
i n the computing field since 1 9 6 2
and joined CUC in 1 9 6 3 . His ex-
perience includes both sys tems and
commercial programming. He was
project leader for the design and
implementation of RCA's RPG and
has also worked on a COBOL com-
piler, a debugging system, con-
version and utility programs.

Harry, who received h is B.A. from
Columbia College, l ives with his
wife and their three children in

REPORT
PROGRAM
GENERATOR
by
Harry Leslie

The Report Program Generator i s providing a means, on
many programs, for programmers to move more rapidly
from one program to another. The purpose of this article
i s to describe some useful areas of the new generation
of RPG processors and to briefly explain the language
processor we developed for RCA and its SPECTRA 7 0 .
IBM introduced the language on the 1 4 0 1 series and
has also developed a new processor for the System
3 6 0 . The same RPG language has also been adopted
by UNIVAC. Perhaps this means the beginning of an
industry standard in RPG language.

Programmers who have never worked with RPGs receive
a mild shock when they find the issue neither reads nor
writes, and they do not have to move input records
to work areas, define special work sections or move
fields to output records. Gone then, i s a sizeable part
of the cause of the programmer's occupational disease,
writers cramp. The RPG accomplishes this by taking
advantage of the fact that an output record i s always
made up of previously defined fields, edited fields, or
constants. When an output f ield i s specified, i t i s mere-
ly given the same name as the f ield wanted moved and
the RPG moves it .

The RPG has predefined program logic variable enough
to f i t most applications, which allows i t to control the
I/ 0 and to determine when to issue a read or write.
Most data processing jobs wi l l f i t into this program
logic (some being squeezed in). As general rule, you
could say that the less complicated the f i le handling
problems the more suitable a program i s for the RPG.
For example, the RPG does not allow work tapes within
a program (e.g. tape may not be written on during the
first part of a job and read in the second part, this would
have to encompass 2 separate RPG programs). Also,
the more input f i les there are to process, the more com-
plicated i t i s for a programmer to work with the RPG.

Let 's pin down the usefulness of the RPG a l i t t le bi t
more. The way the RPG operates, one could not ask
"should we use assembly language or RPG" or again
"COBOL or RPG". Instead, RPG should be used in
addition to some other language, and the question asked
should be "when do I use COBOL or assembly language
and when RPG".

Six pertinent questions must be applied to the RPG,
with the answers tell ing us not only i f i t should be used
at al I, but i f so, when:

1 . I s i t easy to l ea rn?
2 . Is i t easy to use?
3 . Can a program be written quickly in it?
4. Does i t produce a fast running program?
5 . Does i t facilitate conversion?
6 . Does i t facilitate maintenance?

Most programming languages tend to be about equal-
ly diff icult to learn. The RPG i s no exception to
this. I t i s as diff icult to learn as any other pro-
grammi ng language.

2 . Is i t easy to use?
d

Ease of use depends on the application. The RPG
is intended for straightforward applications with- out
out complicated logic or complicated use of fi les.
If i t i s applied where intended, i t i s certainly easier
to use than either COBOL or assembly language.
F i le Description statements are short and effective.
One RPG source statement completely defines a
f i le's structure. Input and output f ield statements
also require only one line, giving the from and to
address, decimal positions and name and certain
other optional features associated with the f ield
(e.g. a programmer could te l l the RPG to test i f
the f ield i s plus, minus, zero or blank). The calcu-
lations tend to be fewer than with COBOL or As-
sembly Language when used in straightforward
situations. No f i le control logic i s included in the
statements so one sourceof error and several lines
of coding are eliminated.

3 . Can a program be written quickly in it?

Once again, i f the application i s proper, the speed
with which something can be programmed i s amazing.

For instance, a two tape merge could be w r i t t e d
with ten RPG cards in less than half an hour by an
experienced RPG programmer. An optional printed
report with proper spacing and headings at certain
level breaks could be added with perhaps 1 0 to 2 0
RPG source cards, also in less than half an hour.
The instruction set i s comprehensive, featuring a
powerful table lookup instruction and including a
variety of moves and a compare, add, subtract,
multiply and divide with automatic decimal align-
ment. In addition, i t allows reference to linkage
to programs external to the RPG.

4 . Does i t produce a fast running program?

The RPG does not produce an efficient program, but
i t does usual1 y produce a program that wi l l run as
fast as one written in any other language. This i s
because the execution time w i l l normally fa l l com-
pletely within 1/0 time, eliminating the necessity
of efficiency. Again, we see the need for using the
RPG for straightforward problems. A long, compli-
cated problem involving many loops may turn into
a slow running program in RPG, for the execution
time might exceed 1/0 time.

5 . Does i t facilitate conversion?
1 . Is i t easy to learn?

In the absence of an industry standard for RPGs,

conversion wi l l probably mean rewriting. However,
a l l RPGs tend to be very similar and i t would cer-
tainly be much easier to rewrite than an assembly
language program. In fact, i t i s not a diff icult thing
to write a program to convert from one RPG to

Ln. another.

6 . Does i t facilitate maintenance?

An RPG program w i l l normally have fewer state-
ments than either assembly language or COBOL.
For that reason there w i l l be fewer statements to
change if maintenance i s necessary. Also, i t i s
quite simple to make additions to an RPG program.
However, a complicated problem coded in RPG is as
diff icult to maintain as, the same problem coded in
COBOL or Assembly Language.

The RPG can obviously be a very useful language i f
used in addition to a more comprehensive language.
There are many applications of the RPG and i t deserves
a place in any data processing shop.

I have drawn a very vague dividing line between the
times when the RPG should be used and when i t should
not. The reason i s that no clear dividing line exists.
I t i s possible, though, to apply 3 general questions
to a data processing program.

1 . Does the input or output structure include multi-
f i le reels, work tapes or special tape control
operat ions?

2. Is the relationship between input f i les compli-
cated?

3 . Does the program include diff icult logical pro-
cessing or many loops?

If the answer to each i s no, then the program i s probably
suitable for the RPG.

The way a processor works can be as important as what
i t does. For instance, a very slow compiler or one that
gives few diagnostics can be pretty useless. The RPG
CUC wrote for the SPECTRA 7 0 ' s POS, TOS and TDOS
systems set out to accomplish three major objectives -

1 . Fast compilation
2 . Efficient object programs
3 . A clear comprehensive program listing.

We produced a compiler that w i l l output loadable pro-
gri3m.s at rates up to 9 0 0 cards per minute, with tailored
object code, optional double buffered 11 0 and a printout
with calculation object code l isted with each source

L e plus any diagnostics (over 2 0 0 possible diag-
nostics). List ing the object code with the calculation
statement i s especial l y appreciated by users who have
program errors and need to know in which statement or

f ield an interrupt occurred.

One of the most interesting things to come out of the
RPG processor was a new method of handling binary
table searches. Previously, a binary table lookup with
a table length not a power of two, involved a division
each time through the loop. However, the object program
the RPG produced i s capable of doing a binary search
of any size table, using a shift instruction instead of
division. This increases the speed of the lookup many
times, as the shift instruction on the SPECTRA 7 0
(or the 3 6 0) i s usually about 1 0 times as fast as a
divide.

The method simply involves dividing the table into 2
overlapping parts, each a power of 2 , in number of
entries. A compare to the midpoint o'f the table to find
out which area of the table to search i s the only over-
head paid for this method. The increment (or decrement
for tables in descending order) i s kept in a register and
each time through, the loop is halved by a shift of one
bit. The time saved could be significant - probably half
a milisecond per lookup on a SPECTRA 7 0 model 4 5 .

The RPG processor itself operates in a fairly typical
fashion. I t breaks source statements down into either
data attribute or a codeified form of a statement. After
data attributes have been submitted for names, i t gener-
ates object code in an unfinished format. Then this code
i s .outputed in a form acceptable to the linkage editor.
Although this sounds as though i t i s passing over the
input four times, (and in a sense i t is) the actual com-
pi l ing speed i s limited mainly by the original input
speed and final out put speed.

Speed i s achieved because only the data that need be
passed over again i s actually written and read again.
Since the needed coded data w i l l occupy only one quar-
ter to one tenth the room of the original input, large
savings are made. In fact, only two and a half passes
actually take place. This brings us to a point where
processing speed i s determined mainly by the speed of
the input and output units. For instance, a twelve hun-
dred card RPG program using card in, printer out and
producing an object program on tape, w i l l take a l i t t le
more than a minute to read the cards; two and a half
minutes to print out; (with object code and diagnostics
2'12 times as much i s printed as i s read in) and less
than half a minute for immediate processing. Total time
i s a l i t t le under four minutes.

We accomplished what we set out to do in the RPG for
RCA, and, perhaps, most important of a l l , we did i t
on time and within the budget.

RPG
circa 1 9 6 2

The tasks accomplishable by RPG have expanded greatly over the past
several years to the point where today i t deserves special consideration.

	computerusagecompany.rept_prog_generator_1966.102679063.fc.src.tif
	computerusagecompany.rept_prog_generator_1966.102679063.p01.src.tif
	computerusagecompany.rept_prog_generator_1966.102679063.p02.src.tif
	computerusagecompany.rept_prog_generator_1966.102679063.bc.src.tif

