}

Rice Institute Cemputer Proiject Programming memorandum # 3

‘November 17, 1959

Some coding conventions, subroutines, and

‘alterations in the order structure,

This is a collection of miscellaneous information for the guidw
ance of people writing codes for the machine, particularly in cases
where the assembly program, APl, is iﬁ uée; The most important
changes in order structure are stated in Section 1: these mostly
have the nature of hdd;tions‘tb the "értﬁta éna Addenda to the
Computer Manual" iﬁarch 19595 and have Béengbﬁtéined by slight
modificatiyns in iogical design. Symﬁoiic progréﬁs based on Memb-
ranéﬁm #2 %July 1959) should be little affected; absolute codes of
class 1 and 2 may fequire revision,

It is felt that the changes made are sufficiently useful to
warrant modification of APl (January 1959) to accept a revised
mnemonic 1ist and operation structure, 2ZBe groposed changes are
symbolically helpful, and can easily be fitted into the existing
APl codes without unduly extending the mnemonic table, The results.
are given in Section 2, We have also determined some further sgb-
routine conventions, in line with Memorandum #2, which are aimed at
relieving the problem of fast register usage,

Section 3 gives a list of subroutines in existence or near

existence at the time of writing, and a revised list of APl mnemonics,

1, Changes in Machine Codes

Field 1: No change

Field 2; Class 0: Control Orders, The rule concerning the transfer of

(CC) to PF is now: The contents of €C are transferred to PF if

(and only if) OP2 = 4, Transfers to P2 (the second pathfinder)

remain as before,

Field 2; Class 1: Arithmetic Orders, The basic codes (given by O0OP2)

remain unchanged, except that exponent manipulations have been
completely eliﬁinated from the fixed point orders, Some op=
tions are now offered in OP1l and OP4 to complete the range of
orders (all combinations of U and 8 are now possible) and define
the rounding fﬁnction; These optiOns are taken by placing a'l’
in the bit position indicated in the list below, which is given
in decoding sequence:

(a) OPL4 bit 1 : interchange (U) and (S)

(b) OP1 bit 1 : clear Ry to sign of U,

(c) Oéi bit 2 : interchange (U) and (R)

(d) Execute arithmetic operation given in OP2

(e) OP1 bit 3 : round result in U

(£f) OP4 bit 3 : store (U) in memory cell whose address

is in I,

All floating point results are normalised, The rounding mode
switch will still force rounding if it is 'on', even though OPl
bit 3 may be zero,

Field 2; Class 2: Store, Bubstitute, Set Tag. In the decoding se-

quence, OPl, OP2 and OP4 are defined as follows:

-2a

0Pl = 0 : no action

L
. 1 : (S)l,39 + 01,39 5
(8)1,6 * U1, 62 (g, 54 * Uq,s

32 (8)y,07 ™ VUp,27 75 (8)pg,5u * Upg, sy
Clear ATR (Arithmetic Tag Register : this has beén

(s) ~u

(8)y0,54 * Uno,sy

0]
(2]
(13

(1)

o
g
N
1
O
[Ys

set during execution of field L)

Set ATR = 1

»e-

Set ATR & 2
i Set ATR = 3

No dctibd on ATR

e

BRCEEENY N
e

o
)
=
i
o

Store (U) and (ATR) in L(I,+o 5h)
b]
1 : Do not store

2-1

1Y

(not to be used).

Field 2; Class 3: No change

‘ Field 2; Class 4: The setting and clearing of special registers has

been extended as follows:
= .]
OPl = 2 : Set lights designated by 1's in Ih0,5h
6 : Store Iuo 5k in some special purpose register,
b

If OP1 = 2, OP3 is decoded as:

OP3 = 0 : Sense lights on 4 : Sense lights off
1 : Mode 1lights on 5 : Mode lights off
2 : Trapping lights on 6 : Trapping light off

3 : Indicator lights on 7 : Indicator lights off
1f OP1 = 6, OP3 is decoded as:

OP3 = 0 Second pathfinder, P2 (77770)

1 : Sense light register, SL (77771)

‘ 2 : Increment register, X (77772)

QB-

Mode light register, ML (77773)

: Trapping light register, TL (7777L4)
Indicator light register, IL (77775)

: Output location register, B8 (77776)

~ O N

: Input location register, B9 (77777)

Field 2; Class 5: As in the arithmetic orders, a "store" option is
provided here after the logical operation,
Thus OP4 = 1 (Bit 21): Store (U) with (ATR) after operation,

Field 2; Class 6: No changes

Field 2; Class 7: There are no class 7 orders now, The ®NOP'

is the class 2 : 20001,

Field 3: The useless code '10' (Store R in 3) has been re-inter-
preted to mean "Store 3 in R", i.e.,, clear R to 54 zeros,

Field L: No changes,

/-

€

2, Changes in the Assembly Program

Many of the changes of section 1 do not affect the symbolic

forms of orders, In some cases, a revised interpretation is

appropriate,

OPN field; Classﬂof(logicél,dfdérs). By introducing a new code "TSR"

(Transfer to ghbroutine) a distinétion is drawn between transe
fer orders which reéet PF (TSR), and those which do not (TRA);
Thus; on 'intetnal!untonditiondl tranéfefsi iRA is now symopy-
mous with SCC (Set control ébuniers; and it ik possiblée to
dihﬁinghisﬁ Both conditidhal and unconditional transfers to
Qﬁﬁfdﬁtines(although the former are less general, since they
may not include a test in 0P2), e.g;
TSR SINH
and IF(TG2) TSR SINH

both reset (PF) to (CC) (upon making the transfer.)

Class 1, Arithmetic Orders, Names have been provided for some of

POINT Integer Division; IDV; Uﬁ + Rl'dlsM

the more useful options on division., 1In the notation of
Programming Memorandum #$2, Lecture 2, we now have:
Addition; ADD; UM' = Uy + SM

- L3 ' -~ -
Subtraction; SUB; UM = UM SM

. . v
Multiplication; MPY; Uy + BRM = Uy x Sy

FIXED Division; DIV; Uy + ORY/Sy =[TUy + OR,1/S,, |Ry|[<|Sy]

[0 1/ IRYI<ISy]

Reverse Division; VID; Uy + ORy/U, = [S,1/U,, |R}|<|U,]

Reverse Integer Division; VDI;

Uﬁ + R&/UM = SM/UM, IR.IH<|UM|

FLOATING Addition; FAD; U} = U, ¥ s,,Rl = U}

411 these results

E E

POINT Subtraction; FSB; u; = HF z SF'RE - Ué are rounded and

Multiplication; FMP; U} = Uy X S,,R! = U} normalized, For

E E

. . |] ":]
Division; FDV; U} = Up f SpsRE = UL

Reverse Division: VDF; Ué = sr UF Ré = Ué' use octal codes,
, .

unrounded answers,

» §o-0¢

In order to use the store option, the appropriate mnemonic code
is followed by '+1'; (In this way it 1is handled by the existing
APl program without change)., For example, tﬁe code required
to replace the vector vy in cells Y to Y+100 by ky; where
(T4) = k would be:
§B4 d1l00
T4 FMP+1 Y+4B,,B4-1
B4 IF(POS)TRA CC-2

Class 2, Store, Substitute, Set Tag, There are now 80 orders in this

class, all potentially useful, For symbolic purposes, we divide
them into two sub-classes, the first of which is regarded as
replacing part of U in a memory cell, and the second as bring-
ing the portion of a memory cell to U, without disturbing the
value in seorage;

Let V be the final address formed in Field IV, Then we
have:
Store; STO; (V)' = (U), (S)' = V
Fetch and Store; FST; (V)' = (U), (S)' = (V)
Replace exponent; RPE; (V)' = (U)' = (0)1,6(v)7,5#’(s)' = (V)
Replace Mantissa; RPM; (V)' = (U)’ = (v)1,6(0)7’5h,(8)' = (V)
Replace Left Half; RPL; (V)' = (U)' = (0)1'27(V)28,5h,(s)'.(v)
Replace Right Half; RPR;(V)' = (U)' = (V)1,27(U)28,5h,(8)fa(v)

-6-

Replace Address; RPA; (V)' = (U)' = (V)1,59(“)h0,5u,(8)’ =(V).
‘ , No operatiom; NOP; (U)' = (U)§ (S)"PQ (s); (R)' = (R).
Clear and add; CLA; (U) ' =(S); C(S)' = (8);(R}' = (R)
Bring exponent to U; BEU; (u)* - (v)i L sy3 (V) '=(8) ' =(V)
Bring Mantissa to U; BMU; (U)' u(U)l 6(V)7 5u,(V)'=(S)'=(V)
Bring left half to U; BLU; (U)' = (VJ1 27(U)28 5u,(v)'=(s)'=(v)
Bring right half to U; BRU; (U)' = (nil 27 g, 5h,(V)'=(S)‘=(V}
Bring address to U; BAU; (U) = (U>1§59(V)h0 5#’ (V) '=(8)"=(V)
Note that NOP Has beeh bléaed here instead of in class
7, and CLA has also been placéd in this class, as a slight
speed hdvadtagé is gained oVerfg%d Class 5 6f&er; A memoty
access is normally required to set up S correctly for all these
orders, with the exception of sro; Note also that all the
'store' orders and the 'replace' orders clear to zero both tag
‘ bits in memory. I1f another setting is required, the ‘'set tag'
option in OP2 should be used,

Class U4: Set special purpose registers, These orders are not all so

important as to deserve a permanent entry as &0 OPN mnemonic,
Only STX (set increment register) has therefore been added to

the 1list,

Class 5: Logical orders, As in the arithmetic class, the store op-
tion i1s used by writing '+1' after the order, e.g.,, the code
to clear all but bits 49-54 of the words in location P to

P+ N-1l would be written

SB1 77
SB2 N-1l
Bl AND+1 P+B2, B2-1
® B2 IF(POS)TRA CC-2

-7-

“\ A revised list of OPN codes in A?lris attached to this-
memogandum;
Field 2; The mnemonic "R =+ 2" is unchanged, but is interpreted. as
indicated in Section 1;

Library Routines, As a guide to what is available to coders, a

partial list of library routines is given in the next section,
It is partial only in the sense that, since the routines have
been written in several places, full details of space require=-
ments and fast register usage are not always kann; However,
the potential user may have confidence in their availability
as working codes, and lack of complete detailé need not be a
deterrent to inclﬁdiﬁg references to a library subroutine in
some other code;

The basic conventions of subroutine usage are given on
pages 22«23 of Programmiﬁg Memorandum #2. We remark immediately
that item (vi) in that list should now read:

"(vi) Transfer to a subroutine is normally made with the TSR
order, thus setting PF correctly, Other unconditional trans-
fers use TRA, SCC or ACC,"

In order to use a subroutine in an APl program, it must
be identified by the same name throughout the code, and at some
point the appropriate library tape must be added to the symbolic
input tape, The library tapes are in octal, hexad, or a 'con-
densed binary' form, which need not concern the coder since
they are correctly interpreted by the APl processors, headed
by the identifying name; If the coder obtains his assembled
program in absolute form on paper tape, it will contain all
subroutines, and these need not be reloaded at later execution

runs,
-8-

Some 'overlap' in use of fast working stores by the main
.‘ and sub-program is often unavoidable, and it is then essential
for the coder to preserve the stores affected in the main pro-
gram before éntering‘the subroutine, by placing them in a 'safe'
memory positiony They should be restored on return from the
subroutine, There are some obvious ways of doing this, but a
useful technique may be mentioned here, since it is used by
subroutines in the library. 1In this it is assumed that B6

gives the first word address of a block of free working stores,

and these are used by the main routine both as an extension of
the 'fast' temporary stores and as a repository for F-series
registers before entering a subroutine, Then provided the rule
is followed that B6 éiwazé wpoints" to & glock of free cells
(being advanced an& decremented as Bore %f less sbace is re-

. quired), it may be used as a wo‘r‘k?ihg storage index at any level,
In this éa&, the néded for including private working stores
wiéhin a subroutihe is avoided. For example, to save (B4) and
(%6) before entéring routine F23, we would write:

B4 STO B6 + &, B6 + 1
T6 STO B6 + 2, B6 + 1
TSR F23
CLA B6 -« 1, U + T6
CLA B6 - 2, U »> B4
AB6 -2
In later assembly systems, the above code may be generated,
or equivalent closed subroutine linkages written, by two special
‘ macro-orders:
SAVE B4,T6

TSR F23
UNSAVE B4,T6

i and in planning complex systems of routines, it is convenient
. “’to‘employ an abbreviation such as this until final details of
subroutine usage have been worked out,

It should be noticed that some of the data input routines
will use B6 as an indication of where to put the numbers being
read in; they will advance (B6) by an amount corresponding to
the number of stores used, and it is therefore important for
the coder to insure tﬁat (B6) is reduced to its initial value
if 4 data input routine of this type is used within another sub-
routine, The aiternative procedure, ofrélways retaining ehough
storage spate for initial and iniermediéte éa:a within a pro-
gram, may still be used,

Provision is made for handling arrays of one or two dimen=
sions “semi-automatically" by means of the type 1 codewords of

‘ Programming Memorandum #1, This leads to greater uniformity,
shorter calling sequences, and little appreciable loss of time
or space compared with conventional methods. For these reasons,
only the "short forms"™ of subroutines are given in the following
list, (The routines are also available with conventional calling
sequences,) To summarize the codewords in their present form,
it is assumed that each refers to a block of stores of length
L, which may contain numbers of one sort or another, or more
codewords, 1In the latter case, the IA (indirect address) bit
is turned on in the codeword, If the consecutive stores contain

elements 4158550048 then the codeword A contains a Bl-modifi-

L’
cation bit, and has in its address part the location preceding

‘ the store containing a;. Hence, it is always the case that to
obtain a,, it is sufficient to write the code:
SBl1 i
CLA *A,

Similarly, for matrices, to obtain the element a it is

i’j,
sufficient to write:
SBl1 i
SB2 j
CLA *A,
The number L is given in bits 1-9 of A. Clearly, I<I<51l,
Bits 10-18 and 19-27 may give two parameters for use in index-

ing; these are denoted by M,N:

1 9 10 18 19 27 28 30,31 32 39 40 54
L M N Type |IA B~ FWA-1
. s bit modifier |
I
"Base
address"

Finally,_bit 28-30 may be used to indicate a type of array,
which is used by various proceSsing routines, Thus; we can
interpret an afray as d vector or flatrix, or as a polynomial

form of degree L-1:

xL'1 + .aaxl"'2 + eee + a

or as a multi-length number:
-471T2é7M

N
M) = [Z a % 2
i=1

(where in the latter case a,% is the mantissa of ai only), or

i
as a member of any other set of objects between which useful
mathematical operations may be defined.

As the system of codewords is refined, it should become
unnecessary for the coder to know of their existence., They will
form the basis of more automatic coding systems to be introduced,
We give as an example a program P for reading two square (n x n)
matrices A, B, and computing the matrix A'IB, printing out the

latter on the line printer:

-11l-

P ORG

B6 RPA Pl
PF RPA P2
SB1 1
Z TSR READ, U+4
TSR MINV
T4 STO P3
SB1 1
Z TSR READ, U+4
T4 NOP Z, U=+ 1T5
CLA P3,U0 =+ T4
z TSR MMPY, U + T6
T6 SB1 1, U +> T4
TSR PRINT
Pl CLA a(B6), U =+ B6
P2 CLA a(PF), U »+ ccC
P3 oCcT 0
END

Here, B6 is used throughout the program, and the working
storage list contains successively the matrices A, B, a~ls
énd their codewords,

1t may be objected that by using codewords a firm grasp
of the data in storage is lost, This is partly true, but it can
readily be seen that by only two or three commands the “first
word address"™ and "size'™ of an array can be obtained explicitly,

By the methods described above, subroutines may be incor-
porated in a program during assembly in a straightforward way,
The output of the assembly process is (optionally) a condensed
binary relativised self-loading tape containing the program,
The assembly process is sufficiently fast to permit frequent
re-runs during program checking, but as more complex assembly-
compiling systems are produced, methods will be given for in-
corporating subroutines in the code immediately prior to execu-
tion.

As noted in Memorandum #2, arguments and results of any

closed subroutines may be left either in the F-registers, or

-12-

the PF-list (i.e., the conventional calling sequences following
the transfer order), or anywhere else addressed by one of these
registers, We shall describe the subroutine using standard
abbreviations for F-registers, and the notation PO,Pl,.,.,Pk
for members of the PF-list, Then let the notation:

(Yg5 Yoreass¥) N (X5, X55.005X0) (1)
denote the subroutine N with s output values and t input values,
where the Y's and X's are generally chosen from the set of F-
register names or the Pi's. Thus:

(T6) SIN (T6)
describes the single valued function SIN of the argument in T6,
which leaves the value of the function in Té6., It follows that
to determine Y = SIN (F) we must code:

CLA F, U + Té6

TSR SIN
T6 STO Y
Hencde, the form (1) is adequate in describing the usage of N,

It remains to give N a meaning, which is done in brief terms

in the subroutine description, and to indicate which machine
conditibns, other than those described by (1), are liable to be
changed by the action of N,

It is often convenient to name a collection of subroutines
as a unit, and then provide access to each individual routine
by means of a "subscript", which is really nothing more than a
parameter stored in Bl before entering the ratine. Such routines
are denoted by:

(Yl, Yz""’Ys) Ny (Xl, Xe"“’xt) (2)
Thus, in the case of

PRINT, (4,8,C,D)

the calling sequence would be:

SB1l 7
TSR PRINT
-2- A
2 B
& c
2 D

In the choice of N, we have tried to select the usual names
for elementary functions, (These are mostly evaluated by means
of economized polynominals derived at the Exploration and Pro-
duction Research Diviaiop of the Shell Development Company,)
Often, routines which effect the same transformation by different
methods will have the same name, There seems to be no dis-
advantage in this as long as subroutine tapes are selected by
hand, and it does have the advantage of keeping the set of
different names to minimum size, Some subroutines, e.g., SIN
and COS, are grouped together for obvious reasons, and appear
on the same physical tape,

Not all possible functions have been placed in the library
list, and many others are available, Some notes on these, and
on the array routines which do not use codewords, may be seen
at the Computer Project, However, it is often advantageous for
the coder to write his own supplementary routines as they are
required, in order to minimise overlapping im the use of fast

stores,

wlle

3. Additions to the APl System

A summary of current APl mnemonics

In the following list, new bt revised codes are underlined,
Apart from recognising the familiar machine codes, the programmer
may use the 1list in two other ways.

(i) For each operation mnemonic, a five digit octal code is

given. The numerical digits define the essentials of the
order code, but in addition to this the letter 'a' in an octal

(or in some cases binary) digit position indicates that the

corresponding digit is available for the synthesis of more com-

plex orders in the same class, The conditions for effecting this
synthesis are that in any two selected codes, numerical digits
occurring in corresponding posiéions must be identical, gnd

any other numerical digits must occur in positions in oune code

corresponding to "a" digit positions in the other, A digit con=-

taining "n" may not be used in synthesis with a numeric digit,

By this rule, the codes 0 a a 5 a and 0 a 2 a 1 may be synthe-

sised to give 0 a a 5 1. On the other hand 4 5 n a 1 and

4 5n 5 5 may not be synthesised, since the last digits do not

agree, Synthesis is made by taking the logical sum of all bits,

treating 'a' and 'an' as zeros.

(ii) It is also possible for the machine to synthesise opera-

tion codes, although no economy of expression can be ob;
tained when several order mnemonics are given, Thus, if by the
rules above two or more octal codes may be correctly synthesised
they may be written in the OPN field, separated by a comma:

e.g. STO0,ST1 ALPHA

IF (NMO,N3E,NT3)TRA XMAX,

.15-

. Cont:ol
HTR

TRA

TSR

SKP

JMP
1F(test)HTR
IF(test)TRA
1F(test)TSR

IF(test)SKP

IF(test)JMP

Tests:
POS
PNZ
NEG
NNZ
MOV
NMO
EOV
NEO
ZER
NZE
EVN
oDD
SLN
SLF

NUL

o o © o o o o o o

]

F O W O W

November 20, 1959

Revised Summarv of APl Mmemonics

©o © © o o

]

Unconditional halt and
transfer
Unconditional transfer

Unconditional transfer
to subroutine
Unconditional skip

Unconditional jump by (X)

Conditional halt and
transfer :
Conditional transfer

Conditional transfer
to subroutine
Conditional skip (1)

Conditional jump by (X) (1)

Mantissa positive or zero

Mantissa positive and
non-zero

Mantissa negative or zero

Mantissa negative and
non-zero

Mantissa overflow
on

indicator

Mantissa
off
Exponent
on
Exponent
off
Mantissa

Mantissa
Bit 54 =

Bit 54 =

overflow
overflow
overflow
zero
non-zero
0

1

Sense lights on

Sense lights off

All 5k bits zero

16

indicator
indicator

indicator

Skip next instruction.

I1f more than one test
specified, action taker
if any test satisfied-
except if PNZ or NNZ
used, then all tests
must be satisfied,

J

- "(1)A floating point
subtraction is
carried out on
all comparison
orders.

Indicators are
turned off.

J

Lights indicated by
-?DDR+MOD

NT2
NT3
NTG

Arithmetic

N T W n

o © o o
-~

ADD
SUB
MPY
DIV
VID
IDV

VDI
FAD
FSB
FMP
FDV

VDF

Fetch,Store

-

(o) SN . AN N € R |V

CLA
BEU
BMU
BLU
BRU

BAU

[\V IR o B |° N A I B \V]
AS BN AN O ¢ AN v B

Tag
Tag
Tag
Tag
Tag

Tag

indicator
indicator
indicator
indicator
indicator

indicator

= W N

N

3

on
on
on
off
off
off

No tag indicators on

Fixed point
Fixed point
Fixed point
Fixed point
Reverse fixed point divide
Integer divide

Reverse integer divide
Floating point
Floating point
Floating point
Floating point

Reverse floating point divide

Clear
Bring
Bring
Bring
Bring

Bring

add

subtract
multiply

divide

add

subtract

multiply

divide

and add to U
exponent to U
mantissa to U
left half to U
right half to U

address to U

-17-

oint
< J

Specified indicators
are turned off,

P

Spec¢ified indicators

Double
length
Single No

length round

Fixed

rounded

Single
length

IM bit 1

Result in U

are turned off,

Succeeding
"4+1" in-
dicates
use of
store
option,

NOP 20
FST 20
STO 20
REE 26
RPM 22
kPL 2 7
RPR 23
RPA 21
gil 2 a
ST2 2 a
ST3 2 a
Short registers
AcCC L o
AB1)
A%F b o
scc Loy
SB1 L4
SPF T
STX L 6
shifts
UMR b1
UML |
RMR b1
RML T |
DMR b
DML h 1

© Nrrte s O

o toe pa

[y

o O © o o o o

v N

No operation

Fetch and store IM bit 1 = 0; tags

unchanged,

Store IM bit 1 = 1; tags

cleared,
Replace exponent in memory

Replace mantissa in memory IM bit 1 = 0; tags
cleared unless com=-
Replace left half word in bined with set tag
memory operation,
Replace right half word in
memory
Replace address in memory

Set tag 1
Set tag 2 IM bit 1 = O
Set tag 3 J

Add to control counter

Add to Bl

.
L g

Add to pathfinder
Set control counter

Set Bl

Set péthfinder

Set X register

ﬁ manéiséa right

U mantissa left

R mantissa right

R mantissa left
Double mantissa right

Double mantissa left

]88~

LUR
LUL
LRR
LRL
LRS
LLS
CRR
CRL

BCT

:OF OF OF O F 5 o &
CYEERC ERC RS BEEY BN BN IR RN

Lights, Modes

SLN

SLF

ERM

h 2
L 2
L 2

’ Logical orders
|

AND 5 0
ORU 5 1
SYM 5 2
XTR 5 3
Input, output
PRk 6 2
RHX 6 0
PHX 6 0

]

o o U O\ =

= O U D U P

Logical U right
Logical U left

Logical R right
Logical R left

Long right shift
Long left shift
Circle right Ush*Rl and R5h -+ U1

Circle left R, .U
1+ 54 and U, + R5h

Bit count

Sense lights on
Lights specified in
Sense lights off DDR+MOD

ADDR+MOD field cannot
be used,

Enter repeat mode

And to U

Pr:leeding "." comple-

ments the result in U;
succeeding "+1" indi-
cates use of the store
option,

Or to U

Symmetric difference to U
Extract § through R to U

Print With format k k = 0,1’2,000’7
Read hexads

}

Punch hexads

—19-

CONVERSIONS

"TABLE. LOOK-UP

Name Function and Remarks F-registers Storage

(T4,T5)BINDC(T4) Binary to decimal conversion,
Fixed or floating point,
depending on whether exponent
bits are all 0 or not,¥

(T4)DCBIN(T4,T5) Decimal to binary conversion,
floating point form.*

(PF,Bl)TLUl(PO,Pl,T4)

. A general logical table look=
up, with argument T4, in the
table whose codeword address
is in PO, using the mask in P1l,
On exit, (PF)=0 if no equality
was found; (PF)=1 and (B1l) gives
the relative address in the table
if an equal entry is found,

(T4)MACOG, (B3,B4,B5)

Matrix codeword generator,
i=type of matrix (l:storage by
rowy; 28: by column; 3: upper A
by row; UL:lower A by column;
5: lower A by row; 6: upper A
by column); B3 = FWA; B4 = no.
of rows; B5 = no, of columns,

29
Al1B*&-B61list
T4,T5,.
+B6 lost
+TL

*See P,M, #2, p.30 for the appropriate decimal forms,

-20-

DOUBLE
LENGTH
NUMBERS,

Name . Function and Remarks V Fsregisters

Stofage

(T4, T5)CMPY (T4, T5, PO)

Complex muitipli; floating point:

T4' 4 4iTS' =[Th* + 1TS] x[(PO) +1i(PO+1)]

(Th4,T5)CDIV(Th, TS, PO)

Complex di&ide, floating point:

T4 4 LTS' = [Th + 1TS]/[(PO) + i(PO+1)]

(T4, T5)CVID (T4, T5, PO)

Reverse Complex divide, floating

point:

T4' 4 LiTS' = [(PO) + i(PO+1)]/[Th +iTS]

(T4, T5)DPADD (T4, T5, PO)
(T4, T5)DPSUB (T4, T5, PO)
(T4, T5)DPMPY (T4, T5, PO)
(T4, TS)DPDIV(TL,T5, PO)
(T4, TS5)DPVID(TL, T5, PO)

"Double precision" floating
point routines, Each part
of a number has the same
exponent , so that (T4,T5)
is intergasted as the num=-
ber T4+2 T5. Similarly,
PO gives the address of the
high order part of a double
precision number stored in-
consecutive 1oc2§ions, i.e,
(PO) 4+ (POgl)2=7,

b b s b A VR B e

FI PR I A T

FUNCTIONS

ﬁame* Fuunction and Remarks F-registers Storage
(T6)SIN(T6) T6' = ain T6 17,85) 73
(T6)COS(T6) T6' = cos T6 T7,B5 wj
(T6)TAN(T6) T6' = tan T6 T5,T7,B5 54
(T6)ATAN(T6) T6' = arctan T6 T5,T7,B5 44
(T6)SQRT(T6) T6' = [T6 AllT,B5 37
(T4, T6)EXP2(T6) T6' = 20° T7,85 51

T4 = " 16
(T4, T6)EXP(T6) T6' = e © T7,B5

Th! = e" L0

J

(T6)LOG2(T6) T6' = log,T6 T5,T7,B5 7 k42
(T6)LOG(T6) T6' = 1nT6 T5,T7,B5 j
(T6)E(T6) T6' = E(T6) A11T,B5 200 incl
(T6)K(T6) T6' = K(T6) AllT,B5 ’} SQRT,
(T6)J(T6) T6' = J,(T6) AllT,B5 ?) 500 igg1.
(T4, T6) JY(T6) T6' = Y _(T6) AllT,B5 SQRT,

TL4' = J,(T6) AllT,B5 SIN,COS
(T6)J1(T6) T6' = J,(T6) AllT,B5 and
(Th,T6)JIYL(T6) T6' = Yl(T6) AllT,B5 LOG.

T4' = J,(T6) A11T,B5

*Consult program files

for a supplementary list of functions,

Name Function and Remarks F-registers Storzge
(B3)PRINTp(Th,B3) Dec output B3 gives a None
(B3) PRINT; (Tk,B3) Oct output type position
(B})PRINTﬁ(Th,B3)~ Hex output before 0 after
use. In APl form,
PRINT Print 1 line, space, and in-
2 terchange print matrices None
ready for next 1line,
PRINT, (PO, P1, P2,
P3, Pk, P5)
Decimal output, 1 line, with
7 digits in fractional parts.None
The Pi contain addresses of
data,
PRINT, (PO, P1,
P2,P3) Decimal output, 1 line, with

. (TH)READ,,
(T4)READ
(Tu)REAnz

(B6, TH)READ , (B6)

PRINT (Th)

13 digits in fractional None
parts, The Pi contain
addresses of data.

Dec input In APl form, Each
Oct input number is delimited
Hex input by a comma,cr or tab,
None
input

General decimal /for a single
array with codeword genera-

tion., The primary codeword

is left in Tk, Storage space

is taken from (B6) onwards,

Input matrices by rows, (1) None

General decimal output for a
single array, whose codeword
is in (T4). " Nome

(L

The B6 list is used only if T4 = O on entry.
. assumed to contain the codeword of some array region into which

data is to be stored,

Otherwise, T4 is

MATRIX
ROUTINES

[N.B. In the function description, M(k) stands for the matrix whose
codeword is k&, Similarly, V(k) stands for the vector whose code-
word is k., In the binary operationsy if (T6) = &, then space for
the result is taken from the B6 list.]

Name Function and Remarks F-registers Storage
(THMINV(TL) M'(Th) =(M(T4)] ! By Gauss Allg,allT 74 4+
ML and TL (n-1)

frcm B6o

(T6)MADD (TL, T5,T6) M'(T6) =M(T4) + M(TS)
M(T5)
(T6)MMPY(T4,T5,T6) M'(T6) =M(TL4) x M(T5)

(T6)MSUB (T4, T5,T6) M'(T6) =M(T4)

V' (T6) =M(Th) x V(T5)
V' (T6) =V(T4) x M(T5)

(T4)LINEQ(T4) Solution of n-m sets of m 1004m
simultaneous equations Ax=B from B6
where M(T4)=[A,B] stored by list,

row, Solutions replace B
portion of M(T4), By Gauss,
with row exchange,

(T4)JACOBO(T4,P0) Reduction of M(T4) by modified
Jacobi rotation method until
modulus of largest off-diagonal
element is <PO, M(T4) must be
symmetric, Stored as upper A
or rectangular, by row,

(Th4, T5) JACOB (T4, T5, PO) _
As above, but with the formation
of M(T5), a matrix of eigenvectors,
simultaneously.

-24-

POLYNOMIAL
ROUTINES.

[N.B. In the function description, P(k) stands for the polynomial

vhose codeword is k, In the binary operations, if (T6) = B,

then space sufficient for the resultant polynomial is taken from

the B6 list,]

Name Function and Remarks F~registers Storage
(T6) PADD (T4, T5,T6) P'(T6)=P(Th)+P(T5) (FloatingAllT,B123,X" 133
point) Y

(T6) PSUB (T4, T5,T6) P'(T6)=P(T4)-P(T5) ®» " AuT,Bl123,X | plus

(T6)PMPY(Tk,T5,T6) P'(T6)=P(TL)xP(T5) v w A1lB,TL56,X B6 1list

(T6)PDIV(TL, TS, T6) P'(T6)+P'(Th) B(TH) ™ " AIIBAII,X

= -’
P(T5) P(T5)

(T6) PVAL(RL, T5) Evaluate P(T4) for "o on Bl2 8
the argument T5,by T456
floating point arith=-
metic, leaving result W,
in T6.

(T5) PBAIR(T4, P0) Determine real and 1 AUB,AUT, 147
conjugate complex X,SL plus
roots to accuracy B6
PO by Bairstow method, list,

(T5) PMULL(TL4, PO) Determine real and
complex roots of complex
polynomial P(TL4) by
Muller method, (1)

(T5)PCHB$§T#;5, Reduction of real polynomial
PO) P(T4) by Chebyshev procedure
with | max error | < [PO| (2)

(T5) PRGEN(TL, T5) Generate real polynomial
P(T5) with given real
roots V(TL).

(I)See JJ.H. Wilkinson, "The Evaluation of the Zeros of Ill-conditioned

Polynomials", Num., Math, vl, part 3, (1959),

p. 150,

() yhen 1=0, P(T4) is considered in the range (0,|T5|); when i=1, in

-|T5],+|T5]).

-25-

MULTIPLE
PRECISION

[N.B. In the function description, N(k) stands for the multiple
precision number whose codeword is k, All results are normalised
so that the fractional part of the number is in the range (-1,1).
Where there is insufficient space for the result of an operation,
it is truncated at the low order end,]

Name Function and Rémarks F-registers Storage

(T6)MPADD (Tk4, T5,T6)

N'(T6) = N(T4)+N(TS) A11B,A11T,X 351

(T6)MPSUB(Tk, T5, T6) |
N*(T6) = N(T4)-N(T5)

(T6)MPMPY (T4, T5,T6) -
N'(T6) = N(Th)xN(T5)

(T, T6)MPDIV (T, T5,T6) L -
N'(T6)+N'(Tl) = N(T4)

N(T5) N(T5)

where |N'(Th)]<|N(T5)|;

(T4IMPSGL(TH) Multiple precision to T4h56,B1234 25
single precision float-
ing point conversion., Re-
sult in T4,

(T5)SGLMP (T4, T5) Single precision (T4) to T45,B1234 19
multiple precision form
N'(T5).

P.6

p.11
p.12

p.17
p.20
p.21
P.24
P.25
P.22

Corrections and Additions to P.M.#3

line 9 read: ™"to replace the vector yy in cells Y to Y+100
by Kyi where" .

line 12 read: ™ T4 FMP+l Y4+B4,Bb=1"
line 1 for “ai?j“ read “ai,j" |
line 5 read: " Z TSR READ, U»T4 "

line 9 read: " z TSR READ, U+T4 "

§ix lines up, delete: "IM bit 1 = O™

Under 'F-registers' read: "All B's,T4,T5,+B6 1list +TL"

For "TS" read "“TI5" throughout,

Four lines up read: "(I#,T5)JACOBl(T4,T5,PO)"

For "“(T6)PVAL(R4,T5)" read " (T6)PVAL(T4,T5)"

Elementary functions: Error and range., The functions listed
here are evaluated for all values of the argument for which
the (real) function is defined by first reducing the argument
to a range in which an approximating polyncmial expansion

is known, The total error in the function therefore depends
on the accuracy with which this initial transformation is

performed, We 1list below the maximum absolute error, E,
in function values in the range in which they are expanded:

8inT6 : E = .2xl0°% Tere < X
cosT6 : E = .3::10'15 , - -}:— < T6 < —Zf
tanTé : E = .25x107%2 , | Z<me<}
arctanTé : E = .24x10712 0<T6< o
" : -12

2 : E = .55x10712 | 0<T6<1

27

-12

1032T6 : E = 1.1x10 » 5 <T6L1

E(T6)=E(k®) : E = .5x10"!} | 0 < T6 < .992
E = .4x10"2 | L992< T6 < 1

K(T6)=K(k®) : E = ,3x10"'1 | 0 < T6 .9375

35 (16) : E = .16x10712 | 0<T6< 4

¥, (T6) : E = .26x10712 0<T6<b

3,(T6) : E = ,02x10712,, 0<T6<4

Y, (T6) : E = .5x1071% 0<T6< 4

For 4 < T6 < o , the Bessel functions are evaluated by
formulae of the type:
-1
3,(16) = (16)"1/2 [p (T6)cos[T6- £] -qq(T6)sin[T6-F]]
Where the E-term for the P's and Q's has maximum value

1.5x10" 12,

-2 8-

	1. Changes in Machine Codes
	2. Changes in the Assembly Program
	3. Additions to the AP1 System
	A summary of current AP1 mnemonics
	CONVERSIONS, TABLE LOOK-UP
	DOUBLE LENGTH NUMBERS
	ELEMENTARY FUNCTIONS
	INPUT OUTPUT
	MATRIX ROUTINES
	POLYNOMIAL ROUTINES
	MULTIPLE PRECISION

	Corrections and Additions to P.M. #3

