
~Hie San Francisco APPLE CORE presents

-fHt 6EST Of

vB.0Ui
Available September 1980

at the computer store near you.

THE DATA BASE YOUR APPLE HAS BEEN
WAITING FOR! 48K/ROM APPLESOFT/DISK

"HUMAN ENGINEERED" FOR EASE OF
USE BY NON PROGRAMMERS

• No complex "menu trees"
• Easy-to-follow prompting
• Formats displayed on screen as you create them
• Easy . .. Convenient editing for all inputs
• 10 data types, including auto-formatting for dates, phone

numbers, social security numbers
• Calculator style right to left input for $ fields

LARGE CAPACITY
• Up to 100 fields (items) per record
• Record size to 1020 bytes
• 1 - 4 f i e l d s i n p r i m a r y k e y s
• Any number of secondary keys
• 1 to 9 user formatted screen pages or "masks" per record,

and 1 - 24 fields per "mask"
• Special "update masks" for rapid editing

DATA PACKING FOR INCREASED
DISK CAPACITY

Integers stored in one or 2 bytes, real numbers in 5 bytes
Recurring characters and un-used portions of alphanumeric
fields packed into 2 bytes
Special code fields store short codes, but print full descrip
tions on reports

POWERFUL REPORT GENERATOR
Up to 100 columns on 1 to 9 lines
Up to 24 computed fields—compute with record values,
constants or other computed fields
Up to 5 horizontal subtotals (assign any field to any subtotal)
and grand total
Up to 6 sort and control break fields—column sub totals at
control breaks and page breaks
Control break or compute on printing and non-printing fields
Comment lines and fields, auto page numbering and report
dating, number formatting, and much more!

FAST ISAM FILING SYSTEM
Retrieve ANY RECORD from a FULL DISK, IN LESS
THAN 3 SECONDS
Search for records by any combination of range, wild cards,
partial strings, and relational, etc.

• Records are sorted by primary and secondary keys AS
THEY ARE ENTERED

• Three levels of password protection

All specifications are preliminary and subject to change.

Also Available:

r,Aristotle'S c-Apple by Scot Kamins

A computerized tutor for ANY subject, at ANY level.
$34.95 48K/Disk/ Applesoft

ELECTRONIC
PRICE'SHEET by Scot Kamins
A sales tool for retailers. $100 48K/Disk/Applesoft

by Barney Stone
$39.95 48K/D1SK

A powerful, easy to use appointment calendar.

by Ar thur Wells
Finally . . . The Hi-res Baseball that's as good as the Apple!
$24.95 32K/Disk Applesoft or Integer

by Bill B udge, creator of Trilogy and Penny A rcade
$29.95 32K/Disk/Applesoft or Integer

6y Arthur Wells
$19.95 48K/Disk Integer

A 2-player knife fight—rated "R" for violence!

1930 Fourth Street, San Rafael, CA 94901<:

(415) 454-6500

Calif. Res. Add 6% Sales Tax. No COD'S. Add $2.00 for
Shipping & Handling. Use Check, Money Order, VISA
or MASTERCARD (add Exp.).

APPLE 0 is a TM of Apple Computer, Inc.

DEALER INQUIRIES
INVITED.

B E S T O F T H E ' C I D E R P R E S S

I N T R O D U C T I O N

The SAN FRANCISCO A PPLE C ORE star ted in Air i l of 1978 because I couldn' t f igure
out how t o use my Apple I I . While the people in the store where I bought my
machine weren't ex act l y d isd ainful of my approaches for help, i t became c lear
fair l y quickl y that they knew very 1 i t t l e more than I d id about the b east.

My ba ckground is in the humanit ies and de cidedly not in the hard sciences. But
I did seem t o have a t alent for organizing born out of my work in the various
freedom and peace mo vements of the 60's. "Let 's see", I fool ishl y thoug ht.
" I f I write to a few magazines and contact a store or two, maybe I can ge t a
few guys together once a month to rap..."

Sure, k id .

The Apple Core's membership is now hovering around 800. We have over 400
working programs in the l ibrary. There are around six act ive committees and
about a do zen highly act ive volunteers running things.

There are at least four (count them) meetings per month, including one g eneral,
one pol i t ical /organizat ional and one b eginners's and one new sletter.

We had two publ icat ions - APPLE PEELING f or input and the CIDER PRESS fo r
ouput.

Personal ly, I think things have gotte n somewhat out of hand.

Be t hat as i t may, the APPLE C ORE had i ts roots in the concept of mutual aid
The idea was for people who d id' t know m uch t o get together and share what
knowledge they had, and I supposed, that the l i t t le pieces of knowing vould
mate and reproduce) .

I t is to our credit (pat-pat-pat) that the spir i t cont inues. The APPLE C ORE is
st i l l a place where beginners can come and get help. But we no w hav e a fair
cont ingent of heavies who share arcane know ledge i n the dark of the night, too.
A bunch of us run computer stores or wri te contract programs or work at the
source i tsel f (Gaw-lee!) .

Of course, aside from the above, we have our strange sorts, too.

There's John Scr ibbl emonger , our somewhat competent, c rude-but-effect ive f i rst
publ icat ions editor . At last report , he had sold his mansion high above
Mil p i tas and has m oved to Three M i le Is land.

J. Al fred Gl i tch needs no introduct ion - so we' l l skip him. There's the
nefar ious Dr. Qwan W. Min and his counterpart , Professor Schmuch the good ,
both of whom ca rry out a c lassic good-and-ev i l struggle v ia modems.

Aid, o f course, there's the Commodore's Pet DOS, Tige.

I could go on an d on, but HIMEM's bein g approached.

This edit ion of the Best of the Cider Press represents our var ious attempts to
pul l our computers and our sanity together.

We ho pe you enj oy reading the art ic les and applying the suggest ions as m uch as
we enjo yed devising and wri t ing them. Keep on coding.

S C O T K A M I N S - O N E O F T H E F O U N D E R S O F A P P L E C O R E

TABLE OF CONTENTS

G E N E R A L F E A T U R E S P Q . 4 - 0

H O W T O S E L E C T A P R I N T E R 1 1 - 1 4

A P P L E D O S A R T I C L E S 1 0 - 1 7

P R O D U C T R E V I E W S 1 9 - 2 3

L A N G U A G E S 2 6 - 3 4

S O U N D A N D M U S I C 3 6 - 3 7

M O D I F I C A T I O N S 3 0 - 4 3

G R A P H I C I N F O R M A T I O N 4 6 - 4 6

U T I L I T I E S 4 0 - 6 2

A P P L E C O R E L I B R A R Y 6 4 - 6 7

C H E C K B O O K - D I S K V 8 7 . 4 6 9 - 0 2

C H A R T S A N D T A B L E S 0 3 - 0 8

P E E K S , P O K E S , A N D C A L L S 0 9 - 7 1

S F j ^ A P P L E C O R E
B E S T O F

"THE CIDER PRESS"
S E C O N D P R I N T I N G 8 / 8 0

STAFF
EDITOR/PUBLISHER

ASSISTANT TO EDITOR

ASSISTANT EDITORS

ADVERTISING

CALLIGRAPHY

GRAPHICS

KEN SILVERMAN

KATHY STARK
LEROY LARSEN

PHIL BERNHEIM
RANDY FIELDS
GLEN HOAG
GENE WILSON

MARTY COHEN
PETER WEIGLIN

JIM LINHART

JIM LINHART
PEGGY HUGHES
EMILIE HANCE

1979 OFFICERS
PRESIDENT

VICE PRESIDENT

TREASURER

SECRETARY

FRED WILKINSON

BRUCE TOGNAZZINI

GOEFF BALDWIN

BILL NEFF

1980 OFFICERS

PRESIDENT

VICE PRESIDENT

TREASURER

SECRETARY

RANDY FIELDS

KAREN WEISS

PHIL BERNHEIM

BILL NEFF

A P P L E C O R E
The APPLE CORE OF SAN FRANCISCO is a non-profit
organization comprised of, and supported by, Apple II
Computer owners. The Apple Core is run entirely by
volunteer officers and committees. The club endeavors
to aid other APPLE owners. All members are individuals
(and their families), and NO shops, stores, or
corporations are directly registered. (However, any
shop may register an employee c/o that shop).

M E E T I N G S
MONTHLY MEETINGS are held at Fort Mason and is
located in San Francisco at Laguna and Marina
Blvd. General meetings start at 10 AM. The
building is C and the room number is 300.
Meetings are held on the first Saturday of each
month. Anyone interested in the Apple Computer is
welcome to attend.

C I D E R P R E S S P O L I C Y
All manuscripts, photography, and other materials are
submitted free and released for publication. They
become the property of the Apple Core and the Cider
Press. Authors should clearly mark all material
submitted for publication so that credit may be given.

The publishers/editors do not necessarily agree with,
nor stand responsible for, opinons expressed or implied
by others than themselves in this publication.

All articles appearing in the CIDER PRESS not
copyrighted by the author may be reprinted so long as
proper credit is given to both the Cider Press and the
author. Proper credit is defined as article title,
author, and the words "Printed from VOL x, NO y of the
Cider Press.

Permission to reprint an article may be gained by
writing to the author c/o the APPLE CORE.

ADVERTISER'S INDEX

AMREX
CAP 1N SOFTWARE
COMPUTERLAND OF SAN FRANCISCO
COMPUTERLAND OF THE CASTRO
COMPUTERLAND OF MARIN
INFORMATION UNLIMITED SOFTWARE, INC
INTERNATIONAL APPLE CORE
M & R ENTERPRISES
SAN FRANCISCO APPLE CORE
STONEWARE
SOUTHWESTERN DATA SYSTEMS
WYMAN ASSOCIATES

9
24
18
15
58
IBC
53
38
53
IFC
10
44

G E N E R A L F E A T U R E S
TERMINOLOGY
B Y K E N 8 I L V E R M A N

Just as in any other speciality, the
people involved in data processing
equipment have developed their own
terminology. Some of these terms are
defined in the following list. The
definitions are not rigorous and the
list is far from complete.

ALPHANUMERIC-Having characters only.
A CRT that is an alphanumeric CRT
displays only characters and cannot
draw lines, etc. for graphic
pictures. The characters displayed
are usually those specified by ASCII.

ASCII-Acronym for American Standard
Code for Information Interchange.

ASSEMBLER-Program that translates
assembly language to machine language.

ASSEMBLY LANGUAGE-Symbolic codes
representing CPU instructions.

BASIC-Beginners All-purpose Symbolic
Intruction Code. The most common high
level language for personal computers.

BAUD-A unit of signaling speed derived
from the duration of the shortest
signaling event. If each signaling
event is exactly one bit, then the
baud rate is the same as bits per
second.

BIT-One binary digit.

BOOTSTRAP-An instruction set usually
in ROM or RAM that is executed
automatically when the system is
turned on, to initialize the system.

BUS-The very high speed communication
path between the components of the
computer in the mainframe.

BYTE-A group of 8 bits. Usually one
byte is used to represent a character
in ASCII code.

COMPILER-A program to translate from
higher level language such as Pascal
to machine language.

CPU-Central Processing Unit, such as
the 6502 in the Apple.

DOS-Disk Operating System.

FIRMWARE-Program built into the
system, in ROM or RAM.

HARDWARE-The physical components of
the system.

HEXIDECIMAL-A numbering system based
on powers of 16.

I/0-Input/Output of information to or
from the computer.

OCTAL-A numbering system based on
powers of 8.

RAM-Random Access Memory that can be
both written on and read from.

ROM-Read Only Memory. Memory with
permanent instructions that cannot be
erased.

S0FTWARE-A11 programs including
systems or applications programs.

There are a great deal more terms used
by computer persons today. If you
wish to know the definition of some
term, just write to the Cider Press,
c/o Ken Silverman, and I will try to
answer them for you.

APPLE BEEPS
TRANSLATED
B Y A N D Y H E R T Z F E L D

You may have wondered why the APPLE
beeps twice when loading a BASIC
program from tape (once at the
beginning, once at the end), but only
once (at the end) when loading a
machine language program. The answer
is very simple: a BASIC "load"
actually consists of TWO monitor
loads, each of which produces its own
beep.

It is necessary to do two loads for
each BASIC program because the monitor
must know how long a program is before
it can read a program in. Thus before
the body of a BASIC program is saved
its length is calculated and saved
first; thus the monitor can determine
how much data is out there when
reading it back in. If you listen
carefully to a tape of a BASIC
program, you'll notice that the leader
tone makes a very short dip in pitch
about a second or two before the main
part of the program begins. This dip
in pitch is actually 2 bytes worth of
data telling monitor the length of the
following BASIC program.

Thus we have a very easy way to find
out the length of a BASIC program
without even reading the whole thing
in! Get into the monitor (one way is
to hit reset) and type 300.301R (you
can actually use any two adjacent
addresses) and start the tape
recorder. This will load the length
of the program into the specified
memory locations, low-order byte
first. Then all you need do is read
those addresses from the monitor and
convert them from hex to decimal - and
there you have it!!

SORTING
B Y A R T M A C K

One of the things that every
programmer has to do eventually is to
sort some data. Described here is one
way to write a sort routine in BASIC
as follows.

4

Starting with the first element of an
array (the sort shown here is for an
array of real numbers but applies to
Integer and String arrays as well) the
array is searched to find the smallest
element (assuming we want to sort into
ascending order) and that element is
placed in position 1 of the array.
Next, we start with element number 2
and find the smallest element left in
the array and place it in position
number 2. We continue this way with
positions 3,A,5, etc. until we reach
the last element in the array. Thus
when we are finished, the smallest
element in the array is in position 1,
the second smallest in position 2, and
so on.

The following example shows how to
sort an array named "D" of dimension
"N" (assume that all the elements of
"D" have already been put into the
array).

800 FOR I = 1 TO N-1 : REM LOOP FOR
N-1 TIMES, THE LAST ELEMENT WILL
AUTOMATICALLY BE IN THE RIGHT PLACE.
801 FOR J = 1+1 TO N : REM LOOP AND
CHECK THE I'TH ELEMENT WITH ALL
REMAINING ELEMENTS IN THE ARRAY.
802 IF D (I)<D(J) THEN 806 : REM IF
THE I'TH ELEMENT IS THE SMALLEST TRY
THE NEXT REMAINING ELEMENT.
803 A = 0(1) : REM OTHERWISE SWITCH
THE ELEMENTS (LINES 803 - 805).
80A D(I) = D(J)
805 D(J) = A
806 NEXT J : REM CONTINUE FOR THE
NEXT J
807 NEXT I : REM CONTINUE FOR THE
NEXT I

Note that the "inner" loop (lines 801
- 806) is executed from N-1 to 1 times
depending on the value of I, and that
the "outer" loop (lines 800 - 807) is
executed N-1 times. Also note that
the routine can easily be changed to
sort the array into descending order
(highest to lowest values) simply by
changing line 802 to:

802 IF D(I)>D(J) THEN 806

RAM?
B Y T O N Y H U Q H E 8

You may have the impression now that
we have an official animal, or pound
on the APPLE keyboard with more than
usual force, but in reality, RAM i s an
acronym that means Random Access.
Memory. The APPLE can hold several
thousand letters, numbers, and special
characters in its memory and can look
at them in any order (i.e. the first
one, then the tenth, then the 1024th,
etc.), unlike a tape recorder that
must read from the beginning of a tape
to the end.

There is another meaning to RAM. It
can be erased and written over like a
magnetic tape. Unlike a tape, RAM is
impermanent; when you turn the APPLE
off, your program goes away. You turn
it on again and you have to reload
your favorite game.

R A M (C O N T .)

There is another kind of memory,
called ROM, or Read Only Memory. Like
RAM, the APPLE can begin reading its
characters from any point in memory.
Unlike RAM, ROM is permanent, like a
phonograph record; its characters are
engraved at the factory and can never
be changed.

Why does the APPLE have both RAM and
ROM? Well, any of the hundreds or
thousands of programs we might want to
run will fit into the same area of
RAM. Just like erasing and reusing a
blackboard. But a computer like the
APPLE also needs a special program
that occasionally takes over to do
some mundane housekeeping task. When
you press Control and G simultaneously
(on the keyboard) you will hear a
beep. Now the APPLE isn't
electronically wired to produce that
beep, like a doorbell, but must
manufacture it by performing dozens of
steps within itself. Then you hear
it. The program that produces beeps,
as well as others that perform similar
functions are all down in ROM
somewhere.

RAM for the APPLE is in the form of an
electronic component called a chip.
The chip has the size and appearance
of a black, rectangular caterpillar.
A 4k chip will have 4096 pigeonholes,
each and any of which can hold one bit
of information; that bit will either
be yes or no, off or on. If the APPLE
looks at pigeonhole 1234, for example,
it may find the bit there to be set
on, but we're still a long way from
finding a number or letter. If we
use, for example, 8 bits in tandem, we
can represent up to 256 possible
characters, and in fact this is done.
The APPLE will look at pigeonhole 1234
in 8 chips; the first chip is off at
that location, the second on, and so
forth. So just like Morse code, we've
spelled out a letter or number
(actually, a unique character) at that
address.

So a row of 8 4k chips give the APPLE
a memory of 4096 characters. The
APPLE will hold UD to 3 rows of 4k or
16k chips, so its memory could be as
high as 49152 characters. There can
be 12288 characters in ROM. The rest
is taken up by some electronic
functions.

MEMORY CELLS

The 16K dynamic RAM, used in your
Apple, is getting cheaper all the
time. In fact some mail order houses
are advertising 16K bytes (8 units) as
low as $65.

Installing your own RAM is not a
problem; it is all explained on pages
133 - 135 of your red manual. However
there can be a potential problem to
the purchaser of these chips, i.e.
speed. After talking to the Engineers
at Apple Computer I was told that
200ns chips exceed Apple's
specifications, 250ns are the standard
speed and that 300ns or slower chips
should not be used. It seems when
300ns or slower are used a zero will

turn into a one once in a while. This
has to do with the correct delay time
between the two address strobe signals
(during the memory access cycle). In
addition the Apple timing doesn't
allow long enough precharge or row
address hold time for the slow 300ns
parts.

Find out what the manufacturer's
specifications are for the RAM you
plan to purchase before you buy.
Write first or deal with suppliers who
will specify the speed.

SCREENPAUSE
• V S C O T K A M I N S

It is always a good idea to include
complete documentation as to how a
program works within the body of a
program. Quite often, however, that
information takes up more than a full
screen (i.e., more than 24 lines) to
display. Thus the programmer needs
some device to allow him/her to stop
the screen from scrolling before the
user is done reading the information
being shown on the screen. One way to
accomplish this goal is the delay
loop. All you need to do is insert
"FOR STALL=1 TO 2000:NEXT STALL" in
some appropriate place in the printout
subroutine.

While that method will halt scrolling
for a few seconds, it is not the most
desirable way to do things. Slow
readers will still have trouble
keeping up, and speed readers will get
bored.

A less primitive method is here-in
offered, making use of "PEEK (37)"
(absolute vertical position of the
cursor) and "PEEK (-16384)" (read
keyboard strobe). Applesoft users
will note that the "GET" function can
be substituted for the
"keyboard-strobe and-clear" peeks and
pokes in lines 1030 thru 1050.

0 CALL -936
10 FOR EXAMPLE = 1 TO 1000
20 PRINT EXAMPLE
30 IF PEEK (37) = 20 THEN G0SUB

1000: REM THIS CHECKS IF
CURSOR I S AT TEXT LINE 20

40 NEXT EXAMPLE
50 END

1000 REM SCREENPAUSE BEGINS HERE
1010 VTAB 23: TAB 1 5: REM FORMATS

THE SCREEN FOR THE
PROMPTER PRINTOUT

1020 PRINT "PRESS ANY KEY TO CONTINUE"
1030 Z=PEEK (-16384): REM CHECKS TO

SEE I F ANY KEY HAS BEEN PRESSED
1040 POKE -16368,0: REM RESETS THE

KEYBOARD "CHECKER"
1050 IF Z>127 THEN 1070: REM IF A KEY

HAS BEEN PRESSED THEN GOTO 1 070
1060 GOTO 1 030: REM KEEP CHECKING
1070 CALL -936: REM CLE AR THE SCREEN
1080 RETURN: REM GO PUT MORE

INFORMATION ON THE SCREEN

6

R&R DEC DUMPS
B Y M A X J . N A R E F F

Calculations in Applesoft usually
result in long multidecimal numbers.
While the accuracy of the numbers is
commendable, long mantissas are often
not necessary; frequently they are
disruptive of the three - columns -
via - commas screen format the Apple
provides.

Following is a simple function for
reducing post-decimal numbers and for
rounding off the residuals (R&R).

Of the many functions preprogrammed in
Applesoft, Integer is used to drop the
fractional part of a number. The
excision is sharp and clear.

Y=INT(3.4729): PRINT Y

Will result in "3". It doesn't round
off; it truncates. Thus:

Z=INT(6.87563): PRINT Z

Yields "6", with everything to the
right of the decimal ignored. In
order to retain numbers to the right
of the decimal and to "round them
off", we must define a function
ourselves. We create this special
action by means of the DEF(ined)
F(unctio)N command.

The function reads DEF FNA(X)=INT(X)
where FN indicates function and the
following letter can be any alphabetic
character merely serving to define
that particular function at the time
of its use. The (X) is the value to
be acted upon.

The following simple program tells the
story:

20 DATA 3.4678,19.2062,11.562,1
41.45917,1000

30 Read x
40 IF X=1000 THEN 7 0
50 PRINT X, INT(X)
60 GOTO 30
70 END

NOTE THAT THE STANDARD INTEGER
FUNCTION, INT(X), DROPS THE DECIMALS.
NOW ADD -

5 DEF F NA(X)=INT(X*100 +.5)/100

AND REWRITE LINE 50 TO REA D

50 PRINT X, INT(X), FNA (X)

Note how the DEF FNA(X) limits the
post-decimal numbers to two and
"rounds them off". The latter is due
to the addition of .5, which increases
by 1 those decimal numbers .5 or more;
anything less is not propelled over
the carry-over cliff. When dealing
with several variables (X,Y,Z), just
plug them between the parentheses.

ALGORHYTHMS
B Y B R U C E T O G N A Z Z I N I

A few of you will recall the exciting
algorhythm presented several Issues
ago (August of 1978, I believe) for
filling in a block of memory with a
desired number. This would be useful
for doing things like clearing the
hires screen, setting basic memory
space to all zeroes and then loading a
program for purposes of exploration,
or perhaps for "seeding" a Life game.
The method presented at that time for
filling in the Hexadecimal locations
$00.$30 with all EA 1 s (the
no-op(eration) command in 6502 code)
was as follows: Type 0:EA EA EA
EA EA. Now this worked very
well back in 1973 on the Apple -1 when
our memory only went from $00.$30, but
now that we've gone from A8 bytes to
ASK bytes, it can take several days.

So we offer a solution so daring, so
imaginative, that we didn't even think
of it. No, it took one of those
unsung resident geniuses at APPLE to
come up with this one. To fill (for
example) $AOO to $7FE with EA's, type
the following:

*A00:EA A0KA00.7EEM ("RETURN")

Now don't panic, that was the screen
buffer you just filled. Try
preceeding the "A00" with "C050" to
turn on graphics and change the "EA"
to some other "seeds". And when
you're ready for the bit time, try
this:

*C050 C053 C057 2000:10 73 EA 0 1A AE
2006<2000.3FE9M ("RETURN")

The general formula follows:

(startaddress):((digit(digit))
((space) (startaddress+number of
(digit(digit))s) < (startaddress) .
(endaddress-number of (digit(digit))s)
M(ove) (return)

There is another interesting thing
that we can do by forcing the computer
to repeat its steps. To do this,
start your command sequence with the
"N" command and terminate it with
"(space) 3A:0 (space) (space)." For
example, try this one:

*N C050 C053 C057 2000:01 3A 6A 82 96
73 2006<2000.3FF9M 2000:FF AO 77 B3 D9
EE 2006<2000.3FE9M 3A:0 (space)(space)
("RETURN")

For a technical explanation of why
this works, we turn now to S.
Wozniak, that delightful fellow who
whispers *** SYNTAX ERR at us every
night.

The APPLE-II MONITOR command input
buffer begins at location $200 and is
scanned from beginning to end after
the user finishes the line by typing a
carriage return. An index to the next
executable character of the buffer
resides in location #3A while any
function is being executed. By adding
the command "3A:0" to the end of a
MONITOR command sequence the user
causes scanning to resume at the
beginning. Because the "3A:0" command
leaves the MONITOR in "store" mode, an
"N" (normal text) command should begin
the line. (printed by special
permission of Steven Wozniak)

There, now that wasn't difficult to
understand, now was it (Hey, Scot,
what's a MONITOR? What about the
Civil War? Oh.) Try different "seed"
numbers with lores and hires and let
us know what you come up with. Have
fun

DISK? STRINGS

ON TAPE
B Y P H I L B I R N H E I M

The answer is no. All that disk can
do for you, as far as I can see, is
save time and trouble - and since
trouble is merely the trouble of
writing slightly more complicated
programs, that, too, reduces to time.

Now time may be costly in a commercial
environment, but it certainly isn't
when it comes to personal computing or
fun and games. Of course, if you WANT
to go ahead and spend $600.00 to save
time, don't let me stop you; but if,
like me, you think eleven hundred
bucks is enough already, here are some
tips to help you do with your little
cassette what the big boys do with
their disks.

Take that matter of string storage,
for instance. On disk, easy - just
file it! But on cassette you can't
STORE literals - they have to be
transcribed to ASCII code first. Only
where is the routine for doing that?

Not wanting to re-invent the
tea-kettle, I asked around. Nobody
seemed to know. What's more, nobody
seemed to care. The programming
wizards all have disks. So I invented
the tea-kettle, and here is a result
in a sample demo program. You can use
the sub-routines and a few essential
lines in the main program in your own
programs.

10 L$="NOW AND THEN": REM
SAMPLE STRING FOR TEST PUR
POSES; USE YOUR OW N INSTEAD

20 S$="HERE AND HEREAFTER":REM
SAME AS ABOVE

25 DIM A(25),A$(25),A1$(25):REM
SET ALL 3 TO LENG TH OF YOUR
LONGEST STRING

28 L=0:C=0:REM INITIALIZES
C0UNTERS--IE YOU HAVE OVE R
10 STRINGS IN YOUR PRO GRAM
YOU WILL HAVE TO DIMENSION
C TO THE NUMBER 0E STRINGS

30 A$=L$:REM MAKES A$ (THE
SCRATCH VARIABLE) EQUAL TO
YOUR FI RST STRING

35 C=C+1:REM ESSENTIAL TO
INCREMENT COUNTER BEFORE
EACH CALL TO SUBROUTINE

AO GOS UB 100
60 A$=S$:REM MAKES A$ EQUAL

TO YOUR SECOND ST RING. THIS
AND THE FOLLO WING STATEMENT
ARE NECES SARY BEFORE EACH
CALL TO THE SUBROUTINE

65 C=C+1
70 GOSUB 100
90 GOTO 200:REM INITIATES

RECALLING ROUTINES—YOU
WILL WANT TO PU T THIS
ELSEWHERE IN YOUR PROGRAM

99 REM FOLLOWING IS SUBROUTINE
FOR STORING EACH STRING
(LINES 100-180

e

100 D=LEN (A$):L=L+1:C(L)=D
120 FOR K=1 TO D
130 A(K)=ASC <MID$ (A$,K,1):

REM TRANSLATES STRING TO
ASCII CODE LETTER-BY-
LETTER

1A0 NEXT
150 PRINT "START TAPE IN RECORD

MODE; PRESS RETURN": GET W$
160 STORE A
180 RETURN
200 L=0:REM RE-INITIALIZES

COUNTER
205 GOSUB 300
210 L$=A$:REM SETS A$ (THE

SCRATCH VARIABLE)BACK TO
YOUR F IRST STRING VARIABLE

220 GOSUB 300
230 S$=A$:REM SETS A$ BACK TO

YOUR SECOND STRING VARIABLE
2AO PRINT L$: PRINT S$: END :REM

THIS LINE NOT NECESSARY IN
YOUR OPERATION

300 L=L+1:A$="": REM IN
CREMENTS COUNTER; NULLS A$
FOR NEXT USE IN SUBROUTINE

310 PRINT "START TAPE I N PLAY
MODE ".-GET W$

320 RECALL A
330 FOR K=1 TO C(L): REM

LIMITS LOOP TO LENGTH OF PAR
TICULAR STRING BEING WORKED ON

3AO A1$(K)=CHR$ (A(K)): REM
TRANSLATES ASCII CODE NU MBER
BACK TO LITERAL

350 A$=A$+A1$(K): REM BUILDS
UP A$ LETTER BY LETTER

360 NEXT
370 RETURN

Problem number 2: I didn't have a
printer, so how to stop program
results from flashing across the
screen so fast I couldn't even read
them, much less copy them down? Thanx
to Scot Kamins, here's the solution:
In any print statement - usually in a
loop - use this:

PRINT: IF PEEK (37520THEN GOSUB 500
500 VTAB 23:PRINT "PRESS ANY LETTER

TO CONTINUE":GET W$: HOME:
RETURN

So, so far, no disk for me, but I do
have those 600 bucks and a lot of fun!

ARTICLES
B Y S C O T K A M I N S

A number of members have of late
hinted that they would like to submit
articles to the CIDER PRESS, but felt
inhibited because "I write lousy".

Aside from the obvious comment that a
lack of literary ability has so far
been no deterrent to the newsletter
staff, we do want to impress upon the
membership that we are after
information, and not deathless prose.

If you have discovered a nifty
algorithm, a neat function, some
hidden monitor hook or some handy
hardware hint that would help a
computer user on any level please send
it in. Remember: the newsletter is
written entirely by the membership for
the membership. If we don't write it,
it don't get writ.

BELLY-UP PET
C O R K B I G G I E A R R E S T E D

D A T A L I N E . . . S C A N D A L

• Y B R U C E T O G N A Z Z I N I

Carnage swept this tiny seaside
community this morning during what
appears to have been a reiterative
altercation centering upon our own
beloved John Scribblemonger, just
shortly after he had ventured FORTH
from his hospital bed.* According to
eyewitness accounts, the incident
began shortly after nine A.M. as John
S. brought his yacht, the "BUSTER
BROWN" into the harbor of Scandal.
After tying the passenger vessel (of
the giant "Floating Bus" RS-232 class)
up to Port 1 , one of eight which
parallel the Deyemmay Memoriable Daisy
Field, Scribblemonger disembarked the
ship, accompanied only by his trusty
dos Tige (he lives there too!) who had
been disembarked on a much earlier
occasion.

As the Commodore and Tige walked
beside the cabled walls of the great
hulking slots, the dos suddenly jumped
through one of the small openings,
lined with dinner plates, which
punctuate the port's ponderously
planked platform. As Scribblemonger
squeezed his massive main-frame
through the hole, screaming for his
little chum, the frightened dos popped
up through another plated-through
hole, finding himself beneath the very
underpinnings of City Hall, at 6502 H
St., corner of 7th. Those of you
familiar with Scandal as John
Scribblemonger will well understand
the plight of the plucky dos as he
dodged the screaming traffic. He ran
east of H St., past the four-way stop
lights on 13th, around the ping-pong
courts on 1Ath near J, and then south
on 1Ath St., past the paint store on
1Ath and F. He was next spotted
cutting through the industrial
section, over to 10th St., racing down
along side the goat farm.

FOR THE SAKE OF THOSE READERS WHO
CANNOT FOR THE L IFE OF THEM FIGURE OUT
WHAT IS GOING ON, LET US OFFER A BRIEF
EXPLANATION: THIS ARTICLE IS IN FACT
A CLEVERLY DISGUISED TOUR-DE-FARE OF
THE INSIDE OF YOUR APPLE. IF YOU WILL
OPEN YOUR RED BOOK TO PAGE 123 AND
REFER TO PAGES 1A3 TO 151 YOU WILL BE
ABLE TO FOLLOW THE PATH OF THE ERRANT
PAIR. THE ADDRESS OF THE CITY HALL,
FOR EXAMPLE, TELLS YOU THAT IS LOCATED
IN ROW H, COLUMN 7, AND IS A 6502
CHIP.

Eyewitness report from farmer Vidgen
(rhymes with 'pigeon'): "Ayup, I
recon it was long about eleven. The
wife come out to the pastcha to tell
me that the goats 'uz' thusty. 'Never
mind', says I, 'you put on the kettle,
and we'll give them rams something
nice and refreshing.' It was just then
the wife seen the dos go yappin'by,
with that big fella lopin' just
behind."

And yapping and loping they went, all
the way to A St., Broadcast Row, and
the local offices of The Apple Core
Journal at 2513 A St., corner of 5th.
Here the badly scared dos tried to
find refuge but was refused entrance
by an unidentified guard described
only as having a "rather fiendish
grin".

With a winded and wilting
Scribblemonger chuffing behind him,
the tired beast headed North, straight
into the path of 16 bi-directional bus
lines. He scurried across the rails,
pausing momentarily on one of the
green safety islands while a burst of
bits went screaming by.

We talked with Chip Pfuller, a
foreigner, who is, judging from his
accent, either from Southern Whales or
Northern Milpitas. (Southern Whales
are found underwater and are given to
a slight drawl; this fellow was both.)
"Yes, sir, it shore looked like the
little guy was going to make it too.
But then he starts kinda verrin'
North-west, toward the little
Timer-life building (at 555 3rd).
Well, sir, all of a sudden, this old
cursor, lookin' like Columbo 'cept
with a right strange smile, up and
flashed him and that ole dos liked to
drop right into a wait-state."

Yes, and it was while friendly Tige,
the dos was locked helplessly in that
wait-state, that the rogue address bus
came careening around the corner, and,
bearing down on him, scrambled him
into apparent pseudo-randomness!

Arriving only moments later,
Scribblemonger grabbed his little
friend and booted him, repeatedly, in
a vain effort to get him back on the
right track. The bus lines became
crowded with any chatter (cross-talk?)
about the violent goings-on. Chip
Pfuller: "He booted him pretty good.
Even bounced the little sucker off the
walls a couple times, but it warn't no
use; everybody could see that that ole
boy had a dead dos on his hands."

Scribblemonger's rising rage branched
toward the offending address bus when
he noticed to his horror that the bus
driver was none-other than J. Alfred
Glitch, that Evil Genius behind so
many of our beloved editor's recent
tribulations. And as the Commodore's
pet lay belly-up, J. Alfred sped away
from the scene, with a cursing
Scribblemonger, having forced an
interrupt on a data bus, taking off
after him. (John had accidentally
left his Lone Ranger costume at the
cleaners, thereby making this his very
first (sigh) non-maskable interrupt.)

Hip Flash, ace photographer for the
Journal, reports that the police were
shortly in hot pursuit of the pair,
even going so far as to notify Oregon
and Nevada of the chase, to enable (of
course) the setting up of a tri-state
buffer. (Nobody's forcing you to read
this, you know.)

Scribblemonger proved to be a valiant
bus-driver, but he was no match for
the nefarious Glitch, who, being able
to leap from bus line to bus line,
finally managed to completely delude
(and thus elude) the baffled John S.
by trapping him in a loop. Yes, poor

7

John, coming upon what he assumed to
be Glitch's bus, climbed aboard and,
not realizing that he had in fact
looped back upon himself, repeatedly
rammed the driver until he had beaten
himself into something that appeared
to be (according to photog Flash) an
interrupt driven, real-time clock.

As we g o to press, John S. has been
taken into custody by the local
constabulary and is being held for
observation: "We want to find out
what makes this guy t ick." We are
currently raising money to pay for
John's bail and a ni-cad stand-by
power supply. But John informs us
that, barring any u nforseen events, he
wil l definitely be at this upcoming
meeting of your Apple Core. And John
is one man you c an count on.

And as for Mr. Glitch, Hip Flash has
just located his hiding place in the
area surrounding Scandal, and the
Apple Core Journal takes great, nay
fiendish, pleasure in revealing i t to
everyone. Yes, J. Alfred, we know
y o u a r e l o c a t e d a t
S0cwo3himem:30KSLS/::: FORMULAE TO O
COMPLEX
ERR39LCLCATALOGS039GKD: ::SYNT AX
ERREIFLSRESET

PROGRAM LAW
C O P Y R I G H T (C) 1 8 7 8

B Y A R T H U R W E L L S

This article will discuss some of the
laws pertaining to the protection of
computer programs and data bases. As
the law in this area is complex and
confused, and as I am not an expert
in the field, and as this is just a
general article, I am sure you will be
careful about relying on it before you
do something you think is important.

There are theoretically several ways
you can try to legally protect
computer programs from unauthorized
use. Basically, these are to try to
patent them, copyright them, or treat
them as trade secrets or "know how".
Patent protection, even if available
for computer programs, is an expensive
process from the outset. As
contrasted with other possible
protections, the granting of a patent
requires that a search be conducted to
demonstrate that the item for which
the patent protection is being sought
is novel, that is, no one else has
"invented" it. Patent protection for
programs, if available at all, might
be had where firmware is integrally
involved with hardware.

The most common attempt at protection
is via a copyright claim. In order to
claim copyright protection, one need
only put a notice of copyright on the
work, which consists of the word
"copyright" or the letter C in a
circle with the name of the claimant
and the year of publication. This
claim must be followed by
registration, which involves filling
out a simple form (available from the
Copyright office in Washington, D.C.),
payment of a small sum, and submission
of a "copy" of the work for which
copyright is claimed.

P R O G R A M L A W (C O N T .)

Having the notice and the registration
do not mean that you actually have the
copyright protection you claim. You
get that protection only after a
lawsuit in which the court says you
have protection. Such lawsuits are
expensive and time-consuming and it is
extremely doubtful that anyone but a
large company would bring such a suit
over a program and then only if the
program were very valuable. Many
specific problems and questions are
presently unresolved as far as
copyright protection for computer
programs and data bases. In fact, a
new copyright law effective in 1978
specifically left questions about how
to treat computer material for future
discussion and several professional
committees seem to be still grappling
with the problems.

Some of the questions and problems
are:

1. To claim a copyright, the work
involved must be "original". When is
the assembling, selecting, arranging,
editing, and literary expression (if
any) that goes into the set of
operating instructions (program) or
compilation of reference material
(data base) sufficient to constitute
original authorship?
2. What protection attaches to works
created by a computer, based on a
program?
3. In which form ought the program be
protected; input, output, or both?
4. When does unauthorized use of only
a part of a program, such as one
elegant subroutine, constitute an
infringement?
5a. How do we distinguish between the
situation where the program
"communicates information" and is thus
copyrightable, and where it is an
integral part of the mechanical
elements of some device, and therefore
protection of its "utility" can be
obtained by patent only.
5b. Does this mean we draw
distinctions between systems firmware
or software (compilers, assemblers,
etc.) and other programs? Is a
program ever non-"functional"? Or, is
it always "communicating" information,
even if it is only to a machine?
6. Copyright protection gives the
exclusive right to reproduce copies,
and to prepare derivative works.
Where is the line to be drawn
regarding the use of programming
algorithms?
7. Copyright protects original works
of authorship fixed in a tangible
medium that does not extend to any
idea, procedure, process, system,
method of operation, concept,
principle, or discovery regardless of
the form in which it is described,
explained, illustrated, or embodied in
the work. How is this rule to be
applied to computer programs and data
bases?
8. Copyright is supposed to encourage
people to produce original works by
giving them monopoly-like rights in
their works for a specified period of
time. But use of copyrighted material
without permission is sometimes
allowed to further societal goals such
as teaching, criticism, scholarship
and research. Whether such "fair use"
is permitted depends on the purpose
and character of the use, the nature
of the material, the amount of

material used, and the effect of the
use on the market for or value of the
copyrighted material. How is the fair
use doctrine to be applied to computer
material?
There are a host of other, and/or
subsidiary questions, but the above
will do for a start.

Given the problems with patents and
copyrights, it is not surprising to
find that many companies dealing with
intellectual property do not rely
completely on those legal tools for
protection. Surveys of firms
providing consulting, feasibility
studies, systems analysis and designs,
contract programming, proprietary
software packages, time-sharing,
telecommunicatios, data center
management, and computer research
indicates use of various protective
devices. Preferred methods seem to be
contracts requiring that material be
treated as confidential both by
employees and users. In addition to
treating the material as a trade
secret, and to patent and copyright,
companies also use limited access to
technology, cryptographic coding,
software locks and similiar devices.
Protection of software seems to be
viewed as most important for general
business and financial applications
and for systems software, and least
important for complex production and
management and for engineering and
scientific applications. Probably
this is so because marketing
considerations and design and
development costs play a great role in
providing meaningful protection for
the latter.

As applied to the hobby user, it is
very doubtful that anyone would or
could ever successfully prosecute an
infringement or misuse suit against
someone who pirated a program.
Conversely, hobby users who develop
their own material should either keep
it secret to themselves or give it to
all in the hopes of making a good
reputation. The hobby user will
hardly be in a postion to enforce his
right, if he has any.

The fundamental concepts for this
field have been well stated by others:
1. Creators and developers should
receive compensation for the use of
their product.
2. Society should have maximum access
to the creative products of its
members.

The resolution of these two somewhat
confl icting principles, especially as
applied to a new com plex technology,
will need years to be worked out; tnat
is why, in sumiTary, the f ield of
computer program law will contrive to
be obtuse and obscure.

In light of the above, you serious
programmers and other computer
professional have my sympathy and my
condolences. Also my apologies for
such faults of this article as may
contribute to those attributes.

ANY QUESTIONS ABOJT THE ARTICLE CAN BE
SENT TO ARTHUR, CARE OF US HERE AT:

SF RPPl€ COR€
1515 Skat Blvd. Swka t
Son Fratdsco, Cft 94 131

8

TEACHING PGM
B Y A R T H U R W E L L S

C O P Y R I G H T (C) 1 9 7 8

Young children apparently have little
trouble learning to use a computer.
My own child, now age 8, as well as a
number of other children I've run
across and heard about, have no
trouble loading programs and running
the machine. This includes both tape
and disc load, restarting tapes after
glitches, rebooting, and other minor
troubleshooting. Strong motivation
for this obviously exists in that the
reward is immediate and satisfying:
the child gets to play interactive
games on or with the computer.

Teaching your child to program also
achieves a variety of goals and
satisfactions, not the least of which
are:

1. Your child begins to learn a skill;
2. You justify having your computer
and spending money on it;
3. It is a productive way to interact
with your kid;
4-. The time the child spends with you
frees up your spouse's time;
5. Your spouse will get off your back
about spending so much time with the
computer; and
6. Your child learns that computers do
what people tell them and not vice
versa.

To learn programming your child needs
to know elementary counting and how to
read. By the end of the second grade,
maybe earlier if you're lucky or work
hard with your kid on basic skills,
your child can learn simple
programming.

The easiest thing to teach the child
is that which produces immediate or
dramatic results. If the child is 4-6
and is just learning to spell, use the
Giant Typewriter program. The child
gets immediate satisfaction from using
the keyboard.

The child can also be shown the PRINT
command for simple adding and
subtracting. This is fine if you work
with the child, otherwise he will not
know if the answers are right or
wrong.

The first program kids seem to learn
easily is the infinite loop with a
PRINT statement, such as:

10 PRINT "HI DADDY!"
20 GOTO 10
30 END

This program is useful to teach the
child the concept of a simple
statement, a simple program, the RUN
command and that rules must be
followed to get results. Many
different results can be had using the
semi-colon command and dummy PRINT to
vary the output. Putting blanks
within the quotes, and using
asterisks, pluses, minuses,
parentheses, etc., lets the child draw
designs. The design will go by on the
screen too fast for the child to see
the design, so you can teach him
CONTROL C to stop the program (or CTRL
S with Auto-boot ROM).

T E A C H I N G P O M (C O N T .)

By the end of the second grade most
children have been exposed to, and can
grasp the concept of, using
coordinates to define a location. The
APPLE low resolution graphics is thus
another way to get your child
interested in programming the
computer. While the manual doesn't
say so, all the low resolution graphic
statements will operate as commands,
that is, immediately and without line
numbers. This means the child does
not have to write a program and then
RUN i t to see what he did, and then
try to figure out what in the program
produced which result on the screen.

Without a line number type GR. The AO
x AO g raphics will be called up. Then
set COLOR. Then PLOT, HLIN, and VLIN
can be used to draw on the screen. An
outline of marks to help the child
count the coordinate locations can be
made with the following simple
program:

10 GR: COLOR = 10
20 FOR A=0 TO 39 STEP 2
30 HLIN 0,1 AT A; VLIN 0,1 AT A;

HLIN 38, 39 AT A; VLIN 38,39 AT A
AO NEXT A
50 END

Obviously, the child will need your
help. But he will eventually learn
the command format. Show him the
difference between PLOT 3,20 and PLOT
20,3 etc. To help him write programs,
have hime draw a picture on a AO x AO
grid. Then help him list the commands
he needs to draw the picture.

LET FINGERS
DO THE SINGING
B Y T O N Y H U O H E 8

One of my happy memories of the TV
show Star Trek pictures a scene in the
transporter room with Scotty or some
technician at the controls. As his
(or her) fingers go over the controls,
we can hear each beep and buzz. This
detail of human engineering is also
present in our modern day cash
registers, calculators, etc. Audio
feedback as it is called, is an asset
because it coordinates two senses,
makes us that much more sure.

To try it out on your APPLE enter the
code below while in MONITOR. Then
enter 300G (return) and start zinging
away. The effect will still be
present if you go into BASIC. As you
will discover, each key has a
distinguishing tone, so you can tell
them apart.

300:AD A7 03 85 38 AD A8 03
308:85 39 60 E6 AE DO 02 E6
310:AF 2C 00 CO 10 F5 91 28
318: 8A A8 98 A8 08 AD 00 CO
320:OA OA 85 06 A9 18 85 07
328:AD 30 CO 88 DO OA C6 07
33O-.F0 09 CA DO F6 A6 06 FO
338:EF DO ED 28 68 A8 68 AA
3A0:AD 00 CO 2C 10 CO 60 OB
3A8:03

FORMAT
(Word Processor for the APPLE II®)

FORMAT is a simple, easy to u se word proce ssor, designed with the
beginner in mind. Featuring:

8 a i 1
a Hi
$ 8 I I uj §3 i 0
i -

DC o

o

h
<
0
UJ
_i
Q-
01
<

0 <
u.
c 3 W 1
z o
UJ <r
o

I 5
- o UJ

O

Q_
N

LU CO > UJ >-
2 W t H cc
< LLJ Q < H

DC I- z
Q CO 3
Q
<

O
O

LINE ORIENTED EDITOR
GLOBAL SEARCH AND REPLACE
FILE SORTING CAPABILITY
UP TO 132 CHARACTER PRINT WIDTH
SINGLE PAGE OR CO NTINUOUS FORMS OPTION
MULTIPLE COPY OP TION
AUTO PRINTER SE LECT
USES NO APPLE" CONTROL CHARACTERS

FORMAT supports standard features found on word processors
costing up to 10 times as much. The best buy in word processing

for the APPLE® . (Requires m inimum 20k and 3,2 DOS.)

The routine works by replacing the
address of the MONITOR get-a-character
routine with its own address (the
address goes into hex location
$38-$39). Floppy disk users should
beware, though, since the DOS will put
its own address into this location.
It will also overlay that part of
memory where our keytone routine
resides. If you want to relocate it,
you can put it anywhere you want as
long as the last two bytes point to
your load address + 11 bytes. It will
even work with DOS if you load it
before you load DOS.

Only $20.00
(Virginia residents add 4% sales tax)

AMREX
Box 754 Vienna

VA 22180
a

t>e °°®v \\ cO°

so^e l°l(VoW

Vt&
cow «tsp°'

ro1

t>e

s/e^1

o«®
noQ(

os®' d os'
sc' (o\\-

„nC^°*' v8° *lde^e 0

^ o< cOse' rtjlxos '̂-d rn°,e

xovJe' „lc.OP""\,~n oo<5

\oQ-^

Ẑ Z&iaZ*
X&A

o^°
r eosv j' ̂es
 ̂ed̂ c

O*

r>«*r, <***•»

ro(, o ^e

G*e
<*© & V\W

to<r°s'

\ol <50*
N/O ̂

ro(
oQ° ̂oes-

^e,?Lnoen'
O1 oO

*#**£

a\O\

V\\©S< rO^°S'

£%0'
ro'\Oe'

o e

WeS^no\ sc^o
\e^ :"^rV\oo(

d\-^eC

,\\\oQ

**£$£
to*

Resde^s ROW\

CO'

0\S ̂

_ tne
corresponcJent

So^et TCkpttei^

WRITE OR CALL FOR MORE INFORMATION:

P.O. BOX 582-S • SANTEE, OA 92071 • 714/562-3670

P E R M I S S I O N T O R E P R I N T M U S T B E O B T A I N E D F R O M T A L L Y C O R P O R A T I O N

HOW TO SELECT THE PRINTER YOU NEED.
CHOOSING A PRINTER
Picking the printer best suited to your appl ication is easier once
you isolate the basics. This report will tell you what type of
printers are available, how they differ from one another, and
how to evaluate their value in terms of cost to you.

Since they represent the most popular and fastest growing
segment of the printer market, our discussion will be limited to
low- to medium-speed printers. They encompass those
applications using minicomputers and microcomputers,
process control, small business systems, data acquisition, data
entry and data communications. Printing speeds can range
from 15 characters per second (8 lines per minute) up to
600 lines per minute.
WHAT SPEED DO YOU NEED?
The proper printer speed can be influenced by factors such
as the average amount of data to be printed, available system
time or the minimization of communications line charges.

For continuous output, a rule of thumb technique for
determining speed needs is multiplying the number of forms
required each day by the average number of lines per form. The
total is the number of lines to be printed per day. Hence, the
number of printed lines required per day divided by printer
speed equals the number of minutes per day of actual printing.

The above is greatly simplified because it doesn't account for
line length, carriage return time factors, slew speed in skipping
over blank space, etc. Finer calculations need to be equated
for each given situation.
PRICE vs. PERFORMANCE
While it is typically true that the lower the speed the less ex
pensive the machine, this simplistic approach can lead to
downstream headaches. To save money, a user with a heavy
workload often buys a printer designed for light duty. While the
printer may produce the desired output, it does so at the ex
pense of being overworked. The cost of replacing prematurely
worn out parts soon offsets any initial savings. Plus, the lost
time of downtime can be even more costly.

So, in addition to rated speed, the astute printer purchaser
looks at duty cycle limitations, MTBF specifications, main
tenance requirements, and, most importantly, the mechanical
structure of the machine. Always remember, with mechanical
devices, simplicity is a forerunner of reliability. Inherent design
simplicity and a minimum number of stress and wear points
means a superior mechanical system.

There is more to printer cost than initial purchase price. The
total cost of all expenses over the life of the printer must be
factored. Often, the printer with the lowest purchase price
ends up being the most expensive buy.

In the price performance category, the purchaser should also
look to see what basic features are standard and what features
are "options)' and hence, add-on costs.
THE PITFALLS OF SPEED RATINGS
While manufacturers quote serial printer speeds in characters
per second and line printer speeds in lines per minute, the
figures can often be misleading. Some specs don't account for
the length of a printed line or the number of control characters
in a stream of text. Hence, speed ratings are given for full lines,
or only partial lines, or for 64-character sets or 48-character
sets. To properly assess the true speed of a printer, ask the
manufacturer or vendor for a throughput curve as shown here.
IMPACT vs. NONIMPACT
Simply stated, an impact printer transfers ink to the paper
forcefully by a hammer assembly such as the common office
typewriter. Non-impact printers use sensitized papers that
respond to thermal or electrostatic stimuli to form an image.
Hence, the basic advantage of impact printers is multiple
copies using low-cost, standard paper and inked ribbons. The
advantage of non-impact printers is quiet operation, and, often,
speed. However, they produce only single-page output, and
the special paper can be expensive (2 to 3 times the cost of
standard paper) and not readily available. Also, use of
pre-printed forms is impractical.

Since most data processing applications require multiple
copies, and cheap copies, the remainder of the discussion will
deal only with impact printers.

LINE vs. SERIAL
The choice between selecting a line printer or a serial printer
generally pivots around speed needs and purchase price.
Serial printers, which produce one character at a time, are
typically less expensive than line printers, which produce an
entire line of text at a time. Some of the better-constructed
serial printers can comfortably print up to 160 characters per
second (about 100 lines per minute) while line printer speeds
can attain whatever range one is willing to pay for.

However, with the recent advent of the microprocessor,
serial printers are achieving increased throughput efficiencies.
An example is "optimized bi-directional" printing, whereby the
print head moves left to right or right to left, thus eliminating the
wasted time of carriage returns. This technique also "searches"
for the shortest path to pick up the closest character on the next
print line. A printer equipped with optimized bi-directional
printing can typically double or triple throughput. It's an
important bonus to look for.
MATRIX vs. FORMED CHARACTER
Another major distinction between printer types is shaped
characters vs. matrix image formation. The shaped character
(such as found on the office typewriter) is contained on print
mechanism devices such as drums, chains, belts, bands, daisy
wheels or type balls. However, there is the drawback of higher
purchase price and mechanical complexity. The latter has a
bearing on maintenance costs and the probability of downtime.

Matrix printers form a character from an array of closely
spaced dots. The foremost advantage of matrix printers is
mechanical simplicity which translates into a low-cost device
capable of highly reliable operation. Good matrix printers
produce characters that achieve a formed character look. Also
print quality is more consistent from matrix printers because
alignment seldom wavers and character density is uniform.
Formed characters have a tendency to get out of al ignment and
character density can vary. (The user should pay particular
heed to the quality of printed output when comparing
matrix printers.)

Another advantage of matrix printers is the ability to obtain
different type styles—condensed, expanded, double width,
upper/lower case, negative print, OCR, bar code—from a
single mechanical system. Because the matrix array is
contained in a Read-Only-Memory (ROM), a simple electronics
swap changes the type face or even the language, e.g.,

130

110

IV 90

z
-J 80
tc.
L U

70 (/)
cc
p 60
0 <
5 50
1
° 40

30

20

10

I
I / /

/

o o in m C\J i-

1 1

LINES PER MINUTE
TALLY 1612 THROUGHPUT
160 cps bi-directional printer

PRINT MECHANISM TYPES
The heart of a printer is the print mechanism which imparts the
character image to the paper. A thoughtful examination of
impact technique is important from the standpoint of long-term
reliability and consistent print quality.
DRUM PRINTER (fig. 2)
A complete set of formed characters is embossed around the
circumference of a cylindrical drum. The drum rotates at a
constant speed and a hammer, located at each print position,
strikes the desired character at each print position each time
the drum rotates on its axis.

As is readily apparent, timing is critical to maintain print
quality. As such, there is the need for periodic hammer flight
time adjustments. Other disadvantages include a limited
choice of character fonts and the constant possibility of
vertical misregistration of characters.

On the plus side, operation is generally reliable, print speeds
from 300 to 2000 lines per minute can be achieved, and as
such, drum printers offer a good cost/performance ratio for
higher duty cycle applications.
CHAIN OR TRAIN PRINTER (fig. 3)
Character slugs move horizontally past hammers located at
each print position. The characters pass each hammer in
sequence. In chain printers, the slugs are not connected and
they push themselves around the track. With both methods,
several complete character sets revolve past the hammer
positions at a constant speed. The hammer is fired at the precise
instant that the character to be printed moves into position.

Again, hammer and electronic adjustments are critical and
require periodic maintenance. Reliability is a problem because
wear in the tracks is common. However, for higher speeds, up
to 2000 lines per minute, these printers do the job.

DRUM PRINT MECHANISM
64 CHARACTERS AROUND

PER I METER OF DRUM

CHARACTERS
ACROSS DRUM

Figure 2 Figure 3

BAND AND BELT PRINTER (fig. 4)
These are typically tractor-type devices with character slugs,
or steel or plastic belts with raised characters that are struck
by the hammers as the desired character comes into position.

The disadvantages of this technique are belt and drive wear,
poor print quality from some designs, and the entire belt or
band must be replaced when individual characters wear out.

The advantages include easily-interchangeable type bands
for different character fonts, good print quality with some
models, and reasonable reliability. Speeds range from 30
characters per second up to 2000 lines per minute.
SERIAL MATRIX PRINTER (fig. 5)
A character is formed by a pattern of closely spaced dots. Array
patterns for a single character can be 5 X 7, 7 X 7, 7 X 9,9 x 7,
9 X 9,7 X 10 or 9 X 12. The print head, which sweeps across the
page, consists of a vertical column of needle-like hammers
which are selectively fired to produce any given character.
Type fonts are stored in ROM or PROM memory and thus many
different character sets, including foreign languages, can be
generated with the same print head.

The disadvantage of matrix printers can be poor print quality
if a sparse dot matrix pattern is used and print head reliability
problems if duty cycles are higher than intended for the
machine.

The big advantages of serial matrix printers are low cost and
the simplicity of itsdesign. And some matrix printers have such
fine resolution that the printout appears to have been printed
by a formed character printer.
Speeds can range from 30 to over 200 characters per second.

HORIZONTAL MATRIX PRINTING
NEEDLE ACTUATORS

^MATRIX NEEDLES

' PAPER

MOVING MATRIX HEAD-

Figure 4 Figure 5

6) COMB MATRIX PRINTER (fig.
A unique variation of matrix printing, the print comb technique,
prints a line of data at a time rather than a character at a time
as is common with most matrix printers. A single piece print
comb has 132 fingers, each with a steel ball impact face. Each
finger corresponds to a character position, thus there is a
hammer for each print position.

Each finger is pulled back by its own electromagnet and
then released forward to create a dot. A slight horizontal
movement of the comb locates the adjacent dot position and
the finger is released again. This is repeated until one dot row
is completed. The paper advances vertically to the next dot
row and the process is repeated until the complete line has
been printed.

This technique can achieve reliable printing speedsupto300
lines per minute. Print quality is very good, approximating
formed character output. Because the print mechanism never
works very hard, and mechanical movement is slight, machine
reliability is unmatched. Preventive maintenance is un
necessary. There are no lubrication or adjustment require
ments nor duty cycle limitations. The comb matrix hammer
has proven to be the most reliable mechanism available.

PAPER FEED

PAPER
PRINT COMBK

RIBBON\

r
ELECTROMAGNET

.. III.
HORIZONTAL COMB .
MOVEMENT

Figure 6

HELIX MATRIX PRINTER (fig. 7) .. . o|iy
Another matrix technique employed in a line printer, tne ne
printing method, has a helical print mechanism with a xn
edge spiral on its periphery. As the helix rotates by eacn
acter print position, hammers fire at appropriate posimo
the dots, and the required character is completed during
rotation of the helix. . .. lJD

The advantage of this technique is high speed Pn™'S;n
to 500 lines per minute, but at prices appreciablyles~.
drum or chain printers. Print quality is good andmacn
reliability is good because of a minimum of moving pa

Figure 7
1 2

IS RELIABILITY IMPORTANT?
Even after deciding on the type of printing method best for the
application, the user will be faced with competing manufac
turers offering, on the surface, like machines. But careful
analysis can soon determine the best value. Rather than being
swayed by purchase price, the important consideration is total
cost of ownership.
THE REAL COST OF OWNERSHIP
User cost goes beyond the initial purchase order. Total cost
must include cost of supplies, maintenance, service calls and
spare parts over the expected life of the machine. And the
immeasurable cost of downtime! When these factors are
added up, often the machine with the higher initial price proves
to be the lowest cost in the long run.

Three basic factors can be evaluated toward determining
the real cost of ownership—inherent machine reliability,
periodic maintenance requirements, and the consumption of
expendables such as paper and ribbon.
BASIC RELIABILITY
Complexity means cost. Even with today's advanced
electronics, some printers still have elaborate mechanical
works. Remember, any part eliminated through good design is
one less part to fail. Therefore, look for mechanical simplicity
that requires a minimum of, or no routine adjustments,
a minimum of, or no lubrication procedures, and no special
tools for normal service.

Mechanical assemblies should be modular in design for
easy and quick replacement. Look out for extensive use of
clutches and brakes, as these are high failure-rate components.

While evaluating the reliability of printer electronics can be
difficult, there are some things to look for that indicate sound
design. Microprogramming eliminates many potential circuit
failures by greatly reducing the number of electronic
components. Modularity indicates good design. Few boards
that are easily replaceable normally indicate quick solutions
to problems. Electronic adjustments by the operator should
never be required. ±

In summary, the critical reliability components of any printer
are the hammer assembly, the paper feed system, the ribbon
system, and the printed circuit boards or electronics. Each
should be examined with simplicity and soundness ot
design in mind.
PERIODIC MAINTENANCE
The requirement for and extent of periodic maintenance is
tied directly to the electro-mechanical design of the printer
The simplerthe design, the higherthe expectation of reliability.
In an inherently simple electro-mechanical system, a minimum
amount of maintenance will be required. Or no maintenance
whatsoever!

At today's prices, a field service call can typically cost about
$100 plus parts. With these prices escalating yearly, main
tenance can become the greatest portion of ownership cost
if reliability is poor.
EXPENDABLE CONSUMPTION
The major expendable supplies a printer goes through are
paper and ribbons. Look for a printer that can easily handle
standard forms of varying widths, and for multiple copy require
ments, make sure the last carbon is clearly legible. If pre-
pri nted forms are uti I ized, make sure the pri nter has the needed
forms controls so printing conforms to the allocated space.
Additionally, printers are available that offer special forms
handl i ng capabi I ity to cut the pri nted form to the desi red length
or size and minimize paper wastage.

When you realize that, with typical usage, more money is
spent on paperthanwasoriginally expended on the printer, it's
easy to see that paper cost is a big item.

Standard line spacing for most printers is 6 lines to the inch.
Some printers, for paper economy applications, have an 8 line
per inch spacing option. For high volume runs, savings can be
significant. In addition, some of the better matrix printers can
alternate their character pitch to achieve 10, 12, 14 or 16.5
character per inch spacing. As an example of paper savings,
132 columns of data can be printed on 80 column width paper
using 16.5 cpi spacing.

Ribbon replacement can become expensive if an impractical
ribbon system is employed. For economy, a reel-to-reel system
with a reusable fabric ribbon offers longer life. Many printers
offer cassette-type cartridges that feature easy-loading

characteristics. With both types, look for a good design that
minimizes moving parts and maximizes ribbon life. Because
ribbon replacement costs can become a big expense factor
over the I ife of a pri nter, it should be considered i n with the total
cost of ownership.
IMPLEMENTATION COSTS
An often-overlooked factor in printer price evaluation is the
cost of implementation; namely, the manufacturer's ability to
service the product, provide the needed documentation to
integrate the printer into the system, and in general, solve any
problems that arise. The chart below is a good checklist to
refer to in making an evaluation of a printer vendor. (Fig. 8)
THE VALUE OF VERSATILITY
Whether approached from the standpoint of cost or the stand
point of operator convenience, the standard features offered
by a printer are important parameters. Also, be sure to
determine if any given feature is included in the standard price
of the machine or if it is an additional cost option. A check-list
(Fig. 9) comparison of printers can assist the evaluation.

The true measure of machine features is the degree to which
they enhance the ease and efficiency of operation. Here are
some considerations.

TOTAL COST OF OWNERSHIP

Purchase cost
Operating cost

paper
ribbon

Cost of in tegration
controller/interface

purchase or manufacture
checkout
programming

Support cost
spares
manuals
training
warranty
refurbishment
preventive maintenance
corrective maintenance

Other cost
impact on existing inventory

spares
training

Total cost

Figure 8

FEATURE CHECKLIST
Speed
Technology

(impact, non-impact, matrix/formed characters)
Copies
Forms size
VFU
Self-test/diagnostics
Acoustic noise
Size and weight
Environment
ESD

(electro-static discharge immunity)
Interface
Flexibility
MTBF
MTTR
Character sets

Figure 9

1 3

INTERFACE CAPABILITY
The interface aspect of a printer purchase can be an expense
and technical headache if the machine is not equipped for
compatibility within the system it will live. While it seems most
printers are offered with an RS-232 compatible port, if the
system requirement calls for something else, the user should
determine up front if the machine can be adapted to his
interface needs and at what expense. Many manufacturers
offer standard controller packages to allow plug-in
compatibility with the host system.
NUMBER OF CHARACTER SETS
Numerous applications can make use of different character
sets. With matrix printers, since character generation codes
are contained on printed circuit cards, more than a single
character set is at the user's disposal. The user can even
configure special custom characters. And of course, foreign
languages are easily accommodated.

Another advantage of the matrix printer is that the sizes of
characters and interline spacing can be varied. Condensed
printing at 16.5 characters per inch, as opposed to the standard
10 characters per inch, can save paper. Or, double-width
printing, where a character is printed twice as wide as normal,
allows certain portions of text to emphatically stand out.
FORMS CONTROL FEATURES
Since most print-out follows a set format, the types of forms
control available must be considered. While most printers have
the same standard offerings, lower-priced units may take
shortcuts by eliminating some necessary features.

Any printer should have provisions for initially aligning
the top of form and left-hand margin for pre-printed forms.
From this point, there are a number of forms length control
offerings. Typically, vertical format (called the VFU) can be
controlled via a 66/88 line count program, a forms length
selector switch, and 8 or 12 channel punched paper tape loop
program, or an electronic VFU loaded through the I/O. The best
method depends upon user requirements—but the more
sophisticated the VFU, the higher the price.

For consistent print quality, especially if alternating between
different thickness layers of multi-part forms, look for a forms
thickness control. Also, a paper-out alarm should be standard.

For users that require very specialized forms handling capa
bility, printers are available that can be customized to perform
very specific tasks such as printing airline ticket passbooks,
printing entries in bank passbooks and simultaneously record
ing the transaction on a permanent journal, printing and cutting
tiny tickets and labels, or even printing two different forms
simultaneously. Additionally, automatic front feed attachments
to standard printers enable efficient control and printing of
individual cut forms such as ledger cards or invoices.

OPERATOR CONVENIENCES
From the operator's standpoint, the acceptance of a printer
generally depends on whether the manufacturer originally
designed the machine with the operator in mind.

The primary operator function is paper loading. Loading
should be easy and fast without awkward fumbling. The more
accessible the paper path, the better. Tractor face plates (for
pinfeed paper) should be exposed and the tractor teeth clearly
visible. Tractors should be easily adjustable to accommodate
various width forms.

Ribbon changing should likewise be easy and fast—
and clean.

Control indicators should be conveniently, and safely,
located for operator accessibility. They should be clearly
labelled and logically organized.

Some of the more sophisticated printers offer status check
panels that register the fault condition if the printer stops
operating. This allows the operator to initiate corrective action
in a timely manner. Often these panels differentiate between
operator correctable faults and those that require a service
technician.

An important consideration to the operator, or anyone in
close proximity to a printer, is noise level. While most
manufacturers publish a decibel level for their machines, the
usershouldfind out under what conditions the tests were made,
i.e., where was the sound measured, what kind of printout
pattern was being used. Any slight variation in any of these
conditions can have a significant impact on the test results.

Another convenience consideration is whether the printer
is avai lable as a desk-top unit or requires a stand. Some printers
are interchangeable, i.e.. the unit can be used in either
situation. Also, determine if paper-stackers, both supply and
take-up, are available or can be easily accommodated.
PRINT QUALITY
One of the most important factors in choosing a printer is print
quality. While no standards exist as to what constitutes good
print qual ity, the eye of the beholder can easily pass judgement.
The expectation should be clear, crisp and concise characters.
In formed-character printers, the pitfalls to look for are
horizontal or vertical misregistration, tipped characters,
ghosti ng or smearing, cli ppi ng off of ascenders or descenders,
voids or variations in character density.

The critical examination of matrix printing should be
concentrated on the dot spacing. Good matrix print quality has
the individual dots appearing to overlap to give the impression
of a formed character. An inherent benefit of matrix printing
is that character density is always uniform because the force
required to print a dot is always uniform. Conversely, in a
formed character printer, a design compromise exists in order
to legibly imprint a large land area character such as a"W" yet
not perforate the paper with a character such as a period. Also,
a natural benefit of the uniform printing characteristic of
matrix technology is better carbon copies from a legibility and
consistency standpoint.

In matrix printers, there should be no excuse for any poor
character registration. A sound mechanical design literally
locks the needles or hammers into an al ignment position so the
result is straight line registration, vertical and horizontal, that
never wavers. If alignment problems occur, it indicates a faulty
paper movement mechanism. Before selecting a printer, make
sure you carefully review print samples.

TALLY
WORLDWIDE
This report is furnished compliments ot Tally Corporation, 8301 South
180th St., Kent, IMA. 98031.(206) 251-5500. Additional copies can be
obtained by writing to the above address.

Tally Corporation is a member
of the MANNESMANN Group.

1 4

So You Bought Your Computer
From Somebody Else . . .

Business and math
and education and
such. Do we have
lots of programs?
We'd say very
much . . .

. . .these are the
programs that go
on the disks that
slip into the drives
that connect to
your Apple.

To err is human. • Besides, that
W was the past, this is the present, and we

want to connect with your future. Sooner
or later, you're going to want food for your

Apple. When that time comes, have we got
the goodies for you! We have add-ons like you
wouldn't believe: software that just doesn't quit;
books, magazines, Apple-users' publications and
tutorials. We also have coffee, a comfortable
environment and the time-of-day. All of this
has been personably selected and tested by

our staff of Apple specialists. Want
details? Check out the flow chart on

this page. Then stop in and we'll
forgive you for buying your
Apple at That Other Place.

. . . this is a printer
to output your
programs and list
your HEXs.
Centronics and
Trendcom (and
others from Texas).

. . . these are the
diskettes that go in
your drive. We sell
these and the
storage binders to
keep them in . . .

This is the Apple
you may have
bought elsewhere.
We'll get you up on
a floating point
ROM card, or get
you started in
Pascal.. .

. . . this is the disc
drive that connects
to your Apple.
We've got these,
too,and . . .

ComputerLand
of the Castro

2272 Market Street
San Francisco, CA 94114

(415)864-8080

A P P L E D O S
WHAT'S DOS
Congratulations on your new disk
drive. Playing with programs and data
will be quicker and easier, but there
are some things you should know before
you start. For example, D.O.S.

The DOS (Disk Operating System) is
what it sounds like. There are many
steps in getting data from and to the
diskette's magnetic recording
surfaces, and the DOS h as them in its
innards somewhere in machine code.
But it performs another function, that
of control.

A tape-oriented system has a limited
set of commands — not much you can do
with a cassette recorder; a disk drive
has many, many more. The commands to
control the disk will be read by the
DOS, and control passed to the
appropriate set of machine codes.
When we load a named program, the DOS
has to first go to a part of the disk
containing program names and
corresponding locations to find our
program. Then it goes to each sector
on which the program is located, picks
up each byte on each sector, and puts
it into the Apple's memory.

Let's say something about floppy
diskettes at this point. They are
surfaced on both sides with magnetic
material, Just like magnetic tape.
The disk drive normally uses Just one
side, since the manufacturer puts his
best side on top. The diskette will
rotate inside the drive while the
recording head is held stationary. It
looks like a magnetic phonograph
record. Instead of one continuous
groove, the recording head will be
moved in and out to record data in 35
concentric circles, called tracks.
The data does not completely fill a
track but is placed;in 13 sections,
called sectors, with 256 data bytes
per diskette. So, 35 tracks * 13
sectors * 256 bytes per sector =
116480 bytes per diskette.

Introducing commands to control the
disk drive posed a problem; what is
going to read these commands and
execute them? Other computers feature
special versions of BASIC with more
commands and higher memory
requirements. The Apple, however,
executes disk commands differently.
All data that is to be printed will
first pass through the DOS for its
examination. It will intercept its
own commands and execute them, but not
pass them on to the Apple. The DOS
commands can then work with any other
program product, such as Applesoft,
Integer BASIC, the moniter, anything
that prints.

The DOS is normally kept on disk and
loaded whenever you enter PR# in BASIC
or Control P in the monitor. What
happens is that a program on the ROM
Card is executed that takes the DOS
off of disk and loads it into memory.
Say your disk controller is in Slot 7.
Then if you get into Monitor by a
'CALL -151' and then execute the ROM
program at C700 by 'C700G', you will
boot the DOS. It will be placed into
the highest location in your Apple's
memory. Himem will be reset.

3.1 OR3.2?
B Y A L L E N J O H N S O N

Hi there, you say your feeling blue
because you Just updated your disks to
3.2 and now they don't run right. Not
only that but now you can't remember
which is 3.1 and 3.2? My friend Bob
Burns and I sat down and came up with
a nifty little program that tells you
which is which.

>LIST
10 TEXT : CALL -936
20 X=PEEK (1002)
30 VTAB 5: TAB 12: IF X=32 THEN

PRINT "DOS VER 3.1"
40 VTAB 5: TAB 12: IF X=76 THEN

PRINT "DOS VER 3.2": VTAB 20: END

VOL MISMATCH
MATCHED
B Y A N D Y H E R T Z F E L D

NOTE: THIS ARTICLE APPLIED TO DOS 3.1
AND PROBLEM DOES NOT OCCUR WITH DOS
3.2 BUT HAS SOME INTERESTING DOS
INFORMATION

If you are running your APPLE with a
disk, by now you have probably
encountered the problem of'VOLUME
MISMATCH ERROR" messages. Here's a
solution to this problem produced by
Andy Hertzfeld's exploration into the
DOS.

Every diskette has a volume number
from 1 to 254 associated with it. It
is assigned when the diskette is
initialized and there is currently no
easy way to change it. The volume
number of the current disk is stored
at $B7F6. Before most DOS commands
are executed the system checks to see
if a "volume mismatch" error is
generated. While this "feature" may
be nice for large business
applications that don't want dumb
operators inserting the wrong disks,
it is very annoying to most average
users. It is most difficult when you
want to transfer a number of programs
between two disks with different
volume numbers.

After much searching I located the
place where the volume check is
performed and devised a patch to
disable it. It's only two bytes long;
Just enter the monitor and type:
"BDFE: A9 00". This will disable all
volume checking until the next
bootstrap. It works by replacing the
comparison instruction which performs
the volume check with a "LDA #00"
instruction which sets the "equality"
or Z flag, effectively forcing the
match to succeed.

Note that the addresses given here are
only true for a 48k system. If you
have a 32k system, read "77F6" for
B7F6" and "7DFE" for "BDFE". In
general, if your system has memory
size X, subtract (SC000 - X) from the
given addresses. , e

FP DISK TRACE
• Y 8 C O T K A M I N 8

Handy hint for the month comes from
our esteemed VP, Bruce Tognazzini, and
has to do with the elusive "Tracing an
Applesoft Program with Disk Booted"
problem.

The solution: D$=CHR$(13) + CHR$(*)

which is the same thing as having D$
equal a carriage return (CTRL M)
concatenated with good friend CTRL D
of disk command fame.

I haven't the faintest idea how i t
works, and B.T. ain't talkin'; but it
does, indeed, work. One is cautioned,
however, to return D$ to equal only
CTRL D after debugging is completed,
however, lest odd and unpredictable
events ensue.

D O S N O T E
B Y S C O T K A M I N S

The DOS will accept a colon (:) from a
Textfile written by an Integer BASIC
program without acting upon it. But
it treats it as a statement delimiter
in Applesoft, ignoring everything else
that comes after it in a record.

Thus you can say "THIS IS IT: THE BIG
ONE" in a Textfile read from an
Integer program. Read from Applesoft,
the program says "THIS IS IT" with an
error message.
Silly, isn't it?

1. Larry Fish from Los Altos Hills,
CA, points out that, rather than
typing "V0" for the wild card to avoid
disk mismatches, a simple "V" will do.
Every stroke counts...

2. Assuming that your "HELLO" program
contains a "CATALOG" command, you can
add some text in a string statement to
appear after the catalog listing. An
example follows.

3. Incorporating Arthur Wells' "N"
title, the following routine will do
nicely for a HELLO program:

0 D$ = " REM CTRL D
10 POKE -16298,0: REM CLEAR HIRES.
20 TEXT : REM CLEAR GRAPHICS, RESET

SCROLLING WINDOWS.
30 CALL -936: REM CLEAR SCREEN.
40 PRINT D$;"CATALOG"
50 PRINT "TO RUN A PROGRAM, COPY THE

TITLE"
60 PRINT "EXACTLY AS IT APPEARS

ABOVE": REM ILLUSTRATES #2,ABOVE.
70 END

DEVICE CHARACTERISTICS TABLE

NAME GAME
• Y A N D Y H E R T Z F E L D

Some people might wish to alter the
names of some of the DOS commands to
suit their own personal tastes (it is,
after all, a personal computer). For
example, I know many folks would like
to abbreviate the "CATALOG" command to
a simple "C". This is surprisingly
easy to do.

Since the DOS lives in RAM the
contents of its command table are
easily changed. The command table is
located from $A7E0 - $A863. Each
command name is represented as an
ASCII string with the high bits off,
except for the last character of the
string, which has its high order bit
set. The strings are associated with
the commands by their position in the
command table (the first string
corresponds to the INIT command, the
second to the LOAD command, etc).

Thus you can dream up your own names
for the commands by storing new
strings in the command table. For
example; to change the name of the
INIT command to DNEW you would enter
the monitor and type "A7E0: AA AE A5
D7". However, some caution is
required when you change the length of
a command name; in general you will
probably have to rewrite the entire
command table to achieve the desired
effect.

It is hard to use the input and output
"hooks" in conjunction with the DOS
since you cannot simply change the
hooks as they are the only way the DOS
interacts with the rest of the system.
Also, if you only change one of them,
the DOS has the nasty habit of
changing it back. Fortunately, the
DOS has its own internal hooks it uses
for keyboard input and video output.
Its output hook is at $A996 - $A997
and the input hook immediately follows
at $A998 - $A999. If you change the
contents of these addresses instead of
the usual hooks at $36 - $39,
everything should work out just fine.
For example, lets say you wanted to
divert output to a line printer
without disabling the DOS. If the
line printer output routine is located
at $300, all you would have to do is
enter the moniter and type "A996: 00
03"(For 3.1 DOS only).

By the way, in case you missed it,
typing "9DB9G" (9DBFG for 3.2 DOS)
from the monitor will reinitialize the
DOS. This routine should be called
after every reset to restore the
hooks. It is exactly like typing
"3D0G" as APPLE'S documentation
recommends but is a little bit safer
since the 3D0 location is often
destroyed by various programs.

This article is merely the tip of the
proverbial iceberg; most of the DOS's
internals still remain a mystery to
me. I hope APPLE eventually
distributes complete documentation but
until then other curious users can use
this article as a starting point for
their own explorations. Hopefully
they will report back what they find.

R W T S
B Y T O N Y H U G H E S

New information has come out about
accessing data on the disk directly.
The DISK II has its data recorded on
35 tracks (think of a A track cassette
or an 8 track cartridge) arranged as
concentric circles around the center
hole. Each of these tracks is divided
into 13 sectors, of 256 bytes each.
Using the following method, you can
read from or write to an individual
sector on any track.

First, you must build a table or two
in memory to specify the parameters of
your call to the DOS. It will
contain:

POSITION CONTENTS

01 Must be 01.
02 Slot number, times 16.
03 Drive number.
OA Vol. number to be found.

Make it 00.
05 Track number that the sector is

on. Must be 00-3A
06 Sector number. Must be 00-12.
07-08 Low and high order addresses

of device characteristics table
(see below).

09-10 Location of data. Where DOS
will get it or put it.

11-12 Amount of data to be processed.
Should be 255.

13 Command codes. They are:
00 - Position the head
01 - Read a sector
02 - Write a sector
OA - Format a disk

1A Error code returned by DOS if
operation failed.

10 - the diskette was write
protected

20 - the volume number was
incorrect

AO - the drive had a
problem

80 - the data was bad
15 Volume number actually found is

placed here
16 Previous slot number, times 16,

from last access of the disk,
found. Low and high addresses.

17 Previous drive number from
last access of the disk.

18 Previous slot number from
last access of the disk.

The big table above is called the I0B.
You must place the low order address
of the I0B in the Y register and the
high order address in the A register.
Then, call the subroutine in the DOS
that will perform the operation. The
addresses should be as follows:

MEM SI ZE ADD(hex) INT FP

16k 3D00 15616 15616
20k AD 00 19712 19712
2Ak 5D00 23808 23808
32k 7DOO 32000 32000
36k 8D00 -29AA0 36096
A8k BDOO -17152 A838A

NOTE: : An easier method would be
CALL $309, which contains a jump
the proper address.

1 7

This table describes the DISK II to
the DOS. The information will always
be the same if the current disk drive
from APPLE is used. The table
contains the following: 00 01 EF D8.

Good Luck....

I N 9 E AS Y S T E P S
DISK-BASED PGM
B Y P A U L W Y M A N

Listen my friends, to a little fable
about a certain nameless prince, who
once upon a time shared a wonderful
and magical little program with his
friends. Each day they learned a
little bit more about how to use the
program, finding more and more magic
all the time. , It seemed that the
program was not so little after all,
and that it could practically do
everything for everybody. Finally it
became obvious that the equally
nameless program did have a
limitation. It was only capable of
storing its output on cassette tape
instead of disk. The ability to save
and load the results of the nameless
program to and from disk was a feature
devoutly to be wished. Finally a way
was discovered, and albeit crude, was
in fact an answer to the problem.

The technique works like this: once
you have used the program to create
the results you want to save drop into
the monitor and display locations
7A.77(Hex). Before your very eyes
will appear two copies of the pointer
to the "end" of your results. The
pointer to the "beginning" lies in
70/71 and will be "00 20" or $2000
make note of the 'end' pointer, and
perform the following steps:

(1.) Reboot DOS
(2.) BSAVE R ESULT.7A: LLHH, A$2000,
L$LENG

In (2) above, RESULT should be a
descriptive name for your purposes.
Next save the actual low (LL) and high
(HH) byte values from 7A.75 into the
name of the file, so you won't forget
the end pointer. You now have a
binary image of the results you
developed in the form of a disk file.
LENG is the length of the file.
To restore the file and use the
nameless program again to change or
display your previous results simply
follow these steps:

(1.) 5BL0AD RESULT.7A:LLHH
(2.) 5BL0AD NAMELESS.PROGRAM
(3.) >CALL 20A8
(A.) : ADD
(5.) Ctrl-D to escape add function
(6.) Hit Reset
(7.) *7A: LL HH LL HH
(8.) *803g
(9.) -.LIST

Don't forget to re-establish the end
pointer two times into both 7A.75 and
76.77, because the prince once said
"two is a very good number".

Enjoy

ComputerLand
| of San Franci/co

apple computer)
Sales and Service

HARDWARE SOFTWARE PRINTERS

T I Color Monitors

Micro-Works Digitizers

Mountain Hardware
MUSIC SYSTEM!

ALF Music Synthesizer

Z-80 Softcard

Videx video-term

M&R Sup-R-Terminal

Mi-Plot Plotter

Graphics Tablet

Information Unlimited Software Centronics 737

Personal Software

Programma International

Microsoft

Synergistic Software

Automated Simulations

California Pacific Computer

Apple

Bits & pits

NEC Spinwritersj

Silentype

Trendcom

Qume

Diablo

Paper Tigers

ComputerLand
117 Fremont Street • San Francisco, CA 94105 • (415)546-1592

R E V I E W S

S M 3 I A 3 d

R E V I E W S
REFERENCE
MANUAL
B Y K E N S I L V E R M A N

The RED BOOK has been replaced. The
new Reference Manual Is following the
new size of 6" by 8" and is 196 pages
long with a complete circuit drawing
of the Apple in the back.

It should be at your local computer
store for the price of $19.95
(A2L0001A).

The book was written by Chris
Espinosa, an Apple Core member, and is
the best manual I have seen come out
of Apple. It covers subjects that
were in the original reference manual
(Red Book) but in more detail with
subjects easier to find. There are
good examples included with each
topic. There is a complete listing of
both monitors (old and new autoboot).

The table of contents is 6 pages long
with the following chapter headings:

1 - APPROACHING YOUR APPLE
2 - CONVERSATION WITH APPLES
3 - THE SYSTEM MONITOR
4 - MEMORY ORGANIZATION
5 - INPUT/OUTPUT STRUCTURE
6 - HARDWARE CONFIGURATION
7 - APPENDIX A, 6502 INSTRUCTION SET
8 - APPENDIX B, SPECIAL LOCATIONS
9 - APPENDIX C, ROM LISTINGS
10- GLOSSARY
11- BIBLIOGRAPHY

This is one publication you will want
in your reference library. Check with
your local computer store.

HANDBOOK
B Y K E N S I L V E R M A N

The basic computer language in most
home type computers is BASIC. But
BASIC has never been standardized;
there are more than 100 "dialects". A
guide called "The Basic Handbook: an
Encyclopedia of the Basic Computer
Language", written by David A. Lien,
provides good deal of help in coping
with these assorted dialects.

The book covers 78 of the most popular
versions of BASIC in such a way that
its readers can convert nearly any
program to run on a computer that uses
a different version. These include
more than 50 computers from IBM,
Cromemco, Apple, Exidy, IMSAI, Heath,
0SI, Radio Shack, Commodore, HP, and
Wang, among others. The book is 360
pages and is available for $14.95 plus
$1.35 postage from:

CompuSoft Publishing
8643 Navajo Rd.
San Diego, CA 92119

ROGER'S EASEL
B Y B E N E W I L 8 0 N

I first met Roger Wagner at last May's
Computer Eaire, where he was selling
the Apple II Utility Disc (fantastic
set of programs that are still in
heavy use on my machine). Roger's
attention to detail was immaculate,
and the documentation was 'complete'
in every way. ('Complete' is when the
documentation includes a detailed
tutorial-one that has examples as
needed, and gives insights into the
critical areas. A program is
'complete' when the documentation
allows me to fully understand what is
taking place, and why.)

Roger's Easel is another 'complete'
program. Easel is not another
Electric Crayon. It is a Lo-Res Color
Sketch program that employs the game
paddles for fast pictures, logos and
diagrams, etc.. (My joy stick draws
truly fast pictures). Integer and
Applesoft routines are included to
'link' these finished pictures to user
programs. Complete documentation
describes the entire process and the
procedure is made crystal clear.

Actual use of the Easel is
accomplished by following instructions
listed in the bottom-of-screen window.
Typing 'N' will give current color &
X, and Y positions. 'H'elp switches
to Page 2, for a complete list of
commands. The left and right arrows
and REPT keys together allow fast
scrolling of this information, and
shows a detailed description of each
command. (Figure out how the scroll
works—It's impressive). Roger states
that user created pictures can be
successively linked together for
animation.

The only flaw that I could find is
that at $13.95 (plus tax), the
programs are too cheap. In today's
market place price does not always
denote quality or excellence, and many
twenty to forty dollar packages lack
any of the nice extras included in the
Easel. To order ROGER'S EASEL, or for
more information, please contact:

Southwestern Data Systems
P.O. Box 582

Santee, CA 92071
(714)562-3670

As a footnote, it is worth mentioning
that for anyone who has lost track of
his/her Applesoft programs there is
a n o t h e r o f f e r i n g f r o m
Santee—APPLE-DOC. This three program
set gives you the ability to list
every variable used in a program and
all the lines each is used on, a list
of all the lines called by a GOTO,
G0SUB, etc., or to rename any or all
occurrences of any variable, change
variable types, replace constants.
This program set is also only $13.95
(cassette version $9.95).

Support your local programmer. You
need programs, programmers need
income-reach a happy compromise.
Everyone benefits.

PILGRIMAGE
B Y Q E N E W I L 8 0 N

On a recent trip to the Los Angeles
area (I think the city limit signs are
posted about twenty miles south of San
Jose) I took time out to stop at the
all time "shrine" of Apple
users-Computer Components of Orange
County.

The place is filled with all the
goodies that cast spells on the
computer user's wallet; software
galore, gadgets, super joysticks,
magazines, books, lessons, tutorial
sessions, hardware on line and
working. It is possible to get many
special items (cranked out in the back
rooms, no doubt) including interface
cards, lower case boards, and many
more things that I don't fully
understand.

Among the many magazines is a newcomer
called "The Apple shoppe", which is
published more or less monthly for the
purpose of promoting practical uses of
Apple Computers, by Compu-Tutor Co.
Subscriptions are $12.00 a year, and
are available from:

The Apple Shoppe
P.O. Box 701

Placentia, CA 92670

Volume 1, No.3 has several short
programs, a Graphics Workshop section
on Hi-Res Shapes, a discussion on
Personal Computing's Family Tree, a
short primer on Pascal, and a very
useful printing subroutine for the
WHATSIT program (something sorely
needed). You don't want to miss Kim
Clark's method of Water Cooling a PET .

And finally, is anyone able to
"really" review some of the assemblers
that are available for the Apple II?
Just reading the documentation for
Programma's ASM/65 EDITOR ASSEMBLER
scared me off. I would love to hear
from anybody with "hands-on"
experience on the ASM/65. In all
fairness, the documentation is
thorough, and will probably be a
future challenge.
LISA, Programma's Interactive
Assembler changes a few mnemonics, and
syntax is not identical to MOS
Technology, which requires some
thought before jumping in. Improved
version 1.5 was just announced, and
(you guessed) mine is the "older" 1.3
(looks like software promoters have
learned something from the car
makers).
I've just started using the Software
Concepts Text Processing System &
Assembler--Seems to do what I need
done without a lot of frills (that I
can't remember anyway).

Anybody with knowledge of new products
should send a memo to the Cider Press
as there are over 800 members who can
benefit from your experience(s)•
Maybe someone from Programma could
tell us how well their different
assemblers have been accepted, and ho w
"updates" are handled.

LISA AUTHOR
STRIKES BACK
L K T T E R F R O M R A N D Y H Y D E

Dear "Press",

I read "Pilgrimage Plunder" by Gene
Wilson in the September Issue. Being
"someone from Programma" and, in fact,
the author of LISA I was prompted to
reply to Gene's comments on ASM/65 and
LISA. First, ASM/65 is a
"professional" product (whatever that
is) and the documentation resembles an
IBM manual more than anything else
(because it was written by an ex-IBM
user) and as such it is not easy
reading for the average Apple owner.
There are a few "cyber-snobs" out
there however who eat the stuff alive,
not to mention pay $69.95 for a
product which is "professional" even
though it may not offer any advantages
over similar programs. For the person
who likes to impress people, ASM/65 is
definitely the choice. ASM/65's main
advantage is that it incorporates the
Apple PIE text editing system which is
an order of magnitude better than
anything else. If you plan to do a
lot of text manipulation on source
files, ASM/65 is your only choice.

With regards to LISA I have several
comments to make. First, the "few"
mnemonics which were changed were the
Sweet-16 mnemonics, none of the 6502
mnemonics were affected. Several
"extended" mnemonics were added,
possibly this is where the confusion
lies. Extended mnemonics are simply
duplications of an existing mnemonic
with a different name. For instance,
the BCC (branch if carry clear) test
can be used after a comparison to test
for the less than condition. "Carry
Clear" does not register in most
peoples minds as "less than". So I
added the mnemonic "BLT" for "branch
if less than". It generates the same
code as "BCC", yet is much easier to
remember than "BCC". Likewise "BGE"
"branch if greater than or equal" has
been added as has "BTR" & "BFL"
"branch if true and branch if false".

XOR has also been added and may be
used in place of EOR. Please note
that these "extended mnemonics" are
included IN ADDITION to the existing
mnemonics, if you don't like them you
don't have to use them.

Some of the Sweet-16 mnemonics have
been changed so that they conform to
the MOS three character mnemonic
syntax. All two character mnemonics
were converted to three character
mnemonics and all four character
mnemonics were also converted to three
character mnemonics. The reason
behind this is simple, it improves the
listings enormously if the mnemonics
are all the same length.

As for the syntax not being identical
to MOS's syntax I must point out that
only one assembler for the Apple II
uses MOS syntax and that's ASM/65.
When I wrote LISA I researched the
field carefully and used a syntax
which was compatible with most of the
existing assemblers at the time.

LISA' S syntax, with the exception of
decimal addresses and octal numbers
(and who uses octal numbers anyway?)
is IDENTICAL to MOS's. Again, I added
some extensions to make LISA easier to
use than would normally be the case.
Since none of the assemblers available
for the Apple II have a completely
compatible syntax, there really is no
"standard" syntax. I recognized this
problem when writing LISA and as such
I tried to include a mixture of each
of the available syntaxes. For
example, load the accumulator with a
hex constant is specified as:

LDA 00 ($0 IS THE CONSTANT
TO BE LOADED)

when using the original Microproducts
assembler, or as:

LDA #$0
When using a MOS compatible assembler
(such as ASM/65 or the SC Assembler
II). I wrote LISA so that both
methods of specifying an immediate hex
constant could be used. The drawback
to this scheme? Well in the
"standard" MOS syntax world the
Microproducts version means "load the
accumulator from decimal location 0".
Since I didn't want to disallow this
function I decided to differ from MOS
rather than not allow the
Microproducts' syntax. The reason
behind this is simple, "LDA 0" Is
easier to type into the machine than
is "LDA #$0" (in the latter version
you have to type two extra shifted
characters) Since I wanted to make
LISA extremely easy to use I decided
to use a different syntax to specify
decimal numbers. To load the
accumulator from location 0 you would
type:

LDA !0
where the "!" tells LISA that the
following is a decimal number. The
only other variance from the "MOS
standard" concerns the specification
of a low or high order byte in an
immediate expression. To load the
accumulator with the low order byte of
an address you would use:

LDA //address
-or-

LDA /Kaddress
To specify the low order byte you may
use:

LDA //address
only. The "//<"option is not supported
(the reason will be clear when version
2.0 is released).

To specify the high order byte of an
address you would use:

LDA //>address
When using a MOS syntax assembler.
Again I didn't like the idea of having
to type two shifted characters, so
once again I "borrowed" LISA'S syntax
from the SC Assembler II. To specify
the high order byte you would use the
following:

LDA/address
And that (unless I've forgotten
something) is the extent of the syntax
differences. Naturally LISA'S pseudo
opcodes are incompatible with the MOS
syntax, but then so are everyone
else's. LISA was designed to be easy
to use, not follow blindly the syntax
rules designated by some electrical
engineer with considerable computer
background.

I'm also wondering why Gene knocks
LISA and praises "EAT". "EAT" (from
Software Concepts) contains as many
syntax irregularities as does LISA!
I'm not knocking "EAT", it is a fairly
good assembler (although overpriced),
but Gene seems to imply that LISA Is
incompatible with MOS syntax whereas
"EAT" is not.

Concerning updates, Programma Int'l
has one of the most liberal update
policies around. Simply send in your
original disk (so we know you actually
bought the product), plus the
difference in cost between the two
versions plus a $5.00 update fee and
you will receive the update and the
new documentation by return mail.
Speaking of updates I would like to
take a moment to mention the new
features in LISA 1.5. LISA 1.5 works
with the DOS 3.2 subsystem, as well as
the auto-start ROM and the Apple II
PLUS (or minus in some people's
opinions!). Several new commands have
been added to the command processor
which allow you to modify (edit)
existing lines, determine the length
of the file, break to the monitor, and
write your textfile to the disk as a
text type file so that you may edit
your file with the Apple PIE text
editing system should your program
require extensive modification.
Several new pseudo opcodes have been
a d d e d t o th e s y s t e m i n c r e a s i n g L I S A ' S
flexibility immensely. LISA now
supports 23 pseudo opcodes making it
easily the most flexible assembler
around (and also the assembler best
integrated into the Apple II). The
pseudo opcodes include:

NLS - NO LISTING
LST - LISTING ON
EQU - EQUATE
EPZ - EQUATE PAGE ZERO
ORG - PROGRAM ORIGIN
OBJ - OBJECT CODE ADDRESS
ADR - ADDRESS PSEUDO OPC ODE
BYT - BYTE DATA (* NEW *)
HBY - HIGH BYTE DATA (* NEW *)
HEX - HEX STRING
ASC - ASCII STRING
STR - STRING W/LENG TH BYTE
DCI - DEFINE CHARACTERS IMMEDIATE

(* NEW *)
INV - INVERTED CHARACTERS (* NEW *)
BLK - BLINKING CHARACTERS (» NEW *)
PAG - SKIP TO TOP OF FORM (* NEW *)
PAU - PAUSE, FORCE ERROR (* NEW *)
END - END OF TEXTFILE
ICL - INCLUDE, CHAINS TEXTFILES
DCM - DISK COMMANDS, MULTI-PURPOSE
DFS - DEFINE STORAGE

VERSION 2.0 PSEUDO OPS

LET - REDEFINES A LABEL(FOR LOCAL
STORAGE)
FLT - FLOATING POINT NUMBER

In addition, error and listing options
have been improved considerably.
Version 2.0 (for the language card, to
be released in January) has several
improved error messages, supports
eight character labels, signed and
unsigned decimal integers (now you can
specify "JSR !-936" Just like in
BASIC!), improved syntax concerning
decimal constants, multiplication and
division in address expressions are
also supported as are local labels.

2 1

L I S A 8 T R I K E S B A C K (C O N T) TRENDCOM 100 DISK II
If you ever have any questions about a
software product, or wish to report a
bug, or want to obtain an update,
please contact the author or
distributor, "We're here to help."

Signed,
Randell Hyde
Lazer Systems
12804 Magnolia
Chino, CA 91710

Editorial note: In Cider Press Vol.
2, No. 5 I asked for someone to come
forward and "really" review some of
the assemblers that are available.
I'm glad that Randy has answered the
call. It's good to get an 'in depth'
survey of LISA. I must, however,
question where Randy found a
comparison between LISA and any other
assembler. I use the Software
Concept's Text Processing
System/Assembler - I'm comfortable
with it, and don't feel at all that
it's 'overpriced'. (Using a product
is a form of praise that certainly
can't be ignored). Perhaps we can
find some 'neutral' arbitrator to
decide the relative merits of each
product. (Sounds like another call
for a review-and, in fact, it is. The
actual merits of any program will be
ultimately decided in the marketplace,
and, having purchased both products -
my vote is therefore cancelled out.)

The Interactive aspect of LISA
certainly makes it one of the more
desirable products on the market, and
I personally like the approach that
Randy has taken to continually improve
his work.

I thank Randy for providing the Core
with the above information, and hope
that he will continue to enrich us
with his knowledge.

G.W.

APPLE '21'
B Y J I M L I N H A R T

I want to spread the word of a card
game that's a gas to play and has the
best hi-res graphics of any card game
I've ever seen. It's Apple 21 and
it's a game worth adding to your
library.

Apple 21 is the game of Las Vegas
blackjack and it provided me with a
good feel for the game. One thing I
know, I'm no gambler and it's easier
to pay a $10,000 debt by mashing
"RESEI" than by selling plasma or
refinancing my house.

Apple 21 plays with a 52 card deck and
when it reaches the end of the deck it
goes on to reshuffle. Card counters
now have a chance to perfect their
skills, and the game includes such
aspects as insurance bets and
doubling. I sure enjoy playing this
game and am surprised sometimes at how
much time (and money) goes by.

B Y S C O T K A M I N 8

"What's that you say? A reliable
hobbyist thermal printer for less than
$500? With an interface? And paper
readily available? Why, you must be
mad." While the final statement is
undoubtably true, it does not negate
the previous ones.

The printer of which I speak is the
Trendcom 100 - a little 40 column,
bidirectional job that hums along at
40 CPS. It is, in the vernacular, a
real sweetheart.

The system consists of the printer, an
intelligent interface card and a roll
of paper (80 ft.) for $450. Extra
paper is $5.00 for two rolls which
prints in blue,; black is a little
higher.

Regular readers of this journal are
familiar with my propensity for
panning printers. Alas, 1 find little
to complain about with this gem. I
have been using one since mid-October
without a glitch. True, its narrow
format makes it impractical for
business uses. Its 40 columns allow
for calendars and biorhythms, and
little else; but it sure is terrific
for listings. Anyone who has
struggled along for a year editing
programs 24 lines at a time knows how
valuable a cheap printer would be -
Trendcom fills the bill admirably.

The company itself (Trendcom, 484
Oakmead Pkwy, Sunnyvale CA 94086)
impresses me for a number of reasons.
First, it sells only to dealers -
which is a good step in helping the
industry to mature.

Secondly, it actually delivers its
product before it is due, as opposed
to the 3-months-late de-facto-standard
we have been plagued by up to now.
And third, they don't lie about the
product. What they claim about their
product in their talks to dealers is
true.

Without hesitation, I recommend this
printer to hobbyists; if I were you,
I'd begin leaving Christmasy hints
around the house, naming the Trendcom
and your favorite computermonger.
Happy listings...

a a

B Y A N D Y H E R T Z F E L D

The APPLE II Floppy Disk Subsystem was
released on July 7, 1978 only about a
month after it was originally promised
(although it was tanta 1 izingly
displayed at the 2nd Annual Computer
Faire in March). For the most part,
it was well worth the wait.

The drive itself is based on the
standard Shugart Mini-floppy drive but
with its electronics completely
revamped by APPLE. The specs are
rather impressive; it has a transfer
rate of 156K bits per second, nearly
100 times faster than the cassette
interface. It has an impressive
capacity of 116K bytes (143K with
Pascal), about 30 more than most
mini-floppies get. It can access any
data stored on it in well under a
second, which sure beats listening to
obscene squawks from a tape recorder.
An average of 15 to 20 programs will
fit on a single diskette (depending,
of course, on program size); the
diskettes cost around $5.00 apiece -
shopping around pays.

For a list price of $595 you get one
disk drive with case and connector
ribbon, one controller card capable of
handling up to two disk drives, and a
complete disk operating system (DOS)
with 19 commands. All the hardware
and software you need to get going are
included, even a blank diskette; you
just plug the controller card into any
peripheral slot except 0, plug the
drive into the controller card, and
you're ready to go. The bootstrapping
routine (which gets the thing running)
is stored on 512 bytes of PROM on the
controller card, so all you have to do
is reference the proper slot and the
firmware takes over to load in the DOS
and even start executing a program of
your choice.

The DOS is a real memory hog. APPLE
claims you can get "full disk
capability in systems with as little
as 16K RAM" - which I suppose is true,
if you don't need APPLESOFT, HIRES
graphics and you're willing to write
programs that use less than 3K o r so.
Apparently the entire DOS must be
resident at all times, and it needs 8
- 12K depending on how many fil®
buffers are used. This is a bad way
to set up a microcomputer's operating
system, unless you're in the business
of selling memory.

Since you usually only use one command
at a time, it should be able to
overlay itself to conserve its memory
requirements; only about a 2K n ucleus
should have to be resident. For some
inexplicable reason, APPLE did not
overlay; consequently you really need
a 32K system to use the DOS
comfortably.

The disk system is an important
advancement; 100K + of online,
direct-access storage transforms the
APPLE from a sophisticated toy into a
full-fledged "real" computer. Its
price is a bargain in the current
market, and it should make a
significant addition to anybody's
system.

80 COLUMNS GRAPHICS TABLET
B Y K E N S I L V E R M A N

Recently your roving reporter was in
Sunnyvale, CA to see and talk to Marty
Spergal of M & R Enterprises. M & R
as you might know manufactures the Sup
1R' Mod we use in our Apple.

While getting a tour of the plant I
was shown a working prototype of a new
I/O card. BELIEVE IT OR NOT I saw 80
columns by 2b lines, upper and lower
case, coming out of the Apple into a
monitor. The resolution on the
inexpensive monitor (8MHz bandwidth)
was fantastic. I asked about this and
the designer, John Wilbur, told me
there is a new circuit (being
patented) that adjusts the contrast
between the horizontal and vertical
lines to make it look like an
expensive monitor.

According to M & R, the new card will
be in computer stores for your
evaluation some time in the end of
January (1980). They say the card is
compatible with the Apple Pascal
System (so don't rush to buy a
terminal), works with Apple DOS as a
Hello program, and should work with
most existing software. This is great
for those of you working with word
processors or time share programs. In
fact John Draper has started to
implement a new version of EasyWriter
to work with this card with some new
features.

M & R Enterprises says ask your local
computer store for "SUP 1R' TERMINAL".
Take my word for it, I saw it work -
as of this time they did not give me a
retail price.

APPLE DOC
B Y R A N D Y F I E L D S

APPLE-DOC is a 3 program set designed
as an aid to the development and
documentation of APPLESOFT programs.
The 3 programs are 1) Vardoc, 2)
Linedoc, and 3) Replace. They were
designed, developed and documented by
Roger Wagner of Southwestern Data
Systems.
Vardoc overcomes one of the
fundamental deficiencies of most, if
not all, versions of BASIC - the
non-centralized location of all
variable names. Vardoc, which is
short for Variable Documentation,
finds all variable names used in your
progam, alphabetizes them and lists
them on your CRT and/or printer. You
also have the option of writing a
separate file which contains a
description of each variable allowing
you to delete the usual REM statements
from your program, saving memory and
increasing execution speed.
Using Vardoc is the essence of
simplicity. For Disk II users, load
your program in first, then EXEC
Vardoc. Tape users load their
program, type in some PEEKs and POKEs,
and load Vardoc. Roger's banner
appears, hit any key and "Working"
appears along with an estimate of the
time to complete the search and
alphabetizing process, generally less
than a minute.

At this point, a complete list of
variables is listed. Array variables
are indicated by an asterisk (*) for
each dimension of the array. After
the name of each variable, EVERY line
in which the variable is used is
listed.
After listing each of the variables,
you can at your option create a
separate file of descriptors for all
or some of the variables.
Additionally, as you are supplying the
descriptors, typing an "L' lists the
lines that the variable is on.
Finally, after you have entered the
descriptors, you can save the list of
variables and their respective
descriptors to a special disk file.
For documentation purposes, this list
can be output to a printer. Later,
after you have modified or extended
your program, the list can be read in
for additional updating.
Linedoc is similar to Vardoc and
performs several functions. First, it
constructs a table of every line
referenced by GOTOs and GOSUBs.
Second, any line numbers which are
called by mistake (resulting in an
UNDEFINED STATEMENT error) are listed
at the end of the table and indicated
by an asterisk (*). Descriptors can
be added, saved, and retrieved as in
Vardoc. The main use for Linedoc is
to unscramble the contorted logic
which typically appears in even the
best of programs.
It seems that I have saved the most
interesting program till last: it is
called REPLACE and allows you to
replace various elements in an
Applesoft program with replacement
sets of your choice. You can change
variable names, change numbers to
variables or vice versa, replace a
literal, document a literal, list
lines, and convert Integer programs to
Applesoft with a minimum of typing. A
"literal", by the way, is any
character or set of characters such
as: '+', 'PRINT1, 'A1', etc. When
replacing either variables or
literals, the Replace program asks if
you want to replace all or just some.
If you respond with 'some', it will
list out the entire line and ask you
whether or not to do the replacement.
Multiple occurrences in the same line
are listed separately allowing you
complete flexibility in doing the
replacements. If you respond with
'all', Replace changes them all
without listing. Some useful
functions of Replace are: changing
real variables to integer variables
and vice versa and changing INPUT
statements to GET statements.
All three programs - Vardoc, Linedoc,
and Replace - come complete with
excellent documentation telling you
not only how to use the programs, but
how the programs work.
APPLE-DOC is available from local
computer stores or from SOUTHWESTERN
DATA SYSTEMS. P.O. Box 582, Santee
CA 92701 for $13.95 for the diskette
or $9.95 for the cassette. It is
probably the best programming buy for
the money, and at these prices, Roger
should not be ripped off by bootleg
copies.
Ask for APPLE-DOC by name: do not be
confused by shoddy imitations!

2 3

B Y K E N S I L V E R M A N

Apple now has its new Graphics Tablet
in the stores. It will allow the user
to convert graphic data into digital
information that may be processed by
traced or drawn freehand on the tablet
surface and are instantly displayed on
the system monitor. Any image created
can be stored on the system disk for
later use. Block diagrams,
architectural renderings, logic
diagrams, etc. are a few of the
applications.

The tablet consists of 15 by 15 inch
tablet, a mylar overlay, stylus,
diskette software and interface. It
uses the Apple power supply and
results in a low profile tablet, fewer
boxes to contend with, easier hook up,
and high reliability.

The Software Package is composed of
some assembly language fast draw
routine and the master control is in
Applesoft BASIC. It can process up to
120 coordinate pairs per second. This
means that unlike other systems it
will keep up with the fastest hand
motion.

The tablet is used by pressing the pen
on the designated square to select a
function. Some items that are
selectable are CLEAR, REDUCER,
CALIBRATE, PEN COLOR, DRAW, LINES,
DOTS, BOX, BACKGROUND COLOR, and some
of the commands are selectable from
the tablet are CATALOG, SAVE, LOAD,
SLIDE, and AREA. These are just a few
and a complete listing can be obtained
by checking with your local computer
store.

VER. 1.7 FOR APPLE II* COMPUTERS ^
100 PAGE, PROFESSIONALLY WRITTEN MANUAL'

FORTH INTEREST GROUP COMPATIBLE
DIRECT HOT-LINE TO SYSTEM DEVELOPERS

INCLUDES ITS OWN DOS
CAP'N SOFTWARE HAS DELIVERED 100's OF

WORKING FORTH SYSTEMS
UPDATE OFFER: TRADE IN YOUR VER. 1.6. DISK

FOR FULL CREDIT OF PURCHASE
PRICE TOWARD VER 1.7

RUNS ON APPLE II OR APPLE II+ WITH
1 OR MORE DISKS AND 48K.

ALSO RUNS ON LANGUAGE CARD
AVAILABLE AT COMPUTER STORES OR

DIRECTLY FROM CAP'N SOFTWARE
PRICE, SYSTEM $140, MANUAL ONLY $20

CAP'N SOFTWARE
P.O. BOX 575
SAN FRANCISCO, CA 94101

,-,,rrrr\

ALSO AVAILABLE FOR PDP-11 f
COMPATIBLE WITH VER. 1.7 FOR APPLE
DOWNLOAD PROGRAM DEVELOPMENT

OR EXECUTION
RUNS STAND-ALONE OR UNDER RT-117

RSX-11 Mf, OR RSTSf
AVAILABLE DIRECTLY FROM CAP'N SOFTWARE

PRICE, SYSTEM $145, MANUAL ONLY $20
'Trademark of Apple Computer Co rp. -(-Trademark of D EC.

L A N G U A G E S

n IL

A P P L E S O F T - F P

RAM - FP
BY BARNEY 8TONE

Apple Computer has quietly decided to
drop the RAM versions of Applesoft II
Basic. Sometime in the last two or
three weeks, and with no notice to
their dealers, Apple stopped including
the Applesoft II cassette with their
computers, and removed the disk
version of Applesoft from the master
diskettes that come with the disk
drives.

The reasons quoted by Apple included
the desire to concentrate support on
one version of the language - i.e.
ROM version (the Pascal/Language
system uses the ROM version of
Applesoft - that is, although the
language will be in RAM, it will use
the same memory locations as the
current ROM version). Apple in
addition stated that the costs and
manpower could be better utilized on
developing new projects.

As of this time if you call the
Hotline about a problem with Applesoft
you will get answers but sometime in
the near future that support will be
stopped.

NOTE: The current version of
Applesoft on the card includes the new
Auto-Boot ROM.

FP-INT-FP
BY JEFF FRANKEL

In going through the new issue of the
Apple user group newsletter "Contact
5" I found a great routine that will
aid in converting programs from
Applesoft to Integer and vice-versa.

This article assumes that one has a
disk drive and Applesoft in ROM. A
printer is also helpful especially
when going from Applesoft to Integer.
When I say that this routine will aid
you in program conversion I mean that
it will save you the job of tediously
re-typing those zillion and a half
program lines. The converted program
will in most cases not run correctly
owing to the differences in the two
languages. Making it work is up to
you!

Here is what to do

1. Please read all of the following
instructions before you do anything
else. It is easy to goof this up if
you don't understand what is happening
(I even fouled up my text editor
writing this article).

You will be writing on this disk so if
you are worried about wiping something
out .. get another disk... Save the
program you want to convert on to it
and use that disk.

3. Load the following routine to the
source program using any available
line numbers. Do this near the
beginning of the program if possible:

10 REM CONVERSION ROUTINE
20 REM "°"="CONTROL D"
30 PRINT ""OPEN XX"
40 POKE 33,33
50 PRINT ""WRITE XX
60 LIST
70 PRINT ""CLOSE
80 END

5. "RUN" the modified source program.
The program will open an "exec" file
on the disk and list itself into this
file. This file will have a "T"
prefix and will not respond to a run
command. It is accessed through the
use of the "EXEC" command.

6. Now use either the "INT" or the
"FP" command to jump into whichever
language you wish to use for your
object program.

7. If your source program is in FP
and your object program is to be in
Integer turn on your printer. When
the EXEC file "types" FP program lines
in integer.. all lines of the FP
program will be typed in and evaluated
by the integer language program
itself. Those FP program lines that
won't run in integer will be flagged
with error messages. If you have your
printer on these program lines will be
printed along with error messages.
However., integer will not insert
these lines into RAM m emory.
If you don't have a printer.. go on
to step 8. When you list the program
back.. incompatible program lines
will be conspicuous by their absence.
If you are going from integer to FP
don't bother with the printer. All
program lines will be inserted into
RAM a nd the error messages will appear
when you try to run the program.

8. Now execute the file by typing
"exec xx". Subject to the limitations
as noted above the file will type into
RAM memory your object program.

9. Delete the special routine from
the object program.

10. Save the object program back onto
the disk. (Be sure not to save it
under the original name - you will
wipe out your source program).

Now comes the fun part of getting the
program to run in the new language.

GOOD LUCK

2. Boot the disk drive. Insert a
disk containing the program you want
to convert. This disk should have
plenty of room on it.

FP RENAME
APPLE APPLICATION NOTE8

Have you ever written a program that
needed to check to see if a data file
existed before trying to read it?
Most programmers seem to use the
method of opening the file, then
reading it. If an 0NERR statement is
in effect, an OUT OF DATA error is
trapped. This has the drawback of
creating a file in the diskette
directory that must then be deleted.
Another method is using the VERIFY
command. It works but can take a
while with a large file.

Here is an example of a program that
prompts for a file name and will
continue only if the file already
exists.

]LIST 0,200
100 TEXT: HOME: D$= CHR$ (A): VTAB 11
110 PRINT: INPUT "FILE NAME: ";A$
120 IF A$ = " " THEN EN D
130 ONERR GOTO 160
1^0 PRINT D$"RENAME "A$","A$"
150 POKE 216,0: GOTO 180
160 POKE 216,0: PRINT D${"CATALOG"
170 GOTO 110
180 REM **MAIN PROGRAM**

The work is being done in line 1^0 by
attempting to rename the file with the
same name. It's possible to use the
UNLOCK command here if the file needs
to be unlocked later on in the
program.

FP MEM MOVE
APPLE APPLICATION NOTES

Much has been said in articles
about how to do a memory block move
from Integer Basic. It's almost as
simple to do it from Applesoft.
You just have to poke a short
machine language routine in o
memory first.

]LIST 200-250
200 REM MOV E PG2 TO PG1
210 POKE 60,0:POKE 61,8
211 REM START OF BLOCK
220 POKE 62,255:POKE 63,11
221 REM END OF BLOCK
230 POKE 66,0:POKE 67,4
231 REM START OF OBJECT MEMORY
240 CALL 768: RETURN
241 REM DO THE MOVE

That's all there is to it.

FP PGM MOVER
APPLE APPLICA TION NOTE8

It Is sometimes desirable to have an
Applesoft program start at an address
other than the default $801 (ROM
Applesoft). A "safe" area for machine
language, the desire to use page 2 of
text or to make room for a large
program that uses HIRES graphics are
the usual reasons. Here is a good way
to do this for Disk II users.

Since a diskette holding this type of
program is generally dedicated to a
specific purpose, the actual changing
of Applesoft's pointers will be done
by the "HELLO" program. Here's an
example:

]LIST
100 TEXT: HOME: D$ = CHR$(4)
110 IF PEEK (104) = 12 THEN 150
120 POKE 1 01,12
130 POKE 1 03,1
140 POKE 3072,0
150 PRINT D$;"RUN MAIN PROGRAM"

This program makes room for using text
page 2. This is what happens when the
disk boots:

Line 100 simply clears the screen and
sets the variable D$ equal to Control
D.

Line 110 checks the high order byte of
the beginning of program pointer ($68)
to see just where the program is
located. These pointers are explained
on page 140 of the Applesoft manual.
If the program is already in the
correct location, a branch is made to
line 150 where the application program
is RUN.

Line 120 is reached only if the test
on the line above fails. It POKEs the
correct new high-order byte.

Line 130 POKEs the new low-order byte.

Line 140 changes the byte immediately
preceeding the new program location to
zero. Note that this byte must ALWAYS
be zero for Applesoft programs. ($800
is a zero when a normally located
program is in memory.)

Line 150 RUNs the main program.

This works "on the fly" because no
references are being made to other
program lines after the pointers are
changed. The program is linear.

Another way of changing these pointers
is to do it from within the
application program. The drawback is
that it is somewhat slower. To do it,
use a subroutine to check the pointers
like this:

100 LET D$ = CHR$(4): G0SUB 60000

PROGRAM

60000 IF PEEK (104) = 12 THEN RETURN
60010 POKE 1 04,12
60020 POKE 103,1
60030 POKE 3072,0
60040 PRINT D$; "RUN MAIN PROGRAM"

The difference here is that if line
60000 is true the program continues
execution. If the expression is false
the pointers are changed and the
program reruns itself. (The speed
difference occurs when relocation must
take place and the entire program must
be re-loaded from disk.)

"GET" TRAP
BY MAX J. NAREFF

Full many a program bit the dust until
the Dec. 1978 issue of "Contact"
(from the Apple Computer Co.) revealed
the culprit. "GET" was getting in the
way. Unless a "GET" statement was
followed by a "PRINT", the DOS command
would be ignored.

The new 3.2 DOS manual mentions this
problem and presents the "cure" on Pg
24; however a clearer picture emerges
in the June and October issues of
"Call APPLE", edited by Val Golding.

"....first set D$ to equal a carriage
return, followed by a C0NTR0L/D. DOS
requires that a carriage return be
performed before each DOS command.
Now it is possible to have multiple
DOS commands in one program line."

"In addition, D$ will now allow (you)
to "TRACE" with DOS up, and it WILL
permit a DOS command to directly
follow a "GET" statement."

Example-A.
100 D$=CHR$(13)+CHR$(4): PRINT "OPEN
COLORS" D$ "WRITE COLORS" (note
absence of delimiting colon and
semi-colons)

Example-B.
100 D$=CHR$(13)+CHR$(4): GET A$
110 IE A$=

SPC(X)-TAB(X)
BY MAX J. NAREFF

Applesoft tab fields are restricted to
three as compared to the normal five
in Integer. Details appear in the
Apple manuals. This limitation
sometimes imposes restrictions on the
number and format of data outputs and
headings. A detour around these
roadblocks is illustrated:

.(DATA GENERATING OUTPUT NOT SHOWN)..
150 D$="DATE"
160 R$="RAINFALL"
170 S$="SN0WPACK"
180 F$="RUNOFF"
190 PRINT D$,R$,S$,F$
200 PRINT : PRINT
210 PRINT D$; SPC(3);R$; SPC(3);S$;

SPC(3);F$

Line 210 produces a much nicer format
for the data output.

2 7

The SPC(X) command can only be used in
a print statement and may be located
anywhere within that statement. When
preceded and followed by a semicolon,
SPC(X) introduces X number of spaces
between the item preceding and the
item following it.

The TAB(X) command is used within a
print statement but only immediately
following the print command. In
contrast to SPC(X), it dictates the
absolute position relative to the left
margin (defined as position 1) where
the item will be printed that follows
it. Type in the following three lines
to see this work.

10 PRINT "P.PECK"; SPC(12);
"PINK DR."

20 PRINT : PRINT
30 PRINT "P.PECK": PRINT TAB(12);

"PINK DR."

$.XX TRAILING O'S
BY SCOT KAMINS

The new APPLESOFT language is really
terrific - especially if you have been
fortunate enough to get it on the ROM
card. It does, however, have some
pesky quirks - among which is the lack
of trailing zeros.

One feels this lack when trying to
write business and finance programs
that use two digits after the decimal
point - i.e., money stuff. Following
is a solution to the problem which,
while inelegant, does the job.

5 Z 2$=".00":Z1$="0":D $="$"
10 CALL -936
15 REM HERE COMES A ROUNDOFF FUNCTION
20 DEF FN A(R)=INT(R*100+.5)/100
25 ?:?:INPUT "TEST ";TEST:?: REM

GIMME A NUMBER
30 T$=STR$(TEST): REM WE TREAT THE

THE NUMBER L IKE A STRING
35 REM HERE COMES A "SPECIAL CASE"

FIX (I DID SAY I NELEGANT!)
40 IF LEN(T$=2 AND MID$(TS,1,1)="."

THEN 1500
45 FOR SEEK=1 TO L EN(T$): REM IS THERE

A DECIMAL IN THIS NUMBER?
50 IF MID$(T$,SEEK,1)="." THEN 1000:

REM IF YES BRA NCH TO LOCATION FOR
FURTHER CHECKING

55 NEXT SEEK: REM KEEP LOCKING UNTIL
THE CHARACTERS RUN OUT

60 T$=T$+Z2$: REM SINCE THIS NUMBER
HAS NO DECIMAL, CONCATENATE A
DECIMAL WITH TWO TRAILING ZEROS

65 GOTO 2000: REM BRANCH TO THE
PRINTOUT

1000 IF MID$(T$,LEN(T$)-1,2)="." THEN
2000: REM IF THIS NUMBER HAS A
DECIMAL W/2 DIGITS AFTER IT GO GET
PRINTED

1200 IF MIDS(T$,LEN(T$)-1,1)='.' THEN
1500: REM IF 1 DIGIT, GET ANOTHER

1300 T$=STR$(FN A(TEST)): REM ROUND
OFF THIS NUMBER TO 2 SIGNIFICANT
DIGITS BEYOND THE DECIMAL

1400 GOTO 30: REM GO BACK TO MAKE
SURE TWO D IGITS FOLLOW A DECIMAL

1500 T$=T$+Z1$: REM CONCATENATE THE
NUMBER WITH ONE TRAILING ZERO

2000 ?:?:? D$+T$:?:?: REM P RINT A
DOLLAR SIGN FOLLOWED BY THE NUMBER
WHICH NOW HAS 2 SIGNIFICANT
DIGITS BEYOND A DECIMAL POINT

2100 GOTO 1 0: REM GO GET ANOTHER
NUMBER

POKE 51,0
B Y P H I L B E R N H E I M

Have you ever been de-bugging an
APPLESOFT program and after making
some changes, had a "NOT DIRECT
COMMAND" error message thrown at you
when you tried to run the program?

You scratch your head because,
plainly, the program is making the
command, not you!

There's a very simple answer - POKE
51,0. Now that doesn't make sense,
because system monitor location 51
(decimal) is the prompt character.
But what you're doing is fooling the
computer.

When you interrupt a program that's
running in DOS and give any commands
from the keyboard, the computer then
takes ALL subsequent commands as
coming from the keyboard including
those in the program itself. So if
your program contains any DOS commands
that are illegal from the keyboard
(Open, Read, Write, etc) you'll get
the NOT DIRECT COMMAND error message.

Just type POKE 51,0: GOTO (linenum),
and APPLESOFT is fooled into thinking
that your keyboard instruction (and
all subsequent ones) came from behind
the cursor and GOes TO the line.

It's just as useful written into
programs. I have one program which
uses the STOP command to permit me to
make manual (keyboard) changes in a
data matrix. The line after the STOP
command reads POKE 51,0: PRINT ...,
and the program later writes the
changed matrix back onto tape. And it
simply will not turn on the disk
without that all-important POKE line
in the program.

Typically, line 20 contains a more
complicated expression which causes
premature termination of the loop. If
you have more than 10 of these
premature terminations you get the
dreaded OUT OF MEMORY error just like
the APPLESOFT Manual says for 10
nested For-Next loops.

The fix was supplied by Dick Huston of
Apple Computer Inc. and looks like:

10 FOR I = 1 TO 10
20 J = 5 * I
30 IF J = 15 THEN I = 10:

NEXT I: GOTO 50
40 NEXT I
50 continue with the program

The problem occurs because the index I
and only 9 more indexes can be stored
in page 0 locations. The 11th has
nowhere to go, and the OUT OF MEMROY
error message appears. Prematurely
terminated loops leave the page 0
locations waiting to be completed.
The fix in line 30 sets the index to
its highest value (10 in the example)
and the NEXT I before the GOTO
de-allocates one of the page 0
locations.

I made the modification after talking
to Dick and it works! Thanks, Dick.

P.S.: Leaving the variable names off
in NEXT statements significantly
improves execution speed.

AVOIDING LINE
OVERRUNS

B Y M A X J . N A R E F F

OUT OF MEM
ERROR IN FP
B Y R A N D Y F I E L D S

I have been plagued, albeit
occasionally, with a mysterious bug in
one of my APPLESOFT programs. The
program would be happily executing
away, and all of a sudden, a beep and
at the bottom of the screen, an 'OUT
OF MEMORY IN LINE ###' error message
appeared. I did a PRINT FRE(O) and
had 8K of memory left!! Impossible,
you say, as did I. Well, the problem
turned out to be "uncompleted FOR-NEXT
loops.

An uncomplicated For-Next loop looks
like:

10 FOR I = 1 TO 1 0
20 J = 5 * I
30 IF J = 15 GOTO 50
AO NEXT I
50 continue with the program

The beginning programmer, confronted
with the AO character line limit,
frequently finds himself with
ungrammatical word spillovers and
unwanted blank lines. A template is
given below for the avoidance of these
distortions.

10 PRINT" »;

This line must be AO characters or
spaces line. Proceed with frequent
reference to the template above,
keeping the line lengths within the
limits outlined by the dots or spaces
to prevent line spillover. When line
10 is scrolled away, merely type
another appropriately numbered line
template. Adjust for changes in the
number of digits in the larger lines.
The original line 10 may be used as
the program opener with a "clear
screen" command. The use of the
semi-colon as a 'carriage return
suppressor' will prevent the
occurrence of a subsequent inadvertant
blank as is illustrated.

10 PRINT" "

2 8

6 5 0 3 C P U
B Y P A U L K N E V E L 8

F R O M M I C H I G A N A P P L E

It has been rumored that Apple is
working on an apple III computer to be
released shortly. At present, the
advance information available Is that
a new microprocessor will be
incorporated into the unit - the 6503.

Our research staff has been able to
uncover a list of new opcodes that
distinguish the 6503 as a breakthrough
in computer technology.

The list is presented here for your
information (and enjoyment).

AO ADD GARBAGE
BBL BRANCH ON BUR NED OUT LIGHT
BAH BRANCH AND HANG
BLI BRANCH AND LOOP IN FINITE
BPB BRANCH ON PRO GRAM B UT
BP0 BRANCH IF POWER OF F
CPB CREATE PROGRAM BUG
CRN CONVERT TO ROMAN N UMERALS
DAO DIVIDE AND OVERFLOW
ERS ERASE READ-ONLY STORAGE
HCF HALT AND CATCH FIRE
IAD ILLOGICAL AND
IOR ILLOGICAL OR
MDB MOVE AND DROP BI TS
MW MULTIPLY WORK
NBC SHOW TER RIBLE PROGRAMS
PAS PRINT AND SME AR
RBT READ AND BREAK TAPE
RPM READ PROGRAMMER' S MIND
RRT RECORD AND RIP TAPE
RSD READ AND SCRAMBLE DAT A
RWD REWIND DISK
SRZ SUBTRACT AND RESET TO ZE RO
SSD SEEK AND SCRATCH DISK
TP TEAR PAPER
WED WRITE AND ERASE DATA
WID WRITE INVALID OP CO DE
XIO EXECUTE INVALID OP CODE
XO EXECUTE OPERATOR
XP EXECUTE PROGRAMMER

AN APPLE MATRIX
MATRIX PART 1
B Y M A X J . N A R E F F

Some forms of BASIC provide the matrix
commands (MAT READ, MAT PRINT, MAT
INPUT, etc,) to facilitate display and
manipulation of tables of numbers.
Though the MAT commands are
unavailable in Apple Basic, there is a
substitute.

The term "matrix" is used here to
denote a two-dimensional array of
numbers consisting of horizontal rows
and vertical columns. A matrix is a
grid in which each of the elements
(numbers) is given a reserved space or
cell In the computer's memory.

To accomplish this, the matrix is
first dimensioned. Thus DIM A(12,12)
allocates 144 cells in memory for the
1AA (12*12) cells in the matrix.
(Actually since Apple begins
dimensioning from zero the number of
elements In the variable is 13*13, or
169 - but who's counting?)

Following is a simple program using
doubled digits illustrating how a
matrix can be constructed or read from
data statements in Applesoft. For the
sake of brevity the number of rows is
here limited to 3. Try more at your
computer.

0 DIM A(12,12)
10 DATA 10,20,60,70,90,11,88,A2,32
20 DATA 77,A1,66,19,20,91,72,72,18
30 DATA 36,24,11,30,93,46,66,33,14
AO DA TA 9 8,16,32
50 FOR 1=1 TO 3: REM INDEX LOOP FOR

ROWS
60 FOR J=1 TO 1 0: REM INDEX LOOP FOR

COLUMNS
70 READ A (I,J): REM READS DATA FOR

MATRIX
80 PRINT A(I,J); SPC(2);: REM PRINTS

AND FORMATS MATRIX ELEMENTS
90 NEXT J
100NEXT I

RUN

10 20 60 70 90 11 88 A2 32 77
41 66 19 20 91 72 72 18 36 24
11 30 93 46 66 33 14 98 16 32

When the matrix is on screen,
computations may be made in the
immediate mode.
For Example:
PRINT A(1,5)*A(3,10).
With simple additions to the program
all or selected matrix elements may be
totaled, averaged, sorted, etc.

Next month: Manipulating the Matrix
Elements.

MATRIX PART 2
B Y M A X J . N A R E F F

This series of articles is designed to
simulate various MAT(RIX) functions,
statements which are used to simplify
the manipulation of large groups of
numbers.

Last month MATRIX or table formation
was demonstrated with the use of
F0R-NEXT loops and double subscripted
variables (also called two dimensional
arrays). This month we deal with
arithmetic manipulation of a MATRIX.
Reference is made to last month's
program which developed a table
consisting of 3 rows and 10 columns of
numbers. The following subprograms
should be added to it.

1. SUM OF ALL MATRIX ELEMENTS

120 T=0: REM INITIALIZES THE T0TALER
130 FOR 1=1 TO 3: REM LOOP FOR ROWS
140 FOR J=1 TO 10: REM LOOP FOR COLUMNS
150 T=T+A(I,J):REM TOTALS ELEMENTS
160 NEXT J
170 NEXT I
180 PRINT:PRINT TAB(4);"SUM OF MAT

ELEMENTS=";T

2. AVERAGE OF ALL MATRIX ELEMENTS

120 T=0:K=0::REM INIT TOTAL & COUNTER
145 K=K+1:REM COUNTS # OF ELEMENTS FOR

AVERAGING
190 PRINT:PRINT TAB(9);"AVERAGE OF

ELEMENTS=";T/K

3. SUM OF INDIVIDUAL ROWS & COLUMNS

200 FOR 1=1 TO 3:REM INDEX LOOPS
210 FOR J=1 TO 10
220 REM CALCULATION OF ROW & COLUMN

TOTALS
230 R(I)=R(I)+A(I,J)
240 C(J)=C(J)+A(I,J)
250 NEXT J
260 NEXT I
270 REM LOOPS FOR PRINTOUTS
280 FOR 1=1 TO 3
290 PRINT TAB (14);"SUM OF ROW

#";I;"=";R(I)
300 NEXT I
310 FOR J=1 TO 1 0
320 PRINT TAB (14);"SUM OF COL

#$";J;"=";C(J)
330 NEXT J

The terms "MATRIX" and "TABLE" can be
used interchangeably. In subprogram 2
line 145 the counter statement can
also be expressed as K=I*J another
form of iteration as the loop uncoils.

Any component of a MATRIX - whether
single elements or rows or columns -
can be manipulated as can several
matrices. Try "PRINT R(1)+R(2)";
"PRINT R(3)/10" and "PRINT C(2)+C(10)"
or any combination required.

More next month

MATRIX PART 3
CROSSFOOTING
B Y M A X J . N A R E F F

As defined by Logsdaon (Programming in
Basic, 1977) it is the mathematical
process of summing the corresponding
numbers (elements) of two arrays In
pairs, one number from each array.
The sum of each paired number appears
in a third array. Originally used in
computer card processing, the term has
been broadened to include subtraction.

2 a

In the previous articles on Matrix
simulation, the technique of
CROSSFOOTING was demonstrated without
being identified as such. Here now is
a short application with a paired
array.

Three service stations have each sold
out their daily quota of two grades of
gasoline (A&B). How many gallons has
each outlet sold (C), and what is the
grand total of company sales (T)?

0 HOME : T=0 : REM CLEARS SCREEN :
INTITIALIZES TOTALER

10 DIM A(3), B(3), C(3): REM RESERVES
MEMORY SPACE FOR EACH ARRAY

20 PRINT "REGULAR","ETHYL","R+E SALE":
PRINT

30 FOR X= 1 TO 3 : REM MACHINE LOOP FOR
READING DATA

40 READ A(X),B(X): REM READS DATA
(A-REGULAR,B-ETHYL)

50 C(X)=A(X)+B(X): REM CROSSFOOTING
60 PRINT A(X),B(X),C(X)
70 T=T+C(X): REM COMPUTES TOTAL SALES

3 STATIONS
80 NEXT
90 PRINT : PRINT : TAB 10;"TOTAL FUEL

SALES= "*T
95 DATA 621!5,433.2,493.8,1217.5,701.8

,317.6: REM FUEL SALES CAREFULLY
ENTERED IN PROPER SEQUENCE
A, B, A, B, ETC

MATRIX PART 4
B Y M A X J . N A R E F F

MATRIX statements, unavailable in
APPLE BASIC, reduce the programming
effort required to solve problems
involving one or two matrices (tables)
by eliminating the need for
nested-loops. Large clusters of data
can be managed quickly with single MAT
statements. As noted previously,
several of these statements can be
simulated within APPLE BASIC, and
while the effort is more tedious,
selected mathematical operations can
be performed using nested-loops. In
previous issues, the MAT READ and MAT
PRINT statements were simulated and a
single matrix (table) generated.
Several arithmetic operations were
performed with its contents, both in
the direct and indirect modes. Now,
two small rectangular matrices, each
composed of two rows and four columns
of numbers, will be formed and
arithmetic interactions between them
illustrated. MAT statements involving
addition (or subtraction) and
multiplication by a constant will be
simulated.

Step 1 demonstrates formation of two
(2x4) tables labeled MATRIX A & MATRIX
B. Here again, the MAT READ & MAT
PRINT statements are accommodated by
use of nested-loops.

0 CALL -936
10 DIM A(2,4),B(2,4): REM

DIMENSIONS EACH MATRIX
50 PRINT TAB (15);"MATRIX A"
60 FOR R=1 TO M: REM ROW LOOP:

M=2

M A T R I X P A R T 4 (C O N T .)

70 FOR C=1 TO N: REM COLUMN LOOP:
N=A

80 READ A(R,C): REM FROM DATA
STATEMENTS

90 PRINT A(R,C);SPC(8);: REM
PRINTS AND FORMATS MATRIX

100 NEXT C
110 NEXT R
120 PRINT TAB(15);"MATRIX B"
130 FOR R=1 TO M: REM (M=2)
1A0 FOR C=1 TO N : REM (N=A)
150 READ B (R,C): REM FROM DATA

STATEMENTS
160 PRINT B(R,C);SPC(8);
170 NEXT C
180 NEXT R
500 DATA 10,20,30,AO,50,10,20,30
510 DATA 11,13,15,17,19,21,23,25

In step 2, a third MATRIX, C, will be
formed by addition of A and B
simulating MAT C=A+B

20 DIM C(2,A)
200 PRINT TAB(8);"MATRIX C =

MATRICES A+B"
210 FOR R=1 TO M
220 FOR C=1 TO N
230 C(R,C)=A(R,C)+B(R,C): REM

MATRIX ADDITION
2AO PRINT C(R,C);SPC(8);
250 NEXT C
260 NEXT R

In step 3, scalar multiplication is
demonstrated. In this type of
operation, each element of matrix may
be multiplied by either a constant, a
variable or an expression. This step
is an example of MAT D=(K)*A where K
is a constant.

30 DIM D(2,A)
300 PRINT TAB(8);"MATRIX

D=(K)*MATRIX A"
310 FOR R=1 TO M
320 FOR C=1 TO N
330 D(R,C)=(K)*A(R,C): REM FOR

EXAMPLE LET K=5

The dimensions of the matrix on the
left of the "equals" sign must be
equal to or greater than those on the
right side of the equation or else
some of the elements may not appear;
the shape of the new matrix may
change, or more likely, the error sign
will occur. Where the MAT capability
exists, it is most useful and
effective, but it is limited by its
inability to add or subtract more than
two matrices or to perform some other
arithmetic.

SCORE ONE FOR THE APPLE: with the
procedures outlined, many matrices can
be added, subtracted, divided, etc.
The interested reader is invited to
try these and other options. Note
what occurs where MATRIX A is
multiplied by MATRIX B. The resultant
m a t r i x i s p r o d u c e d b y t h e
multiplication of EACH element of A by
the CORRESPONDING element of B (i.e.
C(1,1) = A(1 ,1) * B(1, 1), C(1,2) =
A(1,2) * B(1,2) and so forth). In a
sense this is a type of "scalar"
multiplication where the multiplier
varies from element to element.
However, this is NOT true Matrix
Multiplication in the language of
computer science or matrix algebra,
where the rows of one matrix are
multiplied by the columns of the
second and not by the corresponding
elements.

FRE(X) FOR INT
Here are a couple of quickie one-lines
to implement while waiting to decide
how next to complicate your program.

This first one gets you the remaining
usable memory. It is equivalent to
Applesoft's FRE(X) function.

PRINT PEEK (202) + PEEK (203) * 256 -
PEEK (20A) - PEEK (205) * 256

This one gets you the space taken up
by your program:

PRINT PEEK (76) + PEEK (20A) - PEEK
(202) - PEEK(7A) + 256 * (PEEK (77) +
PEEK (205) - PEEK (203) - PEEK (75))

The difference you get when you
subtract the total of these two
functions from the RAM capacity of
your machine represents the work space
used by the interpreter. It should be
2K (20A8) bytes.

Here's yet another program for
determining the length of a basic
program - except that this one is in
machine language and is relocatable.

As it is written, you "CALL 768" to
get the length of the commands and
statements you've used without the
length of the variable table - that
is, you get HIMEM down to PP:

300: 38 A5 AC E5 CA AA A5 AD E5 CB 20
1B E5 60

AND that's it.

WAIT CMD
B Y Q . R . B A L D W I N

(C) 1 8 7 8

A L L R I Q H T 8 R E S E R V E D

We don't know what is in the
accumulator the first time the call is
made to WAIT, so the delay might be
anywhere up to a sixth of a second.
But the call leaves the accumulator at
zero, and subsequent calls to WAIT
take 162 milliseconds each. So thi s
line of BASIC will create a delay of
about one second. By changing the
limit on the FOR loop from 7 to 31, »e
get a delay of five seconds, and to
370 gives a delay of one minute. To
calculate the proper limit, divide the
desired delay in seconds by 0.162 and
prune the result to the nearest
integer.

For more precision, WAIT must be
called using ASSEMBLY language:

LDA #nnn,nnn is a value between 0
and 255 inclusive

JSR SFCA8 ;call WAIT

The delay is a shaggy function of the
value you put in the accumulator (A):

Delay in milliseconds = (13 + 12.5*a +
2.5*a*a) / 1023.

The divisor is the frequency of the
Apple clock in kilohertz, or in other
words, 1/1023 is the length of one
machine cycle in milliseconds. The
formula is valid for accumulator
values between 1 and 255. Oddly
enough, 255 and zero both give the
maximum delay posible. Here are a few
representative values:

ACCUMULATOR
VALUE

18
88

200
255

DELAY IN
MILLISECONDS

1.02
20.01

100.21
162.OA

So don't delay a minute - call WAIT
now! !

Loitering inside the Apple System
Monitor is a subroutine called 'WAIT'.
It is useful for creating timing
delays inside your programs without
the bother of writing special code.
Delays of up to one-sixth of a second
are possible, depending on the value
that is in the accumulator when WAIT
is called. We can't control this
value from a BASIC program, but it
turns out we don't have to! Timing
delays from one second to several
minutes can easily be invoked from
either INTEGER or APPLESOFT BASIC. To
do this we will resort to a subterfuge
involving both trickery and cheating.

The trickery is possible because the
accumulator is left at zero when WAIT
returns to the program which called
it. And a zero in the accumulator
will create a delay of 162
milliseconds if WAIT is called again.
The cheating is possible because BASIC
doesn't mess with the accumulator in
the following tight loop:

FOR I = 1 TO 7: CALL -856: NEXT I

3 0

IA C

Fred Wilkinson announces that he's
trying to reach out to small user
groups nationwide (and worldwide) to
get together and communicate regarding
the forthcoming formation of the
International Apple Core.

If you have questions concerning the
International Apple Core's creation or
status of current efforts to get going
please call Fred Wilkinson at
(415)585-2240, or write to:

International Apple Core
P.O.Box 976
Daly City, CA 94017

Now is the time to get involved.

$ A R R A Y S I N I N T
B Y J I M D O T Y

There is a simple way to get around
the lack of string array capability in
APPLE'S Integer Basic. You can
convert the character to a number and
then pack two characters in one
integer value. Consequently, an
integer array dimensioned as A(1000)
can hold up to 2000 characters.

The ASC Function will return a number
value for a character. This value
must be offset since these values are
too large to use. I used an offset of
-159. This made the character "blank"
equal to 1. Consequently, to
initialize your integer array you
should set each element equal to 101.
Why 101 will become obvious shortly (I
hope).

Two characters are stored in each
integer element. The following
example will demonstrate how this is
done. Let's use "at" as the two
characters to be packed into A(1).

ASC("A") = 193. LESS 159 = 31.
ASCC'T") = 212. LESS 159 = 53.

Multiply the left character value by
100 and add the result to the right
character value.

31 * 100 + 53 = 3153
Therefore A(1) = 3153

However, getting the characters back
from their integer form is not quite
as easy since the inverse of ASC does
not exist in integer basic on the
APPLE. Here is the needed routine:

First you must break apart the two
character values which are combined in
the integer array element. Let's use
the same value as in the example:

A(1) = 3153
LEFT CHAR VALU E = (A(1)/100)+159

= 193
RIGHT CHAR VALUF= A(1) MOD 100 + 159

= 212

Now all we have to do is convert these
values to their ASCII equivalent
characters.

PUT CHARACTER
IN PROG RAMS
B Y B R U C E T O Q N A Z Z I N I

Apple Basic CHR$ Subroutine Function

1 CHS = CHR + 128 * (CHR<128)
2 LC1 = PEEK (221): LC2 = PEEK (225) -

(LC1>213): POKE 79 + LC1 - 256 *
(Lc2>127) + (LC2 - 255 * (LC25127))
* 256,CHS: CHR$ = "A": RETURN

Apple Basic CHR$ Matrix Function

1 DIM CHR$(128): FOR CHR = 1 TO 1 28:
CHR$ = CHR + 128 * (CHR < 128)

2 LC1 = PEEK (221): LC2 = PEEK (225) -
LC15213): POKE 81 + LC1 - 256 * (LC2
>127) + (LC2 - 255 * (LC25127)) *
256,CHS: CHR$ (CHR) = "A": NEXT CHR

Above are two character string
functions for Apple Basic. The CHR$
Subroutine function is ideal where few
characters need be called; the CHR$
Matrix function is great for many
characters, but takes quite a long
time to initialize (approx. 1.5
seconds).

Let's say you wanted to print the
following during your program: "How
do you say "Apple" in French?". Here
is a sample program for the CHR$
Subroutine function:

10 CHR =31: G0SUB 1: PRINT "HOW DO YOU
SAY";CHR$;"APPLE";CHR$;"IN FRENCH?"

To do the same thing using the CHR$
Matrix function, you would do the
following, having ALREADY executed
lines 1 and 2 to initialize the CHR$
matrix:

10 PRINT "HOW DO YOU SAY";CHR$(31,31)
;"APPLE";CHR$(31,31);"IN FRENCH?"

It is important to note that the
Subroutine function is, in fact, a
subroutine, whereas the Matrix
function is not. Because the matrix
is initialized once and the program
lines are not called again (because
the data exists in the variable table)
it is not necessary to separate the
lines into a subroutine.

INTEGERS
TIMES
A FRACTION
B Y P A U L W Y M A N

There are numerous business
applications where integer BASIC
addition and subtraction are quite
satisfactory.... until you have to
multiply by a fraction or percentage.
Preparations of income tax returns is
a relevant example. While Applesoft
can handle the fractions it chews up
vital memory data space at more than
twice the rate of integer BASIC.
Furthermore, most calculations could
be done as integer arithmetic if with
a few handy floating point functions
in BASIC. The following function is
useful only for cases requiring
multiplication of a whole number times
a decimal fraction. It is not
suitable for a chain of successive
multiplications due to rapid
accumulation of roundable errors.
Given these caveats, the reader should
be pleased to note that numerous
business calculations are relevant
such as worksheet spreads by
percentages, financial ratio analysis,
cost variance analysis, price markups,
tax calculations, interpolations in
rate tables, etc.

10 GOTO 1000
20 REM BASIC SUBROUTINE FOR

MULTIPLYING TIME WHOLE NUMBERS
25 IN = 0: DE = 0 : TH0 = 1000
30 FOR Z1 = 1 TO 3: Z2 = 101:

Z3 = Z2/10
10 Z1 = TH0/Z3: Z5 = (PCT MOD Z2)/Z3
50 IN = IN + Z5 * (NUM/Z1)
60 DE = DE + (Z5 * (NUM MOD ZD * Z3)
70 NEXT Z1: IN = IN + DE/TH0
80 DE = DE - (DE/TH0) * TH0
82 RETURN
85 PCT = 125: REM PCT =12.5
88 NUM = 5000
90 G0SUB 2 0
95 PRINT NUM;"*";PCT/101;(PCT

MOD 10) ;"=";IN;".";DE
98 END

I R S A U D I T

You use a string variable which must
be the first variable defined in the
program. Consequently, you know
exactly where in memory this variable
resides. To convert the numeric value
to a character, Just POKE its value
into location 2053. For example, if
A$ was the first variable defined, the
following example would work:

POKE 20 53, 193
NOW A$ = A

This seems to work very well and
solves a frustrating problem.

VAL (X$) USE
One use for the VAL(X$) function in
Integer Basic:

10 V=0: FOR VL=1 TO LEN (V$): V=V+
(ASC (V$(VL,VL)) - 176)* 10LEN
(V$)) - VL: NEXT VL: RETURN

Going into the subroutine, V$ will be
a number, for example, V$ = "1231" -
coming out of the subroutine, V will
equal 1231. One use for this is to
input using a string function and
later convert, so that if the user
hits return with no input, you can
give him or' her additional
instructions, or Just go on with the
program, rather than getting the
friendly "?"

3 1

B U T I T D O E S N ' T M A K E

M I S T A K E S E I T H E R

P A S C A L

PASCAL WHO?

For those of you that are wondering
"Pascal who?", Pascal was a French
mathematician and also is a very nice
modern programming language. A direct
descendant of ALGOL 60, Pascal was
designed by Niklaus Wirth in the early
70's. It is a clean and elegant
language featuring a full set of
structured flow of control constructs
and superb data structuring
capabilities. It is a "strongly
typed" language which means that the
compiler can catch most of your errors
for you. From its origins in academia
it is now enjoying increasing
popularity in the business and
hobbyist sectors as well.

Ihe folks responsible for the APPLE
implementation of Pascal (and many
others, too) are the Institute for
Information Systems at UC San Diego
(led by Ken Bowles), a bunch of
proverbial "good guys" if there ever
was one. Ihey are dedicated to
spreading good programming languages
throughout the real world at minimum
cost. Ihey are very involved in
computer-aided instruction, too, so
when you obtain your Pascal system you
will also get a wonderful program that
will teach you the language and how to
use it.

COPYING THE
BASICS DISK
BY GENE WLSON

Fellow Core member Phil Bernheim
relates that his new Pascal/Language
System gave him fits when he tried to
copy the 'Basics' Disk with a 'Basic'
copy program. He called Apple's hot
line and got the cryptic answer:
The machine boots up in Pascal. The
program on the 'Basics' disk is a
Pascal program and must be copied
using the 'F ' (filer) portion of your
Pascal System.

Any attempt to copy the 'Basics' disk
from Basic will simply be futile.
(Did that sound like a challenge?—of
course it was. Some Core member has
probably already found a sneaky way.)

Our thanks to Phil — his discovery will
certainly aid another member in the
near future, and doubtless other
little tid-bits are just lurking
around the corner waiting to be
•flushed' into the open. Send the
Cider Press Staff your latest
suggestions, tips, traps, etc., and
we'll get the whole thing out to the
membership.

SINGLE DRIVE
BY GENE WL80N

If you've recently bought Apple's
Language System and haven't gotten up
and running yet—keep reading. It has
probably occurred to you that every
place you saw Pascal being
demonstrated was done on a 'two drive'
system. 'NO SWEAT' you've heard when
asked if it works with the one drive
you have at home. (If it's so easy,
why don't you have it running?)

In mid-October I visited no less than
five Apple selling shops, and in all
five two drives were in use for each
Pascal demo--in no cases were the
staff and innocent bystanders able to
run the GRAFDEMO program after
unplugging one of the drives. It
occurred to me that possibly the
Reference Manual would clear this up,
but among the fantastic information
there was nothing that helped.

Cheer up. I know of two solutions;
the first being to fork over another
five hundred dollars and flaunt a
second drive in your neighbor's face.
This may place your body out in the
street when the wife gets the
checkbook back.

For the second method read on:

I will assume that the directions for
installation of the card and chips
were properly followed. Read the
chapters in the Reference Manual
covering the Filer and the Editor.
Section 6.2 on Starting up an Apple
Pascal System that has only one drive
must be understood. The most
important thing to understand is that
with one drive you must switch
diskettes 20 times to make a copy.
(This tends to 'drive' a person
towards solution number 1, above). Go
back to your trusting computer store
and use their two drives to 'fast
copy' an APPLE3, and several APPLEO's
(reason later).

Now it's time to get a sample program,
so power up per section 6.2.5. Start
with APPLE3 in your drive, power up,
go to APPLEO, press RESET, and
'WELCOME' message tells all that you
can read instructions.
Now we go to the 'F'(filer) for some
preliminary play. Go on ahead and
type 'F'. Prompt line tells story of
success. Make sure that SYSTEM.WRK
file is gone elsewhere. (If you
wanted that file it was transferred
earlier anyway.) Type 'N' (for new)
and prompt says 'THROW AWAY CURRENT
FILE?'. Type 'Y' and 'WORKFILE
CLEARED' tells us that the dirty deed
is done.
Let's take a look at the goodies on
APPLE3, by placing APPLE3 in the
drive, and typing 'L' (for list).
Prompt then says 'DIR LISTING OF?'
Type '//A' <RET>
'APPLE3:
SYSTEM.APPLE 32 26-JUL-79
FORMATTER.CODE 4 4-MAY-79
FORMATTER.DATA 6 22-JUN-79

3 2

T h e p r o g r a m w e w a n t i s
•GRAFDEMO.TEXT. ' Type <RET> get all
the things off the screen except the
command prompts. Typing 'T' produces
'TRANSFER?'. Respond with
' APPLE 3 : GRAF DEMO. TEXT ' <RET>. 'TO
W H E R E ? ' , a n s w e r w i t h
'APPLEO: SYSTEM. WRK. TEXT' <RET>. The
computer will now read the requested
program, and will prompt 'PUT IN
APPLEO: TYPE <SPACE> TO CONTIN UE'
Do it!
If you hadn't cleared the old
SYSTEM.WRK file the system gives one
last chance to save last night's
masterpiece by prompting with 'REMOVE
OLD APPLEO:SYSTEM.WRK.TEXT?'. If this
occurs type 'Y', and get
'APPLE3:GRAFDEMO.TEXT'. If you had
done everything correctly your prompt
now says ' —>APPLE0:SYSTEM.WRK.TEXT'.
Program we want is now where we want
it.
Get out of (filer) by typing 'Q'. Get
into (editor) with 'E'. Prompt says
•>EDIT...

NO WORKFILE IS PRESENT.FILE?(..'
Type 'SYSTEM.WRK' <RET>.
Now it is possible to look over the
program at leisure, and in great
detail. This example was picked for
the author BILL ATKINSON'S special
knowledge of the Apple II's graphic
capabilities. Bill puts the Apple
through its paces.

Remember the commands in the Editor?
For some special features type '9P'
and go to PROCEDURE STUFF, which
bitmaps the butterfly demo. See if
you can figure it out (If you can
write it up we'll put the answer in
print).

Oh, we can't go this far and give up.
Type 'Q' (to Quit the Editor). If
you've made changes be sure to
'Update' otherwise type 'E' (to Exit)
the Editor. Type 'R' (to Run). Apple
prompts with 'COMPILING...', 'COMPILE
WHAT TEXT?'. Type 'SYSTEM.WRK' <RET>.
Apple prompts 'TO WHAT CODEFILE?'.
Type 'SYSTEM.WRK'<RET>.
The Compiler will now have a field
day, and will eventually run the
program GRAFDEMO.

So why did we go such a long way to do
so little? It would have been easier
to simply place GRAFDEMO up on APPLEO:
then run it. You would also have
probably put together a program using
the Editor which would have crashed
due to a lack of available storage on
APPLEO. Removing old programs from
APPLEO will certainly become a way of
life.
This is why I recommended that several
copies of APPLEO should be made. We
can label this diskette as
APPLEO:GRAFDEMO. The program can be
readily shown by booting up the system
and Running by typing 'R' - I don't
know of any other way to keep 3 or 4
programs around that can be quickly
run. I keep a half dozen diskettes
with different programs around.
(Surely some one out there knows a
better way?). Similar games can be
played to get the Assembler up and
running, but that's the subject of
anybody else's article. APPLE3 also
contains program DISKIO which will
help with disk use and setting up
files in Pascal.

SMGLE DWVE (CONTJ FORTH
As a practical matter I've thrown the
'PASCAL User Manual and Report'
(supplied with System) into a dark
corner, and in its place I recommend
'A Practical Introduction to PASCAL'
by I.R. Wilson (no relation),
available at Computerlands. The
language is explained in better
detail, and seems to put more emphasis
on examples. There is certainly
nothing wrong with the supplied
'Problem Solving Using PASCAL', and
the 'Apple Pascal Reference Manual' is
fantastic stuff, but much more is
needed.

In conclusion, Apple Pascal with a
single drive is limiting, but still
workable. With two drives the system
is not only workable, it's a dream, so
if you're into 'REAL' systems, Apple
Computer will be glad to sell you
another drive!

PASCAL
LOWER CASE
W I T H D A N P A Y M A R ' S C H I P

B Y C R A I Q V A U Q H A N

Here is a program to modify BIOS to
work with Dan Paymar's lower case
adapter. It has not been prepared to
download.

ENJOY!

Craig

(* PROGRAM TO MODIFY THE BIOS MODULES *)
(* TO W ORK WITH DAN PAYMAR'S LOWER CASE ADAPTER *)
(* DEVELOPED AND TESTED BY CRAIG VAUGHAN *)
(* COPYRIGHT WAIVED *)

PROGRAM UPDATE ;

VAR

BLK: PACKED ARRAY(0. .511) OF 0..255; (* BLOCK TO HOLD BIOS
CODE *)
BLT, (* # OF BLKS TRANSFERRED *)
BLN: INTEGER; (* BLOCK # TO READ <4> *)
S : FILE; (* FILE ID *)
SRC : STRING; (* FILENAME *)

Did you know that two of your Apple
Core members, John Draper and Mathew
Mcintosh, are marketing one of the
fastest languages that will run on the
Apple?

FORTH is a relatively unknown and yet
powerful programming language based on
a dictionary structure. It allows the
programmer to "define" new words into
the dictionary using previously
defined words to accomplish any
programming task. It's possible to
have more than one "program" in RAM at
the same time, and one only needs to
type in its name to execute it.

FORTH is 20 times faster than BASIC
and is a disk-based system using very
simple disk read/write commands. The
system features Include:

1. Powerful screen editor
2. Decompiler-used to generate to some
extent a source listing of a
precompiled FORTH word.
3. Utility package-used to aid the
user in fast software development.
A. Self Documentation-built Into the
system to allow an inexperienced
programmer to use it.

If interested, contact:

CAP'N SOFTWARE
P.O. BOX 575
SAN FRANCISC O, CA 94101

 ̂ It Wow K

ev"1*-
A

BEGIN

SRC:="SYSTEM.APPLE"; (* FILE CONTAINING BIOS *)

RESET (S,SRC); (* OPEN I T *)

BLN := A; (* READ BLOCK #4 *)
BLT := BLOCKREAD(S,BLK, 1,BLN); (* READ IT *)

BLK(232) := 234; (* NOP CASE CONVERSION »)
BLK(233) : 234; (* » " « *)
BLK(235) := 127; (• CHANGE CHARA CTER MASK *)

BLT := BLOCKREAD(S,BLK,I,BLN); (* WRITE IT BACK OUT *)

CLOSE (S,L0CK); (« CLOSE AND LOCK IT *)

END. (» ALL DONE *)

IF V OV THINK
8fclN<(H IS
IDAiCtT*
easy, Now
THf >!#•
XAT-HOO
WANTS Aj,
PRINTER//
mo**!-'

M A C H I N E * L A N G U A G E
DEFOG ILLEGAL
CHARACTERS
B Y G E R R Y V R O O M M A N

Illegal characters are those handy
little program commands you would like
the Apple's Integer BASIC interpreter
to accept upon entry without something
like a 'SYNTAX ERROR' or '>32767
ERROR' response.

The Apple's Integer interpreter will
reject line numbers greater than 32767
and the commands listed in Table 1.

TABLE 1

COMMAND HEX CODE

LOAD 04
SAVE 05
CON 06
RUN 07
DEL 09
HIMEM: 10
LOMEM: 11
NEW OB
CLR OC
AUTO OD
MAN OF

The ability to trick your Apple into
accepting these illegal commands lies
in following this sequence:

(1) Determine the program location
for the line/command you wish to
enter. (Beginning, middle, or end).

(2) Find the existing program line to
change.

OR,

(3) Enter a dummy line, if necessary.

(4) Enter the monitor.

(5) List the line in the monitor.

(6) Change the command/line number
hex code.

(7) Return to BASIC, list and test
the command.

Here's an example of entering HIMEM in
a program:

>LIST
10 PRINT 'LINE ONE'
20 PRINT 'LINE TWO'
30 END

HIMEM should go at the beginning of a
program. Monitor locations CA.CB list
the beginning of an Integer program.
A dummy line should be entered like
this

>5 PRINT 16384

Enter the monitor with the command
'CALL—151'. Type in the hex location,
high order bit first like this:
BFDAL. The 'L' is added to give you a
40 address memory display like this:

BFDA- 08
8FDB- 05 00

BFDD- 62
BFDE- B1 00
BFEO- 40

BFE1- 01

:8 BYTES IN LINE
••LINE NUMBER 5 LOW

BYTE FIRST
:PRINT TOKEN
:NUMBER FOLLOWS
:00 40 HEX = 16384

LOW BYTE FIRST
:END OF LINE TOKEN

— The L0MEM:3072 is necessary to move
the Integer variable storage above the
Page 2 area so you can write to It.

SETTING
REGISTERS
B Y J O H N A R K L E Y

Change the print token '62' to the
HIMEM: token '10' by entering 'BFDD:
10 and list the memory again with
BFDAL to check that the token has
changed. Re-enter BASIC with a CNTL-C
and list and run the program

Some notes: The memory locations
above have been given for a 48K
machine without DOS. Notice that the
program has been relocated to 3FD5'
after running. Locating a line in the
middle of a program is a little too
tricky to explain here. Ask someone
from one of the stores how to do it.
These illegal creative programming
aids are far too many to cover in this
article. Micro Magazine has a good
article in its May 1979 issue to help
understand the BASIC token system.
Good Luck!!

This little program should help expand
your knowledge of text Page 2.

>L0MEM:3072
>TEXT
>LIST
10 POKE -16299,0:REM GO TO PAGE 2
20 REM ROUTINE FOR CLEARING THE

HASH
30 REM WHILE LETTING YOU WATCH
40 FOR X=2048 TO 3071
50 POKE X,160
60 FOR 1=1 TO 100:NEXT I
70 NEXT X
80 REM ROUTINE TO PRINT TO PAGE 2
90 VTAB 1

100 POKE 41,PEEK (41)+4
110 PRINT 'THIS IS TEXT PAGE 2
120 REM PRINTING WITHOUT SCROLLING
130 FOR Y=2 TO 23
140 VTAB Y
150 POKE 41,PEEK(41)+4
160 PRINT 'LINE';' '+Y
170 NEXT Y
180 VTAB 23
190 POKE 41,PEEK(41)+4
200 PRINT TAB(10)'TYPE TEXT TO

RETURN'
999 END

SOME NOTES:

--LINE 50: The #160 is the Integer
token for 'space'. This prints a
blank in each screen location. It
works with Applesoft as well.

--LINE 100 & 150: This POKE,PEEK
combo is Andy's solution to printing
on Page 2.

—LINE 90 & 140: Since Page 2 doesn't
scroll like Page 1, VTAB's are
necessary to position each line.

3 4

A CALL instruction in BASIC g ets you
to a machine language subroutine, but
the various registers in the 6502
processor are up to fate - here's how
to set them.

Any machine program may be called by
POKING the values into the addresses
shown below S the program address into
PC and PC+1 (low order first) and then
enter it via a CALL. This is the same
as a GO comman d in monitor mode.

The following program demonstrates
this by using the monitor subroutine
PRBYTE that prints the A r egister as
two hex bytes at the next position on
the screen.

Your subroutine must be sure that
decimal mode is off upon return to
BASIC else it will blow up by going
into a loop printing on the screen and
beeping. This bit of the P register
may be cleared before doing the CALL
by poking P with a zero or the desired
value for the P register insuring that
bit 3 is off.

BIT MEANINGS

7 6 5 4 3 2 1 0
NO B D I Z C

MSB LSB

BIT MEANING
MSB 7 Negative result

6 Overflow Bit
5 Unused
4 Decimal mode on
3 Break inst
2 Interrupt disable
1 Zero result bit

LSB 0 Carry bit

PROGRAM
100 A=69: X=70: Y=71: P=72

200 PC=58: G0= -327
300 REM APPLESOFT GO = 65209
350 REM MONITOR ADRS = SCCB9
400 POKE PC,218
450 REM POKE PC, SFDDA
500 POKE PC + 1,253
600 HOME
700 FOR L=0 TO 15
750 FOR 1=0 TO 15
800 V=L * 16 + I
820 POKE A,V
830 POKE P ,0
840 CALL GO
850 NEXT: PRINT: hE*T

900 END

S O U N D S &

S O U N D A N D M U S I C
METRONOME

B Y T O M K O T O W S K

Here Is a quickie I wrote for my
daughter who needed a metronome for
music class. (I have an Apple and
don't need to buy one).

10 CALL -936
20 X=PDL (1)
30 FOR 1=1 to X
AO PRINT X
50 NEXT I
60 PRINT REM CTRL G WITHIN QUOTES
70 GOTO 20

BETTER TONE
B Y P A U L W Y M A N

The subroutine on page 45 of the red
manual is one of the simplest ways to
generate a "musical" note on the
APPLE. However, the duration of each
note is limited by the fact that only
one byte is allotted for the
"duration" variable. You will
probably find the maximum duration
inadequate for some notes if you are
reproducing a medium or slow tempo
song. The typical way to overcome
this is to use a loop. However, you
will find that a loop fails to produce
a continuous tone, and that the loop
timing is often not the same as your
song's meter.

A better but equally simple tone
routine is on page 58 0f your red
manual. It is the routine in the
Color Sketch program. Lines 5 and 10
are the music program. Line 85 shows
how to access it. You can use any
variable names. Location 0 is for the
pitch; locations 1 and 24 are for the
duration. Use of the MOD function
overcomes the limitation of the
earlier program.

The following routine can be used with
the routine on page 45 of the old
Apple II reference manual (known as
the Red Book). It will compute and
store a scale of 48 notes and assures
correct pitch for all 48 notes.

10 DIM N(49): N(1) = 256
20 FOR I = 1 TO 4 8: N(I) = N(I+1) *

100/106
30 R=N(I-1) * 100-N(I) * 106
40 REM TAKES CARE OF ROUND OFF ERR
50 IF R>50 THEN N (I) = N(I)+1: NEXT I
60 N(1) = 255: RETURN
70 REM USE THIS ROUTINE IN YOUR

PROGRAM BY SELECTING A NOTE NUMBER
FROM 1 TO 48

80 REM AND THEN: P=N(P1): POKE 0 ,P:
POKE 1 ,D; CALL 2

90 REM P1=N0TE 1 TO 4 8; D = DURATION
FOR NOTE

ALF MUSIC
Anyone out there into music? Want to
do it with ALF MUSIC BOARDS? Want to
know more about them and what to do
with them? So does Dave. He has
three boards, hardware tempo control
and an "Apple II". Dave has
e x p e r i m e n t e d w i t h
envelopes-subroutines-sound effects,
etc., and wants to get together with
other 'computer musicians'. If
interested, call Dave days, phone
(4-15)992-9051, a.m.'s.

BETTER SOUNDS
B Y J A M E S H O C K E N H U L L

Any Apple sound routine that works by
toggling the speaker on and off can be
made more versatile by toggling the
cassette-out jack instead. Via a
patch cord, the sound then can be run
from the jack to an amplifier where
its quality and volume will be much
improved.

Here's an easy way to move the
Programmer's Aid MUSIC routine out of
ROM into a handy location at the
bottom of user memory, and modify it
to play through the cassette-out jack:

1. Move the Programmer's Aid routine
to address 2048 ($800 hex; L0MEM)
using the monitor's MOVE function. In
the monitor, type

* 800<D717.D7FBM (return)

$D717 and $D7FB are the starting and
ending addresses of the Programmer's
Aid MUSIC routine. M is the MOVE
command that transfers the routine to
the hex addresses beginning at $800.
(See the Reference Manual, page 68.)

2. To make sure the move has been
successful, type

* 800L (return)

This will disassemble and list the
routine. It should duplicate the
listing in the manual except, of
course, for the addresses. Typing * L
(return) will continue the listing.
The last byte of data should occupy
address $8E4.

3. Any LOAD or STORE instruction to
address $C030 will toggle the speaker.
Similar instructions to location $C020
will toggle the cassette out jack. To
change the one to the other, type

* 806:20 (return)
* 820:20 (return)

Check it out with another * 800L
(return). The functional changes have
been made. But now it is necessary to
change all of the absolute branch
addresses in the program. They're
still referring to locations back in
the ROM chip where they came from.

3 6

4. Perhaps this is a good time to
call on the monitor's mini-assembler.
Still in the monitor mode, type

* F666G

The bell will ring and a "!" prompt
will appear. Type in the following
addresses and instructions. Don't
forget the colons; don't forget to
press "return" after each entry.

! 800:JMP 0837
! 812:JMP 0815
! 818:JMP 081B
! 82C:JMP 082F
! 832:JMP 0835
! 83C:LDA 87F,Y
! 84B:LDA 87F,Y
! 854:LDA 87F,Y
! 86D:JMP 0870
! 87A:JMP 087D

The move is complete and the routine
is ready to be used in its new
location. Played through an amplifier
it will sound a great deal richer than
through Apple's 2" speaker. Save the
routine on disk or tape (* 800.8E4W)
for application in future programs.

To use the relocated MUSIC routine, BE
SURE TO SET L0MEM: 2376 to keep the
program variables from overwriting the
routine. There is a sneaky "illegal"
way to do this with a deferred command
from integer BASIC, but that's another
story.

Beyond setting L0MEM, simply use it as
you would the normal Programmer's Aid
program. TIMBRE, TIME, and PITCH keep
their same addresses. Just assign
MUSIC = 2048 rather than -10473.

(Two tag-end notes: 1) I'm sure the
RELOCATE program could handle this
just fine, but so far I've not had the
energy to weave through the
intricacies of its source blocks,
destination blocks, code and data
segments, and so forth. 2) Resist the
temptation to move the routine into
page 3 ($300-$3FF). The Programmer's
Aid HIRES program uses some addresses
there.)

TONE FOR FP
B Y C H A R L E S 8 U L L I V A N

If you have tried to use the "Simple
Tone Subroutine" (pages 43-45 in the
Red APPLE II Reference Manual) with
Applesoft Basic instead of Integer
Basic, you have discovered that it
won't work. This one will.

The use of this one is exactly the
same as the one described in the
Reference Manual except the pitch (P)
and duration (D) are passed in memory
locations 768 and 769 (decimal)»
respectively.

To implement, follow the directions in
the Manual on pages 43 and 44 and
substitute the following on page 45.

T O N E F O R F P (C O N T .)

32000 PO KE 7 70,173: POKE 771,48:
POKE 7 72,192: POKE 773,136:
POKE 7 74,208: POKE 775,5:
POKE 7 76,206: POKE 777,1:
POKE 7 78,3: POKE 779,240

32005 POKE 7 80,9: POKE 781 ,202:
POKE 7 82,208: POKE 783,245:
POKE 7 84,174: POKE 785,0:
POKE 7 86,3: POKE 787,76:
POKE 7 88,2: POKE 789,3:
POKE 7 90,96: RETURN

Figure 2. BASIC "POKES"

25 PO KE 76 8,P: POKE 769,0:
CALL 770: RETURN

Figure 3. GOSUB

D TO A & A TO D
B Y P A T C A F F R E Y

Recently I got fascinated with the I/O
game port in the Apple. I built a
wire extension cable and brought the
port out of the Apple to my workbench.
Then I proceeded to make a set of
light emitting diodes (LEDs) turn on
and off, pulse and even to display
binary counts.

The very interesting results of that
exploration were worth the trouble. I
highly recommend it if you have the
interest and are willing to buy the
few IC sockets and wires necessary.
No e xternal power supply was required,
although some care must be taken not
to draw too much current.

During this period I got hold of a
copy of the Apple Organ. Again,
fascination. The sounds produced by
this program are more realistic than
what I had heard before on the Apple.
Normally the Apple music has a
"brassy" tone because it is all
created out of square waves. What the
Apple Organ does is to use a DIGITAL -
TO - ANALOG converter to shape the
waveforms from square waves into sine
waves. The Apple Organ includes
simple, clear instructions for
building the D-to-A converter with
four resistors, some wire and just the
game 1/ 0 socket.

I searched through my pile of
resistors and did not find the values
specified. I made up some from what I
had. The results were adequate, about
30 percent distortion of the
waveshapes produced with the actual
Apple Organ resistor values.

Drawing A shows a normal square wave,
B n ormal sine waves, C a "ladder" of
voltages and D an image of a single
reconstructed sine wave. The fact is
that the components average the ladder
voltages and approximate a sine wave.
At the machine language rate of the
Apple Organ there is plenty of time to
construct up to 20,000 waveshapes per
second which is just about the upper
range of human hearing. There is even
time left over to select tones,
timbre, and other musical attributes.

So much for the background. Of what
use, you ask? Well, you don't need to
change voltage levels 20,000 times a
second. The same thing may be done at
intervals of one second or one day.
And, of course, you may stop and hold
the rise and fall of the output
voltage at any of the ladder levels.
You acquire the ability to control the
outside world in more than a simple
on-off fashion. What you do with that
control is a matter of need, ingenuity
and time.

What I have done is to provide a
program which does the functions
necessary to make the voltages rise
and fall at predictable rates. You
may try such applications as seem
interesting (model train speed
control), necessary (stepper motors
for your solar heater) or just
instructive.

There is a machine language component
to the program. I have commented on
it as best I can and hope it is clear
to you how it does what it does.

Here is the resistor schematic I used.

AN 3 AN 2 AN1 AN0

0000-

0001-

0002-18 CLC

0003-66 00 R0R $00

0005-B0 05 BCS $05

0007-A9 00 LDA #00
0009-85 01 STA $01
000B-60 RTS

000C-A9 01 LDA #01

OOOE-85 01 STA $01
0010-60 RTS

Holds number to
be converted
Holds resulting
"1" or "0"
Shift routine
begins by clear
ing CARRY FLAG
Rotate the con
tents of location
$00 to the right
CARRY FLAG holds
contents of LSB.
Branch if CARRY
FLAG set, to $0C
to process a 1
Else load a 0 and
store it at $01,
and return to the
calling program
CARRY FLAG was set
so, load a 1 and
store it in $01,
and then go back
to the calling PGM

All resistor values are 1K ohm.

MACHINE LANGUAGE COMPONENT

This entire subroutine simply moves
the least significant bit of a byte
and stores a 1 or 0, depending on the
contents of the CARRY FLAG, into the
location $01. In the BASIC program
the "BITCHANGE" routine PEEKs the
contents of $01 back out.

D/A CONVERTER

0 DRIVER=100: WAIT=299: BITTEST=500:
A=1: BITCHANGE=520: SHIFT=2

1 PRINT "BL0AD D/A.BIN.A$0.L$10":
REM LOAD MACHINE LANGUAGE ROUTINE

2 POKE 16,6 * 16: REM THIS IS
REPLACED I F YOU HAVE NO DISK BY
16 POKE STATEMENTS

6 REM THE "SWITCHES" FOR THE OUTPUTS
IN THE 1 /0 PORT

10 DIM OFF(3): X=-16296: FOR 1 =0 TO 3
: OFF(I)=X: X=X+2: NEXT I

20 DIM ON(3): FOR 1=0 TO 3: 0N(I)=0FF
(I)+1: NEXT I

25 REM INITIALIZE SWITCHES "OFF"
30 FOR 1=0 TO 3: POKE 0FF(I),0 -

NEXT I
90 REM THIS IS THE UP-DO WN DRIVER

100 FOR NUM=0 TO 15
110 GOSUB BITTEST
111 VTAB 21: TAB 20: PRINT NUM;"
115 GOSUB WAIT
120 NEXT NUM
130 GOSUB WAIT
132 GOSUB WAIT
140 FOR NUM=14 TO 1 STEP -1
141 VTAB 21: TAB 20: PRINT NUM;"
150 GOSUB BITTEST
160 GOSUB WAIT
170 NEXT NUM
180 GOTO DRIVER
299 REM WAIT-CHANGE, HERE'S WHERE YOU

CHANGE RATE OR JUST STAY AS YOU
ARE

300 IF PEEK (-16384) > 127 THEN 360
320 POKE -16368,0
350 FOR N =1 TO A: NEXT N: RETURN
360 POKE -16368,0: INPUT "ENTER NEW

RATE (0-255)",A: GOTO 350
500 REM OUTPUT TO I /O PORT
501 POKE 0,NUM
501 REM "NUM" HOLDS D IGITAL NUMBER TO

CONVERT
505 FOR D=3 TO 0 STEP -1
510 CALL SHIFT: REM THIS IS THE

MACHINE LANGUAGE ROUTINE TO SHIFT
BITS TO ME MORY SLOT "1"

515 GOSUB BITCHANGE
516 NEXT D: RETURN
519 REM CONVERSION "BITCHANGE"
520 C= PEEK (1): IF C=1 THEN POKE ON

(D) ,0
530 IF C#1 THEN POKE OFF(D), 0:

RETURN
531 REM IF SL0T"1" = 1 THEN TURN THE

PORT BIT "ON" IF THE SLOT = "0"
THEN TURN THE PORT BIT "OFF"

600 END

SUP'R'TERfllinm

SUP'R'TERMINAL IS AN 80 COLUMN BY 24 LINE PLUG-IN
COMPATIBLE BOARD FOR THE APPLE II COMPUTER

• 80 Columns by 24 lines, upperand lowercase; all 128
ASCII characters.

• Upperand Lower case data entry using the APPLE II
keyboard.

• Includes an Upper and Lower case 5x8 dot matrix
ASCII character set, and inverse alpha characters.

• Expands existing keyboard for more ASCII
characters

• Character set can be user definable

• Includes VBC™ (video balancecircuit) which enables
the use of displaying 80 columns on an inexpensive
8 MHz CRT monitor

• Works with LEEDEX monitor (version 2.2) and other
inexpensive CRT monitors

• Shift Lock Feature

• KEYPRESS function for PASCAL programs supplied

• Works with APPLE PASCAL and APPLE BASIC

• Incorporates PASCAL and BASIC control characters

• Follows protocols of PASCAL and BASIC operating
systems

• ALL monitor-type escapes are valid

• Compatible with ALL APPLE II peripherals.

• Effective baud rate greater than 10,000; fast scrolling
and clearing

' APPLE l i is a trademark of APPLE Computer Co.
APPLE PI is a trademark of Programma International
Easywriter is a trademark of Information Unlimited
Micromodem is a trademark of D C. Hayes

& FEATURES

• Can be used with APPLE II communication interface
board to act as self contained terminal for time
sharing or other applications. Terminal program
supplied when used with a D.C. Hayes micromodem.

• 3K bytes of bank switched static ram

• 2K bytes of ROM

• The only board with continuous direct memory
mapped screened ram.

• The only board that interprets VTABS by firmware
(version 2.2)

• The only board with an adjustable scrolling window.

• The only 80 column board that is synchronous with
the APPLE II

• Fully programmable cursor

• Conversion program supplied to modify existing
APPLESOFT programs to work with SUP'R'TERMI
NAL (automatically converts HOME.CALL-936 and
VTABS) (version 1.0)

• Works with the new Easywriter and APPLE PI word
processors.

• Uses less current on the +5V supply than any other
80 column board

• Works with CORVIS hard disc system

PATENT PENDING M&R ENTERPRISES
P.O. BOX 61011, Sunnyvale, OA 94088

M O D I F I C A T I O N S

3 9

CR DELAY
PHOM APPLE COWUTER CO.

This program inserts a variable delay
after a carriage return to allow time
for the printhead to get back to the
left margin without missing
characters. DOS 3.2 is required to
use this modification.

SOFTWARE ENTRY
First you must decide which slot the
interface will go in and enter the
delay program. The program is
customized for this slot number and
won't work if used with a different
slot. Enter the program using the
values from the table for words in
brackets, <>.

SLOT 1 2 3 A 5 6 7
CODE C1 C2 C3 CA C5 C6 C7

PARALLEL COM CARD SERIAL
TYPE 02 05 07

DELAY. The delay is measured in
tenths of a second and entered in hex.
Hence 5 is 1/2 second and A is one
second. The usual default value is 5.

Enter the monitor with call-151 and
type:

390:A9 <SL0T>
: 20 95 FE
:A9 80
:20 ED FD
:A9 A5
: 85 36
:A9 03
:85 37
:AC EA 03
:20 <TYPE> <C0DE>
:C9 8D
:D0 0E
:AD BB 03
:A8
:A9 C2
:20 A8 FC
:68
:E9 01
:D0 F5
:60
:<DELAY>

To check your typing, type (390L 3BB)
and compare your listing to the one
below for slot 1 and a Parallel

Now return to basic with (3D0G)

SAVING THE PROGRAM TO D ISK:

The program must be in memory before
the printer can be used with the
delay. Save the program by typing:

BSAVE CR DELAY,A$390,L$2C

USING THE PRINTER:

The first time you want to use the
printer you must load the program and
initialize the interface. From
command mode type:

BL0AD CR DELAY
CALL 912

This may be done from a program by
entering:

100 PRINT D$;"BL0AD CR DELAY": CALL
912
(assuming that D$ is a control D).

If you want to switch back to the
video monitor for output then type:
PR#0
or from a program enter
200 PR#0

Then to reconnect the printer, all
that is required is:
CALL 922
or from a program enter
300 CALL 922

NOTES:
If the delay needs to be adjusted from
BASIC, It can be done with the command
POKE 955,<DELAY>. The delay in this
case is in decimal. Then BSAVE the
program as explained.

If this program is to be used with the
Serial Handshake Modification, first
enter the Serial Handshake mode; then
enter the Carriage Return Delay
program and

POKE 93A,197
POKE 935,3
BSAVE CR D ELAY,A$390,L$2C

Use these instructions to turn the
printer on and off.

HEATH H-1A
TI-810
SPINTERM
COMPRINT

* * *WIRING CHANGES* * *
First you must determine which wire
your printer uses to indicate a
printer busy or buffer full condition.
Your printer's manual should contain
this information or contact the
manufacturer. Examples:
IDS 125/225 PIN A (may be pin5)

PIN A
PIN 11
PIN 19
PIN 20

The preferred place to do the wiring
change is in the cable, but it can
also be done at the card or the
printer. Disconnect the wire between
pin 2 of the printer and pin 2 on the
Serial Card. Then connect the wire
with the printer busy signal to the
wire for pin 2 on the Serial Card.

* * *S0FTWARE PATCH* * *
Next you must decide which slot the
interface will go in and type in the
software patch. The patch is
customized for this slot number and
won't work if used with a different
configuration. The patch forces the
computer to look to see if the printer
is busy and wait if it is. Enter the
patch using the values from the table
for words in brackets, <>.

SLOT 1 2 3 A 5 6 7
DATA 90 AO B0 CO DO E0 F0
CODE C1 C2 C3 CA C5 C6 C7

Enter the monitor with CALL -151 and
type:

3B0:A9 <SL0T>
: 20 95 FE
:A9 00
:20 ED FD
:A9 C5
:85 36
:A9 03
: 85 37
: AC EA 03
:2C <DATA> CO
-.30 FB
:AC 07 <C0DE>
: 00 00 00

To check your typing, type 3B0L -and
compare your listing to the one below
for slot 1.

Printer • I nterface. 03B0- A9 01 LDA #$01

0390- A9 01 LDS #$01 HANDSHAKE 03B2-
03B5-

20 95
A9 00

FE JSR
LDA

$FE95
#$00

0392- 20 95 FE JSR $FE95 FROM APPLE COMPUTER CO . 03B7- 20 ED FD JSR SFDED
0395- A9 80 LDA #$80 03BA- A9 C5 LDA #$C5
0397- 20 ED FD JSR $FDED 03BC- 85 36 STA $36
039A- A9 A5 LDA #$A5 The High Speed Serial Interface card 03BE- A9 03 LDA #$03
039C- 85 36 STA $36 cannot run faster than 300 baud on 03C0- 85 37 STA $37
039E- A9 03 LDA #$03 most printers due to a lack of a 03C2- AC EA 03 JMP $03EA
03A0- 85 37 STA $37 printer busy line. This modification 03C5- 2C 90 CO BIT $C090
03A2- AC EA 03 JMP $03EA uses the existing data input line to 03C8- 30 FB BMI S03C5
03A5- 20 02 C1 JSR $C102 sense if the printer is busy and 03CA- AC 07 C1 JMP SC107
03A8- C9 80 CMP #$8D inhibit output if necessary. DOS 3.2 03CB- 00 BRK

SC107

03AA- DO 0E BME 03BA is required to use this modification. 03CC- 00 BRK
03AC- AD BB 03 LDA $03BB 03CD- 00 BRK
03AF- A8 PHA * * *WARNING* * *

03CD- 00

03B0- A9 C2 LDA #$C2 Damage to the Serial Interface card Now return to BASIC ' with 3D0G.
03B2- 20 A8 FC JSR $FCA8 may not be convered by your warranty.
03B5- 68 PLA If you aren't sure of the signal * # • * SAVING PATCH TO DIS K* * *
03B6- E9 01 SBC #$01 levels and pinout of your printer, The patch must I be in memory before the
03B8- DO F5 BNE $03AF find out or get someone who knows to printer can be used at the higher
03BA- 60 RTS help you. speeds. Save the patch by typing
03BB- 05 4 0 BSAVE PATCH, , A$3B0, L$20.

H A N D S H A K E (C O N T .) A P P L E M O D ' S
* * HJSING THE PRINTER* * *

The first time you want to use the
printer you must load the patch and
initialize the interface. From
immediate mode type-
BLOAD PA TCH
CALL 944

This may be done in a program by -
100 PRIN T D$; "BLOAD PATCH": CALL 944
(D$ = CO NTROL D)
To tur n off printer use PR#0.

Then to reconnect the printer, all
that is required is CALL 954 or from a
program 300 CALL 954.

* * *N0TES* * *
If the printer does not print after
the CALL 944, it is probably sending
the opposite polarity busy signal.
The p atch can be changed to recognize
with
POKE 968, 16
If this doesn't work, have the printer
checked.

The modification allows the speed,
column w idth, and other variables to
be changed with the POKEs In the
manual.

T O P V I E W

COLOR KILL
B Y L A R R Y D A N I E L 8 0 N

For you pioneers who bought your
APPLES before the color killer
modification was put in and if you now
use a color TV for a monitor, then
this article may interest you.

Take two parts, a 2N3904 transistor
(or an e quivalent) and a 1.6K resistor
and solder them to the breadboard
section of your APPLE as in Fig. 1.
The transistor base and the free end
of the resistor should be tied
together. Take some hook-up wire and
go from the other free end of the
resistor to IC #FU-pin k. With
another piece of wire go from the
transistor collector to the color
trimmer point. Take a third piece of
wire and go from the transistor
emitter to ground of the capacitor
next to the edge on the corner.

Pi9* 2 is the schematic of the two
parts and how they tie into the APPLE
system. To test the final product,
just put it back together and turn it
un. Go into BASIC, type GR, then type
'EXT. The screen should go from color
To blac k and white.

COLOR TOM

P W 4

GROUND

This application brief details a
simple modification which allows your
Apple II to accept industry standard
2716 (2Kx8-bit) Eraseable Read - Only
- Memories (EPROM's) in sockets "DO" &
"D8". These sockets correspond to
memory addresses DOOO - DFFF.

EPROM's (2716) are readily available
through most semiconductor
distributors. Many distributor
locations are equipped to program the
EPROM's to your specifications, and
will do so for a moderate fee.

1. Remove the 'E0' ROM from its
socket. On the TOP side of the board,
under the 'EO' socket, cut the ROM pin
18 jumper trace. Then reinsert the
ROM. This cut will isolate pin 18 or
ROM 'DO' & 'D8' from pin 18 of the
other ROM. Reinsert the 'EO' ROM when
done.

FIG. 1
COLOR BURST

TO F14 PW 4

*1.6K

C 3

—r-AA/VA—

i
' C2 2

-A/WV—
FIG. 2

USER FIRMWARE
A P P L E A P P L I C A T I O N N O T E S

NOTE: The modification described in
the following instructions will void
the warranty on your APPLE II.

There are times when you may want to
create your own firmware for the Apple
II. Such firmware can be tailored to
your special needs and then installed
semi - permanently so that it can be
used as conveniently as Apple BASIC or
the Monitor.

Cut this trace

2 On the UNDERSIDE of the Apple
board, cut the traces connecting pin
20 to 21 of ROMs 'DO' & 'D8' only.

3. (Underside) Cut the trace going to
pin 18 of ROM 'D8' near the chip.
Scrape solder resist off of
approximately 1/4 inch of the
remaining trace not still connected to
pin 18. You may wish to tin it with
solder since it will later be
soldered.

4. (Underside) Connect pin 18 of ROM
'08' to pin 12 of ROM 'E0' (ground).

5. (Underside) Connect pin 18 of ROM
'EO' to the trace which previously
went to pin 18 of ROM 'D8' (and which
should be pretinned if step 3 was
followed).

6. (Underside) Connect pin 21 of ROM
• 08' to pin 21 of ROM 'DO'. Then
connect both of these to pin 24 of
either ROM (VCC).

7. Note that the INH control function
(pin 32 on the Apple 1/0 BUS
connectors) will not disable the 2716
EPROMs in the 'DO' & '08' ROM slots,
since pin 21 is a power supply pin and
not a chip select input on the EPROMs.

8. EPROM (2716) devices may now be
used in sockets 'DO' & 'D8'

NOTE: IF YOU MAKE THIS MODIFICATION,
DO NOT INSTALL A ROM CARD OR THE
LANGUAGE SYSTEM BEFORE REMOVING THE
DEVICES IN SOCKETS 'DO & D8'.

4 1

6 COLOR MOD
A P P L E A P P L I C I A T I O N N O T E S

(N U L L I F I E S W A R R A N T E E)

Applies only to APPLES with serial
numbers below 6000 (REV 0 PC BOARD).

1. REMOVE THE APPLE IX PC BOARD FROM
ITS ENCLOSURE

(a) Remove the ten (10) screws
securing the plastic top piece to the
metal bottom plate. Six (6) of these
are flat-head screws around the
perimeter of the bottom plate and four
(4) are round-head screws located at
the front lip of the computer. All
are removed with a Phi1lips-head
screwdriver. Do not remove the screws
securing the power supply or nylon
insulating standoffs.

(b) Lift the plastic top piece from
the bottom plate while taking care not
to damage the ribbon cable connecting
the keyboard to the PC board. This
cable will have to be disconnected
from one end or the other.

(c) Disconnect the power supply from
the PC board.

(d) Remove the #6 nut and lockwasher
securing the center of the PC board.
These will not be found on the earlier
APPLE I I computers.

(e) Carefully disengage each of the 6
nylon insulating standoffs from the PC
board (7 on earlier versions).

(f) Lift the PC b oard from the bottom
plate.

2. ABOVE BOARD WIRING METHOD

(A) lift the following IC pins from
their sockets.

A8-1
A8-6
A8-13
A9-1
A9-2
A9-9

(b) Mount a 74LS74 (dual c-d
flip-flop) and a 74LS02 (quad NOR
gate) in the APPLE II breadboard area
(All to AH region).

(c) Wire the following circuit (''
indicates that wiring is to a pin
which is out of its socket).

(A9—9) *

3. BELOW THE BOARD WIRING METHOD
(for neater appearance)

SOFT5
(A10-1)-

A9-15"*- A9-2

14M
(A10-11)

(A 9 - 1)

VCC

o

s P C

Q s

Q Q

GND 0

74LS74 74LS02

(B8-14)

(B 8 - 7)

(A 8 - 6)*

(A 8 - 1 3) *

(b) Cut traces going to the following
IC pins on the bottom of the APPLE-II
board. Each pin should have a single
trace going to it. BE CAREFUL!!

A8-1
A8-6
A8-13

A9-1
A9-2
A9-9

(a) Desolder all pins of socket A8.
Lift the socket and its 74LS257 IC off
the PC board taking care not to
destroy it. Cut the trace between
pins 6 and 13 of A8 on the top side of
the board. Also cut the trace between
pins 13 and 15 on the top. Reinsert
socket A8 and the 74LS257.

BE CAREFUL!!

(c) Connect A8-15 to ground (A7-8 on
the keyboard socket is a nearby
ground).

(d) Mount the 74LS74 and 74LS02 as per
step (b) of the 'above the board'
wiring method.

(e) Wire the circuit of the 'above the
board' wiring method, step (c). All
wires are on the bottom of the APPLE
II board, and no IC pins need be
removed from their sockets or be
soldered.

4. Reassemble the APPLE II and make
sure it is operational. If not, check
all wiring very carefully. Make sure
that all chips are in their sockets
and properly oriented.

5. The following color values are now
applicable to the HI-RES subroutines.

BLACK2 128
ORANGE 170
BLUE 213
WHITE2 255

For example, the program below draws
an orange line from (10,20) to
(200,140). It is assumed that the
HI-RES routines are already in memory
locations $800-$bff.

0 XO=YO=COLR
5 INIT=2048: PL0T=2830: LINE=2836
7 ORANGE=170: CALL INIT

10 X0=10: Y0=20: C0LR=0RANGE: CALL
PLOT

20 X0=200: Y0=140: CALL LINE
30 END

DUMPLINGS
B Y E D A V E L A R

This article describes an easy
construction project which will allow
you to save programs from the APPLE to
six (6) or more cassette recorders
simultaneously.

Actually the circuit can accommodate
as many as (18) recorders, thru the
use of (Y) connectors. It is also
possible to install (18) MIC jacks
initially and jumper them in groups of
three (3).

The circuit consist of one (1) 7^LS67
(Tri-state hex buffer) IC, pins 1 and
13 are tied low in order to keep the
device in the (non) tri-state mode.
The IC should be mounted in a small
aluminum box along with the required
MIC jacks and an LED (optional).

The LED monitors the actual dump and
indicates if you are properly
connected to IC (K13).

To connect the dumper to APPLE I I an
IC test clip was used; thus no hard or
direct wiring is necessary. The test
clip is attached to K13 inside the
APPLE II by locating pin /M and
placing the test clip over the IC;
this can be performed even if the
computer is powered up.

With a program loaded in the computer
put the recorders in record mode and
type save; the LED will come on
indicating the save has started, and
it will go off when done.

Additional features can be added to
the dumper. For example, You could
add a MIC & MIC pre-amp, thus allowing
you to narrate to all recorders
simultaneously. And you could add a
(6) receptacle (AC) strip controlled
by a switch; this would allow you to
leave all recorders in the record mode
and allow simple control of many
recorders.

In conclusion, any wire can be used
between the dumper and the clip. Be
sure to identify pin 01 on the clip.
A good way is to burn a mark on the
clip with a soldering iron.

D U M P L I N Q 8 (C 0 N T)

% 1 10 II 12 13 H

-1 w V r tOK

. iotc

THE 1 50 15 SEC
RESET FIX
B Y K E N 8 I L V E R M A N

You are right at the end of a 16K
program in memory and have not saved
it to the disk yet or writing a text
file and four pages later - you hit
"reset".

Well you can try to retrieve it by
many meth ods like "LAZARUS" program,
or if you have the Auto Boot ROM you
probably have not lost it.

No ma tter what it is a nuisance when
we h it the RESET key, and we all hit
it by accident once in a while. Now
try this little 15 cent fix, and the
only time RESET will be pressed is
when you WANT to do it.

Remove the key cap for RESET,
picture 1.

2. Get yourself a 7/16 in I.D.-5/8 in
0*0. 0 Ring, Sears model **2-22517 -
picture 2.

Place the 0 Ring over the switch
under the cap, picture 3.

Put the key cap back on.

Now it will take some pressure to
Press the key. NOTE: This
modification might void your Apple II
warranty.

QuihDirt Product Information
\ 4 Management Planning & Decision Maki ng

(for 32K or 48K APPLE II with Applesoft Basic in ROM)

• PRODUCTION SCHEDULING

Minimize Total Processing Time, N Jobs on 2 Machines
Minimize Total Processing Time, N Jobs on 3 Machines
Minimize Total Processing Time, N Jobs on M Machines
Minimize Number of Late Jobs, N Jobs on 1 Machine
Minimize Total Processing Time, N Jobs Technologically Ordered
Minimize Weighted Completion Times, N Jobs on 1 Machine
Minimize Worst Case of Lateness, N Jobs on 1 Machine
Minimize Slack Time to Lateness, N Jobs on 1 Machine

ft INVENTORY CONTROL

Economic Order Quantity for Constant Demand No Shortages Allowed
Economic Order Quantity for Constant Demand, Shortages Allowed
Economic Order Quantity for Uncertain Demand, Shortages Allowed
Economic Order Quantity for Stocking Strategic Spare Parts
Economic Order Quantity for Time-Varying Demand, No Shortages
Decision on Whether or Not to Stock an Item
In-Process Inventory Forecasting
Cash Replenishment Model

ft CAPITAL BUDGETING (Project Selection)

Defining Projects
Defining Resources
Defining Payoffs per Project
Defining Amounts of Resources Reguired for each Project
Projects Possible Subject to Resources Available
Projects Not Possible, Subject to Resources Available
Sensitivity Analysis of Project Payoffs
Sensitivity Analysis of Resource Availabilities
Sensitivity Analysis of Resource Requirements per Project

ft DISTRIBUTION PLANNING

Transportation Sources (Supply)
Transportation Destinations (Demand)
Transportation Shipping Costs
Optimal Selection of Routes
Warehouse Location
Generalized Network Flows

\Nyman associates
421 SEVILLE WAY
SAN MATEO CA 94402
(415)345-0380 • SUGGESTED RETAIL PRICE-. $100

G R A P H I C S

G R A P H I C S

ANIMATION
B Y C H R I 8 Q A R R I Q U E 8

You may be aware of articles in the
CIDER PRESS or CONTACT that mention
'Page 1' and 'Page 2' of display in
connection with animation. I hope to
make the use of these pages of screen
a little more clear.

First of all, when you power-up you
are viewing 'Page 1' and continue to
do so unless you use HiRes graphics
(which uses two pages of its own) or
run a program like the one to be
outlined.

But first, let's start with a program
that only uses 'Page 1' and should be
fairly clear:

10 GR : REM GRAPHICS MODE
20 CALL -936: REM CLEAR TEXT WINDOW
30 FOR X=0 TO 1 9: REM LOOP X & Y

COORDS
AO FOR Y=X TO 19: REM ODD RANGE IS TO

AVOID PLOTTING OVER ITSELF
50 C0L0R=((((ABS(20-X)-Z)*(ABS(20-Y)

-Z)/25)M0D 16)+16) MOD 16: REM
THIS HORRID FORMULA COMPUTES THE
COLOR

60 PLOT X,Y: REM PLOT ALL REFLECTIONS
70 PLOT Y,X
80 PLOT 39-X.39-Y
90 PLOT 39-Y.39-X

100 PLOT 39-X,Y
110 PLOT 39-Y.X
120 PLOT X,39-Y
130 PLOT Y,39-X
140 NEXT Y,X: REM GO BACK FOR NEXT

SQUARE
145 CALL -936: REM CLEAR TEXT ON PAGE

PAGE#1
150 VTAB 22: TAB 20: PRINT Z: REM

PRINT Z
160 Z=Z+1: REM MOV E ALONG Z AXIS
170 IF Z=183 THEN Z=-161: REM IF I

DON'T STOP I WILL GET A >32767
ERR

This program Just plots colors
determined in line 50 on the screen.
Lines 64 through 130 plot all
reflections so I can just compute 1/8
of the screen and plot it eight times.
As it is, you can see the points as
they are plotted, but suppose I wanted
it to just flash from one step to the
next.

First you must type: >L0MEM: 3072

(To help you visualize what this
means, turn to the memory map on Page
136 in your red manual.)

Before typing this, LOMEM equals 800
HEX, which puts your variables in
'Page 2' so your screen and variables
interfere with one another. One or
the other must be moved. Since 'Page
2' is there due to hardware it can't
be moved, so obviously we have to move
the variables. Typing 'LOMEM: 3072'
moves the variables to COO HEX (or
3072 decimal).

Then enter the following:
0 REM LOMEM:3072

.200 POKE-16300,0: REM FLIP TO PAGE #1
210 REM COPY PAGE #1 TO PAGE #2
220 POKE 60,0: POKE 61,4: REM START

ADDRESS OF PAGE #1
230 POKE 62,255: POKE 63,7: REM END

ADDRESS OF PAGE #1
240 POKE 66,0: POKE 67,8: REM START

ADDRESS OF PAGE #2
250 CALL -468: REM DO THE COPY
260 POKE -16299,0: REM FLIP TO PG. #2

Line 0 is to remind you of the above.
Line 200 turns your view to 'Page 1'.
Lines 220 - 240 state where the pages
are located.
Line 250 does the actual move.
Line 260 turns your view to 'Page 2'.

Please note my flowchart:

START

SET GRAPH
ICS MODE &
CLEAR TEXT

WINDOW

PUT PICTURE
ON PAGE 1

DISPLAY
PAGE 1

COPY PAGE 1
TO PAGE 2

DISPLAY
PAGE 2

You should see that except for the
first time you are looking at 'Page 2'
while the picture is being put on
'Page 1'. This way the picture seems
to jump from one picture to the next
instead of being drawn on.

From this basic flow-chart all simple
animation can be done.

Also, if you break the program while
on 'Page 2' you need to flip back to
'Page 1' before you can see what's
happening.

To begin, get into Integer BASIC.
Next, set up the HIRES screen. Do
this by typing 'POKE -16297,0 RETURN1,
and 'POKE -16304,0 RETURN'. You will
now see one of two things: either a
screen full of little colored dots
that look like they have been smashed
together, or a screen that has white
horizontal lines running across it.
These lines may have a few green
vertical lines running under them.

The next step is to get the cursor
back. To do this, we will simply
clear the bottom four lines for text.
Just type 'POKE -16301,0' and press
RETURN until you see the cursor.

You now want to clear the screen to
black. To do this you must make e very
line number in the monitor starting at
2000 HEX (8192 in decimal) and ending
at 3FFF (16383 in decimal) contain the
value of zero. By simply typing in
the clearing program, the screen will
be cleared to black. What happens
when you run this program is that the
value of zero is given to location
2000, then 2001 (8193 in decimal),
then 2002 (8194 in decimal), and so on
until the for-next loop reaches 3FFE
or 16383 in decimal. Now run this
program (it takes 30 seconds to run).
You are now ready to plot yourfirst
HIRES point. Type 'POKE 8192,45 and
hit RETURN. This is the same as
typing 2000:2D in the monitor. In the
upper left hand corner of the screen a
line segment will appear. Actually
you could have typed 'POKE (any number
between 8192 and 16383) then a comma,
and any number between 1 and 255'.
For this example, however, we w ill use
'POKE 8192,45'.
A line segment appeared on the screen
because you told the computer to put
2D(45 in decimal) into location 2000.
In this mode, any value above zero and
less than 255 that is in memory from
2000 to 3FFF will cause a dot or a
line to appear on the screen.

Now that you understand how to plot
HIRES points, there is something that
you should know. After you get to the
end of the top line you jump down to
the 64th line. This is due to the way
the screen is set up. Henceforth,
when the computer plots your picture,
it will plot line one, then line
sixty-four, then line one hundred and
twenty-seven, then line two, and so

HIRES GRAPHICS
B Y J O H N U H L E Y

NOTE: JOHN WAS 13 WHEN HE WROTE THIS
ARTICLE.

If any of you "Apple-Owners" are
interested in how to plot points and
how to create 'interesting' patterns
using the super Hires graphics that
you set up by typing 'POKE -16297,0
RETURN, and 'POKE -16304,0 RETURN',
then this article is one that you
might want to read.

If you plan to make pictures, then you
should know that when you type 'POKE
"X" , "Y" ' that the computer will find
"X" and then draw from "X" over "Y"
units. These units number from 1 to
255(FF) and are divisions of "X" (see
fig. 1). For example, a 'POKE
8192,255' won't draw from 8192 to 8447
(or 8192 + 255). It will draw to
8193. Therefore a 'POKE 8192,127'
will draw a line about half way to
8193. Therefore, a 'POKE 8192,0'
erases everything on line segment
8192. This is because the computer
can't plot from zero to zero.

With this information you can create
interesting pictures, and Intricate
designs (with the help of for-next
loops).

H I R E S G R A P H I C S (C O N T .)

255 units
1 1 1
8192 8193 8194

ALL PROGRAMS ARE IN INTEGER BASIC:

CLEARING PRO GRAM

10 EOR CLEAR = 8192 TO 1 6383
20 POKE CLEAR, 0
30 NEX T CLEAR
40 EN D

RANDOM DO TS

10 POKE - 16297,0: POKE -16304,0
20 FO R CLEAR = 8192 TO 16383
30 POKE CLEAR, 0
40 NEX T CLEAR
50 N1 = RND(8192) + 8192
60 N2 = RND(255)
70 POK E N1, N2
80 GOTO 50
90 END

JUST FOR FUN

10 POKE - 16297,0: POKE -16304,0
20 FOR CLEAR = 8192 TO 1 6383
30 PO KE CLEAR , 0
40 NEX T CLEAR
50 G = 6: REM BY CHANGING G YOU GET

A OIEFE RENT PICTURE
70 FO R TR = 1 TO 255
80 FO R TY = 8192 TO 1 6383 STEP G
90 PO KE TY, TR

100 NE XT TY
110 NEX T TR
120 EN D
130 RE M G = 100 AND G = 91 ARE

INTERESTING

WHITE OUT SCREEN

10 POKE - 16297,0: POKE -16304,0
20 FO R T = 8192 TO 163 83
30 PO KE T ,0
40 NEX T T
50 FO R SERT = 8192 TO 16 383
60 PO KE SERT, 255
70 NEX T SERT
80 EN D

SCREEN CLR
B Y B I L L S H R Y O C K

>LIST

10 DIM C$(21)
20 C$ = '2001<2000.3FEEM E88AG'
30 PO KE 81 92,0: REM POKE 8192,255 TO

WHITE OU T SCREEN
40 FO R 1=1 TO 21
50 PO KE 511 + I, ASC(C$(I))
60 NEXT I
70 CAL L -144

Just be sure to set 'HIMEM: 8192'
before you run the clear routine.

Since this routine uses the system
monitor move command to clear the
screen it clears the screen much
faster than the system in John's
article.

HIRES
STILL LIFE
B Y J O H N U H L E Y

In the monitor, memory locations 2000
through 3FFF stands for a very small
line on the HIRES screen. This "line"
is made up of 255 sections (Fig. A).
Depending on the number (X) stored in
a memory location between 2000 and
3FFF, a different "colored" dot, or
group of dots, will be seen on the
screen. To explain, let's assume that
memory location 2000 contains FF (255
in decimal). If this occurred, a
white line (actually many dots) would
stretch from 2000 (0) to 2000 (255).
If memory location 2000 contained 2D
(127 in decimal) then a group of
"colored" dots would appear from 2000
(0) to 2000 (127). In other words, a
series of dots will appear on the
screen starting at the memory
location, "dot" zero, and ending at
the memory location "dot" X.

In order to change the value stored in
a memory location, from basic, you
have to either 'POKE in' a new value
or use the HPL0T command. To 'POKE
in' a new value you need two things.
First, you need the memory location
you want to 'POKE into' (converted
into decimal), and second, you need
the decimal value you want to 'POKE
in'. An example of this is 'POKE
8192,127'. This stores 2D (127 in
decimal) in memory location 2000.

If you don't understand how to 'POKE
in' values from basic, or how the
values stored in memory locations 2000
through 3FFF affect the length of the
"dots" or "lines" appearing in the
screen, I suggest that you read
HIRES0LUTI0N GRAPHICS, Page 46.

When you type 'HGR' AND HIT RETurn,
the computer "GOSUBs" into a special
machine language subroutine, via the
command tables. This machine language
subroutine performs several functions.
One of its functions is to LoaD the
Accumulator (LDA) with memory
locations C050 and C057. This
"turns-on" the HIRES screen. Another
of its functions is to clear the
screen to black. It does this by
storing zero in memory locations 2000
thru 3FFF. As you know the computer
draws from the memory location "dot"
zero to memory location "dot" X(where
X is the amount stored in that memory
location). Obviously, it is not
possible to draw from zero to zero.
Therefore, any memory location
containing zero will be a black space
on the screen. If all the memory
locations starting at 2000 and ending
at 3FFF contain zero, then the entire
HIRES screen will be black.

As you know, when you type "POKE num1,
num2", num2 (converted into hex) is
stored in num1 (converted into hex).
As previously mentioned, you can "POKE
in" a number from basic, or you can
use the HPL0I command. If you use the
HPL0T command "POKE num1" is replaced
by one of the three versions of the
HPLOT command (see Table A.). This
leaves you the number that you want to
store in your memory locations.

4 7

This number, in a way, is replaced by
the value of HC0L0R. The command
HC0L0R=X (where X is a number between
0 and 7) assigns the seguence that you
start and step by. What I mean by
this is that there are seven colors
(see Fig. B). Each time the computer
plots a dot, it steps seven times,
skipping six colors each step (Fig.
C). So there will always be a small
"space" (the six unused colors)
between all HORIZONTAL lines. This is
NOT always true with vertical and
diagonal lines because there is no
space between each vertical line (Fig.
D).

When you type 'HPL0T num1, num2', a
single dot appears on the screen.
Likewise, when you type 'HPL0T num1,
num2 to num3,num4' a line, made up of
dots, will appear on the screen
starting at num1, num2 and ending at
num3, num4. What the computer does to
make these lines is to compute the
correct values, and store these values
in the correct memory locations.
After it has done this it returns
control to the program or programmer.

Hopefully, you now know how to use the
HGR, HC0L0R, and HPLOT commands. If
you are still not sure about how to
use these commands, try the three
programs given later in this article.
After you have done those programs try
making one of your own.

Now that you know how to make HIRES
pictures you might want to know how to
save "still-life" pictures you make.
I do not mean making a program, saving
it, and running it again. I mean
saving the picture that is in memory
from 2000 through 3FFF.

As you know when you tell the computer
to HPLOT a line it computes the
correct values to store somewhere
between 2000 and 3FFF. Depending on
the value, different colored dots and
lines appear on the screen, therefore
if you save these values, you would be
saving the "blueprint" to your
picture, and if you loaded in this
"blueprint" you would be
reconstructing your picture!

If you don't have a disk, all that you
have to do, after you make your
picture, is to hit the key marked
RESET, hook up your recorder, type
20 00 . 3FFFW, start the recorder
playing, hit the key marked RETURN,
wait for the cursor to appear, and
rewind the tape.

If you have a disk all that you have
to do, after you have made your
picture, is to type "TEXT" (if you are
not in text mode), and type 'BSAVE
(whatever you want to call your
program) ,A$2000, L8192' and hit
RETurn. When the disk stops your
picture has been saved.

All that you have to do to see your
picture, if you don't have a disk, is
to hit the key marked RESET, hook up
the tape recorder, type C050 C057
2000.3FFFR, turn on the recorder, and
hit RETurn. When your picture is
complete, turn off the tape recorder
and rewind the tape.

H I R E S E (C O N T .) COLOR POKE 21 HIRES COLORS

If you have a disk, all that you have
to do to load your picture is to type
'HGR1 (RETurn) and 'BLOAD (whatever
you called your program),V0'(REIurn).
When the disk stops, your picture will
be completed on the screen.

As a last word, I'd like to add that
you can view your picture in Integer
Basic by loading it in, and typing
'POKE -16297,O'(RETurn) and 'POKE
-16304,0' (REIurn).

ALL PROGRAMS IN FP

10 HGR
20 HC0L0R = X 30 HPL0I RND(1)*270,190
10 100,

RND(1)*190
40 X = X + 1
50 IF X + 1 = 8 IHEN X = 1
60 GOTO 20
70 END

10 HGR
20 HCOLOR = 5
30 HPLOT X,100 TO 0 ,0
40 X = X + 2
50 GOTO 30
60 END

For those of you who have any need to
desire to POKE colors into a lo-rez
program, you can do so by putting the
color into location $30, which is
decimal 48. The following chart shows
which numbers to POKE in for which
colors.

DECIMAL COLOR

00 Black
17 Magenta
34 Dark Blue
51 Light Purple
68 Dark Green
85 Grey
102 Medium Blue
119 Light Blue
136 Brown
153 Orange
170 Grey
187 Pink
204 Green
221 Yellow
238 Blue/Green
255 White

The following program was on our
August 1979 DOM (Disk Of the Month)

LIST
20 HGR 25 FOR C=39 TO 139 STEP 2
30 XCUR=5
50 FOR A=1 TO 6
60 FOR B=A TO 6
70 HC0L0R=A:HPLOT XCUR.C TO

XCUR + 10,C
80 HC0L0R=B* HPLOT XCUR,C + 1

XCUR + 10,C + 1
90 XCUR=XCUR + 12
100 NEXT B,A,C
110 END
112 REM BY ANDY HERTZFELD AFTE R AN
113 REM IDEA BY D. ALDRICH GIVEN
114 REM TO SF APPLE CORE 7 /79
115 REM TYPED BY KEN SILVERMAN
116 REM AS READ TO H IM BY SCOT
117 REM K AM INS WHILE PAUL WYMAN
118 REM WAS TALKING TO THE AUTHOR
119 REM DURING THE TIME 21 MEMBERS
120 REM WERE PRESEN T AT VILLAGE
121 REM ELECTRONICS. THANKS TO ALL
122 REM INCLUDING MY MOT HER.

PS - The smaller the color TV screen
the better this looks - if you have a
color monitor around this looks great.

10 HGR
20 HCOLOR = 6
30 FOR T = 1 TO 20
40 X = X + Y
50 HPLOT X,Y
60 Y = Y + 2
70 NEXT T

TABLE A

F I a . A

F I a . B

1 2 3 4 6 6 7
l | | 1 1 1 1 1

F I Q . C

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1
Min irri Bin m m mm

F I Q . D

PAGE-FLIP
B Y Q L E N H O A Q

HPLOT X,Y--HPLOT's a single HIRES
point
HPLOT X,Y TO E ,R--HPL0T's from X,Y to
E,R
HPLOT TO X,Y—HPLOT's from the last
plotted point to X,Y.

TEXT SCRN MAPS
ADDRESSES SHOWN ARE FOR THE FIRST CHAR
IN EACH L INE - LINES ARE 40 CHRS. LONG

10 REM DEMONSTRATION OF THE PROCEDURE
TO MOVE PAGE 1 TO PAGE 2 OF BASIC

20 REM 28 JANUARY 1979
30 REM BY GLEN C . HOAG
40 REM PROGRAM FLOW
50 REM (1) SET UP PAGE 1 SCREEN
60 REM (2) SET UP POINTERS FOR PAGE 1

START
70 REM (3) SET UP POINTERS FOR PAGE 1

END
80 REM (4) SET UP POINTERS FOR PAGE 2

START
90 REM (5) CALL MONITER MOVE ROUTINE

100 REM (6) POKE THE SWITCH TO DISPLAY
PAGE 2

110 REM
120 REM
130 REM
140 REM STEP (2)
150 POKE 60,0: POKE 61,4: REM POKE

VALUES FOR A1
160 REM STEP (3)
170 POKE 62,255: POKE 63,7: REM POKE

VALUES FOR A2 (CONTAINS $07FF)
180 REM STEP (4)
190 POKE 66,0: POKE 67,8: REM POKE

VALUES FOR A4 (CONTAINS $0800)
200 REM STEP (5)
210 CALL -468: REM MONITER MOVE

ROUTINE LIVES AT $FE2C
220 REM STEP (6)
225 CALL -936: REM CLEAR PAGE 1
230 POKE -16299,0: REM TURN ON PG.2
235 PRINT "THIS IS PAGE 1"
240 FOR 1=0 TO 1000: NEXT I
250 POKE -16300,0: REM TURN ON P G. 1
260 FOR 1=0 TO 1000: NEXT I
270 GOTO 230

4 a

PAGE
LINE #

0 0 -
01 -
0 2 -
03-
04-
05-
06-
07-
0 8 -
09-
1 0 -
11 -
1 2 -
13-
14-
15-
16
17
18
19
20
21
22
23

ONE
POKE ADDRESS

— 1024
— 1152
— 1280
— 1408
— 1536

1664
1792
1920
1064
1192
1320
1448
1576
1704
1832
1960
1104
1232
1360
1488
1616
1744
1872
2000

PAGE
LINE #

00-
01
02 -
03-
04-
05-
06-
07-
08-
09-
1 0 -
11 -
1 2 -
13-
14-
15
16
17
18
19
20
21
22
23

TWO
POKE ADDRESS

— 2048
— 2176

2304
2432
2560
2688
2816
2944
2088
2216
2344
2472
2600
2728
2856
2984
2128
2256
2384
2512
2640
2768
2896
3024

U T I L I T I E S

U T I L I T I E S

SLOT #'S AS
VARIABLES
B Y F R A N K F I S H E R

In/Out slots can be specified as
variables! These can then be defined
once, and then used anywhere In the
program. In BASIC, the statements
might look like this:

100 PR = 1:REM PR I S SLOT# OF PRINTER

110 PL = 3:REM PL IS SLOT# OF PLOTTE R

100 PR#PR:PRINT "THE PRINTER IS IN
SLOT ";PR

This might be a useful way to
eliminate the enforced "convention" of
having the I/O slots fixed. (I don't
know if this would be practical for
disk drive I/O slots however).
Program documentation might include a
mention of what statements define the
I/O slots, and then all programs might
be easily customized. Both Applesoft
II and Integer support this.

"RANDOM" BUG
B Y J A M E S S U I T S

The DOS 3.2 System Master Diskette
contains a program called RANDOM for
demonstrating a small inventory
control scheme (pp. 86-88 of the
Manual). If you have trouble with
running this program replace ST in
line 290 with BW;",";ST.

0 REM ["BSTAT" VERSION 7]
1 POKE 71, PEEK (76): POKE 75

, PEEK (77)-8: CLR
2 M = 150 - PEEK (77):H = 169:SL = 181

:LL = 163:H=H-M:S = 1 ^ZSeilr-

3 DIM F$(50),H$(16),Z$(50):H$
="0123156789ABCDEF": IF H<128

THEN 1:S=-1:H=K-H:PTCH=0: IF
PEEK (977)=191 THEN PTCH=189

1 SA=S*K*H+SL+PTCH:LA=S*K*H+LL+
PTCH

5 PRINT D$;"NOMON C,I,0": TEXT
: CALL -936: VTAB 3: TAB 8

LAZARUS
B Y A N D Y H E R T Z F E L D

This article describes LAZARUS, a
short machine Language program which
can resurrect inadvertently erased
BASIC programs.

When a BASIC program is erased, it is
t ^ ^ usually not destroyed. It is probably

CALL I: PRINT " "(B)FILE STARTING stlu sitting around somewheres In
ADDRESS ": PRINT : TAB 9: PRINT memory; however, the BASIC ^interpreter

" AND LENGTH DELIMITATOR "
7 CALL N: PRINT : TAB 16: PRINT

"[BSTAT]": VTAB 10: TAB 10
: CALL I

8 PRINT " HEX OR DEC ADDRESSES "
: CALL N: CALL G: PRINT : TAB
15: PRINT "[H] OR [D] ?"

9 P= PEEK (-16381): POKE -16368
,0: IF P=196 THEN 10: IF P=
200 THEN 12: GOTO 9

10 GOSUB 18: GOSUB 22
11 TAB T+8: PRINT ",A";A;",L";

L;: GOTO 15
12 GOSUB 18: GOSUB 22:X=A
13 GOSUB 21:T=T + 8: TAB T: PRINT

",A $"; : GOSUB 30
1 1

B/BSTAT

Yes this month we bring you another
BSTAT. There have been loads of
BSTATs in the past, but we think this
is the best ever. Last month's two
BSTATs were great, but this time we
combined the best features of both...

This one (B/BSTAT) should work on any
size system and is located out of the
way of most programs.

A neat feature is that you have your
choice of either hex or decimal
output.

It gives you a catalog of the disk so
you can enter the name of the desired
program exactly with a cursor move and
save the program with a second cursor
move. The call code is also given for
running the program..

X=L: GOSUB 21: TAB T: PRINT
",L$";: GOSUB 30
PRINT " , V": PRINT " CALL
A: VTAB 23: TAB 11
CALL I: PRINT " TO RUN 'CALL "
;A ; : CALL N: CALL G
VTAB V-1: LOMEM:2018: END
PRINT D$;"CATALOG": PRINT :

CALL G: IF P=196 THEN 20
19 PRINT " FILE NAME ? [H]": GOTO

2 1
V= PEEK (37): PRINT " FILE NAME
? [D] " ;
VTAB 11: TAB 7: INPUT F$: PRINT
D$;"BLOAD";F $:V = PEEK (37):

RETURN
A= PEEK (SA)+K* PEEK (SA+1)
:L = PEEK (LA)+K* PEEK (LA + 1
): VTAB V: CALL -958
PRINT " BSAVE ";F$;:T= LEN(
F $): RETURN

21 B=X MOD K: GOSUB 28
25 B=X/K: GOSUB 26: RETURN
26 A$=H$(1+B/16,1+B/16)
27 B$=H$(1+B MOD 16,1+B MOD 16

): RETURN
28 C$=H$(1+B/16,1+B/16)
29 D$=H$(1+B MOD 16,1+B MOD 16

): RETURN
30 T = T + 3: IF A$="0" THEN 31: PRINT

15

1 6

17
1 8

20

2 1

2 2

23

no longer knows where to find it, so
it is effectively lost. LAZARUS scans
through memory trying to find the
largest valid BASIC program that it
can. If it finds one it resets the
interpreter's pointers to point to the
found program, thereby resurrecting
it. If no valid program is found an
error message will be printed. In
either case, control is returned to
BASIC interpreter.

If there are many program fragments
floating around the workspace, it
might not resurrect the one you are
interested in. if you had performed
some deletions of low-numbered
statements prior to the erasure, it
may restore the deleted lines along
with the rest of the program. If your
program was located in an unusual part
of memory, it may not know where to
look for it. In practice these
problems are rare; LAZARUS should be
successful most of the time.

The code for LAZARUS is relocatable
since all of its branches are relative
in page zero. $300 seems to be a
convenient place to load it. You can
load it for the first time by going
into the monitor mode and typing:

A$;B$;C$;D$;:T=T+1: RETURN

IF B$="0" THEN 32: PRINT B$
;C$;D$;:T =T + 3 : RETURN
IF C$="0" THEN 33: PRINT C$
;D$;:T=T+2: RETURN
PRINT D$;:T =T + 1: RETURN

31

32

33
31 REM
35 REM
36 REM
37 REM
38 REM
39 REM
10 REM
11 REM
12 REM MODIFIED
13 REM VERSIONS
11 REM BY G. C.

*

* HERTZFELD'S "BSTAT"
* MODIFIED BY
* WEYMAN FONG
* GLEN C HO AG
* FOR THE APPLE CORE
* * * * * * * * * * * * * * * * * *

H E X D U M P 3 0 0 . 3 9 0

0300- A9 FF DO 02 A9 00 85 FO
0308- 85 F1 20 89 F6 BO 3A EO
0310- 35 13 01 00 16 1A 00 17
0318- 1C 00 66 36 32 67 37 22
0320- D7 03 59 12 05 07 F8 22
0328- FO 38 39 E8 18 D3 02 18
0330- A9 31 H D5 07 12 27 D1
0338- 05 OE 21 FO 39 68 31 E1
0310- 61 D1 05 01 29 38 01 E3
0318- 22 FO 31 D9 06 D1 F1 F1
0350- F1 11 05 00 81 D1 06 OD
0358- E1 10 FF 00 D1 02 CO 21
0360- D6 05 BC 01 EF 29 32 E2
0368- B1 31 18 FO 00 68 06 01
0370- 21 DA 02 AB 21 3A 21 3B
0378- 29 3C 01 A3 2A 06 12 11
0380- CA 00 2B 71 11 1C 00 2C
0388- EO 71 00 20 3A FF 1C 03
0390- EO 00 20 2D FF 1C 03 EO

* * * * *
Once it has been loaded it can be
saved by typing 300.3A0W and then
subsequently loaded back in by typing
300.3AOR (for type use). For disk it
can be saved with, "BSAVE

10 JUN 1979 LAZARUS,A$300,L$3AO" and of course for
loading "BLOAD LAZARUS".

TO OPERATE IN BOTH
3.1 AND 3.2 DOS
HOAG ON

6 0

L A Z A R U S (C O N T .)

LAZARUS is very easy to use. After
losing a program, enter the monitor
and load LAZARUS. Then return to
BASIC and CALL 768 or CALL 772. The
former will cause the longest program
segment In workspace to be restored;
the latter will cause the last to be
selected. When i t returns, do LIST to
see what is found. If both entry
points recover the wrong program, you
can adjust LOMEM & HIMEM and try
again.

QUICKIE TIP
SY Q L E N H 0 A Q

To access the assembler directly from
basic:

CALL -2A58
To re turn to basic from the assembler:

!$ (CTRL C) (RETURN)

EDIT +
W H O N 1 E D S A U T O S T A R T R O M

T A K E N F R O M A P P L E O R A M

As a ll APPLE I I PLUS users and other
owners of the AUTOSTART ROM c hip know,
the editing features which that chip
provides are tremendously superior to
those found on the ordinary APPLE II
system. In particular, it allows the
user to easily freeze or terminate
output to the video screen and it also
eliminates the need to repeatedly
press the ESC key In order to perform
multiple pure-cursor movements.

Since I write a lot of BASIC programs
I knew that these features would be of
great use to me, but before rushing
out to buy the chip I decided to try
to write a machine language program
which would duplicate these features.

The program that I have come up with
not only allows for the 'AUTOSTART'
editing features, but also for two
additional useful features:

1. By pressing a control character,
it is possible to quickly copy over
text from the current cursor position
to the end of the line, thus
eliminating the need to repeatedly
press the right-arrow key.

By pressing a control character,
the screen width can be changed to 33

a POK E 33,33 COMMAND R ESULTS),
this feature is useful when editing
Program l ines which, when listed with
the window width set at its normal
Yalue of AO, would contain unwanted
lanks between s t r lng - var i ab 1 e

quotation marks.

The program, which I call EDIT+, exits
in two versions, each of which is
listed below. The DISK version is to
be used whenever DOS 3.2 has been
booted and is active; otherwise, the
TAPE version is to be used. The DISK
version resides in memory from $300 to
$3CF and the TAPE version resides from
$300 to $3C3. In order to avoid
unpredicable results, EDIT+ must be
deactivated (by pressing RESET) before
using these memory locations for any
other purpose.

Either version of EDIT+ is to be
loaded into memory starting at
location $300. For details on how to
enter machine language code into
memory, see page 68 of the APPLE II
Reference Manual (red book).

The detailed operating instructions
for EDIT+ are as follows:

1. After EDIT+ has been loaded into
memory, the TAPE version can be saved
to tape by entering the command
300.3C3W from the system monitor. The
DISK version can be saved to diskette
by entering the command BSAVE EDIT+,
A$300, L$D0 from BASIC immediate
execution mode.

2. To activate the TAPE version of
ED IT +, load it from tape via a
300.3C3R command from the system
monitor, enter the command 300G, and
then enter BASIC by entering CTRL C
(or OG for RAM APPLESOFT programs).
To activate the DISK version, enter
the command BRUN EDIT+ from BASIC
Immediate execution mode (or enter
BLOAD EDIT+, press RESET to enter the
system monitor, and then enter the
command 300G3D0G).

3. To use EDIT+, follow these
procedures:
Freezing, continuing, and halting
output to the video screen:

(a) Press CTRL S in order to freeze
the output to the video screen.

(b) Press any key in order to
continue the output to the video
screen after it has been frozen.

(c) Press CTRL C in order to halt
the output to the video screen and
enter BASIC immediate execution mode.

Pure cursor motions and screen clears:
Press ESC in order to activate the

cursor-motion and screen-clear keys.
The cursor-motion and screen-clear
keys and their functios are as
follows:
I — Move cursor up
J — Move cursor left
K — Move cursor right
M — Move cursor down
E — Clear to end of line
F — Clear to end of page

To deactivate the cursor-motion and
screen-clear keys, press a key other
than I, J, K, M, E, or F. This key
will not be displayed.

Copying over text to the end of a
line:

Press CTRL Z in order to copy over
the text from the current cursor
position to the end of the line.

Setting the window width to 33:

Press CTRL Q in order to perform
the equivalent of a POKE 33,33
command. 5 1

A. To deactivate EDIT+, press the
RESET key. (EDIT+ will also be
deactivated by PR# and IN# commands
from BASIC).

Special note for RAM APPLESOFT users:

To use the TAPE version of EDIT+ in
conjunction with a RAM APPLESOFT
program, the last two bytes of the
TAPE version must be changed from 03
EO to 00 00. This will ensure a
proper jump back into APPLESOFT
immediate execution mode when CTRL C
is pressed after the output to the
video screen has been frozen.

How EDIT+ works:

The EDIT+ program uses the APPLE II
input and output hooks in order to
invoke the editing and stop list
features. For details of the
algorithms involved, see the annotated
dissembled listing reproduced below.

HEX DUMP (DISK VERSION)
>CALL-151

*300.3CF

0300- A9 13 85 38 A9 03 85
0308- 85 37 A9 A7 85 36 A9
0310- 85 08 60 20 1B FD 2A
0318- 30 OB C9 9B DO 59 A9
0320- 85 08 A9 9B 60 C9 C9
0328- OA A9 CA 30 2A C9 CA
0330- OA A9 C2 30 1C C9 CB
0338- OA A9 C1 30 1A C9 CD
03A0- OA A9 C3 30 OC C9 C5
03A8- OA A9 C5 30 OA C9 C6
0350- OB 2A 08 70 OD A8 A9
0358- 85 08 68 60 A8 A9 00
0360- 08 68 85 09 68 85 06
0368- 85 07 68 A9 31 A8 A5
0370- A8 A5 06 A8 A5 09 60
0378- 91 DO 07 A9 21 85 21
0380- AO 60 C9 9A DO 2 0 AA
0388- B1 28 A8 E6 2A E6 2A
0390- 2A C5 21 BO OC C6 2A
0398- 90 00 02 E8 DO E8 AC
03A0- FD 68 C6 2A C6 2A 60
03A8- 8D DO 1E A8 AD 01 CO
03B0- 11 CO 1 0 1A C9 83 FO
03B8- C9 93 DO OC AD 01 CO
03C0- FB 8D 11 CO C9 83 FO
03C8- 68 AC FO FD 68 AC DO

HEX DUMP (TAPE VERSION)

5CALL-151

*300.3C3

0300- A9 13 85 38 A9 03 85
0308- 85 37 A9 9B 85 36 A9
0310- 85 FE 60 20 1B FD 2A
0318- 30 OB C9 9B DO AD A9
0320- 85 FE A9 9B 60 C9 C9
0328- OA A9 CA 30 2A C9 CA
0330- OA A9 C2 30 1C C9 CB
0338- OA A9 C1 30 1A C9 CD
03A0- OA A9 C3 30 OC C9 C5
03A8- OA A9 C5 30 OA C9 C6
0350- OB 2A FE 70 OD A8 A9
0358- 85 FE 68 60 A8 A9 00
0360- FE 68 85 FF 68 A9 31
0368- A5 FF 60 C9 91 DO 07
0370- 21 85 21 A9 AO 6 0 C9
0378- DO 20 AA 2A B1 28 A8
0380- 2A E6 2A A5 2A C5 21
0388- OC C6 2A 68 9D 00 02
0390- DO E8 AC 6 2 FD 68 C6
0398- C6 2A 60 C9 8D DO 1E
03A0- AD 01 CO 8D 11 CO 1 0
03A8- C9 83 FO 1A C9 93 DO
03B0- AD 01 CO 1 0 FB 8D 11
03B8- C9 83 FO OA 6 8 AC FO
03C0- 68 AC 03 EO

39
00
08
BT
DO
DO
DO
DO
DO
DO
FF
85
68
07
C9
A9
2A
A5
68
62
C9
8D
1A
10
OA
03

39
00
FE
BF
DO
DO
DO
DO
DO
DO
FF
85
A8
A9
9A
E6
BO
E8
2A
A8
1A
OC
CO
FD

FREE SPACE
B Y A N D Y H E R T Z F E L D

This program calculates the amount of
free space available on a given
diskette. It prints out the answer in
terms of kilobytes and also in terms
of sectors (there are 256 bytes per
sector).

The program performs its task by using
the RWTS routine to read in track 17,
sector 0, which contains the bit-map
used by the DOS for sector allocation.
It then simply loops through and
counts the number of bytes that are
set, thereby obtaining the number of
free sectors.

One problem is that the program must
jump back to BASIC ($E003) when it s
finished or else it can't be BRUN from
command level. Thus, to use it from a
BASIC or machine language program, you
should change 088C (4c 03 E0) to "RTS"
instead of "JMP SE003".

The program lives at $800 and is about
250 bytes long. It should work on a
system of any memory size but I've
only tried it on a 48K machine. To
use it, type "BRUN FREE SPACE" or
BL0AD it, insert the disk you want the
free space of, and type "CALL 2048".
After entering the HEX DUMP save to
disk by BSAVE FREE SPACE,A$800,L$900.

H E X D U M P (F R E E S P A C E)

*800.900

0800- 48 8A 48 98 48 A9 00 8D
0808- BF 08 8D CO 08 20 E3 03
0810- 84 1C 85 1D A9 00 AO 03
0818- 91 1C AO 05 91 1C A9 11
0820- 88 91 1C A5 4C AO 0 8 91
0828- 1C A5 4D C8 91 1C AO 0C
0830- A9 01 91 1C A9 00 C8 91
0838- 1C 20 E3 03 20 09 03 AO
0840- 0D B1 1C F0 03 4C 2D FF
0848- AO 38 B1 4C A2 07 OA 90
0850- 08 EE BF 08 DO 03 EE CO
0858- 08 CA 10 F2 C8 CO C4 90
0860- E9 A9 8D 20 ED FD A9 8D
0868- 20 ED FD AE BF 08 AD CO
0870- 08 20 1B E5 AO 0 0 B9 C1
0878- 08 FO 08 09 80 20 ED FD
0880- C8 DO F3 18 A9 02 6D BF
0888- 08 8D BF 08 90 04 EE CO
0890- 08 18 6E CO 08 6E BF 08
0898- 18 6E CO 08 6E BF 08 AE
08A0- BF 08 AD CO 0 8 20 1B E5
08A8- AO 00 B9 E7 08 FO 08 09
O8B0- 80 20 ED FD C8 DO F3 68
08B8- A8 68 AA 68 4C 03 EO 7D
08C0- 00 20 46 52 45 45 20 53
08C8- 45 43 54 4F 52 53 20 52
08D0- 45 4D 41 49 4E 20 8D 57
08D8- 48 49 43 48 20 49 53 20
08E0- 41 42 4F 55 54 20 00 4B
08E8- 20 4F 52 20 53 4F 20 8D
08F0- 8D 00 08 14 16 01 42 28
08F8- 49 29 DO 49 C9 31 3A 4C
0900- 49

FREE S PACE
FORMALIZED
B Y L E R O Y L A R S E N

I came up with the following few lines
that you may like to try...

5 TEXT : CALL -936
7 PRINT : PRINT : PRINT

10 PRINT "THIS PROGRAM WILL RUN FREE
SPACE": PRINT

15 PRINT "BRUN FREE SPACE, A2048"
20 PRINT : PRINT
25 PRINT "INSERT DISK YOU WANT TO FIND

FREE SPACE": PRINT
30 PRINT "CALL 2048"
35 PRINT : PRINT : PRINT : PRINT

PRINT : PRINT
40 PRINT "GOTO 45"
45 VTAB 10
50 END
60 REM
65 REM FREE SPACE LOCATION IS
70 REM AT 2048 TO 3568
75 REM
80 REM TO LOAD USE
85 REM A2048, L1250
90 REM
95 REM BY LEROY W. LARSEN
98 END

SON OF N
B Y S C O T K A M I N S

Last month's issue of the Cider Press
semi-featured a disk "HELLO" program
that did many nifty things. Here is a
new version of the program that
includes reset for himem and lomem.

0 POKE -16298,0: REM CLEAR HIRES
SCREEN

10 TEXT : REM SET TEXT MODE, CLEAR
SCROLLING WINDOWS

20 D$="": REM CTRL D, ALLOWING EASY
USE OF DISK COMMANDS

30 PRINT D$;"NOMON C,I,0": REM HIDE
ALL DISK COMMANDS

40 CALL -936: REM CLEAR THE SCREEN
50 POKE 74,0: POKE 75,8: REM SET

LOMEM TO 2048 (THE USUAL PLACE)
60 POKE 76,0: POKE 77,150: REM SET

HIMEM TO 38400 (48K 'PUTERS ONLY)
70 PRINT D$;"CATALOG": REM SHOW S

WHAT'S ON THIS DISK
80 PRINT D$;"BRUN FREE SPACE": REM

SHOWS HOW MANY FREE DISK BYTES
REMAIN

SPLIT C ATALOG
F R O M C A L L - A P P L E

This program will give you a split
catalog when you boot your disk if you
use it to INIT your disk. You can
also run it and it will give you a
split catalog. If you have a great
deal of programs on your disk you will
see them all with this utility.

This program has come from the January
1979, page 20 Issue of CALL -APPLE.

>LIST

10 POKE 768,56: POKE 769,72: POKE
770,132: POKE 771,0: POKE 772,16 0:
POKE 773,0: POKE 774,201: POKE
755,32: POKE 776,176: POKE 777,2

20 POKE 778,105: POKE 7 79,192: POKE
780,201: POKE 781,96: POKE 782,
176: POKE 783,2: POKE 78 4,105:
POKE 785,128: POKE 786,201: POKE
787,128

30 POKE 788,176: poke 789,2: POKE 790
,105: POKE 791,64: POKE 792 ,145:
POKE 793,2: POKE 794,230: POKE 79 5
,2: POKE 796,208: POKE 79 7,2

40 POKE 798,230: POKE 799,3: POKE 800
,104: POKE 801,164: POKE 80 2,0:
POKE 803,96: POKE 804,0: POKE 805,
0: POKE 806,0: POKE 807,0

50 POKE 808,169: POKE 809,160: POKE
810,164: POKE 811,36: POKE 812,
145: POKE 813,40: POKE 81 4,96

100 B$=" ":Q=0: DIM A$(250),A(50),
B(50):D$="":LM=11+ PEEK (74)+
PEEK (75)*256: POKE LM, PEEK (977)
: POKE LM+1.PEEK (978): Q=0+3037

110 PRINT DS;"NOMON C ,I,0": TEXT :
CALL -936: POKE 2,0: POKE 3, 16:
POKE Q,0: POKE Q+1,3: POKE Q+2,40:
POKE Q+4,3

120 PRINT D$;"CATALOG": PRINT

130 PRINT D$;"PR#0": PRINT D $;"IN#0"

140 PRINT " "
200 POKE 34,2:1=4096

220 POKE LM-6, PEEK (I): IF ASC(B$) =
133 THEN 400: IF ASC(B$) =]4l
THEN 240: IF B$=D$ OR J>19 T^N

250: IF K<2 THEN 230: PRINT BSi
230 1=1+1:J=J+1: GOTO 22 0
240 PRINT : 1=1+1 :K=K+1: VTAB 3+(K -Z)

MOD 20: IF K=22 THEN GO SUB 800.
GOTO 210

250 1=1+1: GOTO 230
400 TEXT : VTAB 23: END
800 POKE 33,19: POKE 32,19: CALL -

RETURN

Note: Line 60 pokes will have to be
changed if your system is less than
48K. To find out what numbers you
should use, merely boot your DOS and
print PEEK (76) and PEEK (77). The
numbers that are returned are the ones
you should POKE into their respective
places.

Sibling of note: Line 80 assumes you
have added to your disk Andy
Hertzfeld's excellent "Free Space"
program, the code for which is to be
found elsewhere in this issue.

4 4

S.F. APPLE CORE
Best of The Cider Press"

PROGRAM DISK
The "Best of the Cider Press" program disk contains most of the programs printed
in this publication. (Checkbook, edit + , FRE(x) and a great deal more.)

Name

Street

City State Zip

Send $7.50 which includes handling and mailing in U.S.A.
Add $2.00 for Foreign Air Mail

Make Checks payable to: "S.F. Apple Core"
and send to: 1515 Sloat Blvd., Suite 2

San Francisco, CA 94132

INTERNATIONAL
APPLE CORE

APPLE
ORCHARD

SUBSCRIPTIONS
T M

P. o. BOX 2227 SEATTLE, WASHINGTON 98111, USA

The International Apple Core will make individual subscriptions to "The Apple Orchard available com
mencing with Volume I, Number 2 to be published in September, 1980.

NAME

STREET.

CITY, STATE ZIP

COUNTRY
Annual Subscription Rate: $10.00 per year
First Cla ss Pos tage: $5.00 per year additional (required for Canada, Mexico, APO, and FPO addresses)
Overseas and othe r foreign air mail postage (required): $10.00 per year additional

TOTAL REMITTANCE ENCLOSED: $(USA)

Make check or money order payable to "international Apple Core" and return with this form to:
Apple Orchard Subscriptions

P.O. Box 2227
7/7/80 Seattle, Washington, USA 98111

SAN FRANCISCO APPLE CORE LIBRARY

CONVENTIONS
BY l£ ROY LARSEN

The following are conventions that are
currently being used by the Apple
Core. This is a first attempt toward
establishing conventions with which we
can live. If you have any input on
this subject please write the Apple
Core in care of the Conventions
Committee.

PROGRAM REQU IREMENTS

1. All programs submitted must
contain your name (either in REM or
PRINT statements) within the program.

2. If at all possible the following
Conventions should be used:

a) Programs should begin with a POKE
-16298,0 to turn off the Hi-Res mode;
it .should be located in the first 5
executed lines.

b) The first thing to be displayed
after RUN should be the title page
with the program name, author, date,
two or more lines of what the program
does, and the choice of continuing or
ending (see how below).

c) Timing loops in programs should be
avoided. Use "PRESS SPACE BAR TO
CONTINUE" wherever possible.

d) Pressing 'ESC' should return user
to next higher level menu or, if no
menu, exit (end) program.

e) Try to include REM statements in
your program so that our members can
learn by your programming. If for
reasons of speed you can not do this
please include written information
about your program.

f) Put a REM statement in the last
line of the program with the TITLE of
the program.

g) At the end of a program the
following should be reset: LOMEM to
2048, TEXT page 1 by POKE -16300,0,
Hi-Res mode off by POKE -16298,0, and
clear screen and set full text window
by TEXT & CALL -936, clear keyboard
strobe with POKE -16368,0.

The preceeding conventions are our
attempt to put some standards into our
programs within the library. If you
have any input on this subject please
write to us - good programming helps
us all.

EXAMPLE OF TITLE PAGE PROGRAMMING:

5 DIM C$(40)
10 POKE -16298,0: TEXT : CALL -936:

GOTO 20
11 REM PRINT CENTER ROUTINE
12 HTAB 20 - LEN (C$)/2 (Use TAB in

20 VTAB 5: C$="Tltle of program":
G0SUB 11

30 C$="BY - authors name": G0SUB 11
AO C$="DATE - donated to library":

G0SUB 11
45 PRINT : C$="A few lines about

program": G0SUB 11
50 VTAB 21: PRINT "PRESS 'ESC1 TO END"
55 PRINT "< PRESS THE SPACE BAR TO

CONTINUE...>"
60 IF PEEK (-16384) = 155 THEN (To end

of program)
65 IF PEEK (16384) <> 160 THEN 50
90 CALL -936: POKE -16368,0: REM

RESETS KEYBOARD

(This would be the line to start
program - lines 11 thru 15 could be
located any place)

END OF PROGRAM LINES:
(Refer to part g above)

LINE ? POKE -16289,0: POKE -16300,0
LINE ? POKE -16368,0: TEXT : CALL -936
LINE ? VTAB 10: C$= "* * » THE END *

* *": GOSUB 11: END

LIBRARY #1
PURCHASE
BY KEN SLVERMAN

The club now has completed its first
book of contributed software. The
book consists of over 350 programs on
20 diskettes. The diskettes are set
up by category, i.e. utility, math,
games, etc. The book is also made up
of disk holders, Apple Core binder and
about 30 pages of information.

This library #1 can be purchased by a
member for $150.00. If you are not a
member add $15.00 and mail with a
membership form.

A complete listing of the contents of
library #1 can be obtained for $1 .00
at any Apple Core meeting. Out of
town members can obtain it by sending
the $1.00 and a 9" x 12" self
addressed envelope with $1.00 postage
on it to the Apple Core.

The club is now starting library #2
starting with the software on the
November 1979 DOM.

LIBRARY A CCESS
The APPLE CORE LIBRARY of contributed
programs is arranged by general
categories. Members living in the
S.F. Bay area may copy programs from
the library at the following
locations:

Computerland San Francisco 546-1592
Computerland of Belmont 595-4232
Computerland of Marin 459-1767
Computerland of The Castro 864-8080
Computerland of Los Altos 221-8500
AIDS 221-8500

Out of area members can get programs
from the library through the mails in
the following manner:
1. A member is required to donate at
least one original or public domain
program (not Copyrighted, please).
2. Donated programs must be sent on a
disk or a computer tape placed in
self-addressed, stamped proper mailer,
suitable for returning the disk or
tape. Please use a Program Submission
form. Include a note indicating the
desired volume from the library that
you would like to have copied.
Carefully package the mailer and Note:

CONTAINS LIVE COMPUTER PROGRAMS DO NO T
EXPOSE TO X-RAYS OR ELECTRICAL FIELDS
DO NOT BEND OR FO LD.

Please follow instructions as we do
not want to see your disks or tapes
ruined anymore than you do. Only one
library disk or tape will be processed
per month. The DOM (Disk of the
Month) is considered separately.

The DISK OF THE MONTH is a group of
recently donated programs or updated
utilities, ect. It was originated to
encourage newmembers to be able to
write programs by having examples to
study and enjoy.
Members unable to come to the meetings
can send in $7.50(US) for the current
DOM which covers the cost of the disk,
mailing and handling. Three past
months are also available for $7.50
each.
Members who come to the meetings c
obtain the same DOM's for $5.00 eac
Prices are subject to change.
NOTE: All programs on the DOM's go
into the library according to
category. The stores do not have t e
DOM's on file.

Integer)
13 PRINT C$:
14 PRINT "
15 RETURN

REM PRINTS LINE
REM "CONTROL G"

5 4

L I B R A R Y B O O K # 1
NOTES

1) PROGRAMS WITH (A) AFTER THEM
REQUIRE THE PROGRAMMERS' S AID CHIP

2) PROGRAMS WITH A (P) AFTER THEM WILL
OUTPUT TO A PRINTER (PR#1).

3) PROGRAMS WITH A (D) REQUIRE
A DIS K DRIVE.

A) ALL APPLE CORE DISKS ARE 3.2
MASTERS AND WILL 'BOOT' ON
ANY SIZE SYSTEM.

PRESS ANY LETTER TO CONTINUE
PROGRAM INDEX PAGE 0

NO C TGRY DISK # PROGRAM NAME

ENTER THE NUMBER OF THE FIRST PROGRAM
TO B E LISTED OR PRESS RETURN:
?
ENTER THE CATEGORY TO BE LISTED (1-10)
OR PR ESS RETURN TO LIST THEM ALL
9
ENTER THE FIRST LETTER (S) OF THE PRO
GRAM^) TO BE LISTED OR PRESS RETURN:
?

PROGRAM INDEX PAGE 1

PROGRAM NAME NO C TGRY DISK it

1 1 DISK OA
2 1 DISK OA
3 1 DISK OA
A 1 DISK 1 A
5 1 DISK 1A
6 1 DISK 1A
7 1 DISK 1A
8 1 DISK 1 A
9 1 DISK 1 A
10 1 DISK 1A
11 1 DISK 1 A
12 1 DISK 1 A
13 1 DISK 1 A
14 1 DISK 1 A
15 1 DISK 1 A
16 1 DISK 1A
17 1 DISK 1 A
18 1 DISK 1A
19 1 DISK 1 A
20 1 DISK 1 A
21 1 DISK 1A
22 1 DISK 1 A
23 1 DISK 1 A
24 1 DISK 1A
25 1 DISK 1 A
26 1 DISK 1A
27 1 DISK 1 A
28 1 DISK 1A
29 1 DISK 1 A
30 1 DISK 1 A
31 1 DISK 1A
32 1 DISK 1 A
33 1 DISK 1 A
34 1 DISK 1B
35 1 DISK 1 B

PROGRAM LIST
LIST INSTRUCTIONS
LIBRARY POLICIES
APPLE HELLO
TEXTFILER
TEXTCOPY
SWEET 16 DISSEMBLER
INTEGER RENUMBER/AP
SLOWLIST
LAZARUS.A768.L251
CTRLEIND
DISK RENUM APPEND
TONY'S SUBROUTINE P
APPLESOFT 1 TO 2 CO
YES NO AND PAUSE
CHR$ FUNCTION
HEAPSORT
ALPHABETIZE
RANDOM SORT
B/BSTAT
FREE SPACE
FIX CATALOG
DISK MAP
IMPROVED CATALOG
LOCK DISK
DISK PROGRAM ELIMIN
DISK DUMP
DISK AIDE [APPLE CO
DISK AIDE [DOCUMENT
DISK AIDE [MACHINE
SUPERCAT ALOG.0
SUPERCATALOG.DOC
PASSWORD KEY
DOS UTILITY #1
MENU WRITER 5 6

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61 2
62 2
63 2
64 2
65 2
66 2
67 2
68 2
69 2
70 2
71 2
72 2
73 2
74 2
75 2
76 2
77 2
78 2
79 2
80 2
81 2
82 2
83 2
84 2
85 2
86 2
87 2
88 2
89 3
90 3
91 3
92 3
93 3
94 3
95 3
96 3
97 3
98 3
99 3
100 3
101 3
102 3
103 3
104 3
105 3

1 B
1 B
1 B

DISK 1B
DISK 1B
DISK 1B
DISK
DISK
DISK
DISK 1B
DISK 1B
DISK IB
DISK IB
DISK 1B
DISK 1B
DISK 1B
DISK 1B
DISK 1B
DISK 1B
DISK 1B
DISK 1B
DISK 1B
DISK 1B
DISK 1B
DISK 1B
DISK 1B
DISK 1B
DISK 1B
DISK 2A
DISK 2A
DISK 2A
DISK 2A
DISK 2A
DISK 2A
DISK 2A
DISK 2A
DISK 2A
DISK 2A
DISK 2A
DISK 2A
DISK 2A
DISK 2B
DISK 2B
DISK 2B
DISK 2B
DISK 2B
DISK 2B
DISK 2B
DISK 2B
DISK 2B
DISK 2B
DISK 2B
DISK 2B
DISK 2B
DISK 2B
DISK 2B
DISK 3A
DISK 3A
DISK 3A
DISK 3A
DISK 3A
DISK 3A
DISK 3A
DISK 3A
DISK 3A
DISK 3A
DISK 3A
DISK 3A
DISK 3A
DISK 3A
DISK 3A
DISK 3A
DISK 3A

RANDOM TEST
MULTICOPY
CIDER SQUEEZER 3.1
SLOW MEM TEST
FAST MEM TEST
HEX CODES LIST
SHORTEN COMMANDS
QUOTES IN INTEGER
FORMAT-SUBROUTINE
APPLETEST
F
RND NO FREQ
MEMORY SPY
DISC SPEED INFO
DISC SPEED TEST
DSPEED.OB J
BASIC TED PRINTER
TED3
TED START
TED.DISK
COPY FILE
DISK COPY 3.2
THE ALCHEMIST V2.7
ASCII DECODE
L O O P
AVELAR'S FINANCIAL
LINEAR PROGRAMMING
PAYROLL/ V4
NETFLOW COST
STOCK OPTIONS
PAYROLL
TEN KEY ADDER
TEN KEY NOTES
LISTS
AUTO PURCHASE
APT BLDG PURCHASE
PORTFOLIO REVIEW DO
PORTFOLIO REVIEW
TAX 1040 '79
DECISION MAKER
SIMPLER INTEREST
FUTURE VALUE
PRESENT AND FUTURE
HOME MORTGAGE
INVESTMENT EVAL.
TELEPHONE
TRAVEL COSTS
CRITICAL PATH ANALY
CALL DEBT MARKER
FED TAX PROGRAM
FORECASTING
COMPOUND INTEREST
NEW CHECKBOOK
MUSIC FOR CLOSE ENC
JOHANN SEBASTIAN AP
APPLEODIAN
LUDWIG'S FANTASY
BACH
SMAL-4 SMALL WORLD
ALLEY CAT
STING MUSIC
MUSIC WRITER
THE HART PIANO
ODE TO JOY
MUZAK
SQUARE BACH
SOUND EFFECTS
MOZART 2 VOICE
F L A G
APPLE PIANO DOC

L I B R A R Y B O O K # 1 (C O N T .)
106 3 DISK 3A APPLE PIANO

DISK 3A ANDY'S TONES
DISK 3A PHILA ORGAN
DISK 3A MULT I TONE
DISK AA LOGO
DISK AA GET IT
DISK AA PLOT.3-D
DISK AA BESSEL DISPLAY
DISK AA PLOT 1
DISK AA PLOT2
DISK AA PLOT3
DISK AA PLOTA
DISK AA PLOT 5
DISK AA PLOT6
DISK AA PL0T7
DISK AA PLOT8
DISK AA PLOT9
DISK AB EASTER EGG(CALL 5A51
DISK AB MENSCHELL HI-RES
DISK AB STAR PATTERN
DISK AB VINCENT (D)
DISK AB HI-RES LOW LEVEL (D
DISK AB MT. FUJI (A)
DISK AB PAINTER (A)
DISK AB SAMPLER (D)
DISK AB MEMORY ORGANIZATION
DISK AB RANDOM ELEPHANT
DISK AB SHAPE MEDLEY
DISK AB DRAGON LOAD (D)
DISK AB DRAGON (D)
DISK AB TERMINAL-W
DISK AB SHTABLE LOC (D)
DISK AB CHARACTER SHTABLE (
DISK AB ALEX'S CALENDAR PAR
DISK AB ALEX'S CALENDAR PAR
DISK AB CHOICE FILE (D)
DISK AC CHARACTERS.PIC (D)
DISK AC SEE PIC (D)
DISK AC ROSE D
DISK AC HIRES.OBJ (D)
DISK AC WASHINGTON (D)
DISK AC LINCOLN (D)
DISK AC SQUARES
DISK AC HI-RES 21 COLORS
DISK AC ETCH-A-SKETCH
DISK AC IMPOSSIBLE FIGURE
DISK 5A TYPING PRACTICE
DISK 5A CAL DRIVER TEST 2AK
DISK 5A MORSE TRAINER
DISK 5A MORSE CW
DISK 5A FLASH CODE
DISK 5A FLASH CARD
DISK 5A NAME STATES
DISK 5A STATES/CAPITALS
DISK 5A COLOR MATH
DISK 5A MATH TUTOR
DISK 5A ECHOCARDIOGRAPH
DISK 5A INTGER INSTRUCTION
DISK 5A TITRATION
DISK 5A TOP DOWN PROGRAMMIN

166 5 DISK 5A CONVENTIONS
167 5 DISK 5B QUIZBUILD (D)
168 5 DISK 5B QUIZ (D)
169 5 DISK 5B SEQUENCE.EASY
170 5 DISK 5B SEQUENCE.HARD
171 5 DISK 5B US.CAPITALS
172 5 DISK SB EUROPEAN.CAPITALS
173 5 DISK 5B ASIAN.CAPITALS
17A 5 DISK 5B MISSPELL
175 5 DISK 5B SHAKESPEARE
176 5 DISK 5B BABY.ADULT
177 5 DISK 5B VICTIM.KILLER
178 5 DISK 5B CANADA.PROV

107
1 0 8
109
110
1 1 1
1 1 2
113
11A
115
116
117
1 1 8
119
1 2 0
1 2 1
1 2 2
123
12A
125
1 2 6
127
1 2 8
129
130
131
132
133
13A
135
136
137
138
139
1 AO
1 A1
1A2
1 A3
1 AA
1A5
1A6
1A7
1A8
1A9
150
151
152
153
1 5 A
155
156
157
1 58
1 59
160
1 6 1
1 6 2
163
16A
165

3
3
3
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
5
5
5
5
5
5
5
5
5
5
5
5
5
5

5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6

1 79
1 8 0
181
1 8 2
183
1 8 A
185
1 8 6
187
1 8 8
189
190
191
192
193
1 9 A
195
196
197
1 98
199
200
201
2 0 2
203
2 0 A
205
2 0 6
207 6
2 0 8 6
209
2 1 0
2 1 1
2 1 2
213
21 A
215
2 1 6
217
2 1 8
219
2 2 0
2 2 1
2 2 2
223
22A
225
2 2 6
227
2 2 8
229
230
231
232
233
2 3 A
235
236
237
238
239
2 AO
2A1
2A2
2 A3
2 AA
2 A 5
2A6
2A7
2A8
2A9

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7

250 7
-) d 1 1

DISK 5B
DISK 5B
DISK 5B
DISK 5B
DISK 5B
DISK 5B
DISK 6A
DISK 6A
DISK 6A
DISK 6A
DISK 6A
DISK 6A
DISK 6A
DISK 6A
DISK 6A
DISK 6A
DISK 6A
DISK 6A
DISK 6A
DISK 6A
DISK 6A
DISK 6A
DISK 6A
DISK 6A
DISK 6A
DISK 6A
DISK 6A
DISK 6A
DISK 6A
DISK 6A
DISK 7A
DISK 7A
DISK 7A
DISK 7A
DISK 7 A
DISK 7A
DISK 7A
DISK 7A
DISK 7 A
DISK 7A
DISK 7A
DISK 7 A
DISK 7A
DISK 7A
DISK 7 A
DISK 7A
DISK 7A
DISK 7A
DISK 7B
DISK 7B
DISK 7B
DISK 7B
DISK 7B
DISK 7B
DISK 7B
DISK 7B
DISK 7B
DISK 7B
DISK 7B
DISK 7B
DISK 7B
DISK 7B
DISK 7B
DISK 7B
DISC 7C
DISC 7C
DISC 7C
DISC 7C
DISC 7C
DISC 7C
DISC 7C

AMERICAN.CAPITALS
MALE.FEMALE
PRESIDENTS
AFRICAN.CAPITALS
OPPOSITES
ELEMENTS
DOT WORLD
COLOR SHOWS
ROD'S COLOR PATTERN
SUPER KALEIDOSCOPE
GREAT AMER.PROB.MAC
COLOR GRAPHICS
COLOR SKETCH
COLOSSUS
T.V.PATTERN GENERAT
BIT BUCKET
TITLE PROGRAM
COLOR STROBE
ENTERPRISE
PAGE 142
FWORMS (D)
FAST WORMS (D)
WORMS (D)
BEEP (D)
A???
ANIMATION
OBJECT DRAWING
DANCING BUTTERFLIES
MOD GREETING
RANDY'S PATTERN
INFINITE NUMBER OF
POETRY
PLAYBOY BUNNY
HAIKU POETRY
TEXT BIORHYTHM
APPLE POOP PLOT
BUZZWORD
LOVE
HEBREW POSTER
DAY OF WEEK
MADLIB
SLOT TEXT
SLOT DICE
PLANTMAN
MADAME DUPRE
BIORHYTHM FOR PRINT
OREGON TRAIL
PLANTS & LEMONADE
STARTREK 8K
LUNAR LANDER
TEXTBLACKJACK
COIN TOSS
LUNAR
GAMES SULLIVAN
BAGELS
WORLD POWER
KINEMA
CRYPTOGRAM
DYNASTY
MATCHGAME
APPLE LEAF GAME
DEPTH CHARGE
ELIZA
TEXT CHESS
GUESS A BMP
TIC TAC TOE
BOXING
BASEBALL
INTERSTELLAR
CHASE
SWORDS 4 SORCER

DISC 7C GOLF

L I B R A R Y B O O K # 1 (C O N T . 2)
2 5 2
2 5 3
2 5 4
2 5 5
2 5 6
2 5 7 7

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7

2 5 8
2 5 9
260
2 6 1
2 6 2
2 6 3
2 6 4
2 6 5
2 6 6
2 6 7
268
2 6 9
2 7 0
2 7 1
2 7 2
2 7 3
2 7 4
2 7 5 7
2 7 6 8
2 7 7 8
2 7 8 8
2 7 9 8
2 8 0 8
2 8 1 8
282 8
2 8 3 8
2 8 4 8
2 8 5 8
2 8 6 8
2 8 7 8
288 8
2 8 9 8
2 9 0 6
2 9 1 8
2 9 2 8
2 9 3 8
2 9 4 8
2 9 5 8
2 9 6 8
2 9 7 8
2 9 8 8
2 9 9 8
3 0 0 8
3 0 1 8
3 0 2 8
3 0 3 8

DISC 7C FI60STRAT
DISC 7C PETALS/ROSE
DISC 7C DOUBLE-ODDS CRAPS
DISC 7C TEXT OTHELLO
DISC 7C KENO 20
DISK 7D REVERSE
DISK 7D ATOM 20
DISK 7D FOOTBALL
DISK 7D SUPER HOCKEY
DISK 7D SLALOM
DISK 7D STAR LANES
DISK 7D STAR LANES DOC
DISK 7D THAT'S HOLLYWOOD IN
DISK 7D THAT'S HOLLYWOOD
DISK 7D DRIVER
DISK 7D TV TRIVIA
DISK 7E NAME FREAK
DISK 7E IQ TEST
DISK 7E PIZZA
DISK 7E BATTLE SHIP
DISK 7E JIMMIES ODD-EVEN
DISK 7E SNOOPY POSTER
DISK 7E RACE CAR
DISK 7E FLIPPER
DISK 8A ACEY DUCY
DISK 8A I CHING
DISK 8A STAY AFLOAT
DISK 8A TRAP
DISK 8A COOTIE
DISK 8A SKI RACER
DISK 8A ONE PLAYER PONG
DISK 8A PONG 2-D
DISK 8A SUPER BRICK-OUT
DISK 8A PHILA.PINBALL
DISK 8A BIORHYTHMS
DISK 8A ED'S LIFE
DISK 8A CONWAY'S LIFE
DISK 8A GIANT TYPEWRITER
DISK 8A HUSTLE
DISK 8A DEPTH CHARGE
DISK 8A SUB KILLER
DISK 8A GAME OF LIFE
DISK SB DRAGON MAZE
DISK 8B BREAKOUT /B
DISK 8B DUCK SHOOT
DISK 8B BINGO CARD
DISK 8B BINGO
DISK 8B AUTOMATIC BINGO
DISK 8B THEIF1
DISK 88 MISSION
DISK 8B TORPEDO RUN
DISK 88 SKUNK

304 8
305 8
306 8
307 8
308 8
309 8
310 8
311 8
312 8
313 8
314 8
315 8
316 8
317 8
318 8
319 8
320 8
321 8
322 8
323 8
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

DISK 8B NEV CRAPS
DISK 8B SLOTS-PADDLES
DISK 8B SNOW RACER
DISK 8B AIRPORT
DISK 8B CHECKERS
DISK 8B FREUD
DISK 8B HANGPERSON
DISK 8B GO BACK
DISK 8B SHOOT STARS
DISK 8C STARSHIP ATTACK
DISK 8C HANGMAN
DISK 8C TARGET SHOOT
DISK 8C INSTANT LOTTERY
DISK 8C DODGE BALL
DISK 8C D N A
DISK 8C CARWASH
DISK 8C JUGGLE
DISK 8C ANDY'S MAZE RACE
DISK 8C STARWARS APPLE
DISK 8C LIFE #1000
DISK 9A CALCULATOR
DISK 9A REACTANCE CALCULATI
DISK 9A TRANSISTOR PARAMETE
DISK 9A SIN PLOT
DISK 9A METRICS AREA
DISK 9A METRICS LENGTH
DISK 9A METRICS VOLUME
DISK 9A METRICS KITCHEN
DISK 9A METRICS TEMPERATURE
DISK 9A PERMUTATIONS-COMBIN
DISK 9A BINOMIAL DISTRIBUTI
DISK 9A PRIME FACTORS OF IN
DISK 9A PLOT
DISK 9A FAST FOURIER TRANSE
DISK 9A FAST FOURIER TRANSF
DISK 9A TOTAL
DISK 9A LOOP ANTENNA
DISK 9A XLINE IMPEDANCE
DISK 9A NUMBER BASE CONVERT
DISK 9A HEX-DEC CONVERTER
DISK 9A CALC PI TO 1000 DIG
DISK 9A LONG DIVISION
DISK 9A DIVISION
DISK 9A MULTIPLY
DISK 9A MATH PRACTICE
DISK 9A EXTERIOR BALLISTICS
DISK 9A HARMONIC ANALYSIS
DISK 9A QUADRATIC SURFACE
DISK 9A HEX CONV.
DISK 9A NOTCH FILTER
DISK 9A GREAT CIRCLE

APPL€ ir.

An Infinite Number
Of Reasons To Shop At
ComputerLand of Marin

Once you have made your decision to buy an Apple
Computer, now comes the big question...where? There
is a lot more to buying a computer than just taking it
home and plugging it in - that's where we come in: We
talk to you one on one, spending all the time you need
to help you select a system. We stock everything from
Apple Computers to Zilog books to make your selection
easier. Our service doesn't stop there - we unpack your
new computer and run test after test to assure it is in
good working order. You just get it home, and now you
have a thousand questions, you really don't know what
to do next... call or drop in, that's what we're here for.
We were all beginners once and the only unanswered
question is one you don't ask. Should something stop

working (it can happen), we have a full-time technician
to repair your maching in and out of warranty!

Last... but not least, are the people you deal with.They
are not on commission, and all are there to help you!!

COME IN... WE'RE SURE YOU WILL LIKE WHAT YOU
SEE. {

ComputerLand
• OF MARIN

1930 4th ST., SAN RAFAEL, CA. 94901 (415)4 59-1767
Open Tues-Fri 10-7, Sat. 10-5 and Mon. by appointment.

C H E C K B O O K
THIS C HECKBOOK PR OGRAM IS BASED ON THE
ORIGINAL EROM THE APPLE COMPUTER
COMPANY. IT HAS HAD SO MAN Y PATCHES
PUBLISHED IN SO MA NY NEWS LETTERS THAT
NO O NE SEE MS TO KN OW WH AT WORKS AND
WHAT DOESN'T. THIS LISTING OF THE
ENTIRE PR OGRAM WITH ALL THE FIXES FOR
DISK AND PRINTER WE HOPE WILL TAKE
CARE O F TH E PRO BLEM.

The SE APPL E CORE wishes to thank
Howard Gannes for the disk
modifications, Ken Silverman for
modifying i t for proper printer output
and la st but not least to John Couch
of Apple Computer Company for
permission t o print the program.

LIST-
0 A=0: DIM C $(12),D(13),N$(40

),RA(13),R(13),L$(40): PRINT
"NOMON I, 0,C": PRINT "BLOAD FAST
SORT": GOTO 1000

0 PO KE 204 ,252: POKE 205,8: GOTO
1100

1 IF CM+S+S5HM THE N 20000: FOR
J=0 TO S:A =D(J): POKE CM+J+
J-0, PEEK (2 052): POKE CM+J+
J, PEEK (2053): NEXT J:CM=CM+
S+S: RE TURN

2 F OR J=0 TO S: POKE 2 052, PEEK
(P+J+J-2): POKE 2 053, PEEK
(P+J+J-0):R(J)=A: NEXT J: RETURN

3 BC M=CM:CM=P-0: GOSUB 0:CM=BCM:
RETURN

A F OR Q =B T O B+ LEN(C$)/2-0: POKE
2052, ASC(C$(Q-B+Q-B+0)): POKE
2053, ASC(C$(Q-B+Q-B+2)):D(
Q)=A: NEXT Q: RETURN

5 F OR Q =B T O B+ SL/2-0:A=R(Q):
POKE 2059+Q-B+Q-B, PEEK (2052

): POKE 2060+Q-B+Q-B, PEEK
(2053): NEXT Q: POKE 2059+Q-
B+Q-B, 0: RETURN

6 C ALL -936: TAB (20- LEN(N$)
/2): PRINT N$: PRINT "CHK# MO/DA
/VR T O:";: TAB 30: PRINT "AMOUNT
CODE"; :L=3: RETURN

1 TAB E: IF C<0 THE N CALL -1008
: FOR A=0 TO A: IF ABS (C)>=
10 ® A TH EN CALL -1008: NEXT
A: IE I<Z AND E>15 THEN GOS UB
36: PRINT C;: RETURN

'B IF I<Z OR F<Z THEN POK E 50,
127:C= AB S (I): GOSUB 7: PRINT

IF ABS (F)<10 THEN PRINT
Zi: PRINT AB S (F);: POKE 50
, 255:SG=0: RETURN

" P=P+S+S:E=A:C=R(0): TAB 0 : CALL
-868: GOSUB 7 :E=7:C=R(2)/256
; GOSUB 7: PRINT ;:A=R(2
) MOD 256: IF A<10 THEN PRINT
" "i: PRINT A ;"/";

12 1= A BS (R(3) MOD 256): IF I<
10 TH EN PRI NT " PRINT I;
" ";:B=A:SL=T: GOSUB 5: PRINT
C$;;E=T1:I=R(10) :F=R(11): GOTO
10

13 CALL -936 : TAB (20- LEN(N$)
/2): PRINT N$: PRINT "CHK# MO/DA
/yB TO:";: TAB (27): PRINT
"AMOUNT BAL ANCE";:L=3: RETURN

14 I=Z:F=Z: INPUT "?",L$: IF NOT
LEN(L$) THEN 14: IF L$(0,0)
#"-" THEN 15: IF LEN(L$)=0 THEN
14:L$=L$(2, LEN(L$)):SG=-0

15 FOR J=0 TO L EN(L$):A= ASC(L$
(J))-176: IF A=28 THEN A=1:
A=(A<>31)*A: IF A<Z OR A>9 OR
I>3275 THEN 16:1=1*10+A*SG:

NEXT J: RETURN
16 IF A#-2 THEN 14: IF LEN(L$)

=J THEN RETURN : FOR K=J+0 TO
LEN(L$):A= ASC(L$(K))-176: IF
A<Z OR A>9 THEN 14:F=F*10+A*
SG: NEXT K

17 IF J+0= LEN(L$) THEN F =F*10
: IF F>99 THEN 14: RETURN

18 INPUT "?",L$:A= LEN(L$): IF
A>=S THEN A=12: IF NOT A THEN
18:C$=L$(0,A)

19 IF LEN(C$)<12 THEN C $(LEN(
C$)+1)=" ": IF LEN(C$)<12 THEN
19:B=4: GOSUB 4:SG=0: IF C$
(0,0)="#" THEN SG=-0: RETURN

20 INPUT "?",C$: IF LEN(C$)>4 THEN
C$=C$(0,A)

21 IF LEN(C$)<A THEN C$(LEN(C$
)+0)=" ": IF LEN(C$)<A THEN
21:B=12: GOTO A

22 PRINT "";: CALL -958: RETURN

23 IF PEEK (-1638AX128 THEN RETURN
: POKE -16368,0: POP :L=L+0:

GOTO 1835
2A IF PEEK (-1638AX128 THEN RETURN

: POKE -16368,0: POP :L=L+0:
GOTO Q

30 PRINT : PR#0: VTAB 22: PRINT
"HIT SPACE BAR TO STOP LISTING"
: VTAB L: PR#PS: RETURN

36 CALL -1008: IF I=BALI THEN
PRINT IF I#BALI THEN
PRINT "#";: RETURN

AO RETURN
97 A=Q+2*(Q>0)+(Q>2)+12*(Q>3)+

2*(Q>A)+A*(Q>5): RETURN
100 FOR C=0 TO S:RA(C)=R(C): NEXT

C:I=P: RETURN
1000 0=1:Z=A:S=13:LM=3000:CM=LM-

0: POKE 2052, PEEK (202): POKE
2053, PEEK (203):HM=A: IF A<
Z THEN HM=32767

1035 GOTO 1050
10AO DEL 0
1050 POKE 8,32: POKE 9,12: POKE

10,253: POKE 11,133: POKE 12
,255: POKE 13,96

1090 D$="": REM CTRL D
1100 TEXT : PRINT D$;"PR#0": CALL

-936: PRINT "APPLE COMPUTER INC-
CHECKBOOK II"

1105 TAB 12: PRINT "CHECKING ACCOUNT"
: PRINT : TAB 6: PRINT "DATA BAS
E MANAGEMENT SYSTEM"

1106 PRINT : PRINT "TO PRINT OUTPUT,
TYPE 'P• BEFORE THE": PRINT
"NUMBER 2,3,A OR 6"

1110 PRINT : PRINT " 1. ENTER DATA"
: PRINT " 2. BALANCE"

1115 PRINT " 3. RECONCILE TO BANK ST
ATEMENT": PRINT " A. LIST AND/0
R CHANGE DATA"

1120 PRINT " 5. SORT"
1125 PRINT " 6. SEARCH": PRINT

" 7. DELETE RECONCILED RECORDS"

1130 PRINT " 8. DELETE UNRECONCILED
RECORDS": PRINT " 9. CHECK FILE

LENGTH": PRINT "10. SAVE DATA
TO DISK": PRINT "11. QUIT"

1131 PR#0
1132 PRINT : PRINT L$
1133 A=0:Q=0
1135 PRINT : PRINT : PRINT "WHICH ?"

;:H=Z
11AO A= PEEK (-1638A): IF AC128 THEN

11AO: IF A=208 THEN POKE -16368
,0: TAB 7: PR#0: INPUT Q

11AA PR#0
11A5 IF Q<0 OR Q>11 THEN 1100:PS=

0: IF AO 208 OR Q<2 OR Q=5 OR
Q>6 THEN 1150: PRINT : INPUT
"WHAT SLOT IS YOUR PRINTER IN »

PS
11A9 PR#0
1150 GOSUB Q*200+1000:PS=0
1155 PRINT D$;"PR#0": GOTO 1100
1200 CALL -936: PRINT : PRINT "DO YOU

WANT TO ENTER DATA FROM THE"
: PRINT "KEYBOARD, DISK, OR TAPE
?(K, D, OR T)?";: INPUT C$

120A IF C$="D" THEN 1300: IF C$=
"T" THEN 1320

1208 PRINT "IF YOU WANT AUTOMATICALLY
ASSIGNED CHECK#'S ENTER THE STA

RTING #, IF YOU WANT":S2=Z
1212 INPUT "TO ENTER THEM YOURSELF, E

NTER A '0'",S1: IF S1<Z THEN
1212: IF S1>Z THEN S2=0

1216 PRINT : PRINT "TO ENTER A DEPOSI
T, TYPE A '#' SIGN FOR THE F IRST

CHARACTER OF THE 'TO: ' FIELD"
: PRINT

1220 PRINT "WHEN YOU'RE THROUGH ENTER
ING DATA, ENTERA '-1' FOR CHK# 0
R MO TO RETUR N TO THE MENU."
: PRINT : GOTO 1228

122A PRINT "READY TO GO TO THE NEXT P
AGE ?"

1228 INPUT "HIT 'RETURN' KEY WHEN REA
DY..",L$

1232 GOSUB 6
1236 IF NOT S2 THEN INPUT S1
1240 C=S1: VTAB L: CALL -958: IF

C<Z THEN RETURN : IF C>9999
THEN 1 244:D(0)=C:E=4: GOSUB

7: GOTO 1 248
1244 PRINT "CHECK # TOO HIGH": GOTO

1236
1248 INPUT C: VTAB L : TAB 5: CALL

-958: IF C<Z THEN 1100: IF
C=Z OR C>12 THEN 1252:E=7: GOSUB
7: PRINT "/";:D(2)=C*256: GOTO
1256

1252 GOSUB 22: GOTO 1248
1256 INPUT C: VTAB L : TAB 9: CALL

-958: IF C<0 OR C>31 THEN 1260
:E=10: GOSUB 7: PRINT
0(2)=D(2)+C: GOTO 1264

1260 GOSUB 2 2: GOTO 1256
1264 INPUT C: VTAB L : TAB 12: CALL

-958: IF C<Z OR C>99 THEN 1268
:E=13: GOSUB 7:D(3)=C: GOTO
1272

C H E C K B O O K (C O N T ')
1268 G OSUB 22: GOTO 12 64
1272 GOSUB 18: VTAB L: TAB 14: CALL

-958: PRINT " ";C$;: IF C$(
1,1)#"#" THEN 12 80

1276 IF S2 THEN S1 =S1-1
1280 G OSUB 14: VTAB L: TAB 27: CALL

-958:D(10)=I:D(11)=F:E=32: GOSUB
10

1284 G OSUB 20: VTAB L: TAB 36: CALL
-938: PRINT " ";C$;

1288 G OSUB 4
1292 L=L+ 0:S1=S1+0: GOSUB 0: GOTO

1236-12 *(L>22)
1300 CA LL -936: PRINT "THE FO LLOWING

CHECKBOOK D ATA FIL ES ARE": PRINT
"ON TH IS DIS KETTE:"

1301 PR INT "";"CATALOG"
1305 PR INT : POKE 54,37: POKE 55

,3: POKE 2052, PEEK (977): POKE
2053, PEEK (978)

1315 PR #0
1320 PR INT : INPUT "REPLACE C URRENT D

ATA O R A PPEND T O IT (R/A) ?"
,L$

1325 IF L$="R" THEN 1335: IF L$#
"A" THEN R ETURN

1330 BC M=LM:LM=CM+0: GOSUB 1335:
LM=BCM: RETURN

1335 IF C$="T" THEN 1350: PRINT
"WHAT IS THE N AME O F YOUR FILE?"
: INPUT L$: PRINT "";"BLOAD"
;L$;".*,A2048":B=LM+A: IF B>
HM O R A <Z TH EN G OSUB 20000 :
CM=B

1338 CA LL -936
1340 PRINT "LOADING IN FILE '";N$

. Ill II

1342 PRINT : PRINT
1345 PR INT : PRINT "FROM C HECK #"

;D(5);" TO C HECK # ";D(6): PRINT
"";"BLOAD ";L$;",A";LM: FOR
WR=1 TO 50 0: NEXT W R: RETURN

1350 PO KE 60,Z: POKE 61,8 : POKE
62,102: POKE 63,8 : POKE Z,134
: POKE 0,255: POKE 2,32

1355 POKE 3,253: POKE 4,25 4: POKE
5,166: POKE 6,255: POKE 7,96

1360 INP UT "START PLA YING TAP E, THEN
HIT 'RETURN1",L$: CALL Z:B=
LM+A: IF B>HM O R A <Z THEN G OSUB
20000

1365 CM =B: PRINT "READING IN FILE '"
;N$; : PRINT "FROM C HECK #"
;D(5);" TO CH ECK#";D(6)

1370 POKE 60,L M M OD 256: POKE 61
,LM/256: POKE 62 ,CM M OD 256
: POKE 63,CM /256: CALL Z: RETURN

1400
1402

1405
1410

1415
1420

1425

P=LM:T=8:T1=28:H=Z
INPUT "ENTER ST ARTING C HECK #"
,C: PRINT "ENTER ST ARTING B ALANC
E";:SG=0: GOSUB 14:BALI= I:BALF=
F
PRINT "PR#";PS
GOSUB 2: IF P>=CM T HEN 170 0
:P=P+S+S: IF R(0)<C THEN 141 0
:P=P-S-S
GOSUB 13
PRINT "STARTING BA LANCE
--";:E=37:I=BALI:F=BALF: GOSUB
10
IF PS=0 T HEN G OSUB 30: VTAB
L+0

1427 IF PS THEN PR INT
1429 IF PS>0 TH EN W W=940: IF PS<

1 THEN W W = 19
1430 FOR L=3 TO W W: IF P>CM TH EN

1700: GOSUB 2
1435 GO SUB 11
1440 BALI=BALI-R(10):BALF =BALF-R(

11)
1445 BALI=B ALI+ SG N (BA LF)*(ABS

(BALF)>99):BALF =BALF M OD 100

1450 I F ABS (SGN (B ALI)- SGN (BALF)
)<>2 THEN 1460

1455 A= SG N (BALI):BALI=BALI+ SGN
(BALF):BALF=BALF+100* SGN (
A)

1460 I F H TH EN R ETURN
1465 E=37:I=BALI:F =BALF: GOSUB 10

:Q=1470: GOSUB 24: IF PS THEN
PRINT : NEXT L

1468 PR#0
1470 PR#0: PRINT : PRINT "HIT 'ESC1 T

0 RETURN TO T HE M ENU, 'RTN1"
: PRINT "TO CO NTINUE BAL ANCING"
;: CALL 8:A= PE EK (255)-128
: IF A=27 TH EN R ETURN

1471 IF PS>0 TH EN G OTO 1425: GOTO
1425

1600 P=LM:T =8:T1=29:H=0:BALI=Z:BALF=
Z

1605 INPUT "ENTER STARTING C HECK #"
,C: PRINT "ENTER BE GINNING BA LAN
CE F ROM B ANK STAT E-MENT";:SG=
0: GOSUB 14:RBI=I:R BF=F

1606 PRINT "PR#";PS
1610 G OSUB 2: IF C>=CM TH EN 1700

:P=P+S+S: IF R(0)<C THEN 1610
:P=P-S-S

1615 GOSUB 13
1620 PRINT "STARTING BA LANCE

:E=37:I=RBI:F=RBF: GOSUB
10

1625 VTAB 20 : TAB 0 : PRINT "HIT SPACE
BAR IF CHECK IS LISTED ON "
: PRINT "STATEMENT, 'RTN' IF NOT
, 'ESC' TO STO P": VTAB L+0

1630 FOR L=3 TO 16+16*(PS>0): IF
P>=CM TH EN 1665: GOSUB 2

1635 GOSUB 11:Q-R(3)<Z : IF Q T HEN
1645

1640 CALL 8:A= PEEK (255)-128: IF
A=27 THEN 1665: IF A=13 THEN
1695

1645 RBI=RBI-R(10):RBF=RBF-R(11)

1650 RBI=RBI+ SG N (RBI)*(ABS (RBF)
>99) :RBF=RBF M OD 100: IF ABS
(SGN (RBI)- SGN (RBF))<>2 THEN
1660

1655 A= S GN (R BI):RBI=RBI+ SGN (
RBF):RBF =RBF+100* SG N (A)

1660 A=- ABS (R(3)): POKE P -21, PEEK
(2053): POKE P-22 , PEEK (2052
):I=RBI:F=RBF:E=37: GOSUB 10
:Q=1665: GOSUB 24

1661 IF PS THEN PR INT : NEXT L
1665 CALL -958: PRINT
1670 PR INT "SUM O F DE POSITS N OT CREDI

TED O N ST ATE- MENT (+) & CH ECKS
STILL OUT (-)";:I=BALI:F=BALF:

E=37: GOSUB 10
1675 R(10)=-RBI:R(11)=-RBF: GOSUB

1440:I=BALI:F=BALF:R(10)=RBI:
R(11)=RBF: GOSUB 1440

1680 PR INT "BOOK BA LANCE A T C HK #"
;R(1);" IS "; :E=37: GOSUB
10: CALL -958: IF P>=CM T HEN
1700

1685 PRINT : PRINT "HIT 'ESC' TO R ETU
RN TO T HE M ENU, 'RTN'": PRINT
"TO CONTINUE RECONCILING";:

CALL -958
1690 CALL 8 : IF PEEK (255)-128=27

THEN R ETURN : GOTO 1 615
1695 PRINT " —GOSUB 1440

: GOTO 1661
1700 PR INT : CALL -958: PRINT D$

;"PR#0": PRINT "THAT'S AL L T HE C
HECKS IN MEMORY."

1705 PRINT "HIT ANY K EY T O G ET B ACK T
0 THE MENU ..";: CALL 8:H= Z:

RETURN
1800 INPUT "ENTER THE C HECK N UMBER Y O

U W OULD LIKE THE LI ST TO S TART
WITH" ,C

1805 P=LM: PRINT "PR#";PS
1810 G OSUB 2: IF P>=CM T HEN 1 860

:P=P+S+S: IF R(0)<C TH EN 1 810
:P=P-S-S

1814 IF PS<1 TH EN W W=19: IF PS>0
THEN W W=940

1815 GO SUB 6: GOSUB 30:T =12:T1=32
: FOR L=3 TO W W: IF P>=CM T HEN
1825

1820 G OSUB 2 : PRINT : IE PS<1 T HEN
VTAB L : GOSUB 11 :SL=B:B=T: GOSUB
5: PRINT " ";C$;:Q=1825: GOSUB
24: NEXT L

1825 PRINT : IF P<CM T HEN 1 830
1826 PRI NT "THAT'S AL L O F TH EM!"

1827
1828

1829
1830

1835

1840

PR#0
INPUT "HIT 'RETURN' TO G ET B ACK
TO ME NU",L$
RETURN
PR#0: PRINT "THERE A RE M ORE C HEC
KS IN MEMORY, NOW..."
PRINT '"M' MAKE C HANGES, 'L' LIS
T FR M N EW C HK#": CALL -958
PRINT "'ESC' RTN T O M ENU, OR 'R T
N' CONTINUE": PRINT "LISTING"

1841 CA LL 8:A= PEEK (255)-128: PRINT
1845 IF A=13 THEN 1815: IF A=27 T HEN

RETURN : IF A=77 T HEN 24 05:
IF A=76 TH EN 1850 : GOTO 1 841

1850 CA LL -936: GOTO 18 00
1855 RE TURN
1860 PRI NT : PRINT "NO C HECKS IN M EMO

RY": FOR N= 1 TO 30 0: NEXT N :
GOTO 1100

2000 CALL -936: VTAB 5: PRINT "YOU MA
Y SO RT ON O NE O F TH E F OLLOWING:"

2005 PRINT
2010 PRINT "1. CHECK # ": PRINT "2. DA

TE": PRINT "3. 'TO:' FIELD"
: PRINT "4. AMOUNT": PR INT
"5. CODE": PRINT

2015 INPUT "WHICH ", Q: IF Q<0 O R
Q>5 TH EN 201 5

2020 PO KE 786,136+ (Q=3 O R Q =5)*64

2025 GOSUB 97 : POKE 2,A :Q=Q+(Q=3
OR Q=5)-(Q# 3 AND Q# 5): GOSUB

97: POKE 3.A+255* N OT A
2030 FO R PI = LM T O C M-S-S S TEP S +

S:I=P1: POKE Z,P1 M OD 2 56: POKE
0.P1/256

C H E C K B O O K (C O N T . 2)
2035 F OR P2=P1+S+S T O C M-S-S S TEP

S+S: A=P2: CALL 768
2040 NEXT P2:I= P EEK (0) + PEEK (

1)*256
2045 P=I: GOSUB 2: GOSUB 10 0:P=:P1:

C0SUB 2 : P=I: FOR C =0 T O S:
D(C)=R(C): NEXT C

2050 G OSUB 3: P=P1: FO R C =0 T O S:
D(C)=RA(C): NEXT C: GOSUB 3

2055 P RINT "S ORTING NEXT P1:
PRINT "DONE !!!": FOR C =0 T O

700: N EXT C : RETURN
2200 P=LM:H=0: CALL -936: VTAB 5

: PRINT "Y OU M AY S EARCH B Y O NE O
F T HE FOLLOWING:": PRINT : PRINT
"1. C HECK N UMBER": PR INT "2. MON
TH": P RINT "3 . DAY"

2205 P RINT "4. YEAR": PRINT "5. 'TO:'
FIELD": PRINT "6. AMOUNT":
PRINT "7. CODE"

2210 PRINT :B ALI=Z:BALF=Z
2215 I NPUT "W HICH F IELD B Y N UMBER "

,F1: IF FK0 OR F 1>7 THEN R ETURN
: GOSUB 2260+F1*5: PRINT "PR#"
i PS

2220 G OSUB 6
2225 IF P >=CM T HEN 22 40: GOSUB 2

: GOSUB 2295+E1 *5: IF U T HEN
GOSUB 2230:P=P+S+S: GOTO 22 25

2230 T =12:T1=32: PR INT : VTAB L:
TAB 0: G OSUB 2: GOSUB 11 :SL=

B:B=T: GOSUB 5: PRINT " ";CS
;:L=L+0:P=P-S-S

2232 BALI=BALI+R(10):BALF=BALF+R(
11): GOSUB 1 445

2234 IF P S T HEN RETURN
2235 IF L <23 T HEN R ETURN : PRINT

"HIT 'ES C' TO G ET B ACK T O T HE M E
NU, 'RTN'TO C ONTINUE SE ARCHING."

CALL 8: IE PEEK (255)-128
=27 T HEN RETURN

2236 GOSUB 6: RETURN
2240 PRINT : TAB 21: PR INT "TOTAL"

; :E=32:I=BALI:F=BALF: GOSUB
10

2245 PRINT : PRINT "THA T'S AL L O F THE
M !"

2250 PRINT : PRINT D$;" PR#0"
2255 INPUT "H IT 'RETURN' TO G ET BA CK

TO THE MENU",L$
2260 RETURN
2265 PRINT " CHECK N UMBER";: GOTO

2335
2270 PRINT "M ONTH";: GOTO 23 35
2275 INPUT "I NPUT MON TH,DAY,YEAR."

>M,D(3): IE A<0 O R A >=S O R
Q<0 O R Q>31 T HEN 2275 :D(2)=
A*256+Q: RETURN

2280 PRINT "Y EAR";: GOTO 23 35
2285 P RINT "T O F IELD L OOKING F OR"

IT G OTO 18
2290 P RINT " AMOUNT L OOKING F OR";

: GOSUB 14:D(10)=I:D(11)=F:
RETURN

2295 PRINT "C ODE L OOKING FO R";: GOTO
20

2300 U =D(0)=R (0): RETURN
2305 U=D(2)=R(2)/256: RETURN
2310 U=(D(2)=R(2) AND D (3)= ABS

(R(3) MOD 256)): RETURN
2315 U=(D(3)= A BS (R(3) MOD 256)

): RETURN

2320 U=0: FOR J=4 TO 9:U=(U AND
D(J)=R(J)): IF U THEN NEXT
J: RETURN

2325 U=(D(10)=R(10) AND D(11)=R(
11)): RETURN

2330 U=(D(12)=R(12) AND D (S)=R(S)
): RETURN

2335 INPUT " LOOKING FOR",D(F1-(
F1>2)): RETURN

2400 GOTO 3600
2405 VTAB L : TAB 0: CALL -958: PRINT

: PRINT "YOU MAY NOW : 1. CHANG
E ABOVE DATA"

2410 PRINT " 2. DELETE
BY CHECK #"

2415 PRINT
2420 INPUT "WHICH ",Q
2425 IF Q=2 THEN 3400: IF Q=1 THEN

2430: GOSUB 22: GOTO 2405
2430 VTAB L+0: TAB 0: CALL -958:

PRINT "TYPE 'CTRL' 4 DESIRED KE
Y SIMULTANEOUSLY";

2435 PRINT "A=ADVANCE B=BACK UP"

2440 PRINT "U=UP D=DOWN";

2445 TAB 27: PRINT "E=EXIT TO MENU"
: PRINT "*HIT SPACE BAR BEFORE E
NTERING NEW DATA*";

2450 P=P-S-S:L=L-0: VTAB L:S1=0
2455 CALL 8:A= PEEK (255): IF A>

154 THEN 2490: IF A=129 THEN
2460: IF A=130 THEN 2465: IF
A=132 THEN 2475: IF A=133 THEN
2480

2456 IF A=149 THEN 2485: IF A=144
THEN 1815: GOTO 2455

2460 IF S1=7 THEN S1=Z:S1=S1+0: GOTO
2470

2465 IF S1=0 THEN 2455:S1=S1-0
2470 TAB S1+3*(S1=2)+5*(S1=3)+7*

(S1=4)+9*(S1=5)+21 *(S1=6)+29
*(S1=7): GOTO 2455

2475 IF L=17 THEN 2455:L=L+0: VTAB
L:P=P+S+S:SG=0: GOTO 2455

2480 RETURN
2485 IF L=3 THEN 2455:L=L-0: VTAB

L:P=P-S-S:SG=0: GOTO 2455
2490 GOSUB 2 : FOR J=0 TO S:D(J)=

R(J): NEXT J:D(3)= ABS (R(3
)): POKE 35,L: POKE 34,L-0:

GOSUB 2 500+S1*5: POKE 35,24
: POKE 34,Z

2495 VTAB L: GOSUB 3: FOR J=0 TO
S:R(J)=D(J): NEXT J: GOSUB
11:SL=B:B=T: GOSUB 5: PRINT
" M,C$*

2500 VTAB L:P=P-S-S: GOTO 2460
2505 INPUT D(0): RETURN
2510 INPUT A:D(2)=D(2) MOD 256+A*

256: RETURN
2515 INPUT A:D(2)=D(2)/256*256+A:

RETURN
2520 INPUT D(3): RETURN
2525 GOTO 18
2530 GOSUB 1 4:D(10)=I:D(11)=F: RETURN

6 1

2535 GOTO 20
2600 GOTO 3625
2605 PRINT "WHAT IS THE NAME OF THIS

FILE?": INPUT N$
2610 P=LM: GOSUB 2
2615 D(5)=R(0):P=CM-S-S+0: GOSUB

2:D(6)=R(0)
2620 A=CM-LM: IF A<Z THEN RETURN

: PRINT "";"BSAVE ";N$;",*,A2048
,L103"

2625 PRINT "";"BSAVE";N$;",A";LM;
",L";A+0: RETURN

2800 A=(CM-LM+0)/S/2:B=(HM-LM-0)
/S/2

2810 PRINT A;" RECORDS USED OUT OF "
;B;" TOTAL": PRINT "LEAVING "
;B-A;" UNUSED.": POP : GOTO
1135

3000 GOTO 2605
3200 INPUT "DO YOU WANT TO SAVE YOUR

DATA (Y/N)?",C$: IF C$="Y" OR
C$="YES" THEN GOSUB 2605

3205 POP : PRINT : PRINT "OK": END

3400 VTAB 18: TAB 0: CALL -958: PRINT

3405 INPUT "START CHECK NUMBER",
I: VTAB 20: INPUT "END CHECK NUM
BER",F:P=LM

3410 GOSUB 2: IF P>=CM THEN 3440
:P=P+S+S: IF I#R(0) THEN 3410
:P=P-S-S:B=P

3415 GOSUB 2: IF P>=CM THEN 3440
:P=P+S+S: IF F#R(0) THEN 3415
:A=P

3420 POKE 60, PEEK (2052): POKE
61, PEEK (2053):A=CM: POKE
62, PEEK (2052): POKE 63, PEEK
(2053):A=B: POKE 66, PEEK (
2052): POKE 67, PEEK (2053)

3425 CALL -468:CM=CM-P+B: IF Q=2
THEN 1100: IF Q=7 THEN RETU RN

3430 VTAB 21: TAB 0: INPUT "MORE (Y/N
) ?" L$

3435 IF L$="Y" THEN 3400: IF L$=
"N" THEN RETURN : GOSUB 22:

GOTO 3425
3440 PRINT "BAD RANGE!!!": FOR N=

0 TO 6 00: NEXT N
3445 GOTO 2405
3600 P=LM
3605 GOSUB 2: IF P>=CM THEN 3620

:P=P+S+S: IF R(3)>Z THEN 3605
•B=P-S-S

3610 GOSUB 2:P=P+S+S: IF P>=CM THEN
3615: IF R(3)<Z THEN 3610

3615 P=P-S-S:A=P: GOSUB 3420:P=B:
GOTO 3605

3620 PRINT : PRINT "DONE!": GOSUB
22: FOR N=1 TO 300: NEXT N:

RETURN
3625 P=LM
3630 GOSUB 2: IF P>=CM THEN 3645

:P=P+S+S: IF R(3)<Z THEN 3630
:B=P-S-S

3635 GOSUB 2:P=P+S+S: IF P>=CM THEN
3640: IF R(3)>Z THEN 3635

3640 P=P-S-S:A=P: GOSUB 3420:P=B:
GOTO 3630

3645 PRINT : PRINT "DONE!": GOSUB
22: FOR N=1 TO 300: NEXT N:

RETURN

CHECKBOOK (CONT.3)
20000 POP : POP : PRINT " *** MEMORY

FULL ***": FOR A=1 TO 200: NEXT
A: GOTO 110 0 _

30000 REM PRINT ROUTINES MOD BY KEN S
ILVERMAN

30001 REM PROGRAM RE EDIDED BY MIKE N
ADELMAN 8/79

65538 REM MODIFIED BY H.J.GANNES 11/7
Q

65535 REM *** COPYRIGHT 1977 BY APPLE
COMPUTER: WRITTEN BY R.WIGGINTON

& A.C. MARKKULA

FAST SORT
*300.
0300-
0308-
0310-
0318-
0320-
0328-
0330-
0338-
0380-
0388-
0350-

360
A8 02
05 08
DO 06
90 08
85 01
12 C6
C1 66
8C FO
80 28
AO 00
00

AD 08 08
85 05 B1
C8 C8 03
A5 08 85
60 00 00
1F 30 07
1E 60 28
FD A9 08
1E 10 F3
BD 00 08

85 08 AD
00 D1 08
DO F5 60
00 A5 05
C9 8D FO
DO 08 C9
1E 30 FB
85 1F A9
60 A2 32
8A 8A 8A

•300LLL

0300-
0302-
0305-
0307-
030A-
030C-
030E-
0310-
0312-
0313-
0315-
0317-
0318-
031A-
031C-
031E-
0320-
0322-
0323-
0328-
0325-
0327-
0329-
032B-
032D-
032F-
0331-
0333-
0338-
0336-
0338-
033B-
033D-
033F-
0381-
0383-
0385-
0386-
0388-

'038A-
038D-
038E-
038F-
0350-

A8 02
A8 08 08
85 08
AD 05 08
85 05
B1 00
D1 08
DO 06
C8
C8 03
DO F 5
60
90 08
A5 08
85 00
A5 05
85 01
60
00
00
C9 8D
FO 12
C6 1F
30 07
DO 08
C9 C1
66 1E
60
28 1E
30 FB
8C FO FD
A9 08
85 1F
A9 8D
28 1E
10 F3
60
A2 32
AO 00
BD 00 08
8A
8A
8A
00

LDY
LDA
STA
LDA
STA
LDA
CMP
BNE
INY
CPY

$02
$0808
$08
$0805
$05
($00),Y
($08),Y
$0318

$03
BNE $030C
RTS
BCC $0322
LDA $08
STA $00
LDA $05
STA $01
RTS
BRK
BRK
CMP #$8D
BEQ $033B
DEC $1F
BMI $0338
BNE $0333
CMP #$C1
R0R SI E
RTS
BIT $1E
BMI $0333
JMP $FDF0
LDA #$08
STA $1F
LDA #$8D
BIT $1E
BPL $0338
RTS
LDX #$32
LDY #$00
LDA $0800,X
LSR
LSR
LSR
BRK

MISCELLANEOUS
BON VO YAGE POKE 33,33
B Y B R U C E T O O N A Z Z I N I

We bid adieu this month to a friend o
the Apple Core with whom we all
spent a great deal of time. But while
I'm sure we shall long remember him,
we are all certainly glad to be rido
him. No, I'm not speaking of the
Apple Core librarian, and no
ground-swells need apply; I am talking
of course of good old ESC A.

"Going?", you ask incredulously, "ESC
A?" "But however will we steam past
those huge horrible holes in our
listed quotes and rem statements.
Enter stage left our hero, POKE 33,33.
Yes, our old friend POKE, helping us
out of yet another jam. Try him out
the next time you have to copy a
listed print statement.

Press ESC (shift) P (return); then
type "POKE 33,33" (return). Now LIST
your line(s) to be edited. You will
note that the print statement is all
scrunched up* with no extra spaces on
the left-hand side. Now COPY over the
line, using the forward arrow. Since
you have set a scrolling window 33
characters wide, the cursor will
automatically jump to the next line as
soon as it reaches the right margin of
your text. How do you get out ot this
mode? Just type "TEXT". This little
trick will work in both Integer and
Applesoft. And whom do we have to
thank? Well, it appears everybody in
the known world was aware of this one
except the Apple Core, so I guess we
have to thank J. Alfred Glitch for
keeping us in the dark so long.
Thanks a lot, Alf.

•This author has been asked to define
the term "scrunch". In this author's
opinion, those cretins who asked him
to do so should spend a little more
time studying their technical manuals
and a little less time criticizing
those who would utilize proper
terminology. "Scrunch" is, of course,
an historical term dating from the
late 80's and the original Apple,
E N I A C . I t w a s s h o r t f o r ,
appropriately enough, ESC CRUNCH, a
c o m m a n d w h i c h w o u l d c a u s e a
shift-right of all the electrons
available in the entire five-story
building. Needless to say ESC CRUNCH
was the ENIAC's single most powerful
instruction; so powerful it lead to
the computer's eventual downfall, when
an operator carelessly punched it up
while using the full 30K of core and
t h e r i g h t s i d e o f t h e b u i l d i n g
collasped from the sheer weight of the
electrons.

6 2

B Y L A R R Y D A N I E L 8 0 N

As we saw in last month's article, BON
VOYAGE by Bruce Tognazzini, POKE 33,33
allows us to edit our listed programs
much easier, without using the escape
characters. When listing sections of
a p r o g r a m w i t h m y p r i n t e r , I
discovered that by using POKE 3 3,33
first, the printer more efficiently
u s e s i t s 8 0 c h a r a c t e r w i d t h
capability. The POKE 33,33 feature
enables the printer to list faster and
use less paper as it does not have to
perform as many carriage returns.

MAKE A BOX
B Y M A X J . N A R E F F

P l a c i n g p r o g r a m h e a d i n g s w i t h i n
borders adds to presentations. This
is a simple routine which will create
a box or border for headings.

The first line draws the top border.

10 VTAB8: HTAB9: FOR X=1 TO 23 : PRINT
"*";: NEXT

The second line draws two sides. Note
how the ping-pong effect is achieved
in the single line by the use of the
semi-colon after the first PRINT
command.

15 FOR X= 1 TO 13: HTAB9: PRINT
HTAB32: PRINT "»": NEXT

The last line closes the box.

20 VTAB16: HTAB9: FOR X=1 TO 23: PRINT
"*";: NEXT

A d j u s t t h e t a b b i n g c a r e f u l l y f o r
position, and the loop dimensions for
size of the box. The three lines can
readily be combined into a single line
subroutine by adding a colon after
each terminating NEXT.

T h e b o x c a n b e e n t e r e d f o r
introduction and credit by succeeding
lines using VTAB's and HTAB's to
ascend the screen. One of caution:
Using PRINT TAB (X) commands to enter
the box will not be successful,
because those necessary but nasty
semi-colons suppress carriage returns.
HTAB commands will perform, PRINT TA B
(X) will not! Try it and see.

One final note: With 'ANDY'S KEYBOARD
FILTER', some very striking borders
can be created.

C H A R T S & T A B L E S

HEXADECIMAL
• V R O D C A R L I S L K

While programming I often noticed the
need to convert from hexadecimal to
decimal. There are several programs
available which will do this for you,
b u t u s i n g t h e m n e c e s s i t a t e s
discontinuing the present program,
running the converter, then resuming
the program. This is an awkward
process. I read with interest J.A.
Backman's Poor Man's Hex-Decimal-Hex
Converter in Peeking at Call APPLE
V o l . I . H o w e v e r , t h a t m e t h o d
suffered from the disadvantage of
r e q u i r i n g s e v e r a l a d d i t i o n s o r
subtractions. There had to be a
better way.

I decided a larger table could cut
down on the arithmetic. Also, I could
t a k e a d v a n t a g e o f t h e f a c t t h a t
usually all that Is required is A Hex
digits. I wrote the program which
generated the accompanying tables.
With them one can convert from hex to
decimal or negative decimal into
either of the other number systems
with just one addition or subtraction.
That sure beats the method they teach
in the books. Follow the examples
which are included with the second
table to see how they work.

T h e h i g h e s t H e x d i g i t i s o n t h e
table's left side. Going from Hex to
Decimal presents no problems. Just
find the equivalent of the first two
digits in the lower table and add it

to the equivalent of the last two
digits in the upper table. When going
from negative decimal to hex, first
find the largest number In the body of
the second table whose absolute value
is smaller than the given number.
Then subtract that number from the
given number and find the difference
in the upper table.

THE APPLEHEADS

Assemble a notebook of handy charts
and tables such as this and keep it by
your Apple. You will find it cuts
down on your programming frustrations.

EXAMPLES

NEGATIVE DECIMAL
TO HEX

-23864 = ?
<-)-23808 = A2

-56 = C8
-23864 = A2C8

HEX TO
POSITIVE

DECIMAL

NEGATIVE DECIMAL
TO

POSITIVE DECIMAL
ADD 65536

A2C8
A2
C8

= 41472
= { + > 2 0 0

A2C8 = 41672

-23864 = ?
(+)65536

41672
-23864 = 41672

HEX TO
NEGATIVE

DECIMAL

A2C8
A2
C2

A2C8

41672
(->41472

200
41672

-23808
(+>-56

-23864

POSTIVE
DECIMAL
TO HEX

= A2

= C8
= A2C8

POSITIVE DECIMAL
TO

NEGATIVE DECIMAL
SUBTRACT 65536

41672
(->65536

-23864
41672 = -23864

R. & E. HANCE

• 4

HEXADECIMAL TO POSITIVE DECIMAL

HF,X 0 1 2 ? 4 5 § 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 16 17 18 19 20 21 22 23 24 25
2 32 33 34 35 36 37 38 39 40 41
3 48 49 50 51 52 53 54 55 56 57
4 64 65 66 67 68 69 70 71 72 73
5 80 81 82 83 84 85 86 87 88 89
6 96 97 98 99 100 101 102 103 104 105
7 112 113 114 115 116 117 118 119 120 121
8 128 129 130 131 132 133 134 135 136 137
9 144 145 146 147 148 149 150 151 152 153
A 160 161 162 163 164 165 166 167 168 169
B 176 177 178 179 180 181 182 183 184 185
C 192 193 194 195 196 197 198 199 200 201
D 208 209 210 211 212 213 214 215 216 217
E 224 225 226 227 228 229 230 231 232 233
F 240 241 242 243 244 245 246 247 248 249

HEX 0 1 2 3 4 5 6 7 8 9
0 0 256 512 768 1024 1280 1536 1792 2048 2304
1 4096 4352 4608 4864 5120 5376 5632 5888 6144 6400

B c D E F HEX
11 12 13 14 15 0
27 28 29 30 31 1
43 44 45 46 47 2
59 60 61 62 63 3
75 76 77 78 79 4
91 92 93 94 95 5

107 108 109 110 111 6
123 124 125 126 127 /
139 140 141 142 143 8
155 156 157 158 159 9
171 172 173 174 175 A
187 188 189 190 191 B
203 204 205 206 207 C
219 220 221 222 223 U
235 236 237 238 239 E
251 252 253 254 255 V

B C D E F HEX

10
26
42
58
74
90

106
122
138
154
170
186
202
218
234
250

A
2560
6656

2816
6912

3072
7168

3328
7424

3584
7680

3840
7936

2 8192 8448 8704 896 0 92 16 94 7 2 972 8 9984 10 240 10 4 96 1 0752 110 08 112b4
3 12288 12544 12800 13056 13312 13568 13824 14080 14336 14592 14848 15104 15360 15616 15872 16128
4 16384 16640 16896 17152 17408 17664 17920 18176 18432 18688 18944 19200 19456 19712 19968 20224
5 20480 20736 20992 21248 21504 21760 22016 22272 22528 22784 23040 23296 23552 23808 24064 24320
6 24576 24832 25088 25344 25600 25856 26112 26368 26624 26880 27136 27392 27648 27904 28160 2841
7 28672 28928 29184 29440 29696 29952 30208 30464 30720 30976 31232 31488 31744 32000 32256
8 32768 33024 33280 33536 33792 34048 34304 34560 34816 35072 35328 35584 35840 36096
9 36864 37120 37376 37632 37888 38144 38400 38656 38912 39168 39424 39680 39936 40192
A 40960 41216 41472 41728 41 98 4 4 2 2 4 0 4 2 4 9 6 4 2 7 5 2 4 3 0 0 8 4 3 2 6 4 4 3 5 2 0 4 3 7 7 6 4 4 0 3 2
B 45056 45312 45568 45824 46080 46336 46592 46848 47104 47360 47616 47872 48128
C 49152 49408 49664 49920 50176 50432 50688 50944 51200 51456 51712 51968 52224 5
D 53248 53504 53760 54016 54272 54528 54784 55040 55296 55552 55808 56064 56320 56576 56832 57088
E 57344 57600 57856 58112 58368 58624 58880 59136 59392 59648 59904 60160 60416 60672 6U928 ^
F 61440 61696 61952 62208 62464 62720 62976 63232 63488 63744 64000 64256_6

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

HEXADECIMAL TO NEGATIVE DECIMAL

HEX 0 1
0 -256 -255
1 -240 -239
2 -224 -223
3 -208 -207
4 -192 -191
b -176 -175
b -160 -1 59
1 -144 -143
8
9

-128 -127 8
9 -112 -111
A -96 -95
B -80 -79
e -64 -63
D -48 -47
E -32 -31
F -16 -15

HEX 0 1

8 B HEX

-94
-78
-62
-46
-30
-14

2

-125
-109
-93
-77
-61
-45
-29
-13

3

-124 -123
-108 -107
-92
-76
-60
-44
-28
-12

4

-91
-75
-59
-43
-27
-11

5

-250 -249 -248
-234 -233 -232
-218 -217 -216
-202 -201 -200
-186 -185 -184
-170 -169 -168
-154 -153 -152
-138 -137 -136
-122 -121 -120
-106 -105 -104
-90 -89 -88
-74 -73 -72
-58 -57 -56
-42 -41 -40
-26 -25 -24
-10 -9 -8

6 7 8

-247 -246 -245 -244 -243 -242 -241 0
-231 -230 -229 -228 -227 -226 -225 1
-215 -214 -213 -212 -211 -210 -209 2
-199 -198 -197 -196 -195 -194 -193 3
-183 -182 -181 -180 -179 -178 -177 4
-167 -166 -165 -164 -163 -162 -161 5
-151 -150 -149 -148 -147 -146 -145 6
-135 -134 -133 -132 -131 -130 -129 7
-119 -118 -117 -116 -115 -114 -113 8
-103 -102 -101 -100 -99 -98 -97 9
-87 -86 -85 -84 -83 -82 -81 A
-71 -70 -69 -68 -67 -66 -65 B
-55 -54 -53 -52 -51 -50 -49 C
-39 -38 -37 -36 -35 -34 -33 D
-23 -22 -21 -20 -19 -18 -17 E
-7 -6 -5 -4 -3 -2 -1 F
9 A B C D E F HEX

8 -3 2512-32256-32000-31744-31488-31232-30976-30720-30464-30208-29952-29696-29440-29184-28928-28672 8
9 "2 8416-28160-27904-27648-27392-27136-26880-26624-26368-26112-25856-25600-25344-25080-24832-24576 9
A "24320- 24064-23808-2 3 552-2 3 2 96-2 3 0 4 0-2 2 784 -2 2 5 2 8-2 2 2 72-2 20 1 6-2 1 760-2 1 50 4 -2 1 24 8-2 0 9 92-2 0 73 6-2 0 4 80 A
B -20 224-19968-19712-19456-19200-18944-18688-18432-18176-17920-17664-17408-17152-16896-16640-16384 B
C "16 128-15872-15616-15360-15104-14848-14592-14336-14080-13824-13568-13312-13056-12800-12544-12288 C
D -12 032-11776-11520-11264-11008-10752-10496-10240 -9984 -9728 -9472 -9216 -8960 -8704 -8448 -8192 D
E -7936 -7680 -7424 -7168 -6912 -6656 -6400 -6144 -5883 -5632 -5376 -5120 -4864 -4608 -4352 -4096 E
j -3840 -3584 -3328 -3072 -2816 -2560 -2304 -2048 -1792 -1536 -1280 -1024 -768 -512 -256 OF

Chart by Rod C arlisle (Cider Press v2.6)

6 5

.-t vo m,

JJ H S W S

M C M U ! <r oo t-a

52

w

. J O S

00 v£>
o rH

Pd X
'j-i

Pd
Cn X |

X I n - M
[x, • M X I

jn rH m
X I
jn

1
o

l
o o

o o o
CJ CJ CJ
rH m I /n

CL-I PM X
Px pM X
PQ PQ X
rH en •

m
i 1

o
i
o w o

o o o
oo 00 z 00
rH en m

O

W
pL| n X
P M • M O • M
r̂ . r>-
rH en •

<3 m
1 1

o
i
o PH o

o o o
<r <f

rH m m
CO

CJ

M
n X

P M X| PC X
en m en
rH en PM m

i 1
o

i
o <3

i
o

o o
X

o
o o X o
rH en

O
m

O

PM PM X
j-t PM o X
J M PM X
O CM • M • 1
o O H

i
o

o o o
O CJ CJ CJ
o CM -d-

»-3

O

CM CO
P M pc3 PM X
PH o CO PM w X
PQ PQ PQ
O H s CM X <r

1 X 1 1 i
o w o O o
o H HJ O o
oo 00 X 00
o CM

o
<*•

o

M

rH X
PM & PM X
PM O cn PM X
r^ r^
o

X
a CM

1 | i
o

?s
w i

1
O

1
o

o H •J O o
<r <J- <r
o CM

Pd CO
CJ W

PM •< M PM X
PM P- H PM X
en M en en
O O HJ CM <f

1 pa M 1 1
o Pd H O o
o tNl PJ C o OC o
o C o c o
o X CM X <r

O - O F 4 I O

eg
id

CJ

o

3

H

Pd

C J

<
Pe

rt

c_>

M

w

PM

c
Pd

C J

z

o

M

H
!=>

• J

O

en

w

od

sa
o

en

CO

o
o
00

P.
P.
r-»
r-~
I
o
o
<r
i~-

id

esi
en I

id

Pm
P.
m

O
O
O
r»-

•z-
j-i

Pk
v£>
I
o
o
CJ

p.
Pn
CO
v£>
I
o
o
oo
v£>

Pn
Po
r~-
vo
I
o
o
-a-
vO

Pn
Pz-
CO
\D
I
o
o
o
vO

-J!
<5~

Pn
Pn
Pu
CT%
I
o
o
C J
c*

o
*3" I

id

oo
-a-

eD
lO

Po
Pb

I Pz<
CO
I

|o
o
C J
pa

p^
IP K

CO
CT\

o
o
00
OM

PM
I ^ co

CO
1°
o
00
CO

, O f
X ^ V
£ ->0 O

p
0
|o
1 <3"

ON

p

PQ
I
o
lo
l<f PQ

X
en

ION
, I
o
o
o
ON

X

I en
P Q

, I
O
o
lo PQ

Pm
IS
x

I 00
I
o
0

1 CJ
| 00

X
IX

I
o
o
C J
<3

X
p

PQ
100
I
o
o
00

100 ft-

Po

I
o
o
00
\<

re
<

i ̂ Ipm
I
I oo
I
o
lo

-<r
loo

Pu

\ <

I
o
o
<r
\<

Pn
Pz-
co

| oo
I
o

< r o
CN o

isd |oo

6 6

CN
en

Po
Po
cn
<
I
o
o
o
<

pz-
u
I ^ | Q
I

|0
o

K>
o

pa

-a

Pk
Pn
CO
I Q
, I
o
o
00
o

x
o
oa

P U

IPM
PM
P-L
I

|o
CJ

K>
Pu

Cn
Pn

I
o
o
00
Pz-

pa

pa

Z

O

52

pz-
I ̂
I r~-
0
1
o

I o
I -a
o

Pn
Pi-
m
o

o
o
o
o

CSl

o

X
o
ca
P-

Pk
pt-
Po
u

, I
o

o

I Pn
ca
CJ J)

o <
o
00 oa
CJ

Pd

as

P-
X
X M

CJ oa

o Pd
o

pi-
CJ

Pb
Pu
cn
o

c5

o o
o

U CJ

Ph
pc-

(P-zg
I

|o

<r
u

eO X
rM W
3 en
en en
<

« I
• H

P U S 5
• H

n. X

p>-
P-.

Icn
Pn
I
o
C5
O
Pn

en

z
o
w

H

C J

z
s

Pk

P J

pa

<
3

Q
pa
<
x

<r
aa

Pn
P*4
P-l
w

, I
o °

•J
w

|Pk
Pe
rt
w

, i o
o
00
PJ

PM
pe-

w
I
o

P3'
w

Pn
PL-
cn
PJ
I
o
o
o
w

CJ

en

Pd

O

W

INTEGER BASIC
TOKEN CHARACTER SET

B Y L I N D A S L O V I C K

T O K E N S C H A R A C T E R

500
501
502
503

SOA

SOE

512
513
514
15
16
>17
?18
519
S1A
>1B
SIC

>20
521
522
523

526
527
528

52B
52C
S2D

535

538
539
53A

53E
53P

TOKEN DEC HEX

"[HIMEM:] 64 $ 140
EOL 65 $ 141
_ 66 $ 142
• 67 S 143
LOAD 68 ? 144
SAVE 69 5 145
CON 70 $ 146
RUN 71 I 147
RUN 72 5 148
DEL 73 549
, <for DEL> 74 54A
NEW 75 54B
CLR 76 ? >4C
AUTO 77 5 >4D
, <for AUTO> 78 54E
MAN 79 54F
HIMEM: 80 ? 550
LOMEM: 81 i 551
+ 82 i 552
— 83 \ 553
* 84 ? 554
/ 85 >55
s 86 \ >56
87 J 557
>« 88 ? 558
> 89 i 55 9
<= 90 55A
<> 91 I 55B
< 92 ? 55C
AND 93 i 55D
OR 94 55E
MOD 95 55F

96 ? 560
+ 97 i >61
(98 >62

$HEN < line #>
99

100
563
64

THEN < stmt> 101 >65
, <8tring> 102 566
. <number> 103 67
' <beginning>
" <enaing>

104
105 ?

68
6 9

(106 6 A
1 107 6B
i 108 $ 56C
(109 5 56D
PEEK 110 6E
RND 111 5 6F
SGN 112 ! >70
ABS 113 ! >71
PDL 114 ! >72
RNDX 115 ! 73
(116 ! 74
+ 117 ! 75
- <signs> 118 ! >76
NOT 119 ! >7 7
(120 ! >78
X 121 I >79
122 ! >7A
LEN< 123 ! >7B
ASC(124 : 57C
SCRN 125 : 57D
i 126 ! >7E
(127 ! ?7F

DEC HEX CHR

<string>
<?>

fEXT
GR
CALL
DIM <strings>
DIM <numbers>
TAB
END
INPUT <string>
INPUT <$ or H,"S>
INPUT <number>
FOR
= <FOR/NEXT>
TO
STEP
NEXT

RETURN
GOSUB
REM
LET
GOTO
IF
PRINT <'""S>
PRINT <X or X$>
PRINT
POKE

COLOR=
PLOT

HLIN

AT
VLIN
9
AT
VTAB
= <string>

LIST <from,to>

LIST
POP 4 ^
NODSP <string>
NODSP <number>
NOTRACE
DSP <string>
DSP <number>
TRACE
PR#
IN#

6 7

DEC HEX
192 $ CO
193 $ CI
194 § C2
195 5 C3
196 | C4
197 $ C5
198 $ C6
199 $ C7
200 S :C8
201 $ IC9
202 S ICA
203 $:CB
204 $ ICC
205 $;CD
206 $ ICE
207 $ ICF
208 $ IDO
209 $ ID 1
210 $ ID 2
211 S ID 3
212 $ ID 4
213 I ID 5
214 5 ID 6
215 S ID 7
216 $ ID 8
217 \ ID 9
218 I 5DA
219 5DB
220 5 5DC
221 >DD
222 5DE
223 >DF
224 $ >E0
225 5 ?E1
226 I 5E2
227 E3
228 : >E4
229 ; >E5
230 ! >E6
231 5 >E7
232 ! >E8
233 ' >E9
234 ! >EA
235 ' >EB
236 ' ?EC
237 1 5ED
238 ! JEE
239 : SEF
240 1 >F0
241 • SF1
242 : SF2
243 ! £F3
244 : ?F4
245 : SF5
246 : ?F6
247 : $F7
248 : !?F8
249 $F9
250 : SFA
251 SFB
252 $FC
253 $FD
254 $FE
255 $FF

C
D
E
F
G
H
I
J

P
Q
R
S
T

X
Y
Z
.[

(a)
" (b)
(,c)
$ < I d)
% (.e)
& (
' i
(1 :S
) 1 ;D
* (1 j
+ (k
» ' !i)
- 1
. (,n)
/ (:°)
0 i (p)
1 i (q
2 i (r)
3 (SJ
4 i t)
5 (u)
6 (v)
7 < (w)
8 U)
9 y
: 1 (z)

» <

>
?

a p p l e s o f t i n t e r p r e t e r s e t
R O M A D D R E S S E S D 0 0 0 - F 7 F F

SUBROUTINES - ENTRY P OINT L ISTING:

N A M E O F S U B F U N C T I O N A D D R E S S N A M E O F S U B F U N C T I O N A D D R E 8 3

END TERMINATE EXECUTION SD86F
FOR START OF FOR NEXT LOOP SD765
NEXT END OF FOR/NEXT LOOP SDCF8
DATA DEF OF A DATA STMT $0 994
INPUT INPUT ROUTINE EXEC $DBB 1
DELETE DELETE A LINE FUNCTION $F32C
DIM DIMENSION A VAR FUNCT. SDFD8
READ READ DATA ROUTINE $DBE1
SETGR SET GRAPHICS ROUTINE $F 38B
SETT XT SET TEXT MO DE ROUTINE $F 394
PR# SET OUTPUT PORT JF1E4
IN# SET INPUT PORT $F 1DD
CALL CALL USER MACH SUB $F 1D4
PLOT PLOT A POINT-LORES $F 224
HLIN DRAW HORZ LINE-LORES $F 231
VL IN DRAW VERT LINE-LORES SF240
SETHR-2 SET HIRES PAGE 2 $F 3D3
SETHR-1 SET HIRES PAGE 1 SF3DD
SETHRCa SET HIRES COLOR $F 6E4
LINE DRAW LINE HIRES X, Y $F6F9
DRAW DRAW SHAPE SPECIFIED $F 764
XDRAW EOR DRAW SHAPE $F76A
HTAB HORZ TAB X # SPC. $F 7E 2
CLRSRC CLEAR SCREEN $FC 57
SETROT SET ROTATION SHAPE $F 71C
SET SCALE SET SCALE FOR SHAPE $F 722
SHLOAD LOAD A SHAPE TABLE $F 770
SETTRACE TURN ON TRACE $F 26C
TRACEOFF TURN OFF TRACE $F 26E
SETNORM SET NORMAL TEXT $F 272
INVERSE SET INVERSE TEXT $F 276
FLASH SET FLASHING TEXT $F27F
COLOR SET LORES COLOR SF24E
RETURN RETURN FROM SUB $D96A
VTAB VERTICLE TAB $F 255
HIMEMSET SET HIMEM POINTER $F 285
LOMEMSET SET LOMEM POINTER $F 2A5
ONERR SET ONERR FLAG $F2CA
RESUME CONTINE FROM ONERR $F 316
RECALL RECALL VARIABLE-TAPE $F 3B 7
STORE SAVE VAR IA LB LES-TAPE $F 39A
SETSPD SET SPEED FOR OUTPUT $F 261
LET LET ASSIGN VARIABLE $DA45
GOTO GOTO BRAN CH FUNCTION $D93D
RUN EXECUTE A PROGRAM $0911
IF IF TEST FUNCTION $D9C8
DOREL DO RELATION TEST $0FF64

THE APPLEHEADS

RESTORE
3F4 HOOK
GOSUB
RETURN
REM
STOP
0NG0T0
WAIT
LOAD
SAVE
DEF
POKE
PRINT
CONT
LIST
CLEAR
GET
SGN
INT
ABS
FRE
POL
POS
SQR
RND
LOG
EXP
SIN
TAN
ATN
PEEK
LEN
STR$
V A L
ASC
CHRS
LEFTS
RIGHTS
MIDS
FADD
F SUB
FMULT
F 01V
FPWR
AND
OR
NEG
NOT

RESTORE DATA PT
BRANCH TO MACH
GOSUB BRANCH FUNCTIO N
RETURN FROM GOSUB
REMARK STATEM ENT
STOP PROGRAM
ON GOTO
WAIT FUNCTION
LOAD TAPE PGM
SAVE TAPE PGM
DEF USER FUNCTION
POKE MEMORY LOC
PRINT OUTPUT
CONTINUE EXECUTION
LIST PROGRAM
CLEAR VARIABLES
GET A CHAR INPUT
SIGN OF NUMBER
INTEGER FUNCTION
ABSOLUTE VALUE
FREE MEMORY
GAME PADDLE
POSITION IN HIRES
SQUARE ROOT
RANDOM NUMBER
LOG X BASE 10
EXPONENT FUNCTION
SIN FUNCTION
TANGENT FUNCTION
ARCTANGENT FUNCTION
PEEK MEM ORY
LENGTH FUNCTION
CHAR-NUMERIC VAR
VALUE STRING CHAR
ASCII FUNCTION
CHAR STRING FUNCTION
LEFT JUSTIFIED
RIGHT JUSTIFIED
MID STRING FUNCTION
FLOATING POINT +
FLOATING POINT -
FLOATING POINT x
FLOATING POINT /
FLOATING POINT PWR
AND FUNCT ION
OR FUNCTION
NEGATE FUNCTION
NOT FUNCTION

SO 848
S03F4
SO 920
SD96A
SD9DB

SD9EB
SE 783
SD8C8
S08AF
IE 312
SE774
SDAD4
$0895
S06A4
$0669
$DB9F
SEB90
SEC23
SEBAF
SE2DE
SOFCD
SE2FF
JEE8D
SEFAE
SE941
SEFEA
SEFF1
SF03A
SF09E
SE764
$E 60 6
$EX5
$E 707
SE6E5
$E 646
SE65A
SE686
$E 691
SE7C0
SE7A9
"SE 981
SEA68
SEE 96
SDF54
SDF4E
SEECF
JOE 97

E. HANCE

APPLE COWS)

...AND
CALLS

11

P E E K S P O K E S & C A L L S
T H A N K S T O C H R I 8 E S P I N O S A , P A U L W Y M A N , A A P P L E C O M P U T E R

C A L L S

Most of these functions can be executed by a CALL to the
proper address from an Integer BASIC program. Some CALLs
may not be executed In the middle of a line in an Integer
BASIC program: The CALL must be alone or at the end of a
program line.

HEX ADD CALL EXPLANATION

$E000 CALL -8192

SE04B
SE836
SE07B

CALL -8117
CALL -6090
CALL -3973

SF140 CALL -3776

$F666
SF800
$F 819

CALL -2458
CALL -2048
CALL -2023

SF828
$F832
$F847
$F85F
$F864

CALL
CALL
CALL
CALL
CALL

•2008
• 1998
•1977
• 1953
-1948

$F871 CALL -1935

$FA43
SFA86
SFA92
SFAD7
SFB1E
SFB2F

CALL
CALL
CALL
CALL
CALL
CALL

-1469
-1402
-1390
-1321
-1250
-1233

$FB39
SFB40
SFB4B
SFB63
$FB84
SFBC1

CALL
CALL
CALL
CALL
CALL
CALL

•1223
•1216
-1205
-1181
-1148
-1087

SFBE4 CALL -1052
SFBF4 CALL -1036
SFBFD CALL -1027

SFC10
SFC1A
SFC22
$FC2C
SFC9C
SFC42
$FC58
SFC62
SFC66
SFC70
$FC9C
$FCA8
SFDOC
$FD1B
SFD35

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

-1008
-998
-990
-980
-868
-958
-936
-926
-922
-912
-868
-856
-756
-741
-715

SFD62
SFD67

CALL -670
CALL -665

$FD6A CALL -662

SFD6F
SFDDA

CALL -657
CALL -550

$FDE3
$FDED

CALL -541
CALL -531

SFDFO
SFE2C
SFE36
SFE5E
SFE80

CALL -528
CALL -468
CALL -458
CALL -418
CALL -384

Reset Integer BASIC
Integer Basic Kill
-Clear workspace
List Integer program
Run Integer
Load Integer Program
from tape
Save Integer Program
to tape
Enter mini-assembler
Plot a point
Draw a horizontal
line
Draw a vertical line
Clear Graphic Screen
Calc. graphics baseaddress
Change Color +3
Adjust color byte for
both halves equal
Read a point of the
low res graphics screen 1
Perform a single step
IRQ Handler
Break handler
Display user reg
Read paddle controls
Screen initialization
Reset TEXT mode
Set text screen
Set graphics screen
Set normal window
Multiply routine
Divide routine
Calculate text base
address
Produce a bell
Advance Cursor
Output a reg as ASCII
on text screen 1
Backspace Cursor
Move cursor up
Perform vertical tab
Escape functions
Clear to end of line
Clear to end of screen
Home and Clear
Carriage return
Cursor down-line feed
Scroll screen
Clear to end of line
Wait loop
Walt for Keypress
Monitor keyin routine
Read key & per esc fun
if necessary
Perform a line cancel (/•)
Perform Line Feed and
wait for input
Prompt and wait for
input
Get a Line
Print a byte as 2 hex
digits
Print hex digit
Output char, via user
output
Monitor char, output
Perform memory move
Perform memory verify
Disassemble 20 instr.
Set Inverse Mode

$FE84 CALL -380
SFEB0 CALL -336
SFEB3 CALL -333
SFEBF CALL -321

SFEC2 CALL -318
$FECD CALL -307
SFEFD CALL -259
SFF3A CALL -198
$FF4A CALL -182
$FF59 CALL -167

$FF65 CALL -155

$FF 69 CALL -151

$EF70 CALL -144
$FF70 CALL -144

Set Normal Mode
Jump to basic
Continue basic
Display registers
A,X,Y,P,S Current Values
Perform monitor trace
Write to tape
Read from tape
Ring bell
Save registers
Enter System Monitor,
reset text mode
Enter System Monitor &
Ring Bell
Enter System Monitor
No beep
Scan input buffer
Scan the input buffer

The following CALLS require various address to be POKEd
into locations in the Apple's memory. These locations are
organized into three "registers", called A1, A2, and A4.
The actual address for A1, A2, and A4 can be found in the
section on PEEKs.

$FE2C
$FE36
$FECD
SFEFD
$FD92

CALL -468
call -458
CALL -307
CALL -259
CALL -622

Move a Range of Memory
Verify Two Ranges of Memory
Write a Range to Tape
Read a Range from tape
Print A1 In Hexadecimal

The following subroutines require you to POKE several
values into some memory locations. These locations
represent the microprocessor's A,X,Y and Status regusters,
and the Stack Pointer (These are the same registers you can
examine with the Monitor's CTRL E command), for the
address of these locations see section on PEEKs.

$FEB6 CALL -622 Call a Subroutine

(This loads the internal registers with the values you have
POKEd into locations 69 through 73, and jumps to the
subroutine whose address has been POKEd into locations
and 559 (PCL & PCH). The subroutine acts just as if it had
been CALLed from BASIC directly, and returns accordingly.

SFEBF CALL -321 Display Registers (69
thru 73).

SFDDA CALL -550 Display the A-register
in Hex (location 69).

P 0 K E S
HEX POKE EXPLANATION
ADD DEC ADD VALUE LIMITS

$0020 POKE 32,X Window Left
0-39

$0021 POKE 33,X Window Width
0-40

$0022 POKE 34,X Window Top
0-24

$0023 POKE 35,X Window Bottom
0-24

$0024 POKE 36,X Cursor Horizontal
$0025 POKE 37,X Cursor Vertical
$0026 POKE 38,X GBASL Graphics baseaddress
$0027 POKE 39,X GBASH
$0028 POKE 40,X BASL Text screen base

address
$0029 POKE 41 ,X BASH
$002A POKE 42,X BAS2L Temp, base addr.
$002B POKE 43,X BAS2H
$0030 POKE 48,X Color (0-15)
$0031 POKE 49,X Mode

POKES (CONT.)
$0032 POKE U1

o

X

C0UT text modes $0032
255-Normal mode
63-Inverse mode

127-Flashing mode
$0033 POKE 51,X Prompt Character
$0036 POKE 54,L CSWL
$0037 POKE 55,H CSWH:CHARACTER OUTPUT
$0038 POKE 56, L KSWL
$0039 POKE 57,H KSWH:CHARACTER INPUT

SC053 X=PEEK(-16301)

The POK Es below may be used before a CALL -327 to CANL a
machine language program with parameters.

$003 A
$0036
$0045
$0046
$0047
$0048
$0049

POKE 58,L
POKE 59,H
POKE 6 9,X
POKE 7 0,X
POKE 71,X
POKE 72,X
POKE 7 3,X

PCL
PCH
A-register
X-register
Y-register
Status register
Stack Pointer

$C054
$C055
SC056
SC057
SC060
$C061
SC062
Sc063

X=PEEK(•
X=PEEK(•
X=PEEK(•
X=PEEK(-
X=PEEK(-
X=PEEK(-
X=PEEK(-
X=PEEK(-

16300)
16299)
16298)
16297)
16288)
16287)
16286)
16285)

mix TEXT and a
GRaphics mode
Primary page 1.
Secondary page 2.
LO-RES GRaphics
HI-RES GRaphics
Cassette Input
Read Pushbutton controller 0
Read Pushbutton controller 1
Read Game I/O Pin 4

X = PEEK (218) + PEEK (219) x 256 sets X equal to the line
number of the statement where an error occurred If an
0NERRG0T0 statement has been executed.
IF PEEK (216)5127 THEN GOTO . If bit 7 at memory
location 222 (ERRFLG) has been set true, then an 0NERRG0T0
statement has been encountered.
POKE 216,0 Clears ERRFLG so that normal error messages will
occur.
Y - PEEK (222) Sets variable Y to a code that described
type of error that caused an ONERRGOTO jump to occur.

POKEs be low (60-67) can be used in conjunction with various
CALLs to perform many System Monitor commands from BASIC
(see CALL list).

$003C POKE 6 0,L A1L
$0030 POKE 6 1, H A1H
$003E POKE 6 2,L A2L
$003F POKE 6 3,H A2H
$0042 POKE 6 6,L A4L
$0043 POKE 6 7,H A4H

C$C010 P0KE-16368.X Clear Keyboard
Strobe

$C020 P0KE-16532.X Toggle Cassette output
$C030 P0KE-16336,X Toggle Speaker
$C040 P0KE-16320.X Strobe Game 1/0
$C050 P0KE-16305.X Set Graphics Mode
$C051 P0KE-16303.X Set Text Modes
$C052 POKE-16302.X Full-Screen Graphics
$C053 P0KE-16301,X Mixed Text and Graphics
$C054 P0KE-16300.X Display Primary Page
$0055 P0KE-16299.X Display Secondary Page
$C056 P0KE-16298.X Set Block Graphics
$C057 P0KE-16297.X Set Dot Graphics
$C000 POKE-16384.X Read Key to see which key

The locations below may be PEEKed to determine what type of
Apple Intelligent Interface card is installed in each slot.
If X is 44 - Communications Card, 162 - Disk Controller, 72

A P OKE t o one of the locations below specifies the state of
the output on the pin of the Game 1/0 Connector associated
with that Annunciator. Set is +5 volts; clear is 0 volts.

$C058 POKE
SC059 POKE
$C05A POKE-
$C05B POKE-
SC05C POKE-
$C05D P0KE-
$C05E POKE
$C05E POKE

16296,X
16295.X
16294.X
16293.X
16292.X
16291,X
16290,X
16289.X

Clear,
Set Annunciator 0
Clear,
Set Annunciator 1
Clear,
Set Annunciator 2
Clear,
Set Annunciator 3

P E E K S

HEX

$0020
$0021
$0022
$0023
$0024
$0025
$0030
$0032
$0033
$COOO
$C010
$C050
$C051
$Co52

PEEK

X=PEEK(32)
X=PEEK(33)
X=PEEK(34)
X=PEEK(35)
X=PEEK(36)
X=PEEK(37)
X=PEEK(48)
X=PEEK(50)
X=PEEK(51)
X=PEEK(-16384)
X=PEEK(-16368)
X=PEEK(-16304)
X=PEEK(-16303)
X=PEEK(-16302)

EXPLANATION

Window Left
Window Width
Window Top
Window Bottom
Cursor Horizontal
Cursor Vertical
Color
Video mode
Prompt Character
Keyboard
Clear key. strobe
GRaphics mode
TEXT mode
all TEXT or GRAPHICS

Heuristics Speechlab. Others not known at this time.

$C100 X=PEEK(-16128) Slot 1
$C200 X=PEEK(-15872) Slot 2
$C300 X=PEEK(-15616) Slot 3
SC400 X=PEEK(-15630) Slot 4
$C500 X=PEEK(-15104) Slot 5
SC600 X=PEEK(-14848) Slot 6
$C700 X=PEEK(-14592) Slot 7

A PEEK at this location determines which Monitor ROM is
installed in the Apple. If X is 0, then the Auto-Boot
Monitor is in; if X is 1, then the original Apple Monitor
ROM is installed.

$FAFF X=PEEK(-1281) Monitor

The PEEKs below all require you to convert the values in
two separate memory locations into one decimal number which
BASIC can handle. This conversion involves two steps:
first, obtaining the values in the locations; and second,
amalgamating the two values into one decimal number. The
following pairs of PEEKs give two values, stored in the two
variables L and H.

$0028
$0029
$0036
$0037
$0038
$0039
$004E
$004F
$004A
$004B
$004C
$004D
$0OCA
$00CB
$0OCC
$00CD
$00DC
$00DD
$00£0
$0OE1

L=PEEK(40) BASL
H-pEEK(41) BASH-Cursor Base Address
L=PEEK(54) CSWL
H=PEEK(55) CSWH-Output Subroutine
L=PEEK(56) KSWL
H=PEEK(57) KSWL-Input Subroutine
L=PEEK(78) RNDL
H=PEEK(79) RNDL-Random Number Seed
L=PEEK(74) LOMEML
H=PEEK(75) L0MEMH
L=PEEK(76) HIMEML
H=PEEK(77) HIMEMH
L=PEEK(202) PPL
H=PEEK(203) PPH-Program Pointer
L=PEEK(204) PVL
H=PEEK(205) PVH-Variable Pointer
L=PEEK(220) LINEL
H=PEEK(221) LINEH-Line Number
I -PFEK(22zO STL
H=PEEK(225) STL-Beginning of Statement

NOTES

7 2

£asy Write#?
The Professional

Word Processing System
for your Apple-ll Personal Computer

t W k
% * ŝy Maf/̂

A Continuous Letter Writer

•» S-l
v

. . -v A ^ *,
* ^

I US J. U O

X - ™
X *

S '

0̂syMove„

Personal Electronic Mail
1 U S ,

» • # ,

/# A
" - i *?r

IUS (Information Unlimited Software, Inc.), 281 Arlington Ave., Berkeley, CA 94707 415-525-4046 / 525

'

