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Ri.ce J'_ns·titute Ccmpltter Pro1ect 

Some coding conventions, subroutines, and 

alter,tions in tbe 1 prder structure. 

This is a collection of miscellaneous information for the guid· 

ance of people writing codes for the machine, particularly in cases 

where the assembly program, APl, is in use. The most important 

changes in order structure are •tated ln Section 1: these mostly 

have the nature of Jidd:l.tions to the *•Erl'l!ta and Addenda to the 

Computer Manual" iM~rch 195gj ahd h~~e heen,o~t-ined by slight 
. . 

modifications in logical de~ign~ Syinboiic progrims based bn Memo-
, Ii . 

ranchim le {July 1959) should be little af fee ted; absolute codes of 

class land 2 may require revision. 

It is felt that the changes made are sufficiently useful to 

warrant modification of APl (January 1959) to accept a revised 

mnemonic ltst and operation structure. Zke 4roposed changes are 

symbolically helpful, and can easily be fitted into the existing 

APl codes without unduly extending the mnemonic table. The results 

are given in Section 2. We have also determined some further sub-

routine conventions, in line with Memorandum 12, which are aimed at 

relieving the problem of fast register usage. 

Section 3 gives a list of subroutines in existence or near 

existence at the time of writing, and a revised list of APl mnemonics • 
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l. Ch~nges in Machine Codes 

Field l: No change 

Field 2; Class 0: Control Orders. The rule concerning the transfer of 

(CC) to PF is now: The contents of ~C.are transferred to PF if 

(and only if) OP2 ~ 4. Transfers to P2 (the second pathf~der) 

remain as before. 

Field 2; Class 1: Arithmetic Orders. The basic codes (given by OP2) 

remain unchanged, except that exponent manipulations have been 

completely eliminated from the fixed point orders. Some op­

tions are now offered in OPl and OP4 to complete the range of 

orders (all combinations of U and~ are now possible) and define 

the rounding f~nction. These options are tak~n by placing a'l' 

in the bit position indicated in tlie list below, which is given 

in decoding sequence: 

(a) oP4 bit 1: interchange (U) and (S) 

(b) O~l bit 1 clear~ to sign of UM 

(c) oPi bit 2 interchange (U) and (R) 

(d) Execute arithmetic operation given in OP2 

(e) OPl bit 3: round result in U 

(£) OP4 bit 3: store (U) in memory cell whose address 

is in 1. 

All floating point results are normalised. The rounding mode 

switch will still force rounding if it is 'on• J even though OPl 

bit 3 may be zero. 

Field 2; Class 2: Store, Substitute, Set Tag. In the decoding se­

quence, OPl, OP2 and OP4 are defined as follows: 



OPl • 0 . no action • 

1 . (S)l,39 + Ul,39 • 

2 : (S)l,6 + Ul,6 

' : (S)l,27 + Ul,27 

oPa. 6 .. Clear ATR. (Arith111etic • 

set durii\g execution 

i : Set ATR .. 1 

2 Set AT& a a 

3 Set ATR. '= 3 

4•7: ~o Jctibrl on ATR 

4 (S) + u 

5 ( s) 40, 5 4 + u 40, 5 4 

6 • <9>1,54 +,u1,54 • 

7 • (S)28,54 + U28,54 • 

Tag Register . this has . 
oi field 4) 

OP4 • 0: Store (U) and (ATR) in L(I40 , 54) 

1 Do not store 

2•7 (not to be used). 

Field 2; Class 3: No change 

been 

Field 2; Class 4: The setting and clearing of special registers has 

been extended as follows: 

OPl = 2: Set lights designated by l's in 140 , 54 

6: Store 140 , 54 in some special purpose register. 

If OPl = 2, OP3 is decoded as: 

OP3 = 0: Sense lights on 

1: Mode lights on 

2 Trapping lights on 

3: Indicator lights on 

If OPl = 6, OP3 is decoded as: 

4: Sense lights off 

5 : Mode lights off 

6: Trapping light off 

7 Indicator lights off 

OP3 = 0: Second pathfinder, P2 (77770) 

1: Sense light register, SL (77771) 

2: Increment register, X (77772) 



3: Mode light register, ML (77175) 

4: Trapping light register, TL (77774) 

5 : Indicator light register, IL (77775) 

6: Output location register, B8 (77t76) 

7: lnp~t location register, B9 (77777) 

Field 2; Class 5: As in the arithmetic orders, a "store" option is 

provided he1:e a,fCel' the i.oJJiea.l operation., 

Thus OP4 = l (Bit 21): Store (U) with (ATR) after operation. 

Field 2; Class 6: No changes 

Field 2; Class 7: There are no class 7 orders now. The •NOP' 

is the class 2: 20001. 

Field J: The useless code 1 10 1 (Store Rini) bas been re-inter­

preted to fuean "Store 3 in R", i.e., clear R to 54 zeros. 

F1el4.4: Nb dhanges. 
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2. Changes in the Assembly Program 

Many of the changes of section 1 do not affect the symbolic 

forms of orders. In some cases, a revised interpretation is 

appropriate. 

OPH field; C.l.ass 011 (logica. l o~,d,brs). By introducing a new code "TSll" 

(Transfer ~o Sbbro~tine) a distirtctioh is drawn between trans­

fer orders which re~et PF {iSR), and those which do not (TRA). 

Thus, on 'inte~nal*unbortdition~l transfersj TRA 1s now synony­

mous With SCC (set cbntiol Cbunter), and itt ii p~ssibl~ to 

di~~lrtgbis~ i6~h idrtditional and unconditional transfers to 

subrJutines(altbough the former are less general, since they 

may not include a test in OP2). e.g. 

TSR SINH 

and IF(TG2) TSR SINH 

both reset (PF) to (CC) (upon making the transfer.) 

Class 1. Arithmetic Orders. Names have been provided for some of 

the more useful options on division. In the notation of 

Programming Memorandum :fl, 2, Lecture 2, we now have: 

Addition; ADD; uM• =UM+ SM 

Subtraction; SUB; UM= UM• SM 

Multiplication; MPY; U'+ M 01\i = UM x SM 

FIXED Division; DIV; u• M + Q ~ISM =[ UM + e~J/sM, 18Ml<lsMI 

POINT Integer Division; IDV; u• + 1).i/S M M = [ UM] /SM' I l\i I< I SM I 
Reverse Division; VID; UM + 61\i/UM = [ SM] /UM, l~l<IUMf 

Reverse Integer Division; VDI; 
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JLOATING Addition;. FAD; Uj. • u1 i s1 ,R1 • Ug 

POINT subtraction; rsB; UP• u1 !: s1,a1 • u~ 
Multiplication; PMP; u;.,• u, i s1 ,ll~ • u8 

i t 1' t I Divis on; FDV; u1 • u1 ! s1,a1 • u1 

All these re~ulta 

are rounded and 

normalized. For 

unrounded answers, 

Reverse Division: VDF; u; • s1 I u,,Ri • u1- use octal codes • 
• 

In order to use the store option, the appropriate mnemonic code 

is followed by •+1•. (ln this way it ia handled by the existing 

APl program without change)., For example, the code required 

to replace the vector Ye in cells Y to Y+lOO by ky; where 

(T4) = k would be: 

SB4 dlOO 

r4 FMP+ 1 Y+B 4, B/f.1: 

B4 lF(POS)TllA cc-2 

Class 2. Store, lubstitute1 Set Tag. There are now 80 orders in this 

class, all potentially useful. For symbolic purposes, we divide 

them into two sub-classes, the first of which is regarded as 

replacing part of U in a memory cell, and the second as bring­

.!!J. the portion of a memory cell to u, without disturbing the 

value in storage. 

Let V be the final address formed in Field IV. Then we 

have: 

Store; STO; (V)' • (U), (S)' • V 

Fetch and Store; FST; (V) 1 • (U), (S) 1 • (V) 

Replace exponent; RPE; (V)' • (U)' • (U)1,6(V)7,54,(S)' • (V) 

Replace Mantissa; RPM; (V)' • (U)' • (V>1,6CU)7,54,CS)' • (V) 

Replace Left Half; llPL; (v)• • (U)' • (U) 1, 27 (v) 28, 54,cs)'•(V) 

Replace Ri8ht Half; &n;(V)' • (U)' • (V) 1, 27 (l1)2 a,,4' (S)'a(V) 
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Replace Address; RPA; (V)' • (U)' • (V) 1139(U)40., 54, (&ff =(V). 

No operation; NOP; (U) 1 = (U) ~ (S) 1 mi (S); (R) ~ • (R) • 
Clear and add; CLA; (U) 1 • (S); . (S) 1 • ($); (R)' = (R) 

Bring exponent to U; BEU; (U)i • (Vjt16 (u) 715~~(V)'=(S) 1 =(V) 
i 

Bring Mantissa to U; ~MU; (U)' •(1J);t, 6 (v) 7154;(V)'•(S) 1•(V) 

Bring left half tQ b; BLU; (U)' • cv~ 1, 27 (u) 28, 54;(V)'=(S)'=(V) 

Bring right half tto U; ~RU;(uS• .. (tJjl;27(V)28,5lt_;(V)'•(S)'=(V) 

Bring address to.U; BAU; cui~ •.(U)iJ,~(v) 40 ,1,) (V)'•(S) 1•CV) 
' . : ' , I , 

Note that NOP lias beeh ~l!ded here instead of in class 

11 and tLA has a1so been ptjcdd tn tht~ c1ass, •• a slight 

speed adv~nt~g• 1J 8Jined overfg!d class, btJ$r, A bemoty 

a~cess is normally required to set up S correctly for all these 

orders, with the exception of STO. Note also that all the 

'store• orders and the •replace• orders clear to zero both tag 

bits in memory. tf another setting is required, the •set tag• 

option in OP2 should be used. 

Class 4: Set special purpose registers. These orders are not all so 

important as to deserve a permanent entry as au OPB mnemonic. 

Only STX (set increment register) has therefore been added to 

the list. 

Class 5: Logical orders. As in the arithmetic class, the store op­

tion is used by writing '+1' after the order. e.g., the code 

to clear all but bits 49-54 of the words in location P to 

P+ N-1 would be written 

SBl 77 

SB2 N-1 

Bl AND+l P+B2 1 B2-1 

B2 IF(POS)TRA cc-2 
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\ A revised list of Ol?N codes in A.Pl is attached to this· \ 
~ 

memorandum. 

Field,:. The mnemonic 11R + 1 11 is unchanged, but ls interpreted as 

indicated in Section t. 
Library Routines. As a guide to what is available to coders, a 

partial list of libtary routines is given in the next section. 

It is partial only in the sense that, since the routines have 

been written in se"7eral places, full details of space require­

ments and fast -register usage are not always knbwn. However, 

the potential user may have confidedce in their availability 

as working ~odes, •nd lack of complete details heed not be a 

deterrent to includirtg references to a library slibroutine in 

some other code. 

The basic coiventiona ol subroutine usage are kiven on 

p~ses 22-2, of Programmi~g Memorandum 12. We re-ark immediately 

that item (vi) in that list should now read: 

"(vi) Transfer to a subroutine is normally made with the TSR 

order, thus setting PF correctly. Other unconditional trans-

fers use TRA, sec or ACC." 

In order to use a subroutine in an APl program, it must 

be identified by the same name throughout the code, and at some 

point the appropriate library tape must be added to the symbolic 

input tape. The library tapes are in octal, hexad, or a 'con­

densed binary• form, which need not concern the coder since 

they are correctly interpreted by the APl processors, headed 

by the identifying name. If the ·coder obtains his assembled 

program in absolute form on paper tape, it will contain all 

subroutines, and th•se rieed not be reloaded at later execution 

runs. 
-8-



Some 'overlap• in use of fa~t working stores by the main 

and sub-program is often una~oida~le, and it is then essential 

for the coder t6 prese~ve the $tores atfected in the main pro-

gram before entering the subroutine, by placing them in a 'safe' 

memory position~ They should be restored on return from the 

subroutine. There ate some obvious ways of doing this, but a 

useful technique may be mentioned here, since it is used by 

subroutines in the library. In this it is assumed that B6 

gives the first word address of~ block of free working stores, 

and these are used by the main routine both as an extension of 

the 'fast' temporary stores and as a repository for F-series 

registers before entering a subroutine. Then provided the rule 

is followed that B6 a1ways "points•• to • block of free cells 

(being advanced and decremented as bore bt less space 1$ re­

quired), it may ~e use~&$ a wotkirig storage inde~ at any level. 
l 

In this ia~, the nj~d tot inciuding priv~t~ ~orking stores 

within a subroutihe is avoided. For example, to save (B4) and 

d:6) before entering routine F23, we would write: 

B4 STO B6 + -a, B6 + 1 

T6 STO B6 + ..;, B6 + 1 

TSR F23 

CLA B6 • 1, u + T6 

CLA B6 - 2, u + B4 

AB6 -2 

In later assembly systems, the above code may be generated, 

or equivalent closed subroutine linkages written, by two special 

macro-orders: 

SAVE B4,T6 
TSR F23 
UNSAVE B4,T6 
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le 

and in planning complex systems of routines, it is convenient 

to employ an abbreviation such as this until final details of 

subroutine usage have been worked out. 

It should be noticed that some of the data input routines 

will use 86 as an indication of where to put the numbers being 

read in; they will advance (B6) by an amount corresponding to 

the number of stores used, and it is therefore important for 

the coder to insure that (B6) is reduced to its initial value 

if a data input routine of this type is used within another sub­

routine. The alternative procedure, of al~ays retaining ehough 

storage spabe for initial and intermediate data within a pro• 

gram, may still be used. 

Provision is made for handling arrays of one or two dimen• 

sions "semi-automatically" by means of the type 1 codewords of 

Programming Memorandum 11. This leads to greater uniformity, 

shorter calling sequences, and little appreciable loss of time 

or space compared with conventional methods. For these reasons, 

only the "short forms" of subroutines are given in the following 

list. (The routines are also available with conventional calling 

sequences.) To summarize the codewords in their present form, 

it is assumed that each refers to a block of stores of length 

L, which may contain numbers of one sort or another, or more 

codewords. In the latter case, the IA (indirect address) bit 

is turned.!!.!!. in the codeword. If the consecutive stores contain 

elements a 1,a2 , ••• at, then the codeword A contains a Bl-modifi· 

cation bit, and has in its address part the location preceding 

the store containing a 1• Hence, it is always the case that to 

obtain a 1 , it is sufficient to write the code: 

SBl i 
CLA *A. -10-



Similarly, for matrices, to obtain the element ai'j' it is 

sufficient to write: 

SBl 1 
SB2 j 
CLA *A. 

The number Lis given in bits 1-9 of A. Clearly, l<L~511. 

Bits 10-18 and 19-27 may give two parameters for use in index-

ing; these are denoted by M,N: 

9 10 18 19 

L I N 

"Base 
address" 

Finally, .l>it 28-30 may be used to indicate a type of array, 

which is used by various processing routines. Thus, we can 

interpret an a~ray as i vector or matrix, or as a polynomial 

form of degree L-1: 

L-1 P(A,x) = a 1x 

or as a multi-length number: 
N 

M(A) = [ L. a * 2-47iJ247M 
i=l i 

(where in the latter case a 1 • is the mantissa of a 1 only~ or 

as a member of any other set of objects between which useful 

mathematical operations may be defined. 

As the system of codewords is refined, it should become 

unnecessary for the coder to know of their existence. They will 

form the basis of more automatic coding systems to be introduced. 

We give as an example a program P for reading two square (n x n) 

-1 matrices A, B, and computing the matrix A B, printing out the 

latter on the line printer: 

-11-



• 

p ORG 
B6 RPA Pl 
PF RPA P2 

SBl 1 
z TSR RE ADJ U+4 

TSR Ml NV 
T4 STO P3 

SBl 1 
z TSR READ, U+4 

T4 NOP z, U + T5 
CLA P3,U + T4 

z TSR MMPY, u + T6 
T6 SBl 1, U + T4 

'l:SR PRINT 
Pl CLA a(B6), u + B6 
P2 CLA a(l>F), u + cc 
P3 OC'r 0 

END 

Here, B6 is used throughout the program, and the working 

storage list contains successively the matrices A, B, A- 1B 

and their codewords. 

It may be objected that by using codewords a U.fll grasp 

of the data in storage is lost. This is partly true, but it can 

readily be seen that by only two or three commands the ttfirst 

word address" and "size" of an array can be obtained explicitly. 

by the methods deSctibed itiove, subroutines may be incor-

porated in a program during assembly in a straightforward way. 

the output of the assembly process is (optionally) a condensed 

binary relativised self-loading tape containing the program. 

The assembly process is sufficiently fast to permit frequent 

re-runs during program checking, but as more complex assembly-

compiling systems are produced, methods will be given for in-

corporating subroutines in the code immediately prior to execu-

tion. 

As noted in Memorandum #2, arguments and results of any 

closed subroutines may be left either in the F-registers, or 
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the PF-list (i.e., the conventional calling sequences following 

the transfer order), or anywhere else addressed by one of these 

registers. We shall describe the subroutine using standard 

abbreviations for F-registers, and the notation PO,Pl, ••• ,Pk 

for members of the PF-list. Then let the notation: 

(1) 

denote the subrobtine N withs output values and t input values, 

where the Y's and x•s are generally chosen from the set of F-

register names or the Pi's• Thus: 

(T6) SIN (T6) 

describ$8 the sinile value4 function SIN of the argument in T6, 

which leaves the value of the function in T6. It follows that 

to determine Y = SIN (F) we must code: 

CLA F, U + T6 
TSR SIN 

T6 STOY 

Hence, the form (1) is adequ~te in describing the usage of N. 

It remains to give Na meaning, which is done in brief terms 

in the subroutine description, and to indicate which machine 

conditibns, other than those described by (1), are liable to be 

changed by the action of N. 

It is often convenient to name a collection of subroutines 

as a unit, and then provide access to each individual routine 

by means of a 0 subscript", which is really nothing more than a 

parameter stored in Bl before entering the raJ:ine. Such routines 

are denoted by: 

(Yl, Y2, ••• ,Y.) Ni (Xl, x2, ••• ,xt) 

Thus, in the case of 

PRINT7(A,B,C,D) 
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• 
the calling sequence would be: 

SBl 
TSR ... .. .. 
.a 

7 
PRINT 
A 
B 
c 
D 

ln the choice of N, we have tried to select the ueual names 

for elementary functions. (These are mostly evaluated by means 

of ecouo•l••• pol,..oaiaala 4ertve4 a& th• lxplorattoa aa4 Pro• 

cluctioa l.eaearch Df.vtalon of the Shell Developaeat Coapany.) 

Often, routines which effect the same transformation by different 

methods will have the same name. There seems to be no dis• 

advantage in this as long as subroutine tapes are selected by 

hand, and it does have the advantage of keeping the set of 

different names to minimum.size. Some subroutines, e.g. SlH 

and cos, are grouped together for obvious reasons, and appear 

on the same physical tape. 

Bot all possible functions have been placed in the library 

list, and many others are available. Some notes on these, and 

on the array routines which do not use codewords, may be seen -
at the Computer Project. However, it is often advantageous for 

the coder to write his own supplementary routines as they are 

required, in order to minimise overlapping in the use of fast 

stores. 
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3. Additions to the APl System 

A summary of current APl mnemonics 

In the following list, new or revised codes are underlined. 

Apart from recognising the familiar machine codes, the programmer 

may use the list in two other ways. 

(i) For each operation mnemonic, a five digit octal code is 

given. The numerical digits define the essentials of the 

order code, but in addition to this the letter •a• in an octal 

(or in some cases binary) digit position indicates that the 

corresponding digit is available for the synthesis of more com­

plex orders in the same class. The conditions for effecting this 

synthesis are that in any two selected codes, numerical digits 

occurring in corresponding positions must be identical, and 

any other numerical digits must occur in positions in one code 

corresponding to"~' digit positions in the other. A digit con­

taining "n" may not be used in synthesis with a numeric digit. 

By this rule, the codes O a a 5 a and O a a a 1 may be synthe­

sised to give O a a 5 1. On the other hand 4 5 n a 1 and 

4 Sn S 5 may not be synthesised, since the last digits do not 

agree. Synthesis is made by taking the logical sum of all bits, 

treating 'a' and 'n' as zeros. 

(ii) It is also possible for the machine to synthesise opera-

tion codes, although no economy of expression can be ob­

tained when several order mnemonics are given. Thus, if by the 

rules above two o~ more octal codes may be correctly synthesised 

they may be written in the OPN field, separated by a comma: 

e.g. STO,STl ALPHA 

IF(NMO,N~E,NT3)TRA XMAX. 
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November 20, 1959 
Revised Summa~v of APl Mnemonics 

_,.,, <o'' ~ " , :-,•'•• > ~· L .. ,,··-·"!'f••n·-·' .. ,.,_.; .... -,.,... ... -

Control 

HTR O O O O O Unconditional halt and 
transfer 

TRA O l O O O Unconditional transfer 

TSR -
SKP 

O l 4 0 0 Unconditional transfer 
to subroutine 

0 2 0 0 0 Unconditional skip 

JMP O 3 0 0 0 Unconditional jump by (X) 

IP(test)BTR t(ao~ a a Conditional halt and 
transfer 

IF(test)TRA ~ol)i a a Conditionai transfer 

lF(test)!!! <l'e,oj.. a a Conqitional transfer 
1;o subroutine 

IF(test)SKP ~1{11 a a Conditional skip (1) 

tF(test)JMP ~1~ a a Conditional jump by (K) (1) 

Tests: 

POS 

PNZ 

NEG 

NNZ 

MOV 

NMO 

'EOV 

NEO 

ZER 

c(t>aa)l 

~·a) 
tl{>a«IJ 
<4a15 

la Mantissa positive or zero 

5 a Mantissa positive and 
non-zero 

la Mantissa negative or zero 

5 a Mantissa negative and 
non-zero 

O a 2 a a Mantissa overflow indicator 
on 

O a 6 a a Mantissa overflow indicator 
off '· O a 3 a a Exponent overflow indic:ator 
on 

O a 7 a a Exponent overflow indicator 
off 

O a a 1 a Mantissa zero 

NZE O a a 5 a Mantissa non-zero 

EVN O a a 2 a Bit 54 • 0 

ODD O a a 6 a Bit 54 = 1 

SLN 

SLF 

O a a 3 a Sense lights on 

O a a 7 a Sense lights off 

NUL O a a 4 a All 54 bits zero 
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Skip next instruction. 

lf. . . ' 1 •ore tihan one test 
specified, action takeL 
il any test satisfied­
except if PNZ or NNZ 
used, th-n all tests 
must be satisfied. 

J 
, ~(l)A floating point 

subtraction is 
carried out on 
all comparison 
orci'ers. 

l 
Indicators are 
turned off. 

J 

I 
Lights indicated by 

jDDR+MOD 



TG2 -
TG3 

NTl 

NT2 -
!ll 
NTG 

Arithmetic 

O a a a 1 Tag indicator 1 on 

O a~ a 2 tag irtdicator 2 on 

O a a a 3 Tag indicator 3 on 

O a a a 5 Tag indicator 1 off 

O a a a 6 Tag indicator 2 off 

O a a a 7 Tag indicator 3 off 

O a a a 4 No tag indicators on 

ADD 1 n On n Fixed point add 

SUB l n 1 n n Fixed point subtract 

MPY 

DIV 

VID -
IDV 

VDI 

FAD 

FSB 

FMP 

FDV 

l n 2 n n 

1 n 3 n n 

1 n 3 n 4 

l 6 3 n n 

1 6 3 n 4 

1 l 4 n n 

1 1 5 n n 

1 1 6 n n 

1 1 7 n n 

Fixed point multiply 

Fixed point divide 

Reverse fixed point divide 

Integer divide 

Reverse integer divide 

Fioatirig pbint add 

floating poiht subtract 
I, 

Floating point multiply 

Floating point divide 

' Specified indicators 
are turned off. 

j 
l 
Specified indicators 
are turned off. 

j 

~:::!: l 
Single No 

i::::h Jround 

joint . 

lsult in U 
rounded 

I 

Succeeding 
"+1" in­
dicates 
use of 
store 
option. 

VDF 1 5 1 n 4 Reverse floating point divide 
) 

Single 
length 

Fetch,Store 

CLA 2 4 4 0 1 Clear and add to U IM bit 1 = 0 

BEU 2 2 n n 1 Bring exponent to U 

BMU 2 6 n n 1 Bring mantissa to U 

!.hl! 2 3 n n l Bring left half to U 

BRU 2 7 n n 1 Bring right half to U 

BAU 2 5 n n 1 Bring address to U 
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NOP 2 0 0 0 1 No operation 

FST 2 0 4 n 0 retch and store IM bit 1 = O; tags 
unchanged. 

STO 2 0 a n 0 Store tM bit 1 111 1; tags· . --··-

RFI 2 6 a n 0 - Replace exponent in memory 
ilearedi 

RPM 2 2 a n O Replace mantissa in memory IM bit 1 = O; tags - cleared unless com-
RPL 2 7 a n 0 Replace left half word in bined with set ta~ 

memory J~eration. 
RPR 2 3 a n 0 Replace right half word in 

memory 
RPA 2 1 a n 0 Replace address in memory -
STl 2 a 1 a a Set tag 1 l 
ST2 2 a 2 a a Set tag 2 tM bit 1 = 0 -

J ST3 2 a 3 a a Set tag 3 

Short re;ister_s 

ACC 4 0 0 n n Add to control counter 

ABl 4 0 1 n n Add to Bl 
• • • • . • • • • 

APF 4 0 1 n n Add to pathfinder 

sec 4 4 0 n n Set control counter 

SBl 4 4 1 n n Set Bl 
• • • 
• • • • • • . 

SPF 4 4 1 n n Set pathfinder 

!!! 4 6 n 2 n Set X tegister 

Shifts 

4 
; v ,· i 

UMR 1 i1. 1 a mantissa right 

UML 4 i tl 2 a u tiiaritissa left 

DIR 4 i n a 1 R mantissa right 

RML 4 1 n a 2 R mantissa left 

DMR 4 1 n l 5 Double mantissa right 

• DML 4 l n 6 2 Double mantissa left 
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LUR 4 5 n 1 a Logical U right 

LUL 4 5 n 2 a Logical U left 

LRR 4 5 n a 1 Logical R right 

LRL 4 5 n a 2 Logical R left 

LRS 4 5 n 1 5 Long right shift 

LLS 4 5 n 6 2 Long left shift 

CRR 

CRL -
4 5 n 5 5 Circle right 

4 5 n 6 6 Circle left 

BCT 4 3 n O 1 Bit count 

Lights, Modes 

SLN 4 2 n On Sense lights on 

SLF 4 2 n 4 n Sense lights off 

ERM 4 2 n 1 n Enter repeat mode 

Logical orders 

AND 5 0 n n n And to U 

ORU 5 1 n n n Or to U 

u54+a1 and a54 + u1 

Rl+U54 and u1 + a54 

~ 
Lights specified in 

JDDR.+MOD 

ADDR+MOD field cannot 
be used. 

SYM 5 2 n n n 

Pr)eeding "-" colllple­
ments the result in U; 

succeeding 0 +111 indi­
cates use of the store Symmetric difference to U 
option. 

) XTR 5 3 n n n Extracts through R to U 

Input, output 

PRk 6 2 n kn Print with format k k = 0,1,2, ••• ,7 

RHX 6 0 0 n n Read hexads 

PHX 6 0 4 n n Punch hexads 
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CONVERSIONS 

Name Function and Remarks F-registers Storage 

(T4,T5)BINDC(T4) 

(T4)DCBlN(?4.,T5) 

Binary to decimal conversion. 
Fixed or floating point, 
depending on whether exponent 
bits are all O or not.* 

Decimal to binary conversion, 
floating point form.* 

(PF,Bl)TLU (PO.,Pl.,T4) 
1 A genera,l logical table look-

. up., with argument T4, in the 
table whose codeword address 
is in PO, using the mask in Pl. 
On exit, (PF)=O if no equality 
was found; (PF)•l and (Bl) gives 
the relative address in the table 
if an equal entry is found. 

(T4)MACOGi(B3,B4,B5) 
Matrix codeword generator. 
i=type of matrix (l:storage by 
roWJ I: lly eolumn; 3: upper A 
by row; 4:lower A by column; 
5: lower A by row; 6: upper A 
by column); B3 = FWA; B4 = no. 
of rows; B5 = no. of columns. 

*See P.M. 12, p.30 for the appropriate decimal forms. 
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Name Function and lemirks ,.registers 

(T4,T5)CMPY(t4,T5,PO) · .·. . .. 
Complex multiply, floating point: 
T4' + iTS 1 m[T4• + iTS] x((PO) +i(PO+l)] 

(T4;t;)CDIV(T41 T5,PO) 
Complex divide, floating point: 

T4' + iTS' = [T4 + iTS]/[(PO) + i(PO+l)) 

(T41 T5)CVID(T41 T5 1 PO) 
Reverse Complex divide, floating 
point: 

T4 1 + iTS 1 =((PO)+ i(PO+l)]/{T4 +iTS) 

(T41 T5)DPADD(T41 T5 1 PO) 
(T4,T5)DPSUB(T41 T5,PO) 
(T41 T5)DPMPY(T41 T5,PO) 
(T4,T5)DPD1V(T41 T5 1 PO) 
(T41 T5)DPV1D(T4,T5 1 PO) 

"Double precision" floating 
point routines. Each part 
of a number has the same 
exponent, so that (T4,T5) 
is intere,,ted as the num­
ber T4+2 T5. Similarly, 
PO gives the address of the 
high orde,r part of a double 
precision number stored in· 
consecutive locfiions, i.e. 
(PO)+ (PO+l)2• • 

-21-

DOUBLE 
LENGTH 
NUMBERS. 

Stotage 



l:. i...w .. J.:..,,...,. ·•'•"'- ~ 
FUNCTIONS 

e .•. - .. _ .... _,_ ···-··~·~·····~·· ........ .,.~ """ .. """"'""....._ 

Name* Function and Remarks P'-registers Storage 

(T6)SlN(T6) T6' = sin T6 T7,B5 
,-) 

73 
r 

(T6)COS (T6) T6' • cos T6 T7,B5 J 
(T6)TAN(T6) T6' • tan T6 T5,T7,B5 54 

(T6)ATAN(T6) T6 1 = arctan T6 T5,T7,B5 44 

(T6) SQRT (T6) T6' = IT6 A11T,B5 37 . ',ti-

(T41 T6)EXP2(T6) T6' = 2T6 T7 1 B5 51 

T4' = 2-T6 

(T41 T6)EXP(T6) T6 1 = e 
T6 T7,B5 

T4' • e 
-T6 

(T6) LOG2 (T6) T6 1 = log2T6 T5,T7,B5 j 42 

(T6)LOG(T6) T6 1 = lnT6 T5,T7,B5 

(T6)E(T6) T6 1 = E (T6) Al1T,B5 ] 
200 incl 

(T6)K(T6) T6' = K(T6) AllT,B5 SQRT, 
LOG 

(T6) J(T6) T6' = J 0 (T6) A11T,B5 l 500 incl. 

(T41 T6)JY(T6) T6 1 = Y0 (T6) AllT1 B5 SQRT, 

T4' = J 0 (T6) AllT, B5 SIN,COS 

(T6)Jl(T6) '?6. = J 1(T6) A11T,B5 and 

(T4,T6)JYl(T6) T6 1 • Y1(t6) AllT,B5 LOG. 

T4' • J 1(T6) A11T,B5 

*Consult program files for a supplementary list of functions. 
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Name Function and Remarks F-registers 

(B3)PRINT2 (T4,B3) Dec output 
(B3)PRINT;,(T41 B3) Oct output 
(B3)PRINT,(T41 B3) · Hex output 

B3 gives a None 
type position 
before O after 
use. In APl form. 

PRINT5 Print l line, space, and in­
terchange print matrices 
ready for next line. 

None 

PR.INT6 (PO, Pl., P21 

P3 1 P4, P5) 

PRINT7 (PO, Pl, 
P21 P3) 

(T4)READ2 
(T4)READ:5 
(T4)B.EAD4 

(B61 T4)READ l (B6) 

PRINT1 (T4) 

(1) 

Decimal output., 1 line, with 
7 digits in fractional parts.None 
The Pi contain addresses of 
data. 

Decimal output, 1 line, with 
13 digits in fractional None 
parts. The Pi contain 
addresses of data. 

Dec input 
Oct input 
Hex input 

In APl form. Each 
number is delimited 
by a comma,cr or tab. 

- None 
input 

General decimal/for a single 
array with codeword genera­
tion. The primary codeword 
is left in T4. Storage space 
is taken from (B6) onwards. 
tnput matrices by rows. (1) · llene 

General decimal output for a 
single array, whose codeword 
is in (T4). · lone 

INPUT 
OUTPUT 

Storage 

The B6 list is used only if T4 = 0 on entry. OtheTWise, T4 is 
assumed to contain the codeword of some array region into which 
data is to be stored. 
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MATRIX 
ROUTINES 

[N.B. In the function description, ~(k) stands for the matrix whose 
codeword is k. Similarly, V(k) stands for the vector whose code­
word is k. In ~h~ binary operations) if (T6) = 8 1 then space for 
the result is taken from the B6 list.] 

Name 

(T4}MINV (T4) 

(T6)MADD(T4,T51 T6) 

(T6)MSUB(T41 T5 1 T6) 

(T6)MMPY(T4,T5,T6) 

(T4)LINEQ(T4) 

(T4)JACOB0 (T4,PO) 

!unction and Remarks F-registers 

M'(T4) =[M(T4)}-l By Gauss AllB,Allt 
ML and ·.rL 

M 1 (T6) =M(T4) + M(T~) 

M' (T~) =M(T4) • M(T5) 

Mt (T6) =M(T4) x M(T5) 

V' (T6) =M(T4) x V(T5) 

V'(T6) =V(T4) x M(T5) 

Solution of n-m sets of m 
simultaneous equations Ax=B 
where M(T4)=[A,B] stored by 
row. Solutions replace B 
portion of M(T4). · By Gauss, 
with row exchange. 

Reduction of M(T4) by modified 
Jacobi rotation method until 
modulus of largest off-diagonal 
element is <PO. M(T4) must be 
symmetric. Stored as upper A 
or rectangular, by row. 

(T4 1 T5)JACOBi(T41 T5,PO) 
As above, but with the formation 
of M(T5), a matrix of eigenvectors, 
simultaneously. 
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• 

POLYNOMIAL 
llOUTlNES. 

[N.B. In the function description, P(k) stands for the polynomial 
whose codeword is k. In the binary operations, if (T6) = 11 
then space sufficient for the resultant polynomial is taken from 
the B6 list.] 

Name 

(T6)PADD(T41 T5,T6) 

(T0)PSUB(T41 T5,T6) 

(T6)PMPY(T4,T5 1 T6) 

(T6)PDIV(T4,T51 T6) 

(T6)PVAL(R4,T5) 

(T5) PBAIR(T4, PO) 

(T5) PMULL(T4, PO) 

(T5) PCBB\(T4,r5, 
PO) 

(T5)PRGEN(T41 T5) 

Function and &emarks F-registers Storage 

P1 (T6)=P(T4)+P(T5) (Ploating4.11T, Bl23,X 
point) 

P1 (T6)=P(T4)-P(T5) 

P'(T6)=P(T4)xP(T5) 

P'(T6)+P'(T4) '(T4) ·-P(T5) P(T5) 

Evaluate P(T4) for 
the argument T5 1 by 
floating point arith­
metic, leaving result 
in '?6. 

.. 
It 

H 

.. 

Determine real and 1 
conjugate complex 
roots to accuracy 
PO by Bairstow method, 

Determine real and 
complex roots of complea 
polynomial P(T4) by 
Muller method, (1) 

n 

.. 

.. 

ti 

Reduction of real polynomial 
P(T4) by Chebyshev procedure 
with f max error I < IPOf (2) 

Generate real polynomial 
P(T5) with given real 
roots V(T4). 

\ 

AllT, 8123, X 

All!, T456, X 

AUB,AJU,X 

Bl2 
T456 

AIJB,AUT, 
X1 SL 

...,, 

J 

133 

plus 

B6 list 

8 

147 
plus 
B6 
list, 

(l)See J.H. Wilkinson, "The Evaluation of the Zeros of Ill-conditioned 
folynomials", Num. Math. vl, part 3, (1959), p.150 • 

<2 >when i=O, P(T4) is consid~ed in the range (O, IT5j); when ial, in 
<- I T5 I , + I T5 I ) , 
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MULTIPLE 
PRECISION 

[N.B. In the function description~ N(k) stands for the multiple 
precision number.whose codeword is k. All results are normalised 
so that the fractional part of the number is in the range (-1,l). 
Where there is insufficient space for the result of an operation, 
it is truncated at the low order end.] 

Name Function and Remarks F-registers Storage 

(T6)MPADD(T41 T5,T6) 
N'(T6) = N(T4)+N(T5) 351 AllB,AllT1 X 

(T6)MPSUB(T41 T5 1 T6) 
N•(T6) = N(T4)-N(T5) 

(T6)MPMPY(T4,T5,T6) 
N1 (T6) = N(T4)xN(T5) 

(T41 T6)MPDIV(T4iT5)T6). . , 
N1 (T6)+N•(T4) = N(T4) ... 

N(T5) N(T5) 

where jN'(T4)l<IN{T5)j. 

{T4)MPSGL(T4) Multiple precision to T456,Bl234 25 
single precision float-
ing point conversion. Re-
sult in T4. 

{T5)SGLMP (T4, T5) Single precision {T4) to !45,~1234 19 
multiple precision form 
N' (T5). 
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Corrections and Additions to P.M.#3 
-----------~------------------------

p.6 line 9 read: "to replace the vector y1 in cells Y to Y+lOO 
by Kyi where" 

p.11 

p.17 

p.20 

p.21 

p.24 

p.25 

p.22 

line 12 read: " T4 FMP+l 

line 5 read: II z 

line 9 read: .. z 
TSR 

TSR 

Y+B4,B4·1" 

R.EAD,U+T4 

READ,U+T4 

Six lines up, delete: "IM bit 1 • 0" 

It 

.. 

Under 'F-registers' read: "All B's,T4,T5,+B6 list +TL" 

For "TS" read "T5" throughout. 

Four lines up read: "(T4,T5)JACOB 1 (T4,T5,P0)" 

For "(T6)PVAL(R4,T5)" read "(T6)PVAL(T4,T5)" 

Elementary functions: Error and ran e. The functions listed 
here are evaluated or a 1 values o the argument for which 
the (real) function is defined by first reducing the argument 
to a range in which an appro~imating polynomial expansion 
is known. The total error in the function therefore depends 
on the accuracy with which this initial transformation is 
performed. We list below the maximum absolute error, E, 
in function values in the range in which they are expanded: 

sinT6 . E = • 2x10· l 4 ,r < T6 < 1t . , 
4 - - 4 

cosT6 . E = .3x1o·l3 ,c < T6 < .! . , 4- - 4 

tanT6 • E = .25x10· 12 JI< T6 < Jl • , 
2 2 

arctanT6 . E = .24x10· 12 0 < T6 < C)O . , 

" T6 
• 8x10· 12 • E = 1/2 < T6 < 1 (Newton) . , 

2 ... T6 
: E • .55x10· 12 , 0 < T6 < 1 



• 

• 

log2T6 

E(T6)::rE(k2) 

K(T6)aK(k2) 

J 0 (T6) 

t 0 (T6) 

J l (T6) 

Y l (T6) 

: 

• . 

. • 

• . 
• . 
• • 

• • 

E • 1. lxto• 12 , 

E = .5x1o•ll 

E • .4xlo-12 

E •• 3x10· 11 

E = .16xl0-12 , 

E = .24xlo• 12 , 

0 -12 E • • 2xl0 , , 

E • .5x10- 12 , 

.5 < T6 < 1 - -
0 < T6 < .992 - -

.992< T6 < 1 -
0 < T6 .9375 -
0 < T6 < 4 

0 < T6 < 4 - -
0 ~ T6 ~ 4 

0 < T6 < 4 - -
For 4 :f T6 < co , the Beseel functions are evaluated by 

formulae of the type: 

J 0 (T6) = (T6)· 112 [P0 (T6)cos[T6- fl -Q0 (T6)sin[T6-fl ] 

Where the E-term for the P's and Q's has maximum value 

-12 1. 5xl0 • 

-28-


	1. Changes in Machine Codes
	2. Changes in the Assembly Program
	3. Additions to the AP1 System
	A summary of current AP1 mnemonics
	CONVERSIONS, TABLE LOOK-UP
	DOUBLE LENGTH NUMBERS
	ELEMENTARY FUNCTIONS
	INPUT OUTPUT
	MATRIX ROUTINES
	POLYNOMIAL ROUTINES
	MULTIPLE PRECISION

	Corrections and Additions to P.M. #3



