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. Applications to Automatic Cdding - Part 2

- ' The Elements of tie Genie System

J.K., Iliffe

1. Introduction

Thé‘aim of the Genie system is to provide a set éf routines to
be used in coﬁstructing prbgrams for The Rice Institute Computer in
both nu;erical énd symbol manipulative fields, Precise forms of
coding language are not defined here since it is cu? intention to
allow the coder a fairly wide choice of tﬁe fofmé he will use; how-
ever, asvstarting'ﬁoints in this inquiry, certain languages adequate
for the description of numerical and analytical processes in a natu-
ral fashion were considered in detail, and by putting thesebin para-

‘l’ metric fdrm, it was>h0ped to achieve greater generality. The formu~
la language FL1 and the symbolic assembly program AP2 are examples

%
of forms permitted in Cenie, and these will be used below for purposes

%
See Programming Memorandum #5,

of illustration,

It is clear that a large part of thié type work is independent
of any particular machine, and that it is to our advantage to keep
- it this way as far as possible, Consequently, most of the characteri-
zation of 'source languages' which follows is machine independent up
to the point where a realization is chosen for a particular computer:
the choice of representation and provision of basic sequences of

. machine code are matters for intervention by a coding specialist, al-
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“though the problem of minimizing the amount of work required in

this respect is receiving attention, The point here is that the
realization isloo concern of the average customer.

Construction of symbol maoipulatiog routines is in its in-
fancy: much work is being done and some is documented, but none

has received such general acceptance that we can refer to this

in order to shorten the task of description. Unfortunately,

therefore, much of the present memorandum consxsts of statements
of the obvious which are necessary to illustrate an approach to

the subject rather than to advance new facts, By its very nature

a description (using symbols) of symbol manipulative routines

gives rise to speculations, of which some are interesting and

others lead to endless tail-chasing. most of these are latent

in the structure of Genie, awaiting further investigation. Our

primary objective, which is the production of an efficient

translating system of some sophistication, does not permit diver-

sion to these at the present stage.

It may be worthwhile, however, to try to make one aspect
of our approach explicit; and this is concerned with the dis-
tinction between syntactical and formal systems which is found

in logic, although the following presentation is far from the

“ultimate logical precision which one would hope to achieve.

Whereas both systems ascribe predicates to certain sets of objects,

they'difier'in the way in which the objects are understood., In

":theﬂfirstf(syntectioal) case the objects are words which are

strings'of"letters in an alghabet;' in the second case,:the ob=

jeotstare"Eeherete& from primitive atoms by operations. If,

' 'folloﬁihg‘ﬁtﬁf. Curr&(lz we call the objects of a formal system
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the obs, then they consist of an inductive class whose basic
elements are the atomic obs, such thai the application of an
operation of degree K to an ordered cequence of K obs is an ob,
Obs constructed in different ways are in general distinct; A

representation of the formal system is obtained by assigning a

unique concrete object to each ob in such a way that distinct
objects are assigned to distinct obs, Now it is possible to
describe the properties of a syntactical or a formal system in

a metalanguage which contains names for the objects of each

system, verbs for the predicates, and so on, The unavoidable
fact is, of course, that to communicate anything at all about

the formal system, we must have a symbolic representation for

it, and at first sight it then becomes difficult to distinguish

it from a syntactical system, The distinction becomes clearer

when one observes that a formal system is invariant with respect

to changes in representation, so that, for example, no distinc-

tion is made between the propositional calculus in prefix or in-

fix notation, or between an arithmetic formula as specified by

a FORTRAN statement or as stored in a list structure in a machine,
As a matter of taste, the idea of a formal system is pree-

ferred here, and it affects the way Genie is constructed and

described, As Curry(l) points out, syntactical systems can be

reduced to formal ones by formalizing the operation of concatena-

tion, so nothing is thereby lost and the structure of Genie is
particularly designed for investigating more sophisticated
languages than are currently allowed, It seems to the writer
that from the practical point of view the present scheme has

advantages over other systems in that the next step towards
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sophistication is made at less cost,

. Our objectives have thus been to produce a machine system

whose external behavior is such that is recognizes certain de=-
scriptions of 'source languages' in a given canonical form and
proceeds to read sequences of symbols which represant descriptions -
of computational procedures and, where possible, to ‘'execute'

such procedures in a wide sense, Internally, the system is "as

general and homogeneous as possible, with anaorganic:efruéture

which permits continual growth and modification of the set of
languages which is in use, It will become apparent: that Genie

differs from comparable systems in a number of ways, but these
can,mostly,bg tracedA§avn to a single significant change, viz,

the elimination of the separate ideas of ‘'assembly', ‘compiling’,
'execution' (in the old sense), 'interpretation' ‘and so on, by .

means of a general principle of evaluation which includes all -

these processes and allows them to be controlled automatically
by the machine.,  This gives to Genie a more dynamic character
and leads to some changes in the attitude«of the coder to the .=
machine which may loosely be described as putting the two in a
'‘conversational' frame of mind, To be sure, the old concepts
are recoverable, but it is felt that this study may lead to ad-
vances in the .use of parallel machines, .

In the next section, some remarks are made on explicit :+
and implicit sequencing of processes, and the behavior of
machines in this respect is chatracterized, ©Such an analysis -
is in fact independent of the descriptive form chosen, &ndvthe

‘definition of a class of such forms 'is delayed until Section 3,

It is then necessary to determine the classes of objects which

can be represented by the Genie languages, and the types of opera-
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tions which can take place between them, These are chosen
lafgely with our current intevests in mind although in principle
any other collection of objects and operations could‘be chosen,
It is then éoséible (Section 4) to describe the evaluation pfo-
cess, which is common to all languages, In Section 5, the class
of machines which we are interested in is introduced with parti=
cular reference to the Rice Institute Computer and thé realiza=-

tion chosen for it,

2. Sequencing and Procedures

It is an accepted hypothesis that all effective procedures
can be represented on one hand by recursive functions; or on.the
other by descriptions of Turing machines; while we wish to pre=-
serve a link with theoretical concepts, it is clear that neither
of these extreme representations is suitable for practical or
'natufal' descriptions of a procedure; The choice of descrip=-
tion is a subjective matter, and the first observation concern-
ing our current aims is that within Genie the coder can choose
from a spectruﬁ of forms running (almost) from one extreme to
the other,

As the element of a procedure description, we shall take

*
a definition and write it for the time being as:

®
In this Section, all symbols are part of the descriptive

metalanguage, other than those appearing in expressions given
as 'examples', 1In this, Greek and script Roman letters are
employed, together with primes and subscripts which extend the
class of distinct symbols, and certain special signs are intro-

duced, The numerals have their usual interpretation as integers,

b-5




o

a = A~ \ (2 1)

where O stands for the object defined by the definitional schema

Kj. We shall assume it is intuitively understood that (2.1)
describes the way in which « isvto be constructed frcm oéher’ob;
jecfs and operations between'tﬁem. If the other objects ate
B, B', ﬁ",...,a( ), constituting a set /g, we can demonstrate
this by writing. ’
a=0(f4) (2.2)
For this definition to be effective, it is necessary that
the B's be known; in other words, they also must be given de-
finitions which are auxiliary to (2.2). Clearly a notion of se-
guencxn is introduced at this point' the g's must be defihedb'

before a can be defined, and it is customary to exhibit this

sequencing in two ways: (1) by a linear” (spatial or temporal)

%* - ‘ ; E
Disregarding, for the time being, such two-dimensional

presentations’as £low charts and 'displayed' formulae on the grounds
that these have to be linearized in the first place to get them

into the machine,

sequéncing of definitions which directs the order in which they
are to be obeyed; (2) by the implicit sequencing.of~rgcur81ve
function definition, which we shall discuss first,

Let us assume for the moment that the technique of formula
evaluation to be described in Section 4 is understood.’ Thehfbf
an equation we understand a. definition in which dff(see 2.2) is
a formula in the set of variables 1éi(say). For practical pur-

poses it is not possible to go to the lengths of allowing defini-
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tions which are general recursive, but nothing is lost by this
since all the functions of any use that we know of are primi-
tive recursive, and in any case general recursive functions
can be described by explicit sequencing methods, We shall there-
fore give as standard means of expression four definition sche~
mata which are primitive recursive or directly reducible to pri-
mitive recursive forms(E?
Schema I. [Definition by equation]

“as JB)

where @ stands for anm object, ég a set of objects, and C? for

%
a formula in one of the admissible languages of Genie,

[ . . .
In the sense to be dascribed in Section 3.

Schema II. [Definition by composition]

ey = ((By), oy =T (B e, =T (B

where for i = 1,2,.,..,r1, ai'sfands for an object, Agi a set of

a formula in one of the admissible languages of

objects, é?i
Genie and where no sequeﬁce of positive integers KI,KQ,...,KP,
QSr exists such thaf: ,

| A(1) K, ¢ K, for i 3

(2) @ « ﬁSK

for i = 1,2,...,?-1 »
i+l i . o

(3) K, = Ky
(This condition is imposed to prevent circularity of defi-

nition). Schema 11, the first equation is the principal equa-

tion, ay is the principal variable, the remaining equations are

auxiliary equations defining auxiliary variables,

For the next two schemata, the conventional notation of sub-
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scripting is introduced with the implication that the subscripted

object belongs to a finite ordered set of objects, the ordering

being controlled by applying the arithmetic successor relation
to the subscript,

Schema I1I. [Preceding values recursion on one index] -
Q = Z{(Xp),%i =ﬁ(é’ki-l,?\i-a‘,ooo,)\i_r),?\o =67(,°( 56),
M= B = T (B

where xo is the initial member of the set of objects A and Zf,

é%’cyo""’d?r-l are admissible formulae, Here, i and A are
auxiliary variables 6f the definition, r is a fixed integer
which in any instance of Séhema III gives the order of the re-
currence relation, and p stands for a positive integer which
may be determined either by an aukiliary equation or by a pre=~

vious definition,

Schema 1V. [Conditional definition]

"y = é‘l 1f é’l,ﬁe if @2,...,67'u if (Zu,c:?éo"
where C71,...,Cﬁ2 are admissible formulae, Czl,...,f?u are pre-
dicates, and "if" is a speciai opefation.

This completes the set of implicitly sequenced definitions,
It is clear that the precise form is unimportant, and in fact
the initial Genie schemata are slightly more complicated than
these, It is our experience that a lot of fluency is to be gained
by extending the forms of definition beyond simple equations in
this way, and that this leads to more efficient machine codes
than would be obtained by the same amount of effort expended on
a less concise system, What is important in a system of this

sort is that the ability of the machine to sort out implicitly '

sequenced definitions should be roughly comparable with that -
| 4-8



of the machine user, and it is at this point that the practi-
cal and formal approaches to the description of calculations be-
gin to diverge, There would be no formal difficulty, for example,
in allowing any equation appearing in one of the above schemata
to be replaced by instances of another (or the same) schema:

the practical difficulties arise when consideration is given to
the problem of identifier control which is discussed in the next
paragraph and in trying to explain these to a potential coder.

It must always be assumed that the coder is aiming at things
other than linquistic elegance, and the less obtrusive the coding
rules are the more useful they are likely to be.

A more difficult concept to formalize is that of the iden-
tification of objects whose names appear in different defini-
tions, A simple solution, corresponding to current practice
in most compiling systems, is to establish a unique correspon-
dence between names and the objects which they identify, so that
a given name can stand only for one object, This is objection-
able on various grounds: firstly, in large problems, a genuine
shortage of names may develop; secondly, it does not distin-
guish easily between the ‘'essential' and 'inessential' ob=-
jects in a definition; thirdly, it does not provide for the
discrimination in meaning which is dependent on the context
in which a name appears; fourthly, it leads to crude genera-
lizations in describing the interaction of a machine with a set
of definitions. The rule (R1) for Symbol Table control which
follows is an attempt to improve on this situation,

Rule 1A (Symbol Table control for implicitly sequenced definitions)

In a given Definition Schema of one of Types I - IV, the identi-
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fiers of the auxiliary variables have meaning only within the

definitions in which they occur, and may not be referenced

- from outside that definition, 1If, in (2.2),-(2,denotes;the set
of auxiliary variables of the definition, then the set {ﬁg-6§2

is termed, when non-empty, the set of external variables of the -

]
definition. Given a group JJ of definitions, its Symbol Table

is obtained as the union of the sets of exfernal~variab1es, and
the set of principal variables, It is important to note that,
given any identifier appearing in the Symbol Table, it is either
defined or undefined in~Zj. In the event that the set of un-
defined identifiers is empty,.jy is said to be complete,

It is also evident from R1A that the addition of another
definition to-a set such as 17 will in general change the cate=~
gories into which its symbols fall: in order to prevent this

happening,~§£/may be 'closed’, and we shall denote this condi-

tion by writing it is brackets, e.,g. “{j!]". In this case, we
have:

Rule 1B (Symbol Table control for sets of definitions)

Given a closed set of definitions [1/], the identifiers of the
principal variables have no meaning outside Ll/]. Only the
undefined identifiers of ;L/cons;ituteAthe external variables
of [1/]-

A certain amount of non-trivial calculation may be contrdl;
ed by taking sets of definitions from Schemata I - IV, but when
all else fails it is natural that recourse should be made to
explicitly sequenced definitions, particularly where complicated

‘iterative procedures are involved, ' It is also natural that the

formalization of this idea should-bend towards the established '
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practice of writing programs for sequential machines, Conse-
quently we have:
Schema V, [Sequential definition]

I R - I T . A7 W TR Y U V- )
where the parentheses "éj...{ " enclose an ordered set of n de=-
finition schemata taken from.Types I - IV, and o stands for the

set of external variables determined by R1IC below. Associated

with a sequential definition is a Sequencing Rule (R2) which is

given after the discussion of functional forms which follows,

Rule 1C (Symbol Table control for sequential definitions)

The external variables of a sequential definition (sd) are de-
fined by reference to a list wﬁ of identifiers which is assumed
to be given immediately prior to examining the sd. Then only
those identifiers appearing in cg and in the sd constitute the
external variables, Within the sd, auxiliary variables may be

identified with members of tﬁ or with principal variables which

appear earlier (to the left of them) in the given sequence. No
'definition' appearing in the sd is regarded as such in the static
sense that we have assumed with regard to Schemata I - IV; for
this reason, sub-definitions which appear inside sequential de-

finitions will be termed commands,

Functional definitions

From the preceding rules and remarks associated with them,
it is possible to deduce the identifiers which are external to
any given definition, Let (2.2) be such a definition, and let
8/3 CLJ denote its external variable set, It will be seen in
Section L4 that (2.2) cannot be evaluated until values are as-
signed to each external variable, Then in the sense that the‘
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definiend is itself external to the definition schema which -
defines it, we can regard incomplete schemata as functions from
a class determined by one subset of the external variables (the
arguments) into a second class determined by a secmd subset
(the results), In Schemata I - IV we shall adopt the usual con=-
vention of listing the arguments in parentheses following the
definiend or result; in Schema V, both arguments and results
will be listed, followipg a new identifier which is used to
stand for the sd itself,
Example: = f(x) = a + bx, a = sin x, b = cos x
This constitutes an instance of Schema II in. functional form with
argument x and result f;- It is still incomplete, since it de=
pends also on the identifiers "sin" and “cos".
Example: - P(a,b,c,#s,#t) = {% = b2 - ac; x = xlla; ,
s = (=b + x)/a; t =A(—b-x)/a3

This constitutes an instance of Schema V in functional form .with
arguments a,b and ¢, and results s and t, It is complete apart
from the identifiers "2" and "1/2", Note the use of the sign
"#"' to identify .the results, "P" is the identifier for the sd,

The functional use of Schemata I - IV identifies the result

as a function letter which may be used in formulae as described:

in the next section, The functional use of Schema V identifies

the name of the sd as a procedure name which may be used in the

final basic schema:
Schema VI, ([Definition by procedure]
.I'(Ot,#ﬁ) .
where I' is a procedure name, and Q stands for the set of g:gumehts

and #p for the set of values,
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Any functional definition which contains no external names

other than the given parameters is said to be in library form,

If this is not the case, but the external identifiers all be-
long to a certain set of symbols ¢é; then the definition is in

library form with respect tog& . This corresponds closely with

current usage, We are now in a position to give R2, which takes
the point of view that all functional definitions are special
cases of sequential definitions, consisting of a (sequence of
one) single command,

Rule 2. (The General Sequencing Rule)

In order to contxol the use of function and procedure
names, the sequencing process is described in an inductive manner,
Basis: An ordered set of pairs <M,J> is to be constructed,
initially consisting of the single pair <0,0>,

Induction step: When it is necessary to evaluate a definition

I'y the number of pairs is increased by one by adding the pair

<I'y 1> to the set, Then the first definition of I' is executed,
After executing each definition, the second member of the 1last
pair is advanced by 1, and the corresponding new definition is
executed, This procedure is terminated by the special “return"
definition which causes the last pair to be removed from P before
the next definition is selected, 'The whole process terminates
when the 'zero' definition is encountered,

In current terminology, P is a slightly generalized 'path-
finder' 1list, and the last J at any point is the 'command counter’,
It is essential in programming practice, of course,‘that the
'command counter' be available to be used as a variable in com-

mands of the sd, and we shall assume this is the case. It is
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not usual for all of P to be arbitrarily accessible, only’thaﬁ
the ';as;! entry be known at any time, In giving examples, and
in .actual coding, we shall identify the command counter's value
symbolically at any point to which it is necessary to refer to
it.

To summarize the position, it will be recalled that in.
order to manipulate certain unspecified classes of objects, a

set of six descriptive forms or definitional schemata has been

specified, dependent upon further analysis of formulae which
will be given in the next section, Among the schemata are both
primitive recursive forms, and sequential definitions controlled
by an inductive sequencing rule which permits the use of func=-
tion and procedure names. Rules have also been given for the
identification or discrimination between objects appearing in
separate definitions by.means of the list of external va:igbles
(the Symbol Tabie);

It is now necessary to examine the permitted structure of

formulae,

3, Formula Syntax

The remarks.of the foregoing section have been made as far
as possible without presupposing the existence of any symbolic
representation, but of course this is essential for practical.
purposes, It is computer-oriented in some degree, since.
~ syntactic structures which require many 'scans' for effective
recognition have not been permitted, and what has been aimed
at is a maximum degree of flexibility with a single (left-to=-

right) formula scan,
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Consider a fixed and finite set of characters or marks
gl’jé""’§K forming an alphabet {({. 1In examples, we shall
use upper and lower case Roman letters, together with Arabic
numerals and certain arithmetic signs and parentheses as speci-
fic illustrations of members of 62. Unless otherwise specified,
the lower case Greek letters will be used as variables taking
values in the domain Cj. 'Script' Roman and upper case Greek
letters will be used in various ways which will be defined as
they are introduced, Finally, subscripts may be used on any
symbol to distinguish that one from others taking values in
tﬁe same domain, or in the manner already illustrated in re=-
currence equations, Schema III,.

By a string w2 mean a finite sequence of marks in 42. We
shall take it that the ideas of 'first' and 'last' members, of
predecessor and successor relationships, and of 'occurrence' of
one string within another are intuitively understood., We shall
use "A" to denote the null (empty) string, with no members, To
use strings in the representation of formulae, we shall asso-
ciate with each 5 in 52 three parameters: the type, Cﬂi(g),
the subtype, ( (5) and the rank ?71?). Where no ambiguity can
arise, we will use the abbreviation cgi for:ﬁZ(fi). The signi-

ficance of the parameters is implicit in the following rules,

Symbolic characters

Ifc5~= 1, then 5is symbolic., The symbolic characters are
used in the construction of names according to:

Definition 1

The occurrence of the string 7?: a1a2...ap in the string

ﬁ727 is a name if and only if the following conditions hold:
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(1) S(e) =1 |
(i1) If p. > 2,):32(%) =10r2 for j = 2,3,.0.,p

(iii) 1f p.> 2, 7L (a;) = ©
(iv) "2/(043) < ‘2/(ozj+1) for all 1< j < p
aorcd (p) = 1 ana ¥(p) <% (a))

oro’"(g) = 1and Z(B) = 1

orcF (B) $ 1 | |
AorF (7) =1 or 2 and ¥ (v)>

Y (a,)
orcf (7) 1 ox 2

To aid in understanding the above, we remark that name con=-

(v) Either B

(vi) Either y-

struction depends on whether a character, standing alone, is to
be taken as a name (sub-type 1), or whether it can be joined by
succeeding characters on the right, In the latter case, a

method of ranking determines the length of the name, i,e.,-

characters belonging to the same name must be of non-increas-
ing rank, reading from left to right across the string.

Numeric characters

1f c? = 2, then Xis numeric. The numeric characters are
used in the construction of numerals according to:

Definition 2

The occurrence of the string 68?; alaa..;ap in the string
5627 is a numeral if, and only if, the following conditions hold:
(1) F(a,) =2 for i = L,2,...,p
(1i) Either p 2 A orc/ (B) = 1 and X (B) = 1 ]
ong(ﬁ) = 1 and 7(5) <,y(a1)
or X (B) $ 1
(1i1)A () 4 2 andF (7) 4 2
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In the Genie system, numerals are representations either of
natural integers or of the limited range of fractional quantities
handled by a computer, Unlike the names, numerals are unique
representatives, whereas the names, by means of definitions,
can be made to stand for any one of a specified set of quantities,
If the specified set has just one member, we can talk of the
'constant name' or just 'constant'; otherwise, a 'variable
name' or 'variable',

Definitions 1 and 2 permit a given string to be scanned
once to recognize in a uniqﬁe way the names and numerals Qccur-
ring in it, A simple procedure for doing this can be given.

Let us assume, for practical purposes, that there exist pre=
assigned upper limits on the lengths of strings which can be dis-
tinguished from one another, i,e,, if two numerals are identi-
cal in their first v characters, then they are regarded as stand-
ing for the same number no matter how many additional characters
each may contain, and similarly for names with a constant length
p or more, It follows that the totality of distinct numerals

is finite, though possibly large, and similarly for names, Let
7?denote the set of names, Let C:"‘?denote the set of numbers,

Now construct the alphabet CZ* from CZ by removing all
characters of type 1 or 2 and replacing them by a set of symbo-
lic characters of sub-type 1 in (1l-1) correspondence with mem-
bers of 7?, and by a set of numeric characters in (1l-1) corre-
spondence with members ofCEE. In what follows we shall con-
sider strings formed from LCZ*.

Qperations

If Cﬂ = 3, then L is an operation, The operation characters

h-17



are further classified by sub-type:

(i) 1f U= 0, then 5 is a punctuation operation.

(ii) 1If A = 1, then % is a unary operation,

(iii) 1f 7{ = 2, then ¥ is a binary operation,

(iv) 1f U = and if the preceding character
is type 1 or 2 or right parenthetic
(see below), then % is a binary
operation, Otherwise it is unary,

Parenthetic characters

If(jz = 4, z;:i.s a parenthetic character, Ac each occure-
rence, it is either left or Eiﬁhﬁ’ but this may depend on the
context in which it appears. It is therfore necessary to de;
scribe parentheses in terms of the complete processing of a given
atring, say Gﬁia 0102...0 A. To do this, we shall construct

van auxiliary string of 'pnmatched' left parentheses, by the

following rules:

(1) m'@ = A initially

(2) If Qéiz A, proceed to step (5) Otherwise, let ¢
be thé first character ofqéﬁ. 'Ifcﬁl(a) $ 4,
go to step (4).
(3) 1£ Z{(c) = 0, ¢ is l.p. (left parenthetic) and it is
- added to 59: 1f (o) = 1, o is r.p. (right

1

parenthetic); 1let g be the last character added to & . Then if
?V}g) = (c), o is 'accepted', and g is removed ftom<é&; other-
wise an ‘'alarm' condition is set up and ¢ is 'rejected', 1If

1
N

Z((c) =2, 0 i8 said to be conditionally symmetric, i.,e.,, if

2/23) = 7720) then ¢ is r.p. and action is taken as for /{(¢) = 1;

otherwise, g is taken to be 1l.p. as for (o) = O. Finally, if

I{(c) = 3, o is conditionally asymmetric., 1In this case two ranks

ﬁyfand 2y1 are associated with ¢g. Then if 27a(0)~= ?/(g),

o is r,p., and otherwise, it is 1l,p.
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(4) 0 is removed from the beginning of«jf, and step (2) is

carried out,
(5) At this point,lthe process terminates. tf’is said to

be well-formed with respect to parentheses if both (a) no

character in<¢g has been 'rejected' in step (3) and (b)(é9= A
- finally, i.e., no unmatched parentheses remain, We define the

parenthetic depth of a character ¢ in Ggito be the number of -

elements in Z& at the time when ¢ is examined in step (2).

As an illustration of the different types of parentheses
which the above definitions are aimed to allow, we can give, from
the formula language:

'Normal' type r@Z; a + B(1-K)(1+K)

Symmetric :¢£~; a+ |B - (]x-y])]
Asymmetric : 2 a g js4 +b+i, Ke 4 2 4
Formulae

There is a duality in the use of operations and parentheses
in formal expressions; the device of 'ranking' binary opera-
tions in order to avoid an excessive use of parentheses is
well known, and we have paralleled this by admitting 'implied®

operations to be associated with parentheses., The unifying

figure is ;hat of the rank of operation or parenthesis, (which
is distinct from the rank of symboléq characters used -in con-
structing the names of él). Thus, a character " ¥" for which
F( Y)y=4, Y( +) =3 and'?/i +) = 5 may be replaced, when it
is left parenthetic, by the pair of characters " (" where T is
an operation of rank 5, This 1s,precise;y the treatment given
to snb- and superscripting parentheses illustrated for the for-

mula language above, 1In general, a left parenthetic character
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may imply the existence of any operation of specified rank,

either binary or unary, which is to precede it,

- Consider the following three procedures: .
Pl: the application of Definitions 1 and 2 to a given string _
in {{_to obtain a string in A *, -
P2: the application of the parenthetic scan to determine
the sub-type of each parenthetic character, and the substitution
of "T(" for each left parenthetic character ¢ for which
iV}c) = %/kT) and T is an operation, and the substitution of "y
for each right parenthetic character;
P3: the process of inserting a specified 'implied' binary
operation between pairs of characters which occur as "3 5'",
(", ")V or “)(", where £ and 5' are names or numerals,
Let Qg*‘be the string formed from zé?by the application of

Pl, P2 and P3. Then we have:

Definition 3

zﬁ * is a well-formed-formula (w.f,£f,) if it is well formed

with respect to parentheses and can be constructed by the fol-
lowing inductive proéess:
(i) Ifsﬁf* is a name or numeral, it is a w.f.f.,
(ii) 1f Z(* has one of the forms "(gi?)", "alglg",
ugl;aaé;;" where ¢§a and z;; are w.f.f;‘aﬁd}j;(ai) = 3 and
C(‘_(ozi) =1, then Hu is a w.f;f. :
The above definitions and rules determine many language
forms of interest, We remark that, in the absence of parentheses, -
a w;f.f; consists of a string of names, each possibly 'inflect-
ed' by unary operations, connected together by binary operations,

Replacing any name in the string by a w.f,£f, gives a new w,f,£f, .
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It will be convenient to use a special notation for a
string consfituting a w.f.£f, by the above definition, Let
stand for either a name or a number or a w.f.f, enclosed by«g
parentheses, possibly- preceded by a number of unary operations,

Evidently ag; can then be written in the form:

4 < . -
é{*_:_ Cw o w o, W <
< 11722 n-1%“n

i
if 7yiwi) = r; (the rank of the operation), there is evidently

where w, stands for a binary operation, i = 1,2,,..,n=1, Now
at least one operation W % of the lowest rank r¥* and for reasons
which will be apparent in the next section, we will write:

Zg* 5’;ﬁ1(¢2’*32016w*ﬂp .
where{j%i, i=1,2,.0.,pP, stands for a w,f.f, A w,.f.f, such as
this is said to be of rank r¥, It will also be abbreviated to:

K * =yt 7

Further devices

A practical problem which is worth mentioning here is that
of stretching a limited machine alphabet to cover frequently
occurring situations, The analysis of this section has so far
been concerned with the slightly idealized alphabet Cz;and its
abstraction (ﬂ %, In point of fact we have to produce Q.-,charac-
ters from some mechanical set = (hl,hz""’ht); for example,
we want to include in <€ a mark such as "£" and will achieve
it by the marks in’,z/“=", 'backspace', "/", assuming these
exist, Also, it is undersirable to complicate CZ—with case
control marks and the 1like and these can be disposed of at a
stage prior to the main reduction, The following two devices

may be used by the coder for simple strihg manipulation,
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(1) Character Expansion, Pk

Let h be a character in »é/but not in (A, Then it 1; pos-
sible to 'expand' h into an occurrence of a given string "apy"
say, the characters of which may or may not all be in_C?. If
not, the process continues until a string in CZQis found,

(2) string Contraction, P5

Let A be a string, say h1h2h3. Then it is possible to cone
tract all occurrences of A into occurfences of a single character
8 which may be in Jg/or in 52. If in Jg’but not in(ﬁZ, 5 may
be expanded under P4 to a new string;

%* * * * % & * % *® % %

To summarize this section, we have described a symbolic
representation of formulae based on an alphabet Jﬂi in which
strings are reduced first by two elementary string transforma-
tions (P4 and P5) to strings in an alphabetC;?, from which
they are further reduced to formulae in the alphabet (/* by
the procedures Pl, P2 and P3 which in turn make reference to the
parametric valuesCﬂr,Zf,Z/;Ef‘ assigned to elements of 52.

This whole process is determined by a set of values contained

in a Character Table which is referred to as each formula is

processed, This gives the following information:

(1) The alphabets A and v

(2) Expansion rules for elements of Qz/not in

(3) String contractions in QZ/

(4) Parameter values for all characters in (¢

(5) The 'limiting lengths' for names (p) and numerals (v)

(6) The radix of number representation and rule for repre-
senting numerals and names,
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(7),The designated 'implied' binary operation

The main point of this technique is to allow rapid switches
from one symbolism to anothgr,in.reaﬂing sets of formulae, and
to allow experimentation by the coder in obtaining the presenta-
tion he wants, 1In the Genie system, formula scans are made by
a routine célled TSCAN, which has various facilities for detect-
ing syntactic errors; It is evident that a by-product of TSCAN
is the list of identifiers required by the processors of the pre-
vious section, Beyond this, further analysis is dependent on
the meaning of names which are used, i.e;, the classes of ob-

jects for which they stand,

b, Semantics

In a formal system, names and formulas must be made .to
'*stand for' something, for only then can they be used as the
means of displaying relationships between objects of interest,
and revealing new relationships by means of formal manipulation,
The classical way of providing an interpretation is to give a

model or representation for the logical system on hand., By

this device, the consistency of the system can be demonstrated,
or at least made to depend on the consistency of another system,
and an interpretation is provided, It is the second achieve=
ment which interests us here, and in this section we shall de-
monstrate the methods by which a representation is used in eva-
luation,

Viewing the immediate applications we have in mind for
Genie, it can be stated that the classes of objects falling

under investigation will include: characters, names, numbers,
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formulae, and definitions. Moreover, for various reasons, we

shall want to manipulate these not only one at a time, but also

in linear (vector) and rectangular (matrix) arrays., They may
be represented by names or numbers, as appropriate, However,
a name may only represent one object other than itself; Thus,
in the equation:

€ =kt + 1
the names ®™G" and "t" stand (presumably) for numbers, but in
listing the quantities on which G is dependent, "t" would stand
for itself,

The problem of deciding what a name does stand for is more
complicated in practice than theory, and the three methods which
are available are as follows:

(1) By declaration: as in "K is a vector" or "K is a

definition";

- (2) By assumption: as in the equation above, where we as-
sume G and t are numerical objects;

(3) By deduction: for example, we deduce from an equation
such as:

y = (sin g, cos g, o) +»(x1,x2,x3)
that y is itself a vector.

Now method (1) is infallible, but somewhat clumsy and we
should like to avoid it where either of the other methods is
sufficient, Method (2) depends upon an underlying assumbtion‘
which is made whenever a formula is read, and we shall associate -
with each Character Table a particular class of objects which

names will be assumed to represent unless otherwise determined

by declaration or deduction, Various methods of selecting the .
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appropriate Character Table are possible, mostly dependent on

a 'key' character which immediately procedes the formula; Thus,
in the case of the algebraic formula lenguage, the key charace
ter is "=" and all hames are asssmed to seend for numbers, In
the case'of algebraic prograﬁ‘descfiptioes, the key character

is ".=" and all names are assumed to stand for definitioﬁs.
Finally, in order to use method (3) it is necessary to know which
binary and unary operations are permltted on which classes of
objects, and what classes the resultant objects belong to. This

information is gi#en in the Reduction Table, given below,

First, we will summarize the evaluation-process appiied to
formulae.' It is evident from the inductive definition of a
w.,f.f., that in ordet to have an evaluation process for a formula,
it is sufficient that evaluation processes be given just for
the binary operations applied to two objects, or for the unary
operations applied to one object, provided unambiguous rules
of precedence‘are given, 4 | |

Let a source language Gégbe determined by the group
2}?JJ;,C! g{f respectively the sets of names, numerals, unary
and binary operations lncx» Then we have:

Definition 4

An evaluation model .ZVof O( consists of a set of objects

ﬁgi and two reduction rules KU ) and JﬁﬂB), with the follow-

ing properties:

(i) To each name a in 7Z corresponds a subsetﬁgz in ¢(;

*
and to each numeral y in szcorresponds a unique v' in £§£<5GJ:

L3 '
A prime will be used to denote elements in 7%(00rrespendiﬁg

7 : . .
to particular elements'of«ﬁ(. This will also be written, e.g.,
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"yley", and it is termed a 'value assignment',

(The subset of ﬁumbers,)

(ii) To each ﬁnary or binary operation w in cx?borresponds
a unique unary or binary operation ' in 7Rﬁo£ the same rank;
Parentheses in & fcorrespond to parentheses in 7%.

(iii) A w.f;f. inty? reduces to w.f £, in JX if each name
in the w.f.£f, is feplaced by some.a’ggga, each numeral v is re-
placed by its corresponding v', and operations and parentheses
in a( are carried over to the corresponding operations and
parentheses in 7%
| (iv) 1If @' and B' are objects of<ﬁf and 54’ respective=~
ly, then for each binary operation w' there exists a rule
;?i‘n ?r,a',ﬁ',y'), r being the rank of w', by which the formulé
"a'@‘g'" may be reduced to an element 9' in some subset xé; of
A

(v) 1f o' is an element oflgéé and 5(f'corresponds to a
unary operation in Zﬁ of rank t, then there exists a rule

;ﬁi(u)(t a',p') which reduces the exgression "Z{ 'a'" to an ele-
ment 5 of 9ﬁf

Potentially, there may be infinitely many rulesnji(3>

&ﬂi(v) since there may be infinitely many elements in gg; and
xéf (say). Even a large number would be awkward to handle, and
it is avoided in practice by ana1y81ng the elements of Séfand
expressing them as compound elements from another model 7%'
of 7%; with only a small numﬁer of rules, ‘In this way, the
" general rules of decimal arithmetic addition, for‘example, can
be built up from a simple rule of 100 elements, éxbressed in

a 10 X 10 addition table., 1It is often convenient to write the
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result of applyingﬁje(B)eas$

ot __1%(3)(&:,'6) )

s
and similarly, the result of applyingéﬁiﬂu) is:

B! aﬁﬁ‘g)(@')

(s.1)

(k.2)

In this case,ijgfg)andJﬁi(g) are termed valuation operators,

Let the disjoint subclasses of different types of ocbject in

be ¢4;,qég, and z%%. Then to specify the properties of valua=-

tion operators completely, they can be written in the form of

tables, one for each operation of each rank,

Right Operand Sub-Class

Left
Operand
Sub~Class

S

s

=1

\ﬁfli)(q',af):%aa

Jt(/g)(a' B! ):}\055

fjgg)(a"y')‘kay

(B)rar
K e (8 a'):xﬁa

AB)ear ary.
K (BB )i Ngg

\}ég)(5'37')3x57

B
A (Bt o1y, “(B) ot a1y, 2 (B)rv vy,
TABLE 1. Reduction table for a binary operation of

rank r

In Table 1, the table entry in row Qé%, column QX;, for

example, issﬁz(z)(ﬁ',y'), together with the c;ass to which the

reduced formula belongs, Gg

Mgy

Table 2 is a reduction table
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for a unary operation of rank t, With the aid of these rules
and the substitution rule which will now be given, a value in

’7nof any w,f.£f, in a<7may be obtained,

t Valuation

?zg ujf/(g)(a')=ua
5 J((,‘[?(ﬁ'):ua

J, J((Q)U'):uy

TABLE 2. Reduction table for

a unary operation of rank t

Rule 3 (The Substitution Rule and Ranking conditions in )

(a) Let (# be a w.£.£. in / consisting of one or more

unary operations followed by the element c"on5f. Let Ué

i

be the highest ranking operation in Cﬁ, with rank t, Let

@(ﬁ?) be a w.,f,£f, in which C? occurs with no immediately pre=-

ceding unary operations, Then the first substitution can be

written:

At = \{(:)(Ut)

!
i

F(F)

where g%’is obtained from C% by replacing ¢g' by /O' and delet-

R3A: F (),

ing all occurrences of Ué from the string preceding o',
(b) Let é% be a w.f.£f, in 77 consisting of an element o'
of ¢¥ in parentheses., Then the second substitution rule can .

be written:
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R3B: (a¢')
ol
(c¢) Let $(F) be a wof.£. in /M in which the highest rank=
ing binary operation at zero parenthetic level is w, of rank r,
and suppose that this occurs in a w,f.f, Cﬁ of rank r and maxi-
mum length p > 2,§i.e. Cﬁ ;_c'ﬂncéwf..wu;, where Ui’i = 1,2,.00,P
are elements ofCZ&. Then the third substitution rule can be

written in either of the forms: o
R3Ca: S(F)op ! B
SRV SHSRIS

S (H)

whéregg; is given by: _
s ] ]
gﬁ /‘*1,2‘00’30 ..wd'p

Alternatively:

R3Cb: LF)s ! o B gt g
3 q}((&)’ p p-1,p ‘K r (Gp_lmp)
(A
where is given by:
- ! ' N '
-l,[- ledgo L) .wdp_a }{.Jp-l’p. .

R3C mérely states the usual arithmetic rule of‘precedence
which is to be applied when parentheses are omitted, and the
R3A extends it to cover unary operations, 1In addition, a choice
is offered in the binary case, which may or may not be signifi-
cant, of evaluating formulae in a 'left-to-right' (R3Ca) or
'right-to-left' (R3Cb) order, 1In Genie, the code may choose
either of these, or he may leave it to form;” It should also be
noted that we shall assume that R3C also caters for instances
where functionfn;mes appear in formulae, and that the reduction
table has’provision for appropriate action in such cases. At
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this level, function evaluation in arithmetic férmhiaé, for
example, can be regarded just as an elaborate form of multipli-
cation,

An example of eQaluation

'To illustrate these points we shall take a simple arithme=
tic languageaﬂeo containing the nameé g, Yp", ¥e" and “d",
and the binéry operations "4+" and "X"l of rank 1 and 2 respective=-
ly. As a model, 7”, we take a single class Cf'oﬁjécts (numbérs)
‘gf = {:0',1',2';?, with just 3 elements, Then the reduction
tables for 7ﬁ'and its two operations are final (since no sepa-
rate sub-class of Qﬁfexists), aﬁd the valuation operators‘ﬂfgn)
and.fﬁ(g) are given in Table 3a, 3b, Let(j% be thea&?o formula
"a + b X ¢ 4+ d", and let it be required to determine the value
of C? for the value assignments '1'wa', '2'sb', '1'sc', and

'O0'»d' in m. Thus,

Jﬁ(ﬁ) o' 1t 2! ;K<g) or 1 2!
o! o' 1t 2t C' o' 0 o!
1 it 2! o' 1 0’ 1 2!
2' j2' o L 2" o' 2' 1
TABLE 3a : TABLE 3b
we have:

cF

a+ b X c+ din a@;

whence: F 21t 4t 2t X' 1" 4" 0 in )
hence: ' 1t 4t 2t 4+v 0! ‘byq!ba*and jﬁ(g)(a',l')
and o o' +' 0! ' bngéa and jtff)(l',a')
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[ 1

and 7

which completes the evaluation of C? in77 . ‘Readers familiar

i

o' . ... by 2a and‘je(g)(o’,o')

with formal calculation will recall more elegant developments
of this sort,

It can be deduced quite simply from the above definitions
that if C? is a w.f., f. of rank r in.cx?with elementary sub=-terms,
then its corresponding W, £.,£, in }7ann be reduced to a recur-

sive expression involving the evaluation operatorvfi(g). Thus:
é:: al(}) 20.0

. i :mv ' w'e!
whence: Cf‘ g Q aa... rap

whence: gt = KENK B Bay,ap), .. e )l

A slightly different form follows by applying R3Ch rather than

r® P

R3Ca. This form is important, and may be conceived as the re-

sult of applying a genera evaluatlon operator uffto the form(jW

K(F) =J€(J’pa'i) K‘B’aé“”(...x(“’(al,a )serdal_dat)

With this concept, it is possible to express in operational form

the result of applying the evaluation operator to any w,f.f. inm
of rank r: o

X = KGRy - KUK 3(UE ), X(E,,..),
| | %<5p V) XE ).

—r—

where tﬁi stands for a sub-w,f.f, of

A second evaluation example

To illustrate the generality of the evaluation technique
we shall take the simple language d?o and evaluate it on a new
model 7?,.in which d{yconsists of two sub-classes, ié;, the
class of '"simple! objects which are values of objects in 0@;,
and'zgg which is the class consisting of all ordered linear
sequences of pairs of objects <K,L>, where5L<f§é; and K 1is a
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: ' 5 ; :
member bf the set '{bLA, ADD, MPY, STOmf'Which we will term

orders. The reduction rules for "X'" are given in Table k4, and

the rules for "+'" are similar,

Rank " <2éz Cé
2 ) : _

a

?éfa :25(2)(a,a);b‘ ;xng)(a,b);b

<Z?b uﬁf(g)(b:a)sb ;Xf(g)(b;b);b

TABLE 4. Reduction table for X' in N

For all i, let‘a'ifzﬁﬁ; and b' ‘fﬁg Then the evaluation

i b
operators can be defined by the following procedures:
;%(f(g)(ai;aé)'= (<CLA,ai>, <MPY,aé>)

J%f(g)(ai, 1) = (b],<pY,al>)
-M}Qf(g)(bi’ai) = (bi,<MPY,ai>)

K Bo1,01)

4
where té is a member ofizgé not corresponding to any element in

(bi;<sro,ta>,bé,<ury,t3>)

271 and d is the parenthetic depth of the operation sign in
"bi X'.bé ",
The rules for "+'" are similar, with "MPY" replaced by "ADD"
throughout., Now consider the formula 2 a+bXc+ din
C%?o. Its reduction under the value-assignment "a'=a', "b'+b",
"c'+c" and "d'+d" is as follows:

L
Cjﬁ =a+bXcas+d
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whence: é?E; at 4! b X' of 4! a4

hence: : : a' +' (<CLA,b'>,<MPY,c'>) +' 4!

and ' (<CLA,b'>,<MPY,c'>,<ADD,a'>) +' d°'
and finally: Cﬁ?'; (<CLA,b'>,<MPY,c'>,<ADD,a'>,<ADD,d'>)

which completes the evaluation of Cﬁ'in 77. As another example,

take:
/ -
Cﬁ =aXb+cXd
whence: 8% 5 a' X' b' ' ' X' 4t
hence: (<crA,a!>,<MPY,b'>) +' (<CLA,c'>,<MPY,d'>):
by a double application of cl;a and ;ﬁfg)(ai,aé).
and : F = (<CLA,a'>,<MPY,b'>,<STo,ti>,

<CLA,c'>,<MPY;d'>,<ADD,ti>)
which completes the evaluation of ¥ 1in 77.

From the foregoing two simple examples, it is hoped the
reader will infer the general structure of evaluation processes
in Genie,

Another example of the type of formula which can be evalu-

ated '1s provided by the predicates introduced in Section 2 'in

the definition of Schema IV. By this we understand a formula
constructed from elementary terms with values 0 (false) and 1
‘(true), and the binary connectives "or" and "and" and the unary
operation "not" of the propositional calculus, It is usual to
assume that the rank of "and" exceeds that of "or", 1In ‘this
case an evaluation procedure is exactly:equivalent‘to familiar
logical device of evaluation by truth table,

Evidentiy”many‘of the‘schailéd"élgebraié‘éoding languages'
in present use involve several of the 'languéges' which we have

been categorizing. Almost all of them permit the use of some
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form of algebraic expression, and a 'Boolean' expression. 1In

addition, it can easily be seen that the 'meta-language' used

in Section 2 to deseribe definitional schemata and their proper-
ties can itself be put into a form which satisfies the require- ‘
ments of Sections 3%-and 4, This leads to a 'control language?!
which is extremely useful in the manipulation of other expres-
sions, For example, a sequential definition may be written

in the form:

Example: P .= A > B+ C > Return

where "P" is the name of the sequence, and "A", "B", "C" stand
for commands, The special equality sign ",=" is used to dis=-
tinguish the formula which follows as belonging to the control
langﬁage rather than the formula language; "-»" is a 'sequencing'

operation,

Hence, in practice, we have to contend with a mixture of .

language conventions, and to have the ability to switch rapidly
from one set to another, This {s & familiar enough situation

in reading asmathematical text, where the mingling of English
phrases and formal expressions generally causes no confusion:

if there is ' a chance of this happening, the writer would use
constructions such as 'the formula ...;;' and 'the equation,...'.
Much the same thing as this is done in Genie, i.e, the language
in which a formula is to be given is indicated by a special

*
sign which precedes it, Often, as indicated above, a particular

* o v -
These special signs have universal significance, i.e, are

common to all the admissible Genie languages.

form of 'equals' sign is sufficient; at other times, as in
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using predicates, the special sign "“if" serves the same purpose,
In terms of computing, a change from one language to another

can be made by the trivial device of changing one word which
controls an indirect addressing sequence,

One of the immediate applications of Genie is to systems
whose objects are to be 'symbols', 'formulae' and bquations',
i.e., linguistic elements, 1In such cases a familiar situation
arises in that formulae‘may contain not the names of objects
but concrete examples.of thé*objects theméélves, which must be
displayed between quotation marks, as in the following example
from a hypothetical symbol manipulating language:

Exanple: ~ T = A then "4" then either "1" or “X"
Theoretically, the numbers appearing in an arithmetic formula
could be treated in the same way, and this is the case internal-
~ly - to Genie, but their importance merits a special external
treatment,

The nec%ssitywbr the devices of 'embedding' one language
within another and 'displaying' symbolic objects is purely
practical, and may be removed by the use of additional names,

To summarize the results of this section, we have required
that a Reduction Table be associated with each formal system
which effectively determines a model in which its formulae may
be evaluated. Each binary operation may be declared to be
associative or not, and if not it may be specified to have left-
to-right or right-to-left precedence, As a control device,
each formula must be preceded by an operator which effectively
sélects the Character Table and Reduction Table for‘the en-

suing formula, which is terminated by some punctuation opera-
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tion at parenthetic level zero., It is quite possible that

elements in the chosen model may be the representation of some

formal system which in turn may be subject to evaluation, so
that we conceive of evaiuation as a cascading process which con=
tinues until no further reduction can be made., The process

of evaluation is initiated by an application of the Execution

Rule R4 which is described in the next section,

5, Machine Realization

The class of machines we are concérned with is difficult
to describe in an abstract fashion, To be sure, they are all
finite automata in a strict sense, But they are also organized
in a way dictated by history, economy and usage, and it would
be an elaborate process to describe such organization in

general terms. OQur purpose in using the idea of a formal system .

in giving definitions was to extend the classes of objects
which could be defined without unduly extending the mechanism of
value assignment, When our interest turns to enlarging the
class of machines on which valuations can be made, then the
task of generalization will be faced, For the sake of pre-
sent simplicity, however, we shall consider just that narrow
class of machines into which presentday sequential computers
fall,

In short, a machine contains a binary, addressable storage
unit S containing W words of b bits each, together with a fur- -
ther n bits of unaddressable storage T. Also, there exists a

finite set of ]ﬁ command operators Kl’Kz"“’Km such that, for

any assignment of bits to §, T, which we can write <$',T'>,
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there exists a rule:
<S",T"< = Kt(<S‘,T'>), t = 1,2,...,m
which determines uniquely a new assignment <S",T">,

We shall assume the reader is familiar with the characteris-
tics of stored program machines, with the techniques of micro=-
coding, interpretive coding, and with specific examples of
single and multiple address order codes, 1In particular, it
should be noted that if a machine contains a program P in p of
its storage cells, then it becomes equivalent to a néw machine
with W1 = W~p storage cells, and a set of command operators
KI’KE""Km’P' For, given a machine configuration <S8',T'>, it
is possible to determine uniquely the configuration <8",T"> re-
sulting from the application of p.

Implicit in the design of the machine is a sequencing rule,
which determines, for any state <S',T'>, the command operator
Kt which is next to be applied, It does so by observing a par=-

ticular group of cells in T (the control counter) which desig-

nate that word in S which contains the code "t" of Kt' The or-
der code is such that only a small subset of S, not more than
4 or 5 words at most, need be considered in the application of
a given K. . In this subset, one or more words may be always
contained, by implication (the 'accumulator', ‘'quotient' re=
gisters, etc,), and ‘the others explicitly stated by the command
code t, For this reason it is simpler to regard the set {jK€3
as the product of the sets of order codes {013 and addresses

7~ o—-‘} )
{;Aj ¥, the latter referring to elements of S, perhaps, as
P
in instances of B-modification, after 'inflection' by elements
in T,
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The purpose of this section is to show how such a machine

may be used for general evaluation, This requires a representa-

tion in the machine of the command operaters and operands of
- the model, There is evidently two ways of achieving a repre-
sentation of the evaluation operators: either the machine has -
in the set ”{?i j%an‘order which is precisely equivalent to

one of the given operators, or it does not, 'In the first case

a 'direct' representation of the evaluator is possible; in

the second case, the evaluation must be represented by a se«.
quence of orders, which is equivalent to modifying the machine

in the way indicated above, and the 'indirect' representation

is achieved throﬁgh the use of an open or closed subroutine,

We shall always assume that it is possible to name 'a single

operand by means of one address, so that a unary operation

acting on a given operand can be represneted by just one command .

operator in the direct case. In considering binary operations
we shall adopt the;convent;on, since we have in mind primarily

a single address machine, that the first operand is always
contained in a fixed storage register 'U', and the second is

to be specified by an address, In this case, too, a direct
representation of a binary operation amounts to a single machine
command operator, Given this restriction on the first operand,
and given that the result of any operation, unary or binary,
resides in U after execution of the operation, it is possible
with the help of the Substitution Rule R3 to derive a sequence
of command operators for evaluating given w,f.f, on a particular

machine, The precise details are easy enough to work out,

The only point to make here is that by describing the evaluation

operators in terms of command operators we have sufficient in-
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formation to effect an evaluation process on the machine. Any

other information that is required is for improving the efficien-
. cy of the process in one way or another, By thus separating
ﬂ the essential from the inessential, we can achieve a great de-
gree of flexibility in the types of evaluation procedure which
are applied, and it becomes easier to decide how much effort
should be expended in minimizing time or space requirements in
the translated code,

Clearly, sequences of command operators in the machine
are instances of Schema V, and references to special sequences
of commands used as closed subroutines are instances of Schema
VI. We shall assume, therefore, that the machine obeys a
Sequencing Rule similar to R2 and that it maintains a 'path-
finder' list of references to subroutines which are in use,
. In any given machine, of course, this rule is more or less con-

tained in the hardware, although none has been built with com-
pletely automatic control of the pathfinder list,

Before considering in detail the realization of operands
it is necessary to discuss the ways in which they are to be
addressed by a command operator. From the remarks in Section
2 and the present section, we can see that operands may be
classified into five groups:

(1) Named auxiliary variables

(2) Named external variables

(3) Named parameters of a definition

(4) Implicit variables - 'U', the quotient-register, B~
registers, control counter, etc,

. "~ (5) Unnamed auxiliary variables, generated as in the re-

duction from implicit to explicit sequencing form, or by 'dis=
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played' operands and numbers,

‘There are various deductions to be made from this classifi-
cation, First, note that in some cases it is relative to the ‘
structure of the definitions: external variables o?éne defi-
nition may be the auxiliary variables of another, and in fact
the distinction parallels exactly the Symbol Table control rule
R2 given in Section 2, 1In Figure 1, for example, ﬁe have re-
presented the definitions D1 and D2 inside the set of definition
D3 which is in library form., We then know that the external
variables of D1 and D2 are auxiliary to D3, that the auxiliary
variables of D1 have no significahce outside D1, and similarly
for D2. P is a pointer which moves steadily throﬁgh each dew~
finition as ‘it is processed, and in Figure 2 is fepresented'

the form of the Symbol Table at various stages of processing,

D3:

— «P : ST ST ST ST ST
. ‘ : N lj T. :I 4 Pe
Dl:[ =< Pa Pa T Pc L
| - - Pd.
DE:E + Pc
) - +pd
- * Pe
FIGURE 1 FIGURE 2

In position Pa it is at the beginning of Dl, at Pb at the end
of D1, at Pc at the beginning of D2, and so on. The conclu~
sion to be drawn from this is that providing the evaluation
of D1 does‘not call for the evaluation of D2, or .vice versa,

then the maximum number of named variables in use at any one

time during the execution of D3 is the same as the maximum length .
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attained by the Symbol Table. This fact is used in assigning
addresses to names appearing in D3, For any library program a
._ similar argument holds, and a region of storage is reserved
for named variables in groups (2) and (3). It is not necessary
for such space to be permanently reserved, and it is taken ima
mediately prior to the execution of a library routine and re-
- linquished afterwards;

The restriction imposed on the use of D2 by D1 in the last
paragraph can be removed in the case of library definitioms:
they may use one another, and themselves, to any degree of
complexity, and are thus the most convenient computing units
to handle.

Each definition in functional form refers to its parameters
in a region of storage whose address, by convention, is con-

. tained in a certain fixed cell in the machine, The fact that
an address may in fact refer to another address for its data
leads to great flexibility here, With regard tofhe implicitly
used operands - little can be said of general significance, since
the use of these is closely related to machine design., It is
sufficient to recognize their existence and consider the pro-
blem of what to do when cells in this group are used in diffew
rent ways by two interacting subroutines, For if D1(I) and
D2(I) denote the sets of names used in definitions D1 and D2
respectively, then clearly just that set D1(I){ip2(I) must be

: '‘saved' when D1 calls for the use of D2, and 'unsaved' after-
wards, This is a simple algorithm to code, and it is achieved
~with the help of  the working storage region described in the |

. ‘"next paragraph.
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Concerning the last group of unnamed objects (5), it is
clear from the nature of things that one of these cannot pos=-
sibly be referred to in another formula, or in the same part of
the same formula, and a simpler addressing scheme can be used,
Moreover, from the inductive nature of the evaluation procedure,
it follows it is only necessary to make the 'intermediate re=
sults' available in the inverse order to that of their creation,
so that a linear 'pushdown' list is maintained for results
such as these, and it is shared by all routines which use one
another, simply extending and contracting the list as they need,
Exactly the same treatment can be given to variables which are
required to be saved from the implicit variable list,

To summarize the present position, it has been shown that
to use a machine for evaluation purposes it is necessary to
express the evaluation operators of a particular formal system
in terms of the command operators of the machine., This, and the
reduction of formulae to an explicitly sequenced form leads to
the formation of 'programs' in the machine which are all ulti-
mately dependent on the automatic execution of the command
operators by the machine hardware, although it is not always
‘convenient to conceive of programs in these terms. Each program
may refer to its operands through one of the five lists containa
ing parameters, named variables (internal), named variables
(external), unnamed variables, or implicit operands.

We now pass to the description of the realization of
operands in the machine; It has already been said that the ob=

jects of study in any Genie language are very general in nature,

and the fact that for immediate purposes we allow them to be just
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'numbers' or 'names' should not detract from this. At a future

date we may equally chose 'lines', 'points', or 'sets',  The
realization is best given with reference to a particular machine,
in this instance the Rice Institute Computer, which is a single
address machine with a word length of 56 bits, two of which

are 'control' tags, and do not enter the arithmetic unit, A

given address may at. any time denote either the location of an
operand, or a representation of the operand itself or another
address, Each address may be modified by up to eight B-registers
at one time, one of these being the control counter, These fea-
tures are not essential, but do lead to a great deal of efficiency
in this type of work, The chosen realizations are as follows:

(1) Numbers

Numbers are given in one of two binary forms, If a number

14

is a positive or negative integer with value less than 27, it

has a direct integer representation in the address portion of

~a word., In other cases a number has 'floating point' represen-

tation of a conventional type in a full machine word, which

also includes the integer representation,

(ii) Names

These too have both a direct and conventional form, A

name consisting of a single character may be given directiy

in the address portion of a word, 1In other cases a name of up
to nine characters in length is stored to the left hand side of
a full machine word, 1If if isbof-eighﬁ ch#racteré or less, it
is terminated by a special character code,

(iii) Formulae

The realization of formulae is based on the idea of formula

'rank' which was derived from the inductive definition of w.f,.f.
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in Section 3, First, the names appearing in formulae are realized
by their (Symbol Table) addresses, Second, unary operatioﬁs which
apply to names appear in coded form in the same word as their
addresses (they may be up to seven in number)., Last, a formula
of rank r with p terms is represented by an associative list of
p+1 words, The first is a heading word which contains certain
information about the list., The address of the list (i.e. of
the formula) is the address of the heading word, The remaining
p words give the p addresses and unary operations on sub-for-
mulae, In Figure L4a, each box represents a term in the list,
and the arrow out to the right connects it to its 'next' ele-
ment, Inside the box is written the name of the element to
which it refers, together with any unary operations which apply
to it., If the term refers to another formula, a downward
pointing arrow is drawn from the box to the 'data' Figure ke
shows a complete associative list, The last word in the 1list
completes a 'loop' back to the heading word, which is marked
with a control tag "2", so that the detection of "2" in a 'data'
word is sufficient to indicate that the data consists of a new
list, and detection of "2" in the 'next' word indicates that
there are no more terms in the current list, The heading word
itself contains a reference to a higher order 1list, so it is
always possible to trace a path through a formula to arrive at

any given level relative to a particular point,

FIGURE 4a: The list of rank r: ¢£aj
-2

Y

SO b e & & @ - a o=
1 Etmﬂn,“izw ’ B

Heading List Elements

- Word
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FIGURE 4b: List words on the Rice Institute Computer

Bits:1 15 21 27 39

.54
Heading First Rank |Depth Length Element in
Word element r d p higher list
1 15 21 27 32 39 54
List Next Rank Unary . ADDRESS
element element T | {operation
i
Address Type
(Direct, Indirect,
Immediate)
FIGURE lUc:  Realization of the formula "a + Kgt - 1"
2 i et e
= a L_....“;,,l SR 3 -1
I % A ‘%’1
= s !
oo N )
" A >
. f b
\h._-._...—w‘“/

(iv) Definitions in Schemata I - IV

When a non-functional definition is given by means of an
equatioﬁ, it is represented by placing the heading word for
the defining formula in a second table, the Value Table (vt)
whose elements are in (1l-1) correspondence with the elements

of the Symbol Table (ST)., If the formula consists simply of a

name or number then the representation of that element is placed

in the VT. Associated with each formula is a list of external

variable names, and this is appended to the approprite ST entry,
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Figure 5 shows the realization of two formulae in this way,

When a definition is given, as in Schemata II and III, in terms
of several formulae each of these is at first represented in the
way.described above, (Figure 6a), It is a simple maéﬁer, how-
ever, to process this representation in order.to femove thé
auxiliary variables from‘ST, leéving a 'formula'’ representation
of slightly more complex nature (Figure 6b), at the same time
obtaininé,as before, a list of external vériables which is
appended to the appropriate ST entry., Other information which
is contained in the ST word indicates the 'language' form of

the formula, the nature of the definiend, of the schema by which
it is defined, and whether or not it is in functional form;

If it is given in functional form, then the representation is

given in sub-section (v) below.

FIGURE 5: Realization of the equations: "y = 2 + 5x" and

"x = a + 3b"

ST VT
o , _ ; —— 2 v o :
| 0 + -~ Formula '2 + 5x°
Mo ()
o 2

+ —y Formula 'a + 3b’
|
kﬁ%> (a,b)
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FIGURE 6:

"y = hax,x

Realization of the definition:
=m 4 1, a = km - 1

(a) The initial list structures:

ST

1111

VT

y

X

a

% ) .
X - w B 3> x)
BN KR 2 < !

" P S B v
. !
k\w:‘“l o iy -

f/.* gz
%:§:?~?%*{ %Y irL1

-

w3 -4

(b) The final list structures:

ST

VT

X

/] /)

. f; .
; / K / }

/ / H /[ _:’l i!
ol

2
S S B S —
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(v) Functional Definitions, and Schemata V - VI

For practical reasons, sequential definitions and functions
are realized by first effecting the tranélétion to ’bfograﬁ'ﬁ-
form which was indicated at the beginning of this section, on
the basis of the Reduction Tables for the various definitions
which are given, This realization resembles machi ne code
closely, except that it retains additional information for
ease of modification, It is very quickly converted into genuine
machine code, and in certain important instances no alteration
is necessary, For historical reasons, we refer to this as
'd5-code', By retaining -code and the portion of ST associated
with it a completely symbolic representation of code can be re=~
gained for reference purposes, and in practice théée_éreiadto-
matically retained on tape (paper or magnetic) until the coder
decides that the program is running satisfactorily.,

This concludes the summary of operand realizations that are
at present provided in Genie, They will be reported in greater
detail elsewhere, 1In addition to these, however, provision is
made for the arrangement of operands into regular arrays of
one or two dimensions: the vector and matrix forms, Where such
forms are desirable, appropriate evaluation operators may be
provided in the model and the operand names in formulae can
then refer to such arrays either as a whole, or element by
element, All arfay eléments must be of the same type, énd they
may themselves be arrays; they may also be defined by reference
to their position in the arrays, as in the case of triangular

or band matrices, The argument for restricting Genie to arrays

of not more than two dimensions in that in this way we are in-
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cluding by far the majority of instances which are useful,
and for which efficient manipulative algorithms are known, 1In
any case, higher dimensional arrays can usually be reduced to
arrays of arrays at little cost, We have adopted the universal
convention that elements of arrays shall be indicated by sub-
scripts which take positive integer values;

We are now in a position to give the final rule wich con-
trols all processes of evaluation.

Rule 4, (The Execution Rule)

A machine is controlled by a (supposedly infinite) 1inea:
sequénce of characters; In this it recognizes names, numbers,
operations, formulae, equations and definitions according to
the rules given in the preceding sections., For each name it
determines what type of operand it stands for, either by implicit
assumption, by deduction, or by explicit declaration. It also
determines which other named objects a definition depends upon,
and whether>or not they have themselves been defined, If they
have, then the dependent variable is evaluated according to the
model which its definition implies. By a continuous scanhing
process, this continues until no more evaluations can be made
on any entry in the Symbol Table. A further definition is then
read in, and the process repeated. An example will illustrate
some of the consequences of this’rule;

Example: We shall assume that the machine contains the Character
Table and Reduction Table for an albegraic formula language,
Consider the following set of commands and definitions;
[x = 5, 10159
sin(x) .= E...commands evaluating sin(x)...—¥
A is an integerb )

QIK = sin(x/4) - 2sin(3x/L4)
L-kg



e, du) -=£3 = 3'32 + st - K

g = 2K + 1
m = A sin 3K .+ Aeg
u =m + S/“Lg] . S

eestCensal-

The opening braékeﬁ deiihits:tﬁis set of definitioﬁsj ﬁﬁeh
it is clésed,‘gll the information provided 1nsidé it‘ﬁiil be
erased from memory and the machine'éiil be back.in its Original
state, This is not always desirable, so a set of définitions
may bé named; in this case-when it i; closed all‘the’informaa
tion ébntained inside it isireﬁoved from the ST but saved in
temporéry stofage;- The name of the’definition set is retained
on ST and may be used to reéall'gﬁe information to ST at any
timé. In this way anyruservér group of users may build ﬁp prie
vate subrouﬁiné iibraries, languages, etec, and call them into
the mabhiné at the start of an evaiuation ruﬁ, #s‘well aslusing
the mgin f#cilities'of the machine, |

The first two definitions in'the examplé give "g' as a
number and "“sin" as a functibn.: Fﬁilbwing this, the nuﬁber "A"
is mentione& in order to place it on ST as an external variéble
of the set of definitions which folioﬁs. This is named Y,
and any subséquept call for it will bring 1ﬁto ST all th; défi—
nitions contained in the foliowiﬁg brackets, Here‘"Kﬁ is dew
fined in terms of "sin" and "x", which are recognized as known
quantities and an évaiyatidn of "K" follows. The name"Q" is
also givén‘té the sequential definition; which is the main de-
finition of this set in the sense that all others (K) are

auxiliary to it, Q'has an input parameter "t" and output "u®,
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In the commands which follow, "g"'is recognized as depending on
the external quantity "K" only and this. has previously been -
defined, so that a simpler. command can be written here, No
further simplifications can be made and Q is retained in stotage
in its d-code form, After the closing bracket only 'g", "A",’
"sin" and "Q" remain in ST, After the final closing bracket, '
nothing remains in ST and the machine proceeds t#thé next de-
finition set,

The Execution Rule implies a continuous control of the
finite number of storage elements in a given machine, 1In the
present Genie system this is achieved by placing all'free!
storage cells in a list of specialﬁstructure which allows the -
evaluation operators to 'give' and 'take' as many cells as they
need for application;' This works well until storage space be-
gins to be exhausted, and then various recovery operations can
be called into play, aimed first to rearrange active regions
of memory to bring all the available cells together in a single
block, and finally to put all definitions not currently in use
into temporary storage; In the latter comnnection, it will be
noted that the Pathfinder list gives a complete description of

routines in use at a given time, While such techniqueé'as these

have been shown to be feasible, further experience will be
necessary before reliable conclusions can be drawn with regard
to automatic storage control algorithms, It may well be that
the algorithms will vary with the type of application for which
the machine is in use;

Many of the automatic features of Genie are also available

under programmer control, transfers to and from magnetic tape -
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storage being a case in point, and control of 'execution' of

programs being another, It is interesting to note that in a

- machine with adequate trapping features some protection can be
afforded against instances where an evaluation procedure is 2
started before all the requisite terms have been defined, or
when some of them are in auxiliary storage, and appropriate
recovery steps taken, Such techniques seem very promising and
suggest a new application of interpretive-type programs, the
usefulness of which has been in doubt since the advent of re-
liable compilers,

It should also be noted that the Execution Rule can be
treated simply as a loading routine, and as' an input routine
for use during execution of a program, 1In addition to this, in=
dividual routines may be used for the input of numbers during

program execution, outside the control of the Execution Rule,

Printed output does not affect the results of an evaluation
process at all, and it may be obtained either in the form of

definitions or formulae in certain standard formats., Otherwise,

suitable output subroutines may be compiled by selecting a
descriptive language and defining it to Genie., A useful tech-.
nique involving output routines is to recognize certain ‘print’
operators nfn (say) which may appear at any point in a formula
and result in the printing of its operand when that is evaluated,
e,g. in the definition: . -
y = (20 (§:?Ai) + I 2;21(“12))/“ | .
the presence of the operators "II " would result in the printing

of the results of the two summations during the evaluation of y

without otherwise affecting the result, Normally, gych operators
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%
are controlled by sense switches,

* : E
These and other techniques are discussed in detail in

a separate memorandum,

6. Conclusions

In téfms of ihe pfésehtiy actiQe generation of computérs,
thé Genie structure provides aﬁ a low cost in pfogramming‘the
basis uﬁoh which conventﬂﬁi asSembl&i coﬁpiling,~1oading and
iﬁfefpreiive rbﬁtines can be achieved, On the Rice Institute
Coﬁp#ter, Genie itself takéé less thhn'2,600 orders, and on
fﬁese both an assembly program énd:ah algebraic compiler of
some sdbhiétication can be built with the addition of about
500 ofdefg apiecé; Even on a machine such as the IBM 709, it
islbroﬂable.that the basic effect could bé achieved in less
thanlIB;OOO orders, More important; however, is the fact that
the édaition'of more compiicated ianguagéé becomes increasingly
eas& since their evéluation operators may«be described in terms

of those defined previously. There is an absolutely minimal

%*
The simplest language in Genie is, of course, binary machine

code,

increase in storage requirements, represented by the siée of
tﬁe combined Character an& Reduction Tables and fheir appen=-
dages, but this may be as ;1tt1e‘gs>100 célls on a given machine,
Oftep the Tables for two languages will differ only slightly

agd can be combined into one with,only‘slight cost in chaﬁging
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from one language to another, That this can be achieved, at
the same time bringing a unified approach to computing machinge
applications seems to weigh in favor of the'type‘of aﬁaleis
represented by Genie;

There are two cases in which Genie can be4app1ied to more
recently designed types of'machine, almost without alteretion.
The first is in computers with parallel computing units and
shared memories, 15 this case the Symbol Table andrallldefini-
tione stemming from it Will be in the'memory as befo;e;r Now,
however, there wiil oe two or‘more units applyiné the Execution
Rule to the SymbolJTeble, each subject to‘the same conditions
as before except that it will be possible to detect ef any un-

defined symbol Whether it is in process of definition by some

part of the machine. It may then be desirable to delay the eva-
luation of quantitles which are dependent on this, or in some
circumstences a second evaluation may be started, safeguarded

by a traéping interlock’deVice, in.the hope thatAthe‘first
evaluation will oe compleced before its argument is required
by‘the second process, A siﬁilar-situation arises even on
siogle sequence machines‘when a,program,is depencent on data
supplied by a parallel operating input device,

An allied problem is concerned with human interaction
with the definitions in the machine; ‘Such interaction is in-
effective without communication at the symbolic level which is
prov1ded by Genie, and continuous control of problem execution
is mandatory. The Symbol Control Rule was devised with this
application in mind; where several coders simuitaneousiy share

the machine and the 'subroutine librarY‘ without getting their
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own mnemonics and subroutine names confused, Preliminary
studies indicate that the present rules are adequate for time-
sharing between a number of mathematician-operators and a long
production routine, even on a single sequence machine, because
of the additional information carried in ST and the pathfinder
list, which enables evaluation to be interrupted at almost any
point in a program;

It may be argued that the simplicity of Genie is achieved
by oversimplifying the translation process, but we feel that
this is untrue, An actual process of tramslation from a formula
to sequential code consists of three parts:

(i) An initial equivalence transformation of the formula.

(ii) The translation into éequeﬁﬁiai code.

‘(i11) A final equivalence transformation of the sequential
code,

Now in fact we have described only (ii), but Genie does in-
clude routines of types (i) and (iii) which are applied with
varying success in order to improve the efficiency of the evalua-

*
tion. The prdblem is easy enough to state, but not easy to

W |
Equivalence transformdtion for arithmetic, for example,

are implicit in the axioms of Peano; equivalence transformation
for code have been given by Iu.A.Ianov, 'On equivalence and
transformation of .Program Schemes', Dok,Akad,Nauk, S.S.S.R.,

113~ No.1l, 1957.

solve; and since we are interesfed iﬁ solving the problem by
machine, the first step is to analyze it into these three étages.
At a later date we may hope to achieve the synthesis arrived at

by a human coder, Another relevent point here is that (iii),
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for example, is applicable to the results of many different

translators, and it is best applied after, rather than during

code construction,

The formal description of computing pfoceSses‘from a theo- '
retical standpoint has been given by A.P.Ershov(5),~and this

approach also appears to have a wider application at the prac-
tical level than can be achieved by syntactic means, One of
the most beneficial results we can hope for is that with the
flexibility offered by routines of the Genie type a powerful-
language will come into universal uses in communication with

'machines,
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