
]

D
!]
D

D
D

n '---'

Ii

I I
L...J

I :J
:J
I

I 1

!]
I]
I i]
11
I I

LJ

J
]

r1 I~
i D

The

SPIREL SYSTEM

for the

R I C E U N I V E R S I T Y C O M P U T E R

Programming development on the Rice University
Computer has been supported by The National
Science Foundation under grants G-7648 and
G-17934. Construction of the computer was
supported by The United States Atomic Energy
Commission under contracts AT-(40-1)-1825 and
AT- (40 - 1) - 2 5 7 2 •

Apri 1, 1964

J
D

0
D

D

D
D

I

D

D
0
D

D

:l
u

D
0
D

D

S PI REL SYSTEM

I ,, The Con c e pt s ,, ,, " " o ,, o o ., o (I • " ,, •• o " • " ,, ,, ••• ,, ,, ,, ,, ,, o ••• " ,, o • ,, • ,, ,, ., ,, ,, ,, ,, e

II. Codewords. tie,,,,.,,., •• Cl,, o e •••• ,, •••• ,, Cl • ., .. ,, ••• ,, ••• " ••••• ,, o •••• .,.

III. SPIREL System Organization ••••••••••.••.•••••••••••••••.••
1. Memory Utilization
2. External Communication
3. B6-list
4. System Components

Ive cont ro 1 w Or ds O O O O D O O O O O O " " 0 0 0 Cl O O O O O • 0 • 0 0

1. Program *126, XCWD
2. Control Word Format
3. Address Specification
4. Basic SPIREL Operations
5. More SPIREL Operations
6. Recursive Application of SPIREL
7. Summary of Control Words

V ,, Use o f S PI RE I.J .. ,, ,, ,, ,, ,, ,, ,, ,, o ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, o ,, " ,,

1. Input Paper Tape Format
2. Tracing
3. Diagnostic Dump
4. High Speed Memory Dump
5. Error Halts in SPIREL
6. Symbol Table-Value Table Print Format
7. SPIREL System on Magnetic Tape
8 • S PI RE L Sys t em on Pa p e r Ta p e

VI . S tor age Cont r o 1 ,, o • ,, ,, ,, ,, ,, ,, ,, ,, o • ,, ,, • ,, ,, • ,, o " •• o ., o ., " o ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,

VII.

VIII.

IX.

1. Linear Consumption by TAKE
2. Activation of STEX and its Domain
3. Memory Configuration Generated by STEX
4 • Us e o f S TE X

S PI RE L S y s t em Com pone n t s o o ,, • ,, ,, ,, ,, ,, ,, ,, ,, ,, o ,, ,, ,, o ,, ,, ,, • o o ,, ,, ,, ,, o ,, ,, ,, ., •

1.
2 •
3 .

Vectors and Print Matrix
Programs
Component Linkages

System Duplicator,,,,,,",,,,,, e o o o o o a. o o o o. o
1. Purpose of the Duplicator
2. Use of the Duplicator
3. SPIREL Generation

Magnetic Tape Systemo O O O O O O O O GOO O O GOO O O O O O O • 0 0 0 • 0 0 DO O O O O O O O

D

0
D
D
0
0
D

D

D

J
J

:]

J
J

S PI REL SYSTEM

CONCEPTS

SPIREL SYSTEM

Io The Concepts,

A computer serves a user

ing the operations specified.

by decoding instructions and perform

In an analagous manner, the SPIREL

system serves a user by decoding control words and performing the

operations specifiedo In fact, once in the machine SPIREL may be

thought of as an extension of the Rice Computer.

As instructions are used to dictate computer operations on

single words in the memory, so are control words used to dictate

SPIREL operations on blockse PhysicallyJ a block is a set of

contiguous words in memory. Associated with each block is a

one-word "label" called a codeword., A block is a logical unit

from the point of view of the user; it may contain a program, a

vector of data, or codewords which in turn label other blockso

In general, an array is a logical structure which consists of a

codeword which labels a block of codewords which label blocks,

and so on until on the lowest level are blocks which do not con-

tain labels. The depth or dimension of an array is just the

number of codeword levels in the arrayo A program is a single block

with one codeword, a one-dimensional array. A data vector is a

single block with one codeword, a one-dimensional array. A matrix

of data is a vector of data vectors, a two-dimensional array.

Collections of programs and data vectors may be logically grouped

to form program and data arrays of any depth deemed organizationally

useful to the SPIREL user.

An array is uniquely associated with its single highest code-

word, the primary codeword. In most applications all addressing of

information in arrays (contents in lowest level blocks) is done

through the primary codeword. Thus, access to information in an

array depends on only one address, the codeword address for the

array. The physical location of blocks is irrelevant to the user,

so allocation of storage for blocks is performed by SPIREL, and

addressing through levels of codewords constructed by SPIREL is

accomplished by the indirect addressing of the hardware. A fixed

D

0
D
D
0
D

D
0
0
D

0
,n

LJ

0

J
0
0

SPIREL SYSTEM

I. The Concepts,

S PI REL SYSTEM

CONCEPTS

A computer serves a user by decoding instructions and perform

ing the operations specified. In an analagous manner, the SPIREL

system serves a user by decoding control words and performing the

operations specified. In fact, once in the machine SPIREL may be

thought of as an extension of the Rice Computer.

As instructions are used to dictate computer operations on

single words in the memoryj so are control words used to dictate

SPIREL operations on blocks 0 PhysicallyJ a block is a set of

contiguous words in memory. Associated with each block is a

one-word "label" called a codeword., A block is a logical unit

from the point of view of the user; it may contain a program, a

vector of data, or codewords which in turn label other blocks.

In general, an array is a logical structure which consists of a

codeword which labels a block of codewords which label blocks,

and so on until on the lowest level are blocks which do not con-

tain labels. The depth or dimension of an array is just the

number of codeword levels in the array. A program is a single block

with one codeword, a one-dimensional array. A data vector is a

single block with one codeword, a one-dimensional array. A matrix

of data is a vector of data vectors, a two-dimensional array.

Collections of programs and data vectors may be logically grouped

to f6rm program and data arrays of any depth deemed organizati~nally

useful to the SPIREL user.

An array is uniquely associated with its single highest code-

word, the primary codeword. In most appli~ations all addressing of

information in arrays (contents in lowest level blocks) is done

through the primary codeword. Thus, access to information in an

array depends on only one address, the codeword address for the

array. The physical location of blocks is irrelevant to the user,

so allocation of storag~ for blocks is performed by SPIREL, and

addressing through levels of codewords constructed by ~PIREL is

accomplished by the indirect addressing of the hardware. A fixed

i

D

D

0
0
D
0
n
LJ

D

D
i D
I

i O
ID

D

D

D

D

SPIREL SYSTEM

CONCEPTS

2

region of the memory, locations 200 through 277 (octal), is by

convention reserved f·or primary codewords, and allocation in this

area is the responsibility of the individual

correspondence of a primary codeword address

usero The unique

to its array provides

an informative "namen for the array. A program with codeword add~

ress 225 may be called program *225, and a matrix with primary

codeword at 271 may be called matrix *271; the '*' symbolizes in

direct addressing in the assembly language, and here serves to

emphasize this operation in connection with codewords 0

A program *P of length K may occupy~ block beginning at

machine address F 0 Then program *Pis represented in the machine

as

P: K

codeword

F: -----t7
I

In programming, control is passed to this program by the code

TSR *P

which becomes

TSR F

when the hardware indirect addressing is carried out 0

formed is that of the first word of the programo

The address

A vector 'l(V of n data elements v1 , v2 , oo•, Vn may occupy a

block beginning at machine address Fo Then vector *Vis represented

in the machine as

v: I n

F:
.i.]F-1 J___.-c> v1 . . .

codeword v
p ·- . . .

v
n

In p r o g r a mm in g , th~ data element V is addressed by the code
p

p ~ index register i

then

Opera tinni~v

0
D
0
0
D
D

0
0
D

D
D

J
n
lJ

0
D

SPIREL SYSTEM

CONCEPTS

3

which becomes

operation p+F-1

when the hardware indirect addressing is carried out. The address

formed is that of V, as desiredo The standard vector form uses
p

index register Bl for element addressingo Non=standard forms permit

variability of indexing and even allow the first word of the block

containing the vector elements to be addressed as VK where K is

any integero

A matrix 1~M of m rows by n columns of data M1. 1 ,.o o..,,Mm n

' '
is stored one row per block and is represented in the machine as

M: m
F: n fJ :i=l : G : p

0

M
p. 1

e

" .
" ~ .-

j G .-1 n p
primary codeword .

MP. 2 .. 0

0 0

0 .
n j G -1

-ll!
M

p.n

secondary codewords

In programming the data e le men. t M p,q
is addressed by the code

p ~ index register i

Q ~ index register j

then

operation *M

which becomes

operation *p+F=l

and then

operation q+Gp=l

when two levels of hardware indirect addressing are carried out ..

The address formed is that of M , as desireda. This addressing
p,q

in no way de pends on the size of the matrix *M. The s ta.nda rd

matrix form is for a rectangular matrix, using Bl for row specifica

tion and B2 for column specificationo Non-standard forms permit

variability of indexing and non~rectangular structures and even

allow the first element to b~ a~dressed as M. for p and q any
P, q

integers.

SPIREL operations on arrays are dictated by control words

D
0
0
D
0

D
D

J
0
0
D
0
0

SPIREL SYSTEM

CONCEPTS

which specify the primary codeword address for the a~ray •. Such

operations are:

0

to take space for a program, vector, or £tandard matrix

to print the lowest level blocks in an array

• to punch an array

to execute a program

e to free the space occupied by an array

e and many others

4

Of particular importance is the fact that arrays may be dynamically

created and erased; o~ changed in size and structure so that only

immediately pertinent. arrays occupy.space at any time during the

~un:of·a u~er's system~

SPIREL control words are 18-place octal configurations, ioe•.,

one machine word in length. With the SPIREL system in the machine,

control words may be transmitted to the system in two ways:

internally undel program control by the user --
. i

control word ~ T7

and TS~ *126

externally to the SPIREL communication routine from paper

tape --

control word preceded by 'carriage return°

punch on paper tape in the reader

or from the typewriter --

control word t~pe U-register.

In all these cases the control word is in fact transmitted to XCWD

(Execute Control Word), program *126 in the SPIREL systemo This

program is the nucleus of SPIREL; it interprets each control word

and may use other programs in the system to carry out specified

operations. SPIREL is, then, a collection of programs, and any of

these may be utilized directly by the user of the system 0

Details about codewords, system organization, control word

decoding and formats, storage control, and the SPIREL programs are

given in the succeeding £ections.

0
0
0
0
0
D
0
0
0
0
0
n
LJ

D
0

ID
D

0

··--·--···· ------------

SPIRE L SYSTEM

CODEWORDS

I I. . Codewords

With every block of memory is uniquely associated a codeword

which has two primary functions:

• description of the block, including current length and

location, current type of bloc~ content, and printing

format for the block

e indirect addressing portion appropriate for programmed

addressing through the codeword into the blocko

The format for a codeword at address c, which labels a block

beginning at address F=f+i is:

where

j1 1sj16 2112sl29 30131132 39,40

c :I n I i I a I y I * I m [f I
\ indirect I
---- addressing -

n=length of the blocko

i=empty (+O) if no B-mods

contains a program;

in codeword,

portion

in particular if block

initial index in !us-complement format if B-mods in codeword,

in particular if block contains a vector; first word of

block is addressed as C.; standard SPIREL provision is
l.

for i=l; i=O is represented by i=7777.

a=l if block contains codewords; empty (0) otherwise.

y=printing format to be used for output·of block if none

given in print control word

0: oct~l~ 4 words per line (sta~dard SPIREL provision)

1: hexad, 108 characters per line

2: octal, 1 word per line in program layout

3: decimal, 5 words per line

*fi;n.=iri.dite·ct addressing and B-modification bits,, effective

in addressing indirectly through the codeword.

f=F-i, F=the address of the first word of the block.

A codeword is completely formed by SPIREL at the time the

corresponding block is created. This creation is the result of a

control word to take space (structure formed and lowest level

I

I

I

~

I

0
0
0
J
0
0
0
0
0
n u

n u

J

0

S PI REL SYSTEM

CODEWORDS

2

blocks filled with zeroes) or one to read a block (structure formed

and lowest level blocks filled with words read from paper tape).

The most frequently used codeword forms are illustrated below.

• For a program *P of length k:

h isl, 16 2112 8 39j40 541

P: I k i 0000 I 0000 I F J
oc ta 1 digits

where the first word of the program is located at address F.

Control is passed to the program by the code

TSR *P

0 For a standard vector *V of length n:

11 15 ;I 16 2 712 8 39140 541

V: I n I 0001 I ·. 0002 I F~l I
I oc ta 1 dig.its

where the vector elements vl is located at address

ihdex=l,, and a Bl modifier is usede

by the co•de

F, the initial

Th~ element V is addressed
p

SBl p

CLA *V

For. a standard ·.matrix *M of m rows by n. columns:

primary-codeword

Ii 1s!16 2112s

M: I m I 0001 j 4402 I s -1 I
L----....:::===octal digits

s~condary codewords

s : n I 0001 I 0004 . I R,-1 . . .
n I 0001 i 0004 I R_-1 . .

Q .
S+m-1: n I 0001 I 0004 I R_;,.1

octal digits

where each row is stored in a separate block and the mattix element

M 1 is located at address R -1 for each p, the initial row and
P, p

column indices~l, a Bl modifier is used for row specification, a

B2 modifier is used for column specification, the primary codeword

contains an a~bit and a *-bit. The element M is addressed by
v p' q

D
D

D
D

0
0
n
LJ

n
I

u

D
fl
u

D
ID· ' l
I

0
J

0

the code

SBl p

SB2 q

CLA *M

SPIREL SYSTEM

CODEWORDS

3

For any array the primary codeword address is specified by

the user, but the location of blocks in the memory is left to the

"discretion" of SPIRELe Any given block may be located variously

from run to run, and may be moved even during a run if the STEX

storage control mechanism in SPIREL is active and such manipu

lation is necessary for another requested allocation.

-----~------ - -----·---------~---·· ---------

D

0
0
D
n
LJ

D

0
n
I '

u

IJ
I

n
I

LJ

'l
I

,_J

:]

J
n
J
r'l

I
L.l

ri
' i
__;

S PI REL SYSTEM

ORGANIZATION

IIIo SPIREL System Organization

III.1. Memory Utilization

The SPIREL system itself is a collection of programs, tables,

and individual constants.

utilization as follows:

System conventions provide memory

octal addresses use

00000-00007

00010

00011-00017

0002 0-0002 6

00027-00077

00100-00177

00200-002 77

00300-17577

17600-17777

20000-20007

machine full=length fast registers z,u,R,S,T4,

'.1'5, J:6, T7

not used

machine trap locations

SPIREL external communication routine _(explatne:d

below)

used only by SPIREL program *120, diagnostic

dump

system codewords and individual constants

region for primary codewords of the system user

storage of blocks labelled by system or user

codewc~ds; each.block containing a p~ogr~m,

data o-r··cod;ewords which in1 turn: labed.·@ther

blocks

working push=down storage addressed by index

register B6 (expla·ine·d below)

entry to SPIREL program *120, diagnostic dump.

III 0 2. External Communication

The SPIREL external communication routine accepts directives

from machine location 23 (octal)o This location contains a 0 halt

and transfer 1 instruction. At this stop, the user at the console

may type a SPIREL control word into U or ready a paper tape bearing

a control word preceded by a 'carriage returni punch in the reader.

Pushing CONTINUE causes the available control word to be communica

ted to SPIREL, which will then decode it and carry out the specified

action. If a single paper tape contains a series of control words,

FETCHing at the external communication stop will cause control words

to be read from paper tape and executed with no stops between actions

=

D
0
D

D
n
LJ

n
LJ

n L._J

1 I_

'1
I 'j

u

fl u

n
LJ

:l
I ' _ _j

[]

SPIREL SYSTEM

ORGANIZATION

2

specified until the end of the tape or a null control word is

encountered.

B6-list

The working push-down storage area is addressed by index

register B6 and is commonly called the B6-list. SPIREL programs

use the B6-list; programs of the system user may similarly use the

B6-list; and index register B6 may be used for other purposes only

if the working storage setting is maintained for those programs

which depend on ite

Conventional use of the B6-list depends on one fact: that B 6

contains the address of the first word of a block of storage not in

usee Therefore, if one word of temporary storage is required, it

is taken at B6 and B6 is incremented by one; if the last word stored

on the B6-list is retrieved from the address B6-l and is in fact no

longer resident on the list, B6 is decremented by 1, and the storage

location may be reused. The initial system setting of B6 is to

17600 (octal), and the push-down storage area extends to address

17777 (octal).

A frequent application of the B6-list is for temporary storage

of fast registers to be used by a subroutine, but to appear un

disturbed to the program using the subroutine. A program wishing

use but preserve T4, TS, and T6 might use the B6-list as follows:

upon entry

T4

• TS

STO

STO

T6 STO

computation ~ith private

u~e of the B6~list

p:rior :to exit

LT6

LTS

LT4

use

B6,B6+1

B6,B6+1

B6,B6+1

.o f T.4, ' TS , T 6 and any des ire d..c

B6-l,B6-l

B6-l,B6-l

B6-l,B6-l

exit with B6 setting same as that upon entry.

D
D
D

D

D
0
D

D

0
J

D
0
0
D
D

III.4. System Components

SPIREL SYSTEM

ORGANIZATION

3

The programs, tables, and individual constants which comprise

the SPIREL system are listed below •. The programs are fully ex-
'

plained in later sections, and the diagram of SPIREL component

linkage shows how the various co~ponents are functionally inter-

connected.

INDIVIDUAL CONSTANTS

· Address Name

100 STORAG

114 PRCT

115 ACWD

117 STPNT

121 FWA

12 4 NAME

VECTORS and PRINT MATRIX

Codeword
Address Name

113 ST

116 PM

122 VT

125 ADDR

Function

describes available storage

current active length of ADDR

used by PUNCH

gives current active lengths of ST
and VT

first word address of last program
tagged (used by TRACE and TAGSET)

symbolic name (if any) of block
currently being operated on by SPIREL

Use Length 8

Symbol Table 100

Print Matrix 200

Value Table 100

Base Address Vector 6

D
D
D

D
D
D

D

0
D
D

D
~

D

D

D
D
n
LJ

J
J

PROGRAMS

Codeword
Address

13

110

111

120

12 6

12 7

130

131

132

133

134

135

136

137

140

141

142

143

144

145

146

147

150

151

152

153

154

155

156

157

176

Name

TRACE

HDPR

MATRX

DIADMP

XCWD

SETPM

SM NAM

DA TIME

CLOCK

PCNTRL

FIELD

TAKE

SAVE

UNSAVE

DELETE

CHINDX

TAGS ET

CHN

PRINT

PUNCH

XCWSQ

SYMRF

PRNWTG

PRSYM

PWRTN

MRDDC

SETX

BINDC

RDCHK

PUNCHK

TLU

SPIREL SYST'EM

ORGANIZA'rION

Use

Repeat Mode Trace

Print Control Word

Process Matrix

Diagnostic Dump

Execute from Control Word

Set Up Print Matrix

Find Symbolic Name

Print Date and Time

Decode Clock

Punch Control Word

S et Up Word in Program F o rma t
in Print Matrix

Take Memory Space

Save Fast Registers

Unsave Fast Registers

Insert or Delete Space

Change Initial Index

Tags et

Take Ch"ain Storage

Print

Punch

Execute Control Word Sequence

Load Symbolic Cross Reference

Set Up Tag in Print Matrix

Print Symbol and Value Tables

Conversion of Powers of Ten

Multiple Read Decimal

Storage Exchange

Binary to Decimal Conversion

Read with Check-Sum

Punch with Check-Sum

Table Look-Up

4

Length 8

251

55

135

57

2 76

75

26

14

55

15

20

5

41

41

124

13

15

13

70

130

15

12

16

43

43

144

213

102

35

24

23-

D

D
0
D
D
D
D
D

D
0

D

D

D

D

D

SPIREL SYSTEM

CONTROL WORDS

IV. Control Words

IV.l. Program *126, XCWD

The nucleus of the SPIREL system is the program *126, XCWD

(Execute from Control Word). This routine interprets control
I

words received in T7 and c•rries out the specified operations.

The work ~f *126 may in most cases be described in the following

steps:

1)

2)

3)

address determination -- consists of determining the

address of the first word to be operated upon and

the number of words to operated upon

operation determination -- consists of ~et~rm±dipgt~)

the c.peration to be performed

operation execution -- consists of performing the

operation or using _another SPIREL program to carry

out th~ operation

XCWD is 276 ,(octal) words longo It accepts a control word

in T7 and disturbs no other fast registers. Two sens.e lights

affect the behavior of *126: .,

SL14 off causes XCWD to pr~nt one line for each control

word it executes. The information printed includes

the control word, the operation, the name of the

block operated on, the location and number of words

operated on, and the.numb~r.iof free words of :storage

remaining. This SPIREL monitoring provides useful

load records and may help in debugging. A system

which has been checked out would probably run with

SL14 on to suppress monitoring.

SL15 on causes ttreading" and "correcting" operations of

SPIREL to bypass storage of what is read and instead

compare it with what is currently in the locations

where storage would otherwise take place.

IV .2. Con tro 1 Word Format

A control word is divided into seven fi~lds: N, w, x, Y., z,,

R, and F. These are arranged as follows:

D
D
D

D
0
D
D

0
D
D

u
I

D
n
'w

0
D
D

\ I

SPIRE L .SYSTEM

CONTROL WORDS

2

bits 39j4o 541

j, nnnnn l wxyz j rrrr fffff

N R F

where each lower case letter represents one octal digit.

general, N,x,R, and F concern address specification; w,y,

concern operation specification.

IV.3. Address Specification

In

and z

General rules for iddress specification may be stated;

exceptions exist and are noted in the list of control words later

in this section.

The control word fields N,x,R, and F provide {nformation which

determines

,3-, the address of the first word to be operated on

and '!'(, the number of words to be operated on.

To specify SPIREL operation on a set of locations whose

absolute machine loca\ions are known:

x=O

F=f

N=Jl
R irrelevant

For example, it might be useful to have SPIREL print the user 1 s

codeword region, 100 (octal) words starting at location 200 (octal).

To specify SPIREL operation on all of or a portion of a block

labelled by a codeword:

x=l

If the codeword address is known:

F=codeword address

If the block is named:

and the name is given after the control word on paper tape or in

T4 for internal programmed communication (see Genie Notes, section

on Symbolic Addressing in SPIREL). If J- is to be the first word

of the block or blocks operated on:

R=O

D

D
0
0
D
0

D
0

SPIREL SYSTEM

CONTROL WORDS

3

otherwise, R specifies the relative program word (counting from 1)

or the relative vector element (counting from the initial index of

the vector, 1 for standard vectors) whose address is to be taken

as J-. Note that the O~h element of a vector is specified by

R=7777.

operated

If~ is to be the current length of the block or blocks fl..,

on:

N=O

otherwise:

To specify SPIREL operation on the entire contents of each of

the lowest level blocks of an array which is labelled by a codeword:

x=4

N=O

R=O

(More general application of x=4 is explained in the section on

Recursive Application of SPIREL.)

IV.4. Basic SPIREL Operations

LJ The most basic SPIREL operations and the corresponding control

D

n

word forms are described in this section. This set is sufficient

for initial understanding .and use of the system.

Read

Read operations are specified by control words with w=O and

x=O, 1,2, or 4. They field specifies the read mode:

y=O, octal from paper tape -- 18 octal digits per word, each

preceded by a carriage return

=1, hexad from paper tape -- 9 hexads per word, each pre-O ceded by a carriage return

D
I,]

0

=2, zeros generated by SPIREL

=3, decimal from paper tape, each word followed by a carriage

return and in the form discussed in the section on paper

tape input formats under Use of SPIREL

=4, hexad with tags and checksum from paper tape in the form

punched by SPIREL

For y=0,1 or 2 words are stored with the tag given by z. As words

0
0
0
0
0
D

D
0

J
n
LJ

]

D
n

J

!]

J

SPIREL SYSTEM

CONTROL WORDS

4

are read (except SPIREL=generated zeroes, specified by y=2), they

are checked for proper storage in memory. If the check fails, the

word as stored and the location of the word are typed in octal on

the console typewriter. The location given is an absolute machine

address if x=O in the control word; it is the relative location in

the block if x+o in the control word. If SL15 is on, the words

read (except SPIREL=generated zeroes,;specified by y=2) are not

stored but are compared to the contents of the memory location

where storage would normally take place. If the comparison fails

the word actually stored in memory and its location are typed on

the console typewriter as above.

Read control word forms are as follows:

nnnnn OOyz 0000 fffff Read N words in mode y and store with tag

z (if y=O, 1, or 2) beginning .at location F.

nnnnn Olyz rrrr fffff If codeword at F addresses an array and

STEX storage contra~ is active, free that array_

Create a block of length N and form its codeword at F.

Place octal configuration given by R in the correspond-

ing bit positions of codeword at F. (The last three

triads of R specify the B-modification and indirect-

addressing bits to be used. The first triad describes

the contents of the block being read; its interpreta-

tion is described under Codewords.) If no B-modifica-

tion is specified, set initial index=O; otherwise set

initial index=l. Read N words in mode y and store with

tag z (if y=O, 1, or 2) into the block labelled by the

codeword at F.

nnnnn 02yz 0000 fffff Exactly equivalent to the control word

nnnnn Olyz 0002 fffff, used to read a standard vector

of data.

nnnnn 04yz rrrr fffff If codeword at F addresses an array and STEX

storage control is active, free that array. Create the

structure of a standard matrix with N rows and R ~olumns

with primary codeword at F~ Read NXR words, successive

complete rows.i in mode y with tag z (if y=O, 1, or 2) into

the matrix with primary codeword at F.

0
0
0
0
0
0
0
0
D
0
0
D

D

0
0
0
0
0

Correct

SPIREL SYSTEM

CONTROL WORDS

5

The c6rrect operation is specified by a control word with

w=l and x=l,2, or 4. Correction implies that some part of an

existing u~it is· to be replaced with new information without

~ompletely recreating the unit. Therefore, a correct is just a

read into~n existing block over the previous contents. The fields

y and z spec"ify mode and tag as explained for read operations, and

again SL15 on causes comparison instead of storage of what is reado

The correct control word form is as follows:

nnnnn llyz rrrr fffff Read N words into the block labelled by the

codeword at F, where N and Rare specified according to the stand

ard rules for address specification. Read in mode y with tag z

(if y=O, 1, or 2).

Tags et

Tagset operations are specified by control words with w=2.

The purpose is to set tags on words in the memory, and the tag to

be set is given by z=0,1,2, or 3 (tag O meaning no tag). If y=3,

all words in the address range speci£ied are tagged. Othe~wise,

all words in the address range specified are considered instruc

tions and tagging is selective, with a word being tagged only if

its "class" triad = y. (The class of an instruction is given in

the third triad from the left.)

The tagset operation is m~st often used to set tag 3 on

instructions in programs to be executed. Then if execution is

carried out in the trapping mode, the trace program in SPIREL

monitors on the printer the execution of the tagged instruction,

This trace output is explained in detail in discussion of the

SPIREL trace program *13.

The tagset control word forms are as follows:

nnnnn 20yz 0000 fffff Set tag z on all words of classy from

location F to location F+N-1, inclusive.

nnnnn 21vz rrrr fffff Set taP- 7. on all words nf r1~QQ "4n ~ho

D
0
0
n
u

0

1
u

rr
lJ

,-I
I I u

]

D
J
]

Execute

SPIRE L SYSTEM

CONTROL WORDS

6

The execute operation is specified by wxyz=3100 and is de

signed so that SPIREL will, in essence, transfer control to the

address specified as the entry to a closed subroutine. This

oper~tion is usually employed as an external directive to SPIREL.

Primary control is then with SPIREL; successive programs may be

executed, with other SPIREL operations interspersed as desirede

The form of the execute control word is as foilows:

00000 3100 rrrr fffff Transfer control to the Rth word of the

program which comprises the block labelled by the

codeword at F. At entry to the specified program,

Print

all fast registers except PF are set to the values

they had at the time the control word was given to

SPIREL. The program executed should be written as a

closed subroutine, i.e., it should exit to the address

contained in PF upon entry.

Print operations are specified by control words with w=4.

The format of output is given by y as follows:

x.. format words/line

0 QC ta 1 4

1 hexad 12 (108 chars.)

2 octal, program format 1

3 decima 1 5

4 octal, for 8}x 11 11 pages 3

5 octa 1, with tag 1

6 decima 1, with tag 1

7 decima 1, for 8tx 11" pages 3

For a 11 options except y:;; 1 (hexad), the octa 1 location of the

first word on each line is printed at the left of the line.

This number is the relative location in a block for x=l or 4

(relative) or the absolute machine address for x=O (absolute).

0
0
0

0
0
n u

0
0
0
D
,J
n u
0
0
0

0
'~
I -

SPIREL SYSTEM

CONTROL WORDS

7

The format for each decimal number printed is:

floating point

±d.dddddddddddde~
v

12 decimal exponent,

digits

fixed point integer

2 decimal digits

±ddddddd
'--..,,...---1

1-15 decima 1

digits

The SPIREL monitoring provided if SL14 is off provides a printed

identifier with each block printed.

The print control word forms are as follows:

nnnnn 40y0 0000 fffff Print in format y N words beginning at

location F.

nnnnn 4ly0 rrrr fffff Print in format y from the block labelled

by codeword at F, where N and Rare specified accord

ing to the standard rules for address specification.

00000 44y0 0000 fffff Print in format y all of the lowest level

blocks in the array labelled by codeword at F •

. Punch

Punch operations are specified by control words with w=S.

The punch format is given by y and corresponds to the mode in

which the information punched will later be read:

y=O, octal

=l, hexad

=2, no information (zeros to be generated internally

at read time to correspond to information speci

fied in punch control word)

=4, hexad with tags and checksum

If SL14 is off, SPIREL monitoring is provided and every

item punched is preceded and followed by control words sufficient

to cause the information punched to be read at a later time into

logical position identical to that at time of punching; this is

the usual procedure. If SL14 is on, no control words accompany

the information punched.

0
D

0
D

0
0
0
0
0
[]

0

n
LJ

0

D
0
0

SPIREL SYSTEM

CONTROL WORDS

8

If SL14 is off and a complete array is punched, the control

words punched cause recreation of an identical array when the

punched tape is later read" If SLi4 is off and only part of an

array is p~nched, the control words punched assume that an

identical structure exists when the punched tape is later read,

and the punched information is corrected into the structure.

Any tape which is punched with the SPIREL punch operations

may then be read under SPIREL control with SL15 on to effect a

validation of the punched tape by comparison with the iriformation

that was to be punched.

The punch control word forms are as follows:

nnnnn 50y0 0000 fffff Punch in mode y N words beginning at

location F.

nnnnn 5ly0 rrrr fffff Punch in mode y from the block labelled

by the codeword at F, where N and Rare specified

according to the standard rules for address speci

fication.

00000 54y0 0000 fffff Punch in mode y all of the array labelled

by the codeword at Fo

Activate STEX

The simple storage control algorithm in SPIREL operates on

a principle of linear consumption of space in memory. If STEX,

thi storage exchange program, is active at the time blocks are

created, later redefinition of these blocks will result in the

space previously occupied being returned to the system for

re-use. Thus, at any given time only space which is currently

labelled by a codeword is in use. Activation of STEX causes

the STEX domain to be defined from the extent of linear con

sumption through location 17577, or up to the B6=1ist region.

Any block created after STEX is activated is said to be loaded

under STEX control and will be located in the STEX domain.

Any block which is to be recreated under STEX control must be

created initially under STEX control. The STEX storage control

system is described in detail in another section.

0
0
0
0
0
0
0
0
0
0
0
n u
0
0
0
0

0
'J

················-···· ··········-··----·-------------------------·

S FIRE L SYSTEM

CONTROL WORDS

9

The control word which causes STEX to be activated is

00000 3120 0000 00135

It belongs to the execute class of control words. Once STEX is

activated, subsequent activations are meaningless but harmless.

Print, Punch from Con so le

For convenience in external communication to SPIREL by typing

into U at the console, an abbreviated control word of the form

00000 0000 00000 fffff

is defined. Here Fis the codeword address of an array. If SL15

is off, all of the lowest level blocks in the array labelled by

the codeword at Fare printed in the format specified by bits 29

and 30 in F:

binary oo, oc ta 1

01, hexad

10, octa 1 program format

11, decima 1

If SL15 is on, all of the array labelled by the codeword at Fis

punched in hexad with tags and checksum.

IV.5. More SPIREL Operations

The SPIREL operations described in this section are not

necessary for initial understanding and use of the system.

Chain Storage Generation

The control word

nnnnn 0300 0000 fffff

causes a chain of N words to be formed from address F. Beginning

•t F, the first 15 bits of each word contains the address of the

next word in the chain, the last word in the chain being "linked"

to F. The remainder of each word is cleared and Fis given a tag

1. This control word must not be used with STEX active as the

block containing the chain must not be located in the STEX domain.

Address Base Manipulation

SPIREL operations may be applied to blocks and arrays when

the pertinent codeword address is known~ The primary codeword

address of any array is fixed and known to the user, and is in

0
0
D
0
0
0
0

0
n tJ

0
0
0

SPIRE L SYSTEM

CONTROL WORDS

10

the range 200-277 (octal). When the F fields of control words

with x=l are interpreted as machine addresses, the SPIREL address

base is said to be set to zero. For the purpose of applying SPIREL

op~ratiori~ to stib~arrays, the SPIREL address base may be set so

that the F field of control words is interpreted relative to the

first word of a block of codewords whose codeword contains no

B-modifications or to the 0th element of a block of codewords

whose codeword contains B-modifications. Each base change in a

sequence of base changes will progress one level into an array,

and such a sequence may go to depth 5.

Consider an array of three dimensions with primary codeword

at address A and B=modification on each level. Assuming that A

exists in the machine, the following series of SPIREL operations

illustrates the use of address base manipulations:

operation effect

address base initially set to

zero

set address base to A address base at A0

00000 0600 0000 aaaaa

print I in octal

00000 4400 0000 iiiii

set address base to J

00000 0600 0000 jjjjj

print Min octal, one word

per line, with tag

00000 4150 0000 mmmmm

set address base back one

leve 1

00000 0700 0000 00001

print Kin decimal

00000 4430 0000 kkkkk

set address base to N

00000 0600 0000 nnnnn

print two-dimensional array

A1 in ott•l format

address base at A 3 0
'

print block AJ Min the format

' one ·word ·p~r ltne, o~tal

·with. tag

address base at A0

print two-dimensional array AK

in decimal format

address base at AN,O

-------------------------- -·----···-·· -----·· ·--·· ...

0
0
0
0
0
0
0
(1
LJ

0
0
0

n u

0
0
n L.~

0

S PIREL SYSTEM

CONTROL WORDS

11

operation effect

print from R, P words at

Q, in octa 1

print words AN R Q'
' '

,AN R Q+P
' ' in octal format

ppppp 4100 qqqq rrrrr

set address base to zero return to initial address

00000 0700 0000 00000 base setting
th

Note that the O element of a block is denoted by 77777, and

negative element addresses are specified in one 1 s complement form.

The address base manipulation control word forms are as

follows:

00000 0600 0000 fffff If address base is set to zero, set address

base down to F. If address base is set down to A, set

address base down one level to AF.

00000 0700 0000 fffff Set address base back F levels. If F=O,

set address base back to zero.

SPIREL execution of these control words causes no monitoring

on the printer, but monitoring of SPIREL operations performed with

the address base set to other than zero reflects the successive

levels of address base settings in effect.

Print Symbol and Va lu'e Tables

As explained in the Genie Notes, system elements may have

names which correspond to single word storage a~dresses and code

word addresses for arrays. When loaded under SPIREL control, such

elements have their names and descriptive parameters stored in

the SPIREL system vector *113, the Symbol Table

S PI RE L s y s t em v e c t or te 12 2 , the Va 1 u e Ta b 1 e (VT) ,

corresponding single word or primary codeword.

(ST) • The pa r a 11 e 1

contains the

The extent of the

currently active ST-VT entries is maintained within the SPIREL

system. These tables may be printed with basic SPIREL control

words, but a special printing format appropriate to the contents

of the tables is provided when the following control word is used:

nnnnn 0500 rrrr 00000

N words of ST and VT are printed, beginning at STR and VTRo If

N and Rare empty; all of the currently active ST-VT entries are

printed. The printing format used is discussed in a separate

section.

D
0
0
0
0
0
0
n·-. LJ .

0
0
0
0
n
u

0
0
n
l_j

Insert and Delete Words in Blocks

SPIREL SYSTEM

CONTROL WORDS

12

The insert operation provides a facility for lengthening and

shortening blocks labelled by codewordso The insert control word

form is

nnnnn 1150 rrrr fffff

The Rth word of the block labelled by codeword at F (counting from

one if F contains no B-modifications, from the initial index

otherwise) is addressed, and N words are i~serted at that point in

the blocko N is interpreted in one 1 s complement arithmetic 0 If

N>O, N words containing zeros are inserted beginning at the Rth
th th

word, and the former R word becomes the R+N word; the length

of the block is increased by No If N<O, N words are deleted be-
th th th

ginning at the R · word, and former R+N word becomes the R

word; the length of the block is decreased by No If R is empty,

N words are added to the end of the blocko If N is empty, the

Rth word and all following are deleted.

The insert operation as carried out by SPIREL requires that

space for the new form of the block be available in the memory

while the old form still exists. If STEX is active, the space

occupied by the old form is freed when the new form is complete.

If STEX is active and words are deleted from a block of codewords,

the space occupied by the arrays whose codewords are deleted is

freed.

Change Initial Index

The initial index of a block whose codeword contains B

modifications may be set by the control word

nnnnn 1160 0000 fffff

The initial index of the block labelled by the codeword at Fis

set to N, specified in ones complement form. After execution of

this control word, the first word of the block is addr~ssed as FN.

An initial index of zero is designated by N=77777.

_Inactivate Storage

The inactivate operation may be applied to any array in the

STEX domain by using the control word

00000 1170 0000 fffff

------·-----·-·· ------

0
0
D
0
r1
LJ

0
0
0
0
n
LJ

n
L.J

n
LJ

1
'_J

SPIREL SYSTEM

CONTROL WORDS

13

All storage for the array labelled by codeword at Fis freed, and

F is cleared. This operation is not meaningful unless STEX is

active.

.Monitor

If the STEX storage control system is active, blocks in the

STEX domain are subject to being physically moved when it is

necessary to concentrate free spaceD At the console, the user

may wish to obtain information about the location of a particular

block oi the nu~ber of words of free storage •. The control word

00000 3110 rrrr fffff

causes SPIREL monitoring to occur if SL 14 is off. R is interpre

ted as in standard address specification as the word in the block

labelled by the codeword at F for which monitoring is desired. No

SPIREL operation is performed on the block.

Obtain Date and Time

The date and time of day are available in the computer. SPIREL

will for~at thi~ iriformation (14 positions in length) for printing

when the control word

00000 4300 rrrr 00131

is executed. The next line actually printed will contain the date

and time beginning at print position R. SPIREL will format and

print the date and time beginn~ng at print position R when the

control word

00000 4310 rrrr 00131

is executed. The print positions are numbered 1-108 (decimal)

from left to right across the pate. In both cases, if R is empty,

the print position is set by SPIREL to 48 so that the date and time

will appear at the right side of a page 8} inches wide.

Execute Control Word Sequence

A block may contain SPIREL control words. The execute control

word sequence operation, when applied to the block, will cause

SPIREL to interpret words addressed as control words and carry out

the specified operations in the sequence given. The control woid

forms which instruct SPIREL to execute a sequence of control words

are as follows:

D
D

D
0
D

D
D
n l_i

n
I

u

D
n
tJ

D
n
L_j

ri
I

LJ

n
l__j

11
1_)

SPIRE L SYSTEM

CONTROL WORDS

14

nnnnn 6000 0000 fffff Execute N control words stored in memory

from location F to location F+N-1.

nnnnn 6100 rrrr fffff Execute control words in the block labelled

by codeword at F, where N and Rare specified according

to the standard rules for address specification.

Load Symbolic Cross References

Programs which are written to refer to named quantities, in

particular Genie generated programs, require internal cross

references to single words and codewords in the Value Table (VT,

SPIREL system vector *122), parallel to the name of the quantity

in the Symbol Table (ST, SPIREL system vector *113). The load

symbolic cross references control word is

nnnnn 7100 0000 fffff

where Fis the codeword address of the program into which N

references are to be loaded. N units of information are read

from paper tape. The format of this input and the use of symbolic

cross references are explained in the Genie Notes, section on

Symbolic Cross References.

IV.6. Recursive Application of SPIREL

In general, SPIREL control words with x=l cause the specified

operation to be applied to the block labelled.by codeword at F.

If meaningful, x=l may be replaced by x=4 and the operation will

be applied through the array labelled by codeword at F. This

recursive application is accomplished by the use of SPIREL by

SPIREL. In other words, when the SPIREL program *126 (XCWD)

encounters a control word C with x=4 (except in the case of read,

w=O), and F labels a block qf codewords, the address base is set

down to F, SPIREL is applied to the first N blocks on the next

level with N control words C' in which N'=R and R'=O, and the

address is set back up one level. If a control word with x=4

is applied to a block which does not contain codewords, the be

havior of *126 is as if x=l, and the recursion is terminated.

Thus the depth of the recursion is determined by the structure or

depth of the array addressed.

D

D

0
D

D
D
0
D

D

0
0
11

I LJ

D

n
I ,

LJ

n
LI

D
n

I
L.!

SPIREL SYSTEM

CONTROL WORDS

15

As an exampleJ consider the control word to print in decimal

00003 4430 0002 00200

where the array *200 is a standard data matrix. Since the block

labelled by the codeword at 200 contains codewords, these control

words are generated and delivered for SPIREL execution:

00000 0600 0000 00200

to set address base to 200

00002 4430 0000 00001

to print the first two words of row 1

00002 4430 0000 00002

to print the first two words of row 2

00002 4430 0000 00003

to print the first two words of row 3

00000 0700 0000 00001

to set address base back one level, to

zeroe

If row 2 in the array *200 had contained codewords for 4 blocks of

data 1 the control word

00002 4430 0000 00002

in the above sequence would have caused further generation of the

control words:

00000 0600 0000 00002

to set address base to 200 2

00000 4430 0000 00001

to print all of block 200 2 1
' 00000 4430 0000 00002

to print all of block 200 2 2
' 00000 0700 0000 00001

to set address base back one level,

to 200

IV.7o Summary of Control Words

The chart on the next page is a reference for the SPIREL

operations on the basis of wand yin the control worde

c..::J c:::::J c=.J [_J L_] c=i c::::::::J c::J c:::::J c:::::J c:::::J c:::::J CJ CJ c:::::J c:::::J c:::::J c:::::J c:::::J

0
~ II read
y'

- '·!~

0 oc ta 1

l cor!ect L tag!et

oc ta 1 class O

3
execute

execute
program

4
print

oc ta 1,
4 words/
line

5
punch

oc ta 1

6 7

execute
-cont ro 1
word I sequence ___ _

load
symbolic
cross
refs

1 hexad hexad class l on-line hexad.., hexad
control 108
word chars/

dn ly
print line

I
I .

1

2 II zeroes I zeroes I class 2 I activate octal i zeroes
(con tro 1
words
only)

3 dee ima 1 decimal all
class es

STEX program
form.at.., J
word/ linE

decimal.,
5 words/
line

I I

4 I hex a d · + he xa d + ,- c 1 a-; s- 4 o c ta 1, 3 1 hex a d + ' -- -
tag+ tag+ words/ tag+
check-sum check-sum line check-sum

sin wide.

5 jj _ l insert/ class 5 _.__ octal·+··['----- ·-·--------1-----
delete tag 7 1 ·
space word/line

~ ~- I

change~ decimal J 6
initial tag, 1

II '
index word/line

•• I t I I • -

' .. l
7 free

storage

SUMMARY OF SPIREL CONTROL WORD OPERATIONSo

dee ima 1,
3 words/
line
8~11 wide 2

D
D
D

D
D
D
D
D
D

D

D
0
0
D

D
D
D
D

--------------------- ------------ -

V. Use of SPIREL

Vol. Input Paper Tape Formats

S PIREL SYSTEM

USE OF SPIREL

The SPLREL read control words designate the read mode to be
l

employed in reading the pertinent data from paper tape. For each

read mode there is an appropriate punch format for the data on

paper tapeo

The octal format (y=O) prescribes that each word consist of

exactly 18 octal digits and that each word be preceded by a "spill

character", usually a 'carriage return 1 punch. Octal tapes may be

punched manually on the flexowriter. Also, a punch control word

with y=O produces octal format on paper tape, but this is in

efficient use of paper tape since only three channels are utilized.

The hexad format (y=l) prescribes that each word consist of

exactly 9 hexads and that each be preceded by a "spill character",,

usually a 'carriage return' or 'tab' punch. The hexad format

utilizes all six data channels on paper tape and is equivalent to

the octal format at twice the density; Hexad tapes are usually not

punched manually on the flexowriter but are easily produced through

SPIREL with a punch control word in which y=l.

The hexad with tag and checksum format (y=4) is produced only

by a SPIREL punch control word with y=4. For example, output tapes

from the assembly program and the compiler are in this form. The

advantages of this format over the plain hexad format are implied

by the name:

o Tags on words are represented on paper tape and reproduced

when the tape is read.

~ A sum over all words is formed as the tape is punched and

represented on the tape. This sum is recomputed when the tape is

read and~the computed sum is. compared to that punched on the tape.

This provides a check on both punching and readingo

The format for one word consists of 9 hexads and one tag triad per

word 1 where tag representations are

1 for tag 1

2 for tag 2

3 for tag 3

4 for no tag

D

D

D
D

D
D

D

D
D
D
D
D
D
0
D

D
n LJ

D
0

S PI REL SYS TEM

USE OF SPIRE L

2

The words with tag are not separated by any "spill characters" but

are immediately adjacent to each other. A set of words punched

with a single punch control word is preceded by a single "spill

character" and followed by the checksum, one hexad word which is

the fixed point sum of right half-word plus left half-word plus

tag representatiori for all words in the set.

The decimal format (y=3) for a single word depends on the

internal representation desired for the number. Tapes in decimal

format may not be punched by SPIREL, but this is the format most

frequently utilized for manually prepared data input tapes. A

set of decimal words to be read due to the execution of a single

read control word with y=3 is begun with a 'lower case 1 punch.

Spaces and case punches are then ignored, and a punch other than

one of

012 3456789 .+-eft*

terminates a number which is being read. The character punched

after each number to terminate it is most frequently a 'carriage

return' punch. In the particular formats which follow, the letter

d s tan d s for a de c i ma 1 dig i t, one of

0 1 2 3 4 5 6 7 8 9

The punches 1 e 1 and 0 *' may be used interchangeably. If a decima 1
(

point is punched in representing a number, it may begin or end the

number. The particular decimal formats are as follows:

integer ±D of no more than 14 decimal digits, with tag

G=l,2,3,4. G=l,2,3 causes the number to be stored with

tag 1,2,3. G=4 causes the number to be stored without

changing the tag in memory.

±dd ••• ddqt_q

L D ------ no tag if this field omitted

+ understood if no sign present

The decimal point is assumed to be to the right of the

least significant digit punched and at the right end of

the machine word. Integer fixed point arithmetic is to be

employed.

D
0
0
0
D
D
D

D
D
D
0
D
D

0
0

0

v. 2 0

S PI,RE L SYSTEM

USE OF S PI REL

3

floating point ±DXlO±P,

with tag G=l,2,3,4

in absolute value between 10- 78 and 10 74
'

r
·--·- P=O understood if

field is omitted

±dd 000 dd.dd 000 dd~~t§,

D J P L no tag if this
field is omitted

+ understood if·
no sign present

this

Decimal digits in D beyond the 14th are ignored. Floating

point arithmetic is to be employed. The floating point

form is recognized only if D contains a decimal point or

if the field e±pp (or *±pp) appears.

fixed point fraction ±DXlO±P in absolute value ~2 47 and<l,

with tag G=l,2,3,4.

r- this field may
I not be omitted

~·. dd. dd ~_:__:_~f±.JU,t§.,

D

field is omitted

+ understood if

J p L no tag if this

no sign present

DeciII1;al digits

representation

in D beyond the 14th are ignored. The

in the machine assumes that the decimal

point is at the left end of the mantissa. Fixed point

arithmetic is to be employed.

Tracing

Tracing is a means of observing the executrion of instructions.

This facility is provided in the SPIREL system. The instructions

to be traced must bear a tag 3a Mode light 3 and trapping lights

6 and 9 must be turned on prior to a run in which tracing is to

occur; this is the normal ML, TL configuration when SPIREL is

initially loaded. The trace is provided by the SPIREL .system

program *13 (TRACE).

0
0
D
D

0
D
D

D

0
D
D
D
Cl
LJ

D

0
n
\ ._}

n
. I
l-1

SPIREL SYSTEM

USE OF SPIREL

4

The printed trace output for each tagged instruction executed

is given in eight fields as follows:

(CC) :

(CC 1):

(ATR I)

(MI)

(I) :

(s) :

(U I) :

(Rn) :

address of the instruction relative to the first

word of the last program tagged with a tagset

control word

address of the next instruction to be executed

relative to the first word of the last program

tagged with a tagset control word, if not the next in

sequence; zero otherwise

contents of the arithmetic tag register (1,2,or 3)

after execution of the instruction; blank if the

tag is zero

the final address formed as a result of decoding

field 4 of the instruction

the instruction executed

the contents of Sas a result of execution of field

4 of the instruction, before the operation in

field 2 is carried out

contents of U after execution of the instruction

contents of Rafter execution of the instruction

The trace procedure distrubs no machine conditions other

than the contents of P2 ands. If the contents of either of

these registers is to be preserved from one instruction to the

next, neither may be traced. For example, transfers to SPIRE L

system programs *136 (SAVE) and *137 (UNSAVE) set P2 for later

retrieval by the programs being transferred to; these instructions

may not be traced.

An order to be executed in the repeat mode may be tagged for

tracing only if the order which causes entry into the repeat mode

is also traced and is of the form

or

or

MLN

SBi,ERM

ABi, ERM

and the instruction executed immediately after the repeated

instruction is also traced. The tra~ output for the traced repeated

D
D

D
D

0
D
D

D

0
0
D
(I

LJ

0

0
0
n
D

SPIREL SYSTEM

USE OF SPIRE L

5

instruction consists of one printed line in which (CC), (I), and

(S) pertain to the first execution end (CC 1), (ATR'), (M'), (U'),

and (R 1) pertain to the last execution.

Manual controls may be applied to the trace procedure from

the console by use of Mode Lights 14 and 15:

If ML15 is on, the tag will be erased from each instruction

after it is traced, so that further execution will produce

no trace output. If ML15 is off, the tag is retained.

If ML14 is on, a tagged instruction will produce trace output

only if a branch of control occurs, that is if column (CCu)

of the trace output is not zero.

If ML14 and ML15 are both on, a tagged instruction will produce

trace output only if a branch of control occurs, and the tag

will then be erased from the traced instruction.

A trace program which provides printed output in decimal and

one which operates on instructions bearing a tag 2 ere available.

These are not components of the SPIREL system but may be used in

conjunction with the system.

V. 3. Diagnostic Dump

If a program stops unexpectedly, the contents of machine

registers at the time of the stop may be printed with mnemonic

register labels by using the diagnostic dump, SPIREL system

program *120, with entry prefix in machine locations 20000-20007

(octal). The procedure for obtaining this output is as follows:

• Record, mentally or otherwise, the contents of CC as

displayed on the console if the instruction at which the stop

occurred is of interest.

o Type 20000 (octal) into CC and FETCH to pass control to

the diagnostic dump routine.

@ A programmed halt occurs within the diagnostic dump

routine. Type the recorded (CC) into U and CONTINUE; or simply

CONTINUE if (CC) was not recorded.

0 Diagnostic dump output is provided on the printer. If

nothing was typed into U at the halt, CC and I at the time of

the stop are indicated as containing O.

D

D
0
0
0
0
0
0
0
0
D

D

D

0
0

D

S PI REL SYS TEM

USE OF SPIREL

6

o A programmed halt and transfer to location 20 occurs.

This is the standard halt for external communication with

SPIREL. All registers except U, CC, P2, s, and I are restored

to their settings at the time of the stop.

V.4. High-Speed Memory Dump

If a program fails in such a way that the SPIREL system can

not be reached, a printed record of the memory configuration at

the time of the failure is occasionally of assistance in debugg

ing. For this purpose a self-loading High-Speed Dump tape is

available at the console.

To load the tape, position the Dump tape in the reader,

depress RESET, then LOAD. Do not CLEAR. When the Dump program

is loaded, a halt occurs with

(I)~ 00 00000 00 0000 17561

Pushing continue causes dumping of the contents of memory,

beginning at location 10.

The dump output is printed with four full words per line and

the address of the first word at the left of the line. Each

full word is split into five fields, corresponding to the fields

of the machine instruction. If a word is tagged, an a, b, or c

(corresponding to tag 1, tag 2, or tag 3) is printed immediately

to the right of the tagged word.

No all-zero lines are printed; if a block of words spanning

one line or more contains only untagged zeros, the paper is ad

vanced one line to indicate the ellipsis.

Dumping terminates with the halt

(I): 77 00000 77 4001 17666

No registers are restored.

To begin dumping from some location other than 10, turn on the

Tag 1 indicator light while the tape is loading. In this case, the

halt after loading is

' (I): 01 00001 20 4000 17561

At this haltJ typing the desired starting location into Bl and

pushing CONTINUE causes dumping to begin at (Bl).

----------------------· ·-----

0
D
D
D

D
0
n
LJ

0
n u

0
J
D

:J
]

]

]

J

V.5. Error Halts in SPIREL

S PI REL SYSTEM

USE OF SPIREL

7

Programmed error halts within the SPIREL system and their

significances are as follows:

(I): 67 77777 40 4001 XXXXX

The punched checksum for the block just read from

paper tape did not' agree with that computed while

reading. Raising and lowering the F3 switch at the

console exits the reading program and SPIREL *126~

(I): 41 00010 47 4001 XXXXX

Sufficient space is not available in memory for

execution of the "read 11 control word just interpreted

by SPIREL. CONTINUE to exit SPIREL *126.

(I): 41 00010 33 4001 XXXXX

Sufficient space is not available in memory for ex

ecution of the 11 chain 11 control word just interpreted

by SPIREL. CONTINUE to exit SPIREL *126.

(I): 41 00010 11 4001 XXXXX

Sufficient space is not available in memory for execu

tion of the 11 insert 11 control word just interpreted

by SPIREL. CONTINUE to exit SPIREL *126.

(I): 77 00000 00 4001 XXXXX

An improper decimal number has just been read from

paper tape, out of the range permitted for the format

used. CONTINUE causes exit from the reading program

and SPIREL '.fel26.

V.6. Symbol Table-Value Table Print Format

The SPIREL controi word

nnnnn 0500 rrrr 00000

provides parallel printing of corresponding Symbol Table (ST) and

Va 1 u e Tab 1 e (VT) en t r i es • The s e 11 tab 1 es 11 a re S PI RE L sys t em

standard vectors *113 and *122 respectively.

seven fields as follows:

The output is in

(1) relative address in vector, i.e.J index

(2) symbol from bits 1-30 of ST entry

---------·------- ·-···- -

D
D
0
0
0
0
n
lJ

0
0
0
n u

n
LJ

0
0
0
[I

D

(3)

octa 1

(4)

(5)

(6)

(7)

SPIREL SYSTEM

USE OF S PIREL

8

descriptive parameters in octal from bits 31-39 of ST

entry

131: :33134 :35 ,36137: :391

:J I L not meaningful 1 for floating
2 for integer binary 1 for program
3 for string 0 otherwise
4 for Boo lean

binary 00 for sea la r
01 for vector
10 for matrix
11 for string

address field f roIIi ST entry (not used by SPIRE L)

tag on ST entry

VT entry: value associated with name in ST entry if it

is a single-word quantity; codeword for array associated

with name in ST entry, empty if the array does not

currently exit

tag on VT entry

The Symbol Table and Value Table are most commonly used when

a system contains named Genie-generated programs and the named

data referred to in such programsa This usage is fully described

in the Notes on the Genie Co~piler.

Ve 7. SPIREL System on Magnetic Tape

Several copies of the SPIREL system are located on the MT

System magnetic tape. When one of these copies is read into the

memory a halt occurs in the SPIREL external communications routine.

The Mode and Trapping Lights are set to permit tracing of tagged

instructions. Lo ad in g of II pr iv a t e II b 1 o ck s w i 11 begin a t about

locat:i,.on 3700 (octal).

V • 8 • S PI RE L S y s t em on Pa p e r Ta p e

The SPIREL system is available on paper tape. When the tape

is readied in the reader, the console CLEAR and LOAD operations

should be performed. The ta p e i s re a d, fin i sh in g s u c c e s s f u 11 y w i th

a page restore and printing of th~ word 11 SPIREL". A halt occurs in

0
0
0
0
0
0
n u

0
0
0
0
0
0
~

J
r1
LJ

0
n u
n u

SPIRE L SYSTEM

USE OF S PIREL

9

the SPIRE L ex te rna 1 communications routine. The Mode and Trapping

Lights are set to permit tracing of tagged instructions. Loading

of "private" blocks will begin at about location 3700 (octal).

0
0
n u

0
0

n
', I u

fl
LJ

n
LJ

n
I

u

n
I I

u

n
u

n
J

n
I

u

VI. Storage Control

VI.1. Linear Consumption by TAKE

S PIREL SYSTEM

STORAGE CONTROL

The simple storage control program which is initially utilized

in the SPIREL system is called TAKE, program *135. TAKE operates

on the principle of linear consumption of memory. A pointer to the

first inactive word of storage, address L, is maintained. A re

quest for M words is satisfied by an allocation of M words at L,

and Lis incremented by Ma This is an irreversible procedure in

that space, once ~llocated, may n.ot be reclaimed for use in later

allocations. L is s tore d in the add re s s fie 1 d of 1 o ca t ion 10 0 (o c ta 1) .

in the SPIREL system.

TAKE may be utilized "privately" to obtain blocks of memory in

a way compatible with allocation by the SPIREL system. On entry

to TAKE, program *135, (B2)=number of words desired. On exit

(Bl)=address of first word of block allocated.

for space cannot be satisfied, (Bl)=O on exit.

VI.2. Activation of STEX and its Domain

If the request

The SPIREL Storage Exchange program STEX, ~·:154, is activated

by the control word

00000 3120 0000 00135

In fact, program *154 becomes program *135 and TAKE is discarded.

If Lis the address of the first word of inactive storage at the

time STEX is activated, the STEX domain is [L, 17577], all inactive

storage.

system.

STEX cannot be deactivated for recourse to the TAKE

STEX provides optimal use .of storage because

e blocks may be freed explicitly, making such space as

becomes logically unnecessary available for reassignment to

blocks logically required;

e blocks whose codewordi are re-used to label new blocks are

automatically freed for re-use;

• if the total free spac.e in memory is sufficient to satisfy

a re q u es t , f o r a · b 1 o c k bu~ :. no :~ s i. ii g 1 e : s pa c e , i s 1 fl r g e en o u g h , f re e

. space is a utoma ti cal ly concentrated .and.,. the :.a 1 location. is· ma de.

Any block which is subJect to being freed, either explicitly or

implicitly, after STEX activation, ~ be in the STEX domain,

i.e., must be created after STEX is activated.

I~
J

D
0
D
n
LJ

0
0
D
0
0
0

n
I I

lJ

D

l]

n l~

0
n
I i u

------------------------- ---------- ' -··----·-

SPlREL SYSTEM

STORAGE CONTROL

2

VI.3. Memory Configuration Generated by STEX

The domain of STEX is divided into active and inactive areas.

Each area is further segmented into blocks, not necessarily adjacent.

Each active block is labelled by a codeword. The first word of an

active block is not a part of the block from the user's point of

view; it is called the back-reference for the block and contains

in its address field the codeword address of the block. The inactive

blocks are chained from location 100, which contains the total

number of inactive locations in the memory in its first 15 bits and·

the address of the first inactive location in its last 15 bits.

Each inactive block contains in its first word the length of the

block it heads and the address of the first word of the next block,

the last inactive block being distinguished by a zero address field,

thus ending the chain. The first word of an inactive block is

inactive in the sense that it may be activated just as any other

word in the block.

An illustration of the STEX memory configuration is given below:

A
2 ..

S TEX 12
domain

...

-
....

'"'

...

...

....

...

Nl 12

c
1

c2

N2 13

N3 lli.

c3

Nli. 0

Jl
codewords:

cl l~-- i
·-:-:;-i

1 Al -1. ll

!

I] A2 -i ;-i c2 ["' M_f_ i
2

-~ ·~ c3 [_M3 i3 A 3-i 31

,
\

.H.

I STEX domain illustrated is of
....
'~
' I ...

.. n: ...

D

D

0
0
0
D

0

D

0
0
D
0
0

SPIREL SYSTEM

STORAGE CONTROL

3

In general, the length of the STEX domain is given by
n m

K = 2 N· + I M · + m
(...,;./ l 1=1 j

where the domain is divided into n inactive blocks and m active

blocks. Note that K is a constant, determined at the time STEX

is activated, and K=17600-L, where Lis the address of the first

word of inactive storage at the time STEX is activated.

The codewords that address the active blocks may be located

anywhere i.n the memory, but the blocks of every array must lie

wholly irtside or outside the domain of STEX.

If it is necessary to move a codeword for an active block,

the back=reference for the block must be appropriately altered.

For instance, when the block addressed ~hrough codeword A is

activated the back-reference for the block contains the address A;

if (A) is stored at B, back-reference for the block must be

changed to B.

STEX offers many advantages for data storage control, but

programs may also be loaded into the STEX domain with a few re

strictions. Since pathfinder settings are absolute artd return

is not made through codewords, programs should not be moved in

a memory reorganization which STEX may have to perform. This

possibility is eliminated if programs are loaded before any

space is taken for data that may ever .be inactivated.

should always be followed.

VI • 4 • Use o f S TEX

This rule

Once activated, STEX exists as program *135 and may be used

directly by the coder. The entry parameters are

(Bl)=codeword address of block on which STEX is to operate,

(B2)=1ength of block.

S TEX f i rs t t e s t s the w o rd a d d re s s e d by (B 1) • If this codeword is

not null, the storage addressed through this codeword to all sub

levels is inactivated by STEX and.all codewords are made null.

If the codeword is null, no inactivation occurs. Then (B2) is

tested. If (B2)~0, a block of storage of length (B2) is

D

D

D

D

D
D

D

D

0
0
D

D
D
D
D

D

D
0
J

S PIREL SYSTEM

STORAGE CONTROL

4

activated with back reference to the address (Bl), the codeword

at (Bl) remains null, and then (Bl) is set for exit to the FWA

of the block activated. Hence, to take N locations to be ad

dressed through codeword c, set (Bl)=C, (B2)=N and enter STEX.

All space formerly occupied by array C will be inactivated and

all associated codewords cleared. Exit will be made with (Bl)=FWA

of a new block to be addressed through C and (B2) unchanged.

To simply inactivate memory addressed through C, enter STEX

with (Bl)=C and (B2)=0. If (Bl)=O on entry, a memory reorginiza

tion is performed (see below) and no space is taken.

If the inactive area is not sufficiently large to meet a

request for space 7 exit is made with (Bl)=O. If the total inactive

storage will accomodate a request for space, STEX will activate a

block by one of the three following means:

(1) space is activated from within an existing inactive

block;

(2.) if (1) fails, adjacent inactive blocks are combined and

(1) is tried again;

(3) if (2) fails, all active memory is re-written to the

low end of the domain, leaving one inactive. block at

the high end, thus forcing (1) to succeed.

Alternative (3) is called reorganization; if this occurs and SL14

is off, the message REORGANIZATION is printed.

When STEX is used directly, the coder must generate his own

codewords .. The alternative of taking space with a "read" control

word provides generation of codewords for the coder.

I

D
D
n
LJ

D
D
D

D

D
ID

D

D

10
I

I

ID

I

VIIo SPIREL System Components

SPIREL SYSTEM

SYSTEM COMPONENTS

Any component which is of use to the individual programmer is

denoted by o in the margin next to its name.

Since programs *135 (TAKE), ~~136 (SAVE), and 1(137 (UNSAVE) are

necessary components of the SPIREL system, they are not included

in the lists of supporting routines.

VII.l. Vectors and Print Matrix

,%'113, Symbol Table, ST

Len g th : 10 0 (o c ta l)

Function: This is a standard Bl~modified vector. Each entry

contains the name and descriptive parameter for an item in the total

system being runJ an item which is identified symbolically rather

than by its address or codeword address. The parallel entry in the

Value Table, *122., contains the item or codeword corresponding to

the item name in the Symbol Table. The index of the last active

entry in the Symbol Table is dynamically maintained at location 117.

«> 1e 116, Print Ma tr ix, PM

Length: 200 (octal)

Function: This block is not B-modified. The address of the

first word of *116 is used as the address field in all SPIREL print

orders, except in tracingo The print matrix is always cleared

immediately after SPIREL-controlled printing.

1el22, Value Table, VT

Length: 100 (oc ta 1)

Function: This is a standard Bl=modified vectoro Each entry

contains the value of or the codeword for an item in the total

system being run, an item which is identified symbolically rather

than by address or codeword address. The parallel entry in the

Symbol Table, *113, contains the name and descriptive parameter

for the itemo The index of the last active entry in the Value Table

is dynamically maintained at location 117.

*125, Base Address Vector, ADDR

Length: 6

Function: This block is not B-modified. It is used by SPIREL

to dynamically maintain a record of all levels through which the

D

D
D
D

D
0
D
D

D
D
D

D
D

lo
D

D
D
D

SPIREL SYSTEM

SYSTEM COMPONENTS

2

base address had been set down and to compute effective addresses

from those specified in control words.

VI I. 2. Programs

*13, Trace, TRACE

Length: 251 (octal)

Function: The SPIREL trace program receives control through

hardware trapping due to tag 3 on instructions, both before and

after execution of the instruction. Information for each line of

trace output is derived, formatted, and printed by this program.

Registers Not Preserved: P2,S

Sup po rt in g Routines : · '>'e 12 7 (SE T PM)

*110 2 Print Control Word 2 HDPR

Length: 55 (octal)

Function: This program is used in the SPIREL system for

on-line control word monitoring when SL14 is off.

Supporting Routines:

*111, Process Matrix, MATRX

Leng th: 135 (o c ta 1)

SETPM ('>'cl2 7)

Function: This program is used in the recursive application

of SPIREL as explained elsewhere.

Supporting Routines: all SPIREL components, but only those

necessary to perform the specified operation on any particular

utilization; see section on SPIREL Component Linkages.

*120, Diagnostic Dump, DIADMP

Length: 57 (octal)

Function: This program is used in the SPIREL system when

control is passed to location 20000 (octal). The diagnostic dump

formats and prints the contents of the fast registers as explained

in the section of Use of SPIREL.

@ *126, Execute Control Word, XCWD

Length: 276 (octal)

Function: This program is the nucleus of the SPIREL system.

It interprets control words and may use other system programs to

carry out specified operations. External communication to XCWD

from paper tape and from the console is provided within the system

D

D

D
D

D
D
D
D

D
D
D
D

D
D
D

D

S PIREL SYSTEM

SYSTEM COMPONENTS

3

and is explained elsewhere. For internal communication, control

should be passed to the second word of *126 if the SPIREL operation

specified is to be performed on a named item; otherwise control is

given to the first word of *126.

Input~ (T7)=SPIREL control word to be executed.

(T4)=5 left-adjusted printer hexads (with '25 1 fill

if necessary) for name of item to be operated on if control is

given to *126 at the second word; in this case Fin the control

word in T7 is empty.

Registers Not Preserved:

fast registers)

none (and SPIREL cannot operate on

Supporting Routines: all SPIREL components, but only those

necessary to perform specified the operation on any particular

utilization; see section on SPIREL Component Linkages.

'>'el27, Set Up Print Matrix, SETPM

Leng th: 75 (octal)

Function: This program will format a single word into the

print matrix for printing at a specified position on a line if

appropriately instructed. It will print the contents of the print

matrix and clear the print matrix if appropriately instructed.

Common usage of SETPM for the printing of a single line consists

of an entry for each word of information to be printed and an

entry to have the collection printed and the print matrix cleared.

Thus, SETPM provides a facility for composition and output of

lines on the printer.

Input: (T7)=information to be set up in print matrix, if any

(Bl)=parameter which controls operation of SETPM

(B3)=print positionJ 1-108 (decimal) at which field

set-up should begin, if relevant.

SL15 on causes leading zeros in a hexad field to be

deleted; leading zeros in numeric fields are automatically deleted

unless SL15 is manually locked off.

Operation: on the basis of (Bl) on entry:

(Bl)<O, octal format of last 5 triads of (T7) at print

position (B3), and increment of (B) by 5

D

D

D

D

0
0
D
D

D
D

D
u

D
D

0
D

J

S PIREL SYSTEM

SYSTEM COMPONENTS

4

(Bl)=O, octal format of (T7) in 18-position field at

print position (B3), and advance of (B3) by 18

(Bl)=l, hexad format of (T7) in 9-position field at

print position (B3), and increment of .(83) b~. 9

(Bl)=2, print and clear PM, (B3) set to one and (T7)

meaning less

(Bl)=3, decimal format of (T7) in 18-position field

at print position (B3), and increment of (B3) by 18

Registers Not Preserved: none

Supporting Routines:

is used.

*155 (BINDC) when decimal formatting

*130, Find Symbolic Name, SMNAM

Length: 26 (octal)

Function: This program is used in the SPIREL system for

oparations which are performed on items with symbolic names.

Supporting Routines: *176 (TLU)

*131, Print Date and Time, DATIME

Length: 14 (octal)

Function: This program reads the digital clock through

*132 (CLOCK), sets up the 14-character date and time in the print

matrix, and prints the contents of the print matrix if requested

to do so. It is used by XCWD to perform "obtain date and time"

operations; it may also be used directly.

Input: T7=00000 OOpO rrrr 00000,

where p=O causes set-up only

p=l causes set-up, print, and clear

r specifies the print position of the date

r=O causes setup for 8 1/2 x 11" pages

(first character in print position 48)

Registers Not Preserved: T7

Supporting Routines: CLOCK(*l32), SETIPM (*127)

e *132, Decode Clock, CLOCK

Length: 55 (octal)

Function: This program interrogates the digital clock and

[]

D

D

D
D

c
D

D
D

il
lj

D

D

J
J
D

SPIREL SYSTEM

SYSTEM COMPONENTS

5

calendar in the machine and translates the coded time and date

into printer hexads. The time is based on a 24-hour clock. CLOCK

is used by DATIME(*l32)o

Input: none

Output: Printer hexads in TS,

were executed at 9:45 pm on May 17,

be:

T6. For example, if CLOCK

1964, the CLOCK output would

TS=OS/17/64

T6=17.45

where denotes "space".

Registers Not Preserved: B2, T4, TS, T6, T7

Supporting Routines: none.

*133 2 Punch ~ntrol Word, PCNTRL

Length: 15 (octal)

Function: This program is used in the SPIREL system for

any punch operation executed with SL14 off.

Supporting Routines: none.

*134, Set Up Word in Program Format in Print Matrix, FIELD

Length: 20 (octa 1)

Function: This program is used in the SPIREL system for

the operation of printing in program formato

Supporting Routines: none

® *135, Take Memory Space, TAKE

Length: 5

Function: This program performs linear irreversible storage

allocation for blocks and maintains location 100 as a pointer to

the first word of inactive storage.

Input: (B2)=length of block to be allocatedo

Output: (Bl)=address of first word of block allocated, 0 if

space not available for ~pecified allocation.

Registers Not Preserved: none.

Supporting Routines: none.

@ :!'f136 2 Save Fast Registers, SAVE

Length: 41 (octal)

D
D
D

D
D
D
0
0
D
D
D
D

D
0
J
D
I'
tJ

0
1 u

SPIREL SYSTEM

SYSTEM COMPONENTS

6

Function: This program uses the B6-list for storage of

specified fast registers and a word denoting the registers so

stored.

Input: (R), bits 46.54, to specify registers to be saved:

45 46 54

(R): --1---=§E~Jr6fT1JB2 IB3T~sfPFJ
not meaningful to SAVE

For each position in which the bit is 1, the corresponding

register will be saved. The registers are saved on the B6-list in

the order shown from right to left (i.eo, PF, if specified, saved

first), and the (R) is itself stored on the B6-list. Notice that

(R)=-Z on entry causes all nine registers to be saved.

Use: Control should be passed to SAVE by a TRA (not a TSR)

instruction so that the saving of (PF) is meaningful. SAVE returns

via (P2) on entry, and the instruction

TRA *136

must not be traced.

Registers Not Preserved: none.

Supporting Routines: none

*1371 Unsave Fast~gisters 2 UNSAVE

Leng th : 4 l (o c ta l)

Function: This program complements SAVE. It obtains from the

B6-list the (R) stored by the complementary execution of SAVE, re

stores all fast registers then saved, and decrements B6 appro

priately~

Use: Control should be passed to UNSAVE by a TRA (not a TSR)

instruction. UNSAVE returns via (P2) on entry, and the instruction

TRA *137

must not be traced.

Registers Not Preserved: none.

Supporting Routines: none

*140, Insert o r De 1 e t e S pa c e , DE LE TE

Length: 124 (octal)

Function: This program is used in the SPIREL system for the

operation of inserting or deleting words in blocks.

Supporting Routines: none.

D
D
D
D
D

D
n
·. I
LJ

D

0
D
n
: I

LJ

D

0
D

n
l_J

SPIREL SYSTEM

SYSTEM COMPONENTS

7

*141, Change Initial Index, CHINDX

Length~ 13 (octal)

Function: This program is used in the SPIREL system for the

operation of changing the initial index of a block.

Supporting Routines: none

*142, Tagset, TAGSET

Leng th: 15 (o c ta 1)

Function: This program is

operation of tag setting.

Supporting Routines: none.

*143, Take Chain Storage, CHN

Length: 13 (octal)

used in the SPIREL system for the

Function: This program is used by the SPIREL system for the

operation of generating chain storage.

Supporting Routines: none

*144, Print, PRINT

Length: 70 (octal)

Function: This program is used in the SPIREL system for all

print operations.

Supporting Routines:

'1~12 7 (SETPM)

*155(BINDC)

~1:150 (PRNWTG)

'i; 13 4 (FIE LD)

Punc~ PUNCH

Length: 130 (octal)

for all printing

for decimal printing

for printing with tags

for printing in program format

Function: This program is used in the SPIREL system for all

punch operations.

Supporting Routines: *133(PCNTRL) for punching tapes with

control words (i.e., with SL14 off); *157(PUNCHK) for punching

tapes in the hexad with tag and checksum format.

*146, Execute Control Word Sequence, XCWSQ

Length: 15 (o c ta 1)

Function: This program is used in the SPIREL system for the

operation of executing a control word sequence.

0
D
0
D

D
0
n
LJ

0
D
0
D
n
LJ

D
D
0

0
D
n u

SPIREL SYSTEM

SYSTEM COMPONENTS

8

Supporting Routines: all SPIREL components, but only those

necessary to perform the operations specified by the control words

in the sequence being executed; see section of SPIREL .Component

Linkagese

:!:J-47, Load Symbolic Cross References, SYMRF

Leng th: 12 (octal)

Function: This program is used in the SPIREL system for the

operation of loading symbolic cross-references.

Supporting Routines: *176(TLU)

*150 1 Set Up Tag in Print Matrix1 PRNWTG.

Length: 16 (octal)

Function: This program is used in the SPIREL system for the

operation of printing with tags.

Supporting Routines: none.

*151.L Print Symbol and Value Tables, PRSYM

Length: 4.3 (octal)

F'unction: This program is used in the SPIREL -ystem for the

printing pf ST and VT in the special format d~scribed elsewhere.

Supporting Routines: * 12 7 (S E T PM)

*152, Conversion of Powers of Ten, PWRTN

Length: 41 (octal)

Function: This program is used in the SPIREL system for

reading of decimal numbers from paper tape. Given the floating

point number and the integer Q, this program computes the

floating point number N=PXlOQ.

Input: (T5)=signed floating point number P

(B2)=integer Qin oneus complement form, less than

75 (decimal) in absolute value.

Output: (T.5)=PX10Q, (PF')=O if IQl<75.

(T5)=0, (PF')=l if IQ,~75

Registers Not Preserved: Bl, T4

Supporting Routines: none.

~ *153, Multiple Read Decimal, MRDDC

Length:. 144 (octal)

D
D
D
D
D
D
D
D
D
D tll

D
D
0
D
D

ID
D

10
\1
\

Function:

SPIREL SYSTEM

SYSTEM COMPONENTS

9

This pro gram is used in the SPIRE L system for the

reading of data in decimal input formats from paper tapeo It may

be tlsed directly to read decimal numbers, convert them as explained

elsewhere, and store them.

read.

Input:

Output:

(Bl)=address at which to begin storing the numbers

(B2)=number of numbers to read.

(Bl) same as on input.

(B2) =0

Error Halt: The SPIREL error halt

(I): 77 00000 00 4001 XXXXX

occurs if an improper decimal number is read; one which is out of

the range permitted for the format used. C,ONTINUE causes exit

from MRDDC with no further reading 0

Registers Not Preserved: none,

Supporting Routines~ *152(PWRTN)

*154, Storage Exchange, STEX

Length: 213 (octal)

Function: This program must be activated with the SPIREL

control word

00000 3120 0000 00135

before it may be useda It then operates as program *135 and musi

be used as such 0 The function of STEX is explained in detail in

the section on Storage Controlo

Input: (Bl)=codeword address of array or block which is to

be freed or for which space is to be allocated; 0 if reorganiza

tion is desired.

(B2)=length of block to be allocated; 0 if no space

is to be allocated.

Output: (Bl)=address of fir£t word of block allocated; 0

if allocation requested and insufficient space available; same

as on entry if no allocation is requested.

(B2) same as on entry.

Registers Not Preserved: none.

Supporting Routines: none.

D
D
D

D
D
D

D

D
!D

D

D
ID

D
D
D
D
D
D

D

• *15~, Binary to Decimal Conversion, BINDC

Length: 102 (octal)

SPIREL SYSTEM

SYSTEM COMPONENTS

10

Function: This pr~gram is used in the SPIREL ,ystem. for

conversion of a number from its internal binary representation

to a decimal representation in printer hexads. It may be used

directly for the same purposea

Input: (T4)=numbers to be converted, fix~d point integer if

exponent empty, floating point otherwise.

Output: (T4), (T5)=number in decimal printer hexad form,

18 hexads: .

floating point

±d.ddddddddddde±dd
'-'

12 decima 1
digits

fixed point in~eger

bb •• 0 bb±dd •• 0 dd
'----'

exponent,
2 decima 1 digits

1-16• 1 ... 15 decimal
blanks digits

Registers Not Preserved: T6,T7,Bl,BZ,B3

Supporting Routines: none

• *156, Read with Checksum, RDCHK

Length: 35 (octal)

Function: This program is used in the SPIREL system for

reading tapes in the hexad with tag and checksum format explained

in the section of Use of SPIREL 0 It may be used for the same

purpose by an individual.

Input: (Bl)=address at which to store first word read.

(B2)=number of words to read.

Error Halt: The SPIREL error halt

(I): 67 77777 40 4001 XXXXX

occurs if the checksum computed while reading does not agree with

that read from paper tape. Raising and lowering the F3 switch at

the console will cause exit from RDCHK.

Registers Not Preserved: T4,T5,T6,T7; B2,B3,B4 ((B2}=0 on-e~~ei

Supporting Routines: none.

D
D

·D
D

D

D

D

D

D

D
D

D

0
D
D

S PIREL SYSTEM

SYSTEM COMPONENTS

1·1

Word of Caution:- The SPIREL .hexad with tag and checksum

format prescribes that each sequence which is checksummed be

preceded by an :extraneous "spill character" (one hexad)., RilCHK/

in fact, expects this hexad, but it is~ punched by *157, PUNCHK.

-~ *157 1 Punch with Checksum, PUNCHK

Leng th : 2 4 (o c ta 1)

Function: This program· is used in the SPIREL System for

punching tapes in the hexad with tag and checksum format when

the "spill character"· (one hexad) that precedes a checksummed

sequence is provided~by another component of SPIREL. It may be

used for the same purpose by an individual.,

Input: (Bl)=address of first word to be punched.,

(B2)=numbers of words to be punched.,

Registers Not Preserved: T4,T5,T6,T7, B3,B4

Supporting Routines: none .

. o *176, Table Look-Up 2 TLU

Length: 23 (octal)

Function: This program is used in the SPIREL system to

determine the index of the Symbol Table entry ~or a name. If

the name "looked for" does not appear on the Symbol Table, TLU

adds it and increments the current last active index at location

117 by one~

Input: (T4)=left adjuste~ 5 printer hexad representation

of the name to be "looked for" on the Symbol Table, *113; the

rest of (T4) is irrelevant to TLU.

Output: (Bl)=index of ST entry for the name "looked for"o

(PF)=l if the entry was added to the active portion

of the Symbol Table; 0 otherwise 0

Registers Not Preserved: Bl, PF

Supporting Routines: none.

D
D

D
D

D
D
D
D

D
n LJ

D
D

D
D
r,· u
D

0

Component Linkages

SPIREL SYSTEM

SYSTEM COMPONENTS

12

The chart on the next page shows linkages among SPIREL

components. SPIREL operations are shown in ova ls r----·-~,
and each operation is linked to SPIREL components on which it

may be dependent. Programs are denoted by hexagons ()

and vectors by rectangles i...c_· ___ __;J. The programs and vector

required for a minimum SPIREL are starred (*) on the chart.

Reading the chart from bottom to top, programs and vectors

are needed only to perform operations which appear in ovals

above them (except for XCWD, which is always required).

For example, XCWD (*126) uses DATIME (*131) only when an

" ob ta in d a t e and t i m ell c on t r o 1 w o rd (0 0 0 0 0 4 3 10 0 0 0 0 0 0 1 3 1)

.is executed; DATIME always uses CLOCK ('J'tl32) and SETPM {~'s-127).

~ L..J c=i CJ CJ CJ CJ CJ CJ CJ CJ c:::J c-:J c:::J CJ CJ . c:J c:::::::J c:::J

ALL

OPERATIONS

: ADDR *j. L ___ 125 ___ _ __ ; ___ _
SAVE

136. *

TAKE*
135

UN SAVE

137 *
SETPM

127

MATRIX
OPERATIONS

XCWD

126

READ/

CORRECT

PAPER
TAPE

F'ORMATS

~I

~~
(M~iic)

. ·'

CHECKSUM
\ ~--T--
r-

RDCHK*
156

CHANGE
INITIAL
\NDEX

SPEC!AL

CORR£CT

-1
INSERT/
DELETE

CHINDX)
141 <J~~TE) J_

XCWD*
126

STEX >
154 I <TAGS ET

142
._-J

PUN~

PUNCH
145

__.../

WITH

CHECKSUM ,,

PUNCHK PCNTRL
157 133

PWRTN
152

SYMBOLIC
ADDRESSING) I PM

TR~

TRACE
13

SET PM

127

ST
. 113

SM NAM
130

VT
122

SYMRF
147

TLU
176

PRSYM
t51

SETPM
127

116

SP IRE L CoMP,ONENT LtNKAG:ES.

~ 6

(PRIINT

~NT
4

<. SETPM)
127

I (DECIMAL)

BINDC
155

CLOCK
i32

' CHAIN '

STORAGE
1·--

@
SET PM

127

~TH) GS
(PROGRAM i

FORMAT j

<PRNWTG)
150

< FIELD
134

DIAGNOSTIC

DUMP

ENTRY
20000

DIADMB
120

D

D

0
0
0
0
0
D
D
D

D
D
D

n [___,

D

f]

0
J

-----·-----···---------

VIII. System Duplicator

VIII.1 0 Purpose -of the Duplicator

SPIREL SYSTEM

SYSTEM DUPLICATOR

When a system of programs has been debugged and extensive

production running is contemplated or when memory space becomes

critical, it may be advantageous to produce a self-loading paper

tape bearing necessary SPIREL comp6nents, library routines used,

and the coderffs private system elements. The system duplicator

MSPDUP, program *10, is designed for this purpose. This program

is not itself a SPIREL component 0 MSPDUP has codeword address

10 (octal) a,nd this will not.conflict with normal codeword

locations ..

VIII.2 .. Use -of the Duplicator

A dump tape is used to tell program *10 what system elements

are to be punched., The dump tape consists of a series of dump

words, ea ch preceded by a O carriage return° punch and consist i:ri.g,

o f 18 octal digits. The dump word forms are as follows:

00000 0100 0000 fffff for all of the block (program or vector)

with codeword at F.

nnnnn 0000 0000 fffff for N words beginning _at ma.chine address F o

nnnnn 0120 rrrr fffff for a control word which will cause a

block of N zeroes to be created with codeword ~t F and R in

the dump word at the corresponding position in the codeword.

If Nin the dump word is emptyJ N and R will be obtained

from the codeword at Fat time of punchings

nnnnn 1100 rrrr fffff for N words beginning •t the Rth element

of the block with codeword at F. A "correct" control word

is punched which is meaningful at later reading only if the

block has been previously created.

A null dump Word (18 1 ou punches preceded by a 0 carriage return 1)

terminates the list of system components to be punched. Hexads

on the dump tape after the null dump ~ord will be reproduced

onto the tape punched. Except for blocks of zeros, all components

are punched in the hexad with tag and checksum format.

With the complete system from which components are to be

punched to produce a self-loading system tape in the machine,

execution of program *10 results in the following stepsg

D

D

0
0
D
0
fl I I

LJ

D
0
D
D
0
D

0
0
0
0
D

SPIREL SYSTEM

SYSTEM DUPLICATOR

2

A leader is punchedo It contains the SPIREL loader and

RDCHK, program *1560

The programmed stop

Z HTR cc
occurs, and the dump tape should be readied in the

reader.

a CONTINUEing causes the dump tape to be read and the

specified system components to be punched, until the

null dump ward is read.

~ The SPIREL system tail is punched.

o Any information on the dump tape beyond the null dump

word is duplicated, hexad for hexad.

VIII.3. SPIREL Generation

A ~omplete SPIREL .system is produced by use of a dump tape

as follows:

dump words

00000 0120 0000 00113
00000 0120 0000 00116 t
00000 0120 0000 00122
00000 0100 0000 00013
00000 0100 0000 00110
00000 0100 0000 00111
00010 0000 0000 20000
ppooo 0100 0000 00120
00000 0100 0000 00125 t
00000 0100 0000 00126 t
00000 0100 0000 00127 t
opooo 0100 0000 00130
00000 0100 0000 00131
00000 0100 0000 00132
00000 0100 0000 00133
00000 0100 0000 00134
00000 0100 0000 00135 t
09000 0100 0000 00136 t
00000 0100 0000 00137 t
00000 0100 0000 00140
00000 0100 0000 00141
00000 0100 0000 00142
00000 0100 0000 00143
00000 0100 0000 00144
00000 0100 0000 00145
00000 0100 0000 00146
00000 0100 0000 00147

components

ST
PM
VT
TRACE
HDPR
MATRX.
ENTRY
DIADMP
ADDR
XCWD
SET PM
SM NAM
DA TIME
CLOCK
PCNTRL
FIELD
TAKE
SAVE
UNSAVE
DELETE
CHINDX
TAGS ET
GHN
PRINT
PUNCH
XCWSQ
SYMRF

D
D
0
0
D
0
fl
LJ

0
D

D
D
D
n
lJ

;l
l_J

J
0

0
ri

I
I

L...J

SPIREL SYSTEM

SYSTEM DUPLICATOR

3

dump words components

00000 0100 0000 00150 PRNWTG
00000 0100 0000 00151 PRSYM
00000 0100 0000 00152 PWR'J;N
00000 0100 0000 00153 MRDDC
00000 0100 0000 00154 STEX
00000 0100 0000 00155 BINDC
00000 0100 ·0000 00157 PUNCHK
00000 0100 0000 00176 TLU
00000 0000 0000 00000 Null word to end dump

tcompo~ents ~h1ch must be in.c.luded .in min.ima l 'S PIREL' ·in .. ' . fact

.. *116 and *12 7 may be deleted with corrections to MS PDUP.

For de termination of a sufficient set of S PIREL components to

satisfy to requirements of a private system, reference should

be made to the diagram of SPIREL ,component linkagese If HDPR,

pro gram * 110 , i s to be e 1 i min a t e d, a 11 c on tr o 1 w o rd s mus t b e

executed with SL14 on unless location 110 routes control

immediately to the program using *110. Set

{110): 00000 0000 0001 00000

before execution of *10 and include the dump word

00001 0060 0000 00110

in the dump tape.

To alter the initial SPIREL loading address (normally octal

300) or the message printed upon completion of paper tape reading,

or to delete *116 and *127, refer to the symbolic listing of

MSPDUP in the UTILITY ROUTINES ~eference notebook.

0
0
0
0
0
0
n
Li

0
n
LJ

0
n
LJ

n
' I
I__J

D
D
0
J

SPIRE L SYSTEM

MAGNETIC TAPE SYSTEM

IX~ Magnetic Tape System

This system is designed to provide each user with an area

in which he may store SPIREL - compatible systems and to allow

retrieval of these systems with a minimum of knowledge about the

status or position of the tape.

FORMAT

The tape will be pre-written in the following format:

rewind
posit.ion

where *.denotes a mark as
. '·';-

j
shown below it,

mark O is the system mark,

mark$ 100-130 are file marks,

marks 1-3 are block marks witnin files,

S is data, the tape system which loads above 17600,

Mis data,~ full-memory dump, initially a SPIREL and the

pre-writing program.

The tape, then, is logically divided into files labelled

100 through 130 sequentially, each of which is subdivided into

blocks labelled 1 through 3 sequentially. The memory following

block mark j within file i is denoted M .. on the preceding
lo J

diagram.

POSITION.

When expected to read or write, an Swill be picked up off

magnetic tape and display of the current position in the indicator

lights will appear as

(IL): FFFOl

meaning that the current position is at data area MFFF.Ol~ A

halt occurs with an arrow displayed in U which points to the

sense lights. At this time the sense lights should be set to

(SL) : FFFBB

•

D
D
D
0
0
D

D
n LJ

0
ri
I I l_J

0

D
D
D
11 lJ

n u

1 L-1

S FIRE L SYSTEM

MAGNETIC TAPE SYSTEM

2

and when CONTINUE is pressed, the reading or writing ~ill take

place at data area MFFF.BB" If FFF in IL is the file number

desired, then

(SL) : OOOBB

is sufficient. If both FFF and BB in IL are as desired, (SL)

null is sufficient. If FFFOl is desired, then

(SL) : FFFOO

is sufficient.

READ

Loading of the paper tape labelled READ will cause:

(i) reading of a copy of the system S from magnetic

tape;

(ii) halt with arrow in U to obtain positioning

information FFF.BB from SL;

(iii) reading of data area FFF.BB;

(iv) resetting of lights to status at the time of

writing the block;

(v) setting of (B6)=17600;

(vi) transfer of control to the SPIREL sequence at

20, with execution of the control word

specified at the time of writing the block.

If necessary, as many as eight attempts will be made to read

each Sand data area successfully, i.e., with qo UME and with

proper checksum. If the information cannot be read, a halt

occurs with "NO" displayed in U; CONTINUE to try again.

WRI l'E

Clear the memory under program control (use paper tape

lab~lled CLEAR). Next load the system to be written. Then turn

o f f the "NOT WR I TE " 1 i g ht on the t rans po r t , and 1 o a d in g o f the

paper tape labelled WRITE will cause:

(i) saving of lights;

(ii) reading of a copy of the system S from magnetic

tape;

(iii) halt with arrow in U to obtain positioning

information FFF.BB from SL;

D
D
D
D

D
D
D

D

D

D
D
D

D
D

0
D

D
D

J

(iv)

(v)

(vi)

(Vii)

SPIRE L SYSTEM

MAGNETIC TAPE SYSTEM

3

halt with U null at which time a SPIREL control

word may be typed into U (this will be executed

after reading from tape the block about to be

written); CONTINUE without typing if no control

word is to be executed after reading;

writing of the full memory at data area FFFoBB;

reading of the data area just written without

storing to determine whether the data wa~

written incorrectly or if the tape is defective

in that block; if so, a halt occurs with (I):

77 00000 77 4000 17604

if CONTINUE is pushed, the program returns to

step (iii) so that the write can be tried

again or a different block of tape can be

selectedo A FETCH causes the program to con

tinue to step (Vii);

reading of the data area just written and entry

into the sequence described in "read";, start

ing at step (iii) o

DO NOT write on the system tape except through this procedureo

D

D

D
0
D

[J

D
D
D

D
J

0
:]

The

A S S E M B L Y L A N G U A G E

for the

R I C E U N I V E R S I T Y C O M P U T E R

Programming development on the Rice University
Computer has been supported by The National
Science Foundation under grants G-7648 and
G-17934. Construction of the computer was
supported by The United States Atomic Energy
Commission under contracts AT-(40-1)-1825 and
AT - (40 - 1) -2 5 72 .

April, 1964

--·-----·-···------ . - --- ----- -----

D
D
D

D
D

D

J
']

D

D
D
1 L_J

0
J

ASSEMBLY LANGUAGE

I . s ym b O 1 i c c Odin g•.. 9 • e • e •• 0 0 ••• 0 • e • O· 0 • 0 ••• 0 0 • 0 0 • 0 • 0

1. Instruction Form
2. Symbolic Lnaguage
3. Contents of Instruction

II. Mnemonic Operation Codes •••••••••••••••••••••••••••••••.•••
1. Class O, Tests and Transfers
2. Class 1, Arithmetic
3. Class 2, Fetch, s'tore, Tags
4. Class 4, B-Registers, Lights, Special Registers, Shifts
5. Class 5, Logic
6. Class 6, Input-Output
7. Class 7, Ana log Input
8. Summary of Operation Codes

III. PLACER and Assembly Operations ••••••.•••••••••••••.•.•••••
1. Genie PLACER
2. APl PLACER
3. APl Assembly Output
4. APl Pseudo-Orders

IV. APl and AP2 Coding Examples •••••••••••••••••••••••••••.••••

0
D

D
D

D
D

D

D

D
D

0

n u

D
',

J
:1

' , I
'--'

I. SYMBOLIC CODING

ASSEMBLY LANGUAGE

ASSEMBLY LANGUAGE

S YMBOJ~IC CODING

The absolute machine language of the Rice Computer is described

in detail in the Rice Computer Manual. In practice, programs are

not written in the absolute language of the computer but in a

s ym b o 1 i c 1 an g u a g e o The symbolic language which provides notation

for instructions, or commands, that correspond one-for-one with

absolute machine instructions is called an assembly languagea The

program which translates assembly language into machine language

is called an assembly programo

Use of the assembly language for the Rice Computer depends on

a knowledge of· the absolute machine instruction format, a familiar

ity with the registers of the computer, and a general acquaintance

with the instruction repertoire -- all explained in the Rice

Computer Manual. Two forms of the Rice Computer assembly langu.age

are available:

APl, for independent use

AP2, for use within Genie programs

The corresponding assembly programs have the same names~

APl, an independent assembly program within the APl PLACER

system

AP2, a subset of the Genie compiler within the Genie PLACER

system

The two assembly languages are very similar. The major dis~

tinction concerns octal and decimal numerals. In APl, all

numerical constants are assumed to be octal unless immediately

preceded by the special symbol "d", meaning decimal. In AP2, all

numerical constants are assumed to be decimal, except when octal

form is indicated by a plus sign immediately preceding the octal

number. In the following discussions, M stands for the final

number formed in the last 15 bits of I (the instruction register)

after all specified indirect addressing and B-modification has

taken place; and if Q is any machine location, then (Q) stands

for the contents of location Q.

I

I

I

I
~

0
0
0
0
0
0
0
0
0
0
D

0

D

D

D
D

I rr
'J

ASSEMBLY LANGUAGE

s mruntc CODING.

I.l. Instruction Form

The general form of an API or AP2 instruction and its

cbrrespondence to a machine~language instruction as explained in

the Rice Computer Manual is

2

bitsl 67 2122 27 8
F3

·-I~O·-·- 54 tag bits it 1 t2:
LFl F2 F4 '····· '""(_. ____ .

--, ·--·' I
OPN TAG LOCN

lcr
SETU
llst tab ~nd tab

ADDR+MOD, AUX
!3rd tab 14th tab

Here "er" denotes "carriage return", and "tab" denotes "tabulate"

on the flexowriter used for preparation of input to the assembly

programs.

LOCN gives the symbolic form (if any) of the location of the

instruction. SETU corresponds to Field 1: bring a "fasttr register

to U; then inflect (U). OPN corresponds to a Field 2 operation

chosen from one of six classes (see section II). AUX corresponds

to Field 3: alter a B-register, send (U) or (R) to a "fast"

register, send the M portion of I to a B-regis.ter, or clear

ADDR+MOD corresponds to Field 4: compute the final address M,

s en din g M t o the 1 a s t 15 b i t s o f I ; 1 o a d S w i th M o r (M) ; then

inflect (S). Any field except LOCN or TAG may contain octal

codes, which will be placed in the corresponding positions of the

machine instruction, ignoring any bits which overflow to the left.

(An exception to this rule is discussed· under ADDR+MOD symbols in

Section I.3.) LOCN may also be absolute in certain cases (see the

ORG pseudo-order in Section 111.4.). If no Field 3 operation is

desired, AUX and the comma preceding it may be omitted.

I. 2. Symbolic Language

Precise definitions of the allowed symbols are as follows;

Type I: Special symbolic addresses. By convention we

recognize the following symbols for "fast" addresses: z, U, R,

T4, TS, T6, T7 (A-series); and CC, Bl, B2, B3, B4, BS; B6, PF

(B-series). These may appear in SETU, ADDR+MOD, and AUX fields.

Use of the above symbol~ of I (in the~SETU or AUX fields),

s'

D
D

D

D
c
0
n
lJ

D
0
n
lJ

n u

0

11 u

J

and

to

+,

of

the

SL

IL

ML

TL

P2

x
TT

FT

ASSEMBLY LANGUAGE

SYMBOLIC CODING

3

the following special register symbols should be restricted

special significance associated with the Rice Computer:

the sense light register

the i~dicator light register

the mode light register

the trapping light register

the second pathfinder

the increment register

the "to-tape" register

the "from-tape" register

Type II: Special characters. 1c, a(APl) or 1/:(AP2),

(comma).

d(APl),

-, I , , () "tab" "er" and
' ' ' ' '

Type III: Mnemonic operation codes as listed in Section II;

APl pseudo-operation codes as discussed in Section III.4.; and

symbols previously defined as operation codes by means of a LET

(AP2) or EQU(APl) instruction (see the EQU pseudo-order in

Section III.4.) o

Type IV: General storage addresses. In AP2, any private

name formed by the rules described in the Notes on Genie. In

APl, any upper case Roman letters, which may be followed by upper

case Roman letters, or numerals; any number of characters are

permissible, but a maximum of six will be retained by APl. (A

letter may not follow a numeral; BA3 is permissible, but not B3A.)

Examples: B, M3, COMM, ZETA2. These symbols may appear only in

the LOCN or ADDR fields.

I. 3. Contents of Instruction.

Each field of the symbolic instruction has a well-defined

form, and if this is not recognized by the assembly system, a note

is made on the printed listing of the program.

contents of each field are as follows:

The acceptable

D

0
0
0
D
0
0
n u

D

0

D

D

D

D
'.]

ASSEMBLY LANGUAGE

SYM'.BOLIC CODING

4

LOCN. May be blank or absolute or symbolic. Absolute LOCN

fields are permitted only when an APl program is being Bssembled

in absolute form (see the ORG pseudo-order in section III.4.).

Symbolic LOCN fields may consist of any Type IV symbol, and may

appear in conjunction with a relative numerical part, as 11 LOOP+l",

"EXIT-3". A symbol may not appear in LOCN more than once in any.

one program unless the correct numerical relationship is specified.

SETU. May be blank_. _absolute, "I", or F, where F. is an A- or

B-series symbolic address, or any of the forms -F, IFI, or -IFI.

If SETU is blank, the symbol "U" is understood and the octal

equivalent 01 is inserted into the machine instruction. I (or

·IZI) and ..,i (or -lzl have special meanings: I sets U to the

numerical integer +i; - I sets U to the numerical integer -1.

Note that Z sets U to all zeros; -Z sets U exponent to zero and

U mantissa to minus zero, or all ones.

Examples: Bl lr41 -PF -IRI .,.
.L -I

OPN. May be any absolute octal code or Type III symbol. In

the case of conditional transfers, a symbolic operation has the

form IF(CCC)TTT where CCC represents test conditions and TTT is a

- mnemonic for a transfer order. Other symbolic operation codes

consist of one or more 3-letter mnemonics. Special symbols such

as _., +, -, ",", and +i (where i is an octal integer) are some

times permitted (see the codes in Section II).

AUX. May be blank, absolute, or one of the forms U->F, R->F,

I->Bi, Bi+l, Bi-1, or Bi+X, where Bi stands for one of the Type I

B-series symbols, Fis any Type I A- or B-series symbol, I refers

to the last 15 bits of the instruction register, and X refers

to the increment register. Note that R->Z causes R to be cleared

to zero.

Examples: U->T4 R->PF I->B 1 B2+1 B3-1 B4+X

0
0
0
n
u

0
0
n
LJ

n
LJ

D
n
, I
LJ

D
n . i

LJ

n u

n
LJ

n
LJ

n
. I

LJ

ASSEMBLY LANGUAGE

SYMBOLIC CODING

5

ADDR+MODo ADDR may be blank or absolute or symbolic, or the

ADDR+MOD field may consist of an octal or decimal number to be

used as an operand. MOD is either blank or one or more of the

Type I B-series symbols, connected to ADDR by+ signs" Special

inflections control the IM and IA bits as follows: IM bit 1 is

set to 1 whenever the symbol na" (APl) or ":ff:tt (AP2) appears, or

whenever certain OPN mnemonics are used (see the listing of OPN

codes in Section II). IM bits 2 (absolute value) and 3 (minus)

are controlled by the special forms -Q, \q\, and -\Q\, where Q is

an allowed ADDR+MOD symbol. The IA (indirect addressing) bit is

set to 1 whenever the symbol n*n appears in this field 0

If ADDR is symbolic, any Type I A-series symbol, any special

register symbol, or any Type IV symbol is acceptable 0 As in LOCN,

this field may contain a relative part consisting of an integer

preceded by a+ or - sign.

If ADDR is absolute, any octal integer of not more than 5

digits, or any decimal integer of absolute value not larger than

32,767, is permissible. Any octal or decimal integer above these

limits, or any floating point decimal number (see the DEC pseudo

order in Section III.4~), is treated as an operand; storage space

is reserved for it at the end of the program. In this case, the

MOD, "a" or "It", and "it" symbols must be omitted, but the other

IM inflections may be present.

All characters appearing within parentheses in this field

are treated as the Z character, so that an address which is

modified by the program may be conveniently noted. For example,

(FWA)+Bl+B2 is treated as Z+Bl+B2. If a symbol appears in ADDR

but never in LOCN, a blank location will be reserved at the end

of the program; this is true even when such a symbol appears only

within parentheses. ADDR and MOD should not both be blank; the Z

character may always be used to produce a zero field 0

11
i I
LJ

D

D
n u

0
0
n
LJ

n

u
D
n LJ

D
ri.
, I
LJ

n u

r1
I I
LJ

;l
; I
I > , I
L_,

0

ASSEMBLY LANGUAGE

SYMBOLIC CODING

Examples of equivalent APl and AP2 ADDR+MOD fields are:

A Pl

COMM+lO or COMM+d8

-IA+Bl-dl2 I or -IA+Bl-141

a1tZETA

d48

=adl22+Bl

B4+B5

00500

dZ.009027

777700000

30

AP2

COMM+8 or COMM++lO

-IA+Bl-12 I or -IA+Bl-+141

ifa·kzE TA

48

-1fal22+B 1

B4+B5

+00500

20009027

+777700000

24

The only field which may be continued onto another line is

"ADDR +MOD, AUX". This is achieved by punching a "crrr followed

6

immediately by three "tab" characters, so that continuation lines

will follow under "ADDR+MOD, AUX". Any number of "er" characters

may be punched to help separate code sequences on the printed page;

they will appear in symbolic listings, but will be ignored during

assembly. Comments punched with a 7th hole in the tape may be

included for the guidance of the coder; they are not read by the

computer and hence will not appear on machine listings of the

program.

TAG. May be blank or symbolic. If blank, the 4th tab punch

may be omitted. If symbolic, TAG must be one of the mnemonics TGl,

TG2, or TG3. The corresponding tag iwll be placed on the assembled

instruction, printed on the octal listing, and punched with the

instruction in check-sum format.

D
D
0
0
n
lJ

D

0
0
0
0
J

D
n
LJ

n u
ft
I I
' I
L.J

r, u

----------------·····-·-- -------·-····

ASSEMBLY LANGUAGE

MNEMONIC OPERATION CODES

II. MNEMONIC OPERATION CODES

The most common Field 2 operations have been assigned symbolic

equivalents in APl and AP2 for convenience in coding. All Field 2

operations are fully explained in the machine manuaL The mnemonics

defined in this section are summarized in a chart at the end of

the section. These Type III symbols may not be used for any other

purpose. Other Field 2 operations may be assigned symbolic

equivalents by LET (AP2) or EQU (APl) statement (see the EQU

p s e u do - or de r in _Section I II e 4.,) ; such s ym b o 1 s a re then tr ea t e d as

Type III symbols throughout the program in which they have been

defined. In the list below, the symbols are followed by their

octal equivalents and a brief explanation of their meanings; the

indication "a,ifo" means that the operation symbol automatically

causes IM bit 1 to be set to 1, since the operation indicated

deals with M rather than with (S).

Class 0 2 Tests and Transferso

The four unconditional transfers are represented by:

octal codes

a, 1fo HTR 00000

a , 1fo TRA O 10 0 0

SKP 02000

JMP 03000

Halt and transfer. Halt, setting CC

to M when CONTINUE is pressedo

Transfers Set CC to Me

Skip. Subtract (S) from (U); then

increment CC by 1, skipping the next

order.,

Jump. Subtract (S) from (U); then

increment CC by (X), the increment

register.

Conditional transfers have the form IF(CCC)TTT where TTT is

one of the above transfer mnemonics, and CCC represent one, two,

or three test conditions joined by+ or X signs. Use of the+

sign indicates that the spec_ified transfer is to occur if ~ of

the conditions listed is satisfied; use of the X sign indicates

that the specified transfer occurs only when all of the conditions

listed are satisfied simultaneously. A single order may not

D

D

D

D

D

D
D

D

D

D

D

J
D

n LJ

D

n
J

ASSEMBLY LANGUAGE

MNEMONIC OPERATION CODES

2

contain both+ and X signs. One condition from each of the first

three groups may be specified; or a Group IV mnemonic may be

combined with a Group III test as noted. If a TRA or HTR is used,

the specified test is made on (U) o If a SKP or JMP is used.9 the

specified test is normally performed on (U)-(S). The exceptions

to this rule are noted below Group II.

Group I

octal code

PSN 00100 Positive sign. Is the sign bit of u
equal to 0?

MOV 00200 Mantissa overflow. Is J;ndicator Light

4fo4 on?

EOV 00300 Exponent overflow. Is Indicator Light

1fo5 on?

NSN 00500 Negative sign. Is the sign bit of u
equa 1 to l?

NMO 00600 No mantissa overflow. Is Indicator

Light 1fo4 off?

NEO 00700 No exponent overflow. Is Indicator

Light #5 off?

Note that indicator lights are turned off when tested.

Group II

octal code

ZER 00010

EVN 00020

a,# SLN 00030

NUL 00040

NZE 00050

ODD 00060

a , if S L F O O O 7 0

Zero. Is (U) mantissa all l 1 s or all O's?

Even. Is bit 54 of U equal to zero?

Sense light ono Are all the sense lights

corresponding to l's in Mon?

Null. Are all 54 bits of U zero?

Non=zeroo Is (U) mantissa different

from zero?

Odd. Is bit 54 .of U equal to l?

Sense light off$ Are all the sense lights

corresponding to l's in M off?

Note that sense lights are not altered when tested. SLN and

D
D
D

D
D
D
D

D

D
D
D

10
D
D
D

D

D
D

ASSEMBLY LANGUAGE

MNEMONIC OPERATION CODES

3

SLF tests are meaningful only with SKP or JMP orders, and in these

cases no subtraction takes place. If the NUL test is used with a

SKP or JMP order, a logical comparison is made as follows: where

ever a bit of R is equal to zero, the bits in corresponding

positions of U and Sare co-pared. If (U) is identical with (S)

in each of these positions, the resulting (U) is null and the NUL

portion of the test is satisfied.

Group III

oc ta 1

TGl 00001

TG2 00002

TG3 00003

NTG 00004

NTl 00005

NT2 00006

NT3 00007

code

Tag 1. Is Indicator Light 111 on?

Tag 2. Is Indicator Light 1/:2 on?

Tag 3. I.s Indicator Light 1/:3 on?

No tag. Are Indicator Lights 1/:1, 1/:2'
1/:3 all off?

No tag 1. Is Indicator Light #1 off?

No tag 2. Is Indicator Light #2 off?

No tag 3. Is Indicator Light #3 off?

Note that indicator lights are turned off when tested.

Group IV

octal code

POS 00110

NEG 00510

Positive or zer-0. Is (U) mantissa great

er than or equal to zero?

Negative ~ zero. Is (U) mantissa less

than or equal to zero?

A+ sign must be used when combining either of these mnemonics

with a Group III test.

octal code

PNZ 04150

NNZ 04550

Positive and nonzero •. Is (U) mantissa

strictly greater than zero?

Negative and nonzero. Is (U) mantissa

strictly less than zero?

AX sign must be used when combining either -0f these mnemonics

with a Group III test.

~-- ---------- -------- --

D

0
0
0
0
D

0
0
0
0
D
D
D
D

D
D
D
0
J

II.2 •. Class 1, Arithmetic.

ASSEMBLY LANGUAGE

MNEMONIC OPERATION CODES

4

Any Class 1 mnemonic may be followed by ... or +1, to cause

storing of the final (U) in the location addressed by M; by +2,

storing (U) at location (B6); or by +3, storing (U) at location

M+(B6). Octal codes may be joined by a '+' to Class 1 mnemonics

f o r v a r i o us s p e c i a 1 o p e ra t ions • I f n i s s u ch an o c ta 1 c o de , the

combination appears as

mnemonic +n

mnemonic ++n

in APl

in AP2

Any floating point mnemonic may be followed by +lj (j=O, 1, 2, or

3), causing (U) to be rounded (before storing); or by +6j, sup

pressing normalization of the result in U; or by +7j, to obtain

rounding without normalization. In addition, SUB may be followed

by +400j, and FSB may be followed by +40ij (i=O, 1, 6, or 7;

j=O, 1, 2, or 3) to interchange (U) and (S) before. subtracting.

The Class 1 mnemonics are as follows:

octal code

ADD 10000 Add.

Subtract. (U)-(S)->U.

Reverse subtract.

SUB 10100

BUS 14100

MPY 10200

IMP 10220

Multiply. (U)X(S).,..U,R (double length).

Integer multiply. (U)X(S) ... u.

DIV 10 300

VID

IDV

VDI

16300

13300

17300

FAD 10400

FSB 10500

BSF 14500

FMP 10600

Divide. Double length (U,R)+(S)4U,

remainder ... R.

Reverse divide.

Integer divide.

(S)+(u) u, remainder

(U)+(s) ... u, remainder

Reverse integer divide.

remainder ... R.

(S) + (U) 4U,

Floating add. (U)+(s) ... U.

Floating subtract. (U)-(s) ... u.

Reverse floating subtract. (S)-(U) ... u.

Floating multiply.

(double length) •

(U) X (S) -.u, R

... R.

... R.

D
0
0
0
0
0

D
D
n
LJ

0
D
0

D
0

J
J

octal code

FDV 10700

VDF 16700

ASSE~BLY LANGUAGE

MNEMONIC OPERATION CODES

5

Floating divide. Double length

(U,R)+(s)~u, remainder R.

Reverse floating divide. (S) + (U) ~u,
remainder ~R.

IIo3. Class 2, Fetch, Store, Tags.

Any Group I or Group II mnemonic may be fol~owed by a comma

and any Group III mnemonic. In addition, any Group I or Group III

mnemonic may be followed by~ or +l, storing (U) with (ATR) at

location M; or by +2, storing (U) with (ATR) at location (B6); or

any Group I, II, or III mnemonic may ~e followed by +3, storing

(U) with (ATR) at location M+(B6). Note that all Group I and

Group II mnemonics clear (ATR) unless followed by a droup III

mnemonic.

Group

The Class 2 mnemonics are as follows:

I

oc ta 1

CLA 21700

BEU 2 1000

BMU 20700

BLU 21400

BRU 20300

BIU 20200

BAU 2()1()0

BNA 21600

code

Clear and add. Bring (S) to U.,

Bring exponent to U. Exponent portion

of (S) replaces exponent portion of (U).

Bring mantissa to U. Mantissa portion

of (S) replaces mantissa portion of (U).

Bring left half to u. Left half of (S)

replaces left half of (U).

Bring right half to U 0 Right half of (S)

replaces right half of (U).

Bring inflections to u. Inflection

portion of (S) replaces inflection

portion of (U) o

Bring address to u. Address portion of

(S) replaces address portion of (U).

Brtrig.non~address ta U~ All portions of

(S) exceRt, the,address portio1:1 replace

all portions of~(U) extept:the address

portion~

D
D

0
0
D
0
D
D

0
0

,0

D

0

0
D
·:-i
LJ

J

Group I (continued)

octal code

BEU, BRU 21300

ASSEMBLY LANGUAGE

MNEMONIC OPERATION CODES

6

Bring exponent and right half to u.
BEU, BAU 21100 Bring exponent and address to U.

BLU, BAU 21500 Bring left half and address to U0

Group II

octal code

RPE 20701 Replace exponent. Exponent portion of (U)

replaces exponent portlon of word at

location M.

RPM 21001

RPL 20301

RPR 21401

RPA 21601

Replace mantissa. Mantissa portion of (U)

replaces mantissa portion of word at

location M.

Replace left half. Left half of (U)

replaces left half of word at location M.

Replace right half. Right half of (U)

replaces riiht half of word at location M.

Replace address. Address portion of (U)

replaces address portion of word at

locat.ion M.

a, 11 S TO 2 0 0 0 1 Store. Store (U) at location M.

Note: "Replace" mnemonics may not be combined with each other.

Group III

oc ta 1 code

STl 20010 Set Tag lo Set ATR to 1.

ST2 20020 Set Tag 2. Set ATR to 2.

ST3 20030 Set Tag 3. Set ATR to 3.

WTG 20040 With Tag a Do not change ATR.

0
D
D

0
0
0
n
LJ

0
0
0

1 LJ

n
LJ

D

0
D
n
L_;

~]

Group IV

octal code

------ - ·-----·

ASSEMBLY LANGUAGE

MNEMONIC OPERATION CODES

7

NOP 3000-0 No operation. Do not alter (U) or (ATR).

FST 20041 Fetch and store. Bring contents of

location M to S; then store (U) with

(ATR) at location Mo

RWT 21641 Replace address, with tag. Address

portion of (U) rep laces address portion

of word at location M, without changing

the tag on the word at location M.

II.4. Class 4, B-Registers, Lights, Special Registers, Shifts.

The Class 4 mnemonics are as follows:

oc ta 1 code

a,1fa TSR 40000 Transfer to subroutine. Set PF to (CC);

then set CC to M.

a, 1fa SBi 40001 Set Bi. Set Bi to M, for i=l, 2,
0 •• '

6.

a, 1fa SPF 40007 Set PF. Set PF to M.

a, 1fa ACC 41000 Add to cc. · (CC) +M ... CC.

a, 1fa A Bi 41001 Add to Bi. (Bi) +M ... Bi, for i=J, 2,
O Q Q' 6 0

a, 1fa APF 41007 Add to PF. (PF) +M->PF.

ERM 00020 Enter repeat mode. Turn on mode light #2 0

The ERM mnemonic is meaningful only when ,joined by a comma

to on~ of the above Class 4 mnemonics.

octa 1 code

a, 1fa SLN 42000 Sense light on. Turn on sense lights

corresponding to l's in M.

a, 1fa ILN 42001 Indicator light on. Turn on indicator
'

lights corresponding to 1 IS in M.

a, 1fa MLN 42002 Mode light on. Turn on mode lights

corresponding to l's in M.

a, 1fa TLN 42003 Trap light on o Turn on trapping lights

corresponding to l's in M.

J
J
D

D

D

D

J
J
1
LJ

0
n LJ

D
n
tJ

0
D
r,

I

1_J

]

by

octal code

a , 1fa S LF 42 0 0 4

a, 1fa ILF 42005

a, 1fa MLF 42006

a,# TLF 42007

ASSEMBLY LANGUAGE

MNEMONIC OPERATION CODES

8

Sense light off. Turn off sense lights

corresponding to l's in M.

Indicator light off. Turn off indicator

lights corresponding to l's in M.

Mode light off. Turn off mode lights

corresponding to l's in M.

Trap light. off;. Tu'rn off t:tapping lights

corresponding to l's in M.

Note that lights corresponding to O's in Mare not affected

the above orders.

octal code

a,# STX 43005 Set X. Set the increment register to M.

a,# STT 43006 Set TT. Set the to-tape register to M.

a,# SFT 43007 Set FT. Set the from-tape register to M.

octal code

a, 1fa DMR 44000

a, 1fa DML 440 10

a , :/fa LU R 4 5 0 10

a , :/fa LU L 4 5 0 2 0

a,:/} LRR 45001

a, 1} LRL 45002

a,1} LRS 45015

Double mantissa right. Arithmetic right

shift of (U,R) mantissa M places as

diagrammed in the Rice Computer Manual.

Double mantissa left. Arithmetic left

shift of (U,R) mantissa M places as

diagrammed in the Rice Computer Manual.

Logical U right. Shift (U) right M

places, shifting zeros into left end of Ue

Logical U left. Shift (U) left M places,

shifting zeros into right end of u.
Logical R right. Shift (R) right M

places, shifting zeros into left end of R.

Logical R left. Shift (R) left M placesJ

shifting zeros into right end of R.

Long right shift. Shift (U,R) right

M places, shifting (U) into R and zeros

into left end of u.

J
D
D
0
D

D
0
D

:l
lJ

n u

D
1
u

0

octal code

a,4f LLS 45062

a , 4f CR R 4 5 0 5 5

a,# CRL 45066

a , 4f BC T 4 6 0 0 0

I I. 5 • Class 5, Logic •

ASSEMBLY LANGUAGE

MNEMONIC OPERATION CODES

9

Long left shift. Shift (U,R) left M

places, shifting (R) into U and zeros

into right end of R.

Circle right. Shift (U,R) right M places,

shifting (U) into Rand right end of (R)

into left end of u.
Circle left. Shift (U,R) left M places,

shifting (R) into U and left end of (U)

into right end of R.

Bit counto Clear U; shift R right M

places; add each 1 which spills from R

one at a time into U.

Any Class 5 mnemonic may be followed by ... or +l, to cause

storing of the final (U) at location M; by +2, storing (U) at

location (B6); or by +3, storing (U) at location M+(B6) 0 In add

ition, any Class 5 mnemonic may be preceded by a - sign, causing

the final result in U to be complemented (before storing) 0 The

Class 5 mnemonics are as follows:

octal code

CPL 50100

XUR 54000

LDR 50400

LTi 50 4i0

ORU 50010

Complement. Change all l's in U to O's

and all O's to l's.

Exchange (U) and (R). (U) ->R as (R) ... u.
Load R. (S) ... R _without disturbing (U) o

Lo a d Ti • (S) ->Ti w i thou t d i s tu r b in g (U)

or (R), for i=4, 5, 6, 7o

Or to U. Logical or: for every bit

position, a one in U or a one in S (or

both) results in a one in that position

of U. A zero in any bit position of

both U and S results in a zero in that

position of U.

D
D
D
0
D

D

D

D

jD

D
D

D

:1 u
n
: i L,

0
r1
u

octal code

ASSEMBLY LANGUAGE

MNEMONIC OPERATION CODES

10

AND 50314 And. Logical and: for every bit

XTR 50020

SYM 53220

SYD 53220

SYS 53120

position, a one in U and a one in S

results in a one in that position of U.

A zero in any bit position of either U

or S results in a zero in that position

of Uo

Extract. Wherever a bit of R is equal

to one, the bit in that position of S

replaces the corresponding bit in u.
Other bits of U are unchanged.

Symmetric difference. For every bit

position, a one in U and a zero ins,

or vice versa, results in a one in that

position of u. Two zeros, or two ones,

in corresponding bit positions of U and

S result in a zero in that position of u.
Symmetric,_su1)J. •. 'For.,eve;cy,bit_ position,

a one in U and a zero ins, or vice

versa, results in a zero in that posi-

tion of u. Two zeros, or two onesJ in

corresponding bit positions of U and S

result in a one in that position of U0

I
)

'l
I u

n
LJ

n
LJ

n
lJ

0

n
i ' LJ

n
i I

u

n
I I
I ,
L.!

n lJ

'I '

1
LJ

D
n

I
LJ

1 u
n

I

LJ

r"l
I

u

ASSEMBLY LANGUAGE

MNEMONIC OPERATION CODES

11

IIo6. Class 6, Input-Output.

For detailed explanations of reading, printing, punching,

plotting, and magnetic tape operation, see the Rice Computer

Manual. The Class 6 mnemonics are as follows:

For paper tape,

octal code

a,# RTR 60000 Read triads. Read 1 to 18 triads from

paper tape int~ U.

a,# RHX 60100 Read hexadso Read 1 to 9 hexads from

paper tape into U.

PHX 60400

PH7 60500

PTR 60600

Punch hexads. Punch 1 to 9 hexads from

(S) onto paper tape.

Punch hexads with 7th hole. Punch 1 to

9 hexads, each with a 7th hole, from (S)

onto paper tape.

Punch triads. Punch 1 to 18 triads from

(S) onto paper tape.

Either "Read" mnemonic may be followed by ... or +1, storing (U)

at location M; by +2, storing (U) at location (B6); or by +3,

storing (U) at location M+(B6).

For console typewriter,

octal code

TYP 60700

For printer,

octal code

a,# PRN 61110

a , iffa P RA 6 12 10

a , iffa PRO 6 13 10

Type. Type (S) as 18 octal digits on

console typewriter.

Print numeric. Print, using first 32

characters of print wheel, from print

matrix beginning at location M; space

one line after printing.

Print alphanumeric. Print as above,

using all characters.

Print octal. Print as above, us in g

characters 0-7 only.

n

LJ

n
LJ

n
LJ

n
LJ

n
I : u

n
LJ

0

n
I !
u

n , I
LJ

n
I

L:

n _1

octal code

SPA 61010

SP2 61020

SP3 61030

SP4 61040

SP5 61050

SP6 61060

PAG 61070

DLY 61000

For magnetic tape,

oc ta 1

a, if/= WDi 64i00

WMi 64i20

a, if/= RDi 65i00

SMi 66i00

RWi 66i01

BCK 600 40

NST 6500 4

code

ASSEMBLY LANGUAGE

MNEMONIC OPERATION CODES

12

Spaceo Advance printer paper one lineo

Space, format 2 • Advance printer paper

to next 1/22 page mark.

Space, format 3. Advance printer pa per

to next 1/11 page marko

Space, format 4. Advance printer paper

to next 1/6 page mark.

Space, format 5. Advance printer pa per

to next 1/3 page marko

Space, format 6 0 Advance printer pa per

to next 1/2 page mark.

Page restore. Advance printer paper to

next new page.

Printer delay. n successive executions of

DLY will delay the machine for n~l tenths

of a second.

Write data on MT unit i.
'

i=l, 2' 3.

Write marker from last 8 bi ts of (S)

MT unit i.
' i=l, 2' 3.

Read data from MT unit i.
' i=l, 2' 3.

Search for marker in last 8 bi ts of

on MT unit i; i=l, 2, 3e ...
Rewind tape on MT unit i; i=l, 2, 3.

Backward. Perform operation in

backward direction.

on

(S)

No store. Do not store to memory. This

is meaningful only for read MT orderse

D

0
D
D

0
D

D
D
r,

: I u

D
D
n
: I
LJ

n
IJ

0
ii

LJ

,D
n
LJ

0
,J

For oscilloscope plot,

octal code

PLT 67000

ADV 67700

ASSEMBLY LANGUAGE

MNEMONIC OPERATION CODES

13

Plot on oscilloscope.

Advance movie film.

II.7. Class 7, Analog Input.

Any Class 7 mnemonic may be followed by~ or +l, to cause

storing of the final (U) at location M; by +2, storing (U) at

location (B6); or by +3, storing (U) at M+(B6). This class deals

with various instructions used in conjunction with operation of

the analog-to-digital converter. The Class 7 mnemonics are as

follows:

octal code

WAT 71000

LS 1 72 0 10

LS2 72020

LS4 72040

MCN 72110

ACN 72364

Wait. Machine will wait until the next

pulse from a crystal-controlled 1 kc.

pulse generator before exiting Field 2.

Special fast arithmetic left shifts of

the double-length (U,R). Shifts are 8

bits at a time. LSi indicates i shifts

of 8 bits. These shifts are principally

used in unpacking converted data. The

mnemonics may be combined to get different

length shifts: LS4, LSl would give 5

left shifts of 8 bits (total: 40 bits).

These shifts do not pass through the

exponents of U or R nor through the sign

of R, but do shift into the sign of U.

Manual conversion. An A-to-D conversion

of the channel specified by (S) will be

performed.

Automatic conversion. Six conversions

from channels 1 through 6 will be per=

formed.

D

D

D
D

LI
D
n u

D
D
D
D

D

D

D

D
J
J

bi ts

ASSEMBLY LANGUAGE

MNEMONIC OPERATION CODES

14

Conversion results will be packed into U as follows: The 8

(sign plus 7 bits) resulting from each conversion will be

packed into the mantissa with the bits resulting from the first

conversion farthest to the left and the bits resulting from

1 as t con v er s ion in th e right =mos t 8 b i ts of U O The U exponent will

be set to 770 The R mantissa is used 0

There are sixteen channels into the converter 0 The channel

to be converted is specified by the right=most 16 bits of s.

Channel 1 corresponds to sm 47 , Channel 2 to sm 46 , etco

In addition to the normal store options, operations may be

performed with the 72xxx orders as follows:

72xxx + 400

72xxx + 200

72xxx + 4

(S) will be sent to U before performing

any other operation.

(S) will be cleared and a 1 sent to sm 47 •

(S) will be logically shifted 1 to the

left each time (U,R) is shifted 8 to the

lefte Notice that this feature can be

used to sample consecutively numbered

channels automatically.

II.8. Summary of Operation Codes.

The accompanying chart summarizes the Field 2 mnemonics avail=

able in APl and AP2. If an operation code is followed by the symbol

"@" , the corr es ponding mnemonic genera t es a "a" b i t ; th a t is J ca us es

IM bit 1 to be set to 1.

The symbol 11 ->" following an operation mnemonic of class 1, 2,

5, 6 causes a final store of U to M.

The symbol " " preceding a class 5 operation mnemonic causes

a final logical complement of U.

Operation mnemonics will be compounded by a logical OR of their

equivalents. Mnemonics whose equivalents have the symbol ll=n instead

of certain digits indicate that these mnemonics must be compounded

with those they are grouped with to be meaningful. Most mnemonics

are compounded with commas. In class O, the test may be compounded

with"+" or"," to give an "ANY" test, or with "X" to give an "ALL"

test. The mnemonics "POS" and "NEG" are compound "ANY" tests and

the mnemonics "PNZ" and "NNZ" are compound "ALL" tests.

C__J [__J L-=1 c=J C_~ C_J C_] [__J i ::::J [__] C::::J C_J 1 _~ C_] C_J i-~ 1 c=i L..J L.: __]

SUMMARY OF OPERATION CODES
-·-

CLASS O CLASS O CLASS 1 CLASS 2 CLASS 4 CLASS 4 CLASS 5 CLASS 6

l-ITR 00000@ PSN 0=1== ADD 10000 S TO 2 000 l@ TSR 40000@ DMR 44000@ LDR 50400 RTR 60000@

TRA 01000@ MOV 0=2== SUB 10100 FST 20041 SBi 4000i@ DML 44010@ LT4 50440 RHX 60100@

SKP 02000 EOV 0=3== MPY 10200 SPF 4000 7@ LUR 45010@ LT5 50450 PHX 60400

JMP 0 3000 DIV 10300 BAU 20100 ACC 41000@ LUL 45020@ LT6 50460 PH 7 60 500

IF(ANY)HTR 00-==@ NSN 0=5== BUS 14100 BIU 20200 ABi 4100i@ LRR 45001@ LT7 50470 PTR 60600

IF(ANY)TRA 01===@ NMO 0=6== IMP 10220 BRU 20300 APF 41007@ LRL 45002@ TYP 60700

IF(ANY)SKP 02=== NEO 0=7== IDV 13300 EMU 20700 ERM 4==2=- LRS 45015@ ORU 50010

IF (ANY) JMP 03=== VID 16300 BEU 21000 LLS 45062@ AND 50314 PRN 61110@

IF(ALL)HTR 04===@ ZER 0==1= VDI 17300 BLU 21400 SLN 42000@ CRR 45055@ SYM 53220 PRA 61210@

IF(ALL)TRA 05=== EVN 0=-2 = BNA 21600 ILN 4200 l@ CRL 45066@ SYD 53220 PRO 61310@

IF(ALL)SKP 06=== S LN 0==3=@ FAD 10400 CLA 21700 MLN 42002@ BCT 46000@ SYS 53120 SPA 61010

IF (ALL) JMP 07=== NUL 0==4= FSB 10500 TLN 42 00 3@ XTR 50020 SP2 61020

NZE 0==5= FMP 10600 RPL 20301 S LF 42004@ CLASS 7 CPL 50100 SP3 61030
I

POS 0=11= ODD 0==6= FDV 10700 RPE 20701 ILF 42005@ WAT 71000 XUR 54000 SP4 61040

NEG 0 =51= S LF O == 7 =@ BSF 14500 RPM 21001 MLF 42006@ ACN 72364 SP5 61050

VDF 16700 RPR 21401 TLF 42007@ MCN 72 110 CLASS 6 SP6 61060

PNZ 0 = 15= TGl 0=-= 1 RPA 21601 LSl 72010 WDi 64i00@ PAG 61070

NNZ 0=55= TG2 0===2 RWT 21641 STX 43005@ LS2 72020 WMi 64i20,

TG3 0===3 l S TT 43006@ LS 4 72040 RDi 65i00@ PLT 67000
-. ' NTG 0===4 S Ti 2 ==i = SFT 43007@ NST 65-04 ADV 67700 -·

NTl 0===5 WTG 2 ==4= SMi 66i00

NT2 0===6 NOP 20040 RWi 66i01

NT3 0===7 BCK 6==4= I

D

D

ID
D

D

D
1
LJ

D
D
D
D
D

io

D

D

D
n LJ

D
D

ASSEMBLY LANGUAGE

MNEMONIC OPERATION CODES

16

The tables on this page summarize the options available in

SETU (Field 1), AUXILIARY (Field 3), and SETS (Field 4);., In the

tables

A indicates the full length special registers ZyU,R,S,T4,TS,T6,T7

specified in the second triad by 0,1,2,3,4,S,6,7.

Band Bi indicate the short index registers CC,Bl,B2,B3,B4,BS,B6,

PF specified in the second triad by 0,,1.,2,3,4,S,6,7,

M indicates the number formed in the address field of the instruc-

ti on., (M) indicates the contents of the memory location

numbered M~

Exceptions are R··..,z, 10 in field 3 and izl, 20 and -lzl, 30 in

field 1. R_,z has the result that R is cleared to Za lzl has the

result that a fixed point integer 1 goes to Uo ~lzl has the result

that a fixed point integer -1 goes to U.

ls t Triad Field -1, ls t Triad Field 3

(SETU) I
·-------·

(AUXILIARY)

u-,A 0 U....,Bi 4

R-,A 1 R_,Bi 5

Bi+l 2 Bi-1 6

Bi+X 3 I_,Bi 7

1st Triad Field 4

(SETS)
·-·, .. ·---.. ------·--·--···

(M) 0 M 4

- (M) 1 -M 5

I (M) I 2 IMI 6

~I (M) I 3 - IM I 7
-----------····-·----------·------

0
D
D

D

D

D
n
lJ

J
lo
D

D
ID

D

D

D

D

D
D
n u

III.

ASSEMBLY LANGUAGE

PLACER AND ASSEMBLY OPERATIONS

PLACER AND ASSEMBLY OPERATIONS

III.1. Genie Placer.

The typing of Genie tapes containing AP2 instructions, and

the handling of such tapes by the Genie PLACER system and the

Genie compiler, are just as described in the Notes on Genie. AP2

instructions may appear anywhere between the 1 SEQ 1 and 1 END 1 of a

Genie program and may be interspersed with Genie language commands.

One word of caution: though each AP2 command produces only one

machine instruction, a single Genie command may produce several

machine instructions. Therefore relative addressing and skip and

jump commands should be used only within a sequence of AP2 instruc=

tions.

Genie PLACER contains the Back-Translator, which provides for

conversion of absolute machine language to APl.

in the Notes on Genie.

III.2. APl PLACER.

This is explained

The APl PLACER system is located on the MT system magnetic

tape at block 100.02. There are three major differences between

Genie PLACER and APl PLACER: to A P 1 PLACE R, S L 6 mean s n As s em b 1 e rr

rather than ncompile"; APl PLACER has no SL7 option; and the APl

PLACER lister prints only valid APl characters, replacing any

other characters with the symbol~.

When APl PLACER is read into memory, program *240 is executed,

and the stop

(I): 00 HTR CC

occurs. The set of options to be exercised should then be desig-

nated in the sense lights:

S 11

SL2

S 13

SL4

S LS

S L6

Read symbolic tape.

Edit.

Punch (edited) symbolic tape.

List (edited) symbolic tape.

Check (edited) symbolic tape punched.

Assemble (edited) symbolic tape.

The original tape to be processed should be placed in the reader.

Pushing CONTINUE causes the specified operations to be carried

out in order as described below:

0
D
0
D

0
n u

D
n l_J

0
0
0
D
D

D

ASSEMBLY LANGUAGE

PLACER AND ASSEMBLY OPERATIONS

2

SLl, READ. The tape to be read must contain only ~ symbolic

program, this be gun with one carriage return and terminated by two

carriage returnso All information beyond the last CR is ignored

by the systemo When the reading is complete, the system has in the

machine a tape image.

SL2, EDIT. The stop

(I) : 02 HTR cc
occurs. The edit tape is placed in the reader. Pushing CONTINUE

causes this tape, which must contain only the corrections for the

tape image in the machines to be read 0 When reading is complete,

PLACER's tape image in the machine is edited.

Each correction is specified by three octal parameters; the

initial carriage return number (i), the final carriage return

number (f), and the number of lines in the symbolic correction (n)o

A line in a symbolic tape is terminated by a carriage return, these

being numbered from 1 on listings 0 Then lines of a correction

will replace the portion of the program read from and not including

carriage return i through carriage return f. Note that h=O effects

a deletion. The last line of a symbolic tape must not be replaced.

On a single edit tape, the f of one correction may not equal the

i of another correction.

parameters is:

The format for punching the correction

(Leo) i (sp) f (sp) n (er)

SL3, PUNCH.

paper tape.

SL4, LISTo

The tape image in the machine is punched out on

The tape image in the machine is listed on the

fast line printer with carriage return numbers.

SLS, CHECKo In a series of operations, CHECK is initially

bypassed if the tape to be checked is not in the reader. If all

other operations are complete and the tape .is still not in the

I

ID

0
[]

ID

;n
' I
I I
LJ

J
D

D

D
D

D

n
L_..J

Ir
1J
n
I I
' I
LJ

reader, the halt

(I) : 05 HTR

ASSEMBLY LANGUAGE

PLACER AND ASSEMBLY OPERATIONS

3

cc
occurse The tape that is read is compared to the tape image in

the machine, and an error print is given if the comparison fails.

SL6, ASSEMBLY. The tape image in the machine is assembled"

If only one sense light option is requested, the stop

(I) : Oi HTR cc
(for SLi on) occurs; other sense lights may th~n be set for

special forms of outputo Pushing CONTINUE then causes the opera

tion indicated to be carried outo The options are:

0 For LIST (SL4 on), setting SL15 on when the stop

(I): 04 HTR CC

occurs causes double spacing on the listing.

o For ASSEMBLE (SL6 on), the following operation may be

exercised by turning on the appropriate sense lights (in

addition to lights 14 and 15 which are turned on auto=

matically) when the stop

(I): 06 HTR cc
occurs:

S 19 on: Print with double (instead of single) spacingo

SLll on: Do not punch assembled program.

SL13 on: Punch self-loading tape (permissible only for

absolute programs; see the ORG pseudo-order below)o The paper

tape produced by APl is punched in hexad form with check-sum,

and is normally preceded by a SPIREL control word. By assembling

an absolute program with SL13 on, a tape will be produced which

will load independently of SPIREL (by using the LOAD switch)

after the following changes are made with the hand punch:

D

D

D

D

D

0

I

0
In
, : I
I u

D

D

D
D
n
I I
Li

D
D

D
n I
LJ

punch

!
•
0

ASSEMBLY LANGUAGE

PLACER AND ASSEMBLY OPERATIONS

4

7th hole on 10th hexad from beginning of 7th holes

0 0000 000000000 0000000',

IO o I
0

end of tape

0000000000000000000000000000000000000

0

0

~ 0
(I O

··-·- .. J~·····-·
1.~--,,.,,/---4 r--

9 hexads: last ~punch rr27 11 on first

word of program of 8 7th hole zeros

III.3. APl Assembly Output.

The printed output from APl assembly is interpreted as follows~

Error indications. An error indication is produced by apparent

errors in syntax or sequencing. The type of error is briefly in-

dicated, followed by a line number from which it should be possible

to detect the source of the error.

Note that line number£ refer to the partially assembled program

which still contains pseudo-orders; location numbers refer to the

final form of the program containing only valid machine instructions.

S ym b o 1 tab 1 e .. The table of symbols is printed out in seven

columns giving information relevant to the symbols defined in the

program:

(a)

(b)

(c)

(d)

The relative position in the table.

The symbo 1.

A number (usually O) which determines the type of object

for which the symbol stands.

The equivalent assigned to the symbol (5 octal digits)s

(e) A number (usually 0) which determines whether or not an

equivalent has been assigned. A number 2 indicates that

a symbol remains unassigned and is a possible error in

the final program 0

(f) An 18 digit octal number. The first 5 digits indicate

the line at which an equivalent was assigned.

D

D

D

D
D

D

,--,

I I
LJ

D
D
D

,--,

LJ

D
D
,,
u
D
1 LJ

(g)

ASSEMBLY LANGUAGE

PLACER AND ASSEMBLY OPERATIONS

5

A number which indicates how (if at all) the equivalent

was

0:

1:

2 :

assigned:

by appearing in the LOCN field of an ordere

by appearing in the LOCN field of an EQU pseudo

order in which the address was symbolic (see section

on pseudo~orders)e

by appearing in the LOCN field of an EQU pseudo

order in which the address was numeric (see section

on pseudo-orders).

Assembled program listing. Five columns are printed, giving:

The line count in octal.

The symbolic location (if any exists).

The location count in octal.

(a)

(b)

(c)

(d)

(e)

The instruction in octal, broken into fields, with tag.

The symbolic address (if any exists).

III.4. APl Pseudo-orders.

Differences between line and location numbers, and skips in

the sequence of line numbers, are caused by pseudo-orders as des-

crib e d be 1 ow • These special instructions govern the process

APl assembly and facilitate the handling of blocks of various

types of data within APl programs.

of

ORG and END. All programs to be assembled by APl must be

preceded by an ORG (Origin) order and terminated by an END order.

In each case the remaining fields in the symbolic instruction are

interpreted in a special way. Each of these orders advances the

line count by l; the location count is not affected 0

The function of ORG is (a) to initialize the assembly process,

(b) to identify the program which followsJ (c) to determine whether

it is to be assembled in relative or

to give an approximate indication of

absolute final form, and (d)

its maximum sizee The ORG

order is preceded by a ucr" and an "uc" or "le" punch (upper or

n c.J

D
D

0
D

J

D

D

'O

D

D
D
n
LJ

D

---·--···· --------

ASSEMBLY LANGUAGE

PLACER AND ASSEMBLY OPERATIONS

6

lower case); the order itself has the form

1

\er

s

\1st tab

ORG m,n

~nd tab \3rd tab

where 1, s, m, and n stand for either absolute or blank fields

(symbolic fields are not allowed)o If 1 (LOCN) is not zero, it is

taken to be a SPIREL codeword address for the relativized routine

which follows; in this case m must be zeroo The SETU field, s, is

always blank or zero. If m (ADDR) is not zero, the following code

is assembled in absolute form starting in location m; in this case

1 must be zero._ (In a relativized program, if an order in locat~

ion Prefers in Field 4 to location Q, it is through a Control

Counter reference of the form CC+(Q-P)-1. In an absolute program,

the Field 4 reference is directly to location Q; and absolute LOCN

fields, giving the location of an instruction in 5-digit octal

form, are permitted.) If n is blank, it is assumed that the to ta 1

number of lines in the following program is oc ta 1 200 or less

(d 12 8) 0 If n is not blank, its value is used in taking storage

space for the program which follows. The value of n may

or less than 200, but not greater than 10,000 (d 4096)0

The END order has the form

b

\c r
b

\1st tab

END er er

~nd tab

be

where b stands for a blank fieldo "END" must be immediately

followed by two (or more) carriage returns.

greater

The Equivalance order gives a numeric equivalent for a

symbol or equates one symbol to another. The order has the form

1 b EQU m

\er \ls t tab ~nd tab \3rd tab

where 1 (LOCN) is the symbol defined by the pseudo-order, b (SETU)

is blank, and m (ADDR) is either absolute or a symbol whose value

has previously been assigned, through its appearance in the LOCN

field of another ordero Then 1 is immediately assigned the value

m. If m is a 5=digit octal OPN code, then the symbol 1 may appear

in Field 2 of any order following the EQU order and will be re

placed during assembly by the octal code for which it stands.

D

D

D

D

0

0
0
0
0
D

0
D

D

D

ASSEMBLY LANGUAGE

PLACER :AND ASSEMBLY OPERATIONS

7

This order advances the line count by 1; the location count is not

affectedo

BSS and BESe Either of these orders inserts a block of zero

words into the body of the programo BSS (Block started by symbol)

and BES (Block ended by symbol) have the form

1 b XXX m

~r ~st tab ~nd tab ~rd tab

where 1 (LOCN) is blank or symbolic, b (SETU) is blank, and

m (ADDR) is either absolute or a previously assigned symbole The

value of mis the number of zero words to be inserted; if 1 is

symbolic, it is assigned as if the LOCN field had been associated

with the first (BSS) or last (BES) word in the blocko Each of

these orders advances the line count by m+l, and the location

count by me

BCD, FLX, REM o

have the form

These orders deal with alphanumeric data and

1 b xxx m

Jc r lls t tab ~nd tab \3rd tab

where b (SETU) is always blank; in each case, the mnemonic must be

followed by a "tab" character, and after that all characters (in

the ADDR field m) are read and stored, 9 characters per word. Any

occurrence of the "er tab tab tab" sequence is replaced by a

"space", and the string of characters is terminated by a true

carriage return, allowing more than one line of data to be givene

For BCD (Binary Coded Decimal), each character is converted to a

corresponding printer hexad; if 1 (LOCN) is symbolic, it is

assigned as if associated with the first word storedo For FLX

(Flexowriter), all codes (including case shifts, etco) are pre

served without conversion; 1 may be symbolic as for BCDo For REM

(Remarks), 1 must be blank; this order is used only to obtain

printed comments in the program listing, and does not introduce

any data into the final programo These orders advance the line

D

D

D

n
LJ

J

D

io
I

IJ

D
D

J
0
D

D

ASSEMBLY LANGUAGE

PLACER AND ASSEMBLY OPERATIONS

8

counter by n+l, where n is the number of 9=character words stored;

in addition, BCD and FLX advance the location counter by n 0

DEC and OCTo The Decimal and Octal orders are used for

inserting numerical data into the body of the program 0

the form

They have

1

\er

b

\1st tab

xxx m

~nd tab)3rd tab

where 1 (LOCN) is blank or symbolic, b (SETU) is blank, and

m (ADDR) consists of a list of one or more octal or decimal

numberso If 1 is symbolic, it is assigned as if associated with

the first number in the list. Each number must be separated from

its successor by a comma, and each will occupy a separate word in

the final programo Continuation lines should not be used; for

long lists of numbers, several DEC or OCT pseudo-orders in

succession may be used to produce a continuous block of data 0

An octal number consists of one to 18 octal digits 0 A decimal

integer consists of one to 14 decimal digits; a floating point

decimal number, of one to 14 significant figures and a decimal

po into If the list m consists of n numbers, either of these

orders will advance the line count by n+l and the location count

by n.

0
D

D

0
0

10
I
I

0
0
0
ri LJ

0
D
0
D

D
0
D
0

io

IV. APl AND AP2 CODING EXAMPLES,

ASSEMBLY LANGUAGE

CODING EXAMPLES

The first example below is a typical APl program; the second

shows the use of AP2 ins~ructions within a roughly equivalent

Genie program. For both examples, the printer listing of the

symbolic tape and the assembly or compilation output are reproduced.

.

'l
, I u

n
Ll

n L.

ri
I ;
\ ..•)

r
f

u

n

u

r
I

l . .1

r

L .. 1

n
L I

1
l :

ID

c
-c,

' --
r-',

I i
LJ

J

2 '30 ORG
RE:M

REM

F1LY IF (SL~', Sl(P
TRA

O\IE r,i:;. F ~lJ
SLF
T~A

T ~C IF' I SVJ I Sl<P
T~A

Tb F I\D
F~P
Fi\D
SLF
TRA

T4RE:t. IF'(SL~i)SKl=I
T1A

ns F I\D
F~P
F~D
F"1P
FI\D
SLF

E'<IT TRA
E~D

312'+/6'+ 13, 5'+

?
T4 EJQUALS THE SUM OF Ts ''3
TO THE POWER I F'QR I FROM -~
ZERO TO J wi..tERE SL t' 2, r;
QR '.3 ON INDICATES J I:,

'+0000 7
Ti.JO IO
d I, ·0.1'U<> T 4 1 I
40000 J?
EXIT 1~
20000

l "' THREE 1 '5
d l, 0 16
T~ 17
d Io o, U•T'+ 20
20000 2t
EXIT 2?
10000 2~
EXIT 24
d 1, 0 2fl:
r·· ~' 2~
d 1, 0 27
T"" ' 3n
d I, O.o U<i>T '+ 31
10000 3?.
pF 3~

34
3"-

a

n u-

D
0
0
fl
LJ

n u
n
. i

u

n
J
I'
I i
LJ

n
LJ

0
n

' u

c
D
'l

I
t_J

P!lOGR,'JM

130 I
130E
1303
!304
1305
1306

T '+ E::lQUAL.S
ZERO TO J

230

POL.Y
TWO
ONE

('
~.;

EXIT
THREE

THE SLIM OF'
WHERE SL I '

17 Pr:lLY
ao
21 ONE
22
23
2'+ Ti,,JQ
2-5
26
27
3Q
31
32
33 T~1REE
3'+
35
36
37
Atta
41
~2
4!3 EXIT
45

3/24/64 13, 55

0 I 0 110000000000000 0
0 6 0 ?.400000000000,_~0 0
0 3 0 21000000,:,ocoooo 0
0 ~6 0 45001'000000QOQ0 0
0 ~5 0 430000000000000 0
0 ts 0 ':13000QOOOOCOOo0 0

T5 TO THE ;:,OWER I F'QR I F'Rr'll"
2,01< :3 ON INDICATES J

I 102oiooo4000,oooo
2 l·O t·OOOQ0400100003 T,.,o
3 5t040Q0400010C02?. 0
4 t4200'+00•000,oooo
5 10100000400100017 Ex IT
6 I020~0Q04000~0000
7 101otiooo400l()0".)05 THR~E

lO ~104oooonoo10001s 0

f I lJ060Q0000000000~
f2 11040Q04000lOOOl3 0
!:3 14200400,ooo?cryoo
'i '+ 1,01,ooooou.001000 to Ex IT
i,s 1·02030004000 l•COOO
,,6 J;Q 1-00000b.001 (')0006 Ex IT
!7 ~1040000000100006 0
20 !J06000000000C005
?. 1 ll040QOC00010G004 0
r2 11060000C0000000~
83 lt04000400010000~ J
~'+ 142004004000tC000
~5 10100000•20000000
86 t,oo t 0000000000000

s

0
D
D
0

n u
, r,

I ,I
LJ

n
LJ
r-1

LJ

Ir:
LJ

n
LJ

n u

D

0
In

LJ

n u

D

·~~--·-·-· ,-----~--------·-····-~------· .. ··· ·-······--··-····-~---·-·

03/24/6'+ 13, 55

DEFINE
POLVIP,Q), :SE~

O!\JE

TWO

Ef'..ID

L.EAVE

REM p:SUM QI !='OP I:o,, , 0 1 J WHERE SL I 11 21 OR 3
QN IINO I CA TES J

CC:: 0 0NI:'. o I, ,F
P;:Q+ Iv ,:,

SL.F
CC:<>EN!1

'2
P:~ .+;Q• la O

Sl.F

P:ci3-.,c/+Q+t, o
SL.F

DEF'INE

-+~0000

+80000

+10000

4
i::

7

10
lt

1?
13

11.a.

l !:i
l (,
17
2n
.2 t

. I

POLY START NEw ·P~OGR /\Me 312416'+

n •BGIN PR011RAM SEQUENCEo
I_ ONE PROGRAM SEQUENCE:,

TWO PROGR"M SEGUENCEo

D
THREE PROGRAM SEQUENCEo
ENO PROC:U~AM SE,QUENCl::o

0
POLY - 0 •eGI!N - 10. 01'000 ,'02 ~'*00 ;QO 136 0 ... t

l e OJ '+0007 °00 ~ 1100 '7716'+
!2 3 4i;7 ~ 16~ I ·OC 000 I ·00054 ENO ...

D
P~SUM 1QtH FOR I::O•J WHERE SL t JJ. 2, 1QR 3 ··aN I~DlCATES J

,:3 4 Ot ?.17·00 00 0000 11170
Pt s 01 ~5015 00 4000 ·00016
li5 6 01 soo10 ·oo 14000 77776

0 1,6 '7 O! o 1060 ·oo 400 1 ·oooo t
t? lO O! c 1 ooo ,oo 400 1 ·00002
ao I I O! 21100 ·oo 4·00 l •00021 ONE

0 El 1~ O! 01000 00 4001 ·000 t 7
22 13 O! 21100 00 0000 77770
23 14 Ol '+50 J 5 ·OO 4000.·00015

J
2At P5 01 50010 •00 4000 "77776
as 16 Ot O l 060 ·OO 4001 00001
26 I'? O! O I 000 '00 400 I iQOOO?.
27 26 ot ~ 11ioo ·oo ~00 I •000 I? TWO

;l 30 ·2r O! o 1 ooo ,oo ,~oo 1 •000 I c,
LJ 31 2~ 01 21100 ·OO 0000 77770

3.2 23 O! 1+50 I !5 ·OO /}000 ·000-1 '+

0
33 24 ot soo 1·0 ·do !¢.000 77776
34+ 25 Ot 01060 00 4001 00001
35 26 01 01000 100 1}00 I •00002
36 27 Ol 21700 iOO '*00 t ·000 16 THRl;E

0 37 3Q o, 01000 100 1400 I . 10000 I
't<O 31 01 217·00 100 1*00 t •00025 END
41 32 o, 20040 ~o 0000 ,00000

0 0 ONE 33 01 .~ 1740 :oo 000 I '00026 ,a,ONEF
I 34 01 1:Qlj.QO ·00 0600 ·00001 Q

2 35 01 aooo t 100 ~600 ,00000 F'

1
3 •36 01 '+'2004 00 4000 40000
It 3? 01 ·:'.1100 ~o 4001 100017 END

LJ 0 ·rwo 40 01 e1100 06 0600 ·00001 G
I '+t 06 t,Q600 ·OO 0000 ·00006 T6

0 2 4~ 01 I OlfOO ·00 000 I 00017 <>ONEr:
3 4:3 Ol l·O~OO 100 0000 00006 T6
4 4'+ Ot aooo1 ,oo ~600 00000 p

n 5 45 Ot /{1.2004 ·00 *000 ·20000

LJ 0 THR!::E .,..,,, 01 ?.17t00 06 0600 00001 Q

I ·'+7 06 4'0021 107 ~000 000'02
2 .5r, Ot I 0600. ·61 0000 00007

0 3 ,5'f O;I. t;o,:.oo· ,o~·. ooo t 00010 fll0N€F
At ;52 06 t,o~oo 100 0000 00006 T6
5 ,5'3 01 1f,(f 4od ,oo 0000 00004 T'+

Ii 6 54 01 1;0~00 oo 0000 00006 T6
7 55 Ol ~0001 ·00 '}6QO 00000 p

LJ 10 56 O! i+:2004 ;00 4000 10000

D
0 ENO 57 Ot '.11000 ,oo 4400 00 t:37 y
I 6() 01 4Q006 ·OO 4000 00000
2 61 07 :., 1 ood ,oo ~aoo 00000

1 u
--- - - ----- -

'

D
D

D

D

0
D

D
c
D
~

D
J
D

I :o
I

ID

n
L..,

'POLY ;Sy,MBOL TA8LF.:,
10'+ p 2
105 -~ 102
106 •BGIN 1,00
107 ,ONt 1100
110 TWO l•OO
1 t I THREE 1·00

END 10F ·OEF'INITlON :SET,
I 03 POl,.;V 10

·--··"-----· ------··--···· ------·-·

0 0
I 0
1 3

13 3
'+0 3
46 3

!XTERNAL S~MBOLSo
2 0

0 0
0 0
0 0
0 0
0 0
0 0

0 0

	SPIREL
	Table of contents
	Concepts
	Codewords
	Organization
	Control words
	Use of SPIREL
	Storage control
	System components
	System duplicator
	Magnetic tape system

	Assembly language
	Table of contents
	Symbolic coding
	Mnemonic operation codes
	PLACER and assembly operations
	Coding examples

