
•

Ri.ce J'_ns·titute Ccmpltter Pro1ect

Some coding conventions, subroutines, and

alter,tions in tbe 1 prder structure.

This is a collection of miscellaneous information for the guid·

ance of people writing codes for the machine, particularly in cases

where the assembly program, APl, is in use. The most important

changes in order structure are •tated ln Section 1: these mostly

have the nature of Jidd:l.tions to the *•Erl'l!ta and Addenda to the

Computer Manual" iM~rch 195gj ahd h~~e heen,o~t-ined by slight
. .

modifications in logical de~ign~ Syinboiic progrims based bn Memo-
, Ii .

ranchim le {July 1959) should be little af fee ted; absolute codes of

class land 2 may require revision.

It is felt that the changes made are sufficiently useful to

warrant modification of APl (January 1959) to accept a revised

mnemonic ltst and operation structure. Zke 4roposed changes are

symbolically helpful, and can easily be fitted into the existing

APl codes without unduly extending the mnemonic table. The results

are given in Section 2. We have also determined some further sub-

routine conventions, in line with Memorandum 12, which are aimed at

relieving the problem of fast register usage.

Section 3 gives a list of subroutines in existence or near

existence at the time of writing, and a revised list of APl mnemonics •

1

l. Ch~nges in Machine Codes

Field l: No change

Field 2; Class 0: Control Orders. The rule concerning the transfer of

(CC) to PF is now: The contents of ~C.are transferred to PF if

(and only if) OP2 ~ 4. Transfers to P2 (the second pathf~der)

remain as before.

Field 2; Class 1: Arithmetic Orders. The basic codes (given by OP2)

remain unchanged, except that exponent manipulations have been

completely eliminated from the fixed point orders. Some op­

tions are now offered in OPl and OP4 to complete the range of

orders (all combinations of U and~ are now possible) and define

the rounding f~nction. These options are tak~n by placing a'l'

in the bit position indicated in tlie list below, which is given

in decoding sequence:

(a) oP4 bit 1: interchange (U) and (S)

(b) O~l bit 1 clear~ to sign of UM

(c) oPi bit 2 interchange (U) and (R)

(d) Execute arithmetic operation given in OP2

(e) OPl bit 3: round result in U

(£) OP4 bit 3: store (U) in memory cell whose address

is in 1.

All floating point results are normalised. The rounding mode

switch will still force rounding if it is 'on• J even though OPl

bit 3 may be zero.

Field 2; Class 2: Store, Substitute, Set Tag. In the decoding se­

quence, OPl, OP2 and OP4 are defined as follows:

OPl • 0 . no action •

1 . (S)l,39 + Ul,39 •

2 : (S)l,6 + Ul,6

' : (S)l,27 + Ul,27

oPa. 6 .. Clear ATR. (Arith111etic •

set durii\g execution

i : Set ATR .. 1

2 Set AT& a a

3 Set ATR. '= 3

4•7: ~o Jctibrl on ATR

4 (S) + u

5 (s) 40, 5 4 + u 40, 5 4

6 • <9>1,54 +,u1,54 •

7 • (S)28,54 + U28,54 •

Tag Register . this has .
oi field 4)

OP4 • 0: Store (U) and (ATR) in L(I40 , 54)

1 Do not store

2•7 (not to be used).

Field 2; Class 3: No change

been

Field 2; Class 4: The setting and clearing of special registers has

been extended as follows:

OPl = 2: Set lights designated by l's in 140 , 54

6: Store 140 , 54 in some special purpose register.

If OPl = 2, OP3 is decoded as:

OP3 = 0: Sense lights on

1: Mode lights on

2 Trapping lights on

3: Indicator lights on

If OPl = 6, OP3 is decoded as:

4: Sense lights off

5 : Mode lights off

6: Trapping light off

7 Indicator lights off

OP3 = 0: Second pathfinder, P2 (77770)

1: Sense light register, SL (77771)

2: Increment register, X (77772)

3: Mode light register, ML (77175)

4: Trapping light register, TL (77774)

5 : Indicator light register, IL (77775)

6: Output location register, B8 (77t76)

7: lnp~t location register, B9 (77777)

Field 2; Class 5: As in the arithmetic orders, a "store" option is

provided he1:e a,fCel' the i.oJJiea.l operation.,

Thus OP4 = l (Bit 21): Store (U) with (ATR) after operation.

Field 2; Class 6: No changes

Field 2; Class 7: There are no class 7 orders now. The •NOP'

is the class 2: 20001.

Field J: The useless code 1 10 1 (Store Rini) bas been re-inter­

preted to fuean "Store 3 in R", i.e., clear R to 54 zeros.

F1el4.4: Nb dhanges.

-4-

2. Changes in the Assembly Program

Many of the changes of section 1 do not affect the symbolic

forms of orders. In some cases, a revised interpretation is

appropriate.

OPH field; C.l.ass 011 (logica. l o~,d,brs). By introducing a new code "TSll"

(Transfer ~o Sbbro~tine) a distirtctioh is drawn between trans­

fer orders which re~et PF {iSR), and those which do not (TRA).

Thus, on 'inte~nal*unbortdition~l transfersj TRA 1s now synony­

mous With SCC (set cbntiol Cbunter), and itt ii p~ssibl~ to

di~~lrtgbis~ i6~h idrtditional and unconditional transfers to

subrJutines(altbough the former are less general, since they

may not include a test in OP2). e.g.

TSR SINH

and IF(TG2) TSR SINH

both reset (PF) to (CC) (upon making the transfer.)

Class 1. Arithmetic Orders. Names have been provided for some of

the more useful options on division. In the notation of

Programming Memorandum :fl, 2, Lecture 2, we now have:

Addition; ADD; uM• =UM+ SM

Subtraction; SUB; UM= UM• SM

Multiplication; MPY; U'+ M 01\i = UM x SM

FIXED Division; DIV; u• M + Q ~ISM =[UM + e~J/sM, 18Ml<lsMI

POINT Integer Division; IDV; u• + 1).i/S M M = [UM] /SM' I l\i I< I SM I
Reverse Division; VID; UM + 61\i/UM = [SM] /UM, l~l<IUMf

Reverse Integer Division; VDI;

-5-

JLOATING Addition;. FAD; Uj. • u1 i s1 ,R1 • Ug

POINT subtraction; rsB; UP• u1 !: s1,a1 • u~
Multiplication; PMP; u;.,• u, i s1 ,ll~ • u8

i t 1' t I Divis on; FDV; u1 • u1 ! s1,a1 • u1

All these re~ulta

are rounded and

normalized. For

unrounded answers,

Reverse Division: VDF; u; • s1 I u,,Ri • u1- use octal codes •
•

In order to use the store option, the appropriate mnemonic code

is followed by •+1•. (ln this way it ia handled by the existing

APl program without change)., For example, the code required

to replace the vector Ye in cells Y to Y+lOO by ky; where

(T4) = k would be:

SB4 dlOO

r4 FMP+ 1 Y+B 4, B/f.1:

B4 lF(POS)TllA cc-2

Class 2. Store, lubstitute1 Set Tag. There are now 80 orders in this

class, all potentially useful. For symbolic purposes, we divide

them into two sub-classes, the first of which is regarded as

replacing part of U in a memory cell, and the second as bring­

.!!J. the portion of a memory cell to u, without disturbing the

value in storage.

Let V be the final address formed in Field IV. Then we

have:

Store; STO; (V)' • (U), (S)' • V

Fetch and Store; FST; (V) 1 • (U), (S) 1 • (V)

Replace exponent; RPE; (V)' • (U)' • (U)1,6(V)7,54,(S)' • (V)

Replace Mantissa; RPM; (V)' • (U)' • (V>1,6CU)7,54,CS)' • (V)

Replace Left Half; llPL; (v)• • (U)' • (U) 1, 27 (v) 28, 54,cs)'•(V)

Replace Ri8ht Half; &n;(V)' • (U)' • (V) 1, 27 (l1)2 a,,4' (S)'a(V)

-6-

Replace Address; RPA; (V)' • (U)' • (V) 1139(U)40., 54, (&ff =(V).

No operation; NOP; (U) 1 = (U) ~ (S) 1 mi (S); (R) ~ • (R) •
Clear and add; CLA; (U) 1 • (S); . (S) 1 • ($); (R)' = (R)

Bring exponent to U; BEU; (U)i • (Vjt16 (u) 715~~(V)'=(S) 1 =(V)
i

Bring Mantissa to U; ~MU; (U)' •(1J);t, 6 (v) 7154;(V)'•(S) 1•(V)

Bring left half tQ b; BLU; (U)' • cv~ 1, 27 (u) 28, 54;(V)'=(S)'=(V)

Bring right half tto U; ~RU;(uS• .. (tJjl;27(V)28,5lt_;(V)'•(S)'=(V)

Bring address to.U; BAU; cui~ •.(U)iJ,~(v) 40 ,1,) (V)'•(S) 1•CV)
' . : ' , I ,

Note that NOP lias beeh ~l!ded here instead of in class

11 and tLA has a1so been ptjcdd tn tht~ c1ass, •• a slight

speed adv~nt~g• 1J 8Jined overfg!d class, btJ$r, A bemoty

a~cess is normally required to set up S correctly for all these

orders, with the exception of STO. Note also that all the

'store• orders and the •replace• orders clear to zero both tag

bits in memory. tf another setting is required, the •set tag•

option in OP2 should be used.

Class 4: Set special purpose registers. These orders are not all so

important as to deserve a permanent entry as au OPB mnemonic.

Only STX (set increment register) has therefore been added to

the list.

Class 5: Logical orders. As in the arithmetic class, the store op­

tion is used by writing '+1' after the order. e.g., the code

to clear all but bits 49-54 of the words in location P to

P+ N-1 would be written

SBl 77

SB2 N-1

Bl AND+l P+B2 1 B2-1

B2 IF(POS)TRA cc-2

-7-

\ A revised list of Ol?N codes in A.Pl is attached to this· \
~

memorandum.

Field,:. The mnemonic 11R + 1 11 is unchanged, but ls interpreted as

indicated in Section t.
Library Routines. As a guide to what is available to coders, a

partial list of libtary routines is given in the next section.

It is partial only in the sense that, since the routines have

been written in se"7eral places, full details of space require­

ments and fast -register usage are not always knbwn. However,

the potential user may have confidedce in their availability

as working ~odes, •nd lack of complete details heed not be a

deterrent to includirtg references to a library slibroutine in

some other code.

The basic coiventiona ol subroutine usage are kiven on

p~ses 22-2, of Programmi~g Memorandum 12. We re-ark immediately

that item (vi) in that list should now read:

"(vi) Transfer to a subroutine is normally made with the TSR

order, thus setting PF correctly. Other unconditional trans-

fers use TRA, sec or ACC."

In order to use a subroutine in an APl program, it must

be identified by the same name throughout the code, and at some

point the appropriate library tape must be added to the symbolic

input tape. The library tapes are in octal, hexad, or a 'con­

densed binary• form, which need not concern the coder since

they are correctly interpreted by the APl processors, headed

by the identifying name. If the ·coder obtains his assembled

program in absolute form on paper tape, it will contain all

subroutines, and th•se rieed not be reloaded at later execution

runs.
-8-

Some 'overlap• in use of fa~t working stores by the main

and sub-program is often una~oida~le, and it is then essential

for the coder t6 prese~ve the $tores atfected in the main pro-

gram before entering the subroutine, by placing them in a 'safe'

memory position~ They should be restored on return from the

subroutine. There ate some obvious ways of doing this, but a

useful technique may be mentioned here, since it is used by

subroutines in the library. In this it is assumed that B6

gives the first word address of~ block of free working stores,

and these are used by the main routine both as an extension of

the 'fast' temporary stores and as a repository for F-series

registers before entering a subroutine. Then provided the rule

is followed that B6 a1ways "points•• to • block of free cells

(being advanced and decremented as bore bt less space 1$ re­

quired), it may ~e use~&$ a wotkirig storage inde~ at any level.
l

In this ia~, the nj~d tot inciuding priv~t~ ~orking stores

within a subroutihe is avoided. For example, to save (B4) and

d:6) before entering routine F23, we would write:

B4 STO B6 + -a, B6 + 1

T6 STO B6 + ..;, B6 + 1

TSR F23

CLA B6 • 1, u + T6

CLA B6 - 2, u + B4

AB6 -2

In later assembly systems, the above code may be generated,

or equivalent closed subroutine linkages written, by two special

macro-orders:

SAVE B4,T6
TSR F23
UNSAVE B4,T6

-9-

le

and in planning complex systems of routines, it is convenient

to employ an abbreviation such as this until final details of

subroutine usage have been worked out.

It should be noticed that some of the data input routines

will use 86 as an indication of where to put the numbers being

read in; they will advance (B6) by an amount corresponding to

the number of stores used, and it is therefore important for

the coder to insure that (B6) is reduced to its initial value

if a data input routine of this type is used within another sub­

routine. The alternative procedure, of al~ays retaining ehough

storage spabe for initial and intermediate data within a pro•

gram, may still be used.

Provision is made for handling arrays of one or two dimen•

sions "semi-automatically" by means of the type 1 codewords of

Programming Memorandum 11. This leads to greater uniformity,

shorter calling sequences, and little appreciable loss of time

or space compared with conventional methods. For these reasons,

only the "short forms" of subroutines are given in the following

list. (The routines are also available with conventional calling

sequences.) To summarize the codewords in their present form,

it is assumed that each refers to a block of stores of length

L, which may contain numbers of one sort or another, or more

codewords. In the latter case, the IA (indirect address) bit

is turned.!!.!!. in the codeword. If the consecutive stores contain

elements a 1,a2 , ••• at, then the codeword A contains a Bl-modifi·

cation bit, and has in its address part the location preceding

the store containing a 1• Hence, it is always the case that to

obtain a 1 , it is sufficient to write the code:

SBl i
CLA *A. -10-

Similarly, for matrices, to obtain the element ai'j' it is

sufficient to write:

SBl 1
SB2 j
CLA *A.

The number Lis given in bits 1-9 of A. Clearly, l<L~511.

Bits 10-18 and 19-27 may give two parameters for use in index-

ing; these are denoted by M,N:

9 10 18 19

L I N

"Base
address"

Finally, .l>it 28-30 may be used to indicate a type of array,

which is used by various processing routines. Thus, we can

interpret an a~ray as i vector or matrix, or as a polynomial

form of degree L-1:

L-1 P(A,x) = a 1x

or as a multi-length number:
N

M(A) = [L. a * 2-47iJ247M
i=l i

(where in the latter case a 1 • is the mantissa of a 1 only~ or

as a member of any other set of objects between which useful

mathematical operations may be defined.

As the system of codewords is refined, it should become

unnecessary for the coder to know of their existence. They will

form the basis of more automatic coding systems to be introduced.

We give as an example a program P for reading two square (n x n)

-1 matrices A, B, and computing the matrix A B, printing out the

latter on the line printer:

-11-

•

p ORG
B6 RPA Pl
PF RPA P2

SBl 1
z TSR RE ADJ U+4

TSR Ml NV
T4 STO P3

SBl 1
z TSR READ, U+4

T4 NOP z, U + T5
CLA P3,U + T4

z TSR MMPY, u + T6
T6 SBl 1, U + T4

'l:SR PRINT
Pl CLA a(B6), u + B6
P2 CLA a(l>F), u + cc
P3 OC'r 0

END

Here, B6 is used throughout the program, and the working

storage list contains successively the matrices A, B, A- 1B

and their codewords.

It may be objected that by using codewords a U.fll grasp

of the data in storage is lost. This is partly true, but it can

readily be seen that by only two or three commands the ttfirst

word address" and "size" of an array can be obtained explicitly.

by the methods deSctibed itiove, subroutines may be incor-

porated in a program during assembly in a straightforward way.

the output of the assembly process is (optionally) a condensed

binary relativised self-loading tape containing the program.

The assembly process is sufficiently fast to permit frequent

re-runs during program checking, but as more complex assembly-

compiling systems are produced, methods will be given for in-

corporating subroutines in the code immediately prior to execu-

tion.

As noted in Memorandum #2, arguments and results of any

closed subroutines may be left either in the F-registers, or

-12-

the PF-list (i.e., the conventional calling sequences following

the transfer order), or anywhere else addressed by one of these

registers. We shall describe the subroutine using standard

abbreviations for F-registers, and the notation PO,Pl, ••• ,Pk

for members of the PF-list. Then let the notation:

(1)

denote the subrobtine N withs output values and t input values,

where the Y's and x•s are generally chosen from the set of F-

register names or the Pi's• Thus:

(T6) SIN (T6)

describ$8 the sinile value4 function SIN of the argument in T6,

which leaves the value of the function in T6. It follows that

to determine Y = SIN (F) we must code:

CLA F, U + T6
TSR SIN

T6 STOY

Hence, the form (1) is adequ~te in describing the usage of N.

It remains to give Na meaning, which is done in brief terms

in the subroutine description, and to indicate which machine

conditibns, other than those described by (1), are liable to be

changed by the action of N.

It is often convenient to name a collection of subroutines

as a unit, and then provide access to each individual routine

by means of a 0 subscript", which is really nothing more than a

parameter stored in Bl before entering the raJ:ine. Such routines

are denoted by:

(Yl, Y2, ••• ,Y.) Ni (Xl, x2, ••• ,xt)

Thus, in the case of

PRINT7(A,B,C,D)

-13-

(2)

•
the calling sequence would be:

SBl
TSR
.a

7
PRINT
A
B
c
D

ln the choice of N, we have tried to select the ueual names

for elementary functions. (These are mostly evaluated by means

of ecouo•l••• pol,..oaiaala 4ertve4 a& th• lxplorattoa aa4 Pro•

cluctioa l.eaearch Df.vtalon of the Shell Developaeat Coapany.)

Often, routines which effect the same transformation by different

methods will have the same name. There seems to be no dis•

advantage in this as long as subroutine tapes are selected by

hand, and it does have the advantage of keeping the set of

different names to minimum.size. Some subroutines, e.g. SlH

and cos, are grouped together for obvious reasons, and appear

on the same physical tape.

Bot all possible functions have been placed in the library

list, and many others are available. Some notes on these, and

on the array routines which do not use codewords, may be seen -
at the Computer Project. However, it is often advantageous for

the coder to write his own supplementary routines as they are

required, in order to minimise overlapping in the use of fast

stores.

·14-

•

3. Additions to the APl System

A summary of current APl mnemonics

In the following list, new or revised codes are underlined.

Apart from recognising the familiar machine codes, the programmer

may use the list in two other ways.

(i) For each operation mnemonic, a five digit octal code is

given. The numerical digits define the essentials of the

order code, but in addition to this the letter •a• in an octal

(or in some cases binary) digit position indicates that the

corresponding digit is available for the synthesis of more com­

plex orders in the same class. The conditions for effecting this

synthesis are that in any two selected codes, numerical digits

occurring in corresponding positions must be identical, and

any other numerical digits must occur in positions in one code

corresponding to"~' digit positions in the other. A digit con­

taining "n" may not be used in synthesis with a numeric digit.

By this rule, the codes O a a 5 a and O a a a 1 may be synthe­

sised to give O a a 5 1. On the other hand 4 5 n a 1 and

4 Sn S 5 may not be synthesised, since the last digits do not

agree. Synthesis is made by taking the logical sum of all bits,

treating 'a' and 'n' as zeros.

(ii) It is also possible for the machine to synthesise opera-

tion codes, although no economy of expression can be ob­

tained when several order mnemonics are given. Thus, if by the

rules above two o~ more octal codes may be correctly synthesised

they may be written in the OPN field, separated by a comma:

e.g. STO,STl ALPHA

IF(NMO,N~E,NT3)TRA XMAX.

-15-

November 20, 1959
Revised Summa~v of APl Mnemonics

,.,, <o'' ~ " , :-,•'•• > ~· L .. ,,··-·"!'f••n·-·' .. ,.,.; -,.,... ... -

Control

HTR O O O O O Unconditional halt and
transfer

TRA O l O O O Unconditional transfer

TSR -
SKP

O l 4 0 0 Unconditional transfer
to subroutine

0 2 0 0 0 Unconditional skip

JMP O 3 0 0 0 Unconditional jump by (X)

IP(test)BTR t(ao~ a a Conditional halt and
transfer

IF(test)TRA ~ol)i a a Conditionai transfer

lF(test)!!! <l'e,oj.. a a Conqitional transfer
1;o subroutine

IF(test)SKP ~1{11 a a Conditional skip (1)

tF(test)JMP ~1~ a a Conditional jump by (K) (1)

Tests:

POS

PNZ

NEG

NNZ

MOV

NMO

'EOV

NEO

ZER

c(t>aa)l

~·a)
tl{>a«IJ
<4a15

la Mantissa positive or zero

5 a Mantissa positive and
non-zero

la Mantissa negative or zero

5 a Mantissa negative and
non-zero

O a 2 a a Mantissa overflow indicator
on

O a 6 a a Mantissa overflow indicator
off '· O a 3 a a Exponent overflow indic:ator
on

O a 7 a a Exponent overflow indicator
off

O a a 1 a Mantissa zero

NZE O a a 5 a Mantissa non-zero

EVN O a a 2 a Bit 54 • 0

ODD O a a 6 a Bit 54 = 1

SLN

SLF

O a a 3 a Sense lights on

O a a 7 a Sense lights off

NUL O a a 4 a All 54 bits zero

-16-

Skip next instruction.

lf. . . ' 1 •ore tihan one test
specified, action takeL
il any test satisfied­
except if PNZ or NNZ
used, th-n all tests
must be satisfied.

J
, ~(l)A floating point

subtraction is
carried out on
all comparison
orci'ers.

l
Indicators are
turned off.

J

I
Lights indicated by

jDDR+MOD

TG2 -
TG3

NTl

NT2 -
!ll
NTG

Arithmetic

O a a a 1 Tag indicator 1 on

O a~ a 2 tag irtdicator 2 on

O a a a 3 Tag indicator 3 on

O a a a 5 Tag indicator 1 off

O a a a 6 Tag indicator 2 off

O a a a 7 Tag indicator 3 off

O a a a 4 No tag indicators on

ADD 1 n On n Fixed point add

SUB l n 1 n n Fixed point subtract

MPY

DIV

VID -
IDV

VDI

FAD

FSB

FMP

FDV

l n 2 n n

1 n 3 n n

1 n 3 n 4

l 6 3 n n

1 6 3 n 4

1 l 4 n n

1 1 5 n n

1 1 6 n n

1 1 7 n n

Fixed point multiply

Fixed point divide

Reverse fixed point divide

Integer divide

Reverse integer divide

Fioatirig pbint add

floating poiht subtract
I,

Floating point multiply

Floating point divide

' Specified indicators
are turned off.

j
l
Specified indicators
are turned off.

j

~:::!: l
Single No

i::::h Jround

joint .

lsult in U
rounded

I

Succeeding
"+1" in­
dicates
use of
store
option.

VDF 1 5 1 n 4 Reverse floating point divide
)

Single
length

Fetch,Store

CLA 2 4 4 0 1 Clear and add to U IM bit 1 = 0

BEU 2 2 n n 1 Bring exponent to U

BMU 2 6 n n 1 Bring mantissa to U

!.hl! 2 3 n n l Bring left half to U

BRU 2 7 n n 1 Bring right half to U

BAU 2 5 n n 1 Bring address to U

-17-

NOP 2 0 0 0 1 No operation

FST 2 0 4 n 0 retch and store IM bit 1 = O; tags
unchanged.

STO 2 0 a n 0 Store tM bit 1 111 1; tags· . --··-

RFI 2 6 a n 0 - Replace exponent in memory
ilearedi

RPM 2 2 a n O Replace mantissa in memory IM bit 1 = O; tags - cleared unless com-
RPL 2 7 a n 0 Replace left half word in bined with set ta~

memory J~eration.
RPR 2 3 a n 0 Replace right half word in

memory
RPA 2 1 a n 0 Replace address in memory -
STl 2 a 1 a a Set tag 1 l
ST2 2 a 2 a a Set tag 2 tM bit 1 = 0 -

J ST3 2 a 3 a a Set tag 3

Short re;ister_s

ACC 4 0 0 n n Add to control counter

ABl 4 0 1 n n Add to Bl
• • • • . • • • •

APF 4 0 1 n n Add to pathfinder

sec 4 4 0 n n Set control counter

SBl 4 4 1 n n Set Bl
• • •
• • • • • • .

SPF 4 4 1 n n Set pathfinder

!!! 4 6 n 2 n Set X tegister

Shifts

4
; v ,· i

UMR 1 i1. 1 a mantissa right

UML 4 i tl 2 a u tiiaritissa left

DIR 4 i n a 1 R mantissa right

RML 4 1 n a 2 R mantissa left

DMR 4 1 n l 5 Double mantissa right

• DML 4 l n 6 2 Double mantissa left

-18-

LUR 4 5 n 1 a Logical U right

LUL 4 5 n 2 a Logical U left

LRR 4 5 n a 1 Logical R right

LRL 4 5 n a 2 Logical R left

LRS 4 5 n 1 5 Long right shift

LLS 4 5 n 6 2 Long left shift

CRR

CRL -
4 5 n 5 5 Circle right

4 5 n 6 6 Circle left

BCT 4 3 n O 1 Bit count

Lights, Modes

SLN 4 2 n On Sense lights on

SLF 4 2 n 4 n Sense lights off

ERM 4 2 n 1 n Enter repeat mode

Logical orders

AND 5 0 n n n And to U

ORU 5 1 n n n Or to U

u54+a1 and a54 + u1

Rl+U54 and u1 + a54

~
Lights specified in

JDDR.+MOD

ADDR+MOD field cannot
be used.

SYM 5 2 n n n

Pr)eeding "-" colllple­
ments the result in U;

succeeding 0 +111 indi­
cates use of the store Symmetric difference to U
option.

) XTR 5 3 n n n Extracts through R to U

Input, output

PRk 6 2 n kn Print with format k k = 0,1,2, ••• ,7

RHX 6 0 0 n n Read hexads

PHX 6 0 4 n n Punch hexads

-19-

CONVERSIONS

Name Function and Remarks F-registers Storage

(T4,T5)BINDC(T4)

(T4)DCBlN(?4.,T5)

Binary to decimal conversion.
Fixed or floating point,
depending on whether exponent
bits are all O or not.*

Decimal to binary conversion,
floating point form.*

(PF,Bl)TLU (PO.,Pl.,T4)
1 A genera,l logical table look-

. up., with argument T4, in the
table whose codeword address
is in PO, using the mask in Pl.
On exit, (PF)=O if no equality
was found; (PF)•l and (Bl) gives
the relative address in the table
if an equal entry is found.

(T4)MACOGi(B3,B4,B5)
Matrix codeword generator.
i=type of matrix (l:storage by
roWJ I: lly eolumn; 3: upper A
by row; 4:lower A by column;
5: lower A by row; 6: upper A
by column); B3 = FWA; B4 = no.
of rows; B5 = no. of columns.

*See P.M. 12, p.30 for the appropriate decimal forms.

-20-

29
AllB•8f.B6list
T4,T5.
+B6 lost
+TL

Name Function and lemirks ,.registers

(T4,T5)CMPY(t4,T5,PO) · .·. . ..
Complex multiply, floating point:
T4' + iTS 1 m[T4• + iTS] x((PO) +i(PO+l)]

(T4;t;)CDIV(T41 T5,PO)
Complex divide, floating point:

T4' + iTS' = [T4 + iTS]/[(PO) + i(PO+l))

(T41 T5)CVID(T41 T5 1 PO)
Reverse Complex divide, floating
point:

T4 1 + iTS 1 =((PO)+ i(PO+l)]/{T4 +iTS)

(T41 T5)DPADD(T41 T5 1 PO)
(T4,T5)DPSUB(T41 T5,PO)
(T41 T5)DPMPY(T41 T5,PO)
(T4,T5)DPD1V(T41 T5 1 PO)
(T41 T5)DPV1D(T4,T5 1 PO)

"Double precision" floating
point routines. Each part
of a number has the same
exponent, so that (T4,T5)
is intere,,ted as the num­
ber T4+2 T5. Similarly,
PO gives the address of the
high orde,r part of a double
precision number stored in·
consecutive locfiions, i.e.
(PO)+ (PO+l)2• •

-21-

DOUBLE
LENGTH
NUMBERS.

Stotage

l:. i...w .. J.:..,,...,. ·•'•"'- ~
FUNCTIONS

e .•. - .. _ _,_ ···-··~·~·····~··,.~ """ .. """"'""....._

Name* Function and Remarks P'-registers Storage

(T6)SlN(T6) T6' = sin T6 T7,B5
,-)

73
r

(T6)COS (T6) T6' • cos T6 T7,B5 J
(T6)TAN(T6) T6' • tan T6 T5,T7,B5 54

(T6)ATAN(T6) T6 1 = arctan T6 T5,T7,B5 44

(T6) SQRT (T6) T6' = IT6 A11T,B5 37 . ',ti-

(T41 T6)EXP2(T6) T6' = 2T6 T7 1 B5 51

T4' = 2-T6

(T41 T6)EXP(T6) T6 1 = e
T6 T7,B5

T4' • e
-T6

(T6) LOG2 (T6) T6 1 = log2T6 T5,T7,B5 j 42

(T6)LOG(T6) T6 1 = lnT6 T5,T7,B5

(T6)E(T6) T6 1 = E (T6) Al1T,B5]
200 incl

(T6)K(T6) T6' = K(T6) AllT,B5 SQRT,
LOG

(T6) J(T6) T6' = J 0 (T6) A11T,B5 l 500 incl.

(T41 T6)JY(T6) T6 1 = Y0 (T6) AllT1 B5 SQRT,

T4' = J 0 (T6) AllT, B5 SIN,COS

(T6)Jl(T6) '?6. = J 1(T6) A11T,B5 and

(T4,T6)JYl(T6) T6 1 • Y1(t6) AllT,B5 LOG.

T4' • J 1(T6) A11T,B5

*Consult program files for a supplementary list of functions.

-22-

Name Function and Remarks F-registers

(B3)PRINT2 (T4,B3) Dec output
(B3)PRINT;,(T41 B3) Oct output
(B3)PRINT,(T41 B3) · Hex output

B3 gives a None
type position
before O after
use. In APl form.

PRINT5 Print l line, space, and in­
terchange print matrices
ready for next line.

None

PR.INT6 (PO, Pl., P21

P3 1 P4, P5)

PRINT7 (PO, Pl,
P21 P3)

(T4)READ2
(T4)READ:5
(T4)B.EAD4

(B61 T4)READ l (B6)

PRINT1 (T4)

(1)

Decimal output., 1 line, with
7 digits in fractional parts.None
The Pi contain addresses of
data.

Decimal output, 1 line, with
13 digits in fractional None
parts. The Pi contain
addresses of data.

Dec input
Oct input
Hex input

In APl form. Each
number is delimited
by a comma,cr or tab.

- None
input

General decimal/for a single
array with codeword genera­
tion. The primary codeword
is left in T4. Storage space
is taken from (B6) onwards.
tnput matrices by rows. (1) · llene

General decimal output for a
single array, whose codeword
is in (T4). · lone

INPUT
OUTPUT

Storage

The B6 list is used only if T4 = 0 on entry. OtheTWise, T4 is
assumed to contain the codeword of some array region into which
data is to be stored.

-23-

MATRIX
ROUTINES

[N.B. In the function description, ~(k) stands for the matrix whose
codeword is k. Similarly, V(k) stands for the vector whose code­
word is k. In ~h~ binary operations) if (T6) = 8 1 then space for
the result is taken from the B6 list.]

Name

(T4}MINV (T4)

(T6)MADD(T4,T51 T6)

(T6)MSUB(T41 T5 1 T6)

(T6)MMPY(T4,T5,T6)

(T4)LINEQ(T4)

(T4)JACOB0 (T4,PO)

!unction and Remarks F-registers

M'(T4) =[M(T4)}-l By Gauss AllB,Allt
ML and ·.rL

M 1 (T6) =M(T4) + M(T~)

M' (T~) =M(T4) • M(T5)

Mt (T6) =M(T4) x M(T5)

V' (T6) =M(T4) x V(T5)

V'(T6) =V(T4) x M(T5)

Solution of n-m sets of m
simultaneous equations Ax=B
where M(T4)=[A,B] stored by
row. Solutions replace B
portion of M(T4). · By Gauss,
with row exchange.

Reduction of M(T4) by modified
Jacobi rotation method until
modulus of largest off-diagonal
element is <PO. M(T4) must be
symmetric. Stored as upper A
or rectangular, by row.

(T4 1 T5)JACOBi(T41 T5,PO)
As above, but with the formation
of M(T5), a matrix of eigenvectors,
simultaneously.

-24-

Storage

74 +
(n-1)
from B6.

lOO+m
from B6
list.

•

POLYNOMIAL
llOUTlNES.

[N.B. In the function description, P(k) stands for the polynomial
whose codeword is k. In the binary operations, if (T6) = 11
then space sufficient for the resultant polynomial is taken from
the B6 list.]

Name

(T6)PADD(T41 T5,T6)

(T0)PSUB(T41 T5,T6)

(T6)PMPY(T4,T5 1 T6)

(T6)PDIV(T4,T51 T6)

(T6)PVAL(R4,T5)

(T5) PBAIR(T4, PO)

(T5) PMULL(T4, PO)

(T5) PCBB\(T4,r5,
PO)

(T5)PRGEN(T41 T5)

Function and &emarks F-registers Storage

P1 (T6)=P(T4)+P(T5) (Ploating4.11T, Bl23,X
point)

P1 (T6)=P(T4)-P(T5)

P'(T6)=P(T4)xP(T5)

P'(T6)+P'(T4) '(T4) ·-P(T5) P(T5)

Evaluate P(T4) for
the argument T5 1 by
floating point arith­
metic, leaving result
in '?6.

..
It

H

..

Determine real and 1
conjugate complex
roots to accuracy
PO by Bairstow method,

Determine real and
complex roots of complea
polynomial P(T4) by
Muller method, (1)

n

..

..

ti

Reduction of real polynomial
P(T4) by Chebyshev procedure
with f max error I < IPOf (2)

Generate real polynomial
P(T5) with given real
roots V(T4).

\

AllT, 8123, X

All!, T456, X

AUB,AJU,X

Bl2
T456

AIJB,AUT,
X1 SL

...,,

J

133

plus

B6 list

8

147
plus
B6
list,

(l)See J.H. Wilkinson, "The Evaluation of the Zeros of Ill-conditioned
folynomials", Num. Math. vl, part 3, (1959), p.150 •

<2 >when i=O, P(T4) is consid~ed in the range (O, IT5j); when ial, in
<- I T5 I , + I T5 I) ,

-25-

MULTIPLE
PRECISION

[N.B. In the function description~ N(k) stands for the multiple
precision number.whose codeword is k. All results are normalised
so that the fractional part of the number is in the range (-1,l).
Where there is insufficient space for the result of an operation,
it is truncated at the low order end.]

Name Function and Remarks F-registers Storage

(T6)MPADD(T41 T5,T6)
N'(T6) = N(T4)+N(T5) 351 AllB,AllT1 X

(T6)MPSUB(T41 T5 1 T6)
N•(T6) = N(T4)-N(T5)

(T6)MPMPY(T4,T5,T6)
N1 (T6) = N(T4)xN(T5)

(T41 T6)MPDIV(T4iT5)T6). . ,
N1 (T6)+N•(T4) = N(T4) ...

N(T5) N(T5)

where jN'(T4)l<IN{T5)j.

{T4)MPSGL(T4) Multiple precision to T456,Bl234 25
single precision float-
ing point conversion. Re-
sult in T4.

{T5)SGLMP (T4, T5) Single precision {T4) to !45,~1234 19
multiple precision form
N' (T5).

-26-

Corrections and Additions to P.M.#3
-----------~------------------------

p.6 line 9 read: "to replace the vector y1 in cells Y to Y+lOO
by Kyi where"

p.11

p.17

p.20

p.21

p.24

p.25

p.22

line 12 read: " T4 FMP+l

line 5 read: II z

line 9 read: .. z
TSR

TSR

Y+B4,B4·1"

R.EAD,U+T4

READ,U+T4

Six lines up, delete: "IM bit 1 • 0"

It

..

Under 'F-registers' read: "All B's,T4,T5,+B6 list +TL"

For "TS" read "T5" throughout.

Four lines up read: "(T4,T5)JACOB 1 (T4,T5,P0)"

For "(T6)PVAL(R4,T5)" read "(T6)PVAL(T4,T5)"

Elementary functions: Error and ran e. The functions listed
here are evaluated or a 1 values o the argument for which
the (real) function is defined by first reducing the argument
to a range in which an appro~imating polynomial expansion
is known. The total error in the function therefore depends
on the accuracy with which this initial transformation is
performed. We list below the maximum absolute error, E,
in function values in the range in which they are expanded:

sinT6 . E = • 2x10· l 4 ,r < T6 < 1t . ,
4 - - 4

cosT6 . E = .3x1o·l3 ,c < T6 < .! . , 4- - 4

tanT6 • E = .25x10· 12 JI< T6 < Jl • ,
2 2

arctanT6 . E = .24x10· 12 0 < T6 < C)O . ,

" T6
• 8x10· 12 • E = 1/2 < T6 < 1 (Newton) . ,

2 ... T6
: E • .55x10· 12 , 0 < T6 < 1

•

•

log2T6

E(T6)::rE(k2)

K(T6)aK(k2)

J 0 (T6)

t 0 (T6)

J l (T6)

Y l (T6)

:

• .

. •

• .
• .
• •

• •

E • 1. lxto• 12 ,

E = .5x1o•ll

E • .4xlo-12

E •• 3x10· 11

E = .16xl0-12 ,

E = .24xlo• 12 ,

0 -12 E • • 2xl0 , ,

E • .5x10- 12 ,

.5 < T6 < 1 - -
0 < T6 < .992 - -

.992< T6 < 1 -
0 < T6 .9375 -
0 < T6 < 4

0 < T6 < 4 - -
0 ~ T6 ~ 4

0 < T6 < 4 - -
For 4 :f T6 < co , the Beseel functions are evaluated by

formulae of the type:

J 0 (T6) = (T6)· 112 [P0 (T6)cos[T6- fl -Q0 (T6)sin[T6-fl]

Where the E-term for the P's and Q's has maximum value

-12 1. 5xl0 •

-28-

	1. Changes in Machine Codes
	2. Changes in the Assembly Program
	3. Additions to the AP1 System
	A summary of current AP1 mnemonics
	CONVERSIONS, TABLE LOOK-UP
	DOUBLE LENGTH NUMBERS
	ELEMENTARY FUNCTIONS
	INPUT OUTPUT
	MATRIX ROUTINES
	POLYNOMIAL ROUTINES
	MULTIPLE PRECISION

	Corrections and Additions to P.M. #3

