
•

RICE INSTITUTE COMPUTER PROJECT

A Pl - A Basic /J.ss.eablJ ProJ!ram
II -

January l, 1959

1. Introduction.

The simplified system of coding for the Rice computer which

is set out below is derived from three considerations: (i) the

minimum machine configuration, which will be the first working

form of the computer; (ii) the first version of the assembly

program (APl) which is designed to be consistent with (i); and

(iii) the desirability of having an introductory system for

teaching purposes. Accordingly, the role of certain short fast

registers (PF2, Mode and trapping) and the use of tags are not

discussed, nor is provision made for the synthesis of orders and

use of correction tapes mentioned in the first full version of

the assembly program (this is subsequently referred to as AP2;

see Appendix 2 of the Computer Manual dated September 1st 1958).

Whilst provision will be made in later versions of AP for more

elaborate coding in symbolic form, so that the present system

will be a sub-system of the first, certain intonsistencies have

been noted in AP2 and these are corrected in APl.

Although the system described below is complete in itself,

it does not exclude the use of more elaborate programming, par­

ticularly in Field 2, by employing absolute octal codes. The

user is referred to the full version of the Computer Manual for

details. Symbolic operation codes are used in APl which, as far
as possible, are consistent with current computer usage.

2. Machine Configuration.

(i) Storage. Octal addresses 00010 - 17777 are available for

general (M) storage.

(ii) Arithmetic registers. All eight special registers

(00000 to 00007) are available.

(iii) Control registers. All eight registers are available.

(iv) Input-Output. Most input and output will be by sub­

routine.. lai>er tape reader and punch are available,

1.1

i
\

I

together with line printer. No magnetic tape unLts are

assumed.

(v) Special registers. A 15-bit sense light register is

used (address 77771). Reference may be made in fields

3 and 4 to the X register. It is possible -t~ enter the

repeat mode from the program, and turn sense lights on

and off by coding or manually, but ~or full use of the

special registers in APl absolute code must be ~sed.

3. Symbolic codes.

The general form of an instruction as it is punched on paper

tape is as follows:

LOCNt SETUt OPNt ADDR MOD, AUXt REMARKS er

where 11 t 11 denotes the "tabulate" character, and "er" denotes

"carriage return". In correspondence with the absolute form of

the instruction LOCN gives the symbolic form (if any) of the ad­

dress in which it is found, SETU corresponds to Field 1, OPN to

Field 2, AUX to Field 3, and ADDR+MOD to Field 4. Remarks are

for the guidance of the coder only and are not read and reproduced

by the computer unless preceded by a ;'REM" pseudo-order. Any

field may be left blank, consistent with a meaningful construction

being placed on the order. Any field may contain absolute octal

codes, which will then be placed in the corresponding positions of

the machine instruction, ignoring any bits whi~h overflow to the

left, The numerical portion of any field is assumed to be octal

unless preceded immediately by the special symbol "d11 , meaning
11 decimal". The IM and IA bits are controlled by special inflex­

ions on the ADDR+MOD field. Precise definitions of the allowed

symbols are as follows:

Type (i) General storage address: Any upper case Roman letter

followed by up to five upper case Roman letters or

numerals. Examples: B, M3, COMMON, ZETA2. These

symbols may only appear in the LOCN or ADDR fields.

Up to 500 type (1) symbols may be used in APl.

1. 2

I~

Type (ii) Special symbolic addresses: By convention we recog­

nize the follc,v-:1.ng symbols for nfast 11 addresses: Z,

u, R, s, T4, TS, T6, T7 (A s~r::i.es); e~d (C, Bl, B:!, 83,

B4, BS, B6, PF (B series). These may a~pear in SETU,

ADDR+MOD, and AUX fields. If they app1H1.r in the LOCN

field the order will be ignored. Use of the cbove sym­

bols, and of X (for the X-register) chould be restricted

to the special significance associated with tho Rice

cooputer.

Type (iii) Special characters: *, a, d, +, -, f ,~, (,), tab,

er, and, (comma).

Each field of the symbolic instruction has a well-defined form

and if this is not recognised by the machine, a note is ~q<le on

the pri.n.ted l:'.rting of the prog-ram and an etfect.ive "!~C-P' 1 (no

oper&tion) instruction is inserted. The acceptable symbols in

each field are as follows:

(a) LOCN. Hay be bl~~k or ahsolute or symbolic. If abso­

lute) any octal address in ~h~ ~an6e 10 - 17777 is ac-

ce~t~ble causing the locHti~n count~r t~ be resAC to

this value; or a dscimal ~dj~eas (pr~c0dcd by the eym-

whole i~st~uction tc be igno~ed. AB series sy~bol cets

up an error condition.

(b) SErU. May be blank or F, where Fis a type (ii) symbolic

· add re s s , o r any of the f o rm s - F , I Fl or - i li' I

(c) OPN. May be blank or any absolute octal code, or one

of the mneIDanic or~ers or pseudo-crdar~ dsfined in APl.

A symbolic operation is either a 3-l~tter mremonic or,

in the case of co~ditional transfers, it h3s tha form

IF(CCC)TTT where CCC is a test condition and TTT is a

mnemonic for a transfer order.

1.3

Note: If (a), (b), and (c} are blank fields, the order is in• -terpreted as a continuation of the preceding one (i.e., an

overflow of the ADOR+ MOD, AUX or REMARKS fields).

(d) ADDR+ MOD. ADt>R may be blank, absolute or symbolic in

exactly the same way as LOCH. MOD is always one or
more of the type (ii) I series symbols, connected to

ADDR by+ signs. In addition. this field may contain

a "relative" part consisting of an octal or decimal

integer preceded by a+ or• sign, The IA bit is con•

trolled by the* symbol, which sets 1A•l when it ap ..

pears in this field. If Mis an allowed Al>DR MOD

symbol in the above sense then so are •M, \Ml and

·\Ml , where the special characters control IM bits

2 and 3. IM bit 1 is set to 2ero except in the

following cases:
(i) The symbol "a" appears in this field.

(ii) The STO, SLF, SLN, TRA, or HTR orders are
used.

(U.1) ADDR is blank but a-modifiers appear in MOD.
(iv) OPN is class 4 and ADDR is absolute.

Examples of valid symbols in this field are:

COMMOU + 1

*ZETA

•\Al Bl·2

d48

-adl22 + Bl

BS
Any symbols appearing in parentheses in this field are

treated as the Z character by AP1, so that an address

which is modified by the program may be annotated con•

veniently, e.g •• (FWA)+lU+B2 is treated as Z+a1+a2.

(e) AUX. This may be blank or one of the forms u~-F. R..,..F,

1 Bi, Bi+l, Bi·l. or Bi+X, where Bi stands for one of

the special symbols, type (11) B aeries, Fis any type

(ii) symbol, and 1 refers to the M portion of the 1

register.
1.4

(f) REMARKS. This field is ig11ored by the computer. as

indicated above, unless a REM pseudo-order is used, in

which case all symbols in the Flexowriter code which may

be translated into printer code are reproduced in the

printed listing. Any symbol which cannot be translated

is left blank.

4. The process of assembly.
Standard coding sheets are provided for the preparation of

programs. Provided the conventions of the previous section are
observed in transcribing the program to paper tape there will

be no ambiguity in the code which is presented to the computer.

APl assumes only 4089 words of general storage although programs

using more storage may be assembled without difficulty. There

are two distinct phases of assembly, each requiring the punched

paper tape to be read. In the first paee, each field is recognised
and a symbol table prepared. An on-line listing may be obtained

of unassembled orders during this stage. In case of any fields

invalid in the sense described above a printed query is raised.

At the end of phase 1, the symbol table is held in storage, but
may be obtained in punched paper tape form.

Phase 2 is initiated either immediately following phase 1

or as a separate process, and assigns the final form to each in­

struction. Small programs may be held in storage until the exe­
cution stage. Otherwise, a binary tape will be punched and at

the same time, a printed final version of the program may be

obtained.

S. Subroutine librar7.

APl contains an index of library subroutine names, working

storage, fast stores used, and space required. Any unassigried

symbol is compared at the end of phase 2 with entries in this ta­

ble and if it appears there a request is made for the subroutine,

which is drawn from the library manually and read into the machine.

1.5

By convention, all library subroutines are written in com­

pletely relative form, and it is only necessary to know the ad­

dress at which they are to start in order to relocate them. From

the abstract of the program the coder must determine which fast

registers are to be saved and make provision for doing so. In

general, subroutines.are written to use B-registers in the order

B6, BS ••• as required, to use T4 ••• T7 for arguments and results,

and to provide separate error returns to various points in the

calling sequence. There is no "PACK" type instruction in APl.

Transfer to subroutines is by an unconditional TRA order. Library

subroutines generally provide their own working storage (if this

is only one or two cells) or request the coder to specify a working

storage region as a parameter in the calling sequence.

6. Types of order.

A full summary of the operations available in the APl is given

at the end of this guide, and exact details of their function are

given in the Computer Manual. The following remarks generally

apply when APl is used.

Class 0: On both conditional and unconditional TRA and HTR orders

IM bit 1 is set to 1 to avoid a fetch time which is other­

wise wasted. When B registers are compared using the SKP

order, an order such as

Class 1:

Bl

Bl

IF(NEG)SKP

IF(NEG)SKP

B2 is recognised as

aZ + B2

whereas if we wish to compare Bl with ((B2)) this would

be written as Bl IF(NEG)SKP Z t·B2. This is a conse­

quence of the rule of formation given in paragraph 3

(d)(iii) and affects both numerical and logical work

using the contents of B-registers.

Class 2: Two conventional store mnemonics are provided (FST and

STO) differing only in the IM bit, which is set to O

or 1 respectively,

1. 6

. .J

Class 4: Since shifts and B-modifying orders most frequently use

the M field as an absolute quantity (andin any case S

is not used in this class) a fetch time can normally be

avoided by setting iM bit 1~ land this is done automa­

tically for absolute octal or decimai ADDR fields which

are no~ i~directly a~dressed. It cart, oi oodrse. be

controllad on other orders by the "ali symbol. In B­

r~gist•rs l'~ complemeat atithmetic is used~ so that a

negative ADDR field appearing with SBl or AS1 type orders

is first complemented. However, IM bit 3 i~ also set to

1 as a guide to the assembly program; e.g., SB2-23 is

assembled as 004420000500077754.

Only the most common shifts are provided in APl. Complex

logical shifts must be coded in absolute form.

In setting and testing sense lights, ADDR gives in octal

form the exact bit pattern corresponding to the lights

being used. Thus the order

SLN 71

turns on sense lights 10, 11, 12, and 15 and sets IM

bit l to 1.

Class 5: The function of complementing after a logical operation

is achieved by placing a"-" sign before one of the four

basic operations.

Class 6:

Class 7: No special functions are contemplated initially, apart

from NOP(70000). Note that the full "no-operation"

order is

u NOP s

Mnemonic
Code

IF(CCC)HTR

'IF(CSC)TRA

U?(CCC)SKP

IF (CCC) JHP

HTR

TRA

SKP

JMP

POS

PNZ

NEG

NNZ

MOV

NMO

EOV

NEO

ZER

NZE

EVN

ODD

SLN

SLF

NUL

CLA

ADD

SUB

MPY

DIV

Octal
Code*

OOaaa

Olaaa

02aaa

03aaa

00000

01000

02000

03000

OOlla

0415a

005 la

0455a

Oa2aa

Oa6aa

Oa3aa

Oa7aa

Oaala

Oaa5a

Oaa2a

Oaa6a

Oaa3a

Oaa7a

Oaa4a

0050nnn

lnOnn

lnlnn

ln2nn

ln3nn

Name of Order

Conditional halt and transfer

Conditional transfer

Conditional skip (by 1 in-
struction)

Conditional jump by (x)

Unconditional halt and transfer

Unconditional transfer

Unconditional skip

Unconditional jump by (x)

Mantissa positive or zero

Mantissa positive and not zero

Mantissa negative or zero

Mantissa negative and not zero

Mantissa overflow indicator on

Mantissa overflow indicator off

Exponent overflow indicator on

Exponent overflow indicator off

Mantissa zero

Mantissa non-zero

Bit 54: 0

Bit 54 • 1

Test for sense lights on

Test for sense lights off

Test for all 54 bits zero

Remarks

Transfer takes

place if any

CCC satisfied.

>O
-00

(0

= 0
,; 0

Clear and add to U Field 1 set to 00

Fixed point add

Fixed point subtract

Fixed point multiply

Fixed point divide

· *In the octal codes, n indicates that a digit position is not available
f o r syn the s i z in g o the r or de r s , a ind i ca t e s th a t i t i s av a i 1 ab 1 e • Un •
less other specifications are made, all these digits are set to zero.

2. l

Muemonic Octal Mame of Order Remarks e Code Code

FAD ln4nn Floating point add

FSB ln5nn Floating point subtract

FMP ln6nn Floating po irt t multiply

' FDV ln7nn Floating point divide

Sl:O 20nna Stote IM bit l : 1

Ii~Gt 20nna Betieb. and store IM bit l '=- 0

STS 22nna Store sum
RPM 2ln0a Replace M digits

RPR 2 lnla Replace rigqt half word
RPL 2ln2a Rep lace left half word

ACC 400nn Add to Control Counter

ABl ••• etc. 40 lnn ••• Add to Bl ••• etc.

APF 407nn Add to pathfinder e sec 440nn Set Control Counter

SBl ••• etc. 44 lnn ••• Set Bl ••• etc.

SPF 447nn Set pathfinder

UMR 41nla u mantissa right

UML 4ln2a u mantissa left

RMR 41nal R mantissa right

RML 41na2 R mantissa left

DMR 4lnl5 Double mantissa right

DML 4ln62 Double mantissa left

LOR 45nla Logica 1 u right

LUL 45n2a Logical u left

LRR 45nal Logical R right

LRL 45na2 Logical R left

LRS 45nl5 Long right shift

LLS 45n62 Long left shift

e 2.2

Mnemonic
Code

BCT
S !..N

SLF

ERM

AND

ORU

SYM
XTR
PRk

RHX

PHX

NOP

Octal
Code

43n01

42n0n

42nln

Name of Order

Bit count

Sense lights on

Sense lights off

46nln ••• (M) Enter Repeat mode

50nnn

51nnn

52nnn

53nnn

62nkn

600nn

604nn

70000

And to U

Or to U

Symmetric difference to U
Extract S through R to U

Print with format k
(here k = 0,1,2 ••• 7)

Read hexads

Punch hexads

No operation

2.3

Remarks

ADDR + MOD field
cannot be used.

A preceding

"-" sign com­
plements the

result

ORG

nss

BES

DEC

OCT

Pseudo-Orders in APl

Origin. The ADDR field gives the location at

which the followirtg instruction ls to be placed.

'Block sta~ted by ~ymbol. The symbol in the LOCN

field ls assigned the ctitrent value of the Loca­

tion counter plus one, . The quantity in the ADDR

field must be an absolute integer or some pre­

•iously a~~tgned symbdl. This quantity (or its

equivalent) minus one is added to the Location

counter before proceeding.

Block ended by symbol. this pseudo-order is

Similar to BSS except that the Location counter

is advanced by the quantity in the ADDR field

before the symbol in the LOCN field is assigned.

becimal da~a. The numbers which follow are recog­

nized as floating or fixed point decimal quantities

and stored in consecutive memory locations starting

~ith the turtent val~e bf the locatibn counter.

Numbers are Separated either by a "er" symbol or

a 11 , 11 • Floating poirit numbers contain a decimal

point in the mantissa and any number may contain

a signed integral Skponent preceded by the letter

E. Example:

1.0

347.S E9

1

-3E7
97

Stored as Qormalised

floating point numbers

Stored as

fixed point

integers.

Octal data. The numbers which follow are recog­

nized as fixed point octal integers and stored in

consecutive me~ory locations starting with the

current value of the location counter.

3.1

For any form of data input, the range of magnitude of floating

point numbers Fis given by

(256) .. 31 • (2- 7) ~ !Fl ~ (256) 31 (l-2- 47)

which is approximately

10_77 <IF! < 1074

All floating point numbers read into the machine are normalised.

For fixed point integers X, we must have

o ~ \ xi { 254

Any negative number is evaluated by first obtaining the positive

binary magnitude and then complementing this. If -2 48 < X ~ -1

and Xis an integer, the exponent i~ not complemented, but set

to zero.

BCD

END

EQU

REM

Binary coded data. All characters which follow

this order are stored nine to a word from the

current location onwards, in succession from left

to right, in Flexowriter code. The sequence is

ended by a double "er". l1ny spaces unused in

the last word are cleared to zero.

End of symbolic program. Terminating routines

of APl Phase 1 or 2 are initiated by this command.

Equivalence. The type (i) symbol in the LOCN

field is given the equivalent currently assigned

to the symbol in the ADDR field. Once defined,

an equivalent cannot be altered. It is not nec­

cessary to distinguish between preset and program

parameters.

Remarks. !11 characters and symbols following -
this order are reproduced on the printed program

listing without affecting the assembly process.

The "Remark" is terminated by a double "er". The

LOCN and SETU fields are ignored.

3.2

1. Multiplication of two cowplex numbers in floating point form.

We have

+

where (Xl) ..
xl' (X2) : X2• etc. - . •

A oethod of coding this would be:

CMPY CLA Xl, U~T4

FMP Yl, U~TS

CLA X2, U -4T6

FMP -Y2

FAD TS

STO Zl

T4. FMP Y2, U-~T5

T6 FMP Yl

FAD TS

STO Z2

2. Polynomial evaluation.

k.. i
Y = .2.., a it

i:O

where (TLOCN) : t, (A)= a 0 , (A+ l) = a 1 , ... (A+i):

and (KLOCN)M: K. (A +K) = aK

A code for this calculation is:

POLY

AB

Z SDl *KLOCH, U _.T4

CLA TLOCH, U ~TS

T4 FMP TS

FAD A+Bl, Uf-,)T4

Bl IF(NZE)TRA AB, Bl - l

T4 STO ¥.

a . , •••
l.

