
SUMMARIZING S O R T S
by Robert L. McAllester

Robert L . McAllester, a Staff
Analyst in Computer Usage Develop-
ment Corporation's (CUDC) Palo Alto
office, has been in the data process-
ing field since 1953. He has a B.A.
i n mathematics from Earlham College
and has a lso attended William Penn
College, Black Mountain College
and Cornell University. He i s the
author of "Polyphase Sorting with
Overlapped Rewind", Communications
of the ACM, and has taught program-
ming courses at Heald's Bus iness
College and the College of Sun
Mateo. He joined CUC i n 1965.

S~rnmarization is a natural by-product of sorting and
should occur during a l l sort phases. You can define the
fields to be summarized in the sort control cards just
like the sort keys.

The choice of the internal sort technique can make a
big difference in the amount of summarization that occurs
during the internal sort phase. But summarization can
result in a significant saving of overall sort time no
matter what technique i s chosen.

You will a lso realize further benefits if you expand
the COBOL SORT verb definition to permit summariza-
tion.

You can include a summarizing feature in most general-
ized sort packages. This feature permits data to be
summarized while sorting occurs. The modifications
that transform a sort to a summarizing sort are usually
very simple. When the comparison subroutine finds the
sort keys of the t ~ v o records equal, it refers the two
records t o the summarization subroutine. The accumu-
lative fields of one record are added to the corresponding
fields of the second. And the first i s replaced by a
record from the input stream just a s though it had been
written into the output string.

The summarization subroutine i s the only additional
subroutine required in the object sort program. The com-
parisons that are normally performed by the sort are
completely adequate to define the categories to be sum-
marized. The accumulative fields can be defined by the
user in the sort control cards in the same manner a s the
sort keys.

The principal advantage of the summarizing sort i s to
shorten, the intermediate and final output files that are
handled by the merge passes. If any summarization
occurs during the internal sort phase, the saving i s
accrued during a l l merge passes. You can estimate the
amount of summarization that occurs during the internal
sort phase by whatever sorting method you use.

Definitions
The following definitions are used to compare the

summarizing potential of the two internal sort techniques:
"Ranking by Insertion" (3) and the "Tournament Sort",
(sometimes called, "Replacement-Selection" (1) .)

"F" i s the internal file size. The number of records
that can be held simultaneously in internal storage for
sorting.

"C" is the number of categories. The average number
of distinct keyvalues represented among the "F" records
of the internal file.

"i3" i s the range of the file. The number of categories
represented in the entire inpnt file. This i s the s ize of
the summarized output file.

"L" i s the gross string length. The number of input
records that might be combined into each string produced
by the internal sort.

"N" i s the net string length. The number of summarized
records expected in each string produced by the internal
sort.

Tournament or Insertion
The objective of the internal sort phase i s to form

the input into a s few strings a s possible. This will
minimize the number of merge passes required.This is
equivalent to maximizing L. In a non-summarizing sort
LkN. It i s also well documented (2) that L=2F. This
i s true for any replacement sort technique; tournament,
in~sertion or other.

2

Given the fact that the two methods will produce output
d

strings of the same length, most programmers usually
select the tournament sort over the insertion sort because
the latter has a major drawback. Each time one of the
F records is replaced, all records whose key values lie
between the old and new records must be shifted one
position to make room for the insertion and to fill in the
position of the old record. Even if only the addresses
of the records are shifted instead of the records them-
selves, this can amount to a substantial data move. This
data move is not required when an incoming record i s
summarized with an existing record.

A summarizing sort emphasizes another important
difference between these two sorting techniques. The
tournament sort i s an efficient method of selecting the
lowest record from the set of F records, but it makes no
attempt to match an incoming record to an equal record,
which might already be contained in F . The summarizing
insertion sort will immediately match the new record
with i t s equal and absorb i t . Consequently, in an insert-
ion sort C=F, while in a tournament sort CLF because
of duplication of categories. If we assume a random
distribution of records among the R categories, a s each
record is introduced to the internal sort, the chances
are C among R that a member of i t s category i s already
contained among the F records of the internal sort.
When a member i s contained, summarization of the two
records will occur immediately with an insertion sort,
before output of the category in the tournament sort.
The ratio of summarization during the internal sort i s
N/L, which i s equivalent to (R-C)/R.

The Spe cia1 Case R=F
The difference in the two sort methods i s greatest

when RsF.In this case the insertion sort will produce an
in-core summary. No matter what the s i ze of the input
fi le, only one output string will be produced. N=R. L
equals the total length of the input fi le.

The tournament sort will st i l l produce the approximate
results L=2F. This approximation i s low in that it
assumes that all the summarizations of a category will
occur after the members of the next lower category have
been summarized and output. The assumption i s false,
but the exceptions are infrequent enough to make a
small difference in L.

Consequently, the output of a summarizing tournament
sort will require almost the same number of merge passes
a s a non-summarizing sort, but the volume of each pass
i s restricted by the fact that no output string will exceed
the value of R . At least a 50 per cent summarization
will occur during the internal sort and each succeeding
pass will handle only a fraction of the volume of the
preceding pass. Even the l e s s efficient tournament sort
gains much power from the summarizing feature.

Lf
The summarizing tournament sort would not produce

an in--core summary until Rflog2 F. It i s a t this point
that i t becomes inevitable that each tournament series
that i s started by a replacement will be terminated by
an equal comparison and summarization.

An Approximation
Formula for Insertion Sort

~ 1 2 The formula L= - +2F appears to approximate
the expected grossR;tF1ng length of the summarizing
insertion sort. The validity of this formula can be check-
ed at some values. For R=F the denominator R-F=O
supporting the fact that an in--core summary occurs.
As the ratio R/F becomes greater, the value of L ap-
proaches the asymptote 2F , the value of L in a non-
summarizing sort.

It i s possible to compute a direct comparison value
for the case R=F+l. N is restricted between the limits

2 FLN4R. Theref ore, N=R. Since N/L= (R-F)/R, L=R.
The approximation formula in this c a s e yields L=F 2

+2F or R~ - 1.
Again for the case R=2F, the above logic yields the

limits 2FLLL4F. The approximation formula yields
L:3F which is centered between the limits.

'b Unequal Distribution
of Categories

In the discussion above, I have assumed a random
distribution in which members of each category have an
equal chance of occurance. The data fi les to be sorted
are very rarely random occurances of data. The data
in these files have been very carefully organized. This
organization will frequently cause members of categories
to come in groups. When this occurs, the summarization
of the group will occur during the internal sort phase
regardless of what type of internal sort i s used.

It is also common that categories to be sorted are of
very unequal populations. As an example, consider a
file of 100,000 records that consists of 1,000 categories.
One hundred of these categories are large, accounting
for half of the volume of the input file (50,000 records),
to be sorted in an area F=250. The proposed approxi-
mation formula can be used to study the performance of
such a fi le in an insertion-type, internal sort. You can
assume the sort will operate like two sorts being per-
formed simultaneously. The F record positions would
be allocated into two groups, F 1 and F2.

Since both groups of categories have an equal number
of input records and the two sorts share their input and
output sources, we must assume that L1=L2. Therefore,

If F=250, R1=lOO, R2=900; a root of the above equation
occurs near F1=76, F2=174, L = L2= 390, L=780. Tben

- 1
since -(R-F) Ll N1=94, N2+315 and N-409. During

N R
the internal sort, the file has been reduced t o 52 per cent
of i t s input volume.

Surnmar izing
COBOL Sort Verb

By including the following features you could add a
flexible summarizing capability to the COBOL SORT
verb.

An optional EQUAL procedure would be added to the
SORT statement. This would be named from the SORT
statement in the same way as the INPUT and OUTPUT
procedures. The EQUAL procedure is executed when-
ever two equal records are compared by the sort. Thus,
i t could be during execution of a RELEASE statement
of the INPUT procedure, and during execution of a
RETURN statement of the OUTPUT procedure, a s well
a s during the merge passes.

The functions that would normally be performed in the
EQUAL procedure are to add the corresponding accumu-
lative fields of the two equal records and delete one
of the records. There i s no verb for deleting a record
from a file; therefore, the DELETE verb must be defined
for use exclusively within the EQUAL procedure.

Another problem arises from the fact that the two
equal records are both members of the same file s o that
there i s no method available for distinct identification
of these two records. You can achieve distinct identi-
fication by defining a pseudo file in the DATA DIVISION.
An ED file definition will supplement the SD file defi-
nition that i s already required for the sort file. Then in
the EQUAL procedure one record is known by the SD
file name and i ts subordinate data names .and the other
by the ED file name. Assignment of the records t o the
two file names i s completely arbitrary.

Applications of the
.rnmarizing Sort Feature

i s often required to accumulate arrays of totals
whose dimensions are unknown. These arrays may be
small enough t o be accumulated in memory on some
occasions, but a t other times require an overflow pro-
cedure. The summarizing sort verb, using an insertion
type internal sort, i s ideal for such applications. When
the totals can be accumulated in memory, they are.
When an overflow procedure i s required, i t i s available
with an efficiently preplanned merge algorithm that will
summarize the totals into a single, ordered output string.

The summarizing sort verb a lso provides for simpli-
fication of many applications. For example, a report

containing group and subgroup totals might require that
the subgroup total be shown with i t s percentage of the
group. It i s required that the group total i s known before
processing any of the subgroup totals. You can ac-
complish this by programming the INPUT procedure to
release two records to the sort for each one that i s re-
leased ordinarily. 'The second will have the subgroup
identification replaced by low values. This second group
of records will be summarized a s a se t of group totals.
The first record of each group, a s it is returned to the

OUTPUT procedure, will be the group total record. When
the group total is returned first, it can be used in page
headings a s well a s for percentage calculations.

The practice of releasing two records for one into
the sort, doubles the input volume of the sort. The
resulting sort f i le i s one of very unequal distribution
among the summarizing categories. As was shown in
the earlier example, such a fi le produces a high rate
of summarization, even in the internal sort. The doubled
input volume will increase the time required for the sort
but will certainly not double it. The increased sort time
can usually be justified by the simpler job procedures.
It i s not necessary to summarize the group totals sep-
arately before computing percentages.

REFERENCES

1. Goetz, M. A. "Internal and Tape Sorting Using the
Replacement-Selection Technique. I I Co$m. ACM 6
(May 1963) 201/206.

2. Gassner , B. J. "Sorting by Replacement Selecting."
Comm.ACM 10 (Feb. 1967) 89-93.

3. Iverson, K. E . "A Programming ~anguage: Wiley,
1962, p. 221.

	computerusagecompany.summarizing_sorts_1968.102662999.fc_src.tif
	computerusagecompany.summarizing_sorts_1968.102662999.p01.src.tif
	computerusagecompany.summarizing_sorts_1968.102662999.p02.src.tif
	computerusagecompany.summarizing_sorts_1968.102662999.bc.src.tif

