
REPORT NUMBER
OR0-2572-27

RICE UNIVERSITY COMPUTER PROJECT

FINAL TECHNICAL REPORT

AEC Contract AT-(40-1)-2572

June 1,-1959 to March 31, 1970

Walter Orvedahl, Lecturer
Department of Electrical Engineering
Principal Invest~gator ·

Submitted June 19, 1970

Table of Contents

Section I

INTRODUCTION

Pages 1 and 2

Section II

SUMMARY OF ACTIVITIES

Completidn of the Rice Computer 1
Initial software system 2
Instrumentation of scientific experiments 3
Study of new computer components 4
Revision of the Rice Computer logical system 6
Installation of new core storage 6
Acquisition & Interfacing of UNIVAC Disc File 8
Computer aided physical structure design 9
Studies in Speech Recognition 10
Discussion of new processor specification 10
Initial construction on new processor 11
Display system and conversational software 12
Completion of processor specifications 14
Completion of the contract 15

Section III

EVALUATION OF PROGRESS IN THE STATE OF THE COMPUTER AR'l'

Summary of conditions at the beginning
Error correction system
Computer instruction format
Repeat mode operation
Data tags
Addressing system
Operating system software
Dynamic storage allocation
An algorithmic language
Studies in computer architecture
Measurements of internal operation
Discussion of a new form of processor
Distinctive features
Software for the new processor

1
2
3
5
6
7
9

10
12
14
16
17
19
21

RICE UNIVERSITY COMPUTER PROJECT

-FINAL TECHNICAL REPORT

AEC CONTRACT AT-(40-1)-2572

June 1, 1959 to March 31~ 1970

I. INTRODUCTION

The research proposal on which this contract was initiated

was based on work that was supported under an earlier contract.

This was AEC Contract AT-(40-1)-1825, which began on April 1, 1957.

It was drawn on a proposal submitted by Professor John Kilpatrick.

The work involved the production of a large scale high speed

·digital computer. The primary purpose of the program, as stated

in.Article 1 of the Contract was "to promote computer research

designed to advance the state of the computer art by studies of

computer design and components. The role of the computer, when

completed, will be that of a regional machine for use by the

Contractor to (1) perform research with and on the computer and

its components in order to determine new and/or more effective

computers or methods, (2) t!ain faculty members, students and others

in the operation of computers, and (3) perform miscellaneous com­

putations for research projects of universities and industry."

That Contract provided funds through the period of con­

struction of the computer, which was finished to the point of

2

being usable in 1960. It became known as .The Rice Computer. It

did include many innovations which had a subsequent impact on the

state of the compµter art, as will be shown later in this report.

Contract AT-(40-1)-2572, which is the subject of this report,

was drawn on a proposal submitted by Professor Martin Graham in

April 1959. The initial period of the contract was from June 1, 1959

to September 30, 1960. The primary purpose of this contract was

to support a continuation of the research program which was defined

in the earlier contract. Professor Graham was senior investigator

for most of the period of the earlier contract. He was principal

architect of the Rice Computer, and directed eve~y aspect of its

production. He has especially high capabilities in the field of

electronic design, and he brought a Iarge amount of novelty to the

electrical structure of the Rice Computer.

RICE UNIVERSITY COMPUTER PROJECT

FINAL TECHNICAL REPORT

AEC CONTRACT AT-(40-1)-2572

June 1, 1959 to March 31, 1970

II. SUMMARY OF ACTIVITIES

The actiyities undertaken during the term of the contract

are best considered in three periods. The first years of the

contract were concurrent with the closing years of the earlier

contract, and their objectives were similar. Following that came

a period in which the computer and other facilities of the lab

were applied to a wide variety of problems. The third period

covers the closing years of the contract. These years were devoted to

the development of a new arithmetic and logic unit of advanced

design.

The first period of activity occupied the time between the

beginning of the contract, June 1959, to about October 1962.

The activities of this period were directed primarily to getting

the Rice Computer system established with all its capabilities,

including an initial complement of software. It was during this

period that many excellent ideas in the design of both hardware

and software were brought forth. The importance of some of them

was not fully recognized until much later.

2

The major components of the computer, such as power supplies

and peripheral equipment, were acquired early in the construction

program. By 1959 only the control remained to be developed. This

was done with the participation of students, who in later years

prepared theses related to the work. The installation of the

various computational functions was made step by step. The logic

functions were completed first, and this enabled Professor Kilpatrick

to demonstrate the running computer late in 1959, with a program

which solved pentomino puzzles, and represented the solutions

diagramatically with the aid of the high speed printer. This was

approximately two years after the very beginning of the project,

and was probably, at that time, a near record for early success.

Circuit problems related to' the computer tape system were

examined during the 1959-60 period. The behaviour of parametric

amplifiers was studied as a student project independent of the

computer construction.

By June of 1961, the computer was committed to scheduled

operation, with 8000 words of Central Store, but no magnetic tapes

or other back up storage. A software system was completed and put

in service. It consisted of an assembler and a set of utility

routines which make up an operatin9 system. The concepts involved

in this software were influenced in a useful way both by the logic

capabilities of the processor and by the tight limitation on

3

available storage. The consequences of this will be described in

a later section of this report. An account of the experien.ce. gained

with this system was published in 1968 [1].

Members of the Project undertook assistance to other lab-

.oratories on campus with instrumentation problems. The objective

of this was to prepare for the use of the computer for processing . '

data from sci~ntific experiments.

In the following year, the Department of Geology, with assis-

tance from Project personnel, was equipped with a direct digitizing

seismograph which recorded information on magnetic tapes readable

by the Rice Computer tape system, which was still under development.

Early proposals for the use of linear filtering to improve packing

density for magnetic tapes proved to be without merit, so con-

ventional amplifiers were constructed.

In mid-1963, the computer tape system was committed to regular

operation, for storage of computer data, and for processing seismic

tapes. Several other facilities were put into service in that year.

A digital to analog converter was built into the computer. Software

for generating displays using a 512 x 512 dot raster were written.

An ordinary laboratory oscilloscope was connected as a display,

for both plotting and alphanumeric displays. The small screen

was a handicap for direct viewing. However, a 16 mm motion picture

camera was mounted on the oscilloscope, with film advance controlled

4

by machine command. Graphic displays including unusual dynamic

effects were demonstrated using this simple equipment.

Laboratory experiments were conducted on the use of a dark

trace oscillographic storage tube as a data accumulator for multi­

parameter nuclear experiments. The conclusion was that this is

not a useful technique.

An algorithmic language called Genie was specified by

J. K. Iliffe in 1960, as a part of the Rice software system. A

compiler for the implementation of this language on the Rice

Computer was developed by Jane Jodeit. This was placed in service

during 1963. The compiler was designed to be consistent with

earlier parts of the operating system. Dynamic Storage Allocation

was included as a normal feature.

Professor Graham introduced a course in Digital Computers.

He also served as thesis advisor to Joel Cyprus for his Doctoral

dissertation on Optimal Synthesis of Boolean Functions [2].

These activities marked the full maturity of the Rice Computer,

and ended the phase of activities which were centered around its

development. The work proposed foF the next contract year, be­

ginning October 1, 1963 was.directed toward a study of the influence

of the microelectronics technology on an optimal organization of

computer logic. Microelectronic components were then beginning

to be introduced commercially.

5

By the following Summer, samples -of digital .. int~grated circuits

which were an early form of microelectronic components, were

procured and tested. A magnetic core memory was ordered for the

computer. The required interface circuits for the memory were

under design, using integrated circuits wherever appropriate.

The Project maintained a continuing interest in instrumentation

problems which could be aided by digital techniques. An analog to

digital converter was constructed and incorporated into the computer.

This made it possible to digitize real time waveform inputs or

records from instrumentation tapes. In later years extensive work

was done using this facility.

An instrument was constructed which could monitor internal

processing intervals in the computer, and could display both the

number of incidences of a process in unit time, and the percentage

of total time attributable to the process in question. Measurements

were made on programs running on the Rice Computer, and valuable

insights were gained into the utility of fast registers, indirect

addressing, etc. [3].

A list processing system was ·incorporated in the software for

the computer, as a by-product of J. A. Robinson's studies in theorem

proving. Manuals for the software system were compiled and pub­

lished as reports.

The work proposed for the year beginning October 1, 1964,

6

contemplated profound changes in the logical structure of the Rice

Computer, so that short addresses used for addressing the computer's

four word scratch pad memory could initiate an indirect addressing

sequence and thus access locations anywhere in the main memory.

In addition, it was proposed that an independent address calculator

be designed and constructed, which could do the work of the address­

ing system of.the Rice Computer, but would operate independently

with its own control, upon command from the main computer control.

This was proposed in part to explore the use of integrated circuits,

and in part for the purpose of replacing a significant portion of

the Rice Computer with a replacement done in modern circuit tech­

nology.

The memories which were ordered the previous year were delivered

during the 1964-65 year. Most of the operations of the laboratory

were used in preparing the interface circuits for these memories,

and getting them into service when they arrived. The logic and

circuit design for the address calculator was completed, and a

two bit operating model was constructed and tested in the Summer

of 1965. Activity in the developm~nt of software during that

period consisted mostly of the assembler, and the use of relations

such as>, <, as binary operatois in the Genie language.

For the following year additional studies of changes in the·

logic organization of the computer were proposeq. The use of data

7

tagging on a much larger scale than had been tried in any other

~ computer was contemplated. This included hardware interpretation

of the tags, and tag control of the microprogram. Such a logic

organization was new, and widely different from that which

characterized the old Rice Computer. This study led to the be­

ginning of the third period of activity, in which an entire new

processor was.designed and constructed.

The laboratory was occupied, up until September of 1966,

with the completion of the address calculator and with the exten­

sion of the range of short addresses by additions to the logic

of the Rice Computer [4].

A Doctoral thesis entitled "Fabrication and Switching

Characteristics of Permalloy Films" was prepared by J. K .. Watson

who was a staff' member on the Project.

In the software area, the most significant development was

the extension of the Genie Compiler with the inclusion of a

generalized scheme for addressing double word operands. To assist

this process, computer modifications were made which would generate

the address for a double word oper~nd from a single given address.

The computer was applied to some calculations in statistical

mechanics involving multiple integrals. These problems were dem­

onstrated to be completely intractable for systems which allocate

storage at compilation time. The Rice storage allocation system

8

was able to handle all examples successfully, without resort to

backup storage of any kind [4].

Professor Graham, who had been Principal Investigator ·and

Project Director since the beginning of the contract in 1959,

left Rice University in July of 1966. He was succeeded by

Walter Orvedahl as Project Director and as co-principal investiga­

tor along wit~ Professor J. Alan Robinson.

The Project unexpectedly received the offer of a 750 million

bit disc file from UNIVAC in the Spring of 1966, at no cost. This

was badly needed as a backup storage,· since tapes are unsuitable

in scientific computation due to their long seek time. The file

was accepted.

The work of the year beginning October 1966 was planned around

the task of designing and constructing a controller and data

channel as an interface between the disc file and the memory.

This was a major construction task. With consideration of future

activities of the Project, three boundary conditions were established.

They werej

a. The device should serve many peripherals, and not the

disc alone.

b. It should be made of the best contemporary components,

to stave off obsolescence.

c. It should be electrically compatible with future structures,

and should be matched to older structures by special

interfacing.

9

Integrated circuits had been in use and under study in the

Project since 1963. By the end of 1966 the laboratory recognized

that current switching logic, of a type represented by the RCA

ECCSL line, was superior in switching speed, in freedom from self

induced noise, and in the versatility and moderate cost of the
.

modules then available. These circuits were adopted as standard

for all future work of the Project.

The circuits chosen were available only in the physical form

of the flat-pack. This form is not well suited to conventional

assembly methods. The Elco Corporation offered a line of materials

called the omnicomb system which could be used to assemble flat-

packs in closely packed structures with little difficulty, except

for the tedium of hand-processing the materials. This proved to

be too difficult for most laboratories and the Elco Corporation

ultimately discontinued the line.

· This laboratory developed a complete set of computer aided

design programs which would optimize the placement of parts for

the omnicomb process. A special tape controlled punch was made

for processing the material. The .computer programs produced tapes

for controlling the punch, and computer output provided complete

documentation for all assemblies. Thus the most time consuming

operations were eliminated, and the task of producing a large

digital system became tractable for the small force available to

10

the laboratory. Enough material was purchased from Elco to finish

all work then projected.

These preparatory operations, and an extensive rehabilitation

of the disk drive occupied the laboratory until September of 1967.

The computer was used for some studies in speech recognition

by Professor Howard Resnikoff and Mr. G. Sitton [5][6]. The analog

to digital converter, installed in 1963, was used for direct

digitization of utterances into a microphone. A report entitled

"An English Spoken Digit Data Sampler" was prepared and circulated

to other investigators in the field [7].

A system of logical memory protection was incorporated into

the Rice Computer software. This system checks each reference to

a stored data array to assure that it is within the defined limits

of the array. The facility can be called upon as needed, as in

debugging programs. Since it is slow, it is usually omitted when

the program is ready to run. This system was an important ante­

cedent to the future work of designing a new processor.

Mr. John Iliffe, of International Computers, Ltd, London,

visited the Project for a period of three weeks in January of

1967. The time was occupied with a thorough discussion of the

Basic Language Computer, which was then under construction at

!CL [8]. He left a set of notes from which plans were derived

for the specification of a new arithmetic processor. Arrangements

11

were made for him to spend the academic year 1968-69 with the

Project.

The study of data tags that was initiated in 1965-66 was

interrupted to meet the requirement of the disk file controller.

It was learned in the discussions of the Basic Language Machine

that the concept of Data Tags interpreted by hardware had been

adopted for that design. Interest in this concept was thereby

reinforced. Accordingly, the work proposed for the period

October 1, 1967 to September 30, 1968 included an implementation

of a system of data tags on the Rice Computer as part of the work

of the laboratory. It also contemplated the preparation of

specifications for an entirely new computer, or at least a new

logic organization, based on concepts worked out together with

John Iliffe. It was recognized that with the new integrated

circuit technology, it would usually be more practical to con­

struct large portions of the Rice Computer anew, than to interface

new functional parts to the old. Accordingly the option to replace

the old computer in its entirety was held open.

Before the above work could b'egin, construction of the Disc

File controller and data channel had to be completed, using the

techniques developed in the previous year. This took until June

of 1968 •

. Production facilities were then corrunitted to construction of

12

of a modern counterpart to the 54 bit arithmetic registers and

adder which comprise the arithmetic and logical unit of the Rice

Computer.

Upon completion of the controller, the disk file was placed

in operation. To do this, a long period of fault reduction was

required over the integrated circuit structures that had just

been fabricated. This was a lengthy process, because there were

many subtle hazards about the assembly techniques that were not

appreciated at the outset. For example, circuit pins were pand

soldered one at a time, and then trimmed to length. In some cases

soldered connection was confined to the tip region only, and

trimming removed it, leaving an open circuit. Dip soldering was

adopted for all future assemblies. Because of these delays,

successful operation of the disk was not acheived until November

of 1968.

Other work was accomplished during this period. Much of it

was directed to preparation of the system for time sharing operation.

An IBM Selectric input writer and Tektronix 611 display storage

scope were added to the system. rhe display utilizes the computer

memory and digital to analog converter for writing the 1024 x 1024

dot raster.

In software development, an interpretive Formula Evaluator

· was written. This is suitable for conversational use of the

13

computer in the manner of a desk calculator,.but it also includes

• more powerful capabilities such as program looping, and calls to

library routines. This work was performed by Mr. Grant Youngman,

who was awarded a professional Master of Electrical Engineering

degree in the Spring of _19 6 8. He received his commission in

Naval ROTC and entered a four.year tour.of active duty.

An additton was made to the Genie Compiler which generalized

implicit operations by applying them to subscripted matrices.

This greatly simplifies program loops which involve operations on

matrices within the loop [9].

The research of Professor Resnikoff and Mr. Sitton in the

area of speech recognition was continued. The work led to a

suggested prosthetic device for speech recognition in cases of

total loss of hearing in the high frequency range [10].

The work proposed for the period October 1, 1968 to

September 30, 1969 again called for completion of a new processor

oriented toward the use of data tags. By this time the processor

had been partly specified, but production work had begun only on

portions that involved no new arch.i tectural concepts. The

electrical performance, logic design, and physical structure was,

of course, consistent with the most advanced contemporary practice.

The designers had been urged to preserve the logical form of

the old Rice Computer, in order to avoid the nullification of

14

existi~g programs. As a concession to this important consideration,

it was agreed that the processor would have two control systems,

and two vocabularies, one being a reproduction of the old Rice

Computer. This plan was abandoned when it was recognized that

performance of the new system could be so high that interpretive

procedures could duplicate the logic of the old Rice Computer, and

match it in computing speed.

Mr. John Iliffe joined the Project in September 1968, as a

visiting professor of Computer Science. Other members of the

Project staff joined him in development of a complete specification

of the architecture of the new processor. The Data Tagging Concept

permits a rather simple vocabulary set. However, the internal

logic of the computer is unusually complicated, since a great many

things in this computer are done by hardware which would normally

be done by software. The detailed specifications of the internal

logic has been done by Dr. Sigsby Rusk, Chief Engineer and logic

designer. This work was undertaken after the architecture was

specified.

The circuit assembly process _proved to be efficient. All

attempts to fit portions of the old computer into the new architec­

ture were extremely wasteful of time, since they involved working

out special procedures instead of using the well automated and

computer optimized assembly processes used with new construction.

15

Accord~ngly, the decision was to"make the new processor in its

entirety from new components, and leave the old processor intact,

to play its role in the production process until no longer needed.

Assembly of the circuits was about 90% completed by September

1969. There remained a large task of backplane wiring, for which

the details remained to be specified. After that, there remained

the fault redµction, or debugging process over the entire structure.

A final renewal of the Contract was granted for the period October 1,

1969 to March 31, 1970, for the specific purpose of completing this

work. It was provided in the Renewai Proposal that if any work

remained to be finished at the expiration of this period, Rice

University would undertake to see it through to completion.

That arrangement satisfies 'the aims of the research program

fully, but perhaps a comment is in order about the apparent lack

of rigor in estimating completion dates. The reason for this is

the fact that this undertaking, like others that have been done

before, at Rice University and elsewhere, are exploratory in nature,

and the product is really a prototype. The major part of the work

lies in the specification of minute details, such as choices of

components and preparation of wire connection tables. The magni­

tude of. this task cannot be known precisely until it has been

completed. In order to estimate construction time accurately, the

beginning of the construction process would have to be delayed

16

until all specifications were completed. This would greatly ex­

tend the total time required for the task, and it would be an

unnecessary delay, as it is entirely natural and feasible in this

type of work to begin construction when only a part of the device

has been completely specified. That policy was followed in this

case. The assembly process has always been able to keep pace with

the preparation of the specifications, so the total time is es~

sentially equal to just the time required to generate the specifi­

cations.

As of the time of writing this report, the last of the

backplane wiring is being installed. The debugging process has

been partly accomplished over sub-assemblies during the last few

months. It is scheduled to begin over the entire,system beginning

July 6. The University is committed to placing the computer in

service, and the computer is to play a central role in the academic

program in Computer Science.

RICE UNIVERSITY COMPUTER PROJECT

FINAL TECHNICAL REPORT

AEC CONTRACT AT-(40-1)-2572

June 1, 1959 to March 31, 1970

III. EVALUATION OF PROGRESS IN THE STATE OF THE COMPUTER ART

During the latter half of the 1950 decade, new generations of

computers were under development in many industrial laboratories

and in a few universities and a few national laboratories. Many

of the highlights of the developments of this period are summarized

in reference #11 which may serve as a bench mark for the state of

the computer art near the beginning of the term of this contract.

The most important advances in the area of computer components

during this period were the universal adoption of transistors and

crystal diodes as logic elements, and of ferrite cores as memory

elements. In e_arly applications, these elements were sold with

the burden of development cost included in the price. They were,

however, inherently cheaper than tJ1eir earlier counterparts, and

were much more reliable. · These two factors were fundamental to

the success of the more elaborate logic structures.which the new

-
computers introduced.

The Rice Computer was a product of that period. However, most

2

of its planning was done prior to 1957, so it did not gain the

benefit of the revolution in components, and_there was little in its

physical structure which had a direct impact on the state of the

art, although some concepts are indirectly relevant.

Error Correction System

The computer was equipped with an electrostatic storage tube

memory. This has an important, though indirect, relevance to

contemporary computer structure, in the sense that the storage tube

represents an early example of large scale integration, with its

attendant problems.

The storage tube is equivalent to an array of as many as

16,000 binary storage elements, structurally integrated. If a

single one of the elements in defective, either the entire structure

has to be thrown away, or means must be found to live comfortably

with no help from the defective element. A single storage tube is

worth about $400.00. The probability that it will have at least

one bad element is a virtual certainty. Thus throwing it away 1s

not an acceptable solution. This .simple statement of the problem

would be familiar to people who are working to develop large scale

circuit integration today.

The solution, in the case of the electrostatic memory, was to

include additional storage for an ~rror correcting code, and to

3

provide error correction in the system. Since the memory,· including

error code storage occupied 63 parallel storage tubes, the error

code system added a factor of one-eighth to the storage tube re-

quirement. It achieved an essentially perfect solution to the

problem of defective storage elements, since the probability that

defects in more than one tube at corresponding locations in a system

of this size ·is 1/256.

Professor Martin Graham, at the University of California,

Berkeley, who was the designer of this system, has examined the

relevance of this approach to modern large scale integration

techniques. His findings were presented in .a seminar at Rice

University in 1968. We do not have a published record of them.

Qualitatively, he was able to show that, for arrays of a suitbale

configuration, the inclusion of extra elements for the error

correction function could dramatically reduce the rejection rate,

or alternatively, could greatly augument the permissible number of

elements in a single array, while holding to an acceptable rejec~

tion rate.

.,

Architectural Features of the Rice Computer

The instruction format of most computers is arranged so that

each instruction includes a single elementary operation to be

applied to one or two operan~s. This is the arrangement that

4

provides the_ greatest_ generality. If the computer word length is

short, instructions are often packed one per word. If it is longer,

they may be packed two per word.

The Rice Computer has a 54 bit word, which is unusually long.

Nevertheless, instructions are packed one per word. This is be­

cause instructions in the Rice Computer are compound expressions,

with as many as four operations included in each. Only one of

these operations may be chosen from the full vocabulary of the

computer. The others are chosen from an extremely limited set.

If the available associated operations do not fit the needs of the

program at a particular point, they are coded as null. In such a

case the instruction accomplishes only one elementary operation,

and the storage used for the null portion of the instruction is in

some sense wasted. Clearly, such an instruction format has un­

favorable properties. It is acceptable only if there is a high

probability that several of the operations in each instruction will

be useful most of the time.

This turns out to be the case for all programs which have been

optimized either by the compiler or by the efforts of a programmer

working with an assembler.

The operations available are:

1. Formation of the magnitude, or the negative of an

operand held in an arithmetic register, an index register,

or any of four scratchpad· registers, and loading the

5

result into the accumulator register.

2. Formation of the above, applied to any operand any­

where in store, includi~g any of the above registers,

and loading the result into the second operand

register.

3. Perform any operation in the vocabulary set, on the

two operands addressed in 1 and 2.

4. · Store the result in any of the above registers, or

alternatively, increment an index register.

In practice, operation 4 is useful in a majority of cases.

Operation 1 and 2 are useful in special cases. The greatest use­

fulness of the multiplicity of operations comes when the computer

operates in repeat mode. The index register in 4 above is auto­

matically tested for zero in every cycle of execution. Data tags

are also tested. The instruction being repeated while in the

repeat mode may be a test instruction. The repeat sequence terminates

when any of these tests are satisfied. With these features any one

of several operations can be applied over an ~rray of any length us­

ing a single instruction, and with no instruction fetching. Such

a procedure would require a program loop of several instructions

of ordinary form. Usage has shown that the Rice system is economi­

cal in its instruction storage requirements, and its speed of

computation is higher than is expected on the basis of its electrical

respo!}se times.

6

The data tags mentioned above have been used in only a few

other computers contemporary with the Rice Computer [12][13].

In the Rice Computer arithmetic and logical entities are 56 bits

long. The two extra are interpreted as a set of three markers

or tags. The 00 configuration is interpreted as an untagged word.

By means of these tags, selected locations in memory may be marked.

The tags must ·be written or erased by explicit instructions. When

a word occupying a tagged location is moved to a new location, the

tag is not moved.

When operands or instructions are brought into the processor,

the tag bits of value 1 are entered into a tag register. Tag bits

of value zero are not entered. Thus the tag register accumulates

the "or" of all tags encountered. The tag bits may be individually

tested for either value 1 or value O, and a control jump can be

taken on the basis of the test.

Alternatively, the computer may be operated in trapping mode.

The state of the tag register, or of any of several other indicators

in the computer, such as overflow, can cause a trapping sequence to

be initiated. In this computer the sequence begins with an un­

conditional jump to a fixed memory location assigned to serve the

particular trap condition encountered. This location will be pre­

loaded with a jump to a program designed to respond to the trap

condition. Each of the conditions which can cause a trap can be

7

suppressed or enabled by a mask bit held in a special register.

Control of the computer by means of the data tags is an

elegant and efficient system. When operated in trapping mode, it

permits the testing procedures required for control to be accomplish­

ed in parallel with other processes in the computer, so they involve

no loss of time. Moreover, since the tags are independent of any

other portion .of the data structure in the computer, a control

regimen may be superimposed on any program, at will, without altering

the logic of the program. This is especially useful for putting

a program through the several phases 'of debugging that are often

required.

The utility of data tags has been well enough proven so that

the exploration of a more elaborate scheme of data tagging became

a major research effort in later years.

A complete expression for a memory address in the Rice Computer

Instruction Format occupies 24 bits in the instruction word. Fifteen

bits are used to designate the basic memory location number. Eight

bits are used as selectors for each of eight index registers. The

effective memory location number is the sum of the basic location

number and the content of all index registers selected.

The one remaining bit is used to designate the indirect

addressing option. When it has the value 1, the 24 bits in the

address portion of the instruction register will be replaced by

8

the corresponding 24 bits in memory at the location expressed by

the present effective location number. Since the entire address

expression is replaced in the process, indirect addresses can be

chained, with indexing at every level.

Operation codes are provided in the vocabulary for loading,

incrementing, and testing individual index registers. The registers

are addressable as operand locations, so the content of any of them

can be brought into the arithmetic processor and used as an operand,

or it can be stored in memory.

Two of the registers are dedicated to important hardware control

functions. One of these serves as the instruction sequence counter.

This makes it possible to write programs that are location in­

dependent, by selecting this counter as a component of every operand

address. The other dedicated register is called the Pathfinder.

Whenever a control jump occurs, the Pathfinder receives the present

content of the counter. It thus maintains the essential in­

formation for a return to the program exit point. This may be

stored in memory, or it may be used directly by selecting the

Pathfinder as a component of the address in the return jump. The

concept of making the program counter and pathfinder both members

of the index register set was originated in the Rice Computer design.

It was one of the earliest efforts to relieve the software system

from the overhead burdens in program control.

9

Operating System Software

When a computer with a new vocabulary set is placed into

operation, the first thing that is required is a set of trans­

lators which will establish correspondence between the barely

intelligible coding of machine instructions, and a mnemonic

symbolism more comprehensible to humans. The most primitive parts

of the translators must be done in machine language. The finished

program is called an assembler, and the mnemonic format for in­

structions is called an assembly language. Usually, one line of

assembly la~guage code generates one computer instruction, includ­

ing the assignment of addresses. Along with the assembler, a

collection of utility routines must be prepared as soon as possible

to handle initial loading of the 'computer, input and output

processes, editing, diagnostics, etc. This collection is called

the operating system, since these programs must be resident in

memory during much of the time that the computer is running.

The elaborate addressing facility of the Rice Computer made

it attractive to incorporate some advanced ideas into the operating

system. As suggested above, the a~signment of storage space is

one of the functions of the operating system, usually handled by

a routine called a loader. The designers of the Rice operating

system, Mr. John K. Iliffe and Jane G. Jodeit, undertook to write

a completely general storage allocation routine. The routine is

10

called STEX, a mnemonic for sto~~ge excha~ge.

The STEX routine operates not only at load time, but can be

called upon at any time during the running of a program, and can

assign storage to a process as the need arises. Assignment is

usually made in blocks of a size specified by the calli~g program.

When space is no longer needed, STEX may be called to return the

block to the status of available storage. As might be expected,

the latter process can result in a checkerboard pattern of un­

occupied blocks. STEX can search this space for a block of a

required size. If none is found, it can make a total re-organiza­

tion of storage assignments, consolidating all unused space into

a single block at the high end of memory, from which further

allocations are then made as required.

A procedure of this sort is known as dynamic storage allocation.

The particulars of this system were published in October 1962 [14].

Dynamic storage allocation routines have probably been applied to

special problems many times over the years. The STEX system is

one of the earliest to be incorporated into an operating system

and to be universally used in regular computation.

The ability to allocate storage as needed, eliminates the

waste that results if storage must be reserved on a standby basis

at compile time, because it is known to be required at some phase

of operation of the problem. This saving has remarkable significance

11

in the economy of the computer. The Rice Computer was able to

operate successfully for years with only 8K words of storage, at

a period when the normal complement was 32K words. In one instance,

a problem in statistical mechanics was undertaken at Bell Tele­

phone Laboratories, which involved operations on a multiplicity

of matrices whose dimensions could not be determined in advance.

By standard practice, storage was reserved for each of them at

the maximum dimension that could possibly occur. Inevitably a

case would arise in which all available storage in a 32K system

was insufficient to meet the requirement. This problem was moved

to the Rice Computer. Due entirely to the dynamic storage

allocation system, all cases of the problem were run successfully

with only 8K words of storage [17].

The system as published by Iliffe and Jodeit [14] had a

wide ranging impact on computing practice in later years. The

STRESS system, written by the Department of Civil Engineering, MIT

includes a storage allocation routine which is an adaptation of

the STEX system. The authors credit the work of Iliffe and Jodeit,

but references are not included in-the STRESS manual. One of the

authors, Professor Robert D. Logcher, included acknowledgments in

a subsequent publication [15].

The STEX system influenced the design of software for project

MAC, at MIT during the same period, and was acknowledged by the

12

authors [16].

The STEX system as implemented provided a natural way of

organizing data in multidimensional arrays, and was appealing as

a means of keeping track of where things are stored, quite apart

from the fluctuating nature of storage requirements. By means

of this system a generalized method of referencing arrays was

devised [9]. }\. storage protection system was incorporated into the

Rice operating system which operates on the principle of bounds

checking for arrays. Finally, the properties of this scheme of

memory organization has become the basis for a new concept in

computer organization wherein many of the programmed procedures

for implementing STEX are wired into the hardware.

An Algorithmic Language for the Rice Computer

The designers of the Rice operating system software also

defined a high level algorithmic language, which was named GENIE [18].

The effort of the designers was not directed to the specifics of

the language itself, but to the design of a formal system in which

the language could operate. The designers recognized that the

language itself should best be specified by the users, to suit their

own needs. That is a concept well appreciated today, but at the time

GENIE was reported in the literature, efforts were directed toward

a "uriiversal language", and any proliferation of languages was

13

regarded as pure mischief.

A compiler for GENIE was implemented on the Rice Computer

between 1961 and 1963, and elaborated thereafter. It has been used

by all who have prepared problems for the Rice Computer. The feature

which seems to be most highly appreciated is the provision for

coding operations on arrays. The operations of matrix algebra can

be expressed in the same form that is familiar in hand computation

[9]. This feature was made possible because the storage control

procedures mentioned. in the previous section are also provided in

the GENIE compiler. Another feature which is much appreciated is

the fact that programs in GENIE are compatible with programs written

in assembly language.

The GENIE language is closer to traditional mathematical

notation than most computer languages are. For example, all input

keyboards have a special superscript and subscript mechanism. Codes

are associated with these vertical movements of the typescript,

and they are interpreted by the compiler as they are in ordinary

math. GENIE resembles the MADCAP language in this respect [19].

The stated objectives of the 4esigners of the GENIE system

were to. generalize a formal system which could be used to describe

both numerical and analytical processes in the same system. The

concept of evaluation was a dominant one. It was intended that

the system should recognize when everything necessary for evaluation

of an expression has been specified, and it should then perform the

14

evaluation and replace the expression by its simpler form.

The actual implementation of the compiler was a lengthy task

of assembly language programming, and there was some urgency to­

ward placing this high level language into service as soon as

possible, on any terms. Accordingly, the translators were devised

in the simplest way. The subtleties required to meet the concept

of continuous evaluation were not included [20}. The intended

generality of the system evolved slowly, with the addition of a

few new functions each year.

The system was never implemented on any other computer, and

therefore it had no chance of being adopted, like STEX, as a

standard software technique. It is probable that some of its

basic ideas, such as the specification of context, have been in­

cluded in the structure of many modern compilers. It is also

reasonable to consider that some of the concepts, such as con­

tinuous evaluation, are worth some exploration as a matter of

research, free from the urgency of the task of preparing needed

software.

Investigations in Computer Architecture

Although the Rice operating system established precedent·in

dynamic storage allocation which were vital to later time-sharing

systems, the Rice Computer was completely lacking in all of the

15

control facilities needed to accommodate time sharing. Plans

were made to correct.this deficiency by additions to.the logic

structure of the computer. The task of installing the necessary

components proved to be uneconomic, because too much hand labor

and detailing was involved.

Other aspects of the computer were re-examined, and some

extensions we~e made. In particular, the use of short address

fields to select operands from a small set of registers was ex­

panded by adding a special tag bit on each of a set of four of

the registers. The tag was interpreted by the control to mean

that when set to 1, the register contained, not an operand, but

the address of the operand [4]. By this means each operation

associated with a short address could be applied to any operand

in storage. When this modification was completed, some existing

programs were updated to make use of it, and reductions of about

10% in running time were noted in some cases.

With the extended addressing facility, plans were discussed

for adding to the vocabulary a larger choice of compound operations,

so that such things as the formati.on of inner products could be

done by a single instruction. in repeat mode. No additional oper­

ations were implemented, because it was recognized that the gains

in performance that are possible, although spectactular, can seldom

be realized in compiler generated code. The efforts of the Project

16

were therefore diverted to aspects of computer architecture that

could be of more general interest.

An instrument for making measurements internal to the computer

control was introduced in 1964. It could measure either the per­

centage of total time spent in some control state, or the total

number of instances of a control state during an interval of time.

This instrumen"t was used in an experiment conducted by Mr. J .K. Iliffe

in the Summer of 1964, to evaluate the usefulness of certain features

of the. Rice Computer, particularly the four word scratchpad fast

memory, the set of index registers, and the use of indirect add­

ressing, which forms the basis of the storage allocation and control

scheme used in the operating system.

The important conclusions from the study indicated the following:

1. Indirect addresses account for only a small percentage of

memory accesses and are therefore worthwhile, since they

are fundamental to the storage control system, and any

alternative would probably involve a larger percentage.

2. That fast stores and index registers, whose use has to be

pre-planned, impose an overhead burden just in the pre­

loading process. Moreover, in order to gain the benefit

from them, the planned usage must be rational. It would

be useless to pre-load them just to accommodate one se­

quence of accesses. It is very difficult to get rational

17

planning from a compiler, and without it these registers

can do more harm than good.

Mr. Iliffe therefore recommended an autonomous loading arrange­

ment, for a fast memory such as the slave store in the Atlas-Titan

system, which does not incur any program overhead in its operation.

These conclusions and other observations made it evident that many

architectural ·concepts in the Rice Computer should be recast. A

replacement of the processor seemed more attractive from a research

point of view than any alterations that might be made in the ex­

isting structure.

One feature of the Rice Computer that seemed to merit further

development was the system of data tagging. This feature requires

a memory word that is longer than the arithmetic word. The Rice

Computer is equipped with memories of a word length of 64 bits,

to accommodate the error correcting codes mentioned in the first

part of this report. With modern memories, which were acquired

in 1965, the error correction is no lo~ger needed. Thus as many

as eight additional memory bit positions became available for

experimentation.

Plans for a successor to the processing unit of the Rice

Computer were discussed beginning in 1967, with the participation

of Mr. Iliffe, who visited the Project for 3 weeks at the beginning

of the year. He joined the Project for the academic term

18

September 1968 to June 1969. During that period, the general

specifications of the new Rice processor R-2 were established.

This processor will be placed in service in Autumn 1970.

The first consideration in the design of the processor was

the recognition that data stored in memory usually occurs in sets

which should be structured in a way that is favorable, at least

conceptually, .to the processes that are to be applied to it.

Examples are vectors and matrices, linked lists, tree structures,

etc. Programs must include procedures for mapping the desired

structure onto the structure of the store, which is usually just

an enormous linear sequence of consecutively numbered storage cells.

The architecture of the computer should have in it features

which aid this mapping process, allowing it to be done with shorter

program sequences. For elaborate structuring, an expression for

a memory address must include several components. A separate

calculator section for evaluating such expressions to form effec­

tive addresses will earn its cost with a high usage factor.

A second consideration, closP.ly related to the first is the

fact that all computing involves a_multiplicity of data types.

Maintaining correspondence between operation types and operand

types is not only a burden to the programming process, but it im­

poses constraints on data structures as well.

To deal with this problem, it was proposed that the extra

19

memory positions, external to the arithemtic word, be committed

as tags to identify each word of data as to type. This would,

first of all, permit data structures of any form, since the data

type could be determined from the associated tag, and not from

its location in store. Therefore arrays of mixed type were

permissible.

As a corollary benefit, once data can be identified as to

type it is no longer necessary to use function codes which are

specific to the data type. A single code for an operation, such

as+, x, -., etc. has been included in the vocabulary. The data

type can be recognized from the tag, and the execution algorithm

will branch to paths through the microprogram appropriate to the

data type.

A third consideration was the fact that with the more elaborate

control procedures required for structuring data, certain forms of

stored words would need to be defined for use in control. For

example, arrays would need to be associated with words describing

the form and size of the array. Moreover, such words would need

to be secure from alteration due to misdirected operations arising

from program faults. The tagging system, which can guide some

operations, as noted above, can prohibit them altogether if they

are directed to operands which are really words defined for control.

The specifications as completed define a processor with a

20

shorter and simpler vocabulary than most contemporary computers

use. Sixteen different data types may be distinguished by tags

that are associated with individual words, and are interpreted by

hardware. Two additional tag bits are included for interpretation

by software as was done in the first Rice Computer. Of the sixteen

data types, eight are reserved for maintaining control in a program,

defining array.s, etc.

The matching of operations to operand types is a lesser task

than it has been in the past. In any case, an inappropriate match

will be detected by hardware as it appears, and corrective action

will be taken. Words which are used for control purposes cannot

be altered by inadvertently using them as operands. Words which

define arrays include information about the array boundaries, and

all references to arrays are subject _to a hardware bounds check.

Any error will initiate corrective action.

The distinctive features of the computer have been detailed

in three papers which have been submitted for publication to

Communications of the ACM [21][22][23]. One describes the tag

system, a second discusses address~ng and the structuring of data,

and the third describes a new and powerful concept for operating

on data by the use of a stack. Preprints are included with this

report.

A logical equivalent of the new processor has been simulated

21

on the old computer. System pr~grams have been written, de-bugged,

and put through actual use using this simulator. System programmers

report that codes are easy to prepare in the mnemonic assembly

language of the new processor.

The compiler BCPL is being implemented for the new processor

through a bootstrap technique, starting with a version of this

compiler written for a GE635 computer. All future system software

for the new processor will be written in BCPL. The bootstrapping

operation is to be conducted as a part of a general study of

methods for the interchange of programs between dissimilar computers.

This work is being conducted at Rice under AEC Contract Number

AT-(40-1)-4061, with Professor Edward Alvin Feustel as Principal

Investigator.

Reference

[1] Jodeit, J.G., "Storage Organization in Programming Systems."
Comm. of the ACM, Vol. LL #11, Nov. 1968. .

[2] Cyprus, J., "Optimal Synthesis of.the Boolean Functions of
Four .variables with Majority Logic" (thesis). Rice University
Studies, Vol. 50 No. 2, Spring 1964.

[3] Tung, C., "Operation Time Monitor for a Digital Computer" (Thesis).
Rice Uni~ersity 1964.

[4] AEC Report No. OR0-2572-1, (Progress Report 1966).

[5] Resnikoff, H. and Sitton, G., "Linguistic Segmentation of
Acoustic Speech Waveforms", Proceedings of the Seventy-Fifth
Meeting of the Acoustical Society of America, Ottawa, Canada,
21-24 May 1968.

[6] Sitton, G., "Acoustic Segmentation of Speech", (Thesis)
International Journal of Man-Machine Studies, Vol 2 #1,
March 1970.

[7] Resnikoff, H. and Sitton, G., "An English Spoken Digit Data
Sampler". AEC Report No. OR0-2572-13.

[8] Iliffe, J.K., Basic Machine Principles (book), Elsevier
Press 1968.

[9] Sitton, G., "Operations on Generalized Arrays with the Genie
Compiler", Comm. of the ACM, Vol 13 No. 5, May 1970.

(10] Resnikoff, H. and Sitton, G., "A New Type of Hearipg Aid".
Rice University Review, Fall and Winter 1968.

[11] Beckman, F.S., Brooks, F.P., Lawless, W.J., "Developments in
the Logical Organization of Computer Arithmetic and Control
Units", Proc. IRE Vol. 49 No. 1, Jan. 1961, P. 53.

(12] Gram, C. et al, "Gier, A Danish Computer of Medium Size"
IEEE Trans. ED-12, Dec. 1963.

[13] RCA 601 Computer System Manual.

..

[14] Iliffe, J.K. and Jodeit, J.G., 11 A Dynamic Storage Allcoation
Scheme". The Computer Journal, Vol 5 No. 3, October 1962.

[;1..5] Logcher, Robert D., "Dynamic Memory Allocation for Engineering
Data", MIT Report T-66-1, Jan. 1966.

[16] Dennis, Jack B., "Segmentatio::1 and th,~ Design of Multiprogrammed
Computer Systems", J. of the ACM, Vol. 12 No. 4, p. 589,
Oct. 1965.

[17] Rudd, W.G., Salsburg, Z.W. and Masinter, L.M., "Evaluating
N-Dimensional Integrals with Polytope Bounds", J. of Comp.
Phys., Vol. 5 No.l, p. 125, Feb. 1970.

[18] Iliffe, J.K., "The Use of the GENIE System in Numerical
Calculation", Annual Review in Automatic Programming (book),
R. Goodwin, Ed., Pergarnmon Press 1961.

[19] Wells, M.B., "MADCAP, A Programming System for MANIAC II",
Annual Review in Automatic Programming (book), R. Goodwin, ED.
Pergammon Press 1961.

[20] Iliffe, J.K., "Continuous Evaluation", Intro'duction to System
Programming (book), P. Wegner, Ed., Academic Press 1964.

[21] Orvedahl, W., Iliffe, J.K., Rusk, S.K .. and Sibert, E.E.,
"Hardware Aids to Classification of Data in Storage", AEC
Report OR0-2572-24.

[22] Orvedahl, W., Iliffe, J.K., Rusk, S.K. and Sibert, E.E.,
"Storage Control and Addressing for Complicated Data Structures",
AEC Report OR0-2572-25.

[23] Orvedahl, W., Iliffe, J.K., Rusk, S.K. and Sibert, E.E.,
"Automatic Stacking for A Computer with Explicit Addressing",
AEC Report OR0-2572-26.

	102726204-0001_a.pdf
	102726204-0002_a.pdf
	102726204-0003_a.pdf
	102726204-0004_a.pdf
	102726204-0005_a.pdf
	102726204-0006_a.pdf
	102726204-0007_a.pdf
	102726204-0008_a.pdf
	102726204-0009_a.pdf
	102726204-0010_a.pdf
	102726204-0011_a.pdf
	102726204-0012_a.pdf
	102726204-0013_a.pdf
	102726204-0014_a.pdf
	102726204-0015_a.pdf
	102726204-0016_a.pdf
	102726204-0017_a.pdf
	102726204-0018_a.pdf
	102726204-0019_a.pdf
	102726204-0020_a.pdf
	102726204-0021_a.pdf
	102726204-0022_a.pdf
	102726204-0023_a.pdf
	102726204-0024_a.pdf
	102726204-0025_a.pdf
	102726204-0026_a.pdf
	102726204-0027_a.pdf
	102726204-0028_a.pdf
	102726204-0029_a.pdf
	102726204-0030_a.pdf
	102726204-0031_a.pdf
	102726204-0032_a.pdf
	102726204-0033_a.pdf
	102726204-0034_a.pdf
	102726204-0035_a.pdf
	102726204-0036_a.pdf
	102726204-0037_a.pdf
	102726204-0038_a.pdf
	102726204-0039_a.pdf
	102726204-0040_a.pdf
	102726204-0041_a.pdf
	102726204-0042_a.pdf
	102726204-0043_a.pdf

