
.'I>'

I

RICE UNIVERSITY COMPUTER PROJECT

Elements of BLM

J. K. Iliffe

This note describes the essential
features of a Basic Machine, and
indicates the main choices which
remain to be made in designing- a
practical sy·stem. ·

7 November 1968

I
I
I

L,
Elements of BLM

J. K. Iliffe*

Rice University

1. The BLM experiment

"Basic Language Machine" is the name given to an ex­

perimental computer built in the research division of International

Computers Limited in Stevenage. As the name indicates, the experiment

is directed at both the "hard" and "soft" aspects of computer design,

but more particularly with the way the system appears to its users.

It is "Basic" in the sense that it is not concerned with those re­

finements which can be achieved entirely by "soft" translation of

commands from one language to another, nor with equivalent hardware

transformations which do not affect the machine's logical capabilities.

In algebra, the "base" of a vector space is a set of independent

vectors from which all elements can be derived by linear combination

of operations; by a rough analogy, the "base" we have been looking

for is a set of objects and operations from which all elements of

programming "space" can be derived. The classic bases of computation,

e.g. Turing machine or recursive function theory, are unsuitable

in this respect, since they do not take account of the finite nature

of machine registers, or of the task of program constru·ction, to

name only two important factors.

Most computers in use today are based on the von Neumann

model of machine organisation, which can be described in terms of

a memory consisting of an ordered sequence of words, in which

instructions and numbers are stored. A sequencing rule is in­

troduced to describe how control passes from one instruction to the

*On leave of absence from ICL, Stevenage, England.

Elements of BLM page 2

next. The instructions are split into function. and address fields,

and an addressing rule is used to determine the numbers on which the

functions will operate. The definition then proceeds to more detailed

definition of each function, including the conditions under which it

"fails", either because the addressing rule can't supply it with

operands, or because it can't produce a meaningful result.

It is well known that the von Neumann model as it stands

is an insufficient basis for programming. This is difficult to

"prove", since most problems can be programmed, with a given function

code and sufficient store. What is lacking is the generality of

expression which alone makes the effort of writing a program worth­

while. In other words, the idea of words in memory must be replaced

by a more general information structure, and the addressing rule

must evolve into a more general means of identifying items of in­

formation and relating one to another. The conventional approach

to this problem through "high level" languages provides at best a

: partial solution: it offers the programmer a useful set of working
\,.___,..,

f
I .
\.____)

concepts, but ft attaches restrictions, in the interest of run-time

efficiency, which are not always easy to accept. Moreover, the

original program is often so mutilated in the course of translation

that there is no hope of changing it during execution, or of checking

that the structure is being interpreted consistently.

In the BLM we are attempting to provi_de a "hard" programming

base sufficient to meet operating system and user requirements in

the most general way, i.e. by retaining structural information as

an essential component of a program, distinct from numbers and in­

structions, and adapting the function code to operate on it. Such

a plan of work obviously calls for much detailed study of current

programming practice, trends in component costs, market requirements,

and so on. However, the essential features of a Basic Machine are

almost as simple as a von Neumann machine; it is the purpose of the

next three sections to introduce them at the same level of detail

as would be offered in a first lesson on programming, i.e. assuming

(' , _~-

Elements of BLM page 3

that the various exceptional conditions which are noted in passing

are rare enough to be ignored, though we know from experience that

they· occur often in the human timescale. In section 5i we indicate

very briefly the various lines of development leading to a properly

engineered system, some of which have been outlined in ref. 1, and

others are under investigation on the experimental BLM.

2. Process Base elements

We begin by describing the "store" of a Basic Machine, as

it appears to its users. There are three types of stored elements,

corresponding to the three categories of information in the machine,

i.e.

Type NUMERIC - corresponding to numbers;

CONTROL - 'Corresponding to instruction sequences;

ADDRESS - corresponding to structural information.

(__ _,,, Each element occupies the same amount of physical storage - a word

size -,but it is not necessary to disclose the amount, or the de­

tailed formats involved. The elements are truly "atomic", and are

defined only by the'effect they have in the system.

0

Type NUMERIC may include several different numerical represen­

tations: for present purposes, we assume zero or

signed integer values, of limited magnitude, in two's

complement form.

Type CONTROL points to the first of a finite sequence of stored

instructions: we shall see that it is not possible to

isolate a·single instruction, and CONTROL elements will

be used only to change the flow of calculation.

Type ADDRESS points to the first of a finite sequence of stored

elements,'each of which is itself either NUMERIC, CONTROL,

or ADDRESS type; it is possible to select a single element,

operate on it, and return it to the same or another position

in store, and all calculations devolve eventually into such

actions.

(_)

,,---\
(_)
'~

Elements of BLM page 4

A process base is a finite group of the elements described

above, each of which can only be accessed by using its name. A

unique process base is associated with each concurrent activity in

the machine, and the names used in that process relate directly to

its base. For the present, we denote elements of the base by ex­

pressions of the form "X.", where i = 1,2, ••• , etc.
-1

The base is a relatively small amount' (usually less than

100 elements} of information, the remainder of the program being

accessible indirectly, by using ADDRESS or CONTROL elements pointing

to data and instructions respectively. We think of a program as a

"base", directly accessed by naming its elements, and a "store"

area, distinct from the base,composed of instructions, numerical

data, and pointers, though strictly speaking the "store" may be

shared by several different processes.

3. Machine functions

Each machine function is defined in terms of the types of

its two arguments, i.e. NUMERIC, CONTROL, or ADDRESS. The arguments

are always base elements or constants, and it is convenient to denote

the type of X. by "T." and abbreviate the type identifiers to N, C, A
-1 -1 - - -

respectively. Thus:

T2 = N

implies that ! 2 is a NUMERIC element.

Functions fall into four groups:

Group-A: Arithmetic and logical operations

B: Base manipulation

C:· Control jumps

D: Addressing operations

Table 1 summarises the assigned functions, each of which is identified

by a mnemonic code as in a conventional assembly program. In this

:instance however, the binary representation is not disclosed, nor do
I

Ci

Elements of BLM page 5

we assume that each symbolic instruction represents just one "machine"

order.

The addressing rule for BLM

Certain functions cannot be applied directly to ADDRESS

elements, e.g. it is not possible to perform arithmetic on, or

direct control to, an ADDRESS. However, if the ADDRESS points to a

sequence whose first element is NUMERIC or CONTROL, then it may be

possible to interpret the function meaningfully. In theory, the

search for a useful operand could go through several addresses, but

we have found this rule difficult to apply in practice, and only one

step is taken in the BLM. The resultant rule, which applies when­

ever a NUMERIC or CONTROL element is required, is termed the Auto

Fetch (A/F) convention: it can be thought of as a rule for con­

verting each II argument" which appears in an instruction into a useful

operand.

A similar rule is applied to the storage of NUMERIC results:

it simply states that the result of any Group A operation overwrites

the first operand, which must be in the process base or one step

removed, depending on whether a.Fetch has not, or has, been applied

to find it. This rule is termed the Auto Store (A/S) convention.

The use of A/F and A/Sis illustrated in the following

brief discussion of machine functions.

Group A: Arithmetic and logical operations

ADD,SUB,MPY,DIV,MV,SC,AND,OR,NEQ,NOT

Both operands must be NUMERIC, with the result that by A/F

a single function such as ADD has four possible combinations of

operand sources:

i.e. 1st Arg

N

N

A

A

base +
base +
store

store

2nd Arg

base N

store A

+ base N

+ store A

I

"----··

,
(__)

I \
\..)

Elements of BLM page 6

However, the function fails if either A argument points to anything

but a defined NUMERIC element, or if either argument is C.

After applying A/F, the operation is performed convention­

ally, and the result is used to set the state of a pair of condition

code indicators (similar to IBM System/360) which may be tested by

control functions. The result then overwrites the operand selected

by the first argument.

Group R: Base manipulation

COPY,LOAD,STO

These three functions are needed to circumvent the A/F and

A/S conventions when moving elements of the process base. COPY

simply copies from one base position to another. LOAD applies A/F

to the second argument only, then uses the selected operand to over­

write the base element named by the first; similarly, STO applies

A/S to the first argument only, and overwrites the selected operand

with the base element named by the second argument. (Note that all

Group A and B functions are defined so that the "information flow"

is from the second qrgument to the first.)

Group C: Control j~mps

J,JL,JNL,JLT,JGE

A destination is always specified by _the second argument,

as a CONTROL element, possibly by A/F. The condition under which the

jump is taken is given by the first argument and the function. If

the first argument is a condition mnemonic (Table 2), then the function

must be nJ" and the _control sequence is changed if the current con­

dition codes satisfy the selected condition; otherwise control passes

to the instruction following the current one.

If the first argument is a base name, then the function

may be J or one of the counting jumps JL,JNL,JLT,JGE. If J, then

,,, ...

Elements of BLM page 7

the first argument simply indicates where to store a link*:

!2 J !6
sends control (unconditionally) to ! 6 , leaving a CONTROL element in

! 2 , pointing to the next instruction.

The counting jumps all depend on the value of the first

argument. For JL, JNL it must be an ADDRESS, which is modified by

unity on each JL or JNL until it points to a sequence of just one

element, which is regarded as the "last"; in this way, and with the

help of A/F, one would iterate through a sequence of elements in

store. For JLT, JGE the first argument must select a NUMERIC element

(by A/F) which is decremented by unity on each application of the

test, and the result used to determine whether to take the jump or

not.

Group D: Addressing operations

MOD,LIM,INDEX,MEM

l_ __) An ADDRESS always points to the first of a sequence of

stored elements, and indicates how many follow it: this number is

termed the index of the sequence. Clearly, the index is non-negative~

if it is zero the sequence consists of only one element, and the

ADDRESS pointing to it is said to be "singular".

Given an ADDRESS, selected by the first argument, MOD and

LIM are used ·to form an ADDRESS pointing to a sub-sequence of the

original one. In each case, the second operand must be NUMERIC,

non-negative, and not greater than the initial index value. Let

its value be K. Then MOD has the effect of "removing" the first K

element of the, sequence; and LIM has the effect of replacing the

initial index value by K, i.e. "removing" all but the first K + 1

elements. (By "removing" we mean that elements are no longer accessible

by using this address: there may be other addresses still pointing

*The BLM programming convention is to place the function mnemonic
(~~) between the first and second arguments, see page 9.

,,,.-·-~.
(I
'-..._,.,!

Elements of BLM page 8

at them.)

index (X1)

The effect of MOD and LIM on x 1 , assuming T1 = A and

3 initially, is summarized in the following diagrams,

with K = x 2 = 1:

s

s

EB

(a) initial sequence of four elements

addressed by x 1 , index 3

(b) sequence of three elements

addressed by x 1 , after:

xl MOD x2

(c) sequence of two elements addressed

by x 1 after (b) then:

xl LIM x2

The remaining two addressing functions are used to obtain

the index of a sequence (INDEX) and to enquire whether the first

element of one sequence (given by the first argument) occurs within

another:

~l MEM x 2
If it does, its relative position is written into ~l' and condition

codes set accordingly (ZE,GT,IR).

4. Formal definitions

In the BLM, formal syntax takes the place of the binary

formats which are usually presented as part·of a machine definition,

though the format of NUMERIC elements is known and used in logical

operations. Besides.NUMERIC, the inpu~. language must be capable of

introducing ADDRESS and CONTROL elements, and giving a precise meaning

I
I.

' '1

\J

Elements of BLM page 9

to the idea of a control sequence. The following set of definitions

leaves the form of labels as well as base names undefined: it is

required that they be distinguishable from each other, and from the

numerals.

Definition of code segments:

<segment>·

<line> ·

<label>

<instruction>

<control jump>

<condition test>

<loop test>

:: = <line>l<segment><line>

<label>:<instruction>l<instruction> . . = . .
!!.1 IL2 l!!.3 l O • •

. . = . .
<control jump>j<action> . . = . .
<condition test>l<loop test>l<set link>

:: = <condition mnemonic>J<destination>

. . = . .

:: = <base><JLjJNLJJGEjJLT><destination>

<condition mnemonic>: : = GEIGTjIRJLEjLTINZIUNjVRjZE

<set link>

<destination>·

<base>

<action>

<first argument>

<second argument>

<signed numeral>

<sign>

<numeral>

<digit>

<function>

<group A>

<group B>

<group D>

.. = ..

. . =

. . = . .

. . = ..
... = = ...
... = ..
.. = ..
.. = . .
. . = ..
. . = ..
.. = . .
.. = ..
.. = ..

<base>J<destination>

<base> I <label>

x1 1x2 1x3 ! ...
<first argument><function><second argument>

<base>'

<base> I <signed numeral> I <structure>

<numeral>!<sign><numeral>

+1-
<digit>l<numeral><digit>

0111213l4ISl6!7!BJ9
<group A>j<group B>!<group D>

.ADD!SUBIMPY!DIVjscjANDjOR!NEQjNOTjMV

COPY!LOADjSTO

MODjLIM!MEMJINDEX

(..
...... _ ..

,'

L·

Elements of BLM page 10

Examples: Before proceeding further, we give some examples of code

segments for performing specific calculations.

(i) Let !1 contain a number p, i.e. Tl = N

and x2 address a sequence of numbers, i.e. T2 = A and

each. element of the sequence is type N. -
To form in ; 3 the sum of the elements addressed by X2:

X3 LOAD 0

Ll: X·
-3 ADD x2

x2 JNL Ll
Note: The "loop" consisting of the last two instructions is re­

peated until x 2 is "last", i.e. cannot be modified by unity;

on exit from the loop x 2 is nul~ and the sum is in ; 3 .

(ii) From the initial conditions (i) ~ to find the first

element of !2 equal to p:

L-- I - ' !3 COPY xl

'1£'· ,1::.· X3 SUB x2
ZE J L2

X2 JNL Ll

L2:
Note: At L2 , if T2 is A, then x 2 points to a sequence beginning with

the value p. Otherwise, x 2 is null~ indicating that no element

_equal top was found.

(iii) Suppose x 1 addresses a table of numbers, the first element of

which indicates how many elements are defined at any instant.

The defined elements, if any, follow the first. It is required

to write a subroutine, using a return link in ; 3 , which will

use the value in x 2 to search the table, inserting the new

value if it is not already present, and return with its index

*See page 12.

Elements of BLM page 11

I, ,_.,
relative in to ~l ~2.

~4 COPY ~l xl addresses defined elements,

xl LIM ~l if any

!:1: xl JL !:2
XS LOAD ~l

~5 SUB ~2
Test for equality

NZ J !:1
UN J !:3

!:2: xl COPY ~4

~l ADD 1 Insert new element

~l MOD ~l

~l MV ~2

!:3: ~l MEM ~4 Find index of element

UN J ~3 Exit via link

(, ..

_/ Interpretation of code segments

Meaning is assigned to a sequence of instructions by saying

what each instruction does, and how its successor is determined. The

result of applying any function can be inferred from the addressing

rule and Table 1, with the provisions that a <numeral> represents

a NUMERIC element with appropriate value, and a <label> represents

a CONTROL element pointing to the instruction on the line, .if it

exists, with that label as first component. For example, the in­

struction:

~ 2 MOD 3

requires that ~ 2 = A, and automatically satisfies the requirement

that the second operand have type N. The action is to modify ~ 2
by 3, and replace x 2 by the resulting address.

Elements of BLM page 12

Sequencing rule for BLM

(i) After any completed <action> instruction, the next to be

obeyed is the one that follows, if it exists, in the

<segment> definition;

(ii) After any <control jump>, the next instruction obeyed is

selected by applying A/F to the second argument, if the

jump is taken; otherwise, as for (i).

What happens when arguments are not of the correct type,

or when an invalid result is produced, or when there is no "next"

instruction, must be stated as part of the system definition. For

present purposes, it is ~ufficient to recognise that such events will

lead to a relatively slow interpretation of the instruction by stored

routines.

Structural definitions
;-

' , It remains to provide a means of "creating" the stored
\._/ .

r··­
'----)

sequences on which a program operates, and attaching them to the

process base by means of ADDRESS elements~ The method of doing this

is by means of a syntactic device which is turned into a request to

the operating system to supply a certain amount of storage space.

The syntactic form can also indicate the initial values of the stored

elements:. for i-nstruction sequences, this is essential; for data,

it is a convenient option.

<structure> :: ~ [<numeral>] I (<value-list>) JSEG<segment>END

<v.alue-list>

<value>

:: = <value>l<value-list>,~value>

:: = <structure>J<signed numeral>ln

where n is "undefined" or "null", and is represented by a type c
element pointing to a monitoring routine.

Elements of BLM page 13

Representation of structures

A structure is represented by an ADDRESS or a CONTROL

element. If it is defined by [<numeral>] then the ADDRESS points

to a sequence of null values, whose INDEX i.s given by <numeral>;

if it is defined by (<value-list>), then the ADDRESS points to a

sequence of values, as many as appear in the list, each represented

by an ADDRESS of a set, a NUMERIC value, or null; if it is defined

by <segment>, then it is represented by a CONTROL element pointing

to the first instruction.

A <structure> gefinition can legitimately be used as

second argument in any context where an ADDRESS element is meaning­

ful, i.e.

<second argument> :: = <base>J<signed numeral>l<structure>

Examples

COPY [99]

creates a set of 100 elements, addressed by x 2 ;

!4 STO ([3], [3·], (0 ,O ,1))

places the address of a sequence of .three addresses in the position

addressed by ~ 4 , assuming T4 = A.

x6 COPY SEG

!:.1: xl ADD ~2
X2. JNL Ll
UN J X3

END

places the CONTROL element equivalent to !:.i into~·_

Elements of BLM page 14

(/
'~-· 5. System Development

____,,)

We have reached the point of coding useful calculations

for .the BLM, on the assumption that the program and its intermediate

results lie within the capacity of the machine. Apart from this raw

capability, one of the essential requirements of a computer is to be

able to use existing <structure>'s as components of new programs.

Such is entailed by all permanently resident 11 system11 programs and,

indeed, in the assembly and use of any complex information structure.

Dennis (ref .. 2) has summarised the requirements of program

modules (i.e. segments) if a system exhibits programming generality,

namely:.

(i) to create information structures of arbitrary extent;

(ii) to call on procedures with unknown requirements for storage;

(iii) to transmit information structures of arbitrary complexity

to a called procedure;

and (iv) to share information structures among computations.

It is easy to see that the BLM has these properties, since (i) all

structures are defined dynamically; (ii) no assumptions are made

concerning future space requests; (iii) ADDRESS elements can be used

to transmit precisely delimited structures between one stage of com­

putation and another; and (iv) we admit the possibility of elements

in different bases pointing to the same stored sequences.

It is equally easy to see that a von Neumann machine does

not have them. However, for certain rigidly defined problems it

does provide a standard of performance which cannot be ignored.

Ideally, one would l'ike to treat 11 generali ty 11 as a system component,

like storage of one form or another, and buy just as much as suits

a particular mode of operation. In practice, that is difficult to

achieve, but it also turns out that all generality does not have to

be forfeited to compete with a conventional machine, even in a narrow

context. Dennis' requirements are met by all BLM program segments,

in conjunction with specializations in other structures which remove

the inefficiencies of the model so far presented.

()

Elements of BLM page 15

In the following subsections, s.ome of the alternatives in

key design areas are outlined, and their effect on the elementary

picture of the machine is noted.·

5.1 Refinements in type coding

Each stored element admits subcategories of its type, aimed

at increasing the density of information, the·rate of processing, and

the sensitivity of the machine to certain control states. Thus,

NUMERIC elements may be represented as integer or floating point, and

possibly complex, Boolean, or multiple precision. In each case the

element carries its full type code, which is used to modulate the

functions applied to it so that, for example, sub-type conversion is

handled automatically between integer and floating point represen~

tations.

ADDRESS elements are developed by:

(i) recognising that in practice most data sequences are

homogeneous, i.e. identical in type, so that the type code

can be removed from the elements and stored in the addresses

which refer to them;

(ii) inferring the size of an element from its type, thus

allowing packed, homogeneous "character" sequences, and

low-precision integers;

and (iii) introducing a "protection" bit, which prevents an address

from being used to change the sequence it describes.

The above developments have no effect on access to in­

formation, tho~gh the <structure> definition must be extended to allow

the coder to specify homogeneous sets of given type and protection

status. However, they do complicate the Auto Store convention to

the extent that a result, although valid, might not fit into its

intended. destination, and a flexible method of detecting such situa­

tions is needed. Detection of a "protection" bit by A/S leads

unconditionally to function monitoring.

Elements of BLM page 16

The CONTROL subtypes select various independent modes of

execution, i.e. monitor on invalid result, A/S overflow, external

interrupt, or change of control sequence. The definition of <label>

and <segment> can be adapted to allow preset control modes; a MODE

function must be introduced (in group C) to allow dynamic control;

in other ·respects, treatment of modes is conventional. (Condition

codes are regarded as a control subtype: they normally change

when a jump is taken).

5.2 Program structure

System economics commonly dictate that more than one process

be "in execution" at a time, though some will be of a special form

associated with peripheral transfers, and others will be queuing for

shared resources. Associated with each process is a base, which in

turn delimits its access to the rest of the store. In order to run

(two concurrent processes independently it is sufficient that the \...__,,

areas they access should overlap only in code segments, which are

invariant, or protected data structures. This condition is not

satisfied by interacting processes, in particular by I/0 operations,

and it is then necessary to provide explicitly for the exchange of

structures between processes.

The crucial characteristic of a multi.processing machine is

thus the ease with which structures can be detached from one region

of store and attached to another. In the BLM it has been assumed

that this is an important quality of the system, and points of

attachment have been minimised by building information structures

in tree-like form. It is in this context that codeword sets assume

their importance as protected sequences of ADDRESS or CONTROL elements

at the branch points of the tree. A "subtree" can be detached by

altering its codeword and any other addresses which point into it.

It is thus desirable to minimise the number of unprotected tagged

elements in a program; it happens that most existing high level

Elements of BLM page 17

langua~es are already restrained in this respect, relying heavily

on the tree representation.

5.3 Interconnection techniques

Communication between procedures, and between concurrent

processes, depends on the interpretation of base identifiers x. in
-l

code segments (without loss of generality the labels ~i can be re-

stricted to cross-referencing within the segment).

Each process base is represented by a sequence of tagged

elements. A relation is established between identifiers X, and
-l

indices x. in the base; we write:
l

x. = 1jJ (X.)
l -l

where 1jJ is normally determined by a symbol table for that process.

In practice, certain X. have the same indices for all processes:
-l

they include the "registersll, information about the·process status,

and the address of the symbol table itself. We can replace such x.
. -l

\ ... j. by ljJ (Xi) wherever they occur in the <segment> representation. In

\ ... J

general, there will be a residue of identifiers whose corresponding

indices vary from base to base, for which the substitution cannot

be made without violating Dennis' requirement (iv), and which require

dynamic interpretation of the identifiers, i.e. evaluation of ljJ(Xi)

for each argument.

At first sight, this seems not only time-consuming but

also to imply a complex instruction format to allow both fixed and

symbolic base references. However, it is possible to copy a symbolic

element to a fixed position for processing, so with the aid of

functions of the form:

and

x.
J_

x.
-J

COPY

COPY

x.
-J

X,
l

it is necessary only to represent the other operations with fixed

base elements as arguments. The time factor remains, but it should

be noted that references of this sort are relatively rare. Typical

examples are entries to diagnostic routines, or access to files:

." ···------- ---

Elements of BLM page 18

most ideptifiers used in progranuning depend only on fixed base

elements.

It remains to examine how reference is made to other bases.

The first time an identifier is encountered in a process, a "free"

base position is assigned to it. At the same time, it is possible

to search symbol tables in certain other process bases for that

identifier, and to copy its value if it is found. In the ex­

perimental BLM, a parent process can supply initial values to its

subprocesses by this means. It does not prevent a subprocess from

writing in its 11 own 11 value for a base element at any time. In

theory, the search for an initial value could be carried through

several process bases, but it can be seen that the task of detach­

ment (section 5.2) becomes more burdensome as the potential for

interconnection increases.

5.4 Use of registers

We have already seen that certain base elements have fixed

index values. If we choose small indices, then the code operating

on them can be compressed; if, in addition, we retain those elements

in fast storage, then two of the most common properties of central

registers have been achieved, and·many progranuning regimes can use

them effectively to increase system performance.

The third reason for having registers. is to provide

special logical or arithmetic functions which are not explicitly

revealed in the programming language. They include, for example:

(i) the ADDRESS of the process base;

(ii) the sequence CONTROL element;

(iii) a stack ADDRESS, permitting temporary evacuation of fixed

base positions;

and (iv) residual NUMERIC information after arithmetic functions,

allowing for the recovery of remainder after division,

and for coding multilength operations and shifts.

(

Elements of BLM page 19

In general it is preferred to keep a uniform set of base

elements, at the expense of introducing new function or type codes

to t.ake advantage of special registers. Thus, stacking operations

can be implied by DUMP and UNDUMP orders, and by elaborating the

syntax of <instruction>'s to allow arguments to be specified by

recursively defined expressions. Similarly, multilength operands

can be specified by one of the NUMERIC subtypes. The advantage of

doing this is that there remains a wider choice of implementation

options than _if a particular register structure had been assumed.

Apart from the above considerations, ADDRESS elements can

pe designed so that storage may be remapped directly in a variety

of ways to increase system performance, one of which is discussed

in ref. 1, p. 69.

5.5 Escape actions

In the preceding discussion we have assumed the presence

~) of monitoring routines to recognise undefined elements, to resolve

illegal type combinations, and to take vari,ous actions conditional

on the state of a computation and its control mode. In a sense,

the need to supplement a calculation by interpretive routines suggests

that the machine is incompletely specified; but this is a deliberate

choice in the design, since-the complete definition of a function

may depend on circumstances local to its point .of application. For

the BLM, the main requirement is to offer a clean breakpoint between

any incomplete instruction and its interpretive continuation.

Some insight into the Basic Machine can be gained by asking

what would con~titute a "complete" set of escape paths. In other

words, how restrictive are the elementary definitions of sections

2, 3 and 4? For NUMERIC elements, we have already indicated that

further discrimination can be introduced by refining the type coding:

the degree of hardware interpretation is left open. The main con­

straint is on size, because all tagged sequences must allow for the

maximum size of element, and this is likely to be uneconomical over

.·

(__)

i ·,_
\. ___ .:

Elements of BLM page 20

a varied class of problems. There is a basic choice to be made

between introducing some form of 'size escape' which allows standard

coding to be applied to outsize elements, and falling back on explicit

coding for multilength work. The former alternative is more attractive,

because it keeps the input language free from type declarations. There

are other NUMERIC elements, such as n, which defy any explicit rep­

resentation, and are handled by CONTROL elements pointing to

interpretive code: they are detected in group A functions after

failure on the primary type code (C)-.

The main restriction on ADDRESSes is in assuming they

point to finite, ordered sequences with, in effect, static indices,

i.e. the position of any element relative to the first stays constant.

An upper limit of 216 elements (of. any size) has been imposed without

difficulty. However, one can envisage sets of elements ordered by

magnitude, frequency of use, or. any other rule of enumeration, which

could be valuable programming aids. Some work has been done on such
11 implicit addresses" in.the experimenta:).. BLM. They have been used

to address devices, files, and processes, all of which require control

by special system functions. The more general mechanism which is,

in effect, a disguised form of function cal1, has not yet been applied.

Diagnostic Report2
The standard system action on most escapes is to abandon

the control sequence and return to the routine which initiated it.

If the programmer has other plans, he can supply a routine which

will take corrective action and continue the calculation. One of

the advantages of dynamic type checking is that many programming

faults are brought. to light quickly. At the same time, diagnostic

information can be printed out in terms of the current process
'

structure and base names x. (another reason for keeping to a 'tree'
-].

as closely as possible), thus allowing the coder to pinpoint his

error easily. In designing the BLM system, a fairly rapid interaction

(_j

Elements of BLM page 21

between each user and his process, in terms of its current structure,

has been assumed to be the normal mode of operation.

6. References

1. J. K. Iliffe

2. J.B. Dennis

"Basic Machine Principles"
American Elsevier (1968)

"Programming Generality, Parallelism, and
Computer Architecture" ·
Project MAC Computation Structures Group
Memo No. 32 (see also IFIP Congress
Proceedings 1968).

> l~-------.,··------~----~··;:~~= .. -;~---~~~-~;~::~·::~·=··--·--·-~···------... ~."" _______ , _,, ____ l
f----- ~unc;~--~~r a~- Typ~-~.q-.. ·~~"·~""·=-··-'"'"--,.,.~ ••. ~ .. u"'"',-~,.~~·-~., •• ,,,.,,.,,,_ __ T~~e:i

· ~;;;.on~c GrOu~_:_-=---rzn_d -=i________ ~e~u~-~--------···· .. ······-----J ________ J
I ADD A N N x+y'-l"X a. l
! AND A N N x Ay-+x a ·
! COPY B any any Y -+X

DIV. A N N x/y-+x a
INDEX D any A index(Y)-+X a
J C any C link-+X; y-+control
J C <condition> C if <condition>, y-+control
JGE C N C x-1-+x; if x ~, y-+control a
JL C A C X MOD 1-+Xi if T 1- A, y-+control a
JLT
JNL
LIM
LOAD
MEM
MOD

MPY
MV
NEQ
NOT
OR

I SC

x"f-
C N C x-1-+x; if x<O, y-+control a
C A C X ~OD 1-+X; if Tx=~, y-+control a
D A N y-+index(X) b
B any any y-+X c
D A A Index of X in Y-+X a
D A N Move pointer (X) through y b

N N
N N
N N
N N
N N
N N

positions, and decrement
index (X) by y

x*y-+x
y-+x
X$Y-+X
ry-+x
xVy-+x
x*2Y-+x

a
a
a
a

,.--, ! STO
\)[SUB

A
A
A
A
A
A
B
A

any
N

any
N

Y-+X

a
a
d
a

./l ___ _
Notation:

Notes:

(-~)
\., __ ./

x~y-+x

X First argument (base position)

Y : Second argument (base position)

x First operand (using A/F)

y Second operand (using A/F)

a : Co.ndi tion codes set by result

b : Invalid result if y>index(X)

c :

d :

Fails if T =C
y -

Fails if T =C x -

Type of X

Type of Y

"control" refers to the instruction sequence pointer

"link" is the C element pointing to the next instruction in

sequence

"-+" indicates "replaces the element at"

0

(-------\
\.__./'

0

--·---··-... --~·-·-·-·---.. ~---·· ~ ~ .. , ~-----··
Table 2

GE
GT
IR
LE

l LT

1:
I VR
j ZE

I·

Condition Mnemonics

Result~O
Result>O
Invalid result
Resul t!5:0
Result<O
Result+o
No condition
Valid result
Result=O

	102726223-0001_a
	102726223-0002_a
	102726223-0003_a
	102726223-0004_a
	102726223-0005_a
	102726223-0006_a
	102726223-0007_a
	102726223-0008_a
	102726223-0009_a
	102726223-0010_a
	102726223-0011_a
	102726223-0012_a
	102726223-0013_a
	102726223-0014_a
	102726223-0015_a
	102726223-0016_a
	102726223-0017_a
	102726223-0018_a
	102726223-0019_a
	102726223-0020_a
	102726223-0021_a
	102726223-0022_a
	102726223-0023_a
	102726223-0024_a

