
•
APl - AP2 PROGRAMMING

I. Symbolic Coding.

Sym~olic coding for the Rice Computer is accomplished through
the use of either of two assembly programs: APl, designed for
independent use, or AP2, designed for use within Genie compiler
language. The two assembly systems are very similar; minor
differences between them will be noted below. The major dis­
tinction concerns octal and decimal numerals. In APl, all
numerical constants are assumed to be octal unless immediately
preceded by the special symbol "d'\ meaning decimal. In AP2,
all numerical constants are assumed to be dacimal, except when
octal form is indicated by a plus sign immediately preceding the
octal number. In the following discussions, M stands for the
final address formed in the last 15 bits of I (the instruction
register) after all indirect addressing and B-modification has
taken place; and if Q is any machine location, then (Q) stands
for the contents of location Q.

I. 1.

LOCN
er

Instruction form.

The general form of a single APl or AP2 instruction is

SETU
ls t tab

OPN
2nd tab

ADDR+MOD, AUX
3rd tab

where Utabll denotes "tabulate", and fficr" denotes "carriage return".
This corresponds to the absolute form of the instruction, as ex­
plained in the Rice Computer Manual. LOCN gives the symbolic
form (if any) of the location of the instruction. SETU corres­
ponds to Field 1: bring a 11ias~' register to U; th~n inflect (U).
OPN corresponds to a Field 2 operation chosen from one of six
classes (see section II). AUX corresponds to Field 3: alter a
B-register, send (U) or (R) to a "fastff register, send the M
portion of I to a B-register, or clear R. ADDR+MOD corresponds
to Field 4: compute the final address M, sending M to the last
15 bits of I; load S with Mor (M); then inflect (S). Any
~ield except LOCN may contain absolute octal codes, which will
be placed in the corresponding positions of the machine instruc­
tion, ignoring any bits which overflow to the left. (An exception
to this rule is discussed under ADDR+MOD symbols in Section 1.3.)
LOCN may also be absolute in certain cases (see the ORG pseudo­
order in Section III.4). AUX and the comma preceding it may be
omitted.

I.2. Symbolic language.

Precise definitions of the allowed symbols are as follows:

Type I: Special symbolic addresses. By convention we

•
-2-

recognize the fol lowing symbols for II fast II addresses: Z, U, R,
S, T4, TS, T6, T7 (A-series); and CC, Bl, B2, B;i, B4, B5, B6,
PF (B-series). These may appear in SETU, ADDR+MOD, and AUX
fields. Use of the above symbols, and of X (for the increment
register) and I (for the instruction register) should be re­
stricted to the special significance associated with the Rice
Computer.

Type II:
d (AP 1) , +, - ,

Special characters. *, a (APl) or I (AP2),
I .. () i;tab 11 11 cr 11 and (comma) ','' ' , ' .

Type III: Mnemonic operation codes as listed in Section II;
APl pseudo-operation codes as discussed in Section III.4; and
symbols previously defined as operation codes by means of a LET
(AP2) or EQU (APl) instruction (see the EQU pseudo-order in
Section III.4).

Type IV: Genera 1 storage addresses. In AP2, any private
name formed by the rules described in the Notes on Genie, In
APl, any upper case Roman letter, which may be followed by upper
case Roman letters, or numerals; any number of characters are
permissible, but a maximum of six will be retained by APl. (A
letter may not follow a numeral; BA3 is permissible, but not
B3A.) Examples: B, M3, COMM, ZETA2. These symbols may appear
only in the LOCN or ADDR fields,

I.;. Contents of instruction.

Each field of the symbolic instruction has a well-defined
form, and if this is not recognized by the assembly system, a
note is made on the printed U.sting of the program. The accept­
able contents of each field are as follows:

LOCN. May be blank or absolute or symbolic. Absolute LOCN
fields are permitted only when an APl program is being assembled
in absolute form (see th~ ORG pseudo-order in section III.4).
Symbolic LOCN fields may consist of any Type IV symbol, and may
appear in conjunction with a relative numerical part, as "LOOP+l",
"EXIT-311 •

SETU. May be blank or absolute or F, where Fis an A- or
B-series symbolic address, or any of the forms -F, IFI, or -IFI.
If SETU is blank, the symbol 11 u11 is understood and the octal
equivalent 01 is inserted into the machine instruction. Th~
sym~ols IZI an~ -IZI have special meanings: jzf sets U to the
numerical integer +l; -fzj sets U to the· numerical integer -1.
Note that Z·sets U to all zeros; -Z sets U exponent to zero and
U mantissa to minus zero, or all ones.

Examples: Bl l'Ti:I ·-PF ·-IRI
OPN. May ,be any absolute octal code or T;pe III symbol.

In the case of conditional transfers, a symbolic operation has·

-3-

the form IF(CCC)TTT where CCC represents test conditions and TTT
is a mnemonic for a transfer order. Other symbolic operation
codes consist of one or more 3-letter mnemonics. Special symbols
such as , +, ... , ","., and +i (where i is an integer) are some­
times permitted (see the listing of OPN codes in Section II).

AUX. May be blank, absolute, or one of the forms U-+F, R-+F,
I-+Bi, Bi+l, Bi-1, or Bi+X, where Bi stands for one of the Type I
B-series symbols, Fis any Type I A- or B-series symbol, I refers
to the last 15 bits of the instruction register, and X refers
to the increment register. Note that R-+Z causes R to be cleared
to zero.

Examples: U-tT.!} B2+1 B3-l B4+X

ADDR+MOD. ADDR may be blank or absolute or symbolic, or the
ADDR+MOD field may consist of an octal or decimal number to be
used as an operand. MOD is either blank or·one or more of the
Type I B-series symbols, connected to ADDR by+ signs. Special
inflections control the IM -nd IA bits as follows: IM bit· l is
set to 1 whenever the symbol "a" (APl) or '~It'" (AP2) appears, or
uhenever certain OPN mnemonics are used (see the listing of OPN
codes in Section II). IM bits 2 and 3 are controlled by the
special forms •Q, !QI, and -IQI, where Q is an allowed ADDR+MOD
symbo 1. The IA bit is set to 1 whenever the symbo 1 "*" appears
in this field,

If ADDR is symbolic, any Type I A-series symbol, X (the
increment register), or any Type IV symbol is acceptable. As
in LOCN, this field may contain a relative part consisting of
an integer preceded by a+ or - sign. · .

If ADDR is absolute, any octal address in the range 0-20007,
or any decimal address in the range 0-8191, is acceptable. Like­
wise, any octal integer of not more than 5 digits, or any decimal
integer of absolute value not larger than 32,767, is permissible.
Any octal or decimal integer above these limits, or any floating
point decimal number (see the DEC pseudo-order in Section III.4),
is treated as an operand; storage space is reserved for it at
the end of the program. In this case, the MOD, "a 11 or "#", and
"*" symbols must be omitted, but the other IM inflections may
be present.

All characters appearing within parentheses in this field
are treated as the Z character, so that an address which is
modified by the program may be conveniently noted. For example,
(FWA)+Bl+B2 is treated as Z+Bl+B2. If a symbol appears in ADDR
but never in LOCN, a blank location will be reserved at the end
of the program; this is true even when such a symbol appears
only within parentheses. ADDR and MOD should not both be blank;
the Z character may always be used to produce a zero field.

Examples of equivalent APl and AP2 ADDR+MOD fields are:

J.. P.i

COMM+lO or COMM+d8
-IA+Bl-dl2j or -IA+Bl-141
a*ZETA
d48
-adl22+Bl
B4+B5
00500
d2.009027
777700000

AP2

COMM+8 or COMM+710
-IA+Bl-121 or -IA+Bl-+141
4/:*ZETA
48
-fl22+Bl
B4+B5
rt-00500
2.009027
+777700000

The only field which may be continued onto another line is
"ADDR+MOD 1 AUX 11 • This is achieved by punching a 11 c r" fol lowed·
by three "tab" characters, so that continuation lines will follow
under "ADDR+MOD, AUX". Any number of "cr 11 characters may be
punched to help separate code sequences on the printed page;
they will appear in symbolic listings, but will be ignored during
assembly. Comments punched with a 7th hole in the tape may be
included for the guidance of the coder; they are not read by
the computer and hence will not appear on machine listings of
the program.

II. Mnemonic operation codes.

The most common Field 2 operations have been assigned
symbolic equivalents in APl and AP2 for convenience in coding.
These Type III symbols may not be used for any other purpose.
Other Field 2 operations may be assigned symbolic equivalents
by a LET (AP2) or EQU (APl) statement (see the EQU pseudo-order
in Section III.4); such symbols are then treated as Type III
symbols throughout the Rrogram in which they have been defined.
In the list below, the symbols are followed by their octal
equivalents and a brief explanation of their meanings; the
indication "a,#" means that the operation symbol automatically
causes lM bit 1 to be set to 1, since the operation indicated
deals with M rather than with (S).

II.l. Class o.

The four unconditional transfers are represented by:

a, :/f= HTR 00000 Halt and transfer. Halt, setting cc
to M when the Continue·button is pressed.

a,# TRA 01000 Transfer. Set cc to M.
SKP 02000 Skip. Subtract (S) from (U); then

increment CC by 1, skipping the next
order.

JMP 03000 Jump. Subtract (S) from (U); then
increment cc by (X), the increment
register.

'
.5 ..

Conditional transfers have the form IF(CCC)TTT where TTT is
one of the above transfer mnemonics, and CCC represent one, two,
or tr.ree test conditions joined by+ or X signs. Use of the+
sign indicates that the transfer specified is to occur if any of
the conditions listed is satisfied; use of the X sign, that the
transfer occurs only when all of the conditions listed are satis­
fied simultaneously. A single order may not contain both+ and
x signs. One condition from each of the first three groups may
be specified; or a Group IV mnemonic may be combined with a
Group III test as noted below.

Group I
MOV

EOV

NMO

NEO

Group II
ZER
EVN

a,=/!= SLN

NUL
NZE

ODD
a 1 ,U, S LF

00200

00300

00600

00700

00010
00020
00030

00040
00050

00060
00070

Mantissa overflow. Is Indicator Light
.:fl,4 on?
Exponent overflow. Is Indicator Light
,fl,5 on?
No mantissa overflow. Is Indicator
Light #4 off?
No exponent overflow. Is Indicator
Light #5 off?

Zero. Is (U) mantissa all l's or all O's?
Even. Is bit 54 of U equal to zero?
Sense light on. Are all the sense lights
corresponding to l's in Mon?
Null. Are all 54 bits of U zero?
Non-zero. Is (U) mantissa different
from zero?
Odd. Is bit 54·of U equal to 1?
Sense light off. Are all the sense lights
corresponding to l's in M off?

If the SLN or SLF test is used with a SKP or JMP order, no
subtraction takes place. If the NUL test is used with a SKP or JMP
order, a logical comparison is made as follows: wherever a bit
of R is equal to zero, the bits in corresponding positions of
U and Sare compared. If (U) is identical with (S) in each of
these positions, the resulting (U) is null and the NUL portion
of the test is satisfied.

Group III
TGl 00001 Tag 1. Is Indicator Light :f/:1 on?
TG2 00002 Tag 2. Is Indicator Light #2 on?
TG3 00003 Tag ,. Is Indicator 'Light *' on?
NTG 00004 No tag. Are Indicator Lights fl, #2,

:/i'} all off?
NTl 00005 No tag 1. Is Indicator Light 41'1 off?
NT2 00006 No tag 2. Is Indicator Light #2 off?
NT} 00007 No tag 3. Is Indicator Light #=3 off?

Note that indicator lights are turned off when tested;
sense lights are not altered when tested.

Group IV
POS 00110

NEG 00510

-6 ..

Positive. Is (U) mantissa greater than
or equal to zero?
Negative. Is (U) mantissa less than or
equa 1 to zero?

A+ sign must be·used when combining either of these mnemonics
with a Group III test.

PNZ 04150

NNZ 04550

Positive non-zero. Is (U} mantissa greater
than zero?
Negative non-zero. Is (U} mantissa less
than zero?

AX sign must be. usjd when combining either of these mnemonics
with a G~oup III test.

I I • 2 • C la s s 1.

Any Class 1 mnemonic may be followed by or +l, to cause
storing of the final (U) in the location addressed by M; or
by +3, storing (U} at location M+(B6). Any floating point
mnemonic may be followed by +lj (j=O, 1, or 3), causing (U) to
be rounded (before storing); or by +6j, suppressing normalization.
of the result in U; or by +7j, to obtain rounding without normal­
ization. In addition, SUB may be followed by +400j, and FSB may
be f1011owed by +.'.;Qij (i=O, 1, 6 1 or 7; j==O, 1, or 3) to int.er ..
change (U) and (S) before subtracting. The Class l mnemonics are as
follows:

ADD
SUB
MPY
DIV

VID

10000
10100
10200
10300

16300

IDV 13300

VDI 17300

FAD
FSB
FMP
FDV
VDF

I I• 3 • Class 2.

10400
10500
10600
10700
16700

Add • (U) + (S) -+U •
Subtract. (U)-(S) ... u,.
Multiply. (U)X(S) ... U,R (double length).
Divide. Double length (U,R)+(S) ... u,
remainder -+R.
Reverse divide. (S)+(u) ... u,
remainder -+R,

Integer divide. (U)+(s) ... u,
remainder R.
Reverse integer divide. (S)+(U) u,
remainder R.

Floati-ng add. (U)+(S) ... u.
Floating subtract. (U)-(S)-+U.
Floating multiply. (U)X (S) u.
Floating divide. (U)+(S) u., remainder a.
Reverse floating divide. (S)+(U) u,
rcrouinder a. ·

Any Group I or Group II mnemonic may be followed by a

-7-

comma and any Group III mnemonic. In addition, any Group I or
Group III mnemonic may be followed by~ or +1, storing (U) with
(ATR) at location M; or any Group I, II, or III mnemonic may be
followed by +3, storing (U) with (ATR) at location M+(B6). Note
that all Group 1 and Group II mnemonics clear (ATR) unless follov­
ed by a Group III mnemonic. The Class 2 mnemonics are as follows:

Group I
CLA
BEU

BMU

BLU

BRU

BAU

BEU, BRU
BEU, BAU
BLU, BAU

Group II
RPE

RPM

RPL

RPR

RPA

a,# STO

21700
21000

20700

21400

20300

20100

21300
21100
21500

20101

21001

20301

21401

21601

20001

Clear and add. Bring (S) to u.
Bring exponent to u. Exponent portion of
(S) replaces exponent portion of (U).
Bring mantissa to u. Mantissa portion of
(S) replaces mantissa portion of (U).
Bring left half to u. Left half of (S)
replaces left half of (U).
Bring right half to u. Right half of (S)
replaces right half of (U).
Bring address to u. Address portion of
(S) replaces address portion of (U).
Bring exponent and right half to u.
Bring exponent and address to u.
Bring left half and address to u.

Replace exponent. Exponent portion of
(U) replaces exponent portion of word at
location M.
Replace mantissa. Mantissa portion of
(U) replaces mantissa portion of word at
location M.
Replace left half. Left half of (U)
replaces left half of word at location M.
Replace right half. Right half of (U)
replaces right half of word at location M.
Replace address. Address portion of (U)
replaces address portion of word at
location M.
Store. Store (U) at location M.

Note: "Replace" mnemonics may not be combined with each
other.

Group III
STl
ST2
ST3
WTG

Group IV
NOP
FST

20010
20020
20030
20040

20040
20041

Set Tag 1.
Set Tag 2.
Set Tag 3.
With Tag.

Set ATR to 1 .•
Set ATR to 2.
Set ATR to 3.

Po not change ATR.

No operation. Do not alter (U) or (ATR).
Fetch and store. Bring contents of
location M to S; then store (U) with
(ATR) at location M.

-8··

• II.4. Class 4.

The Class 4 mnemonics are as follows:

a, =JI=

a,#
a 1L

' ;r
a, #
a, :fl,
a,#

TSR

SBi
SPF
ACC
ABi
APF

40000

40001
40007
l~lOOO
41001
41007

ERM 00020

Transfer to subroutine. Set PF to (CC);
theri set CC to M.
Set Bi. Set Bi to M, for i=l, 2, ••• , 6.
Set PF. Set PF to M.
Add to cc. (CC)+M~cc.
Add to Bi,, (Bi)+M~Bi; for i=l, 2, ••• , 6,.
Add to PF. (PF)+M~PF.

Enter repeat mode. Turn on mode light #2.

The ERM mnemonic is meaningful only when joined by a comma
to one of the above Class 4 mnemonics.

a,# SLN 42000

a, 4f I LN 4200 1

a, :ff, MLN 42002

a,# TLN 42003

a, 4fo SLF l~2004

a,# ILF 42005

a,# MLF 42006

a, :ff TLF 42007

Sense light on. Turn on sense lights
corresponding to l's in M.
Indicator light on. Turn on indicator
lights corresponding to l's in M.
Mode light on. Turn on mode lights
corresponding·to l's in M.
Trap light on. Turn on trapping lights
corresponding to l's in M.
Sense light off. Turn off sense lights
corresponding to l's in M.
Indicator light off. Turn off indicator
lights corresponding to l's in M.
Mode light off. Turn off mode lights
corresponding to 1 1 s in M.
Trap lights off. Turn off trapping lights
corresponding to l's in M.

Note that lights corresponding to O's in Mare not affected
by the above orders.

a,:/!= DMR 44000

a,:f{: DML 44010

a,# LUR 45010

a,:/!= LUL 45020

a,:{/= LRR l~5001

a, I LRL 45002

a, ,fl= LRS 45015

Double mantissa right. Arithmetic right
shift of (U,R) mantissa M places as
diagrammed in the Rice Computer Manual.
Double mantissa left. Arithmetic left
shift of (U,R) mantissa M places as
diagrammed in the Rice Computer Manual.
Logical U right. Shift (U) right·M places,
shifting zeros into left end of u.
Logical U left. Shift (U) left M places,
shifting zeros into right end of u.
Logical R right. Shift (R) right M places,
shifting zeros into left end of R.
Logical R left. Shift (R) left M places,
shifting zeros into right end of R.
Long right shift. Shift (U,R) right
M places, shifting (U) into Rand zeros
into left end of u.

a, :fl, LLS 45062

a,:f{: CRR 45055

a,:fl= CRL 45066

a, :fl: BCT 46000

a, :fl= STX 43005

II.5. Class 5.

-9-

Long left shift. Shift (U,R) left M places,
shifting (R) into U and zeros into right
end of R.
Circle right. Shift (U,R) right M places,
shifting (U) into Rand right end of (R}
into left end of u.
Circle left. Shift (U,R) left M places,
shifting (R) into U·and left end of (U)
into right end of R.
Bit count. Clear U; shift R right
M places; add each l which spills from
Rone at a time into u.
Set x. Set the increment register to M.

Any Class 5 mnemonic may be followed by-+ or +l, to cause
storing of the final (U) at location M; or by +3, storing (U)
at location M+(B6), In addition, any Class 5 mnemonic may be
preceded by a - sign, causing the final result in U to be comple­
mented (before storing). The Class 5 mnemonics are as follows:

CPL

XUR
LDR
LTi

ORU

AND

XTR

SYM
SYD

SYS

50100

54000
50400
50410

50010

50314

50020

53220
s3220

53120

Complement. Change all l's in U to O's
and all O's to l's.
Exchange (U) and (R). (U)-+R as (R}-..u.
Load R. (S)-+R without disturbing (U).
Load Ti 0 (S)-+Ti without disturbing (U)
or (R), · for i=l~, 5, 6, 7.
Or to u. Logical or: for every bit
position, a one in U or a one in S (or
both) results in a one in that pos~tion
of u. A zero in any bit position of
both U and S results in a zero in that
position of u.
And. Logical and: for every bit position, /
a one in U and a one in S results in a one
in that position of u. A zero in any bit
position of either U or S results in a
zero in .that position of u.
&xtract. Wherever a bit of R is equal
to one, the bit in that position of·S
replaces the corresponding bit in u.
Other bits of U are unchanged.
Symmetric difference. For every bit
position, a one in U and a zero in S,
or vice versa; results in a one in that
position of u. Two zeros, or two ones,
in corresponding bit positions of U and
S result in a zero in that position of u.
Symetric sum. For every bit position,
a one in U and a zero ins, or vice versa,
results in a zero in that position of u.
Two zeros, or two ones, in 9orresponding
bit positions of U and S result in a one
in that position of u.

•
-10-

II. 6. Class 6.

Either "Read" mnemonic may be followed by-+ or +l, storing
(U) at location M; or by +3, storing (U) at location M+(B6).
For detailed explanations of reading, printing, and punching, see
the Rice Computer Manual. The Class 6 mnemonics are as follows:

a, :fl: RTR 60000

a, :fl, RHX 60100

PHX 60400

PH7 60500

PTR 60600

TYP 60700

a,4, PRN 61110

a, :ff PRA 61210

a, :ff= PRO 61310

Read triads. Read l to 18 triads from
paper tape into U.
Read hexads. Read l to 9 hexads from
paper tape into u.
Punch hexads. Punch 1 to 9 hexads from
(S) onto paper tape.
Punch hexads with 7th hole. Punch 1 to 9
hexads, each with a 7th hole, from (S)
onto paper tape.
Punch triads. Punch 1 to 18 triads from
(S) onto paper tape.
Type. Type (S) as· 18 octal digits on
console typewriter.
Print numeric. Print, using first 32
characters of print wheel, from print
matrix beginning at location M; space
one line after printing.
Print alphanumeric. Print as-above,·
using all s:h.aracters. ! .
Print octal. Print as above·., using.
characters 0~7 only.

III. Placer and assembly operations.

III.l. Genie Placer.

Th~ typing of Genie tapes containing AP2 instructions, and
the handling of such tapes by the Genie Placer system and the
Genie compiler, are just as described in the Notes on Genie.
AP2 instructions may appear anywhere between the SEQ and END of
a Genie language program, and may be interspersed with other
Genie commands. One word of caution; though each AP2 command
produces only one machine instruction, a single Genie command
may produce several machine instructions. Therefore relative
addressing and skip and jump commands should be used only within
a continuous set of AP2 instructions.

III.2. APl Placer.

The APl Placer system is located on the MT system magnetic
tape at block 100.02. It differs from the Genie Placer system
primarily in that a sixth sense light option exists, that of
assembly. READ, EDIT, and PUNCH operations (sense lights 1, 2,
and 3) are identical with those for Genie Placer. LIST (SL 4 on)
prints only valid APl characters, replacing any other character
with a backwards arrow. CHECK (SL 5 on) normally occurs next,

•
-11-

followed by ASSEMBLE (SL 6 on). CHECK is initially bypassed
if the tape to be checkod is not in the reader; Placer then
proceeds to ASSEMBLE, if SL 6 is on, before making another attempt
to CHECK. If the tape still is not in the reader, then the stop
(I): 05 HTR CC occurs.

If only one sense light option is requested, the stop
(I): Oi HTR CC (for SL ion) occurs; other sense lights
may then be set for special forms of output. Pushing CONTINUE
then causes the operation indicated to be carried out. For
LIST (SL 4 on), setting SL 15 on when the stop (I): 04 HTR CC
occurs causes double spacing on the listing. For ASSEMBLE (SL 6
on), the following options may be exercised by turning on the
appropriate sense lights (in addition to lights 14 and 15 which
are turned on automatically) when the stop (I): 06 HTR CC
occurs:

SL 9 on: print with double {instead of Single) spacing.
SL 11 on: do not punch assembled program.
SL 12 on: load for execution (permissible only for rela­

tivized programs~ see the ORG pseudo~order below). Note that
this option is useful only if the limited S·SPIREL.loaded with
Placer is sufficient for running the assembled program.

8L 13-on: punch self-loading tape (permissible only for
absolute programs; see the ORG pseudo-order below). The paper
tape produced by APl is punched in hexad form with check-sum,
and is normally preceded by an M-SPIREL control word. By
assembling an absolute program with SL 13 on, a tape will be
produced which will load independently of M-SPIREL (by using
the LOAD switch) after the following changes are made with the
hand punch:

punch 7th hole on 10th hexad from beginning of 7th holes

J
• OQOOOOOOOOOOOOOOOOOOOOOO
O e 0000000000000000

0000000000000000
00

O e O
~ 0

0 8 0

"--v---' ~
9 hexads: last "'-. punch "27 11 on first
word of program of 8 7th hole zeros

III.3. APl Assembly Output.

The printed output from APl assembly is interpreted as follows:

Error indications. An error indication is produced by ap­
parent errors in syntax or sequencing. The type of error suspect­
ed is briefly indicated, followed by a line number from which it
should be possible to detect the source of the error.

-12 -

Note that line numbers refer to the partially assembled program
which still contains pseudo-orders; location numbers refer
to the final form of the program containing only valid machine
instructions.

Symbol table. The table of symbols is printed out in seven
columns giving information relevant to the symbols defined in the
program;

(a)
(b)
(c)

(d)
(e)

(f)

(g)

The relative position in the table.
The symbo]..
A number (usually 0) which determines the type of object
for which the symbol stands.
The equivalent assigned to the symbol (5 octal digits).
A number (usually 0) which determines whether or not
an equivalent has been assigned. A number 2 indicates
that a symbol remains unassigned and is a possible error
in the final program.
An 18 digit octal number. The first 5 digits indicate
the line at which an equivalent was assigned.
A number which indicates how (if at all) the equivalent
was as.signed:
0: by appearing in the LOCN field of an order.
1: by appearing in the LOCN field of an EQU
pseudo-order in which the address was symbolic (see
below).
2: by appearing in the LOCN field of an EQU
pseudo-order in which the address was numeric (see
be low).

Assembled program listing. Five columns are printed, giving:
(a) The line count in octal form.
(b) The symbolic location (if any exists).
(c) The location count in octal form.
(d) The final instruction in octal form.
(e) The symbolic address (if any exists).

III.4. APl pseudo-orders.

Differences between line and location numbers, and skips in
the sequence of line numbers, are caused by pseudo-orders as
described below. These special instructions govern the process
of APl assembly and facilitate the handling of blocks of various
types of data within APl programs.

ORG and END. All programs to be assembled by APl must be
preceded by an ORG (Origin) order and terminated by an END order.
In each case the remaining fields in the symbolic instruction are
interpreted in a special way. Each of these orders advances the
line count by 1; the location count is not affected.

The function fo ORG is (a) to initialize the assembly process,
(b) to identify the program which follows, (c) to determine whether
it is to be assembled in relative or absolute final form, and (d)
to give an approximate indication of its maximum size. The ORG
order is preceded by a "er" and an "uc" or "le" punch (upper or

-13-

lower case); the order itself has the form 1 s ORG m, n
·whe~e l, s, m, and n stand for either absolute or blank fields
(symbolic fields are not allowed). If 1 (LOCN) is not zero, it
is taken to be an M-SPIREL index number for the relativized
routine which follows; in this case m must be zero. The SETU
field, s, is always blank or zero. If m (ADDR) is not zero, the
following code is assembled in absolute form starting in location
m; in this case 1 must be zero. (In a relativized program, if
an order in location Prefers in Field 4 to location Q, it is
through a Control Counter reference of the form CC+(Q-P)-1. In
an absolute program, the Field 4 reference .is ~irectly to location
Q). and absolute LOCN fields, giving the location of an instruc­
tion in 5-digit octal form, are permitted.) If n is blank, it
is assumed that the total number of lines in ·the following program
is octal 200 or less (d 128). If n is not blank, its value is
used in taking storage space for the program which follows. The
value of n may be greater or less than 200, but not greater than
10,000 (d 4096).

The END order has the form b b END er er where b stands
for a blank field. The END order must be immediately followed by
two (or more) carriage returns.

EQU. The Equivalent order has the form 1 b EQU m where
1 (LOCN) is symbolic, b (SETU) is blank, and m (ADDR) is either
absolute or a symbol whose value has previously been assigned,
through its appearance in the LOCN field of another order. Then
1 is immediately assigned the value m. If mis a 5-digit octal
OPN code, then the symbol 1 may appear in Field 2 of any order
following the EQU order and will be replaced during assembly by
the octal code for which it stands. This order advances the line
count by 1; the location count is not affected.

BSS and BES, Either of these orders inserts a block of zero
words into the body of the program. BSS (Block started by symbol)
and BES (Block ended by symbol) have the form 1 b XXX m
where 1 (LOCN) is blank, or symbolic, b (SETU) is blank, and
m (ADDR) is either absolute or a previously assigned symbol.
The value of m determines the number of zero words to be inserted;
if 1 is symbolic, it is assigned as if the LOCN field had been
associated with the first (BSS) or last (BES) word ~n the block.
Each of these orders advances the line count by m+l, a~d the
location count by m,

BCD, FLX, REM. These orders deal with alphanumeric data
and have the form 1 b XXX m where b (SETU) is always blank;
in each case, the mnemonic must be followed by a 11 tab 11 character,
and after that all characters (in the ADDR field m) are read
and stored, 9 characters per word. Any occurrence of the
"er-tab-tab-tab" sequence is replaced by a "space", and the
string of characters is terminated by a true carriage return,
allowing more than one line of data to be given. For BCD
(Binary Coded Decimal), each character is converted to a cor­
responding printer hexad; if 1 (LOCN) is symbolic, it is
assigned as if associated with the first word stored. For

-14--

FLX (Flexowriter), all codes (including case shifts, etc.) are
preserved without conversion; 1 may be symbolic as for BCD.
For REM (Remarks), 1 must be blank; this order is used only to
obtain printed comments in the program listing, and does not
introduce any data into the final program. These orders
advance the line counter by n+l, where n is the number of
9-character words stored; in addition, BCD and FLX advance
the location counter by n.

DEC and OCT. The Decimal and Octal orders are used for
inserting numerical data into the body of the program. They
have the form 1 b XXX m where 1 (LOCN) is blank or
symbolic, b (SETU) is blank, and m (ADDR) consists of a list
of one or more octal or decimal numbers. If 1 is symbolic, it
is assigned as if associated with the first number in the list.
Each number must be separated from its successor by a comma,
and each will occupy a separate word in the final program.
Continuation lines should not be used; for long lists of
numbers, several DEC or OCT pseudo-orders in succession may be
used to produce a continuous block of data. An octal number
consists of one to 18 octal digits. A decimal integer consists
of one to 14 decimal digits; a floating point decimal number,
of one to 14 significant figures and a decimal point. If the
list m consists of n numbers, either of these orders will
advance the line count by n+l and the location count by n.

-15 ...

III.5~ Placer and Genie requests.

A Placer or Genie request must be provided with each
symbolic program to be processed; some of the options avail­
able may be omitted at the coder's discretion~

Placer Genie

'

/ Read Tape '* 253 / Read 'tape Pi<OG

·/ Edit '*253 £ _/ __ Edit p\(oG £

,/ Punch *Z53 s I

_./ __ Pun chi p ROG S

./' List List ---
,.

\/' Check v Check

/ Assemble *'Z53A *******************
.../ com pi le PROG A

The original tape is read and a ''tape image" is formed
in the machine. The edit tape Eis read and the tape image
is edited. Then the edited program is punched and listed,
and tape Sis checked for agreement with the tape image.
Placer then assembles the edited program, and punches the
absolute tape A; compilation and punching of the edited Genie
program is done as a separate process.

III.6. APl and AP2 coding examples.

The first example which follows is typical of an APl
program as typed on the Flexowriter; the second example shows
the use of AP2 instructions within a Genie program.

230

P0LY

ONE

T,Jc

THREE

SXIT

0RG
REM

IF(SLN)SKP
TRA

Ti:; .~ ft,J\D
SLF
TRA
IF(SLN)SKP
TRA

T5 FAD
FMP
FAD
SLF
TRA
IF(SLN)SKP
TRl'l

T5 FAD
FMP
FAD
PMP
FI\D
SLF
TRA
El\lD

DEFINE
P0LY(P.,Q).=SEQ

-16-

z
T!J EQUALS THE SUM 0F T5
TO THE POWER I F<.~R I FROM
ZERO TG J WHERE SL 1., 2.,
OR 3 GN INDICATES J
40000
T~i!O
d 1. o,
40000

u~T4

EXIT
20000
THREE
d1.0
TS
d 1. o., U->T!!.
20000
EXIT
10000
EXIT
d1.0
T'·: .,,
d1.0
T5
d 1. o., U->Tlf.
10000
PF

CC-f/ONE if SL 1, #TWO '.if SL2 ., #THREE if SL3., -#END
BCD . P=SUM t:? FOR I=O, •.. , J T<JHERE SL 1, 2, C>R 3

0:N INDICATES J

CNE P=Q+1.0

THREE

EI\'D

LEAVE

SLF
CC=:i!END II

2 P=Q +Q+1. 0
SLF

CC=/!END
3 2 P=Q +Q +Q,+1. 0

SLF

DEFINE

+11.ocoo

+20000

+10000

