
3IN3D

(J

GENIE

Genie

Genie Program Format

Names

Numbers

Variables

Declarations

Functions

Constants

Remarks

Command Sequence

Arithmetic Expressions

Arithmetic Commands ..

Conditional Arithmetic Commands

Transfer Control Commands

Loop Control Commands

f · Storage Control Commands

Execute Control Comma~ds

\.,_.. ... ,/

Input-Output Commands
(Including Sense~lights)

Data Commands

Fast Registers

Assembly Language

Pun c t u a ti on

Compilation Procedure

Running Genie Programs

Coding Examples

Genie Coding Conventions

GENIE September, 1967

GENIE (continued)

GENIE

The formula language for the Rice Computer is called the

Genie language.

Genie programs.

Programs written in the Genie language are called

Translation of Genie programs into machine language

is accomplished by the Genie compiler.

The language and the compiler are both often referred to as

just Genie. What is meant is usually clear from the context.

Genie programs may contain instructions written in the AP2

assembly language. Hence, the AP2 assembly language is a subset

of the Genie language, and the AP2 assembly program is a subset

of the Genie compiler.

== ·=

PROGRAM FORMAT

The unit of definition to the Genie compiler is

definition set, which has the form

the

DEFINE

declarations of external variables and

parameters for the entire definition set

constant codeword address specifications for external

vari_ables

function definitions

PROGl(PARAMl) .=SEQ

declarations of internal variables

remarks
st

1 program

constant specifications in definition

set command sequence for the calculation

J END

PROG2(PARAM2) .=SEQ nd
2 program

in definition

END
set

PROGn th
n program

in definition

END
set

DEFINIE

LEAVE

er 1st tab stop

A definition, then, is a collection of progr~ms (in the most usual

case just one) which depends on a common set of external quantities

and which are completely independent with respect to their private

internal symbols. The definition set has meaning only at compila-

tion; the independent programs may be dynamically interconnected,

among themselves or with programs compiled at another time, in

any meaningful way at the time they are executedo

IC r

PROGRAM FORMAT

2

Typing of the definition set is begun by the sequence

tab uc DEFINE'. This first 'DEFINE' insures that the compiler

does not retain any symbols mentioned by another user of the system.

Each line of a program should be begun with a case punch (uc or le)

and is ended by a carriage return (er). If a statement is so long

that it needs to be broken in typing, the sequence 'er tab tab tab'

provides continuation of the statement onto the next line. 'PROGi 1

designates a program name. 'PARAMi 1 designates the parameters of

the program, a non-empty list of names separated by commas. The

operation 1 ·=' followed by the symbol 'SEQ' signals initiation of

code generation for the program. Recursive code will be generated

(so that a program may use itself) if 'RSEQ' is used instead of

I SEQ I. 'END', typed at the left hand margin and followed immediate-

ly by a 'c~', terminates the program, initiates final compiler

output of the program, and causes the symbol table limit to be back-c) ed up so that the compiler retains only its vocabulary symbols and

the external variables of the definition set. The second 'DEFINE'

terminates the definition set and causes the symbol table limit

G

to be backed up so that the compiler retains only its vocabulary

symbols; all external variables backed over are printed out.

'LEAVE', typed at the left hand margin and followed immediately

by 'er er', causes exit from the system.

/.~ ..
L. ' ,.__)

,,--..
(.
'--...--,·

NAMES

Private names, those invented by a user of the Genie compiler,

are formed by the following rules:

1) a single lower case Roman letter;

or 2) an upper case Roman letter, followed by upper case

Roman letters, followed by lower case Roman letters,

followed by numerals (no embedded spaces).

By rule 1) the following are examples of names:

a i p x

By rule 2) the following are examples of names:

A CAT Fn DDxy 12 PQ29 Dog3

Concatenation of names implies multiplication of the variables

specified. The following are not names:

ab A B3 8 Pt4p M5ef w 10

They are interpreted respectively as:

axb AXB3 8 Pt4xp M5xexf wXlO

Any number of characters may be used in a name, but only five

a re retained by the compiler. If lower case Roman letters are

embedded in a name, the first is tallied as two characters.

The names

m Man

are stored as

.M M.AN

NAMES

2

Names in the vocabulary of the compiler may not be used by
the coder as private names. These include

names of library items -- COL, SIN, LINCT, etc.

names of various machine registers -- Bl, CC, T4, etc.

names with special meaning in the Genie language -- as

DATA, TRUE, LEAVE, etc.

In alphabetical order, vocabulary names are:

ACOSH CCSH CSOLN FUNCT MIN SE REP EA
ACCEPT CDET CSNH FXEXP MI TIM RE SUL
ARRAY CDIV CSQR GAMMA MMPY ROW
ASIN CEXP CSUB GO MOD RTRAN
ASINH CFEXP CTAN IM MODUL SCALA
AT AKE CHI SQ CTNH INFER MPATC SC RIB
ATAN CINV CT RAN INPUT MPOLA SET
ATANH CLENG CVS PA INTEG MPOWE SIN
Bl CLOG CXEXP INV MRE SINH
B2 CMADD DATA I TIME MS PAC SL
B3 CMCON DEFIN ITRAN MSUB SMDIV
B4 CMCPY DET LEAVE MTAKE SMMPY
BS CMMPY DIAG LENGT NEO SOLN
BCD CMPY DIS PL LET NUMBE SQR

(\ BOOLE CMSPA DPUNCH LGAMM ODD STNDV
"--.__./ CADD CMSUB END LINCT ORTHO T4

(
"---/

CARTN CMTAK EOV LOG OUTPU TS
CACSH COL ERASE LOGlO PAGCT T6
CALL COMPL EVEN MADD PAGE T7
CASN CONJ EXECU MATRI PLOT TAN
CASNH CONTR EXP MAX POLAR TANH
CAT AKE CONVL FALSE MCART PRE SC TITLE
CATN COS FFT MCMPL PRINT TRAN
CATNH COSH FFTC MCONJ PUNCH TRUE
CC COT FIX MCOPY QCONF TT AKE
CCEXP CRCOR FLEX MEAN RANDM VECTO
CCOL CROW FLOAT MFLT RE VREV
CCONT CSIN FOR MIM READ VS PAC
CCOS CSMDV FORMA MIN REAL Z
CCOT CSMMP FT RAN MINDE REM

The following names may be used as private symbols in Genie
language but have special meaning in the assembly language:

B6 I PF R S U X

Four character strings which are not names have special
meaning to the compiler:

and if or not

GENIE July, 1968

I

I.

I

A string of decimal numerals

DDD < 2 14

NUMBERS

is an integer. A string of decimal numerals containing either a

de c i ma 1 po in t ' or a power point '*' is a floating point number.

The form of a floating point number is illustrated by

A. B ~"C

which is interpreted as

A.BxlOC

There may be as many as 14 numerals in A and B combined. C is an

integer between -70 and 70; if C is not preceded by a minus sign,

it is taken to be positive. Minus signs may precede decimal num­

bers, integer or floating point, with the usual arithmetic meaning.

A string of 18 or fewer octal numerals immediately preceded

by a unary '+'

+¢¢¢
is a right-adjusted octal configuration. [A '+' between two num-

hers is binary and does not cause the number which follows it to

be octal.]

The following numbers will be understood as shown:

3 decima 1, integer

-3 • 0 dee ima 1, floating point

3 • decima 1, floating point

3 *8 dee ima 1, floating point

3. 0 *- 8 decima 1, floating point

-0.3 dee ima 1, floating point

.3 decima 1, floating point

+30 oc ta 1

Spaces may be embedded in numbers; they are ignored. The re -

fore, fields within a number may be separated by spaces for ease

of readingo For example, if represents a 'space' punch,

3 641 209.4 * -8

is exactly equivalent to

3 6 4 12 0 9 • 4 *- 8

I

ii
~

and

+00200 0130 0004 00257

is exactly equivalent to

+002000130000400257

C'

NUMBERS

2

VARIABLES

In any program, each variable falls into one of three

categories: internal, external, or pa~ameters.

Internal variables must be scalars (integer, real floating

point, complex, or Boolean), and these are assigned storage within

the program. The names of internal variables are not retained out-

side the compilation of a single program; hence, the same name

may be used in more than one program with a different meaning in

each of the programs.

variables.

Labels on statements are also internal

External variables may be either scalar (integer, real float-

ing point, complex, or Boolean) or non-scalar (program, vector, matrix,

or array), and all non-scalars. must be external. A 11 ex te l;:'na 1

variables of a program must appear in the definition set containing

that program before any I • = 0 External variables of any one program
,~\
('---,./ are the common property of all programs in which they are declared ex-

ternal that .are in the machine at running time. The names must have

unique meaning throughout the system. During program execution, each

external variable has its name on the symbol table (ST, *113) and its

scalar value or non-scalar codeword in the corresponding value ta~le
(VT, *122) entry.

Parameters may be either scalar or non-scalar. If they are

non-scalar they must be so declared within the definition s~t con-

taining the program before any • = f • Parameters are neither in-

ternal nor external with respect to the program in which they

appear, but while running the arguments will fall into one of these

categories with respect to dynamically higher level programs. Para -

meters of a program are only representative of the argument~ which

will be specified to the program by the dynamically higher level

program which uses it while running. Within a system of programs

the dynamically highest level program receives control from the

operating system and cannot have arguments provided by the system;

hence, the dynamically top level program should have one purely

dummy parameter, a name that is never referred to in the program.

The names of parameters are not retained outside the compilation

GENIE July, 1968

\,

of a definition set;

VARIABLES

2

the same name may be used as a parameter for

more than one program in a definition set, but for no other purpose

in the definition set,

... ---,\ \

<.J DECLARATIONS

Declarations are used to describe variables that names

represent. The simple form of declaration is illustrated by:

lcr

VECTOR A

VECTOR A , B , C

VECTORS A , B , C

I 1st tab

A more general form is illustrated by:

\er

INTEGER VECTOR A, B, C

INTEGERS VECTORS A, B, C

j lst tab

One or more declaration words (either singular or plural) are

followed by one or more variable names separated by commas.

A variable used in the Genie language is completely de­

scribed by its:

type

shape

and mode

integer, real, complex, or Boolean

Scalar, Vector, Matrix, or Array

function or not

A scalar is described by a type declaration:

INTEGER or INTEGERS for integer

for rea 1 floating point REAL or SCALAR or SCALARS

COMPLEX for complex (Cartesian

BOOLEAN for Boolean

A non-scalar is described by a sha ee declaration:

form)

VECTOR or VECTORS

MATRIX or MATRICES

ARRAY or ARRAYS

for
w ose vector} h elements

for matrix are scalars

for non-scalars whose elements
are non-sea lars

and a type declaration which applies to its elements.

A function is described the mode declaration:

FUNCTION or FUNCTIONS for a private program name

and type and shape declarations which appropriately describe its

implicit result, if it has one. Note: Library programs are known

to Genie, and need no declarations,

Not all variables need be described by declarations. When

GENIE July, 1968

DECLARATIONS

2

a variable appears on the right side of an equation in the Genie

language, its type, shape, and mode will be inferred if they have

not been declared:

type

shape

mode

real floating point

scalar

non -function

The INFER declaration may be used to cause other type and shape

inferences:

INFER

INTEGER

REAL

SCALAR

COMPLEX

BOOLEAN

{
VECTOR}
MATRIX

ARRAY

where either a type or a shape is given, or both in either order.

The range of effect of an INFER is to an INFER which respecifies

what it specifies, but not outside a definition set.

The name of every external variable must appear in at least

one declaration before any '·='. All declarations pertaining to

parameters must appear before any 1 .=', but they need not appear

in any declaration if inference will give a proper description.

Declarations pertaining to internal variables must appear within .
the program to which they belong, and only the typ 7 declarations

are applicable since all internal variables are scalars.

Not more than one declaration in each group may be applied to

a single variable, and not more than one declaration in each group

may appear in a single declaration statement.

Thus,

BOOLEAN MATRIX FUNCTION F

I er 1st tab

is a legal statement, but

INTEGER BOOLEAN B

I er 1st tab

is not.

GENIE July, 1968

0

FUNCTIONS

A function is a program·which may be referred to in the

Genie language, either for implicit execution as 'F' in the

command

Y=a+F (P) +b

or for explicit execution as 'G' in the command

EXECUTE G(Q)

Implicit execution is meaningful only if the function is

single valued;

parameter list.

required.

in this case its output is not specified in the

In all other instances explicit execution is

The last executed command of a function to be used implicitly

must define the output as follows:

RESULT=scalar or non-scalar arithmetic expression

er ls t tab

In the definition of a function, its parameters are given

as an ordered list of those quantities which are supplied as

arguments by the program which causes it to be executed. An

argument for a parameter which designates a quantity to be cal­

culated by the function must be specified as a simple variable

name; other arguments may be given by any arithmetic expression.

For example, if F(A ,B ,C) is defined such that parameters A and

Bare used in the calculation of parameter C by the function F,

f d (t) (q2) a proper use o F woul be F.3m +n,Va,P. But f SIZE, SPAN,

is incorrect since the third argument may not be an expression.

Care must be taken that parameters in the definition of a Genie,

program and arguments in the use of it by other Genie programs

are always listed in the same order and agree in number and type.

A function may be sufficiently simple to be defined in one

statement. This is done before any

the definition off in the statement
2

f(x,y)=3ax+a y, a=2+x

er

,=' and is illustrated by

The function f may then be executed implicitly within the command

sequence of a program,
2

h=k f(m,n)

FUNCTIONS

2

where the closed subroutine f will be applied to the arguments

m and n. During compilation, output for f will be produced in­

dependent of that for the other programs in the definition set.

Every Genie program is a function. It may be used as such

by any other Genie program. A Genie program begun with 1 RSEQ'

is a recursive function, one which may use itself. For example,

the function FACTL may be executed from within the command se­

quence for FACTL:

FACTL(k) .=RSEQ

m = FACTL(n-1)

END

A recursive function may be executed either implicitly or explicit­

ly, as appropriate to its definition. Genie programs begun with

'SEQ' and functions defined in one statement do not cause recur­

sive code to be generated; they may not use themselves.

All functions except those in the library must be de-

clared in function declarations. If a function is to be exe-
cuted implicitly and its result is not to be ·inferred, then its

name must appear in declarations to describe the result as well as

in a FUNCTION declaration. Thus, the function with its arguments

is an operand which must be assigned the type. and shape of its out­

put if it is to appear within an arithmetic expression.

A function name is not followed by arguments in a declaration.

To specify execution, a function must be followed by arguments,

as SIN X2 or CALC(q) or MAP(a+b,VAR). A function name, without

arguments, may be supplied as an argument to a function which will

~- do the execution. Thus, the program P may be defined as P(••• ,F, •••),

'----/ where the parameter Fis a function, and call for execution of F(•••);

GENIE May, 1967

.... _
(\
'---··_)

c,

FUNCTIONS

3

then P may be executed with argument gas P(••• ,g, •••) and the

result will be execution of g(•••) while running.

Note: One inconvenience is associated with this notation.

If Fl is a function of a single parameter F2 which is a function,

the expression

••• Fl(F2) •••

will be misinterpreted by the compiler.

parentheses is required, as

••• (Fl(F2)) •••

if a single parameter is a function.

One extra pair of

CONSTANTS

Internal variables which are constants may be numerically

specified by a LET state~ent within the program. The statement

must be given before the name of the constant is used in the

commands of the calculation. The form of this statement is il­

lustrated by:

LET PI=3.14159

I er I 1st tab

This is a m~ssage to the compiler which causes the number 3.14159

to be used in the program each time the internal variable name

'PI' is used. A LET statement causes no code to be generated.

The above shows specification of a real floating point value.

The var~able PI takes on real floating point type.

An integer value may be specified, as

LET l\=3

The variable K takes on integer type.

or

A complei ~alue may be specified, as

LET CVAL=-3.2+/5.19

LET POLE= l+/0

The variables CVAL and POLE take on complex type.

or

A Boolean value (TRUE or FALSE) may be specified, as

LET t=TRUE

LET No=FALSE

The variables t and No take on Boolean type.

An octal configuration (right-adjusted) may be specified, as

. LET MASK:+777777077

The+ inflection cbncatenated immediately to the left of a number

denotes octal inte~pretation of the number. The variable MASK

should not be used in. the Genie language.

A fixed add~ess or codeword address may be specified, as

LET 1/:TIME =+200

GENIE January, 1968

·-·· ------ ... -----

' ----\
\...

(1

'"----./

·-··-·-·---- -----~····--·----- -------·----

CONSTANTS

2

must be used for every numbered scalar, program, vector, or matrix,

A Genie program may assign its own name a numerical equivalent,

and the tape produced by the compiler will load with codeword at

the address specified,

The values of non-scalars may not be specified in a LET

statement,

The LET statement may also be used to specify the equivalence

of two names, For example

LET ALPHA = BETA

causes 'BETA' to be substituted for 'ALPHA' throughout the program,

Similarly

LET COUNT= BS

causes the index register BS to be used for 'COUNT',

More than one constant may be specified in a LET statement,

if they are separated by commas, as

LET A=3, z=S,41*-6, #PROG=+l27, TIMEl=TIME2

There are three other commands which identify names with values,

They are explained later: BCD, NUMBERS, and FORMAT in the section

on data commands, These commands are non-executable and must be

transferred around, and must therefore be used with care.

('· ·-"" I ·.

\.._)

0

REMARKS

Printed comments in compilation output listings may be obtained

by using the REM statement within the program, as illustrated by

REM COMPUTE FIRST VALUE

or

REM

COMPUTE FIRST VALUE

er ls t tab

where indicates a space typed within the remark. I REM I is f O 1 -

lowed immediately by a single space or 'er' which is not part of

the remark, and then all following characters are taken as remark

text. The statement may be continued to succeeding lines at the

3rd tab position by using the 'er tab tab tab' sequence. The form

of REM in which the text begins at the left margin causes remarks

to stand out more vividly on program listings.

The REM statement does not introduce any data into the final

program; its only effect is to cause the remark to be printed in

the compilation output listing.

----~---·· ··------

(' ... --· ·~.
''-.._ _ _)

C_1

_,.........
(I
~)

COMMAND SEQUENCE

All statements of a program from the to and including

the 'END', except 'LET's, remarks, and declarations, cause code to

be generated. Such statements are called commands. The occurrence

of a label on a command causes a command sequence to be initiated.

The ordered set of all command sequences of the program is called

the command sequence for the calculation. Each command falls into

one of four categories; arithmetic, control, input-output, or data.

These will be discussed in separate sections.

Any command may be labelled. The label is typed at the left-

hand margin, as 'CALC' in the command

CALC
2

A=B +B+3.2,

er ls t tab

------· -- ··--------------

ARITHMETIC EXPRESSIONS

The righthand side of an equation in the Genie language must

be an arithmetic expression. An arithmetic expression is just an

operand. A scalar constant, a variable, an inflected variable, or

a function name followed by a parenthesized list of arguments is

an operand. [A single argument given as a simple variable name

need not be enclosed in parentheses.] A pair of operands joined

by an operation (where the triplet left operand, operation, right

operand is defined in Genie) is an operand.

Any operand may be enclosed in parentheses to dictate order

of computation within an expression in the conventional manner.

Order is also implied by relative rank of operations. In order

of decreasing rank, i.e., the most binding first, the arithmetic

operations are:

unary inflections:

subscription

exponentiation

X and I

+ and binary -

relations: -, t, <, {,

1,.,1, and 'not'

The triplets of operands joined by an arithmetic operation

which are permitted in an arithmetic expression on the righthand

side of an equation are given in the following paragraphs.

1) +, -, x, I between integer, real floating point, or

complex scalar operands,

If the operands are both integer or both floating

point or both complex, the result is of the same type.

If one operand is complex and the other is not,

the non-complex operand is made complex before the

operation is carried out, and the result is complex,

If one operand is floating point and the other is

integer, the integer is floated before the operation

is carried out, and the result is floating point,

ARITHMETIC EXPRESSIONS

2

2) +/ between integer or real floating point scalar or non­

scalar operands.

This is the explicit representation of a complex

quantity in Cartesian form, as x+/y (written x+iy in math­

ematical notation). The result is complex with real and

imaginary parts real floating point. The shape (scalar,

vector, or matrix) of the parts determine the shape of the

result; both parts must be of the same shape, and non­

scalars must have the same dimensions. If the operands

joined by+/ are expressions, they must be enclosed in

parentheses. If the operand x+/y is combined arithmetically

with other terms, it must be enclosed in parentheses.

-/ between integer or real floating point scalar operands.

The complex scalar x-/y is simply x+/(-y).

3) +(or), -(symmetric difference), x(and), /(symmetric sum)

between Boolean scalar operands.

Combination of Boolean operands yields a Boolean result,

by the following rules:

+ FALSE if both operands FALSE, otherwise TRUE

TRUE if operands differ, FALSE if operands the same

x TRUE if both operands TRUE, otherwise FALSE

/ TRUE if operands the same, FALSE if operands differ

The octal representations for the Boolean values are

TRUE 007777777777777777

FALSE 007777777777777776

4) +, -, x between non-scalar operands containing integer, real

floating point or complex elements.

GENIE

Standard conventions apply as to restrictions on dim­

ensional compatibility, and the operands must be in

standard form.* Addition or subtraction of two vectors

or two matrices yields a vector or a matrix respectively.

Multiplication of matrices yields a matrix. Multipli­

cation of vectors yields the scalar product which is

April, 1967

·J
ARITHMETIC EXPRESSIONS

3

a scalar.

a vector.

Multiplication of a vector and matrix yields

If the operands are of the same type, the

result is of that type. If the operands are of dif-

ferent types and one is complex, the result is com-

p lex. If one operand is integer and the other float-

ing point, the result is floating point.

5) X between integer, real floating point, or complex scalar

and integer, real floating point, or complex non-scalar.

The scalar may be on the left or the right of the

non-scalar, which must be in standard form.* The re­

sult has the same form as the non-scalar operand, vec-

tor or matrix. If the operands are both integer or

both floating point or both complex, the result is of

the same type. An integer operand is floated before

combination with a floating point operand, and the

result is floating point. An integer operand is

floated and then made complex before combination with

a complex operand, and the result is complex. A

floating point operand is made complex before com­

bination with~ complex operand, and the result is

complex.

6) Division of an integer, real floating point, or complex

non-scalar by an integer, real floating point, or

complex scalar.

The non-scalar must be in standard form.* The

result has the same form as the non-scalar operand,

vector or matrix. If the operands are both integer

or both floating point or both complex, the result is

of the same type. An integer operand is floated be-

fore combination with a floating point operand, and

the result is floating point. An integer operand is

floated and then made complex before combination with

a complex operand, and the result is complex. A float-

ing point operand is made complex before combination

ARITHMETIC EXPRESSIONS

4

with a complex operand, and the result is complex,

7) Implied multiplication between operands which appear

immediately next to one another, not separated by an

operation. The same rules apply as for the explicit x.
8) Exponentiation between integer, real floating point or

complex scalar operands,

If either or both operands are complex, the result

is complex, If neither operand is complex but either

o r b o t h o per an d s a re f 1 o a ti n g po in t , th e re s u 1 t i s

floating point and the base may not have a negative

value. If both operands are integers, the result is

an integer, zero if the base is> 1 in absolute value

and the exponent has a negative value, Note that AB

is typed 'A sup B sub', using the superscript and sub-

script keys on the flexowriter. The counter associated

with these carriage moving keys should be set to zero

before starting a program and must return to zero

before the er which ends each command,

9) Exponentiation of a short logical operand by an integer,

Short logical words are 15-bit configurations whose

bits are numbered 1 to 15 from left to right, In

t particular SL (the sense light register) is in the

vocabulary of the compiler and falls into this

category. The result of exponentiation of such an

operand by an integer, as SLk, is Boolean, TRUE if

bit k of SL is 1 (on) and FALSE if it is O (off). The

value of the bit addressed is not affected by the

operation. The user may also exponentiate a private

variable which has been declared BOOLEAN.

10) Exponentiation of a square integer or real floating point

matrix to an integer power.

If the matrix is integer it will be floating before

exponentiation. The matrix must be in standard form,*

The result is always a floating point matrix. If P

GENIE January, 1968

---~·-········-·····-·····-···

ARITHMETIC EXPRESSIONS

5

is the power and P<O, the inverse is computed. If

l P I >0 , mu 1 t i p 1 i ca ti on o cc u rs l P - 1 I times .

the result is the unit matrix.

11) Subscripting of a vector by an integer scalar operand

or of a matrix by a pair of integer scalar operands

separated by commas.

The result is an element of the vector or matrix

and is of the same type (integer, real floating point,

complex, or Boolean) as the non-scalar of which it is

an element. The expression AB is typed 'A sub B sup'

and return to zero carriage level must be observed as

for exponentiation.

12) Any non-scalar may be subscripted with a total of five

integer subscripts separated by commas. The operand

is indirectly addressed after Bl, •.. ,BS are loaded with

the subscripts. An Array may be subscripted at both

levels in one expression, e.g (A1 J K)L M •.. , where
, ' '

A in an Array, is a reference to element L,M of the

matrix A1 J K• The placement of the parentheses indi-
' '

cates the break point in the structure and the sub-

scripting procedure is restarted with Bl. The paren-

theses are not necessary for the first level, e.g .

... BK L···, where Bis an Array, is a reference to
'

non-scalar BK L•
'

13) Relations =, ~' <, {, ~, f between integer or real float-

ing point scalar operands.

Combination of integer or floating point operands

with a relational operator yields a Boolean result, TRUE

if the two operands stand in the specified relation to

each other, FALSE otherwise. If the operands are not

both integer or both floating point, the integer op­

erand is floated before the comparison is made. If

rand r' are relations, the form ArBr'C is tempting

but not permitted; an equivalent form is (ArB) x
(Br'C). A precise sequence of typed characters

,,,,.-··,,,
I \

\..._.)

u

is required:

t is typed

t is typed

f is typed I

=

ARITHMETIC EXPRESSIONS

6

backspace UC

< backspace UC

=,,:; backspace I I

Note that the relations> and~ are not available, but

> is equivalent to f and~ is equivalent to f·
14) Unary - applied to an integer, real floating point, or

complex scalar operand.

The negation of the operand takes place before it

is combined with any other across a binary operation,

except exponentiation and subscription.

15) Absolute value of an integer or real floating point

scalar operand.

This inflection is denoted by absolute value bars

'I' before and after the operand. These bars are simply

parentheses that cause the quantity inside to be taken

with positive sign.

16) Unary 'not' or - applied to a Boolean scalar operand.

*

The complementation of the Boolean operand takes place

before it is combined with any other across a binary

operation, except exponentiation and subscription. If

the Boolean scalar has the value TRUE, then not A has

the value FALSE; if A has the value FALSE, not A has

the value TRUE.

The standard form for vectors and matrices is that handled by

VSPACE, MSPACE, and the Genie input-output commands. Generation

and input-output of non-standard forms can only be handled by

explicit use of SPIREL facilities.

GENIE July, 1968

··-········-··-·---- ---·····--·

0

ARITHMETIC COMMANDS

The form of a simple arithmetic command is illustrated by:

er

A:arithmetic expression

1st tab

The form of a compound arithmetic command is illustrated by:

A=arithmetic expression, B=arithmetic expression,

er 1st tab

where more than one equation appears in the command,

If there are no interdependencies among the equations of a

command, the equations are coded by Genie in the order given. If

there are interdependencies, the first equation will be coded last

and preference will be given to coding the remaining equations from

right to left; for the second

ith depends on the jth and i>j

and any following equations, if the

h . th .
t e J equation

(counting from left to right), then

will be coded before the ith. So the second and

following equations may well be used to define subexpressions of

the first (or primary) equation, producing code that will run

more efficiently and copy that will be more readable,

in which reordering will take place is

y=a+b, a=Sc/d, b=6, c=b+4

er 1st tab

An example

The code generated will evaluate b, then c, then a, then y. On

the other hand, the equations in

M:P+Q, a:3, i=j+l

are not dependent upon each other and will be coded in the order

given.

The variable on the lefthand side of an equation may be a

scalar, or a non-scalar, or a subscripted non-scalar (denoting

a scalar element of a vector or matrix), All lefthand side

variables in a command must be dis-tinct, no scalar or non-scalar

d~fined more than once, More than one element of the same non­

scalar may be defined in one command,

The joining lefthand side to righthand side of an equa-

(-·,'- tion causes storage of the computed righthand side into the loca-
V

·-------·--·-·· ··--.. -·---··

C'

ARITHMETIC COMMANDS

tion or array specified on the lefthand side. Compatibility of

types is checked for at time of compilation, and an error message

is printed out if incompatibility of the two sides is detected.

In every case the righthand side dominates and will be stored as

calculated, no conversion taking place. If the righthand side is

non-scalar, the storage addressed by the codeword on the lefthand

side is freed before the store across the = takes place.

Genie has the ability to apply the commutative laws of

arithmetic to reorder the terms of an expression to provide cal-

culation using a minimum number of temporary stores. In the coding

for a non-complex scalar expression, the compiler may use the

T-registers of the computer for temporary storage. Push-down

storage addressed by index register B6 is also used for this pur-

pose. When profitable, the T-registers are used by the compiler

for non-complex scalar variables that are referred to often in

an equation. The co dew o rd a t machine a d d res s 10 (o c ta 1) is

used in the code generated by the compiler as an accumulator for

real vectors and matrices produced in the course of evaluating

the righthand side of a non-scalar equation. This address may

not be used by a coder. The accumulator for complex non-scalars

is named CSTAR.

the B6-list.

Temporary storage for non-scalars is always on

,,,.--- '·.
CONDITIONAL ARITHMETIC COMMANDS

A simple arithmetic command may be of conditional form, as

illustrated by

A=E 1 ifP1 ,E 2 ifP2 , E "fP E •••, n 1. n' n+l

er 1st tab

where each E. is an
1.

arithmetic expression and each P. is a
1.

predicate which is either true or false. The code that is

generated will evaluate A as E. for the least i for
1.

which P.
1.

as En+l"

If En+l is omitted, then A is not evaluated at all if every Pi

If every P. is false, then A is evaluated
1.

is true.

is false.

Boolean valued expressions are predicates, as in the follow­

ing examples:

K = 1.0 if B~C, 2.0 if x<-12.9, 3 • 0

K = 1.0 if not (SLn), 3 • 0

K 1.0 if S LS + not (SL n)

er ls t tab
,.,,.--......__

(Boolean valued expressions joined by the operations 'and' and 'or'
,.....___ .. /

form predicates, as in the following example:

K = 1.0 if (B~C or I c + DI :;t3.72)
5

and SL + not

er ls t tab

2.0 if x<-12.9, 3.0

2nd tabl 3rd tab

The most binding first, the operations are ordered as follows:

arithmetic operations

'and'

'or'

Parentheses may be used, as in the above example, to dictate

computational order.

The predicate form F 1 r F 2 r' F3 is tempting but not per-

mitted. An equivalent permissible form is

F1 r F 2 and F 2 r' F3

or (F1 r F 2) X (F 2 r' F3)

Two exceptional Boolean predicates are 1 EOV 1 , asking if the

exponent overflow light is on, and its negation 'NEO'; neither

of the s e may be inf 1 e c t e d by I n o t ' • Both of these tests turn the

.,·-~

''-----'.

0

CONDITIONAL ARITHMETIC COMMANDS

2

light in the indicator register off.

A conditional arithmetic equation must stand alone as a

command, It may not be grouped with other equations in a com­

pound arithmetic command.

. . . ,~

(_)

TRANSFER CONTROL COMMANDS

Code is generated so that the commands of the program are

normally executed in the order written. An explicit variation

in this order is indicated by a transfer command, illustrated by

cc= #LOOP or GO TO LOOP

er 1st tab

Here 'CC' is the mnemonic for the control counter which is nor-

mally stepped sequentially through the orders of the code. I LOOP'

is a label on a command of the program, the command to which con-

trol will be passed by this transfer command. Note that 'END' is

a label in every program and may be transferred to for exit from

the program. The inflection '#' is required in this context to

indicate that the address corresponding to LOOP, and not the con­

tents of the location whose address is LOOP, is to be calculated

on the righthand side.

'a' bit in APl.

The '1fa' inflection is analagous to the

The conditional transfer command provides variation in the

order of command execution depending upon the truth values of

predicates. The form of this type of control command is shown by

er 1st tab GO TO A1 if ..• etc.

where the Ai are labels within the program and the P 1 are predi-

cates. The code generated causes cc to be evaluated as the first

1t A; for which P1 is true. If no pi ' for i=l, 2 ' ... ' n ' is true,

cc is evaluated as 1tAn + 1 • The term 1faAn + 1 may be omitted from the

command, in which case cc is unchanged if a 11 pi are false, so

that no transfer is made. The predicates P1 a re of the form de.,

scribed in the section on conditional arithmetic commands.

GENIE July, 1968

I~
(
\, ____ ;

LOOP CONTROL COMMANDS

Loops may be realized in Genie language by a combination of

arithmetic commands and transfer control commands. A concise nota-

tion for a popular loop structure is provided by the loop control

commands. The commands of a loop are parenthesized by the FOR and

REPEAT commands of the form

I er

FOR P=A , B , c·
commands of the loop

RE PEAT

ls t tab

The elements of the FOR command are

parameter of the iteration, P

initial value, A

increment, B

final value, C

All elements must be scalars, either integer or floating point.

In execution, the loop is traversed for P =A+ kB,

k = 0,1,2, ••• such that

P ::;;; C if B > 0

P :2:: C if B < 0

for all

The element P must be given as a simple variable name. The ele-

ments A, B, and C may be given as constants or arithmetic expressions

of integer or floating point type. Only if Band Care given as

simple variable names may their values change during execution of

the loop. Otherwise, Band C retain their values on entry to the

loop throughout the execution of the loop.

loop

FOR COUNT= FIRST, M+N, LAST

RE PEAT

For example, in the

the increment value will remain constant, as computed on entry to

the loop.

In the REPEAT command, 'REPEAT' is followed immediately by a

-------------.

/'\
l~

0

0

LOOP CONTROL COMMANDS

2

IC r I A REPEAT must be written for every FOR.

If addressed from outside the loop, the iteration parameter

has the value it had upon exit from the loop.

Loops may be nested to any level, but distinct iteration

parameters must be used at each level within a nest. The I RE PEAT'

is considered to be within the lriop which it terminates; the 'FOR'

is not. Transfer of control may be made from a command within a

loop to another command within the loop or to a command outside

the loop. Transfer from outside a loop to the FOR command is per-

mitted, but transfer from outside a loop to a command within a

loop is not permitted.

Any 'FOR' or 'REPEAT' may be labelled for purpose of transfer

to it. The compiler generates the label '~FORn' on each FOR

command and '~RPTn' on the corresponding REPEAT command,

n = 1, 2, ••• , 9, a, b, ••• in each program. A coder's label

will be used instead if it appears. Thus, FOR and REPEAT commands

begin command sequences whether or not they are labelled by the

coder.

The machine index registers B3, B4, BS may be used as itera­

tion parameters in loops and will cause significantly more effi~

cient code to be generated, especially when a constant increment

= ± 1 is specified. The section on fast registers discusses

coder usage of machine registers.

-----------·----

(---...._,:/·,,
"-.....,/'

STORAGE CONTROL COMMANDS

Before a vector or matrix is referred to dynamically in a

program it must be created, either initially from paper tape or

dynamically while running.

In a Genie program, to create, or take space for, the vector

named VNAME of length NELTS elements the following command is

used:

er

EXECUTE VSPACE(VNAME, NELTS)

ls t tab

The vector VNAME contains zeroes initially. To create, or take .
space for, the matrix named MNAME of NROWS rows and NCOLS columns

th~ following command is used:

EXECUTE MSPACE(MNAME, NROWS, NCOLS)

I er ls t tab

The matrix MNAME contains zeroes initially.

in both commands are integers.

The dimension arguments

The dimension arguments may be computed dynamically, so that

sizes of vectors and matrices may vary from run to run. In fact,

the dimension of an array may vary during a run by use of a crea-,

tion command to 'recreate' an array which already exists;

copy is automatically erased before the new one is formed.

the old

To explicitly erase, or free the space occupied by, a vector

or matrix named ARRAY on which the calculation no longer depends

the following command is used:

er

ERASE ARRAY

1st tab

Also a single ERASE command may be applied to more than one non­

scalar, as illustrated by:

ERASE VNAME, MNAME, ARRAY

er 1st tab

The erasure of a vector or matrix causes the storage occupied

to be returned to a common pool, that from which storage is obtained

for the creation of vectors and matrices. This pool is managed by

STEX, the storage exchange program in SPIREL (explained in detail

C,

C)

in

STORAGE CONTROL COMMANDS

2

the literature on SPIREL), and it is called the STEX domain.

STEX may move items within its domain to concentrate space if

necessary to satisfy requests for space.

EXECUTE CONTROL COMMANDS

l er

The command

EXECUTE PROG(PARAM)

ls t tab

causes control to be transferred to the program whose name is

denoted by 'FROG' in this illustration. 'FROG' must have been

declared as a function outside the command sequence for the cal-

culation. 'PARAM' denotes a list of one or more parameters

separated by commas. Parameters may be arithmetic expressions un-

less they designate quantities which are to be calculated by the

function, in which case they must be simple variable names. Con -

trol is returned from PROG to the next command in the sequence.

The interpretation given to the EXECUTE command by Genie is

parallel to that for the arithmetic command, the information to

the right of the space after the EXECUTE corresponding to that

after the first = in an arithmetic command.

conditional EXECUTE command is allowed, such as

EXECUTE A(P) if a< b + c, B(Q)

l er ls t tab

Thus, a simple

And a compound unconditional EXECUTE command is allowed, such as

EXECUTE SUM(x,y), x = 2a/b, y = ab, b = 4

er ls t tab

== =
-=-----

(_
INPUT-OUTPUT COMMANDS

The input-output commands are:

DATA list READ list tPAGE list

PRINT list INPUT list ACCEPT list
PUNCH list OUTPUT list TITLE string
DPUNCH list DISPLAY list

I er I 1st tab

where 'list' denotes a collection of names separated by commas. Any

name may be that of a scalar, other than fast registers, or of a stand­

ard vector or matrix or of a function. Expressions may not appear in

the argument list, so vector and matrix elements in the subscript

notation may not be designated.

The- DATA command provides reading of manually punched signed

decimal numbers from paper tape. The name of any type of variable

may appear in the ·list, and any name may have been assigned a machine

address in a LET statement. When the paper tape is read, if a decimal

point appears the number will be converted to floating point within

the machine; the absence of a decimal point causes conversion to in­

teger form. Every number on the tape must be followed by a carriage

re,1:,urn, t.ab, or comma. Integers greater than or equal to 214 in ab­

solute value are meaningless; floating point significance to more

than 14 places is not meaningful. A floating point number may be

followed by the sequence'* signed integer' which will cause it to be

multiplied by 10 to the signed integer power upon conversion. The
-70 magnitude of such numbers must be greater than 10 but less than

10 70 . The absence of a sign on a number implies positive sign. Then

punched 328cr converts to integer 328

46.9cr

.469*2cr

_::::-539lcr

-69.*-lcr

tBlank or numbers 1 through 7 only

GENIE July, 1968

floating point 46.9

floating point 46.9

integer -5391

floating point -6.9

-

' ,,
'"------ ~J

(,
\ ___ .)

INPUT-OUTPUT COMMANDS

2

Integers and real floating point scalars are punched as single deci­

mal numbers in the appropriate format; complex scalars are punched

as real part followed by imaginary part, both floating point.

A vector of length n is punched as the sequence of n+l decimal

numbers: int~ger n, first element, ... , nth element. A matrix

of m rows by n columns is punched as the sequence of mn+2 numbers:

integer m, integer n, element (1,1), element (1,2), ••. , element

(1,n), element (2,1), ... , element (2,n), ... , element (m,l), ... ,

element (m,n). When the DATA command is executed, the proper

tape is assumed to be in the reader. If sense light 14 is off,

the line

DATA NAME

l er I 1st tab

will be printed out for each quantity read, where 'NAME' is as

designated in the program containing the READ command. Thus,

printer monitoring of DATA applied to parameters bears the dummy

parameter name, not the name of the argument supplied as the

parameter.

The PRINT command provides decimal output on the fast line

printer of any named scalar or non-scalar quantities. These are

labelled by the name given in the argume~t list. Any name may

have been assigned a machine address in a LET statement. Scalars

are printed four per line. Vectors are printed five elements per

line, the leading element index in octal at the left of each line.

Matrices are printed by row, five elements per line, the leading

column index in octal at the left of each line. Complex variables

are printed as real part followed by imaginary part; the name of

the variable will be given with the real part, and,"ditto" (printed

' ,) will label the imaginary part.

The PUNCH command and the READ command may be applied only to

external variables and to parameters representing arguments which

GENIE November, 1966

--------- ·---·-··-· -

',,.__ __

INPUT-OUTPUT COMMANDS

3

at the time of execution are external in some dynamically higher

level program fall into this category. Care must be taken to

apply these commands properly to parameters as there are no checks

built into the compiler or input-output program to insure that

scalars internal to some program are not punched or read. A name

which has been assigned a machine address in a LET statement may

appear in the list for PUNCH or READ. PUNCH provides, for each

variable listed, as many control words as are necessary to recreate

the form of the variable at a later read time. The content of the

variable is punched in hexad with checksum format. These output

tapes may be loaded through SPIREL or they may be read with a

READ command. The READ command will read any tape produced by

PUNCH. Also, READ will read any scalar, standard vector, or

standard matrix punched with name by use of SPIREL directly.

The DISPLAY command provides decimal display of named scalars

on the storage scope at the console. These are labelled by the name

given in the argument list. Any name may have been assigned a

machine address in a LET statement. As many as eight lines will be

displayed by a single command. Real scalars are displayed one per

line. Complex scalars are displayed on two lines, real part with

the name of the variable followed by imaginary part with the name

"ditto'' (written '+++++'). Non-scalars may not be displayed.

The INPUT command and the OUTPUT command provide input and

output of named scalars and non-scalars through programs supplied by

the user. Any name may have been assigned a machine address by a

LET command. For each variable named in an INPUT command control

is passed to the program named INPUT; for an OUTPUT command, the

program named OUTPUT is used. A-complex variable is handled as two

variables, the real part with the name of the complex variable and

the imaginary part with the name "ditto". Details about the INPUT

and OUTPUT programs are given in the library literature.

GENIE May, 19 6 7

INPUT-OUTPUT COMMANDS

4

Formatted printer output may be obtained by use of the command

EXECUTE SCRIBE(Al, ••. ,AK,F)

I er J 1st tab

where Al, ... ,AK is the list of arguments to be printed, and Fis

the name of a FORMAT statement to be used. Any argument in

Al, ... ,AK may be a simple name or an expression. The program

SCRIBE is in the library, and its use is fully described in the

library literature. A FORMAT statement gives text which will be

printed directly by SCRIBE and dummy variables which will be re­

placed by argument values.

Page control and headings are provided with formatted printer

output by use of the command

EXECUTE PRESCRIBE(Al, ••• ,AK,F,N,NAME,LIMIT)

I er I 1st tab

where Al, .•• ,AK,F are just as for SCRIBE, N is the number of blank

lines after SCRIBE output, NAME is the name of a FORMAT statement

containing pure text or a vector of BCD data to be used in the head­

ing on each page, and LIMIT is the number of lines per page of out­

put. The program PRESCRIBE is in the library, and its use is fully

described in the library literature.

Additional forms of input and output may be obtained by use of

SPIREL programs directly, but those provided by the input-output

commands should be sufficient for a large number of problems. Also

see the TITLE and PAGE commands on p.5.

The DPUNCH command may be applied only to external variables

as explained earlier in the PUNCH command. DPUNCH provides standard

decimally formatted punched tape to be later read by a DATA command

only. Mixed integer and real data may be punched from scalars,

vectors or matrices.

GENIE July, 1968

· . ..__ .. ·

0

INPUT-OUTPUT COMMANDS

5

The TITLE conunand allows the printing of a string of literal

symbols for labeling pages like SCRIBE only with greater ease. Two

examples are given below. One would write:

TITLE

TITLE

PRINT ONE LINE HERE

PRINT ANOTHER LINE HERE ALSO

I er I 1st tab

The above would cause the following to be printed:

PRINT ONE LINE HERE

PRINT ANOTHER LINE HERE ALSO

t

(first printer position)

The PAGE conunand allows the page to be moved to any position or

by any amount easily. The 'list' consists of the integers 1,2, ••• ,7

or no list, i.e., blank. The interpretation of the integers is given

by the table below:

integer + move to next page

1 + move to next 1/66 page (one space)

2 + move to next 1/22 page

3 + move to next 1/11 page

4 + move to next 1/6 page

5 + move to next 1/3 page

6 + move to next 1/2 page.

7 + move to full page (page restore)

If the list is blank, the page is restored.

:~) GENIE July, 1968

I I

'0

INPUT-OUTPUT COMMANDS

6

The ACCEPT command provides reading of data input through the

console typewriter. The name of any type variable may be included

in the list. Data may be entered when the blue light on the type­

writer comes on; each line is processed before another may be typed.

Decimal numbers are handled as in the DATA command; octal numbers

must be preceded by a+ sign. T ••• or F .•• is typed for the Boolean

values. All values must be separated by commas and a line is ter­

minated by a carriage return. For a vector or matrix of size nor

nxm, nor nxm values must be typed. To change the size of a non­

scalar, the new dimension(s) is enclosed by parentheses (n) or (n,m),

and followed by the values to be stored. A matrix is typed by rows

(as it is read in DATA). For example, where A is a vector 3 long,

Bis Boolean, and C is scalar:

ACCEPT A,B,C

typewriter input: -234.0, 8.34*4, .62023, T, +0142000000 er

stores the first 3 values in A,-~ in B, and the octal number in C.

typewriter input: (4), 8.0, 9.0, -10.0, 11.0, FALSE, 345 er

erases array A and creates a new one of length 4, stores the next

4 values in A, -1 in B, and decimal value 345 in C.

typewriter input: +, T, +002345 er

leaves A as it is, stores -Z for B, and the octal value for C. The

"forward arrow" is inserted whenever an item in the list is to re­

main unchanged. If sense light 14 is off, the line

ACCEPT NAME

will be printed out for each quantity in the list (as in the DATA

command).

GENIE July, 1968

,...--""....,_
r

LIGHT CONTROL COMMAND

The SET conunand provides program control over sense light setting.

It is illustrated by
5 9 1 15 SET not SL, SL, SL , not SL

lcr llst tab

Any number of sense lights may be set. The notation 'SLi,

SLi to be turned on; 'not SLi' causes SLi to be turned off.

causes

In

'SLi, i must be numeric and may range from 1 to 15. The lights are

set in the order mentioned.

',J GENIE April, 1967

DATA COMMANDS

Data commands cause generation of words in the program which

are not instructions. These commands are not executable and all

but FORMAT must be transferred around.
Alphabetic information for output on the printer may be de-

fin~d by the BCD command, as illustrated by

MESSl BCD TEMPUS FUGIT

or

MESSl BCD

TEMPUS FUGIT

er ls t tab

where 'BCD' is followed immediately by a single space or a 'er'

which is not part of the data, and_ indicates a typed space. The

command may continue onto succeeding lines at the 3rd tab position

by use of the 'er tab tab tab' sequence. A space is inserted by

Genie between the last character of one line and the first of the

next line. At the place such a BCD command appears in the command

sequence for the program, the printer code for the information is

inserted in the code for the program, nine characters per word.

The label (if any) on the BCD command is associated with the first

word of data.

A block of numeric data may be defined by the NUMBERS command,

as illustrated by

CONST

er

NUMBERS 36.5, -z~·,s, 6, +774777

1st tab

In the program Genie generates, in this case,

floating point 36.5 at CONST

floating point -2.0 X 10 8 at CONST+l

integer 6 at CONST+2

octal 774777 (right-adjusted) at CONST+3

One or more real numbers (each but the last followed by a comma) are

listed; complex numbers may not appear in the list, The list may

be extended onto the succeeding lines by use of the 'er tab tab tab'

sequence, The numbers are inserted into the program in the order

GENIE April, 1967

-.. -·­----

,I

/,--..'
I

\'---..,

DATA COMMANDS

2

given, one per word. The label (if any) on the NUMBERS command

is associated with the first word of data.

Formats for the printer output programs SCRIBE and PRESCRIBE

are defined by the FORMAT command, as illustrated by

LINE

or

LINE

ddd

I er

FORMAT ddd ITERATIONS,

FORMAT

ITERATIONS, CASE aa, K=bb,

1 1st t~b

CASE aa, K=bb, T=-d.ddce+d

T=-d.ddce+d

where 'FORMAT' is followed immediately by a single space or a 1 cr 1

which is not part of the data. The label on the FORMAT command is

the name' of the FORMAT which is an argument to the output programs.

The forma't data is a "dummy line" of printer output; lower case

letters and the characters '., +, -' with 'd' form dummy variables

for which argument values are substituted when printing; the rest

of the format data is text which is printed directly. SCRIBE and

PRESCRIBE are programs in the library; their use and the details

of format specification are explained,fully in.the library

literature.

GENIE May, 1967

\-. '•
\ l
v../

FAST REGISTERS

It is never necessary to use machine registers in the Genie

language. But their use is permitted, with certain restrictions

and with effect that more efficient code may be obtained.

T7 should never be used in the Genie language.

T6, TS, and T4 may be used as the names of scalar variables

within a command. The compiler will not make use of any T-register

mentioned by the coder, and code efficiency may be increased by

explicit assignment of auxiliary variables to these fast registers.

The values in T6, TS, T4 are not preserved by Genie from one command

to another as they are subject to use by the compiler in any command

in which they are not explicitly mentioned by the user.

The index registers B3, B4, BS may be used as the names of

scalar integers. These are disturbed by Genie-generated code only

to address elements of arrays of more than two dimensions. (Non-

standard subscripting is discussed in the section on arithmetic

expressions.) Efficiency of code is gained if these registers are

used as subscrip~s or as iteration parameters of loops with con-

stant increment ±1. The index registers Bl and B2 may be used

only if the user understands Genie coding conventions are explained

in another section and can accurately anticipate the use of these

registers by Genie generated code.

by used in Genie language.

The registers B6 and PF may not

ASSEMBLY LANGUAGE

In a Genie program, instructions in the AP2 assembly language

may be interspersed at will with commands in the Genie language.

AP2 is discussed in detail in the assembly language literature.

The following names identify fast registers in both Genie

language and AP2:

T4

TS

T6

T7

cc
Bl

B2

B3

B4

BS

The following names identify private quantities

and fast registers in AP2

R

s
B6

PF

u
x

I

in Genie language

Therefore, a private name I in Genie language may not be addressed

in AP2 code.

Operations without mnemonics in the AP2 vocabulary may be

coded in octal, as

+45 0 61 1fol5

er ls t tab 2nd tab \ 3rd tab

Or an operation code mnemonic may be assigned with a LET statement,

as

LET #QSR = +45061

Then the instruction

QSR 1falS

could be used instead.

In AP2 commands, the coder may make use of the fast registers,

taking care to preserve the value of PF for reference to parameters

and to use B6 for temporary push-down storage only. Entire func-

tions may be written in the assembly language, but the user must

first understand various Genie coding conventions, as discussed

in a later section.

Normally for a Genie program initial and terminal program

sequences and code to preserve parameter addressing are automa-

tically generated by the compiler. For some programs coded pre-

dominantly in AP2, it may be desirable to avoid generation of or-

I -=
~
:iii=
-~I

c~

C:J

0

ders not explicitly coded.

in place of 'SEQ', as

PROG(PARAM) ·= ORG

I er

ASSEMBLY LANGUAGE

2

This may be accomplished by using 'ORG'

to start the command sequence for the program. The first instruc-

tion of the program will be the first explicitly coded. The only

words in the program generated automatically by the compiler are

cross-references to external quantities and a one-word END pro­

gram sequence:

END TRA z

The programmer must code parameter set-up for the program, maintain

PF and B6 by Genie coding conventions.

I
'~

L)

PUNCTUATION

Reference to rules of punctuation for use in the punching of

Genie programs has been made in other sections. A few generalities

and notes here may help the user to avoid some of the most common

mistakes.

Every tape must begin with a 'er' punch and a case punch

for proper interpretation.

Every line should begin with a case punch so that it

does not depend on the case at termination of the preceding

line, and editing of tapes will be thus simplified.

Spaces may appear anywhere but within a name; they will

be ignored.

Backspaces are ignored except within the sequence of

punches for negated relations.

The superscript and subscript punches should be used only

where meaningful; the sequences 'sup sub' and 'sub sup' are

not equivalent to no punch at all and will not be accepted

by the compiler.

The carriage counter should be set to zero before typing

a program and must return to zero before the 'er' which ends

each statement.

A statement is continued onto second and succeeding

lines by the sequence of punches 'er tab tab tab'.

The operation '.=' must be punched as just those two

characters in succession.

The negated relations require specific sequences of

punches for proper interpretation:

t is punched I backspace UC I I
{ is punched '< backspace UC I I
f is punched I :S: backspace l I

The operations 'not', 'and', 'or' 'if' are punched in

lower case and must contain no superfluous punches. All other

"words" in the vocabulary of the compiler are punched fully

in upper case letters.

_J
= =

I

PUNCTUATION

2

Statement labels, the program name, function definitions

'END', and 'LEAVE' are typed at the margin; alternatively, pro­

gram names and function definitions may be typed at the 1st tab

position.

Since 'SEQ', 'END', and 'DEFINE' end statements, they

must be followed immediately by a 'er' punch.

Declaration identifiers, 'DATA', 'EXECUTE' 'FOR', 'LET'

'NUMBERS'' 'PRINT'' 'PUNCH'' 'DPUNCH' I 'READ' I 'SET' may be

followed by either a space or a tab punch.

1 BCD 1 , 'FORMAT', 'REM' may be followed by a space, a tab,

or a carriage return punch.

For compilation to be terminated properly 'LEAVE' must

be followed immediately by two 'er' punches.

GENIE January, 1968

~r:;r
COMPILATION PROCEDURE

A Genie program is compiled by exercising option #6 in the

PLACER system,

Compilation output on the printer consists or error messages,

program listing, and symbol tables. These are discussed below.

Compilation provides a punched paper tape to be loaded under SPIREL

control. Compilation options are also discussed below.

Error messages. Genie error messages refer to carriage return

number on the PLACER listing of the program. During compilation

the carriage return number for the line being compiled is displayed

in FT (the from-tape register). This can be useful if compilation

problems arise with no error message. If a single command, state-

ment, or instruction is continued onto more than one line, the

carriage return number for the last line will pertain throughout.

Program listing. Four columns are printed, giving:

(a) The symbolic location (if any).

(h) The relative location of the word in the program,

in octal.

(c) ,The instruction in octal, broken into fields, with

tag.

(d) The symbolic address (if any).

Cross reference words and internal storage are listed after the

instructions of the program, one per word with name, relative

location, and content for each. The variables referenced relative

to PF are then listed with name and PF increment.

Symbol tables. For each program a symbol table of internal

names is printed. Of interest are columns which give the name and

the relative location in the program (two to the right of the name).

The column to the right of name contains descriptive information

about the variable,· by digits:

GENIE May, 1967

(_;1

COMPILATION PROCEDURE

2

first - type 1, Real (floating point)

2, Intege:i;-

4, Boolean

5, Comp lex

second - shape and mode 0 ' Sea lar

1' Scalar

2 ' Vectol'.'

3 ' Vector

4, Matrix

5 ' Matrix

6 ' Array

7 ' Array

third - O, not a parameter

1, non-scalar paramet~r

2, ~calar parameter

function

function

function

function

After the internal symbol table a list of programs used is

given. If a program is in the library, its name is prefixed

by 'GENIE'. If a name is used, this is given. If a number is

used, this is given.

For each definition set a table of external names is printed

in which only the names and descriptive information (as above) are

of interest.

Compilation options. See PLACER-TRANSLATE.

GENIE July, 1968

RUNNING GENIE PROGRAMS

The usual procedure is to run Genie programs with SPIREL so

that all library routines are immediately available.

The initial version of a program should contain liberal out­

put of intermediate quantities. These may be conditioned on sense

light settings or edited out once the program is running.

Initial runs should be made with SL14 off so that printer

monitoring is provided for all SPIREL operations.

Debugging may be facilitated by a SPIREL dump of the positive

portion of the Symbol Table-Value Table. This will show all named

external items in the system being run, the values of scalars, and

the codewords for non-scalars.

A SPIREL dump of a private program will show values of internal

variables.

Arithmetic error tracing may help to locate mathematical

problems.

All instructions generated by the compiler may be traced, but

this is not a recommended procedure.

GENIE March, 1968

"' = i!:L~·
;11111 : lilt

\,_)

CODING EXAMPLES

• Least Squares

This program computes the coefficients of q polynomial of

specified degree which best fits the input data in the least squares

sense. The basic method is described in "An Introduction to Numeri-

cal Mathematics", Stiefel, E.L., 1963, page 51. The only difference

here being the introduction of weighting factors to the data and

the use throughout of matrix algebra.

Lines 6 to 13:

Internal integers are declared and then stored into; the

number of rows of XDATA and the length of COEFS (the number of co-

efficients is compared.

Lines 14 to 45:

The size of XDATA is expanded and is filled with the appro­

priate powers of X.

Lines 46 to 55:

The normal matrix is computed taking the weights into account.

Lines 56 to 67:

The coefficients, theoretical polynomial values, residues, sum

of the squares, and the covariance matrix are computed.

Lines

4

6

14-40

Comments

Some of the parameters, the non-scalars, are
declared.

Notice lower case alphabetic print output for
characters beyond 'f.'.

This AP2 code constructs control words for
SPIREL to act upon; notice the labelled instruction
at line 35.

41-45 Double or nested looping.

47 A matrix transpose is done here.

56-57 Non-scalar multiplications.

I

I

I
I == ---====

-

Lines

60

63

67

0

Comments

CODING EXAMPLES

2

Solution of a system of equations.

Line is labelled but not referred to.

Use of matrix exponentiation to compute inverse.

C· ,!

. ..----
(_ __ .)

4/06/6f 14, l P PAGE

~ATKIX XDATA, Slr,~A ?
v1::.rro~ YOATA, COFFC:, YCALC, RESID, W~HTS 4

pFJT(XDATA, ynATA, W3HTQ, crFFS, YCALC, ~ESID, SQSUM, SIGMA),=SE]

LOO"

!NTl:J,:::R ,,\J, ,M, ,r-1, ,J, ,I
,N = LENGTH(vDAT•)
,M = 1..E'.1\GTH(r-oF:Fc: I
,H - -=<Ow (XDhTA l
,J = ,M - ,H
re =;ATE , Ir ,J = 0
7 tiAJ X"lATA, U•B l

LR.3 27
~u •-1-1150
1..R:i l:,

CLA ' JI U+82
L.R:i

l "''
R•T7

TS~ iH\ 26
SPF •I:: ·JD+ 1
(.LA o 1, U+o4

CRL I :; ' R•d?
-ti'? ADJ •'llt+t:l?+t, U•B':1

f-'3 ciNA t:l4+ 1, LJ ... R
CRL I '"'
L..RL '0 I .

C.LA .. +Jl21i
LR::i I,::,

i:: CR~ l "i' U ... T6
P3 ;~PA T ;1 1:1;; .. 1
T6 TSK io+\26, u ... r7

SPF It\':: 'JO+ I
Fi: lFt\JZ=-)B/1 •L JOP I 83+1
F(JR ,J = 1, t, .N

F(N ,I:: ,H+t.• 1, ,M
YDATA = XDAT- •XDATA ,I,,J ,I-t,,J ,f-l,,J
Ft. 0 1:.AT
p~O~A.T

Fxr=-cur:: vsoA"'E(~,srv, :i.i

~lGMA: T~AN!XDAT#)
FOR ,I = 11 1, .~·
rc::qs

• I
FOc;, ,J = 1, 1, ,M
~IGMA = SI3~~ ~ WG~TS

'I I ,J • I I ,J . I
Pi::."1::.A.f
Fi;":Pt::AT
ru:::-~s = XDAT• x ~Ec:r~
FISMA - XJATA x ~I~MA
C-UFFS - SJLN'S!S~A, ror~~I

f-

7

1n
11

12
13
14
!"'
l f
17

2r
21
2?
i:3
24
2~
2fo
27
3r

31
3?
3?
34
35
y,
37

'+0
'+ I

42
'+ '.~

5r
51

0

4/06/6E- [it, 18

YCALC = TRAN(XDATAl x CO~FS
RESID: YDATA - YCALr

SUM~ SWSUM = 0,0
FOR ,I = t, 1, ,N

SQ SUM

REPEAT

SIGMA = SIGMA-I x !Sl"ISUMI(,N- :M) l
END

2
61
6i'
6?
64

6A

67
7('

71
7'?
73

(_,

C~,

,,.,--··-._

u

PFIT

•BGIN
LOOP
•FOC.I
•FOk'2
•RPT2
•RPTt
WAT•
•FOk'3
•F0"'4
•RPT4
•RPT3
vlORK
SUM--1
•FO~S
•RPTS
END

PFIT ' -

START NEW PROGRAM

pqorRAM SE~UENc.:­
PROr-RAM SEQUE:-..icc­
PROG~AM SE'i.lUENCF
PRQ(-'RAM SEGIUENCF
PROC:~AM SF::LlUENCi:­
PROGRAM SEi.lUENCF
PROGRAM SE;_UENC:­
PRQ(-'RAM SE~UENCc­
PROC::~AM SEWUENCF
?ROrRAM SEQUENcc:­
PROGKAM SEi-UENCF
PROGRAM SEQUENCF.
?t:>OGRAM SEl.lUi::NCF
PR00RAM SE~UEI\JCF
PROGt-<AM SE\>IUENC•
PRQGRAi"I sEwUENCF

•dGIN

LOOP St

·~ORI 5c:

•FOR2 61

... f~PT2 10?

•RPTI }Qt:;

\~ATE 107

·FOR3 12JJ.

•FOR4 13:

•i<PT 4 1 si::;

•RPT3 157

WORK 161

SUMt'1 24c:

•FORS 24"-

... i~PT5 26?

~ND 30!-.
307
3} I"'

REFFRENCE wrRl')S, , ,
SMMPY 7777('
MPOwE 77771
M:JU3 7777-:,
SuL,\J 77773
MMPY 777H
TRAN 7777c:
V5PAC 7777!-
Lt:.NST 77777

I NT·~Rt'-,Al ~TrRAI.JE.,

4/06/~6 14, !'-"

I ('I "I 001 02 HOO 00136

I+? ?}601 62 0000 00006

?('I ?OOOt 00 '+001 00236 ,J

~r I 0001 00 0001 00231 ,H

~('I 1040! 00 0001 00? 11 'I

20 10401 00 0001 00~06 ,J

l'I \ ?170:) 26 0200 00005 kESID

~('I ::>0001 00 '+001 00170 'I

l' ("I ?QQOI 00 4001 00154 ,J

2("1 10401 00 0001 00136 ,J

21"1 10401 00 0001 00135 'I

01 ?I 70"'1 41 0200 00000 XDATA

or ::>0001 00 4600 00006 SGSUM

I' ('I ?0001 00 4001 00046 • !

e'O 10401 00 0001 00032 'I

01 rt 001 00 4400 00137
ri 1 40006 00 4000 00000
07 "1001 00 4200 00000

~?5454577040000000
5k57566~~440000000
~46?6441254000Q000
6?5!-53b~254C000000
5k54577J254000Q000
6361405~2540000000
6~6?57~1~24roooooo
s~4k55~~634roooooo

(__j

,, -
I •

~--)

0

,N 3tt
,,'1 3!?
,H 31-=!
,J 3111
'I 31 c:;

•TW-,7 31 Ii

PARAMETtRS AT ~F +
l(L)ATA­
yJATA
!./JHTS
COEFS
Y(ALC
Rt:.S!D
S(;JSt,.JM
SIGMA

0
I
2
3
4,

5
6
7

0
0
0
0
0

~2nooo,ooonoooooo

SUBROUTINES Rff~RF:NrEli
137

GEi'!IF,, • SMMPY
GENIF, I I MPQ~IE
GEN IF. I I MSLJP
GENIF,,, SJL"'
GEI\J IF", i11PV

13"'>
GE"1IF,., TR1H 1

GEN IF I I • VSPAC

GE"!Ir,., LENr,T
126

! 3<i

,,·'\ 4/20/6r- 14, 27 PAGE
'-- __ / I I

PFIT CJRG ?
RE,'1 BI\CK-TRANSLATTON 3

L 77770 REF' IIIS,'1MPY I.I

L77 7 71 REF' •'1POWF <::;

L77"72 REF' 11t-.1SUB f:,
L 77773 REF IIISJLN 7
L77774 REF •"11PY 10
L77"'7:: REF' 1n~AN 11
L77776 REF 11<'JSPAl I?
L77777 REF •1_.:'.NGT 13
Ll -l TRA •t361ll•R 14
L.2 SPF' tj!,a22 Ii::;

PF RWT L107 16
CL!\ Pl:'+ 1, U•T7 17
TSR "'L. 77777 20
SPF •!...307 21 sn L'l 1 I 2?.
CLA pi:..·+3, ll•T7 23
TSR •L 777"'7 24
SPF liil. 307 2~
ST') L 112 26
CLA pr.,u.r7 27
TSR •L 77777 30
SPF •L307 31
ST'J L1!3 3?
21740 L '12 33
SUB L'q 3 34
ST'J L l! 4 35
21740 L114 36
IF(ZERlSK 0 a:~ 37

/,,..---..__\ TRA L"n 40
I CLA ilt.107 41 '-..__./'

NO? Z,J .. CC 42
L3Q 7 i:lAU pr,u.ri1 43

L.RS --,
,:l ' i+4

C.LA at 1 so 1+~
LRS 11~ 46
CLA L·~ 14.o u.e2 47
[RS)7 1R•T7 50
TSq lit, 26 5!
SPF ;i,,1._301 5?
CLA 6l,U•P4 -~ :,_

CRL 171R•t13 54
-B::> Al)1) o'l3+84+!,LJ.f'l3 -., :,_

P3 00204 84-+ l I ll•R 56
CRL 17 -7 :, '
LRL 14 6C
CLA a,20 61
L.RS 1 '~ 6?

p CRR l71U•T6 6?
L51 P3 RPA T-S,B2-I 64

T6 TSR •126,11.r7 6C::.
SPF' .. 1_307 6r-

P2 1 F 1 "lz~· 1 n.A L'il1B~+I '7 0,

r STJ L114 7('

L56 C:LA L 111 71
IJ::(PO~)c:;K 0 L<14 7?
TRA LtJ7 7?

4/20/6~ 14, 27 PAGE 2
1---·,. T ADD L1!3 74
I

STO L ~ 15 7r::, "'--..,)

L63 CLA L112 7f
IF'(POS)SKP L115 77
TRA LI0'5 I or,
CLA L1141ll"'T6 IOI
BUS+2 L 115, H6·J.t 10?

T6 ,\JOP z., u .. s2 1Q3
21740 t.4•!1l! .. BI 104
21740 *O.::'' 1:3'-:=: I 1 J!:'i
NOP l, .J .. T1' 10~

T6 NOP Z,J .. B? 107
21740 L'~l31l.'•Bl 11(')
21740 l:IDF' 1 I I
10620 T ·~, U•;::, 1_ 12

T6 NOP z, .J•B? ! 13
CLA L 115, tJ.e I 1111

p STO IIIPF' , l c:;
J FAD• L'1! 5 116

TRA L<,3 117
LI O'i FAJ• L114 120

TRA L';6 121
LIQ"' ~LA+2 P"+5, R6+ I 122

7 6AiJ+2 al.311•i:36+1 12?
TSR 11-1_77776 124
5PF l:fl_307 125
CLA pc-,U .. T7 \26
TSR 'llll.'77715 127
;oF 1>!_307 ! 3(')
CLA P1:"+7,L: e1 ,_ 31

z TSR i:t: 35, '.. 1 ... e2 I 32
SPF lltl.307 13? c:) l LDR .. !'l,R•t'2 1_ 34

F STQ Bl 13c:;
El I RWT 5;, 13~
r STO L113 !37

L12" CLA L'1 l l 14(')
!F'(POC:)SKP L •l S 141
TRA L161 14?
21740 L 115, 11 ... B I !4?
21740 11tPF'+21U+TII 144
21740 LltS,ll-oB\ 14"'i
21740 i:.•.,F' + I 14~
}0620 T4,\J .. P 147
CLA L'll5,L'•BI 15(')

p STO ,;,e:>F+5 151
I STJ L114 15?

LI 4· CLA L. 112 \5?
Ii=-(PO~)SKP L114 1511
F~A Ll:57 155
CLA L 115• lJ ... T 6 1 5f
1..LA L'~l41L! .. B2 1 - ..

• :) I

21740 T <;, lJ+H I 160
21740 ;.;,F'+7 • iJ•T4 16!
217 1+0 T",, u .. H I 162
21740)ltD/:'+2 16?
10620 T 4• U•"' 1611
CLA L 114• l 1·B2 \65

T6 \JClP L, J .. s 1 166

0

"-/20/6(- I It, 27 PAGE 3 c p. STQ llinr+7 167
T FAO• L114 I 70

TRA L ! lf.0 171
Ll5 7 i: Au• L•15 17?

TRA L125 173
LI 6' CLA pr:-,IJ•KI I 71.

CLA pr:-+c:;, 1_1.s2 17r:;
TSR *L777 7 4 176
S°F 1!<1_307 177
CL'\ pr:-+,, I i•B I ?0()

z TSR 111, 35, t. 1 .. s2 201
SDF •L307 ::>Q?

j L.i::>R• I 1, R•f'·2 ?Q3
F STJ bt ?QI.I
FI RWT f:l? ::>oi::

LLA pi:-, U•I-' I 20~
CLA pc-+7,11.s 2 ::>Q7
TSR Ill.I_ 777'/ 4 ::>Ir,
.;;PF 11tL 307 ?I!
CLA p::-+7,Ll•Bl 21?.

z TSR lo 1 35, 1. '•82 213
SPF i.1_307 ?14

z LD~• !1,R•;'2 ? I '5
p. STO 81 211:-
Fl RWT b'.) 217

CLA+2 pc-+7,r'-6+1 220
CLA+2 pc-+3, "6+ I 221
TSR l'J.1_77713 222
SPF *L307 22?
cu pr:-+3,l! ... E\J ?24

7 TS,~ • \ Fi, '.!•82 22ie;

c ,;;DF •1. 307 ::>26
'l LDR• 11• R•,:<2 ?27
F STO t:i1 ?3l"'
pl R\H B::, 231

CLA P"",U•T7 ?3?
TSR .. 1_77773 ?33
SPF i>!.l_:,07 234.
CLA F·=-+1, 11•62 ?3~

z TSR ~L77774,u•B1 236
SDF 11< 1_ 307 ?37
CLA P'=" +4, '-'•B 1 24(',

7 TSR l>\35,1 1•82 241
.:,PF *L307 ?4?

7 L.DR· l"l,R•~2 ?4-:l
r:: STJ b1 244.
PI r<W T 8". ?.4i:;

LL.A pi:-+ t' i 1.s I ?4f
lLA P'='+ii., u ... s2 ?47
TSR .. 1_ 777 12 23('
SPF llt 1_ 307 ?51
CLA P'=' +51 I '·B 1 ?5?

7 TS~ i. I 3'5, ! 1•B2 ::, --:i .;).

SPF lll_.307 254
7 Lr>R• 11,R+K2 ':) -i:; ,_::,.

i: STJ bl 256
F 1 R\H t)'.l 257
7 sTJ 11t:lF+6 26C"

STO '-<15 ?61

0

4/20/6f 14, 27 PAGE 4 c:· l24 7 CLA L 11 l 262
IF(POC:)SKP L'11'5 ?6?
TRA L:>64 ?64
CLA L1!5,t'•T6 ?6"i
21740 T'i,U•'"I ?66
21740 •=>F+5 267
FMP u • ..J• TI; ?70
21740 Tt,,U•"! ?71
21740 •<=>F' +2 ?]?
FAD T1.. '27'.?
FA()• *:,F'+6 '274
FA}·• L 115 270:.
TRA L -:.'+ 7 ?]f,

L26" 21740 L • 11 ?77
SlJo Ul2 ":lQ(')
53100 - .I 101
FMP L116 10?
Vf1F •°F+6•U•T4 1Q?
LD~ -~ 1 :l04
CLA p;:-+7 3QC::
rSR *l. 777 7 1 3QI',
SPF' .,_307 3Q7
·sB I I " 31 O

T4 TSR •L77770 ::-11
SPF •L307 ?1?
CLA pc:-+7,1_1•Bl 313

7 TSR •!351'-'•B2 31 4
~DF' •l..307 31«:;

7 LD,R • 1 'l, R•,-,.2 '.?16
F sT,J 51 ?17
PI RWT b'.> 320

TRA A 1 37 ::021 -~ L3Q7 S86 z ?2? L> T7 TRA pc:- 323
L3 J • UCT 01Joorooooooooonoo 124
L31" OCT 01ooonooonooonoooc 32"'
L:l 1 " cCT O"Joonooooooooonoo 321',
L31 '" ocr 010000ooonooooonor 327
L3 ! "' OCT 010000ooooooooonor 330 L31 '-· OCT 0~2oonooooooooonor 331

ENO 33?
33?
334

CODING EXAMPLES

3

o Numerical Integration

This example is adapted from Schwarz (An Introduction to

ALGOL 60. Comm ACM 5: 82-95 (1962)). It concerns the numerical

integration of a differential equation of second order with given

initial values, Schwarz chose the method of Adams' extrapolation,

which consists of the following formulae:

where

1 -
y(x+h)=y(x)+hy' (x)+h 2 [!y' '(x)+6 v'y 1 '(x)+~v'2 y' '(x)+ .. , J

y, (x+h) =Y, (x) +h[y,, (x) +iv'y, '(x) +l~ v'2y', (x) + ... J

k
the v' y' '(x) are the backward differences of y'' at the

x and for the interval h. In contrast to other proposals, he

point

starts the integration by an iterative process (lines 62 to 74)

which uses the same formulae as the forward integration (lines

76 to 123).

The example consists of three separate programs:

EXAMPLE3, a control program to handle input and output and execute

the integration program; F, the function being integrated; and

ADAMS, the numerical integration routine. EXAMPLE3 activates STEX

and initiates output with a page restore and heading print, then

goes into a loop in which it reads four input data from paper tape,

performs the integration, prints the input and results, and returns

to read more data. ADAMS receives XO,YO ,ZO, and XE as input (with

the dummy names XX,YY,ZZ, and EE). M, H, and the final results

X,Y, and ZED are external to both EXAMPLE3 and ADAMS.

The integration is based on the following procedure:

The leading row of backward differences (which are unknown at the

beginning) is first filled out with zeroes (line 52). With this

leading row we integrate M steps ahead with the formulae of Adams

(line 64), since R in the loop named ADMINT means the number of

steps to be integrated. After this we may build up a new differenc~

C', t a b 1 e f r om the M t h r ow b a c kw a rd s by k e e p in g the M t h d i f f e r en c e c on -

(~ .
'-.. ...• ,,)

CODING EXAMPLES

4

stant (lines 67-73). In this way we obtain a new leading row of

backward differences with which we again integrate M steps

This is repeated until the Mth difference of two successive

nearly equal (lines 65-66 and 74; note that WE is the Mth

forward.

runs are

difference

of the preceding run). As soon as BETA is FALSE, we start inte-

grating ahead a sufficient number of steps to reach XE (lines 76 to

123) .

Lines

13 -16

61-63

17,23,24,
2 7 -3 4

11-12,
42-46

5 2 - 60

37

5 1

61,65,66,
61, 63

63

Comments

An AP2 sequence is used to initialize output
and activate STEX.

Note use of the power point in arithmetic
expressions.

Input and results are printed with SCRIBE.
The arguments in the EXECUTE command correspond
in number and order to the dummy fields in the
FORMATs.

The REM may be followed by either a tab (lines
42-46) or a carriage return (lines 11-12). The same
is true of FORMAT and BCD.

Extra spaces are ignored.

This line illustrates both the definition of
a function in a single line and the use of an
auxilliary equation to evaluate a common sub­
expression.

Execution of VSPACE leaves zeroes in the vector
for which space is taken. This initializes W for
the first pass through the loop.

If a name occurs for the first time on the
lefth~nd side of an equation, its type is inferred
from the righthand side. Thus, DECIDE and BETA
are inferred to be Boolean in lines 61 and 63; R,
J, and V are inferred as integers in lines 61,65,
and 66.

BETA is evaluated as TRUE if 10- 7 <JWM-WE!;
otherwise BETA is evaluated as FALSE.

I ·--J

Lines

72,76,105
12 2

22&41
10 2&3 7

123

Comments

CODING EXAMPLES

5

These are all conditional equations. Lines
76 and 105 illustrate arithmetic conditionals;
lines 72 and 122 illustrate Boolean conditionals.

The values to be used at each execution of
a function are passed to the function as an ordered
argument list, with the arguments corresponding
in number and type to the parameters in the defini­
tion of the program.

The vectors for which space was taken at the
beginning of ADAMS are freed at the end.

0

4/19/6€ 13, 24

["!EF' I NC:
FCALARS xo,vn,Z01XF,M1X1V1ZE~
INTEGER M
VC:CTORS 81 C, 1,J

FUNCTIONS F,ADAMS

?
3
4
c::

EXA~PL~31~l,=S~Q
PE.M

f

7

IC'
11

THI~ IS THE DRIVER PROGRAM, TT CONT~OL~ INPUT, INTEGRATION, ANn OUTPUT

L.OOP

HEAOER
M
IN
d
OUT

END

PAG ·~
SLN +1000?

13
14

LT7 +0ooon 31?0 onoo 00135 15
Ii:-
17
2"
2!

TSR •+126
FXF.CUTF SCRJqE!HFArE~l
1"1:61 H=O, 0 t
rATA X01Y01Z('.1XE
rxrCUTF ADA~~1xo,,~,?Q1X~l
FXECUTE SCRJREIM,~,xr,,vo,zo,INl
E'"Xl::CUTE SCRI elE(x, y I zi:-o, ()' IT l

SPA •7

FORMAT
14 vo YO

FORMAT
d·d~d~d -ddddd:ddri~d -dddrid,ddddd

FURMAT
-ddddr1,ddridd -dddrld,dndnd

2?
23
24
2!"
26
27

zo 3(1
31

.. ddddr!, d:;ddd
33

"ddddd,dOddd
3F-

36

37
4n

ADAMS(XX,vv,zz,EE),_=SEQ 41
RE.M xx,vv,zz AFF' TH[INITIAL VALUF.S FOR x,v,Y ~RIME
P~M MIS THE rROEP rF THE METHOD (s6) 4~
Ri:.M ff IS THE E ~;D OF T!"iE J NTEGl3AT I GN 't-4

PE.M H IS THF T ~1TEnRA T t ON STEP 45
R~M w0 Is THE SF'C~ND ~ERIVATIV~, WK T~E KTH 1AtK DIFF,

EXECUTE VSPArE!B,7)
EXECUTE VSPArE!C•71
f'"XF'CUTE VSP~rE(w,M+t l

e 1 = t,,
E' .. =u,s,

c::
E' .. =5, /12,,

.:s
p =3, j?,,,

lj, .

e =2"51, 1120, ,
5

c ::r,, i=

I
C =1, /6,

?
(-:i::1,/cl,

c 4 = 1 9, 1 1 ao,

er.="'· 13::-,

47
5C'\
51
5?.

53

55

4/19/6f 13· 24

ADM TNT

Ll4

END

P6=~5,/28J,, c6=~63, ljOORO,

F7=1goP7,l6048o,, c7=275,;345~.

WE=l*t01 R=M, DErlDE=TRW~
CC= .. Ai)MJNT
PETA=1•-7<1WM-WEI

1<1E=WM

FOR J=M1-l1t
FOR V:?,t,M
\.' =w -w

V V V+I
PE.Pi:.AT
PE.PEAT
CC=•LOOP ,If SETA
R=FIX((XE-XXl/H)1 f'ErIDi:.:FAL~E
x~xx, Y=YY, 7ED=7Z
FUR J:t,1,R+[
CC=•Lt4 ,If ,J:t
FOR V:M,-1,!
\,' ::w

V+ I V
PE.Pt::AT
,, =F (x, Y, ZED l

1
REM ~ IS T~E FUNCTION DEFINING THF
REM OIFFEoENTTAL FQLJATION
CC=•NSHIFT ,rf J=C
FOR V:2,t,~+1
w =w

V+ 1 V
REPEAT
P=V Q=L
FOR V=t,t,M+!
P=P+Rv wv

Q:Q+CV WV

PEPE.AT
x=x+H
y;,;:y+H(ZED+Q 1-1)

ZE.D=ZED-rP H
REPt::AT
CC=•RLI NT ,Ir DE(L f"E
FRASE B,c,w

f'E.F'INE

PAGE
57

60

61
6c'
63

64

6~,

66
67

7r.
71
72
73
74
1~
u
77

I 0(1

IOI
I Oc'

103
I u4
tor.:
10~
IJ7

11 O
111
112
11 '.?

114

I 1 c;
116
117
120
121
12?
123
124
125
12E-
127

C)

r
~-

•BGTN
LOOP
;,EADE
IN
OUT
i::ND

EXA"1P

THI"'

. -
IS

u Qi ITPUT

START NEW PROGRAM

PROGRAM SEWUENCF.
PROGR-6.M SE~UENCr­
PROGRAM SEQUENCr­
?RQGRAM SEl.lUENCr:­
PROGR-6.M SE~UEI\JCr­
PP.OGRAM SEWUt::NCr-

•BGIN

THE DRIVER PROGRAM,

L(..lOP It:;

YE ADE s,
IN 6!

our n
i::ND 10~

REFl"'RENCE WORDS,,,
7t.D 77764
y 7776=-
x 77766
ADAMS 77767
xc: 7777r
zo 77771
YO 7777::>
XO 77773
•lNOU 77774
y 7777=:.
M 77771-.
SCRie 77777

INTFRNAL STORAGE,,
·f~U:1e 104
•NUMB toe::

4/19/66 13,33

47 ::> 1641 00 0001 00101 END

!T CONT.:~OL~ INPUT, I NTEGRAT I or--i,

01 40001 00 1+000 00004

00 "10000 00 OOOCl 00007

r, ('I ti050'1 00 0000 0001 Cl

C,f'I nQ30".l 00 0000 00010

r, !"1(001') 00 4000 00('1()0

7!44432c::2soroooooo
7r,2~2s2~2soroooooo
~72c::2s2t:;2soroooooo
~r4~40546240000000
674k252~2sonoooooo
7JOf'l252t:;~sonooooon
7non252t:;250f'IOOoooo
~70f'l252t:;2soroooooo
,~snss5A644roooooo
~72h25~t:;2soroooooo
•42~2s2~2sonoooooo
~?4?6lo0414f'IQOQOOO

31~0000Q00!35
77Qf'l24~~360c:;07534!

SUBROllTINES REFERE"Nl':rn
ADA'-13

GENIE,,, •INrJ
GENIE,,. scRra

AN

---~-----

c)

F

•BGlN
END

F' . -

START NEW PRJ3RAM

PROGRAM sE~UENC~
PROC'RAi1 SE~UE\JC::-

.. aGIN

!=:NO

REF~RENCE WORDS,,,
cos 77771.,
SIN 77777

INT~RNAL STORAGE,,
TMP 3n
•NUM8 31

PARAMETERS AT PF+
xx J
YY I
zz 2

4/)9/66 (3,3:i

1n n1oon 02 4400 oOt36

01 ntoon 00 44Qn 00137
01 4000" oo 4000 oooon
r1 n1oon oo 4200 oonoo

4?5"622~2540000000
,?5n552~2540000000

0
1on2oonooonoooooo

SUSPOUTINES REF~RENrrD

GE,\J r r, , ,
GENIE",,,

cos
SIN

(37

(3(,,

----------- ······--··-----··-------~---

ADA~'S START NEw ~ROGRAM 4/l~/66 I'.?• 3J

•BGTN PROGRAM SF~UEMCF
L00° PROC::RAM SEWUEI\JCF'
RLf'IT PROC::RAM SE(.llJi:":NCF'

·~ •FO~I FlROC:·RAM SE~UC:t\JCF' u •FOt-12 PRQr.RAM SEQUENCi:-
•RPT2 PROGRAM SEl.ilJE;,,.jCF'
•RPTI PRQr-RAM SEGIUENCF
ADM TN PRQr-RAM SEQUC:NC!='
•F0~3 ?RQ(';RAM SEl>lUE'\JCF'
•FOh''+ PPOc:;RAM SE~UENCE
•RPT4 PROGRAt'1 ::,EQUENCF
Ll'to ,;>ROrRAM SE~UENCF
•FQt-15 ?~QCcRAM .SE\ilUENCr:
•RPTS PROP RAM SE~UENCF
NSHTF PROr-RAM SEi>IUENCr:-
•F0°6 PROCcRAM SF.WUENCF
.RPT6 PROGRAM SEQUi:":NCi:-
•RPT3 PROC::RAM SE~UENCF'
END ?~Qr.RAM SE..IUEI\ICJ:'

ADAMS I -

•BGIN tn 1"11001') 02 'tlf-00 00136

xx,vy,zz ARE THE INITIAL VAL1,.FS FOR)(, y., v PRIME
M rs THE ORrER OF' THE MrTHOD (s~J
EE TS THE El--'D OF' THE INTEGRATJO~' ,, I<:' THE INT£GRATIUN STl:'f>
,Ho• IS T11E SECOND OERI\/ATIVE, ''' tK t THI:. KTH BACK !')IFF,

LOOP 121 01 ?. 17()1') 40 4001 001153 ADMII\J

RLINT 12::, 01 ::,1711,,i 41 0401 77i:,sn 1'1

.. FOR! 13u 1"'! ::>J 701') 00 0401 77f-36 i'l

•FOR2 141 t"I ?. 170') OC 4000 0000?
,r--\
'"--J ·RPT2 15i::; ,=,r, 10401 00 0001 00230 •.J

•RPTI 157 30 1040! 00 0001 00?.25 J

ADM IN 17"' 1"11 ::i17un 00 0600 (')0000 xx

·FOR3 20::> ?r. ::,0001 00 4001 00?01 J

•FOR4 21r:: 01 ':'1701 00 0401 7755c:; M

.t1PT4 231'1 !("I !0401 00 0001 00155 "
ll4 23'-' ,.,() ..,010::, 26 4401 77,r::34)(

F I c: THE J:"U~'CTlON uEF"INJNG THF
J!FC'ERENTIAL E'.<.IUA T 10,\J

·~ORS 24i!- 01 '-'170'1 00 4000 00002

+RPT!5 26~ ~(l 10401 00 0001 00122 y

NSl.flF 26"' '1(') ::,0001 00 4001 00122 p

·~:JR6 26'7 c;:("I ?.Q001 00 ~001 0011~ v

.~PU 31~ ~r 1040! 00 0001 0007? v
•RPT3 33" 2r 10401 00 0001 00054 J

0

I
I
I
/

/\
\,_____.)

c

G

!='.ND

RE.F'!""RENCE 1i4C'ROS, • I

F
7.E. ')
y
x
F-"IX
H
XE
"1
w
c
VSPAC
R

INrr.:RNAL STN<AGE,,
.. Pt
+JNEF
•NlH1e.
•NLIM8
.. ,\iU,'18
•NUMf1.
.. Nu,..,e
.. NuMe
·NUMB
•NUi-18
•NU.'18
+NU,'18
·i·.U:1E'
•NUMB
... -~U'18
•MJ,18
·l~U,"18
.. ,,~U:"18
.. NUMI:\
.. ~JUMB
•iW,'18
•NUMB
Wt.
R
nECID
•NUMB
13i:::TA
.J
v
•P2
p

11

?ARA;"11="Tt R<, AT
xx
YY
ZL
F'.t::

347 tst f'l 1001 00 lf.40() not37
35n I'll 40001., 00 itOOO oonoo
35! ""7 n100'l 00 4200 nonoo

77764 ~~2~2s~;254rooonoo
7776r. 7144432,2sorooonoo
777M 7n2,;;25c,c5onoooouo
77767 ~12~252~250"000000
7777;. ~~sr.67c~254noooooo
7777, ~72~252,25orooonoo
7777-:, f744252,25onoooooo
7777-:, !42~252i250C'000000
77774 c~2~2s2~254roooooo
7777,;; ,22~2s2,2s4roconoo
77771-. 6~6':)57411t24nooonon
77777 4t2~252i?.54!"10COOOO

35':) ()

35-::? 10"100,aoonooooon
351+ 712nooo1aoonooooon
35~ I0"60G~ooonocoooo
35t. 10f'l5001JOOnoooooo
35.;; 1014001ooonoooooo
36,:, 10100010oonoooooo
361 I0"30U1UOOC'000000
36':) 10?3001Joonoooooo
36-:, t21-4001J000QCQOOO
364 l3'3001JOO!"IQQQOOO
36C:: ?0"2641J000QCQ000
36t. !040001)00!"IQQQ!"IOO
367 l l-:,7001JOOroooooo
37r: ?Qr! 101J00000Q000
371 ':>Q"3274JOOnooonoo
37? ':>Q471u1Jooroooooo
37-:,i ?11243;0ooroooooo
374 ?3~420,ooonoooooo
37c:: ?on104~1ooroooooo
:37" ?015401Joonoooooo
377 ~on2251057 4 4Conun
40r 0
401 0
40.,, ()

40~ ,~ont~3?774~!5274~
4QI, 0
401:; ()

40" 0
40"7 ()
4(1"1 0
41 t ()

PF +
0
I
2
3

(........,_.

~-j

0

GENIF,,,
Gi::Nit,,,

F
FIX
VSPAC

137
I ::Fi

13',

e Complex Matrix Inverse

CODING EXAMPLES

6

This program inverts a square matrix whose elements are complex

numbers. The method used is essentially inplace Gaussian reduction

as described in "An Introduction to Numberical Mathematics",

Stiefel, E.L., 1963, page 3. Each successive pivot element has

the largest modulus of all the remaining choices. Th i s in s u r e s the

least possible error in the resulting inverse. If the modulus

of any pivot element is too small, the matrix is numerically singu­

lar, an error message is printed.

Then X n complex matrix is stored as 2 n X n real matrices

with the primary codewords in two successive memory locations.

Throughout the program, subscripting and arithmetic are performed

on the complex variables with the same Genie code that has hereto­

fore been used for real variables.

Lines 11 to 13:

Ci Working storage defined.

Line 14:

Complex matrix Bis copied into A.

served after its inverse is computed.

Lines 20 to 27:

Thus , B w i 1 1 b e p re -

The largest remaining pivot element is found and stored in GMOD

and indices stored in GG and HH.

Lines 30 to 64:

If the chosen pivot is large enough, the exchange algorithm

is applied to A.

Lines 66 to 103:

Since pivot elements were not in general along the diagonal,

the rows and columns of the inverse are rearranged depending on

the contents of ROWW and COLL.

Line 104:

The inverse is stored in RESULT, where all results of implicit

C,

CODING EXAMPLES

7

functions are stored. Working storage is freed.

Lines

3-4

10

11-12

13

22

24

30

45

51

60

106

107

115-117

Comments

Double declarations of integer vectors and
complex matrices.

Use of ROW function implicitly in expression.

ROWW and COLL are declared real and, thus, are
created by VSPACE, the real vector space program
called in the program.

NEW is declared complex. Thus, even though
MSPACE is called by the user, CMSPACE (complex
matrix space) will be the program executed.

Subscripting of a complex variable; use of
MOD function implicitly in an expression.

Two equations on one line, as many as fifteen
permitted.

Specification of a constant using power point,
1 *'. , , is printed for '1fo'.

Use of '+/' to create complex variable out of
two real variables.

Labelled REPEAT command. This is not the same
as labelling the corresponding FOR statement.

Compound conditional transfer.

Unconditional transfer to labelled location.

Use of SCRIBE to print error message.

Terminating LEAVE statement is followed by
two carriage returns.

GENIE

9/23/6(- t 3, 02

rlEF'l NE

COM~LEX MATRIX B,A,NEW
INTEGER VECTnR ~oww,COLL

INVERT(BI, =~EO

SOME

1NTEGEP GG, HLl, L• c, D, E

COM~LEX G
L=ROW(Rl
EXECUTE VSPArE!ROWW,LI
EXl="CUTE VSPArE (COLL, L)

EX~CUTE MSPA~E(NEW,L,L)
A:9
FOR C=t,!1L,.
GMl')D:o,
GG=C,HH:C
FOR o=c,1,L
FO~ E=C1t1l
KMC'JD=MOD!A)

~ D, E
CC=•MORE , Ii KMODcGMOD ·
GG:0,HH:E
GMnD=KMOD
REPEAT

REPEAT
CC=•BYE ,Ir GMOD!!" I, o•-12
COLLc=GG

ROWWc='"1H

FOR D:t,t,L

G=•\,D

Ac,o=AGG,D
AGr:: o· :G

.1 I

REPEAT
FO~ D: t 1 1, L

G=Ao .. c

AD,~=t..D,HH

AD,HH:G

REPE.AT
NEwc,c=l t, +10,)/.Ac,c
FOR D:t,t,L
CC=•SOME ,Ir D=C
NEwo,c=Ao,c1 Ac,c
REPEAT

FOR D=t,1,L
September, 1966 CC=•TOM~ ,Ir D=C

Ntwc,o=-1Ac,olAc,c'

PAGE

?
'.'.!!

4

~

6
7

10
11
I?
I'.=!
14
Ii:::

16
17
2r,
21
22

2~
24

2"'
26
27
3r,

3!

3?

3~
34

3i::

36

37
'+ (j
41

'+?

43

44
'+ r:;

'+6
47
51"1

51
52
-~ ::) ,.

54

-------·-··-------·---

9/23/6F- 13, O?.
TOME r.EPEAT

VDME

oYE

FOR D:t,l,L.
!='QR E:1,1,L.
CC=•VOME ,Ir D=C ,0:R E:C
N~wD,E=Ao,~+r~E~c,rl'~o,~'
i:;-EPEAT
PEPEAT
A:f\JEW
PE 0 EAT
FO~ C:L,- 1, I

HH=COLLC

GG:Roww - c
C-QR O: I, I, L.
G:l\g,c
\.), c=Ao, HH

.AD,HH:G
REPEAT
FOR D:1,1,L

G=Ac,o

Ac,o=AGG1D

AGG,D:G
REPEAT
REPEAT
RES~Lr:A
ERASE COLL,Roww,NtW,A
C:C:•END
EXFCUTE SCRIBEIMESSI
CC:•END

MES~ FORMAT
NO INVERSE DUE TQ SINGULARITY
END

GENIE
September, 1966

DEl='INE

PAGE 2
55
56
57
60
61

70

71
7,;,

74

7r:.
7 f,

77

I OC.

10!

IO?
!03
104
! or:.
, Of­
! Q7
! J(')
I 11
! I?
'13
! 14
! 1r:.
! 11=-

INV::-R START NEw PROGRA,'1 9/23/66 13, Q,=:

(
•t3G I "l PROr-RAM SEi.ilUENCi:-I i

"-- ·-' •FQRI PRQr-RAM sEGJUENcc:-
•FQR2 PC>Qt-RAM SEWUENCt:"
•FQR3 PROGRAM SE9UENCc:-
MORE Pr:;>QGRAM SEQUEI\ICt:"
•RPf2 PROrRAM SEGIUE'IJCc:-
.FQR'f. P~Or-RAM SEWUENcc:-
.. RpT4 P:;-Qr-RAM SE:GlUEI\JCr
•FQR5 ?=?QC.:RAM SEQUENCc:'
•RPT5 P:;iQGRAM SE QUE Nee:-
•FQR6 Pc,,QC:RAM SEGiUENC!:"
SOME Pr:;iQC:RAM SEQUE"Jcc-
•FOR7 PRQC:RAM SEQUE"JCr:-
TOME PROC-RAM SEGiUENc:::-
.,FQR8 P~OC:RAM SEQUEI\JC!:"
•FQP.9 PQQC:RAM SEQUENCr:'
VOME. Pt:!OC:RAM SECilUENcc:-
•RPT8 PROC:RAM SEGIUEI\ICC'
.Rprl PQQC:RAM SEQUEl\lcc:-
·FoRa Pc;,oc=RAM SE~UEI\IC..-
.FQRb Pi:;,QC-:RAM SEQUEI\ICC"
•RP To P~QC::RAM SEQUENCc:-
•FQRc: PROGRAM SEQUE"JC!.:
•RPTe P:iQr-R.\M SEQUEI\ICi:-
•RP Ta PoQC:RAM SECilUEI\ICt:"
BYE ?9QC:RAM SE QUE NCC"
i"1ESS Poor-RAM SEc.iUEI\JCi:-
END POQC-:RAM SEGUE NCC'

c INVER I -

•BGIN Ir n100I) 02 '+400 00136

•f.ORI 47 ~("I ~0001 00 '+001 ooi::::11 c
·~0R2 6,;., 01 ;-, 170'1 00 0001 noi:;oo c

•FOR3 6C: 01 ;:, 170(') 00 0001 00473 c

MqRE 11 ~ Pn !0401 00 0001 00450 E

.. RPT2 117 P,("I '040! 00 0001 00445 D

·~f1R4 13~- 20 ,0001 00 '+001 00430 0

•RPT4 16~ ~o !0401 00 000! 00402 D

·FORS !6A. ~('I 1'0001 00 '+001 00400 D

•RPT5 21? 20 10401 00 0001 00'352 0

•FijR6 23-:! !n ?0001 00 '+001 00331 D

SOME 26i::: ~('I 1.0401 00 0001 00277 D

•FOR7 26"' 2("1 ?0001 00 '+001 00275 l) -
TQME 321 20 10401 00 0001 0024'3 D

GENIE

0 September, 1966 ·FOR8 32".I Fe 1'0001 00 '+001 00?'+1 D

·~OR9 32? ~r, :'QOOI 00 '+001 00i'36 t:

VOME 37 ... ~('I !0401 00 0001 00170 E

(_'i' •RPTB 377 2('1 1040! 00 000! 00161:i D

•RPTI 42n Fl'.' 10401 00 0001 00140 c

·FOR a 42' 01 :,11on 00 0001 0013:I l.

·~ORh 43!:' ~('I ~0001 00 4001 00127 D

·~PTb 461 an !0401 00 0001 00!01 D

·FORc 46"' 20 ?0001 00 lf.00! 00077 i.)

•RPTc: 511 2('1 10401 00 000! 00051 D

.RPTa 5!C:: 3(' !0401 00 0001 OOOlf.3 c -
AYE 54 ! Ot ?!70~ 26 lf,001 00004 MESS

M~SS '54~ on l"000'1 00 0000 00004

rnn 551 01 1'1!001') 00 4400 00137
554 01 ll.0006 00 lf.000 00000
55"" 07 1'1100'1 00 4200 oonoo

REFERENCE W!'.'RDS, I I

S~RIB 77755 ~?4?6!51')4140000000
CADD 7775fl- 424n434,2540000000
r:MPy 77757 4?5457702540000000
CDIV 7776ri 4?4~506~2540000000
C:MPLX 7776! ~?Sll.575,670,...000000 c) 7776"' 7c::7c::757~7500000000
MQf') 7776.., ~45'-432~2540000000
CS TAP 77761.. #?6?63416140000000 7776C:: 7c::7r:.757~7540000000
A. 77761, 4('12!:'2=2~2540000000 77767 7c::7c::757~7540000000
CMCPV 7777r; 4?511.42577040000000
CM~?A 77771 4~546257404('1000000
"JEW 7777"' 5=4 4 662~~540000000 7777-, 7c::7c::7~7~7540000000
COLL 77774 ~?5L.535~2S40000000
VS PAC 7777r:. ~=6~574~4240000000
ROWW 7777'- ~!SL.6~6~2540000000
CROW 77777 ~?61566~2540000000

INTi:::RNAL STC'RA~E. I

l 55.; 0
•Pt 55'7 0
•P2 5;r, 0
c 561 0
r;MOD 56? 0
GG 56":l 0
'-IH 56u 0.
I) 56C:: 0
r:: 56~ 0 .. ~, 567 0
••••• 571") 0
KHOO 571 0
•NUMB 57~ ,~on106~7'+630C4557
r, 57~ 0 574 c

GENIE •ONEF 57c::: 1on100110000000000 c .I September.P 1966 .
ARAMETFR~ AT PF +

8 0 I

(-,
"-. __ j

c_j

SUBPOUTINES

GE~.IIE,. I

GEI\JIE: I I

GEI\JIE:,•
GE\JIE, I I

GEt\.lIE:. I

GENIE. I.
GE1'..'IE,. I

GE"-!IE, I I

GENIE,. I

GENIE
September, 1966

REFFRENr'ED
137

SCRIB
CADD
CMPY
CDIV
MOD

13c;
CMCPV
C\11SPA
VSPAC
CROW

13(,

L'

CODING CONVENTIONS

This section discusses details of compiler generated code.

It is intended for those who are particularly interested and for

those who wish to code in a lower level language while maintaining

a~mpatibility with compiled programs. This material is not essen~

tial to the understanding of the Genie language and should not be

read before attempting to write some programs for the compiler

and gaining some familiarity with the Rice Computer, the assembly

language, and the SPIRiL system.

:/

?l-- .. _,:~:·)
CODING CONVENTIONS

• Programs initialization and termination

/
/

2

The 'SEQ' or 1 RSEQ 1 causes the compiler to generate a sequence

of orders which ini _tia li z es the program b.e ing compiled._ The first

of these orders is labelled 1 <-BGIN', and the orders are collecti~ely

called the "<-BGII'}' code sequence". For each 'SEQ' or 1'RSEQ 1 there·

is an 'END', and an "END code sequence" corresponds to each <-BGIN

code sequence. The forms of these code sequences depend on whether

'SEQ' or 1 RSEQ 1 is used, the number of parameters (p) listed for

the program and, in some cases, the types of the parameters. Each

comple~ parameter is counted as two par~meters, the real part follow­

ed by the imaginary part.

An 'SEQ' causes &eneration of a non-recursive program; an

'RSEQ' causes generation of a recursive program. These two types

of code are distinguished functionally by the location of internal

variables for the program. Constants are always stored within

l_~ the program. Priva~e storage is inside a non-recursive program and

on the B6~list, addressed relative to PF, for a recursive program.

Genie-geherated recursive code will not alt~r itself while running,

and a recursive program may use itself --_provided AP2 code in the

program also ,obeys coriventions necessary for recursion. The use of

a program qy itself is clear in a case where program A uses program

A; if program A uses B which use~ C which uses A, then again pro­

gram A is using itself.

... -~'
\;,

For a non-recursive program -- one begun with 'SEQ' or a one

statement function ••• A single fast parameter in the definition

of a program is a special case which causes only PF to be saved

and a~sumes no parameter addressing in Genie language within the

program. Otherwise,-fast r~gister names should not be used as

parameters in a program definition, and the following discussion

applies. A single parameter enters a program in T7, the v~lue of

a scalar or * codeword address for a non-scalar. Immediately~

scalar with name Pin T7 is stored at internal locati~ri 'P'; a

, ___ ,,,.,!/ non-scalar parameter is stored on the B6-list. All fast registers

,.--------._
(.

CODING CONVENTIONS

3

are saved; if there are parameters on the B6-lis~ (p>l or p~l

and a non-scalar parameter) PF is set to point to the first para~

meter. In this case (PF) is stored in the address portion of

'END+l' and must be maintained with this value throughout the pro­

gram for the purpose of addressing parameters. The END code se­

quence restores the fast registers, sets B6 to free the storage

occupied by any parameters on the B6-list, fetches (T7) for implicit

execution, and exits to the PF setting on entry. The specific code

sequences are as follows:

p=l
fast

P=l
s ca la r

p=l
non-scalar

j

p >1

<-BGIN

END

._BGIN

END

<-BGIN

END

<-BGIN

END

PF

-z
T7

T7·

T7·
-z

PF

T7

-z

PF

T7

For a recursive program

RWT.

TRA

TRA
STO'

TRA
TRA

STO
TRA
SPF
RWT

TRA
SB6
TRA

TRA
SPF·
RWT

TRA
SB6
TRA

\KND

z

*+ 13'6, U-+R
p

*+137
PF

B6, B6+1
*+13 6, U-+R·
B6-11
END+l

*+137
(z)

PF

*+13 6, U-+R
B6-p-10.
END+l

*+137
(z)

PF

one begun with 1 RSEQ' A

single parameter enters a program in T7, the value of a scalar

or * codeword address for a non-scalar. Multiple parameters enter

on the B6-list at B6-p, ••• ,B6-1, address for a scalar and * code-

(~· word address for a non-scalar. A single non-scalar parameter is

stored on the B6-list. In all cases the PF setting for the last

execution of the program is picked up from 'END+l' and stored just

,.... ·-~-.

\ ... ,_____)

r-·.
(I
"--../

CODING CONVENTIONS

4

beyond the parameters on the B6-list. This B6 value is stored in

'END+l' for the PF setting of the current execution. B6 is ad­

vanced over i private storage locations for the program. A full

save is done. Then PF is set for execution -- with p parameters at

PF-p, ••• ,PF-1 and i private storage locations at PF+l, ••• ,PF+i. A

single scalar parameter named Pis stored at private storage loca­

tion 'P'. In the case of a single fast or a single scalar para­

meter, the program is considered to have no parameters. B6-list

utilization by a recursive program is illustrated by:

PF-p->•

PF-1-

entry B6=execution PF ->,

PF+l->

PF+i->

execution B6->

p parameters

PF setting from last execution

i private storage locations

10 words for SAVE

push-down storage for execution

The END code sequence restores all fast registers, restores the

PF setting for the last execution at END+l, backs B6 up by p+i+l

to free all B6-list list used in execution, fetches (T7)

plicit execution, and exits to the PF setting on entry.

specific code sequences are as follows:

for im­

The

CODING CONVENTIONS
r-··.

'.)

"'----· 5

single <-BGIN CLA ,WTG+2 END+l
s ca la r B6 RWT END+l, B 6+1

(p ::::0) B6 ADD a - *END+3, U--+B6
-z TRA *+13 6, U--+R

SPF *END+l
T7 STO p

single --BGIN T7 STO B6,B6+1
non-scalar CLA ,WTG+2 END+l

(p ::::1) B6 RWT END+l ,B 6+1
B6 ADD a - *END.+3 , U....;B 6
-z TRA *+13 6, U-+R

SPF *END+l

single fast --BGIN CLA ,WTG+2 END+l
(p::::O) B6 RWT END+l,B6+1

and multiple B6 ADD a - *END+3, u ... B6
(p>l) -z TRA *+13 6, U--+R

SPF *END+l

all cases END TRA *+13 7
CLA ,WTG z
STO,WTG END+l,B6-l c PF AB6 [-i], U -+R

·'
T7 AB6 [- p], R-+CC

C'

1_j

C>

• Result for implicit execution

CODING CONVENTIONS

6

A program which is single valued may be executed implicitly;

that is, it may be mentioned within the formula on the righthand

side of an equation in Genie language. A non~complex scalar result

must be in U upon exit from the program, a complex scalar result in

the complex accumulator named CMPLX, a non-complex non-scalar

result in the non-scalar accumulator whose codeword is by defini-

tion at location +10 during execution. The name 'RESULT' is

interpreted by the compifer as T7 for a non-complex scalar, as

CMPLX for a complex scalar, as codeword address +10 for a non-

complex non-scalar and as CSTAR for a complex non-scalar. 'RESULT'

may appear only on the lefthand side of an equation and must be

defined in the last command executed before 'END' on all dynamic

paths to I END' • The 'END' code sequence fetches (T7) to U as it

exits so that a non-complex scalar result is indeed in U upon

return to ihe program causing the implicit execution.

CODING CONVENTIONS c 7

• Addressing of variables

With respect to any given program every variable is in one of

three categories: internal, external, parameter. All internal

variables are scalar. For a non-recursive program the values of

all internal variables are stored within the program.

cursive program internal variables are of two types:

For a re-

constants

are stored within the program; others are stored in private storage

h B 6 1 . h . th . d b . dd d on t e - 1st, t e 1 private storage war e1ng a resse at

(PF)+i after program initialization. External variables may be

scalar or non-icalar, the address or * codeword address respective­

ly being stored in a cross reference word within the program, the

value or codeword respectively being stored in the Value Table

(*+122) during execution. In the general case, reference words

for parameters are stored on the B6-list. For a non-recursive pro­
th

gram the p parameter is addressed at (PF)+p-1 after program

initialization. For a recursive program the pth parameter is

addressed at (PF)-p after program initialization. Parameters of

a program during execution are indeed internal or external with

respect to some dynamically higher level program, but this does

not affect addressing in the program where they are parameters.

The following charts summarize addressing conventions for variables.

C-·: .,

For a non-recursive program --

variable reeresentation

internal value in program -
scalar at IS -
external address in program
scalar at ES,

external ~~ codeword address
non-scalar in program at ENS

- ------
scalar address at
parameter PF+p-1

non-scalar * codeword address
parameter at PF+p-1

C·
For a recursive program --

C)

data
address

11IS

(ES)
.

~-... ~-•••~---~-,..,~~•n•

(PF+p-1)

CODING CONVENTIONS

8

codewor d
address value element

----- '-!-------· .. --.... ----

------- (IS) -------

------- *ES - - - - - - -

address
in (ENS

-..-·--·---·--•M-·o••--··--

,, __

address
(PF+p-1

-----r---------.. -- ... , --
- - - - - *ENS I

) __________ ! ·-···-····"·-·----.. 1· -··-···-······-····· .. J - I *PF+p-1 ------- I . r- - --- -~
in ------- *PF+p-1

) I
- _L_ _ _J

B6-list, working storage

CODING CONVENTIONS

9

The SPIREL system uses the block with codeword address +112 as

a working storage area. The conventions associated with this

storage are that B6 points to the next available location on the

list [hence, the term "B6-list"] and that the storage is used in

a linear 11 last-in-first-out 11 or "push-down" fashion. Genie

generated code uses the B6-list for temporary storage of interme­

diate quantities within the calculation of an arithmetic formula,

always storing at (B6), incrementing (B6) after the store, retriev-

ing from (B6)-l, and decrementing (B6) after retrieval. The B6-

list is also used for storage of parameters before entering a pro-

gram; the program then decrements (B6) over the parameters before

return since the storage occupied by parameters is no longer in

use. For a recursive program, a private storage area is established

on the B6-list and freed prior to exit. The SAVE (~"+136) and

UNSAVE U·+l37) programs and other SPIREL routines use the B6-list

for temporary dynamic push-down storage.

Using the B6-list for temporary storage, the following sequence

shows storage of A, B, C and later retrieval of C, B, A with proper

maintenance of (B6) as a pointer to the B6-list:

CLA+2

ClA+2

CLA+2

A, B6+1

B, B6+1

CP B6+1

calculation perhaps involving
use of B6-list with balance of
stores and retrivals, so that
final {B6) ~ initial (B6)

CtA B6-l, B6-l
STO C

CLA B6-l, B6-l
STO B

CLA B6-l, B6-l
STO A

. c:)

e Parameter set-up for program execution

CODING CONVENTIONS

10

Execution of a program with a single non-complex scalar

parameter SP is preceded by code which accomplishes (SP)-T7.

In the case of a single non-scalar parameter NSP, the code accom­

plishes *NSP-T7. For more than one parameter, representations

are stored sequentially on the B6-list; if the kth parameter is

a scalar SP, then SP->B.6, B6+1; if the kth parameter is a non-

scalar NSP, then *NSP B6, B6+1. A complex parameter is treated as . (

two parameters, the real part followed by the imaginary part. If

one of a group of parameters is given by a number or an expression,

then the quantity must be given a name before the proper parameter

representation can be stored on the B6-list. For such purpose

the names '~Pl', 1 +-P2', etc. for non-complex quantities are generated

by the compiler. The quantity is stored at +-Pn for a scalar or

~Pn for a non-scalar is stored on the B6-list. A non-scalar at

+-Pn is freed upon return from the program for which it was stored;

then all +-Pn used are available for re-use. Complex quantities

are stored as pairs named 1 +-Ql', 1 +-Q2', etc., then each part is

treated like a non-complex parameter.

The execution of program PROG is accomplished by TSR *PROG

where PROG is a cross-reference word for PROG within the program

doing the execution; the codeword for PROG is in the Value Table

(*+ 12 2) • Thus, PROG is an external variable with respect to the

program which executes it •

\ _ __)

I

I

I \=:J

,,' -)
' ·,_

• Representation of Complex Variables

CODING CONVENTIONS

11

A complex variable is always on the first level of ad­

dressing represented by a pair of words in consecutive memory lo-

cations, the real part followed by the imaginary part. The name

of a complex variable is attached to the first word of the pair,

the real part; the second word of the pair has the name "ditto",

printed '~~~~~'. The Cartesian form is used, and both parts are

real floating point.

Genie generates internal storage for the complex scalar A as

A real part of A

imaginary part of A

Genie generates cross-reference words for the external com­

plex variable A as

A name 'A' in hexads/* if non-sialar/
VT address for A

name "ditto" in hexads/* if non-scalar/
VT address for A's ditto

Then while running the correspondtng ST-VT configuration is

ST

A

I +-......... ._._

!
~~~~~~~~~~--i 

VT 

real part of A -
value if scalar,codeword if 
non-scalar 

imaginary part of A­
value if scalar, codeword 
if non-scalar 

Genie constructs two argument words on the B6-list for each 

complex argument A. The first addresses the real part of A; 

the second addresses the imaginary part of A. 



G 

• Subscription 

CODING CONVENTIONS 

12 

In the Genie language any variable may be subscripted by from 

one to five indices separated by commas. The indices are assume~ 

by the compiler to be integers: explicit numbers, simple names, 

or arithmetic expressions of any complexity. The indices are load-

ed successively into Bl, B2, ••• , BS by the following procedure 

which allows subscripts to themselves be subscripted: 

1) scan n indices from left to right, computing those 

which are not numbers or simple names, and storing 

those computed (except the last) on the B6-list; 

2) scan from right to left storing (U), quantity from 

B6-list, named quantity, or explicit number into 

Bi for i=n, n-1, ••• , 1. 

In the sense of SPIREL, a subscripted variable is called an "array". 

In particular, a one-dimensional array of data is called a "vector" 

and is indexed by Bl, and a two-dimensional array of data is called 

a "matrix" and is indexed by Bl and B2 in that order. But in fact 

an array may be of as many as five dimensions and may contain either 

data or programs, and its elements may be addressed in the Genie 

language. The indices may take on negative values if the storage 

configuration is.correspondingly established. 



c 

0 

CODING CONVENTIONS 

13 

• Operations on standard forms of non-scalars 

In order to perform an operation between a scalar and a vector 

or matrix, to combine two vectors or matrices, or to store a vector 

or matrix the non-scalar itself must be addressed in the code. 

Although completely general forms of non-scalars may be created 

and manipulated in the SPIREL context and may have their elements 

addressed in the Genie language, operations on full vectors and 

matrices are defined only for arrays of standard form in order 

that execution time is not spent in handling the most general case. 

The standard form of non-scalars is entirely sufficient in a vast 

majority of applications. The definition is as follows: 

standard form of one dimensional array, vector 

1) loaded with STEX active 

2) indexed by Bl 

3) initial index= 1 

standard form of two dimensional array, matrix 

1) loaded with STEX active 

2) indexed by Bl for row specification and B2 for 

column specification 

3) initial row index= 1, initial column index= 1 

A sta~dard complex non-scalar is a pair of standard 

non-scalars, as described. Codewords must be adjacent, 

real then imaginary; a name adheres to the real part, 

and the imaginary part is named "ditto" ( .................... ). 

Arithmetic operations involving standard non-scalars parallels 

scalar arithmetic quite closely. By convention, codeword +10 is 

used as the non-complex non-scalar accumulator, commonly called 

'U*'; the complex non-scalar accumulator is named CSTAR. The 

programs used for performing operations on non-scalars recognize a 

null codeword address for a non-scalar operand to mean that the 

operand is the accumulator. The creation of a new U* or CSTAR 

causes the storage previously addressed by that "name" to be freed. 

If a non-scalar in U* or CSTAR needs to be temporarily saved, this 

is done on the B6-list; that· is, a word or pair of words on the 



CODING CONVENTIONS 

14 

B6-list are taken as codewords for the storage addressed and the 

accumulator codewords are cleared. Note that this storage also 

involves adjustment of the STEX back-references to address the 

new codewords. 

The code sequence generated by the compiler for non-complex 

non-scalar storage A~ Bis as follows: 

z 

z 

CLA 

TSR 

SPF 

CLA 

TSR 

SPF 

LDR~ 

A,U~B:2 

'/\MC O PY, u~B 1 

*END+l 

J copy A~U* only if A~U* 

J free storage addressed 
as B only if B$U* and 
not on B6-list 

z 
R 

Bl 

STO 

RPA,WTG 

B,U~Bl 

*+135, U~B2 

~'c-END+l 

+10,R~B2· 

Bl 

] clear U* codeword J J store new codeword if BlU* 
for B =I= 

B2 ] update back-reference 

The code sequence generated by the compiler for complex non­

scalar storage A~ Bis as follows: 

z 

z 

z 

Bl 

Bl 

z 

CLA 

TSR 

SPF 

CLA ,DBL 

TSR 

NOP 

TSR 

CLA 

CLA ,DBL 

STO,DBL 

RPA 

NOP 

RPA 

STO,DBL 

SPF 

A,U~B2 

J *CMC PY, u~B 1 

*END+l 

B,R~Bl 

*+135, U~B2 

Z,Bl-1 

*+135, U~B2 

CS TAR, u~PF 

J PF, u~B2 

Bl 

B2,R~B2 

J Z,Bl+l 

B2, R~Z 

PF J 
*END Pl 

copy A~CSTAR 
only if AfCSTAR 

free storage addressed 
as B only if BfCSTAR 
and not on B6-list 

store new codewords 
for B 

update back-references 

clear CS TAR 
codewords 

f(PF) reset only if program is recursive or is using (PF) for 
reference to parameters. 

if 
Bies TAR 



,,--.-, 

LJ' 

L) 

CODING CONVENTIONS 

15 

Assignment of type and shape to variables 

In the Genie language each variable has a shape: scalar, 

vector, or matrix. The shape of a variable may be explicitly 

specified as non-scalar by a declaration: VECTOR for vector, 

MATRIX for matrix. 

sult) has a type: 

Each scalar, vector, matrix, and function (re­

integer, real floating point, complex, or Boolean. 

The type of a variable may be explicitly specified in a declaration: 

INTEGER for integer, REAL or SCALAR for real floating point, 

COMPLEX for complex, and BOOLEAN for Boolean. The standard 

shape/type is scalar/floating point unless otherwise specified 

in an INFER declaration. If the first appearance of a variable 

name is not in a declaration, its type is implicitly specified 

by the following rules: 

1) If a variable name first appears on the right side 

2) 

of an equation, the variable is assigned the 

standard shape/type. 

If a variable name first appears on the lefthand 

side of an equation, the variable is assigned 

the shape/type of the expression on the right­

hand side. 

In a compil~tion a variable will not have its type changed 

once it is assigned. An equation which has lefthand and righthand 

sides of different types will cause the compiler to comment on the 

equating of unlike types; code will be generated to perform a 

store appropriate to the quantity on the righthand side, but the 

type of the quantity on the lefthand side will be unaffected. 



I 

CODING CONVENTIONS --~ 
\.._,/ 16 

' 

• Arithmetic combination of variables of different types 

In arithmetic expressions Boolean and integer variables may 

be combined only in exponentiation, Boolean scalar variable to an 

integer scalar power. 

not be combined. 

Boolean and floating point variables may 

Integer and real floating point s_calars and non-scalars may 

be combined in any mathematically meaningful way. In all cases ex-

cept exponentiation of a floating point scalar by a numberically 

specified integer~ 7, the integer must be floated before the combi-

nation takes place. In all cases the result of the combination is 

floating point. If a numerically defined integer scalar is floated, 

the floating point equivalent is generated at compilation time and 

is referenced in the generated code for the combination. Otherwise, 

the floating of an integer scalar A is Accomplished by the follow­

ing generated code: 

-LDU -A 

FMP <-TW47 

where 1 <-TW47 1 refers to the constant 2 47 which will be stored with-

in the program. The floating of an integer vector or matrix is 

accomplished by us~ of the Genie SPIREL program MFLT. 

Integers and real floating point scalars and non-scalars may 

be combined with complex scalars and non-scalars in ~ny mathemati-

cally meaningful way. In all cases -except exponentiation of a· 

complex scalar by an integer or floating point scalar the non­

complex quantity is made complex before the combination takes 

place. A floating point quantity is made complex with real part 

equal the floating point quantity and zero imaginary part; an 

integer quantity is floated then made complex as a floating 

point quantity. 

Genie January, 1968 



. ---., 
\ 

I 
"'-.__.../ 

() 

• Boolean variables and operations 

CODING CONVENTIONS 

17 

A Boolean variable may take on the value 'TRUE' or 'FALSE', 

these being represented in the computer by full length quantities 

TRUE = +007777777777777777 

FALSE= +007777777777777776 

The binary operations between Boole~n variables to yield a Boolean 

value cause code to be generated as follows: 

or, A+B, true if either A or Bis true 

CLA A 

ORU B 

and, AXB, true if both A and Bare true 

CLA A 

ORU B 

symmetric difference, A-B, true if A and B have different 

values 

CLA A 

SYD B 

ORU 117 777 6 

symmetric sum, A/B, true if A and B have the same value 

CLA -A 

SYD B 

The only meaningful unary operation on a Boolean variable is 

complementation, not A, true if A is false 

-I ORU -A 

The machine register sense lights (SL) is a collection of 15 

bits, any one of which may be individually meaningful and may be in 

an on or off (1 or O) state at any time. The variable SL is Boolean 

and exponentiation to an integer power is d~fined 

AB, true if bit B of A is on (1) where the bits of A are 

numbered from 1 to 15, from left to right 



,~, 

1, . ..__...,...--'1 

-~ 
I 
I \,...._ ______ _ 

CLA A 

LUR 15 -B 

ORU ii+ 7 7 7 7 6 

CLA B 

BUS 1115,U->R 

CLA A 

LUR ~\-R 

ORU 11+7 7 7 7 6 

if Bis a number 

_J 
l 

if Bis 
a name 
or 
an expression 

J 

CODING CONVENTIONS 

18 

Although the Boolean exponential notation is particularly meaning­

ful for the lights, it may be applied to any Boolean variable. 

Thus, a Boolean variable A which does not itself have a value of 

TRUE or FALSE may be a collection of 15 bits (the rightmost in a 

machine word) A 1 , A 2 , ••• , A 15 each with a value of TRUE or 

FALSE. 



\. ...._____ ,.,, 

CODING CONVENTIONS 

19 

• Loop co ding 

In the Genie language a loop is begun by the command 

FOR iteration parameter= initial, increment, final and 

ended by the command 

RE PEAT 

If there are not labels on these commands, the kth loop will have 

the labels 1 <---FORk' and 1 <-RPTk' associated with it. 

code generated for loop control is as follows: 

The generalized 

<--FORk compute ini tia 1 

initial - iteration parameter 

compute increment 

store increment 

compute final 

store fina 1 

~ 
A 

--' -, 
A 

_·._/ 

[-FORk+m] LT7 

IF(POS)SKP 

.n:c~os)s~P 
IF(NEG)SK;E' 

final ~ ____, 

-RPTk 

z 
T7 

T7 

increment -----i 
iteration parameter, CC+l C 

iteration parameter ___J 
TRA -RPTk+~ 

orders of loop 

CLA 

FAD­

TRA 

increment 

iteration parameter 

-FORk+m 

[<--RPTk+n] 

Seldom is the full generalized code necessary, and the following 

notes pertain to condensations which are provided in various 

specific cases. 

(A) The increment and the final value are computed and stored 

only if they are given by expressions, that is, not 

simple variable names or explicit numbers. 



,r--- \ 
.. .._ .. ,,,/ 

(B) 

CODING CONVENTIONS 

2().. 

The final value will be stored in the address fi~ld of 

the order if it is given by an explicit integer. 

(C) If the increment is given by an explicit integer, it will 

not be tested for being positive or negative and only 

the appropriate comparison of iteration parameter to 

final value will be generated. 

(D) If the iteration parameter is a long fast regi~ter F, the 

<-RPTk code sequence will be 

<-RPTk F FAD 

TRA 

increment, U-,.F 

<-FORk+m 

If the iteration parameter is an index register Bi and 

the increment is an explicit inte~er +l or -1, the 

<-RPTk code sequence will be 

<-RPTk TRA <-FORk+m, Bi±l 



e Use of fast registers in Genie generated code 

CODING CONVENTIONS 

21 

Fast registers may be used in the Genie language and in assembly 

language coding to be used in a Genie context if there is no conflict 

with usage generated by the compiler: 

T7 is always subject to use for special purpose temporary storage. 

T7 is used for storage of a single parameter when a function is 

executed implicitly or explicitly. 

T4, TS, T6 are subject to use in any arithmetic command for scalar 

temporary storage and for storage of scalars mentioned two or more 

times in one equation if these fast register names are not mentioned 

explicitly in the command. 

Bl is used when loading parameters onto the B6-list if a name ~Pn is used. 

Bl, B2, B3, B4, BS are used for subscripts in addressing elements of 

arrays. The first k are used to address an element of an array of 

k dimensions. 

Bl and B2 are used in complex scalar arithmetic. 

\ __ ,, Bl, B2, and PF may be used in operations on vectors and matrices. 

Bl is used in input-output commands to specify to the program ~INOUT 

the operation to be performed. 

Bl is used in raising an integer or a real floating point scalar to an 

integer power ~ 7. 

B6 always addresses the push-down B6-list which is used for temporary 

storage of scalars and non-scalars, for multiple parameter storage, 

and for private storage of a recursive program. 

PF is used within a non-recursive program to address its parameters if 

there are more than one or if there is only one but that is a non­

scalar. The appropriate value fo (PF) is, in such cases, stored in 

the address portion of END+l so that resetting is easily accomplished 

by 

SPF *END+l 

PF is used within every recursive program to address parameters and 

private storage locations. The appropriate value of (PF) is stored 

,r- in the address portion of END+l so that resetting is easily accomplish­

ed by 

SPF *END+l 

GENIE July, 1967 



CODING CONVENTIONS 
.,. l';•,c·. ··., 

,l: . ..._.J 2 2 

• Rearrangement of arithmetic formulae for efficient evaluation 

The compiler has the ability to rearrange the terms in addition 

(or subtraction) and multiplication (or division) strings. Con-

stant terms are shifted to the left in the formula. Terms which 

are themselves expressions, rather than simple variable names or 

numbers, are shifted to the left to save temporary stoies that would 

be required were such complex terms to appear to the right in a 

string. The ordering of the complex terms is determined by the. num-

ber of temporary stores required to evaluate each; the complex term 

requiring the most temporary stores will be shifted farthest to the 

left. 

If the order of evaluation within a formula is of importance, 

this rearrangement may be avoirled by defining each compl~x term 

in a separate equation, thereby giving each a name. Then the origi-

nal formula will involve only simple variable names, and rearrange-

, . .---. ment will not take place. 
\ 


	Genie
	Contents
	Genie
	Program format
	Names
	Numbers
	Variables
	Declarations
	Functions
	Constants
	Remarks
	Command sequence
	Arithmetic expressions
	Arithmetic commands
	Conditional arithmetic commands
	Transfer control commands
	Loop control commands
	Storage control commands
	Execute control commands
	Input-output commands
	Light control commands
	Data commands
	Fast registers
	Assembly language
	Punctuation
	Compilation procedure
	Running Genie programs
	Coding examples
	Coding conventions




