SAMSO

Harold, John L. Dupuis from SAMSO [(213) 643-0471] called today to explore possible use of the ARPANET. Since they are an AFSC organization, thought I would touch base with you to have you call them for coordination purposes. If you think I should also call John Zaner, please let me know.

Would be interested in knowing how you are progressing as your time allows.

Very best regards, Jean Iseli [(703) 893-3500 Ext. 2371]

(J18340) 9-AUG-73 14:08; Title: Author(s): Jean Iseli/JI; Distribution: /EPS SDC2 SSP JI HFA; Sub-Collections: NIC; Clerk: JI; buz,

1

i'd like to talk to you on the phone about your loading process and to help you get dnls running on your imlac. can you give me a call on tues., 8/14?

1a

loading imnls

(J18341) 9-AUG-73 14:24; Title: Author(s): Kenneth E. (Ken) Victor/KEV; Distribution: /ADO; Sub-Collections: SRI-ARC; Clerk: KEV;

Jeanne--

Sorry about these last minute changes, but the file was looked over and ceratin things were thought to be missing. I will copy (to this file) the corrected and added statements and give you the statement numbers from <BBN-NET>USINGNOTES where they appear.

r out

In addition there seems to have been some confusion between Crocker and myself how this document was to appear. He seems to have acquired an RFC number for it, though I didn't think it was to go out as an RFC. I will handle that with him when he returns to vacation, butin the meantime, all that header should be stripped off.

2

Here are the changes:

(usingnotes, 5a) last sentence added

3a

The meeting began by attempting to create a relatively complete list of topics directly relevant to users. The intention was to then discuss some of these categories in detail. The categories of concern to users are listed here along with a brief outline of the discussion and recommendations associated with each category. Not all topics were discussed fully due to time limitations. It was acknowledged that some of the recommendations were quite extensive, but that they should be mentioned even though their implementation would be far off.

3a1

(usingnotes, 5a2a3) phrase added: ideas suggested by Padlipsky and

3ь

 Bowles, Hathaway, and Stoughton volunteered to outline specs for a Network command language that would be compatible with ideas suggested by Padlipsky and discussed at the meeting.

3b1

(usingnotes, 5a2b) statement added

3c

 One of the functions to be included in a Common Command Language is a simple editor, which Padlipsky has outlined. The editor should be easy for users to learn as well as for servers to implement or interface to their own editors.

3c1

(usingnotes, 5a10a) last sentence added

3d

1. Some facilities should be available as prelogon facilities, so that any user can access them whether or not he has an account, directory, etc., at a given site. Some sites will not be able to support many of these functions, so a required set must be kept to a minimum.

3d1

(usingnotes, 6) FUTURE changed to CURRENT

3e

1. CURRENT PLANS

3e1

Thanks very much for all your help. Nancy

4

(J18342) 9-AUG-73 15:50; Title: Author(s): Nancy J. Neigus/NJN; Distribution: /JBN; Sub-Collections: NIC; Clerk: NJN;

1

2

Request for Comments on Calculator Command Language

Diane Kaye has requested feedback about changes in the calculator command language that fall out from changes in the general command language.

(Mjournal, 18339, > has her suggestions. You people in Rome should feel free to comment. Request for Comments on Calculator Command Language

(J18343) 9-AUG-73 17:27; Title: Author(s): Dirk H. Van Nouhuys/DVN; Distribution: /DSK EKM DLS JPC; Sub-Collections: RADC SRI-ARC; Clerk: DVN;

1b

In the 9 Aug meeting of the Documentation Instigation and Review Team DIRT), the following conventions for the HELP data-base were agreed upon:	1
Commands will be documented exactly as follows (xxx meaning whatever string is appropriate; * represents the new unnamed warp viewspec):	1a
(verb)	1a1
(noun)	lala
(syntax) ## (userguides, commands, 0000: +> ###	1a1a1
(function) xxxxxxx	1a1a2
(example) xxxxx If you type: xxxx	
it should look like:	1a1a3
(confirm) xxxx	1a1a4
(noun2)	1a1b
	1a1b1
	1a1b2
	1a1b3
(verb2)	1a2
(syntax) ## <userguides, +="" 0000:="" commands,=""> ###</userguides,>	1a2a
(function) xxxxxxx	1a2b
(example) If you type:	
xxxx	1a2c
(confirm) xxxx	1a2d
REPEAT will always be explained in the (confirm) branch (where it	1.

leaves you); INSERT will be noted if it does not work (e.g. Quit).

The example may have an optional comment immediately following the 1c statement name and before the first (CR). Sub-ideas will be a plex of named statements. They will include 1 d only a link when possible, else an explanation. Any name delimiters are acceptable; all names should be in lower 10 case. Special characters (e.g. control characters) and invisibles will be enclosed in anglebrackets (e.g. <fb> <CR> <ALT> <fu>). Control characters should be lower case unless specifically a control 1 f capital character. 's will be used to denote the plural of a single character. Exemplary single characters (including bracketed special characters and invisibles) need not be enclosed in commas (e.g. 1g type question mark ? to get ..). 2 The following scheduling and concepts conventions were adopted: We will do all the TNLS Editor commands first, then all the concepts, then the important Users' Guides, then the help data-base for other subsystems, then for DNLS-only commands. 28 The explanations in the concepts will often mention commands. When this happens, the explanations of the commands will whenever possible be just a link to the Commands section. 2b ENTITY will be a concept define as either STRUCTURE-ENTITY or 2c TEXT-ENTITY. In describing an entity and similar concepts, the list of 24 alternatives should always be made clear as such. We have split the commands and concepts up. We will have completed all the commands by Thursday, Aug 16, 9AM. At that time, JMB will take each person's branch of commands, create a new HELP data-base file, and merge and sort the three peoples! work. This file will be printed and distributed Thurs morning. We will 2e meet Thurs at 3PM. 2e1 The HELP dat-base file will be structure as follows: 2ela <USERGUIDES>HELP.NLS; 0 XXXX XXXX ; 2e1a1 (concepts) 2e1a1a

(concept1)

(concept1a)	2e1a1a	1
	2e1a1a	2
(concept2)	2ela1	b
	2e1a1	c
(concept24)	2e1a1	d
(commands)	2e1a	2
(editor)	2e1a2	a
(verb1)	2e1a2a	1
	2e1a2a	2
	2e1a2	
(journal)	26102	D
	2e1a2	C
JMB will review NDM's work, NDM will will review JMB's work.	review DvN's work, and DvN 2	f

Meeting DIRT 9 Aug 73: HELP data-base Conventions

(J18344) 9-AUG-73 17:45; Title: Author(s): Documentation Instigation and Review Team /EDIRT; Distribution: /NDM DVN KIRK JMB CFD CHI HGL DSK; Sub-Collections: DIRT; Clerk: NDM; Origin: <MEYER>CONV.NLS;3, 9-AUG-73 17:43 NDM;

Acknowledgement of Corrections to Usingnotes File

Nancy -- Your changes made in file <nic-work>arpanewsaugust, the Query file. Tomorrow I will make them in<nic-work>arpanewsaugsource, the basis for the printed version. -- Very fine file you supplied, and easy to work wih. Thanks. -- Jeanne

1

(J18345) 9-AUG-73 18:08; Title: Author(s): Jeanne B. North/JBN; Distribution: /NJN JI NIC; Sub-Collections: NIC USING; Clerk: JBN;

Good Bye

Susan and Marcia
I think that the best strategy to take considering the resources
(funds) ARC-NIC has available, may be to propose to Dick Watson and
especially Jim Norton that you need at least another part time person
so you can handle the paper work as well as the Linda-Kirk type stuff
because Kirk would like to move on to other than NIC PSO things any
way when he comes back from vacation. Good Luck. Good Bye. -Kirk

(J18346) 9-AUG-73 18:38; Title: Author(s): Kirk E. Kelley/KIRK; Distribution: /SRL MLK; Sub-Collections: SRI-ARC; Clerk: KIRK;

22

18FEB-24FEB (IJOURNAL, 14822, 1:w)

through the 14th of Jul 73. It is organized alphabetically by ident of individual and in reverse chronological order within each individual. This first page gives the particular week plus links to the complete user statistics for all users of NLS at SRI-ARC. Summary totals and averages are contained in the last two pages. 1 08JUL-14JUL (LJOURNAL, 17892, 1:w) 2 3 01JUL-07JUL (KJOURNAL, 17767, 1:w) 24JUN-30JUN (KJOURNAL, 17753, 1:w) 17JUN-23JUN (JJOURNAL, 17584, 1:w) 5 10JUN-16JUN (JJOURNAL, 17407, 1:w) 03JUN-09JUN (JJOURNAL, 17142, 1:w) 7 27MAY-02JUN (JJOURNAL, 17126, 1:w) 20MAY-26MAY (GJOURNAL, 17099, 1:w) 9 10 15MAY-19MAY (IJOURNAL, 16806, 1:w) 11 06MAY-11MAY (IJOURNAL, 16652, 1:w) 29APR-05MAY (IJOURNAL, 16352, 1:w) 12 22APR-28APR (IJOURNAL, 16280, 1:w) 13 14 15APR-21APR (MJOURNAL, 16255, 1:w) 08APR-14APR (MJOURNAL, 16099, 1:w) 15 16 01APR-07APR (MJOURNAL, 15995, 1:w) 25MAR-31MAR (MJOURNAL, 15626, 1:w) 17 18 18MAR-24MAR (MJOURNAL 15396,1:w) 19 11MAR-17MAR (LJOURNAL, 15223, 1:w) 04MAR-10MAR (LJOURNAL, 15104, 1:w) 20 21 25FEB-03MAR (IJOURNAL, 14926, 1:w)

This file is a breakout by individual of the user statistics (weekly

and total) supplied by SRI for 25 weeks from the 14th of Jan 73

04FEB-10FEB (ijournal,14418,1:w)	23
28JAN-03FEB (ijournal,14339,1:w)	24
21JAN-27JAN (ijournal, 14166,1:w)	25
14JAN-20JAN (ijournal.14084.1:w)	26

. . . .

8								
1	NAME C	PU HRS	CON HRS	CPU/CON	% SYS	CON/CPU	DIR	27
								28
	(JHB)	. 109	6.924	.016	. 231	63.523	221	29
	(JHB)	. 461	46.240	.010	.933	100.304	209	30
	(JHB)	. 266	12.979	.020	.538	48.793	223	31
	(JHB)	. 241	18.425	.013	.411	76.452	228	32
	(JHB)	.092	3.467	.027	.200	37.685	264	33
	(JHB)	. 270	18.639	.014	.526	69.033	263	34
	(JHB)	. 194	11.576	.017	. 436	59.670	228	35
	(JHB)	. 271	16.492	.016	.540	60.856	228	36
	(JHB)	. 044	2.360	.019	.139	53.636	256	37
	(JHB)	. 159	9.048	.018	.430	56.906	265	38
)	(JHB)	. 243	15.634	.016	.428	64.337	194	39
	(JHB)	. 221	16.279	.014	.673	71:1	228	40
	(JHB)	. 749	34.471	.022	2.785	45:1	217	41
	(JHB)	.648	29.342	.022	1.840	45:1	194	42
	(JHB)	. 146	2.778	.053	.262	19:1	255	43
	(JHB)	.513	25.822	.020	1.4	50:1	258	44
	(JHB)	. 749	31.196	.024	2.1	42:1	254	45
6	(JHB)	. 179	28.053	.006	. 4	167:1	249	46
	(JHB)	. 446	23.952	.019	1.1	53:1	226	47
	(JHB)	. 150	8.791	.017	.4	59:1	247	48
	(JHB)	. 216	13.904	.016	.6	62:1	167	49
	(ЈНВ)	. 146	9.477	.015	. 4	67:1	229	50
	(JHB)	. 578	27.385	.021	.9	48:1	212	51

	DLS	10-AUG-73	06:08	18348
--	-----	-----------	-------	-------

RADC USER STATISTICS--JAN 73-JUL 73

(JHB) .364	20.848	.017	.8	59:1	188	52
(JHB) .374	22.392	.017	.9	59:1	192	53
total 7.833	456.471		16.594			54
AVG .313	18,259		.664			55

	NAME CPU H	RS CON HRS	CPU/CON	% SYS	CON/CPU	DIR	56
							57
	(DFB) -	-	-	- 1	-	25	58
	(DFB) -	1 6 -	-	-	-	1	59
	(DFB) -	- 1	-	-	-	16	60
	(DFB) -	-	- 11	-	-	40	61
	(DFB) -	-	-	-	-	39	62
	(DFB) .062	2,908	.021	.121	46.903	54	63
	(DFB) .021	1.176	.018	.047	56.000	54	64
	(DFB) .009	.229	.039	.018	25.444	54	65
	(DFB) .027	.569	.047	.085	21.074	56	66
	(DFB) .028	4.039	.007	.076	144.250	57	67
)	(DFB) .040	2.140	.019	.070	53.500	52	68
	(DFB) .269	10.048	.027	.819	37:1	50	69
	(DFB) .229	10.899	.021	.851	48:1	73	70
	(DFB) .185	8.110	.023	.525	43:1	63	71
	(DFB) .766	22.614	.034	.610	29:1	71	72
	(DFB) .150	8.416	.018	.4	56:1	44	73
	(DFB) .074	3.776	.020	.2	50:1	33	74
	total 1.86	74.91		3.82			75
	AVG .075	2.996		.153			76

1								
	NAME C	PU HRS	CON HRS	CPU/CON	% SYS	CON/CPU	DIR	77
								78
	(WPB)	. 033	3.185	.010	.070	96,515	82	79
	(WPB)	. 090	6.012	.015	.182	66.800	54	80
	(WPB)	.043	3.279	.013	.087	76.256	54	81
	(WPB)	. 020	1.611	.012	.034	80.550	52	82
	(WPB)	.010	.753	.013	.022	75,300	13	83
	(WPB)	-	-	-	-	-	12	84
	(WPB)	. 010	1.223	.008	.022	122.300	12	85
	(WPB)	. 020	.889	.022	.040	44.450	12	86
	(WPB)	- 1	-	-	-	- 1	15	87
	(WPB)	. 006	.154	.039	.016	25.667	15	88
)	(WPB)	. 015	.911	.016	.026	60.733	18	89
	(WPB)	. 010	1.462	.007	.030	143:1	18	90
	(WPB)	. 021	1.252	.017	.078	59:1	14	91
	(WPB)	. 032	1.686	.019	.091	53:1	14	92
	(WPB)	.018	.388	.046	.032	22:1	12	93
	(WPB)	. 071	3.174	.022	.2	45:1	12	94
	(WPB)	. 034	2.052	.017	.1	59:1	14	95
	(WPB)	. 009	.756	.012	0.0	56:1	19	96
	(WPB)	. 031	1.615	.019	.1	53:1	22	97
	(WPB)	. 011	.318	.035	0	28:1	23	98
	(WPB)	. 030	2.043	.015	.1	67:1	22	99
	(WPB)	. 132	5.796	.023	.3	43:1	24	100
	(WPB)	. 087	5.803	.015	.1	67:1	18	101

(WPB)	-		-	-	-	18	102
(WPB)	-	-	-	-	-	13	103
total	. 733	44.362		1.630			104
AVG	. 029	1.774		.065			105

A							
	NAME CPU HRS	CON HRS	CPU/CON	% SYS	CON/CPU	DIR	106
							107
	(JPC) .088	7.388	.012	.186	83.955	123	108
	(JPC) .026	3.477	.007	.053	133.731	101	109
	(JPC) .137	8.000	.017	.277	58.394	109	110
	(JPC) .090	5.909	.015	.154	65.656	115	111
	(JPC) .045	2.537	.018	.098	56.378	86	112
	(JPC) .063	4.380	.014	.123	69.524	75	113
	(JPC) .024	3.140	.008	.054	130.833	69	114
	(JPC) .070	8.238	.008	.140	117.686	69	115
	(JPC) .017	.733	.023	.054	43.118	42	116
	(JPC) .030	1.958	.015	.081	65.267	40	117
)	(JPC) .000	0.000	.000	.000	1.000	43	118
	(JPC) .014	.885	.016	.044	62:1	38	119
	(JPC) .030	1.676	.018	.112	56:1	80	120
	(JPC) .076	6.446	.012	.216	83:1	80	121
	(JPC) .180	4.902	.037	.323	27:1	81	122
	(JPC) .038	3.589	.011	.1	91:1	84	123
	(JPC) .065	5.154	.013	.2	77:1	67	124
	(JPC) -	-	-	-	-	42	125
	(JPC) .080	7.947	.010	.2	100:1	56	126
	(JPC) .028	1.211	.023	.1	43:1	49	127
	(JPC) .036	2.258	.016	.1	62:1	47	128
	(JPC) .022	.833	.026	.1	38:1	46	129
	(JPC) .063	4.898	.013	.1	77:1	57	130

DLS	10-AUG-73	06:08	18348

RADC USER STATISTICS--JAN 73-JUL 73

(JPC) .062	5.468	.011	.1	91:1	51	131
(JPC) .069	5.418	.013	.2	77:1	48	132
total 1.353	96.445		3,115			133
AVG . 054	3.858		.125			134

'	NAME (CPU HRS	CON HRS	CPU/CON	% SYS	CON/CPU	DIR	135
								136
	(RFI)	.033	3,289	.010	.070	99.667	38	137
	(RFI)	.004	.181	.022	.008	45.250	37	138
	(RFI)	.017	1.618	.011	.034	95.176	34	139
	(RFI)	.075	7.229	.010	.128	96.387	33	140
	(RFI)	.004	.087	.046	.009	21.750	47	141
	(RFI)	.031	1.387	.022	.060	44.742	31	142
	(RFI)	.318	9.287	.034	.714	29.204	31	143
	(RFI)	. 199	13.254	.015	.397	66.603	31	144
	(RFI)	.021	4.567	.005	.066	217.476	22	145
	(RFI)	. 044	3.633	.012	.119	82.568	17	146
)	(RFI)	.009	.304	.030	.016	33.778	28	147
	(RFI)	.006	.146	.041	.018	24:1	28	148
	(RFI)	.023	.704	.033	.086	30:1	28	149
	(RFI)	.060	4.376	.014	.170	71:1	28	150
	(RF1)	.108	2.425	.045	.194	22:1	41	151
	(RFI)	.026	1.051	.025	.1	40:1	42	152
	(RFI)	.063	4.570	.014	.2	71:1	28	153
	(RFI)	.016	.868	.018	0.0	56:1	28	154
	(RFI)	.048	4.079	.012	.1	83:1	22	155
	(RFI)	.013	.538	.024	0	42:1	25	156
	(RFI)	.003	.146	.021	0	48:1	18	157
	(RFI)	-	1.			-	20	158
	(RFI)	-	-	-	-	-	13	159

. . . .

(RFI) -		-	-	-	13	160
(RFI) -	E S	-	- 1	-	12	161
total 1. 121	63.739		2.48	39		162
AVG .045	2.550		.100)		163

	NAME CPU HR	S CON HRS	CPU/CON	% SYS	CON/CPU	DIR	164
							165
	(EJK) .100	6.951	.014	.212	69.510	43	166
	(EJK) .165	12.276	.013	.334	74.400	38	167
	(EJK) .212	13.178	.016	.429	62.160	36	168
	(EJK) .263	19.375	.014	.449	73.669	37	169
	(EJK) .087	6.048	.014	.189	69.517	44	170
	(EJK) .049	2.583	.019	.095	52.714	41	171
	(EJK) .131	6.668	.020	.294	50.901	19	172
	(EJK) .076	4.541	.017	.152	59.750	19	173
	(EJK) -	-	-	- 1	-	25	174
	(EJK) -	-	-	-	-	45	175
)	(EJK) .000	0.000	.000	.000	1.000	40	176
	(EJK) 0	0	0	0	0	40	177
	(EJK) .150	9.072	.017	.558	59:1	40	178
	(EJK) .126	4.822	.026	.358	38:1	40	179
	(EJK) .204	11.361	.018	.366	56:1	43	180
	(EJK) .134	9.939	.013	. 4	77:1	33	181
	(EJK) .135	12.278	.011	.4	91:1	31	182
	total 1.832	121.431		4.23	6		183
	AVG .073	4.857		.169			184

	NAME C	PU HRS	CON HRS	CPU/CON	% SYS	CON/CPU	DIR	185
								186
	(FSL)	- 97	-	-	1 - 41	-	82	187
	(FSL)	-	-	-	-	-	86	188
	(FSL)	. 242	12.013	.020	.490	49.640	86	189
	(FSL)	. 221	11.072	.020	.377	50.100	97	190
	(FSL)	.314	11.115	.028	.681	35.398	84	191
	(FSL)	. 459	33.424	.014	.893	72.819	56	192
	(FSL)	-	- 1	-	-	-	65	193
	(FSL)	.018	1.554	.012	.036	86.333	65	194
	(FSL)	-	-	-	- +	-	61	195
	(FSL)	-	-	- 17	-	- 11	57	196
)	(FSL)	. 155	8.009	.019	.273	51.671	57	197
	(FSL)	.142	7.459	.019	.432	53:1	57	198
	(FSL)	. 252	13.857	.018	.937	56:1	61	199
	(FSL)	.118	8.516	.014	.335	71:1	61	200
	(FSL)	. 486	20.601	.024	.872	42:1	57	201
	(FSL)	.082	4.873	.017	.2	59:1	44	202
	(FSL)	. 061	4.572	.013	.2	77:1	91	203
	(FSL)	.070	16.581	.004	.2	250:1	49	204
	(FSL)	-	-	-	-	-	18	205
	(FSL)	.002	.036	. 056	0	18:1	18	206
	(FSL)	.011	.768	.014	0	71:1	30	207
	(FSL)	.092	3.103	.030	.1	33:1	42	208
	(FSL)	-	-	4-1-6	-	- 0	42	209

(FSL) -	-	-	-	-	30	210
total 2.725	157.553		6.026			211
AVG . 109	6.302		.241			212

NAME (CPU HRS	CON HRS	CPU/CON	% SYS	CON/CPU	DIR		213
								214
(TFL)	.083	6.512	.013	.176	78.458	36		215
(TFL)	-	1	-	-	-	59		216
(TFL)	-	-	-01	-		44		217
(TFL)	-	-	-11.0	-	-	43		218
(TFL)	-	-	-	-		37		219
(TFL)	.035	.832	.042	.068	23.771	37		220
(TFL)	.017	.865	.020	.038	50.882	84		221
(TFL)	. 290	12.332	.024	.578	42.524	84		222
(TFL)	. 144	8.389	.017	.455	58.257	121		223
(TFL)	-	9-1	-	-	-	125		224
(TFL)	. 285	9.881	.029	.502	34.670	129		225
(TFL)	.388	7.496	.052	1.181	19:1	142		226
(TFL)	.210	4.141	.051	.781	20:1	150		227
(TFL)	. 137	5.431	.025	.389	40:1	137		228
(TFL)	. 746	14.250	.052	1.339	19:1	142		229
(TFL)	. 462	19.512	.024	1.2	42:1	136		230
(TFL)	. 207	9.445	.022	.6	45:1	119		231
(TFL)	.619	36.240	.017	1.5	59:1	75		232
(TFL)	. 218	13.462	.016	.6	62:1	89		233
(TFL)	.116	8.485	.014	.3	71:1	131		234
(TFL)	.077	6.133	.013	.2	77:1	81		235
(TFL)	. 129	5.609	.023	.3	00:1	79		236
(TFL)	. 195	9.425	.021	.3	48:1	87		237
	(TFL)	(TFL) .083 (TFL) - (TFL) - (TFL) - (TFL) - (TFL) .035 (TFL) .017 (TFL) .290 (TFL) .144 (TFL) - (TFL) .285 (TFL) .388 (TFL) .388 (TFL) .388 (TFL) .388 (TFL) .462 (TFL) .462 (TFL) .462 (TFL) .462 (TFL) .619 (TFL) .218 (TFL) .218	(TFL) .083 6.512 (TFL) (TFL) (TFL) (TFL) (TFL) (TFL) .035 .832 (TFL) .017 .865 (TFL) .290 12.332 (TFL) .144 8.389 (TFL) (TFL) .285 9.881 (TFL) .388 7.496 (TFL) .388 7.496 (TFL) .137 5.431 (TFL) .137 5.431 (TFL) .746 14.250 (TFL) .746 14.250 (TFL) .462 19.512 (TFL) .462 19.512 (TFL) .619 36.240 (TFL) .619 36.240 (TFL) .218 13.462 (TFL) .116 8.485 (TFL) .077 6.133 (TFL) .077 6.133	(TFL) .083 6.512 .013 (TFL) (TFL) (TFL) (TFL) (TFL) .035 .832 .042 (TFL) .017 .865 .020 (TFL) .290 12.332 .024 (TFL) .144 8.389 .017 (TFL) (TFL) .285 9.881 .029 (TFL) .285 9.881 .029 (TFL) .388 7.496 .052 (TFL) .388 7.496 .052 (TFL) .137 5.431 .025 (TFL) .137 5.431 .025 (TFL) .746 14.250 .052 (TFL) .746 14.250 .052 (TFL) .462 19.512 .024 (TFL) .207 9.445 .022 (TFL) .619 36.240 .017 (TFL) .218 13.462 .016 (TFL) .116 8.485 .014 (TFL) .129 5.609 .023	(TFL) .083 6.512 .013 .176 (TFL) (TFL) (TFL) (TFL) (TFL) .035 .832 .042 .068 (TFL) .017 .865 .020 .038 (TFL) .290 12.332 .024 .578 (TFL) .144 8.389 .017 .455 (TFL) (TFL) .285 9.881 .029 .502 (TFL) .388 7.496 .052 1.181 (TFL) .137 5.431 .025 .389 (TFL) .146 14.250 .052 1.339 (TFL) .746 14.250 .052 1.339 (TFL) .462 19.512 .024 1.2 (TFL) .462 19.512 .024 1.2 (TFL) .207 9.445 .022 .6 (TFL) .619 36.240 .017 1.5 (TFL) .218 13.462 .016 .6 (TFL) .116 8.485 .014 .3 (TFL) .077 6.133 .013 .2 (TFL) .077 6.133 .013 .2 (TFL) .077 6.133 .013 .2	(TFL) .083 6.512 .013 .176 78.458 (TFL)	(TFL) - - - - 59 (TFL) - - - - 44 (TFL) - - - - 43 (TFL) .035 .832 .042 .068 23.771 37 (TFL) .017 .865 .020 .038 50.882 84 (TFL) .290 12.332 .024 .578 42.524 84 (TFL) .144 8.389 .017 .455 58.257 121 (TFL) - - - - 125 (TFL) .285 9.881 .029 .502 34.670 129 (TFL) .388 7.496 .052 1.181 19:1 142 (TFL) .210 4.141 .051 .781 20:1 150 (TFL) .137 5.431 .025 .389 40:1 137 (TFL) .746 14.250 .052 1.339 19:1 142 (TFL) .462 19.512 .024 1.2 42:1 136 (TFL) .619 36.240 .017 1.5 59:1 75 </th <th>(TFL) .083 6.512 .013 .176 78.458 36 (TFL) 59 (TFL) 44 (TFL) 43 (TFL) 37 (TFL) .035 .832 .042 .068 23.771 37 (TFL) .017 .865 .020 .038 50.882 84 (TFL) .290 12.332 .024 .578 42.524 84 (TFL) .144 8.389 .017 .455 58.257 121 (TFL) 125 (TFL) .285 9.881 .029 .502 34.670 129 (TFL) .388 7.496 .052 1.181 19:1 142 (TFL) .137 5.431 .025 .389 40:1 137 (TFL) .746 14.250 .052 1.339 19:1 142 (TFL) .746 14.250 .052 1.339 19:1 142 (TFL) .462 19.512 .024 1.2 42:1 136 (TFL) .207 9.445 .022 .6 45:1 119 (TFL) .218 13.462 .016 .6 62:1 89 (TFL) .116 8.485 .014 .3 71:1 131 (TFL) .077 6.133 .013 .2 77:1 81 (TFL) .077 6.133 .013 .2 77:1 81 (TFL) .129 5.609 .023 .3 00:1 79</th>	(TFL) .083 6.512 .013 .176 78.458 36 (TFL) 59 (TFL) 44 (TFL) 43 (TFL) 37 (TFL) .035 .832 .042 .068 23.771 37 (TFL) .017 .865 .020 .038 50.882 84 (TFL) .290 12.332 .024 .578 42.524 84 (TFL) .144 8.389 .017 .455 58.257 121 (TFL) 125 (TFL) .285 9.881 .029 .502 34.670 129 (TFL) .388 7.496 .052 1.181 19:1 142 (TFL) .137 5.431 .025 .389 40:1 137 (TFL) .746 14.250 .052 1.339 19:1 142 (TFL) .746 14.250 .052 1.339 19:1 142 (TFL) .462 19.512 .024 1.2 42:1 136 (TFL) .207 9.445 .022 .6 45:1 119 (TFL) .218 13.462 .016 .6 62:1 89 (TFL) .116 8.485 .014 .3 71:1 131 (TFL) .077 6.133 .013 .2 77:1 81 (TFL) .077 6.133 .013 .2 77:1 81 (TFL) .129 5.609 .023 .3 00:1 79

	DLS	S 10	-AUG-	73	06:08	1834
--	-----	------	-------	----	-------	------

RADC USER STATISTICS--JAN 73-JUL 73

(TFL) .102	7.423	.014	.2	71:1	80	238
(TFL) .078	5.545	.014	.2	71:1	71	239
total 4.538	191.408		10.90	7		240
AVG . 182	7.656		.436			241

.

	NAME CI	PU HRS	CON HRS	CPU/CON	% SYS	CON/CPU	DIR	242
								243
	JLM)	050	3,540	.014	.106	70.800	126	244
	JLM)	. 009	.460	.020	.018	51.111	113	245
	JLM)	-	-	-	-	- 1	121	246
-	JLM) .	. 084	4.344	.019	.143	51.714	131	247
1	JLM) .	054	3.479	.016	.117	64.426	120	248
(JLM) .	091	6.459	.014	.177	70.978	126	249
	JLM)	031	1.962	.016	.070	63.290	121	250
(JLM) .	.028	2.544	.011	.056	90.857	121	251
(JLM) .	.010	1.972	.005	.032	197.200	124	252
(JLM) .	009	.281	.032	.024	31.222	128	253
)	JLM) .	039	10.681	.004	.069	273.872	134	254
(JLM) .	135	7.281	.019	.411	53:1	126	255
(JLM) .	106	6.115	.017	.394	59:1	121	256
(JLM) .	264	13.496	.020	.750	50:1	115	257
(JLM) .	449	10.235	.044	.806	23:1	127	258
(JLM) .	247	15.266	.016	.7	62:1	123	259
(JLM) .	142	11.630	.012	.4	83:1	108	260
(JLM) .	128	11.983	.011	.3	91:1	127	261
(JLM) .	181	9.711	.019	.5	53:1	127	262
(JLM) .	073	8.032	.009	.2	111:1	110	263
(JLM) .	108	10.886	.010	.3	100:1	115	264
(JLM) .	100	6.916	.014	•5	71:1	126	265
(JLM) .	282	25.136	.011	.4	91:1	121	266

DEG TO HOU TO COLOR TOO	DLS 10-A	UG-73	06:08	1834
-------------------------	----------	-------	-------	------

RADC USER STATISTICS--JAN 73-JUL 73

(JLM) .223	13.630	.016	.5	62:1	120	267
(JLM) .161	12.212	.013	.4	77:1	113	268
total 3.004	198.251		7.373			269
AVG .120	7.930		.295			270

. . . .

NAME CPU	HRS CON HRS	CPU/CON	% SYS	CON/CPU	DIR	271
						272
(RBP) .0	50 2.671	.019	.106	53.420	117	273
(RBP) .0	10 .254	.039	.020	25.400	112	274
(RBP) .1	25 7.068	.018	. 253	56.544	112	275
(RBP) .0	34 2.969	.011	.058	87.324	114	276
(RBP) .0	06 .550	.011	.013	91.667	96	277
(RBP) .1	36 5.629	.024	. 265	41.390	95	278
(RBP) .1	17 5.925	.020	. 263	50.641	89	279
(RBP) .1	67 7.232	.023	.333	43.305	89	280
(RBP) .0	51 2.257	.023	.161	44.255	98	281
(RBP) .0	53 3.412	.016	.143	64.377	94	282
(RBP) . 0	49 3.152	.016	.086	64.327	84	283
(RBP) .04	40 1.257	.032	.122	31:1	77	284
(RBP) .03	34 1.791	.019	.097	53:1	85	285
(RBP) .38	86 7.704	.050	.693	20:1	84	286
(RBP) .1	18 6.850	.003	.3	333:1	84	287
(RBP) .00	.182	.016	0.0	62:1	77	288
(RBP) -		- 100	-	-	73	289
(RBP) -	-	-	-	-	73	290
(RBP) -	-	-	- 1	-	72	291
(RBP) .04	43 2.075	.021	.1	48:1	72	292
(RBP) -	-		-	-	83	293
(RBP) .06	64 3.580	.018	.1	56:1	84	294
(RBP) .08	94 4.216	.022	.2	45:1	84	295

RADC USER STATISTICS--JAN 73-JUL 73

(RBP) .060	1.386	.043	.1	23:1	79	296
total 1.640	68.853		3.413			297
AVG . 066	2.754		.137			298

NAME CPU HR	S CON HRS	CPU/CON	% SYS	CON/CPU	DIR	2	99
						3	00
(MDP) .006	.075	.080	.011	12:1	0	3	01
(MDP) -	-	-	-	-	-	3	02
(MDP) -	-	-	-	7- 75	-	3	03
(MDP) -	-	-	-	-	-	3	04
(MDP) -	-	-	-	-	-	3	05
(MDP) .001	.108	.009	0	111:1	20	3	06
(MDP) -	-	-	-	-	40	3	07
(MDP) -	-	-	-	A	42	3	08
(MDP) .008	.660	.012	0	83:1	42	3	09
(MDP) .066	4.283	.015	.2	67:1	41	3	10
total .081	5.126		.211			3	11
AVG .003	.205		.008			3	12

,	NAME CPU HRS	CON HRS	CPU/CON	% SYS	CON/CPU	DIR	313
							314
	(RADC). 042	5.063	.008	.089	120.548	86	315
	(RADC). 009	.456	.020	.018	50.667	?	316
	(RADC).074	5.901	.013	.150	79.743	90	317
	(RADC). 126	7.271	.017	. 215	57.706	88	318
	(RADC)2.250	2.414	.932	4.883	1.073	84	319
	(RADC).098	4.207	.023	.191	42.929	79	320
	(RADC).012	1.489	.008	.027	124.083	76	321
	(RADC). 055	4.699	.012	.110	85.436	76	322
	(RADC). 022	2.742	.008	.069	124.636	85	323
	(RADC). 046	2,429	.019	.124	52.804	78	324
)	(RADC), 158	8.897	.018	.278	56.310	97	325
	(RADC).061	4.110	.015	.186	67:1	93	326
	(RADC), 243	20.557	.012	.904	83:1	92	327
	(RADC). 167	11.982	.014	.474	71:1	95	328
	(RADC). 181	12.280	.015	.325	67:1	82	329
	(RADC). 035	3.149	.011	.1	91:1	95	330
	(RADC). 036	6.293	.006	.1	167:1	64	331
	(RADC). 035	2.188	.016	. 1	62:1	78	332
	(RADC).006	.143	.042	0.0	24:1	85	333
	(RADC), 171	9.952	.017	.4	59:1	85	334
	(RADC). 132	6.969	.019	.4	53:1	45	335
	(RADC). 196	14.312	.014	.5	71:1	90	336
	(RADC), 724	25.784	.028	1.1	36:1	50	337

RADC USER STATISTICS--JAN 73-JUL 73

(RADC). 023	1.833	.013	.1	77:1	52	338
(RADC).050	3.802	.013	.1	77:1	31	339
(RADC)	.063	4.533	.014	.2	16:1	340
total 4.952	168.922		10.943			341
AVG .198	6.757		.438			342

Ð								
	NAME	CPU HRS	CON HRS	CPU/CON	% SYS	CON/CPU	DIR	343
								344
	(WER)	-	-	-	-		93	345
	(WER)	. 165	12.808	.013	.334	77.624	39	346
	(WER)	-	- 4	-	- 50	-	39	347
	(WER)	.059	5.406	.011	.101	91.627	24	348
	(WER)	-	-	-	-	-	24	349
	(WER)	.097	6.152	.016	.189	63.423	29	350
	(WER)	.033	4.582	.007	.074	138.848	29	351
	(WER)	-		-	-	-	29	352
	(WER)	-		- 1	- 44	-	83	353
	(WER)	-	-	-	-	-	85	354
)	(WER)	.037	1,462	.025	.065	39.514	86	355
	(WER)	.002	.104	.019	.006	53:1	73	356
	(WER)	.001	.030	.033	.004	30:1	73	357
	(WER)	.019	.337	. 056	.054	18:1	73	358
	(WER)	.056	1.200	.047	.100	21:1	67	359
	(WER)	.463	21.844	.021	1.2	47:1	66	360
	(WER)	. 374	21.172	.018	1.0	56:1	96	361
	(WER)	. 197	34.192	.006	.5	167:1	62	362
	(WER)	.086	8.477	.010	.2	100:1	85	363
	(WER)	.098	11.926	.008	.2	125:1	52	364
	(WER)	.129	11.188	.012	.4	83:1	62	365
	(WER)	.008	2.395	.003	0	333:1	44	366
	(WER)	. 241	18.147	.013	.4	77:1	44	367

		DLS	10-AUG-73	06:08	18348
RADC USER STATISTICSJAN 7	3-JUL	73			

(WER) -	-	-	-	-	40	368
(WER) -		-	-	-	32	369
total 2.065	161.422		4.827			370
AVG .083	6.457		.193			371

ı								
	NAME CPU	HRS CO	N HRS	CPU/CON	% SYS	CON/CPU	DIR	372
								373
	(FPS) .000	6 .	140	.043	.013	23,333	21	374
	(FPS) .034	4 3.	576	.010	.069	105.176	22	375
	(FPS) .015	5 1.	103	.014	.030	73.533	19	376
	(FPS) .000		661	.009	.010	110.167	18	377
	(FPS) .002	2 .	122	.016	.004	61.000	25	378
	(FPS) .026	5 2.	381	.011	.051	91.577	25	379
	(FPS) -	-		-	-	- 1	25	380
	(FPS) .004		106	.038	.008	26.500	25	381
	(FPS) -		- 1	-	-	-	21	382
	(FPS) -		-	-	-	(1 e)	18	383
)	(FPS) .000	0.	000	.000	.000	1.000	38	384
	(FPS) .040	2.	294	.017	.122	59:1	38	385
	(FPS) .008		238	.034	.030	29:1	38	386
	(FPS) .096	3.	126	.031	.273	32:1	38	387
	(FPS) .308	5.	346	.058	.553	17:1	34	388
	(FPS) .046	2.	176	.021	.1	48:1	48	389
	(FPS) .053	3.	226	.016	.1	62:1	35	390
	(FPS) .048	8 6.	362	.008	.1	125:1	34	391
	(FPS) -			-	-	- 1	29	392
	(FPS) .016	1.	332	.012	0	83:1	29	393
	(FPS) .051	3.	733	.014	.1	71:1	28	394
	(FPS) .060	4.	766	.013	.1	77:1	29	395
	(FPS) .153	9.	044	.017	.2	59:1	28	396

DLS	10-AUG-73	06:08	18348

RADC USER STATISTICS--JAN 73-JUL 73

(FPS) .071	4.458	.016	. 2	62:1	20	397
(FPS) -	-	-	-	-	37	398
total 1.043	54.190		2.063			399
AVG .042	2.168		.083			400

	NAME	CPU HRS	CON HRS	CPU/CON	% SYS	CON/CPU	DIR	401
								402
	(JRS)	-	-	-	-	- 170	-	403
	(JRS)	-	-	4-		-	-	404
	(JRS)	-	-	-	-	-	-	405
	(JRS)	.005	.311	.016	0.0	63:1	0	406
	(JRS)	.020	1.129	.018	.1	56:1	0	407
	(JRS)	.003	.175	.017	0	59:1	37	408
	(JRS)	.085	3.324	.026	.2	38:1	34	409
	(JRS)	.095	3.337	.028	.1	36:1	29	410
	(JRS)	-			-	-	25	411
	(JRS)	. 057	1.967	.029	.1	34:1	22	412
)	total	. 265	10.243		.500			413
	AVG	.011	.410		.020			414

	NAME (CPU HRS	S CON HRS	CPU/CON	% SYS	CON/CPU	DIR	415
								416
	(DLS)	. 306	10.677	.029	.648	34.892	247	417
	(DLS)	-		-	-	-	283	418
	(DLS)	. 239	12.931	.018	. 484	54.105	300	419
	(DLS)	.365	16.626	.022	.623	45.551	299	420
	(DLS)	. 173	6.887	.025	.375	39.809	287	421
	(DLS)	.176	8.778	.020	.343	49.875	253	422
	(DLS)	. 269	14.660	.018	.604	54.498	214	423
	(DLS)	. 250	13.869	.018	.498	55.476	214	424
	(DLS)	. 261	10.506	.025	.824	40.253	258	425
	(DLS)	. 200	8.254	.024	.541	41.270	256	426
)	(DLS)	.778	20.878	.037	1.370	26.835	229	427
	(DLS)	.588	20.179	.029	1.790	34:1	229	428
	(DLS)	.519	18.835	.028	1.930	36:1	221	429
	(DLS)	.582	21.718	.027	1.653	37:1	196	430
	(DLS)	.514	9.580	.054	.922	19:1	195	431
	(DLS)	.526	22.307	.024	1.4	42:1	238	432
	(DLS)	. 686	27.520	.025	1.9	40:1	198	433
	(DLS)	.646	37.241	.017	1.6	59:1	151	434
	(DLS)	.553	19.693	.028	1.4	36:1	198	435
	(DLS)	. 473	29.111	.016	1.2	62:1	151	436
	(DLS)	.547	17.439	.031	1.5	32:1	160	437
	(DLS)	.501	18.821	.027	1.2	37:1	121	438
	(DLS)	. 433	26.196	.017	.7	59:1	113	439

RADC USER ST	FATISTICS	-JAN 73-JU	L 73			
(DLS) .210	12.118	.017	.5	59:1	113	440
(DLS) .344	14.484	.024	.8	42:1	103	441
total 10.139	419.308		24.805			442
AVG .406	16.772		.992			443

DLS 10-AUG-73 06:08 18348

NAME CPU HRS	CON HRS	CPU/CON	% SYS	CON/CPU	DIR	444
						445
(RHT2).055	3.069	.018	.116	55.800	31	446
(RHT2) -	-	-	-	-	23	447
(RHT2).001	.012	.083	.002	12.000	4	448
(RHT2).002	.048	.042	.003	24.000	4	449
total .058	3.129		.121			450
AVG .002	.125		.005			451

NAME	CPU HRS	CON HRS	CPU/CON	% SYS	CON/CPU	DIR	452
							453
(FJT)	.060	4.447	.013	.127	74.117	46	454
(FJT)	.082	5.132	.016	.166	62.585	36	455
(FJT)	. 270	15.215	.018	.546	56.352	31	456
(FJT)	.015	.617	.024	.026	41.133	40	457
total	.427	25.411		.865			458
AVG	.017	1.016		.035			459

NAME CPU HR	S CON HRS	CPU/CON % SYS	CON/CPU DIR	460
				461
(TOT)1.015	63.856	2.150	1417	462
(TOT)1.055	90.872	2.127	1213.000	463
(TOT)1.641	93.297	3.320	1318.000	464
(TOT)1.601	101.563	2.732	1363.000	465
(TOT)3.037	37.459	6.591	1250	466
(TOT)1.593	97.759	3.102	1176.000	467
(TOT)1.177	62.553	2.643	1116.000	468
(TOT)1.457	85,979	2.906	1116	469
(TOT) .597	34.095	1.885	1267.000	470
(TOT) .575	33.208	1.554	1280	471
(TOT)1.808	81.949	3.183	1229	472
(TOT)1.916	79.000	5.834	1237	473
(TOT)2.541	121.847	9.450	1208	474
(TOT)2.544	121.179	7.225	1219	475
(TOT)4.554	125.739	7.408	1291	476
(TOT)2.917	147.968	7.8	1307	477
(TOT)2.682	143.066	7.5	1215	478
(TOT)1.947	174.464	4.7	987	479
(TOT)1.654	83.390	4.2	1030	480
(TOT)1.169	80.825	2.9	974	481
(TOT)1.378	77.093	3.8	892	482
(TOT)1.390	73.017	3.4	995	483
(TOT)3.007	161.838	4.5	940	484

DLS 10-AUG-73 06:08 18348

RADC USER STATISTICS--JAN 73-JUL 73

(TOT)1.157 70.654

2.6

888

485

١					
	TOTALS FO	R INDIVI	DUALS AND	GRAND TOTAL	486
	NAME	CPU	CON	%SYS	487
	BAIR	7.833	456.471	16.594	488
	BERGSTROM	1.863	74.911	3.849	489
	BETHKE	.733	44.362	1.630	490
	CAVANO	1.353	96.445	3.115	491
	IUORNO	1.121	63.739	2.489	492
	KENNEDY	1.832	121.431	4.236	493
	LAMONICA	2.725	157.553	6.026	494
	LAWRENCE	4.538	191.408	10.907	495
	MCNAMARA	3.004	198.251	7.373	496
	PANARA	1.640	68.853	3.413	497
	PETELL	.081	5.126	.211	498
	RADC	4.952	168.922	10.943	499
	RZEPKA	2.065	161.422	4.827	500
	SLWIA	1.043	54.190	2.063	501
	STELLATO	. 265	10.243	.500	502
	STONE	10.139	419.308	24.805	503
	THAYER	.058	3.129	.121	504
	TOMAINI	. 427	25.411	.865	505
					506
	TOTAL	45.672	2321.175	103,967	507
					508
					509
					510

AVERA GES	FOR I	NDIVIDUALS AN	D TOTAL AVERAGE	511
NAME	CPU	CON	%SYS	512
BAIR	.313	18.259	.664	513
BERGSTRO	м .075	2.996	.153	514
ВЕТНКЕ	.029	1.774	.065	515
CAVANO	.054	3.858	.125	516
IUORNO	.045	2.550	.100	517
KENNEDY	.073	4.857	.169	518
LAMONICA	.109	6.302	.241	519
LAWRENCE	. 182	7.656	.431	520
MCNAMARA	.120	7.930	.295	521
PANARA	.066	2.754	.137	522
PETELL	.003	.205	.008	523
RADC	. 198	6.757	.438	524
RZEPKA	.083	6.457	.193	525
SLIWA	.042	2.168	.083	526
STELLATO	.011	.410	.020	527
STONE	. 406	16.772	.992	528
THAYER	.002	.125	.005	529
TOMAINI	.017	1.016	.035	530
				531
TOTAL	1.827	92.847	4.159	532

(J18348) 10-AUG-73 06:08; Title: Author(s): Duane L. Stone/DLS; Distribution: /JHB EJK JLM FJT RPB JPC; Sub-Collections: RADC; Clerk: DLS;

Origin: <STONE>USERSTAT.NLS;3, 7-AUG-73 07:29 DLS;

jean: i ve looked through all our files and the following two nic documents that have been requested can not be found: nic 13773 and nic 12390. would you be so kind as to send me these two documents or is there another way that i may be able to obtain this information on-line?

thanks, bob

1

. . .

(J18350) 10-AUG-73 06:32; Fitle: Author(s): Robert Silberski/RS2; Distribution: /JBN; Sub-Collections: NIC; Clerk: RS2;

this file is a attempt to create a level of reporting which is one level above the task write ups and more appropriate for isi and is.

.

i will update this file once a month as a minimum based on the task updates and any recent events.

1a

on-line team problem solving:

2

OBJECTIVEThe objective of this area is to explore the possible application of computers to cooperative problem solving using the computer as a means to facilitate communication?

2a

APPROACH: The attack we are currently taking is to evaluate a arpa spnsered sri developed computer set of tools called simply NLS formerly known as ahi We are evaluating these tool in two unique ways: (1) we are accessing the system using the arpa net rather than transferring the software to our facility. This ability to use their system is saving us probably at least 1 million dollars. (2) We are conducting the evalution by placing it in a context of (buying information for is mg, t so they can decide if they should install this capb in their division.

2b

STATUS

2c

PLANNED:

2c1

April:

2cla

We will plan to train Major Logan the first week of April. We will continue to train FT and conduct a analysis of how he works now (pre AKW). We also hope to conduct a session to review with personnel the use of the systemand prepare some kind of test to get some feel for the proficiency of each of us on the system. We will work up some suggestions on how to improve the br-700 operation and make a trip down to discuss these recomendations with them. We will begin to use the calculator package , keep pushing on the effort reporting and giude SRI on the forms package software. We will start the process to choose a low cost CRT for NLS and keep a dialogue with SRI to insure support of which ever one we choose. Will also explore use of the br-2200 with Nls as a interim CRT . We should recieve the first TYCON devices this month.SRI shoulf finalize thier working agreement with USC-ISI . Recieve the proposal from SRI on the utility service and start the paper work for acquiring the servuce using ARPA as the viechle. 2cla1

ACCOMPLISHED:

2c2

March: 2c2a

We did start to train FT on the system(Ed Kennedy), but failed to train Major Logan as he ended up in the hospital the week we planned to go down. We now have Dr. Borden on board to assist in the evaluation . We completed a comparison of GCOStexteditor vs NLS. In essence NLS is a system to aid a knowledge worker in many facets of his job where the text editor is designed to aid in editing text. Also using the NLS text editor in the display mode it is much more powerful than a standard text editor. (bair, texted, 1:w) 2c2a1

DStone pitched the SAB on NLS .It seemed to be well recieved..Of particluar interst was their acceptance of the concept of KNOWLEDGEWORKER.We intend to use this term from now on. This is also the term ENglelbart has adopted so at least we are finally consistent.

2c2a1a

We have extended the rental of the br-700 for 6 months and will extend it 6 more in fy 74 if needed. They have asked us for consultant help in designing exp to demonstrate the costeffectiveness 2c2alb

We have done quite a bit to get the ISIM people used to the idea of keeping effort write ups up tp date and hope to see imprivement in the months to come. The staffmeet concept really is beginng to work and in fact we have held at least one staffmeet in abstentia. We still need more work in making the dollar estimates more realistic.

We have submitted the paper work for the printer and the terminals. It is clear that the interim printer the faciltiy put together will not hold up and we have to have a reliable printer if we are to truly use the system. Right now all of our trip reportss are prepared on the system but in the past two weeks they have been retyped because the printer was down.

2c2a1d

SRI is stll trying to get relief on their machine by renting time on the USC-ISI machine but as of now no luck. In the mean time we are limited to any more expansion in terms of users untill Oct or they get more compute time.

2c2ale

We recieved a draft copy of a ROC on the ADMINproject from ESD.I called the OPR and asked him what was happening. He apalogized for not calling but said he was now on another study which is to look at the long range needs of the af in the area of standard data

misp

automation(I believe this was requested by GEN.ROBBINS)The ROC is discouraging in the sense that we are not even mentioned let alone the work we are doing with NLS which to our knowledge is the mostsophisticated if not the only experiment with using a computer in a everyday office environment.

2c2a1f

PLANNED: 2c3

March: 2c3a

We hope to recylcle on the training bit as we feel their is a need and now with the primer and the cue cards that it will really help to make the training part of the task be easier. We hope to get Sri back on contract (extension) so that their will be no break in the service. In this regard any increase in service is a function of SRI, a ability to get time on the USC-ISI pdp-10. If they succed we will be able to increase to 20 dirictories and 6 on line at any one point in time 8 to 5. They plan to come up with their service in October of this year which is when we can bring up the other section. We intend this month to conentrate also on the evaluation analysis aspects. We recognize the need to establish a cleare picture of what we can do and when. The terminals will be ordered.

ACCOMPLISHED: 2c4

Febuary: 2c4a

We have worked out a reasonable terminal buy plan approved by div with the exeption of the IMLAC, S which we have agreed to hold up on (stone.termbuy, 1:w). We have started ft on the sytem (Ed Kennedy is the coach). The cue card is a great help. We expect the production version from SRI soon. Stoney has prepared a forms printer capability which will when implemented allow us to fill out many of our procurement forms like 77,s from a nls file directly. (This was sent to the journal i will put in the link later. We spent a good two days with sri guys discussing the SAB pitch . They demoed to us the calculator which is avaiable to stone on a trail basis now and probably to us in a month.D. Englebart chattwd with us about Druckers knowledge workers concept which he believes is a execellent statement of the kind of worker nls is aimed at Idid get a chance to explore the possibility of introducing CAI into als for training ie S. Mair and he was quite receptive. We have slipped in our ability to train Major Logan, s(COL, Danielian, s shop) but hope to get under way the 2nd or 3rd week in march. We have resolved with our

misp

procurement that we can use ARPA, s d&f to buy our share of the nls servuce. 2c4a1

PLANNED: 2c5

Febuary: 2c5a

We will work out a plan for the buy of the additional termianls needed for the full scale analysis since hardware monies will be avaiable. We have to start traing ft since we have everyone else at least at some state on the system. We will press for a more useful primer or something to help beginners as well as think about a course for beginners again. One thought for the future is that I had a chat with s Mair and she suggested that we embark on ajoint program to use the CAI technology which she has sponsered with BBN to teach beginners NLS.I will talk with engelbart next time I see him as it sounds like a neat idea. We are strugginly with just what and how we will evaluate nls.I hope that the addition of Dr. Kennedy and the use of Dr. Borden will help J Bair and us in designing feasible exp.

2c5a1

ACCOMPLISHED: 2c6

January: 2c6a

We have complited a cut atcomparing the text editor and nls as well as reveiwing a survey article by two men from Brown U. Our report and the article both bring out the main point that nls is a system for handling info and text editor is the use of a computer for editing text. Their are simalarities and many of the things one can do in nls can be done in a text editor but not easily. In addition the output capabilties.intergrated systemcapabilties like the journals sytem just do not exist in a text editor. (bair, texted, 1:xb) We have surfaced a primer manual as well as a cue card both of which will be of use to nls beginners. We finally got the mouse to behave on the IMLACS and observing a great deal of use starting to take place. We stalled on traing ft and decided to concentrate on ed Kennedy which has helped push our search for a true beginners manual for the system. SRI plans to come out in June with a complete update of the refernce manual as well as a better primer. The forms printer is orderd . We still do not have a printer capability from isf . They are having problems with the 8090. We did rap quite a bit on the use and conclude that though their were many uses untill our people are better trained and we have more directories and ports that we will have to procedd rather slowly. 2c6a1

misp

PLANNED: 2c7

january: 2c7a

During this month we will start on finalyzing some of the hypothesis of what proceess we think als can help us do better or do at all. Also we will begin the paper comparison of GCOS (and als both dals and tals. Also we will clean up loose ends in traing like F T and potentially J stellato. We will also be processing our pr,s on the sri extension the forms printer acquistion fo dr. borden, . We also will "rap" quite a bit on what will we be doing on the system now that we are all on .

ACCOMPLISHED: 2c8

December::We have completed all of the paper work on the terminal and printers. The facility is trying to provide us a priner capb. with current hardware. It is a real limiting factor as it now stands. The remaing guys of the section have all recieved training on the system during this month. J Bair has held a couple of on-line conferenses with d englebart where they have both worked on the same file and had voice contact as well and at sri they displayed it on a large screen for a demo to his mg, t. M auerbach was here to train jim and tom on the IMLAC, S.;

Cu	rrent Progra	m ÷			2d
	TITLE				2d1
	ENGINEER	CUMM MY	MON MY	DOLLARS	2d2
					2d3
	Terminals	(stone, e	ffterm, 12:	•	
	Stone	. 5	.1	25 k	2d4
	Base Line M	anagement	(stone,e	ffbms, 12:)	
	stone	.2	0	0	2d5
	Air StaffSu	pport (st	tone, effal	rstaff,12:w)	
	stone	.2	0	25k	2d6
	Ahi Evaluat	ion (bai	r.effeval	,10:)	
	Bair				2d7
	Network Ine	nface ()	awrence.e	ff/net.12:)	
	lawrence	.3	.05	15k	2d8
	Ahi Trainin	g (Linux	na 1 . 12246 .	1:w)	
	Lawrence				2d9
EV	-74 PROGRAM-				2 e
	7 T KOOKILI	004			
	TITLE				2e1
	ENGINEER	CUMM MY	DOLLARS		2e2
					2e3
					260
	AHI INTERFA	CE TO RADC	FACILITY	(LJOURNAL, 12255, 1:w)	2e4
	What is	this NCP en	ffort?		2e4a
			201 550		2e5
	Stone	.1	30(558	**	263
	NIC & AUG S	YS DEV (LJC	DURNAL, 12	254, 1:w)	2e6
	Stone	.5	1300(arp	a)	2e7
				TEG (1 TOWNS 13253 1:)	2-9
	AHI ADVANCE	DMANAGEMEN	NI TECHNIQ	UES (LJOURNAL, 12253, 1:w)	2e8
	Panara	1.0	0		2e9
	AHI EVALUAT	ION (LJOURN	NAL, 12251	, 1:w)	2e10

Lets make	this the o	ir for SRI . Tom said it will amount	to 40k 2e10a
Bair	1.0	20(5581)	2e11
Nls Service (LJOURNAL,1	2250,1:w)	2 42
			2e12
Stone	•2	200(5581)	2e13
ARPANET(LJOUR	NAL, 12249	, 1:w)	2e14
Lawrence	.4	30 *(5581)	2e15
ISI MANAGEMEN	T SYSTEM (LJOURNAL, 12248, 1:w)	2e16
Cavano	.6	0	2e17
AHI TERMINALS	(LJOURNAL	, 12247, 1:w)	2e18
Lawarence	.4	50(5581)	2e19
AHI TRAINING	(LJOURNAL,	12246, 1:w)	2e20
Lawrence	.5	0	2e21
DATA HANDLING	SUPPORT F	OR AIRSTAFF (LJOURNAL, 12245, 1:w)	2e22
Stone	. 2	75(5550)	2e23
FY-74 PROGRAM	CALL/DIAL	OGUE: (LJOURNAL, 12244, 1:w)	2e24

(J18354) 10-AUG-73 07:21; Title: Author(s): John L. McNamara/JLM; Distribution: /EJK; Sub-Collections: RADC; Clerk: JLM; Origin: <MCNAMARA>MISP.NLS; 2, 19-JUN-73 05:37 JLM;

1a22

AKW	
FY-74 PROGRAM30a's	1
TITLE	1a
ENGINEER CUMM MY DOLLARS	1a:
	1a:
AHI INTERFACE TO RADC FACILITY (LJOURNAL, 12255,	1:w) 1a
Stone .1 30(5581)	1a:
NIC & AUG SYS DEV (LJOURNAL, 12254, 1:w)	1a
Stone .5 1300(arpa)	1a'
AHI ADVANCED MANAGEMENT TECHNIQUES (LJOURNAL, 12	253, 1:w) las
Panara 1.0 0	1a5
AHI EVALUATION (LJOURNAL, 12251, 1:w)	1a1
Bair 1.0 20(5581)	1a1
Nls Service (LJOURNAL, 12250, 1:w)	1a1
Stone .2 200(5581)	1a1;
ARPANET(LJOURNAL, 12249, 1:w)	1a1
Lawrence .4 30 *(5581)	1a1
ISI MANAGEMENT SYSTEM (LJOURNAL, 12248, 1:w)	1a16
Cavano .6 0	1a1
AHI TERMINALS (LJOURNAL, 12247, 1:w)	1a18
Lawarence .4 50(5581)	1a15
AHI TRAINING (LJOURNAL, 12246, 1:w)	1a20
Lawrence .5 0	1a2

DATA HANDLING SUPPORT FOR AIRSTAFF (LJOURNAL, 12245, 1:w)

Stone .2 75(5550) 1a23

FY-74 PROGRAM CALL/DIALOGUE: (LJOURNAL, 12244, 1:w) 1a24

(J18355) 10-AUG-73 07:24; Title: Author(s): John L. McNamara/JLM; Distribution: /EJK RFI; Sub-Collections: RADC; Clerk: JLM; Origin: <MCNAMARA>PROGRAM.NLS;1, 4-JUN-73 05:59 JLM;

WEEK1: ENDING 3 AUG 73

jtsa efforts

1a

1

mrs. caral giammo of the joint technical support activity reviewed efforts initiated in the areas of dms evaluation methodology on 1 and 2 august. Mrs giammo will send a copy of her trip report to this office.

la1

PRC -- presentation by Aaron Navarro and Ron Romanczuk -- notes available -- see capt daughtry.

1a1a

SAI -- presentation by george pan -- notes available -- see 1lt wingfield.

1alb

SDC -- overview by Bill Rzepka -- refer to outline provided by SDC personnel-- see luorno.

1a1c

1a2

1a3

ids investigation

1b

Database is continually being updated and scanned by icl etc --- the four update programs are being revised and debugged. Sgt Johnson writing COBOL-IDS (using the COBOL RPG) to generate reports on manhours by workunit to note composite past monthly, past quarterly, and cummulative hours spent on job segments by employee - see Sgt Johnson- Capt daughtry.

161

expansion of data base to fifth sub-file to accommodate travel expenditures (TDY) by personnel, project, etc --- to date no data acquired -- see Capt Daughtry.

1b2

ids data query

1c

serious investigation beginning -- no problems anticipated in using the system-- see Capt Daughtry.

1c1

wwmccs

1d

need dd form 1398 forms from key individuals to get clearance for wwmccs investigation — gcos course # 630 to be offerred at mclean virginia available for two (2) isim/isis personnel interested in wwmccs investigation. course to be two weeks long (part a and b only) and taught by Jeff North.

1d1

(J18356) 10-AUG-73 09:08; Title: Author(s): William P. Bethke/WPB; Distribution: /JPC; Sub-Collections: RADC; Clerk: WPB; Origin: <BETHKE>STATUSJOBS.NLS; 1, 9-AUG-73 16:21 WPB;

y.v.o.n.

Mike, I tried to send you a message map.cn@mit-multics and it didn't go through I wonder why... anyway I think that you did get up too early this morning. 18084 is the procedures for Users Group note distribution and 18082 is procedures for Using Group Note distribution. Although the 2 documents look alike, you should notice that the titles are different as well as the blurb under the NIC number on the left; further they are simply 2 different groups. These two groups also have different membership lists and different coordinators, as well as, I presume, different functions. You are listed as a member of the USING group the coordinator of which is DHC. JAKE is the USERS Group coordinator and your should contact her if you want to become a member of that group. I think that the similarity of the names of the groups cause your confusion. Marcia.

y.v.o.n.

(J18357) 10-AUG-73 09:45; Fitle: Author(s): Marcia Lynn Keeney/MLK; Distribution: /MAP; Sub-Collections: SRI-ARC; Clerk: MLK;

1

2

2a

2ь

20

2d

2e

2g

3

For many years I have been involved in acadmeic publications closely without being an author or user. The amount of time and paper wasted has impressed me more than anything else, particularly the tme wasted by people fulfilling the ritual of a literature search with little or no benifit to their work.

For example, once upon a time I witnessed the flow of paper that followed from the discovery that a certain group of substances could be isolated from alfalfa by a complicated but otherwise commonplace series of chemical steps.

One of the dozen or so closely related steroids (isomers, hodroxyls, etc, of the same basic molecule), coumestral, possibly fattened sheep, so was of interst to the department of agriculture.

The leader of the group which made this discovery tilled it for 17 papers.

The isolation of most isomers, for example, was treated separately.

This proliferation ment that no single paper gave a full account of the isolation process, rather it was burried in a tissue of cross rerences.

Journals rejected several of the papers as trivial, but the authors persisted in finding evermore obscure journals until they published all, demanding extensive rewriting.

When I taxed the group leader with the waY he was making life harder for everyone in his field, he told me how he had once missed a promotion because he had not published enough.

I can imagen a series of papers on NLS suffering te same faults.

I also recall a scholarlly aquaintance who specializes in John Milton's grammer school education and asserts he cannot keep up with the publications in his field.

In (mjournal, 18227,) Dick says he is not interested in publication for itelf, but asserts that it naturally falls out of systems work.

For myself, I would apply a stricter retraint in engineering publication: the pulication must either tell how to do something previously undone or describe something in a way that for the first time makes clear the subject's relation to some larger context (as descritption of taxa in botany). And that mechanism, technique, or

7

description must be obviously hold the potential of illuminating the work of other people.

I believe Dick and Harvey (mjournal, 18313,) that work woth publishing has been done at ARC. In most cases I am unable to estimate the value of the subjects Dick lists (mjournal, 18277, 024), but in a few I am and they do not pass my criteria. On "NLS User interface", on "writing in this new medium", and on "our experience with PODAC" I think we have nothing to offer but anecdotes.

The hint (Mjournal, 18227, 1a) that raises and promotions at ARC may come to depend in part on publication disturbs me more. Don't we all know that such a policy at universities and laboratories has laden world libraries with useless paper?.

. .. .

(J18358) 10-AUG-73 11:06; Title: Author(s): Dirk H. Van Nouhuys/DVN; Distribution: /RWW HGL JAKE DSK; Sub-Collections: SRI-ARC; Clerk: DVN; Origin: <VANNOUHUYS>PUBS.NLS; 1, 10-AUG-73 11:04 DVN;

What to do in case of trouble with the TIP or printer.

An SOP has been set up with Capt. Stinson to be used in case of trouble with either the printer or the TIP: CALL the Facility secretary, Mrs. Rossi, at ext. 7009 and report the problem. It has been agreed that she will then notify Jim Moran, et. al., who will then correct the problem.

What to do in case of trouble with the TIP or printer.

(J18362) 10-AUG-73 13:22; Fitle: Author(s): James H. Bair/JHB; Distribution: /RADC; Sub-Collections: RADC; Clerk: JHB;

After talking to Harvey and getting a better idea of what the HELP system is going to do, the following description should modify the syntax described in (18344,) in the listed way.

1

HELP system

2

When one makes a choice or enters the HELP system, the system will print out the node (statement) in its entirety. It will then consider the sub-plex:

2a

If a substatement has no name, it will be printed out in its entirety.

2a1

If a substatement has a name, it will be made into a menu entry. The name delimiters will be removed. The statement will be numbered.

2a2

If the menu is (as default) listed vertically, exactly one line of the (menued) statement will be printed. If the ## bracketed links are in the first line, they will not be printed.

2a2a

If the menu is being printed in three columns, only the name will be printed.

2a2b

Modifications to syntax

3

We will keep in mind that the whole first line of each named statement will be printed in the menu in most cases. For now, we will columnate the menu only in special cases (top level of concepts). This means that there should be a carriage return instead of a space following the name in many cases (function, confirm, example if explanation, ...)

3a

In the command summary, some statements don't have keywords since they are substatements under one verb (i.e. only the first choice has the keyword in it). This mean that the syntax statement should in these cases look like:

3ь

(syntax)
Delete## (userguides, commands, 046: +> ##

3b1

Appendix to (18344,)

a me

(J18363) 10-AUG-73 14:15; Title: Author(s): N. Dean Meyer/NDM; Distribution: /DIRT CHI CFD HGL DSK; Sub-Collections: SRI-ARC DIRT; Clerk: NDM; Origin: <MEYER>ADD.NLS; 3, 10-AUG-73 14:12 NDM;

Hi. I have played with retrieving nic mail via ftp as suggested in rfc 543. However, the ;xnls converion algorithm is not what I expected. Specifically, I expected the get a document that would exactly match the document I would have received if I had gotten Hardcopy distribution from the nic (i.e. send each line that would have printed on the line printer as a record). How hard is it to have a conversion option (say ;hnls for hardcopy nls) which does this or should I wait for the mail protocol?

(J18364) 10-AUG-73 14:40; Fitle: Author(s): Chuck S. Kline/CSK; Distribution: /NDM; Sub-Collections: NIC; Clerk: CSK;

My impressions of the DIRT meetings

Please disregard 18361.

5

During the course of last week's Dialog Instigation and Review Team (DIRT) meetings, I received the distinct impression that I was dealing with one or two people who had through some avenue unavailable to me, acquired all of the vital information. In most cases this privileged information had already decided alot of what the meeting was ostensively called to decide. The impressions of those "in the know" many times were inconsistent and in some important areas, false. This is in large part because the final version of the command and help query languages will not be known for sure until they are actually coded. Even so, many decisions were forced on the rest of the group rather strongly as gospel. I feel that this characterized the atmosphere of the meeting.

As a result, some suggestions important to the structure of the data-base were perfunctorily rejected for reasons opposite to the real guideines. I request that these now be discussed -- kelley, dss, 3:gz>.

In all fairness, I must say that after very much haggling and pleading, almost all of my suggestions discussed, were accepted and my bad suggestions were killed. Which is as it should be, I guess. I was glad to at least have the chance to participate in a meeting. However, with the group that was supposed to be making the query language decisions my exclusive avenue of dialogue was through the Journal usually after accidently hearing of decisions that had already been made.

I do not feel these are isolated cases, nor do I feel alone. Certain people at ARC who are very interested in certain application areas seem to always somehow be excluded from real decision making activities. I perceive the atmosphere in which this occurs as a growing problem.

One obvious solution that occurs to me is to announce meetings in time for those people who are supposted to attend and those who have expressed a desire to attend to do so. (J18365) 10-AUG-73 15:01; Title: Author(s): Kirk E. Kelley/KIRK; Distribution: /DIRT JAKE JBN HGL DCW; Sub-Collections: SRI-ARC DIRT; Clerk: KIRK; Origin: <KELLEY>X.NLS; 4, 10-AUG-73 13:01 KIRK;

•	WEEKLY ANALYSIS	REPORT:					1					
	WEEK: JUL 29 - AUG 4, 1973 (24 HOURS/DAY)											
	TOTAL SYSTEM CPU: 56.660											
	(ARC)						6a					
	IDENT	CPU HRS	CON HRS	CPU/CON	% SYS	CON/CPU: 1	6a1					
							6a2					
	(STAFF)						6a3					
	(JMB)	.816	20.556	.040	1.440	25.191	6a3a					
	(DCE)	.505	16.169	.031	.891	32.018	6a3b					
	(SRL)	.209	6.691	.031	.369	32.014	6a3c					
	(NDM)	.965	27.171	.036	1.703	28.156	6a3d					
	(JCN)	.796	16.869	.047	1.405	21.192	6a3e					
	(DVN)	.691	14.091	.049	1.220	20.392	6a3f					
	(PR)	.425	21.561	.020	.750	50.732	6a3g					
	(RWW)	.093	4.353	.021	.164	46.806	6a3h					
							6a3i					
	(TOTAL)	4.500	127.461		7.942		6a3j					
							6a3k					
	(PSO)						6a4					
	(BAH)	1.151	20.796	.055	2.031	18.068	6a4a					
	(MEJ)	7.859	86.006	.091	13.870	10.944	6a4b					
	(KIRK)	1.499	44.191	.034	2.646	29.480	6a4c					

(J	ML)	.002	.114	.018	.004	57.000	6a4d
							6a4e
(т	OTAL)	10.511	151.107		18.551		6a4f
							6a4g
(NIC)							6a5
(]	DC)	.002	.029	. 069	.004	14.500	6a5a
(E	JF)	.150	5.773	.026	.265	38.487	6a5b
(C	BG)	.006	.302	.020	.011	50.333	6a5c
CM	DK)	.676	17.399	.039	1.193	25.738	6a5d
(M	LK)	.725	17.292	.042	1.280	23.851	6a5e
(J	BN)	.257	12,558	.020	.454	48.864	6a5f
							6a5g
(T	OTAL)	1.816	53,353		3.207		6a5h
							6a51
(HARD	WARE)						6a6
(M	EH)	.014	.191	.073	.025	13.643	6a6a
(J	R)	.004	. 407	.010	.007	101.750	6a6b
(E)	KV)		-	-	-	-	6a6c
							6a6d
(T	OTAL)	.018	.598		.032		6a6e
							6a6f
(TENE	x)						6a7
(D	IA)	.969	14.728	.066	1.710	15.199	6a7a
(K)	EV)	.469	12.756	.037	.828	27.198	6a7b
(D	CW)	.371	11.476	.032	.655	30.933	6a7c

						6a7d
(TOTAL)	1.809	38.960		3.193		6a7e
						6a7f
(NLS)						6a8
(CFD)	.946	29.488	.032	1.670	31.171	6a8a
(JDH)	.175	11.027	.016	.309	63.011	6a8b
(CHI)	.331	12.997	.025	.584	39.266	6a8c
(DSK)	.509	15.351	.033	.898	30.159	6a8d
(HGL)	.510	13.835	.037	.900	27.127	6a8e
(EKM)	.115	6.826	.017	.203	59.357	6a8f
(JEW)	.430	16.889	.025	.759	39.277	6a8g
						6a8h
(TOTAL)	3.016	106.413		5.323		6a8i
						6a8j
(GROUP) TOTALS	3					6ь
GROUP	CPU HRS	CON HRS	CPU/CON	% SYS	CON/CPU	6b1
						6b2
(STAFF)	4.500	127.461	.035	7.942	28.325	6ъ3
(PSO)	10.511	151.107	.070	18.551	14.376	6b4
(NIC)	1.816	53.353	.034	3.205	29.379	6ь5
(HARDWARE)	.018	.598	.030	.032	33.222	6b6
(TENEX)	1.809	38.960	.046	3.193	21.537	6ь7
(NLS)	3.016	106.413	.028	5.323	35.283	668
						6b9
(TOT)	21.670	477.892		38.246		6610

						6ы11
(STATS)						6c
HIGHEST CPU:	MEJ 7.	859 hrs	LOWEST C	PU: JML	JDC .002 hrs	6c1
HIGHEST CON:	MEJ 86.	006 hrs	LOWEST C	ON:	JDC .029 hrs	6c2
HIGHEST CPU/	CON: MEJ	.091	HIGHEST	CON/CPU: 1	: JR 101.750	6c3
						6c4
(OVERHEAD)						6d
(JCP)	2.159	74.232	.029	3.810	34.383	6d1
BACKGROUND	2.172	78.272	.028	3,833	36.037	6d2
CAT	15.532	33.753	.460	27.413	2.173	6d3
DOCB	-	-	-	-		. 6d4
DOCUMENTATIO	N .370	12.557	.029	.653	33.938	6d5
GILBERT	-	-	-	- 1	-	6d6
NETINFO	.125	5.357	.023	.221	42.856	6d7
NIC-WORK	-	-	- 1	-	-	6d8
OPERATOR	1.409	6.878	. 205	2.487	4.881	6d9
PRINTER	3.408	77.996	.044	6.015	22.886	6d10
SYSTEM	4.009	235.091	.017	7.076	58.641	6d11
						6d12
(TOTAL)	29.184	524.136		51.508		6d13
						6d14
(XEROX)						6e
						6e1
NAME	CPU HRS	CON HRS	CPU/CON	% SYS	CON/CPU:1	6e2
						6e3

	(LPD)DEUT	SCH	.143	2.2	16	.065	. 25	52	15.497		6e4
	(CMG)GESCI	HKE	.035	1.6	37	.021	. 06	52	46.771		6e5
	(JGM)MITC	HELL	.072	5.5	71	.013	.12	27	77.375		6e6
	(WHP) PAXTO	ON	-	-		-	- 11		-		6e7
	(EHS)SAT-	WTE	.224	5.6	15	.040	.38	95	25.067		6e8
	(RES) SWEET	r	.193	14.4	42	.013	.34	41	74.829		6e9
		-						-			6e10
	(TOTAL)		.667	29.4	81		1.17	77			6e11
											6e12
(R	ADC)										6 f
											6f1
	NAME CI	PU HRS	CON	HRS	CPU/CON	% S	YS (CON/CP	U:1	DIR	612
											613
	BAIR	.121	9.2	96	.013	.2	14	76.82	6	178	614
	BERGSTRM	.010	.3	65	.027	. 0	18	36.50	0	27	615
	BETHKE	.194	12.0	39	.016	.3	42	62.05	7	68	616
	CAVANO	-	-		-	-		-		123	6f7
	IUORNO	.012	1.1	55	.010	.0	21	96.25	0	39	618
	KENNEDY	.098	5.3	19	.018	.1	73	54.27	6	35	619
	LAMONICA	. 276	9.0	54	.030	.4	87	32.80	4	87	6f10
	LAWRENCE	. 141	6.4	01	.022	.2	49	45.39	7	48	6f11
	MCNAMARA	.060	2.9	05	.021	.1	06	48.41	7	145	6f12
	PANARA	.016	1.8	19	.009	.0	28	113.68	7	116	6f13
	RADC	.016	1.9	75	.008	.0	28	123.43	7	54	6f14
	RZEPKA	.048	2.8	68	.017	.0	85	59.75	0	86	6f15

	SLIWA	.002	.0	44	.045	.0	04	22.	000	26	6f16
	STONE	.308	11.3	06	.027	.5	44	36.	708	193	6f17
	THAYER	.008	.5	90	.014	.0	14	73.	750	35	6f18
	TOMAINI	.090	9.1	84	.010	.1	59	102.	044	45	6 f 19
											6120
	(TOTAL)	1.400	74.3	20		2.4	72		1	305.000	6f21
	(PER CEN	T TOTAL	DISK	CAPACI	(Y)					3.372%	6f22
											6f23
(N	ETUSERS)	TOP FIVE									6 g
											6g1
	NAME	СРИ	HRS	CON H	es ci	PU/CON	%	SYS	CON/	CPU:1	6g2
											6g3
	UCSB		609	13.75		.044	1.	075	22.	578	6g4
	GUEST		279	13.268	3	.021		492	47.	556	6g5
	CASE-10		269	6.558	3	.041		475	24.	379	6g6
	HELP	de la	269	16.594		.016		475	61.	688	6g7
	MITRE-TI	Р .	204	11.772	2	.017		360	57.	706	6g8
					1						6g9
	(TOTAL)	1.	630	61.942	2		2.	877			6g10
											6g11
(NI	ET) TOTAL	CPU	HRS	CON HE	s Ci	PU/CON	%	SYS	CON/	CPU: 1	6h
											6h1
	NET	3.	558	153.27	78	-		-		-	6h2
											6h3
(01	THER)	CPU	HRS	CON HE	S CI	PU/CON	%	SYS	CON/	CPU: 1	61

6i1

ENERGY .042 2.098 .020 .074 49.952 612

613

7

(J18366) 10-AUG-73 15:29; Title: Author(s): Beauregard A. Hardeman/BAH; Distribution: /WAR; Sub-Collections: SRI-ARC WAR; Clerk: BAH;