MEMORAINDUM
TO: C. Perkins
FROM: D. Knuth

SUBJECT: PRELIMINARY SPECIFICATION OF "“SELL"

Attached is a‘complete’report on my plans for the SELL language.

I suggest you evaluate the language by trying it out on several
example applications. I would also appreciate it if you can chack

the code on pages 24-31 to sce if I have misunderstood GP2 or not,

Aﬁy suggestions you have for language improvements are welcome.
However, I want to keep the number of reserved words as low as
possible} there now are 28 reserved words, and since I intend these
to share space with the programmers' identifiers, it will be hard
to allow more than about 60 identifiers per program if the number

of reserved words increases very nuch,

The enclosed document only specifies the SELL language, not the
compilation technique. Once we can agree on the language, I can

get to work on the implementation; I have designed it with implementation
plans in mind, but these are still only "in my head." I think it

will be possible to write a compiler with two blocks for micro-storage,
one block for macro-storage, and one block for’dynamic tables. The
compiler will be syntax-oriented, and this means its complexity is
roughly proportibnal to the number of syntax rules (see pages 18-21);
at about 20 macro=sinstructions per syntax equation, I think I can

fit these into 1024 syllables, I propose writing this part of the
compiler myself and testing it out on the B5500 with a simulator for
the macro-instructions I specify. Later I can perhaps help with the
programming of the micro-operators and the design of some routines to
help automate this, but first it seems best to prove out the design

of the macro-operations themseives by writing that half of the compiler,

o Z8 b onave listed sunpested extensions to GP2, including sone

[didn't tiink of until after you left. Unfortunately I forpot to
discuss "tfiaups" wvith you last Saturday, and we will have to work
somcthing tike that out for the loading routine, (As you can sce from
the enclosed listing, I have not used that variable-execution-time
method of processing fixups which we discussed in June, since that
technique will not work reliably with the memory loader.)

The LIB and SIB operations mentioned on page 22 would really be

better if they could be written LIB 0:3 bwwwwwwww and SIB 0:3 bwwwwwwww
instead of LSMR bwwwwwwww followed by LIB 0:3 or SIB 0:3. If that.
is possible, I would prefer it, although I was afraid you were running

out of operation codes.
or evtn signal Bn endr smehow

I think GP2 should set OVERFLOW,if a number is being printed that has
nonzero digits to the left of the field specified. This will help catch

programming errors where not enough space has been left in a totals field.

I hope the attached document is sufficiently clear and that it won't

take you longer to read it than it took me to write it!

The next move is up to you; we should agree on the language to be

implemented before I can go any further.

Cordially, .

Y -

Donald E. Knuth 10/31/66

fs. Hm wuch o'F fhis can I SZON o /oczo/é/e~ Am in Pagaaaypaz.

D. Knuth 10/30/66

PRELIMINARY SPECIFICATION OF "SELL"

{SALES ENGINEERS' LITTLE LANGUAGE)

This document has four parts: an example program accompanied by detailed
comments &about the program; a preliminary draft of a programmer's manual
defining the language; a formal syntax which specifies the language

a little more precisely; and a hypothetical compiler output for the

first example program translated into GP2 language,.according to the

compiling mechanisms presently envisioned.

The reader is advised to look through the example program first, following
at the same time the comments which follow that program. This gives the
flavor of the language, and a general idea of its scope. Then read

the language definition, The syntax may be used by those¢ who understand
such formal definitions; it is included here primarily to serve later as

a guide for writing the compiler which will be syntax-oriented. The

final section which gives translation into GP2 is also a guide to the
compiler design, as well as showing some new operations which ought to

be included with GP2 in connection with SELL.

The larguage has been designed specifically to make it easily learned by

a man who knows FORTRAN or ALGOL or a similar language, and at the same
time it has been designed so it can be translated intoc GP2 by a small
compiler. Present indications are that the language is not too complicated
for a small compiler to handle, but it will be a itght fit; if necessary,
some features of the language would have to be dropped, in the following
order: Some of the GP2 mask options; the loop statements; subscripted

parameiers,

Cxample Program.

The following is an example of a SELL program based on an actual

payroll application. The example illustrates most of the features

of SELL; unfortunately it assumes a 20" platen instead of a 15" platen,

but this should not affect its usefulness as an example of the language.

line # (the program may be broken into lines in any desired manner)
1, < PAYROLL, MILWAUKEE LUTHERAN HIGH SCHOOL.
2. NUMERIC DATA(11) = (REGULAR, OTHER, HOUSING, NFICA, FICA,
3. PENSION, CTAX, STAX, IN§, MISC, NETPAY),
4. NUMERIC TOTALS(13) = (CKNO, TOT(14), W2).
5. NUMERIC_GTOT(1L), TNFICA, TFICA, TCTAX, TSTAX, PROOF, FICAMAX, I.
6. ALPHA] 7 DATE. ’
7. BEGIN ROUTINE TTD.
8. QENTER AND CHECK TOTALS-TO-DATE.
9. S1: ENTER(7) TNFICA; A4,A5,BO.
10. ENTER(7) TFICA; Bl. ENTER(7)TCTAX;:B2. ENTER(7)TSTAX; B3.
11, ENTER(7) PROOF; B4,
12. IF PROOF = TNFICA+TFICA-TCTAX-TSTAX, GO TO OKAY.
13. ALARM. GO TO S1.
14, OKAY: OPEN 0.
15. END ROUTINE TTD.,
16. Q' START OF PROGRAM.
17. KEY ROUTINE AO: VOID,. Al: BACK, A2: W2FORM, A3: CCNO,
18. Ad: SUBTOT, A5: GRANDT.
19, 27 PRINT '"'PAYROLL".
20, CLEAR TOTALS /s
21. 37 TYPE (7) DATE} AR,
22, 46 ENTER (6) CKNO. PRINT(Z22ZZZ)CKNO,
23. 71 ENTER (6) FICAMAX; A0, PRINT (ZZZZ.¢¢) FICAMAX.
24, ADVANCE 1,
25. GMAIN: CLEAR GTOT.
26, MAIN: ## 87 CALL TTD.
27, CLLEAR DATA,
28. # 87 ENTER(5)REGULAR; Al,B5. PRINT(ZZZ.¢¢-)REGULAR.
29. * ADD REGULAR TO GTOT(4).
30. IF KEY(1), GO TO S2. IF KEY(4), GO TO S3.

31. # 94 ENTER(S) OTIER; AO,Al,B5. PRINT(ZZZ.¢¢-) OTHER.
32, * ADD OTHER TO GTOT(Z).

33. IF KEY(1), GO TO S2. IF KEY(4), GO TO S3.

34, # 101 ENTER(4) HOUSING; AO,Al,B5. PRINT(ZZ.¢¢-)HOUSING.
35. * ADD lIOUSING TO GTOT(3).

36. IF KEY(1), GO TO S2.

37. S3: # 107 ENTER(5) NFICA; AO,Al,BS.

38. S2: SET NETPAY = REGULAR + OTHER + HOUSING.

39. IF KEY(2), SET NFICA = NETPAY. ‘

40. SET FICA = NETPAY - NFICA.

41, UNLESS FICAMAX - FICA - TFICA NEGATIVE, GO TO S4.
42. ADD TFICA - FICAMAX TO FICA., SET NFICA = NETPAY - FICA.
43. S4: 107 PRINT(ZZZ.¢¢-) NFICA. '
44, * ADD NFICA TO GTOT(4).

45. 114 PRINT(ZZZ.¢¢-) FICA.

46. * ADD FICA TO GTOT()).

47. BEGIN ROUTINE DEDUCT(P,X,J).

48. (P) ENTER(5)X; AO,Al,B6.

49. PRINT (ZZZ¢¢-) X.

50. * SUBTRACT X FROM NETPAY. * ADD X TO GTOT(J).
51. IF KEY(2), GO TO PRNET.

52. END ROUTINE DEDUCT.

S3. # CALL DEDUCT(120, PENSION, 6).

54, # CALL DEDUCT(127, CTAX, 7).

55. # CALL DEDUCT(133, STAX, %).

56. # CALL DEDUCT(139, INS, 9).

57. # CALL DEDUCT(145, MISC, (0).

58. PRNET: 151 PRINT (ZZZ¢¢-) NETPAY.

59. IF NETPAY NEGATIVE, ALARM.

60. * ADD NETPAY TO GTOT(11).

61. ADD NFICA TO TNFICA. 159 PRINT(ZZZZZ.¢¢)TNFICA.
62. ADD FICA TO TFICA. 168 PRINT(ZZZZZ.¢¢)TFICA.
63. ADD CTAX TO TCTAX. 176 PRINT(ZZZZZ.¢¢)TCTAX.
04. ADD STAX TO TSTAX. 184 PRINT(ZZZZZ.¢¢)TSTAX.
65. 191 PRINT(ZZZZ.DDD) TNFICA+TFICA-TCTAX-TSTAX.

L

60,
67.
08,
69.
70.
71.
72.
73,
74.
75.
76.
77.
78.
79,
80,
81.
82,
83.
84,
85.
86.
87.
88.
89.
90,
91.

92. -

93.
94.
95.
96.

< 1.0l OPERATOR TYPES NAME ON CHECK.

0 TYPE(30); AO,A3.

S5: 37 PRINT DATE. 46 PRINT(ZZZZZZ)CKNO.

ADD 1 TO CKNO,
60 PRINT(ZZZ.¢¢)NETPAY,
80 PRINT DATE.

ADVANCE 1. OPEN 0. GO TO MAIN,

VOID: 31 PRINT "**VOID",

71 PRINT(ZZZ.¢¢)NETPAY,

BEGIN LOOP I FROM 0/TO 154 BY 7,

(I+37) PRINT "**ssxasr
END LOOP I, GO TO ##,
BACK: GO TO #,

CCNO: 46 ENTER(6) CKNO,

~ BEGIN ROUTINE PTOT(A).

ADVANCE 3. 10 PRINT A,

GO TO SS.

BEGIN LOOP I FROM 4 TO 14 BY 2.
(83 + 7*1) PRINT (2Z2ZZZZ.¢¢-) GTOT(I).

END LOOP I. ADVANCE 1.

BEGIN LOOP I FROM 2 TO 10 BY 2.

(83 + 7*I) PRINT (ZZZZZZ.¢¢-) GTOT(I).

END LOOP I. ADVANCE 3.
END ROUTINE PTOT.

GRANDT: CALL PTOT('"DEPARTMENT TOTALS").

BEGIN LOOP I FROM 4. TO 11.

IF W2 = 0, GO TO GMAIN,

ADD TOT(I) TO GTOT(I).
CALL PTOT ("'SUBTOTALS").

ADD GTOT(I) TO TOT(I).

GO TO W2FORM,
SUBTOT: BEGIN LOOP I FROM 4 TO 11.
END LOOP I,

BEGIN LOOP I FROM 1 TO 1%,
SUBTRACT TOT(I) FROM GTOT(I).

IF W2 = 0, GO TO MAIN.

GO TO

END LOOP I,
W2F,

END LOOP I.

97. W2FORM: CLEAR GTOT.. . ¢¢f W2 = i, 5
98. W2F: ## 87 CALL TTD,
Al 99, FIcA = TFICA 5 / 100000.

: "NTER(7) OTHER.
AW~ 101, 34 PRINT@Z,222.¢¢)TCTAX-FICA. *ADD TCTAX-FICA TO GTOT(4).

102, SEENETPAY = TFICA + TNFICA - OTIER, |

103. 46 PRINT@ZZ,ZZZ.¢¢)NETPAY, *ADD NETPAY TO GTOT(2).

104. 57 PRINT@#2Z,ZZZ.¢¢)OTHER. *ADD OTHER TO GTOT(3).

105. 70 PRINT@ZZZ.¢¢)FICA. *ADD FICA TO GTOT(Y).

106. 80 PRINT@Z,ZZZ.¢¢) TFICA. *ADD TFICA TO GTOT(S).

107. 95 PRINTZ,2ZZ.¢¢)TSTAX. *ADD TSTAX TO GTOT(G).

108, 92 TYPE(1); Al,B7, < OPERATOR TYPES IN STATUS CODE.

109. - OPEN 0. GO TO WZ2F,

110. END.

Comments on the program, by line number.

1. The < symbol means the following remarks(?p to the next period)are

_' conments which do not explicitly affect the behavior of the program.

2-3. These two lines say that DATA(L), DATA(R), DATA(3), ..., DATA(11) are
numeric variables, which are equivalent to the numeric variables given
the respective names REGULAR, OTHER, HOUSING, ..., NETPAY.

4,5. Line 5 says GTOT({), GTOT(2), GTOT(3), ..., GTOT(14), TNFICA, TFICA,
TCTAX, TSTAX, PROOF, FICAMAX, I are the names of numeric variables.

Line 4 sggs CKNO is equivalent to TOTALS(L), TOT({) is equivalent to
TOTALS@@), TOT(d) is equivalent to TOTALS(R), ..., TOT(14) is
equivalent to TOTALS(1R2), and W2 is equivalent to TOTALS(13).

6. This éyys DATE is the name of a alphabetic variable whose value
may contain up to 7 characters at a time.

7-15. Lines 7 through 15 represent the "TTD" subroutine, which controls
the operator's entry of totals from an employee's earnings record.

This subroutine is explained further in the discussion of line 26 below.

17,18, These lines say that when key AO is subsequently enabled and .depressed, the
program is supposed to go to VOID (i.e., the routine which Legins at
line 73); when key Al is enabled and depressed, we should go to BACK (line
77 of this program); etc. VWhen keys not mentioned -- in this case

(:) the keys A6, A7, and BO-B7 -- are enabled and depressed, nothing happens.

19. This statement sgys the heading ~ "PAYROLL" is to be typed starting

in column 27 of the current line.

20, Here we sct the entire array of TOTALS, which according to line 4
includes CKNO, V2, and the variables TOT(1) thrgogh TOT(14),
to zcro.

21. The print hecad on the typewriter is moved to column 37 and the
operator is to type in up to seven characters. The result of his
typing\is printed on the form and also entered as the value of the
ﬁ]i‘?agﬁt&cﬁnrzﬁ‘f’ia&%e%IZ’{‘\;TE(.S“Ifl"_.zh'e_,)?perator depresses program key A2,

22, The print head is moved to column 46. The operator types in a number,
-up to six digits long, and this number is stored &s the value of
the numeric variable CKNO. (It represents the number to be typed
on the first check.) This value is also printed (starting at column
46, since .the ENTER instruction causes no print action), with
leading zeroes suppressed. .

23, Line 23 is similar to line 22, except the ENTER statement also allows
program key A0 . to be enabled. If the operator presses A0,
we go to VOID (see line 17) and the current line is crosseed out and
the program starts over again at its beginning. If the operator .
completes his’entry in the normal manner by pressing'avmotor,bar,
however, the. value of FICAMAX is set (this Would be $6600.00 in 1966)
and printed out with two decimal places and zero suppression up to
the decimal point.

24, The platen feeds one line. %No split platen is beingvused,here.)

25, GMAIN is a label denoténgrg ngﬁgein the program (see for example
line 90 where the statement "GO TO GMAIN'" would take the action
back from line 90 to this point). 'CLEAR GTOT" has a meaning similar
to line 20, namely that GTOT(i) through GTOT(14) are cleared to zero.

26. This is reference point MAIN, the main part of the iteration. The
two # signs mean it is a rerun point; a statement "GO TO ##'" as in
line 76 means '"return to the last rerun point encountered,”undoing
the effects of certain c;itical actions marked by * (for example,
resetting the total which may have been updated in 3% line 29).
The ssatement "CALL TTD" activates the TTD subroutine which appears
on lines 7-15. This subroutine does the following:

(a) lets the operator enter "TNFICA", the total non-FICA wages
to date shown on the employee's earning record. (Line 9)
At this point, program keys A4 and AS are enabled, to
allow the opprator to get grand totals or subtotals instead.

Also key BO is enabled, merely to light the light as a

T

signal to the operator what we want him to do.

(b) asks the operator to enter the other totals, TFICA,
TCTAX, TSTAX, and also the PROOF figure printed.

(c¢) checks to see if the entries are consistent (line 12)

(d) otherwise rings the bell, and returns to give him
another chance to make the entries. fline 13)

(e) When valid entries have been entered, the carriage
opens (line 14; OPEN 0 means the carriage will advance
0 lines when it is subsequently closed).

his ends the subroutine. The operator at this point is to put

the employee's earnings record in the machine (over the payroll

J
£

ournal which is already in the platen) and it slides down (front

eed) into position according to perforations. The operator also

puts a check into the carriage, with carbon on the back 66 the

c

r
27.
28,29,

30.

31"36 .
37-42]

43-460
47"52.

53-S7a

heck(to print earnings and deductions on the check as well as the
ecord sheet and the journal).
The values of REGULAR, OTHER, ..., NETPAY are set to zero.

The operator enters regular wages, and this amount is added to
the current grandbotal GTOT({).

If motor bar I was used, the program goes to S2; if motor bar IIII
was used, we go to S4, Otherwise, continue in sequence.

Similarly, OTHER earnings and HOUSING allowance may be entered.
The earnings are split into FICA and non-FICA depending on

what the operator enters specifically as non-FICA and any excess
of accumulated wages over the $6600 figure. The meaning of

line 41 is essentially to skip line 42 unless FICA plus TFICA
excecds FICAMAX. A

The computed values of FICA and NFICA are now printed on the form.
This is a subroutine with three parameters, P, X, and J. The
function of the subroutine is to position the carrier at column P,
then ask the operator to enter a value for variable X, and to

print the value, and to deduct this value from NETPAY, but to

add it to the total GTOT(J). The two actions on line 50 are
marked with a * so that they may be undone later [if necessary) by
using a "GO TO #" or a "GO TO ##" operation, If the operator has used
MOl Rese- Tinds tach sctivate the SERUCT Bibreuilne wifh SouiHircaane o8
set of values for the parameters P, X, and J. The # in each line

marks it as a secondary rerun point.

58-65 The machine prints the computed net pay (rings the bell if it is
negative), then printe new totals-to-date and proof on the
employee earnings record. The proof is printed with three decimal
places, for obscure reason, (See the mask ZZZZ,DDD in line 65.)

06-67. The carrier now moves all the way left to column 0. The operator

may push program key A0 to void the line, or after his typein he
may push A3 to reset the check number if by mishap it has gotten
out of step with the number printed on the check itself, In a
normal case, the operator merely types the mands name on the check
at thes point, up to 30 characters.

68-71. The machine prints the date and number on the check; updates the

number for the next check; and prints the amount NETPAY twice
(once for protection)., Then in column 80 the date is printed again
so it appears on the check stub and the employee record sheet.

72. The dachine advances one line and opens the carraage, then goes

back for more. starting

73-76. The voiding routine prints asterisks, seeen at a time, in columns

37, 44, 51, ..., 154+37= 191; see lines 74-76., Then the
statement "GO TO ##'" returns to the last major rerun point and
resets the actions of the all statements marked with * which have
been executed since the BXANX¥MUX most recent rerun point was
encountered.

77. The backup routine (which corresponds to the frequently enabled

program key Al) simply goes back to the 2nd most recent ménor
rerun point and resets the actions of *-ed statements.

78. Allows typein of a new check number (see line 68).

79-87 This is a subroutine which prints the values of GTOT(4) through GTOT(14)

in staggered form appearing essentially like this:
xiExx KX xxg&i xxbxx xxdxx xEExx
xx%kx xiﬂxx xxfxx xxgxx xfgix
accunulated

88-90 Prints out grand totals for department, adds these to %t totals, and

clcars out grand total registers.,

91-96 Prints out current value of grand-totals plus accumulated-totals in

each category.

97-0% A routine to print out W2 forms, using features borrowed from the

payroll check routine (e.g. the TTD subroutine, and the procedures for

printing grand totals and subtotals).

110. Designates the end of the SELL program.

Definition of SCLL

The following sections give a reasonably complete definition of the
allowable constructions of the SELL language and their meaning. Reference
to the previous example should make it more easy to understand the géneral

rules given below,

1. Identifiers. An identifier is a sequence of one or more letters and/or

digits, starting with a letter. If the first 6 characters of two identifiers
I [. : According to rules given below
are the same, the compiler might regard them as identical, ABach identifier
serves as the name of a variable, a label, a subroutine, a parameter, or
a word with special meaning in SELL. No identifier may be used for more than

one purpose in a program.

2. Variables. A variable is either NUMERIC (having a signed 15-digit

decimalﬁgfﬁs 3 flag bits), or ALPHA (having a string of characters as its
value). The first appearance of the name of a variable in a program must be
in a "declaration"; for example, the sequence of declarations

NUMERIC A, B, CAT.

AUMA@QXJ.
declares that A, B, and CAT are NUMERIC variables; X and Y are ALPIIA
variables whose length 15 atJmost 10 characters.

Variables may be "su%ﬂcrip%ed“ thus:

NUMERIC M(5), N(3). o9
J"""

This means therg are five NUMERIC varlables M(1) ,M(3) ,M(3),M(4),M(5) and
three othersf*f(l) N(2),N(3). @ ALPHA variables whose length is eight of"higher

may not be subseripted.

3. Equivalences. It is possible to give more than one name to the same

variable, by using constructions like the following:

NUMERIC N(3) = (I,J\,K), P =Q =
This declares four NUMERIC Variables: N(1) which is also called I; N(2)
which is also called J; N(3) which is also called K; and P which is also
called Q or R. This multiple naming saves memory spacc inside the machine
and allows a program to show more clearly what it is trying to do. As a more
complicated use of equivalences, consider the declaration

NUMERIC N(4) =(I, J(2) = (P,R), K = L).
Here N(1) = I, N(2) = J(1) =P, N(3) = J(2) = R, ¥nd N(4) =K = L.

10

4. Nuneric expressions. A numeric expression denotes a numeric value

composed of one or nore other numeric values by means of arithmetic operations.
im: is ir $! i ression: i

A primary is the simplest kind of numeric exp o gikxﬁﬁjprlmary may be

a numeric variable, having the form "X'" for unsubscripted variables, or the

Fgn ik

form "X(nuneric expression)'" for subscripted variables, where X has appeared

in a NUMERIC declaration, or X is a parameter to a subroutine; or a primary

may be a numeric constant, 1 to 15 decimal digits. The numeric expression in

S R pgrt oo ot G oo . e P et S
a-subseript must ﬁ%tweeﬂ@amn:subsem&p@ed*varxabTGS”cr“ﬁhY'mﬁTtrprrcat1on‘or
LS TOm o .

For example, "B'", "25",. and "M(B+25)' are primaries.
A term is the next most complicated type of numeric expression. A term

may be sinply a primary or it may have one of the forms

primary * primary (multiplication)
primary / primary (divisién)
primary * primary / 10% scaled multiplication)

;gfﬁ? primary / primary ¥ [¥(scaled division)
The resultd§'division is truncated by throwigg away the remainder. For
example, 34 * 5 =170, 34 *5/ 100 =1, 34 / 8 = 4,.10 * 34 / 8 = 42,
A numeric expression is either a term or the sum or difference of terms.
For example, A + 100 *B / C - D - E * F(I+1) is a (rather complicated)

numeric expression,

The above rules define a restricted class of numeric expressions,
prohibiting constructions which are allowed in FORTRAN such as the use of
parentheses in "(A + B)/C", and prohibiting repeated muttiplications and

coe . . having the simple forms listed
divisions as in "A * B * C", Only sums and differences o terms,may appear.

5. Alphancric expressions. An alphameric expression is either an

alpha-variable (i.e. a variable which has previously appeared in an ALPHA

declaration), or a parameter to a subroutine, or an alphameric constant. The

latter consists of a quote mark, followed by one or more characters (of which
only the first may be a quote mark), followed by another quote mark.

Examples of alphameric constants are "HELLO " and ""...GOODBYE",

6. Statements. A SELL program is a sequence of declarations and statements,

with optional comments, loops, and/or labels interspersed. A comment is
distinguished by a '"lozenge" < as its first character, and it has no
direct influence on the behavior of the program. A loop is explained below.
A label is a 3dbel-identifier followed by a colon, and it serves to identify

the place it appears in the program. For example, consider the following sequence:

11

READ: 20 ENTER(6) DATA.
IF DATA NEGATIVE, GO TO READ.
The label '"READ:" .ismi?ollowed by a statement which directs the typewriter camer
to move t6 column position 20 and wait for the operator to enter an intecger
number of 6 digits or less; the number thus entered is stored as the value
of the numeric variable, DATA. The following statement says if this
value is negative, we should go back to the first statement and wait for

another entry.

7. SET statements., The statement

SET variable = expression
means the value of the variable is to be set equal to the value of the
expression. The variable and ‘the expréssion must both be numeric, or both
alphabetic, with the length of the variable greater than or equal to the
length of the expression. .

Examples: SET FICA = RATE * WAGE.

SET MESSAGE = "HELP?",

SET X(I) = 1.

SET R = 0 - R,

SET N =N+ 1.
The last statement may also be written "ADD 1 TO N." The statement

"ADD numeric expression TO numeric variable'" is equivalent to "SET numeric
variable = numeric variable + numeric expression". Similarly,

"SUBTRACT n.e. FROM n.v." is equivalent to "n,v. = n.,v., - n.e."

8. KEY ROUTEINEstatements. The statement

KEY FouTYME AO: ROUT1, Al: ROUT2, B4: ROUT3
means that subsequent ENTER or TYPE statements, in which the program keys
A0, Al, or B4 have been enabled, will go to labels ROUT1, ROUT2, or ROUT3
respectively, if the keyboard input terminates with that key. If other
keys are enabled, fhey serve ogly as a light to tell the operator what kind
of input is expected; no special action occurs if other enabled keys are
depressed. The keys AO, Al, ..., A7, BO, ..., B7 specified in a KEY ROUTINE

statement must appear in ascending order.

9. ENTER statements., The statement

ENTER (s, t) numeric variable
means a nuncric keyboard entry is expected, with at most s digits oofh
]

the value enlend is moltiplied by 102 und sfosd a'fh value 1'& aumenc dm'aue .
left of the decimal point and t digits to the rightja Here s and t

agnumeric constants with s + t €15; if t = 0, the ",t" may be omitted.

12

An ENTER statement may be followed by a semicolon and a list of
program key designators. For example,
ENTER (5,7) COST; A3,B0,B2.
means a keyboard eéntry of the form xxxxx.yyyyyyy is to be entered (and
stored into the variable COST as the intéger XXXXXYYYYYYY), with three
program keys A3, BO, and B2 enabled. The program keys listed must

appear in order.
10, TYPE statements. The statement
TYPE(s)

means an alphabetc keyboard entry is expected, with at most s characters.

: " startinF e . :
This entry is typed,at tlie current position on the line. (Here s is a
numeric constant.

The statemen
TYPE(s) appha variable]
also sets the value of the alpha variable to the quantity typed in.
Either form of TYPE statement may be followed by a list of program

keys to be enabled, as in the ENTER statement.

11, PRINT statements. The statement

PRINT alphabetic expression
prints the value of the alphabetic expression, starting at the current
position on the line. The statement

PRINT alphabetic expression LEFT
prints the value backwards going to the left instead of to the right,

starting at the curreat position on the line minus two. (See the-

examples in section 13 below.)
The statement

PRINT (mask) numeric expression
prints the value of the numeric expression using the mask, as in GP3. The
mask here should:gé.;hortcned to the desired number of characters to be
considered; for example,

PRINT (ZZD.DD) X
prints the value of X using the Gﬂf mask"IIIIIIIIIIZZD,DD", In addition
the mask in SELL may be preceded by "$"aehbr™#" to denote a floating dollar
sign or the suppression of punctuation; and it may be followed by "-" or
"ed' to denote a character to be printed only if the value of the mxpression

is negative. Negative values appear in red ribbon. Wit Llpsr

13

12. GO TO statements, The statement
]
GO TO ROUT1

where ROUTL is a label identifier means execution of the program (which

normally proceeds sequentially from statement to statement in the order

written) should continue now from the place in the program labelled"ROUTi:".

13. Carrier positioning. Any statement may be preceded by a numeric.

constant or by a parenthesized numeric expressioh, which indicates the
desired position of the typewriter print machanism, For example,

19 PRINT "KAQOS"
prints a K in column position 10, A in position 11, O in 12, S in 13, and
leaves the typewriter ready to print next in column 14,

10 PRINT "KAOS'" LEFT .
prints a K in column 8, A in 7, O in 6, S in 5, and is ready to print next
in column 6. The follewing sequence of statements may be used to
print a value of the form xxx.xx, underline it, and put the total yyyyy.yy
in the line below, so that the page looks like this:

| XXX XX

YYYYY.YY

10 PRINT(DDD.DD) X.
17 PRINT " " LEFT. ADVANCE 1.

8 PRINT(DDDDD.DD) Y.

14. Conditional statements. Any statement may be preceded by a condition

prefix which makes the effect of the statement optional. For
example,
IF X = Y, SET X = Z
means X 1s set to Z if it equals Y;
UNLESS X = Y, SET X = Z
means X 1is set to Z if it does not equal Y.
A condition prefix in general consists of the word IF or UNLESS,
followed by a condition, followed by a comma. A condition may take the

following forms:

numeric expression = numeric expression [true if expressions are equal
numeric expression NEGATIVE [true if expression is negative]
numeric expression CODE(2) [true if C flag of expression is on]
numeric expression CODE(3) [true if M flag of expression is on]

KEY (d) [d = 1,2,3,of 4; true if d is number of last motor

bar used by opprator]

OVERFLOW , [true if arithmetic overflow has occureed

lwsd ADVAMCE™ oporation

PAGE OVERFLOW [true if cameent—3imo-number exceeds page $ize]

14

The C- and M-flage of a numeric value are set if the keyboard operator
includes a '"per hundred" or 'per thousand" indicator during an ENTRY
statement. These flags stay with the numeric value until it is used im

any arithmetic operation, and at that time they disappear.

15. Protection of variables. The SELL language includes a gencral

facility for recovering from operator errors. Any statement may be
preceded by "#'' or by "##", and anyiﬁﬁﬁgﬁ§k SET, ADD, or SUBTRACT statcment
may be preceded by "*“. This meansbiﬁforﬁation‘is automatically saved
so that all effects of these SET, ADD, and SUBTRACT statements may be
cancelled if later events should make this desirable.
The statement
GO TO ##
means GO TO the last-executed statement which was tagged "#4#", and
restore the values of 8ll variables that were changed by starred SET, ADD
or SUBTRACT statements that occurred since the execution of that statement.
(A "##" is implied at the beginning of every program.)
The statemenf
GO TO #
means GO TO the second last executed statement which was tagged ", or
to the last "##" statement which was executed, whichever occurred most
recently. Variables whose values chahgéd in the intervening time are
restored as in GO TO ##.
For example, consider the following sequence:
ENTER(5) X;A%.
ENTER(6) Y;Al.
* ADD Y TO X.
20 PRINT(2ZZ,ZZD)Y.
* SET Z = 2 * X,
ENTER(S5) C.
IF KEY(4), GO TO #.
IF C NEGATIVE, GO TO ##,
First thc keyboard operator types in a 5-digit value, X, then a 6-digit
value, Y. After setting X = X+Y, printing Y, setting Z = 2*X, we get to
another ENTER statement, so the operator is to enter another 5-digit
value, C. If this value is entered with motogdng 1111, we "GO TO #" whic

restoreg oo previms volues of "z and X
means in this case we go back to the "ENTER(6) Y'" statement, Presumably

o

15

the operator pressed motor bar IIII because he realized he had mis-entered
the value of Y after seeing it printed. At this point he may either enter

a new value of Y, or he may press the enabled program key Al (which might
cross out the preceding Y value and advance one line and then "GO TO #" again
which would take the program all the way back to the first statement).

In the above example, if motor bar 4 was not used but a negative value
("reverse entry") was entered or C, the statement "GO TO ##" means the
values of X and Z are restored and we go back to the original ENTER statement
for X. Note that "GO TO ##" is equivalent to repeatedly executing "GO TO #'"
until reaching the most recently executed ## statement,

This feature of SELL requires memory space to save the previops
valqes of the yariables and the locatlons of # an¢ i statements. | The |

ShLL conp1ler will Aindicate 'to the programmer hqw much spaceﬁis Z a11ab1¢
r ;hls batkup storage, and it }s 1mpqrtant that thelprogrammerdmake
J‘iﬂigeegﬁgggrggggg ig %ggﬁlﬁgor &ach occurrence of a 7 between ‘two ## statements,
Al +25 words of ﬁemory are used; and for each occurrefice of a A between two

statements while the program is running, .25 words are used.)

16. Subroutines. The declaration
BEGIN ROUTINE NAME
or BEGIN ROUTINE NAME(P,,...,P)

marks the beginning of a subroutine called NAME, having parameters Pl""'Pn' ;

This subroutine ends with the declaration
END ROUTINE NAME
which follows. An exsmplef appears in sectim RO.
A subroutine is a piece of program which does no action until it is
"called." The statement
CALL NAME
or CALL NAME(AI,...,AHJ
activates the subroutine, "substituting" the arguments Alseoe,A for the
parameters Pl,...,Pn duri_gmtrf performance of the subroutine. Arguments
may. be variables, constants, or-‘an identifier corresponding to a subscripted
variable. .

The action of a subroutine is terminated either by a GO TO statement
that lcads out of the subroutine, or by coming to the ENDf?ggi%Eent (in
which case we GO TO the statement following the CALL). A GO TO statement
may not lead from outside a subroutine to within that subroutine, or from
one subroutine out into another subroutine which called it. A subroutine with

parameters may not be CALLed recursively (i.e. while it is already CALLed).

E/',M"—'.! o S 'J i f/ -

16

17. Loops. The construction L
<:> BEGIN LOOP V FROM r'TO s BY t

ceeesess (any sequence of statements, in which all loops
and subroutines are closed by END)

END LOOP V
is an abbreviation for the sequence of statements
SETV=r1-1t,
Ll: ADD t TO V,
IF s - V NEGATIVE, GO TO L2.

o
L2: oW o,

Here r, s, t are numeric constants,and V is a numeric variable. If
t = 1, the "BY t" may be omitted.

18, Forms control. The following statements are provided for forms control:

ADVANCE LEFT n feed left platen n lines

ADVANCE RIGHT n feed right platen n lines

ADVANCE LEFT TO n advance left platen to n-th line of page

ADVANCE RIGHT TO n advance right platen to n-th line of page
PAGE LEFT n ‘ size of left page is n lines,

PAGE RIGHT n size of right page is n lines.

OPEN n open carriage and after it $s later closed

advance n lines.
The word LEFT may be omitted. (since the platen may be combined and in this
case LEFT is implied).

19. Miscellaneous statements.
ALARM rings the bell
CLEAR numeric-identifier sets the variable (and if it is

subscripted, all of the entries) to zero.
Note: Zhe statement CLEAR X may not be used when X is a subroutine parameter.

CODE (b b 4by 309Dy 1D1gPgPgsb7DgD5D405D5D DY)

CODE(bycby 4by3by9b1 1P oPgPgs V)

These two statements perform the actions of a Gﬁsiinstruction whose binary
jg N seeh Y. 5 : " T " Fo
form is b15 bo.,lln the flrst case, or bl5 b800000000 {ﬁ;ﬁﬂfgif 9f y;_ng e
in the second case. The b's _are jzero or one; Vis a variablew' If7v
iRl S "\ .
is a parameter or if V is subscripted, SELL-might-use-the accumulator and might

Hﬁéﬁtfy—thii;;gggxuctiﬁh-ﬁith_indeX‘?éﬁiEféf“duand 3 e

-]

17

The purpose of the CODE instruction is to leave SELL open-ended enough
to incorporate any special GP2 features that might exist in non-standard
versions, or to do special effects with GP@ which are not available in
SELL, without writing a whole program in GPé.

20. A SELL program. A SELL program is a list of statements, declarations,

comments, loops, (each followed by a period) or labels (which end with a
colon), followed finally by "END." to mark the end.
Here is a short SELL program which makes the machine behave much

like a simple adding machine:

NUMERIC X,TOTAL.
KEY ROUTINE AO:SUBTOT, Al:TOT.

ZERO: SET TOTAL = 0.

ENT: ENTER(15)X; AO,Al.

ADVANCE 1.

10 PRINT(2222222222222.DD-)X.

UNLESS KEY(2), ADD X TO TOTAL.

IF KEY(2), 30 PRINT "#",

GO TO ENT.

BEGIN ROUTINE PRTOT(C).

ADVANCE 1.

10 PRINT(ZZZZZZZZZZZZZ.DD-)TOTAL.

30 PRINT C.

END ROUTINE PRTOT.

SUBTOT: CALL PRTOT("¢"). GO TO ENT.
TOT: CALL PRTOT("*"). GO TO ZERO.

END. y

8.
9.
10.

11.
12,

13.

14,
15.

16.
17-
18.
19."
" 20.

21.
22.

18

Syntax for SELL 10/30/66

tetter=> A| B[c[o|E|F|c|n|1]J] K] m|njo]rlQ)r]s|T]u)v]
wixly|z
digit > 0|1|2|3|4\s|6|7|8]9
identifier —> letter l igdentifier letter l identifier digit
nuneric-constant = digit l numeric-constant digit
variable-name - new-identifier \ new-identifier (numeric-constant)
[see note 2]
variable-declaration—>> NUMERIC variable-name-list]
ALPHA ﬁlumeric-constanq variable-iame-list
variable-name-list = variable-name-list-iten I
variable-name-list-item , variable-name-list
variable-name-list-item —> variable-name l variable-name = (variable-name-list)
subroutine-declaration—> su‘i:‘?::f;-i:::-ixe;din“;‘thi;;gé;gg:g;:ce END ROUTINE comment
subroutine-heading —> BEGIN ROUTINE new-identifier |
BEGIN ROUTINE new-identifier (parameter-list)
parameter-list— new-identifier ‘ new-identifier , parameter-list
numeric-variable —» numeric-identifier l parnmeter-ipd?lljtii‘fri-?‘ﬂ!ﬂ.er (mumeric - exprestion)
numeric-identifier (numeric-expression)'1 - [see note 5]
alpha-variable— alpha-identifier \ alpha-identifier (numeric-expression)
primary—> numeric-variable l numeric-constant
term - primary l primary * primary l primary / primary \
primary * primary / power-of-ten l
power-of-ten * primary / primary W
power-of-ten —» I'T power-of-ten 0
numeric-expression — term i numeric-expression + term] At
numeric-expression - term ;
alpha-expression—> alpha-variable] ' char-string " | parameter-identifier
§L§t-ﬁ,§ﬁmﬁic—# SET numeric-variable = numeric-expression)
ADD numeric-exf);e__%sion TO numeric-variable l
SUBTRACT numeric-expression FROM numeric-variable

set-statcment——;set-ﬁnme[* sct-fiumeric 1

SET alpha-variable = alpha-expression
psk=> A0 | AL | A2 A3| A4 |As |a6] A7 |Bo [B1 |B2] B3| B4 [BS| BG) BY
key-routine-statement—> KEY ROUTINE psk : identifier |

Kkey-routine-statement , psk : identifier [see note 6]

23,
24,

25,
26.

27.

28.
29.
30.

31.

32.
33.
34.
35,
36.
37.
38.

‘39I

40,

41.
42,
43.

44.

19
YO ;euP
go-to-statement —>GO TO label- 1dcnt1f1er l GO TO #] GO TO # #
call-statement = CALL subrout1ne-1dent1f1er\
CALL subroutine-identifier (argument-list)

argument-list—» argument | argument-list , argument

. argument —7 ~mary | wlpha -expression | nuweric - identiFier 24, 5

enter-statement —»simple-enter-statement
simple-enter-statement ; psk-list
simple-enter-statement—> ENTER (numeric-constant) numeric-variable |
ENTER (numeric-constant , numeric-constant) numeric-variable
psk-list—> psk | psk-list , psk (see mife 6] :
type-statement —> simple-type-statement‘ simple-type-statement ; psk-list
simple-type-statement —¥ TYPE (numeric-constant)l
TYPE (numeric-constant) alpha-variable |
TYPE (numeric-constant) parameter e
print-statement —>PRINT alpha-expression (PRINT alpha-expression LEFT
PRINT (mask) ﬁumeric-expression
mask = control-flag mask-sequence sign-character
control-flag—> § l #] *#
sign-character — - l en\
mask-sequence — mask-code l mask-sequence mask-code
mask-—code——aI](A’,\’Dl.DlD:]D,lZlZ:[Z, | ¢ l.rgf)‘\l.}(ls IBIZB
carrier-position - numeric-constant f (numeric-expressién)
condition—$ numeric-expression = numeric-expression]
nuneric-expression NEGATIVE \ nuneric-expression CODE (digit)
KEY (digit) \ OVERFLOW } PAGE . OVERFLOW
condition-prefix—> IF condition , | UNLESS condition , °
forms-statement —>/ADVANCE left-right numeric-constant
ADVANCE left-right TO numeric-constant l
PAGE left-right numeric-constant l
OPEN numeric-constant
left-right = LEFT | RIGHT |
loop-%>bcgln loop . program plccc END LOOP comment / /
begln loop —2 BEGIN LOOP numeric-variable FROM numeric- constant TO numeric=- constant/
BEGIN LOOP numeric-variable FROM numeric-constant .
TO numcric-%gﬂStantiBanumcric-c&ﬁé%anﬁ
miscellaneous-statement —* ALAR! \ CLEAR numeric-identifier
CODE (8=bits , 8-bits) l CODE (8-bits , numeric-variable)]

CODE (8-bits , alpha<idufebre)'

20

45. 8-bits ~»bit bit bit bit bit bit bit bit

46, bit—0 | 1

47. basic-statement —> set-statement l key-routine-statement \ go-to-statement f
call-statement l enter-statement I type-statement ' print-statement}
forms-statement l miscellaneous-statement j

48, statement —> basic-statement l carrier-positiohhﬁfdtement _
condition-prefix statement _

49, program-component —> statement ., l'#‘statement ¥ \ # } statement . \
loop . | declaration . | { comment . l label-identifier :

50. declaration —>variable-declaration | subroutine-declaration

51. program-piece —»program-component l program-piece program-component

52, SELL-program —» program-piece.END .

Notes: .
1. Blank spaces must not appear within the syntactic categories identifier,

numeric-constant, power-of-ten, eg{ within the "reserved words" which are:
ADD ADV%EEE ALPHA ALARM BEGIN LL CLEAR CODE END ENTER FROM GO IF
KEY LEFTRNEGATIVE NUMERIC OPEN OVERFLOW PAGE PRINT RIGHT ROUTINE
SET SUBTRACT TO TYPE UNLESS

When &ny two of these categories appear next to each other, they must be

separated by at least one blank space,

2. The word "identifier" in the syntax is often ﬁualified with the following
meanings:
new-identifier: identifier not a reserved word nor has it appeared
in the SELL-program before this point
numeric-identifier: identifier which has appeared previously in NUMERIC-
variable-declaration
alpha-identifier: identifier which has appeared previously in ALPHA
vari;blc—declaration
subroutine-identifier: identifier which has appeared previously in
a subroutine-heading .
parameter-identifier: identifier which has appeared previously in
a parameter-list
label-identifier: an identifier which is not a numeric-, alpha-,

subroutine-, or parameter-identifier, nor a mserved word.

21

3. A "comment" is any sequence of characters not containing a period.

4. A "char-string" is any non-empty sequence of characters, containing no

quote marks except possibly as its first character.

5. Thb numeric-expression in rule 13 must not involve any subscripted
variables, multiplication, or division. '

6. The psk's in rules 22 and 28 must appear in ascending sequence as defined
by the left-to-right order in rule 21.

7. Further restrictions, for exammple the size of numeric-constants and
identifiers, the total number of identifiers allowed, etc., appear in
the language definition. (This ayntax does not completely specify
the set of character strings which the compiler will accept as error-free

SELL programs, although it gives a very good approximation.)

22

Translation of the example program

The following operation codes have been used in addition to those
presently in GP2:
ENTER [same as NKRCM except it also stores the value entered
into the accurulator into the location specified by TKMR,

before jumping to the routine for a depressed psk.]

L3

LSMR [loads special memory register, which -is either a new
register or can share space with one of the others like TKMR]

CLEAR [CLEAR A sess locations A, A+l, ..., (SMR) to zero]

LIB 0:3 [load index binary', loads the specified index register
with the contents of the least significant two digits of the

word specified in SMR.]
SIB 0:3 ["store index binary", stores the contents of the specified

index register into the least significant two digits of the word

specified by SMR.] : .

TRMP, ADMP, SUMP [like TRM, ADM, SUM, except the previous value
of the memory word is saved in backup storage before the operation]
5 .
MAJOR [marks a major rerun point; backﬁﬁds%8¥£§3ti%°€1e3%¥&j in backup stora

MINOR [marks a minor rerun point; current looation is saved in

backup storage]

BHAJ [backup to major rerun point, restore saved values]
BMIN [backup to 2nd last minor rerun point, restore saved values]
PAL [print alpha going to left]

LUBR [load upper limit of backup table]

LLBR [load lower limit of backup table]
In the following code, "fixup" denotes a new loader oberation [specified by
a code of 6 instead of 2 or io] which OR's .: the specified 9-bit address’
into the least significant 9 bits of the syllable specified. This is used
to mmke the ;ompiler operate in one pass,
The notation "[0]" has been used in the program below to stand for an

address which will be fixed up later on.

23

llemory allocation: The compiler sequentially chooses syllable locations

starting fron zero, and words for variables in decreasing locations 1.255,

1.254, 1.253, etc. Constants arc also located in the arca together with

the variables. In the example program, the following memory assignments

arc nade for variables and canstants:

1.255=DATA11) =LETPAY
1.254=DATA(10) =!11SC
1.253=DATA(9) =INC .
1.252=DAKA(8) =STAX
1.251=DATA(7) =CTAX
1.250=DATA(6) =PENSION
1.249=DATA(5) =FLCA
1.248=DATA(4)=NFICA
1.247=DATA(3) =lIOUSING
1.246=DATA(2)=0THER
1.245=DATA(1) =REGULAR
1.244=TOTALS (13} =12
1.243=TOTALS (12) =TOT(11)
1.242=TOTALS (11) =TOT (10)
1.241=TOTALS(10) =TOT(9)
1.240=TOTALS (9) =TOT(8)
1.239=TOTALS (8) =TOT(7)
1.238=TOTALS (7) =TOT(6)
1,237=TOTALS (6) =TOT(5)
1.236=TOTALS (5) =TOT (4)
1.235=TOTALS (4) =TOT(3).
1.234=TOTALS (3)=TOT(2) .
1.233=TOTALS (2)=TOT(1) ..
1.232=TOTALS (1) =CKNO
1.231=GTOT(11)
1.230=GTOT(10)
1.220=GTOT(9)
1.228=GTOT(8)
1.227=GTOT(7)

1.226 =GTOT(6)
1.225=GTOT(5)
1.224=GTOT(4)
1.223=GTOT(3)
1.222=GTOT(2)"
1,221=GTOT(1)

1,220 =TNFICA
1.219=TFICA
1.218=TCTAX

1.217 =TSTAX

1.216 =PROOF

1.215 =FICAMAX

1.214=1

1.213 =DATE
1.212#*PAYROLL"

1.211=p

1.210=X

1.209=J

1.208=120

1.207=06

1.206=127

1.205=7

1.204-133

1.203=8

1,202=139

1.201=9

1.200=145

1.199=10)
1,198=""**VQID"
1.197=154

1.196=37

1 .193=|!*******"
1.194=A !
1.193=11

1.192=83

1.191=10

1,190=83

1.189="s"

1.188=""NT TOTAL
1.187="DEPARTME
1.186=11.

1.185=11

1,184="s"
1.183=""SUBTOTAL
1.182=11

1.181=3625
1.,180=#IIIITITIZZ,Z222.¢¢
1.179=IIII1IIIZZZZ.DDD
1.178=I11111122222Z.¢¢
1.177=1111I1111ZZ2ZZZ2Z

loc

000.0
000.1
000.2
000.3
001.0
001.1
001.2
001.3
002.0
002.1
002.2
002.3

inst

BRU
BRU
PKA
PKB
LSHR
ENTER
PKB
LSMR
ENTER
PKB
LSMR
ENTER
PKB
LSMR
ENTER
PKB
LSMR
ENTER
SUB
SuB
ADD
ADD
EXZ
BRU
ALARM
BRU
fixup
OPEN
SRR
fixup
LPKR
BRU
BRU
BRU
BRU
BRU
BRU
BRU
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NoP
fixup
PoS
PA

(0]

000.2
005.3
0

000.1
0.008
(0]
(0]
(0]
(0]
(o] -
(0]
(0]

007.1
27
1.212

line #7
line #9

TNFICA

line #10
TFICA

TCTAX

TSTAX

line #11
PROOF

line #12
TFICA
TCTAX
TSTAX

OKAY
line #13
S1°
line #14

line #15
line #17

VOID
BACK
W2FORM
CENO
SUBTOT

GRANDT-

line #19

"PAYROLL"

24

loc

012.2
012.3
013.0
013.1
013.,2
013.3
014.0
014.1
014,2
014.3
015.0
015.1
015.2
015.3
016.0
016.1
0106,2
016.3
017.0
017.1
017.2
017.3
018.0
018.1
018.2
018.3
019.0
019.1
019.2
019.3
020.0
020.1
020.2
020.3
021.0
021.1
021.2

'021.3

022.,0
022.1
022.2
022.3
023.0
023.1
023.2
023.3
024.0
024.1
024,2
024,3

©025.0

025.1

inst

LSMR
CLEAR
POS
LTKMR
TKM
POS
LSMR
ENTER
PNS -
POS
PKA
LSMR
ENTER
PNS-
AL
LSMR
CLEAR
MAJOR
POS
SRJ
LSMR
CLEAR
MINOR
POS
PRA
PKB
LSMR
ENTER
PNS-
PC-pP
ADMP
EXK
BRU
EXK
BRU
MINOR
POs
PKA
PKB
LSMR
ENTER
PNS-
PC-P
ADMP
EXK
BRU
EXK
BRU
MINGR
POS
PKA
PKB

B = NN 0T = O

—
(=] o
—_— v

1.244
1.232
37
1,213
7
46
1.232
6 0
6 0
71
0
1.215
6 0
6 1
1
1.231
1.221

87

000,2
1.255
1.245

~

.
N
—C
(%3]

L]

N
N
—

o
—_

line #20
TOTALS
line #21 . +
DATE nser
line #22

CKNO

line #23

FICAMAX

line #24
line #25
GTOT .
line #26

TTD

line #27
DATA
line #28

REGULAR

line #29
line #20
S2

S3
line #31

OTHER

line #32
line #33 .
S2

S3
line #34

PEA %

25

025.2
025.3
026.0
026.1
026.2
0206.3
027.0
027.1
027.1
027.1
027.2
027.3
028.0
028.1
028.2
028,2
028.2
028.2
@28.3
029.0
029.1
029,2
029.3
030.0
030.1
030.1
030.2
030.3
031.0
031.1
031.2
031.3
032.0
032.1
032.2
032.3
033.0
033.1
033.2
033.3
033.3
034.0
034.1
034,2
034.3
035.0
035.1
035.2
035.3
036.0
050.1
030.2
036.3
038.0
037.1

LSHR
ENTER
PNS-
pc-p
ADMP
EXK
BRU
fixup
fixup
MINOR
POS
PKA
PKB
LSMR
fixup
fixup
fixup
TRA
ADD
ADD
TRM
SKK
BRU
TRM
fixup
TRA
SuB
TRM
TRA
SUB
SUB
SKA
BRU
TRA
SuB
ADM
TRA
SUB
TRM
fixup

Qs

TRA
PNS-
pC-P
ADMP
POS
TRA
PlS-
PC-p
ADMP
BRU
LS'IR
LIB
MOD
TRA

HOUSING

line #35
line #36
S2

line #37

NFICA
line #38

REGULAR
OTHER
HOUSING
NETPAY
line #39

NFICA

line #40
NFICA
FICA
line #41
FICA
TFICA

S4

line #42
FICAMAX
FICA
NETPAY
FICA
NFICA
line #43

NFICA

line #44
line #45
FICA

line #46
line #47
P line #48

20

037.2
037.3
038.0
038.1
038.2
038.3
039.0
039.1
039.2
039.3
040.0
040.1
040.2
040.3
041.0
041.1
041.2
041.3
042.0
042.1
042,2
042,3
043.0
043.1
043,2
043.3
044.,0
034.1
044.2
044.3
045.0
045.1
045.1
045.2
045.3
046.0
046.1
046.2
046.3
047.0
047.1
047.2
047.3
048.0

059.0

059.1
059.2
059.3
060.0
0060.1
060.2
060.3
061.0

TAIR
MOD
POS
PKA
PKB
LSHR
LIB
MOD
LSMR
ENTER
MOD
TRA
PNS-
PC-P
MOD
TRA
SUMP
MOD
TRA
LSMR
LIB
TRM .
MOD
TRA
TAIR
TRA
MOD .
ADMP
EXK
BRU
SRR
fixup
MINOR
LIR
LSMR
SIB
LIR
LSMR
SIB
LIR
LSMR
SIB
SRJ
MINOR

fixup
POS
TRA
PNS-
PC-P
SKA
BRU
ALARM
fixup

'uu—:b.:_n-lc::—-h-cl—-l OO =

27
1
1
0
01
6
1.210 X

line #49

line #50

.255 NETPAY

.209 J

.256 see note below

.

N
(73]
(=)

temp

.
]
[
(=]

GTOT(0)
line #51
PRNET

. line #52

' HND—'WI—"N:C}

o
N o
N e
—

line #53
#.208 =120
1211+ P
0
0+ 250 PENSION..
1.210
0
1 207
1.209
il
036.2 DEDUCT ¢

line #54

lines 54-57 like line 53

044.3 1line #58
151

1.255 NETPAY

5 1

~

(|

N line #59
(0]

060.2

T

061.1
001.2
061.3
062.0
062,.1
0062.2
062.3
063.0
063.1
0063.2
063.3
064.0
064.1
064.2

064.3 .

065.0

065.1

065.2
065.3
066.0

1066.1

066.2
066.3
067.0
067.1
067.2
067.3
068.0
068.1
068.2
068.3
069.0
069.1
069.2
069.3
070.0
070.1
070.2
070.3
071.0
071.1
001.2
071.3
072.0
072.1

072.2

072.3
073.0
073.1
073.2
073.3
074.0
074.0
074.1

ADMP
TRA
ADR
POS
TRA
PNS=-
PC-P
TRA
ADM
POS
TRA
PNS-
PC-P
TRA
ADM
POS
TRA
PNS=-
PC-P
TRA
ADM
POS
TRA
PNS-
PC-P
POS
TRA
ADD
SUB
SUB
PNS-
POS
PKA
TK
POS
PA
POS
TRA
PNS=-
LOK
ADM
POS
TRA
PNS-
POS
PNS-
POS
PA

BRU

fixup

POS
PA

1.231
1.248
1.220
159
1.220
7 1
1.249
1.219
168
1.219
7 i |
1.251
1.218
176
1.218
7 |

1.252
1.217
184
1.217
7 1
191
1.220
1,219
1.218

1.217
7 2

03

-€KNO)

1,213
1!

0
016.3
008.0
31
1.198

line #60
line #61
TNFICA

TNFICA
line #62
TFICA..
TFICA
line #63
TCTAX
TCTAX
line #64
TSTAX
TSTAX
line #65
TNFICA
TFICA
TCTAX
TSTAX
line #67
line #68
DATE

h CEM
line #69

L C'U.-“J

line #70
NETPAY

line #71
DATE
line #72

MAIN
line #73

n **VOID"

28

074.2
074.3
075.0
075.1
075.2
075.3
076.0
076.1
076.2
076.3
078.0
077.1
077.2
077.3
078.0
078.1
078.2
078.2
078.3
078.3
079.0
079.0
079.1
079.2
079.3
080.0
080.1
080.2
080.3
081.0
081.1
081.2
081.3
082.0
062.1
082,2
082.3
083.0
083.1
083.2
083.3
084.0
084.1
084,2
084.,3
085.0
085.1
085.2
085.3
086.0
086.1
086.2
086.3
087.0

LOK
TRM
BRU
LOK
ADM
TRA
SuB
EXA
BRU
TRA
ADD
TAIR
MOoD
POS
PA
BRU
fixup
BMAJ
fixup
BMIN

fixup

POS
LSMR

ENTER

BRU
BRU
AL
POS
LSMR
LIB
MOD
PA
LOK .
TRM
BRU
LOK
ADM
TRA
SuB
EXA
BRU
TRA
TRM
LOK
LSR

" MUL

ADD
TAIR
MOD
POS
TRA
TAIR
MOD
TRA

0 0
1,214
075.3
0 7
1.214
1.197
1.214

(0]
1.214
1.196
0

0

0
1.195
075.1
076.1

008.1

008.3
46
1,232
6 0
069.3
[0]

3

10
1.194

H RN O MM O
L]
[3%]
—
S

.
N
N
(=]

line #74
I

=154

line #75

0ok ek ke k01

line #76

line #77
line #78
CKNO

S5

line #79
line #80

A

line #81

line #82
temp ;

temp

GTOT(0)

29

087.1
087.2
087.3
088.0
088.0
088.1
094.3
095.0
095.0
095.1
095.2
095.3
096.0
096.1
096,2
096.3

-097.0

097.1
097.2
097.3
098.0
098.1
098.2
098.3
099.0
099.1
099.2
099.3
100.0
100.1
100.1
100.2
100.3
101.0
101.1
101.1
105.1
105.2
105.3
1006.0
106.1
110.1
110,2
110.3
111.0

‘111.1

111.2
111.,3
112.0
112.1
112,2
112.3
113.0

30

. PNS- 8 1

pc-pP -
BRU 082,2 1line #83
fixup 083.3
AL 1
LOK 0 2 1line #84
lines 84-86 like 1lines 81-83
SRR line #87
fixup 080.0 :
fixup 009.1 1line #88
LIR 0 187 "DEPT...TOTALS"
LSMR 1.194 A
SIB 0
SRJ 080.1 PTOT
LOK 0 1 1line #89 ‘
TRM 1,214 1
BRU 097.2
LOK 0 1
ADM 1,214 I
TRA 1.186 =11
SuUB 1.214 1

EXA N
BRU [0]

TRA 1,214 I

TAIR 0

MOD 0. w
TRA 1.220 TOT(0)
MOD 0

ADM 1.220 GTOT(0)
BRU 097.0

fixup 098.1

TRA 1.244 W2 1line #90

EXZ

BRU 016.1 GMAIN

BRU [0] W2FORM

fixup 009.0 1line #91

LOK 0 1 :
lines.91-92 like line 89

LIR 0 183 1line #93

LSMR 1.194 A

SIB 0

‘SRJ 080.1 PTOT

LOK 0. 1. 1line #94
lines 94-95 like 1line 89

TRA 1.244 1line #96 A

LEXZ

BRU 016.3 MAIN

BRU [0] W2F

fixup 008.2 1line #97

fixup 101.0

LSMR 1,231

CLEAR 1,221 GTOT

fixup 111.0 1line #98

MAJOR

POs 87

SRJ. 000.2 TTD

113.1 TRA 1,219 1line #99
113.2 LSR 5

113.,3 MUL 1.181 =3625
114,0 TRM 1.249 FICA
114,1 POS 58 line #100
114,2 LSMR 1,246 OTIIER

114.3 ENTER 7 0

115,0 POS 34 line #101
115.1' TRA 1,218 TCTAX
115.2 SuB 1.249 TICA
115.3 PNS- 7 3

116.0 TRA 1,218 TCTAX
116.1 SUB 1.249 FICA
116.2 ADMP 1.221 GTOT(1)
116.3 TRA 1.219 1line.#102
117.0 ADD - 1.220 TNFICA
117.1 SUB 1.246 OTHER
117.2 TRM 1,255 NETPAY
117.3 POS 46 line #103
118,0 'PNS- 7 3

118.1 ADMP 1,222 GTOT(2)
118.2 POS 57 line #104
118.3 TRA 1.246 OTHER
119.0 PNS- 7 3

119.1 ADMP 1,223 GTOT(3)
119.2 PGS 70 line #105
119.3 TRA 1.249 FICA
120.0 PNS- 5 3

120.1 ADMP 1.224 GTOT(4)
120.2 POS 80 line #106
120.3 TRA 1.219 TFICA
121.0 PNS- 6 3

121.1 ADMP 1,225 GTOT(5)
121.2 POS 95 line #107
121.3 TRA 1,217 TSTAX
122,0 PNS- 6 3

122.1 ADMP 1.226 GTOT(6)
122.2 POS 92 line #108
122,3 PKA 1 :

123.0 PKB 7

123.1 TK 1

123.2 0O 0 line #109
123,3 BRU 112.2

124,0 fixup 000.0 1line #110
124,0 LPNR 1,177 masks
124,1 LUBR 1.176 wupper backup limit o™
124.2 LLBR 0.125 1lower backup limit (300 words for backup table)
124,3 BRU 000.1 start progran

Note: By error when I hand-translated this program, I forgot that locations
1.254 and 1.255 were intended to be reserved for temporary storage.
So these are listed as the non-existent locations 1i£%6 and 1.257 in the

A

. e .
program above; actually the compiler would shift all,locations down 2 from
those shown. '

il b s

(9

-

MEMORANDUM
TO: C, Perkins
FROM: D, Knuth

SUBJECT: Progress report on "SELL"

The SELL compiler, at least for the language as it now exists, is

complete and rather thoroughly checked out, By complete | mean that

the macrocece which does the compilation is entirely written, and |

have also prepared a 55000 program which is an assembler/simulator/monitor
routine for this macro code. All that remains is to write the micro code
which interprets the macros, and §ince my macro code language XEXWMXX
appears to be definitely less complex than GP2 | don'+ beljeve there

will be any problems in its implementation. .

So | can essentially turn over this compiler to you, | will have to

spend some time with you, of course, explaining in detail what | have
done, but then | think you will be best equipped to follow through on

the project at your end, with my future rfle as advisor and checker of manwals hud
programs, not as programmer!

Enclosed are a bunch of things: A few changes | made to the language

as | wrote the compiler (some extensions and some restrictions); a few
brief comments on your memo of Jan, 24; a definition of the macro language

| used to write the compiler; some simple queries about GP3; and a

brief discussion of the memory organization of the SELL compiler. There
are also some computer listings, giving my ALGOL assembler/simulator/monitor
program, the compiler routines, an example of the short "adding machine"
SELL program as compiled, and the output of the Lutheran High School
example program given in my first memo. The compiler routines are given
KXXEK with rather extensive comments explaining what is being done,

and there is a cross-reference listing at the end which will be very
useful in making any changes, | have even cross referenced every use of
every macro operation code., The simulator also produced dynamic counts
of the number of times each instruction is executed, so the "bottlenecks"
and most important parts of the compiler are identified for the sake

of priorities,

| will be able to emplain all these things to you in much greater detail
when you come here, but | hope this is enough to get you started.

Note that | am a little tight for space, in fact there are less than 20
syllables to spare. With a lot of work | expect | could find a dozen or so
syllables that could be saved, but not many more. |If major additions are
to be made to the language, however, | suspect lhere will be room in the
blocks now reserved for micro-code storage, and it would not be hard to
permit limited jumping %remxgrexkxzek of macro-code instructions from one
block to another, |t would not be HAKUEXXXEXHHX KK easier to go to two
passes, in fact it would harder and less desirable from the user's
standpoint., Personally | think it will be best to keep SELL a rather
simple language, and not takk on too many glorious features that have
resuited in grandiose systems |ike IBM X¥XXKsM now is stuck oS vﬁ*k o
their System 360]
- Regards,

Don Knuth 3/6/67

e

A. Changes to my Oct. 30 memorandum

. Change GP2 to GP3 throughout.

In the example program, pages 2=-5, change Di
INC to INS in line 3,
7 to (7) in line 6,
, To ; in line 21,
line 74 should be BEGIN LOOP | FROM O BY 7 TO 154,
similarly, "BY 2" in front of "TO" in lines 81, 84,
add "SET W2 = |," to line 97,

page 9 line I3 change "decimal” to "decimal value"
line |7 change "10"™ to "(I10)" ,
line 20 change "subscripted" to "indexed"
line 23 change "of" to "or" _
line 24 change "subscripted" to indexed"
page 10 line 4 change "unsubscripted" to "nonindexed"
line 5 change "subscripted" to "indexed"
line 8-9, should say
an index must have one of the four.:’forms
V, ¢, V+c, or V=-c,
where V is a numeric variable and c is a numeric constant,

page 10 line 16 should be "primary / primary * 10X (scaled division)"
line 17, change "a" to "of"

page 12, end of page, add "The mask character E should not be used."
page 15, delete lines 11-18,
page |5, s%a add sentence at end of page, "No more than four subroutines
may be CALLEd at any one time, i.,e. subroutine calls may K¥ not be
nested more than four deep.,"
page 16, line 2 should be BEGIN LOOP V FROM r BY t+ TO's,

' line 5 should be punctuated by a period.
page 15, line32, insert "labels) after "constants,"
page 16, last two lines replaced by the following
is a parameter or if V is indexed, SELL might need to use the accumulator and
WRH XY might modify this instruction with index registers, Therefore it is
important to know what 3K the SELL compiler will do when it is given a
sequence of CODE statements, The accumulator is used when V has a subscript
containing a numeric variable. Index registers are used for subscripts and
parameters, essentially one index register per appearance of non-constant
subscripts and parameter in V, and index registers are chosen in the order
3, 2, 1, 0,
page 16, third last iine, "V is a variable, a label, or an alphabetic

“expression,"

pages 22 and following have been superceded by more recent work (although

they helped me to write the compiler),

The syntax ‘equations on pages |8-21 have been updated in accordance with these
revisions, but | will not take the time to list the changes here.

Add to page |5, "Parameters may appear XKXEM¥K within the subroutine in
the context of numeric variables (possibly indexed), as labels, as alphabetic

~expression, E¥XXKHEXXKEXXNEEX KXEEEXXXMEXXAKXE or as the alphabetic variable
-in a TYPE statement, -but not as the alphabetic variable XMXMXXXXNNAKEX on the

lefthand side of an aiphabetic SET statement,."

B, Comments on your memorandum of Jan, 24

I+ Fixup loed routine. | independently decided | wanted the same

thing you suggested, before | had read your memo! | am assuming

these syllable groups can follow each other, as the present full word .
groups do, and that they have similar parity conventions, | am

also assuming they end with the seme end-syllable and end-message
codes as the present end-word and end-message.

2, a, | am assuming only NERCM at the moment (see below),
b. The present compiler uses LDES and CLEAR
c. .l need these very simple microinstructions to use binary, in

~order to handle parameters to subroutines. | don't have any use

for storing a decimal equivalent, The compiler uses LIB, SIB
with the parameter part of the instruction 1,5,9,0r I3 to specify
index register 0,1,2, or 3,

‘de The main point | made when we discussed this in Pasadena was

“that if the hardware can print left, there should be at least

some way to use that feature in GP3, |f necessary, ¢et it be
simply to change direction in the output micro, and let the
programmer worry about the curious effect it has on positioning,
Certainly | don't think a scan backwards should be used, Your idea
of handling the positioning (last four lines of first paragraph on page
3 of your memo) is very nice,

But | have no strong feelings about including this in 3K the SELL
option, | mainly want it to be possible to have it in GP3, | put it

- into SELL mostly because it comes so cheaply.

e, | can't use your "length" idea, since the compiler doesn't
know this until the end of the program, but | have another proposal
that economizes on micro storage and op codes:
LBR 0:1 0:255 -~Set lower 1imit, store present program step as
- MAJOR XxK
LUR 0:1 0:255 Set upper limit
PROT O:f 0:255 Save data in table

RETPT O:1 0: Present program step Is a minor return point
I: Present program step is a major return point
RETURN 0:255 Restore data past last n minor return points

(but not past MAJOR), and up to the (n+l)st, and
branch to the (N+l)st,which is left on the table
The compiler uses RETURN | and RETURN 255 only.

3. I'm glad you prefer the way | did it, since | now think the concept
has worked out well and it is incorporated in the compiler,

4, Let's talk about this when you come out here, | can't think of a
nice way to put this into the language without adding either clumsy
constructions, or lots of extra work for the compié¢ér, but | suspect
the two of us together may be able to find a good way., X

5. Fractions can be programmed in SELL, like you programmed them in GP2Z,

‘6. a., Does not affect SELL at this time.

b,c,d,e,f,g, same; Ay/grintddts/gx111/d4é/LOK/E4/8/MAédtdAl¢ why INK??
h, The present compiler uses SKA,SKL,SKK,SKT and corresponding EX.
The parameter field has U =1, L = 1,2,4,or 8, Example, SKZ is like SKL 17,

e g e g e m—

T L e

[-T2~

Q)

-,
g

C. SP/I

Here is an informal description of the machine~like language"SP/i" which
| used to program the compiler,

Each instruction has an operation code and some of the additional fields

‘N (3 bits), M (8 bits), L (10 bits), The instructions are in locations

numbered from O to 1023, The SP/I| language is organized around a stack;

LoD M

ADD M

suB M
TEN
ORR
SLC M
SRC M
PCH M
XEC L
SET

MASK
XOR M

SEE N M

~each stack entry is a full XBXMXYKXXMM¥XMX 8-character word.,

" Put "0 0000O0OM" on top of the stack.

Add M %ofthe least significant eight bits of the word at
the top of the stack. (Carries do not propagate Into other
charactedr positions. Arithmetic is binary,)

Same as ADD (256-M)

Multiply the least significant eight bits of -the word at the
top of the stack by ten, (Bight bit BIAArY(viddId/vé/hgéfhl
1£/i*/1¢ binary arithmetic,) -

Replace the two words at the top of the stack by their 64-bit
logical "or"

~ Shpift the wood at the top of the stack left, circularly, M

digits.
Shift right, circularly, (SLC 16 = SRC 16 = no=op.)

Punch M as the next eight bits on the output tape. (The
punching is delayed, this instruction actually only puts M into
a buffer area.)

Execute the instruction at location L.

Put the values of TSIZ, TLOC (these are special locations in block
I} into the identifier tabie entry for the last-scanned identifier,

See if the mask word, which is second on the stack, matches the
k=th mask in the mask table. Here k is at the top of the stack.
If not, skip the next instruction,

Replace PARITY by the exclusive "or" of PARITY and M, (PARITY is
a special location in block |, used to control parity punching for
the output,)

XAXRKS

(a) If the last character or identiflier scanned has been "covered",
by the previous SEE instruction, then scan the next character or
identifier of the source program. (This scanning may involve
output of the preceding line, input of a new line, and/or building
an identifier with a lookup in the Identifier table, The scanning
proceeds according to four modes:

O

©

GE NM
EQ NM
CALL L

4

MODE

0 (normal mode): scan to non-blank character, and
if it is a letter, build and lookup the whole identifier
starting with this letter,
MODE = |: scan next character,
MODE = 2: scan to next ".,"
MODE = 3: scan next nonblank characTer.
(b) Now if the current character or identifier scanned has the
internal code M, "cover" it, otherwise skip the next instruction,
(c) Delete N words from the stack, and set MODE = O,
eight
(a) |f the contents of fhe/leasf significant bits of the word at
the top of the stack is not 2 M, skip the next instruction,
(b) Delete N words from the sfack

Like GE N M, excepf = instead of 2.

Put a special word on the top of the stack, as "subroutine I|inkage,"
Jump to a subroutine in location L. The subroufine starting here
should eventually return either by using the instruction XT or XF;

at this point a return is mode to the instruction just following ;
this CALL command (for XT) or to the next=-but-one instruction (for XF).

Note: There are #hree modifications of each of the operators SEE, GE, EQ,

and CALL.
NGE, NEQ, NCALL are like SEE, GE, EQ, CALL, except that they reverse

NSEE,

the conditions under which the following instruction is to be skipped.

MSEE, MGE, MEQ, MCALL,MNSEE, MNGE, MNEQ, MNCALL are |ike SEE, GE, EQ, CALL,
NSEE, NGE, NEQ, NCALL except that they cause an error printout to occur if
the next instruction would be skipped, and the compiler goes into its error
recovery procedure,

GET N M

INX N M

INC N M

XCH N
TGET M

TST M

ST NM

it M=0 let MM be the N-th word on the stack. (N=| is fhe top
of the stack,) If M # 0, let MM = word" M of block |, = i1
Then'load MM 6n%td the! fop ‘of “the'stack. VIR oL

If N=M =0, let Mbe the top word on the stack and delete
this entry, Otherwise define MM as in GET, Add MM to the M
field (or to the least significant bits of the L field) of the
following instruction, mod 256,

Let MM be defined as in GET., Increase this value, wherever it is
stored, by |.

Interchange the top element of the stack with the N=-th word,
Load the word in location M of block 3 onto the top of the stack.

Store the word at the top of the stack into location M of block 3
and delete it from the stack.

Store the word at the top of the stack Into location M of block |
and delete N words from the stack,

)

5

CMP N M (a) Let the word at the top of the stack have abccdd as its
six least significant digits. Add M to CC.
(b) I1f a # 0, its value should be {,5,9, or 13, |In such a case,
the instruction MODO, MODI, MOD2, MOD3 (respectively) should be
compiled as the next instruction of the object program. Also
location a of block | shouid be decreased by one, (This location
represents the number of requests for the index register specified.)
(c) I+ b #0, it is treated like a,
(d) Compile the command ccdd as the next instruction of the
object program.,
(e) Delete N words from the stack,

SCMP M Like OMP O M excevf that locations a, b, of block are not altered.
JMP N L (a) Branch to L, i.e. prepare to take succeeding instructions of

the program from location L,
(b) Delete N words from the stack.

XT N The N+|-st wood of the stack should be the subroutine linkage for
XF'N the current subroutine. Remove this word, and move the other N
words down one space to fill up the vacancy. Now return from the

subroutine, as spedified in the CALL operation,
HLT End of compilation,

Further details of these operations are spelled out completely in the
accompanying ALGOL listing.

@

D. Some queries.

The compiler found it very expedient to make the following assumptions
about GP3: '

I+ TAIR 13 s equivalent to TAIR |2

2, The result of addition or subtraction can never be minus zero.

| certainly hope assumption number 2 is valid, otherwise the results
could be disastrous! On the other hand, assumption number | saves me
only two locations,

v e -

=

R Wy~ W S

E. Tentative organization of the complilier, as presently simulated,
Block 0: SP/| macro code

Block |: SP/I micro=code, plus about 24 words of storage used for
communication between macro and micro code,

Block 2: SP/I| micro~code.

Block 3: words 0-15, mask table
words |6=-BUFP input and object program buffer
words STAKP=-127 stack
words 128-255 identifier table

BUFP advances upward, STAKP advances downwards, an error would be
printed If they ever cross each other but | found they never even
came within 50 words of each other, The "top" of the.stack ia in
location STAKP, the second is in STAKP+l, etc. The identifier table
requires one word per ldentifier, plus space for 30 reserved words,
so we can accommodate 98 identifiers,

The current line of input text which the compiler is scanning resides

in words 16, 17, ... as a sequence of characters followed by the
character "200" (in binary)., Then the object program follows immediately
after as a sequence of 8-bit items, When the character "200" is

KXXXKMA encountered while scanning, the whole area is punched out onto
paper tape, But if an error is detected, this area is cleared and

the following input line replaces it,

Simulation indicates that a typical line of input requires about 200
macro Instructions to be performed between input and output of the
buffer area,

	p001.tif
	p002.tif
	p003.tif
	p004.tif
	p005.tif
	p006.tif
	p007.tif
	p008.tif
	p009.tif
	p010.tif
	p011.tif
	p012.tif
	p013.tif
	p014.tif
	p015.tif
	p016.tif
	p017.tif
	p018.tif
	p019.tif
	p020.tif
	p021.tif
	p022.tif
	p023.tif
	p024.tif
	p025.tif
	p026.tif
	p027.tif
	p028.tif
	p029.tif
	p030.tif
	p031.tif
	p032.tif
	p033.tif
	p034.tif
	p035.tif
	p036.tif
	p037.tif
	p038.tif
	p039.tif
	p040.tif
	p041.tif

