)

GENIE

Genie v v v 4 4 4 e . .
Genie Progrém Format . .
Names . v & o « o o o &
Numbgrs R R
Variables e v e e v s e
Declarations . . « « . &
Functions o o o o & s o
Constantsl e« o o o o e a

Remarks e o o o o & o o

Command Sequence . . o &

Arithmetic Expressions .

Arithmetic Commands } R

° .
. °
. °
° °
° °
° °
. °
° °
e ‘o
° ° °
° °
o °

Conditional Arithmetic Commands .

Transfer Control Commands
Loop Control.Commands .
!‘ Storage Control Commands

l Execute Control Commands

o
Input-butput/Commands .
I (Including Sense lights)
Data Commands e o s e @
Fast Registers
Assembly Language o e e
Punctuation . . « . . .
Compilation Procedure .
Running Genie Programs .
Coding Examples . e o
‘1 . .
o ‘
Genie Coding Conventions
,,‘/s L
\'\/"’/

GENIE September, 1967

GENIE (continued)

.
. . . . 3 . . .
. 3 . .
.
. . . L]
. 3 .
. 3 . .

()

GENIE

The formula language for the Rice Computer is called the

Genie language. Programs written in the Genie language are called

Genie programs, Translation of Genie programs into machine language

is accomplished by the Genie compiler.

The language and the compiler are both often referred to as
just Genie. What is meant is usually clear from the context,

Genie programs may contain instructions written in the AP2
assembly language. Hence, the AP2 assembly language is a subset
of the Genie language, and the AP2 assembly program is a subset

of the Genie compiler.

AU

W,

N

PROGRAM FORMAT

The unit of definition to the Genie compiler is the
definition set, which has the form

DEFINE

declarations of external variables and
parameters for the entire definition set

constant codeword address specifications for external
variables

function definitions

PROG1 (PARAM1) .=SEQ -
declarations of intermal wvariables k
remarks 15t program
constant specifications in definition
command sequence for the calculation set
END » _
PROG2 (PARAM2) ., =SEQ 7 ,nd brogram
. in definition
END ' set
9 | .
PROGn nth program
. in definition
END) set
DEFINE
LEAVE
| cr | 1st tab stop

A definition, then, is a collection of programs (in the most usual

case just one) which depends on a common set of external quantities

and which are completely independent with respect to their private
internal symbols., The definition set has meaning only at compila-
tion; the independent programs may be dynamically interconnected,
among themselves or with programs compiled at another time, in

any meaningful way at the time they are executed.

i

PROGRAM FORMAT
2

Typing of the definition set is begun by the sequence
'cr tab uc DEFINE'., This first 'DEFINE' insures that the compiler
does not retain any symbols mentioned by another user of the system.
Each line of a program should be begun with a case punch (uc or lc)
and is ended by a carriage return (cr). If a statement is so long
that it needs to be broken in typing, the sequence 'cr tab tab tab'
provides continuation of the statement onto the next line. '"PROGL'

designates a program name. '"PARAMi' designates the parameters of

the program, a non-empty list of names separated by commas. The
operation '.='" followed by the symbol 'SEQ' signals initiation of
code generation for the program. Recursive code will be generated
(so that a program may use itself) if 'RSEQ' is used instead of
'SEQ'. 'END', typed at the left hand margin and followed immediate=

'cr', terminates the program, initiates final compiler
\

ly by a
output of the program, and causes the symbol table limit to be back=
ed up so that the compiler retains only its vocabulary symbols and
the external variables of the definition set. The second 'DEFINE'
terminates the definition set and causes the symbol table 1limit

to be backed up so that the compiler retains only its vocabulary
symbols; all external variables backed over are printed out.
'"LEAVE', typed at the left hand margin and followed immediately

by 'cr cr', causes exit from the system.

NAMES

Private names, those invented by a user of the Genie compiler,
are formed by the following rules:
1) a single lower case Roman letter;
or 2) an upper case Roman letter, followed by upper case
Roman letters, followed by lower case Roman letters,
followed by numerals (no embedded spaces).
By rule 1) the following are examples of names:
a i p X
By rule 2) the following are examples of names:
A CAT Fn DDxy 12 PQ29 Dog3
Concatenation of names implies multiplication of the variables
specified. The following are not names:
ab A B38 Pt4p M5ef w10
They are interpreted respectively as:
axb AxXB3 8 Ptdxp M5xeXf wx10
Any number of characters may be used in a name, but only five
are retained by the compiler. If lower case Roman letters are
embedded in a name, the first is tallied as two éharacters.

The names

are stored as

)

NAMES
2

Names in the vocabulary of the compiler may not be used by
the coder as private names. These include

names of library items -- COL, SIN, LINCT, etc.
names of various machine registers -- Bl, CC, T4, etc.
names with special meaning in the Genie language -- as

DATA, TRUE, LEAVE, etc.

In alphabetical order, vocabulary names are:

ACOSH CCSH CSOLN FUNCT MINSE REPEA
ACCEPT CDET CSNH FXEXP MITIM RESUL
ARRAY CDIV CSQR GAMMA MMPY ROW
ASIN CEXP CSUB | co MOD | RTRAN
ASINH CFEXP CTAN IM | MopuL SCALA
ATAKE CHISQ CTNH INFER MPATC SCRIB
ATAN CINV CTRAN INPUT MPOLA SET
ATANH CLENG CVSPA INTEG MPOWE SIN
Bl CLOG CXEXP INV MRE SINH
B2 CMADD DATA ITIME MSPAC SL

B3 CMCON DEFIN ITRAN MSUB SMDIV
B4 CMCPY DET LEAVE MTAKE SMMPY
B5 CMMPY DIAG LENGT NEO SOLN
BCD CMPY DISPL LET NUMBE SOR
BOOLE CMSPA DPUNCH LGAMM [ODD STNDV
CADD CMSUB END LINCT ORTHO T4
CARTN CMTAK EOV LOG OUTPU : T5
CACSH COL ERASE LOG10 PAGCT T6
CALL COMPL EVEN MADD | paGE T7
CASN CONJ EXECU MATRI PLOT TAN
CASNH CONTR EXP MAX POLAR TANH
CATAKE CONVL FALSE MCART PRESC | TITLE
CATN CcoSs | FFT MCMPL PRINT TRAN
CATNH COSH FFTC MCONJ PUNCH TRUE
ccC COT FIX MCOPY QCONF | TTAKE
CCEXP CRCOR FLEX MEAN RANDM " VECTO
CCOL CROW FLOAT MFLT RE VREV
CCONT CSIN FOR ' MIM READ VSPAC
CCcos CSMDV FORMA MIN REAL A
CCOT CSMMP FTRAN MINDE REM

The following names may be used as private symbols in Genie
language but have special meaning in the assembly language:

B6 I PF R S U X

Four character strings which are not names have special
meaning to the compiler:

and - if or not

GENIE July, 1968

U

NUMBERS

A string of decimal numerals

DDD < 214

is an integer. A string of decimal numerals containing either a

decimal point '.' or a power point '#*' is a floating point number,

The form of a floating point number is illustrated by

A.B%C
which is interpreted as

A.Bx10°
There may be as many as 14 numerals in A and B combined. C is an
integer between -70 and 70; if C is not preceded by a minus sign,
it is taken to be positive. Minus signs may precede decimal num-
bers, integer or floating point, with the usual arithmetic meaning.

A string of 18 or fewer octal numerals immediately preceded

by a unary '+'

+99¢

is a right-adjusted octal configuration. [A '+' between two num-

bers is binary and does not cause the number which follows it to
be octal.]

The following numbers will be understood as shown:

3 decimal, integer
-3.0 decimal, floating point
3. decimal, floating point
3% decimal, floating point
3.0%-8 decimal, floating point
-0.3 decimal, floating point
.3 decimal, floating point
+30 octal

Spaces may be embedded in numbers; they are ignored.‘ There -
fore, fields within a number may be separated by spaces for ease
of reading. For example, if _ represents a 'space' punch,

3 641 209.4 % -8
is exactly equivalent to

3641209.4%-8

R

, NUMBERS
O :
and
+00200_0130_0004 00257
is exactly equivalent to

+002000130000400257

VARIABLES

In any program, each variable falls into one of three

categories: internal, external, or parameters.

Internal variables must be scalars {(integer, .real floating

point, complex, or Boolean), and these are assigned storage within
the program. The names of internal variables are not retained out-
side the compilation of a single program; hence, the same name
may be used in more than one program with a different meaning in

each of the programs., Labels on statements are also internal

variables.

External variables may be either scalar (integer, real float-

ing point, complex, or Boolean) or non-scalar (program, vector, matrix,
or array), and all non-scalars must be external. All external
variables of a program must appear in the definition set containing
that program before any ',='., External variables of any one program
are the common property of all programs in which they are declared ex-
ternal that are in the machine at running time. The names must have
unique meaning throughout the system. During program execution, each

external variable has its name on the symbol table (ST, *113) ‘and its

scalar value or non-scalar codeword in the corresponding value table
(vr, *122) entry.

Parameters may be either scalar or non=-scalar. If they are

non-scalar they must be so declared within the definition set con-
taining the program before any '.='. Parameters are neither in-
ternal nor external with respect to the program in which they
appear, but while running the arguments will fall into one of these
categories with respect to dynamically higher level programs, Para-
meters of a program are only representative of the arguments which
will be specified to the program by the dynamically higher level
program which uses it while running. Within a system of programs
the dynamically highest level program receives control from the
operating system and cannot have arguments provided by the system;
hence, the dynamically top level program should have one purely
dummy parameter, a name that is never referred to in the program.

The names of parameters are not retained outside the compilation

GENIE July, 1968

[

. J
2

of a definition set; the same name may be used as a parameter for

more than one program in a definition set, but for no other purpose

in the definition set.

TN,
. ’ AR
N

DECLARATIONS

Declarations are used to describe variables that names

represent. The simple form of declaration is illustrated by:

VECTOR A
VECTOR A, B, C

s
VECTORS A, B, C
cr st tab
A more general form is illustrated by:
INTEGER VECTOR A, B, C
INTEGERS VECTORS A, B

cr Ilst tab

, C
One or more declaration words (either singular or plural) are
followed by one or more variable names separated by commas.

A variable used in the Genie language is completely de-

scribed by its:

type . integer, real, complex, or Boolean
shape Scalar, Vector, Matrix, or Array

and mode function or not

A scalar is described by a type declaration;

INTEGER or INTEGERS for integer

REAL or SCALAR or SCALARS for real floating point
COMPLEX for complex (Cartesian fofm)
BOOLEAN for Boolean

A non-scalar is described by a shape declaration:

VECTOR or VECTORS for vector

}whose elements
MATRIX or MATRICES for matrix are scalars
ARRAY or ARRAYS for non-scalars whose elements

are non-sqalars
and a type declaration which applies to its'elements.
A function is described the mode declaration:
FUNCTION or FUNCTIONS for a private program name
and type and shape declarations which appropriately describe its
;gglicit result, if it has one. Note: Library programs are known

to Genie, and need no declarations.
Not all variables need be described by declarations. When

GENIE July, 1968

DECLARATIONS
2

a variable appears on the right side of an equation in the Genie
language, its type, shape, and mode will be inferred if they have

not been declared:

type real floating point
shape scalar
mode non-function

The INFER declaration may be used to cause other type and shape

inferences:

(INTEGER)

REAL VECTOR
INFER ¢ SCALAR MATRIX

COMPLEX ARRAY

\ BOOLEAN)

where either a type or a shape is given, or both in either order.
The range of effect of an INFER is to an INFER which respecifies
what it specifies, but not outside a definition set,

The name of every external variable must appear in at least
one declaration before any '.='. All declarations pertaining to
parameters must appear before any '.=', but they need not appear
in any declaration if inference will give a proper description.
Declarations pertaining to internal variables must appear within
the program to which they belong, and only the type declarations
are applicable since all internal variables are scalars,

Not more than one declaration in each group may be applied to
a single variable, and not more than one declaration in each group
may appear in a single declaration statement.

Thus ,

BOOLEAN MATRIX FUNCTION F
I cr lst tab
is a legal statement, but

INTEGER BOOLEAN B
| cr lst tab

is not.

GENIE July, 1968

J

0

.

J/

FUNCTIONS

A function is a program which may be referred to in the

Genie language, either for implicit execution as 'F' in the

command
y=a+F (P) +b
or for explicit execution as 'G' in the command

EXECUTE G(Q)

Implicit execution is meaningful only if the function is
single valued; in this case its output is not specified in the
parameter list., In all other instances explicit execution is
required.

The last executed command of a function to be used implicitly

mus t define the output as follows:
RESULT=scalar or non-scalar arithmetic expression
cr lst tab

In the definition of a function, its parameters are given

as an ordered list of those quantities which are supplied as
arguments by the program which causes it to be executed. An
argument for a parameter which designates a quantity to be cal-

culated by the function must be specified as a simple variable

name; other arguments may be given by any arithmetic expression.

For example, if F(A,B,C) is defined such that parameters A and

B are used in the calculation of parameter C by the function F,

a proper use of F would be F(3m2+n,Va,P). But F(SIZE,‘SPAN, q2)

is incorrect since the third argument may not be an expression.

Care must be taken that parameters in the definition of a Genie.

program and arguments in the use of it by other Genie programs

are always listed in the same order and agreé in number and type.
A function may be sufficiently simple to be defined in one

statement. This is done before any '.=' and is illustrated by

the definition of f in the statement

f(x,y):Bax+a2y, a=2+x

| er

The function f may then be executed implicitly within the command

FUNCTIONS
2

sequence of a program,

h:sz(m,n)
where the closed subroutine f will be applied to the arguments
m and n., During compilation, output for £ will be produced in-

dependent of that for the other programs in the definition set.

Every Genie program is a function. It may be used as such
by any other Genievprogram. A Genie program begun with 'RSEQ'
is a recursive function, one which may use itself. For example,
the function FACTL may be executed from within the command se-

quence for FACTL:

|
: |
FACTL(k) .=RSEQ . . ' A

m = FACTL(n-1)

END

A recursive function may be executed either implicitly or explicit-
ly, as appropriate to its definition. Genie programs begun with
'SEQ' and functions defined in one statement do not cause recur-
sive code to be generated; they may not use themselves.
4 ALl functions except those in the library must be de-
clared in function declarations. If a function is to be exe-
cuted implicitly and its result is not to be ‘inferred, then its
name must appear in declarations to describe the result as well as
in a FUNCTION declaration. Thus, the function with itsvarguments
is an operand which must be assigned the type and shape of its out-
put if it is to appear within an arithmetic expression.

A function name is not followed by arguments in a declaration.
To specify execution, a function must be followed by arguments,
as SIN X2 or CALC(q) or MAP(a+b,VAR). A function name, without
arguments, may be supplied as an argument to a function which will
do the execution. Thus, the program P may be defined as P(...,F,...),

where the parameter F is a function, and call for execution of F(...);

GENIE May, 1967

. FUNCTIONS
N 3

then P may be executed with argument g as P(...,g8,...) and the
result will be execution of g(...) while running.
Note: One inconvenience is associated with this notation.
If F1 is a function of a single parameter F2 which is a function,
the expression
...F1(F2)...
will be misinterpreted by the compiler. One extra pair of
parentheses is required, as
ee. (F1(F2))...

if a single parameter is a function.

®

C

O

CONSTANTS

Internal variables which are constants may be numerically
specified by a LET statement within the program., The statement
must be given before the name of the constant is used in the
commands of the calculation, The form of this statement is il-
lustrated by: |

LET PI=3.14159
cr : l1st tab
This is a message to the compiler which causes the number 3.14159
to be used in the program each time the internal variable name
'PI' is used. A LET statement causes no code to be generated.

The above shows specification of a real floating point value.

The variable PI takes on real floating point type.
An integer value may be specified, as
LET K=3 '
The variable K takes on integer type.
A complex value may be specified, as
LET CVAL=-3.2+/5.19
or .
LET POLE= 1+/0
The variables CVAL and POLE take on complex type.
A Boolean value (TRUE or FALSE) may be specified, as
LET t=TRUE
or
~ LET No=FALSE
The variables t and No take on Boolean type.
An octal configuration (right-adjusted) may be specified, as

.LET MASK=+777777077

The + inflection concatenated immediately to the left of a number

denotes octal interprétation of the number, The variable MASK
should not be used in the Genie language.
A fixed address or codeword address may be specified, as

LET #TIME=+200

GENIE January, 1968

I

\
]
i1
{
3

I

()

CONSTANTS
2

must be used for every numbered scalar, program, vector, or matrix.
A Genie program may assign its own name a numerical equivalent,
and the tape produced by the compiler will load with codeword at
the address specified.
The values of non-scalars may not be specified in a LET
statement,. '
The LET statement may also be used to specify the equivalence
of two names. For example |
LET ALPHA = BETA
causes 'BETA' to be substituted for 'ALPHA' throughout the program.
Similarly
LET COUNT = B5
causes the index register B5 to be used for 'COUNT'.
More than one constant may be specified in a LET statement,
if they are separated by commas, as

LET A=3, z=5.41%-6, #PROG=+127, TIME1=TIME2

There are three other commands which identify names with values.

They are explained later: BCD, NUMBERS, and FORMAT in the section
on data commands, These commands are non-executable and must be

transferred around, and must therefore be used with care.

REMARKS

Printed comments in compilation output listings may be obtained

by using the REM statement within the program, as illustrated by
REM COMPUTE FIRST VALUE
or
REM
COMPUTE_FIRST_ VALUE
cr 1st tab
where _ indicates a space typed within the remark. 'REM' is fol-
lowed immediately by a single space or 'cr' which is not part of
the remark, and then all following characters are taken as remark
text. The statement may be continued to succeeding lines at the
3rd tab position by using the 'cr tab tab tab' sequence. The form
of REM in which the text begins at the left margin causes remarks
to stand out more vividly on program listings.
The REM statement does not introduce any data into the final
program; 1its only effect is to cause the remark to be printed in

the compilation output listing.

Hii

COMMAND SEQUENCE

All statements of a program from the '.=' to and including

the 'END', except 'LET's, remarks, and declarations, cause code to
be generated. Such statements are called commands. The occurrence

of a label on a command causes a command sequence to be initiated.

The ordered set of all command sequences of the program is called

the command sequence for the calculation. Each command falls into

one of four categories; arithmetic, control, input-output, or data.

These will be discussed in separate sections.
Any command may be labelled. The label is typed at the left-

hand margin, as 'CALC' in the command

CALC A=B2+B+3.2, B=W+5.1

cr 1st tab

TN

ARITHMETIC EXPRESSIONS

The righthand side of an equation in the Genie language must

be an arithmetic expression. An arithmetic expression is just an

operand. A scalar constant, a variable, an inflected variable, or
a function name followed by a parenthesized list of arguments is
an operand, [A single argument given as a simple variable name
need not be enclosed in parentheses.] A pair of operands joined
by an operation (where the triplet left operand, operation, right
operand is defined in Genie) is an operand,

Any operand may be enclosed in parentheses to dictate order
of computation within an expression in the conventional manner.
Order is also implied by relative rank of operations. In order

of decreasing rank, i.e., the most binding first, the arithmetic

operations are:

unary inflections: -, |...|, and 'not'
subscription

exponentiation

x and /

+ and binary -

relations: = %, <, &, =, £

The triplets of operands joined by an arithmetic operation

~which are permitted in an arithmetic expression on the righthand

side of an equation‘are given in the following paragraphs.

1) +, =, X, |/ between integer, real floating point, or

complex scalar operands.,
If the operands are both integer or both floating

point or both complex, the result is of the same type.
If one operand is complex and the other is not, |
the non=-complex operand is made complex before the
operation is carried out, and the result is complex.
If one operand is floating point and the other is
integer, the integer is floated before the operation

is carried out, and the result is floating point,

I

TN ARITHMETIC EXPRESSIONS
2) +/ between integer or real floating point scalar or non-
scalar operands.

This is the explicit representation of a complex
quantity in Cartesian form, as x+/y (written x+iy in math-
ematical notation). The result is complex with real and
imaginary parts real floating point. The shape (scalar,
vector, or matrix) of the parts determine the shape of the
result; both pafts must be of the same shape, and non-
scalars must have the same dimensions. If the operands
joined by +/ are expressions, they must be enclosed in

parentheses. If the operand x+/y is combined arithmetically

with other terms, it must be enclosed in parentheses.
-/ between integer or real floating point scalar operands.
The complex scalar x-/y is simply x+/(-y).

3) +(or), -(symmetric difference), x(and), /(symmetric sum)
T between Boolean scalar operands.
S Combination of Boolean operands yields a Boolean result,

by the following rules:

+ FALSE if both operands FALSE, otherwise TRUE

- TRUE if operands differ, FALSE if operands the same

x TRUE if both operands TRUE, otherwise FALSE

/ TRUE if operands the same, FALSE if operands differ
The octal representations for the Boolean values are

TRUE 007777777777777777

FALSE 007777777777777776

4) +, -, x between non-scalar operands containing integer, real
floating point or complex elements.

Standard conventions apply as to restrictions on dim-
ensional compatibility, and the operands must be in
standard form.* Addition or subtraction of two vectors
or two matrices yields a vector or a matrix respectively.
Multiplication of matrices yields a matrix. Multipli-

3 - cation of vectors yields the scalar product which is

GENIE April, 1967

U

ARITHMETIC EXPRESSIONS
3

a scalar., Multiplication of a vector and matrix yields
a vector. If the operands are of the same type, the
result is of that type. If the operands are of dif-
ferent types and one is complex, the result is com-
plex, If one operand is integer and the other float-
ing point, the result is floating point.

5) X between integer, real floating point, or complex scalar
and integer, real floating point, or complex non-scalar,

The scalar may be on the left or the right of the
non-scalar, which must be in standard form.% The re-
sult has the same form as the non-scalar operand, vec-
tor or matrix, If the operands are both integer or
both floating point or both complex, the result is of
the same type. An integer operand is floated before
combination with a floating point operand, and the
result is floating point. An integer operand is
floated and then made complex before combination with
a complex operand, and the result is complex. A
floating point operand is made complex before com-
bination with a complex operand, and the result is
complex.,

6) Division of an integer, real floating point, or complex
non-scalar by an integer, real floating point, or
complex scalar.

The non-scalar must be in standard form.* The
result has the same form as the non-scalar operand,
vector or matrix, If the operands are both integer
or both floating point or both complex, the result is
of the same type. An integer operand is floated be-
fore combination with a floating point operand, and
the result is floating point. An integer operand is
floated and then made complex before combination with
a complex operand, and the result is complex, A float-

ing point operand is made complex before combination

ARITHMETIC EXPRESSIONS

\/ 4

with a complex operand, and the result is complex.

7) Implied multiplication between operands which appear
immediately next to one another, not separated by an
operation., The same rules apply as for the explicit X.

8) Exponentiation between integer, real floating point or
complex scalar operands,

If either or both operands are complex, the result
is complex. 1If neither operand is complex but either
or both operands are floating point, the result is
floating point and the base may not have a negative
value, 1If both operands are integers, the result is
an integer, zero if the base is > 1 in absolute value

and the exponent has a negative value., Note that AB

is typed 'A sup B sub', wusing the superscript and sub-
script keys on the flexowriter. The counter associated

with these carriage moving keys should be set to zero

()

before starting a program and must return to zero
before the cr which ends each command.
9) Exponentiatibn of a short logical operand by an integer.
Short logical words are 15-bitvconfigurations whose
bits are numbered 1 to 15 from left to right. 1In
' particular SL (the sense light register) is in the
vocabulary of the compiler and falls into this
category. The result of exponentiation of such an
operand by an integer, as SLk, is Boolean, TRUE if
bit k of SL is 1 (on) and FALSE if it is 0 (off). The
value of the bit addressed is not affected by the
operation. The user may also exponentiate a private
variable which has been declared BOOLEAN.
10) Exponentiation of a square integer or real floéting point
matrix to an integer power,
If the matrix is integer it will be floating before
exponentiation., The matrix must be in standard form.,%

The result is always a floating point matrix., If P

- GENIE January, 1968

o ARITHMETIC EXPRESSIONS

- 5

is the power and P<0O, the inverse is computed. If
|P|>O, multiplication occurs ‘P—1| times. TIf P=0,
the result is the unit matrix.

11) Subscripting of a vector by an integer scalar operand
or of a matrix by a pair of integer scalar operands
separated by commas.

The result is an element of the vector or matrix
and is of the same type (integer, real floating point,
complex, or Boolean) as the non-scalar of which it is
an element. The expression Ap is typed 'A sub B sup'
and return to zero carriage level must be observed as
for exponentiation.

12) Any non-scalar may be subscripted with a total of five
integer subscripts separated by commas, The operand
is indirectly addressed after Bl,...,B5 are loaded with

p the subécripts. An Array may be subscripted at both

levels in one expression, e.g. ...(A where

I,J,K)L,M""
A in an Array, is a reference to element L M of the
matrix AI,J,K' The placement of the parentheses indi-
cates the break point in the structure and the sub-
scripting proéedure is restarted with Bl, The paren-

theses are not necessary for the first level, e.g.

"’BK,L'--: where B is an Array, is a reference. to
non-scalar BK,L'

13) Relations =, 4, <, &, <, % between integer or real float-
ing point scalar operands.

Combination of integer or floating point operands
with a relational operator yields a Boolean result, TRUE
if the two operands stand in the specified relation to
each other, FALSE otherwise. If the operands are not
both integer or both floating point, the integer op-
erand is floated before the comparison is made. If

T r and r' are relations, the form ArBr'C is tempting
but not permitted; an equivalent form is (ArB) X

(Br'C). A precise sequence of typed characters

ARITHMETIC EXPRESSIONS

6
is required:
+ is typed ' = backspace uc | '
¢ is typed ' < backspace uc | '
¥ is typed ' < backspace | '

Note that the relations > and = are not available, but
> is equivalent to ¥ and = is equivalent to f{.

14) Unary - applied to an integer, real floating point, or
complex scalar operand.

The negation of the operand takes place before it
is combined with any other across a binary operation,
except exponentiation and subscription.

15) Absolute value of an integer or real floating point
scalar operand.

This inflection is denoted by absolute value bars
'|' before and after the operand. These bars are simply
parentheses that cause the quantity inside to be taken
with positive sign.

16) Unary 'not' or - épplied to a Boolean scalar operand.

The complementation of the Boolean operand takes place
before it is combined with any other across a binary
operation, except exponentiation and subscription. If
the Boolean scalar has the value TRUE, then not A has

the value FALSE; if A has the value FALSE, not A has
the value TRUE.

*The standard form for vectors and matrices is that handled by
VSPACE, MSPACE, and the Genie input-output commands. Generation
and input-output of non-standard forms can only be handled by
explicit use of SPIREL facilities.

GENIE July, 1968

®

ARITHMETIC COMMANDS

The form of a simple arithmetic command is illustrated by:

A-arithmetic expression
cr 1st tab

The form of a compound arithmetic command is illustrated by:

A=arithmetic expression, B=arithmetic expression, ...
cr 1st tab
where more than one equation appears in the command.

If there are no interdependencies among the equations of a
command, the equations are coded by Genie in the order given. If
there are interdependencies, the first equation will be coded last
and preference will be given to coding the remaining equations from
right to left; for the second and any following equations, if the

ith depends on the jth and i>j (counting from left to right), then

the jth equation will be coded before the ith. So the second and
following equations may well be used to define subexpressions of
the first (or primary) equation, producing code that will run
more efficiently and copy that will be more readable. An example
in which reordering will take place is
y=a+b, a=5¢/d, b=6, c=b+4
| cr 1st tab
The code generated will evaluate b, then c, then a, then y. On
the other hand, the equations in
M=P+Q, a=3, i=j+1
are not dependent upon each other and will be coded in the order
given.
The variable on the lefthand side of an equation may be a .
scalar, or a non-scalar, or a subscripted non-scalar (denoting
a scalar element of a vector or matrix). All lefthand side
variables in a command must be distinct, no scalar or non-scalar
defined more than once. More than one element of the same non-
scalar may be defined in one command.
The '=' joining lefthand side to righthand side of an equa-

tion causes storage of the computed righthand side into the loca-

i

ARITHMETIC COMMANDS
2

tion or array specified on the lefthand side., Compatibility of
types is checked for at time of compilation, and an error message
is printed out if incompatibility of the two sides is detected.
In every case the righthand side dominates and will be stored as
calculated, no conversion taking place., If the righthand side is
non-scalar, the storage addressed by the codeword on the lefthand
side is freed before the store across the '=' takes place.

Genie has the ability to apply the commutative laws of
arithmetic to reorder the terms of an expression to provide cal-
culation using a minimum number of temporary stores., In the coding
for a non-complex scalar expression, the compiler may use the
T-registers of the computer for temporary storage. Push-down
storage addressed by index register B6 is also used for this pur-
pose. When profitable, the T-registers are used by the compiler
for non-complex scalar variables that are referred to often in
an equation. The codeword at machine address 10 (octal) is
used in the code generated by the compiler as an accumulator for
real vectors and matrices produced in the course of evaluating
the righthand side of a non=-scalar equation. This address may
not be used by a coder. The accumulator for complex non=-scalars
is named CSTAR. Temporary storage for non-scalars is always on

the B6-1isto

CONDITIONAL ARITHMETIC COMMANDS

A simple arithmetic command may be of conditional form, as

illustrated by

cr lst tab
where each Ei is an arithmetic expression and each Pi is a
predicate which is either true or false. The code that is
generated will evaluate A as Ei for the least i for which Pi
is true, If every Pi is false, then A is evaluated as E

n+1°

If En+1 is omitted, then A is not evaluated at all if every Pi

is false.
Boolean valued expressions are predicates, as in the follow-
ing examples:

K

1]

1.0 if B<C, 2.0 if x<-12.9, 3.0
K = 1.0 if not (SL"), 3.0
K = 1.0 if SL° + not (SL%)
cr | 1st tab
Boolean valued expressions joined by the operations 'and' and 'or
form predicates, as in the following example:
K = 1.0 if (B<C or |C + Dl #Z 3,72) and SL5 + not (SLn),
2.0 if x<~12.9, 3.0
| cr st tab l 2nd tabl 3rd tab
The most binding first, the operations are ordered as follows:
arithmetic operations

'and'

or
Parentheses may be used, as in the above example, to dictate
computational order.

The predicate form F; r Fy r' Fs is tempting but not per-
mitted. An equivalent permissible form is

F1 r Fp and Fy; r' Fj
or (F; r Fg) x (Fx r' F3)

Two exceptional Boolean predicates are 'EOV', asking if the

exponent overflow light is on, and its negation 'NEO'; neither

of these may be inflected by 'nmot'. Both of these tests turn the

HleAe

TN

®

CONDITIONAL ARITHMETIC COMMANDS

light in the indicator register off.
A conditional arithmetic equation must stand alone as a
command. It may not be grouped with other equations in a com-

pound arithmetic command.

2

AN

TRANSFER CONTROL COMMANDS

Code is generated so that the commands of the program are
normally executed in the order written. An expliéit variation
in this order is indicated by a transfer command, illustrated by

CC = #LOOP or GO TO LOOP |

| cr | 1st tab
Here 'CC' is the mnemonic for the control counter which is nor-
mally stepped sequentially through the orders of the code. 'LOOP'
is a label on a command of the program, the command to which con-
trol will be passed by this transfer command. Note that 'END' is
a label in eVery program and may be transferred to for exit from
the program. The inflection '#' is required in this context to
indicate that the address corresponding to LOOP, and not the con-
tents of the location whose address is LOOP, is to be calculated
on the righthand side. The '#' inflection is analagous to the
'a' bit in API1.

The conditional transfer command provides variation in the

order of command execution depending upon the truth values of

predicates. The form of this type of control command is shown by
CC = #A, if Py, #Ap, if Py, ..., #A, if P,, #A,,; or

| cr | 1st tab GO TO A, if ...etc.

where the A; are labels within the program and the P; are predi-

cates. The code generated causes CC to be evaluated as the first

#A; for which P; is true. If no Py, for i=1, 2, ..., n, is true,

CC is evaluated as #A;,,;. The term #A ,; may be omitted from the

command, in which case CC is unchanged if all P; are false, so

that no transfer is made. The predicates P, are of the form de-

scribed in the section on conditional arithmetic commands.

GENIE July, 1968

L

7N

LOOP CONTROL COMMANDS

Loops may be realized in Genie language by a combination of
arithmetic commands and transfer control commands. A concise nota-

tion for a popular loop structure is provided by the loop control

commands. The commands of a loop are parenthesized by the FOR and
REPEAT commands of the form

FOR P=A, B, C

commands of the loop
REPEAT
cr st tab
The elements of the FOR command are

parameter of the iteration, P

initial value, A

increment, B

final value, C
All elements must be scalars, either integer or floating point,
In execution, the loop is traversed for P = A + kB, for all
k = 0,1,2,... such that

P=<cCif B >0
P>=Cif B <O

The element P must be given as a simple variable name. The ele-
ments A, B, and C méy be given as constants or arithmetic expressions
of integer or floating point type. lez_if B and C are given as
simple variable names may their values change during execution of
the loop. Otherwise, B and C retain their values on entry to the
loop throughout the execution of the loop. For example, in the

loop
FOR COUNT = FIRST, M+N, LAST

.
.

N=A+B

REPEAT
the increment value will remain constant, as computed on entry to

the loop.

In the REPEAT command, 'REPEAT' is followed immediately by a

U

\
|

@

LOOP CONTROL COMMANDS
2

1 1

cr', A REPEAT must be written for every FOR.

If addressed from outside the loop, the iteration parameter
has the wvalue it had upon exit from the loop.

Loops may be nested to any level, but distinét iteration
parameters must be used at each level within a nest. The 'REPEAT'
is considered to be within the loop which it terminates; the 'FOR'
is not. Transfer of control may be made from a command within a
loop to another command within the loop or to a command outside
the loop. Transfer from outside a loop to the FOR command is per-
mitted, but transfer from outside a loop to a command within a
loop is not permitted.

Any 'FOR' or 'REPEAT' may be labelled for purpose of transfer
to it. The compiler generates the label '<FORn' on each FOR
command and '<RPTn' on the corresponding REPEAT command,
n=1,2, ..., 9, a, b, ... in each program. A coder's label
will be used instead if it appears. Thus, FOR and REPEAT commands
begin command sequences whether or not they are labelled by the
coder.

The machine index registers B3, B4, B5 may be used as itera-
tion parameters in loops and will cause significantly more effi-
cient code to be generated, especially when a constant increment
= + 1 is specified. The section on fast registers discusses

coder usage of machine registers.

N

——

STORAGE CONTROL COMMANDS

Before a vector or matrix is referred to dynamically in a
program it must be created, either initially from paper tape or
dynamically while running.

In a Genie program, to create, or take space‘for, the vector
named VNAME of length NELTS elements the following command is
used:

EXECUTE VSPACE (VNAME, NELTS)
cr lst tab
The vector VNAME contains zeroes initially. To create, or take
space for, the matrix named MNAME of NROWS rows and NCOLS columns
the following command is used:
EXECUTE MSPACE (MNAME , NROWS, NCOLS)
cr st tab
The matrix MNAME contains zeroes initially., The dimension arguments
in both commands are integers.

The dimension arguments may be computed dynamically, so that
sizes of vectors and matrices may vary from run to run., In fact,
the dimension of an array may vary during a run by use of a crea-
tion command to 'recreate' an array whiﬁh already exists; the old
copy is automatically erased before the new one is formed. _

To explicitly erase, or free the space occupied by, a vector
or matrix named ARRAY on which the calculation no longer depends
the following command is used:

_ERASE ARRAY
] cr 1st tab
Also a single ERASE command may be applied to more than one non-
scalar, as illustrated by:
ERASE VNAME , MNAME , ARRAY
| cr st tab

The erasure of a vector or matrix causes the storage occupied
to be returned to a common pool, that from which storage is obtained
for the creation of vectors and matrices, This pool is managed by

STEX, the storage exchange program in SPIREL (explained in detail

I

v

STORAGE CONTROL COMMANDS
2

in the literature on SPIREL), and it is called the STEX domain.
STEX may move items within its domain to concentrate space if

necessary to satisfy requests for space.

TN

-

(N

EXECUTE CONTROL COMMANDS

The command
EXECUTE PROG (PARAM)
cr st tab

causes control to be transferred to the program wﬁose name is
denoted by 'PROG' in this illustration. 'PROG' must have been
declared as a function outside the command sequence for the cal-
culation. 'PARAM' denotes a list of one or more parameters
separated by commas., Parameters may be arithmetic expressions un-
less they designate quantities which are to be calculated by the
function, in which case they must be simple variable names. Con-
trol is returned from PROG to the next command in the sequence.
The interpretation given to the EXECUTE command by Genie is
parallel to that for the arithmetic command, the information to
the right of the space after the EXECUTE éorresponding to that
after the first '=' in an arithmetic command. Thus, a simple
conditional EXECUTE command is allowed, such as

EXECUTE A(P) if a < b + ¢, B(Q)
l cr | st tab

And a compound unconditional EXECUTE command is allowed, such as
EXECUTE SUM(x,y), x = 2a/b, y = ab, b = 4
cr st tab

i

|

INPUT-OUTPUT COMMANDS

The input-output commands are:

DATA list READ list tPAGE list
PRINT list INPUT list ACCEPT 1list
PUNCH list OUTPUT list TITLE string
DPUNCH list DISPLAY list

| cr | 1st tab

where 'list' denotes a collection of names separated by commas. Any

W0

name may be that of a scalar, other than fast registers, or of a stand-

ard vector or matrix or of a function. Expressions may not appear in
the argument list, so vector and matrix elements in the subscript
notation may not be designated.

The- DATA command provides reading of manually punched signed

decimal numbers from paper tape. The name of any type of variable

may appear in the list, and any name may have been assigned a machine
address in a LET statement. When the paper tape is read, if a decimal
point appears the number will be converted to floating point within
the machine; the absence of a decimal point causes conversion to in-
teger form. Every number on the tape must be followed by a carriage

14 in ab-

return, tab, or comma. Integers greater than or equal to 2
solute value are meaningless; floating point significance to more
than 14 places is not meaningful. A floating point number may be
followed by the sequence '* signed integer' which will cause it to be

multiplied by 10 to the signed integer power upon conversion. The

magnitude of such numbers must be greater than 10_70 but less than
1070. The absence of a sign on a number implies positive sign. Then
punched 328cr converts to integer 328
46 .9cr floating point 46.9
.469%*2cr floating point 46.9
-5391cr integer -5391
-69.*-1lcr floating point -6.9

tBlank or numbers 1 through 7 only

GENIE July, 1968

)

INPUT-OUTPUT COMMANDS
2
Integers and real floating point scalars are punched as single deci-
mal numbers in the appropriate format; complex scalars are punched
as real part followed by imaginary part, both floating point.
A vector of length n is punched as the sequence of n+l decimal
numbers: integer n, first element, ..., nth element. A matrix

of m rows by n columns is punched as the sequence of mn+2 numbers:

integer m, integer n, element (1,1), element (1,2), ..., element
(l,n), element (2,1), ..., element (2,n), ..., element (m,1l), ...,
element (m,n). When the DATA command is executed, the proper

tape is assumed to be in the reader. TIf sense light 14 is off,
the line

DATA NAME
| cr | 1st tab
will be printed out for each quantity read, where 'NAME' is as
designated in the program containing the READ command. Thus,
printer monitoring of DATA applied to parameters bears the dummy
parameter name, not the name of the argument supplied as the
parameter.

The PRINT command provides decimal output on the fast line

printer of any named scalar or non-scalar quantities. These are
labelled by the name given in the argument list. Any name may

have been assigned a machine address in a LET statement. Scalars
are printed four per line. Vectors are printed five elements per
line, the leading element index in octal at the left of each line.
Matrices are printed by row, five elements per line, the leading
column index in octal at the left of each line. Complex variables
are printed as real part followed by imaginary part; the name of
the variable will be given with the real part, and "ditto" (printed
'etee=') will label the imaginary part.

The PUNCH command and the READ command may be applied only to

external variables and to parameters representing arguments which

GENIE November, 1966

()

INPUT-OUTPUT COMMANDS
3

at the time of execution are external in some dynamically higher
level program fall into this category. Care must be taken to
apply these commands properly to parameters as there are no checks
built into the compiler or input-output program to insure that
scalars internal to some program are not punched or read. A name
which has been assigned a machine address in a LET statement may
appear in the list for PUNCH or READ. PUNCH provides, for each
variable listed, as many control words as are necessary to recreate
the form of the variable at a later read time. The content of the
variable is punched in hexad with checksum format. These output
tapes may be loaded through SPIREL or they may be read with a
READ command. The READ command will read any tape produced by
PUNCH. Also, READ will read any scalar, standard vector, or
standard matrix punched with name by use of SPIREL directly.

The DISPLAY command provides decimal display of named scalars

on the storage scope at the console. These are labelled by the name
given in the argument list. Any name may have been assigned a
machine address in a LET statement. As many aé eight lines will be
displayed by a single command. Real scalars are displayed one per
line. Complex scalars are displayed on two lines, real part with
the name of the variable followed by imaginary part with the name
"ditto" (written '<«<«<«<«<«'). Non-scalars may not be displayed.

The INPUT command and the OUTPUT command provide input and

output of named scalars and non-scalars throﬁgh programs supplied by
the user. Any name may have been assigned a machine address by a
LET command. For each variable named in an INPUT command control

is passed to the program named INPUT; for an OUTPUT command, the
program named OUTPUT is used. A- complex variable is handled as two
variables, the real part with the name of the complex variable and
the imaginary part with the name "ditto". Details about the INPUT
and OUTPUT programs are given in the library literature.

GENIE May, 1967

~—

INPUT-OUTPUT COMMANDS
4
Formatted printer output may be obtained by use of the command
EXECUTE SCRIBE(Al,...,AK,F)
| cr | 1st tab

where Al,...,AK is the list of arguments to be printed, and F is
the name of a FORMAT statement to be used. Any argument in
Al,...,AK may be a simple name or an expression. The program
SCRIBE is in the library, and its use is fully described in the
library literature. A FORMAT statement gives text which will be
printed directly by SCRIBE and dummy variables which will be re-
placed by argument values. '

Page control and headings are provided with formatted printer
output by use of the command

EXECUTE PRESCRIBE(Al,...,AK,F,N,NAME,LIMIT)

| cr | 1st tab
where Al,...,AK,F are just as for SCRIBE, N is the number of blank
lines after SCRIBE.output, NAME is the name of a FORMAT statement
containing pure text or a vector of BCD data to be used in the head-
ing on each page, and LIMIT is the number of lines per page of out-

put. .The program PRESCRIBE is in the library, and its use is fully
described in the library literature.

Additional forms of input and output may be obtained by use of
SPIREL programs directly, but those provided by the input-output
commands should be sufficient for a large number of problems. Also
see the TITLE and PAGE commands on p.5.

The DPUNCH command may be applied only to external variables
as explained earlier in the PUNCH command. DPUNCH provides standard
decimally formatted punched tape to be later read by a DATA command

only. Mixed integer and real data may be punched from scalars,
vectors or matrices. .

GENIE July, 1968

77N

\\)

INPUT-OUTPUT COMMANDS
5

The TITLE command allows the printing of a string of literal

symbols for labeling pages like SCRIBE only with greater ease. Two

examples are given below. One would write:

TITLE PRINT ONE LINE HERE
TITLE

PRINT ANOTHER LINE HERE ALSO

cr

| 1st tab

The above would cause the following to be printed:

PRINT ONE LINE HERE
PRINT ANOTHER LINE HERE ALSO

+

(first printer position)

The PAGE command allows the page to be moved to any position or

by any amount easily. The 'list' consists of the integers 1,2,...,7

or no list, i.e., blank. The interpretation of the integers is given
by the table below:

integer > move to next ____ page
1 > move to next 1/66 page (one space)
2 move to next 1/22 page
3 move to next 1/11 page
4 move to next 1/6 page
5 move to next 1/3 page
6 - move to next 1/2 page .
7 - move to full page (page restore)

If the list is blank, the page is restored.

GENIE July, 1968

INPUT-OUTPUT COMMANDS
6

The ACCEPT command provides reading of data input through the

console typewriter. The name of any type variable may be included
in the list. Data may be entered when the blue light on the type-
writer comes on; each line is processed before another may be typed.
Decimal numbers are handled as in the DATA command; octal numbers
must be preceded by a + sign. T... or F... is typed for the Boolean
values. All values must be separated by commas and a line is ter-
minated by a carriage return. For a vector or matrix of size n or
nxm, n or nxm values must be typed. To change the size of a non-
scalar, the new dimension(s) is enclosed by parentheses (n) or (n,m),
and followed by the values to be stored. A matrix is typed by rows
(as it is read in DATA). For example, where A is a vector 3 long,
B is Boolean, and C is scalar:

ACCEPT A,B,C

typewriter ihput: -234.0, 8.34*%4, .62023, T, +0142000000 cr
stores the first 3 values in A, -Z in B, and the octal number in C.

typewriter input: (4), 8.0, 9.0, -10.0, 11.0, FALSE, 345 cr
erases array A and creates a new one of length 4, stores the next
4 values in A, —l in B, and decimal value 345 in C.

typewriter input: -, T, +002345 cr
leaves A as it is, stores -Z for B, and the octal value for C. The
"forward arrow" is inserted whenever an item in the list is to re-
main unchanged. If sense light 14 is off, the line

ACCEPT NAME
will be printéd out for each quantity in the 1list (as in the DATA
command) .

GENIE July, 1968

O

The SET command provides program control over sense light setting.

It is illustrated by
SET not SL5, SL9, SLl, not SL15
lcr |1st tab

Any number of sense lights may be set.

LIGHT CONTROL COMMAND

The notation 'SL™" causes

Ss1t to be turned on; 'not s1t' causes SLT to be turned off. 1In

'SLY' i must be numeric and may range from 1 to 15.

set in the order mentioned.

GENIE April, 1967

The lights are

DATA COMMANDS

Data commands cause generation of words in the program which

are not instructions. These commands are not executable and all

but FORMAT must be transferred around.
Alphabetic information for output on the printer may be de-

fined by the BCD command, as illustrated by

MESS1 BCD _ _TEMPUS_FUGIT
or
MESS1 BCD

_ _TEMPUS_FUGIT

cr 1st tab
where 'BCD' is followed immediately by a single space or a 'cr'
which is not part of the data, and _ indicates a typed space. The
command may continue onto succeeding lines at the 3rd tab position
by use of the 'cr tab tab tab' sequence. A space is inserted by
Genie between the last character of one line and the first of the
next line., At the place such a BCD command appears in the command
sequence for the program, the printer code for the information 1is
inserted in the code for the program, nine characters per word,
The label (if any) on the BCD command is associated with the first
word of data. |

A block of numeric data may be defined by the NUMBERS command,

as illustrated by

CONST NUMBERS 36.5, =2%8, 6, +774777
cr ‘ st tab
In the program Genie generates, in this case,
floating point 36.5 at CONST
floating point =2.,0 X 108 at CONST#1
integer 6 at CONST+2
octal 774777 (right-adjusted) at CONST+3
One or more real numbers (each but the last followed by a comma) are
listed; complex numbers may not appear in the list., The 1list may

be extended onto the succeeding lines by use of the 'cr tab tab tab'

sequence, The numbers are inserted into the program in the order

GENIE April, 1967

(At

N

DATA COMMANDS
2
given, one per word. The label (if any) on the NUMBERS command
is associated with the first word of data.

Formats for the printer output programs SCRIBE and PRESCRIBE
are defined by the FORMAT command, as illustrated by

LINE FORMAT ddd ITERATIONS, CASE aa, K=bb, T=-d.ddce+db
or

LINE - FORMAT

ddd ITERATIONS, CASE aa, K=bb, T=-d.ddce+d

| cr 1st tab

where 'FORMAT' is followed immediately by a single space or a 'cr'
which is not part of the data., The label on the FORMAT command is
the name of the FORMAT which is an argument to the output programs.,
The format data is a "dummy line" of printer output; lower case
letters and the characters ', +, =" with 'd' form dummy variables
for which argument values are substituted when printing; the rest
of the format data is text which is printed directly. SCRIBE and
PRESCRIBE are programs in the library; their use and the details

of format specification are explained fully in .the library
literature.

GENIE May, 1967

=

N -

FAST REGISTERS

It is never necessary to use machine registers in the Genie
language. But their use is permitted, with certain restrictions
and with effect that more efficient code may be obtained.

T7 should never be used in the Genie 1anguagé.

T6, T5, and T4 may be used as the names of scalar variables

within a command. The compiler will not make use of any T-register
mentioned by the coder, and code efficiency may be increased by
explicit assignment of auxiliary variables to these fast registers.
The values in T6, T5, T4 are not preserved by Genie from one command
to another as they are subject to use by the compiler in any command
in which they are not explicitly mentioned by the user.

The index registers B3, B4, B5 may be used as the names of

scalar integers. These are disturbed by Genie-generated code only
to address elements of arrays of more than two dimensions. (Non-
standard subscripting is discussed in the section on arithmetic
expressions.) Efficiency of code is gained if these registers are
used as subscripts or as iteration parameters of loops with con-
stant increment +1., The index registers Bl and B2 may be used

only if the user understands Genie coding conventions are explained
in another section and can accurately anticipate the use of these

registers by Genie generated code. The registers B6 and PF may not

by used in Genie language.

L

/“\\

@

ASSEMBLY LANGUAGE

In a Genie program, instructions in the AP2 assembly language
may be interspersed at will with commands in the Genie language.
AP2 is discussed in detail in the assembly language literature.

The following names identify fast registers in both Genie
language and AP2:

T4 T6 CC B2 B4

T5 T7 Bl B3 B5
The following names identify private quantities in Genie language
and fast registers in AP2

R B6 U I

S PF X
Therefore, a private name I in Genie language may not be addressed
in AP2 code.

Operations without mnemonics in the AP2 vocabulary may be
coded in octal, as

+45061 #15
| cr | 1st tab | 2nd tab | 3rd tab
Or an operation code mnemonic may be assigned with a LET statement,
as

LET #QSR = +45061

Then the instruction

QSR #15
could be used instead.

In AP2 commands, the coder may make use of the fast registers,
taking care to preserve the value of PF for reference to parameters
and to use B6 for temporary push-down storage only. Entire func-
tions may be written in the assembly language, but the user must
first understand various Genie coding conventions, as discussed

in a later section.

Normally for a Genie program initial and terminal program
sequences and code to preserve parameter addressing are automa-
tically generated by the compiler. For some programs coded pre-

dominantly in AP2, it may be desirable to avoid generation of or-

()

ASSEMBLY LANGUAGE
2

ders not explicitly coded. This may be accomplished by using 'ORG'
in place of 'SEQ', as
PROG (PARAM) .= ORG
| cr
to start the command sequence for the program. The first instruc-
tion of the program will be the first explicitly coded. The only
words in the program generated automatically by the compiler are
cross-references to external quantities and a one-word END pro-
gram sequence:
END TRA Z
The programmer must code parameter set-up for the program, maintain

PF and B6 by Genie coding conventions.

. PUNCTUATION

Reference to rules of punctuation for use in the punching of
Genie programs has been made in other sections. A few generalities
and notes here may help the user to avoid some of the most common
mistakes. I

Every tape must begin with a 'cr' punch and a case punch
for proper interpretation.
Every line should begin with a case punch so that it

does not depend on the case at termination of the preceding

line, and editing of tapes will be thus simplified.

Spaces may appear anywhere but within a name; they will
be ignored.

Backspaces are ignored except within the sequence of
punches for negated relations.

The superscript and subscript punches should be used only
where meaningful; the sequences 'sup sub' and 'sub sup' are

not equivalent to no punch at all and will not be accepted

@

by the compiler.
The carriage counter should be set to zero before typing
a program and must return to zero before the 'cr' which ends
each statement.
A statement is continued onto second and succeeding
lines by the sequence of punches 'cr tab tab tab'.
The operation '.=' must be punched as just those two
characters in succession.
The negated relations require specific sequences of
punches for proper interpretation:
+ is punched '= backspace uc |'
4 is punched '< backspace uc |'
£ is punched '< backspace |
The operations 'not', 'and', 'or', 'if' are punched in
lower case and must contain no superfluous punches. All other

"words" in the vocabulary of the compiler are punched fully

&V) in upper case letters.

[

_

<:>

PUNCTUATION
2

Statement labels, the program name, function definitions
'"END', and 'LEAVE' are typed at the margin; alternatively, pro-
gram names and function definitions may be typed at the lst tab
position.

Since 'SEQ', 'END', and 'DEFINE' end statements, they
must be followed immediately by a 'cr' punch,

Declaration identifiers, 'DATA', 'EXECUTE', 'FOR', 'LET',
"NUMBERS', 'PRINT', 'PUNCH', 'DPUNCH', 'READ', 'SET' may be
followed by either a space or a tab punch.

'"BCD', 'FORMAT', 'REM' may be followed by a space, a tab,
or a carriage return punch.

For compilation to be terminated properly 'LEAVE' must

lcrl

be followed immediately by two punches.

GENIE January, 1968

COMPILATION PROCEDURE

A Genie program is compiled by exercising option #6 in the
PLACER system,

Compilation output on the printer consists or error messages,
prbgram listing, and symbol tables. These are discussed below,
Compilation provides a punched paper tape to be loaded under SPIREL

control., Compilation options are also discussed below,

Error messages. Genie error messages refer to carriage return

number on the PLACER listing of the program. During compilation
the carriage return number for the line being compiled is displayed
in FT (the from-tape register). This can be useful if compilation
problems arise with no error message. If a single command, state-
ment, or instruction is continued onto more than one line, the

carriage return number for the last line will pertain throughout.

Program listing. Four columns are printed, giving:

(a) The symbolic location (if any).
(b) The relative location of the word in the program,
in octal,
(c) -The instruction in octal, broken into fields, with
tag.
(d) The symbolic address (if any).
Cross reference words and internal storage are listed after the
instructions of the program, one per word with name, relative
1ocatioﬁ, and content for each. The variables referencea relative
to PF are then listed with name and PF increment.

Symbol tables., For each program a symbol table of internal

names is printed, -Of interest are columns which give the name and
the relative location in the program (two to the right of the name).
The column to the right of name contains descriptive information

about the variable, by digits:

GENIE May, 1967

"
N

S COMPILATION PROCEDURE

v)

first - type 1, Real (floating point)
2, Integerx
4, Boolean
5, Complex

second - shape and mode Scalar

“

Scalar function

"}

Vector

v

Vector function

-

Matrix

“

Matrix function

v

Array

[

N oo N = O

Array function

-

third - 0, not a parameter
1, non-scalar parameter
2, scalar parameter
After the internal symbol table a list of programs used is
given. If a program is in the library, its name is prefixed
by 'GENIE'. If a name is used, this is given. If a number is
used, this is given.
For each definition set a table of external names is printed
in which only the names and descriptive information (as above) are

of interest.

Compilation options. See PLACER-TRANSLATE.

j
W/ GENIE July, 1968

RUNNING GENIE PROGRAMS

The usual procedure is to run Genie programs with SPIREL so
that all library routines are immediately available.

The initial version of a program should contain liberal out-
put of intermediate quantities. These may be conditioned on sense
light settings or edited out once the program is running.

Initial runs should be made with SL14 off so that printer
monitoring is provided for all SPIREL operations.

Debugging may be facilitated by a SPIREL dump of the positive
portion of the Symbol Table-Value Table. This will show all named
external items in the system being run, the values of scalars, and
the codewords for non-scalars.

A SPIREL dump of a private program will show values of internal
variables.

Arithmetic error tracing may help to locate mathematical
problems. .

All instructions generated by the compiler may be traced, but

this is not a recommended procedure.

GENIE March, 1968

Hll

CODING EXAMPLES

e Least Squares

This program computes the coefficients of a polynomial of
specified degree which best fits the input data in the least squares

sense. The basic method is described in "An Introduction to Numeri-

cal Mathematics", Stiefel, E.L., 1963, page 51. The only difference

here being the introduction of weighting factors to the data and

the use throughout of matrix algebra.

Lines 6 to 13:
Internal integers are declared and then stored into; the
number of rows of XDATA and the length of COEFS (the number of co-

efficients is compared.

Lines 14 to 45:
The size of XDATA is expanded and is filled with the appro-

priate powers of X.

Lines 46 to 55:

The normal matrix is computed taking the weights into account.

Lines 56 to 67:
The coefficients, theoretical polynomial values, residues, sum

of the squares, and the covariance matrix are computed.

Lines Comments

4 Some of the parameters, the non-scalars, are
declared.

6 Notice lower case alphabetic print output for
characters beyond 'f'.

14-40 This AP2 code constructs control words for
SPIREL to act upon; notice the labelled instruction
at line 35.

41-45 Double or nested looping.
47 A matrix transpose is done here.
56-57 Non-scalar multiplications.

AN
Lines
60
63
67
-~

CODING EXAMPLES
2

Comments

Solution of a system of equations.
Line is labelled but not referred to.

Use of matrix exponentiation to compute inverse.

PFIT(XDATA,

AAT™

ACR#

L/06/6€6 4
DEFIN
MATRI
VECTO

INTER

g
T

)
(@
i1

-2
B3

R
B3
T6

Fe
FOR
FGR
xUATA
FEPEA
RcPcA
FXFCU
c1GMA
FOR
PESID

FoR
cI5MA

REPEA
FcPcA
CUEFS
SIGMA
COFFe

12

£
X XDATA, SIAMA

R YDATA, COFFS, YCALCs, RESIDs WGHTS
YDATA» W3HTS, CNFFS, YCALCs» RESID, SQSUMs SIGMA). =SEQ

ER N2 Me e dy W
LENGTHIVDATA)
LENGTH("QEFS)

ROW (XDATA)

Moo= GH

e« WATE ,If J =0
BAU XDATAs U-B|
LR3 27
CLA «+1150
LR3 1°
CLA v Jo U+B2
LRs3 132 R=T7
TSR ®+|26
SPF A D+
CLA B1ls U+B4
CRL 1 3s R=32
aDD «34+B241, U+B2
BNA g4+1s U=R
CRL 13
LRL 12
CLA «+3120
LRS 12
CRR 15, U=Té6
RPA T4s BEal
TSR %+|265 UaT7
SPF XIND+ 1|
IFINZZ) TRA ~|_.J0P, B3+|

oJ = 1y 1s N
I oz HELe 1 WM

= ATA XXDATA
-I‘ nJ XD vI-l‘) XD T Ha .J

T
T
TE V3PACE(RFSID» :N)
= TRAN(XDATA)
I:l; 12 WNi
= WRHTS

le = ll ll -M

= ST3NA < WGHTS
da a0 - STV L TS

T
T

¥ YDATA I

= XDATA x FECSI™
= XOATA x “IrMA
= SAILNISIGMA, CUEEFS)

PAGE

]

By —

Eo

¢

7
10
I
12
13
L4
IK
16
17
20
21
27
23
o4
2F
2¢

b/06/66 14 |8 ' PAGE 2

—~ YCALC = TRAN({XDATA) x CORFS
(L RESID = YDATA - YCALr
3UM™ SASUM = 0.0
FOQ ‘I = 12 1' -N

SQASUM = SISUM + WEHTS ;* RESID IE
REPEAT '

!

END

LEAVE

AN

X (SNSUM/(N= M))

67
7¢
71
72
72

PFIT

«BGIN
Loo®
tFOQl
«FQR2
-RPT2
ORPT[
WATF
«FQR3
«FQORY
«RPTY4
«RPT3
WORX
SUM™
«FQOX5
«RPT5
END

PFIT ,=

START NEW PROJGRAM

PROCRAM SEWUENCF
PROFRAM SEQUENCF
PROGRAM SESUENCF
PROGRAM SEQUENCF
PRIGRAM SEGUENCF
PROGRAM SEWUENCF
PROGRAM SEWUENCE
PROGRAM SEWUENCE
PROGRAM SEWUENCF
PROCRAM SEQUENCE
PROGRAM SEWUENCF
PROGRAM SEQUENCF
PROGRAM SEWUENCF
PROCRAM SEWUENCF
PROGRAM SEWUENCF
PROGRAM SEWUENCE

«BGIN
LOO0P

+FOR|
«FOR2
«RPT?2
«RPT1
WATE

«FOR3
<FORY4
«RPT4
«RPT3
WORK

SUMM

«FORS
«RRPTS

END

REFFRENCE WCRNS, ,,

INTZRMAL

SMMpPY
MPOWE
MSU3
SOLN
MMPY
TRAN
VSPAC
LENST
QTrRAG™FE. .

304
307
31nr

77770
77771
7777
77772
77774
7777=
7777¢
77777

1o
42
20
20
2n
2o
n
20
20
2o
20
0!
oc
20
20
01

01
07

n100"
21601
20001
10001
10401
10401
21702
20001
20001
10401
10401
21700
20001
20001
10401
01001

40005
~100N

02
62
00
00
00
00
26
00
00
00
00
41
00
00
00
00

00
00

4400
Q000
40901
Q00!
0001
0001
0200
4001
4001
000!
000!
0200
4600
400!
0001
4400

4000
4200

4/06/66 1L 1B

00136
00006
00236
0023!
00211
00206
00005
00170
00154
001346
00135
00000
00006
00046
00032
00137

06no0
00000

£PBL54577040000000
Bu45756654440000000
Eue”64412540000000
£2545355254C000000
Bu54577272540000000
636140552540000000
656257474240000000
B4 455446340000000

N
™
H
o oJ

Qwa :;W47

311
31»
313
314
3=

316 £200007000000000

PARAMETERS AT FF +

XDATA
YOATA
WGHTS
COEFS
YCALC
RESID
SUSUM
SIGHMA

NoOUlF W —O

SUBROUTINES REFFRENCED

GENIFIO'
GENIF. ¢
GENIF s
GENIFu)
GENIFy 4

GENIF: ¢
GENIFI..

GENIF, o

o

SMMPY
MPOWE
MSyP
SILM
MMPY

TRAM
VSPAC

LENGT

137

0
0
0
0
0
o]

-

PFIT

L77770
L7777}
L77772
L77773
L77774
L7777
L77776
L 77777
L!

L2

L30

e

N

SR k/20/66 14 27

PF

-B2
F3

JRG
REM
REF
REF
REF
REF
REF
REF
REF
REF
TRA
SPF
RWT
CLA
TSR
SPF
ST
CLA
TSR
SPF
P
CLA
TSR
SPF
sTO
21740
suB
ST
21740
IF(ZERI1SKP
TRA
CLA
NOP
BAU
LRS
CLA
LRS
CLA
LRS
TSR
SPF
CLA
CRL
ADD
00204
CRL
LRL
CLA
LRS
CRR
RPA
TSR
SPF
I[FINZE)TRA
5TD
CLA
1F(PC=)SKP
TRA

BACK~=TRANSLATTON
&qMMPV
xMPOWE
»v3UB
*3JLN
xMIPY

%T AN
xYSPAL
®_INGT
%36 L1R
B5=22
L3907
PE+1sUaTy
*x.77777
x_307
L3
PE+3s UeTT
x 77777
x| 307
L3112
PEsU=T7
77777
#*|_ 307
L313

La2

L3132

Lls

L3Ls

a?

L?)

alr 107
Z:,J+CC
PryUeR |
37

at150

b
L3l4sUsB2
172R=T7
%126
#1307
BlaU=Py
17, Rob3
d33+B4+|,U-R3
Ba+islieR
17

| &

al20

14
175U=Tg
T45,B2-1
x1265!1ieT7
=|_307
L3187+
L34

L3311

L34

L137

PAGE

N
N
Lé63
L1075
Lo~
(U
Lia=
(I

4/20/6¢

1

T6

Té

N

— 0T N

T6

ADD
STQ
CLA
IF(POS)SKP
TRA
CLA
BUS+2
NOP
21740
21740
NOP
NOP
c1740
21740
10620
NOP
CLA
STO
FAD»
TRA
FAD-»
TRA
CLA+2
3AU+D2
TSR
SPF
CLA
TSR
SoF
CLA
TSR
SPF
LDR-
STO
RWT
STO
CLA
IF(Ppor)SKP
TRA
21740
21740
21740
21740
10620
CLA
sSTO
S5TI
CLA
IF({Ppa)SKP
TRA
CLA
CLA
21740
21740
21740
21740
10620
CLA
NOP

L3113

L35

L2112

L2215

L1035
L314s2UsTg
L215s86+)
ZriJ-87
E4a=1sl!'sB]
*Q:I B“:I
LaJaTH
Z»iJ=B7
L.3132'+B]
S=To4
TiaslU-?
ls»l=B?
L3152U+B
®DF

LS

La3

L4

L35
PE+5sRe+]
aL3t1286+1
® 77776
*_307
P=sU=-T7

i _77775
®!_307
Pr+7sUaR]
#1135, «Bp
307

| NaReH2
B1

B

L=

L1l

L2135

L1161
L315211=B|
HPE 422 UrTh
L313aUeB]
BOF + |

T, P
L3115, UeB]
®OF+5
L34

L2

L34

L1337
L3152UeTs
L214,VeB2
TasrU=ty
BIF+7 2 J-T4
T4 U=t
P4+
TuasU-¥
L3142UeB2
LadeB1

PAGE

2

75

7¢

77
106
101
107
102
104
105
106
107
110
1
112
s
18
116
117
120
121
122
122
126
125
126
127
130
131
132
132
134
135
134
137
140
141
142
142
144
145
148
147
150
151
152
153
156
158
156
137
160
161
162
162
16k
165
166

L1s?

Lis!

L/23/6¢
F
1

!

N

MmN

14 27

§T0
FAD»
TRA
FAD«
TRA
CLA
CLA
TSR
SPF
CLa
TSR
sPF
LDR~
sTD
RWT
CLA
CLA
TSR

CLA
TSR
SPF
LDR-
STO
RWT
CLA+2
CLA+?
TSR
SPF
CLA
TSR

LDR-
STO
RWT
CLA
TSR
5PF
CLA
TSR
SPF
CLA
TSR
3PF
LD~
ST
RWT
CLA
CLA
TSR
3PF
CLA
TSR
SPF
LPR~
ST)
RWT
sTd
$TO

WOF +7
L3114

L140

L5

L1225
PEyeH|
P45 B2
®L77774
x!_307
FPE+3s1'eB
%1 35,82
»_307

1 V1sR=H2
B1

B2
FoaU=Ry
FPC+7s! |OBE
l_77774
»xl_307
F=+7,UsB]|
K1 352!"+B2
x_307
172R»P2
Bl

=%
PE+72R6+]
PC+3,86+]
% 77773
307
P+, UaB
x| 35, VeB2
®i_ 307
1N2R+22
=

B2
PEaU-T7
®l 77775
=l 307
FT+3sleB2
K777 7428
x!_ 307
P=r4rlleB]
x135,'eB2
#!_307

19, Qo-"‘.a
=}

B2
PT+12llsBy
F+4),VaB?2
xl_77772
*'_307
FT+5s!1eB
Rr135,'eB2
»l_307
1M1R+H2
Bl

b")

®OF+4
L3215

PAGE

3

167
17¢
171
177
172
174
175
176
177
200
201
20?7
202
204
POF
206
207
210
211
212
212
P14
7218
21k
217
220
221
227
222
224
22%
P26
727
230
231
23?7
?32
234
738
234
237
240
241
P47
242
244

232
254
235%
256
2357
250
761

4/20/6¢

(“*, L2247

L26&u

T4

-

[N}

o

J
—
~

A

oo re

‘W W W Wi
LV ERVIRS

N

1 4, 27

CLA
IF(POS)SKP
TRA
CLA
21740
21740
FMP
21740
21740
FAD
FAD~
FAD-
TRA
21740
sua
53100
FMP
vOF
LDR
CLA
TSR
SPF
581
TSR
SPF
CLA
TSR
SPF
LDRe.
ST
RWT
TRA
SBs
TRA
ucrT
(o]on)
oCT
ocT
acT
oCcT
END

L3t

L3115

L2254

L35seTg

T4sU=|

xOF 45

U.\JaT&

TasUs1y

#OF 42

Tu

¥OF +4

L3215

L247

L3t

L2

-)

L316

XOF+E =T

-3

F=+7

*®|_7777|

*_307

10

*x.77770

®»l 307

FE+7siieB]
®|35s'eB2

x| 307

17s,R=RD

B

)

x| 37

A

pc
0130070CNN0000NNNG
017000700000000000C
012007000000000N00
0130000000000000C
013002000000000N0C
0420070000000C0NCC

PAGE

4

274
275
276
277
300
301

211

313
24

CixL CODING EXAMPLES
- 3

e Numerical Integration

This example is adapted from Schwarz (An Introduction to
ALGOL 60. Comm ACM 5:82-95 (1962)). It concerns the numerical
integration of a differential equation of second order with given
initial values. Schwarz chose the method of Adams' extrapolation,

which consists of the following formulae:

y(x+h):y(x)+hy'(x)+h2[%y"(x)+%Vy"(x)+%V2y"(x)+...]

y'(x+h)=y'(x)+h[y"(x)+%Vy"(x)+I%V2y"(x)+...]

where the ka"(x) are the backward differences of y'' at the point
x and for the interval h. In contrast to other proposals, he
starts the integration by an iterative process (lines 62 to 74)
which uses the same formulae as the forward integration (lines
C-/ 76 to 123).
i The example consists of three separate programs:
EXAMPLE3, a control program to handle input and output and execute
the integration program; F, the function being integrated; and
ADAMS, the numerical integration routine. EXAMPLE3 activates STEX
and initiates output with a page restore and heading print, then
goes into a loop in which it reads four input data from paper tape,
performs the integration, prints the input and results, and returns
to read more data. ADAMS receives X0,Y0,Z0, and XE as input (with
the dummy names XX,YY,ZZ, and EE). M, H, and the final results
X,Y, and ZED are external to both EXAMPLE3 and ADAMS.
The integration is based on the following procedure:
The leading row of backward differences (which are unknown at the
beginning) is first filled out with zeroes (line 52). With this
leading row we integrate M steps ahead with the formulae of Adams
(line 64), since R in the loop named ADMINT means the number of
sSteps to be integrated. After this we may build up a new difference

<:) table from the Mth row backwards by keeping the Mth difference con-

CODING EXAMPLES
4

stant (lines 67-73). 1In this way we obtain a new leading row of

backward differences, with which we again integrate M steps forward.

th

This is repeated until the M difference of two successive runs are

nearly equal (lines 65-66 and 74; note that WE is the Mth difference

of the preceding run). As soon as BETA is FALSE, we start inte-

grating ahead a sufficient number of steps to reach XE (lines 76 to

123).

Lines

13-16

61-63

17,23 ,24,
27-34

11-12,

42-46

52-60

37

51

61,65,66,
61,63

63

Comments

An AP2 sequence is used to initialize output
and activate STEX.

Note use of the power point in arithmetic
expressions.

Input and results are printed with SCRIBE.
The arguments in the EXECUTE command correspond
in number and order to the dummy fields in the
FORMATs .

The REM may be followed by either a tab (lines
42-46) or a carriage return (lines 11-12). The same
is true of FORMAT and BCD.

Extra spaces are ignored.

This line illustrates both the definition of
a function in a single line and the use of an
auxilliiary equation to evaluate a common sub-
expression.

Execution of VSPACE leaves zeroes in the wvector
for which space is taken. This initializes W for
the first pass through the 1loop.

If a name occurs for the first time on the
lefthand side of an equation, its type is inferred
from the righthand side. Thus, DECIDE and BETA
are inferred to be Boolean in lines 61 and 63; R,
J, and V are inferred as integers in lines 61,65,
and 66.

BETA is evaluated as TRUE if 10 '< Wy, ~WE | ;
otherwise BETA is evaluated as FALSE.

Lines
72,76,105
122

22&41
102&37

123

—/

CODING EXAMPLES
5

Comments

These are all conditional équations. Lines
76 and 105 illustrate arithmetic conditionals;
lines 72 and 122 illustrate Boolean conditionals,

The values to be used at each execution of
a function are passed to the function as an ordered
argument list, with the arguments corresponding
in number and type to the parameters in the defini-~-
tion of the program.

The vectors for which space was taken at the
beginning of ADAMS are freed at the end.

4/19/76€6 13424 PAGE 1
!
PEF INE ?
SCALARS X0sYNsZ0s XFoHpXsYs ZED 3
INTEGER M 4
VECTORS BsCyw =
FUNCTIONS FjADAMS 4
7
EXAMPLE3(7), =SEQ e
PEM 1
THIS IS THE DRIVER PROGRAM, TT CONTROLS INPUTs INTEGRATICON, AND nUTPUT
PAG -7 12
SLAN +70007 14
LT7 +79000 31”20 0NGO €035 RS
TSR ¥+|26 | &
EXECUTF SCRIREIHFALER) 17
Mz4s H=0, 0| 2n
LOoF DATA X0»Y0sZn,XE 2!
EXECUTE ADAMG({X0sYN, 70 X7) 2z
EXFCUTE SCRIREIMiFIXN,Y0»20sIN) 23
EXECUTE SCRIRE(XsYsZFD20'IT) 24
SPA .7 2s
CC=«LQ0OP 26
HEAPER FORMAT 27
M H V0 YO 20 30
IN FORMAT \ 31
d dv dddd -ddddd; ddded -ddded. ddddd addddd. daddd
QuT FURMAT 33
-ddddd, ddddd ~4ddAd, ddddd nddddd, deddd
END .38
35
FUXVaYY2Z7)Z27 (SIN(TMP) 4COSITMPI+YY +2) 7 TMPEXX+YY42Z 37
40
ADAMS({XXsYYs Z20EE). =8E 41
REM XX2YY,27 AFF THE INITIAL VALUFES FOR XsY,Y HRIME
FeM M IS THE CRDEP CF THE METHOD (sé) 42
REM £E Is THE EMD OF THE INTEGRATICN 44
FEM H IS THF TMTERRATION STEP 4<
REM Wo IS THE &FCAND NERIVATIVE, W, THE KTH 4ALK DIFF,
FXECUTE VSPARE(B.7) 47
EXECUTE VSPAr£(Cs7) 50
FXFCUTE VSPACE(WsM+]) 51
B =l clih-= 57
B, =0 50 C. =1 /6 32
c ?
By=5 /120 (=1 /8 54
F‘+=3' /-9*‘.! (u:'9|/1§500 5%
B_=251. /7204 » Cp=3 /37, 56

~

7N

D,

4/19/6€6 1324

LOoo¥
RLINT

ADMTNT

Lig

NSHIFT

PG:BS./ESB.: C6=Q63-/10030.

F7=lq087u /60#801] C7=?75' /3u564,

WE=|*10s R=M, DECIDE=TRU=
CC=«ADMINT
FETA=1*-7<|NM~WE|

w;:wM
FOR J=Ms=1,
FOR V=P, 1,M
WV:WV-N
PEPEAT
PEREAT
CC=«LOOP .If BETA
R=FIX{(XE=XX)/H)» PECIDE=FALFE
¥=XXs Y=YY, 7ED=72

FUR J=1s1sR+)

CC=<L b4 JIf =

FOR V=M,y=i,|

1 -
kV+l NV

REPEAT
wl:F(X1Y:ZED)

REM F IS THE FUNCTION DEFTNING THF
REM DIFFERENTTAL FQUATION
CC=eNSHIFT ,1f J=C

FCR V=2, 1sM+

W g 3
vl My

REPEAT
Fz7s G=¢
FOR V=1, 1M+

=P+B
P N wv

J=R+
=R CV NV

V+1

FEPEAT

X=X+H

YSY+H{ZED+Q H)
ZED=ZED+P H

REPEAT

CC=«RLINT .1~ DEC|PE
FRASE B,Caw

NEFINE

PAGE

2

60

61
62
63

64

6%
66
67

70
7
72
73
74
7%
7€
77
100

101
192

1023
104
10%
104
197

110

111
112
11

1=
116
117
12¢
121
122
123
124
128
126
127

EXAMP START NEW PROGRAM 4/719/66 |32, 33

«BGTN PROGRAM SEQUENCFE
LOoP PROGRAM SEGUENCF
HEADE PROGRAM SEQUENCF

IN PROGRAM SEWLUENCF
QuT PROGRAM SEWJUENCF
END PROGRAM SEWUENCF
EXAMP , =
«BGIN 1 47 21641 00 000! o00!0! END

THI® IS THE DRIVER
0 0i'TPUT
ILA0p

HEADE
IN
nutT

END
REFFRENCE WORDS, « 4

7ED

Y

X

ADAMS

XE

Z9

YO

X0

«INQU

N

M

SCRIR
INTFRNAL STORAGE,,

«NUMB

«NUMB

PROGRAM: IT CONTROLS INPUT» INTEGRATION, AN
15 01 40001 00 %000 00004
51 00 n000n 00 Q000 00007
é1 n0 nOS0n 00 0000 00010

72 0n 00302 00 0000 00010
102 €1 n1009 00 4000 00000

77764 71444325250C000000
77765 702525252500000000
77766 £72525252500000000
77767 L04240546240000000
77770 674025252500000000
77777 7100252525017000000
77772 700n25252507000000
77773 &£70n25252500000000
77774 7557555454400C0000
7777= L72R25£52500000000
77774 RLp=25232500000000
77777 £24261594140000000

104 3120000000135
10% 770Mr2435360507534

SUBROUTINES REFERENCED

GENIFE. 4
GENIE. 4

ADAMS
«INAU
SCRI3

[

@

F START NEW PRO3RAM
«BGIN PROGRAM SEGUENCF

END PROCRAM SEWUENCE
F =
«BGIN {
END 2=
24
27
REFFRENCE WORDS,..
: cds 77774
SIN 77777
INTERNAL STORAGE, ,
TMP 3n
«NUMRB 31
PARAMETERS AT PF +
X X
YY
22

n— O

4/19/66 |2 353

[N A1007 02 4400 00136

01t n100N 00 4400 00137
0l 40005 00 4000 000ON
€7 1001 00 4200 00000

4P5A62252547000000
£25n55252542000000

0
10720012007°000000

SUBROUTINES REFERENCED

GENIEs ¢ Ccas
GENIFe4» SIN

ADAMS START NEW PROGRAM 4/19/66 (233

«BGIN PROGRAM SFUWUENCE
Loo®» PROGRAM SEWUENCFE
RLINT PROGRAM SEQUENCF
«F0=| PROGRAM SEWUENCF
«FOr2 PROCRAM SEQUENCF
«RPT2 PROGRAM SEWUENCF
«RPT| PRORRAM SEQUENCF
ADMTN PROCRAM SEGUENCF
«FOX3 PROGRAM SEWUENCE
«FOR4 PROGRAM SFWUENCE
«RPT4 PROCRAM SEUUENCF
Lig PROCRAM SEWUENCF
«FO~5 PROCRAM SEWUENCF
«RPTS PR0OFRAM SEUWUENCE
NSHTF PROGRAM SEWUENCF
) PROCRAM SFUUENCFE
«RPTe PROGRAM SEQUENCE
«RPT3 PRUGRAM SEGUENCE
END PROFRAM SEWUENCF

ADAMS , =
«BGIN 1 1A N1CCN 02 4400 00136

XX2¥Ys77 ARE THE INITIAL VALLFS FOK XaYsY PRIME

M IS THE ORCER OF THE MrTHOD (s4)

EE 'S THE EMND OF THE INTEGRATIOM

A IS THE INTEGRATIUN STFP

N40* IS THE SECOND DERIVATIVE, WKt THE KTH BACK DIFF,
LOOoP 121 01 217017 40 4001 00053 ADMIN
RLINT 122 €1 21747 41 Q401 77450 M
«FOR1 134 M1 21709 00 Q401 77436 i1
«FOR2 141 &1 21707 0C 4000 000072

«RPT2 18= 20 10401 00 000! 00230 v

«RPT1 157 30 1040t 00 0001 00725 J
ADMIN 178 A1 21700 00 0600 00000 XX
«FOR3 202 20 2000! 00 4C0! 00701 J
«FORY 21= 01 21707 00 0491 77585 e

«RPT4 23n 30 10461 00 000! 00155 v
L14 23> nO P010° 26 4401 77%34 x
F IS THE FUNCTION DEFINING THF
JIFFERENTIAL EQUATION
«FORS 24¢ 01 21709 00 4000 00002
«RPTE 262 P0 104CG1 00 0001 00122 v
NSHIF 26= nn 20001 00 4001 00122 P
«FORE 267 20 20001 00 4001 00116 v
«RPTe 313 g0 10401 00 0001 0ON7? v

«RPT3 33r 20 10401 00 0001 00054 J

@

—_

END

REFTRENCE ‘MORDSI ‘e
F

7ED

Y

X

FIX

H

XE

M

W

C

VSPAC

R
INTERNAL STrRAGE,,

-1

«JNEF

«NUMB

o-NUME

«NUMB

«NUMB

«NUMR

«NUME

«NUMB

~NUMR

«NUMBR

«NUMB

«NUME

«NUMBR

«NUME

«NJHB

«NUMB

«NUMB

«NUMR

«NUMB

«NUMB

«NUMB

WE

s

NECID

«NUMR

RETA

J

\

op?

=)

]

347
35n
35

77764
7776
77764
77767
77777
77771
7777»
7777=
77774
7777=
77774
77777

35>
35=
354
35=
354
357
36n
361
367
362
364
3=
364
367
37~
371
372
37>
374
37=
374
377
400
401
40~
407
40¢
40~
404
40~
41n
2

PARAMF TERS AT FF +

XX
YY
74
FE

W — O

®1 ~100"Y 00 4400 n0O137
Al 40004 00 4000 00NO0O
R7 n1001 00 4200 00NOO

4=2=25232547000000
714443252507000000
702525252500000000
67252525250"000000
hR5N67252540000000
472525232507 000000
€74025252500000000
B4 2=2523250C0000000
62725252547 000000
4722525232547 0C0000
656757 474240000000
4125252325400C0000

0
1010100970007000000
772000072007°000000
10760GH00000C0000
107°500170007000N000
10140070007000000
1610007)007°000000
10"r30079000000000
1023007)067°000000
124400°00000CQ000
1373007)000000000
P0M264730070C0000
10400073000000M00
11270072007000000
20"1 1072007000000
20Nn32752007000000
2047307)000C0C00N0N
211243%50000000000
2354201720007 000000
20M 1045007000000
2015401)007000000
=0N225705744C0000
n

0

0
7EONIE327745152745

o NeNe NoNole)

SUBPOUTINES REFFRENCFD

GENIF.,
GENTEs

137
133
F
FIX
VSPAC
135

CODING EXAMPLES
6

@ Complex Matrix Inverse

This program inverts a square matrix whose elements are complex
numbers, The method used is essentially inplace Gaussian reduction
as described in "An Introduction to Numberical Mathematics",
Stiefel, E,L., 1963, page 3. Each successive pivot element has
the largest modulus of all the remaining choices. This insures the
least possible error in the resulting inverse. If the modulus
of any pivot element is too small, the matrix is numerically singu-
lar, an error message is printed,

The n X n complex matrix is stored as 2 n X n real matrices
with the primary codewords in two successive memory locations.
Throughout the program, subscripting and arithmetic are performed
on the complex variables with the same Genie code that has hereto-

fore been used for real variables,

Lines 11 to 13:

Working storage defined.
Line 14:

Complex matrix B is copied into A, Thus, B will be pre-
served after its inverse is computed.
Lines 20 to 27:

The largest remaining pivot element is found and stored in GMOD
and indices stored in GG and HH.
Lines 30 to 64:

If the chosen pivot is large enough, the exchange algorithm
is applied to A.
Lines 66 to 103:

Since pivot elements were not in general along the diagonal,
the rows and columns of the inverse are rearranged depending on

the contents of ROWW and COLL.
Line 104:

The inverse is stored in RESULT, where all results of implicit

SN

N

(0

CODING EXAMPLES
7

functions are stored. Working storage is freed.

Lines

3-4

10

11-12

13

22

24

30

45

51

60

106

107

115-117

Comments

Double declarations of integer vectors and
complex matrices.

Use of ROW function implicitly in expression.
ROWW and COLL are declared real and, thus, are

created by VSPACE, the real vector space program
called in the program.

NEW is declared complex. Thus, even though
MSPACE is called by the user, CMSPACE (complex
matrix space) will be the program executed,

Subscripting of a complex variable; use of
MOD function implicitly in an expression,

Two equations on one line, as many as fifteen
permitted.,

Specification of a constant using power point,
Tt '«' is printed for '#'.

"~ ° L

Use of "4+/' to create complex variable out of
two real variables.

~Labelled REPEAT command., This is not the same
as labelling the corresponding FOR statement,

Compound conditional transfer.
Unconditional transfer to labelled location,
Use of SCRIBE to print error message,

Terminating LEAVE statement is followed by
two carriage returns,

|

"

GENIE

9/23/6F 13.02

PEFINE
COMPLEX MATRIX BsA,NEW
INTEGER VECTNR ROWW,COLL

INVERT(B), =FEQ

MORE

SOME

INTEGER GGsH-,LsCaDIE
COMPLEX G

L=ROW(R)

EXECUTE VSPACE(ROWW,L)
EXFCUTE VSPACE(COLI_sL)
EXSCUTE MSPARE(NEW,L»L)
A=8

FOR C=1s1sL.

GMND=0.

GG=CsHH=C

FOR D=Cy1sll

FOR E=Cs il
KMOQ—MOD(AD‘EI

CC=«MQORE If KMOD«GMOD"
GG=D,HH=E

GMND=KMQOD

REPEAT

REPEAT

CC=+BYE .If GMOD=l, 0*-12
COLLC=GG

RONWC:HH

FOR D=1,1sl
GzACtD
AC;D:A

GG, D

Aga,p=C

REPEAT

FOR D=1s10L
G:AD‘C
ADnngDJHH
AD;HH:G
REPEAT

NEwC‘C=(1.+/o.l/AC‘C

FOR D=1s1al.
CC=«SOME ,If D=C
NEWD:C:AD:C/AC;C
REPEAT

FOR D=1s1sl

September, 1966 CC=<«TOME .If D=C

NENCJD:-(ACJD/AC:C)

PAGE

1

N A FE WY -

11
1?
13
14
1=
16
17
20
21

27

22
24
25
24

27
30

3]
3?

32
34

3=
34

37
40
41

42
43

+ &
N

Ul & &
DN M

Ol Ol UL Ul
W N —

LS

)

TOME

vOME

3YE
MESS
NO INVERSFE
END

LEAVE

GENIE
September, 1966

AN

9

- 9/23/6€ 13,02

REPEAT
FOR D=1,1sL
FOR E=1s1sLL

CC=+VQOME +If D=C 0 :R E=I
NEW. =A_ _+(NEW_ _)lA_ |
CHF

DsE DJE
REPEAT
REPEAT
AZNEW
PEPEAT
FOR Cz=lLs=ls]
HH:COLLC

GG=ROWW
e

FQOR D=1,1,L
G=A

PEPEAT
FOR D=1,1sL

G=Ac,p

Ac,07466,0

AGG:D:G

REPEAT
REPEAT
RESULT=A

ERASE COLLsROWW2NEW, A

CC=<+END

EXFCUTE SCRIBE(MESS)
CCz=*END

FORMAT

DUFE TQ SINGULARITY

DEFINE

PAGE

2

58
5é
37
60
51

62
63
Al
6:
Y
67

70

71
77

74

7=
74
77

100
101

107
103
14
105
106
107
1o
11
12
13
114
1=
116

INVTR

«BGIN
«FOR|
«FQOR3
MORE
«RPT2
<FOR4
oQPTq,
cFORS
«RPTS
«FOR6
SOME
«FOR7
TOME
«FORg
«FQOR9
vOME
«RPTR
ORPTl
«FORQ
¢-CORb
‘QPTD
«FQORe
«RPTe
«RPTa
8YE
MESS
END

INVER . =

GENIE
September, 19

STAFT NEW PROGRAM

PROGRAM
PROCRAM
P20QCRAM
PROGRAM
PROGRAM
PROCRAM
PR0CGRAM
PR0CRAM
PR0CRAM
P2QGRAM
P2QGRAM
PROGRAM
PRQCRAM
PROCRAM
PROCRAM
P20GRAM
PROCRAM
PROGRAM
PROGRAM
P20CRAM
PROCRAM
PTQOGRAM
PROGRAM
P20CRAM
Po0CGRAM
PROCRAM
P2OCRAM
P20CRAM

SEWUENCF
SEQUENCTE
SEWUENCT
SEQUENCF
SEQUENCE
SEWUENCE
SFWUENCE
SEGUENCF
SEQUENCT
SEQUENCE
SEGUENCT
SEWUENCE
SFQUENCF
SEGUENCE
SEQUENCT
SEQUENCE
SEQUENCE
SEQUENCF
SEQUENCT
SEQUENC™
SEQUENC*E
SEQUENCE
SEGQUENCT
SFEQUENCF
SEQUENCF
SEQUENCF
SEGUENCE
SEGQUENCE

«BGIN 1

<FOR| 47

+FOR2 64

«FOR2 6%

MORE 1=

-RPT2 117

«FOR4 (3

«RPT4 162

«FORS l6u
«RPTS 217
«FNRé 232
SOME 26F
«FOR7 267
TOME 321

«FOR® 327

1o
20
01

20
Pn
20

Ny
D

1))]
]

2o
20
20
20
2o
20

n1o0n
20001
1701
1709
10401
10401
20001
10401
20001
10401
20001
10401
20001
10401
20001

20001

o2
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00

4400
4001
0001
000!
0001
000!
4001
000!
4cot
0001
400!
000!
4001
000!
4001

4001

9/23/66

00136
00511
00%00
00473
00450
00445
00430
00402
00400
001352
00331
00277
00?275
002473
00241

00736

U R G T

m

1 O G T ¢ C O <

m o G

13. 02

GENIE

September

REFERENCE WORDS:
SCR1IB
CADD
~MPYy
co1v
CMPL.X
MOD
CSTAR
A
P X e
CMCPY
CMgPA
NEW
L A XX 3
coLL
VSPAC
ROWW
CROW

INTERNAL STORAGE.,
L
Py
‘PE

c
GMOD
efc]

HH

D-

F

eg]
-
KMOD
«NUMB
;3
LA L X J
«ONEF

1966

B

L X X g

37=

377

553
S54
35~

77755
7775«
77757
77750
77761
7776~
7776~
77764
7776
7776¢#
77767
7777n
77771
7777~
7777=
7777¢
7777¢%
7777«
77777

552
557
Sar
561
5¢°
36"
56u
S56%
S56¢
567
570
571
57~°
577
374
S7R

PARAMETERS AT PF +

on

01
C1
07

10401
10401
10401
21700
20001

10401

) 20001

10401
10401
21702
n000N
n100M

40005
n100N

00
00
00
00
00
00
00
00
00
26
00
00

00
00

000!
000!
000!
0001
4001
000!
4001
000!
000!
4001
0000
4400

4000
4200

00170
00165
00140
00133
00127
0010!
00077
00051
00043
00n04
00004
00137

00000
00000

424261574140000000
424043432540000000
LPELET 712540000000
L242506=2540000000
4254575348700 0C00000
7=7=75757500000000
545443232540000000
k26263495140000000
7E78578757540000000
L02F2E232540000000
7=7=75757540000000
L25u42577040000000
Lo5842574040000000
BF4u66252540000000
7E7R787357540000000
425453532540000000
456757474240000000
£15466642540000000
426156642540000000

o Ne Yo Ne No No o Neo Jo o No No]

7300106274630C4557
0]

0
10n10070000000000

< m

el

[

Ll @ SR O v C

MESS

SUBFROUTINES REFFRENCED

GENIE. '
GENIE: .
GENIE: o
GENIEw .o
GENIE: ..

GENIFE: 4
GENIFEs 4
GEMIE! . lA
GENIE,..

GENIE
September, 1966

137
SCR1IB
CADD
CMPY
Colv
MOD
135
CMCry
CMSPA
VSPAC
CROwW
135

CODING CONVENTIONS

This section discusses détails of compiler generated code,
It is intended for those who are particularly interested and for
those who wish to code in a lower level language while maintaining
compatibility with compiled programs. This material is not essen-~-
tial to the understanding of the Genie language and .should not be
read Before attempting to write some programs‘for the compiler
and gaining some familiarity with the Rice Computer, the assembly’

language, and the SPIREL system.

A

CODING CONVENTIONS
S
2

® Programs initialization and termination

The 'SEQ' or 'RSEQ' causes the compiler tb generate a sequence
of orders which initializes the program being compiled. The first
of these orders is labelled '<~BGIN', and the orders are collectivély
called the “<BGIN code sequence!", For each"SEQ’ orv”RSEQ' there
is an 'END}, and an "END code sequence" corresponds to each «BGIN
code sequence. The forms of these code sequences depénd on whether
'SEQ'For 'RSEQ' is used, the number of parameters (p) listed for
the program and, in some cases, the types of the parameteré. Each
complex parameter is counted as two parameters, the real part follow-
ed by the imaginary part.

An 'SEQ' causes generation of a non-recursive program; an
'RSEQ‘ causes genefation of aArecursive program. These two types
of code are distinguished functionally by the location of internal
variables for the program. Constants are always stored within
the program. Private storage is inside a non-recursive program and
on the B6-list, addressed relative to PF, for a recursive program.
éenie;genérated recursive code will not alter itself while running,
and a recursive program may use itself ;-,provided AP2 code in the
program also -obeys conventions necessary for recursion., The use of
a program by itself is clear in a case where program A uses program
A; 1f program A uses B which uses C which uses A, then again pro-
gram A is using itself,.

For a non-recursive program =-=- one begun with 'SEQ' or a one

statement function ... A singlé fast parameter in the definition
of a program is a special case which causes only PF to be sévéd
and assumes no parameter addréssingvin Genie language within the
program; 'Otherwise,‘fast register names should not be used as

parameters in a program definition, and the following discussion

‘applies. A single parameter enters a program in T7, the value of

a scalar or *%* codeword address for a non-scalar. Immediately a

'scalar with name P in T7 is stored at internal location 'P'; a

non-scalar parameter is stored on the B6-list, All fast registers

CODING CONVENTIONS
3

are saved; if there are parameters on the B6-1ist’(p>1 or p=1
and a non-scalar parameter) PF is set to point to the first parar
meter. In this case (PF) is stored in the address portion of
'"END+1' and must be maintained with this value throughout the pro-
gram for the purpose of addressing parameters. The END code se-
quence restores the fast registers, sets B6 to free the storage
occupied by any parameters on the B6-list, fetches (T7) for implicit
, execution, and exits to the PF setting on entry. The specific code

sequences are as follows:

p=1 <BGIN PF RWT ‘END.
fast .
END TRA Z
p=1 «BGIN -Z TRA %*+136, U-R
scalar T7 STO P
o :
- END TRA *+137
T : T7 TRA PF
p=1 <BGIN T7 STO B6, B6+1
non-scalar -Z TRA #+136, U-R
B SPF B6-11
PF RWT END+1
END TRA %*+137
SB6 (z)
T7 TRA PF
p>1 ~BGIN -7 TRA #4136, U-R
S PF- B6-p-10.
PF RWT END+1
END TRA *+137
SB6 (Zy
T7 TRA PF
For a recursive program =-- one begun with 'RSEQ' ... A
single parameter enters a program in T7, the value of a scalar
or % codeword address for a non=-scalar. Multiple parameters enter
on the B6-list at B6-p,...,B6~-1, address for a scalar and % code-
(/f word address for a non-scalar, A single non-scalar parameter is

stored on the B6-list. 1In all cases the PF setting for the last

execution of the program is picked up from 'END+1l' and stored just

CODING CONVENTIONS
4

beyond the parameters on the B6-list., This B6 value is stored in
'"END+1'" for the PF setting of the current execution. B6 is ad-
vanced over 1 private storage locations for the program. A full
save is done. Then PF is set for execution -- with p parameters at
PF-p,...,PF-1 and i private storage locations at PF+1l,...,PF+i. A
single scalar parameter named P is stored at private storage loca-
tion 'P', 1In the case of a single fast or a single scalar para-
meter, the program is considered to have no parameters. B6-list

utilization by a recursive program is illustrated by:

PF"[)—»'
p parameters
PF-1-
) F—. . .
entry Bb=execution PF =~} PF setting from last execution
PF+1-{
i private storage locations
PF+i -

10 words for SAVE

execution B6-

push~-down storage for execution

The END code sequence restores all fast registers, restores the

PF setting for the last execution at END+1, backs B6 up by p+i+l
to free all B6-list list used in execution, fetches (T7) for im-
plicit execution, and exits to the PF setting on entry. The

specific code sequences are as follows:

single
scalar
(p=0)

single
non-scalar
(p=1)

single fast

(p=0)
and multiple

(p>1)

all cases

<BGIN

<BGIN

<BGIN

END

B6
B6
-Z

T7
T7
B6

B6
-Z

B6

B6

PF
T7

CLA ,WTG+2
RWT
ADD
TRA
S PF
STO

STO
CLA ,WTG+2
RWT
ADD
TRA
SPF

CLA ,WTG+2
RWT
ADD
TRA
S PF

TRA
CLA ,WTG
STO,WTG
AB6
AB6

CODING CONVENTIONS

END+1
END+1,B6+1
a-*END+3 ,U-B6
%+136,U-R
*END+1

P

B6,B6+1

END+1
END+1,B6+1
a-*END+3 ,U-B6
*+136,U-R
*END+1

END+1
END+1,B6+1
a-%END+3 ,U-B6
%*+136 ,U-R
*“END+1

*+137

z
END+1,B6-1
[-i],U-R
['P]:R—’CC

5

CODING CONVENTIONS
6

® Result for implicit execution

A program which is single valued may be executed implicitly;
that is, it may be mentioned within the formula on the righthand
side of an equation in Genie language. A non-complex scalar result
must be in U upon exit from the program, a‘complex scalar result in
the complex accumulator named CM?LX, a non-complex non-scalar
result in the non-scalar accumulator whose codeword is by defini-
tion at location +10 during execution. The name 'RESULT' is
interpreted by the compiler as T7 for a non-complex scalar, as
CMPLX for a complex scalar, as codeword address +10 for a non-
complex non-scalar and as CSTAR for a complex non-scalar., 'RESULT'
may appear only on the lefthand side of an equation and must be
defined in the last command executed before 'END' on all dynamic
paths to 'END'. The 'END' code sequence fetches (T7) to U as it
exits so that a non-complex scalar result is indeed in U upon

return to the program causing the implicit execution.

O

C

CODING CONVENTIONS
7

@ Addressing of variables

With respect to any given program every variable is in one of
three categories: internal, external, parameter. All internal
variables are scalar., For a non-recursive program the values of
all internal variables are stored within the program. For a re-
cursive program internal variables are of two types: constants
are stored within the program; others are stored in private storage
on the B6-1list, the ith private storage word being addressed at
(PF)+i after program initialization. External variables may be
scalar or non-scalar, the address or % codeword address respective-
ly being stored in a cross reference word within the program, the
value or codeword respectively being stored in the Value Table
(*+122) during execution. 1In the general case, reference words
for parameters are stored on the B6-list. For a non~-recursive pro-
gram the pth parameter is addressed at (PF)+p-1 after program
initialization. For a recursive program the pth parameter is
addressed at (PF)-p after programvinitialization. Parameters of
a program during execution are indeed internal or externmal with
respect to some dynamically higher level program, but this does
not affect addressing in the program where they are parameters.

The following charts summarize addressing conventions for variables.

&

CODING CONVENTIONS

8

For a non-recursive program =--

data codeword
variable representation address address value element
internal value in program #IS | memmmmm-- (Is) | =-=-====-=
scalar at IS '
external address in program| (ES) = | ======-- ¥ES 0 | mmmmm--
scalar at ES. 3
external * codeword address | ======-= address | ===== *ENS
non-scalar {in program at ENS in (ENS)
scalar address at (PF4+p=1) | =======- *PF+p=1| =======
parameter PF+p-1
non-scalar | % codeword address | ======- address in | ======= *PF+p-1
parameter at PF+p-1 (PF+p-1)
For a recursive program --

data codeword
variable representation address | address value element
internal value in program #IC | mmmmm—a- (IC) | ======-
constant at IC
internal value on B6-1list #PF+i | mmmmm—- (PF+i) | =======
storage at PF+i
external address in program | (ES) = | ~======-=- K¥ES 0 mmmmee-
scalar at ES
external * codeword address | ======== address in | ====-- *ENS
non-scalar |in program at ENS (ENS)
scalar address on B6~-list | (PF=p) | ========- %PF-p | m=====-
parameter at PF-p
non-scalar | * codeword address | -====-=- address in | ===-= *PF-p
parameter {on B6-list at PF-p (PF-p)

CODING CONVENTIONS
9

e B6-list, working storage

The SPIREL system uses the block with codeword address +112 as
a working storage area., The conventions associated with this
storage are that B6 points to the next available location on the
list [hence, the term "B6-1ist"] and that the storage is used in
a linear "last-in-first=-out" or "push-down'" fashion. Genie
generated code uses the B6-list for temporary storage of interme-
diate quantities within the calculation of an arithmetic formula,
always storing at (B6), incrementing (B6) after the store, retriev-
ing from (B6)-1, and decrementing (B6) after retrieval. The B6-
list is also used for storage of parameters before entering a pro-
gram; the program then decrements (B6) over the parameters before
return since the storage occupied by parameters is no longer in
use. For a recursive program, a private storage area is established
The SAVE (%*+136) and

UNSAVE (%+137) programs and other SPIREL routines use the B6-list

on the B6-1list and freed prior to exit.

for temporary dynamic push-down storage.

Using the B6-1list for temporary storage, the following sequence

shows storage of A, B, C and later retrieval of C, B, A with proper
maintenance of (B6) as a pointer to the B6=-1list:

CLA+2 A, B6+1

CLA+2 B,

CLA+2 C, B6+1

B6+1

calculation perhaps involving
use of B6-list with balance of

. stores and retrivals, so that
y final (B6) = initial (B6)

CIA B6-1, B6-1

STO C

CLA B6-1, B6-1

STO B

CLA B6-1, B6-1

STO A

CODING CONVENTIONS
10

e Parameter set-up for program execution

Execution of a program with a single non-complex scalar
parameter SP is preceded by code which accomplishes (SP)-T7.
In the case of a single non-scalar parameter NSP, the code accom-
plishes %NSP-T7. For more than one parameter, representations

t
are stored sequentially on the B6-list; if the k b parameter is

'a scalar SP, then SP-B6, B6+1l; if the kth parameter is a non-

scalar NSP, then *NS?~B6, B6+1. A complex parameter is treated as
two parameters, the real part followed by the imaginary part, If
one of a group of parameters is given by a number or an expression,
then the quantity must be given a name before the proper parameter

representation can be stored on the B6-list., For such purpose

the names '«<P1l', '«P2' 6 etc. for non-complex quantities are generated

by the compiler. The quantity is stored at «Pn for a scalar or
%Pn for a non=-scalar is stored on the B6-list. A non-scalar at
«Pn is freed upon return from the program for which it was stored;
then all «<Pn used are available for re-use. Complex quantities
are stored as pairs named '<Ql', '«<Q2', etc., then each part is
treated like a non-complex parameter,

The execution of program PROG is accomplished by TSR %PROG
where PROG is a éross-reference word for PROG within the program
doing the execution; the codeword for PROG is in the Value Table
(*+122). Thus, PROG is an external variable with respect to the

program which executes it,

)

CODING CONVENTIONS
11

o Representation of Complex Variables

A complex variable is always on the first level of ad-
dressing represented by a pair of words in consecutive memory lo-
cations, the real part followed by the imaginary part. The name
of a complex variable is attached to the first word of the pair,
the real part; the second word of the pair has the name '"ditto",
printed '«««««', The Cartesian form is used, and both parts are
real floating point.

Genie generates internal storage for the complex scalar A as

A real part of A
Bttt imaginary part of A
Genie generates cross-reference words for the external com-

plex variable A as

A name 'A' in hexads/% if non=-scalar/
VT address for A

————— name "ditto" in hexads/% if non-scalar/
VT address for A's ditto

Then while running the corresponding ST-VT configuration is

ST VT
A .o real part of A -
value if scalar,codeword if
non-scalar
el . e imaginary part of A-
value if scalar, codeword
if non-scalar

Genie constructs two argument words on the B6-list for each
complex argument A, The first addresses the real part of Aj;

the second addresses the imaginary part of A.

N :

CODING CONVENTIONS
12

@ Subscription

In the Genie language any variable may be subscripted by from
one to five indices separated by commas. The indices are assumed
by the compiler to be integers: explicit numbers, simple names,
or arithmetic expressions of any complexity. The indices are load-
ed successively into Bl, B2, ..., B5 by the following procedure
which allows subscripts to themselves be subscripted:

1) scan n indices from left to right, computing those
which are not numbers or simple names, and storing
those computed (except the last) on the B6-list;

2) scan from right to left storing (U), quantity from
B6-1list, named quantity, or explicit number into
Bi for i=n, n-1, ..., 1.

In the sense of SPIREL, a subscripted variable is called an "array".
In particular, a one-dimensional array of data is called a "vector"
and is indexed by Bl, and a two-dimensional array of data is called
a "matrix" and is indexed by Bl and B2 in that order. But in fact
an array may be of as many as five dimensions and may contain either
data or programs, and its elements may be addressed in the Genie
language. The indices may take on negative values if the storage

configuration is.correspondingly established.

CODING CONVENTIONS
13

e Operations on standard forms of non=-scalars

In order to perform an operation between a scalar and a vector
or matrix, to combine two vectors or matrices, or to store a vector
or matrix the non-scalar itself must be addressed in the code.
Although completely general forms of non-scalars may be created
and manipulated in the SPIREL context and may have their elements
addressed in the Genie language, operations on full vectors and
matrices are defined only for arrays of standard form in order
that execution time is not spent in handling the most general case.
The standard form of non=-scalars is entirely sufficient in a wvast
ma jority of applications. The definition is as follows:

standard form of one dimensional array, vector

1) 1loaded with STEX active

2) indexed by Bl

3) dinitial index =1

standard form of two dimensional array, matrix

1) 1loaded with STEX active

2) 1indexed by Bl for row specification and B2 for
column specification

3) initial row index = 1, initial column index = 1

A standard complex non=-scalar is a pair of standard

non-scalars, as described. Codewords must be adjacent,

real then imaginary; a name adheres to the real part,

and the imaginary part is named "ditto" (e«eeee).

Arithmetic operations involving standard non=-scalars parallels
scalar arithmetic quite closely. By convention, codeword 410 is
used as the non-complex non-scalar accumulator, commonly called
'U%'; the complex non-scalar accumulator is named CSTAR. The
programs used for performing operations on non-scalars recognize a
null codeword address for a non=-scalar operand to mean that the
operand is the accumulator. The creation of a new U% or CSTAR
causes the storage previously addressed by that '"name'" to be freed.
If a non-scalar in U% or CSTAR needs to be temporarily saved, this

is done on the B6-list; that is, a word or pair of words on the

| /‘\\

/.

W,

CODING CONVENTIONS
14

B6-1list are taken as codewords for the storage addressed and the

accumulator codewords are cleared.

Note that this storage also

involves adjustment of the STEX back-references to address the

new codewords,

The code sequence generated by the compiler for non=-complex

non-scalar storage A - B is as follows:

z
#
z
#
z
R
Bl

CLA

TSR

S PF

CLA

TSR

S PF
LDR—
STO

RPA ,WTG

A,U-B2
#MCOPY,U-B1
*END+1
B,U-B1
%4135, U-B2
*END+1

+10 ,R-B2-
Bl

B2

q

copy A-U% only if A*U*

free storage addressed
as B only if B#U* and
not on B6=-1list

j clear U% codeword

store new codeword

for B if B¥UK

j update back-reference

The code sequence generated by the compiler for complex non-

scalar storage A - B is as follows:

Z

Bl

#

CLA
TSR
S PF
CLA ,DBL
TSR
NOP
TSR
CLA
CLA ,DBL
STO,DBL
RPA
NOP
R PA
STO,DBL
S PF

A,U-B2
*CMC PY,U-B1
*END+1
B,R-B1
%4135, U»B2
Z,B1-1
%+135 ,U-B2
CSTAR ,U~PF
PF ,U-B2

B1 |

B2 ,R-B2
Z,Bl+1

B2 ,R-Z

PF

*ENDP1

I

1l

o

]

copy A-CSTAR
only if A{LCSTAR

free storage addressed
as B only if B#CSTAR
and not on B6-list

-
store new codewordé
for B
if
BLCSTAR
update back-references
clear CSTAR
codewords -

#(PF) reset only if program is recursive or is using (PF) for
reference to parameters.

TN

L)'

CODING CONVENTIONS
15

o Assignment of type and shape to variables

In the Genie language each variable has a shape: scalar,
vector, or matrix. The shape of a variable may be explicitly
specified as non=-scalar by a declaration: VECTOR for vector,
MATRIX for matrix, Each scalar, vector, matrix, and function (re-
sult) has a type: integer, real floating point, complex, or Boolean.
The type of a variable may be explicitly specified in a declaration:
INTEGER for integer, REAL or SCALAR for real floating point,
COMPLEX for complex, and BOOLEAN for Boolean, The standard
shape/type is scalar/floating point unless otherwise specified
in an INFER declaration. If tﬁe first appearance of a variable
name is not in a declaration, its type is implicitly specified
by the following rules:

1) If a variable name first appears on the right side
of an equation, the variable is assigned the
standard shape/type.

2) If a variable name first appears on the lefthand
side of an equation, the variable is assigned
the shape/type of the expression on the right-
hand side.

In a compilation a variable will not have its type changed
once it is assigned. An equation which has lefthand and righthand
sides of different types will cause the compiler to comment on the
equating of unlike types; code will be generated to perform a
Store appropriate to the quantity on the righthand side, but the

type of the quantity on the lefthand side will be unaffected,

A

-

. CODING CONVENTIONS
16

¢ Arithmetic combination of variables of different types

In arithmetic expressions Boolean and integer variables may
be combined only in exponentiation, Boolean scalar variable to an
integer scalar power. Boolean and floating point variables may
not be combined,

Integer and real floating point scélars and non-scalars may
be combined in any mathematically meaningful way. 1In all cases ex-
cept exponentiation of a floating point scalar by a numberically
specified integer < 7, the integer must be floated before the combi-

nation takes place. 1In all cases the result of the combination is

floating point. If a numerically defined integer scalar is floated,

the floating pbint equivalent is generated at compilation time and
is referenced in the generated code for the combination. Otherwise,
the floating of an integer scalar A is Accomplished by the follow~-
ing generated code:

-LDU -A

FMP ~TW47
where '«TW47' refers to the constant 247 which will be stored with-
in the program. The floating of an integer vector or matrix is
accomplished by use of the Genie SPIREL program MFLT,

Integers and real floating point scalars and non-scalars may
be combined with complex scalars and non=-scalars in any mathemati-
cally meaningful way. 1In all cases except expoﬁentiation of a
complex scalar by an integer or floating point scalar the non-
complex quantity is made complex before the combination takes
place. A floating point quantity is made complex with real part
equal the floating point quantity and zero imaginary part; an
integer Quantity is floated then made complex as a floating

point quantity.

Genie January, 1968

CODING CONVENTIONS
17

@ Boolean variables and operations

A Boolean variable may take on the value 'TRUE' or 'FALSE',
these being represented in the computer by full length quantities
TRUE = +007777777777777777
FALSE = +007777777777777776
The binary operations between Boolean variables to yield a Boolean
value cause code to be generated as follows:

or, A+B, true if either A or B is true

CLA A
ORU B
and, AXB, true if both A and B are true
CLA A
ORU B

symmetric difference, A-B, true if A and B have different
values
CLA A
SYD B
ORU #77776
symmetric sum, A/B, true if A and B have the same value
CILA -A
SYD B
The only meaningful unary operation on a Boolean variable is
complementation, not A, true if A is false

-1 ORU -A

The machine register sense lights (SL) is a collection of 15
bits, any one of which may be individually meaningful and may be in
an on or off (1 or 0) state at any time. The variable SL is Boolean
and exponentiation to an integer power is defined

AB, true if bit B of A is on (1) where the bits of A are

numbered from 1 to 15, from left to right

7

CODING CONVENTIONS

18

CLA A —1
LUR 15-B if B is a number
ORU #+77776 _|
CLA B
BUS #15,U-R if B is
CIA A a name

or
LUR x an expression

ORU #477776 _|
Although the Boolean exponential notation is particularly meaning-
ful for the lights, it may be applied to any Boolean variable.
Thus, a Boolean variable A which does not itself have a value of
TRUE or FALSE may be a collection of 15 bits (the rightmost in a

machine word) Al, A2, cees al? each with a value of TRUE or

FALSE.

\¥ o

CODING CONVENTIONS

19
e Loop coding
In the Genie language a loop is begun by the command
FOR iteration parameter = initial, incrément, final and

ended by the command

REPEAT

If there are not labels on these commands, the kth

the labels '«FORk' and '~RPTk' associated with it.

code generated for loop control is as follows:

<FORk compute initial

initial - iteration parameter

compute increment

store increment

compute final

store final
[~FORk+m] LT7

Z IF(POS)SKP

T7 IF(POS)SKP

T7 TF(NEG)SKP

~ TRA

orders of loop

<RPTk CLA
i FAD -
TRA
[“RPTk+n] .

final

increment

iteration parameter, cC+1

iteration

“RPTk+nr

increment
iteration

<FORk+m

parameter

parameter

Seldom is the full generalized code necessary, and

loop wiil have

The generalized

N

L

)
]

the following

notes pertain to condensations which are provided in various

specific cases.

(A) The increment and the final value are computed and stored

only if they are given by expressions, that is, not

simple variable names or explicit numbers,

(B)

(¢)

(D)

CODING CONVENTIONS
20

The final value will be stored in the address field of
the order if it is given by an explicit integer.

If the increment is given by an explicit integer, it will
not be tested for being positive or negative and only
the appropriate comparison of iteration parameter to
final value will be generateq.

If the iteration parameter is a long fast fegister.F,bthe
~RPTk code sequence will be ’
<RPTk F FAD increment, U-F

TRA ~FORk+m

If the iteration parameter is an index registér Bi and
the increment is an explicit integer +1 or -1, the
<~RPTk code sequence will be

~RPTk TRA ~FORk+m,Bi+l

CODING CONVENTIONS
21

e Use of fast registers in Genie generated code

Fast registers may be used in the Genie language and in assembly
language coding to be used in a Genie context if there is no conflict
with usage generated by the compiler:

T7 is always subject to use for special purpose temporary storage.

T7 is used for storage of a single parameter when a function is
executed implicitly or explicitly.

T4, T5, T6 are subject to use in any arithmetic command for scalar
temporary storage and for storage of scalars mentioned two or more
times in one equation if these fast register names are not mentioned

explicitly in the command.

Bl is used when loading parameters onto the B6-list if a name «Pn is used.

Bl, B2, B3, B4, B5 are used for subscripts in addressing elements of
arfays. The first k are used to address an element of an array of
k dimensions.

Bl and B2 are used in complex scalar arithmetic.

Bl, B2, and PF may be used in operations on vectors and matrices.

Bl is used in input-output commands to specify to the program «INOUT
the operation to be performed.

Bl is used in raising an integer or a real floating point scalar to an
integer power £ 7.

B6 always addresses the push-down B6-list which is used for temporary
storage of scalars and non-scalars, for multiple parameter storage,
and for private storage of a recursive program.

PF is used within a non-recursive program to address its parameters if
there are more than one or if there is only one but that is a non-
scalar. The appropriate value fo (PF) is, in such cases, stored in
the address portion of END+1l so that resetting is easily accomplished
by

SPF *END+1

PF is used within every recursive program to address parameters and
private storage locations. The appropriate value of (PF) is stored
in the address portion of END+l so that resetting is easily accomplish-
ed by

SPF ‘ *END+1

GENIE July, 1967

o CODING CONVENTIONS
I
Lo 22

@ Rearrangement of arithmetic formulae for efficient evaluation

The compiler has the ability to rearrange the terms in addition
(or subtraction) and multiplication (or division) strings. Con-
stant terms are shifted to the left in the formula.b Terms which
are themselves expressions, rather than simple variable names or
numbers, are shifted to the left to save temporary stores that would
be required were such complex terms to appear to the right in a
string. The ordering of the complex terms is determined by the num-
ber of temporary stores required to evaluate each; the complex term
requiring the most temporary stores will be shifted farthest tb the
left. | _

If the order of evaluation within a formula is of importance,
this rearrangement may be avoided by defining each complex term
in a separate equation, thereby giving each a name. Then the origi-
nal formula will involve only simple variable names, and rearrange-

T ment will not take place,.

	Genie
	Contents
	Genie
	Program format
	Names
	Numbers
	Variables
	Declarations
	Functions
	Constants
	Remarks
	Command sequence
	Arithmetic expressions
	Arithmetic commands
	Conditional arithmetic commands
	Transfer control commands
	Loop control commands
	Storage control commands
	Execute control commands
	Input-output commands
	Light control commands
	Data commands
	Fast registers
	Assembly language
	Punctuation
	Compilation procedure
	Running Genie programs
	Coding examples
	Coding conventions

