
•

•

Rice Institute Computer Project Programming Memorandum #4
June 1, 1960

Applications to Automatic Coding - Part 2

The Elements of the Genie System

J.K. Iliffe

1. Introduction

The aim of the Genie system is to provide a set of routines to

be used in constructing programs for The Rice Institute Computer in

both numerical and symbol manipulative fields. Precise forms of

coding language are not defined here since it is our intention to

allow the coder a fairly wide choice of the forms he will use; how-

ever, as starting points in this inquiry, certain languages adequate

for the description of numerical and analytical processes in a natu-

ral fashion were considered in detail, and by putting these in para-

metric form, it waa hoped to achieve greater generality. The formu-

la language FLl and the symbolic assembly program AP2 are examples

• of forms permitted in Genie, and these will be used below for purposes

* See Programming Memorandum 15.

of illustration.

It is clear that a large part of this type work is independent

of any particular machine, and that it is to our advantage to keep

it this way as far as possible. Consequently, most of the characteri­

zation of 'source languages' which follows is machine independent up

to the point where a realization is chosen for a particular computer:

the choice of representation and provision of basic sequences of

• machine code are matters for intervention by a coding specialist, al-

4-1

·· though the problem o.f minimizing the· amount of· .work required in

this respect is receiving attention. The point here is that the

realization is no concern of the average customer.

Construction of symbol manipulating routines is in its in-

fancy: much work is being done and some is documented, but none

has received such general acceptance _t:hat we can refer to this

in order to shorten the task of description. Unfortunately,

therefore, much of the present memorandum consists of statements

of .the obvious which are necessary to illustrate an approach to

the subject rather than to advance new facts. By its very nature

a description (using symbols) of symbol manipulative routines

gives rise to speculations, of which some are interesting and

others lead to endless tail-chasing: most of these are latent

in the structure of Genie, awaiting further investigation. our

primary objective, which is the production of an efficient
,, J ;

translating system of some sophisticatfon, does not permit diver-

sion to these at the present stage. . '

It may be worthwhile, however, to try to make one aspect

of our approach explicit; and this is conqerned with the _dis­

tinction between syntactical and formal systems which· is found·

in logic, although the following presentation is far from the

; u't'ttiaate logica'l precision which one would hope to achieve.

where~'s both syst~ms as:cribe' predicates to certain sets of objects,
' .. ' 1'.\ ·' ;., . . ' ~ .

they· diffe .. r ··in the way in which the objects are understood. In

•

tne :first '(syntactical) case ~he objects are words which are

sti-:t'ngs of 'letters in ari alphabet;" in the second case, tb'e ob­

je'cts: are ··genera't~d from primitive atoms by operations. 1£,

. folldwtng 'H0
• :l3. Curry(l} we caf{ the objects o:f.a formal system •

•

•

the~, then they consist of an inductive class whose basic

elements are the atomic obs, such that the ap~licatiorl of an

operation of ~~!ree K to an ordered sequence of Kobs is an ob•

Obs constructed in different ways are in general distinct. A

representation of the formal system is obtained by assigning a

unique concrete object to each ob in such a way that distinct

objects are assigned to distinct ~bs. Now it is possible to

describe the properties of a syntactical or a formal system in

a metalanguage which contains names for the obj~cts of each

system, verbs for the predicates, and so on. The unavoidable

fact is, of course, that to communicate anythin& at all about

the formal system, we must have· a symbolic representation for

it, and at first sight it the~ becomes difficult to distinguish

it from a syntactical system. The distinction becomes clearer

when one observes that a formal system is invariant with respect

to changes in representation, so that, for example, no distinc­

tion is made between t~ propositional calcul~s in prefix or in~

fix notation, or between an arithmetic formula as specified by

a FORTRAN statement or as stored in a list structure in a machine.

As a matter of taste, the idea of a formal system is pre-

ferred here, and it affects the way Genie is constructed and

described. As Curry(l) points out, syntactical systems can be

reduced to formal ones by formalizing the operation of concatena-

~, so nothing is thereby lost and the stru·cture of Genie is

particularly designed for investigating more sophisticated

languages than are currently allowed. It seems to the writer

that from the practical point of view t'he present scheme has

advantages over other systems in that th~ next step towards

;

•opl1atication is.made at less cost •

. Our obje~tives have thus been to produce a machine system

whose external behavior is such that is recognizes certain de­

scx-iptions of • source languages 1 in ·.a given· canonical form and·

proc~eds to .'-read· sequenc.es · of symbols which. repre~~~t descrf:.Ptions

of computatiotla. l procedures and, where, possible, to·,' exe·cute'

such procech•tes in a wide sense. Internally,. the system is ·,as·.

general and 'bomogeneous as possible, with an· organic ·structur.e

which permits-continual growth and modification of. the se~_of.

lang~ages wq.ic~ .i;s i,n ·Use. It .will :be.come apparent ,that Genie·

differs from compa~ab.le sy,stems. in. a. number of ways, ·but the-se.

can .mostly b.e traced down to a sing.le significant change,· viz, · . .
the elimination of the separate ideas o·f • assembly'·, •.compiling',

•execution• {in th.e ol.d sense), 'inte.rpr.etation' '.and ,so on,, by·,

means of a general principle of e.va lua tion. which .includes a 11 -

tf;lese p.rocesses a~d allo:ws them to be controlled .automatically

by the machine. This gives to ·Genie a· mor.e dynamic character
/

and lead.a to _some c;hanges in the a·ttitude' of the co.der to1 t'he ··

machine which .may loos_ely be d·escribed as putting t·he two ·iff.'a

'conversational' frame o,f mind. To be sure, the··o'ld·conce:-pts

are recoverable, .but it is felt that this stu.dy may lead to ad-

vances in the ,use of para.lle 1 .machines •.

In the next section·, some remarks are made. on exp.licit J

and.implicit aequ•~cing of pro~esse$ 1 ,and the behavioT of

machine.s in this respect is characterized. Such an analysis

is in f~ct ind4!.pendent of tbe descriptive form c·ho·s.en, aa.d· t·he·

definition. ~f a class· of su.ch forms··is ~elayed·until<Sec,tion>:3 .• ·

It is then ·Jl:ecessary. to .. determine the ... classes· of o·bJect.s which

can be represented by the Genie ~anguages, and the types of opera-

4.4

•

•

tions which can take place bet~e-n them. Thes~ are chosen

largely with our current inte~esta 1u mind aithough in principle

any other collection of objects and operations could be chos•n.

It is then possible (Section 4) to describe the evaluation pro-

cess, which is common to all languages. In Section 5, the class

of machines which we are interested in is introduced with parti-

cular reference to the Rice Institute Computer and the realiza-

tion chosen for it.

2. Sequencing and Procedures

It is an accepted hypothesis that all effective procedures

can be represented on one hand by recursive functions, or on the

other by descriptions of Turing machines; while we wish to pr•-

serve a link with theoretical concepts, it is clear that neither

of these extreme representations is suitable for practical or

•natural' descriptions of a procedure. The choice of descrip-

tion is a subjective matter, and the first observation concern-

ing our current aims is that within Genie the coder can choose

from a spectrum of forms running (almost) from one extreme to

the other.

As the element of a procedure description, we $hall take

* a definition and write it for the time being as:

In this Section, all symbols are part of the descriptive

metalanguage, other than those appearing in expressions given

as •examples•. In this, Greek and script Roman letters are

employed, together with primes and subscripts which extend the

• class of disti~ct symbols, and certain. special signs are intro­

duced. The numerals have their usual interpretation as integers.

a• (2.1)

where a stands for the object defined by the definitional schema tt
t:J. We shall assume it is intuitively understood that (2.1)

describes the way in which a is to be constructed from other ob-

jects and operations between them. If the other objects are

13, j3', ~", ••• , 13Cn), cons ti tu ting a set /:9, we can demonstrate

this by writing:

a ./J(f::$) (2.2)

For this definition to .be effective·; f,t is necessary that

the j3 1 s be known; in other words, they also must be given de-

finitions which are auxiliary t~ (2.2). Clearly a notion of ee-
: '

quencin& is introduced at this point; the ~·s must be defined

before a can be defined, and it is customary to exhibit this *
sequencing in two ways: (1) by a linear (spatial or temporal)

Disregarding, for the time being, such two-dimensional

presentations as flow charts and 'displayed' formulae on the grounds

that these have to be linearized 1~ the first place to get them

into the machine.

sequencing of definitions which· di rec ts the or.der in which they

are to be obeyed; (2) by the implicit sequericing. of recur~iv~

function definition, which we shall discuss first.

Let us assume for the moment that the technique of: fo~mula

evaluation to be described in Section 4 is understood.· The~· by

an equation we understand a. definition in which J:r.(see 2.2) is

a formula in the set· of· variables ;J. (say). For practical"-: pur-

poses it is not possible to go to th.e lengths of allowing' defiiai- •

4-6

•
tions which are general recursive, but nothing is lost by this

since all the fu~ctions of any use that we know of are primi-

tive recursive, and in any case general recur~ive functio~s

can be described by explicit sequencing methods. We'shall there-

fore give as standard means of expression four·definition sche-

mata which are primitive recursive or directly reducible to pri­

mitive recursive forms< 2 }

Schema I. [Definition by equation] .

U Q = d(/J.) II

where a stands for an object, ~ a set of objects, and a for

* a formula in one of the admissible languages of Genie.

* In the sense to be described in Section 3.

Schema II. [Definition by composition]

Hal = a 1 (~ 1)1 a2 = c}f 2(i 2), • • 0 ,ar = a r(~·r)" '.

where for i = 1,2, ••• ,r, a1 ·s.tands. for an object, .1~-1 a set of

objects, cJ i a .formula in one of the admissible languages of

Genie and where no sequence of positive integers K1,K2, ••• ,Kp,

p~r exists such that:

(1) Ki+ Kj for i + j
(2) aK . E: & K for i = 1, 2, ••• , P- 1

i+l i

(3) KP= K1

(This condition is imposed to prevent circularity of defi-

nition). Schema II, the first equation is the principal ~qua~

~, a 1 is the principal variable, the remaining equations are

auxiliary ~qua~ions defining auxiliary variables.

For the next two schemata, the conventional notation of sub-

4-7

scripting is introduced with the implication that the subscripted

object belongs to a finite ordered set of objects, the ordering

being controlled by applyin8 the arithmetic successor relation

to the subscript.

Schema Ill. [Preceding values recursion on one index]

o: = 2/(;.P),"'i = 8(/J..,;.1-P"i-21 •••,;.i-r),i.o =O'o(~),

Al .(I 1< fi1> 1 • •• ,;...r-1 = cfr-1(fir-1)

where;... is the initial member of the set of objects A and 1J',
0

!J',c!J' , ... ,c!J 1 are admissible formulae. Here, i and A are o r-
auxiliary variables of ~he definition, r is a fixed integer

which in any instance of Schema III gives the order of the re-

currence relation, and p stands for a positive integer which

may be determined either by an auxiliary equation or by a pre­

vious definition.

Schema IV. [Conditional definitioa]

"a= 0 1 if ei1d2 if e2 , ... ,a,µ if

where <!J 1, ••• ,c!J!0 are admissible formulae,

dicates, and "if" is a special operation.

are pre-

This completes the set of implicitly sequenced definitions.

It is clear that the precise form is unimportant, and in fact

the initial Genie schemata are slightly more complicated than

these. It is our experience that a lot of fluency is to be gained

by extending the forms of definition beyond simple equations in

this way, and that this leads to more efficient machine codes

than would be obtained by the same amount of effort expended on

a less concise system. What is important in a system of this

sort is that the ability of the machine to sort out implicitly

sequenced definitions should be roughly comparable with that,

4-8

•

•

•

•

of the machine user, and it is at this point that the practi-

cal and formal approaches to the description of calculations be­

gin to diverge. There would be no formal difficulty, for example,

in allowing any equation appearing in one of the above schemata

to be replaced by instances of another (or the same) schema:

the practical difficulties arise when consideration is given to

the problem of identifier control whi~h is· discussed in the next

paragraph and in trying to explain these to a potential coder.

It must always be assumed that the coder is aiming at things

other than linquistic elegance, and the less obtrusive the coding

rules are the more useful they are likely to be.

A more difficult concept to formalize is that of the iden­

tification of objects.whose names appear in different defini­

tions. A simple .solution, corresponding to current practice

in most compiling systems, is to establish a unique correspon­

dence between names and the objects which they identify, so that

a given name can stand only for one object. This is objection­

able on various grounds: firstly, in large problems, a genuine

shortage of names may develop; secondly, it does not distin­

guish easily between the 'essential' and 'inessential' ob-

jects in a definition; thirdly, it does not provide for the

discrimination in meaning which is dependent on the context

in which a name appears; fourthly, it leads to crude genera­

lizations in describing the interaction of a machine with a set

of definitions. The rule (Rl) for Symbol Table control which

follows is an attempt to improve on this situation.

Rule lA (Symbol Table control for implicitly sequenced definitions)

In a given Definition Schema of one of Types I - IV, the identi-

4-9

fiers o~.the auxiliary variables have meaning only within the

deti•itions in which they oceur., and may not be referenced

from ou-tside that definition. If., in (2.2)., a denotes ,the set •

of auxili·ary variables of the definition., then the set~ -0..)
is termed., when non--empty., the set -of. external variables of the

definition. Given a group J./ of definitions., its s;xmbol Table

is obtained as the union of the sets of external variables., and

the set of principal variables. It is important to note that.,

given any identifier appearing in the Symbol Table., it is either

defined·or undefined in JJ. In the event that the set of un­

defined identifiers is empty., :J/. is said to be complete.

It is also evident from RlA that the addition-of another

definition to·a set such as :J./ will in general change the cate-.

gories into which its symbols fall: in order to prevent this

happening;··;J../may be 'closed'., and we shall denote tb_is condi­

tion by writing it ia brackets, e.g. 11 [;J./] 11 • ln this.case., we

have:

R.ule lB (Symbol Table control for sets of definitions)

Given a closed set of definitions CJ.I]., the identifiers of the

principal variables have no meaning. outside [J/]. Only the

undefined identi-fie rs of ;tJ cons~itute. the external variables

of ct/1.
A certain amount of non-trivial calculation may be contraU-

ed by taking sets of definitions from Schemata l - IV, but when

all·else fails it is natural that recourse should be m.ade to

explicitly sequenced definitions., partic~lar_ly where comp.li.cated

!terative ~rocedures are involved. ' It is also ·natural that the

formalization of this idea should-bend towards the established

4-10
•

•

practice of writing programs for sequential machines. Conse-

quently we have:

Schema V. [Sequential definition]

f · 11 7
a = al ~ h'1<~1); a 2 = lr2<,5·2h ... ;an = lrn<,a-nv

where the parentheses "f ... { " enclose an ordered set of n de-
'" ""'

finition schemata taken from Types I - IV, and a stands for the

set of external variables determined by RlC below. Associated

with a sequential definition is a Sequencing Rule (R2) which is

given after the discussion of functional forms which follows.

Rule lC {S7mbol Table control for sequential definitions)

The external variables of a sequential definition (sd) ar~ de­

fined by reference to a list ...J_ of identifiers which is assumed

to be given immediately prior to examining the sd. Then only

those identifiers appearing in ,-cV and in the sd constitute the

external variables. Within the sd, auxiliary variables may be

identified with members of~ or with principal variables which

appear earlier (to the left of them) in the given sequence. No

'definition' appearing in the sd is regarded as such in the static

sense that we have assumed with regard to Schemata I - IV; for

this reason, sub-definitions which appear inside sequential de-

finitions will be termed commands.

Functional definitions

From the preceding rules and·remarks associated with them,

it is possible to deduce the identifiers which are external to

any given definition. Let (2.2) be such a definition, and let

{;e,.. a..J denote its exter11al variable set. It will be seen in

Section 4 that (2.2) cannot be evaluated until values are as-

signed to each external variable. Then in the sense that the

4-11

definiend is itself external to the definition schema which ,

defines it., we can regard incomplete schemata as functions from

a class determined by one subset of the external variables (the e
arguments) into a second class determined by a secm.d subset

(the 1:esults). In Schemata I - IV we shall adopt the usual con-

vention of listing the arguments in parentheses following the

definiend or result; in Schema v., both arguments and r·esults

will be listed., following a new identifier which is us~d to

staQd for the sd,itself.

Example: · f(x) a a+ bx., ·a. sin x., b. cos x

This constitutes an instance of Schema II it1:functional form with

argument x and result£. It is still incomplete, since it de·

pends also on the iden ti fie rs "sin" and. "cos".

Example: r P(a.,b.,ct#s.,#t) =ix= b2 ·• ac; x = x 112 i ·

s = (-b + x)/a; t = (.b-x)/a]

Tbis constitutes an .instance of Schema Vin functional form:with

ar.guments a., b and c., and results s and t. It is complete apart

from the identifiers "2" artd 11 1/2'·'. Note the use· of the sign

"I" to identify, the results... "),)" is the identifier for the sd.

The functional use of Schemata I - IV identifies the result

as a function letter which may.be used in formulae as described

in the next section. The functional use of Schema V identifies

the name of the sd as a procedure name which.may be used in the

final basic schema:

Schema VI. [Definit~on b~ .Procedure]

r(o:, lf:3}

where r is a procedure name, and o: stands for the set of &~$uments

and ff:3 for the set of values. •

•
Any funct:i·onal definition which contains no external names

other than the given parameters i~ said to be in library form •

If·tbis is not the case, b~t the external identifbrs all be­

long to a certain set of symbols J, then the definition is in

library form with respect togf. This corresponds closely with

current usage. We are now in a position to give R2, which takes

the point of view that all functional definitions are special

cases of sequential definitions, consisting of a (sequence of

one) single command.

Rule 2. (The General Sequencing Rule)

In order to control the use of function and procedure

names, the sequencing process is described in an inductive manner.

Basis: An ordered set of pairs <M, J> is t:o · be 'constructed,

initially consisting of the single pait <O,O>.

Induction step: When it is necessary to evaluate a definition

r, the number of pairs is increased by one by adding the pair

<r,l> to the set. Then the first definition of r is executed.

After executing each definition, the second member of the last

pair is advanced by 1, and the corresponding new definition is

executed. This procedure is terminated by the special "return"

definition which causes the last pair to be removed from P before

the next definition is selected. 'The whole process terminates

when the 'zero' definition is encountered.

In current terminology, Pis a slightly generalized 'path-

finder' list, and the last J at any point is the 'command counter'.

It is essential in programming practice, of course, ·that the

'command counter' -be available to be used as a variabie in com-

• mands of the sd, and we shall assume this is the case.- It is

4-13

not usual.for all of P to be arbitrarily accessible, on~f-that

the 'last• entry be known at any-time. In giving examples, and

in .. actual coding, we shall ide.ntj,;fy the command counter's value e
symbolically at any point to which it is necessary to refer to

it.

To summarize the position, it will be recalled that in

order to manipulate certain unspecified classes of objects, a

set of six 6escriptive forms or definitional schemata has been

specified, dependent upon further analysis of formulae which

will be given in the next section. Among the schemata are both

primitive recqrsive forms, and sequential definitions controlled

by an _inductive sequencing rule which permits the use of func-

tion and procedure names. Rules have also been given for.the

identification or discrimination between objects appearing in

separate definitions_by~means_of the list of. external variables

(the -Symbol Table).

It is now nece&s.ary to.examine the permitted structure of

formulae.

. - -3. Formula Syntax

The remarks.o, the foregoing section have b~en made as far

as possi.ble wit.bout pres.upposing the existence .of any .symb~lic

representation, but of course this is essential for practical._

purposes. It is computer-oriented in some degree,. since.

syntactic structures which require many !scans• for effective

recognition have not -be~n permitted,. and what h.as _b~en aimed

at is a maximum degree of flexibility with a _singJe (left-to­

right) formula sc~n.

4-14
•

•
Consider a fixed and finite set of characters or marks

't.1,S21•••,tK forming an alphabet a. In examples, we shall

use upper and lower case Roman lettersj together with Arabic

numerals and certain arithmetic signs and parentheses as speci­

fic illustrations of members of (1. Unless otherwise specified,

the lower case Greek letters will be used as variables taking

values in the domain{].. 'Script' Roman and upper case Greek

letters will be used in various ways which will be defined as

they are introduced. Finally, subscripts may be used on any

symbol to distinguish that one from others taking values in

the same domain, or in the manner already illustrated in re-

currence equations, Schema III.

By a string we mean a finite sequence of marks in~- We

shall take it that the ideas of 'first' and 'last' members, of

predecessor and successor relationships, and of 'occurrence' of

one string within another are intuitively understood. We shall

use "A" to denote the null (empty) string, with no members. To

use strings in the representation of formulae, we shall asso­

ciate with each !, in Q.' three parameters: the !.U.=., a(;),
the subtype, l{ (_!;) and the rank t/(s). Where no ambiguity can

arise, we wi 11 use the abbreviation r::7 i for dJ. (~i). The signi­

ficance of the parameters is implicit in the following rules.

Sy~bolic characters

If d = 1, then ~~ is symbo lie. The symbo lie characters are

used in the construction of names according to:

Definition 1

The occurrence of the string "f7 = o: 1a 2 ••• ap in the string

f3'n 1 is a~ if and only if the following conditions hold:

4-15

(i) d (al) "" 1

_(ii) If P-2: 2,oi-(0:j) = 1 o-r 2-for j = 2;,, ... ,p

(iii) If p. 2: 2, U {o: 1) = 0

(iv) i/co:j) .s 2/(o:j+l> for all l ..s j < p

(v) Either f3 ~ A orcf. (13) = 1 and ?/(r,) < W(a1)

or d (f3) == 1 ·and l,((!,) = 1

ord (f3) + 1

(vi) Either 7·; A ord- (7) = 1 or 2 andV{1)>

ef(ap)
1'1'

ord (1) + 1 or 2

To aid in understanding the above; we remark that name con-

struction depends on whether a character, standing aloriej is to

be taken as a name (sub-type 1), or whether it can be joined by

succeeding ~haracters on the right. In the latter case, a

method of ranking determine$ the length of the name, i.e.,·

characters belonging to the same name must be of non-increas-

ing ranks reading from left to right across the string.

Numeric characters

If c!J. = 2, then 5 is numeric. The numeric characters are

used in the ~onstruction of numerals according to:

Definition 2

The occurr.ence of the string I:(!:: O:ft2 ••• ap in the string

,,a., is a numeral if, and only if, the following conditions hold:

(i) c!J. (a,)= 2 for i = 1,2, ••• ,p

(ii) · Either f3 s A orO (f3) =· 1 and Z((f3) = 1

or dJ (f3) • 1 and ~('3) < .z!(a1)

or 8(f3) + 1

(iii)d(t3) + 2 andd(1) + 2

4-16

•

•

In the Genie system, numerals are representations either of

natural integers or of the limited range of fractional quantities

handled by a computer. Unlike the names, numerals are unique

representatives, whereas the names, by means of definitions,

can be made to stand for any one of a specified set of quantities.

If the specified set has just one member, we can talk of the

•constant name• or just •constant'; otherwise, a 'variable

name' or 'variable'.

Definitions 1 and 2 permit a given string to be scanned

once to recognize in a unique way the names and numerals occur-

ring in it. A simple procedure for doing this can be given.

Let us assume, for practical purposes, that there exist pre-

assigned upper limits on the lengths of strings which can be dis-

tinguished from one another, i.e., if two numerals are identi-

cal in their first v characters, then they are regarded as stand-

ing for the same number no matter how many additional characters

each may contain, and similarly for names with a constant length

µ or more. It follows that the totality of distinct numerals

is finite, though possibly large, and similarly for names. Let

7(denote the set of names. Let Ci2denote the set of numbers.

Now construct the alphabet G(* from (J by removing all

characters of type 1 or 2 and replacing them by a set of symbo-

lie characters of sub-type 1 in (1-1) correspondence with mem­

bers of '/1., and by a set of numeric characters in (1-1)

spondence with members of Ct. In what follows we shall

sider strings formed from()_*.

Operations

corre-

con-

If c9 = 3, then~ is an operation. The operation characters

4-17

are further classified by sub-type:

(i) If rt.=
(ii) If(..{=

(iii) If {,,(_ ==

O h ·t;i i tfo ., t en -.. s a punctuat on opera n.

1., then~ is a unary operation.

2, then '!: is a binary· operation.

(iv) If U = :5., and if the preceding character
is type 1 or 2 or right parenthetic
{see below), then~ is a binary
operation. Otherwise it is unary.

Parenthetic characters

If cJ.. = 4., £ is a parenthetic character. At each occur-

rence., it is either~ or ri3ht, but this may depend on the

context in which it appears. It is therfore necessary to de·

scribe parentheses in terms of the complete processing of a given

string, say eJ.: o: 1a 2 •• • a8 A. To do this., we shall construct

an auxiliary. string~ of 'unmatched' left parentheses., by the

following rules:

(1) Le~ /j... = A initially

(2) If r::iJ- = A, proceed to step (5). Otherwise., .. let a
be the. fi rs.t character of q:f _ .. it cl(a)

go to step (4).
+ 4,

(:~) If U(a) = o.,. a is· l.p. (left parenthetic) and it is

added to Jt. If U(a) = 1, o: is r. p. (right

parenthetic);

'Q'(g.)- • r<a),
let g be the last character added to J. Then if

a "is I accepted•., and g is removed from J/; other ..

wise an 'alarm• condition is set up and a ·is 'rejected'. If

l((a) a·2, c, is said to be conditionally symmetric, i.e., if

Zfcg) • 'Zf{a) then a is r.p. and action is taken as for. l-{(cr) = 1;

otherwise, a is taken to be l.p. as for (a)~ o. Finally, if

l((c,) • 3, a is conditionally asymmetric. In this case two rank$ -
rand cf' are associated with C1.. Then if rf· (a) = V(s),

a is r.p., and otherwise, it is 1.p.
4-18

•

(4) a is removed from the beginning of J., and step (2) is

carr,ied out.

(5) At this point, the process terminates. J is said to

be well-formed with respect to parentheses if both (a) ~o

character in J has been ·'rejected' in step (3) and (b) J = A

finally, ,i.e., no unmatched parentheses remain. We define the

parenthetic depth of a character a in a/.. to be the number· of

elements in /J at the time when a is examined in step (2).

As an illustrat~on of the different types of parentheses·

which the abov.e definitions are aimed to allow, we can give, from

the formula language:

'Norma 1 1 type :¢=a + B(1-K)(l+K)

Symmetric : J...;; a + IB - (fx - Yl)f
Asymmetric ·'-= a + j + + b + ij K+ + 2 ·+ . -

Formulae

There is a duality in the use of operations ,and parentheses

in formal expressions; the devi~e of 'ranking' binary opera-

tions in order to avoid an excessive use of parentheses is

well known, and we have paralleled this by admitting 1 implied 1

operations to be associated with parenth•ses. The unifying

figure is that of the ~ ,of opera~ion or. parenthesis~ (which

is distinct from the rank of symbol~c characters used ·in con-

!?). + structing the names of {.A. Thus, a character" 11 fQr which

cJ. (+) = 4, 'l((+) = 3 and V(+) = 5 may be replaced., when it

is left parenthetic, by the pair of characters "-r (11 where 't' is

an operation of rank 5. This is. pr~cisely the treatment given

to sub- and ~uperscripting parentheses illustra~ed for the for­

mula language above. In general, a left parenthetic character

4-19

may imply the existence of any operation of specified rank,

either binary or unary, which is to precede it.

Consider the following three procedures:

Pl: the application of Definitions 1 and 2 to a given string

in a... to obtain a string in a*·
P2: the application of the parenthetic scan to determine

the sub-type of each parenthetic -character, and the subs,titution

of "'t'(11 for each left parenthetic character a for which

i'(a) • efc 'T) and 't' iS an Operation., and the SUbStitUtion Of II) 11

for each right parenthetic character.

P3: the process of inserting a specified 'implied' binary

operation between pairs of characters which occur as 11 '!{ S111 .,

n !; (", 11)!; 11 or ")("., where t and 5• are names or numerals.

Let r,zf. * be the string formed from J by the application of

Pl, P2 and P,3. Then we have:

Definition 3

~*is a well-formed.formula (w.f.f.) if it is well formed

with respect to parentheses and can be constructed by the fol-

lowing inductive

(i) IfJ*

(ii) If ef.,,
"J,,. a &- 11 where

1 2 2
{ . .((a1) = i 1 then

process:

is a name or numeral, it is a w.f.f.

has one of the forms 11 (J°1)11 ., 11a 1 ~ 11 .,

~l and 6 2 are w.f.£. arid'6(a,) = 3 and

J.-• is a w • f • f •

The above definitions and rules determine many language

forms of interest. We remark th~t, in the absence of parentheses.,

a w.·f.f. consists of a string of names., each possibly 'inflect•

ed' by unary operations., connected together by binary operations.

Replacing any name in the string by a w.f.f. gi~~s a new w.f.f.

4-20

•

It will be convenient to use a spec~a~ notation for a

string constituting a w.£.f. by the above definition. Let

stand for either a name· or· a number or a w.f.f. enclosed by C

parentheses, possi·bly· preceded by a number of unary operations,.

Evidently J• can then be writ ten in the form:

1..J: * = c\w1 6 2w2· • • 00n-l en

where w i stands for a binary operation, i = 1, 2, ••• , n-1. Now

if ?f(w1) ~ ri (the rank of the operation), there is evidently

at least one operation eat* of the lowest rank r* and for reasons

which will be apparent in the next section, we will write:

¢ * !! d1'"'~•d • • ·w* c:J: . 2 p

whered 1 , i = 1,2.,· ••• ,p., stands for a w.f.f. A w.£.f. such as

this is said to be of rank r*. It will also be abbreviated to:

Jl'urtber devices

A practical problem which is worth mentioning here is that

of stretching a limited machine alphabet to cov~r frequently

occurring situations. The analysis of this section has ~o far

been concerned with the slightly idealized· alphabet Q. and its

abstraction Cl*· In point of fact we have to prociuc~ a ~cbarac-

ters from some mechanical set

we want to include in a 8 mark such as 11 ,J:tt and will achieve

it by the marks in· ...1/ 11="., •backspace• 1 "I" j assuming these

exist. Also., it is undersirable to complicate CZ with case

control marks and the like and these can be disposed ~fat a

stage prior to the main reduction. · The following two devices

may be used by the coder for simple StTibimanipulation •.

4-21

(1) Character Expansion, P4

Let .!:!. be a character in , . .// but not in a.. Then it is pos­

sible to 'expand' .!:!, into an occurrence of a given string 110:137 11

say, the characters of .which may or may not all be in {(. If

not, the process continues until a string in a is found.

(2) Strini Contraction, P5
Let A be a string, say h 1h2 h3 • Then it is possible to con­

tract all occurrences of A into occurrences of a single character

8 which may be in .fl or in Cl. If in J/ but not in a, 8 may

be expanded under P4 to a new string.

* * * * * * * * * * *
To su~arize this section, we have described a symbolic

representation of formulae based on an alphabet :I/, in which

strings are reduced first by two elementary string transforma­

tions (P4 and P5) to strings in an alpbabett.:Z, from which

they are further reduced to formulae in the alphabet (2* by

the procedures Pl, P2 and P3 which in turn make reference to the

parametric valuesd,l.f, 'ti, cl• assigned to elements of a.
This whole process is determined by a set of values contained

in a.Character Table which is referred to as each formula is

processed. This gives the following information:

(1) The alphabets C/.. and .J/
(2) Expansion rules for elements. of ~ not in a
(3) String contractions in~

(4) Parameter values for all characters in {2

(5) The 'limiting lengths• for names (µ) and numerals (v)

(6) .The radix of number representation and rule foT repre-

senting numerals and names.

4-22
•

•
(7). The designated 'imp lied• . binary operation

'the ma.in point of this technique is to allow rapid switches

from one symbo.lism ,to anot.her. in reaili.ng sets of formulae, and·

to allow experimentation by the coder in obtaining the presenta-

tiQn he wants. In the Genie system, formula scans are made by

a routine called TSCAN, which has various facilities for detect­

ing syntactic errors. It is evident that a by-product of TSCAN

is the list of identifiers required by the processors of the pre-

vious section. Beyond this, further analysis is dependent on

the meaning of names which are used, i.e., the classes of ob­

jects fo~ which.they stand.

4. Semantics

In a formal system, names and formulas. must be made .. to

'stand for' something, for only then can they be used as t.he

means of displaying relationships between .objects of intetest,

and revealing new relationships by means of formal manipulat~on.

The classical way of .providing an interpretation is t~ give a

model or representation for the logical system on hand. By

this device, the consistency of the syste~ can be demonstrated,

or at least made to depend on the consistency of another system,

and an interpretation is provided. It is the· s·econd achie·ve-

ment which i~terests us. here, and in this section we shall de­

monstrate the methods by which, a representation is used in eva­

luation.

Viewing the immediate a.pp lications. we have in m,ind for

Genie, it can be stated that the classes of objects falling

under investigation wi 11 inc lu.de: · characters, names, numbers,

4-23

formulae, and definitions. Moreover, fo·r ·various reasons, we

shall want to manipulate these not only one at a time, but also

in linear (vector) and rectangular (matrix) arrays. They may

be rep.resented by names or numbers, as appropriate. However,

a name may only represent one object other than itself. Thus,

in the equation:

G = 4t + l

the names •cu and ·~t 11 stand (presumably) for numbers., but in

listing the quantities on which G is dependent, "t" would stlnd

for itself.

The problem of deciding what a name does stand for is more

complicated in practice than theory, and the three methods which

are available are as follows:

(1) By dee la ration: as in 11 K is a vector" or "K is a

definition";

(2) By assumption: as in the equation above, where we as­

sume G and tare numerical objects;

(3.) By deduction: for example, we deduce from an equation

such as:

y =(sing, cos g, o) +·(x 1,x2,x3)

that y is itself a vector.

Now method (1) is infallible, but somewhat clumsy and we

should like to avoid it where either of the other methods is

sufficient. Method (2) depends upon an underlying assumption

which is made whenever a formula is read, and we shall associate

with each Character Table a particular class of objects which

names will be assumed to represent unless otherwise determined

by declaration ~r deduction. Various methods of selecting the

4-24

•

•

appropriate Character Table are possible, mostly dependent on

a 'key• character which immediately procedes the formula. Thus,

in the case of the algebraic formula language, the key charac-

ter is"=" and all names are assumed to stand for numbers. In

the case of algebraic program descriptions, the key character

is"·•" and all names are assumed to stand for definitions.

Finally, in order to use method(}) it is necessary to know which

binary and unary operations are permitted on which classes of

objects, and what classes the resultant objects belong to. This

information is given in the Reduction Table, given below.

First, we will summarize the evaluation process applied to

formulae. It is evident from the inductive definition of a

w.f.f. that in order to have an evaluation process for a formula,

it is sufficient that evaluation processes be given just for

the binary operations applied to two objects, or for the unary

operations applied to one object, provided unambiguous rules

of precedence are given.

Let a source language (;(! be determined by the group

{r(,c:2, U, i?J],· respectively the s~ts of names, numerals, unary
f}

and binary operations inO\.. Then we have:

Definition 4

An evaluation model 7J1 of of consists of a set of objects

.d, and two reduction rules .:;t:(U) and J(CB), with the ~ollow-

ing properties:

(i) To each name a in I(corresponds a subset~ in~;

and to each numera 1 \I in CK.corresponds* a uni.que v •. in ~ ccz.f.

A prime will be ·used to -denote elements in /1(corresp.onding

to particular elements of£. This w111 ·a·1so be written., e.g·.,

4-25

"v'+v", and it is termed a 'value assignment'.

(The subset of numbers.)

(ii) To each unary or binary operation w in cf! .corresponds

a unique unary or binary operation w' in .'(}(of the same rank.

Parentheses in cft correspond to parentheses in lJ{.

(iii) A w.f~f. in of reduces to w.£.f. in iJt if each name

in the w.f.f. is replaced by some 0: 1 j¢a, each numeral v is re­

placed by its corresponding v•, and operations and parentheses

in of!. are carried over to the corresponding operations and

parentheses in T'Jlt.•
(iv) If a' and f3' are objects of #a and ,613 respective ...

ly, then for each binary operation w' there exists a rule

x_(B lr,a' ,t3' ,'Y'), r being the rank of w', by which the formula

na•w•13• 11 may be reduced to an element 1' in some subset ,6,, of

b~
{v) If a' is an element of ~ and '[,,(_• corresponds to a

unary operation in 1i{ of rank t, then there exists a rule

j(.(U)(t,a: 1 ,f3 1) which reduces the expression "U 1 0: 111 to an ele­

ment f3 1 of~·

Potentially, there may be infinitely many rules v{,(B) and

.Jt(U) since there may be infinitely many .elements in ¢a, and

~f3 {say). Even a large number would be awkward to handle, and

it is avoided in practice by analysing the elements of ~and

expressing them as compound elements from another model lJ(•
of'!>!, with only a small number of rules. In this way, the

· general rules of decimal arithmetic addition, for example, can

be built up from a simple rule of. 100 elemen,ts, expressed in

a 10 X 10 addition table. It is often convenient to write the

4-26

I

!

I

result of applying Jt(B) ·as r

1' =x<:)co:• ,13,)

and similarly, the result of applying.:{,(U) is:

(4.1)

f3 , -~< ~) (o: •) (4. 2)

In this case -:t.AB)and .v(U) are termed valuation operators.
' ../\..., r ...7\.., t

Let the disjoint subclasses of. different types of object in

be d<J, ~, and J.-1 • Then to specify the properties of valua­

tion operators completely, they can be written in the form of

tables, one for each operation of each rank.

Right Operand Sub-Class

r-· •

~ J)o: ~ I
i
I
l
!
I

l
!

i
I
I

I

r '

Left .JttB)(o:' ,f3'):A ~)(o:' r')·A
Operand '° .. K<:>co:' ,a' >="aa r.. O:f3 . . r ' • ar

Sub-Class ..

J Kc , .. x(!) (f31, f3 r) :Af3f3 ~) (f3' , 1 ') : A f3r , r f3 a •) : A f30:
13

-

J7 .K(B) (?' ' 0: I) • A
r ' · ro: Jf'(B)(r' f3')·A

r ' • 1f3
_r(B)(r' r')·i

r ' · rr
I I

TABLE 1. Reduction table for a binary operation of

rank r

In Table 1, the tabJe entry in row~, column ~r' for

exa~ple, is 3t(B)(13',r'), together w~th the class to which the
r

reduced formula belongs, ~A • Table 2 is a reduction table
~1.

4-27

for a unary operation of rank t. With the aid of these rules

and the substitution rule which will now be given, a value in

1}t~f.any w.£.f. in,.:l!may be obtained.

t Valuation

cl a K (~) (a') : µa

¢)'
t3

.. J((~(t,') :µt3

~ r J((~) (r ') : µr

TABLE 2. Reduction table for

a unary operation of rank t

Rule 3 (The Substitution Rule and Ranking con~itions in)

(a) Let c:f' be a w.£.f. in Jll consisting o.f one

unary operations followed by the element a• of~.

or more

Let Uf
be the highest ranking operation in~-, with rank t. Let

<p(C,) be a w.£.f. in which;], occurs with no immediately pre-

ceding unary operations. Then the first substitution can be

written:

<f(ck), r' = ...{(~)(a')

p(§)

Where "'It is obtained from a by rep lacing (1 I by r f and de let ..

ing .!.!! occurrences of Uf from the string preceding a•.
{b} Let C,, be a w.f.f. in 'J17 consisting of an element a'

of ,t/. in parentheses. Then the second substitution rule can.

be written:

•

•

R3B: ~
a•

(c) Let q>(cl') be a w.f.f. in TJt{ in which the highest rank-

ing binary operation at zero parenthetic level ~s w, of rank r,

and suppose that this occurs in a w.f.f. c:J of rank rand maxi­

mum length p ~ 2, i.e. J: a',wa2w ••• wc:1~, where cr1,i = 1,2, ••• ,p

are elements ofciJ... Then the third .substitution rule can be

written in either of the forms:

R3Ca: <P(~),t.> ' · - ~(B)(a' a•)
I 1,2 - r l' 2

1> (_ii)

where "Ji\~ given by:

li - ,"} t ' • 11,~a;•••wap

Alternatively:

R;Cb: <!> __ ((1) , /) , = J((:s) (a , lr.<1')
1· p-1,p r p-1 p

. 4:(:JJ)

where 3J is given by:

::;7 _. •w • • ,.,, .
../.J. = O'l 0'2•••wap-2 J-'p-1,p• ..

R3C merely states the usual arithmetic rule of precedence

which is to be applied when parentheses are omitted, and the

R;A extends· it to cover unary operations. In addition, a choice

is offered in the bi~ary case, which may or may not be signifi­

cant, of evatuat·ing ·formulae in a 'left-to-right' (R;ca) or··

'right-to-left' (R3Cb) order. In Genie, the code may choose

either of these, or he may leave it -to form ... It should also be

noted that we shall assume th·at R3C also caters for instances

where function ~ames appear in formulae, and that the red~ction

table has provision for appropriate action in such cases. A~

this leve 1, function evaluation in at"i thme tic f()rmidae, for

example, can be regarded just as an elaborate form of multipli-

cation.

An example of evaluation

To illustrate these points we shall take a 'simple 'arithme­

tic language cJ!. containing the names "a", "b", "c" and "d",
0

and the binary operations"+" and "X" of rank 1 and 2 respective-

ly. As a model, TJ{, we take a single class of .o.ojects (numbers)

,/:; {o•, 11 ,2•J, with just 3 elements. Then the reduction

tables for m and its two operations are final (since no sepa­

rate sub-class of ~exists), a~d the valuation operators Jt'lB)
andx<:> are given in Table 3a, 3h. LetObe thec:,('o formula

"a + b x c + d", and let it be required to determine the value

of cJ for the

1 0 1 +d 1 in /il.

:.((B)
1

o•

o• ••
1 I 1'

2' 2'

TABLE 3a

wa· have:

whence·:·

hence:

and

value assignments 'l' +a', t 2 I +b I I 'l'+c•, and

Thus,

l' 2'
I_K(B)

2

l' 2• O'

2' o• l'

o• 1' 2'
l
TABLE

c1';;; a+ bx c +din cf.!
0

o•

O'

O'

O'

3b

ij = 1 1 +• 2 1 X ' 1 ' + 1 0 1 in !}fo

l'

••
l'

2'

·1 1 +•2 1 ,+• 0 1 byJ2a'andJt<:>c2•,1 1)

o• +• 0 1 byJ2·a and JtC~>c1•,2 1)

4 .. 30

2•

o•

2'

1•

•

•

and <7' ;. o• . ·:.·, by 2a. and Jt(~ >co• ,o•)

wl:iich completes the evaluation o.£ 0 in 771. • · Reader:s. fami.l,iar

with formal calculation will recall more elegant developments

of this sort.

It can be deduced quite simply from the above definitions

that if cJ is a w.f.f~ of rank r in cl!_ with elementary sub-terms,

then its corresponding w.f.f. in Tn_ can be reduced to a recur­

sive expression involving the evaluation operator~<:>. Thus:

whence:

whence:

0: , w•o:• w 'o:' l l 2· • • r p

-11, , ~,; (B) (-v(,) (· (~ (B) (, ,)) ,) a ,
v· = ..,r...,,. r · · '·"- · • • • J\... r 0 1102 '· • • ,ap-1 ' p

A slightly different form follows by applying R3Cb rather than

R3Ca. This form is important, and may be conceived as the re­

sult of applying a general evalu~tion op~~ator ...kto the form.c!ft

.././(A) ,d (dJ p. t) '.--1 AB) r1J (B) (-v(B) (; t)) ,) 1) ""'- u· = J.., • ra i =./'\.. .. r \.A.. r • • •,./\... r 0 1 ,o:2. , • • • ap .. 1 o:P

With this concept, it is possible to express in operational form
the result of applying the evaluation operator to any w.f.£. in1Jt..

of rank r:

J(=k<f~t1> =J'<'<!~cJ(<!> ... :t!!><~<e1 >,-Kc E2), •••),

- a:. ~cl p-1>>,Jtce p>>·
where Ci stands for a sub-w.f.-f. of !::I

A second evaluation example ·

To illustrate the generality of the evaluation technique

we shall take· the simple language cf and evaluate it on a new
0

model 7l, in which J· consists of two sub-classe·s, J.·, the ·

class of '-simple' · objects which are values of objects in £ ·,.
0

and· Jb which is the class consisting of all ·orde~eci linear·

sequences of pairs of objects <K,L>, where 'LC¢.. and K is a a

member bf the s~t f CLA, ADD, MPY, STo~] which we will term

orders. The reduction rules.f6r~"X 1 » a~e ~iven ln Table 4, and

the 1:ules for 11+• 0 are similar.

Rank -~
2 a

Ja 1((!) (a, a) ; b · x• !) (a' b); b

db x<:)(b,a};b (B)(b. b)·b
2 1 I

TABLE 4. a.eduction tab le for X' in N

For all 1,. let a• f d and b 1 eJ Then the evaluation
i a. i . b•

operators can be defined by the following procedures:

. K<:>cai,a2),= (<CLA,ai>, <MPY,a2>)

x<:)(ai,bi) = (b1,<MPY,ai>)

~(:)(bi,ai) = {bi,<MPY,a1>)

}((:) (bi, b 2) = (bi, <S TO, t d>, b 2, <MPY, t d>)

where t' is a member of (t$ not corresponding to any element in d a

f'l and d is the parenthetic depth of the. operation sign in

ltbt x• b 1 II
1 2 •

The rules i>r "+'" are similar, with ".MPY" r~placed by "ADD"

throughout. Now consider the £,ornn1la cl::;, a + b K c .. + d in

cl/ 0 _. Its reduction under the value-assignment 11.a:1 +a11, llb 1 +b'1,

"c '+c 0 ap.d "d. 1+d" is as follows:

a'.a+bXc+d

•

•
whence: O';;; a' +• b' X' c 1 +' d 1

hence: a 1 +' (<CLA,b'>,<MPY,c'>) +' d'

and· (b l · t I) I d' <CLA, >)<MPY,c >,<ADD,a > +

and finally: c:J' •: (<CLA,b'>,<MPY,c'>,<ADD,a'>,<ADO,d'>)

wh.ich completes the evaluation of cft in 71... As another example,

take:

whence:

hence:

and

cf': ax b + c x·d

g .a a• x• b 1. +' c• x• d'

(<CLA, a '.>,<MPY, b '>) +' (<CLA, c '>,<MPY, d '>)··

by a double application of J2a and ,e:>cai,a2>·

cJ '= (<CLA,a '>,<MPY, b'>,<STO, ti>,

<CLA, c '>;<MPY;·d '>,<ADD, ti>).

which completes· the evaluation of cl' in T(.

From the foregoing two simple examples, it is hoped the ·

reader will infer the general etructure of evaluation processes

in.Genie.

Another example of the type of formula whlch can be eva\u-

ated·is provtded by the predicates introduced in Section 2 ·in

the definition of Schema IV. By this we understand a·formula

constructed from elementary terms with values O (false) and.!

'(true); and the binary connectives· 11 or11 and "and" and the ·unary

operation "not" of the propositional calculus. It is usual to

assume that the rank of rt.and" exceeds that of "or". In 'this

case an ·ev.aluation procedure is exactly equivalent· to familiar

logical device of evaluation by·truth table.

Evidentlf -any of the so-call~d 'algebra!~ coding languages•

in present use involve several of the 1 1angu~ges' which w~ have

been categorizing. Almo~t all of them permit the use of some

4-33

form of algebraic expression, and a 'Boolean• expression. In

addition, it can easily be seen that the 'meta-language' used

in Section 2 to deseribe definitional schemata and their proper­

ties can itself b~·p~t into a form which satisfies the require­

ments of Sections ; , and 4. This leads to a I control· language!

which is extremely useful in the manipulation of other expres-

sions. For example, a sequential definition may be written

in the form:

Example: P ·=A+ B + C + Return

where "P" is the name of the seq1,1ence, and "A", 0 B11 , 11 C" stand

for commands. The special equality sign"•=" is used to dis-

tinguish the formula which follows as belonging to the control

lang\lage rather than the formula language; "+" 'is a 'sequencing•

operation ..

Hence, in practice, we have to eontend with a mixtu~e of

language conventions, and to have the ability to switch rapidly

from one set to another. This t.s a familiar enough situation

in reading as'4llathematical text, where the mingling of English

phrases and formal expressions generally causes no confusion:

if there is·a chance of this happening, the writer would use

constructions such as 'the formula ••••• • and 'the equation •••• •.

Much the same thing as thi·s is done in Genie, i.e. the language

in which a formula is t.o · be g·iven is indicated by a special

* sign ·which precede·s 1 t. Often, · as indicated above, ,a particular

These special signs have universal significance, i~e. are
,' ·, ' '

common to_ all the admissible Genie languages.
; .' ' ' .. ' . ' .

form of • equa·ts • sign 'is sufficient; at other· times, as in

•

•
using predicates, the ·special, sign 11 :lf't: set:ves the satne, purpose.

In terms of computing, a chan-ge from- one language to another

can be made by the trivial device of changing one word which

contro li:1 an indirect addressing sequence:.

One of the immediate applications of Genie :ts to systems

whose objects are to be •symbols•, •'formulae I and 1:!quations •,

i.e. linguistic elements. In such oases a famili·ar situation

arises in that formulae may contain not the nanes of objects
' .

but concrete examples of the objects themselves, which must be

displayed between quotation marks, as in the following example

from a hypothetical symbol manipulating language:

Example: T := A then "+" then either "l" or "X"·

Theoretically, t·he numbers appearing in an arithmetic formula

could be treated in the •ame·way, and this is the case internal-

: ly·to Genie, but their importance merit~ a special exterrial

treatment.

The nec,ssity mr the devices of •embedding' one language

within another and 'displaying' symbolic objects is purely

practical, and may be removed by the use ·of additional names.

To summarize the results of this section, ·we have- required

that a Reduction Table be associated with each formal system

which effectively determines a model in which its formulae may

be evaluated. Each binary operation may be declared to be

associative or not, and if ·not·it may be specified to have left-

to-right or right-to-left precedence. As a control device,

each ---formula must be preceded by an operator which. effectively

selects the Character Table and .Reducj:ion 'l'.a'ble for th-e en-

suing formula, which is terminated by some·p~nctuatiort opera~

4-35

tion at parenthetic level zero. It is quite possible that

elements in the chosen model may be the representation of some

formal system which in turn may be subJ•ct to evaluation, so

that we conceive of evalua.tion as a cascadng process which con­

tinues until no further reduction can be made~ The process

of evaluation is initiated by an •pplication of the E~ecution

Rule R4 which is described in the next section.

2• Machine Realization

The class of machines we are concirned with is difficult

to describe in an abstract fashion. To be sure, they are all

finite automata in a strict sen$e, but they are also organized

in a way dictated by history~ economy and usage, and it woul~

be an elaborat, process to describe such organization in

general terms. Our purpose in using the idea of a formal system

in giving definitions was to extend the classes of objects

which could be defined without unduly extending the mechanism of

value assignment. When our, interest turns to enlarging the

class of machines on which valuations can be made., then the

task of generalization will be faced. For the sake of pre-

sent simplicity, however, we shall consider just that narrow

class of machines into which presentday sequential computers

fall.

In short, a machine contains a binary, addressable storage

unit S containing W wo~ds of b bits eabh, together with a fur­

ther n bits of unaddressab_le storage T. Also, there· exists a

fini_te set of it(command operators K1,K2, •• • ,Km such that, for

any assignment of bits to s, T, which we ca.n. write <S',T'>_:,

•

•
there exists a rule:

<S", T"< = Kt (<S 1 , T • >), t = 1, 2, ••• , m

which determines uniquely a new assignment <S",T">.

We shall assume the reader is familiar with the characteris-

tics of stored program machines, with the techniques of micro-

coding, interpretive coding, and with specific examples of

single and multiple address order codes. In particular, it

should be noted that if a machine contains a program Pin p of

its.storage cells, then it becomes equivalent to a new machine

with w1 = W-p storage cells, and a set of command operators

Kl' K2 , ••• Km' P. For, given a machine configuration <S', T '>, it

is possible to determine uniquely the configuration <S",T"> re-

sulting from the application of ~

Implicit in the design of the machine is a sequencing rule,

which determines, for any state <S' ,T'>, the command o.perator

Kt which is next to be applied. It does so by observing a par­

ticular group of cells in T (the control counter) which desig-

'
nate that word in S which contains the code "t" of Kt. The or-

der code is such that only a small subset of s, not more than

4 or 5 words at most, need be considered in the application of

a given Kt. In this subset, one or more words may be always

contained, by implication (the 'accumulator', 'quotient• re-

gisters, etc.), and ·the others· explicitly stated by the command

code t. For this reason it ·is simpler to regard the set [Ktj

as the product of the sets of oTder codes [o~ and addresses

[Aj), the latter referring to elements of s, perhaps, .as

in instances of B-modification, after 'inflection• by _elements

in·T.

4-37

The purpose of this section is to show.how such·~ machine

may be used for gerieral evaluation, This requires a representa-

tion in the machine ()f the command operate'i:'$1. at).d operan·ds 'of

the mode 1. There is.evidently two ways of ·a'Chieviilg a ·rep re-

s~ntation of.the evaluation operators: either the· mach'ine has

in the set .[o1] an ,c;,rder whi~h is precisely equivalent· to.·

one of th~ given operators, or it does nc:,t. 'Il'l the first, case

a 'direct•. representation of the evaluator Js possible; in

the second case, the evaluation must be·represented by a se-.

quence .o.f ord.ers, which. is equivalent to m~difying the machine

in the way indicated above, and the 'indirect' r.epr~.sentation

is achieved through the use of .. an. open or· closed subroutine.

We shall always assume that f.t is possil>le to name ·a single

op.erand .by means of one address,.· so that a unary operation

actin:g o.n a given operand can be represne·ted by just one command

o.perator in the direct catJe. In con~.idering binary operations

we shall adcp~ the: corivention, since we have in mind primarily

a single address mac.hine, tha.t the first.,operand is always

con .. tained in a fixed storage :register 'U', and the second is

to be ~pecified by an address. In this case, too, a direct

represe,ntation of a .binary operation amounts to a single machine

command operator. ·. Given this resti:iction pn the first operand;

and given that the result of any operation, unary or binary,

resides in U after execution of the operation, it is possible

with. the help of the Substitution Rule R3 to derive a sequence

of command operators for evaluating. given w. f·. f. on a particular

machine •. The precise details. are. easy enough ·to work out.

The only point to make here is that by describing the evaluation

operators in terms of command· operators we have sufficient in-

4-}8

•

•
formation to effect an evaluation process on the machine. Any

other information that is required is for improving the efficien-

cy of the process in one way or another. By thus separating

the essential from the inessential, we can achieve a great de­

gree of flexibility in the types of evaluation procedure which

are applied, and it becomes easier to decide how much effort

should be expended in minimizing time or space requirements in

the translated code.

Clearly, sequences of command operators in the machine

are instances of Schema V, and references to special sequences

of commands used as closed subroutines are instances of Schema

VI. We shall assume, therefore, that the machine obeys a

Sequencing Rule similar to R2 and that it maintains a 'path-

finder' list of references to subroutines which are in use.

In any given machine, of course, this r.ule is more or less con­

tained in the hardware, although none has been built with com­

pletely automatic control of the pathfinder list.

Before considering in detail the realization of operands

it is necessary to discuss the ways in which they are to be

addressed by a command operator. From the remarks in Section

2 and the present section, we can see that operands may be

classified into five groups:

(1) Named auxiliary variables

(2) Named external variables

(3) Named parameters of a definition

(4) Implicit variables - ·iu•, the quotient-register, B-

registers, control counter, etc.

(5) Unnamed auxiliary variabl~s, generated as in the re-

duction from implicit to expliQ~t sequencing form, or by 'dis-

4-39

played' operands and numbers.

There are various deductions to be made from this ~las~ifi-

cation. -First, note that in jome cases it is relative to the

structure of the definitions: external variables o(one defi­

nition may be the auxiliary variables of another, and in fact

the distinction parallels exactly the Symbol ·Table control rule

R2 given in Section 2. In Figure 1, for example, we hav• re-·

presented the definitions Dl and D2 inside the set ~f definition

D3 which is in library form. We then know that the external

variables of Dl and D2 are auxiliary to D}, that the auxtliary

variables of Dl have no significance outside Dl, and iimil~rly

for D2. Pis a pointer which moves ~teadily through each de-

finitiori as·tt is processed, and in Figure 2 is represented·

the form of the· Symbo 1 Table at· Vario.us stages of processing.

D3: +P ST· ST ST ST St

Dl:L. + pa·

+ Pb

I f I I Pe
Pa Pc:

-.! Pd.
Pb

D2:[. + Pc

+pd
+ Pe

FIGURE 1 FIGURE 2

In position Pa it is at the beginning of Dl, at Pb at the end

of Dl, at Pc at the beginning of D2, and so on. The conclu­

sion to be drawn from this is that providing the evaluation

of Dl does not call for the evalua~ion of D2 1 or ,vice versa,

then the maximum number of named y~riable.s in us.e .·at any one

time during the execution of D3 is the. same as the maximum length

4-40

•

•
attained by the Symbol ?able. This. fact is used in assigning

addresses to names appearing in D3. For any· library program a

similar argument holds, and a region of storage is reserved

for named variables in groups (2) ·and(;). It is not necessary

for such space to be permanently reserved, and it is taken im~

me().iately prior to the execution of a library routine and re­

linquished a.f terwards.

The restriction imposed on the use of D2 by Dl in the last

paragraph can be removed in the case of library definitions:

they may use one another, and themselves, to any degree of

comple~ity, and are thus the most, convenient com9uting units

to handle.

Each definition in functional form refers to its parameters

in a.region of storage whose address, by convention, is con­

tained in a certain fixed cell in the .machine. The fact th~t

an address may in fact refer to another address for its data

leads to great fl~xibility here.· With regard toj:.he implicitly

used operands - little can be said of general significance, since

the use of these is closely related.to machine design. It is

sufficient to recognize their existence and consider the pro­

blem of what to do when cells in this group are us•d in diffe­

rent ways by two intera:c.ting subroutines. For if Dl(I) arid

D2(I) denote the sets ·of names used in definitions Dl and D2

respectively, then clearly just that set Dl(I)nD2(I) must be

'saved' when Dl ~alls for the use of D2, and 1 unsaved 1 after­

wards. This is a simple algorithm to code, and it~ achieved

with the help of .. the working storage region described in the I

next pa·ragraph.

4-41

· Concerning the last group of unnamed objects (5)~ it is

clear from- the .nature of. things that one of these cannot pos-

sibly be referred to in anot.her formula, or in the same part of

the same formula, and a simpler addressing scheme can be used.

Moreover, from the inductive nature of the evaluation procedure,

it follows it is only necessary to make the 'intermediate re­

sults' available in the inverse order to that of their creation,

so that a linear 'pushdown• list is maintained fo~ results

such as these., and it is shared by all routines which use one

another, si~ply extending and contracting the list as they need.

Exactly the same treatment can be given to variables which are

required to be saved from the implicit variable list.

To summarize the present position, it has been shown that

to use a machine for evaluation purposes it is necessary to

express the evaluation operators of a particular formal system

in terms of the command operators of the machine. This, and the

reduction of formulae to an explicitly sequenced form leads to

the formation of •programs• in the machine which are all ulti-

mately dependent on the automatic execution of the command

operators by the machine hardware, although it is not always

convenient to conceive of programs in these terms. Each progran

may refer ~o its operands through one of the five lists contain­

ing parameters, named variables {internal}, named variables

(external}, unnamed variables, or implicit operands.

We now pass to the description of the realization of

operands in the machine. It has already been said that the ob­

jects of study in any Genie language are very general in nitute,

and the fact that for immediate purposes we allow. them to be just

4-42

•

•
•numbers• or .. •names• should not detract from this. :At 4 future

date we may equally_ chose 'l;lnes', 1 points•,- or 's-ets•. 1 The

realization is best .given with reference to a particular machine,

in this instance the Rice Institute Computer, which is a single

address machine with: a word length of ·56 bits, t~o of which

are ~ontrol 1 tags, and do not enter the arithmet{~ unit~ A

given address may at any-time denote either the location of'.an

operand, or a repr~sentation of the operand itself or another

address. Each.address may be modified by up to eight B-registers

at one time, one of these being the control counter. These fea-

tures are not essentia 1, but do lead to a great· de·al "'of effic'iency

in this type of.work. Th~ chosen realizations are as ~ollows:

(i) Numbers

Numbers are g_iven in one of two binary forms. If a number

is a positive or negative integer with value less than 2 14, i~

has a d~rec~ int~ger representation in the address portion of

_ a word. In other- cases a number has 'floating point' -rep~eseri-

tation of a conventional type in a full machine ~ord, which

also includes the integer %epresentation.

(ii) Names

These_too have both a direct and oonventional form. A

name consisting of a single. character may be given directly

in the address portion of a word.· In other cases a name of up

to nine characters in leng,tb is ~tared to the left hand side of

a full machine word. If it is of eight characters or less, it

is terminated by a special character code.

(iii) Formulae

The realization of formulae is based on the idea of formula

1 rank 1 which was derived from the inductive definition of w.f~f.

4-43

in Section 3. First, the names appearing in formulae are realized

by their (Symbol Table) addresses. Second, unary operations which

apply to names appear in coded form in the same word as their

addresses (they may be up to·seven in number). Last, a formula

of rank r with p terms is represented by art associative list of

p+l words. The first is a heading word which contains certain

information about.the list. The address of the list {i.e. of

the formula) is the address of the heading word. The remaining

p words give the p addresses and unary operations on sub-for-

mulae. In Figure 4a, each box represents a·term in the list,

and the arrow out to the right connects it to its *next• ele•

ment. Inside the box is written the name of the element to

which it refers, together with any unary operations which apply

to it. If the term refers to another formula, a downward

pointtng arrow is drawn from the box to the 'data~ Figure 4c

shows a complete associative list. The last word in the list

completes a 'loop• back to .the heading word, which is marked

with a control tag 112", so that the detection of 11 2 11 in a 'data•

word is sufficient to indicate that the data consists of a new

list, and detection of 11 2 11 in the •next• word indicates that

there ar.e no more. terms· in the current list. The heading word

itself contains a reference to a higher order list, so it·is

always possible to trace a path through a formula to arrive at

any given level relative to a particular point.

FIGURE 4a: The list of rankr: fPa r j

·2

J .;::J 1 al}--~ ~--·--->

<
Heading List Elements

Word

•

e

•

•

FIGURE 4b: List words on the Rice. ln:s;titute Computer

Bits:l 15 21 27 39 54
rs t Rank Depth --=--L-e_n_g_t_h---.,..., E-l_e_m_e_n_t __ i_n ____ l

Heading
Word ement r d p !higher list

·~-~~l--~-L~------'-~--~~~...._~~~--~-,

List
element

l 15 21 27 2

I Next IRanrk. I Unary ADDRESS
~-:. __ i_e_m_e_n_t _ _. ________ it oper~t._i_o_n..:.-----------

Address Type
(Direct, Indirect,

Immediate)

FIGURE 4c: · Realization of ·the formula "a + Kgt - 1"

(iv) Definitions in Schemata I - IV

When a non-functional definition is given by means of an

equation, it is represented by placing the heading word for

the defining formula in a second table, the Value Table (VT)

whose elements are in (1-1) correspondence with the elements

of the Symbol Table (ST). If the formula consists simply of a

name or number then the representation of that element is placed

in the VT. Associated with each formula is a list of external

variable names, and this is appended to the approprate ST en~ry.
4-45

4

y

x

..
Figure 5 shows the realization of two formulae in this way.

When a definition is given., as in Schemata II and III, in terms

of several formulae each of these is at first represented in the

way described above, (Figure 6a). It is a simple matter., how-

ever:, to process this representation in order to remove the

auxiliary variables from ST, leaving a 'formula' representation

of slightly more complex natu·re (Figur_e 6b), at the same time

obtaining.,as before., a list of external variables which is

appended to the appropriate ST entry, Other information which

is contained in the ST word indicates the 'language' form of

the formula, the nature of the definiend, of the schema by which

it is defined, and whether or not it is in functional form.

If it is given in functional form., then the representation is

given in sub-section (v) below.

FIGURE 5: Realization of the equations: "y • 2 + 5x" and

ST VT

.2
0 + Formula •2 + 5x•

~ (x)

• 2
+ Formula •a+ 3b 1

(a,b)

4-46

•

FIGURE 6: Realization of the definit~on:
0 y = 4aa,x = m + 1, a= 4m - 111

• (a) The initial list structures:

ST VT

{b) The final list structures:

ST VT

!//!IA J!/111{~ _·-. __ _
y ~-/ x :.-c::n-~~~

1 .--··---z-···---~ '-~
I ~----=:~_: .m_t -~-11-11
I ,.------------·----.J.
. ! ,,_,.--~~~~~---\..~,r,l· ... ,

,(T --=-.......... -~;>l - l i-1

4-47

(v) Functional Defin1tions, and S~hemata V - VI

For practical zeasons, ~equential definitions and functions
. '

are realized by first effecting the trart~lation to •program•.·

form which was indicated at the beginning of this section, on

the basis of the Reduction Tables for the various definitions

which are given. This realization resembles machine code

closely, except that it retai~s addi~ional information for

ease of modification. It is very quickly converted into genuine

machine code, and in certain important instances no alteration

is necessary. For his·torical reasons, we refer to thls as

•a-code'. By retaining 8-code and the portion of ST associated

with it a completely symbolic representation of code can be re­

gained for reference purposes, a~d in practice ~ese ar~ auto-

matically retained on tape (paper or magnetic) until the coder

decides that the program is running satisfactorily.

This concludes the summary of operand realizations that are

at present provided in Genie. They will be reported in greater

detail elsewhere. In addition to ~ese, hovever, provision is

made for the arrangement of operands into regular arrays of

one or two dimensions: the vector and matrix forms. Where such

forms are desirable, appropriate evaluation operators may be

provided in t~e model and the operand names in formulae can

then refer to such arrays either as a whole, or element by

element. All array elements must be of the same type, and they

may themselves be arrays; they may also be defined by reference

to their position in the arrays, as in the case of triangular

or band matrices. The argument for restricting Genie to arrays

of not more than two dimensions in that in this way we are in-

•

..

•
eluding by far the majority of instances which are useful,

and for which efficient manipulative algorithms are known. In

any case, higher dimensional arrays can usually be reduced to

arrays of arrays at little cost. We have adopted the universal

convention that elements of arrays shall be indicated by sub-

scripts which take positive integer values.

We are now in a position to give the final rule wd.ch con-

trols all processes of evaluation.

Rule 4. (The Execution Rule)

A machine is controlled by a {supposedly infinite) linear

sequence of characters. In this it recognizes names, numbers,

operations, formulae, equations and definitions according to

the rules given in the preceding sections. For each name it

determines what type of operand it stands for, either by implicit

assumption, by deduction, or by explicit declaration. It also

determines which other named objects a definition depends upon,

and whether or not they have themselves been defined. If they

have, then the dependent variable is evaluated according to the

model which its definition implies. By a continuous scanning

process, this continues until no more evaluations can be made

on any entry in the Symbol Table. A further definition is then

read in, and the process repeated. An example will illustrate

some of the consequences of this rule.

Example: We shall assume that the machine contains the Character

Table and Reduction Table for an albegraic formula language.

Consider the following set of commands and definit:lons.

[,c = ;.,14159
r 7 sin{x) ·= z...•• .commands evaluating sin(x) •• •_J

A is an integer

Q[K = sin(~/4) - 2sin(;,c/4)

4-49

Q(t, iiu) 2 = 3t + s.t - K

g = 2K + 1

m = A sin 31<.+ A2g ·

u = m + S/mj]

••• etc ••••].

. . .
The opening bracket delimits this set of definitions; when

it is closed, all the information provided inside it will be -
erased from memory and the machine will be back in its original

state. This is not always desiraole, soa set of definitions

may be named; in this case when it is closed all the informa­

tion contained inside it is removed from the ST but saved in

temporary storage. The name of the definition set is retained
... ·

on ST and ma·y be used to recall ·the information to ST at any

time. In this way any user or group of users may build up pri•
- ·. . . .

vate subroutine libraries, languages, etc. and call them into

the machine at the start of ari evaluation run, as well as using

the main facilities of the machine.

The first two definitions in the example give"~" as a

number and "sin" as a function. Following this, the number 0 A"

is mentioned in order to place it on ST as an external variable

of the set of definitions which follows. This is named "Q",

and any subsequent call for it will bring into ST all the defi·

ni tions contained in the following brackets. Here "K" is de-

fined in terms of "sin" and"~', which are recognized as known

quai&tities and an evaluation of "lt" follows. The name"Q11 is

also given to the sequential definition, which is the main de~

finition of this set in the sense that all others (K) are

auxiliary to it. Q has an input parameter "t" and output 11u•.

4-50

•

•

•
•

In the cotnmand.s which follow; Ilg" 1 ts. recognized as depend'ing on

the e_xternal qu-antity IIK~' only and this, has previously 'been

defined, -so that a simpler command can be written here.· No
further sim.p.lific~tions can be made and Q is retained in storage

in its a-co.de form. After the closing bracket only ",c",: 0 An;

11 sin11 and "Q" remain in ST.· Af.ter the final closing bracket,

nothing remains in ST and the machine proceeds t1the next.de­

finition set.

The Execution Rule implies a continuous co~trol of the

finite number of storage elements in a given machine. In the

present Genie system this is achieved by placing all'free'

storage cells in a list of special structure which allows the·.

evaluation operators to 'give' and •take' as many cells as they

need _for applicatton, This works well until storage sp'ace be­

gins to be exhausted, and then various re~overy Gperatidns can

be called into play, aimed first to rearrange active regions

of memory to bring all the available cells together in a single

block., and finally to put all definitions not currently in· use

into temporary storage. In the latt~r ~bnne~iion, it will be

noted that the Pathfinder list gives a complete descriptlon of

routines in use at a given time. While stich techniques as ~hese

have been shown t9 be feasible, further experience will be

necessary before reliable conclusions can be drawn with· regard

to automatic storage control algorithms. It may well be that

the algorithms will vary with the type.of application for which

the machine is in use.

Many of the automatic feature& of Genie are also available

under programmer contro 1, ,transfers to and from magnetic tape ·

4-51

storage being a case in .point, and control of •execution• of

programs being anoth.er. It is interesting to· not 'e that in a

mach;l.ne with adequate trapp.ing features some protection c:an be

afforded against instances where an evaluation procedure is

started before all the requisite terms have been defined, or
when ~ome of them are in auxiliary storage, and appropriate

recovery steps taken. Such techniques seem very promising and

suggest a new application of interpretive-type programs, the

usefulnes.s of which has been. in doubt sin·ce the. advent of re-

liable compilers.

It should also b.e noted that the Execution Rule can be

treated simply as a loading routine, and as· an input routine

for use during execution of a program. In addition to this, in-

dividual routines may be used for the input of numbers during

program execution, outside the control of the Execution Rule.·

Printed output does not affect the results of an evaluation

process at all, and it may be obtained either in.the form of

definitions or formulae in certain standard formats. Otherwise,

suitable output subroutines may be compiled by selecting a

descriptive language and defi~ing it to Genie •. ~ useful ,tech-·

nique involving output routines _is to recognize certain 'print'

operators O 1'! ·" (say) which may appear at any point in a formula

and result in the printing .of its operand wheri that is evaluated,

e.g. in the defini tto·n: . · ·

Y = (-2n <t!~A1) + n I:i~1(Ai2))/N

the presence of the operators "n" would result in the printing

of th.e results of the. two summations during the evaluation of y

without otherwise affe.ct.ing the result. Normally, sccb· operators

4-52

• •

•

•

•

•
I

•

* are controlled by sen,s.e ,w_i;tcbe,s •

These and other techniques are discussed in detail in

a separate memorandum.

6. Conclu.sions

In terms of the presently active generation of computers,

the Genie structure provides' at a low cost in programming the
, , •, on ' 1

basis upon which convent~al assembly, compiling, ·loading and

interpretiie r~utines can be achie~ed. On th~ Rice I~stitute

Computer, Genie itself takes less than·2,000 orders., 'and on
. .

these both an assembly program and an algebr,aic' compiler of°

some sa"phistication can be built with the addition of about·

500 orders apiece. Even on a machine such as the IBM' 709, i't

is probable that the basic effect ~ould be achieved i~ l~is

than 15., 000 orders. More important, however.,' is the 'fa'c.t' that

the addition of tao re comp iica ted ianguage's becomes inc·reasingly

easy since their evaluation operators ma'y be described in terms

of those defined previously.* .There is an ab.srilutely minimal

The simplest language in Genie is, of course, binary machine

code.

increase in storage requirements, represented by the size of

the combined Character and Reduction Tables and their appen-

dages, but this may be as little as 100 cells on a given machine.

Often the Tables for two languages will differ only slightly

and can be combined into one with.only slight cost in changing

, ..
from one language to another. That this can be achieved, at

the same time bringing a unified approach to computing machin~

appli~atioris seems to weigh in favor of the type of a~aljsis

represented by Genie.

There are two cases in which Genie can be applied to more

recently designed types of machine, almost without alteration.

The first is in computers with parallel computing ~ni~s and

shared memories. In this case the Symbol Table and all defini-

tions stemming from it will be in the memory as ~efore. Now,

however, there will be two or more units applying the Execution

Rule to the Symbol Table, each subject to. the same conditions

as before except that it will be possible to detect, ef any un-

defined symbol, whether it.is in process of definition by some

part of the machine. It may then b~ desirable to delay the eva­

luation of quantities which are dependent on this, or in some
·. ' . . .

circumstances a second evaluation may be started, safeguarded

by a trapping interlock device, in the hope that the first

evaluation will be completed before its argument is required

by the second process. A similar situation arises even on

single sequence machines when a.program is 4ependent on data

supplied by a parallel operating input device.

An allied problem is concerned with human interaction

with the definitions in the machine. Such interaction is in­

effectlve without communication at the symbolic level which is

provided by G~nie, and continuous control of pro~lem execution

is mandatory. The Symbol Control Rule was devised with this

applica.tic>n in mind, where several coders simultaneously share

the machine and the •subroutin~ libr~ry' without getting their

4-54

•

..
'
•

•
• ..

•

•

own mnemoni.cs and subro.utine name.a con.fu,ed. Preliminary.

studies indicate that th~ present.rules are adequat~ for ~ime­

aharing between a number of mathematician-oper~t9rs and a long

production routine, even o.n a single sequence macb:ine, be~ause

of the addit·iona 1 information carried, in ST and, the, pathfinder

list, which enables evaluation to be interrupted at almost any

point in a program.

It may be argued that the simplicity of Genie is achieved

by oversimplifying the translation. pro~ess, but.we feel that

this is untrue. An actual process of translati.on from 4 formula

to sequential code consists of three parts:

(i) An initial equivalence transformation of the formula.

(ii) The translation into sequential code.

: (iii) A 'fina 1 equivalence transformation of the sequential

cod·e.·

Now in fact we have described only (ii), but Genie. doe:s in­

clude routines of types (1) and (iii) which are applied with

varying succ~ss in order to improve the efficiency of .the evalua-

tion. * The prO~lem is easy enough to state, but not easy to ·

* Equivalence transfottmltton for arithmetic, for example,

are implicit ·in the axioms of Peano; equivalence tra.nsf_ormati_on

for code have been given by Iu.A.Ianov, •on equivalence .an~

transformation of .Program Schemes', Dok.Ak.ad.Nauk. s.s •. s.R. 1

.!!l· No. 1, 1957 •

solve, and since we are interested in solving the problem by

machine, the first step is to analyze it into these three stages •

At a later date we may hope to achieve the synthesis arrived at

by a human coder. Another relevent point here is that (iii),
4-55

for e·xa1.'li¥>le, is applicable to the results of many different

translators., and it is best applied after, rather than during

code constructi·on.

The form·al description of computing proces:&es from a theo­

retical standpo.int has been .given by A.P.Ershov{3), and this

approach a ls·o · apirears to have a wider application at the prac­

tica 1 level than can be achieved by syntactic mean•s. One of

·the most beneficial results we can hope for is that with the

flexibility offered by routines of the Genie type a powerful·

language will come into. universa·l uses in communication with

·machines.

7. Acknowledgements

This investigation has benefitted greatly from testing and

criticism by Miss Jane Griffin, Mrs. Ann Heard, Mrs. Jo Kathryn

Mann and Mr. Carruth McGehee, who wrote the first versiqn of

Genie for the Rice Institute Computer. This work wa~ supported

in part by the National ~cience Foundation .. GrantJnumber

G-7648.

8. References

(l) H.B. Curry, •on definitions in formal systems', Logique et

Analyse, 3-4, August 1958.

(2) s.c. Kleene, 'Introduction to Metamathematics'; Van Nostrand

and Co., Princeton, 1950.

(3) A.P. Ershov, 1 0n operator algorithms•, Dok~·Akad.!lauk.S.s.s.R.

122 No.6, p967, 1958. · -

4-56

• ..

i
..

•

	1. Introduction
	2. Sequencing and Procedures
	3. Formula Syntax
	4. Semantics
	5. Machine Realization
	6. Conclusions

