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Rice Institute Computer Project Programming Memorandum #4 
June 1, 1960 

Applications to Automatic Coding - Part 2 

The Elements of the Genie System 

J.K. Iliffe 

1. Introduction 

The aim of the Genie system is to provide a set of routines to 

be used in constructing programs for The Rice Institute Computer in 

both numerical and symbol manipulative fields. Precise forms of 

coding language are not defined here since it is our intention to 

allow the coder a fairly wide choice of the forms he will use; how-

ever, as starting points in this inquiry, certain languages adequate 

for the description of numerical and analytical processes in a natu-

ral fashion were considered in detail, and by putting these in para-

metric form, it waa hoped to achieve greater generality. The formu-

la language FLl and the symbolic assembly program AP2 are examples 

• of forms permitted in Genie, and these will be used below for purposes 

* See Programming Memorandum 15. 

of illustration. 

It is clear that a large part of this type work is independent 

of any particular machine, and that it is to our advantage to keep 

it this way as far as possible. Consequently, most of the characteri

zation of 'source languages' which follows is machine independent up 

to the point where a realization is chosen for a particular computer: 

the choice of representation and provision of basic sequences of 

• machine code are matters for intervention by a coding specialist, al-
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·· though the problem o.f minimizing the· amount of· .work required in 

this respect is receiving attention. The point here is that the 

realization is no concern of the average customer. 

Construction of symbol manipulating routines is in its in-

fancy: much work is being done and some is documented, but none 

has received such general acceptance _t:hat we can refer to this 

in order to shorten the task of description. Unfortunately, 

therefore, much of the present memorandum consists of statements 

of .the obvious which are necessary to illustrate an approach to 

the subject rather than to advance new facts. By its very nature 

a description (using symbols) of symbol manipulative routines 

gives rise to speculations, of which some are interesting and 

others lead to endless tail-chasing: most of these are latent 

in the structure of Genie, awaiting further investigation. our 

primary objective, which is the production of an efficient 
,, J ; 

translating system of some sophisticatfon, does not permit diver-

sion to these at the present stage. . ' 

It may be worthwhile, however, to try to make one aspect 

of our approach explicit; and this is conqerned with the _dis

tinction between syntactical and formal systems which· is found· 

in logic, although the following presentation is far from the 

; u't'ttiaate logica'l precision which one would hope to achieve. 

where~'s both syst~ms as:cribe' predicates to certain sets of objects, 
' .. ' 1'.\ ·' ;., . . ' ~ . 

they· diffe .. r ··in the way in which the objects are understood. In 

• 

tne :first '(syntactical) case ~he objects are words which are 

sti-:t'ngs of 'letters in ari alphabet;" in the second case, tb'e ob

je'cts: are ··genera't~d from primitive atoms by operations. 1£, 

. folldwtng 'H0
• :l3. Curry(l} we caf{ the objects o:f.a formal system • 
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the~, then they consist of an inductive class whose basic 

elements are the atomic obs, such that the ap~licatiorl of an 

operation of ~~!ree K to an ordered sequence of Kobs is an ob• 

Obs constructed in different ways are in general distinct. A 

representation of the formal system is obtained by assigning a 

unique concrete object to each ob in such a way that distinct 

objects are assigned to distinct ~bs. Now it is possible to 

describe the properties of a syntactical or a formal system in 

a metalanguage which contains names for the obj~cts of each 

system, verbs for the predicates, and so on. The unavoidable 

fact is, of course, that to communicate anythin& at all about 

the formal system, we must have· a symbolic representation for 

it, and at first sight it the~ becomes difficult to distinguish 

it from a syntactical system. The distinction becomes clearer 

when one observes that a formal system is invariant with respect 

to changes in representation, so that, for example, no distinc

tion is made between t~ propositional calcul~s in prefix or in~ 

fix notation, or between an arithmetic formula as specified by 

a FORTRAN statement or as stored in a list structure in a machine. 

As a matter of taste, the idea of a formal system is pre-

ferred here, and it affects the way Genie is constructed and 

described. As Curry(l) points out, syntactical systems can be 

reduced to formal ones by formalizing the operation of concatena-

~, so nothing is thereby lost and the stru·cture of Genie is 

particularly designed for investigating more sophisticated 

languages than are currently allowed. It seems to the writer 

that from the practical point of view t'he present scheme has 

advantages over other systems in that th~ next step towards 
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•opl1atication is.made at less cost • 

. Our obje~tives have thus been to produce a machine system 

whose external behavior is such that is recognizes certain de

scx-iptions of • source languages 1 in ·.a given· canonical form and· 

proc~eds to .'-read· sequenc.es · of symbols which. repre~~~t descrf:.Ptions 

of computatiotla. l procedures and, where, possible, to·,' exe·cute' 

such procech•tes in a wide sense. Internally,. the system is ·,as·. 

general and 'bomogeneous as possible, with an· organic ·structur.e 

which permits-continual growth and modification of. the se~_of. 

lang~ages wq.ic~ .i;s i,n ·Use. It .will :be.come apparent ,that Genie· 

differs from compa~ab.le sy,stems. in. a. number of ways, ·but the-se. 

can .mostly b.e traced down to a sing.le significant change,· viz, · . . 
the elimination of the separate ideas o·f • assembly'·, •.compiling', 

•execution• {in th.e ol.d sense), 'inte.rpr.etation' '.and ,so on,, by·, 

means of a general principle of e.va lua tion. which .includes a 11 -

tf;lese p.rocesses a~d allo:ws them to be controlled .automatically 

by the machine. This gives to ·Genie a· mor.e dynamic character 
/ 

and lead.a to _some c;hanges in the a·ttitude' of the co.der to1 t'he ·· 

machine which .may loos_ely be d·escribed as putting t·he two ·iff.'a 

'conversational' frame o,f mind. To be sure, the··o'ld·conce:-pts 

are recoverable, .but it is felt that this stu.dy may lead to ad-

vances in the ,use of para.lle 1 .machines •. 

In the next section·, some remarks are made. on exp.licit J 

and.implicit aequ•~cing of pro~esse$ 1 ,and the behavioT of 

machine.s in this respect is characterized. Such an analysis 

is in f~ct ind4!.pendent of tbe descriptive form c·ho·s.en, aa.d· t·he· 

definition. ~f a class· of su.ch forms··is ~elayed·until<Sec,tion>:3 .• · 

It is then ·Jl:ecessary. to .. determine the ... classes· of o·bJect.s which 

can be represented by the Genie ~anguages, and the types of opera-
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tions which can take place bet~e-n them. Thes~ are chosen 

largely with our current inte~esta 1u mind aithough in principle 

any other collection of objects and operations could be chos•n. 

It is then possible (Section 4) to describe the evaluation pro-

cess, which is common to all languages. In Section 5, the class 

of machines which we are interested in is introduced with parti-

cular reference to the Rice Institute Computer and the realiza-

tion chosen for it. 

2. Sequencing and Procedures 

It is an accepted hypothesis that all effective procedures 

can be represented on one hand by recursive functions, or on the 

other by descriptions of Turing machines; while we wish to pr•-

serve a link with theoretical concepts, it is clear that neither 

of these extreme representations is suitable for practical or 

•natural' descriptions of a procedure. The choice of descrip-

tion is a subjective matter, and the first observation concern-

ing our current aims is that within Genie the coder can choose 

from a spectrum of forms running (almost) from one extreme to 

the other. 

As the element of a procedure description, we $hall take 

* a definition and write it for the time being as: 

In this Section, all symbols are part of the descriptive 

metalanguage, other than those appearing in expressions given 

as •examples•. In this, Greek and script Roman letters are 

employed, together with primes and subscripts which extend the 

• class of disti~ct symbols, and certain. special signs are intro

duced. The numerals have their usual interpretation as integers. 



a• (2.1) 

where a stands for the object defined by the definitional schema tt 
t:J. We shall assume it is intuitively understood that (2.1) 

describes the way in which a is to be constructed from other ob-

jects and operations between them. If the other objects are 

13, j3', ~", ••• , 13Cn), cons ti tu ting a set /:9, we can demonstrate 

this by writing: 

a ./J(f::$) (2.2) 

For this definition to .be effective·; f,t is necessary that 

the j3 1 s be known; in other words, they also must be given de-

finitions which are auxiliary t~ (2.2). Clearly a notion of ee-
: ' .............. 

quencin& is introduced at this point; the ~·s must be defined 

before a can be defined, and it is customary to exhibit this * . .. . . 
sequencing in two ways: (1) by a linear (spatial or temporal) 

Disregarding, for the time being, such two-dimensional 

presentations as flow charts and 'displayed' formulae on the grounds 

that these have to be linearized 1~ the first place to get them 

into the machine. 

sequencing of definitions which· di rec ts the or.der in which they 

are to be obeyed; (2) by the implicit sequericing. of recur~iv~ 

function definition, which we shall discuss first. 

Let us assume for the moment that the technique of: fo~mula 

evaluation to be described in Section 4 is understood.· The~· by 

an equation we understand a. definition in which J:r.(see 2.2) is 

a formula in the set· of· variables ;J. (say). For practical"-: pur-

poses it is not possible to go to th.e lengths of allowing' defiiai- • 
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tions which are general recursive, but nothing is lost by this 

since all the fu~ctions of any use that we know of are primi-

tive recursive, and in any case general recur~ive functio~s 

can be described by explicit sequencing methods. We'shall there-

fore give as standard means of expression four·definition sche-

mata which are primitive recursive or directly reducible to pri

mitive recursive forms< 2 } 

Schema I. [Definition by equation] . 

U Q = d( /J.) II 

where a stands for an object, ~ a set of objects, and a for 

* a formula in one of the admissible languages of Genie. 

* In the sense to be described in Section 3. 

Schema II. [Definition by composition] 

Hal = a 1 ( ~ 1)1 a2 = c}f 2(i 2), • • 0 ,ar = a r(~·r)" '. 

where for i = 1,2, ••• ,r, a1 ·s.tands. for an object, .1~-1 a set of 

objects, cJ i a .formula in one of the admissible languages of 

Genie and where no sequence of positive integers K1,K2, ••• ,Kp, 

p~r exists such that: 

(1) Ki+ Kj for i + j 
( 2 ) aK . E: & K for i = 1, 2, ••• , P- 1 

i+l i 

(3) KP= K1 

(This condition is imposed to prevent circularity of defi-

nition). Schema II, the first equation is the principal ~qua~ 

~, a 1 is the principal variable, the remaining equations are 

auxiliary ~qua~ions defining auxiliary variables. 

For the next two schemata, the conventional notation of sub-
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scripting is introduced with the implication that the subscripted 

object belongs to a finite ordered set of objects, the ordering 

being controlled by applyin8 the arithmetic successor relation 

to the subscript. 

Schema Ill. [Preceding values recursion on one index] 

o: = 2/(;.P),"'i = 8(/J..,;.1-P"i-21 •••,;.i-r),i.o =O'o( ~), 

Al .(I 1< fi1> 1 • •• ,;...r-1 = cfr-1( fir-1) 

where;... is the initial member of the set of objects A and 1J', 
0 

!J',c!J' , ... ,c!J 1 are admissible formulae. Here, i and A are o r-
auxiliary variables of ~he definition, r is a fixed integer 

which in any instance of Schema III gives the order of the re-

currence relation, and p stands for a positive integer which 

may be determined either by an auxiliary equation or by a pre

vious definition. 

Schema IV. [Conditional definitioa] 

"a= 0 1 if ei1d2 if e2 , ... ,a,µ if 

where <!J 1, ••• ,c!J!0 are admissible formulae, 

dicates, and "if" is a special operation. 

are pre-

This completes the set of implicitly sequenced definitions. 

It is clear that the precise form is unimportant, and in fact 

the initial Genie schemata are slightly more complicated than 

these. It is our experience that a lot of fluency is to be gained 

by extending the forms of definition beyond simple equations in 

this way, and that this leads to more efficient machine codes 

than would be obtained by the same amount of effort expended on 

a less concise system. What is important in a system of this 

sort is that the ability of the machine to sort out implicitly 

sequenced definitions should be roughly comparable with that, 
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of the machine user, and it is at this point that the practi-

cal and formal approaches to the description of calculations be

gin to diverge. There would be no formal difficulty, for example, 

in allowing any equation appearing in one of the above schemata 

to be replaced by instances of another (or the same) schema: 

the practical difficulties arise when consideration is given to 

the problem of identifier control whi~h is· discussed in the next 

paragraph and in trying to explain these to a potential coder. 

It must always be assumed that the coder is aiming at things 

other than linquistic elegance, and the less obtrusive the coding 

rules are the more useful they are likely to be. 

A more difficult concept to formalize is that of the iden

tification of objects.whose names appear in different defini

tions. A simple .solution, corresponding to current practice 

in most compiling systems, is to establish a unique correspon

dence between names and the objects which they identify, so that 

a given name can stand only for one object. This is objection

able on various grounds: firstly, in large problems, a genuine 

shortage of names may develop; secondly, it does not distin

guish easily between the 'essential' and 'inessential' ob-

jects in a definition; thirdly, it does not provide for the 

discrimination in meaning which is dependent on the context 

in which a name appears; fourthly, it leads to crude genera

lizations in describing the interaction of a machine with a set 

of definitions. The rule (Rl) for Symbol Table control which 

follows is an attempt to improve on this situation. 

Rule lA (Symbol Table control for implicitly sequenced definitions) 

In a given Definition Schema of one of Types I - IV, the identi-
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fiers o~.the auxiliary variables have meaning only within the 

deti•itions in which they oceur., and may not be referenced 

from ou-tside that definition. If., in (2.2)., a denotes ,the set • 

of auxili·ary variables of the definition., then the set~ -0..) 
is termed., when non--empty., the set -of. external variables of the 

definition. Given a group J./ of definitions., its s;xmbol Table 

is obtained as the union of the sets of external variables., and 

the set of principal variables. It is important to note that., 

given any identifier appearing in the Symbol Table., it is either 

defined·or undefined in JJ. In the event that the set of un

defined identifiers is empty., :J/. is said to be complete. 

It is also evident from RlA that the addition-of another 

definition to·a set such as :J./ will in general change the cate-. 

gories into which its symbols fall: in order to prevent this 

happening;··;J../may be 'closed'., and we shall denote tb_is condi

tion by writing it ia brackets, e.g. 11 [;J./] 11 • ln this.case., we 

have: 

R.ule lB (Symbol Table control for sets of definitions) 

Given a closed set of definitions CJ.I]., the identifiers of the 

principal variables have no meaning. outside [J/]. Only the 

undefined identi-fie rs of ;tJ cons~itute. the external variables 

of ct/1. 
A certain amount of non-trivial calculation may be contraU-

ed by taking sets of definitions from Schemata l - IV, but when 

all·else fails it is natural that recourse should be m.ade to 

explicitly sequenced definitions., partic~lar_ly where comp.li.cated 

!terative ~rocedures are involved. ' It is also ·natural that the 

formalization of this idea should-bend towards the established 
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practice of writing programs for sequential machines. Conse-

quently we have: 

Schema V. [Sequential definition] 

f · 11 7 
a = al ~ h'1<~1); a 2 = lr2<,5·2h ... ;an = lrn<,a-nv 

where the parentheses "f ... { " enclose an ordered set of n de-
'" ""' 

finition schemata taken from Types I - IV, and a stands for the 

set of external variables determined by RlC below. Associated 

with a sequential definition is a Sequencing Rule (R2) which is 

given after the discussion of functional forms which follows. 

Rule lC {S7mbol Table control for sequential definitions) 

The external variables of a sequential definition (sd) ar~ de

fined by reference to a list ...J_ of identifiers which is assumed 

to be given immediately prior to examining the sd. Then only 

those identifiers appearing in ,-cV and in the sd constitute the 

external variables. Within the sd, auxiliary variables may be 

identified with members of~ or with principal variables which 

appear earlier (to the left of them) in the given sequence. No 

'definition' appearing in the sd is regarded as such in the static 

sense that we have assumed with regard to Schemata I - IV; for 

this reason, sub-definitions which appear inside sequential de-

finitions will be termed commands. 

Functional definitions 

From the preceding rules and·remarks associated with them, 

it is possible to deduce the identifiers which are external to 

any given definition. Let (2.2) be such a definition, and let 

{;e,.. a..J denote its exter11al variable set. It will be seen in 

Section 4 that (2.2) cannot be evaluated until values are as-

signed to each external variable. Then in the sense that the 
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definiend is itself external to the definition schema which , 

defines it., we can regard incomplete schemata as functions from 

a class determined by one subset of the external variables (the e 
arguments) into a second class determined by a secm.d subset 

(the 1:esults). In Schemata I - IV we shall adopt the usual con-

vention of listing the arguments in parentheses following the 

definiend or result; in Schema v., both arguments and r·esults 

will be listed., following a new identifier which is us~d to 

staQd for the sd,itself. 

Example: · f(x) a a+ bx., ·a. sin x., b. cos x 

This constitutes an instance of Schema II it1:functional form with 

argument x and result£. It is still incomplete, since it de· 

pends also on the iden ti fie rs "sin" and. "cos". 

Example: r P(a.,b.,ct#s.,#t) =ix= b2 ·• ac; x = x 112 i · 

s = (-b + x)/a; t = (.b-x)/a] 

Tbis constitutes an .instance of Schema Vin functional form:with 

ar.guments a., b and c., and results s and t. It is complete apart 

from the identifiers "2" artd 11 1/2'·'. Note the use· of the sign 

"I" to identify, the results... "),)" is the identifier for the sd. 

The functional use of Schemata I - IV identifies the result 

as a function letter which may.be used in formulae as described 

in the next section. The functional use of Schema V identifies 

the name of the sd as a procedure name which.may be used in the 

final basic schema: 

Schema VI. [Definit~on b~ .Procedure] 

r(o:, lf:3} 

where r is a procedure name, and o: stands for the set of &~$uments 

and ff:3 for the set of values. • 



• 
Any funct:i·onal definition which contains no external names 

other than the given parameters i~ said to be in library form • 

If·tbis is not the case, b~t the external identifbrs all be

long to a certain set of symbols J, then the definition is in 

library form with respect togf. This corresponds closely with 

current usage. We are now in a position to give R2, which takes 

the point of view that all functional definitions are special 

cases of sequential definitions, consisting of a (sequence of 

one) single command. 

Rule 2. (The General Sequencing Rule) 

In order to control the use of function and procedure 

names, the sequencing process is described in an inductive manner. 

Basis: An ordered set of pairs <M, J> is t:o · be 'constructed, 

initially consisting of the single pait <O,O>. 

Induction step: When it is necessary to evaluate a definition 

r, the number of pairs is increased by one by adding the pair 

<r,l> to the set. Then the first definition of r is executed. 

After executing each definition, the second member of the last 

pair is advanced by 1, and the corresponding new definition is 

executed. This procedure is terminated by the special "return" 

definition which causes the last pair to be removed from P before 

the next definition is selected. 'The whole process terminates 

when the 'zero' definition is encountered. 

In current terminology, Pis a slightly generalized 'path-

finder' list, and the last J at any point is the 'command counter'. 

It is essential in programming practice, of course, ·that the 

'command counter' -be available to be used as a variabie in com-

• mands of the sd, and we shall assume this is the case.- It is 
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not usual.for all of P to be arbitrarily accessible, on~f-that 

the 'last• entry be known at any-time. In giving examples, and 

in .. actual coding, we shall ide.ntj,;fy the command counter's value e 
symbolically at any point to which it is necessary to refer to 

it. 

To summarize the position, it will be recalled that in 

order to manipulate certain unspecified classes of objects, a 

set of six 6escriptive forms or definitional schemata has been 

specified, dependent upon further analysis of formulae which 

will be given in the next section. Among the schemata are both 

primitive recqrsive forms, and sequential definitions controlled 

by an _inductive sequencing rule which permits the use of func-

tion and procedure names. Rules have also been given for.the 

identification or discrimination between objects appearing in 

separate definitions_by~means_of the list of. external variables 

(the -Symbol Table). 

It is now nece&s.ary to.examine the permitted structure of 

formulae. 

. - -3. Formula Syntax 

The remarks.o, the foregoing section have b~en made as far 

as possi.ble wit.bout pres.upposing the existence .of any .symb~lic 

representation, but of course this is essential for practical._ 

purposes. It is computer-oriented in some degree,. since. 

syntactic structures which require many !scans• for effective 

recognition have not -be~n permitted,. and what h.as _b~en aimed 

at is a maximum degree of flexibility with a _singJe (left-to

right) formula sc~n. 
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Consider a fixed and finite set of characters or marks 

't.1,S21•••,tK forming an alphabet a. In examples, we shall 

use upper and lower case Roman lettersj together with Arabic 

numerals and certain arithmetic signs and parentheses as speci

fic illustrations of members of (1. Unless otherwise specified, 

the lower case Greek letters will be used as variables taking 

values in the domain{].. 'Script' Roman and upper case Greek 

letters will be used in various ways which will be defined as 

they are introduced. Finally, subscripts may be used on any 

symbol to distinguish that one from others taking values in 

the same domain, or in the manner already illustrated in re-

currence equations, Schema III. 

By a string we mean a finite sequence of marks in~- We 

shall take it that the ideas of 'first' and 'last' members, of 

predecessor and successor relationships, and of 'occurrence' of 

one string within another are intuitively understood. We shall 

use "A" to denote the null (empty) string, with no members. To 

use strings in the representation of formulae, we shall asso

ciate with each !, in Q.' three parameters: the !.U.=., a(;), 
the subtype, l{ (_!;) and the rank t/(s). Where no ambiguity can 

arise, we wi 11 use the abbreviation r::7 i for dJ. ( ~i). The signi

ficance of the parameters is implicit in the following rules. 

Sy~bolic characters 

If d = 1, then ~~ is symbo lie. The symbo lie characters are 

used in the construction of names according to: 

Definition 1 

The occurrence of the string "f7 = o: 1a 2 ••• ap in the string 

f3'n 1 is a~ if and only if the following conditions hold: 
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(i) d (al) "" 1 

_(ii) If P-2: 2,oi-(0:j) = 1 o-r 2-for j = 2;,, ... ,p 

(iii) If p. 2: 2, U {o: 1 ) = 0 

(iv) i/co:j) .s 2/(o:j+l> for all l ..s j < p 

(v) Either f3 ~ A orcf. (13) = 1 and ?/(r,) < W(a1 ) 

or d (f3) == 1 ·and l,( (!,) = 1 

ord (f3) + 1 

(vi) Either 7·; A ord- (7) = 1 or 2 andV{1)> 

ef(ap) 
1'1' 

ord (1) + 1 or 2 

To aid in understanding the above; we remark that name con-

struction depends on whether a character, standing aloriej is to 

be taken as a name (sub-type 1), or whether it can be joined by 

succeeding ~haracters on the right. In the latter case, a 

method of ranking determine$ the length of the name, i.e.,· 

characters belonging to the same name must be of non-increas-

ing ranks reading from left to right across the string. 

Numeric characters 

If c!J. = 2, then 5 is numeric. The numeric characters are 

used in the ~onstruction of numerals according to: 

Definition 2 

The occurr.ence of the string I:(!:: O:ft2 ••• ap in the string 

,,a., is a numeral if, and only if, the following conditions hold: 

(i) c!J. (a,)= 2 for i = 1,2, ••• ,p 

(ii) · Either f3 s A orO (f3) =· 1 and Z( (f3) = 1 

or dJ (f3) • 1 and ~('3) < .z!(a1 ) 

or 8(f3) + 1 

(iii)d(t3) + 2 andd(1) + 2 
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In the Genie system, numerals are representations either of 

natural integers or of the limited range of fractional quantities 

handled by a computer. Unlike the names, numerals are unique 

representatives, whereas the names, by means of definitions, 

can be made to stand for any one of a specified set of quantities. 

If the specified set has just one member, we can talk of the 

•constant name• or just •constant'; otherwise, a 'variable 

name' or 'variable'. 

Definitions 1 and 2 permit a given string to be scanned 

once to recognize in a unique way the names and numerals occur-

ring in it. A simple procedure for doing this can be given. 

Let us assume, for practical purposes, that there exist pre-

assigned upper limits on the lengths of strings which can be dis-

tinguished from one another, i.e., if two numerals are identi-

cal in their first v characters, then they are regarded as stand-

ing for the same number no matter how many additional characters 

each may contain, and similarly for names with a constant length 

µ or more. It follows that the totality of distinct numerals 

is finite, though possibly large, and similarly for names. Let 

7( denote the set of names. Let Ci2denote the set of numbers. 

Now construct the alphabet G(* from (J by removing all 

characters of type 1 or 2 and replacing them by a set of symbo-

lie characters of sub-type 1 in (1-1) correspondence with mem

bers of '/1., and by a set of numeric characters in (1-1) 

spondence with members of Ct. In what follows we shall 

sider strings formed from()_*. 

Operations 

corre-

con-

If c9 = 3, then~ is an operation. The operation characters 
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are further classified by sub-type: 

(i) If rt.= 
(ii) If(..{= 

(iii) If {,,(_ == 

O h ·t;i i tfo ., t en -.. s a punctuat on opera n. 

1., then~ is a unary operation. 

2, then '!: is a binary· operation. 

(iv) If U = :5., and if the preceding character 
is type 1 or 2 or right parenthetic 
{see below), then~ is a binary 
operation. Otherwise it is unary. 

Parenthetic characters 

If cJ.. = 4., £ is a parenthetic character. At each occur-

rence., it is either~ or ri3ht, but this may depend on the 

context in which it appears. It is therfore necessary to de· 

scribe parentheses in terms of the complete processing of a given 

string, say eJ.: o: 1a 2 •• • a8 A. To do this., we shall construct 

an auxiliary. string~ of 'unmatched' left parentheses., by the 

following rules: 

(1) Le~ /j... = A initially 

(2) If r::iJ- = A, proceed to step (5). Otherwise., .. let a 
be the. fi rs.t character of q:f _ .. it cl(a) 

go to step (4). 
+ 4, 

(:~) If U(a) = o.,. a is· l.p. (left parenthetic) and it is 

added to Jt. If U(a) = 1, o: is r. p. (right 

parenthetic); 

'Q'(g.)- • r<a ), 
let g be the last character added to J. Then if 

a "is I accepted•., and g is removed from J/; other .. 

wise an 'alarm• condition is set up and a ·is 'rejected'. If 

l((a) a·2, c, is said to be conditionally symmetric, i.e., if 

Zfcg) • 'Zf{a) then a is r.p. and action is taken as for. l-{(cr) = 1; 

otherwise, a is taken to be l.p. as for (a)~ o. Finally, if 

l((c,) • 3, a is conditionally asymmetric. In this case two rank$ -
rand cf' are associated with C1.. Then if rf· (a) = V(s), 

a is r.p., and otherwise, it is 1.p. 
4-18 
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( 4) a is removed from the beginning of J., and step (2) is 

carr,ied out. 

(5) At this point, the process terminates. J is said to 

be well-formed with respect to parentheses if both (a) ~o 

character in J has been ·'rejected' in step (3) and (b) J = A 

finally, ,i.e., no unmatched parentheses remain. We define the 

parenthetic depth of a character a in a/.. to be the number· of 

elements in /J at the time when a is examined in step (2). 

As an illustrat~on of the different types of parentheses· 

which the abov.e definitions are aimed to allow, we can give, from 

the formula language: 

'Norma 1 1 type :¢=a + B( 1-K)(l+K) 

Symmetric : J...;; a + IB - (fx - Yl)f 
Asymmetric ·'-= a + j + + b + ij K+ + 2 ·+ . -

Formulae 

There is a duality in the use of operations ,and parentheses 

in formal expressions; the devi~e of 'ranking' binary opera-

tions in order to avoid an excessive use of parentheses is 

well known, and we have paralleled this by admitting 1 implied 1 

operations to be associated with parenth•ses. The unifying 

figure is that of the ~ ,of opera~ion or. parenthesis~ (which 

is distinct from the rank of symbol~c characters used ·in con-

!?). + structing the names of {.A. Thus, a character" 11 fQr which 

cJ. ( + ) = 4, 'l(( +) = 3 and V( +) = 5 may be replaced., when it 

is left parenthetic, by the pair of characters "-r ( 11 where 't' is 

an operation of rank 5. This is. pr~cisely the treatment given 

to sub- and ~uperscripting parentheses illustra~ed for the for

mula language above. In general, a left parenthetic character 
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may imply the existence of any operation of specified rank, 

either binary or unary, which is to precede it. 

Consider the following three procedures: 

Pl: the application of Definitions 1 and 2 to a given string 

in a... to obtain a string in a*· 
P2: the application of the parenthetic scan to determine 

the sub-type of each parenthetic -character, and the subs,titution 

of "'t'( 11 for each left parenthetic character a for which 

i'(a) • efc 'T) and 't' iS an Operation., and the SUbStitUtion Of II ) 11 

for each right parenthetic character. 

P3: the process of inserting a specified 'implied' binary 

operation between pairs of characters which occur as 11 '!{ S111 ., 

n !; (", 11 )!; 11 or ")("., where t and 5• are names or numerals. 

Let r,zf. * be the string formed from J by the application of 

Pl, P2 and P,3. Then we have: 

Definition 3 

~*is a well-formed.formula (w.f.f.) if it is well formed 

with respect to parentheses and can be constructed by the fol-

lowing inductive 

(i) IfJ* 

(ii) If ef.,, 
"J,,. a &- 11 where 

1 2 2 
{ . .((a1 ) = i 1 then 

process: 

is a name or numeral, it is a w.f.f. 

has one of the forms 11 (J°1)11 ., 11a 1 ~ 11 ., 

~l and 6 2 are w.f.£. arid'6(a,) = 3 and 

J.-• is a w • f • f • 

The above definitions and rules determine many language 

forms of interest. We remark th~t, in the absence of parentheses., 

a w.·f.f. consists of a string of names., each possibly 'inflect• 

ed' by unary operations., connected together by binary operations. 

Replacing any name in the string by a w.f.f. gi~~s a new w.f.f. 

4-20 



• 

It will be convenient to use a spec~a~ notation for a 

string constituting a w.£.f. by the above definition. Let 

stand for either a name· or· a number or a w.f.f. enclosed by C 

parentheses, possi·bly· preceded by a number of unary operations,. 

Evidently J• can then be writ ten in the form: 

1..J: * = c\w1 6 2w2· • • 00n-l en 

where w i stands for a binary operation, i = 1, 2, ••• , n-1. Now 

if ?f(w1 ) ~ ri (the rank of the operation), there is evidently 

at least one operation eat* of the lowest rank r* and for reasons 

which will be apparent in the next section, we will write: 

¢ * !! d1'"'~•d • • ·w* c:J: . 2 p 

whered 1 , i = 1,2.,· ••• ,p., stands for a w.f.f. A w.£.f. such as 

this is said to be of rank r*. It will also be abbreviated to: 

Jl'urtber devices 

A practical problem which is worth mentioning here is that 

of stretching a limited machine alphabet to cov~r frequently 

occurring situations. The analysis of this section has ~o far 

been concerned with the slightly idealized· alphabet Q. and its 

abstraction Cl*· In point of fact we have to prociuc~ a ~cbarac-

ters from some mechanical set 

we want to include in a 8 mark such as 11 ,J:tt and will achieve 

it by the marks in· ...1/ 11="., •backspace• 1 "I" j assuming these 

exist. Also., it is undersirable to complicate CZ with case 

control marks and the like and these can be disposed ~fat a 

stage prior to the main reduction. · The following two devices 

may be used by the coder for simple StTibimanipulation •. 
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(1) Character Expansion, P4 

Let .!:!. be a character in , . .// but not in a.. Then it is pos

sible to 'expand' .!:!, into an occurrence of a given string 110:137 11 

say, the characters of .which may or may not all be in {(. If 

not, the process continues until a string in a is found. 

(2) Strini Contraction, P5 
Let A be a string, say h 1h2 h3 • Then it is possible to con

tract all occurrences of A into occurrences of a single character 

8 which may be in .fl or in Cl. If in J/ but not in a, 8 may 

be expanded under P4 to a new string. 

* * * * * * * * * * * 
To su~arize this section, we have described a symbolic 

representation of formulae based on an alphabet :I/, in which 

strings are reduced first by two elementary string transforma

tions (P4 and P5) to strings in an alpbabett.:Z, from which 

they are further reduced to formulae in the alphabet (2* by 

the procedures Pl, P2 and P3 which in turn make reference to the 

parametric valuesd,l.f, 'ti, cl• assigned to elements of a. 
This whole process is determined by a set of values contained 

in a.Character Table which is referred to as each formula is 

processed. This gives the following information: 

(1) The alphabets C/.. and .J/ 
(2) Expansion rules for elements. of ~ not in a 
(3) String contractions in~ 

(4) Parameter values for all characters in {2 

( 5) The 'limiting lengths• for names (µ) and numerals ( v) 

(6) .The radix of number representation and rule foT repre-

senting numerals and names. 
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( 7). The designated 'imp lied• . binary operation 

'the ma.in point of this technique is to allow rapid switches 

from one symbo.lism ,to anot.her. in reaili.ng sets of formulae, and· 

to allow experimentation by the coder in obtaining the presenta-

tiQn he wants. In the Genie system, formula scans are made by 

a routine called TSCAN, which has various facilities for detect

ing syntactic errors. It is evident that a by-product of TSCAN 

is the list of identifiers required by the processors of the pre-

vious section. Beyond this, further analysis is dependent on 

the meaning of names which are used, i.e., the classes of ob

jects fo~ which.they stand. 

4. Semantics 

In a formal system, names and formulas. must be made .. to 

'stand for' something, for only then can they be used as t.he 

means of displaying relationships between .objects of intetest, 

and revealing new relationships by means of formal manipulat~on. 

The classical way of .providing an interpretation is t~ give a 

model or representation for the logical system on hand. By 

this device, the consistency of the syste~ can be demonstrated, 

or at least made to depend on the consistency of another system, 

and an interpretation is provided. It is the· s·econd achie·ve-

ment which i~terests us. here, and in this section we shall de

monstrate the methods by which, a representation is used in eva

luation. 

Viewing the immediate a.pp lications. we have in m,ind for 

Genie, it can be stated that the classes of objects falling 

under investigation wi 11 inc lu.de: · characters, names, numbers, 
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formulae, and definitions. Moreover, fo·r ·various reasons, we 

shall want to manipulate these not only one at a time, but also 

in linear (vector) and rectangular (matrix) arrays. They may 

be rep.resented by names or numbers, as appropriate. However, 

a name may only represent one object other than itself. Thus, 

in the equation: 

G = 4t + l 

the names •cu and ·~t 11 stand ( presumably) for numbers., but in 

listing the quantities on which G is dependent, "t" would stlnd 

for itself. 

The problem of deciding what a name does stand for is more 

complicated in practice than theory, and the three methods which 

are available are as follows: 

( 1) By dee la ration: as in 11 K is a vector" or "K is a 

definition"; 

(2) By assumption: as in the equation above, where we as

sume G and tare numerical objects; 

(3.) By deduction: for example, we deduce from an equation 

such as: 

y =(sing, cos g, o) +·(x 1,x2,x3 ) 

that y is itself a vector. 

Now method (1) is infallible, but somewhat clumsy and we 

should like to avoid it where either of the other methods is 

sufficient. Method (2) depends upon an underlying assumption 

which is made whenever a formula is read, and we shall associate 

with each Character Table a particular class of objects which 

names will be assumed to represent unless otherwise determined 

by declaration ~r deduction. Various methods of selecting the 
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appropriate Character Table are possible, mostly dependent on 

a 'key• character which immediately procedes the formula. Thus, 

in the case of the algebraic formula language, the key charac-

ter is"=" and all names are assumed to stand for numbers. In 

the case of algebraic program descriptions, the key character 

is"·•" and all names are assumed to stand for definitions. 

Finally, in order to use method(}) it is necessary to know which 

binary and unary operations are permitted on which classes of 

objects, and what classes the resultant objects belong to. This 

information is given in the Reduction Table, given below. 

First, we will summarize the evaluation process applied to 

formulae. It is evident from the inductive definition of a 

w.f.f. that in order to have an evaluation process for a formula, 

it is sufficient that evaluation processes be given just for 

the binary operations applied to two objects, or for the unary 

operations applied to one object, provided unambiguous rules 

of precedence are given. 

Let a source language (;(! be determined by the group 

{r(,c:2, U, i?J],· respectively the s~ts of names, numerals, unary 
f} 

and binary operations inO\.. Then we have: 

Definition 4 

An evaluation model 7J1 of of consists of a set of objects 

.d, and two reduction rules .:;t:(U) and J(CB), with the ~ollow-

ing properties: 

(i) To each name a in I( corresponds a subset~ in~; 

and to each numera 1 \I in CK.corresponds* a uni.que v •. in ~ ccz.f. 

A prime will be ·used to -denote elements in /1( corresp.onding 

to particular elements of£. This w111 ·a·1so be written., e.g·., 
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"v'+v", and it is termed a 'value assignment'. 

(The subset of numbers.) 

(ii) To each unary or binary operation w in cf! .corresponds 

a unique unary or binary operation w' in .'(}( of the same rank. 

Parentheses in cft correspond to parentheses in lJ{. 

(iii) A w.f~f. in of reduces to w.£.f. in iJt if each name 

in the w.f.f. is replaced by some 0: 1 j¢a, each numeral v is re

placed by its corresponding v•, and operations and parentheses 

in of!. are carried over to the corresponding operations and 

parentheses in T'Jlt.• 
(iv) If a' and f3' are objects of #a and ,613 respective ... 

ly, then for each binary operation w' there exists a rule 

x_(B lr,a' ,t3' ,'Y' ), r being the rank of w', by which the formula 

na•w•13• 11 may be reduced to an element 1' in some subset ,6,, of 

b~ 
{v) If a' is an element of ~ and '[,,(_• corresponds to a 

unary operation in 1i{ of rank t, then there exists a rule 

j(.(U)(t,a: 1 ,f3 1 ) which reduces the expression "U 1 0: 111 to an ele

ment f3 1 of~· 

Potentially, there may be infinitely many rules v{,(B) and 

.Jt(U) since there may be infinitely many .elements in ¢a, and 

~f3 {say). Even a large number would be awkward to handle, and 

it is avoided in practice by analysing the elements of ~and 

expressing them as compound elements from another model lJ(• 
of'!>!, with only a small number of rules. In this way, the 

· general rules of decimal arithmetic addition, for example, can 

be built up from a simple rule of. 100 elemen,ts, expressed in 

a 10 X 10 addition table. It is often convenient to write the 
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result of applying Jt(B) ·as r 

1' =x<:)co:• ,13,) 

and similarly, the result of applying.:{,(U) is: 

(4.1) 

f3 , -~< ~) ( o: • ) ( 4. 2 ) 

In this case -:t.AB)and .v(U) are termed valuation operators. 
' ../\..., r ...7\.., t 

Let the disjoint subclasses of. different types of object in 

be d<J, ~, and J.-1 • Then to specify the properties of valua

tion operators completely, they can be written in the form of 

tables, one for each operation of each rank. 

Right Operand Sub-Class 

r-· • 

~ J)o: ~ I 
i 
I 
l 
! 
I 

l 
! 

i 
I 
I 

I 

r ' 

Left .JttB)(o:' ,f3' ):A ~)(o:' r' )·A 
Operand '° .. K<:>co:' ,a' >="aa r.. O:f3 . . r ' • ar 

Sub-Class .. 

J K<B>c , .. x(!) (f31, f3 r) :Af3f3 ~) ( f3' , 1 ' ) : A f3r , r f3 a • ) : A f30: 
13 

-

J7 .K( B ) ( ?' ' 0: I ) • A 
r ' · ro: Jf'(B)(r' f3' )·A 

r ' • 1f3 
_r(B)(r' r' )·i 

r ' · rr 
I I 

TABLE 1. Reduction table for a binary operation of 

rank r 

In Table 1, the tabJe entry in row~, column ~r' for 

exa~ple, is 3t(B)(13',r'), together w~th the class to which the 
r 

reduced formula belongs, ~A • Table 2 is a reduction table 
~1. 

4-27 



for a unary operation of rank t. With the aid of these rules 

and the substitution rule which will now be given, a value in 

1}t~f.any w.£.f. in,.:l!may be obtained. 

t Valuation 

cl a .... K (~ ) (a' ) : µa 

¢)' 
t3 

.. J( (~(t,') :µt3 

~ r J( ( ~) ( r ' ) : µr 

TABLE 2. Reduction table for 

a unary operation of rank t 

Rule 3 (The Substitution Rule and Ranking con~itions in ) 

(a) Let c:f' be a w.£.f. in Jll consisting o.f one 

unary operations followed by the element a• of~. 

or more 

Let Uf 
be the highest ranking operation in~-, with rank t. Let 

<p(C,) be a w.£.f. in which;], occurs with no immediately pre-

ceding unary operations. Then the first substitution can be 

written: 

<f(ck), r' = ...{(~)(a') 

p(§) 

Where "'It is obtained from a by rep lacing (1 I by r f and de let .. 

ing .!.!! occurrences of Uf from the string preceding a•. 
{b} Let C,, be a w.f.f. in 'J17 consisting of an element a' 

of ,t/. in parentheses. Then the second substitution rule can. 

be written: 



• 

• 

R3B: ~ 
a• 

(c) Let q>(cl') be a w.f.f. in TJt{ in which the highest rank-

ing binary operation at zero parenthetic level ~s w, of rank r, 

and suppose that this occurs in a w.f.f. c:J of rank rand maxi

mum length p ~ 2, i.e. J: a',wa2w ••• wc:1~, where cr1,i = 1,2, ••• ,p 

are elements ofciJ... Then the third .substitution rule can be 

written in either of the forms: 

R3Ca: <P(~),t.> ' · - ~(B)(a' a•) 
I 1,2 - r l' 2 

1> (_ii) 

where "Ji\~ given by: 

li - ,"} t ' • .... 11,~a;•••wap 

Alternatively: 

R;Cb: <!> __ ((1 ) , /) , = J(( :s) ( a , lr.<1' ) 
1· p-1,p r p-1 p 

. 4:(:JJ) 

where 3J is given by: 

::;7 _. •w • • ,.,, . 
../.J. = O'l 0'2•••wap-2 J-'p-1,p• .. 

R3C merely states the usual arithmetic rule of precedence 

which is to be applied when parentheses are omitted, and the 

R;A extends· it to cover unary operations. In addition, a choice 

is offered in the bi~ary case, which may or may not be signifi

cant, of evatuat·ing ·formulae in a 'left-to-right' (R;ca) or·· 

'right-to-left' (R3Cb) order. In Genie, the code may choose 

either of these, or he may leave it -to form ... It should also be 

noted that we shall assume th·at R3C also caters for instances 

where function ~ames appear in formulae, and that the red~ction 

table has provision for appropriate action in such cases. A~ 



this leve 1, function evaluation in at"i thme tic f()rmidae, for 

example, can be regarded just as an elaborate form of multipli-

cation. 

An example of evaluation 

To illustrate these points we shall take a 'simple 'arithme

tic language cJ!. containing the names "a", "b", "c" and "d", 
0 

and the binary operations"+" and "X" of rank 1 and 2 respective-

ly. As a model, TJ{, we take a single class of .o.ojects (numbers) 

,/:; {o•, 11 ,2•J, with just 3 elements. Then the reduction 

tables for m and its two operations are final (since no sepa

rate sub-class of ~exists), a~d the valuation operators Jt'lB) 
andx<:> are given in Table 3a, 3h. LetObe thec:,('o formula 

"a + b x c + d", and let it be required to determine the value 

of cJ for the 

1 0 1 +d 1 in /il. 

:.((B) 
1 

o• 

o• •• 
1 I 1' 

2' 2' 

TABLE 3a 

wa· have: 

whence·:· 

hence: 

and 

value assignments 'l' +a', t 2 I +b I I 'l'+c•, and 

Thus, 

l' 2' 
I_K(B) 

2 

l' 2• O' 

2' o• l' 

o• 1' 2' 
l 
TABLE 

c1';;; a+ bx c +din cf.! 
0 

o• 

O' 

O' 

O' 

3b 

ij = 1 1 +• 2 1 X ' 1 ' + 1 0 1 in !}fo 

l' 

•• 
l' 

2' 

·1 1 +•2 1 ,+• 0 1 byJ2a'andJt<:>c2•,1 1 ) 

o• +• 0 1 byJ2·a and JtC~>c1•,2 1 ) 

4 .. 30 

2• 

o• 

2' 

1• 

• 

• 



and <7' ;. o• . ·:.·, by 2a. and Jt(~ >co• ,o•) 

wl:iich completes the evaluation o.£ 0 in 771. • · Reader:s. fami.l,iar 

with formal calculation will recall more elegant developments 

of this sort. 

It can be deduced quite simply from the above definitions 

that if cJ is a w.f.f~ of rank r in cl!_ with elementary sub-terms, 

then its corresponding w.f.f. in Tn_ can be reduced to a recur

sive expression involving the evaluation operator~<:>. Thus: 

whence: 

whence: 

0: , w•o:• w 'o:' l l 2· • • r p 

-11, , ~,; ( B ) ( -v(, ) ( · ( ~ ( B ) ( , , ) ) , ) a , 
v· = ..,r...,,. r · · '·"- · • • • J\... r 0 1102 '· • • ,ap-1 ' p 

A slightly different form follows by applying R3Cb rather than 

R3Ca. This form is important, and may be conceived as the re

sult of applying a general evalu~tion op~~ator ...kto the form.c!ft 

.././( A ) ,d (dJ p. t ) '.--1 AB) r1J ( B) ( -v( B) ( ; t ) ) , ) 1 ) ""'- u· = J.., • ra i =./'\.. .. r \.A.. r • • •,./\... r 0 1 ,o:2. , • • • ap .. 1 o:P 

With this concept, it is possible to express in operational form 
the result of applying the evaluation operator to any w.f.£. in1Jt.. 

of rank r: 

J(<b> =k<f~t1> =J'<'<!~cJ(<!> ... :t!!><~<e1 >,-Kc E2 ), ••• ), 

- a:. ~cl p-1>>,Jtce p>>· 
where Ci stands for a sub-w.f.-f. of !::I 

A second evaluation example · 

To illustrate the generality of the evaluation technique 

we shall take· the simple language cf and evaluate it on a new 
0 

model 7l, in which J· consists of two sub-classe·s, J.·, the · 

class of '-simple' · objects which are values of objects in £ ·,. 
0 

and· Jb which is the class consisting of all ·orde~eci linear· 

sequences of pairs of objects <K,L>, where 'LC¢.. and K is a a 



member bf the s~t f CLA, ADD, MPY, STo~] which we will term 

orders. The reduction rules.f6r~"X 1 » a~e ~iven ln Table 4, and 

the 1:ules for 11+• 0 are similar. 

Rank -~ 
2 a 

Ja 1(( ! ) (a, a ) ; b · x• ! ) (a' b ); b 

db x<:)(b,a};b (B)(b. b)·b 
2 1 I 

TABLE 4. a.eduction tab le for X' in N 

For all 1,. let a• f d and b 1 eJ Then the evaluation 
i a. i . b• 

operators can be defined by the following procedures: 

. K<:>cai,a2),= (<CLA,ai>, <MPY,a2>) 

x<:)(ai,bi) = (b1,<MPY,ai>) 

~(:)(bi,ai) = {bi,<MPY,a1>) 

}( (: ) (bi, b 2 ) = (bi, <S TO, t d>, b 2, <MPY, t d>) 

where t' is a member of (t$ not corresponding to any element in d a 

f'l and d is the parenthetic depth of the. operation sign in 

ltbt x• b 1 II 
1 2 • 

The rules i>r "+'" are similar, with ".MPY" r~placed by "ADD" 

throughout. Now consider the £,ornn1la cl::;, a + b K c .. + d in 

cl/ 0 _. Its reduction under the value-assignment 11.a:1 +a11, llb 1 +b'1, 

"c '+c 0 ap.d "d. 1+d" is as follows: 

a'.a+bXc+d 

• 



• 
whence: O';;; a' +• b' X' c 1 +' d 1 

hence: a 1 +' (<CLA,b'>,<MPY,c'>) +' d' 

and· ( b l · t I ) I d' <CLA, >)<MPY,c >,<ADD,a > + 

and finally: c:J' •: (<CLA,b'>,<MPY,c'>,<ADD,a'>,<ADO,d'>) 

wh.ich completes the evaluation of cft in 71... As another example, 

take: 

whence: 

hence: 

and 

cf': ax b + c x·d 

g .a a• x• b 1. +' c• x• d' 

( <CLA, a '.>,<MPY, b '>) +' (<CLA, c '>,<MPY, d '> )·· 

by a double application of J2a and ,e:>cai,a2>· 

cJ '= (<CLA,a '>,<MPY, b'>,<STO, ti>, 

<CLA, c '>;<MPY;·d '>,<ADD, ti>). 

which completes· the evaluation of cl' in T(. 

From the foregoing two simple examples, it is hoped the · 

reader will infer the general etructure of evaluation processes 

in.Genie. 

Another example of the type of formula whlch can be eva\u-

ated·is provtded by the predicates introduced in Section 2 ·in 

the definition of Schema IV. By this we understand a·formula 

constructed from elementary terms with values O (false) and.! 

'(true); and the binary connectives· 11 or11 and "and" and the ·unary 

operation "not" of the propositional calculus. It is usual to 

assume that the rank of rt.and" exceeds that of "or". In 'this 

case an ·ev.aluation procedure is exactly equivalent· to familiar 

logical device of evaluation by·truth table. 

Evidentlf -any of the so-call~d 'algebra!~ coding languages• 

in present use involve several of the 1 1angu~ges' which w~ have 

been categorizing. Almo~t all of them permit the use of some 
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form of algebraic expression, and a 'Boolean• expression. In 

addition, it can easily be seen that the 'meta-language' used 

in Section 2 to deseribe definitional schemata and their proper

ties can itself b~·p~t into a form which satisfies the require

ments of Sections ; , and 4. This leads to a I control· language! 

which is extremely useful in the manipulation of other expres-

sions. For example, a sequential definition may be written 

in the form: 

Example: P ·=A+ B + C + Return 

where "P" is the name of the seq1,1ence, and "A", 0 B11 , 11 C" stand 

for commands. The special equality sign"•=" is used to dis-

tinguish the formula which follows as belonging to the control 

lang\lage rather than the formula language; "+" 'is a 'sequencing• 

operation .. 

Hence, in practice, we have to eontend with a mixtu~e of 

language conventions, and to have the ability to switch rapidly 

from one set to another. This t.s a familiar enough situation 

in reading as'4llathematical text, where the mingling of English 

phrases and formal expressions generally causes no confusion: 

if there is·a chance of this happening, the writer would use 

constructions such as 'the formula ••••• • and 'the equation •••• •. 

Much the same thing as thi·s is done in Genie, i.e. the language 

in which a formula is t.o · be g·iven is indicated by a special 

* sign ·which precede·s 1 t. Often, · as indicated above, ,a particular 

These special signs have universal significance, i~e. are 
,' ·, ' ' 

common to_ all the admissible Genie languages. 
; .' ' ' .. ' . ' . 

form of • equa·ts • sign 'is sufficient; at other· times, as in 

• 
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using predicates, the ·special, sign 11 :lf't: set:ves the satne, purpose. 

In terms of computing, a chan-ge from- one language to another 

can be made by the trivial device of changing one word which 

contro li:1 an indirect addressing sequence:. 

One of the immediate applications of Genie :ts to systems 

whose objects are to be •symbols•, •'formulae I and 1:!quations •, 

i.e. linguistic elements. In such oases a famili·ar situation 

arises in that formulae may contain not the nanes of objects 
' . 

but concrete examples of the objects themselves, which must be 

displayed between quotation marks, as in the following example 

from a hypothetical symbol manipulating language: 

Example: T := A then "+" then either "l" or "X"· 

Theoretically, t·he numbers appearing in an arithmetic formula 

could be treated in the •ame·way, and this is the case internal-

: ly·to Genie, but their importance merit~ a special exterrial 

treatment. 

The nec,ssity mr the devices of •embedding' one language 

within another and 'displaying' symbolic objects is purely 

practical, and may be removed by the use ·of additional names. 

To summarize the results of this section, ·we have- required 

that a Reduction Table be associated with each formal system 

which effectively determines a model in which its formulae may 

be evaluated. Each binary operation may be declared to be 

associative or not, and if ·not·it may be specified to have left-

to-right or right-to-left precedence. As a control device, 

each ---formula must be preceded by an operator which. effectively 

selects the Character Table and .Reducj:ion 'l'.a'ble for th-e en-

suing formula, which is terminated by some·p~nctuatiort opera~ 
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tion at parenthetic level zero. It is quite possible that 

elements in the chosen model may be the representation of some 

formal system which in turn may be subJ•ct to evaluation, so 

that we conceive of evalua.tion as a cascadng process which con

tinues until no further reduction can be made~ The process 

of evaluation is initiated by an •pplication of the E~ecution 

Rule R4 which is described in the next section. 

2• Machine Realization 

The class of machines we are concirned with is difficult 

to describe in an abstract fashion. To be sure, they are all 

finite automata in a strict sen$e, but they are also organized 

in a way dictated by history~ economy and usage, and it woul~ 

be an elaborat, process to describe such organization in 

general terms. Our purpose in using the idea of a formal system 

in giving definitions was to extend the classes of objects 

which could be defined without unduly extending the mechanism of 

value assignment. When our, interest turns to enlarging the 

class of machines on which valuations can be made., then the 

task of generalization will be faced. For the sake of pre-

sent simplicity, however, we shall consider just that narrow 

class of machines into which presentday sequential computers 

fall. 

In short, a machine contains a binary, addressable storage 

unit S containing W wo~ds of b bits eabh, together with a fur

ther n bits of unaddressab_le storage T. Also, there· exists a 

fini_te set of it( command operators K1,K2, •• • ,Km such that, for 

any assignment of bits to s, T, which we ca.n. write <S',T'>_:, 
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there exists a rule: 

<S", T"< = Kt ( <S 1 , T • >), t = 1, 2, ••• , m 

which determines uniquely a new assignment <S",T">. 

We shall assume the reader is familiar with the characteris-

tics of stored program machines, with the techniques of micro-

coding, interpretive coding, and with specific examples of 

single and multiple address order codes. In particular, it 

should be noted that if a machine contains a program Pin p of 

its.storage cells, then it becomes equivalent to a new machine 

with w1 = W-p storage cells, and a set of command operators 

Kl' K2 , ••• Km' P. For, given a machine configuration <S', T '>, it 

is possible to determine uniquely the configuration <S",T"> re-

sulting from the application of ~ 

Implicit in the design of the machine is a sequencing rule, 

which determines, for any state <S' ,T'>, the command o.perator 

Kt which is next to be applied. It does so by observing a par

ticular group of cells in T (the control counter) which desig-

' 
nate that word in S which contains the code "t" of Kt. The or-

der code is such that only a small subset of s, not more than 

4 or 5 words at most, need be considered in the application of 

a given Kt. In this subset, one or more words may be always 

contained, by implication (the 'accumulator', 'quotient• re-

gisters, etc.), and ·the others· explicitly stated by the command 

code t. For this reason it ·is simpler to regard the set [ Ktj 

as the product of the sets of oTder codes [o~ and addresses 

[Aj), the latter referring to elements of s, perhaps, .as 

in instances of B-modification, after 'inflection• by _elements 

in·T. 
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The purpose of this section is to show.how such·~ machine 

may be used for gerieral evaluation, This requires a representa-

tion in the machine ()f the command operate'i:'$1. at).d operan·ds 'of 

the mode 1. There is.evidently two ways of ·a'Chieviilg a ·rep re-

s~ntation of.the evaluation operators: either the· mach'ine has 

in the set .[o1 ] an ,c;,rder whi~h is precisely equivalent· to.· 

one of th~ given operators, or it does nc:,t. 'Il'l the first, case 

a 'direct•. representation of the evaluator Js possible; in 

the second case, the evaluation must be·represented by a se-. 

quence .o.f ord.ers, which. is equivalent to m~difying the machine 

in the way indicated above, and the 'indirect' r.epr~.sentation 

is achieved through the use of .. an. open or· closed subroutine. 

We shall always assume that f.t is possil>le to name ·a single 

op.erand .by means of one address,.· so that a unary operation 

actin:g o.n a given operand can be represne·ted by just one command 

o.perator in the direct catJe. In con~.idering binary operations 

we shall adcp~ the: corivention, since we have in mind primarily 

a single address mac.hine, tha.t the first.,operand is always 

con .. tained in a fixed storage :register 'U', and the second is 

to be ~pecified by an address. In this case, too, a direct 

represe,ntation of a .binary operation amounts to a single machine 

command operator. ·. Given this resti:iction pn the first operand; 

and given that the result of any operation, unary or binary, 

resides in U after execution of the operation, it is possible 

with. the help of the Substitution Rule R3 to derive a sequence 

of command operators for evaluating. given w. f·. f. on a particular 

machine •. The precise details. are. easy enough ·to work out. 

The only point to make here is that by describing the evaluation 

operators in terms of command· operators we have sufficient in-
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formation to effect an evaluation process on the machine. Any 

other information that is required is for improving the efficien-

cy of the process in one way or another. By thus separating 

the essential from the inessential, we can achieve a great de

gree of flexibility in the types of evaluation procedure which 

are applied, and it becomes easier to decide how much effort 

should be expended in minimizing time or space requirements in 

the translated code. 

Clearly, sequences of command operators in the machine 

are instances of Schema V, and references to special sequences 

of commands used as closed subroutines are instances of Schema 

VI. We shall assume, therefore, that the machine obeys a 

Sequencing Rule similar to R2 and that it maintains a 'path-

finder' list of references to subroutines which are in use. 

In any given machine, of course, this r.ule is more or less con

tained in the hardware, although none has been built with com

pletely automatic control of the pathfinder list. 

Before considering in detail the realization of operands 

it is necessary to discuss the ways in which they are to be 

addressed by a command operator. From the remarks in Section 

2 and the present section, we can see that operands may be 

classified into five groups: 

(1) Named auxiliary variables 

(2) Named external variables 

(3) Named parameters of a definition 

(4) Implicit variables - ·iu•, the quotient-register, B-

registers, control counter, etc. 

(5) Unnamed auxiliary variabl~s, generated as in the re-

duction from implicit to expliQ~t sequencing form, or by 'dis-
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played' operands and numbers. 

There are various deductions to be made from this ~las~ifi-

cation. -First, note that in jome cases it is relative to the 

structure of the definitions: external variables o(one defi

nition may be the auxiliary variables of another, and in fact 

the distinction parallels exactly the Symbol ·Table control rule 

R2 given in Section 2. In Figure 1, for example, we hav• re-· 

presented the definitions Dl and D2 inside the set ~f definition 

D3 which is in library form. We then know that the external 

variables of Dl and D2 are auxiliary to D}, that the auxtliary 

variables of Dl have no significance outside Dl, and iimil~rly 

for D2. Pis a pointer which moves ~teadily through each de-

finitiori as·tt is processed, and in Figure 2 is represented· 

the form of the· Symbo 1 Table at· Vario.us stages of processing. 

D3: +P ST· ST ST ST St 

Dl:L. + pa· 

+ Pb 

I f I I Pe 
Pa Pc: 

-.! .... Pd. 
Pb 

D2:[. + Pc 

+pd 
+ Pe 

FIGURE 1 FIGURE 2 

In position Pa it is at the beginning of Dl, at Pb at the end 

of Dl, at Pc at the beginning of D2, and so on. The conclu

sion to be drawn from this is that providing the evaluation 

of Dl does not call for the evalua~ion of D2 1 or ,vice versa, 

then the maximum number of named y~riable.s in us.e .·at any one 

time during the execution of D3 is the. same as the maximum length 

4-40 

• 



• 
attained by the Symbol ?able. This. fact is used in assigning 

addresses to names appearing in D3. For any· library program a 

similar argument holds, and a region of storage is reserved 

for named variables in groups (2) ·and(;). It is not necessary 

for such space to be permanently reserved, and it is taken im~ 

me().iately prior to the execution of a library routine and re

linquished a.f terwards. 

The restriction imposed on the use of D2 by Dl in the last 

paragraph can be removed in the case of library definitions: 

they may use one another, and themselves, to any degree of 

comple~ity, and are thus the most, convenient com9uting units 

to handle. 

Each definition in functional form refers to its parameters 

in a.region of storage whose address, by convention, is con

tained in a certain fixed cell in the .machine. The fact th~t 

an address may in fact refer to another address for its data 

leads to great fl~xibility here.· With regard toj:.he implicitly 

used operands - little can be said of general significance, since 

the use of these is closely related.to machine design. It is 

sufficient to recognize their existence and consider the pro

blem of what to do when cells in this group are us•d in diffe

rent ways by two intera:c.ting subroutines. For if Dl(I) arid 

D2(I) denote the sets ·of names used in definitions Dl and D2 

respectively, then clearly just that set Dl(I)nD2(I) must be 

'saved' when Dl ~alls for the use of D2, and 1 unsaved 1 after

wards. This is a simple algorithm to code, and it~ achieved 

with the help of .. the working storage region described in the I 

next pa·ragraph. 
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· Concerning the last group of unnamed objects (5)~ it is 

clear from- the .nature of. things that one of these cannot pos-

sibly be referred to in anot.her formula, or in the same part of 

the same formula, and a simpler addressing scheme can be used. 

Moreover, from the inductive nature of the evaluation procedure, 

it follows it is only necessary to make the 'intermediate re

sults' available in the inverse order to that of their creation, 

so that a linear 'pushdown• list is maintained fo~ results 

such as these., and it is shared by all routines which use one 

another, si~ply extending and contracting the list as they need. 

Exactly the same treatment can be given to variables which are 

required to be saved from the implicit variable list. 

To summarize the present position, it has been shown that 

to use a machine for evaluation purposes it is necessary to 

express the evaluation operators of a particular formal system 

in terms of the command operators of the machine. This, and the 

reduction of formulae to an explicitly sequenced form leads to 

the formation of •programs• in the machine which are all ulti-

mately dependent on the automatic execution of the command 

operators by the machine hardware, although it is not always 

convenient to conceive of programs in these terms. Each progran 

may refer ~o its operands through one of the five lists contain

ing parameters, named variables {internal}, named variables 

(external}, unnamed variables, or implicit operands. 

We now pass to the description of the realization of 

operands in the machine. It has already been said that the ob

jects of study in any Genie language are very general in nitute, 

and the fact that for immediate purposes we allow. them to be just 
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•numbers• or .. •names• should not detract from this. :At 4 future 

date we may equally_ chose 'l;lnes', 1 points•,- or 's-ets•. 1 The 

realization is best .given with reference to a particular machine, 

in this instance the Rice Institute Computer, which is a single 

address machine with: a word length of ·56 bits, t~o of which 

are ~ontrol 1 tags, and do not enter the arithmet{~ unit~ A 

given address may at any-time denote either the location of'.an 

operand, or a repr~sentation of the operand itself or another 

address. Each.address may be modified by up to eight B-registers 

at one time, one of these being the control counter. These fea-

tures are not essentia 1, but do lead to a great· de·al "'of effic'iency 

in this type of.work. Th~ chosen realizations are as ~ollows: 

(i) Numbers 

Numbers are g_iven in one of two binary forms. If a number 

is a positive or negative integer with value less than 2 14, i~ 

has a d~rec~ int~ger representation in the address portion of 

_ a word. In other- cases a number has 'floating point' -rep~eseri-

tation of a conventional type in a full machine ~ord, which 

also includes the integer %epresentation. 

(ii) Names 

These_too have both a direct and oonventional form. A 

name consisting of a single. character may be given directly 

in the address portion of a word.· In other cases a name of up 

to nine characters in leng,tb is ~tared to the left hand side of 

a full machine word. If it is of eight characters or less, it 

is terminated by a special character code. 

(iii) Formulae 

The realization of formulae is based on the idea of formula 

1 rank 1 which was derived from the inductive definition of w.f~f. 
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in Section 3. First, the names appearing in formulae are realized 

by their (Symbol Table) addresses. Second, unary operations which 

apply to names appear in coded form in the same word as their 

addresses (they may be up to·seven in number). Last, a formula 

of rank r with p terms is represented by art associative list of 

p+l words. The first is a heading word which contains certain 

information about.the list. The address of the list {i.e. of 

the formula) is the address of the heading word. The remaining 

p words give the p addresses and unary operations on sub-for-

mulae. In Figure 4a, each box represents a·term in the list, 

and the arrow out to the right connects it to its *next• ele• 

ment. Inside the box is written the name of the element to 

which it refers, together with any unary operations which apply 

to it. If the term refers to another formula, a downward 

pointtng arrow is drawn from the box to the 'data~ Figure 4c 

shows a complete associative list. The last word in the list 

completes a 'loop• back to .the heading word, which is marked 

with a control tag 112", so that the detection of 11 2 11 in a 'data• 

word is sufficient to indicate that the data consists of a new 

list, and detection of 11 2 11 in the •next• word indicates that 

there ar.e no more. terms· in the current list. The heading word 

itself contains a reference to a higher order list, so it·is 

always possible to trace a path through a formula to arrive at 

any given level relative to a particular point. 

FIGURE 4a: The list of rankr: fPa r j 

·2 

J .;::J 1 al}--~ ~--·---> .... 

< 
Heading List Elements 

Word 

• 
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FIGURE 4b: List words on the Rice. ln:s;titute Computer 

Bits:l 15 21 27 39 54 
rs t Rank Depth --=--L-e_n_g_t_h---.,..., ......... E-l_e_m_e_n_t __ i_n ____ l 

Heading 
Word ement r d p !higher list 

·~-~~l--~-L~------'-~--~~~...._~~~--~-, 

List 
element 

l 15 21 27 2 

I Next IRanrk. I Unary ADDRESS 
~-:. __ i_e_m_e_n_t _ _. ________ it oper~t._i_o_n..:.-----------

Address Type 
(Direct, Indirect, 

Immediate) 

FIGURE 4c: · Realization of ·the formula "a + Kgt - 1" 

(iv) Definitions in Schemata I - IV 

When a non-functional definition is given by means of an 

equation, it is represented by placing the heading word for 

the defining formula in a second table, the Value Table (VT) 

whose elements are in (1-1) correspondence with the elements 

of the Symbol Table (ST). If the formula consists simply of a 

name or number then the representation of that element is placed 

in the VT. Associated with each formula is a list of external 

variable names, and this is appended to the approprate ST en~ry. 
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x 

.. 
Figure 5 shows the realization of two formulae in this way. 

When a definition is given., as in Schemata II and III, in terms 

of several formulae each of these is at first represented in the 

way described above, (Figure 6a). It is a simple matter., how-

ever:, to process this representation in order to remove the 

auxiliary variables from ST, leaving a 'formula' representation 

of slightly more complex natu·re (Figur_e 6b), at the same time 

obtaining.,as before., a list of external variables which is 

appended to the appropriate ST entry, Other information which 

is contained in the ST word indicates the 'language' form of 

the formula, the nature of the definiend, of the schema by which 

it is defined, and whether or not it is in functional form. 

If it is given in functional form., then the representation is 

given in sub-section (v) below. 

FIGURE 5: Realization of the equations: "y • 2 + 5x" and 

ST VT 

.2 
0 + Formula •2 + 5x• 

~ (x) 

• 2 
+ Formula •a+ 3b 1 

(a,b) 
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FIGURE 6: Realization of the definit~on: 
0 y = 4aa,x = m + 1, a= 4m - 111 

• (a) The initial list structures: 

ST VT 

{b) The final list structures: 

ST VT 

!//!IA J!/111{~ _·-. __ _ 
y ~-/ x :.-c::n-~~~ 

1 .--··---z-···---~ '-~ 
I ~----=:~_: .m_t -~-11-11 
I ,.------------·----.J. 
. ! ,,_,.--~~~~~---\..~,r,l· ... , 

,(T --=-.......... -~;>l - l i-1 
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(v) Functional Defin1tions, and S~hemata V - VI 

For practical zeasons, ~equential definitions and functions 
. ' 

are realized by first effecting the trart~lation to •program•.· 

form which was indicated at the beginning of this section, on 

the basis of the Reduction Tables for the various definitions 

which are given. This realization resembles machine code 

closely, except that it retai~s addi~ional information for 

ease of modification. It is very quickly converted into genuine 

machine code, and in certain important instances no alteration 

is necessary. For his·torical reasons, we refer to thls as 

•a-code'. By retaining 8-code and the portion of ST associated 

with it a completely symbolic representation of code can be re

gained for reference purposes, a~d in practice ~ese ar~ auto-

matically retained on tape (paper or magnetic) until the coder 

decides that the program is running satisfactorily. 

This concludes the summary of operand realizations that are 

at present provided in Genie. They will be reported in greater 

detail elsewhere. In addition to ~ese, hovever, provision is 

made for the arrangement of operands into regular arrays of 

one or two dimensions: the vector and matrix forms. Where such 

forms are desirable, appropriate evaluation operators may be 

provided in t~e model and the operand names in formulae can 

then refer to such arrays either as a whole, or element by 

element. All array elements must be of the same type, and they 

may themselves be arrays; they may also be defined by reference 

to their position in the arrays, as in the case of triangular 

or band matrices. The argument for restricting Genie to arrays 

of not more than two dimensions in that in this way we are in-

• 
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eluding by far the majority of instances which are useful, 

and for which efficient manipulative algorithms are known. In 

any case, higher dimensional arrays can usually be reduced to 

arrays of arrays at little cost. We have adopted the universal 

convention that elements of arrays shall be indicated by sub-

scripts which take positive integer values. 

We are now in a position to give the final rule wd.ch con-

trols all processes of evaluation. 

Rule 4. (The Execution Rule) 

A machine is controlled by a {supposedly infinite) linear 

sequence of characters. In this it recognizes names, numbers, 

operations, formulae, equations and definitions according to 

the rules given in the preceding sections. For each name it 

determines what type of operand it stands for, either by implicit 

assumption, by deduction, or by explicit declaration. It also 

determines which other named objects a definition depends upon, 

and whether or not they have themselves been defined. If they 

have, then the dependent variable is evaluated according to the 

model which its definition implies. By a continuous scanning 

process, this continues until no more evaluations can be made 

on any entry in the Symbol Table. A further definition is then 

read in, and the process repeated. An example will illustrate 

some of the consequences of this rule. 

Example: We shall assume that the machine contains the Character 

Table and Reduction Table for an albegraic formula language. 

Consider the following set of commands and definit:lons. 

[,c = ;.,14159 
r 7 sin{x) ·= z...•• .commands evaluating sin(x) •• •_J 

A is an integer 

Q[K = sin(~/4) - 2sin(;,c/4) 
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Q(t, iiu) 2 = 3t + s.t - K 

g = 2K + 1 

m = A sin 31<.+ A2g · 

u = m + S/mj] 

••• etc •••• ]. 

. . . 
The opening bracket delimits this set of definitions; when 

it is closed, all the information provided inside it will be -
erased from memory and the machine will be back in its original 

state. This is not always desiraole, soa set of definitions 

may be named; in this case when it is closed all the informa

tion contained inside it is removed from the ST but saved in 

temporary storage. The name of the definition set is retained 
... · 

on ST and ma·y be used to recall ·the information to ST at any 

time. In this way any user or group of users may build up pri• 
- ·. . . . 

vate subroutine libraries, languages, etc. and call them into 

the machine at the start of ari evaluation run, as well as using 

the main facilities of the machine. 

The first two definitions in the example give"~" as a 

number and "sin" as a function. Following this, the number 0 A" 

is mentioned in order to place it on ST as an external variable 

of the set of definitions which follows. This is named "Q", 

and any subsequent call for it will bring into ST all the defi· 

ni tions contained in the following brackets. Here "K" is de-

fined in terms of "sin" and"~', which are recognized as known 

quai&tities and an evaluation of "lt" follows. The name"Q11 is 

also given to the sequential definition, which is the main de~ 

finition of this set in the sense that all others (K) are 

auxiliary to it. Q has an input parameter "t" and output 11u•. 
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In the cotnmand.s which follow; Ilg" 1 ts. recognized as depend'ing on 

the e_xternal qu-antity IIK~' only and this, has previously 'been 

defined, -so that a simpler command can be written here.· No 
further sim.p.lific~tions can be made and Q is retained in storage 

in its a-co.de form. After the closing bracket only ",c",: 0 An; 

11 sin11 and "Q" remain in ST.· Af.ter the final closing bracket, 

nothing remains in ST and the machine proceeds t1the next.de

finition set. 

The Execution Rule implies a continuous co~trol of the 

finite number of storage elements in a given machine. In the 

present Genie system this is achieved by placing all'free' 

storage cells in a list of special structure which allows the·. 

evaluation operators to 'give' and •take' as many cells as they 

need _for applicatton, This works well until storage sp'ace be

gins to be exhausted, and then various re~overy Gperatidns can 

be called into play, aimed first to rearrange active regions 

of memory to bring all the available cells together in a single 

block., and finally to put all definitions not currently in· use 

into temporary storage. In the latt~r ~bnne~iion, it will be 

noted that the Pathfinder list gives a complete descriptlon of 

routines in use at a given time. While stich techniques as ~hese 

have been shown t9 be feasible, further experience will be 

necessary before reliable conclusions can be drawn with· regard 

to automatic storage control algorithms. It may well be that 

the algorithms will vary with the type.of application for which 

the machine is in use. 

Many of the automatic feature& of Genie are also available 

under programmer contro 1, ,transfers to and from magnetic tape · 
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storage being a case in .point, and control of •execution• of 

programs being anoth.er. It is interesting to· not 'e that in a 

mach;l.ne with adequate trapp.ing features some protection c:an be 

afforded against instances where an evaluation procedure is 

started before all the requisite terms have been defined, or 
when ~ome of them are in auxiliary storage, and appropriate 

recovery steps taken. Such techniques seem very promising and 

suggest a new application of interpretive-type programs, the 

usefulnes.s of which has been. in doubt sin·ce the. advent of re-

liable compilers. 

It should also b.e noted that the Execution Rule can be 

treated simply as a loading routine, and as· an input routine 

for use during execution of a program. In addition to this, in-

dividual routines may be used for the input of numbers during 

program execution, outside the control of the Execution Rule.· 

Printed output does not affect the results of an evaluation 

process at all, and it may be obtained either in.the form of 

definitions or formulae in certain standard formats. Otherwise, 

suitable output subroutines may be compiled by selecting a 

descriptive language and defi~ing it to Genie •. ~ useful ,tech-· 

nique involving output routines _is to recognize certain 'print' 

operators O 1'! ·" (say) which may appear at any point in a formula 

and result in the printing .of its operand wheri that is evaluated, 

e.g. in the defini tto·n: . · · 

Y = ( -2n <t!~A1) + n I:i~1(Ai2))/N 

the presence of the operators "n" would result in the printing 

of th.e results of the. two summations during the evaluation of y 

without otherwise affe.ct.ing the result. Normally, sccb· operators 
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* are controlled by sen,s.e ,w_i;tcbe,s • 

These and other techniques are discussed in detail in 

a separate memorandum. 

6. Conclu.sions 

In terms of the presently active generation of computers, 

the Genie structure provides' at a low cost in programming the 
, , •, on ' 1 

basis upon which convent~al assembly, compiling, ·loading and 

interpretiie r~utines can be achie~ed. On th~ Rice I~stitute 

Computer, Genie itself takes less than·2,000 orders., 'and on 
. . 

these both an assembly program and an algebr,aic' compiler of° 

some sa"phistication can be built with the addition of about· 

500 orders apiece. Even on a machine such as the IBM' 709, i't 

is probable that the basic effect ~ould be achieved i~ l~is 

than 15., 000 orders. More important, however.,' is the 'fa'c.t' that 

the addition of tao re comp iica ted ianguage's becomes inc·reasingly 

easy since their evaluation operators ma'y be described in terms 

of those defined previously.* .There is an ab.srilutely minimal 

The simplest language in Genie is, of course, binary machine 

code. 

increase in storage requirements, represented by the size of 

the combined Character and Reduction Tables and their appen-

dages, but this may be as little as 100 cells on a given machine. 

Often the Tables for two languages will differ only slightly 

and can be combined into one with.only slight cost in changing 



, .. 
from one language to another. That this can be achieved, at 

the same time bringing a unified approach to computing machin~ 

appli~atioris seems to weigh in favor of the type of a~aljsis 

represented by Genie. 

There are two cases in which Genie can be applied to more 

recently designed types of machine, almost without alteration. 

The first is in computers with parallel computing ~ni~s and 

shared memories. In this case the Symbol Table and all defini-

tions stemming from it will be in the memory as ~efore. Now, 

however, there will be two or more units applying the Execution 

Rule to the Symbol Table, each subject to. the same conditions 

as before except that it will be possible to detect, ef any un-

defined symbol, whether it.is in process of definition by some 

part of the machine. It may then b~ desirable to delay the eva

luation of quantities which are dependent on this, or in some 
·. ' . . . 

circumstances a second evaluation may be started, safeguarded 

by a trapping interlock device, in the hope that the first 

evaluation will be completed before its argument is required 

by the second process. A similar situation arises even on 

single sequence machines when a.program is 4ependent on data 

supplied by a parallel operating input device. 

An allied problem is concerned with human interaction 

with the definitions in the machine. Such interaction is in

effectlve without communication at the symbolic level which is 

provided by G~nie, and continuous control of pro~lem execution 

is mandatory. The Symbol Control Rule was devised with this 

applica.tic>n in mind, where several coders simultaneously share 

the machine and the •subroutin~ libr~ry' without getting their 
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own mnemoni.cs and subro.utine name.a con.fu,ed. Preliminary. 

studies indicate that th~ present.rules are adequat~ for ~ime

aharing between a number of mathematician-oper~t9rs and a long 

production routine, even o.n a single sequence macb:ine, be~ause 

of the addit·iona 1 information carried, in ST and, the, pathfinder 

list, which enables evaluation to be interrupted at almost any 

point in a program. 

It may be argued that the simplicity of Genie is achieved 

by oversimplifying the translation. pro~ess, but.we feel that 

this is untrue. An actual process of translati.on from 4 formula 

to sequential code consists of three parts: 

(i) An initial equivalence transformation of the formula. 

(ii) The translation into sequential code. 

: (iii) A 'fina 1 equivalence transformation of the sequential 

cod·e.· 

Now in fact we have described only (ii), but Genie. doe:s in

clude routines of types (1) and (iii) which are applied with 

varying succ~ss in order to improve the efficiency of .the evalua-

tion. * The prO~lem is easy enough to state, but not easy to · 

* Equivalence transfottmltton for arithmetic, for example, 

are implicit ·in the axioms of Peano; equivalence tra.nsf_ormati_on 

for code have been given by Iu.A.Ianov, •on equivalence .an~ 

transformation of .Program Schemes', Dok.Ak.ad.Nauk. s.s •. s.R. 1 

.!!l· No. 1, 1957 • 

solve, and since we are interested in solving the problem by 

machine, the first step is to analyze it into these three stages • 

At a later date we may hope to achieve the synthesis arrived at 

by a human coder. Another relevent point here is that (iii), 
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for e·xa1.'li¥>le, is applicable to the results of many different 

translators., and it is best applied after, rather than during 

code constructi·on. 

The form·al description of computing proces:&es from a theo

retical standpo.int has been .given by A.P.Ershov{3), and this 

approach a ls·o · apirears to have a wider application at the prac

tica 1 level than can be achieved by syntactic mean•s. One of 

·the most beneficial results we can hope for is that with the 

flexibility offered by routines of the Genie type a powerful· 

language will come into. universa·l uses in communication with 

·machines. 
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