
The Ric,e J;nstit,U~!. Computer Proj~~.S Programming Memorandu~ #5
February 2, 1960

Gen.ie

f\n,1Jntermediate Range Assembly System

1. Introduction

This may be regarded as a trial version of Genie. It would be

unduly optimistic to start using it immediately for urgent coding,

but potential users are urged to try the formalism, which seems to

be new in some respects, and let us know how it behaves.

Some technical details are given in Programming Memorandum

14, in which general translation processes are formalised. The

present memorandu1;11 consists of a user•s guide to Fl, the formula

language, and AP2, the revised version of the 'machine symbolic'

code. One of the main objectives of Genie is to assist in writ-

ing more elaborate automatic coding systems, and in carrying out

experiments where the ability to treat complete programs as ob-

jects of study is essential. This facility is provided by other

parts of Genie which are not described here, but it is felt that

some of its flexibility may also be useful in experimental numeri-

cal investigations.

2. The Formula Language, Fl

2.1 The Assembly Process

A well defined problem requires both a procedure which will

lead to its solution, and data to which the procedure will be ap--
plied. It is convenient to use the symbols and conventions of

algebra to describe a procedure, and Fl is designed to be used when

• the data consists of •ordinary' numerical operands: numbers, vectors

and matrices.

-1-

·· A. p,roce.du~e ia J:epr.-.nted by a _er~&ram, which consists of a

&eqoeace~ot COtUWtllds, followed by a set of definitions. The com­

mands are written down in vertical arrangement on the coding •he.et

(figure 1), and when the program la applied they are noi,aally obef•

ed in succession, starting with the first one on the sheet. lf

the comm.ands are numbered 1,2,3, ••• then on completion of a co ..

mand a special register in the machine, the Control Counter (CC),

contains the number of the next one to be obeyed. Since the Con~ol

Counter may itaelf be directly altered by a comm.and, the •normal'

sequencing of operations may be interrupted at any time: this

corresponds to the usual •transfer of control'. For such pur-

· poses, the commands may be identified by names which are placed in

the left-hand margin of the coding sheet, under the heading LOGN.

The commands themselves start at the first •tab' position and ex-

tend across the line; they may be continued by indenting to the

third 'tab' position on the next line.

LOCH SETU OPB AUX,ADDlt ltlHAltl'.S

Piguri 1. An example of coding in Fl. The evaluation of the inte•

gral P'(a) between limits a and b to preassigned accuracy A. Via

a giv1 n number which is greater than F(x) in tbe range (a,b). This

headi1 11 is punched with the 7th hole punch on the paper tape, 80 it

is ig1 ,ored by the co111puter. Now it is turned off +

S(F, a, b, A, v) •• saq
!'unction ' IA• V(b - a)
n • 1

h - (b • a)/2
J • h(P(a) + F(b))

A 1 • J + 4E1.1, n" (a + 2(1 • l)h)

-2-

e.

(Figure 1 • continued)
"' - ·,

J,OCB SITU OPN AUX.,ADDR. REMARKS

cc • #B if ~ 1= II • IAI
IA • I., J = (I + J) / 4., n • 2n., h • h/2
cc -IA

B T7 -I/3
return

END

It will be seen that a command looks much like any equation or

set of equations of algebra: it includes the usual operations., func­

tion names, etc., although some care has to be taken where the usual

notation is ambiguous., or where the mechanics of the Flexowriter

permit the same printed document to be achieved by different se-

quences of key strokes. Genie looks at a program as a linear se-

quence of character codes, and not as a printed page.

Generally speaking., a command 1 definee• just one object: its

principal variable. The coder must see that the quantities on

which it depends have been defined before the command is executed.

This can happen in two ways: (a) by appearing as principal vari­

ables of other commands., previously executed, or (b) by appearing

as 'definitions• outside the command sequence. An example should

make the distinction clearer. A command such as "y = 3.06" causes

the generation of code which transfers the number •3.06' from one

storage cell to another., which has been assigned to 'y'. A.!!_!.:.

finition such as "y = 3.06" generates .!!.2. code, but ensures that in

all commands the value of 'y' is taken as •3.06'. Definitions

generally have the form of programs which define 'functions' al­

though (as in the above case) they may degenerate into $ingle com~

mands defining single numbers.

-3-

•

A program with one or more 'input• parameters and a single

•output• value may be used in formulae in the usual algebraic sense.

In its definition, the name of the program is followed by the names

of its 'input• parameters, i.e., the form:

f(a,y) • x2 + y2 • 2kxy

constitutes a definition of the single valued function f. Its

parameters are 'x' and 'y', and 'k' is a quantity which must be de­

fined elsewhere in the program.

A program may also be used in a more general way, as a many•

valued function of several arguments. It cannot tbea.be tuted in a

formula, but it may appear as a single name, followed by the names

of its input and output parameters, i.e., if P(a,b,#X,fY,IZ) is

a program which computes X,Y,Z from the input quantites a,b, then:

P(U1 V1 #L1 #M,fN)

is a command causing L,M,N to be calculated from U and v. Note

the use of "#11 to indicate a quantity computed by the rcu tine.

A program may still use names which are undefined when it is

being coded: the coder must be aware of this and do one of two

things about it. If he intends to use the program as a function

in one of the above two senses, then any of the undefined quantities

which are input or output parameters must be listed as such after

the name of the program. On the other hand, there may be quantities

which he is unable or unwilling to define when the code is written.

In this case their names must be written as part of the heading of

the program as shown in Pigure 2. Here a,b, and care the parame•

ters of program P, and G ls an undefined name in Q. P has noun­

defined names and Q has no parameters. A sequence of commands ls

-4-

parenthesised by the "SBQ ••• BND" construction. A program is paren­

thesised by the ••(•• • 1" construction. These may be omitted where

there.is no ambiguity.

/.,.,.. __ ._. __ _.. __ ...,.. __________ ...,... _... ____ ·_· ________,._... _____......, ~ ------... ~
i LOCH SBTU OPN AUX,ADDB.

Pigur,, 2. An example of program nesting. (See text).

Al

Q • (SBQ ~
y • (x + 3.07S)x
read G

u • G sin y + P(G, 2G, y)

print G,u
return

END

x • cos(4•/3) + log 3

Start of Q

Commands
of Q

Def of x

P(a,b,c) • SEQ Start of P

T4 • (a - b)2 ~ (b - c)2 + x(c-a)2

CC• #A2 if 51.75 < T4

T7 • sqrT4

Commands

of P

REMAI.KS

return Logical end of P

A2 T4 • T4 • 51.75

CC• #Al

END End of P and q.

Assembly is sufficiently fast to permit frequent re-runs in

the course of program checking. If this is not desirable, a code

may be partitioned into subroutines which may be tested individual­

ly and combined together at a later stage. Provision is also made

for inserting corrections in the form of short command ••fOencea.

Genie is basically a two-phase assembly a)'stem. In tbe fir st

phase, a single address code is written, similar to machine code in

most respects, except that it contains indirect references to its

operands via a •symbol table', and a number of pseudo-orders which

affect ·.the .llec.ond phase.... Initially the symbol table contains only

-s-

some fixed names. Commands are processed one after another: if a

command. contains some new symbols, they are added to the, table.

The code thus formed, together with its table, may be retained if

corrections are to be aade to the program later. It is c~lled

• &-eode'. At each stage of assembly, the names presently on the

symbol table may be identified with the names appea~tng in a com­

mand, and it is this facility, of course, which makes the program

into a coherent whole. At the end of a program all its symbols

are removed from the table, and this has the following important

effect: a sub-program P may share some symbols with the program Q

in which it appears, and also have its own private symbols which

do not appear in Q. The same remarks apply to any other sub-program

P' in Q. However, the private symbols of P and P' ••• distinct in

meaainl although some of them may be identical in form. This is
Genie tt probably the only tricky device in I, and it should be clearly un-

derstood if programs are nested within one another. It is also

applied to commands, which may have their private •auxiliary vari­

ables• distinct from quantities similarly named in other commands.

In the second phase of assembly, machine code is written.

Generally, this is done automatically, and stored in the machine

ready for execution. Under sense switch control, both the 8'-code

and final codes can be punched out and printed for reference pur-

poses.

A program which is punched out in binary form contains symbo-

. lie references to its undefined names. It may be reloaded at any

time, together with definitions of these quantities, prior to execu-

tion. This is the normal way of adding library routines to a pro-

gram: in the present terms, a 'library' program is one which con-

tains no names other than those of its parameters, its own internal

variables, certain fixed registe.rs in the m&ehine, and other library

routines. Sets of interdependent library.programs may be rea-d into

tb.e machine in -.ny order, prior·to execution, (Itt'Ftgure 2,·q {s a

llh1:ary pr:o,gram, but P is not.)

Storage space is not reserved for vectors, matrices, subrou-

tines etc., unless they are completely defined at assembly time:

it is obtained duTing execution from a 'bank' of stores which is

controlled by an independent routine. It.!.!.. necessary to know the

nature of the undefined quantities, if they are not single preci•

sion floating point numbers, and this must be given by a declara­

tion. In one other respect Genie does not observe the traditional

distinction between •assembly' and •execution'; it will recognise

a program which depends on no external quantities and execute it

automatically: this applies at all levels of coding.

2.2 Details of Fl

2.2.1 Names

Symbolic names are used fot' operands and certain special pur­

poses described below. The operands of Fl are assumed to be single

precision floating point numbers unless, by declaration or impli-

cation, they are stated to be otherwise.

Type l Name: This is either a single lower case letter,(l)

or a sequence consisting of some upper case letters, followed by

some (possibly none) lower case letters, followed by some (possibly

none) decimal digits. Any number of characters may appear in a

(l)'Lower case letters• include "' t::., a, .f:3 , 'V ,~
l "

name, but two names of more than four characters will be consider--
ed identical if their first four char~cters are similar. A name

may not eontai n· a I space' (blank character).

Examples: K6, Mass, Time, p, Q

Type 2 Name: In order to make use of the 1 fast• registers on the

machine as temporary stores, and for specialised purposes, 17 re-

gisters are identified by symbolic names, which should not be used

for any other purpose. These are:

A-series registers: z, u, R., s, T4, TS, T6, T7

B-series registers: cc, Bl, B2, B3, B4, B5, B6, PF

Special purpose: x

~ype 3 Name: Since Fl can be used in conjunction with AP2, the

symbolic operation codes of the latter may not be used as ope-

rand names in Fl. There are about 100 of these, and they are list-

ed in Programming Memorandum 13, Section 3. They are all, with the

exception of "IF~ either three upper case R.oman letters or two upper

case R.oman letters followed by a single digit.

Example: ABl, CLA, NZE, SBQ

Special Symbols: Certain combinations of letters have special mea•-

ings which will be given in later paragraphs. They fall under the

following headings:

(1) Boolean operations: "and" and "or"

(ii) System subroutine names: "sin", "cos", "tan", "log", "exp",

"sqr"

(iii) Control words: "if", "for", "repeat••, "dim", "return"

(iv) Dec la rations: "Function", "Vector"., "Matrix", "Integer"

.. a.

(v) lnput-Outputi "print", "tead", "punch"

(vi) Others: The sense light register, a

2,2.2 Numbers

Any string of digits not forming part of a name is treated as

a number. In Fl, this is assumed to be a decimal integer, or a

floating point decimal number, according as to whether a decimal

point does not or does appear in the string. It is converted to

the appropriate binary form. A number may be of any length. In­

tegers are evaluated modulo 32,768; floating point numbers are

significant to about 13 decimal places.

Examples: 122, 87645, .000324, 895.2, 3., .s

2.2.3 Subscripts

A name may have one or two subscripts. If two, they must be

separated by a comma. They may have any form permissible to a

formpla (Section 2.2.5), and they are evaluated as integers modulo

512. All arrays are indirectly addressed through 'codewords'

(Programming Memorandum 13, Section 2). Subscripting is indicated

by a half-line shift down on the typewritten sheet. To avoid am­

biguity, parentheses must be used in cases where subscripts appear

in exponents, and vice versa.

2.2.4 Operations

(i) The binary operations of Fl, in order of decreasing

•precedence• are: " (!)" (exponentiation) 1 "x", 11 / 11 , "+" and 11 - 11

(with the same precedence) and"," (list formation). These all have

the usual meanings with regard to floating point quantities, and

-9-

floating point operations are followed by rounding and normaliza­

tion. Associative operations are obeyed from right to left in the

formula. A function name operates on the value of the expression

to its right, which includes all terms which are connected by the

operation of multiplication. Where no possible confusion can arise,

the "x" sign between operands may be omitted.

Example: abc/4kt2 is evaluated as:(a x(b x c))/(4 x (k x (t@2)))

sin4p/3 is evaluated as:(sin (4 x p))/3

Exponentiation is indicated by a half line shift up on the type­

~rit~en sheet.

Operands are normally assumed to be single precision floating

point numbers. They may be determined otherwise by implication

(Section 2.a.1) or declaration (Section 2.2.8). Matrices and vectors
' (1)

must always be in single precision floating point form. Expressions

involving 'mixed' operands are permitted where an unambigious

interpretation can be given to each operation. In Figure 3, the

permitted operations for given operands are indicated, together

with the type of the resultant operand.

A©B
Second operand B

Integer •.fl.-pt. No. ... Vector·MJtrix

First lnteg~r All(Integer) All(Jrl,pt,No, x(Vector) x(Matrix)
Operand Fl.pt.No. All(Fl.pt. All(fl.pt.No. x(Vector) x(Matrix)
A Vector Ho.) f x(Scalar)

x (Vector) x (Vector) ,+-(Vector) x(Vecto..r)
Matrix @ x(Matrix) x(Matrix) x (Vector) +x(Matrlx) -

Figure 3: Permitted operations, and resultant operands.

(ii) 'Iha unary operations of Fl are"·" (when it is not

im~~~~ately preceded b7 ab~opereQ4,and ~" (absolute value)« the
~lJi.e.,when they occur as operands. If elements are addressed in­
dividually, they may be all integers o.r all floating point numbers.

-10 ..

latter is inferred by the "l ••• I" construction, in which succeed.

ing "I" characters at the same parenthetic 'depth' are taken as

left and right members of the construction. Ambiguity must be re­

moved by using ordinary parentheses.

Example: fa• Pix• 111 must be written: la - P(fx • Yl>I

Unary operations, when applied to vectors or matrices, af­

fect each element of the array.

(iii) The relational operations are"•", "<", 11~", "+", 11{"

and "i"• These are used in the construction of predicates.

Relational operations do not apply between vector or matrix

operands.

.2.2.5 Formulae

Any name or number is a formula of Fl. Let 'f' and 'g' stand

for formulae. Then if 'B' stands for a binary operation, 'fBg' is

a formula, and so are '(£)' and '(g)'. Also, if •u• stands for a

unary operation, then 1 Uf' and •us• are formulae. All the formulae

of Fl may be constructed in this way.

2.2.6 Predicates

Any two formulae connected by a relational operation consti•

tute a predicate. A predicate assumes the value •1• if it is true,

and •o• if it is false, i.e., it is evaluated in terms of its

characteristic function. The usual Boolean operations between

predicates are admitted and denoted by "and" and "or" (the binary

operations, in which "andtt takes precedence.)

The special form "Ar B s C" is admitted and interpreted as

-11-

"Ar Band B s C", where A, Band Care formulae and r, s are re-

lational operations.

A special set of predicate or sense lights is recognised in

Fl, corresponding to the sense switches (lights) on the machine

con so le. l 2 15 These are denoted by (1 , a· , •• •, Cl • When a switch

is in the •on' position, it is in the •true• state, and has value

1.

2.2.7 Bquatiqns

A formula or predicate may be evaluated, subject to the usual

rules of computing machinery, provided a value has been assigned to

each variable name appearing within it. In a calculation such a

•value-assignment' is made by means of an equation:

V • F

where "V" is a (possibly subscripted) name, and "F" is a formula.

The"=" sign used here is the same as that in the relational

operation: the context distinguishes the use to which it is put.

A subset (x) of the names which appear in F may be designated

as the parameters of v, which may then be regarded as a 'function•

name and appear in formulae in the usual way.

Predicates are introduced in an equation by the special name

"if". They occur in conditional equations:

where "V" is a (possibly subscripted) name, F(i) (i. 0,1, ••• n)

is a formula, and c<1)(i • 1,2, ••• ,n) is a predicate. The equation

ia scanned from left to right, and V assumes the value of the first

formula for which the corresponding predicate ·1, true. If no pre­

dicate is true, then v assumes the value of ,<0>. !be last for~

mula may be omitte-d if all the preceding predicates are never

simultaneously faiae, of if V hat been defined previously, and is

to remain unchanged il norie of the preceding predicates is trua.

Example: f(x) • 0 if x<O, 1 if O < x < 1, 0 -
Besides making a value assignment at execution time, an equa­

tion is used' during assembly to :lndicate the type of variable

which it defines. The value of P may be determined (during assem-

bly) to be an integer, floating point number, vector or matrix.

If V has not occurred previously in assembly, this is sufficient

to fix the type of V from this equation onwards. If V has occurred -
previously, then some assumption regarding its type has been made.

If Fis not of this type, then an error has occurred; the only ex­

ception to this rule is that F may be converted to an integer

(from floating point form) or to a floating point number (from

integer form) to conform with v.

Examples: x • 3st2 + 6g/2 (x is a 'simple' operand)

G(r) • 32r - >:&,pi+ 10 (G is a function)

K • c1.s,2.s,-1.o) (K is a vector)

M - ((1, 1,0), (l,O, 1), (O, 1, 1))
(M is a matrix)

2.2.8 Declarations

In a program, the name of a variable may occur in an equation

before it is formally defined. In this case, a declaration must be

made :lf it is to be treated as anything but a single precision

floating point number. The declaration has the form:

D L,M,N •••

where Dis one of the declaration names 'Integer•, •runction 1 ,

•vector• and 'Matrix', and L,M,N, ••• are the names of the subjects

of the declaration.

The dimension of an array (vector or matrix) may be used as

any other integer operand. The special name "dim" is provided for

this purpose, and it may be used in two ways, illustrated by the

following examples. Let A be the name of a vector.

(1) dim A• 10

(ii) dim A. n

(iii) m • dim A

Causes space to be reserved for

10 elements, and a codeword belong­

ing to A, during 1 assembly.

Causes code to be generated which

will obtain storage space for A

(and its codeword) at execution

time, depending on the current value
of n.
causes the integer m to· be assigned

the current value of the dimension

of A (at execution time).

If Bis the name of a matrix, then its dimensions are dim1B

(no. of rows) and dim2B (no. of columns). They may be used in a

similar way to (i), (ii) and (iii).

2.2.9 Commands

A command in Fl may be composed of any number of equations

separated by commas. The first is the principal equation of the

command, on the left hand side of the principal equation is the

principal variable, which may be a subscripted name. Following

the principal equation are auxiliary equations; on the left hand

-14-

side of an auxiliary equation is an auxiliary.variable. Auxiliary

variab lea at:e of two types: simple (non•$Ubscripted) and .. subscript­

ed. Subscripted auxiliary variables appear on the left hand side -
of two types of auxiliary equations: recurrence re lat ions and ini--
tialization 4:rguations. The auxiliary equations need appear in no

particular order: they are used to define quantitites appearing

on the right hand side of other equations, and must be consistent

and free from circularity.

As a program is being assembled, a list of principal variables

is formed. In proeessing a command, the names occurring there may

or may not appear on this list. A name which is not on this list,

and which does not appear as an auxiliary variable, is added to -
the list. A name appearing as an auxiliary variable, but not on

the list, is defined only within the command. Thus, the same

name may be used for different auxiliary variables in any number

of different commands. The auxiliary equations are not completely

general, and we now illustrate the forms which they may take.

(1) Simple auxiliary equation. The auxiliary variable is not

subscripted.

Example: y =a+ b c /d - ew(f(a) -f(t))- g,a = 2g, u = t + r, u v w

g = (t/2 if u < 3,0)

Note: Here a, u, and g are defined by simple auxiliary equations.

The right hand side of the conditional equation must be entirely

enclosed in parentheses to distinguish its comma(s) from those

appearing between auxiliary equations.

. (2) Preceding Values Recursion •. The auxiliary variable has a

e single name as subscript, and the auxiliary equation constitutes

-1s-

a recurrence relation, the initial values of which are given by

auxiliary initialization equations. The subscript 1-a considered a

1 dummy1 variable~ Apart from the recurrence relation and initiali­

zation equations, the variable thus defined may appear only once -
else.vb.ere in the command, as follows: on the right hand side of

another equation of the command, with a subscript consisting of a

number or a sinale variable name.

Example: y =a+ bucv/dw - ew(f(a) - f(t) - g, b1 • 3bi-l + 4,

b0 • 1, ci. 5ci_1/ci.2 -6r, c0 = 1, c 1 =2

Note: Here band care defined by preceding values recursion. In

a recurrence relation of order r, the initial values range from sub-

script Oto r-1. Any initial values which are not given are assumed

to be zero.

(3) Simultaneous preceding values recursion. This is a generali·

zation of the above case, in which the definition of one subscript-

ed auxiliary variable may involve another auxiliary variable which

is also subscripted. Such dependence is restricted only by the

fact that a circular definition may not arise. Apart from their

recurrence and initialization equations, simultaneously recursive

auailiary variables may appear elsewhere in the command only once,
. -

and only with the same numeric or single name subscript.

Example: y =a+ bucv/dw - ew(f(a) - f(t)) - g, di= 4d1_1 +

eiei-2' do• 1, ei = 2di·l/ei-1' eo = 5

Note: This command involves a simultaneous recursion on d and e.

In execution, initial variables which appear with negative sub-

scripts are taken to have value zero.

During assembly, each command is dealt with as a whole, and

there is a limit to the size of coDUl\and which can be handled, just

as there is a limit to cb.nvenient human comprehension of a single

e . recursive definition. An upper limit of six lines for the size of

a c01amand should be borne in mind.

(4) Other Forms of Auxiliarz Equation. As indicated in section

2.2.7, an equation may be used to define a function name by listing

after it the parameters which are used in its definition. These

parameter names may not appear anywhere else in the program. By con-

vention, the value of a function defined by an equation is placed

in fast register T7 after it is calculated. For this reason, T7

should not be used for storage by the coder.

Example:

Note: This command contains a definition of the function f. Here

it is single valued, although the 'value• may be a vector of results,

whose codeword is stored in T7. A vector is formed by the tt II ,
operation.

Example: v = A exp(f1(x)) + B exp(f2 (x)), f(y) = ((-b + T4)/2a,

(-b • T4)/2a), T4 = sqr(b2 - 4ac)

Note: The term '*f 1 (x)" causes only the first element off to be cal ...

culated. However, an equation such as·~= f(x)" would cause both

elements to be calculated and assigned to the vector G. The use of

a fast register as an auxiliary variable is illustrated here; by

a choice such as this the resultant machine code is slightly more

efficient: only T4, T5 and T6 are available for such purposes.

It is evident that assembly does not necessarily take place in

.the order ,in which commands are executed. It is the coder's re ..

-17-

sponsibility to ensure that when a command is executed all the vari­

ables which are not defined by auxiliary equations have been pre­

viously calculated. Aa assumption to this effect is in Qenie.

g.2.10 Iterative Operators

Repetitive cycles of commands with a parameter change may be
i >

introduced irl two ways in fi, The first is the 1 for• construction

which has the general form:

for h = P,P .± q, ••• ,i
Q

repeat

where his a (possibly subscripted) name, p,q,r are names or num-

bers, and Q stands for a sequence of commands.

Example: for x = 2.5, 2.5 + A, ••• ,Xmax

CC =#Kif (sinx)(exp(x/2))< ZS

repeat

Note: The use of "#11 to obtain the equivalent assigned to K, rather

than its contents.

The 'for' loop is coded in a way precisely equivalent to the

sequence:

J

h • p

CC• #I if hi r

Q

h - p + q

cc. #J

I (continue) •••

(or h < r in the case

"p - q")

(or p - q)

Transfers may be made to and from the 1 for• loop consistent with

this interpretation.

-18-

The second form of iteration can occur within a formula., and

is initiated by the 0 E11 operator. Let r be a formula. Then the

construction" E P" where m and n are integers or variable iam,n .,

names and i is a variable name., is taken to have the value of S

obtained by the code:

S • 0
for i • m., m + 1, ••• ,n

s • s + r
repeat

It will be observed that much inefficient code may be constructed

inadvertently by using t. ln Genie, no attempt is made to devise

efficient recurrence relations which would properly be used, for

example., in evaluating a polynomial. These should be given by the

coder.

Example: G • u 10, u1 • xu1~1 + A1 , u0 • 0

The 'range' of a Eis the same as that of a function name.

Example: is coded as ((E1 1 (axb)) + c) = .,n

2.2.11 System Subroutines

The six elementary function names given in section 2.2.1 are

available at execution time and may be used in formulae without

being defined in any other way. They may also be used at assembly

time where they occur with a constant argument, which is sometimes

convenient for the coder, and does not give rise to inefficient

code.

Example: y • u/4 • sqr7.55 would be assembled as

y --1.9623281694094

(assuming 'n' has been given its usual numerical value) •

. .. ,

undefined
It is generally true that a command which depends on no/exter-

nal quantities or parameters is evaluated during assembly, and re­

placed by a simpler equation.

2.2.12 Subroutines in General

As indicated in Section 2.1, any single valued function of

several variables may be used in a formula in the usual algebraic

way$1> Such functions are encoded as closed subroutines, and are

terminated logically (as opposed to physically) by the "return"

command. By convention, T? is used to contain the value of the

function, although it is within the scope of Pl to compute func-

tions whose values are vectors or matrices. If the function is de-

fined by a program, the last executed command must set T7 to the

appropriate value. If the value 19 a vector, for instance, then a

command of the type: "T7 • (a,b,c.,d)" would cause a vector to be

stored in memory, and the codeword referring to it in T7.

In other cases, a program may be defined and used in a more

conventional way. As a trivial example., consider the following

definition:

P(a,b,c,ld.,#e) • SEQ
T4 = b2 ... 4ac

T4 = sqrT4 if T4! O,O
d • (·b • T4)/2a
e • (·b + T4)/2a

return
END

When this program is assembled., all quantities appearing in the para-

(l)Which permits a formula to appear as an argument, as in c08 (4x+tj)

meter list are addressed through a calling sequence. Consequently,

a command of the form: u P(U,t,MG6,#Rl,IR2) " would result in the

roots of the equation •ux2 + tx + MG6. 0 1 being stored in loca­

tions B.1 and B.2.

Finally, one or more of the fast registers T4, TS, T6 may be

used to contain input or output quantities: the coder then has

the responsibility of seeing that they are used correctly, since

they are not included in the calling sequence which is generated.

For another trivial example, if CMPY is the name of a program which

treats its two input parameters as the real and imaginary parts of

a complex number, and multiplies the number into the complex pair

.(T4,TS), then a complex multiplication (A,B) X (C,D) + (T4,TS)

would be written:

T4 • A

TS• B

CMPY (C,D)

2., Input and Output in Pl

2.3.1 General Rules

It should be first noted that Genie itself is a type of in~

put routine, the purpose of which is to read in definitions from

paper tape, construct machine code from them, and, where possible,

to replace them by simpler definitions. In this section, we are

concerned with the type of input or output command which can be

given during the execution of a program. Secondly, according to

the rule given in Section 2.1, a named ~uantity which is to be in­

put during the execution of a program is undefined during assembly,

-21-

and must therefore be listed as such in the program heading.

The most convenient way of referring to data is by name, If

an order such as "read x" is given, some equation such as "x •

3.00275" is expected from the paper tape reader. Conversely, a

command "print 2e 11 wil1 prittt out an equation defining x. In Fl,

only numerical information may be handled on the right hand side of

an equation.

A more direct way of transmitting data consisting of single

numbers is by •number•. This may be applied to unnamed quantities

which are placed in T7 by the coder prior to output, or by the

machine after input.

All numbers are c~nverted to and from decimal form, with the

convention that floating point numbers contain a decimal point

(in decimal form) or a non-zero exponent (in binary form). Por in•

put purposes, numbers may be separated from one another by commas,

•tab' or •er' punches. Vectors must be enclosed in parentheses,

and so must matrices, which are written down (and stored) by row.

Two output forms are permitted: a full precision conversion

(#1) in which a number is printed or punched to 13 decimal figures,

and a 'half precision• (12), in wh:Lch a number is printed or punch•

ed to 8 s:Lgn:Lficant decimal figures. More elaborate output formats

may be achieved by recourse to the output routines wh:Lch are used

by Genie and admit practically any desirable form, but the control

of these is not included in Pl: subroutines to use them may be

written in machine symbolic code.

2. 3. 2 ,~aper Tape Input . , .
Input by equation is initiated by tlie co•mand:

read L1 M, ••• ,N

where L,M, ••• N are names of ~ndefined quantites which appear in the

heading of the main program. Equations defining these must appear

in the given oX"der on the paper tape Jeader. 'the Si~en nam4s may
, I ,;

not be subscripted. They may not include fast register ham~s~

Input by 'number' is initiated by the command:

read

which causes the next number on tape to be read, converted to bi-

nary form, and ·placed in T7.

2. 3. 3 Paper Tape a,nd Printer Output

Output by equation is initiated by the command:

(punch

l_!rint
#n, L,M ••• I'

-here n isl or 2, and L,M ••• N are names appearing in the program.

This command causes equations to be printed giving the current

values of L,M, ••• N in full (#1) or half (12) precision. An array

A of subscripted elements Ai is peX'missible as output when refer­

red to as a whole by the unsubscripted name A. They may not in-

elude fast register names.

Output by •number' is initiated by the co.mmand:

f punch) #n

\Print)

which causes T7 to be converted to integer or floating point deci•

mal form and printed on a new line, or punched on paper tape, fol­

lowed by a •tab' character. The value of n determines whether the

Jt-1,,•r- :f.• porJn:.t:&d- o-.r, pwi.ch.e"4· to .. foll or half precision.
•23-

3.1 General Structure

It is possible that within Pl the form of commands ls inade·

q~a~e f~r describihi dertain ~pe~~tions concisely. ln this case,

the ~b6er may Use --~hine commands written in a symbolic form. They

may be mixed fre~iy with commands of Fl, and each symbolic command

will be translated into a single machine order, The names used for

operands in a command of AP2 will be identified with the names usfad

in Fl commands. It should be remembered that code generated by Pl

may use any of the fast registers except T4,T5 and T6 (unless matrix

operations are involved); on the other hand, commands are indepen•

dent and do not make use of fast registers for any purpose but in­

ternal storage, except as directed by the c~der.

Genie is rather particular about choosing where to put things

in general storage, and allows only a few fixed locations which the

coder can use for manual control purposes. Otherwise, space is taken

as required from a storage 'bank', and automatically returned there

after a program has been executed. In particular, the coder must

observe the rule of the 1 B6 list' whenever using Fl commands or sub­

routines: that working storage space will always be taken from a

block of cells starting with the address given in B6. The contents

of B6 are unchanged after the command or subroutine.

3.2 Details of AP2

3.2.1 Names

The type 1 names are the same as those of Fl, with the exception

of "a" and "d" which have special purposes deacribed later. The

Type 2 fast register names are the same as in Fl, and the Type 3

names. (the operation codes and pseudo-orders) are those given in

Programming Memorandum 13.

Special Symbols: '?he special symbols of AP2 are: *,a,d,+,·,+,J,

),C,.5.!.!!., .!!,, and, (comma). The use of these is given later.

3.2.2 Number&

Any string of digits not forming part of a name is treated as

a number. In AP2 this is treated as an octal integer, unless it is

preceded by the special character "d", in which case it is treated

as a decimal integer or floating point number, as in 11.

3.2.3 Subscripts

Subscripting is not permitted in AP2. In order to obtain an

element of an array which has been defined in Fl, it must be indi•

rectly addressed in the following way. Let A be the name of a vec­

tor. Then the element A1 is obtained by:

SBl i

CLA *A

Let B be the name of a matrix. Thea the element Bi,j is obtained by:

SBl i

SB2 j

CLA *B

3.2.4 Operations

Six operation signs are used, and these are interpreted in

ways which vary with the field in which they appear. They are"*"

-2s-

(ADDR), "a"(ADDR),"+"(OPN,ADDR, and AUX), "-"(SETU, OPN, ADDR, and

AUX), "+"(AUX), and "f" (SETU and ADDR).

3.2.5 Commands

The reader will recall the subdivision of the 54-bit instruc•

tion word in the Rice Institute computer into four distinct fields,

and the order in which these are decoded:

(i) A fast register named by SETU (6 bits) is brought to U

with appropriate sign modification.

(ii) The ADDR field (27 bits) is decoded, and a second operand

brought to S with appropriate sign modifications.

(iii) The machine order designated by the OPN field (15 bits)

is applied to u, Rands, and possibly one other memory cell.

(iv) A second operation, designated by AUX (6 bits) is exe-

cuted.

A command of AP2 represents a single machine order. It may be

named, as in fl, for control purposes. The command is typed across

the coding sheet starting at the first •tab' position (SETU), fol­

lowed by OPN (second •tab'), and ADDR (third •tab'). The AUX field

is separated from ADDR by a comma. Some remarks may be made after

a command, separated from the ADDR, AUX field by a 'tab' punch;

these are ignored by Genie.

The acceptable symbols in each field are as follows:

LOCN may be blank, or a symbolic name, not of Type 2 or 3. -
SETU - may be blank, or a number (which is evaluated modulo 64), or

a Type 2 symbol of the A- or B-series. If "f" is such a

,symbol,·then it may appear in the forms 11 £1.', ".;f", "lff'-',

.. 26-

OPN -

ADD.R.

... or "-Ifft'. A blank £ie.ld ta tnterpteted. as •.•u0 •

may not be blank. or a

Type 3 symbol, or any other symbol ~hos• equivalent has

been assigned by tlie coder by means of the EQU pseudo-order.

may be blank, or numeric (modulo 32,168), or a combination

of symbols and numbers. Any B-series Type 2 symbols are

taken to be address modifiers at execution time. Other

symbols are replaced by their 15-bit equivalents. If seve-

ral symbols and numbers appear, their equivalents are com•

biaed by the binary"+" and O •" operations. The sign"*"

is used to denote indirect addressing. The aign "a" is used

to denote immediate addressing. If "m" is an allowed ad-

dress symbol (or string of symbols), then it may be finally

modified to give "m", "-m", "fml" or "·l•I"• An initial

"·" sign acts as an inflection on the whole field rather

than as the modifier of some symbol.

Examples: "LS. 418" means 'the contents of cell ((equivalent of

LS) minus 22 (octal))'

"-dl8 + LS" maaae 'the negated contents of cell (22 +

(the equivalent of LS))'

On certain comm.ands, the bit corresponding to "a" is auto-

matically turned 'on•, whether or not it has appeared in the

field, thus anticipating the coder's intentions. This hap­

pens in the following situations:

(a) when the STO, SLN, SLP, TR.A, or HTa orders are used.

(b) when ADDR. consists only of one or more B-series

symbols.

..21-

Examples:-

(c) when a Class 4 OPN is used (shift, aet B-registers
">

T7

B2

etc.), and ADDR is purely numeric.

STO

ADD

LLS

K + BS
B6, U + B2
d24

Any symbols appearing in parentheses in ADD& are ignored.

,.

An alternative form of the ADDt fieid is simply a float-

ing point decimal number, which is to be used as an

operand:

Examples: CLA d2.0092071, U + T7

dl02993.454 T4 FMP

Storage space is reserved for the operand at the end

of the program.

AUX - may be blank or numeric (modulo 64), or one of the forms:

"U+f0 , "R+f", n1+b 11 , "b + l", "b - 111 or "b + X", where 'f'
stands for any A· or B-series symbol, and 1 b 1 stands for

any B-series symbol.

3.2.6 Pseudo-Orders

Pseudo-orders appear in the OPN field. They are not translated

into machine orders, but have the following functions:

(i) SEQ ••• END. These delimit a string of commands, as in r1,

and they may be followed by definitions of subroutines, constants,

etc.

(ii) BSS (Block started by symbol) and BES (Block ended by - -
symbol). These cause a block of consecutive stores to be reserved

in the generated program. The length of the block is given b7 the

-28-

aymbol(s) appearing in the ADJ>a field. The ;symt..ol in the LOCN field

is assigned an equi~~i~~i whi~h is the addr~I~ ~f the first (BSS)

or last (BES) cell in the block.

Example: GJ!i. BSS M + N - dlOl

(iii) EQU (Equivalence). The Type 1 name in the LOCH field

is given the equivalent currently assigned to the aymbol(s) in the

ADDR field.

(iv) REM (Remarks). - All characters and symbols following

this pseudo-order are reproduced. in the printed program liating

without affecting the assembly process. Remarks may be continued

at the third 'tab' position on successive lines.

(v) Printer control. PRI (Print assembled code on-line); -
SUP (Suppress printing); SGL (Single apace); DBL (Double apace). - - -
These apply to the final output listing only. This may also be

controlled by eenae switches, which can over-ride the pseudo-orders.

(vi) Data Input. tn each of the following pseudo-orders a

set of numbers or character codes is read into c:onsecutive cells

in the generated program. Each number occupiee one cell. Nine

character codes are stored to one cell.

DIC (Decimal input) Number format is the same as Pl, but -
each number may be followed by a decimal integer scale factor,

which ia preceded by the character "e": "3.40829e-12" stands for

the number 1 3.40829 X 10•12 •. Integers are evaluated modulo 248•

OCT (Octal input) Numbers may be up to 18 digits long. An -
iuitial "·" sign complements the final number after conversion and

shifting. A "b" character followed by a decimal m teger •n• causes

the converted number to be ehifted n places left (n~O) or right

(n<O) after conversion.

If any number is followed by "t" and a digit (1,2,or3) lt ia

stored with the appropriate tag.

BCD (Binary coded data). All cltaracters which follow are coa--
verted to printer codes and stoi-ed in litUccessive words, terminated

by a 'er' code.

~ (l'lexowriter codes). All the following characters are

read and stored as Flexowriter code (i.e., without conversion).

These are also terminated by a 'er• code.

Note: BCD and l'LX data may be continued at the third •tab' position

on successive lines •

. ***
The example in Figure 1 was takeri fro~ A. J. Perlis and K.

Same lson; "Report on the A igori thmic Language ALGOL", Num. Math.

1, p.41 (1959).

Genie was devised by Jane Griffin, Ann Heard, J. K •. Iltffe,

Jo Kathryn Mann and c. McGehee.

**********************************""************************************

-30-

	1. Introduction
	2. The Formula Language, F1
	3. The Machine Symbolic Code, AP2

