
DISPLAYTRAN BY
BEN BARLOW

Ben Barlow i s a Senior Pro-
grammer in our

Washinf!On off ice. He i s presently wor zng
on DISPLAYTRAN at the Naval
Weapons Laboratory in Dalhgren.
Va.

He has been in the computing
field for more than three years
and attended Washington and
Jefferson College and Ohio
State University.

Ben l ives in Rockville, Md.
with his wife and their one
year-old daughter.

n -
I
' J

In the early years of the computer age, the programmer
was very close to his machine. Debugging a program
"at the console" was commonplace, and few pro-
grammers did not know the "ins" and "outs" of oper-
at ing their machines. In contrast, today's programmer
may never see the machine he's working on. He'll prob-
ably never have the satisfaction of strolling over to
the computer's console, dismissing the operator with
a look of disdain, and bringing to l i fe a hopelessly
bogged program that today would be shrugged off by
the monitor with an off-line dump. But trends in the
computer field, as in the fashion world, reverse peri-
odically, and the very same increased speed and cost
that forced the programmer to re1 inquish his machine
privileges now promise to bring him back in contact
through the advent of "conversational" programming
systems.

..

The conversational system i s made up of a central
processor and one or more remote terminals. The cen-
tral processor t i meshares these termi nal s, and the over-
al l effect is that each remote terminal acts as a sepa-
rate computer. In the system we describe, the program-
mer i s able to communicate directly with the machine
as his program i s in i ts various phases of execution.
He can perform operations similar to those his prede-
cessor could perform at the console, and he can re-
quest debugging aids of the system far superior to
those which were available to the console-manipulating
programmer.

Of the conversational FORTRAN systems, probably
the best known is QUIKTRAN, an early IBM effort
(1 9 6 4) in the time-sharing field. QUIKTRAN is a
modified (sub-set) FORTRAN IV conversational system
using a 7 0 4 0 central computer and IBM 1 0 5 0 termi-
nals. At present, several installations a l l over the
East Coast rent QUIKTRAN terminals, connected to the
central processor in New York. For several hours a
day, when the QUIKTRAN system i s resident in the
7 0 4 0 , the users enjoy i ts benefits, and the central
New York operation runs normal processing programs
in the background.

Dl SPLAYTRAN

DISPLAYTRAN i s patterned after the QUIKTRAN sys-
tem, but differs in several major areas. Instead of the
rather slow typewriter devices of QUIKTRAN, DIS-
PLAYTRAN uses the faster and more versatile 2 2 5 0
Display. In contrast to a basic FORTRAN, the DIS-
PLAYTRAN user has a ful l FORTRAN IV language,
lacking only some of the more exotic features, such as
arrays of more than three dimensions. DISPLAYTRAN
currently provides on1 y two terminals, due primarily to
the fact that i t i s a research project and not particu-
larly concerned with a large operation. One of the
primary advantages of DISPLAYTRAN i s i t s abil i ty to
provide the user with graphical subroutineq, which can
be used to plot graphs or draw figures under control of
the user's FORTRAN program. For example, the user
could enter a FORTRAN equation for a curve, call the
graphic routines and see i t plotted, then vary param-
eters and observe changes to the curve.

DESIGN CRITERIA

DISPLAYTRAN was developed as a joint project by
IBM and the Naval Weapons Laboratory in Dahlgren,
Virginia. NWL wanted to examine the advantages of a
conversational FORTRAN system as i t related to pro-
gram development, to see i f the abil i ty of a programmer
to test during program development actually shortened
de-bug time. Off-line input-output processing for N!VL's
IBM 7 0 3 0 computer, which provided a perfect back-
ground program for the time-sharing operation, and a
successful experiment with QUIKTRAN, encouraged
the Navy to initiate the design of DISPLAYTRAN.

The machine chosen for the task was an IBM System/
360 model 40 with one multiplexor and two selector
channels. Periphe ral devices include 2 5 4 0 card
reader-punch, a 1 4 0 3 printer, two 2 3 1 1 disk drives,
three 2 4 0 0 tape drives, and a 1 0 5 0 operator con-
sole. Each remote terminal consists of an IBM 2 2 5 0
Display Model 1 with alphameric keyboard and light
pen, an IBM 1 0 9 2 Function keyboard, and an IBM
1 0 5 3 Printer.

A 2 2 5 0 consists of an L-shaped desk. On i t s short
arm is a standard typewriter keyboard through which
statements are entered. Directly behind this i s the
CRT, which looks much the same as regular 2 1 inch
TV tube. The screen can display up to 5 2 lines of
7 4 characters each. The 1 0 9 2 function keyboard is
an attached keyboard with an array (1 0 X 1 6) of 1 6 0
buttons. Associated with each button i s a specific
meaning; each one can be thought of as calling in a
certain subroutine. Each button i s defined by words
written on a plastic overlay which f i ts over the buttons.
System commands are entered through the keyboard.
The 1053 printer i s a slow speed typewriter-type
printer, which looks l ike the 1 0 5 0 console typewriter
with the keyboard removed.

To converse with DISPLAYTRAN the user must be,
i n a sense, bilingual. In addition to FORTRAN, he
must be familiar with the DISPLAYTRAN command

language, consisting of approximately twenty-five
commands, each initiated by pushing the appropriate
button on the 1 0 9 2 . Commands are divided into two
major groups: System commands and debugging aid^
A l l commands are checked as they are entered, aid
the user notified i f an incorrect command or command
sequence has been initiated. As the user initiates a
command , a display appears tel l ing him what command
he requested and asking for additional information to
be entered through the 2 2 5 0 keyb oard.

Some of the system commands are USER (sign-on)
which i s the first button that must be pushed when a
user s i ts down opposite DISPLAYTRAN, and FINISH,
which he pushes to close out. The PROGRAM command
tel ls DISPLAYTRAN that the user now plans to enter
his program, or LOAD a previously entered one. START
causes the user's FORTRAN program to be interpreted.
(Since DISPLAYTRAN produces no executable code as
a result of the FORTRAN statements, as does com-
piler, the user's program is "interpreted" rather than
executed.) Commands are also provided to RESUME
PROGRAM mode after intorpre~ation and to STOP or
CONTINUE interpretatior~. At present, the only way to
get a FORTRAN source program into the system is
statement by statement throug? the keyboard. Com-
mands are provided to SAVE the current program, or
LOAD a previously entered one.

Since the benefit of a conversational system i s that i t
permits on-line debugging, half the Command Langua!
consists of debugging aid commands. The EXSTOR&
command permits assumption of variable values that
are not set within the program being developed. Thus,
a subroutine could be developed and parameters sup-
plied actually by the main routine could be assumed
for testing by the user of EXSTORE. The command
PDUMP causes the values of al l variables that have
been set in the user's program to be dumped either on
the 2 2 5 0 or the 1 0 5 3 , or both. QDUMP causes only
those variables whose values have changed since the
start of interpretation or the last QDUMP to be printed.
The RESET command causes al l variables to be reset
to zero, as they were at the beginning of the program.
TRAIL wi l l inform the user of subroutine calls, GUARD
wi I I protect a variable, telling the user when an attempt
i s made to change i t s value. SNAP prints the value
of a specified variable at each use, or provides noti-
f icat ion at the interpretation of a specified statement.
The AUDIT command produces a l is t of the sections
of the program that were not used during interpretation.
The ALTER command permits the user to add, delete,
or change the FORTRAN statements comprising his
program. In addition to "object-time" debugging, as
each FORTRAN statement i s entered i t is completely
syntax-checked, and the user is notified of any errors.
At the beginning of interpretation, a flow analysis i s
performed to detect any unclosed DO loops, any refer-
enced but unentered statements, or incorrect branchi &
The notification of error made to the user is by a sen-
tence displayed on the screen and provides enough
information to allow him to correct the error without
reference to a text.

The FORTRAN IV language provided is , for the most
part, compatible with FORTRAN IV as implemented on
the 7 0 3 0 STRETCH computer. I t provides for three-
'imensioned variables, three levels of indexing on DO

L o o p s , and double precision, logical, complex, and in-
terval arithmetic. The user has available two "scratch
pad" f i les on a disk and one tape drive other than the
terminal devices.

1 OPERATION

As previous1 y mentioned, DISPLAYTRAN constructs
no executable code. Instead, statements are translated
into an internal form, broken down into their constituent
parts, and entered in the "dictionary", This dictionary
i s the heart of the DISPLAYTRAN system. The diction-
ary contains entries for each variable, constant, and
statement in the user's FORTRAN program. Entries are
linked by type; that is, each constant points to the next
constant, each statement header entry points to the
next, and so forth. The last entry in the chain has no
link. Variables are i inked alphabetically rather than by
type. A "thmb-index" to the dictionary i s maintained
to provide ~ U ~ C K references.

' The thumb-index i s an alphabetical l i s t containing
pointers to the first dictionary entries of each letter ' and type. The dictionary itself i s not in alphabetic
order. Entries are added in the next available spot as
they are needed during translation. Another section of
'ie dictionary is the "notebook", used to keep the b urrent value of each variable. This area i s mapped

according to COMMON statements and EQUlVAL ENCE
relations dictated by the user in his FORTRAN pro-

I gram. The last section contains the translated state-
ments in Polish string notation. The beginning of each
Polish string i s noted in the main dictionary entry

I
(statement header) for that statement, and ended by the
appearance of a special end symbol in the string. Dic-
tionary entries for variables contain the name of the

I variable, the mode, a pointer to the current value lo-
cation, as well as a link to the next variable beginning

, with the same letter. A statement header entry contains
the statement number, a pointer to the Polish string,
and a pointer to the next higher statement number's
statement header. The statement headers are main-
tained in strict order1 i f the user adds a statement be-
tween two existing statements, the l ink pointers are
adjusted to keep the numerical order.

The programs comprising the DISPLAYTRAN system
have three major functions. The supervisor accepts
statements from the terminals, and i s in charge of
keeping the two terminals straight. I t cal ls the other
two sections of the system, the Translator, which
builds and maintains the main dictionary and statement
, notebook, and the Interpreter, which updates the value
L o t e b o o k according to the operations required by the

statements.

As an example, the accompanying diagram shows the

dictionary after three statements have been translated.
I t clearly shows the connection between the thumb
index and the entries, and the l inks between entries.
Certain entries, namely those for operators, come with
each dictionary, and therefore do not appear at random
throughout the entries, but are grouped together.

As the f irst statement i s translated, entries are created
for the variable AM1 , the constant 1 .l, and the state-
ment header for the statement. In addition, value fields
are assigned, and the Polish string for the statement
i s stored in the statement notebook. The third state-
ment, while i t contains the makings of four (non-oper-
ator) entries, causes only two new entries to be made
during translation. Since entries already appear for
variables AM1 and AM2, i t i s sufficient to create en-
tries for the variable DEL and the statement header
entry. A value f ield i s assigned for DEL, and the Pol-
ish string for statement 3 . O O i s entered in the state-
ment notebook. If at this time the user wishes to "exe-
cute" h is program, he gives the appropriate system
command. The Supervisor identifies the command and
calls the Interpreter. The Interpreter then goes to the
thumb-index entry for statement headers, and finds the
first one. From this, the Polish string of statement
1 .OO i s made available. Scanning the Polish, the In-
terpreter determines that the value in the value field
of the constant 1 .I is to be placed in the indicated
value f ield for the variable AM1.

When the interpretation of the first statement i s com-
pleted, the link f ield in the current (first) statement
te l ls i f there are more statements to interpret, and,
i f there are, which one i s next. When the third state-
ment has been interpreted and "execution" i s com-
plete, the V1 , V2, and V3 value fields contain 1 .I ,
2 .7 , and 3.8 respectively. The user i s notified that
execution has terminated, and may take whatever action
he sees f i t .

I t should be noted that al l the information necessary
to run the user's program is contained in the dictionary,
and that each terminal has i ts own dictionary. Every
subroutine also has a unique dictionary, and as one
FORTRAN program cal ls another, the actions neces-
sary are the switching of dictionaries, and the insertion
of the value notebook of the caliing program in the
value notebook location in the called program. i f the
variable i s to be passed as a parameter in the CALL
statement, i t may be necessary to rearrange the value
notebook, since the values of variables in the calling
and called programs were probably not mapped in to
identical locations in their respective value notebooks.

This discussion of the DISPLAYTRAN system is to
acquaint the reader with general ideas involved, and
i s not meant to be a technical description. Naturally,
actual operation i s much more complex. At the present
time, the system contains slightly more than 3 5 , 0 0 0
instruct ions.

Num b.er Statement

Statements as they appear to
DISPLAYTRAN as input.

main
dictionary

constants

operators

statements

value
note book

Thumb
l ndex Name Type

variable :
FLOAT, P(V1) P(AM2)

1 . 1 , constant
FLOAT, 1.1 P (2 . 7) P (x)

means
a

statement P(Sl , header , P (2 .0) pointer
to X

variable
float , P(V2), P (last)

constant
2-71 float , 2.7 , P (last)

statement P(S2) ,
'.Ool header , P (3.00)

variable
DEL1 float P(V31, P (last)

statement
3-00 header , P(S3), P (last)

- - , opera tor, I P (+)

+ I opera tor, 7 P (-)
>

statement
note book

S 1 S 2
IP(AMI), P (l . l) , P (=) , e n d) I P (A M ~) , P(2.71, P(=) ,end)
S 3
IP(DEL), P (A M ~) , P(AMZ), P(+) , ~ (=) , e n d I

	computerusagecompany.displaytran_tool_1967.102679055.fc.src.tif
	computerusagecompany.displaytran_tool_1967.102679055.p01.src.tif
	computerusagecompany.displaytran_tool_1967.102679055.p02.src.tif
	computerusagecompany.displaytran_tool_1967.102679055.bc.src.tif

