KIRK 10~SEP-73 12:43

PSO Group Allocation and my new hours,

Since comiing back from vacation, I have noticed PSO allocation has
been lowered from two to one in the mornings. The reason I notice
this, is because I have started working 8-5 (for several reasons) and
have had difficulty getting online, If the PSO allocation has been
cut back in the mornings because it was assumed that I would be
working nights, I wish to point out that that is no longer the case.
Since you are the assistant director assigned to me and also a
decision maker concerning group allocations, I thought I should point
out the change in my schedule.

18967

18967 Distribution
James C, Nortong

P Y & e = . N

PSO

Group

. (J18967)

Distribution: /JCN;

Allocation

10-SEP-73 12:43;

and

my new

nourse.

Tritles
Sub-Collections:

SRI-ARCS

Author(s):

KIRK 10-SEP-73 12:43

Kirk

Clerk:

Ee.

Kelley/KIRK;

KIRK3S

18967

l Jeff,

when youget

this,

lLet

ne

Know,

Mike

MRL

10-SEP-73 12:47

18968

18968 Distribution
Jeffrey A. Krend,

. (J1IBI968) 10-SEP-T73 12:47; TitliLes

Distributions

/JAK;

Sub-Collectionss

Author(s):
NIC; Clerk:

MRL

Me

Re

MRLS

10-SEP-73 12:47

Leavitt/MRL;

18968

ESRI-ARC 11-SEP-73 17:03 18969

L10 USERS' GUIDE

SRI-ARC

L2 SEP 73

Augmentation Research Center

STANFORD RESEARCH INSTITUTE
MENLO PARK, CALIFORNIA 94025

ESRI-ARC 11-SEP-73 17:03 189689
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

I Obsoletes (9246,4) and (17658,). Current version available through
(userguides,arclocator, 2: teb).

page i

. . ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

Table of Contents

INTRODUCT[ON.....0.0...00.00..0....l.o.o...oooo.oooo.o.no.o.cccon.z
PART ONE: Beginning L10 ?rogrannlng........-...........oo........3

Section 1. Content Analyzer PatternS.ceccccscccccsnccscsscsssasdA
IntroducCt i0ONe scessssecccssncccesssssasscscscsssssssssosdAl
PatternSecccecsccoeccsccsccsosncsncscscncsccsnnssscssssssseelA2
Examples...................................-.-......JA3
Using the Content AnalyzZerececcssccsnsssssssssccsscsssdAd

Section 2. Content Analyzer ProgramS.cccscscssccscsscscscsescsesdb
INtroducCtionNecccsccsccccscscsssscscsssscsscscscssssssssseeslBl
Program Structiurfcscscencsecsecesns ssesssssessesasssessnessdB
Procedure StructuresccsscccssscsscssscscsccscsscsccssnssessaslB3
Example:............-...............................384
Declaration StatementSceccceccscssscsccsccscsscsscssssssselBS
Body o0f the ProcedurfseccsccscecccsoscosnssssosssssscscsseelBO
Using Content Analyzer ProgramS.seccsccsccscccssscssesssestB7

Section 3. Content Analyzer Programs: Modi fyinZeececoooe seedC
IntrodUCt 10Necccs v esccsscocsscscsscscnscssancsnccssscsselCl
String ConStructiONececccsccsescscscecsssscccscscssnscssnssadll
Bxanple...3C3
Controlling Which Statements are ModifiedesesesssssssadC4

‘l' Section 4. Executable Pro“rﬂ-so.occo.oooooooo.ooooo-ooo...3D

PART TV¥O: Intermediate L10 Prozra!mlng.........-.......-..-..---.4

Section 1., The User Program Environment.ccccccccssccscscss asaesdA
INtroducCt ioNeccccesscccsscscccsccssescccecsscsonsescnsssdAl
FormatterecccccscceccoscssscncsocsscssosscsnssccsccsscscsesdA2
Sequence Generntor..............-...................4A3
Content Analyzers...................................4A4
User-Written Sequence GeneratorS.cceccscscccscsssssccsssdAS

Section 2, Program StrucCtur@ecscccscccssccssscscssnssses ssesdB
An NLS user program consists of the followingZeses.«s.481
An example of an L10 program is provided here.......48B2

Section 3. DeclarationSescccsecccsscescsscsscssssccsssscsscsssessadl
Introduct iONecccecccecnccccccscccssscccnssssscsccosnssssdlCl
Varlubles....-.o...-...................-............402
Sl-ple Varlables....................................403
Affﬂyso-oooooooooo.oooooocooooooooooo..-oo..oocoooo.4c4
Text PointerSceccscccscccscsscscsscsscssscscscscssscscscnssesiCs
Strlngs...406
Referenced VariableSc.ccececccoscocsccsscscscscssacsscssecdC?
Declaring Many Variables in DOne Statement.ccceseseses4C8
Dcclarlng LocalBeccccs sv0oc0osococncccccssccnnscccssnnssedsdCh

Section 4, StatementSec cccsccecscccscscssscsnccscsssesssssscesssdD

page ii

ESRI-ARC 11-SEP-73
L10 USERS' GUIDE SRI-ARC 12 SEP

lntroductlon............-............-....-.........4Dl
Asalgnnent.........................---..............4D2
IF Stateuent.........-o.............................4D3
CASE Statement...................-..................4D4
LOOP Statement oo.oo-oooooo.oooooooooooocooonooooo-.4Ds
WHILE...DO StatenentececcoccccssccsnsscscscssssscsssscssncesidDb
UNTIL...DO Statemente cecscsccccccscsosvcscsssscssssncessesdD?
DO...UNTIL/DO...IH[LE Stﬁteﬂentoo0.00.00.0.0.00.....408
FOR.a « DO Stutement.......o...........-..............4D9
BEGIN« <« «END Statement.......-......................4D10
EXIT Statement.....................................4011
REPEAT Stnte-ent................-..................4012
DIVIDE Statement..........-.-......................4013
PROCEDURE CALL State‘eﬂtoooo.cuooooooooooooooooo.o.4Dl4
RETURN Statement..............-....................4015
GOTO Stdte-ent........-............................4016
NULL Statement.......o.........-.....-.............4Dl7
Section 5, EXPPGSSiOHSQQQOQQQQQcoooooooo.ooooooooooooo-.o.4E
Introductlon....................--...-..............4El
Prl-ltlves.........-................................482
Operators-...........o.....-..oaoo......-o..........453
Expresslons...........................-.............434
Section 6. String Test and Manipula tionecseccosccscccscsscecscdF
lntroductlon.............o..........................4F1
Current Character Position (CCPOS)ececscsccnccscssss«dF2
FIND Statement......................................4F3
Content Anulyais Patterns........-..................4F4
String Construction.........................o....-..4F5
Example........................-..o....o............4F6
Text Pointer Conparlaons...........o................4F7
Section 7. Executable Progra-s............................40
[ntroductlon..401
Movlng Around a Plleooooooooonooo.....0..........0..402
lnput/Output...........-............................403
Section 8. Error Handling == SIGNALSccecsccscsscscssssssscescecdH
IntPOdUC‘lOHQoooo-ooo.ooooooooo--ooooo-oaoo.oooooo--4ﬂ1
Trapping Slnnals........-...........................4“2
Cancelling Slgnal Traps........-....................4H3
Speclf!c Slgnals............-.................o.....4ﬂ4
Section 9. Invocation of User Filters and ProgramS.ecccsesesesdl
lntPOdUCtIOHQQoooo.ooooooo.-oooo-ooooooooooooooo..oo‘ll
PPOBPQDS Subsyaten oo-o.ooooo-oooo-oooo.oooooooo.o.o4[2
Examples of Analyzer-Formatter ProgramsS .ccccssssssed13

Ascl‘ 7—Btr CHARACTER CODES.......‘.....'..'......O......‘......

17:03 18969
73 18969

..5

page iii

' ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

INTRODUCT ION 2

NLS provides a variety of commands for file manipulation and

viewing, Editing commands allow the user to insert and change the

text in a file., Viewing commands [(viewspecs) allow the user to

control how the system prints or displays the file. Line truncation
and control of statement numbers are examples of these viewing
facilities, 2a

Occas ionally one may need more sophisticated view controls than |
those available with the viewspec and viewchange features in NLS. 2b

For exampley, one may want to see only those statements that
contain a particular word or phrase, 2b1

Or one might want to see one line of text that compacts the
information found in several longer statements. 2b2

One might also wish to perform a series of routine editing
operations without specifying each of the NLS commands over and over
again, 2c

User written programs may tailor the presentation of the information
in a file to particular needs, Experienced users may write programs
that edit files automatically. 2d

User written programs currently must be coded in ARC's
procedure—-oriented programming language, L10. NLS itself is coded

in L10. L10 is a high-level language which must be compiled into
machine-readable instructions. 2e

This document describes three general types of programs: simple

filters that control what is portrayed on the user's teletype or
display, programs that may modify the statements as they decide

whe ther to print themy, and those that, like commands, are explicitly
given control of the _job,. 2f

User programs that control what material is portrayed take effect
when NLS presents a sequence of statements in response to a
command like Print. 271

In processing such a commandy, NLS looks at a sequence of
statements, examining each statement to see if it satisfies
the viewspecs then in force. At this point NLS may pass the
statement to a user written program to see if it satisfies the
requirements specified in that program. If the user program
returns a value of TRUE, the (passed) statement is printed and

page 1

L10 USERS"' GUIDE SRI-ARC 12 SEP 73 1

the next statement in the sequence is tested; if FALSE, NLS
Jjust goes on to the next statement,

User programs that modify files may gain control at the same
point in processing as those that control the view, In their
consideration of each statement, they may modify the contents of
the statement.,

For more complicated tasks., control may bhe passed explicitly to
the program. In this casey, a user program takes on aspects of a
special-purpose command,

This document describes the L10 programming language used at ARC on
the PDP10.

Part One is intended for the beginning programmer, Section 1 is
a primer for the Content Analyzer. The rest presents a hasty
overview of L10 programmingy, with enough tools to write simple
programs,. Part Two is intended for the intermediate programmer.
Many of the concepts in Part One are repeated in Part Two so that
it may stand alone as an intermediate programmer's reference
guide,

More complete documentation can be found in (7052,1). For
examples of user programns which serve a variety of needs, consult
the User Programs Library Table of Contents
(user—-progsy—contents,1).

page 2

ESRI—-ARC 11-SEP-73 17:03

8969

2fla

2¢2

213

2g

2z1

18969

ESRI-ARC 11-SEP-73 17:03 18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969
PART ONE: Beginning L10 Programming 3

Section 1: Content Analyzer Patterns Ja

Introduction 3al

Content analysis patterns cannot affect the format of a

statement, nor can they edit a file., They can only determine
whether a statement should be printed at all, They are, in a
sensey, a filter through which you may view the file. More
complex tasks can be accomplished through programs, as

described later in this document, 3ala

The Content Analyzer filter is created by typing in (or
selecting from the text in a file) a string of a special form.
This string is called the "Content Analyzer Pattern", The
next part of this section will describe the elements which
make up Content Analyzer Patterns, followed by some examples.,
‘ The final subject of this section is how to put them to use, 3alb

Some guick examples of Content Analyzer Patterns: 3alc

($LD ') will show all statements whose first
Ccharacter is an open parenthesis, then any
number of letters or digits, then a close
parenthesis,

["blap"] will show all statements with the
string "blap" in them.

SINCE (3-JUN-73 00:00) will show all statements
edited since June 3, 1973

Content Analyzer Patterns describe certain things the system
must check before printing a statement; the Content Analyzer
searches a statement from the beginning, character by
character, for described elements, As it encounters each
element of the patterny, the Content Analyzer checks the
statement for the occurrence of that pattern; Iif the test
falils, the whole statement is failed (unless there was an "“"or"
condition, as described later) and not printed; if the test
is passed, an imaginary marker moves on to the next character

Part One, Section 1: Content Analyzer Patterns page 3

ESRI-ARC 11-SEP-73 17:03 18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

I in the statement, and the next test in the pattern is
considered, 3ald
Patterns 3a2
Elements of Content Analyzer Patterns 3a2a

Part One,

The pattern may include any sequence of the following
elements; the Content Analyzer moves the marker through the
statement checking for each element of the Pattern in turn:

Literal Strings
'c the given character (e.g. a lower case c)
Ugtring" the given string (may include
non-printing characters, such as spaces)
Character classes

CH any character
L lowercase or uppercase letter
D digit
UL uppercase letter
LL lLowercase letter
uLDp uppercase letter, or digit
LLD lowercase letter, or digit
LD Lowercase or uppercase letter, or digit
NLD not a lLetter nor digit
PT any printing character
NP any non-printing character (e.g. space)
Special characters
s a space
TAB tab character
CR a carriage return
LF Line feed character
EOL a carriage return (followed by line feed)
ALT alt mode character
Special elements
ENDCHR beginning and end of every
statement; can't scan past it
TRUE is true without checking anything
in statement
ID= id statement created by user whose
ident is given
ID# id statement not created by user whose

ident is given
BEFORE (d-t) statement edited before given date and time
SINCE (d—-t) statement edited since given date and time |
CeZe BEFORE (1 JUN 1973 00:00) 3
The date and time must both appeary in the
parentheses, It accepts almost any reasonable date |
and time syntax. {
|

Section 13 Content Analyzer Patterns page 4

ESRI—-ARC 11-SEP-73 17:03

18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

Examples of valid dates:

17-APR-70 17 APRIL 70
APR-17-70 17/5/71970
APR 17 70 5/17/70

APRIL 17, 1970
Examples of valid times:

1212:13 1234:56
1234 1:56ANM
1: 56-EST 1 200NOON

16:30 (4:30 PM)
12:00:00A4 [midnight)
11:59: S9AM-EST (late morning)
12:00:01AM (early morning)
Scan direction
< set scan direction to the left
> set scan direction to the right

The default, re—initialized for each new statement,
is scan to the right.

Combining Elements Ja2b

These elements may be combined in any order, Spaces within
the pattern are ignored (except in literal strings) so they
may be used to make reading easier for you. Several
operators can modify the elements:

NUMBER —— multiple occurrences

A number preceding an element other than one of the
"Special elements™ means that the test will succeed only
if it finds exactly that many occurrences of the
element, If there aren't that many, the statement will
be rejected. Even though there may be more, it will
stop after that many and go on to check the next element
in the pattern,

JUL means three upper case letters
$ —— range of occurrences
A dollar sign ($) preceding any element other than the
"Special elements"™ means "any number of occurrences of",
This may include zero occurrences.,

$'- means any number of dashes

A number in front of the dollar sign sets a lower limit.
38D means three or more digits

Part One, Section 1: Content Analyzer Patterns page 5

L10 USERS?

Part One,

ESRI-ARC 11-SEP-73 17:03 18969

GUIDE SRI-ARC 12 SEP 73 18969

A number after the dollar sign sets an upper limit for
the search. It will stop after that number and then
check for the next element in the pattern, even if it

could have found more.
$3LD means from zero to three letters or digits

S$7PT means from 5 to 7 (inclusive) printing
characters

[] —— floating scan

To do other than a character by character checky, enclose
an element or series of elements in square brackets [].
The Content Analyzer will scan a statement until the
element is found, (If the element is not in sguare
brackets, the whole statement fails if the very next
character or string fails the test of the next element.)
This test will reject the statement if it can't find the
element anywhere in the statement, If it succeeds, it
will leave the marker for the next test just after the
string satisfying the contents of the square brackets,

"start” means check to see if the statement
begins with the string "start" (or,
if it is in the middle of a pattern,
check the next S5 characters to see
if they are s t a r t).

["start"] means scan until it finds the
string s t a r t,

[3p] means scan until it finds
three digits.

[3p *:] means scan until it finds three
digits followed by a colon

-— negation

If an element is preceded by a minus sign -, the
statement will pass that test if the element does not

occur.,.

-LD means other than a letter or
digity such as punctuation

Section 1: Content Analyzer Patterns page 6

L10 USERS!

GUIDE

ESRI-ARC 11-SEP-73 17:03

More sophisticated patterns can by written by using the logic

features of L10. Generally, an expression is executed left to

right,

)

NOT

The following operations are done in the given order:
)
/
NOT
AND

OR Ja2c

Parentheses (and square brackets for floating scans) may
be used to group elements,

/ means "either or"; the element will be true if either
element is true.

(3D L / 4D) means either three digits and a letter
or four digits,

Sometimes you nay want want the scan to pass your marker
over something if it happens to be there (an optional
element). "TRUE" is true without testing the statement,
If the other tests fail, the imaginary marker is not
moved,

(D / TRUE) 1looks for a digit and passes the
imaginary marker over it, If the
next character is not a digit, it
will just go on to the next test
element in the pattern without moving
the marker. This test always passes.

l.e. It is user to scan past something(s) which may
or may not be there.

Since expressions are executed from left to right, it
does no good to have TRUE as the first option. (If it
is firsty, the test will immediately pass without trying
to scan over any elements,)

NOT will be TRUE if the element or group of elements
enclosed in parentheses following the NOT is false.

Part One, Section 1: Content Analyzer Patterns page

SRI-ARC 12 SEP 73 18969

ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

I NOT LD will pass if the next character is neither
a letter nor a digit.

Since the slash is executed firsty, NOT D / 'h will be
true if the next character is neither a digit nor the
letter "h",

AND

AND means both of the two separated groups of elements
must be true for the statement to pass,

SINCE (3/6/773 00:200) AND ID#NDM means statements
written since March 6, 1973 by
someone other than NDM.

OR

OR means the test will be true if either of the
separated elements is true, It does the same thing as
slash, but after "AND" and "NOT" have been executed,
allowing greater flexibility.

D AND LLD OR UL means the same as (D AND LLD) OR UL
. D AND LLD / UL means the same as D AND (LLD / UL)

While such patterns are correct and succinct,
parentheses make for much clearer patterns, Elements
within pareantheses are taken as a group; the group
will be true only if the statement passes all the
requirements of the group.

Examples 3a3
D 28LD / ["cA"] / ["Content Analyzer"] Jada
This pattern will match any of three types of statements:
those beginning with a numerical digit followed by at least
two characters which may be either letters or digits, and
statements with either the patterns "CA"™ or "Content
Analyzer" anywhere in the statement,
Note the use of the brackets to permit a floating scan
—-=— a search for a pattern anywhere in the statement,

Note also the use of the slash for alternations,

BEFORE (25-JAN-72 12:00) 3aldb

Part One, Section 1: Content Analyzer Patterns page 8

ESRI-ARC 11-SEP-73 17:03 18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18069

Part One,

This pattern will match those statements created or
modified before noon on 25 January 1972.

(ID = HGL) OR (ID = NDM) Jadc

This pattern will match all statements created or modified
by users with the identifiers "HGL" or "NDM",

[(2L (SP/TRUE) /2D) D *'— 4D] 3ald

This pattern will match characters in the form of phone
numbers anywhere in a statement, Numbers matched may have
an alphabetic exchange followed by an optional space (note
the use of the TRUE construction to accomplish this) or a
numerical exchange.

Examples include YU 4-1234, YU4-1234, and 984-1234,

[ENDCHR] < "cba" 3ale

This will pass those statements ending with "abc". It will
g0 to the end of the statement, change the scan direction
to left, and check for the characters Ycba', Note that
since you are scanning backwards, to find "abc" you must
look for "cba, Since the "cha" 1s not enclosed in sguare
brackets, it must be the very last characters in the
statement,

Using the Content Analyzer a4

Content Analyzer Patterns may be entered in two ways: 3ada

CA means "Command Accept", a control-D or,
in TNLS (by default), a carriage return

1) First you must enter the Programs subsystem with the
command?:

Goto Programs CA
2) Patterns may be typed in from the keyboard,
Compile Content (analyzer pattern) PATTERN CONF IRM

Viewspec jJ must be on (i.e. Content Analyzer off) when
typing in a pattern.

3) or they may be addressed from a file,

Section 1: Content Analyzer Patterns page 9

. ESRI-ARC 11-SEP-73 17:03 189869
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

Compile Content [analyzer pattern) ADDRESS CONF IRM

In this case, it will begin reading the pattern from the
first character addressed and continue until it finds a
semicolon () so be sure to put a semicolon at the end

of the pattern in the file.

Entering a Content Analyzer Pattern automatically does two

things: Ja4b

1) It reads the characters in the pattern and compiles
executable instructions from them making a small user

program, and

2) It takes those instructions and "institutes" them as the
current Content Analyzer search program, deinstituting any
previous pattern.

"Instituting” a program means selecting it as the one to
take effect when the Content Analyzer is turned on. You
may have more than one program compiled but only one
instituted.

When a pattern is deinstituted, it still exists in your
program buffer space and may be instituted again at any
time with the command

Institute Program PROGRAM—-NAME CA (as) Content
(analyzer) CONFIEM

The programs may be refered to by number instead
of name, They are numbered sequentially, the

first entered being number 1,

ALl the programs you have complled and all you have
instituted may be listed with the command

Show Status (of programs buffer) CONFIRM
Programs may build up in your program buffer until you
have no room for additional patterns, To clear the
program buffer, use the Programs subsystem command:

Delete All [programs in buffer) CONFIRM

We recoanmend that you do this before each new
pattern, unless you specifically want to preserve

previous patternse.

Part Oney, Section 1: Content Analyzer Patterns page 10

. . ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

To invoke the Content Analyzer: Jadc

When viewspec i i3 on, the instituted Content Analyzer
program (if any) will check every statement before it is
printed.

If a statement does not pass all of the reguirements of |
the Content Analyzer Pattern, it will not be printed.

In DNLS, if no statements from the CM on pass the
Content Analyzer, the word "Empty" will be displayed.,

|

|

1

|

Note: You will not see the normal structure since one

statement may pass the Content Analyzer although its

source does not, |
|

¥hen viewspec k is on, the instituted Content Analyzer

search program will check until it finds one statement that

passes the rejulirements of the pattern. Theny the rest of

the output (branchy plex, etc.) will be printed without

checking the Content Analyzer. 1
|

When viewspec j is ony, no Content Analyzer searching is
done. This is the default state. Note that i, Jjy and k
. are mutually exclusive.

Most of the commands ignore the Content Analyzer in their

editing. The following Editor subsystem commands offer the

option of specifying viewspecs (which may turn on the Content

Analyzer) which apply only for the purpose of that one command .

and affect what the coamand works on: Jadd
Copy
Delete
Move
Substitute

Part One, Section 1: Content Analyzer Patterns page 11

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969
Section 23 Content Analyzer Programs 3b
Introduction 31

When you specify a Content Analyzer Pattern, the Programs
subsystem constructs a program which looks for the pattern in

each statement and only displays the statement Iif the pattern
matching succeeds, You can gain more control and do more

things if you build the program vourself, The program will be
used just like the simple pattern program and has many of the

same limitations. dbla

Program Structure 3b2
If you specify a Content Analyzer Pattern, the actual program
that is compiled looks like this (with the word "pattern”
standing for whatever you typed in): 3b2a
PROGRAM name

(name) PROCEDURE;

IF FIND pattern THEN RETURN(TRUE) ELSE RETURN(FALSE);

END.
FINISH

ALl L10 programs must begin with a header statement, If the
program is to be compiled into your program buffer space, the
header statement is the word PROGRAM (all caps) followed by

the name of the first procedure to be executed (all

lower—-case), This name is also the name of the program. If

the program is being compiled into a file (to be described at

the end of this section)y the word FILE should be substituted

for the word PROGRAM. Ib2b

CeZe PROGRAM first
FILE deldir

(The Content Analyzer makes up a program name consisting of
up# XxXxxxx y where

is a sequential number, the first pattern being number
one, and

XXXXX is the first five characters of your pattern.)

Part One, Section 2: Content Analyzer Programs page 12

ESRI-ARC 11-SEP-73 17:03 18969

ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18968

The body of a program consists of a series of Declaration
statements and Procedures (in any order), In the above casey

the program consisted of only one small procedure. ¥hen the
program is loaded into your programs buffer space, the
declarations reserve space in the system for variables. When

the program is run, the first procedure is called., It may

call other procedures and access global variables in the

program or in the NLS system. 3b2c

CoEe DECLARE X9 Vo 2Z3
DECLARE TEXI POINER stid; (described below)
(first) PROCEDURE; e« e+

The end of the program is delimited by the word FINISH. 3b2d

Comments may be enclosed in percent signs (%) anywhere in the
programy, even in the middle of L10 statements. The L10
compiler will ignore them. Jb2e

Except within literal strings, variable names and special L10
words, spaces are ignored, It is good practice to use them
Liberally so that your program will be easy to read. Also,
NLS file structure is ignored. Struc ture isy, however, very
valuable in making the program readable, and it is good

practice to use it in close correlation to the program's
. logical structure. 3b2¢
Procedure Structure 3b3

Each procedure must begin with a header statement, The header
statement is a name enclosed Iin parentheses followed by the
word PROCEDURE, and terminated by a semicolon. 3b3a

Co e {name) PROCEDURE ;
The body of the procedure may consist of Local declarations,

then L10 statements, An L10 statement is any program
instruction, terminated by a semicolon. The body must at some

point return control to the procedure that called it. Jb3b |
The procedure must end with the terminal statement: 3b3c
END.

Part Oney, Section 2: C(Content Analyzer Programs page 13

ESRI-ARC 11-SEP-73 17:03 18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969
Example: 3b4
PROGRAM compare 3b4a

% Content analyzer. Displays statement if first two

visibles are the same, %

DECLARE TEXT POINTER ptl, pt2, pt3, pt4; %reserves
space for ("declares") four
text pointers named "ptl"
through "pt4"%

DECLARE STRING visl[100], vis2[100]; %reserves 100
characters of space for each
of two string variables named
"yvisl" and "vis2",%

(compare) PROCEDURE ;

IF FIND $NP tptl 1$PT tpt2 SNP !pt3d 1$PT tpt4d THEN
%set pointers around first
two visibles (strings of
printng characters)%

BEGIN %if it found two visibles%

¥*visl* . ptl pt2 ; %put visibles in strings%

¥vis2¥* . pt3 pt4d ;

IF *visl* = ¥vis2¥ THEN RETURN(TRUE); S%compare
contents of strings, return
and display the statement
if identical%

END3;
RETURN (FALSE) 3 %otherwise, return and don't
display%
END .
FINISH
Declaration Statements 365

Content Analyzer programs can deal with text pointers and with
string variables, while patterns cannot, - 3bSa

Text Pointers 3bShHb

A text pointer points to particular location within an NLS
statement (or into a string, as described later).

The text pointer points between two characters in a
statement, By putting the pointers between characters,
a single pointer can be used to mark both the end of one
string and the beginning of the string starting with the
next character.

Part One, Section 2: Content Analyzer Programs page 14

ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

I Text pointers are declared with the following Declaration
statement:

DECLARE TEXT POINTER name 3

Strings 3Ib5c

String variables hold text. When they are declared, the
maximum number of characters is set.

To declare a string:
DECLARE STRING name[num] 3

num is the maximum number of characters allowed for the
string.

eeZe DECLARE STRING Llstring[100];

declares a string named "lstring™ with a maximum
length of 100 characters and a current length of 0
characters (it's empty).

You can refer to the contents of a string variable be
. surrounding the name with asterisks,

CaBe ¥lstring¥ 1is the string stored in the
variable named "lstring".

Body of the Procedure In6
RETURN Statement 3bba
No matter what it does, every procedure must return control
to the procedure that called it (minor exceptions to be
noted later). The statement which does this is the RETURN

statement,

CeBBoe RETURN;

A RETURN statement may pass values to the procedure that
called it, The values must be enclosed in parentheses
after the word RETURN.

€.+ RETURN (1,423,47);

A Content Analyzer program must return either a value of
TRUE or of FALSE. If it returns the value TRUE (1), the

Part One, Section 2: Content Analyzer Programs page 15

ESRI-ARC 11-SEP-73 17:03 18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

statement will be printed; if it returns FALSE (0), the
statement will not be printed.

i.e. RETUKN (TRUE); will print the statement
RETURN (FALSE); will not print the statement

The RETURN statement often is at the end of a procedure,
but it need not be., For example, in the middle of the
procedure you may want to either RETURN or go on depending
on the result of a test,

Other than the requirement of a RETURN statement, the body of

the procedure is entirely a function of the purpose of the
procedure. Some of the many possible statements will be

described herej; others will be introduced in Part Two of this
document, 3b6b

FIND Statement 3bb6c

One of the most useful statements for Content Analyzer
programs is the FIND statement, The FIND statement
specifies a string pattern to be tested against the
statement, and text pointers to be manipulated and set,
starting from the Current Character Position. If the test
succeeds, the character position is moved past the last
character read. If the test fails, the character position
is left at the position prior to the FIND statement and the
values of all text pointers set within the statement will
be reset,

FIND pattern ;
Any simple Content Analyzer pattern (as describe above) is
valid in a FIND statement, In additiony, the following
elements can be incorporated in the pattern:
¥stringname¥*
the contents of the string variable
t pos

store current scan position into the text pointer
specified by posy, the name of a declared text pointer

«NUM pos

back up the specified text pointer by the specified
number (NUM) of characters, If NUM is not specified,

Part One, Section 2: Content Analyzer Programs page 16

p ' SSRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

one will be assumed. Backup 1is in the opposite
direction of the current scan direction.

pos

Set current character position to this position. pos
is the name of a previously set text pointer,

SF(pos)

The Current Cnaracter Position is set to the front of
the statement in which the text pointer pos is set
and scan direction is set from left to right,

SE(pos)

The Current Character Position is set to the end of
the statement in which the text pointer pos is set
and scan direction is set from right to left,

BETWEEN pos pos [element)

Search limited to between positions specified, pos
is a previously set text pointer; the two must be in
the same statement or string. Scan character

. position is set to first position before the pattern
is tested.

e.g. BETWEEN ptl pt2 (2D [.] $NP)

FINDs may be used as expressions as well as free-standing
elements., If used as an expression, for example in IF
statements, it has the value TRUE if all pattern elements
within it are true and the value FALSE if any one of the
elements is false.

L = IF FIND pattern THEN <.« 3
IF Statement 3b6d
IF causes execution of a statement If a tested expression
is TRUE., If it is FALSE and the optional ELSE part is
present, the statement following the ELSE is executed,
Control then passes to the statement immediately following
the IF statement,

IF testexp THEN statement

IF testexp THEN statementl ELSE statement2 3

Part One, Section 2: Content Analyzer Programs page 17

ESRI-ARC 11-SEP-73 17:03 18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

The statements within the IF statement can be any
statement, but are not followed by the usual semicolon; the
whole IF statement is treated like one statement and
followed by the semicolon.

€. e

IF FIND [5D] THEN RETURN(FALSE) ELSE RETURN(TRUE) ;

Using Content Analyzer Programs 3b7

Once the Content Analyzer program has been written (in an NLS
file), there are three steps in using it. First, the program

must be "compiled," i.e. translated into machine-readable

code, Theny, the compiled code must be "loaded" into a space
reserved for user programs (the user programs buffer).

Finally, the loaded program must be "instituted" as the

current Content Analyzer program, 3bT7a

There are two ways to compile and load a program: 3b7b
1) You may compile a program and load it into your programs
buffer all in one operation, The program header statement

must have the word PROGRAM in it, When the user resets his
Jjob or lLogs off, the program code will disappear,

First, enter the Programs subsystem with the command:
Goto Programs CA
Then you may compile the program with the command:
Compile L10 (user program at) ADDRESS CONFIRM
2) You may compile a program into a file and then load it
into your buffer as a separate operation, The program can
then be loaded at any time in the future without
recompilinge. The header statement must use the word FILE

instead of PROGRAM, Use the Programs subsystem command:

Compile File (at) ADDRESS (using) L10 (to file) FILENAME
CONFIRM

The code file is called a REL (RELocatable code) file.
Whenever you wish to load the program code into the user

programs buffery, use the Programs subsystem command:

Load REL (file) FILENAME CONFIRM

Part One, Section 2: Content Analyzer Programs page 18

ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

Once a compiled program has been loaded, it must be
instituted. This is done with the Programs subsystem command:
3b7c
Institute Program PROGRAM-NAME
(as) Content (analyzer program) CONFIRM

The named program will be instituted as the current Content |
Analyzer program, and any previous program will be ,
deinstituted (but will remain in the buffer),

To invoke the Content Analyzer using whatever program is
currently instituted, use the viewspec iy, jy or k, as describe i
in the last section (3adc). 3b7d |

Part Oney, Section 2: Content Analyzer Programs page 19

ESRI-ARC 11-SEP-73 17:03 18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969
Section 3: Content Analyzer Programs: Modifying Statements Jc
Introduction 3cl

Content Analyzer programs may edit the statements as well as
decide whether or not they are printed. They are very useful
where a series of editing operations has to be done time and
time again,. 3cla

A Content Analyzer program has several limitations. It can
manipulate only one file and it can look at statements only in
the order in which they are presented by the NLS sequence
generator, It cannot back up and re—examine previous
statements, nor can it skip ahead to other parts of the file.
It cannot interact with the user, The user may write a
program to which he can explicitly pass control to overcome

these limitations (covered in Section 7 of Part Two —-— 4g). 3cib
String Construction 3c2

Statements and the contents of string variables may be
modified by either of the following two statements: 3c2a

ST pos < strlist ;

The whole statement will be replaced by the string list,

ST pos pos < strlist ;

The statement from the first position to the second
position will be replaced by the string list,

pos may be a previously set text pointer or the
SF(pos)/SE(pos) construction.

String variables may also be modified with the string
assignment statement: 3c2b

stringname¥ . strlist ;
The string list [strlist) may be any series of string
designators,y seperated by commas, The string designators may
be any of the following (other possibilities to be described
later): 3c2c

a string constant,; e.g. “"ABC" or 'w

Part One, Section 3: Content Analyzer Programs: Modifying Statements

page 20

ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

pos pos

two text pointers previously set in either a statement
or a string

*stringname¥
a string name in asterisks, refering to the whole string
B.B.i 3c2d

ST pl p2 « *string¥* ;
or
ST pl « SF(pl) pl, string, p2 SE(p2);

Example: 3c¢3
PROGRAM delsp Jdc3a

% Content analyzer, Deletes all leading spaces from

statements, %

DECLARE TEXT POINTER pt; %reserves space for
("declares") a text pointer
named "pt"%

({delsp) PROCEDURE 3

IF FIND 18$SP tpt THEN ¥scans over leading spaces,
then sets pointer®%
ST pt « pt SE(pt); %replaces statement with text
from pointer to statement end%

RETURN (FALSE) ; ®return, don't display%
END.
FINISH
Controlling Which Statements are Modified 3c4

In TNLS, the Content Analyzer program will be called for

commands which construct a printout of the file (Print and

Dutput), The program will run on every statement for which it

is called, e.g. every statement in the branch during a Print
Branch command, which pass all the other viewspecs. Once you

have writteny, compiled, and insti tuted a program which does

some editing operation, the Print command is the easiest way

to run the program on a statementy, branchy, plex, or group. 3cda

In DNLS, the systea will call the Content Analyzer program
whenever the display is recreated (e.g. viewspec f and the
Jump commands). If the program returns TRUE, it will only run
on enough statements to fill the screen. It is safer to have
the program return FALSE. Then when you set viewspec i, it

Part One, Section 32 Content Analyzer Programs: Modifying Statements
page 21

ESRI-ARC 11-SEP-73 17:03 18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

Part One, Section 3: Content Analyzer Programs: Modifying Statements

will run on all statements from the top of the display on, and
when it is done it will display the word "Empty". At that

point, change to viewspec j and all statements including the
changes will be displayed. You can control which statements

are edited with level viewspecs and the branch only (g) or

plex only (l) viewspecs. 3c4db

After having run your program on a file, you may wish to

Update to permanently incorporate the changes in the file. it

is wise to Update before you run the program so that, if the
program does something unexpected, you can Unlock and return

to a good file. 3c4c

page 22 }

ESRI-ARC 11-SEP-73 17:03 189869
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

&

Section 4: Executable Programs 3d

¥Yhen it is necessary for the program to interact with the user,

to work on more than one file, or to skip around in a file, an
Executable program aust be written, Executable programs may

include any of the features of Content Analyzer programs plus

other abilities., The discussion of Executable programs will be
postponed to Section 7 of Part Two (4g) so as to first establish

a firmer foundation of L10 constructs, 3d1

Part Oney, Section 432 Executable Programs page 23

ESRI-ARC 11-SEP-73 17:03 18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969
PART TWO: Intermediate L10 Programming 4

Section 1: The User Program Environment 4a

Introduction 4al

User-written Content Analyzer programs run in the framework of

the portrayal generator. They may be invoked in several ways,

described below, whenever one asks to view a portion of the

filey e¢Zey with a Print command in TNLS, with any of the

output to printer commands, and with the Jump command in DNLS.
4ala

All of the portrayal generators in NLS have at least two

sections —— the formatter and the seguence generator; if the

user invokes a Content Analyzer program of his own, the

portrayal generator will have one additional part —— the user

program. 4alb

Executable programs are independent of the portrayal
. generatory although they are welcome to make use of it. They
are called as procedures by the Programs subsystem, and have
all the powers of any other NLS procedure, 4alc

Sequence Generator 4a2

The sequence generator looks at statements one at a time,
beginning at the point specified by the user, It observes
viewspecs Llike level truncation in determining which

statements to pass on to the formatter., 4aa

For example, the viewspecs may indicate that only the first
line of statements in the two highest levels are to be
output, The default NLS sequence generator will return
pointers only to those statements passing the structural
filters; the formatter will further truncate the text to
only the first line.

When the sequence generator finds a statement that passes all
the viewspec requirements, it returns the statement to the
formatter and waits to be called again for the next statement

in the sequence. 4a2b

One of the viewspecs that the sequence generator pays

Part Two, Section 1: The User Program Environment page 24

ESRI-ARC 11-SEP-73 17:03 18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

particular attention to is "i" —-- the viewspec that indicates
whether a user filter is to be applied to the statement. If
this viewspec is on, the seguence generator passes control to
a user Content Analyzer program, which looks at the statement
and 'decides whether it should be included in the sequence. 1f
the statement passes the Content Analyzer (i.e. the user
program returns a value of TRUE), the sequence generator sends
the statement to the formatter; otherwise, it processes the
next statement in the seguence and sends it to the user
Content Analyzer program for verification, (The particular
user program chosen as a filter is determined by what program
is Instituted as the current Content Analyzer program, as
described below.) 4a2c

Formatter 4al

The formatter section arranges text passed to it by the

sequence generator in the style specified by other viewspecs,

The formatter observes viewspecs such as line truncation,

length and indenting; it also formats the text in accord with

the requirements of the output device. 4a3a

The formatter works by calling the sequence generator,

formatting the text returned, then repeating this process

until the segquence generator decides that the sequence has

been exhausted (e.g. the branch has been printed) or the

formatter has filled the desired area (e.g. the display

screen). 4a3b

Content Analyzers 4a4

The NLS Portrayal Generator, made up of the formatter, the
sequence generator, and user filters, is invoked whenever the

user reguests a new "view" of the file, for example through

the use of the TNLS "Print" command or any of the output to
printer commands, Thus if one had a user content fil ter

compi led, instituted, and invoked, one could have a printout

made containing only those statements in the file satisfying

the pattern. 4a4a

When a user writes an content analyzer filter program, the
main routine must RETURN to the Portrayal Generator. The
RETURN must have an argument which is checked by the seguence
generator, If the value of that argument is TRUE, the
statement will be passed to the formatter to be displayed or
printed; if the value is FALSE, it will not be displayed. In
DNLSy, if you display any statements, the program will stop
after filling the screen. If you are not displaying any

Part Two, Section 1: The User Program Environment page 25

ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

statements, the program will run on either the whole file, a
plex (viewspec l)y; or a branch (viewspec g). 4a4b

User—-Written Sequence Generators 4a5

A user may provide his own sequence generator to be used in

lieu of the regular NLS seguence generator. Such a program

may call the normal NLS sequence generator, as well as content
analysis filters and Executable L10 programs, It may even

call other user-written segquence generators, 4aS5a

This technique provides the most powerful means for a user to
reformat (and even create) files and to affect their

portrayal. However, since writing them reguires a de tailed
knowledge of the entire NLS program code, the practice is

limited to experienced NLS programmers, 4aS5Shb

Part Two, Section 1: The User Program Environment page 26

‘ ESRI-ARC 11-SEP-73 17:03 18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

Section 2: Program Structure 4b

An NLS user program consists of the following elements, which
must be arranged in a definite manner with strict adherence to

syntactic punctuation: 4b1

The header - 4bla
a statement consisting of the word PROGRAM, followed by the
name of a procedure in the program, Program execution will
begin with a call to the procedure with this name.

PROGRAM name

The word FILE should be substituted for the word PROGRAM if
the code is to be compiled into a file to be saved,

The body - 4blb

consists of declarations and procedures in any order:

1) declaration statements which specify information
about the data to be processed by the procedures in the

- program and enter the data identifiers in the program's
symbol table, terminated by a semicolon.

L DECLARE Xe¥VozZz 3
DECLARE STRING test[S500] 3

REF x5 z3

Declaration statements will be covered in Section 3
(40)0

2) procedures which specify certain execution tasks,
Each procedure must consist of -

the procedure name enclosed in parentheses followed
by the word PROCEDURE and optionally an argument list
containing names of variables that are passed by the
calling procedure for referencing within the called
procedure, This statement must be terminated by a

semicolon,

€eZe (name) PROCEDURE 3
(name) PROCEDURE (paraml, param2) ;

page 27

Part Two, Section 2: Program Struc ture <

ESRI-ARC 11-SEP-73 17:03 18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

the body of the procedure which may consist of LOCAL,
REF, and L10 statements,

LOCAL and REF declarations within a procedure must
precede executable code,

LOCAL and REF statements will be covered in
Section 3 [(4c).

L10 statements will be covered in Sections 4
through 5 (4d).

the statement that terminates the procedure (note the
final period):

END.
The program terminal statement - 4blc
FINLISH

Comments may be enclosed in percent signs (%) anywhere in the
programy even in the middle of L10 statements. They will be
ignored. 4b1d

Except for within Literal strings, spaces are ignored., It is

good practice to use them liberally so that your program will

be easy to read. Also, NLS file structure is ignored.

Structure is, however, very valuable in making the program
readable, and it is good practice to use it in close

correlation to the program's logical structure. 4ble

Part Two, Section 2: Program Struc ture page 28

ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

An example of an L10 program is provided here. The reader should
easily understand this program after having studied this
document . 4b2

PROGRAM delsp 4b2a
% Content analyzer. Deletes all leading spaces from
statements, %

DECLARE TEXT POINTER pt; ¥%¥reserves space for
("declares”") a text
pointer named "pt"%

(delsp) PROCEDURE ;

IF FIND 1$SP tpt THEN ¥%¥scans over leading spaces,
then sets pointer%

ST pt « pt SE(pt); %replaces statement holding
pt with text from pointer
to statement end%

RETURN (FALSE) ; %#return, don't display%
END.
FINISH

Part Two, Section 2: Program Structure page 29

ESRI-ARC 11-SEP-73 17:03 18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969
Section 3: Declarations 4c
Introduction 4c1

L10 declarations provide information to the compiler about the
data that is to be accessed; they are not executed, Every
variable used in the program must be declared somewhere in the
system (either in your program or in the NLS system program). 4cle

There are various types of declarations available; the most
frequently used are discussed here, (Complete documentation
is available in the L10 Reference Guide —-- 7052,) 4clb

Variables 4c?2

Five types of variables are described in this document:
simple, arrays, text pointers, strings, and referenced. Each
can be declared on two levels: global or local. 4c2a

Global Variables 4c¢2b

A global variable is represented by an identifier and
refers to a cell in memory which is known and accessible
throughout the programe. Global variables are defined in
the program's DECLARE statements or in the NLS system
programe.

Variables specified in these declarations are outside any
procedure and may be used by all procedures in the program.
Many globals are defined as part of the NLS system; user
programs have complete access to these. Be very careful
about changing their values, however.,

Local Variables 4c2c

A local variable is known and accessible only to the
procedure in which it appears, Local variables must appear
in a procedure argumnent list or be declared in a
prodecure’s LJOCAL declaration statements (to be explained
below). Any LOCAL declarations must precede the executable
statements in a procedure.

Local variables in the different procedures may have the
same name withoat conflict. A global variable may not be
declared as a local variable and a procedure name may be
used as neither. In such cases the name is considered to
be multiply defined and an error results,

Part Two, Section 3: Declarations page 30

ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

Simple Variables 4c3

Simple variables represent one computer word, or 36 bits, of
memory, Each bit is either on or off, allowing binary numbers

to be stored in words, Each word can hold up to five ASCII

7-bit characters, a single number, or may be divided into

fields and hold more than one number, 4c3a

Declaring a variable allocates a word in the computer to
hold the contents of the variable. The variable name
refers to the contents of that word, One may refer to the
address of that computer word by preceding the variable
name by a dollar sign ($).

For example, if one has declared a simple variable
called "num", one may put the number three in that
variable with the statement:

num <« 3 3
One may add two to a variable with the statement:
num . num ¥+ 2 ;

One may put the address of num into a variable called
. addr with the statement:

addr « Snum 3

One may refer to predefined fields in any variable by
following the name of the variable with a period, then the
field name., For example, the fields RH and LH are globally
defined to be the right and left half of the word
respectively; e.g.

nume.LH o 2
num.RH 3

Fields may be defined by the user with RECORD statements |
(not explained in tnis document), Additionally, you may E
refer to system-defined fields (e.g. RH). They divide :
words into fields by numbers of bits, so they may refer to |
any declared word, For example, the field "LH" refers to

the left—-most 18 bits in any 36-bit word.

Declaring Simple Global Variables 4c3b

DECLARE name ;

Part Two, Section 3: Declarations page 31

ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

"hname" is the name of the variable. It must be all
lower—case Letters or digits, and must begin with a
let ter.

Co e DECLARE x1 3

Optionally, the user may specify the initial value of the
variable being dec lared., If a simple variable is not
initialized at the program level, for safety it should be
initialized in the first executed procedure in which it

appears,
DECLARE name = constant 3

constant is the initial value of name. It may be any of
the following:

- a numeric constant optionally preceded
by a minus sign (=)

- a string, up to five characters, enclosed
in guotation marks

- another variable namey, causing the latter's
address to be used as the value of name

Examples:
DECLARE x2 = 5 ; %x2 contains the value 5%
DECLARE x3 = "OoUTI"; %x3 contains the word OUT%
DECLARE xx = xl1; %xx contains the address of x1%
Arrays 4c4

Multi-word (one-dimensional) array variables may be declared;
computer words within them may be accessed by indexing the
variable name. IT'he index follows the variable name, and is
enclosed in square brackets [], The first word of the array

need not be indexed, The index of the first word is zero, so

if we have declared a ten element array named "blah': 4cda

blah is the first word of the array
blah[1] is the second word of the array
blah[9] is the last word of the array

Declaring Global Array Variables 4c4p

DECLARE name[num] ;

Part Two, Section 3: Declarations page 32

. ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

I num is the number of elements In the array if the array :
is not being initialized.,

e.&+ DECLARE sam_ 10];
declares an array named sam containing 10 elements.

Optionally, the user may specify the initial value of each
element of the arraye. If array values are not initialized
at the program level, for safety they should be initialized
in the first executed procedure in which the array is used.

DECLARE name = (numy numy eee) 3

num is the initial value of each element of the
array. The number of constants implicitly defines
the number of elements in the array. They may be any
of the constants allowed for simple variables,

Note: there is a one—to-one correspondence between the
first constant and the first element, the second

constant and the second element, etc.

Examples:

. DECLARE numbs=(1,2,3)3

declares an array named numbs containing 3
elements which are initialized such that:

nambs = 1
numbs[1] = 2 |
numbs_ 2] = 3 |

DECLARE motley=(10,blah);

declares an array named motley containing 2

elements which are initialized such that:

motley = 10

$blah
the address of the
variable "blah"

motley[1]

Text Pointers 4cS

A text pointer is an L10 feature used in string manipulation
constructions, It is a two-word entity which provides

Part Two, Section 3J3: Declarations page 33

ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

information for pointing to particular locations within text,
whether in free standing strings or an NLS statement, 4cS5a

The text pointer points between two characters in a
statement or string. By putting the pointers between
characters a single pointer can be used to mark both the
end of one substring and the beginning of the substring
starting with the next character, thereby simplifying the
string manipulation algorithms and the way one thinks about
strings.

A text pointer consists of a string identifier and a character
count, 4cShb

The first word, called an stid, contains three fields:

stfile —— the file number
stastr —— a bit indicating string, not an NLS statement
stpsid —— the psid of the statement;
every statement has a unique number (psid)
attached to it.

The stid is the basic handle on a statement in L10,

The second word contains a character county, with the first
position being 1.

For example, one might have the following series of
assignment statements which fill the three fields of the
first word and the sSecond word with data, with pt being the
name of a declared text pointer:

pt.stfile . fileno; %fileno a simple variable
with a number in it%
pt.stastr . FALSE; %a statementy, not a string%
pt.stpsid . origin; %all origin statements have the
psid = 235 origin is a global
variable with the value 2 in it%
bl 1 s %the word one after pt (i.e. the
character count) gets 1, the
beginning of the statement®

It is important that stid's be initialized properly to
avoid strange errors,

Declaring Text Pointers 4cSc

DECLARE TEXT POINTER pt ;

Part Two, Section J: Declarations page 34

ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

The names pl, p2, pldy p4y and pS are globally declared an
reserved for system use.

Strings 4cb '

String variables are a series of words holding text, When |
they are declared, the maximum number of characters is set, |
The first word contains the two globally defined fields: 4cba

M —— the maximum number of characters the
string can hold

L == the actual number of characters currently
in the string

The next series of words (as many as are required by the
maximum string size) hold the actual characters, five per
wordy in ASCII 7-bit code, 4cbb
Declaring Strings 4cbce
The DECLARE STRING enables the user to declare a global
string variable by initializing the string and/or declaring
its maximum character length,

. To declare a string:

DECLARE STRING name[num] 3

num is the maximum number of characters allowed for
the string

e.2s DECLARE STRING lstring[100]; |
declares a string named "Ilstring" with a maximum i
length of 100 characters and a current length of 0
characters
To declare and initialize a string:

DECLARE STRING name="Any string of text" ;

The length of the literal string defines the maximum
length of the string variable,

Cee DECLARE STRING message="RED ALERT";
declares the string message, with an actual and

maxinum length of 9 characters and contains the
text “"RED ALERT™

Part Two, Section 33 Declarations page 35

ESRI-ARC 11-SEP-73 17:03 18969

L10 USERS?' GUIDE SRI-ARC 12 SEP 73 18969
. Referenced Variables 4c7
Reference Declarations 4cTa

After a simple variable has been declared, the REF
statement can define it to be a pointer to some other
variable, A referenced variable holds the address of
another declared variable of any type. Whenever the
referenced variable is mentioned, L10 will operate on the
other variable instead, as if it were declared in that
procedure and named at that point,

This is useful when you wish a procedure to know about a
multi-word variable., In procedure calls, you are only
allowed to pass one-word parameters, A variable which
contains a pointer to something rather than the thing
itself may be passed as an argument to a procedure, Ly in
the called procedure, one wishes to access the thing
itself, the pointer identifier may be declared to be a
reference by the REF construction,

Example:

If the simple variable "astr" in the current
procedure has been REFed and contains the address of
the string "str" local to some other procedure, then:

*mes¥ . ¥str¥; %mes gets the string in
str%

¥str¥ . "corpuscle'"; %str gets the string
"corpuscle”"%

Unreferenced Variables 4cTb

One may refer to the actual contents (an address) of a
referenced variable (i.e. "unref" it) by preceding the
referenced variable name with an ampersand (£E). I1f, for
example, an address was passed to a REFed local, and you
wish now to pass that address on to another procedure, you
can unref it,

e+sZe if x has been REFed and holds the address of y:

T AN %z gets the CONTENTS of y%
Z « Ex3 %z gets the ADDRESS of y%

REFing Simple Variables 4cTc

Part Two,

Section 3J3: Declarations page 36

ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

Once a variable has been declared, it may be REFed with the
statement:

REF wvar 3
Declaring Many Variables in One Statement 4cB

One may avoid putting several individual declarations of

variables in a series by putting variables of similar type,
initialized or noty in a list in one statement following a

single DECLARE, separated by commas and terminated by the

usual semicolon. Array and simple varibles may be put

together in one statement, 4cRa

Examples:
DECLARE x, y[(10]y, z = [14 2, -5);

DECLARE TEXT POINTER tp, sf, ptl, pt2 ;
DECLARE STRING Llstring[100], message="RED ALERT" ;

Declaring Locals 4cH9 I
I
|

Program level declarations (DECLARE and REF) and procedures

may appear in any order, However, procedure level !

declarations (LOCAL and REF inside a procedure) must appear |
‘ before any executable statements in the procedure., 4cYa |

With one exception, a local variable declaration statement is

Just the same as a global with the word "LOCAL" substituted ‘
for the word "DECLARE", The one exception is that LOCAL

declarations can not initialize the variables, 4cHp |

Examples: |

LOCAL var, flag, level[12] 3
LOCAL TEXT POINTER tpy, pty, sf 3
LOCAL STRING test[100], out[2000] ;

When a procedure is called by another procedure, the calling
procedure may pass one-word parameters, The procedure

receives these values in simple local variables declared in

the PROCEDURE statement?s parameter list, For example, two

locals will automatically be declared and set to the passed

values whenever the procedure "procname" is called: 4c9c

(procname) PROCEDURE (varl, wvar2) ;

varl and var2 must not be declared again in a LOCAL

Part Two, Section J3: Declarations page 37

ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

I statement. They mayy however, be REFed by a REF statement,
as discussed above,.

The statement which calls procname may look Llike:
procname (locvar, 2) ;

varl will be initialized to the value of the local
variable locvar and var2 will get the value 2,

Part Two, Section 3: Declarations page 38

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

Section 4: Statements 4d

Introduction 4d1

This section will describe some of the types of statements
with which one can build a procedure, The term "expression"
(often abbreviated to "exp") will be used in this section, and
will be explained in detail in Section 5 (4e). 4dla
Assignment 4d2

In the assignment statement, the expression on the right side
of the "." is evaluated and stored in the variable on the left

side of the statement, 4d2a

Var . exp ;3

any global, local, referenced or
unreferenced variable,

where var

One may make a series of assignments in one statement by
enclosing the list of variables and the list of expressions in
parentheses., The order of evaluation of the expressions is
. left to right, The expressions are evaluated and pressed onto
a stack; after all are evaluated they are popped from the
stack and stored in the variables, 4d2b

(v‘l‘l' va.r2, SR, (R (etplg expz. 8%) H

Naturally, the number of expressions must equal the number
of variables,

Example:
(A' 5) is (C*d' a=-b)

The expression ctb is evaluated and stacked, the
expression a=-b is evaluated and stacked, the value of
a=-b is popped from the stack and stored into b, and
finally, the value of c+d is popped and stored into a.
It is equivalent to:

templ . ctd
temp2 <« a-b
b «« temp2 3
8 « templ 3

e e

Part Two, Section 4: Statements page 39

ESRI-ARC 11-SEP-73 17:03 18969

ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

One may assign a single value to a series of variables by
stringing the assignments together: 4d2c

varl + var2 o vard . exp 3

varl, var2, and vard will all be given the value of the
expression,

Example:
a «« b o 03
Both a and b wlll be given the value zero. This type of

statement can be useful in initializing a series of
variables at the beginning of a procedure.

IF Statement 443
This form causes execution of a statement if a tested
expression is TRUE. If the expression is FALSE and the
optional ELSE part is present, the statement following the
ELSE is executed, Control then passes to the statement
immediately following the IF statement, 4d3a

. IF testexp THEN statement 3
IF testexp THEN statementl ELSE statement2 ;

The statements within the IF statement can be any statement,
but are not followed by the usual semicolon; the whole IF
statement is treated like one statement and followed by the
semicolon,. 4d3b
CoBe 4d3c

IF y=z THEN yey*1l ELSE yez 3

Part Two, Section 4: Statements page 40

ESRI-ARC 11-SEP-73 17:03 18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

CASE Statement 4d4

This form is similar to the IF statement except that it causes
one of a series of statements to be executed depending on the
result of a series of tests, 4d4a

Part Two,

CASE testexp OF
relop exp
relop exp
relop exp

statement
statement
statement

LU L 1)
EARE L 1)

ENDCASE statement 3

where relop = any relational operator (>=, <, =, INy etc,)
see Section S (4ed).

The CASE statement provides a means of executing one statement
out of many. The expression after the word "CASE" is
evaluated and the result left in a register, This is used as
the left-hand side of the binary relations at the beginning of
the various cases, Each expression is evaluated and compared |
according to the relational operator to the CASE expression. :
F I
1

If the relationship is TRUE, the statement is executed. It
the relationship is FALSE, the next expression and relatonal
. operator will be tried. If none of the relations is

satisfiedy, the statement following the word "ENDCASE" will be
executed, Control then passes to the statement following the
CASE statement 4d4dbp

Note that the relop and expressions are followed by a
colony, and the statements are terminated with the usual
semicolon. The word ENDCASE is not followed by a colon.
In ENDCASE, the statement may be left out —— this is the
equivalent of having a NULL statement therej; nothing will
happene.

Example:

CASE c OF
S A K o« V> %$Executed if c¢c = a%
> b (xy ¥y) « (xty, x-y); %Executed if c > b%
ENDCASE y « X3 %$Executed otherwise%

CASE char OF

= DS char - '1; %if char = the code for a digit%

> UL: char « '0; %if char = the code for an
upper—case letter%

ENDCASE; %otherwise nothing%

Section 4: Statements page 41

ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

. Several relations may be listed at the start of a single case;
they should be separated by commas,. The statement will be
executed if any of the relations is satisfied. 4d4c

CASE testexp OF
relop exp : statement 3
relop expy relop exp : statement 3
relop expy relop expy relop exp : statement ;

ENDCASE statement 3

Example:

CASE c OF
=ay <d X < ¥3 %Executed if c=a or c<{d%
>by, =d: (x3y) « [xtyyx—y); %Executed if cdb or c=d%
ENDCASE y « X3 %$Executed otherwise%
LOOP Statement 4d5

The statement following the word "LOOP" is repeatedly executed
until control leaves by means of some transfer instruction
within the loop. 4dSa
‘ LOOP statement;
where statement = any executable L10 statement
Example:

LOOP IF a>=b THEN EXII LOOP ELSE a . at*l ;

It is assumed that a and b have been initialized before
entering the loop.

The EXIT construction is described below, It is extremely
important to carefully provide for exiting a loop.

WHILE. ..DO Statement 4d6
This statement causes a statement to be repeatedly executed as
long as the expression immediately following the word WHILE
has a logical value of TRUE or control has not been passed out
of the DO Lloop by EXIT CASE (described below). 4d6a

WHILE exp DO statement

exp is evaluated and if TRUE the statement following the word

'

Part Two, Section 4: Statements page 42

ESRI-ARC 11-SEP-73 17:03 18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

exp is then reevaluated and the statement
Then control will

DO is executed;
continually executed until exp is FALSE,
pass to the next statement, 4d6bH '
For example, if you want to fill out a string with spaces

through the 20th character position, you could:

%what's already
then a space%

WHILE str.L < 20 DO #*str¥ , *gtr¥x, SP;
there,

Remember that the first word of every string variable hs
two globally defined fields:

L —— actual length of contents of string variable
M — maximum length of string variable

UNTIL...DO Statement 447

This statement is similar to
that statement following the
As long as exp has a logical
be executed repeatedly.
UNTIL exp DO statement ;
. Example:

UNTIL a>b DO a . at+l ;

DOOOOUNTIL/DOOOC'HILB Statement

executed rather than before.
DO statement UNTIL exp;
DO statement WHILE exp;

Thus the specified statement

FOR...DO Statement
The FOR statement causes the

reached,

Statements

Part Two, Section 4:

(the first time, before the test is made).

the WHILE...DO statement except

DO is executed until exp is TRUE,

value of FALSE the statement will
4d7a

448

These statements are like the preceding statements, except
that the logical test is made after the statement has been

4dRla

is always executed at least once
4d8hb

449

repeated execution of the

statement following "DO"™ until a specific terminal wvalue is

4d9%a

FOR var UP UNTIL relop exp DO statement;

page 43

L10 USERS'

GUIDE

ESRI-ARC 11-SEP-73 17:03
SRI-ARC 12 SEP 73 18969

(UP will be assumed if left out.)

FOR var DOWN UNTIL relop exp DO statement;

where
var = the variable whose value is incremented or
decremented each time the FOR statement is
executed
relop any relational operator (described in 4e3c)
exp = when combined with relopy, determines whether

Ko

Optionally,

or not another iteration of the FOR statement

will be performed.

FOR 1 UP UNTIL > 7 DO a « a + t[1] 3

the user may initialize the variable and may

increment it by other than the default of one.

FOR var

where

expl

exp2

Note tha

Example:

€

expl UP exp2 UNTIL relop expd DO statement;

DOWN

an optional initial value for wvar, 1f
expl is not specified, the current value
of var is used.

an optional value by which var will be
incremented (if UP specified) or decremented
(if DOWN specified), If exp2 is not
specified, a value of one will be assumed,

exp2 and 2exp3d are recomputed on each iteration.

FOR K « n UP k/2 UNTIL > m*3 DO x[k] « k3

is egquivalent to

ko—ﬂ;
LooP
BEGIN
IF k >m¥J
x[k] « k3

THEN EXIT LOOP;

Part Two, Section 4: Statements

page

18969

+4

ESRI-ARC 11-SEP-73 17:03 189689
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

kK < k ki3
END3

BEGIN. .. END Statement 4410

The BEGIN...END construction enables the user to group several
statements into one syntactic statement entity. A BEGIN, ..END
construction of any length is valid where one statement is
regquired. 4d10a

BEGIN statement ; statement ; ... END
Example:

IF a >= b%*c THEN
BEGIN
a«b;
Ced+5;
END
ELSE
BEGIN
BeCy
bed+2;
Ce-b¥* d*7

. END 3

EXIT Statement 4d11

This construction provides for forward branches out of CASE or
iterative statements, The optional number (num) specifies the
number of lexical levels of CASE or iterative statements
respectively that are to be exited (if loops are nested within
loops). If a nuanber is not given then 1 is assumed, All of

the iterative statements (LOOP, WHILE, UNTIL, DO, FOR) can be
exited by the EXIT LOOP construct, A CASE statement can be

left with an EXII CASE instruction. EXIT and EXIT LOOP have

the same meaning. 4dlla

EXIT LOOP num or EXIT num
EXIT CASE num

where num is an optional integer,
Examples:

LOOP
BEGIN

IF test THEN EXIT;

Part Two, Section 4: Statements page 45

ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

%the EXIT will branch out of the LOOP%
LR R B B

END;

UNTIL something DO

BEGIN

L L B B)

WHILE testl DO
BEGIN
LB B B L
IF test2 THEN EXIT;

%the EXIT will branch out of the WHILE%

- 8P e
END3

L B B

END;

UNTIL something DO
BEGIN
L)
WHILE testl DO
BEGIN
L B B B
IF test2 THEN EXIT 23
%the EXIT 2 will branch out of the UNTIL%
. s e sen e
ENDj3
L B B B)

END;

CASE exp OF
=somethings:
BEGIN

IF test THEN EXIT CASE;
%the EXIT will branch out of the CASE%
* o000 e

END;

L B

REPEAT Statement 4d12
This construction provides for backward branches to the front
of CASE or iterative statements, The optional number has the
same meaning as in the EXIT statement, REPEAT and REPEAT CASE

have the same meaninge. 4d12a

REPEAT LOOP num

| Part Two, Section 4: Statements page 46

ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

REPEAT CASE num (exp) or REPEAT num (exp)

If an expression is given with the REPEAT CASE, then it is

evaluated and used in place of the expression given at the .
head of the specified CASE statement, If the expression is |
not giveny, then the one at the head of the CASE statement is
reevaluated, 4d12b

Examples: 4dl2c

CASE expl OF
=something:
BEGIN
L N
IF testl THEN REPEAT;
%REPEAT with a reevaluated expl%
L B B
IF test2 THEN REPEAT(exp2);
SREPEAT with exp2%
L B N
END;

LA B B B A

ENDCASE ;

LooOP
‘ BEGIN

L B A
IF test THEN KEPEAT LOOP; |
%REPEAT LOOP will go to the top of the LOOP%]

END;

DIVIDE Statement 4d13
The divide stateasent permits both the guotient and remainder
of an integer division to be saved, The syntax for the divide
statement is as follows: 4d13a

DIV exp » gquotient , remainder 3

The central connective in the expression must be '/, Quotient
and remainder are variable names in which the respective
values will be saved after the division, 4d13b

DIV a / by ay r ;

Part Two, Section 4: Statements page 47

ESRI-ARC 11-SEP-73 17:03 18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

a will be set to a/b to the greatest integer with r
getting the remainder

PROCEDURE CALL Statement 4414

| Part Two, Section 4: Statements page 48
|
|

This statement is used to direct program control to the
procedure specified, 4d14a

procname (eXpy eXpPy see = VAry VAry ses) 3

Where procname the name of a procedure 4d14b
exp = any valid L10 expression (explained

in Section 5 == 4e). The set of

expressions separated by commas is

the argument list for the procedure. 4dl4c

var = any variable., The set of variables
is used to store the results of the
procedure if there is more than one
result, 4d14d

The argument list consists of a number of expressions

separated by commas, I'he number of arguments should egqual the
number of formal parameters for the procedure, The argument
expressions are evaluated in order from left to right. Each
expression (parameter) must evaluate to a one-word value. To

pass an array, text pointer, string, or any multi-word

parameter, the programmer may pass the address of the first

word of the variable, then REF the receiving local in the

called procedure., 4dl4de

The procedure may return one or more values, The first value
is returned as the value of the procedure call, Therefore, if
only one value is returned, one might say: 4d147t

a « proc (b)) ;
In this contexty the procedure call is an expression.

If more than one value is returned by the called procedure,

one must specify a list of variables in which to store them.

The lList of variables for multiple results is separated from

the List of argument expressions by a colon. The number of
locations for results need not egqual the number of results
actually returned, If there are more locations than results,

then the extra locations get an undefined value. If there are
more results than locations, the extra results are simply

lost. 4dl4g

; ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

Example:
If procedure proc ends with the statement
RETURN (ayb,yc)
then the statement
q « proclireys);
results in (gerss) « (a,byc).
A procedure call may just exist as a statement alone without
returning a value. Not all procedures require parameters, but

the parentheses are mandatory in order to distinguish a
procedure call from other constructs. 4d14hnh

CsZe &t(,;

If a block of instructions are used repeatedly, or are

duplicated in different sections of a program, it Is often

wise to make them a separate procedure and simply call the
procedure when appropriate, 4d14i

A great many procedures are part of the NLS system and are
available to your programs. A list of them is available in
the file (nls,sysgdy)e They should be used with care. 4d14j
RETURN Statement 4d15
This statement causes a procedure to return control to the
procedure which called it, Optionally, it may pass the
calling procedures an arbitrary number of results. The order
of evaluation of results is from left to right. 4d15a
RETURN 3
RETURN (expy eXpy oee) 3
GOTO Statement 4416
Any statement may be labeled; one puts the desired label (a
string of lower case letters and digits) in parentheses and
followed by a colon at the beginning of a statement, 4d16a
(lLabel): ,statement ;

eegs (there): a b ¥+ c 3

Part Two, Section 43 Statements page 49

L10 USERS' GUIDE

ESRI-ARC 11-SEP-73 17:03 18969
SRI-ARC 12 SEP 73 18969

GOTO provides for unconditional transfer of control to a new

lLocation,.
GOTO LlLabel

CeBoe GOTO there

4d16Db

GOTO statements make debugging di fficult and are not
they can usually be eliminated by use

of procedure calls and the iterative statements, 4dl6c

considered good style;

NULL Statement

4d17

The NULL statement may be used as a convenience to the
programmer. It does nothing.

NULL 3
Example:
CASE exp OF

=0y =13 NULL3
ENDCASE y.l1;

Part Two, Section 43 Statements

4d17a

page S50

: ESRI-ARC 11-SEP-73 17:03 18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

!

® |
Section 53 Expressions 4e
Introduction 4el

This section will describe the composition of the expressions

which are an integral part of many of the statements described

in the last section, 4ela
Primitives 4e2

Primitives are the basic units which are used as the operands

of L10 expressions, There are many types of elements that can

be used as L10 primitives; each type returns a value which is

used in the evaluation of an expression. 4e2a

Each of the following is a valid primitive: 4e2b

a constant (see below)

any valid variable name, refering to the contents (of the
first word, if not indexed) of that variable

‘ the contents of a string variable, refered to as *¥var*

a dollar sign ($) followed by a variable name,
refering to the address of the variable

a procedure call which returns at least one value

the first (leftmost) value returned is the value of the
procedure call; other values may be stored in other
variables as described in Section 4 (4d14f).

an assignment (see below)

classes of characters; described in Sections 1 of
Part One (3a2a3)

MIN (expy ©€Xpy e+) the minimum of the expressions
MAX (expy €XpPy se+) the maximum of the expressions
TRUE has the value 1

FALSE has the vaue 0

Part Two, Section 5: Expressions page 51

Constants

|
|
| Part Two, Section 53 Expressions
?
i

ESRI—-ARC 11-SEP-73 17:03
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

VALUE (astring) given the address of a string containing
a numbery, has the value of the number

READC (see below)
CCPOS (see below)
FIND

used to test text patterns and load text pointers for
use in string construction (see Section 6 —— 4f3);
returns the value TRUE or FALSE depending on whether or
not all the string tests within it succeed.

POS
POS textpointerl relop textpointer2

may be used to compare two text pointers, If the POS
construction is not used, only the first words of the
pointers (the stid's) will be compared. If a pointer is
before another, it is considered less than the other
pointer,

L= POS ptl = pt2
POS first >= last

A constant may be either a number or a literal constant,

There are several ways in which numeric values may be
represented., A sequence of digits alone or followed by a D
is interpreted as base ten, If followed by a B then it is
interpreted as base eight, A scale factor may be given
after the B for octal numbers or after a D for decimal
numbers, The scale factor is equivalent to adding that
many zeros to the original number.

Examples:
64 = 100B = 1B2
1448 = 100 = 1D2

Literals may be used as constants as they are represented
internally by numeric values. The following are valid
literal constants:

18969

4e22c

page 52

ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

—-any single character preceded by an apostrophe
€.2« 'a represents the code for 1418,

-any string of up to five characters enclosed in
quotation marks

e.2« "aa" represents the code for 141141B
—-the following synonyms for commonly used characters:

ENDCHR -endcharacter as returned by READC

SP -space
EOL ~Tenex's version of CR LF
ALT -Tenex's version of altmode or escape (=33B)
CR -carriage return
LF -line feed
TAB -tab
‘ BC -backspace charac ter
BW -backspace word
C. -~center dot
CA -Command Accept
cCD -Command Delete;
Assignments de2d

An assignment can be used as a primitive in an expression.

The form a b has the effect of storing b into a and has
the value of b as its value,

Another form of the assignment statement is:
a := b
This will store b into a, but have the old value of a as

the value of the assignment when used as a primitive in
an expression.

Part Two, Section 5: Expressions page 53

ESRI-ARC 11-SEP-73 17:03 18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

For example,
The value of b will be put in a. The assignment will

get the old value of a, which is then put in b. This
transposes the values of a and b,

READC - ENDCHR 4ele

The primitive READC is a special construction for reading
characters from NLS statements or strings.

A character is read from the current character position
in the scan direction set by the last CCPOS statement or
string analysis FIND statement or expression. CCPOS and
FIND are explained in detail in Section 6 of this
document (4f2) and (4£3).

Attempts to read off the end of a string Iin either
direction result in a special "endcharacter" being
returned and the character position not being moved,
This endcharacter is included in the set of characters
for which system mneumonics are provided and may be
referenced by the identifier "ENDCHR".

For example, to sequentially process the characters
of a string:

CCPOS #*str¥%;
UNTIL (char READC) = ENDCHR DO process(char);

(Note: READC may also be used as a statement if it is
desired to read and simply discard a character).

CCPOS de2f

Vhen used as a primitive, CCPOS has as its value the index
of the character to the right of the current character
position. If str = "glarp", then after CCPOS *str¥*, the
value of CCPOS is 1 and after CCPOS SE(*str*) the value of
CCPOS is 6 (one greater than the length of the string).

CCPOS 1s more commonly used to set the current character
position for use in text pattern matching. This is
discussed in detail in Section 6 below (4f2),

CCPOS may be useful as an index to sequentially process the

Part Two, Section 5: Expressions page 54

ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS'" GUIDE SRI-ARC 12 SEP 73 18969

first n characters of a string (assumed to have at least n
characters)

Example:

CCPOS *str¥; %#CCPOS now has the index value of
oney the front of the string%
UNTIL CCPOS > n DO process{READC),
%READC reads the next character
and Iincrements CCPOS%

Operators 4e3

Primitives may be coabined with operators to form expressions.
Four types of operators will be described here: arithmetic,

relational, interval, and logical, 4e3a
Arithmetic Operators 4e3b
Operator Meaning
unary + positive value
‘ unary - negative value
+ addition
- subtraction
* multiplication
/ integer division (remainder not saved)
MOD a MOD b gives the remainder of a / b
Vv a .V b = bit pattern which has 1's wherever

either an a or b had a 1 and 0 elsewhere,
X a +X b= bit pattern which has 1's wherever
either an a had a 1 and b had a 0y, or a had

a 0 and b had a 1, and 0 elsewhere.

oA a <A b = bit pattern which has 1's wherever
both a and b had 1's, and 0 elsewhere.

Relational Operators 4eldc

A relational operator is used in an expression to compare

Part Two, Section 5: Expressions page 55

L10 USERS' GUIDE

one gquantity with another,.

ESRI-ARC 11-SEP-73 17:03
SRI-ARC 12 SEP 73 18869

The expression is

18969

evaluated for

a logical value. If truey, its value is 1; if false, its
value is 0. ;
Operator Meaning Example
= equal to 4+1 = 3+2 (true, =1)
not egual to 6#8 (true, =1)
< less than 6<8 (true, =1)
<= less than or
equal to 8<=6 (false, =0)
> greater than I3>8 (false, =0)
>= greater than or
egual to 8>=6 (true, =1)

NOT other—-relational-operator

6 NOT > 8 (true, =1)
Interval Operators deld
The interval operators permit one to check whether the
value of a primitive falls in or out of a particular
interval.
IN (primitivey, primitive) IN [primitive, primitive]
' OUT (primitive, primitive) %equivalent to NOT IN%
The value is tested to see whether or not it lies within
(or outside of) a particular interval, Each side of the
interval may be "open" or "closed"., Thus the values which
determine the boundaries may be included in the interval
(by using a sguare bracket) or excluded (by using
parentheses).
Example:
x IN [1,100)
is the same as
(x >=1) AND (x < 100)
Logical Operators 4elde
Every numeric value also has a logical value. A numeric
value not equal to zero has a logical value of TRUE; a
numeric value egqual to zero has a logical value of FALSE.
Part Two, Section 5: Expressions page 56

ESRI-ARC 11-SEP-73 17:03

USERS' GUIDE SRI-ARC 12 SEP 73 18969
Operator Evaluation
OR a OR b = TRUE if a = TRUE or b = TRUE
= FALSE if a = FALSE and b = FALSE
AND a AND b = TRUE 1f a = TRUE and b = TRUE
= FALSE Iif a = FALSE or b = FALSE
NOT NOT a = TRUE if a = FALSE
= FALSE if a = TRUE
Expressions 4e4
Introduction 4ed4a

An expression is any constant, variable, special expression
formy or combination of these joined by operators and
parentheses as necessary to denote the order in which
operations are to be performed,

Special L10 expressions are: the FIND expression which is
used for string manipulation, and the conditional IF and
CASE expressions which may be used to give alternative
values to expressions depending on tests made in the
expressions, Expressions are used where the syntax
requires a value, ¥hile certain of these forms are similar
syntactically to L10 statements, when used as an expression
they always have values,

Order of Operator Execution-- Binding Precedence 4e4db

The order of performing individual operations within an
egquation is determined by the heirarchy of operator
execution (or binding precedence) and the use of
parentheses,

Operations of the same heirarchy are performed from left to
right in an expression. Operations in parentheses are

performed before operations not in parentheses.

The order of execution of operators (from first to last) is
as follows:

unary —, unary *+
.A

«Vy X

Part Two,y, Section 53 Expressions page 57

18969

ESRI-ARC 11-SEP-73 17:03

18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

¥y /9 MOD

+, -

relational tests (CeZey D=y <=y Dy <y =y #,4 IN, OUT)
NOT relational tests (e.g.y NOT >)

NOT

AND

OR

Conditional Expressions 4edc

The two conditional constructs (IF and CASE) can be used as
expressions as well as statements, As expressions, they
must return a value.

IF Expressions
IF testexp THEN expl ELSE exp2

testexp is tested for 1ts logical value. If testexp is
TRUE then expl will be evaluated. If it is FALSE, then
exp2 is evaluated.

Therefore, the result of this entire expression is
EITHER the result of expl of exp2.

Example:

¥ « IF x IN[1,3] THEN x ELSE 4;
%if x = 14 29 or 3y YeXx; otherwise y.4%

CASE Expression
This form is similar to the above except that it causes
any one of a series of expressions to be evaluated and

used as the result of the entire expression.

CASE testexp OF

relop exp : exp 3
relop exp 2 exp 3
relop exp : exp 3

ENDCASE exp

Part Two, Section 5: Expressions page

ESRI-ARC 11-SEP-73 17:03 18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

where relop = any relational operator (>=, <, =, IN,
etc. See Section 5 —— 4e3c)

In the above, the testexp is evaluated and used with the
operator relops and their respective exps to test for a
value of TRUE or FALSE. If TRUE in any instance, the
companion expression on the right of the colon is
executed and taken to be the value of the whole
expression, A value of FALSE for all tests causes the
next relop in the CASE expression to be tested against
the testexpe. If all relops are FALSE, the ENDCASE
expression is taken to be the value of the whole
expression.

Note that ENDCASE cannot be null; it must have a value,

As with the CASE statement, any number of cases may be
specified, and each case may incude more than one relop
and expression, seperated by commas,

Example:

¥ « CASE x OF
<3: x+1;
=3y =4; x*2;
=52 x3
ENDCASE x%*2;

Value of X Value of ¥y

2 3
J 5
4 6
S S
6 12
String Expressions 4e4d

Part Two,

L10 also provides several expression forms which are used
for string manipulation and evaluation. These are
discussed in Section 6 of this document, Note that when
using string manipulation statement forms as expressions,
parentheses may be necessary to prevent ambiguities,

Section 5: Expressions page 59

ESRI-ARC 11-SEP-73 17:03 18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969
Section 62 String Test and Manipulation 4f
Introduction 4f1

This section describes statements which allow complex string
analysis and construction. The three basic elements of string
manipulation discussed here are the Current Character Position
(CCPOS) and text pointers which allow the user to delimit
substrings within a string, patterns that cause the system to
search the string for specific occurrences of text and set up
pointers to various textual elements, and actual string
construction, 4fla

Current Character Position (CCPOS) 4r2

The Current Character Position is similar to the TNLS CM

(Control Marker) in that it specifies the location in the

string at which subsequent operations are to hegin. All L10O
gstring tests start their search from the current character
position, In Content Analyzer programs, it is initialized to

the beginning of each new statement, It is moved through the
statement or through strings by FIND expressions. It may be

set to a particular position by the statement: 4f2a

CCPOS pos ;3
or
CCPOS *stringname¥*[exp] ;

pos is a position in a statement or string that may be
expressed as any of the following: 4f2bH

A previously declared and set text pointer.
If a text pointer is given after CCPOSy, then the
character position is set to that location. A text
pointer points between two characters in a string. The
scan direction over the text will remain unchanged.
Cae CCPOS ptl :

String Front =- left of the first character

SF(stspec)

When SF is specified scanning will take place from left
to right within the string.

Part Two, Section 6: String Test and Manipulation page 60

' SSRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

stspec is a string specification that may be expressed
as an stid (e.2g. the first word of a previouly declared
text pointer) or previously declared string name
enclosed in asterisks.

Examples:

CCPOS SF(ptl) ; %ptl is a text pointer%
CCPOS SF(stid) ; %$stid is an stid%
CCPDOS SF(*str¥) ; %str is a string%

String End -—- right of the last character
SE(stspec)

When SE is specified scanning will take place from right
to left within the string.

If a string (*stringname*) is given after CCPOS, then the
position is moved to that string. The scan direction is set
left to right. 4f2c

Indexing the stringname (by specifying [exp]) simply
specifies a particular position within the string. Thus
*str¥[3] puts the Current Character Position between the
second and third characters of the string "str", If the
scan direction is left to right, then the third character
will be read next. If the direction is right to lLeft, then
the second will be read next,

e.g. CCPOS *stex[3] ;

If no indexing is giveny, then the position is set to the
left of the first character in the string. This is
egquivalent to an index of 1.

.o CCPOS *str¥
FIND Statement 4¢3

The FIND statement specifies a string pattern to be tested

against a statement or string variable, and text pointers to

be manipulated and set, starting from the current character
position. If the test succeeds the character position is

moved past the last character read. If the test fails the
character position is left at the position prior to the FIND
statement and the values of all text pointers set within the
statement will be reset. 4f3a

Part Two, Section 63 String Test and Manipulation page 61

L10 USERS' GUIDE

FIND pattern ;

ESRI-ARC 11-SEP-73
SRI-ARC 12 SEP

FINDs may be used as expressions as well as free-standing

elements. If used
statements, it has
within it are true
elements is false.

as an ex

pressiony for example in IF

the value TRUE if all pattern elements
and the value FALSE if any one of the

Coe Ze IF FIND pattern THEN <see¢ 3

FIND Patterns

17:03 18969
73 18969

4f3b

414

A string pattern may be any valid combination of the following
arguments, and other non-testing

logical operators,
parameters:

testing

Pattern Matching Arguments—-

(each of these can be TRUE or FALSE)

string const

or any ch

ant, e.Zs "ABCM

aracter,

preceded by an apostrophy

4f4a

4f4b

It should be noted that if the scan direction is set

right to left the pattern string constant pattern

should be reversed. In the above example, one would

have "CBA

character cl

look for a character of a specific class;

TRUE, otherwise FALSE.

Character

CH -
L -
UE; =
) B e
D -
% T
NLD -

classes:

any character

Lowercase

uppercase

Lowercase

digit

Lowercase

not a lLet

or uppercase letter
letter

letter

or uppercase letter or digit

ter or digit

Part Two, Section 63 String Test and Manipulation

if found, =

page 62

ESRI-ARC 11-SEP-73 17:03 18869
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

ULD - uppercase letter or digit
LLD - lowercase letter or digit
PT - printing character
NP - nonprinting character
Example:

char = LD

is TRUE if the variable char contains a value
which is a letter or a digit.

(elements)

Look for an occurrence of the pattern specified by
the eleaments, If foundy, = TRUE, otherwise FALSE.
Elements may be any pattern; the parentheses serve to
group the elements so as to be treated as a single
element in any of the following elements,

—-—element

‘ TRUE only if the element following the dash does not
occur.

[elements]

TRUE if the pattern specified by the elements can be

found anywhere in the remainder of the string.

elements may be any pattern; the squarebrackets also

group the elements so as to be treated as a single

element, It first searches from current position.

If the search failed, then the current position is

incremented by one and the pattern is tried again.,
Incrementing and searching continues until the end of |
the string. Fhe value of the search is FALSE if the ‘
testing string entity is not matched before the end ‘
of the string is reached,

NUM element

find (exactly) the specified number of occurrences of
the element.,

eeZe JLD means three letters or digits

Part Two, Section 62 String Test and Manipulation page 63

L10 USERS' GUIDE

ESRI-ARC 11-SEP-73 17:03

NUM1 $ NUM2 element

ID
ID

Tests for a range of occurrences of the element
specified, If the element is found at least NUML1
times and at most NUM2 times, the value of the test
is TRUE.

Either number is optional., The default value for
NUML1 is zero. The default value for NUM2 is
10000. Thus a construction of the form "$3 CH"
would search for any number of characters
(including zero) up to and including three,

Examples:
2%$4 UL - from two to four upper—case letters
$10 SP - up to ten sSpaces
1$ ', - one or more periods

= user—ident
user—ident

if the string being tested is the text of an NLS
statement then NIC ident of the user who created or
last edited the statement is tested by this
constructione. '

SINCE datim

if the string being tested Is the text of an NLS
statement, this test is TRUE if the statement was
created or modified after the date and time (datim,
see below) specified.

BEFORE datim

if the string being tested is the text of an NLS
statementy, this test is TRUE if the statement was
created or modified before the date and time (datim,
see below) specified.

Format of date and time for pattern matching
Acceptable dates and times follow the forms

permitted by the TENEX system's IDTIM JSYS
described in detail in the JSYS manual. It

Part Two, Section 6: String Test and Manipulation page

18969

SRI-ARC 12 SEP 73 18969

64

ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS® GUIDE SRI-ARC 12 SEP 73 18969

accepts "most any reasonable date and time
syntax.,"

Examples of valid dates:

17-APR~-T70 APR-17-70
APR 17 70 17 APRIL 70
17/5/1970 5/17/70

APRIL 17, 1970

Examples of valid times:

1:12:13 1234
1234:56 1: 56AM
1:56-EST 1200NOON

16230 (4:30 PM)

12:00:00AM (midnight)
11:59:59AM-EST (late morning)
12: 00:01ANM (early morning)

Examples:

BEFORE [MAR 19, 73 16:49)
SINCE (25-JUL-73 00:00)

These may not appear in Content Analysis patterns, but are
valid elements in program FIND statements:

¥*stringname¥
the contents of the string variable
BETWEEN pos pos [element)
Search limited to between positions specified. pos
is a previously set text pointer; the two must be in
the same statement or string. Scan character
position is set to first position before the pattern
is tested.
e.Z. BETWEEN ptl pt2 (2D [.] $NP)
Logical Operators—- 4f4c
These combine and delimit groups of patterns. Each
compound group is considered to be a single pattern with

the value TRUE or FALSE, If text pointers are set within a
test pattern and the pattern is not TRUE, the values of

Part Two, Section 6: String Test and Manipulation page 65

ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 1R969

those text pointers are reset to the values they had before
the test was made, [See examples below,)

OR
AND
NOT
/

Other Elements—-— 4f4a
These do not involve tests; rather, they involve some
execution action, Fhey are always TRUE for the purposes of
pattern matching tests,

These may appear in simple Content Analysis Patterns:
<
set scan direction to the left
In this case, care should be taken to specify

patterns in reverse, that is in the order which
the computer will scan the text,

set scan direction to the right

TRUE
has no effect; it is generally used at the end of OR
when a value of TRUE is desired even if all tests
tail.

ENDCHR
Attempts to read off the end of a string in either
direction result in a special "endcharacter" being
returned and the character position is not moved.,
This endcharacter is included in the set of
characters for which system mneumonics are provided
and may be referenced by the identifier "ENDCHR"™,

These may not appear in simple Content Analysis Patterns:

pos

pos is a previously set text pointer, or an SE(pos)
or SF(pos) construction. Set current charac ter

Part Two, Section 6: String Test and Manipulation page 66

ESRI-ARC 11-SEP-73 17:03

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

posi tion to this position. If the SE pointer is

used, set scan direction from right to left, If the

SF pointer is used, set scan direction from left to
right,

Celle FIND x3; #%sets CCPOS to position of
previously set text pointer x%

t ID

store current scan position into the textpointer
specified by the identifier

«~ [NUM] ID

back up the specified text pointer by the specified

number ({ NUM) of characters., Default value for NUM is

one. Backup is in the opposite direction of the
current scan direction,

String Construction

One may modify an NLS statement or a string with the
statement: >

ST pos ¢\strllst >

The whole statement or string will be replaced by the
string list,

ST pos posS < strlist ;

The statement or string from the first position to the
second position will be replaced by the string list,
"pos" may pDe a previously set text pointer or the

SF(pos)/SE(pos) construction.

There are two additional ways of modi fying the contents of a
string variable:

ST *stringname*[exp TO exp] « strlist ;
means the same as
stringname[exp IO exp)] « strlist ;

The string from the first position to the second
position will be replaced by the string list, The
square—bracketed range is entirely optional; if it is
left off, the whole string will be replaced.

415

4fSa

4f5b

Part Two, Section 6: String Test and Manipulation page 67

18969

ESRI-ARC 11-SEP-73 17:03

18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18869

Note that the "SI" jis optional when assigning a strlist
to the contents of a string variable. The statement
then resembles any simple assignment statement,

The string list (strlist) may be any series of string
designators, seperated by commas, The string designators may

be any of the following: 4fSc

the word NULL
represents a zero length (empty) string
string constanty e.g. "ABC" or 'w
part of any string or statement, denoted either by

two text pointers previously set in either a statement
or a string

pos pos
a string name in asterisks, refering to the whole string
¥*stringname¥*

a string name in asterisks followed by an index,
refering to a character in the string

*stringname¥[exp]
(The index of the first character is one.)

a string name in asterisks followed by two indices,
refering to a substring of the string

¥stringname*[exp TO exp]
A construction of the form *str¥[i TO j] refers to

the substring starting with the ith character in
the string up and including the jth character.

Examples:

*str#[7 TO 10] is the four character substring
starting with the 7th character of str.,

*ste%[i TO str.L] is the string str without the

first i-1 characters. (i is a declared
variable,)

Part Two, Section 63 String Test and Manipulation page

68

' ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

+ substring

substring capitalized
- substring

substring in lower case
exp

value of a general L10 expression taken as a character;
i.2s9y the character with the ASCII code value equivalent
to the value of the expression

STRING (expl, exp2);

gives a string which represents the value of the
expression expl as a signed decimal number. If the
second expression is presenty, a number of that base is
produced instead of a decimal number,

e.Ze STRING (3%2) is the same as the string "6.0"
Examples: 4f5d

. ST pl p2 . ¥string¥;
does the same as
ST pl « SF(pl) pl, *string*, p2 SE(p2);

assuming pl and p2 have been set somewhere in the same
statement. The latter reads "replace the statement
holding pl with the text from the beginning of the
statement to pl, the contents of string, then the text
from p2 to the eand of the statement."

st[low TO high] « "string";
does the same as
st¥ . *st¥[1 TO Low-1], "string", *st¥[high+t+l TO st.L];

assuming low and high are declared simple variables,

Example: 416

Let a "word" be defined as an arbitrary number of letters and
digits, The two statements in this example delete the word
pointed to by the text pointer "t", and if there is a space on

the right of the word, it is also deleted. Otherwise, if

there is space on the left of the word it is deleted, 4f6a

Part Two, Section 6: String Test and Manipulation page 69

L10 USERS' GUIDE

ESRI-ARC 11-SEP-73 17:03 18969

The text pointers x and y are used to delimit the left and

SRI-ARC 12 SEP 73 18969

right respectively of the string to be deleted. 4f60b
IF (FIND t < SLD tx > SLD (SP ty / ty x < (SP tx / TRUE)))
THEN
ST X v « NULLS 4fé6c
The reader should work through this example until it is clear
that it really behaves as advertised, 4f6d
Text Pointer Comparisons 4r7
This may be used to compare two text pointers. 4fT7a
POS ptl = pt2;
i
>
<
e
€=
ptl and pt2 are a text pointers.,
NOT may precede any of the relational operators. If the
pointers refer to different statements then all relations
between them are FALSE except "not equal" which is written
or NOT=, If the pointers refer to the same statement,
then the truth of the relation is decided on the basis of
thelir location within the statement,
A pointer closer to the front of the statement is "less
than" a pointer closer to the end.
Part Two, Section 63 String Test and Manipulation page 70

ESRI-ARC 11-SEP-73 17:03 18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969
Section 7: Executable Programs g
Introduction 4g1

For most applications, it is sufficient to accept statements
one at a time from the sequence generator and assume an
initial character position of the beginning of the statement
(a Content Analyzer program). When one has more complex
applications, one may have to write more complex programs
which are explicitly passed control. These are not called by
the seguence generator but are passed control from the
Programs subsystem (see Section 9 —-— 4i2), Therefore they
must provide themselves with statements on which to work.,

They should not return a value (as did the simpler Content
Analyzer type programs)y but should just return control to the
calling subsystem, All the capabilities described above are
available to such programs,. In addition, the program may skip
around files, between files, and may interact with the user., 4gla

Moving Around a File 4g2

Generally, a simple variable or a text pointer will have to be
declared to hold the statement identifier (stid) of the

current statement, [The first sord of a text pointer is an

stid,) Assume the simple variable with the name "stid" has

been declared for the purpose of the following discussion. 4ga

In the NLS file systemy, two basic pointers are kept with each
statement: to the substatement and to the successor, 4g2b

If there is no substatement, the substatement pointer will
point to the statement itself,

The procedure getsub returns the stid of the
substatement, To do something to the substatement if
there is one:l

IF (stid := getsub(stid)) # stid THEN something..;

stid is given the value of the substatement pointer,
then the old value of stid is compared to the new,
If they are the samey, then there is no substructure.,

If there is no successor (at the tail of a plex), the
successor pointer will point to the statement up from the
statement (i.e. the statement to which the current
statement is a sub).

Part Two, Section 7: Executable Programs page 71

; ESRI~-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

The procedure getsuc returns the stid of the successor.
To move to the successor:
stid . getsucl(stid);

Given these two basic procedures, a number of other procedures
have been written and are part of the NLS system,. ALl of the
following procedures take an stid as their only parameter, and

do nothing but return a value, usually a stid. If the end of

the file is encountered, these procedures return the global

value "endfil", 4g2c

getup(stid) returns the stid of the up
getnxt(stid) - returns stid of next statement
getbck(stid) - returns the stid of the back
gethed(stid) - returns stid of the head of the plex

getail(stid) - returns stid of the tail of the plex

getend(stid) - returns the stid of the end of the
tail of the plex

getftl(stid) - returns TRUE if stid is tail of plex,
else FALSE

getlevi(stid) - returns level of statement
Input/Output 423

Input and output must be handled quite differently for TNLS
and DNLS. There are three system globals which may prove of
service Iin making this distinction: 4g3a

fulldisplay

typewriter

nlmode - the current value, either fulldisplay

or typewriter
Example:

IF nlmode=fulldisplay THEN something ELSE other—thing;

There are a few procedures that work in both DNLS and TNLS: 423b

Part Two, Section 7: Executable Programs page 72

) ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

These return the ASCII value of a character from the
keyboard input buffer:

input() - get next character from keyboard
input buffer

inpcuc() - get character, forced upper-—-case,
from the keyboard input buffer

lookc() - retarn the next character in the
input buffer without advancing the
buffer pointer

dismes(typejyjastring) - given a type number and the
address of a string, will print the message
on the user®s teletype or (in DNLS) display
it in the teletype simulation window (above
the command feedback line).

02 clear message area; astring not necessary

1: put out message and leave it there

2: display message for a few seconds (same
as 1 for TNLS)

>1000: display for n microseconds (same as

1 for INLS)

type=

Remember, a dollar sign preceding a variable means the
address of that variable.

Cele dismes (2, $strvar) ;

A temporary string may be declared in the procedure call
for the use of that procedure alone:

dismes (1, $"string of text to be displayed") ;

levset(stidyastring) — given an stid and the address of
a string containing levadj characters (u's
and d's), evaluates levadj and returns a
target stid and 0 if new statement is to be
down from target or 1 if successor. Used
in routines which insert statements,

TNLS 4g3c

There are no standard L10 constructs for TNLS I/0. The
following procedures should be of help:

Part Two, Section 7: Executable Programs page 73

) ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

txtlitlastring) - passed the address of a string,
appends text from keyboard to string

levadj(stidyastring) — given an stid and the address
of a string variable, gets a string of
levadj characters (u's and d's) from the
user and puts them in the string

thug(atp) - passed the address of a text pointer,
gets address from user

tbhug2(atplyatp2) - get two bugs, the second relative
to the first

typeas(astring) - passed the address of a string,
types string on tty. The programmer
may declare a temporary string in cases
like this. e.g.

typeas ($"this will print out") ;

crlf() - type a carriage return—-line feed
on the tty (You may also have a
carriage return in a string passed
to typeas.)

DNLS 4g3d
There are some standard L10 statements for DNLS [/0:
INPUT
INPUT may be followed by any segquence of the

following; backup within the command (backspaces) is
handled automatically:

BUG tp - get a bug selection from the cursor
and store the resulting text pointer
in tp

STID tp - get a bug from the cursor or a SP
followed by a statement name, number
or SIDy and store the resulting text
pointer in tp

LEVADJ str - get a sequence of level adjust

characters (u or d) and store them
in the string str

Part Two, Section 7: Executable Programs page 74

ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

TEXT str — get a string of characters (up to a
CA or Center-Dot), echoing them in
the text area of the display, and
store them in the string str

STRING str - like TEXT except echoes in the
name area

NAME str - get a string of characters forced
upper-case, echoing them in the name
area of the display, and store them
in the string str; the characters may
be typed in or a word may be bugged

WORD str - like NAME except not forced
apper—-case

NUMBER str - like NAME except inputs a number,
typed or bugged

statement; - any standard L10 statement,
followed by a semicolon if necessary
to delimit the end of the statement;
the statement will be executed at
‘ that point in the input sequence

char - succeeds if specified character is
input; may be any of the characters
mentioned under "Primitives" or

CA - Command Accept
CD - Command Delete |
ALT - Alt Mode, Escape |
BC -~ Backspace Character |
BW - Backspace Word

C. - Center Dot

Example (the Replace Text command):

INPUT BUG bl BUG b2 (BUG b3 BUG b4 CA flag.TRUE; /
TEXT lit CA flag.FALSE) ;

IF flag THEN ST bl b2 . b3 b4
ELSE ST bl b2 . *lit* ;

DSP -- the Command Feedback line

One may control the text of the command feedback line
with the following L10 statement:

Part Two, Section 7: Executable Programs page 75

ESRI-ARC 11-SEP-73 17:03

18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

DSP [dsp-element)

where dsp—-element is any sequence of the
following:

{ = clear command feedback line

e — move arrow to far left

t - set arrow under start of nxt word
ees — replace last word currently in

command feedback line with next word

a word - including letters or digits only;
will be added to command feedback line

To display special characters, surround them
with guotation marks.

The Command Feedback line may hold up to 30
characters,

Additionally, the following procedures may be of
service; some take no parameters:

an() - turn arrow on

af() - tarn arrow off

gm() - tarn guestion mark on

qmoff() - turn question mark off

dn{astring) - given the address of a string,
will display the string in the name
register; as with dismes(astring), you
may declare a temporary string as the
argument

litdpylastring) - given the address of a
stringy will clear file display area

and display contents of the string

rstlit() - restores file area after a litdpy()

Part Two, Section 7: Executable Programs page

76

ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS! GUIDE SRI-ARC 12 SEP 73 18969

I Section 33 Error Handling —— SIGNALs 4hn

Introduction 4n1
Yhen an NLS system procedure fails to perform properly, it may
generate an error signal, Every signal has a value., When a
signal is generated, control is passed back to the last signal
trap in effect, If no explicit program control statement
(e.2z. RETURN) is given in that signal trap, a new signal will
be generated, If the error is not dealt with, the signal will
eventually bubble all the way back and the program will stop.

You may trap signals and regain control by setting up the
response in advance., 4hla
Trapping Signals 4h2
To trap error signals with any error value: 4h2a
ON SIGNAL ELSE statement 3
Cs e ON SIGNAL ELSE
BEGIN
dismes(2y $string);
. RETURN;
END;
It is a good idea to set up a signal response before calling
any NLS system procedures. Once the signal response is set,
it remains in effect and will be executed whenever a signal is
received through the end of the procedure or until it is
changed. A signal trap set inside a loop will only remain in
effect within the loope. Any subsegquent ON SIGNAL statements
will at that point change the signal response. 4h2b
Only signals generated by procedures called by the procedure
will be trapped by tnat procedure's signal trap. It will not
trap signals generated in the same procedure, 4h2c
The signal response may be any (block of) L10 statement(s).
It will be executed, then 4h2d

— if you have an explicit program control statement
(RETURN, GOTO, EXIT LOOP), control will be passed
accordingly, or

— if the signal trap includes no explicit program control
statement, another signal will be generated.

Part Two, Section 3: Error Handling —- SIGNALs page 77

ESRI—ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

Thus, if you wish to resume control in the current procedure,

the signal trap will have to end with a GOTO statement

pointing to an appropriately labeled statement, This is one

of the few places where a GOTO is really necessary. 4h2e

If the signal trap applies to a loop, an EXIT LOOP or REPEAT
LOOP is a valid signal program control statement, 4nh2f

Cancelling Signal Traps 4n3
If, after setting up a signal response, you wish to cancel it
so that the signal will just bubble on up, you may do so with
the statement: 4h3a

ON SIGNAL ELSE 3

Specific Signals 4h4
When a signal is generated, an NLS system global variable,
sysgnl, is given a specific value (the value of the signal).

Each value represents a certain type of error, Also, a system
global variable, sysasg, is given the address of a string

which holds an error message. 4hda
The above constructions react to any signal, no matter what
. its value may be, The ON SIGNAL statement can be used much
like a CASE statement if you wish to trap specific signals: 4h4b
ON SIGNAL

=constant: statement;
=constant: statement;

ELSE statement;

L P 98 ON SIGNAL

=ofilerr: %open file error%
BEGIN
IF sysmsg THEN dismes(2,sysmsg);
RETURN ;
END;

ELSE %any other error signal%
BEGIN
dismes(2y8"Error");
RETURN
END;

The current signal constants can be found in (nls,const,).
The common reason for using this specific signal treatment is
when you call a procedure which you know will generate a

Part Twoy, Section B: Error Handling —— SIGNALs page T8

ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

certain signal value under certain conditions. In such a
casey, you can learn the signal constant of concern from the
SIGNAL statement which generates it, 4hdc

Part Two, Section 8: Error Handling ——- SIGNALs page 79

ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 1B969

. Section 9:

Invocation of User Filters and Programs 4i

Introduction 4i1

The user—-written filters described In this document may be
imposed through the NLS command "Goto Programs", 4ila

User sequence generator programs for more complex editing
among many files may be written, Addi tionally, programs
may be written in this L10 subset to be used to generate
sort keys in the NLS Sort and Merge commands, Descriptions
of these more complicated types of user programs and of NLS
procedures which may be accessed by such programs s
deferred until a lLater document, In such examples,
however, the user would still make use of the commands in
the NLS "Goto Programs" subsystem.

These NLS commands are used to compile, institute and execute

User Programs and filters, 4ilb
Compilation——
is the process by which a set of instructions in a
. program is translated from the L10 language written in

an NLS file into a form which the computer can use to
execute those instructions.

Institution~~-

is the process by which a compiled Content Analyzer
program is linked into the NLS running system for use as
a filter.

Execution—-—

is the process in which control is passed to a compiled
Executable program.

This section additionally presents, in detail, examples of the

use of the L10 programming language to construct user analyzer
filters and reformatters, These programs were written by

members of ARC who are not experienced programmers, They do

not make use of any constructions not explained in this

manual, 4ilc

Part Two, Section 9: Ilnvocation of User Filters and Programs page RO

. ESRI-ARC 11-SEP-73 17:03 18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969
l Programs Subsystem 412
Introduction 4i2a

This NLS subsystem provides several facilities for the
processing of user written programs and filters, it is
entered by using the NLS command:

goto programs CA

This subsystem enables the user to compile L10 user
programs as well as Content Analyzer patterns, control how
these are arranged internally for different uses, define
how programs are used, and interrogate the status of user
programs.

Programs subsystem commands 4i2b

After entering the Programs sbsystem, the system expects
one of the following commands:

Show Status of programs buffer 1

This subcommand prints out information concerning
active user programs and filters which have been
‘ compiled and/or instituted:

Show Status [of programs buffer) CONFIRM
When this command is executed the system will print:

-— the names of all the programs in the stack,
including those generated for simple Content
Analysis patterns, starting at the bottom of the
stack. This stack contains the symbolic names of
all compiled programs and a pointer to the
corresponding compiled code, The stack is
arranged in order of compilation with the most
recently compiled program at the top of the stack.

—-— the remaining free space in the buffer. The
buffer contains the compiled code for all the
current coapiled programs, New compiled code is
inserted at the first free location in this
buffer.

-— the carrent Content Analyser Program or "None"

Part Two, Section 9: lavocation of User Filters and Programs page 81

L10 USERS!'

Par t

Two,

ESRI-ARC 11-SEP-73 17:03 189689
SRI-ARC 12 SEP 73 189869

-— the current user Sequence Generator program or
"None"

—-= the user Sort Key program or "“"None"

Compile

L10 Program

This subcoamand compiles the program specified.
Compile L10 (user program at) ADDRESS CONFIRM

ADDRESS is the address of the first statement of
the program.

This command causes the program specified to be
compiled into the user program buffer and its name
entered into the stack. The program is not

insti tuted.

The name of the program is the visible
following the word PROGRAM or FILE in the
statement indicated by ADDRESS.

The program may be instituted and executed by the
appropriate commands,

File

The user program buffer is cleared whenever the
user resets or lLogs out of the system. 1f one has
a long program which will be used periodically, he
may wish to save the compiled code in a file which
can be retrieved with the Load REL File command.,
The command to do this is:

Compile File (at) ADDRESS (using) L10 CA (to
file) FILENAME CONFIRM

The FILENAME must be the same as the program name,
The program will then be compiled and stored in
the file of the gziven name (with the extension
REL, unless otherwise specified). The user may
then load it at any time,

Before doing this, the programmer must:

Section 9: Invocation of User Filters and Programs page 82

L10 USERS'

Part Two,

GUIDE

ESRI-ARC 11-SEP-73 17:03

18969

SRI-ARC 12 SEP 73 18869

1) replace the word PROGRAM at the head of the
file with the word FILE, and

2) position the CM (in DNLS, the top of the
screen) at the FILE (ex PROGRAM) statement,

Content Analyzer Pattern

This subcoamand allows the user to specify a
Content Analyzer pattern as a Content Analyzer
flltﬂl‘.

Compile Content (analyzer pattern) SELECTON
CONFIRM

The pattern must begin with the first visible
after the SELECTON address, or at that point you
may type it in.

When this command is executed, the pattern
specified is compiled into the buffer, its name is
put on the stacky, and it is instituted as the
Content Analyzer filter.

Load REL file

A pre-compiled program existing as a REL file may be
loaded into the program buffer with the subcommand:

Load Rel (file) FILENAME CONFIRM

If the FILENAME is specified without specifying an
extension name, this subcommand will search the
connected directoryy, then the <{user—-progs> directory,
for the following extensions:

REL it will simply load the REL file

CA it will load the program and institute it
as the current content analyzer program

SK it will load the program and institute it
as the current sort key extractor program

SG it will load the program and institute it
as the current sequence generator program

Sort key extractor and sequence generator programs
are more complex and are generally limited to
experienced L10 programmers, Some are available
in the User Programs Library
(user—-progss—contents,1),

Section 93 Invocation of User Filters and Programs page 83

ESRI-ARC 11-SEP-73 17:03

18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

Delete
All

This subcommand clears all programs from the user
program area. All programs are deinstituted, the
stack is clearedy, and the buffer is marked as
empty.

Delete ALl (programs in buffer) CONFIRM
Last

This subcommand deletes the top (or most recent)
program on the stack, The program is deinstituted
if instituted, its name removed from the stack,
and its space in the buffer marked as free.

Delete Last (program in buffer) CONFIRM
Run Program

This coanmand transfers control to the specified
programe.

Run Program PROGNAME CONFIRM
NUM

PROGNAMNME is the name of a program which had been
previously compiled. That is, PROGNAME must be in
the buffer when this command is executed,

Instead of PROGNAME, the user may specify the program
to be instituted by its number, This first program
loaded into the buffer is number one,

Institute Program

This subcommand enables the user to designate a
program as the current Content Analyzer,; Sequence
Generatory, or Sort Key extractor program.

Institute Program PROGNAME CA
NUM
(as) CA (content analyzer) CA
Content (analyzer) CA
Sort (key extractor) CA
Sequence [(generator) CA

Part Two, Section 9: Invocation of User Filters and Programs page

R4

L10 USERS?

Part Two,

GUIDE

ESRI-ARC 11-SEP-73 17:03

If a prograan has already been instituted in that
capacity, it will be deinstituted (but not removed
from the buffer and stack).

Instead of PROGNAME the user may specify the program
to be instituted by number. The first program loaded
into the buffer is number one.

Deinstitute Program

This subcommand deactivates the indicated program,
but does not remove it from the stack and buffer, It
may be reinstituted at any time,

Deinstitute Content (analyzer program) CA
Sort (key extractor program)
Segquence (generator program)

Set Buffer size

The user programs buffer shares memory with data
pages for files which the user has open, therefore
increasing the size of the user programs buffer
decreases the amount of space available for file data
with a possible slowdown in response for that user,
The initial size is set to 4 pages. This may be
increased with the subcommand:

Set Buffer (size) NUMBER CONFIRM

where NUMBER is the number of pages (512 words
each) to be allocated to the user programs buffer,

If you get an "Error in Loading" message when
attempting to compile a program or load a REL file,

try increasing the buffer size.

You may reset the buffer size (to four pages) with
the command:

Reset Buffer (size) CONFIRM

Assemble File

Files written in Tree—Meta can be assembled directly
from the NLS source file with the Assemble File
command This aspect of NLS programming will not be
described in this document,

Section 9: invocation of User Filters and Programs page

18969

SRI-ARC 12 SEP 73 18969

ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

Examples of User Programs 413

The following are examples of user programs which selectively

edit statements in an NLS file on the basis of text searched

for by the pattern matching capabilities. Examples of more
sophisticated user programs, including sort keys and user

sequence generator programs, can be found in the <user-progs>
directory through the file (user-progs,—-contents,). One can

find out how the standard NLS commands work by tracing them
through, beginning with (nlsy nctrl, 2). A table of contents

to all the global NLS routines available to the user can be

found in (nls, sysgd, 1). 4i3a

Example 1 -- Content Analyzer program 4i3b

PROGRAM outname % removes the text and delimiters () of NLS
statement names from the beginning of each statement %
DECLARE TEXT POINTER sf3
(outname)PROCEDURE;
IF FIND NP *{ [*)] tsf THEN %found and set
pointer after name%
BEGIN
ST sf sf SE(sf);
RETUERN(TRUE);
END
ELSE RETURN(FALSE);
END.
FINISH

Example 2 —-- Content Analyzer program 41i3c

PROGRAM changed %T'his program checks to see if a
statement was written after a certain date, If it was, the
string "[CHANGED]" will be put at the front of the
statement., %
(changed)PROCEDURE;
LOCAL TEXT POINTER pt;
%remember, CCPOS is initialized to the beginning of
each new statement®
IF FIND tpt SINCE (25-JAN-72 12:00) THEN
ST pt pt « "[CHANGED]"; %the substring of zero
length is replaced with
"[CHANGED]"%
RETURN(FALSE);
END.
FINISH

Example 3 -- Executable program 4i3d

Part Two, Section 9: Invocation of User Filters and Programs page R6

ESRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

‘ FILE toc %This program will generate a table of contents
branch with statement numbers %
({ toc) PROCEDURE 3
% declarations %
LOCAL levely, day, vspecy last, place ;
LOCAL TEXT POINTER ptr 3
LOCAL STRING num[S5] ;
REF da 3
num.L « ptr « 03 %initialization%
% input file and number of levels %
IF nlmode=typewri ter
THEN
BEGIN
celfl) ;
typeas($"Table of Contents generator:
Select file ");
tbug (Sptr) ;3 %get a bug from the tty%
crlfl) ;3
typeas ($"Number of levels of depth: ")
txtlit ($num) ; %get a text string from the
tty%
cerlfl) ;
typeas($"runninge... ");
END
ELSE #display®
‘ BESIN
dol($"*%) 3 %clear the name register®%
DSP [< Table of Contents ? Select file) ;
INPUT STID ptr CAj3
DSP [«< Levels of depth) ;
INPUI NUMBER num CA 3
DSP (< Table of Contents being genera) 3
dn($" ted"); %command feedback line too
short %
END3;
% set to origin %
ptr.stpsid . origin j
ptr{i] « 1.3
level o VALUE ($num); %evaluate number string%
level o« MIN (50, MAX (1l,level)); %levels of depth%
% insert table of contents statement %
ptr « cis (ptry, $"Table of Contents", down);
%commnand insert statement procedure%
% get viewspec words %
gda . dsparea (lcda()); %get address of display
area records, which hold all information about
display window, e.g. viewspecs%®
vSpec o« dasdavspec ; %copy viewspec word%
vspec.,vslev . level 3 %adjust level viewspecH

Part Two, Section 9: Invocation of User Filters and Programs page 87

ESRI-ARC 11-SEP-73 17:03

18969

L10 USERS' GUIDE SRI-ARC 12 SEP 73 18968

‘ vspec.vsbrof . vspec.vsplxf . FALSE; %ad just
branch or plex only viewspec%
% assimilate group to table of contents %
place « ptr 3
last getsuc (place) 3
cea [(ptry, getsuc(ptr), getail(ptr), 0, vspec,
da.davspc2, da.dausqgcod, da.dacacode); %command
execute assimilate procedure, using modified copy
of first viewspec word and the rest from the
display area descriptors%
% for all statements in table of contents %
UNTIL (place getnxt(place)) = last DO
dotoc(place) 3 %turns statement into line for
table of contents%
% move table of contents to under st 1 %
cmg [ptry, getsuc(ptr), getprd(last), $"d");
%command move group procedure®%
% recreate display %
IF nlmode=fulldisplay THEN alldsp() ELSE crlf() ;3
RETURN ;
END.
(dotoc) PROCEDURE (stid) ; %passed stid, replaces

¥¥s tatement with table of contents line %
% declarations %
‘ LOCAL Llength;
LOCAL STRING dots[70], stnum[50], st[2000] ;
LOCAL TEKT POINTER end 3
% initializations %
length « Ste.L o stnum.L « 03
¥*dots¥ .
"....Q..

.........O..........l" ;

% get st number %
stnum.L « 03
fechno (stidy, $stnum); %put statement number in
string®
% get first line %
st¥ . SF(stid) SE(stid) 3
length « (65 = (3*getlevistid)¥stnum.L)); %maximum
length®
IF length < st.L THEN
BEGIN
st.L lLength ;3 %truncate statement%®
FIND SE(*st%*) [NP] tend > ; %back up to end of
last wordd®%
st¥ . SF(%¥st¥) end 3
END;
% format string %

Part Two, Section 93 Invocation of User Filters and Programs page

BB

SSRI-ARC 11-SEP-73 17:03 18969
L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

. dotsS.L « (length + 2) - st.L; %calculate number of

dotsh
st¥ . ¥st¥, ¥dots*, *¥stnum*; %constuct table of
contents stringh®

% replace statement %
ST stid ¥st¥% ;

RETURN;

END.

FINISH toc

Procedures Used in Examples; references taken from <NLS>SYSGD 4i3de

Format of references:

(proc—name) (link to source code) st—num—-of-source-code
(formal, parameters, if, any)
comment taken from source code file

(alldsp) (nls,dspgensalldsp) 3A
recreate display for all display areas

(cea) (nls,corenlycea) 7A
(target,srcl,src2,levstg,vspecl ,vspec2,usqcodycacode)
Core NLS Assimilate Command

' (cis) (nls,corenlycis) 9HAH

(stidyastrngylevstg)
Core NLS Insert Statement Command

(cmg) (nlsy,corenlycmg) i11L
(stidl,stid2,stid3ylevstg)
Core NLs Move Group Command

{(crlf) (nls,inpfbkycrlf) 6G
type a carriage return-line feed

(dn) (nlsyinpfbkydn) 8E1
(astrng)
display string in name area

(dsparea) (nls,dactrl,dsparea) 5SM
(dano)
get da entry address from display number —— returns
FALSE if da entry is not allocated

(fechno) (nls,seggenyfechno) 4J
(stidyastr)
Puts statement number of stid in string. GCive the STID .
as the first argument, and the address of the string
which is to contain the statement number as the second.
The statement number will be built in the string. If
the structure is not intact or the statement vector
cannot be built, a call to RERROR or an EXCEED CAPICITY

ERROR may result,

Part Two, Section 9: Invocation of User Filters and Programs page 89

: \
. =9
' ESRI-ARC 11-SEP-73 17:03 18969
/ L10 USERS' GUIDE SRI-ARC 12 SEP 73 18969

(getail) (nlsystranpygetail) 10A
(stid)
Given an stid, this procedure returns the stid of the
tail of the current plex
(getlev) (nlsyseggensgetlev) 41
(stid)
Called with STIDy, returns level of that statement,
(getnxt) (nls,stranpygetnxt) 10G
(stid)
This procedure finds the sequentially "next" statement,
i.e. the substatement, successor, or successor of up,
etcy of the stid passed as argument, Ignores all
viewspecs.
(getprd) (nlsystrmnpygetprd) 10D
(stid)
Given an stid, this routine returns the predecessor; if
the psid heads a plex, the stid itself is returned
(getsuc) (nls,filmnpygetsuc) 2H1
(stid)
The stid for the successor field is returned. If there
is no successor, the stid of the up is returned,
(lLcda) (nlsydactrl,lcda) 5J
returns nuaber of display area where bug resided at last
input character
(tbug) (nls,txcandytbug) 5SA
" (ptr)
given the address of a text pointer, gets an address
selection from the TNLS user and puts it in the text
pointer.,
(txtlit) (nls,inpfbk,txtlit) 5SB
(astrng)
passed the address of a string, appends text from
keyboard input buffer to string
(typeas) (nls,inpfbkytypeas) 6C
(astrng)
Given the address of a stringy types the string on the
user's teletype.

Part Two, Section 9: Invocation of User Filters and Programs page 90

L

L10 USERS' GUIDE

Char ASCII

Tab 011
LF 012
FormFeed 014
CR 015
sp 040
041
042
043
044
045
046
047
050
051
052
053
054
0585
056

*Hw™ sOORGERE S

PEUVUVIAY DO CNOCUELOUN=CON

Character Codes

ESRI-ARC 11-SEP-73 17:03 18969
SRI-ARC 12 SEP 73 18969

ASCII 7-BIT CHARACTER CODES

Char ASCII

057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101

Char ASCII

MUROCTUTOZECROU~TumMmoOoQw

102
103
104
10S
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124

Char ASCII

————— ——— — —

P 2y TN R SC

R=»0oQ00P

125
126
127
130
131
132
133
134
135
136
137

141
142
143
144
145
146
147

Char ASCII

150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172

YN ESCE 0T QTOD I ™~ KNGmMmy

N

page 91

o~

L10 USERS'

GUIDE

(J18969) 11-SEP-73 17:03; Title:
Institute /ESRI-ARC; Sub-Collections:
Origin: <USERGUIDES>L10-GUIDE.NLS;95,
« PN=03; .PES;
eDefaul tFont=8p,5;
« PxFontShow=1,2;
eViFont=8p,0; .H1="L10 USERS?
.HlFont=l2p,6.0;
eF="page .GPN3;"; .FP=FRK;
eLMBase=251,0; JLM==3; .RM=72,8.0;
«SNF=72,8.0; .SNFShow=0ff;
«PxPShow=13; .YBS=042p; .PxFShow=1,2;

«BP=J;

GULDE

Author(s):

.PxFont[l]=l4p'6;
oFFOﬂt=12D,6’O;

.BRM=68,7.5;
.SNFFOﬂt=6P,l'L1ght;

ESRI-ARC 11-SEP-73 17:03 18969
SRI-ARC 12 SEP 73 18969

Stanford Research
SRI-ARC; Clerk: NDM;
11-SEP-73 12:44 NDM ; e« D=0n3;
PxFont[1]=12p,63;

SRI—-ARC .GD; 18969"%;
.PNType=2;

«SN=0ff;
«SNFFontShow=<{=23

« PxFYD=1; .PxFYU=13; .PxFYS=13

page

JEW 10-SEP-73 14:59 18976
Proposed Design for Initial Privacy Features

Please comment if you're so inclined, distribute to anyone else who
might be interested if you know of such a persony, and ignore

otherwise.,

JEW 10-SEP-73 14:59

Proposed Design for Initial Privacy Features

INTRODUCT ION

The following are proposed changes to the SRI-ARC system which
would support an initial, limited level of ident-keyed access
control over NLS files. These changes are thought simple enough
to be implemented within a reasonable time frame, yet consistent
with what is believed to be the long—term solution to this fairly
complicated problem.

This proposal is based upon the belief that idents, not TENEX
directoriesy, must inevitably become the basis for identifying
users within the SRI-ARC system,. Hencey, the one major change
proposed here is a change to the monitor, one that reguires that a
user identify himself by ident, rather than by directory.

This change would not be reguired if users could be placed in
one—to—-one correspondence with directories,

This proposal would permit the creator of an NLS file to share it
with == and only with —— any desired set of users, Initially, to
share a file with another user will mean to allow him to read it
via NLS, and possibly (provided one additional constraint is met)
to edit it.

In the implementation described herey, the task of actually
checking a user's access to a file is assigned to NLSy, rather than
to the monitor. This is done only to simplify the initial
implementation. The check must eventually be performed by the
monitor if a level of security consistent with that of current
TENEX access controls is to be provided,

THE PROPOSAL

VERIFYING THE USER'S 1DENTITY
Use of an ident must be restricted to its owner, Therefores:

(P1) It's proposed that a password be associated with each
individual ident and reguired of the user at login (i.e.y by
the LOGIN JSYS. A supportive change must also be made to the
EXEC.). An NLS ident and passwordy, rather than a TENEX
directory and passwordy, would thus become the basis for gaining
access to the system. The moni tor whould infer the user's
directory from his ident (something which is always possible)
instead of the reverse as is done now (which is only sometimes
possible); use the directory thus obtained to proceed with the
loginy and then simply save the login ident in a job—global
cell available to NLS.

18976

ib

1b1

1d

2a

2al

2a2

JEW 10-SEP-73 14:59 18976
Proposed Design for Initial Privacy Features

There currently exists a sequential file giving ident as a
function of directory. It's suggested that to implement the
abovey the file be inverted and NLS passwords included in

ite 2ala

(P2) It's proposed that a JSYS be provided which returns the
logzin ident, 2a3
RESTRICTING ACCESS TO FILES 2b

Access to a file must be restricted to the set of users
specified by the creator of the file. Therefore: 2b1

(P3) It's proposed that the NLS '"load file' primitive check the
origin statement of a file being loaded for an optional field
of the form: 2b2

Access List: <{identl) ... s<identnd; 2b2a

containing a list of individual and/or group idents; and if |
such a field existsy, that NLS deny the user access to the file ’ |
(i.eey refuse to load the file) unless the list contains the

login ident or that of a group which contains it (or unless the

user is an enabled wheel). 2b3 |

. To make this check efficient: 2b3a

|
|
(P4) It's proposed that at NLS initialization, the login !
ident be retrieved from the monitor via the JSYS I
provided, and stored in an NLS global, 2b3al

(PS) It's proposed that a list of all those groups of
which the user is a member be maintained in the ident
file for each individual ident, and that this list be
copied to an NLS global at initialization. Verifying
access to the file thus requires only a comparison of
strings, rather than an appeal to the ident system. 2b3a2

This access check always occurs IN ADDITION TO the normal
TENEX access checks, implying the following: 2b3b

(1) A user cannot effectively be granted write access to
an NLS file unless he and the file share the same
directory or TENEX directory group. 2b3b1

(2) Among users who share a directory or directory group,
access to any NLS file within it can be controlled with
complete freedom: ANY subset of those users can be

JEW 10-SEP-73 14:59

Proposed Design for Initial Privacy Features

granted exclusive read/write access to ANY of those
files.

(3) Once a file is journalized, the access list (if there
is one) effectively becomes the set of users with read
access to the file, since TENEX access controls deny
write access to every user.

(P6) It's proposed that an NLS command be provided to establish
or replace the access field in the origin statement, verifying
the list of idents entered by the user,

The fact that the access list resides in the origin
statement of the file is an artifact of the initial
implementation; the user is not expected to deal with it
directly via NLS editing machinery (though he can't be
prevented from doing so).

(P7) It's proposed that the access list be verified at Journal
submission, since the user may have edited it by hand,

AVOIDING FORGERY

To prevent one's signing someone else's name to a memo that he
neither composed nor authorized:

(P8) It's proposed that the Journal ALWAYS take the Llogin
ident to be the clerk.

RESTRICTING ACCESS TO DELIVERED NAIL

To insure the integrity of delivered mail (necessary because
its text may be included in the delivery)y, some of which may be
of a private natures

(PY9) It's proposed that initial files be assumed private by
the Journal,. That is, whenever the Journal has occasion to
create an initial file to receive delivered mail, it's
proposed that it place the text 'Access List: <owner>3;' in
its origin statement.

Of course, once the initial file is created, the user may
change access to it if he desires. The Journal will never
again interfere, so long as the user refrains from deleting the
tlle.

SUMMARY OF SYSTEM CHANGES

It's proposed that:

18976

2b3b2

2b3b3

2b4

2bda

2b5

2c 1

2cla

2d

2d1

2dla

2d2

JEW 10-SEP-73 14:59

Proposed Design for Initial Privacy Features

(P1) a password be associated with each individual ident and
required of the user at login (i.e.y by the LOGIN JSYS. A
supportive change must also be made to the EXEC.). The monitor
whould infer the user'!s directory from his ident instead of the

reverse as is done now, use the directory thus obtained to proceed

with the loginy and then simply save the login ident in a
Job-global cell available to NLS.

(P2) a JSYS be provided which returns the login ident,

(P3) the NLS "load file' primitive check the origin statement of a

file being loaded for an optional field of the form:

Access List: <identl) ... s<identn>;

containing a list of individual and/or group idents; and if such a

field exists, that NLS deny the user access to the file (i.e.,

refuse to load the file) unless the list contains the login ident

or that of a group which contains it (or unless the user is an
enabled wheel).

(P4) at NLS initializationy, the login ident be retrieved from the

monitor via the JSYS provided, and stored in an NLS global,

(PS5) a list of all those groups of which the user is a member be
maintained in the ident file for each individual ident, and that

this list be copied to an NLS global at initialization., Verifying

access to the file thus requires only a comparison of strings,
rather than an appeal to the ident system,

(P6) an NLS command be provided to establish or replace the access

field in the origin statement, verifying the list of idents
entered by the user.

(P7) the access lList be verified at Journal submission, since the

user may have edited it by hand.

(P8) the Journal ALWAYS take the login ident to be the clerk.

(P9Y9) whenever the Journal has occasion to create an initial file
to receive delivered mail, it place the text '"Access List:
<owner>3;"'" in its origin statement,

18976

3b

Jc

3d

dd1

3f

dg

3h

Ji

34

3k

18976 Distribution

. Jeanne M. Leavitt, Rodney A, Bondurant, Jeanne M. Beck, Mark
Alexander Beachy, Judy D. Cooke, Marcia Lynn Keeney, Carol B,

Guilbault, Susan R, Leey, Elizabeth K. Michael, Charles F. Dornbush,
Elizabeth J. (Jake) Feinlery, Kirk E, Kelleyy, N, Dean Meyer, James E.
(Jim) White, Diane S. Kaye, Paul Rechy Michael D, Kudlick, Ferg R.
Fergusony Douglas C., Engelbart, Beauregard A, Hardeman, Martin E.
Hardyy Je Do Hoppery, Charles H, Irby, Mil E, Jernigan, Harvey G.
Lehtmany, Jeanne B, Northy, James C, Norton, Jeffrey C, Peters, Jake
Ratliff, Edwin K. Van De Riety, Dirk H. Yan Nouhuys, Kenneth E. (Ken)
Victor, Donald C. (Smokey) Wallace, Richard W, Watson, Don I. Andrews

JEW 10-SEP-73 14:59
Proposed Design for Initial Privacy Features

(J18976) 10-SEP-73 14:59; Title: Author(s): James E. (Jim)
White/JEW: Distribution: /SKI—-ARC; Sub-Collections: SRI-ARC; Clerk: JEWS
Origin: <WHITEDQUICK~PRIVACY.NLS3;11, 10-SEP-73 14:51 JEWV 3

18976

CFD 10-SEP-73 16:26
Meeting to resolve command language problems

A meeting to discuss and resolve existing problems in the proposed
command language will be held on Wedy, Sept. 12 at 10:00 AM. Sorry
for the short noticey but we'd like to resolve the known problems
ASAP,.

18977

18977 Distribution
James C, Norton, Richard W, Watson, Charles H., Irby, Michael D.
. Kudlicky, Diane S, Kaye, Harvey G. Lehtman, Dirk H. Van Nouhuys, N.
Dean Meyer, Jeanne M. Beck,

Meeting

(J18977)
5 Distri
Sub—-Coll

to resolve command

10-SEP-73 16:26;
bution: /JCN RWW

language problems

Title: Author(s):

CFD 10-SEP-73 16:26 18977

Charles F.

CHI MDK DSK HGL DVN NDM JMB
ections: SRI-ARC; Clerk: CFD >

Dornbush/CFD

MDK 10-SEP-73 16:38 18978
More on NLS Command Language Syntax for HELP Users

. This responds to Dean Meyer's note (18826,) in which he correctly
pointed out some deficiencies in my earlier note (18818,). In the
present note, it is recoamended that we not use the SSEL concept, and
I suggest that we discuss this at (or after) CFD's meeting on the
command language ambiguity he discovered,

MDK 10-SEP-73 16:38

More on NLS Command Language Syntax for HELP Users

I INTRODUCT ION

In (18826,) Dean Meyer has correctly pointed out some deficiencies
in the NLS command language syntax scheme I described in (18818,).

This note responds to Dean's suggestions (and implicitly to most
of those of JMB in (18940,)). It also includes ideas generated
from discussions Dean and I had, These discussions were very
useful to me in defining more precisely the particular problems
concerning definition of a "selection" (the SSEL-DSEL-LSEL
concepts). I wish to acknowledge Dean's interest and
understanding of these problems, and his patience with me.

The subject of ADDRESSES needs wider discussion than just between
Dean and me, so0 [propose that we have a meeting to discuss the
issues raised below soon. Since Dean's full-time summer
employment ends this Friday (Sept 14), the meeting should be this
we ek . I suggest we discuss it during the meeting on the use of
" TOWHERE]" that CFD has asked for, scheduled for Wednesday.

ADDRESSES: (18826y2a)

Definitions

The definitions of SSEL (source selection), DSEL (destination
selection), and LSEL (literal selection) may be written as:

TNLS DNLS
SSEL = ADDRESS / (<option>TYPEIN) ADDRESS / TYPEIN
DSEL = ADDRESS ADDRESS
LSEL = TYPEIN / (<option>ADDRESS) TYPEIN / ADDRESS

DAE <accept)
BUG / (<optlon>DAE <accept))

where in TNLS, ADDRESS
in DNLS, ADDRESS

and TYPEIN LIT {accept)>
{accept> <control—-d>
option> = <{control-ud>

(Note: when designating TEXT or a GROUP the above
definitions must of course be modified to allow for two
selections, not one.)

SSEL

The main problem from a documentation standpoint stems from the
introduction of the "SSEL"™ concept, to distinguish it from
"DSEL".

18978

1b

1c

2al

2a2

2ad

2ala

2a3b

2a4

2b

2n1

MDK 10-SEP-73 16:38
More on NLS Command Language Syntax for HELP Users

As I understand it, SSEL was introduced to generalize the
designation of "source” operand selections, These occur only
in the commands APPEND, COPY, MOVE.

The generalizations define, in a natural way, two alternatives
-t an ADDRESS and a LITERAL =-— whenever it is possible
that an operand selection might be either typed in as a LIT or
selected from a file,

However, the SSEL concept seems to be an unnecessary
generalizationy, because in the three commands in which it is
used it Is virtually certain that the user would not want to
type a LIT for the "source selection",

In fact, if for "source"™ one were to type a LIT, then the
APPEND, COPY,; or MOVE command would perforce be changed to an
INSERT.

So one objection I have is in allowing anyvone using the current
command language to change commands in midstream, except via
the {control-x> mechanism.

(I don't mean to preclude us from moving in this direction
for future versions of the command language. But it seens
to me that that is a separate research effort itself, and
shouldn®t be approached by making isolated changes to the
existing language.) '

The other objection I have is that the SSEL concept is
especially confusing from a documentation standpoint, It
requires additional explanations and a notation (acronym) for a
situation that will practically never arise.

What one would invariably type for the source is an ADDRESS
not a LIT. This is in keeping with the definition of
"source”" meaning "a string or structure already in a file",

If we introduce a new concept that isn't going to be used
much if at all, it seems to me the learning proces is bound
to be more difficult, and the overall form and simplicity of
the language is more obscured, not less.

I propose therefore that we eliminate (or at least not
document) the "SSEL"™ concepty and simply use instead the "DSEL"
concept,y, which is just an ADDRESS,

LSEL

The case for LSEL is different, Dean pointed out to me that

18978

2b2

2b3

2b4

2bS

2b6

2bba

2b7

2b7a

2b7b

2b8

2¢c

MDK 10-SEP-73 16:38
More on NLS Command Language Syntax for HELP Users

there are many cases where the concept of LSEL would be useful
as a "global acronym', I agree, provided we use a more
descriptive acronym than "LSEL". I therefore propose the
following list of global acronyms to replace those in (18818,
3bla):

OPERAND (replaces LSEL)
= TYPEIN / ADDRESS in DNLS
= TYPEIN / (<option>ADDRESS) in TNLS
ADDRESS (replaces DSEL and SSEL)
= BUG / (Koption>DAE <accept>) in DNLS
= DAE <accept> in INLS

TYPEIN = LIT <accept>

FILENAME = OPERAND for the special string "filename"
STRING (replaces "TEXT-ENTITY")

STRUCTURE (replaces “"STRUCTURE—-ENTITY")

LEVEL-ADJUST (replaces "LEVADJ")

Note: If anyone has an alternative acronym for OPERAND or
LEVEL-ADJUST, both Dean and I would be happy to consider it,

JMB has suggested CONIENT instead of OPERAND. How does that
feel? Any other ideas?

‘ OTHER ITEMS:

(188269 2b) With the above modifications, it doesn't seem
necessary to separate the command summary into two documents.
Command language differences between DNLS and TNLS have already
been greatly reduced, and the remaining ones (certain viewspecs,
window commands, etcy as well as in the above definitions of
global acronyms) can be noted appropriately.

(18826, 2c) LEVEL is not as accurate as LEVADJ, but it has much
more connotationy, which was the intent, We have compromised by
choosing LEVEL-ADJUST as indicated in the above table,

(18826, 3) I agree that the fewer acronyms the better, Where
noise words are descriptive enoughy a global acronym should be
used, as Dean suggests, I erred in using OLDSTRING and NEWSTRING
in my SUBSTITUTE example (18818, 7b2), because I didn't know what
the correct noise words were. Use of OPERAND (or its equivalent)
is fine there, given good noise words, But in a command like
PROTECT FILE a local acronym seems far more preferable than a long
string of noise words.,

(18826, 4) I gave a bad solution to the problem of "ANSWER" in
(18818, 3b3). The problemy in my opiniony, is that the end of a
command always ought to be a {confirm)>, The way to achieve this

18978

2c1

2cla

2c2

2c2a

3a

3b

3c

MDK 10-SEP-73 16:38

More on NLS Command Language Syntax for HELP Users

in the cases where an "answer” occurs at the end of a command, is
to define ANSWER to be YES or NO or "null", That is what I
propose, Then in a syntax expressiony ANSWER<{confirm)> is

unambi guous,

(18826, S) Dean and I agreed to tryout some syntax examples on
persons with no prior knowledge of NLS, in order to see what
convention for "space" makes most sense. The main choices are

(1) use <sp> for the space that must be typed, and use an
actual space for readability

(2) use an actual space for the space that must be typed, and
do not use <sp> at all.

(188269 6) I think Dean's suggestion of <{control-y)> is better
than <ctl)y, for the reasons he stated.,

(18826, 8) I certainly don't want to de—-emphasize the importance
of structure, but I think the LEVEL-ADJUST field should be
optional for two reasons:

1) it isn't always usedy, even when it can be, and

2) its use as a NON-optional field would conflict (as at
present) with statements beginning with a "d" or "u" that is
not followed immediately by a space.,

(18826, 9) I prefer the scheme of YES or NO (as modified above in
the acronym ANSWER) rather than an option key to "cycle back".

(18826, 10) CFD discovered through testing that we made a mistake
in defining the option "TOWHERE" immediately preceding "DSEL",
which itself has an optional alternative in it. This is not
parseabley, as he has pointed outy, because in effect we have
defined two consecutive optional fields. A separate meeting is
being held to resolve this conflict, I propose that at that
meeting we also bring up and resolve some of the above issues as
well, especially that of "SSEL",

18978

3d

Je

Jel

Je2

af

dg

3g1

3h

Ji

' 18978 Distribution
Richard W. Watson, James Ee. (Jim) White, Elizabeth J. (Jake) Feinler,
I . Harvey G, Lehtman, Kirk E. Kelley, Laura E. Gould, N. Dean Meyer,
Jeanne M. Becky, Charles F. Dornbush, Dirk H. Van Nouhuys, Michael D.
Kudlick, Diane S, Kaye, James C, Norton, Kirk E. Kelley, Harvey G.
Lehtman, Elizabeth J. (Jake) Feinler, Jeanne B, North, Michael D.
Kudlicky, Charles He. Irbyy

MDK 10-SEP-73 16:38 18978
More on NLS Command Language Syntax for HELP Users

‘ (J18978)

10-SEP-73 16:38; Titles Author(s): Michael D, Kudlick/MDK3

Distribution: /RWW JEW DIRT NIC—-QUERY; Sub-Collections: SRI-ARC DIRT
NIC—-QUERY; Clerk: MDK;
Origin: <KUDLICK>SYNX.,NLS;B8, 10-SEP-73 16:31 MDK ;

KIRK 10-SEP-73 17:41 18979
Appropriate location for SIGART in the group allocation scheme.

SIGART should be in the network group rather than NIC shouldn®t it? 1

KIRK 10-SEP-73 17:41
Appropriate Location for SIGAKT in the group allocation scheme,

I (J18979) 10-SEP-73 17:41; Fitles Author(s): Kirk E. Kelley/KIRKS
Pistribution: /MDK JCN WEF LSC REF; Sub-Collections: SRI-ARC; Clerk:
KIRK;

18979

DVN 10-SEP-73 22:21 18980
People's Computer Center Meeting on Computer Aided Instruction This
Thursday in Menlo Park

The People's Computer Center workes near hear (1919 Menalto, Menlo
Park) to disseminate computer services to the genral public,
particularlly as used in teaching elementary and highschool kids, 1

Some of you may recall their newsletter distributed here a few
months ago. ia

This thursday at 3:00 PM they are having one of a continuing series
of meetings on computer—aided instruction. The meeting will cover: 2

Future sites and schdules; the need for volunteers to sponsor
meetings; possible financing problenms, 2a

Questions to the People?s Computer Company staff about how the .
company works, who uses recources and howy, what'!s avialabe, etc. 2b

Computerland for Time Travelers, a computer fair at Lawrence Hall
of Science Septermber 20-23. 2c

Browsing and conversations..guests are invited to stay for
Thursday nite open house. 2d

The Center is on the corner of Menalto and Gilbert, Go east from
Midlefield on Willow to Gilbert, turn right on Gilbert, and go a few
. blocks. 3

I have posted a fact sheet on the cork bulleten board. For more '
information, seek Phyllis Cole, downstairs at SFRI. -4

18980 Distribution
James H. Bair, Laura E. Gould, Nancy J. Neigus, L. Peter Deutsch,

Alan C, Kay, Thomas O'Sullivany, Sally McLellan, K. Diane Shaw, Mario

Ce Grignetti,
Jeanne M, Leavitty; Rodney A. Bondurant, Jeanne M. Beck, Mark
Alexander Beach, Judy D. Cookey Marcia Lynn Keeney, Carol B.

Guilbault, Susan Re. Lee, Elizabeth K. Michael, Charles F. Dornbush,
Elizabeth J. (Jake) Feinler, Kirk E. Kelleyy N. Dean Meyer, James E.

(Jim) White, Diane S, Kaye, Paul Rech, Michael D. Kudlick, Ferg R.
Fergusony Douglas C., Engelbart, Beauregard A, Hardeman, Martin E.
Hardyy Je. D, Hoppery, Charles H. Irby, Mil E. Jernigan, Harvey G.
Lehtman, Jeanne B, North, James C. Norton, Jeffrey C. Peters, Jake

Ratliff, Edwin K. Van De Riet, Dirk H., Van Nouhuys, Kenneth E. (Ken)

Victory Donald C. (Smokey) Wallace, Richard W, Watson, Don I. Andrews

DVYN 10-SEP-73 22:21 18980
People's Computer Center Meeting on Computer Aided Instruction This
Thursday in Menlo Park

(J189R0) 10-SEP-T73 22:21; Titles Author(s): Dirk H. Van Nouhuys/DVN;
Distribution: /SRI-ARC JHB LEG NJN LPD ACK TO SM2 KDS MCG;
Sub—-Collections: SRI-ARC; Clerks: DVN3;

JBEN 11-SEP-73 03:45 18981

Request for Replies on NIC Questionnaire

To: NIC Users

From: Jeanne North
Network Information Center
Stanford Research Institute
Menlo Park, Calif. 94025

Re: Questionnaire on NIC Publications

Several of NIC's users have replied to the questionnaire in the ARPANET
NEWS for June regarding the Network Directory and the Catalog of the NIC
Collection. Thanks to those who have replied; your answers are very
thoughtful and will be helpful,

However, not enough replies have been received to give us a strong base
for certainty as to which aspects of the documents are useful, which are
not useful, and what Lmproveaments could be made, If you have not
replied, would you please take the time to print out the rest of this
item, and mark the boxes and mail to me right away. This is especially
important if you have changes to suggest,

JBN 11-SEP-73 03:45 18981
Request for Replies on NIC Questionnaire

QUEST IONNATRE on NIC Publications

YOUr NAGme@eccscsccscsccsvcccssvcssssscsnsces Ol‘ganlzatlon......... ce e
1. Please check applicable boxes:

NIC docs in hardcopy own have use use use

copy access s 1/month more less

Directory of Participants: ..z

Current Catalog tees

2. Check level of use you make of each section of the Directory:

Di rectory of Participants indis- very useful not no
pensable useful useful opinion
Individuals, Brief Sees S e g = B e a

(Name, phone)

Individuals, Full entry Sees Sees Sees

.
.
L
-
.
o
-
.
.
.
.
.
.
.
.
.
.

Groups See
(name, address etCc.y
of all members)

JBN 11-SEP-73 03:45 18981

Request for Replies on NIC Questionnaire

Index of Idents Sees S ees tees Teen tees

Organizations Tees
(name, address of org,
with names of people)

Would you miss the listings of people in each organization if they
were discontinued?

Comments about Directoryeeccsccssse

JBN 11-SEP-73 03:45 18981
Request for Replies on NIC Questionnaire |

. 3. Check level of use you make of each section of the Catalog:
Current Catalog of the indis- very useful not no
NIC Collection pensable useful useful opinion
TR AN R T R 1O TR
Number Index Sees Teet Tees Tees Sees
Ti tleword Index taes Seel Teet HP Teel
Listing (with abstracts) Sees Sin s Seel Sees Sees

Would you miss the abstracts if the Listing were discontinued?

' Are RFC's almost the only items you refer to in the Catalog?

Comments about Catalog Indexes and Listingeescsssce

18981 Distribution

Joseph B, Reid, William T. Misencik, Toshiyuki Sakai, Louis Pouzin,
Yngvar Lundh, Robert H. Hinckley, Marvin Zelkowitz, Don D. Cowan,
louis F, Dixony Michael O'Malley, Peter Kirstein, David J. Farber,
Dave Twyvery, Art J. Bernstein, Dave E. Liddle, A. Kenneth Showalter,
D. D. Aufenkamp, Derek Leslie Arthur Barber, T jaart Schipper, Richard
M. Van Slyke, E. M. Aupperle, Hubert Lipinski, Robert F. Hargraves,
Ce D. (Terry) Shephard, Maurice P. Brown, PRobert L. Ashenhurst,
Michael D, Kudlick, Richard W, Watson,

Gregory P, Hicksy Gloria Jean Maxey, Roberta J., Peeler, Craig Fields,
Ermalee R, McCauley, Margaret Iwamoto, Dee Larson, Robert E. Doane,
Brenda Monroe, Jeanne B, Northy Pam J. Klotz Cutler, Barbara Barnett,
Stan Goldingy Steve G. Chipmany John P, Barden, Martha A, Ginsberg,
Shirley W, Watkins, Janet W, Troxely, Connie D. Rosewall, Anita L.
Coley, Carol J. Mostrom, Harold F. Arthur, Peter R, Radford, Wayne R.
Robey, Joshua Lederberg, Connie Hoog, James A, Blumke, David Hsiao,
Mi chael L. Marrah, Vinton G. Cerf, Gerald L. Kinnison, Paul Baran,
Henry Chauncey, Jo. T. Sartain, Robert N. Lieberman, Ralph Alter, Nils
Maras, Philip H. Enslow, Robert M. Dunn 1

William K. Pratt, David C. Evansy, Douglas C. Engelbart, Bertram
Raphael, Daniel L. Slotnick, Carolyn E. Taynai, Easter D. Russell,
Leonard B. Fall, Peggy D. Irving, Roy Leviny, M. P. McCluskey, Pitts
Jarvis, Barbara A, Nicholas, Jacquie A. Priest, Terence E. Devine,
Paul M. Rubiny, Paula L. Cotter, 0. A, Hansen, Dan Dechatelets, Nancy
C. Thies, Robert Silberski, Marcia Lynn Keeney, Margaret A, (Maggie)
Bassetty J. A. Smith, Leina M. Boone, Diana L. Jones, Nancy J.
Neigus, Terry Sack, Frances A, (Toni) McHale, Lucille C, (Lucy)
Gilliardy Ed J, Collins, Gary Bluncky, John F. Heafner, Kathy Beaman,
David J. Kingy, C. Jane Moody, Sue Pitkin, Jerry Fitzsimmons

Glenn J. Cullery, Frank S. Coopery, Bruce G. Buchanan, Kenneth L.
Bowles, Morton I. Bernstein, Paul Baran, Saul Amarel, Roy C. Amara,
John E. Savagey, Butler W, Lampson, William R. Sutherland, Thomas G.
Stockhamy, Gene Raichelson, Michael O'Malley, Peter G. Neumann, Marvin
Minsky, Robert E, Millsteiny, J. C. R, Licklider, Robert M. Balzer,
Herbert B, Baskin, Robert P, Abbott, Peter Kirstein, William B. Kehl,
Roland F. Bryan, James G, Mitchell, Jeanne B. North, Allen Newell,
John McCarthy, Lawrence G. Roberts, Frank E., Heart, Edward L. Glaser,
Thomas M., Marilly, T, E., Cheatham, James W, Forgie, Keith W. Uncapher,
Edward A, Feigenbaum, Leonard Kleinrock

Michael B, Young, Michael A, Padlipsky, Schuyler Stevenson, L. Peter
Deutschy John Davidsony, Thomas D*'Sullivan, Sol F. Seroussi, Scott
Bradner, Robert H., Thomas, Michael J. Romanelli, Ronald M. Stoughton,
Ae D. (Buz) Owen, Robert L. Finky, Jeanne B, North, Steve D. Crocker,
Thomas F. Lawrencey, John W. McConnell, James E. (Jim) White, A. Wayne
Hathaway, Patrick W. Foulky Richard A, Winter, Harold R. Van Zoeren,
Alex A. McKenziey Abhay K. Bhushan, B. Michael Wilber, Edward A.
Feigenbaum, Robert T. Braden, James M. Pepiny John T. Melvin, Joshua
Lederbergy, Paul J, Nikolai, Robert J. Gronek, Rein Turn, Mark
Medressy Franklin Kuo, Howard Frank, Robert L. Fink

John F. Wakerlyy Tom C. Rindfleisch, Leonard B, Fall, David L. Hyde,
Gary Blunck, Tom P, Milke, Alan H. Wells, Chuck R. Pierson, Carl M,
Ellisonys Robert P, Blanc, Jay R. Walton, Terence E. Devine, David J.
Kingy, William L. Andrews, Milton H. Reese, Kenneth M. Brandon, Lou C,

Nelson, Jeffrey P. Golden, Richard B, Neely, Dan Odom, Ralph E.
Goriny, Robert G. Merrymany P, Iveitane, Adrian V. Stokes, David L.
Retz, Reg E., Martin, Gene Leichner, Jean Iseli, James E., (JED)

‘ Donnelley, William Kantrowitz, Michael S, Wolfberg, Yeshiah S.
Feinrothy Anthony C, Hearn, Eric F, Harslemy, Robert M, (Bob)
Me tcalfe, Bradley A. Reussow, Daniel L., Kadunce, George N, Petregal

PCI/BPO MEETING

DEAR DR, ALTER

THANK YOU FOR YOUR MESSAGEWHICH I RECEIVED OK.
I WILL SEE YOU AND MR FOSTER ON THE MORNING OF
THE 25/SEPT.

KIND REGARDS,

KEITH SANDUM

KNS 11-SEP-73 11:13

18983

18983 Distribution

Ralph Alter,

VGC 11-SEP-73 12:11 18984

rsponse to JBN prompt

Jeanne, thanks for setting up su-dsl account for me., I thought I had

turned in the NIC guestionnaire on ne twork directory and catalog. If

yvou didn't get a copy of my filled out form, let me know and I will

do another for you. Vint 1

18984 Distribution
Jeanne B, North,

MDK 11-SEP-73 13:42 18985

Judy ... Please ask Peter Deutsch (LPD) if he still wants us to make

his Journal deliveryy be "Online" at the NIC, rather than "Netw rk

Online" as it is now, If soy, would you please take care of that

change? Thanks ... Mike, 1

18985 Distribution

Judy D. Cooke,

JDH 11-SEP-73 16:15
On—-line Host field in ident system

. My proposal buried in (MJOURNAL, 18800, 1:w) on Interim Dual-site
Tdent System to "temporarily" implement "On-line host" or "NLS host"
in the ident system has gotten by without comment so far. I'm
assuming silence is consent,

18986

18986 Distribution
James E, (Jim) White, Charles H. Irby, Diane S.

Kaye,

JLM 11-SEP-73 18:23

man I have finally got this to a few peopple i quit

18987

JLM 11-SEP-73 18:23

. 11 Sept.-SADPR-85

Opening remarks by Lt Col o Keffe

He stated that their was a lot of interest at the high levels
in fact he apparently briefed yesterday a group of high level
officers on the study.They stressed that the computer must be
used to better help the AF to manage their resources

The cuurent base level machines are running out of gas and
roomyie the 35004s and the 1050,s

To upgrade these systems it is important that it be done in
the context of a overall plan—-thus the sadpr study was born

He stated that the current systems were designed and
implemented on a functional basis and that it may have been
okay then but it is no longer acceptible and certanily not
efficent,

Stated that the study was to deal with base level business
and their were emerging technology,s around such as
texteditors and communication systems like the ARPA net
which offered the AF a much more efficent and powereful way
of doing busiiness.

He stated thaat the STALOG was considered a good study as a
point of departure as well as the Base Comm Study.

The following is the originaziton of the study.

Director—1lt Col Oj,Keecefe

Dep Dir Lt Col Hoffman from the Data Design center
Regquirements—Ma jor Zara

Concepts and Technology-Lt Col Conrraty
Resources—Mr zenlea

mitre project officer—j Mitchell

He stated that j mitchel had prepared a 1980 tchnology forecast
which was just published

He also stated which is probably most significant that the
study would result in a DAR which would then be implemented.As

18987

la

1al

1a2

la2a

1a2b

la2c

1ad

ib
1b1
1b2
1b3
1b4
1bS

ib6

1b7

JLM 11-SEP-73 18:23 18987

i read the plan it does imply r&d though I am not too convinced

at this point if they really mean it, 1bR
I was amazed to observe that I and frank are the only troups
from the r&d side of the house.It is heavily manned by stems
design center peopple.. 19
They intend to use the redactron system for the prepartion of
the reporty,which is encouraging but i am nervous about their

ib10

willigness to truly look at the 1980 time frame.

18987 Distribution

Frank J., Tomainiy Duane L. Stoney, Edmund J. Kennedy, Richard H.
. Thayer, William P. Bethke,

	18967-18968

	18969

	18976-18977

	18978-18979

	18980-18981

	18983-18987

