MULTI-WORD LIST ITEMS

by

V/. T. Comfort

November 1961

International Business Machines Corporation
Space Guidance Center
Owego, New York

IAM NG, : w.~-uUd{=-190

Y

ABSTRACT

The list concept as originally proposed by Newell, Simon and {haw
specified single computer words as elements of a list. Tais report
describes the use of two or more consecutive words as one element. Such
use results in a considerable saving both in space required to hold a
given amount of data and in execution time ‘re_quired to effect a given process
on the data.

Foilowing a brief discussion of standard list structures with single-
word items, the multi-word items are introduced. Ther variable-:ength
items are discussed, with the corresponding problems concerning e
utilization of availéble space. Yinally, several examples are given to

illustrate the use of multi-word lists.

Catalog Descriptors:

Programming
Digital Computers
List Structure
Multi-word Items

o o

PREFACE

This report represents the first published information concerning
an automatic programming cffort begun in November 1958, Its objective
was to de\)elop a compiler wherein the IBM 704 - 7090 was to be used to
compile programs for a guidance and navigation computer. It was
planned frém the beginning that in order to gain experience in their use
and to evaluatc their capability and [lexibility, the compner should utilize
nuwlti-word lists wherever it appeared reasonable. The more interesting
problems of the compiler (including the arithmetic scan, the automatic
scaling of fixed point equations, the internal processing of a flow diagram,

and the drum optimization problem) will be published in the near futur .

1i

MULTI-WORD LIST ITEMS

Webh T. Comfort

I Introduction

In an automatic programmir.g effort started in 1958, IBM's Spae
Guidance Center found that the technique of organizing a computer riemory
into list structures, an approach ‘ntroduced by Newell, Simon, and Shawl
in 1957, was particularly pertinent. This report introduces the cor.cept
of the multi-word list item, which was developed to oifset the inefficiencies
ofr s.-ingle-word items.

Following a brief diécussion of standard list structures with single-
word items, called SINGLETS, the multi-word items are introducec. Then
variable-length items are discussed, with the corresponding nroblers
concerning the utilization of available space. Finally, several exarples
are given illustrating the use of multi-word lists.

There are two objectives of this report. First, and most important,

- it will sho{;v how multi-word list items can provide consiclerable sav:ings

both in terms of execution time and memory space required over normal
single-word items. Secondly, it will help the uninitiated reader to appreciate
the simplicity of list-structures in themselves, and the ease with wiich a
large class of relatively non-complex problems can be solved throuih their
use.

A detailed description of the system resuiting from the automatic
programming effort is not gi‘ven; future literature will provide this

. description.

1L Lists

A list is a connected sequence of items*, In the form in which lists
were originally introduced by Newell, Simon, and Shzlw1 ., and in which
they have gengrally been used, an item consists of one computer word.
Thesc items are connected through a field within cach word which contain:s
the address of the succeeding itemn. *« Notoe that since each item ""points
to" (i.e., contains the address of) ils successor, ‘guccessive list items
need not be -- and in general are not -- consecutive words in memory.
In fact, ona of the powerful features of lists is their ability to utilize arbi-
trary, disjoint sections of memory.

Following Reference 1, such a list can be diagrammed as follows:

The arrow indicates the successor of each item. Later it will be useful

* This definition and those 10 follow are not intended to be rigorous, bul
rather to serve as shorthand for later discussions an'd to orient those
who are familiar with a different terminology.

+* Historical Note: Upon reflection it will be observed that & program
for the IBM 650 (or any machine of the 1+1 address type) is such a
list; it is a sequence of computer words (instructions), each of which:

contains the address of the next instruction.

e e ma g —— e R S SITR o

to indicate the field in the elemgnt which contains the "pointer' (i.e., the
address of the successor). Also, since the list items are arbitrary
storag}e words, cach list is provided with a "head", which is a known loca-
tion in memory; that is, it is a word the location of which is known to the
programmer, and through which he is able at all times to locate the list
since it points to the first item on the list. Similarly, a special mark is
required to indicate the end of a list. This is usually done by using a
pointer of zero. Thus, a simpie list containing three items would appear

as follows:

HEAD

(Note that a list head containing a zero pointer is an empty list; i.¢., it
has no items.)

The remaining portion of each element may contain data, may point
to a full word of data, or may point to another list (called a sublist);

for example:

e . oy ——— qwr —

pwersc

Here, the first item points to a data word, the second points to 2 3-item
gublist, and the fourth points to a 1-itera sublist, which in turn points t0
a data word. Such a configuratibn is called a "list structure". It is
necessary that either the programmer lmows what each item represents,
or else that there is sufficieht information stored in the list so that the
programmer may find out what each represents.

(Note that unless the computer word is long enough to hold two poiniers,
only the most rudimentary operations can be performed on the singiet st
However, a pointer néed not be of full zddress length. It may be several
bits shorter, but with a corresponding decrea’se in the amount of storzge
available for use on lists. An alternate approach is the use of rnulti-word
items, which are discussed later.)

In normal use, all available storage is 1nit:ially put on a special "Hist ol
available space. " As the program progresses and builds various lists,
it obt'ains empty items from the available space list. Diagrammatically,

consider the space‘list and another list:

SPACE HEAD

]

<7 il

';!7 gl;l
0

1
\%
(ETC.)

Suppose it is desired to take an iem from the space list and insert i
between the first and second iterns of the other list. The pointers arz

representced as follows:

HEAD i
|
v7
1
3
L
B w7
52 fo) i
v
(ETC)
The new diagram would look like this:
SPACE HEAD

3
A
SRC

@ @

g T

{ETC) , 0

P T R o e S PO

Thus, the most frequent list operations -- namely, inserting and
deleting items from a list -- are accomplished through simple
manipulation of the pointers. (Note that when an item is removed from
a list, it 1s returned to the list of available space, for possible later
use.)

Now, it can be observed that in usirg singlet lists, somewhat less
than 1/2 of every singlet must be giver. over to use as a pointer, thus
decreasing the number of bits avaijlable to hold data or other information.
To illustrate this, assume that a pointer requires exactly 1/2 of a word
of a singlet item. Table I shows the namber of singlet list items requirca

to hold a given amount of data-type information.
Tab.e I

NUMBER OF SINGLET TEMNMS REQUIRED TO
HOLD GIVEN AMOUNT OF DATA

WORDS DATA {35 SINGLET ITEMS

fl

1/2 : |
;

1 { 2

i-1/2 4

2 8

2-1/2 8

3 7

® [}

[+ @

o Q

(@2]

e ot ———r— > — - [N -

Note that there are two ways in which 1-1/2 words of data can be

stored:
3
(List Item) > 1/2
v -
' 1/2
\!]
(s} 1/2
(List Item) — =] 3
v Y
(o] 1/2

Similar situations hold for larger amounts of data.

. Thus, about half of storage is used up in pointers. In more conplex
problems, this apparent wastage of storage is considerably reduced by
the amount of information implied in the structure, and thrcugh the us
of '"borrowed' sublists. 2 However, these topics are not pertinent to tiis
discussion.

The other main problem with singlet lists involves the access time
for data. It is not possible to directly compute the location of any
particular item on the list; rather, the list must be searched from thz
head until the required item is reached. It follows, then, that if each
item can only be located through a pointer, the number of iastructions
which must be executed to fetcfx a given amount of data depends directiy

upon the number of list items required to store it.

b |

It will be shown in the next section tiit multi-word items for lists

will greatly alleviate both of these probiems.
II1. Multi-Word Items

A multi-word item is a singie list (tem which is organized in
storage as a sequence of two or more consecutive words Qf memory. (It
can be observed in the following discussion that the multi-word item
concept is the basis for the applicability of the n-component element of
Ross. 3) |

The simplest form of a multi-word item is the two-word item, or
"doublet'*, which consists of two.consecutive words in storagé. Dia-
grammatically, two words separated by an asterisk (*) are in con-

secutive memory locations (e. g., L and L+1):

* Evans, et al., 4 mentions what appears to be the same thing and gives

it the same name, ‘‘doublet.”’

Thus, a doublet list has the following appearance:

HEAD

e v

]

The effect of this simple step 'S illustrated as follows: Where 2
singlet list requires 4 items {6 store 1-1/2 words of information, &
doublet list requires only ore two-word item. Also, where 2 singlet
list requires 8 to 10 instructions te: fetch the information, the aoublet
requires only 3, thus decreasing the program size as well as speeding
up the execution time.

Perhaps it is appropriate now to make a comment on programmin
techniques. With singlet iists, it ic sonmetimes devatable whether e
process of sequencing dovm a list through selection and use of pointery
should be accomplished by brute force modification of addrasses (suct
as storing a pointer as the address portion of a fetch instruction) or v
the use of index registers (whereby the pointer is loaded into ar index

register* and the fetch instruction has an address of zero, but s

* On IBM 704-9-90 machines, the index register is loadeé with th

complement of the address.

tagged by the index register). irowever, with multi-word items the
indexing technique is necessary to cbtain the indicated speed increasecs.
In the case of the triplet, the index register need be loaded only once,
whereupon fetch instructions with iegged addresses of zero, one, and
two will make available the first, second, and third words, resnectiva:y,
of the three-word item. (This is colled reverse indexing by Ross ané .8
discussed by him in detail in Reference 3.)

'Figure 2 of Reference 2 shows (on the left half) a singlet list con-
taining 22 singlet items. However, it appears that the same information
could be stored on a simple list containing only 13 words wiich sel up

with four-word items. This is illustrated as follows:

HEAD
1
(NAME) ® AX COMPONENT) * (Y COMPOHNENT) * ; (2 COHPOHENT)
I
B ® XB “@ YB * 3
v
c 2 Xc #* YC * :C

As an example of the use of a doublet list, consider the prepariiion
of a symbol table. For a reasonably standard two-pass assembly program
for a machine with random access memory, the first pass involves fuilc-
ing a table of all different s*;ymbol names (restricting their lenizth to =

word) and assigning to each an absolute machine address (1/2 word). The

second pass then requires that every symbol be looked up in the table ag
it occurs and the corresponding absolute address be inserted into the
instruction being assembled. The doublet list works very nicely in this

case.

POINTER ADDRESS P SY1BOL
=3

As the symbol table is being built, 5rmbols may be sorted into the list

alphabetically, if desired, or mere.’ pul onto the list in their order of
occurrence. On the second pass of the assembly program, a simple
searching routine will effect the translation.

To further illustrate the AD 110C use of lists, the obvious lack of
high execution speed of such a symbol table can be off -set by a '"Table of
Lists. " Here a table 1s set up of 2€ list heads, one for each letter of
the alphabet, and ordered according to the numerical code coryvegporing
to the 26 letters. Thus, 2 sjmbol table would appear as shown on pag. 1%.
he advantage of this is that the first character of the symbol can be antracted,
and the location of the head of the appropriate list in the tatle can be com-

puted immediately. This is essentially a technique of block-sorting, vhich

has been used on some occasions with 26 tables rather than lists. Bulli

11

TABLE OF HEADS) LISTS

f——‘/" ix ox x| = ALPHA j
T
! w'n
¥ 1 | e |
(ad ! : o X £ X 2 | AXLE
\ SO AU ——
{3 [o]
{C) e e i X X X * casle E
3
(D) |
TR < x| L cRrimE
(ETC.) : P X X X vy ME
T
[
R
o X X X »* -~ CYGER
S— ’ DELTA
{ ,::} 0 X X X ® '

such cases, this requires the provision of special overflow Drocedure

"

when a table becomes full. If all 25 letters have an equal probabitity

€V

occurring as the first character o7 a symbol, the search time ie reduw &
by a factor of 26. |

This technique can be extended to handle almost any problem of
sorting within the high specd memory. ¥For example, supnose it is

desired to read in a deck of cards and sort them on some {ield prior to

some other operation; e. g., editing a tape file. in the 7090 computer.

23]
(@]
<8}
out
:.)\.

13-1/2 words of memory are required to store the contents of on

By simply using a list with 14-woui items (the additional 1/2 word ho. ds

Vet
(AN

the list pointer), the sorting may Lo oqecomplisaed wiin g Goaictirasn O
effort, and since the 1/2 word wou G nermaily he unused, no adaitional
storage is necessary.

In the last two examples, the lists ave of a continuously growing
nature; i. c., no individual items oi'e removed from thoe st until the
function of the whole list is comp‘u te. In such cascs, it is nou necessiry

to go throu@h the bookkeepiny effort of constructing and maintaizing &

P
o]

list of available space. it suffices to remember the starting noint of
as yet unused portion of memory, ond take a new item as requiced.

IV. Multiple Pointers

-~

Probably the most siznificant coptribution of nulti-word items U
the processing of list str‘uctums lies in the avaiiability of multipie
pointers. For ¢x vample, a singlct istis aone-way device; it is posgidie
to start at the head and meve dow the list, but it is not possibic 0 0ave
back up the list. This movem ont is ecasily accompiished win mualbi-wore
items, by simply making the ttem tong enough to contain i pointer fcy

this purpcse. Thus, a two-way list of three-word ttems night appea

as follows:

HEAD o
| £y
A4 [
¥
] w3 S
H H [b

. P w
b o
[v] ﬁ‘¥ gx
R ¢)

o
()

it would require somewhat mere work to effect the insertion and deletion
of items. However, this is readily ::(’COIﬂpliShé&, and there are sttuaticns
where a two-way list is exactiy what is desired. An example is in the
process of automatic scaling during formula translation, to be described
in detail at a later date. (See Scctioa VIL)

In Reference 5, the organization for an information processing
system to be used for information rc:-tr}eval is proposed. The basic idew
is that a large file of items is given, e.§., 2 personnel file. Associated
with each item are secveral characteristics such as height, weignt, age,
and sex. Associgted with each characteristic is 2 set of values. For
example, in a given file, the Acharacteristic age may take on valucs 20,
21, 22, 35, For each such valuve, there is a list, which connects
every item which has that value. Taus, every item con'tains o pointer
for each characteristic,.cormef:ting it to the list which represents the
proper value of that characteristic. Such items are readily obtainable
through the multi-word technique. The following diagram illustrates a

possible item of this type:

MISCELLANEOUS\ { HEIGHT WEIGHT \ AGE v
{ NAME) * (»)

INFORMATION } KPOINTER POiNTER} FOINTER

/ SER)
\?i)mTER

b s remcm. £ 20m

If the file of such items represents & college student body, an enterpricing
basketball coach may wish to obtain the names of all male students who
are over 6 feet 1 inch in height anc over 160 pounds in weight. In this con-

figuration, it is necessary to search the lists representing the proper

14

values of each characteristic in sequence, selecting those items which
appear on all. In this way, it is unnecessary to searchﬁl_items in the
file, only those which have the prcper value of at least one characteriszic,
It is not proposed at this time to diccuss whether or not this is the best
technique for solving this type of problem. However, it should be poiried
out that whereas the reference proposes a machine to operate in this
fashion, multi-word items with multiple pointers allow the same flexil:ility
on a ggneral purpose machine with 2 minimum of space.

Another possible application of multiple pointers might arise in wvork-
ing with very lgrge but very sparse matrices. For example, some lirezar
programming problems may; involve a 1000 by 5000 matrix with only
10, 000 to 25, 000 non-zero elements. One way to store only the non-::T0
elements might be to have a list for each row. Then the nor.-zero ma rix

elements would each be represented by an item of the follawing form:

(VALUEY | # f COLUMN ROW
‘ nUMBER / | \POINTER

To locate element (i, j), it is necessary to search the i list for an ite 2
with column number j. However, to perform the more general comptia=-
tions of linear programming in a reasonably efficient way, it might k¢
necessary to provide a list for each column as well, and in fact to maxe

them two-way lists. This can also be done quite readily:

{ 5
t
S

(VALUE) »
NUMBER/ J\NUNBER \ POINTER POINTER \ poInTER /

-

A\l
ROW) (cox.ums) . |Row mem) (ROW LEFT) . HeoLuww oown;(coww uPY

1

|

-

8

POINTER /|

Thus, having located element (i,), it is relatively easy to locate elements
(i-k, j) and (i, j-1).

The specific application where the multiple pointers proved mo:it
valuable involves the storage in memory of a flow diagram in orcer t
analyze its flow characteristics. This will be discussed in considerabie
detail in the near future. (See Scction VIL)

V. Variable Length Items

It has been implicitly assumed in the preceding discussion that if,
for example, three-word items &re being used, then all lists have three=-
word items and the space list problem is quite simple; namely, it is
itself a list with three-word items. However, this need not be the cuse.
There might be several lists simultaneously in storage, each with
different size items. Alternatively, there may only be cre list structure
which itself has items of various sizes. T either case, the problen: of
how to handle the space list becomes significant. *

One approach is to provide a separate space list for each sizz

item. However, to do this directly requires that the programmer cacide

% Ag indicated previously, if the list length is monotonic increasin; —
i.e., no items are returned to the space list — there is no prob.em,

since there is no space list, as such.

A Priori how much space will be a'loted to each list, and this ts directly
contrary to one of the basic ideas behind the list structure concept;
namely, that the programmer does aot decide this, and if there is any
space avail#ble, it can be used anywhere.

A modification of this approach will improve things somewhat.
Suppose there are three types of items: singlets, doublets, ang triple:s,
Initially, all available space is placed on the triplet space list {both
doublet and singlet space lists being empty). Thereaiter, if a double:
is required,. a.ﬁd the doublet space (ist is empty, & triplef can be obtained
and divided into a doublet andasinglet,each of which goes on its corre-
sponding space list. If a sir;gflet is necded (and the space list is emp.y),
cither a triplet can be obtained anc¢ split into a doublet and singlet, or a
doublet can be used to get two sing {ets. When singlets or doublets arc
returned, they go onto the proper space list. This to a certain exterd
alleviates the problem indicated above:; namely, as long as there i8 &
triplet available, a doublet or singlet may be obtained. Hcwever, it i3
not }unreasonable to expect that some problems may require triplets
when the only space left consists of singlets and doublets. The findin; of
new triplets from a set of doubleis and singlets can be accomplished, but
it is quite inconvenient.

Consider now a generalized space list, i.e., one from which @
item of arbitrary length can be tzken, if that many consecutive words
exist anywhere in available s’éacc. Such a list can be realized by

having it consist of variable length items. Initially, it contains only one

17

item which is made up of all worcs of available space. When 2
specific item is required, the prcper number of words ara removecd
from the space list item, thus reducing its size. Then, when an
item is to be returned, since it i desired to determine whether or
not this item fits consecutively onto some current space list item, &

is sorted onto the space list.

To illustrate how such a list might be handled, suppose the

following is a portion of the space list:

The number represents the length of the item, which is required fo: the
sorting process; X and Z represent the memory locations of the firs:
word of the two items. Suppose a two-word itern ig to be put back o.1to

the space list:

However, if possible, it is to be put back inorder to make a longer item.
Therefore, it is necessary to first search down the items of the space
list to the point where X<VY <Z. Then, the doubletcan go onto the list in

four possible ways.

(1) Between the two items ‘in this case, X +2<Y<Z -~ Z):

= ¥}
v [I
Jg
4 3 ® # o

(2) At the end of the preceding item (in this case, ¥ = X + 2"

&7

= r b .z““!
B e £ i
* M " j " % } * E}: i T
<7 ;
z 3 « 3
!
\

%7

i
|

19

- (4) Both situations (2) 211 (3) hold (X +2 =Y = Z - 2), resu.ting
in one space list iteir which begins at X and is seven words
long.

In this way the space list items are always of maximum tength. VWaen
it is desired to select an iten. of a given length, the space list is
searched until an item is found which ig at least as long as the on:
desired, whereupon the proper number of words are removed {ror the
space list item.

Admittedly, this operatioi takes a small but significant amo.nt of
time, since the space list must be searched both coming and goin3
However, in those cases where simpler techniques are not sufficient,
it is the price to be paid. *

Vi. Conclusions

There are ce‘vrtain comments which can properly be made at ‘his
point.

1. A list is basically a simple device, notwithstanding the

pseudo-mathematical haze which has arisen from some

areas. ,

* A 7090 program which hanclies such a space list has been in operation
for almost two years. Whiie there are no direct utilization figures;
this routine does not appear to significantly affect the operatin; time

of the main program using it.

20

A structure of muli- word ©oomn, b oreoa e

-

requires less storage and cpsrabion me U the v
sponding structure of standard singiet items.

A large and complex list-processing programiming s$;siein,
such as IPL or LISP, is not necessary in order to obtaip

the advantages which the list concepl pas to cifer.

A list structure can be made, in many instancs2s, considerably
more efficient than has been deraonstrated in the past. Al

s some comron sense and ingenuity on th2

ip——

that is needed
part of the user.

A list structure is good for some problems; tables are pood
for others; and in some cases a combination of both i4

appropriate. In general, both should be considered.

fa)
pod

e e e - ——

0‘*

ACKNOWLELA AR LS

The author wishes to acknowledge the assistance of F. R Palm,
J.S. Hughes, J.W. Joachim, and E. Se Schulze for much of the pro-

<+
Le

gramming and establishing of the techniques discussad in this repor

REFEILENCES

i. Newell, A., and Shaw, J.C., "Programining the Legic The ooy

Machine, " Proceedings of the Western Joint Computer

Conference, 1957,
2. Gelernter, H., Hansen, J. K., and Gerberich, C. L., "&

Fortran-Compiled List-Processing Language, " Journal of

‘ @

ACM, April 1960.
3. Ross, D.T., "A Generalized Technique for Syrabol Manip. &~

tion and Numerical Calculation™, Commnunications ¢f the A L

B

March 1961.
4, Evans, A., Perlis, A. J,, and VanZoeren, H., "The Use
- Threaded Lists in Consiruciing a Combined ALGOL and

Machine-Like Assembly Processor, " Communications of b2

ACM, January 1561.
S. Gray, H.J. and Prywas, N, S., "Outline for a Wultl-List
Organized System, " presented at the L4th National ACM

Meeting, September 1559, MIT.

22

	p 0001.tif
	p 0002.tif
	p 0003.tif
	p 0004.tif
	p 0005.tif
	p 0006.tif
	p 0007.tif
	p 0008.tif
	p 0009.tif
	p 0010.tif
	p 0011.tif
	p 0012.tif
	p 0013.tif
	p 0014.tif
	p 0015.tif
	p 0016.tif
	p 0017.tif
	p 0018.tif
	p 0019.tif
	p 0020.tif
	p 0021.tif
	p 0022.tif
	p 0023.tif
	p 0024.tif
	p 0025.tif

