
c:

RICE UNIVERSITY COMPUTER PROJECT

Store Management Techniques

J. K. Iliffe

Methods of store management appropriate
to machines with tagged addresses are
described. It is shown how the in­
formation implicit in addresses can be
used both by microprogram and system
routines to achieve efficient use of
register and primary storage.

23 January 1969

()

0

1. The Problem

Store Management Techniques

J. K. Iliffe*

Rice University

In order to process information efficiently, it must be

made accessible at a rate matching the processor speed. In a stored

program computer, it is not usually economical to put all the in­

formation required for a calculation in a single physical store:

instead, it must be distributed over a number of different "levels",

characterised by their access rates. However, the intensity of use

of items of information varies immensely in the course of computation,

and performance is not seriously impaired if only the most intensely

used are supplied at processor speed. To take advantage of this fact,

one must arrange to move information into the store level appropriate

to its utilization at any instant. Such arrangements may be made

by a programmer, given facilities for commanding information transfers.

Alternatively, one can apply rules which are independent of any

particular program. In time-sharing (and therefore space-sharing)

systems, some form of automatic control is essential.

In practice, the following three storage levels are of

importance:

(i) Registers, e.g. bistable electronic devices, with access times

comparable with the micro-functions of the processor;

(ii) Primary storage, e.g. magnetic core store, with access com­

parable with the function speed of the processor;

(iii) File storage, e.g. moving magnetic devices, with mechanically

limited access rates.

*On leave of absence from ICL, Stevenage, England.

. --·------.-----··--------------~------~-------·-------------------·~ ·-----·

Store Management Techniques page 2

The storage system of a computer is often thought of as a "hierarchy"

with the fastest elements, i.e. the registers, forming the top level.

The amount of store at each level is inversely related to its speed,

so we can also think of the storage system as a "pyramid", whose top

is being transformed by processing devices. More generally, we may

regard each level as being "processed" by the combination of active

devices and stores which occurs above it. The relative amounts of

storage at each level, i.e. the slope of the pyramid, is then determine~

by applying the matching rule stated above, and as each level is

absorbed to form a new "processor", it must be provided in sufficient

quantity to match the speed of the next lower stratum. The purpose

of the store management rules is then to achieve a given processing

rate at the base of the pyramid, where the computer meets the outside

world, with minimal amounts of register and primary storage, and

processor logic.

C:, Fig. 1. The Store Pyramid

Processor

Register

Primary

File

Users
:-#·""-~~~~~~~~~~~~~~~~~~~~~~~~--'~--~

! \.--- ... -- - - -------- - - -------------------·'""""''

Let us assume that the unit of storage at all levels is

a word, whose size is typically about 50 bits. At each storage level,

words are assigned to a sequence of physical locations, identified by

means of location numbers L0 , L1 , •.. , Lk' where k is a parameter to

be investigated. As calculation proceeds, the demand for storage

at each level is satisfied by finding blocks of consecutive words

characterised by the pairs of numbers (L. ,n.) , L-. being the first
J.].].

Store Management Techniques page 3

word location number, and n. the number of following words, i.e. the
l

last location of the block is L.+ . The blocks so assigned are said
. 1 ni

to be active. The remainder are inactive: they provide at each level

a reserve of space from which to satisfy new demands. When this is

impossible, more space must be found by recovering disused space, or

by ejecting rarely used blocks to a lower level. It will be seen later

(Sec. 4) that the primary store control system works intimately with

the process scheduler in regulating the demand for storage.

The movement of information is concealed from programs by

causing them to use a set of addresses, whose meaning is independent

of the store allocation. In the earliest computers, very little could

be done in the way of store management because locations were identified

with addresses. Since the acceptance of multiprogramming, crude trans­

formations between address and location numbers, e.g. datrun register and

paging schemes, have become common. The relationship between addresses

and location numbers can be represented in tabular form. In practice,

() such a table relates segments (Ai,ni) of address space to blocks (Li,ni)

in physical store, with the implication that the j'th element of a

segment, O<j<n., is to be found in the jth position of the correspond-
- - l

ing block. The table need only relate Ai to Li' and give the limit

value n. for each segment/block.
l

There are two ways of using the table, i.e. (A) Unrestricted

address computation: If the Ai are indistinguishable from integers,

then a table reference must be made whenever an attempt is made to

access the store~

Address

TABLE

Ai \ j ! A,
_ ___ -)>(. l L, n.

l l

Physical location Li+j

provided O<j<n.
- - l

Figure 2: Table reference

,/' '· .
l)

Store Management Techniques page 4

In the special cases mentioned above, the paging schemes reduce ni

to a constant (a power of 2), and datum register schemes reduce the

table to one entry per program.

In general, provided the relevant parts of the table are

stored at a higher level than the information required, this is an

acceptable procedure. For example, access to a drum may be controlled

through a table in core store. Access to core requires the table (or

at least the most intensely used parts of it) to be in registers.

Access to registers, on the other hand, is severely penalised because

the table itself is often so bulky that it must be accessed by

associative methods which, by definition, must be slower than the

registers*.

*The penalty may still be worth paying if the primary level is much

slower than registers, as in the case of slave stores: this can be

looked at as a "gain" over primary store or a "loss" compared with

(:,1 register speeds.

0

(B) Restricted address computation. If addresses are distinguished

from other stored items, it is possible to retain the tabular entry

as part of the address itself, only referring to the table to update

the address when A. changes~-
l

Address I Ai hl ni I j L,
~pdate

~
Figure 3:

TABLE

A. L. n.
' l l l

.

access

Table by-pass

Physical location

Li+j

()

Store Management Techniques page 5

The advantage of such a method is that reference to physical storage

is direct, and a relatively long updating process can be tolerated,

even at register level. It depends, just as a paging system does,

on the proposition that addresses are used repeatedly to access the

same segments of store, although it uses the phenomenon in quite a

different way. It should be.noted that there is no doubt about the

truth of the proposition if the segment is chosen large enough, e.g.

a program size; but then the store pyramid is rather uninteresting.

The question we have to ask is, whether one can choose such a small

(average) segment that the faster levels of storage are minimised,

and such that the above proposition remains substantially true. The

evidence from paged systems seems to be that for certain classes of

problems it is possible, though a fixed segment (page) size can lead

to inefficiency in the use of primary storage.

The best known systems of type (B) are the Burroughs B5000

and derivatives. Here, and in the Rice University machine, the

Address/Location table is entirely absorbed into stored addresses,

with the result that when store is re-allocated, all relevant addresses

must be found and changed. A similar technique is used on the ex­

perimental Basic Language Machine, though the table (Sec. 4) is also

maintained by the primary store control system and could be used as

indicated above.

It is quite probable that type (B) systems will be widely

used in future. They are inherently faster in store access than type

(A), they offer greater flexibility in design, and there are eminently

good reasons, outside the scope of these notes, for controlling the

formation of addresses (see Ref. 1 Ch. 1). Conventional store manage­

ment techniques have been examined in practice and by simulation, and

reported extensively (for example, see Refs. 2,3). The following

Sections are therefore confined to type (B) systems, particularly

with reference to register store control (Section 2), and primary store

(Section 3,4). Because file access is relatively less frequent, the

distinction between the two types of control can be ignored at that level.

CJ

0

Store Management Techniques page 6

2. Register Control

In this Section we consider automatic ways of using register

storage to increase computer performance. The methods used must not

affect the instruction code of the machine, otherwise a substantial

investment is lost; by a similar token, their effect on the processor

logic must be minimised.

The normal purpose of registers is to hold numbers or addresses.

They may be specialized in use (e.g. a control counter), in which case

the sort of information they contain is implicit, or general purpose,

accessible by program. In the latter case we presuppose their contents

are distinguished by some form of type coding, as in the BLM (Ref. 4).

From this point of view, we can see that the registers define a rel­

atively limited domain Din primary storage which is directly accessible

by using the addresses they contain. The construction of processor

logic, of compiled code, and of hand-coded programs, is normally such

that the most immediately required entities, if not themselves in

registers, are in D. The most natural way of enhancing performance

would therefore be to move D into register storage, and adjust addresses

accordingly.

The main objections to the above method are that Dis too

volatile, and usually too large, for effective maintenance at register

speeds. We therefore seek a relatively stable subset D* of D, by

rejecting the most rapidly changing addresses (as defined below); and

we simplify maintenance-by choosing a fixed block size: the size of

D* is then limited by the number of registers capable of holding

addresses.

As an example, consider a group of 16 general registers,

and a register block size of 8 words. Each regi·ster can hold either

an address (ADDRESS or CONTROL in the BLM sense) or a number. Referring

to Figure 4, the register store consists of:

(i) the 16 addressable registers X;

x

T

0

REGISTERS

A. l. J
l.

0

'----r---15

j

I
I

Update

0

j 1

15

ASSOCIATIVE

STORE

0

0
ADDRESS

_j}jJ
15

i

u

l

L
0

15

Figure 4: Register Block Organisation

page 7

REGISTER
,__ __ _,<1- -1

BLOCKS

I .

--4- -1

Store Ma_nagement Techniques page 8

(ii)

(iii)

eight stores of 16 words, forming 16 register blocks (the

blocks are spread across separate stores);

an associative store T which relates segment addresses A.
. l

to the defined register blocks.

form of the segment/block table,

(Tis simply an inverse

ordered by block).

and (iv) a use word U whose 16 bits indicate which register blocks

are occupied at any time.

If we consider a 20-bit address, its low order 3 bits (i)

determine a register store, and the top 17 bits determine, by re­

ference to T, one of the 16 words (j) in that store. The rule of

store maintenance are as follows:

1. Loading. When an address is formed in! (e.g. by LOAD in the

BLM sense) reference is made to T to determine whether the

block it refers to is already loaded. If so, the block address

(j) is stored in~- Otherwise, the block is fetched from main

store, and a vacant register block is found from U. The block

is distributed in the register stores, with a~propriate entries

in T and U.

2. Ejection. Blocks can be reclaimed if (i) they appear from u
to be 'in use', but (i{) there is no address in X corresponding

to them. If such a block is protected, the U bit can be in­

.verted directly; otherwise, the block must be returned to

primary storage before the space can be re-used. Detection

of condition (ii) involves scanning the K registers: this

suggests that the 11 j 11 field should be held in decoded form in

a separate store designed to give such information_.

3. Access. There are two cases to consider.

(i) an address is used to access information directly, or in

conjunction with a small modifier which does not alter its

register block number. In this case, the required information

is in register store i, word j.

(ii) otherwise, e.g. when an address is modified outside the

block it points to, reference must be made to T to see if the

information is in registers. If so, it is retrieved as above;

Store Management Techniques page 9

otherwise, it is obtained from primary storage.

Discussion

In comparing the above system with a conventional slave store,

we will assume that reference to T takes the same amount of time as a

register fetch. It follows that for 3(i) the proposed configuration

can respond to requests in half the time of a comparable slave store,

so we must consider how often 3(i) is likely to be the case. Immediate

examples of information directly 'covered' by addresses are instruction

streams, parameter and local variable lists, top-of-stack areas, and

commercial records; it is probable that the register block size could

be chosen to cover most references of this sort. It should also be

noted that the above rules allow for a register block being brought into

use again by rule (1), even if technically disused. Thus, in obeying

the Fortran code:

DO 1 K = 1, N

1 A(K) = B(K) + W

the register blocks defined by the computed addresses of A(K) and B(K)

would normally be available, provided rule 2 is not enforced between

iterations.

Conversely, case 3(ii) is most likely to arise from random

access to larger arrays, or indirect addressing chains. It is proposed

not to load register blocks from such requests: in this sense we are

restricting the domain D* to the information which is most likely to

be useful.

To summarise the advantages of the register hlock method,

it is expected to be faster than conventional (type (A)) alternatives

because:

and

(a) most successful register accesses avoid intermediate table

references;

(b) addresses are identified as such before they are used, and

would therefore initiate earlier access to primary storage.

0

Store Management Techniques page 10

Also, it is expected to iequire less storage for a given "hit rate"

(the measure of successful accesses to register blocks), since use

is made of the X registers in deciding what to eject, and some dis­

crimination can be exercised in loading. However, the net effect

on performance remains to be studied by detailed logical design and

simulation.

3. Primary Store Characteristics

In descending to the next storage level, we are able to

reconsider using the "natural" program structure to provide the basic

units of store, so that the active primary blocks are variable in

size, and correspond to program segments (Ai,ni). In this Section,

we survey the consequences of such a decision. The main interest

centres on the way segments are connected together, and reasons for

following certain forms of interconnection over others will be given.

We will refer to any segment (A. ,n.) by its first word
1 1

address A .• A segment A. is said to be connected to A, iff in A.
1 1 . J 1

there is an address pointing into Aj. For any segment Aj' let

Aj be the set of segments connected to Aj. Intersegment connections

can be represented in an obvious·way by finite, directed graphs. A

segment A. has access to A. iff there is a directed path from A. to
1 J 1

A.. Let A~ be the set of segments accessible from a given .A ..
J · 1 1

The store management system is directly concerned with

the evaluation of A~ and A! for various segments. At any given time
1 J

there are just a finite number of bases B1 , ..• Bk in store, which

are segments used by independent processes for access to their

programs (see ref. 4). It follows that the active segments must

comprise exactlyi~lBf, since no other information is meaningful.

The complementary primary storage is then inactive, and available

for re-use. Similarly, if access to Aj has to be monitored, e.g.

because of a change in position; then A! must be found, and suitable
J .

LI Store Management Techniques page 11

changes made in addresses therein, unless the table reference

(Figure 2) is retained.

In theory, finding A~ or A~ involves scanning the entire
l J

active store. In practice, three factors drastically reduce the

amount of work involved. Firstly, not all blocks can contain con­

necting addresses. Secondly, the bases from which a given segment

is accessible are normally restricted to a small subset of B.,
l

i=l, ... ,k (otherwise, process synchronis.ation becomes a troublesome

problem). Thirdly, over a substantial region of store, it is possible

to form segments into a tree structure, for which A~ consists of
J

exactly one segment, for any A .. The implications of these reductions
J

will be apparent in Section 4. It remains to consider techniques

which can be used when the "natural" segment sizes do not admit

economic management.

Paged Systems

() A fixed size paging scheme is described in ref. 1, ch. 5.

It has the effect of partitioning large segments into separate

blocks, allowing any segment to be distributed over primary and file

storage, and eliminating the need for reorganisation of primary store.

Advantage is taken of the type B addressing mechanism to by-pass

page table references, as for the register block scheme. For certain

classes of proble~particularly those involving serial access to

large arrays, one may then expect the primary store requirement to

be reduced, despite the "round-up" effect of the page frames.

Small Segments

Although, even in a paged system, small segments (e.g. less

than page size) can be packed efficiently,

neads may develop from repeated evaluation

obvious extreme is found in list processing

significant system

of A~ and A~ . The
l J

systems. It is of

interest to find situations in which groups of segments can be

over-

Store Management Techniques page 12

treated as independent subsystems, with specialised storage control

rules. One such example is provided by the assembly program, which

creates a fixed subsegment structure analogous to the store of a

von Neumann machine. Other special schemes can be devised by

substituting soft versions of the hard 11 fetch 11 and "store" orders,

which prevent the propagation of certain classes of address. Chained

arrays have been provided in this way on the experimental BLM.

Certain compilers have very limited requirements, and advantage can

be taken of the fact. At the same time, one must avoid specialisations

which limit the efficiency of programs in order to achieve apparently

low store control overheads in the 11 system11 •

The choice between 11 hard 11 and "soft" dynamic store control

is illustrated in Figure 5. Program A has just one data block, within

which references are made by index values, and store management is

entirely A's responsibility, as in conventional machines. In program

B, separate blocks are used, e.g. for different classes of data

c=,) structure. Any single item must be referenced by a pair of indices,

though in some languages (ref. 6} the structural class is implicit

and would not be stored. Management within each class is carried out

by specialised routines in B, but the system now controls the separate

classes. In program C, direct reference between segments is allowed,

and the system has full responsibility for store allocation. Obviously,

C will have greater 11 overhead 11 than A, even though it may be doing

the same job more efficiently. On the other hand, A and B can be used

very effectively for certain classes of problems in which limited formats

and access methods are acceptable.

/'

(\
\.J

\

,---,
(.
I I ·~

Store Management Techniques

Figure 5: Hard and Soft Structure.

A --,-----------.
jia:u~=e<:C"'!+,

' I

page 13

A: Single data area

,Reference by index·

B E3

c

\

\
\
\
~

B: Structural class areas

·i1 c
>-

\. iii -1

\
\

I

1 Reference by
class/index

1 (class normally
l

implicit) l

' j Cl- - -- - -·

C: Hard structure

!~
Direct reference by address

.,,---·-.,
(\

\.____,.)

Store Management Techniques page 14

4. Store Control in BLM

To illustrate primary store control techniques, the system

developed by J. J. L. Williams for the experimental BLM (ref. 4) will

be described in this Section. The Burroughs B5500 system is similar

(ref. 5), except as noted below.

Space is requested by entering a system routine, giving

the type, size, and number of elements to be provided .. Such requests

can be normalised immediately into blocks of words, which are then

dealt with by the store control routines.

The problem is thus to satisfy a continuous demand for

blocks of different length in such a way that those immediately needed

(for processing or peripheral transfer) are held in the core store,

and so that the control algorithm itself takes as little as possible

of otherwise useful time. The solution takes the form of a permanent

"store control process 11 , which can apply various recovery procedures,

and whose priority can be adjusted in accordance with store congestion.

The system is intended to cope with a wide variation in demand, but

a mean block size of about 100 words is assumed in this discussion.

In order to simplify the control algorithm, the underlying

program structure is constrained to the form of a tree. Other

structural relations are superimposed on this by means of individual

addresses, but for each active process there is just one segment

which can contain addresses: this is called the 12rocess base. Up

to eight active processes are allowed, and their bases are referred

to as "Bi 11 , i being the process number O, 1, •.. 7; in a typical

process, the base, which includes the registers, contains 30 - 40

elements.

In the program tree, each element belongs to one of the

processes; its owner is therefore identified by a process number.

The owner is a hereditary property of the element, in the sense that

all the segments in the tree it defines have the same owner; when a

process is abolished, all the segments it owns are inactivated.

0

Store Management Techniques page 15

Hence the primary storage tree can be portitioned uniquely into a

set of sub-trees Ti' corresponding to the current processes. If the

machine is II empty" . there is still one resident process, associated .
with the operating system: this is identified as process O, and

the corresponding subtree T0 represents permanent system information.

A process TI, is allowed access only to its own program, T.,
1 · 1

and to parts of the program associated with its parent (i.e. the

process which created TI.). Since all processes, directly or in-
1

directly, are created by TI 0 , T0 is accessible as shared information.

In other words, in B. the addresses would all point into T. or T0 ,
1 1

unless Tii was a sub-subprocess of TI 0 . Conversely, given any~'

owned by T., all connections to Ak will be found in B., or in the
J . J

bases of subprocesses (if any) of Tij' except for the single connec-

tion in T .•
J

Store Categories 7
Active store is defined as before as.u0B*, if we recognise

1= 1

the principal addresses in T. as part of B .. The experimental BLM
1 1

has a function CLEA which deletes segments 1kfrom the program tree:

however, before the space can be re-used it is necessary to scan Ak

and annul any connections that remain. Until this is done, the

deleted segments are-classified as cleared: in certain situations

~ becomes empty, in which case recovery is immediate. The remaining

store is inactive or free.

Free Block Chain

Free blocks are chained. together in core. A request for

N words of store is met by scanning the Free Block Chain (FBC) for

the first which is large enough. If successful, the required amount

is activated, and the remainder is left on the chain unless it falls

below a certain size (currently 8 words), when it is treated as

Store Management Techniques page 16

cleared. W'hen the FBC scan fails, the process asking for store is

halted in a state known as "WSTO" (waiting for store), and control

passes to another process which is ready to run. The FBC scan is

a direct in-line cost to the calling process, and for this reason

the mechanism of detachment and activating the new segment has been

made as simple as possible, even though the later recovery processes

are made slightly more complicated as a result.

Active Block Table

Although the segment/block map is fully absorbed into

addresses (Figure 3), it facilitates store recovery to maintain an

Active Block Table (ABT), whose entries give the starting location

of each block not in FBC (excluding the small "cleared" blocks

mentioned above). An entry is made in ABT when a store request is

satisfied; when a block is relinquished (cleared) the block itself

is marked. Thus ABT summarizes the core disposition at any instant,

irrespective of the users' program structure.

4.1 Store Recovery Procedures

The store recovery process is normally of low priority,

and is given control only when the remaining processes are suspended,

waiting for store or other resources. (The priority can be in­

creased to satisfy an urgent demand for space). Action depends on

a group of markers set by other processes in the course of store

requests. The most significant of the markers set determines which

recovery procedure will be applied.

The way of setting markers, and the recovery procedure they

provoke, are as follows (in descending order of significance):

,,,-·--._

l)
Store Management Techniques page 17

SRPO

SRPl :

SRP2 :

SRP3

Sort ABT into ascending core store order. The marker is
set whenever a store request is satisfied.

Shorten ABT by removing all cleared blocks Ak' scanning
~ to annul connecting addresses. Regenerate FBC and
release all processes in state WSTO. The marker is set
whenever the in-line FBC scan fails.

Reorganise the core so as to form larger blocks on FBC.
The reorganisation may be local, so as to meet a particular
request with minimum delay, or general, moving all active
blocks to one end of core. Blocks involved in peripheral
transfers are not moved. All connections to moved blocks
are updated. The SRP2 marker is set when a process WSTO
is not satisfied by SRPl.

Eject all blocks, other than those directly accessed from
B., i=0,1, ..• 7, to file storage. (This is a reverse
a~plication of the principle used in Section 2 to control
register loading). The SRP3 marker is set when a process
WSTO is not satisfied by SRP2.

If SRP3 fails to meet a store request, overloading is

C:) indicated, and steps must be taken to remove one or more processes

from.the active list. Since this is an expensive operation, an

attempt is made to avoid it by requiring each process to specify

before being accepted how much core store it needs .. The total

requirement should not exceed the available core at any time: if

it does, SRP3 may fail to satisfy a request, and the offending

process would then be de-activated. The core requirement must be

chosen to keep the interchange with file store within bounds, as

well as to minimise primary storage. The best policy to follow,

however, depends on the individual system and work load.

Notes on BSSOO DFMCP

From the available literature, the BSSOO Disk File Master

Control Program appears to be similar to the BLM system structure.

The PRT and stack roughly correspond to the storage tree and base

·----·---·-... ·-------------

Store Management Techniques page 18

of each process. The main differences are (i) that the PRT structure

is one level only, and it can contain multiple references; (ii) system

activities in BSSOO are not subject to the same protection as users;

and (iii) in character mode operations the addresses are not dis­

tinguished as such, so that the recovery procedure corresponding to

SRP3 is made more difficult. The FBC's correspond. There is no

ABT: all blocks (active and inactiv~ are chained together in core,

and adjacent inactive blocks combine as soon as formed. In general,

there appears to be more in-line processing to maintain tables and

find storage, but SRPO and SRPl are avoided, and so is core re­

organisation (SRP2). If a request is not satisfied from the FBC,

one or more segments are ejected to disk, though it is not clear

on what basis they are chosen. There is no independent store recovery

process.

A note on the Rice Computer

() A FBC on the above lines was used in the first version

"\ L1

of the SPIREL System. It should be noted that after several years

this was changed in the following way, with appreciable increase

in efficiency:

(i)

(ii)

(iii)

if a store request begins by inactivating a block,
and the resulting inactive area is large enough, it
is used to satisfy the request;
otherwise, an attempt is made to satisfy the request
from one particular inactive block;
if (ii) fails, but there is enough inactive space
in core, reorganisation (SRP2) is forced, to
provide the maximum inactive block, and (ii) repeated.

e I .,_

0

0

Store Management Techniques page 19

5. References

1. J. K. Iliffe, "Basic Machine Principles" (Macdonald,
London; American Elsevier) 1968.

2,. J. S. Liptay, "Structural Aspects of the System/360
Model 85. II:The Cache", IBM Systems Journal Vol 7, No. 1. 1968.

3. M, H. J. Baylis, D. G.' Fletcher, D. J. Howarth
"Paging Studies Made On the ICT Atlas Computer"
IFIP Congress 1968.

4. J. K. Iliffe, "Elements of ELM", Rice University Computer
Project, 1968.

5. Burroughs Corporation, "A Narrative Description of the
Burroughs B5500 Disk File Master Control Program" 1966.

6. N. Wirth and C. A. R. Hoare, "A Contribution to the
Development of Algol", C.A.C.M. Vol 9, No. 6. June 1966.

.!

	102726224-0001_a
	102726224-0002_a
	102726224-0003_a
	102726224-0004_a
	102726224-0005_a
	102726224-0006_a
	102726224-0007_a
	102726224-0008_a
	102726224-0009_a
	102726224-0010_a
	102726224-0011_a
	102726224-0012_a
	102726224-0013_a
	102726224-0014_a
	102726224-0015_a
	102726224-0016_a
	102726224-0017_a
	102726224-0018_a
	102726224-0019_a
	102726224-0020_a

