3;L;C;BI;ZI; :J;:5B:8
[1] A+, A
[2] Lz« |A
[3] LB+pB
[4] +L1 IFV/LZ=LB
£S5 Z+B
[6] +0
[7] L1:2«LZpTYPE B
[8] +0 IF(0=x/LZ)v0=x/LB
[9] @B+«(A<0)x0[LB-LZ
[10] @QZ+«(A<0)x0[LZ-LB
[11] L<«LZLLB
[12] C+x/L
[13] BI+ZI+Cp1
[14] J<«ppB
[15] SB+«SZ<«SL+1
[16] LOOP:P<«L[J]|L(T1+1C)=SL
[17] BI+«BI+SBxQB[J]+P
[18] ZI«ZI+SZxQ2Z[J]1+P
[19] SB<«SBxLB[J]
[20] Sz+5zxL2[d] '
[21] BSL«SLxL[J]
[22] Jd«J-1
[23]1 -+LOOP IF J>0
[24] RVLZ+,Z
[25] RVLB+,B
[26] RVLZ[ZI)<«RVLBIBI]
[27] Z<«LZpRVLZ
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Encode.

Vv
[1]
[2]
[3]
(4]
[51]
[6]
[71
[8]
[9]
[10]
[11]
[12]
[13]
[14]
$1:51
[16]
1470
[18]
[19]
[20]
[21]
£22]
[23]
[24]
[251]
[26]
[271]
v

v

v

Membership and
A MEMBER E and
line 15 of XOF to indicate a fuzze

v
(1]
(2]

v

Z+<A ENCODE B;LZ;CA;CB;E;VA;VZ;RVLZ;RVLA;RVLB;J;M;K

AUSES : SENCODE

"DOMAIN' ERROR 0=TYPE A
'‘DOMAIN' ERROR 0=TYPE B

LZ+(pA),pB
CZ+x /L2
CB«x /pB

+L1 IF 0=CZ
Z2+LZp0

+0

L1:~+L2 IF O=zppA

A+, A

L2:E+x/1+pA

VA<Ex 1+111pA
VZ+<CBxVA
RVYLZ+~CZp0
RVLA<+ A
RVLB+«,B
J+~M+0

OUTER :K+1
INNER:RVLZIM

K«K+1

+INNER IF K<CB
M<M+CB

Jed+1

+QUTER IF J<E
Z«LZpRVLZ

+0

Z<«A SENCODE B;I
Z«(I+pA)p0

L:+REM IF A[I]=0

zZ[1]«AlI]|B

+0\ IF I'=1
B+(B-Z[I]):ALT]
+0 IF 0=B

J<I-1

+L

REM:2[I]+B

Z+A MEMBER B

AGLOBAL VARIABLES:0
Z«((p,B)+0-1)2(,B)14

ATE is represented by A4 ENCODE B.

+K+VZ1«RVLALJ+VA] SENCODE RVLBLKX]

represented by
¢ is used on

AeB and A B
The function FE

d comparison.

Inverse Index.
4 XOF B respectively.
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V Z«A XOF Bi;LA;CB;RVLZ;RVLB;J ;K
[1] AGLOBAL VARIABLES:0
2 AUSES:FEQ
[3] 'RANK' ERROR 1=ppé4
[4] +L1 IF(0=pA)AO0=x/pB
[5] Z+<(pB)p0
[6] +0
[7] Li1:LA<pA
[8] CB+x/pB
(9] RVLZ+«CBpQ
[10] RVLB<,B
[11] J<«O
[12] QUTER:J+J+1
[13] -+END IF J>CB
[14] K<O
[15] INNER:K+K+1
[16] -=EXTRA IF K>LA
[17] -INNER IF~A[K] FEQ RVLBLJ]
[18] EXTRA:RVLZ[JJ«K+0-1
[19] -OUTER
[20] END:Z+«(pB)pRVLZ
v

Index Generation. 1B is represented by XGEN B.

V Z+XGEN B;d
(1] RGLOBAL VARIABLES:Q

[2] '"DOMAIN' ERROR 0=TYPE B
[3] '"RANK' ERROR 1#x/pB

[4] '"DOMAIN' ERROR Bzl |B
[5] Z<Bp0

[&] J+0

[7] L:J«J+1
[8] +0 IF J>B
[g] ZLJl«J+0-1
[10] =L

v

Transpose. §8 and 44B are represented by MTRANSFOSE B

A TRANSPOSE B respectively.

and

V Z<«MTRANSPOSE B;LB;U;J;LZ;W;CZ;T;RVLZ;RVLB;RZ;S;I;K

[1] +L1 IF 1<x/pB
[2] Z<B

[3] +0

[4] L1:LB+«pB

[5] U«1+J<«ppB

[6] LZ«W+JpCZ+1
(7] LOOP:LZ[U-J]+«LB[J]
[8] T«CZxLBLJ]

[9] WLU-J1«T+C2Z
[10] CZ+<T

[11] J+«J-1

[12] =LOOP IF J>0
[13] W<W-CZ

[14] RVLZ+«CZpTYPE B
[15] RVLB<«,B

[16] RZ<+ppB

[(17] S<+«RZpI+«d+1



MIXED FUNCTIONS 29

[18] MAINLOOP:K<RZ
[19] RVLZLJI+RVLB[IT]
[20] SEEK:S[K]«1+S[K]
[21] -BACKUP IF LZ[K1<S[K]
[22] I<«I+WL[K]

[23] J«J+1

[24] ->MAINLOOP

[25] BACKUP:5[K]«1
[26] K+K-1

[27] =SEEK IF 0<K
[28] Z+LZpRVLZ

V Z2+«A TRANSPOSE B;LB3;RB3;RZ ;J sW1;W2;3;LZ2;;M;CZ3CL3I 3;BI

(1] AGLOBAL VARIABLES:Q

[2] '"DOMAIN' ERROR 0=7YPE A
[3] '"RANK' ERROR 2<ppA

L4] A+ A

[5] YLENGTH' ERROR(ppB)=pd
[6] +L1 IFvV/A=1ppB

[7] Z<B

[8] >0

[9]1 L1:'DOMAIN' ERRORV/(AzLA)VvA<Q
[10] A<«A+1-0

[

111 RZ+[/4A

[12] 'DOMAIR' ERRORV/~(\RZ)eh
[13] LB+pB

[14] RB+ppB

[15] Wi«(J<«RB)p1

[16] LOOP1:Wi1lJ-11«WA[J IxLBLJ]
[17] J+J-1

[18] =LOOP1 IF 1<J

[19] LZ+«W2+«RZp~Jd+1

[20] LOOP2:M«J=4

[21] L2[J]1<«l/M/LB

[22] W2lJ]l«+/M/W1

[23] J+Jd+1

[24] -LOOP2 IF J<RZ

[251 €2Z+«x/LZ

[26] L2 TF 0£C7Z

[27] Z<LZpTYPE B

[28] =0
[29] L2:CL+ 1+1CZ
[30]1 I+«RZ

[31] BI+«CZpO
[32] LOOP:BI«BI+W2[I1xLZ[I]|CL
[33] CL<lCL:LZ[I]
[34] I<«I-1
[35] =+LOOP IF 0<I
[36] Z<«LZp(,B)[1+BI]
v

Ravel. ,B is represented by RAVEL B.

V Z«RAVEL B
3 Z«(x/pB)pB
v
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Rotate. A¢[IlB is represented by A ROTATE I AXIS B.
V 2+«A ROTATE B;CB;XLB;NXLB;TCB;V;E;RVLZ;RVLB;RVLAJ ;M;K:1
[1] AUSES:SROTATE OKINDEX
[2] I«0OKINDEX B
[3] 'DOMAIN' ERROR 0=TYPE A
[4] "DOMAIN' ERROR 1eA=lA
[s5] CB+«x /pB
(6] XLB+(pB)[I]
[7] NXLB<(( 1+I)4pB),I+pB
(8] +TEST IF 12x/pA
[9] A+NXLBpA
(10] L1
[(11] TEST:'RANK' ERROR(pNXLB)=ppA
(12] 'LENGTH' ERRORV/NXLB=pA
[13] L1:+L2 IF(1€0=XLB|A)A(1=2x/XLB)A0=(CB
[14] Z+B
[15] =0
[16] L2:TCB+x/I+pB
[17] V«TCBx 1+1XLB
(18] E<«TCBx 1+XLB
[19] RVLZ<«CBpTYPE B
[20] RVLB+,B
[21] RVLA+«,A
[22] J+M<«1
[23] QUTER:K+«1
[24] INNER:RVLZ[J+V1+RVLALM] SROTATE RVLBL[J+V]
[25] K<«K+1
[26] J«J+1
[27] M<M+1
(28] +INNER IF KsSTCB
[29] J<«J+E
[30] +OUTER IF J<CB
[31]1 2Z+«(pB)pRVLZ
v
V 2+A SROTATE B;D;M
£12 D<pB
[2] M«D|A
[3] Z+BL(M+1D-M) , 1M]

Index check.
functions to check the validity of
assumed value if the index is elided.

V Z«OKINDEX B

an index

1.3 AGLOBAL VARIABLES:IL
[2] 2«

[£3] I+10

[4] YINDEX' ERROR 02TYPE 2
[5] 'INDEX' ERROR 2<ppZ
[6] 2«,2

£7] +L IF 0<p2

[8] +0 IF 0=ppB

[9] Z+ppB

[10] =0

[11] L:'INDEX' ERROR 1<pZ
[12] YINDEX'" ERROR~ZeippB

v

The following function is used by mixed indexable

and to supply an
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MONADIC INDEXABLE MIXED FUNCTIONS

The monadic functions & ¥ ¢ and scan are all similar in that they
are indexed and they preserve the structure of the argument.
MINDEXED is the common control function.

V Z«A MINDEXED B;CB;XLB;RVLZ;RVLB;TCB;V;E;J;K;I
[1] aUSES:SREVERSE GRADE SSCAN OKINDEX
[2] I+«0OKINDEX B
[31] Z«B
[ul CB+<x/pB
[5] +0 IF 0=CB
[6] +L1 IF Ae 1 4
73 Z+(pB)p1l
(8] Li:XLB+«(pB)[I]
[3] ARFOR SCALAR B XLB=10
[10] +0 IF 1=x/XLB
[114]1 RVLZ+RVLB+,B
[12] TCB+x/I+pB
[13] V<TCBx 1+1XLB
[14] E<TCBx 1+XLB
[15] Jd+<«1
[16] OUTER:K+1
[17] INNER:*(REVERSE,GRADEUP,GRADEDOWN,SCAH) IF A=14
(18] REVERSE:RVLZ[J+V]+«SREVERSE RVLB[J+V]
[19] =+L2
[20] GRADEUP:RVLZ[J+V1+1 GRADE RVLB[J+V]
(24} =52
[22] GRADEDOWN :RVLZ[J+V 1«2 GRADE RVLBLJ+V]
£23d° 02
[24] SCAN:RVLZ[J+V]<SSCAN RVLBLJ+V]
[25] L2:K+K+1
[26] J+J+1
[27] -—INNER IF K<TCB
[28] J<«J+E
[29] +OUTER IF JsCB
[30] Z<(pB)pRVLZ

Gradeup and Gradedown. ACI1B and V[I]B are represented py
GRADEUP I AXIS B and GRADEDOWN I AXIS B respectively. GRADE 1s
called by MINDEXED to perform the appropriate vector grade.

V Z+<GRADEUP B
[1] AUSES :MINDEXED
[2] "DOMAIN' ERROR 0=TYPE B
[£31] Z+2 MINDEXED B

vV Z<«GRADEDOWN B
[1] AUSES:MINDEXED
[2] ‘DOMAIN' ERROR C=TYPE B
[:8d Z+3 MINDEXED B
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V 2+«A GRADE B;U;d ;K;C
17 A A=1 FOR 4, A=2 FOR ¥
[21] AGLOBAL VARIABLES:Q
[3] U+pB
[4] Z+d+«1
[5] OUTER:J«J+1
[6] +END IF U<d
[7] C+«B[J]
[8] K<d
[9] INNER:K<K-1
[10] =+EX IF 0=K
[11] -+INNER IF((B[K1>C),BL[K1<C)[A]
[12] EX:2+(K42),J ,K+2
[13] C«B[Kk+1]
[14] B[K+11+B[J]
(151 BL[J1+«C
[16] -OUTER
[17] END:2+«(0-1)+2
v

Reversal. ®[I1B is represented by REVERSE I AXIS B. SREVERSE 1is
called by MINDEXED to perform a vector reversal.

V Z<REVERSE B
[1] AUSES :MINDEXED
£2] Z«1 MINDEXED B
v

V Z«SREVERSE B
(1] Z+«B[(1+pB)-1pBl]
v

Scan. F\[I]B is represented by SCAN I AXIS B. F, called from
SSCAN, represents a dyadic scalar function. F contains the
character symbol which denotes F. S5CAN is called by MINDEXED to

perform a vector scan.

V Z+«SCAN B
[1] AGLOBAL VARIABLES:F
[2] AUSES :MINDEXED
[3] 'DOMAIN' ERROR(0=TYPE B)A~Fe'=='
[u4] Z<4 MINDEXED B

V Z+«SSCAN B;d ;K
[1] RUSES:F
24 J<pB
(31 Z+«B
(4] OUTER:K+J
[5] INNER:K+<K-1
[6] +L IF K=0
Ryl Z[LJ1«2[K] F 2[J]
[8] +INNER
[9] L:J+«J-1
[10] -QUTER IF J>1
v
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AUXILIARY FUNCTIONS
AXIS is used to represent function subscripting.

TYPE returns a space if its argument contains characters, otherwise
it returns zero.

IF and ERROR are used for convenience. The third line of EREOR
(not strictly APL) in APL\360 causes a return to the last level of
immediate execution.

F and G are' used to represent scalar dyadic functions in reduction,
scan, and inner and outer products.

V Z+«A AXIS B
[1] RGLOBAL VARIABLES:0 I

[2] 'INDEX' ERROR 0=TYPE A
[3] I+«A+1-0
[u] Z+B
v
V 2+«TYPE B
1) RGLOBAL VARIABLES:C
[2] Zt
3] +0 IFv/,BeC
[4] Z+0
v
V Z+«A IF B
1] Z«B/A
v

V A ERROR B
(1] +0 IP~v/B
(2] A,'ERROR'
Ui U [, -

V Z«<A F B
[1] Z+A+B

V Z«A G B
[1] Z+AxB
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INDEX OF FUNCTION DEFINITIONS

ABS
ACOSH
AND
ARCCOS
ARCSIN
ARCTAN
ASINH
ATANH
AXIS
BASEPROD
BC

CAT
CIRCLE
CIRCLEO
CIRCLEY
CIRCLEY4
COMMA
COMMACHECK
COMPRESS
coS
COSH
DEAL
DECODE
DMD
DROP
ENCODE
ERROR
ETO

EXP
EXPAND
F

FACT
FCL

FEQ

FFL

FGE

FGT

FLE

FLT

FNE
FUZZ

G

GRADE
GRADEDOWN
GRADEUP
IF

IP

LN

10
14
10
14
15
14
14
14
33
20
Il
21
13
15
15
14
21
21
23
15
15
24
19
25
26
27
33
12
12
23
33
13
16
e 5
16
17
17
16
16
17
16
33
32
31
31
33
19
12

LOG

MAX
MEMBER
MIN
MINDEXED
MMD
MPLUS
MTRANSPOSE
NAND
NEGATE
NOR

NOT
OKINDEX
OP

OR
PITIMES
R
RAPPROX
RAVEL
RECIP
RES
REVERSE
RFUZZ
RCLL
ROTATE
SD
SDECODE
SENCODE
SHRIEK
SIGNUM
SIN

SINH
SREDUCTION
SREVERSE
SROTATE
SSCAN
TAKE
TAKECHECK
TAKER
TAN

TANH

TCL

TFL
TRANSPOSE
TYPE
XGEN

XOF

12
10
27
10
31
25
10
28
10
10
10
10
30
19
10
11
18
22
29
10
13
32
16
£ 1
30
1l
20
27
11
10
15
15
19
32
30
32
26
26
26
15
15
16
16
29
33
28
28
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