
' ',)
'--../

i
,j

ASSElli:SLER FO~ SI2,mLATIO:J OF THE

NEW RICE CO~·lPU'I'E;:{

-AP1/R2-

by

) E. O. M:-utschle:c
Cor;1.pute:c Project
Rice University
Hous to~1. 1 Texas

Re:s,ort / O)J.0-2572-21
Contract AT-(40-r)-2572

L"Tune, 19 69

I

I

I

r'
I '

\..._ - ,/

CJ

ABSTRACT

One of the major problems of designing and building a

new computer system is programming and debugging an operating

system. The difficulty may be allocated somewhat by the use

of a program which simulates, at some level, the computer

under construction. One would like to }?e able to code routines

that he writes symbolically to simplify coding, .. and to

maintain routines in symbolic form to guard against differences

between simulated machine language and actual machine language.

A_hardware and software development effort is being carried

on at Rice University on a new computer system which is based

on the concept of tags for description and control and non

linear storage use. A simulator is being used to simulate

the operation of the computer at a level somewhat above the

microcode (the microcode in some respects having been designed

from the logic of the simulator). An assembler has been

written for symbolic input to the simulator, thus allowing the

above-mentioned convenience of symbolic coding.

This assembly system:.··· its· relation to the simulator and,

eventually,· to the new hardware,. is the_ subject of this paper.

Topics covered ·include the criteria which caused the assembly

language to assume its present form, the basic features of the

language, and certain special features that have been found

to be convenient, necessary, or aesthically pleasing. A

section is included which concerns the changes in the language

which will accompany its transferral to the new computer.

\) -..___,,

ASSEMBLER FOR SIMULATION OF THE NEW RICEtCOMPUTER

-AP1/R2-

INTRODUCTION

Work is currently being conducted on the construction

of a new computer at Rice University. In conjuction with

this hardware development, a software development effort is

being carried out, in an effort to have an operating system

of some nature available for use when the hardware becomes

operatio11al.

The means chosen to effect this development has been

to simulate the basic functions of the proposed machine with

a set of programs run on the present Rice Computer. To make

the job of writing the routines in the system easier, the

organization of the elements of the new computer has been

rearranged somewhat, due primaril'y to the fact that any

routines intended to be transferred to the new computer

should be coded in symbolic form to be translated into either

of the target languages: simulator instruction format, or

actual new computer format.

To implement this aim, as well as to provide ease of

coding system routines, an assembler has been written to

run on the present Rice Computer which translates symbolic

programs and loads them into an area of core store reserved

for the "memory" of the new computer. It is envisioned that

this assembler can be easily recoded into the assembly lan

guage of the new computer.

For the purposes of discussion, let us refer to the new

computer as R2, and the assembly language as AP1/R2.

page 2

DESIGN CONSIDERATIONS

The development of th~ language h~s been more or less

a multistage process. The first level of the development

proces~ consisted of defining a language with the following

requirements: (1) It should be simple to implement.

(2) It should allow fast translation, since a program re

tained only in symbolic form would have to be retranslated

many tiw~s in simulation work. (3) It should be a 1-1

system, i.e. a symbolic assembly order should be a single

machine order. The purpose of this is to represent to the

programmer the machine exactly as it will be. In this way,

it is hoped, weaknesses in the initial specification of

the machine will become evident soon enough to be corrected

in the hardware. This feature in the assembly system has

led to several changes in machine specification, in fact ..

Thinking on another level was that the language defined

for simulation use would be a subset of a richer assembly

language in R2 itself. In particular, it was thought that

eventually a large portion of John Iliffe's Basic Language

would be implemented here, due to the similarities between

R2 and the definition ~f the Basic Machine. 1

On a practical level, it was desired to eliminate some

of the more undesirable features of the assembly system on

the present computer. For example, one of the characteristics

of the present assembly system is that undefined variables

were stored as null words at the end of assembled programs.

This was done without comment by the assembly system. Hence,

any typographical or programming errors resulted in myste~·

rious transfers to nonexistent instructions and references

to nonexistent variables. It was proposed, therefore, that

("---)

page 3

undefined variables cause flags or error messages to be

issued on the program listing. Another inconvenient feature

was the fixed format of output. The programmer is forced to

receive the output code listing and a copy of the symbol

table, even though perhaps he is merely retranslating due to

an unreadable output tape, etc. It was proposed, therefore,

that all portions of the output process be conditioned on

sense lights set by _the programmer. Equivalent length pro

grams in APl and AP1/R2 would take 90 and 19 seconds,

respectively, if all options in AP1/R2 are exercised.

Some features were written into the new assembler with

an eye toward increasing convenience for the programmer. One

of these features is the option to translate while listing.

This is feasible due to the 300 lpm. speed of our line printer

when listing in a full alphanumeric character set. For

short lines, the translation time "disappears" into the list-

ing time. For long lines such as remarks, the gain is
'·

abrogatea by the necessity of setting up a print matrix by

software, and by the necessity of the assembly program to

scan through the text, maintaining an upper/lower case indicator~

Another feature added for programmer convenience is the

addition of a cross reference dictionary generating routine

to the assembly system. At present, references only to user

created variables are recorded, but it would not be difficult

to add the recording of references to registers, which would

aid greatly in charting the flow of information through

registers and private storage locations.

I
' .

I.
page 4

THE HARDWARE AND THE SIMULATOR

In order to discuss the workings of the assembly system, we

must say something about the proposed hardware and the program

which simulates it. The hardware proposed is outlined in '.'Rice

Computer-2 General Specifications", AEC Report# OR0-2572-19.

A few relevant details are given here for reference.

In R2, computer instructions will be stored 2 to a word,

each instruction being 30 bits in length. Since the arith

metic word of the present machine is only 54 bits, it was

necessary for the simulator to operate on an instruction

filling 39 bits of a word in the present memory. The extra

nine bits are due to the fact that the R2 instruction is

somewhat loosely packed in the word. The arrangement should

be evident from the format illustrated here:

-111, r- 4-,~-- 6-01E-- 4-r
E2 HARDWARE I~! aj x I o P N I Y I
s, Mu L r TAG I x

h 3~~6

The tag bit in the,instructi~n causes a simulated in

terrupt to occur, if the mode of the.machine permits.

Generally, this tag is used for tracing the instruction.

I
;~

The X field is usually one of two items. It may be the

designator for one of the sixteen general registers of the

machine (Symbolically XO,Xl, ... ,X15), or it may be an in

flection on the operation code in the cases where the

accumulator (Xl) is assumed by the hardware to be the address

of the first operand. This field, in the general case,

l)

r·-.
(.
\.. __ j

···-----~------ ··---

page 5

determines the destination of the result of the operation.

The OPN field contains the 6_-bi t operation code of the

instruction, which is extended to 8 bits in certain classes

of operations, 'particularly arithmetic orders. This is done

by taking two bits of the X field for the operation code.

The Y and the ±N fields are the second operand designators.

The Y field contains the designator for a register in the

cases where this is ·meaningfuL The +N field determines an

arithmetic value by which to displace the value of the

register. Xf the value of +N is -0 (octal 37777) then the

content of Y is used, .regardless of tag. If the II a II bit is

on,± N becomes a constant value inflected by the contents of

the Y field: if y;o the value of +N is used. If Y=l, ±N is

an absolute memory location. ,If Y=2, +N is a displacement

relative to the .instruction, in half-words.

In addition to instructions, Numeric, Control, and

Address words are defined: The complete form of these elements

may be found in the document on specifications for the new

machine. The form currently used in the simulator is given

for each here.

The Control element defines a set of instructions (and

invariant data structures associated with these instructions)

has the form: .

----+
1
11 ,~ 4 ~ 1

1
3 r--~--, 4 -~, 2. ~ 6 --12 r---- 20----------,'l

\ t I 1 I I I I

1JI ~· J _~~~~ARK~C~T~
\\: , \---CCML'I T-ION CODE

"'----·- MODE
_____ • __ 11 PHESE NT· 11'-J. CORE II

TAG -1

\------- - II LO Ok OU T 11 Ac c ES s

(:(J!"l .. f,.:.,r __ '.11_ E L (:- r- f; E. '"· 1T - 'I , 1_..VJ •. I\J

/,,.. ..

I
\...__ -

page 6

Since these elements currently may not be directly generated

by the programmer, and are created only by the Assembler and

System when a program is placed in memory, and by certain

types of control jumps, it will not be further discussed here.

A numeric element is a standard data word, with special

hardware tags in R2 to distinguish it as such. In the simu

lator, however, it has the following format: r~ _ 6 ·"i-: ._ _ _ __ 4 8 _______________ -····----- ____ ~,

~f--E_x_, P_.~1--_-_··-_···~~----_-_ -M_A~N-1 T-1 S SA . . ________ } T !.\ G O

NUMERIC ELEMEf\JT
This is just a standard word on the present machine. Again,

though other bits are defined for the hardware, they are not

in the simulator, · and hence no't in the Assembler.

An'Address element is much lite the Rice Computer codeword

or the Burrough~ Descriptor. In this case, it may be relati-.

vised, as compared to codewords, which are always absolute.

This relativisation is expected to be very useful in R2. As

presently in the language, the Address is of the form:

1,11 r 4 -st--4~----, 4 ------4 2 1
<--- 8 ___,,1<----------- 2 o --------'1

ITfJ~[-LcNGTH~JJ. =-lo~·.•r-~-L~CAT~~;~--1
~ ~----IN! lt\ECT T!.\GS

~------WRITE PROTECT
_______ · " L. 0 C K OUT II AC C E. S S

· ADDRFSS ELEMENT
However, its form is expected to change soon, since th_e

I
\,..._ . .--·'

page 7

definition of the operating system will require the indirect

addressing feature.

THE ASSEMBLY SYSTEM: BASIC FEATURES

The Assembler itself is basically a two pass assembler,

operating much in the way of normal assemblers. On the first

pass, the user-generated text is scanned and condensed. The

text that is scanned is much in the form of normal assemblers.

Its format is:

'.LOCN

'. !CR

x
llst tab

OPN

I 2nd tab

Y+N

!3rd tab

TG/COMMENT

I 4th tab•.

where the LOCN field is the· label one associates with the

line, X,Y,OPN, and +N are defined as for the hardware, and

TG allows placing of tags on instructions.

During the first pass, any direct translation possible

is performed, and the partially formed orders and parameters

for second pass evaluation are stored in a vector of inter

mediate results. A symbol table is built up, constants are

evaluated, and data is taken to compile a cross reference

dictionary. The input text may be listed during this phase.

On the second pass, the intermediate results vector is

processed~ Pseudo operations are performed, which may,for

example,cause an arbitrary structureJ which may be a matrix

orvector of constants, to be placed in the output code. Sym

bolic references from the first pass are evaluated, based on

the symbol table compiled during the initial scan. Results

of these operations are stored into a final code vector.

When this has been done, a request for storage space in the

vector serving as the memory for the new machine is made. If the

--- ····-------- -·-~----·-- ·~~~

page 8

request can be satisfied, the final code is moved into the

new memory. A control element is generated to describe the

segment, based on the segment command following the program.

For example, consider the following sequence of text presented

to the system.

INST1

INS TN
<ijk

The system would be informed that it had an assembly on

its hands, and control would be given to the assembler·. On

encountering <ijk in the input stream, the code generated

would be loaded into the new memory, and control would return

to the operating system.

The options mentioned earlier, if exercised, will be

filled during the second pass before control returns to the

system. The programmer may receive an octal listing of his

output code, followed by his portion of the symbol table. He

may also receive the cross reference dictionary, which defines

each variable used, and lists its definition point and occur

rences within the program. Further, he may elect to have the

final code vector and other relevant information punched on

paper tape, thus perhaps allowing assembly to be restarted

at the point of loading into the memory at some future date.

THE ASSEMBLY SYSTEM: SPECIAL FEATURES

The operation code field of an R2 instruction is only

six bits long, which would ordinarily imply an instruction

repertoire of sixty-four basic operations. However, two

,,-
_)

page 9

features of the mach1ne organization greatly extend the basic

instruction set. The first of these is the tagging of data

words as to type, which allows operation codes to effectively

be carried along with data they operate on. In other words,

only one ADD order is needed for all types of data, since

data tags cause modification of the "ADD" microcode. The

second of these features is the use of the X,Y, and ~N field

to act as instruction modifiers. This feature of the hard

ware could conceivably cause problems for the pregrammer,

keeping modifications straight. One of the features of this

assembly system is that unique mnemonics take the place of

large numbers of modifiers, saving difficulties of numerically

coding modifiers. Indeed, it is impossible to code some

modifiers numerically, for reasons explained later.

A case of the usefulness of these mnemonics is in the

case of the shift orders. In the present machine there are

about 29 shift orders,.of which 11 are assigned APl mnemonics.

In R2 tbere will be two, with all combinations available by

use of the X field. The AP1/R2 system will provide for the

use of many shift mnemonics, which map onto the 2 shift orders

and their inflection fields. For example

LLS 10

LRS 10

LUL 10

LUR 10

code into
'l2nd tab !3rd tab

00 12 001 00012 (octal)

01 12 001 00012

00 13 001 00012

01 13 001 00012

respectively.

()

page 10

As a matter of convenience, the three forms of jump

orders are handled in a special way. The coder may use the

letter 11 J 11 for any jump, with the contents of the X field.

Advantage is taken of the fact that the content of the X

field is unique for each. Without going into detail of

meaning, the following examples show what is meant:

AT

1

X3

llst tab

J

J

J

J

!2nd tab

'LABEL 1

·. LABEL 2

-. LABEL 3

LABEL 4·

I 3rd tab

are equivalent to:

UN

AT

01

X3

llst tab

JCC

·JCC

JSM

JSL

!2nd tab

LABEL .. l

LABEL.2

LABEL 3

LABEL 4

] 3rd tab

It is possible to do this becuase unlike the previous

assembly system, this system can readily locate eacp field
,· ..

of the symbolic text at will.

Two forms of remarks are written into the assembly

system. The first of these is remarks field of the fourth

tab, which may also be used to set a tag on the instruction

for selective tracing purposes. Tex~ at the fourth tab is

ignored unless the first two-letter word is 11 TG 11 , in which

case a trace tag is set on the instruction. The second form

of remark is that which begins with a slash (/) at the carriage

return position.

Although it is not the case now, another special feature

of the assembly system will be the set of checks it employs

to prevent improper operations on the part of the programmer.

There will be no priviledged mode of operation in R2, only

page 11

a priviledged mode of assembly. I-twill be up to the

assembly program to check for transfers into data words, for

attempts to fetch instructions, for attempts to store into

invariant constants, and to see that no transfers to undefined

locations take place. These checks can be performed in the

second phase of assembly, as location equivalence are being

worked out. Essentially the only additional burden on the

assembler is that it knows what order it is assembling.

Monitoring of potentially dangerous operations, such

as storing to absolute core addresses or relative to the in

struction will be aided by the requirement that operation

codes and their inflections ordinarily.be coded-in symbolic

form. Since the assembly program assembles only invariant

code, this is sufficient to allow Phase I checks on these

items.

A recent added feature of AP1/R2 is the generalized

method of defining constants. The programmer equates a label

to a set of constant elements, each element of which may be a

set of elements. An element is enclosed in parentheses, which

may be nested to an arbitrary level. The result is a tree

of constants, of which special cases are single constants,

vectors~ and matrices. Any of the data forms permitted by

the assembly program may be used with their proper prefixes

none for decimal, 11 c 11 for octal, 11 b 11 for bit string, or 11 h 11

;for hexadecimal. The ability of the assembly system to

generate these structures rest on the relative nature of

address elements in R2.

0

\ . page 12

PLANS FOR RE-IMPLEMENTATION IN R2

Current plans call for re-coding the assembler in itself

and running it under control of the simulation program. As

a result, the assembler should be ready for use when the

machine itself is. ready. The primary problem becomes getting

a version of itself initially in core. 'This is expected to

be done by the old simulator, since the new and old computers

will propably be coupled via a qevice channel for some period

of time before R2 begins independent operation.

As the assembler is recoded, it is expected that many

improvements will be made to the language, to make it a full

assembly system. The checks mentioned above must be im

plemented, and also provision must be made for addressing

variables in a manner compatible with the proposed operating

system conventions must be included.

".Ii:n'pTicit'.1 .·• macro facilities for implementation of

Basic Language constructs will be available. 2 For example-~

it may ~become possible to say.

Xl LD X2.7.l

which would expand to

Xl LD X2

x1· DOT 7

Xl DOT 1

Duplicate macro facilities will also be used to code

orders which will eventually become 'instructions in R2 in

future years. When these orders are implemented, the

assembler will simply stop treating them as macro orders,

and substitute actual function codes.

Finally, proposals for extensions of the language even

beyond the Basic Language include proposals for conditional

assembly and explicit macro orders. It is not known at this

time whether these will be included, or what form they will

take.

(. \
'--....,/

..,

C:

c

NOTES

1John Iliffe, Basic Machine Principles,

(London, MacDonald, 1968), pp. 47-73.

2rliffe, p. 56.

/

page 13

	102726242-0001_a
	102726242-0002_a
	102726242-0003_a
	102726242-0004_a
	102726242-0005_a
	102726242-0006_a
	102726242-0007_a
	102726242-0008_a
	102726242-0009_a
	102726242-0010_a
	102726242-0011_a
	102726242-0012_a
	102726242-0013_a
	102726242-0014_a
	102726242-0015_a

