
~~u~ 0 ~CQJ~~l~
~@ [fffi) ~ill] ~@ [/ ~ ~ [/ ~ \Yl ~ [fiJ

WELCOME TO THE

..&.. LT .A.. X:&, Sho::rt Cc:»"U..:rse

YOUR INSTRUCTOR TONIGHT WILL BE:
MICHAEL G. HUNTER

MITS/ 6328 LINN NE, ALBUOUERQUE,NM, 87108 505/265-7553

~

(>

/~

(.

·~)

INTRODUCTION TO COMPUTER TECHNOLOGY

1 COMPUTER ORGANI ZATION

2 NUMBER SYSTEMS

3 BASIC LOGIC CIRCU ITRY

4 PROGRAMMING CONCE PTS

HARDWARE

1 ALTAIR ORGANIZATI ON

2 I/0 STRUCTURE

3 INTERFACING TECHN IQUES

SOFTWARE (VARIABLE HARDWARE)

1 PROGRAMMING TECHNIQUES

2 ASSEMBLY LANGUAGE

3 "BASIC" LANGUAGE

1 COMPUTER FUNDAMENTALS

2 HARDWARE

3 SOFTWARE

ALTAIR SHORT COURSE HOUR ONE
-----.....

COMPUTER STRUCTURE

~1Et10RY

I/0

SOFTWARE

MEMORY (65K WORDS IN ALTAIR)

STORES INSTRUCTIONS

2 STORES DATA

INPUT/OUTPUT (I/0)

256 I/0 POSSIBLE IN ALTAIR

CENTRAL PROCESSING UNIT (CPU)

1 PERFORMS LOGICAL OPERATIONS
\

2 SUPPLIES ADDRESSES

3 PERFORMS ARITHMETIC OPERATIONS

4 MANY OTHER THINGS

BUZZ WORDS

BIT WORD

BYTE CPU

ADDRESS I/0

MEMORY BUS

REGISTER DATA

"\ I

/

INTRODUCTION TO COMPUTER TECHNOLOGY

1 COMPUTER ORGANIZATION

2 NUMBER SYSTEMS

3 BASIC LOGIC CIRCUITRY

4 P~OGRAMMING CONCEPTS

HARDWARE

1 ALTAIR ORGANIZATION

2 I/0 STRUCTURE

3 INTERFACING TECHNIQUES

SO FTWARE (VARIAB LE HARDWARE)

1 PROGRAMMING TECHNIQUES

2 ASSEMBLY LANGUAGE

3 11 BASIC 11 LANGUAGE

1 COMPUTER FUNDAMENTALS

2 HARDWA RE

3 SOFTWARE

\,

~INARY NUMBERS

2 DIGITS IN BINARY

11 111 AND no•,•

WITH ELECTRONIC CIRCUTS, IT IS
EASY TO ACHIEVE ON OR OFF, IE

1 OR 0

"0 11
== 0 VOLTS (FALSE)

11 111
== 3 VOLTS (TRUE)

BINARY TO DECIMAL CONVERSION

100 10

7 5 2

700 + 50 + 2

32 16 8 4 2 1

0 0 1 0 1 =37

1 0 0 =54

1 0 0 1 =9

1 0 =6

BINARY ADDITION

0
+0
0

1
+0
I

1 1 1
+1 1 0

1 1 1 1

1 0 1 1 0 1 0

+1 0 0 1 0 0 1 1
0 1 1 0 1 0

("
I

0
+1
1

1
+1
TO

1 1 1
+1 0 1

(1 1 0 0)

BINARY TO OCTAL CONVERSI ON

~· 11 101 110 10 011 100
3 5 6 2 3 4

01 111 001 11 01 0 110
1 7 1 3 2 6

BINARY CODED DECIMAL

BCD

BCD CONVERSIONS ARE USEFUL WHEN
MAKING NUMERICAL DISPLAYS

0000 =0 0101 =5

0001 =1 01 10 =6

0010 =2 0111 =7

001 1 =3 1000 =8

0100 =4 0110 =9

\ DAA COMMAND IN ALTA IR CONVERTS
l3INARY TO BCD

(

LOGIC CIRCUITS

LOGIC CIRCUITS CAN:

ADD

SUBTRACT

MAKE DECISIONS

AND MANY OTHER THINGS

GATING CIRCUITS

FLIP-FLOPS

BISTABLE

MONOSTABLE

.J

(
\

(J

; ·

DECODING CIRCUITS

THE NUMBER OF POSSIBILITIES

2 (RAISED TO TH E NUMBtR OF BITS)

EXAMPL ES

8 BITS =2 56

16 BITS =65!f536

(

\ __

COMPUTER PROGRAMMING

· 1 DEFINE P~OBLEM (90%)

2 ORGANIZE LOGICALLY (7%)

3 CODING (3%)

PAYROLL CONSIDERATIONS

HOURS WORKED

OVERTIME

GROSS PAY

STATE TAX

NET PAY

INSURANCE

U.S. BONDS

WORKMANS COMP

FEDERAL TAX

(

c)

ALTAIR SHORT COURSE HOUR TWO

FRONT PANEL

BUS

I/0

MEMORY

CPU

MASS MEMORY

INTERFACING THE ALTAIR

CPU

CLOCK (2MEG. HERTZ)

2 PHASE

INTERRUPT

READY

STATUS LATCH

MI

IN

MEMR

FRONT PANEL

DATA INDICATORS

ADDRESS INDICATORS

RUN

STOP

SINGLE STEP

EXA

EXAMINE

EXAMINE NEXT

DEPOSIT

DEPOSIT NEXT

wo
OUT

(

"·

J
/

PROTECT

,,-----

UNPROTECT

EXT, CLEAR

' AUX

SENSE SWITCHES

INP 255

MEMORY

1 1 K BYTES

2 2K BYTES

3 4K BYTES

TYPES

1 STATIC MEMORY

2 DYNAMIC MEMORY

3 ROM

4 PROM

USING SLOW MEMORY

NEW PRODUCTS

INPUT/OUTPUT

SERIAL 1/0

UART

PARALLEL 1/0 (LATCH)

NEW PRODUCTS

4 CHANNELS PARALLEL

2 2 SERIAL CHANNELS

3 BAUDOT TTY INTERFACE

('··-

\)

MASS :MEMORY

(_ AUDIO TAPE INTERFACE

f

\ -- /

1 INEXPENSIVE

2 50K BYTES STORAGE

3 LIMITED SEARCH CAPABILITY

4 SLOW

FLOPPY 0 I SC - o r.sl-\ c...-MfA

1 STORES 31SK BYTES

2 LOW COST

3 RELATIVELY FAST

NEW PRODUCTS

INTERFACING

ADDRESS SELECTION

IN-OUT SELECTION

_LATCHING

GENERAL I/d SELECTION

AND ADDRESSING

ADDRESSING

I/0 SELECTION

LATCHING DATA

PRECAUTIONS

1 POWER SUPPLY LOADING _,., ~1\/c"'

2 STATIC ELECTRICITY

3 BUS LOADING - \ I..C'~ ~"' • • IT'"- / c llh

4 USE OF READY

\ .)

1,..--
1
\

ALTAIR SHORT COURSE HOUR THR~E

SOFTWARE

GENERAL PRINCIPLES

MACHINE LANGUAGE

ASSEMBLY LANGUAGE

BASIC LANGUAGE

BASIC LANGUAGE

CALAULATOR MODE

? 2+2

4

?{1+3)*(4-3)

4

? 2/4

• 5

? ((2+3) * (1-7)) I (2+3)

-6

SIN (X)

COS (X)

RND (X)

TAN (X)

SQR (X)

VARIABLES

A-Z

AO, A9 - ZO, zg

AA, AZ - ZA, ZZ

LOG (X)

EXP (X)

Xt Y

ATN (X)

· INT (X)

~~
\

'- I

ASSEMBLY LANGUAGE

LABELS

MNEMONIC CODES

OPERAND

COMMENTS

LOOP LDAX D LOAD A WITH (DE)

MACHINE LANGUAGE

ADD {208)

SUB (229)

MOV (105)

JMP (303)

LOA (072)

STA (062)

CALL (315)
(

RAR (037)

RST (3A7)

(

PROGRAMMING IN BASIC

RT= (R1 * R2) I (R1 + R2)

10 INPUT R1 , R2

20 RT= (R1 * R2) I (R1 + R2)

30 PRINT RT

RUN

?1

?2

. 666667

10 IN PUT R1, R2

20 RT= (R1 * R2) I (R1 + R2)

30 PRINT RT

40 GO TO 10

RU N

?1

?2

. 666667

?2

?3

1 • 2

10 FOR I=l TO 5

20 PRINT 2 t I

30 NEXT

RUN

2

4

8

16

32

GO SUB

RETURN

IF STATEMENTS

10 IF A> B THEN GO TO 450

10 X=1NP (I)

20 OUT I,J

LOGICAL STATEMENTS

AND, OR, NOT

STRING VARIABLES

10 N$= "NAME"

20 PRINT N$

RUN

NAME

MULTIPLE STATEMENTS PER LINE

10 FOR 1=1 TO 10; PRINT 1; NEXT 1

N DIMENSION ARRAYS

BOTH NUMERIC AND STRING

PEEK, POKE

_

COMPARED TO

HP

DG

DEC

DECISION

Tl-tAnl< YIJIJ

CRITIQUE

OCTAL PROGRAM SET 8800

RETURNS STACK INPUT MACHINE ADD PAIRS
RET 311 POP 8 301 IN 333 HLT 166 DAD 8 011
RNZ 300 POP D 321 82 NOP DOD DAD D 031
RZ 310 POP H 341 OUTPUT DI 363 DAD H 051
RNC 320 POP SW 361 OUT

82
323 EI 373 DAD SP n?l

RC 330 PUSH 8 305 SHITIS SFT PATRS
RPO 340 PUSH D 325 XCHG 353 RLC 007 STAX 8 002
RPE 350 PUSH H 345 XTHL 343 RRC 017 STAX D 022
RP 360 PUSH SW 365 SPHL 371 RAL 027 LDAX 8 012
RM 370 PCHL 351 RAR 037 LDAX D 032

JUNPS CALLS REGISTERS ACCUMULATOR LOAD IMMED PAIR ·- JMP 30-~ - CALL 315 ADDR r 20S ADI 306 LXI 8 001
82 < > 82 < > ADC r 21S 82 < > 82 < >

83 < >

c~i
< > SUB r 22S ACI 316 83 < >

JNZ 302 304 SB8 r 23S 82 < > LXI D 021
82 < > 82 < > ANA r 24S SUI 326 82 < >

83 < > 83 < > XRA r 25S 82 < > 83 < >
JZ 312 CZ 314 ORA r 26S S8I 336 LXI H 041
82 < > 82 < > CMP r 27S 82 < > 82 < >

83 < > 83 < > INCREMENT :t ANI 346 83 < >
JNC 322 CNC 324 INR r OS4 82 < > LXI SP 061
82 < > 82 < > DECREMENT XRI 356 82 < >

83 < > 83 < > DCR r OS5 82 < > 83 < >

JC 332 ((334 MOVES ~ ORI 366 INCR PAIR
82 < > 82 < > MOV r1r2 1DS 82 < > INX 8 003
83 < > 83 < > MVI r ODb CPI 376 INX D 023

JPO 342 CPO 344 B2· 8i? < > INX H 043
82 < > 82 < > VALUES FOR D1RICT INX SP 063
83 < > 83 < > s & 0 STA 062 DECR PAIR

JPE 352 CPE 354 8 = 0 82 < > DCX 8 013
82 < > 82 < > c = 1 83 < > DCX D 033
83 < > 83 < > D = 2 LDA 072 DCX H 05.3

JP 362 CP 364 E = 3 82 < > DCX SP 073
82 < > 82 < > H = 4 83 < > SHLD 042
83 < > 83 < > L = 5 D-AA- 047 82 < >

JM 372 CM 374 M = 6 CMA 057 83 < >

82 < > 82 < > A = 7 STC 067 LHLD . 052

l 83 < > 83 < > CMC 077 82 < >

RST 3A7 83 < >

82 = byte two 83 = byte three

S = source D = destination

_ .

SdFTWARE INFORM A TION PACKAGE

The MITS system s oftware cons i sts of three packages, an assembly
language devel opment system (called Package I) , a machine
l anguage debugging package (DBG- 8800) and ALTAIR BASIC.

These three packages qpera t e in a stand-alone environment
i . e . without disk o r other high speed random access storage
device . I/O devices suppor ted are asynchronous serial ASCII
terminals , paralle l ASCII termin a l s (such as TVT ' s) and the
ACR (cassette) i nterface board .

Two disk based systems are now under deve l opment and should
be ready by mid-December. These are Extended BASIC and the
DOS . Extended BAS I C and the DOS both use the same file
structur e I/O code ; Extended BASIC i s an advanced BASIC
interpreter while the DOS package i s a disk based assembly
language development sys t em .

Here i s an ov erview of the featu r es of the packages currently
avai l able :

Package I
(System Monitor, Editor & Assembler)

System Moni t or - 2K Bytes

Contain s I/O drivers fo r system console, ACR board (supports
mu l tiple files o n one cassette) . Loads programs from paper
tape o r cassette .

Text Editor - 2K bytes

Facilitate s editing of sour ce programs . The editor is line
oriented , that i s , commands a l ways reference a line or group
of lines .

commands :

P - Print Lines
I - Insert Lines
D - Delete Lines
R - Replace Lines
E - Exit to Monitor
A - Alter a line . En ables user to change, delete or

insert minor changes in an already existing line.

-1-

Bottom
of

F String - Searches from the current line forward for
an occurance of the character string given
as its argument.

Relative addressing is allowed. P.+6 would print the sixth
line after the current one.

Line Feed - Prints and moves the current line pointer
to the next line.

Escape - Prints and moves current line pointer to
line before current one.

S - Saves File.
L - Loads a · File.

Assembler - 3K Bytes

The ALTAIR loading assembler assembles a source program in
one pass from paper tape, cassette or from the current Editor
buffer. Object code is stored directly into memory as assembly
progresses.

Since the assembler is one pass, it is possible to avoid the .(
time consuming process of re-reading source tapes more than
once, which is the case with multi-pass assemblers. Also,
if the program being assembled resides in the edit buffer,
assembly is almost instantaneous and the user may immediately
correct and re-assemble his program.

Features not provided by the ALTAIR assembler:

- Conditional Assembly
- Macros
- Cross Reference Listing

ALTERNATIVE MEMORY MAPS FOR PACKAGE I

Edi t Buffer

Editor

User Assembly
Language

Program

Edit Buffer
Assembler

Buffer
Assembler

Editor

Assembler
Buffer

Assembler

Memory~ System Monitor System Monitor System Monitor System Monitor

-2-

. ./

NOTE : Package I c a n use all available memory . A min imum
of 8K is necessary , but any extra memo ry may be al l oc ated
for Package I buffer o]'· program s tor a g e .

DEBUG CAPABILITIES OF DBG- 8800
2K Bytes

Examine/Modify Commands

A l ocation to be examined can be s pecified by a n octa l address ,
a register name (A, B, C, D,E, H, L , or S for s t a tu s word) , or a
perio d to indicate the address in the current a ddress pointer .
In addition a l ocati o n can be specified with any of the above
forms but with a+ or- octal offset (e . g . ·.+7).

The specified location can be examined b y typing a / after i t •
. A / causes the f o llowing :

- Type the specifi ed (and possibl y f o llowing l ocations
in accordance with the current I /O mode .

- Open l ocati on(s) fo r modification .
- A car riage return wi ll c l ose the l ocation .
- A line feed will print the addres s and c o nte nts of the

next memo r y l ocation(s) (depending o n I/O mode) .
- + acts as a line feed but goes t o previo u s i nstead of

next l ocati on(s) .
cuuses con tents t o typed in octal regardless of I/0

mode .
- A tab (control I) wi ll open for examinatio n the address

associa t ed with a previous ly di s p l ayed symbolic
3-byte instructio n .

- Other wise input information will be acce pted to modi fy
the contents of the current l ocation . Input data
must c o nform to the specified I /0 mo de .

- A rubout typed at any time wil l c a u s e input to the current
line to be aborted , and a new line will be started .

I / O modes can be respeci fi ed at any time by ·typing an esc ape
f o llowed by o ne of t he fol l owing character s :

0 (octal)
A (ASCII)
S (symbolic) (instruct i on format)
W (two-byte words)
D (dec i mal)

-3-

Execution Commands

An address (as specified above) if followed by a G will cause
execution of the user program to begin at the specified address.

A P will cause execution of the user program to proceed from
the most recently encountered break point. An octal number
can precede a P to indicate the number of breakpoints that the
user wishes to pass over before finally returning control to
DEBUG.

Breakpoint Commands

'rhere are 8 possible breakpoints (numbered 0 thru 7). To set
a breakpoint an address is followed by an X. The first free
breakpoint will be set .

A Y is typed to remove all breakpoints.
A Q will cause a table of all set breakpoints to be displayed.

Memory Block Commands

The contents of a block of memory can be displayed by typing
a command of the form :

(ADDRESS A) , (ADDRESS B)T
This command will cause memory contents beginning with (ADDRESS A)
and ending with (ADDRESS B) to be displayed in the current I/O mode.

8K BASIC

ALTl\IR BASIC (Version 3 . 1) requires a minimum of 6K bytes of
memory.

Features not normally found in BASIC include Boolean operators
(1\ND, OR, NO'r) which can be used in IF statements or for bit
manipulation, INP and OUT which can read or write a byte from
any I/O port, and PEEK and POKE to read or write .a byte from
any memory location. Variable length strings (up to 255 characters)
a re provided, as well as the LEFT$, RIGHT$ and MID$ functions
-~o take substrings of strings , a concatenation operator and VAL
and STR$ to convert between strings and numbers. Number represent
ation is 32 bit floating point . Both string and numeric arrays
of up to 30 dimensions may be used, and can be allocated dynamically
during program execution. Nesting of loops and subroutine calls
is limited only by available memory. Intrinsic functions are SIN,
COS, TAN, LOG, EXP, SQR, SGN , ABS, INT, FRE, RND and POS, in (
addition to TAB and SPC in PRINT statements.

-4-

(~

' Other important featur e s are d i rect execution of statements,
multiple statements per l ine # and the abiltiy to interrupt
program execution and then continue after the examination of
variabl e values .

For the MITS ' line of ALTAIR microcomputers, BK BASIC costs
$75 with the pruchase of BK memory and an I/O interface board.

4K BASIC

The 4K version of BASIC , with less features than BK BASIC, costs
$60 for ALTAIR owners with 4K memory and an I/0 board.

The featur e s of 4K BASIC are a subset of those of 8K BASIC.
Main restrictions a r e :

- No strings .
- Matrices of· onl y one dimension .
- Math functio n s a r e ABS , INT , SQR , RND , SIN, SGN
- No AND , OR , NOT
- No PEEK , POKE , INP , OUT
- No interrupt response subroutines .

No ON •. . GOTO , ON •. . GOSUB
- No CONTinue command .

NOTE: it is often a dvantageous to run 4K BASIC in an 8K ALTAIR
if you have a l ong program or a program that uses large
singl e dimens i o ned arrays .

-5-

,...~,

. I
. J

"Creative Electronics"

\

COMMANDS

A command is usually given after BASIC has typed OK. This is called
the "Command Level". Commands may be used as program statements. Certain
commands, such as LIST, NEW and CLOAD will terminate program execution
when they finish.

NAML:

CLEAR

LIST

NULL

RUN

LXAMPLL: PURPOSE/USE

*(SEE PAGE 42 FOR EXAMPLES AND EXPLANATION)

LIST
LIST 100

NULL 3

RUN

Lists current program
optionally starting at specified line.
List can be control-C'd (BASIC will
finish listing the current line)

(Null command only in BK version, but
paragraph applicable to 4K version also)
Sets the number of null (ASCII 0) charac
ters printed after a carriage return/line
feed. The number of nulls printed may
be set from 0 to 71. This is a must for
hardcopy terminals that require a delay
after a CRLF~ It is necessary to set the
number of nulls typed on CRLF to 0 before
a paper tape of a program is read in from
a T~letype (TELETYPE is a registered
trademark of the TELETYPE CORPORATION) •
In the 8K version, use the null command
to set the number of nulls to zero. In
the 4K version, this is accomplished by
patching location 46 octal to contain the
number of nulls to be typed plus 1.
(Depositing a 1 in location 46 would set
the number of nulls typed to zero.) When
you punch a paper tape of a program using
the list command, null should be set >=3
.for 10 CPS terminals, >=6 for 30 CPS ter
minals. When not making a tape, we recom
mend that you use a null setting of 0 or 1
for Teletypes, and 2 or 3 for hard copy
30 CPS terminals. A setting of 0 will
work with 1

· Te).etype compatible CRT's.

Starts execution of the program currently
in memory at the lowest numbered state
ment. Run deletes all variables (does a
CLEAR) and restores DATA. If you have
stopped your program and wish to continue
execution at some point in the program,
use a direct GOTO statement to start
execution of your program at the desired
line. *CRLF=carriage return/line feed

(

(

NEW

CONT

RUN 200

NEW

(8K version only) optionally starting
at the specified line number

Deletes current progr am and all variables

:I'II-E' FOLLOWING COMMANDS ARE IN THE BK VERSION ONLY

CONT Continues program execution after a
control/C is t yped or a STOP statement
is executed. You cannot continue after
any error, after modifying your program,
or before your program has been run.
One of the main purposes of CONT is de
bugging . Suppose at some point after
running your program, nothing is printed.
This may be because your program is per
forming some time consuming calculation,
but it may be because you have fallen
into an "infinite l oop". An infinite loop
is a series of BASIC s t atements from
which there is no escape . ~he ALTAIR will
keep executing the series of statements
over and over, until you intervene or
until power t o the ALTAIR is cut off.
If you suspect your program is in ~n
infinite loop, t ype in a control/C ~ In
the 8K version, the line number of the
statement BASIC was executing will be
typed out. After BASIC has typed out OK,
you can use PRINT t o type out some of the
values of your variables. After examining
these values you may become satisfied that
your program is functioning correctly.
You should t hen type i n CONT to continue
executing your progr am where it left off,
or type a ·dir ect GOTO statement to resume
execution of t he pr ogram at a different
line. You could al so use assignment (LET)
statement s to s et some of your variables
to different values. Remember, if you
control/C a pr ogram and expect to continue
it later, you mus t not get any errors or
type in any new program lines. If you
do, you won't be able to continue and will
get a "CN" (continue not) error. It is
impossible t o continue a direct command.
CONT always resumes execution at the next
statement to be executed in your program
when control/C was typed.

CLOAD

C':;.AVE

THE FOLLOWING TWO COMMANDS ARE AVAILABLE IN THE BK CASSETTE
VERSION ONLY

CLOAD P

CSAVE P

Loads the program named P from the
cassette tape. A NEW command is auto
matically done before the CLOAD com
mand is executed . . When done, the CLOAD
will type out OK as usual. The one
character program designator may be any
printing character. CSAVE and CLOAD
use I/0 ports 6 & 7.
See Appendix I for more information.

Saves on cassette tape the current pro
gram in theALTAIR's memory. The pro
gram in memory is left unchanged. More
than one program may be stored on cassette
using this command. CSAVE and CLOAD use
I/0 ports 6 & 7.
See Appendix I for more information

OPERATORS

SYMBOL SAMPLE STATEMENT

A=100
LET Z=2-5

8=-A

PURPOSE/USE

Assigns a value to a variable
The LET is optional

Negation. Note that 0-A is subtraction,
while -A is negation.

t 130 PRINT Xt3 Exponentiation (8K version)
(usually a shift/NJ (equal to X*X*X in the sample statement)

OtO=l 0 to any other power = 0

*
I

+

140 X=R*(B*D)

150 PRINT X/1.3

160 Z=R+T+Q

170 J=100-I

AtB, with A negative and B not an integer
gives an FC error.

Multiplication

Division

Addition

Subtraction

RULES FOR EVALUATING EXPRESSIONS:
1) Operations of higher precedence are performed before opera
tions of lower precedence. This means the multiplication and
divisions are performed before additions and subtractions. As
an example, 2+10/5 equals 4, not 2.4. When operations of equal
precedence are found in a formula, the left hand one is executed
first: 6-3+5=8, not -2. (

(

2) The order in which operat ions ar e per formed can always be
specified expl1citly through t he . use of parentheses . For in
stance, to add 5 to 3 and t hen divide t hat by 4 , we would use
(5+3)/4, which equals 2. If instead we had used 5+3/4, we
would get 5.75 as a result (5~lus 3/4) .

The precedence of operators used in evaluating expressions is as
follows, in order beginning with the highes t precedence:

(Note: Opel~ators listed on the same line have the same precedence .)

1) FORMULAS ENCLOSED IN PARENTHESIS ARE ALWAYS EVALUATED FIRST

2) t EXPONENTIATION (BK VERSION ONLY)

3) NEGATION -X WHERE X MAY BE A FORMULA

4) * I MULTIPLICATI ON AND DIVISION

5) + ADDITION AND SUBTRACTION

6) RELATIONAL OPERATORS:
(equal precedence for
all six)

EQUAL
<> NOT EQUAL

< LESS THAN
> GREATER THAN

<= LESS THAN OR EQUAL
>= GREATER THAN OR EQUAL

(BK VERSION ONLY) (These 3 below are Logical Operators)

7) NOT LOGICAL AN-D BITWISE 11 NOT 11

LIKE ~EGATION, NOT TAKt~ ONLY ~H£
FORMULA TO ITS RI GHT AS AN ARGUMENT

8) AND LOGICAL AND BITWISE 11 AND 11

9) OR LOGI CAL AND BITWISE II OR II

In the 4K version of BASIC , relational operat ors can only be used
once in an IF statement. However , in t he 8K version a relational ex
pression can be used as part of any expression .

Relational Operator expressions. will always have a value of True (-1)
or a value of False (0). Therefor e , (5=4)=0 , (5=5)=-1, (4>5)=0 , (4<5)=-1,
etc.

The THEN clause of an IF statement is executed whenever the formula
after the IF is not equal to 0. That is to say, IF X THEN .. . is equivalent
to IF X<>O THEN.-.. -.

SYMBOL

=

<>

>

<

<= =<
'

>""',=>

AND

OR

NOT

SAMPLE STATEMENT PURPOSE/USE

10 IF A=15 THEN 40 Expression Equals Expression

70 IF A<>O THEN 5 Expression Does Not Equal Expression

30 IF 8>100 THEN 8 Expression Greater Than Expression

160 IF 8<2 THEN 10 Expression Less Than Expression

180 IF 100<=8+(THEN 10 Expression Less Than Or Equal
To Expression

. 190 IF Q=>R THEN SO . Expression Greater Than Or Equal
To Expression

2 IF A<S AND 8<2 THEN 7 (BK Version only) If expression 1
(A<S) AND expression 2 (B<2) are both
true, then branch to line 7

IF A<1 OR 8<2 THEN 2 (BK Version · only) If either expres
sion 1 (A<l) OR expression 2 (B<2) is
true, then branch to line 2

IF NOT Q3 THEN 4 (BK Version only) If expression
"NOT Q3" is true (because Q3 is
false), then branch to line 4
Note: NOT -1=0 (NOT true=false)

AND, OR and NOT can be used for bit manipulation, and for performing
boolean operations.

These tJtree operators convert their arguments to sixteen bit, signed
two's, complement integers in the range -32768 to +32767. They then per
form tJ1c specified logical operation on them and return a result within
the same range. If the arguments are not in this range, an "FC" error
results.

The operations are performed in bitwise fashion, this means that each
bit of the result is obtained by examining the bit in the same position
for each argument.

The following truth t~ble shows the logical relationship between bits:

) (
i

('
OPERATOR ARG. 1 ARG. 2 RESULT

OR

NOT

1
1
0
0

1
0

1
0
1
0

1
1
1
0

0
1

LXAMPLLS: (In all of the examples below~ leading zeroes on binary
number)s are not shown.)

63 AND 16=16

15 AND 14=14

-1 AND 8=8

4 OR 2=6

10 OR 10=10

-1 OR -2=-1

NOT 0=-1

NOT X

NOT 1=-2

Since 63 equals binary 111111 and 16 equals binary
10000, the result of the AND is binary 10000 or 16.

15 equals binary 1111 and 14 equals binary 1110, so
15 AND 14 equals binary 1110 or 14.

-1 equals binary 1111111111111111 and 8 equals binary
1000, so the result is binary 1000 or 8 decimal.

4 equals binary 100 and 2 equals binary 10, so the
result is binary 0 because none of the bits in either
argument match to give a 1 bit in the result.

Binary 100 OR'd with binary 10 equals binary 110, or
6 decimal .

Binary 1010 OR'd with binary 1010 equals binary 1010,
or 10 decimal.

Binary 1111111111111111 (-1) OR'd with binary
1111111111111110 (-2) equals binary 1111111111111111,
or -1.

The bit complement of binary 0 to 16 places is sixteen
ones (1111111111111111) or -1. Also NOT -1=0.

NOT X is equal to -(X+l). This is because to form the
sixteen bit two's complement of the number, you take the
bit (one's) complement and add one.

The sixteen bit complement of 1 is 1111111111111110,
which is equal to -(1+1) or -2 .

A typical use of the bitwise operators is to test bits set in the
ALTAIR's inport ports which reflect the state of some external device.

Bit position 7 is the most significant bit of a byte, while position
0 is the least significant.

For instance, suppose bit 1 of I/0 port 5 is 0 when the door to Room
X is closed, and 1 if the door is open. The following program will print
''Intruder Alert" if the door is opened:

10 IF NOT (INP(S) AND 2) THEN 10 This line will execute over
and over until bit 1 (mask-
ed or selec~ed by the 2) be
comes a 1. When that happens,
we go to line 20 .

20 PRINT "INTRUDER ALERT" Line 20 will output "INTRUDER
ALERT''.

However, we can replace statement 10 with a "WAIT,. ~tatement, which
has exactly the sam~ effect.

10 WAIT 5,2 This line delays the execution of the next
statement in the program until bit 1 of
I/0 port 5 becomes 1. The WAIT is much
faster than the equivalent IF statement
and also takes less bytes of program
storage.

The ALTAIR's sense switches may also be used as an input device by
the INP functiort. The program below prints out any changes in the sense
switches.

10 A=300:REM SET A TO A VALUE THAT WILL FORCE PRINTING
20 J=INP(255):IF J=A THEN 20
30 PRINT J; :A=J:GOTO 20

The following is another useful way of using relational operators:

125 A=-(B>C)*B-(B<=C)*C

STATEMENTS

This statement will set the variable
A to MAX(B,C) = the .. larger of the two
variables B and C.

No -te: In the following description of statements, an argument of V
01) W denotes a numer)ia variable, X denotes a numeria expression, X$ de
not(;u a stPing expression and an I or J denotes an expression that is
tr)w·wated to a.n . integer before ·the statement 1.-s executed. Truncation
means -that any fractional par)t of the number is lost, e.g. 3. 9 becomes
J, ~1. 0 l l)eeomes 4.

An expression is a series of' variables, operators, function calls
and constants which after) the operations and function calls are performed
using the precedence ru~es, evaluates to a numeria or string value. ·

A constant is either a number (3.14) or a string literal ("FOO").

(

NAME EXAMPLE PURPOSE/USE

DATA 10 DATA 1,3,-1[3, . 04 Speci f i es data, read f r om l eft t o r ight.

20 DATA II FOO",ZOO

Infor mation appears i n dat a s t at ement s
in the same order as i t wi ll be read in
t he pr ogr am . IN THE 4K VERSION OF BASIC,
DATA STATEMENTS MUST BE THE FIRST STATE
MENTS ON A LINE. Expressions may also
appear in the 4K vers ion dat a s t at ement s .

(BK Version) Strings may be read f r om
DATA s tatements . I f you want the string
to contain l eading spaces (b l anks) , colons
(:) or commas (,), . you must enclose the
string i n doubl e quot es . I t is impossible
to have a doubl e quote wi t hi n s t ring data
or a s tr ing l i t er a l. (""MITS'" ' is illegal)

DEF 100 DEF FNA(V)=V/B+C (BK Version) The user can define functions

DIM

110 Z=FNA(3)

113 DIM A(3),8(10)

like t he built-in functions (SQR, SGN, ABS,
et c.) t hr ough t he use of t he DEF statement.
The name of t he funct i on is "FN" followed
by any legal variab l e name , for example:
FNX , FNJ7 , FNKO, FNR2. User defined
functions are r es trict ed to one line. A
func t ion may be defined t o be any expres
sion , but may oply have one argument. In
the example B & C are variables that are
used in t he pr ogram . Executing the DEF.
statement defines t he f unction . User de
fined funct i ons can be r edefined by exe
cuting anot her DEF s t atement for the same
function . User defined str ing functions
are not a llowed. "V" i s call ed the dummy
variable .
Execut ion of t his s t at ement following the
above would cause Z t o be set to 3/B+C,
but the va l ue of V wou l d be unchanged.

. Allocat es space for matrices . All matrix
e lement s ar e set t o zero by t he ·DIM state~
ment .

114 DIM R3(5,5),D$(2,2 , 2) (BK Version) Matrices can have more
than one dimension. Up to 255 dimen
sions are a llowed , but due to the re
strict ion of 72 charact er s per line
t he pract i cal maximum is about 34
dimens i ons .

115 DIM Q1(N),Z(2*I) Matrices can be dimensioned dynamically
during pr ogr am execut ion . If a matrix
is not explici t ly dimensioned with a DIM
s t atement , it i s as sumed t o be a single
dimensioned matri x of whose s ingl e subscript

117 A(8)=4

END 999 END

may range from 0 to 10 (eleven elements).
If this statement was encountered before
a DIM statement for A was found in the
program, it would be as if a DIM A(lO)
had been executed previous to the execu
tion of line 117. All subscripts start
at zero (0), which means that DIM X(lOO)
really allocates 101 matrix elements.

Terminates program execution without
printing a BREAK message. (see STOP)
CONT after an END statement causes exe
cution to resume at the statement after
the END statement. END can be used any
where in the program, and is optional.

FOR 300 FOR V=l TO 9.3 STEP .6 (see NEXT statement) V is set
equal to the value of the expres
sion following the equal sign, in
this case 1. This value is called
the initial value. Then the stat~
ments between FOR and NEXT are
executed. The final value is the
value of the expression following
the TO. The step is the value of
the expression following STEP.
When the NEXT statement is encoun
tered, the step is added to the
variable.

310 FOR V=1 TO 9-3 If no STEP was specified, it is
assumed to be one. If the step is
positive and the new value of the
variable is <= the final value (9.3
in this example), or the step value
is negative and the new value of
the variable is => the final value,
then the first statement following
the FOR statement is executed.
Otherwise, the statement following
the NEXT statement is executed.
All FOR loops execute the statements
between the FOR and the NEXT at
least once, even in cases like
FOR V=l TO 0.

315 FOR V=10*N TO 3-4/Q STEP SQR(R) Note that expressions
· (formulas) may be used for the in

itial, final and step values in a
FOR loop. The values of the ex
pressions are ~omputed only once,
before the :body of the FOR NEXT
loop is executed.

f-\
I

i

GOTO

GO SUB

If ... GOTO

If ... THEN

320 FOR V=9 TO 1 STEP -1 When the stat·ement after the NEXT
is executed, the loop variable is
never equal to the final value,
but is equal t o whatever value
caused the FOR ... NEXT loop toter
minate. The s tatements between
the FOR and its corresponding NEXT
in both examples above (310 & 320)
would be executed 9 times .

330 FOR W=1 TO 10: FOR W=1 TO :NEXT W:NEXT W Error: do not

50 GOTO 100

10 GOSUB 910

us e nested FOR ... NEXT l oops with
the same index vari able.
FOR loop nes ting is limited only
by the available memory.
(s ee Appendix D)

Branches t o the s tatement specified.

Branches to the specified s tatement (910)
until a RETURN is encountered; when a
branch is then made t o the s tatement ,
after the GOSUB. GOSUB nesting is limi t ed
only by the available memor y .
(see Appendix D)

32 IF X<=Y+23-4 GOTO 92 (BK Version) Equivalent t o IF ... THEN,
except that IF ... GOTO mus t be followed
by a line number, while IF ... THEN can
be followed by e i ther a line number
or another s tatement.

IF X<10 THEN 5 Branches to specified statement if the
relation is True.

20 If X<O THEN PRINT "X LESS THAN 0" Executes all of the
statements on the remainder of the line
after t he THEN if the r el ation i s True .

25 If X=S THEN SO:Z=A WARN ING. The "Z=A" will never lJe
executed because if the rel ation i s
true, BAS IC will branch to line SO .
If the relation i s false Basic will
pr oceed to the line after line 25 .

26 IF X<O THEN PRINT "ERROR , X NEGATIVE": GOTO 350
In t his examp le, if X is l ess than 0,
the PRINT s tatement will be executed
and then the GOTO s tatement wi ll
br anch to line 350. If the X was 0 or
pos itive, BASIC will proceed t o
execute the lines after l ine 26 .

INPUT

LET

NEXT

ON---GOTO

3 INPUT V,W,W2

5 INPUT "VALUE";V

300 LET W=X
310 V=5-1

340 NEXT V
345 NEXT

350 NEXT V,W

Reque~ts data from the terminal (to be
typed in). Each value must be separated
from the preceeding value by a comma(,) .

. The last value typed should be followed
by a carriage return. A "?" is typed as
a prompt ~6iracter. In the 4K version, a
value typed in as a response to an INPUT
statement may be a formula, such as
2*SIN(.l6)-3. However, in the 8K version,
only constants may be typed in as a re
sponse to an INPUT statement, such as
4.SE.-3 or "CAT". If more data was re
quested in an INPUT Statement than was
typed in, a ''??" is printed and the rest
of the data should be typed in. If more
data was typed in than was requested,
the extra data will be ignored. The 8K
version will print the warning "EXTRA

.· IGNORED" when this happens. The 4K ver
sion will not print a warning message.
(BK Version) Strings must be input in the
same format as they are specified in DATA
statements.
(BK Version) Optionally types a prompt
string ("VALUE") before requesting data
from the terminal. If _ca~riage return
is typed to an input sta't:emerit, BASIC
returns to command mode. Typing CONT
after an INPUT command has been inter
rupted will cause execution to resume at
the INPUT . statement.

Assigns a value to a variable.
"LET" is optional.

Marks the end of a FOR loop.
(BK Version) If no variable is given,
matches the most recent FOR loop.
(BK Version) A single NEXT may be used
to match multiple FOR statements.
Equivalent to NEXT V:NEXT W~

100 ON I GOTO 10,20,30,40 (BK Version) Branches to the line
indicated by the I'th number after
the GOTO. That is:
IF 1=1, THEN GOTO LINE 10
IF 1=2, THEN GOTO LINE 20
IF 1=3, THEN GOTO LINE 30
IF I=4, THEN GOTO LINE 40.

()
"

/

ON ... GOSUB

OUT

POKE

PRINT

If I =O or I attempt s t o select a non
exis t ent line (>=5 i n t his case) , the
s t atement aft er t he ON s t at ement is
execut ed. However , if I is >255 or
<0 , an FC error me-ssage wi ll result.
As many l ine number s as will f it on
a line can f ol low an ON ... GOTO.

105 ON SGN(X)+2 GOTO 40,50, 60

110 ON I GOSUB 50,60

355 OUT I,J

357 POKE I,J

360 PRINT X,Y;Z
370 PRINT
380 PRINT X,Y;

Thi s s t atement wi l l br anch to l ine 40
if t he expression X is l ess t han zer o ,
to l i ne 50 i f it equals zero, and t o
line 60 i f it is greater t han zero .

(BK Version) Ident i ca l t o "ON . . . GOTO",
except that a subrout i ne call (GOSUB) is
executed ins t ead of a GOTO . RETURN f r om
the GOSUB branches t o t he s t at ement aft er
the ON ... GOSUB .

(BK Version) Sends the oyte J t o t he
output port I . Bot h I & J mus t be >=0
and <=255 .

(BK Version) The POKE s t atement stores
the byte specified by i t s second ar gu
ment (J) i nto the locat i on gi ven by i t s
first argument (I). The byt e to be stored
must be =>0 and <=255 , or an FC error will
occur. The addr ess (I) must be =>0 and
<=32767 , or an FC error wi l l r esult.
Careless use of t he POKE stat ement wi l l
probably cause you to "poke" BASIC t o
death; t hat is , t he machine wi ll hang , and
you will have t o r eload BASIC and wil l
lose any pr ogram you had t yped i n . A
POKE to a non-exist ent memor y l ocat ion i s
harmless. One of t he main uses of POKE
is to pass arguments to machine language
subroutines . (s ee Appendix J) You could
also use PEEK and POKE to wr i t e a memory
diagnostic or an assemb l er in BASIC.

Prints the value of expr ess i ons on the
terminal. If t he list of values to be
printed out does not end wi t h a comma (,)

390 PRINT "VALUE IS"; A or a semicolon (;) , then a ca_rriar,e-
400 PRINT A2,B, return/line feed is executed after all the

values have been pr i nt ed . St rings enclosed
in quotes (11

) may al so be pr inted . If a
semicolon separat es t wo expressions _ i n t he
list, their values ar e pr int ed next to
each other. If a comma appears after an

READ

REM

RESTORE

expression in the list, and the print head
is at print position 56 or more, then a ()
carriage return/line feed is executed.
If the print head is before print position
56, then spaces are printed until the car
riag~ is at the beginning of the next 14
column field (until the carriage is at
column 14, 28, 42 .or 56 ...). If there is no
list of expressions to be printed, as in
line 370 of the examples , then a carriage
return/line feed is executed .

410 PRINT MID$(A$,2); (BK Version) String expressions may be
printed .

490 READ V,W Reads data into specified variables from
a DATA statement. The first piece of data
read will be the first piece of dat-a list~
ed in the first DATA statement of the pro
gram. The second piece of data read will
be the second piece listed in the first
DATA statement, and so on. When all of
the data have been read from the first
DATA statement , the next piece of data to
be read will be the first piece listed in
the second DATA statement of the program.
Attempting to read more data than there
is in all the DATA statements in a pro
gram will cause an OD (out of data) error.
In the 4K version, an SN error from a READ
statement can mean the data it was at
tempting to .read from a DATA s t atement was
improperly formatted. In the 8K version,
the line number given in the SN error will
refer to the line number where the error
actually is located~

500 REM NOW SET V=O Allows the programmer to put comments in
his program. REM statements are not exe
cuted, but can be branched to. A REM
statement is terminated by end of line,
but not by a ":".

505 REM SET V=O: V=Q In this case the V=O will never be exe
cuted by BASIC.

506 V=O: REM SET V=O In this c~se V=O will be executed

510 RESTORE Allows the re-reading of DATA statements.
After a RESTORE, the next piece of data
read will be the first piece listed in

· the first DATA statement of the program.
The second piece of data read will be
the second piece listed in the first DATA
statement, and so on as in a normal
READ operation.

(
\

RETURN

STOP

WAIT

50 RETURN

9000 STOP

805 WAIT I,J,K
806 WAIT I,J

4K INTRINSIC FUNCTIONS

ABS(X) 120 PRINT ABS(X)

INT(X) 140 PRINT INT(X)

RND(X) 170 PRINT RND(X)

Caus es a subr out ine t o return t o the
s t atement aft er the mos t recent ly exe
cuted GOSUB .

Caus es a progr am t o s top execution and t o
enter command mode .
(BK Version) Pr int s BREAK IN LINE 9000.
(as per t his examp l e) CONT af t er a STOP
br anches t o t he s t at ement f ol l owi ng the
STOP.

(BK Version) Thi s s t at ement r eads t he
status of i nput port I , exclusive OR ' s
K wi t h t he s t atus , and t hen AND' s t he re
sult wit h J unti l a non- zer o r esult is
obtained . Execut ion of t he pr ogram con
tinues at the s tat ement f ol l owing t he
WAIT s t atement. If t he WAIT s t at ement
only has t wo arguments , K is assumed t o
be zer o . If you ar e wait ing for a bit
to become zer o , t here should be a one in
the corr esponding pos ition of K. I , J
and K mus t be => 0 and <=255 .

Gives the absolut e value of the expression
X. ABS r et urns X if X> =O , -X ot herwise.

Returns t he larges t integer l ess than or
equal to its ar gument X. For example :
INT(. 23)=0 , INT(7) =7, INT(- . 1)=-1 , INT
(-2)= ~2 , INT(l . l)= l .
The f ollowing would r ound X t o D decimal
pl aces :

INT (X*l 0tD+. 5)/10tD

Generates a random number bet ween 0 and .l.
The ar gument X cont r ol s the generation of
random number s as f ol lows:

X<O s t arts a new s equence of random
number s using X. Call ing RND wi t h
the same X s t ar t s t he same random
number s equence . X=O gives the last
random number gener ated . Repeated
cal l s t o RND(O) wil l always retur n
t he s ame r andom number . X>O gener
at es a new random number between 0
and 1 .
Not e t hat (B-A) *RND(l) +A will gener
ate a random number between A & B.

SGN(X)

SIN(X)

SQRlX)

TAB(I)

USR(I)

230 PRINT SGN(X)

190 PRINT SIN(X)

180 PRINT SQR(X)

240 PRINT TAB(I)

200 PRINT USR(I)

Gives 1 if X>O, 0 if X=O, and -1 if X<O.

Gives the sine of the expression X. X is
interpreted as being in radians. Note:
COS (X)=SIN(X+3.14159/2) and that 1 Radian ·
=180/PI degrees=57.2958 degrees; so that
the sine of X degrees= SIN(X/57.2958);

Gives the square root of the argument X.
An FC error will occur if X is less t~an
zero.

Spaces to the specified print position
(column) on the terminal. May be used
only in PRINT statements. Zero is the
leftmost column on the terminal, 71 the
rightmost. If the carriage is beyond
position I, then no printing is done. I
must be =>0 and <=255.

Calls the user's machine language sub
routine with the argument I. See POKE,
PEEK and Appendix J.

8K FUNCTIONS (Includes all those listed under 4K INTRINSIC FUNCTIONS
plus the following ~n addition.)

ATN(X) 210 PRINT ATN(X)

COS (X) 200 PRINT COS(X)

EXP(X) 150 PRINT EXP(X)

FRE(X) 270 PRINT FRE(O)

INPli) 265 PRINT INP(I)

Gives the arctangent of the argument X.
The result is returned in radians and
ranges from -PI/2 to PI/2. (PI/2=1. 5708)

Gives the cosine of the expression X. X
is interpreted as being in radians.

Gives the constant "E" (2.71828) raised
to the power X. (EtX) The maximum
argument that can be passed to EXP with
out overflow occuring is 87.3365.

Gives the number of memory bytes currently
unused by BASIC ~ Memory allocated for
STRING space is not included in the count
returned by FRE. To find the number of
free bytes in STRING spate, call FRE with
a STRING argument. (see FRE under S~RING
FUNCTIONS) .

Gives the status of (reads a byte from)
input port I. Result is =>0 and <=255.

()

\

~ J

(

\

LOG(X) 160 PRINT LOG(X)

PEEK 356 PRINT PEEK(I)

POS(I) 260 PRINT POS(I)

SPC(I) 250 PRINT SPC(I)

TAN (X) 200 PRINT TAN(X)

STRINGS (BK Version Only)

Gives the natura l (Bas e E) logarithm of
i t s argument X. To obt a in t he Base Y
l ogari thm of X us e t he f or mula LOG(X)/LOG(Y).
Example: The base 10 (common) log of
7 = LOG(7)/ LOG(l O) .

The PEE K f unct ion returns the contents of
memory address I. The va l ue returned will
be =>0 and <=255 . If I is >32767 or <0,
an FC error will occur . An attempt to
r ead a non-exi s tent memor y address will
r eturn 255. (see POKE s t at ement)

Gi ves the current posi t ion of the terminal
print head (or cursor on CRT ' s). The
left most character posi t ion on the terminal
is posi tion zero and the rightmost is 71.

Print s I space (or blank) characters on
the terminal. May be us ed only in a
PRINT s t atement. X mus t be =>0 and <=255
or an FC error will r esult.

Gives the tangent of t he expression X.
X is i nt erpret ed as being in radians.

1) A string may be f r om 0 to 255 characters in length. All string
variables end in a dollar sign ($) ; for examp l e , A$, B9$, K$,
HELLO$.

2) String mat rices may be dimensioned exactly like nUm.eri~ matrices.
For instance, DIM A$(10,10) creates a string matrix of 121 elements,
eleven r ows by eleven columns (r ows 0 t o 10 and co l umns 0 to 10).
Each string mat rix element is a complete s tring , whi ch can be up to
255 characters in length.

3) The total number of characters i n us e i n s t rings at any time during
pr ogram execution cannot execeed t he amount of s t ring space , or an
US error will result. At ini tiali zat ion, you should set up string
space so that it can contain the max i mum number of characters which
can be used by strings at any one t ime during pr ogr am execution.

NAME EXAMPLE

DIM 25 DIM A$(10,10)

PURPOSE/USE

Allocates space for a pointer and length
fo r each el ement of a s t ring matrix. No
string space i s allocat ed. See Appendix D.

LET

=
>
<
<=
>=
<>

+

INPUT

READ

PRINT

27 LET A$="FOO"+V$

30 LET Z$=R$+Q$

40 INPUT X$

50 READ X$

60 PRINT X$
70 PRINT "FOO"+A$

Assigns the value of a string expression
to a string variable. LET is optional.

String comparison operators. Comparison
is made on the basis of ASCII codes, a
character at a time until a difference
is found. If during the comparison of
two strings, the end of one is reached,
the shorter string is considered smaller.
Note that "A 11 is greater than "A" since
trailing spaces are significant.

String concatentation. The resulting
string must be less than 256 characters
in length or an LS error will occur.

Reads a string from the user's terminal.
String does not have to b~ quoted; but if
not, leading blanks will be ignored and
the string will be terminated on a"," or
":" character.

Reads a string from DATA statements within
the program. Strings do not have to be
quoted; but if they are not, they are
terminated ona ","or":" character or
end of line and leading spaces are ignored.
See DATA for the format of string data.

Prints the string expression on the user's
terminal.

STRlNG FUNCTIONS (BK Version Only)

ASC (X$) 300 PRINT ASC(X$)

CHR$(I) 275 PRINT CHR$(I)

FRE(X$) 272 PRINT FRE("")

Returns the ASCII numeric value of the
first character of the string expression
X$. See Appendix K for an ASCII/number
conversion table. An FC error will occur
if X$ is the null string.

Returns a one character string whose single
character is the ASCII equivalent of the
value of the argument (I) which must be
=>0 and <=255. See Appendix K.

When called with a string argument, FRE
gives the number of free bytes in string
space.

LEFT$(X$,I) . Gives the leftmost I characters of the
310 PRINT LEFT$(X$,I) string expression X$. If I<=O or >255

an FC error occurs. (.

(
)

/

LEN(X$) 220 PRINT LEN(X$)

MID$(X$,I)
330 PRINT MID$(X$,I)

Gives the length of t he s tri ng expression
X$ in charact er s (byt es) . Non-pr int ing
characters and blanks are count ed as part
of the length .

MID$ called with two arguments r eturns
characters f r om the s tring expression X$
starting at character position I . If
I>LEN(I$) , then MID$ r eturns a null (zero
length) string. I f I <=O or >255 , an FC
error occur s.

MID$(X$,I,J) MID$ called with three arguments r et urns
340 PRINT MID$(X$,I,J) a string expression composed of the

character s of the s t ring expression X$
starting at t he I t h charact er for J char
acters. If I>LEN(X$) , MI D$ r et ur ns a null
string. If I or J <=0 or >255 , an FC
error occurs . If J specifies mor e char
acters than are left in t he s t ring , all
characters from t he Ith on are r etur ned .

RIGHT$(X$,I) Gives t he r ightmos t I char act er s of
the string expr ession X$. When 1<=0
or >255 an FC error will occur. If
I>=LEN(X$) t hen RIGHT$ r et ur ns all of
X$.

320 PRINT RIGHT$(X$,I)

STR$(X) 290 PRINT STR$(X)

VAL(X$) 280 PRINT VAL(X$)

Gives a string which is t he character
representation of the numer ic expression
X. For ins t ance , STR$(3 .1)=" 3 . 1" .

Returns the string expr ession X$ converted
to a number . For ins t ance , VAL("3 . 1")=3.1.
If the firs t non-space char act er of t he
string is not a plus (+) or minus (-) sign,
a digit or a decimal point (.) t hen zero
will be returned .

SPLCIAL Ct~RACTERS

CJIARACTER

@

+

USL

Erases current line being typed , and types a car r i age
return/ line feed. An "@" is usually a shift /P .

(backarr•ow or underline) Erases las t charact er typed.
If no more characters are left on t he l ine , t ypes a
carriage return/line feed. "+" is usual l y a shift/0 .

CARRIAGE RETURN A carriage return must end ievery line typed in. Re
turns print head or CRT cu~sor to the first position
(leftmost) on line. A line feed is always executed
aft~i a carria~~ return.

CONTROL/C Interrupts execution of a program or a list command.
Control/C has effect when a statement finishes exe
cution, or in the case of interrupting a LIST com
mand, when a complete line has finished printing. In
both cases a return is made to BASIC's command level
and OK is typed.

(colon)

(BK Version) Prints "BREAK IN LINE XXXX" , where
XXXX is the line number of the next statement to
be executed.

A colon is used to separate statements on a line.
Colons may be used in direct and indirect statements.
The only linlit on the number of statements per line
is the line length. It is not possible to GOTO or
GOSUB to the middle of a line.

(BK Ve1')sion Only)

CONTROL/0 Typing a Control/0 once causes BASIC to suppress all
output until a return is made to command level, an
input statement is encountered, another control/0 is
typed, or an error occurs.

?

MlSCLLLANEOUS

Question marks are equivalent to PRINT. For instance,
? 2+2 is equivalent to PRINT 2+2. Question marks can
also be used in indirect statements. 10 ? X, when
listed will be typed as 10 PRINT X.

1) To read in a paper tape with a program on it (8K Version), type a
control/0 and feed in tape. There will be no printing as the tape
is read in. Type control/0 again when the tape is through.
Alternatively, set nulls=O and feed in the paper tape, and when done
reset nulls to the appropriate setting for your terminal.
Each line must be followed by two rubouts, or any other non-printing
character. If there are lines without line numbers (direct commands)
the ALTAIR will fall behind the input coming from paper tape, so
this in not recommending.

Using null in this fashion will product~ a listing of your tape in
the 8K version (use control/0 method if you don't want a listing).
The null method is the only way to read in a tape in the 4K version.

To read in a paper tape of a program in the 4K version, set the
number of nulls typed on carriage return/line feed to zero by patch
ing location 46 (octal) to be a 1. Feed in the paper tape. When

()

(

the tape has finished reading, s top the CPU and r epatch location 46
to be the appropr iate number of null characters (usually 0 , so de
posit a 1). When the tape is finished, BASIC will print SN ERROR
because of the ''OK" at the end of the tape.

2) To punch a paper tape of a progr am , set the number of null s t o 3 for
110 BAUD terminals (Teletypes) and 6 for 300 BAUD terminal s . Then,
type LIST; but , do not type a carriage return.
Now, turn on the terminal's paper tape punch. Put the terminal on
local and hold down the Repeat, Control, Shift and P keys at t he same
time . Stop after you have punched about a 6 t o 8 inch leader of
nulls. These nulls will be ignored by BASIC when the paper tape is
read in . Put the ter mina l back on line.
Now hit carriage return. After the program has finished punching ,
put some trailer on the paper tape by holding down the same four
keys as before , with the terminal on local. After you have punched
about a six inch trailer, tear off the paper tape and save for
later use as desired.

3) Restarting BASIC at location zero (by toggling STOP, Examine loca
tion 0, and RUN) will cause BASIC to return to command level and
type "OK''. However , typing Control /C i s preferred because Control/
C is guaranteed not t o l eave garbage on the stack and i n var iables,
and a Control C' d progr am may be continued. (see CONT command)

4) The maximum line length is 72 characters~* If you attempt to type too
many characters into a line, a bell (ASC II 7) is : e_x~c~te~~ and the
character you typed in will not be echoed. At this point you can
eitlter type backarr ow to delete part of the l i ne, or at-s ign to delete
thewhole line . The character you typed which caus ed BASIC t o type
tlte bell is not inserted in t he line as i t occupies the character
position one beyond the end of the line.

*CLEAR CLEAR
CLEAR X

10 CLEAR 50

Deletes all variables.
(BK Version) Deletes all variables . When
used with an argument "X", sets the amount
of space to be allocated for use by string
variables to the number.indicated by its
argument "X".
(BK Version) Same as above; but, may be used
at the beginning of a program to set t he exact
amount of s tring space needed, leaving a maxi
mum amount of memory for the program itself.

NOTE: If no argument is given, the string
space is set at 200 by default. An OM error
will occur if an attempt is made to allocate
more string space than the~~ .i s available
memory. . .. ·

**For inputting only.

APPLNDIX L

EXTENDED BASIC

When EXTENDED BASIC is sent out, the BASIC manual will be updated
to contain an extensive section about EXTENDED BASIC. Also, at this time
the part of the manual relating to the 4K and 8K versions will be revised
to correct any errors and explain more carefully the areas users are hav
i ng trouble with. This section is here mainly to explain what EXTENDED
BASIC will contain.

INTEGER VARIABLES These are stored as double byte signed quantities
ranging from -32768 to +32767. They take up half as much space as normal
variables and are about ten times as fast for arithmetic. They are denot~d
by using a percent sign (%) after the variable name . The user doesn't
have to wor ry about conversion and can mix integers with other variable
types in expressions. The speed improvement caused by using integers for
loop var iables, matrix indices, and as arguments to functions such as
Al\;D, OR or NOT will be substantial. An integer matrix of the same dimen
sions as a floating point matrix will require half as much memory.

DOUBLE-PRECISION Double-Precision variables are almost the oppo
site of integer variables , requiring twice as much space (8bytes per value)
and taking 2 to 3 times as long to do arithmetic as single-precision
variables. Double-Precision variables are denoted by using a number sign
(II) after the variable name. They provide over 16 digits of accuracy.
Punctions like SIN, ATN and EXP will convert their arguments to single
precision, so t he r esults of these functions will only be good to 5 digits.
Negation, addition , subtr action, multiplication , division, comparision,
input, output and conversion are the only routines that deal with Double
Pr ecision values . Once again, formulas may freely mix Double-Precision
values with other numeric values and conversion of the other values to
Double-Precision will be done automatically.

PRINT USING Much like COBOL picture clauses or FORTRAN format
statements , PRINT USING provides a BASIC user with complete control over
his output f ormat. The user can control how many digits of a number are
printed, whether the number is printed in scientific notation and the
placement of text in output. · All of this can be done in the BK version
using string functions such as STR$ and MID$, but PRINT USING makes it
much easier.

DISK I/0 EXTENDED BASIC will come in two versions, disk and non
J.i.sk . There will only be a copying charge to switch from one to thE·
other. With disk features, EXTENDED BASIC will allow the user to save and
recall programs and data files from the ALTAIR FLOPPY DISK. Random ac
cess as well as sequential access will be provided. Simultaneous use of
multiple data files will be allowed. Utilities will format new disks,
Jelete files and print directories. These will be BASIC programs using
specia l BASIC functions to get access td disk information such as file
length , etc. User programs can also access these disk functions, enabling r ,

the user to write his own file access method or other special purpose \ .J

(
\

disk routine. The file format can be changed to allow the use of other
(non-floppy) disks. This type of modification will be done by MITS under
special arrangement.

OTHER FEATURES Other nice features which will be added are:

Fancy Error Messages
An ELSE clause in IF statements
LIST, DELETE commands with line range as arguments
Deleting Matrices in a program
TRACE ON/OFF conm1ands to monitor program flow
LXCllANGL statement to switch variable values (this will speed

up string sorts by at least a factor of two).
Multi-Argument, user defined functions with string arguments

and values allowed

Other features contemplated for future release are:

1\ multiple user l3ASIC
Lxplicit mat r ix manipulation
Virtual matrices
Statement modifi ers
Record I/0
Paramater ized GOSUB
Compilation
Multiple USR f unctions
"Chaining"

EXTLNDED BASIC will use about llK of memory for its own code (lOK
for the non-disk ver sion) leaving lK free on a 12K machine. It will take
a lmost 20 mi nutes to load f r om paper tape , 7 minutes from cassette, and
less than 5 seconds to l oad from disk.

We ·.,velcome any suggestions concerning current features or possible
add i tions of extra features . Just send them to the ALTAIR SOFTWARE
U I :P 1\RTMLNT.

APPENDIX D

SPACE HINTS

In order to make your program smaller and save space, the following
hints may be useful.

1) Use multiple statements per line. There is a small amount of
overhead (5bytes) associated with each line in the program. Two of these
five bytes contain the line number of the line in binary. This means
that no matter how many digits you have in your line number (minimum line
number is 0, maximum is 65529), it takes the same number of bytes. Put
ting as many statements as possible on a line will cut down on the number
of bytes used by your program.

2) Delete all unnecessary spaces from your program. For instance:
10 PRINT X, Y, z
uses three more bytes than
10 PRINTX,Y,Z

Note: All spaces between the line number and the first non-
blank character are ignored.

3) Delete all REM statements. Each REM statement uses at least
one byte plus the number of bytes in the comment text. For instance,
the statement 130 RLM THIS IS A COMMENT uses up 24 bytes of memory.

In the statement 140 X=X+Y: REM UPDATE SUM, the REM uses 14 bytes of
memory including the colon before the REM.

4) Use variables instead of constants . Suppose you use the constant
3.14159 ten times in your program. If you insert a statement

10 P=3.14159
in the program, and use P instead of 3 . 14159 each time it is needed, you
will save 40 bytes. This will also result in a speed improvement.

5) A program need not end with an END; so, an END statement at
the end of a program may be deleted.

6) Reuse the same variables. If you have a variable T which is used
to hold a temporary result in one part of the program and you need a tem
porary variable later in your program, use it again. Or, if you are asking
tl1e terminal user to give a YES or NO answer to two different questions
at two different times during the execution of the program, use the same
temporary variable A$ to store the reply.

7) Use GOSUB's to execute sections of program statements that per
form identical actions.

8) If ydu are using the BK version and don't need the feattires of
the 8K version to run your program, consider using the 4K version in-

I ·)

I ..

stead. This will give you approximately 4.7K to work with in an 8K machine,
as opposed to the 1.6K you have available in an 8K machine running the
BK version of BASIC . l;

(

9) Use the zero elements of matrices; for instance, A(O), B(O,X).

STORAGE ALLOCATION INFORMATION

Simple (non-matrix) numeric variables like V use 6 bytes; 2 for the
variable name, and 4 for the value. Simple non-matrix string variables
also·use 6 bytes; 2 for the variable name, 2 for the length, and 2 for a
pointer.

Matrix variables use a minimum of 12 bytes. Two bytes are used for
the variable name, two for the size of the matrix , two for the number of
dimensions and two for each dimension along with four bytes for . each of
the matrix elements.

Stri11g variables also use one byte of string space .for each character
in the string . This is true whether the string variable is a simple string
variable like A$, or an element of a string matrix such as Ql$(5,2).

Wl1en a new. function is defined by a DEF statement, 6 bytes are used
to store the definition.

Reserved words such as FOR, GOTO or NOT, and the names or the
intrinsic functions such as COS, INT and STR$ take up only one byte of
program storage. All other characters in programs use one byte of pro
gram storage each.

When a program is being executed, space is dynam,ically allocated on
the stack as follows:

1) Each active FOR ... NEXT loop uses 16 bytes.

2) Each active GO SUB (one that has not returned yet) uses 6 bytes.

3) Each parenthesis encountered in an expression uses 4 ' bytes and
each temporary result calculated in an expression uses 12 bytes.

()

(

1 ..

2 .

3 .

/

4 .

5 .

6 ..

Q.

An swe r s t o Most Oft;:en Asked So ftware Questions

How many decimal d igitt3 of precisi o n do 4K and 8K BASIC
have?

A. Six digits . Exte nded (12K) BAS IC al so has 16 digit double
precision variables as well as s ix digit s ing l e precision
variables .

Q. When will BASIC have multi-use r capabilities?

A. Perhaps by the middl e of 1976 . It will be a non-swapping
s ystem with u ser memory a llocated in fi x ed partitions.

Q.

A.

Q ..

Does BASIC a llow you t o f o rmat numeric output precisely
with a certain n umbe r digits before and a fter the decimal
place, for example?

In the 8K BASIC , only by c onv e rting a numbe r to a string
and then manipulating the s tring . Otherwi se numbers
are printed in a default format described in the BASIC
manual. In Extended BASIC 8 PRINT USING allows the user to
p r ecisely format both numeric a nd string output fields .

What abou t BASIC matrix MAT s t atements? Are they available
in the BK or Extended v ersions?

A. No , and there are no plans to impl ement them at this
time .

Q. What fi l e c apabiliti es are available in 8K o r Extended
BASIC?

A.. In 8K BASIC, the u ser can save or l oad programs files
from cassette or paper t ape . In Extended BASIC , the user
can also save programs a nd data on the floppy disk.

Q. When will BASIC be ava ilable o n ROM?

A. La te December or early Januarye

Q. What are the features and memory r equirements of the
different ver s i o ns o f BASIC?

A. See the Software Informatio n Package .

-1-

8.

9 ..

10.

11.

12 ..

13.

14.

Q. What is the cost of upgrading between different versions
of BASIC?

A. The charge for an upgrad~ is the difference in price plus
a copying charge of $15. For example, an upgrade from
4K to 8K BASIC .would cost $30, for an upgrade from 4K
to Extended BASIC the charge would be $105. etc.

Q. What type of string manipulation is available in BASIC?

A. Very extensive powerful string manipulation is available

Q.

in 8K and Extended BASIC. See Software Information Package.

Can owners of BASIC let other owners of our machines
make copies of his BASIC?

A. No, they should buy their own copies. Copying the
software in this manner is considered a "RIP-OFF 11

•

Q. Is there any limit to the number of nested FOR loops
or levels of parenthesis in BASIC?

A. The only limit imposed on the nesting of FOR loops
or parenthesis is the amount of available memory.
Each nested FOR loop entry requires approximately
16 bytes and each nested parenthesis requires 6 bytes.

Q. Can BASIC be used with the line printer?

A. Yes, we have a special version of 8K or Extended BASIC
that has LLIST and LPRINT statements to make program
listings or write output on the line printer. These
commands are available for an extra charge of $30.

Q. Is there a special version of BASIC with the command to
switch from one terminal to another?

A. Yes, there is a CONSOLE command which allows the user
to switch from one terminal to another and back again.
The extra charge is $30 .

Q. Are any other languages besides BASIC available?

A. Not at this timeo We may have FORTRAN available sometime
next year.

-2-

()

I

\)

(...._ 15 .

16.

17.

18.

19 .

20.

I

\

Q. What can you tell me about the floppy disk?

A. Each floppy dr ive can store approximately 300 , 000
bytes of information . The floppy disk controller

Q.

can handle up to 16 drives . The control~er takes up
two card slots in the mainframe . Transfer rate of the
floppy disk i s approximately 32 , 000 bytes/sec and a
random access to any part of the floppy disk takes
approximately 1/3 second. Extra floppy disks may be
obtained from MITS at a cost of $15; one floppy disk
is included with each kit or assembled drive .

What are the fea tu:r"e s and memory requirements of the
Editor , Assembler and Monitor? Capabilities?

A. See the Software Information Package e

Q. What is MITS 1 policy when new versions of the software
repl ace old versions?

A. The new versions may be obtained for a copy charge
of $15 .

Q. Are any cross-assembl ers available from MITS?

A. Yes , an ANSI standard cross-assembler is available
as a listing ($15) or as a listing and ASCII paper
tape ($30). It does not have macros or conditional
assembly .

Q . Can our machine run other 8080 software?

A. Yes , it can run most 8080 programs with no change or
perhaps a s light change in the I/O conventions used.
PL/M programs , for instance , may be run on an ALTAIR.

Q. Why i s delivery of so ftware sometimes delayed?

A. Often softwar e is not shipped because it appears on
the same invoice as other hardware (memory boards, etc.)
and the software i s not shipped until the hardware
is ready . Also , software has not been shipped until
the user ' s Software License Agreement (SLA) was received.
We have now discontinued the use of SLAs and the user is
shipped his software immediately.

-3-

21.

22 .

23.

24.

25.

Q. In what forms are BASIC and Package I (assembler,
monitor and t~xt editor) available?

A. At this time, binary paper tapes and cassettes are

Q.

being shipped . In the future , software will be available
on floppy disk. BASIC on ROM is also planned.

What types of BASIC accounting packages, inventory
packages , will be available for use with Extended BASIC?

A. At the present time, MITS does not offer any such packages.

Q.

However, early next year we will make available such
packages licensed or purchased from software houses .

What is the price for the source listings of BASIC and
Package I?

A. 4K and 8K BASIC - $3000

Q.

Extended BASIC $5500
Package I $500

What should a customer do if he has a bad cassette or
paper tape?

A. Send tre bad one back and we will ship him a new one.
Cassettes are checked at the factory before we ship them.

Q. When will the bootstrap loader be available on PROM?

A. Th~ PROM boards will be available by December and PROMs
with the bootstrap programmed on them will cost $15 more
than the cost of the PROM .

-4-

.3

880-101
COMPUTER : PU & BUFFERS

t-5V

t 12. v ----=~""!

- -5 V ___ _.L-'-tL

I SV

ILl

I~ II~J t,
1.''

if

2

r 5V~---~~l~~~~~~~--.
K 2.<DCI ~ff· ·:""' L _ _.__,.6fc!=J:L·~..__ _____ .!_!,2:..jr- II , - ~

C ~/--'<::-'------------------~, t>OC ~
~C..l)~S'NIO . ~ ~t-.lD
'1lt<.. e .a '>-".3i!.._ _______________ -:o~ Aq:, §]

4 B >-'5"-------------------,.~ A 1

G,l B ":>....!-'------------------=;:..~A2

A.3 29 10 B -:;,..::9:.._. _______________ ~~ A3

\

12 B -:;...u''+----------------~-:;~A'-1

As 31 14 B >"''3+---------------~ AS
~ /

2 C >-~~---------------~----~~ A~

4 c >·~5 ___________________________ ~~ Al

~ C ":>-41 ---------~----------=-~~AB

10 C ~94--------------------~ A~
~ /

A, 0,f--'-' ------------------------"'o~ D >..i!.+"'-----------------------~-3' AI o

A 11 ~~~'---------------------------~~~D~~7----------------------~~ All ~ 1/(

-----------+---''~'-· fC.-_11 7 A l2. ~
--

4 ,.5 ~- ---------------------------t--+---"'-1 2. I> '»·'"+-----------------------3'~ Al3 ~

.l\J....::. j•J __________________________ -+-+-'*..c., D s " A I'-/ ~
ly l/11 r:.::J

~~~ 13 1 
.-... AIS ~ 

I ':..<'15 " 
VL ~+'5V 

t t:> t>'"-"''-''·r/<o r-<T".Ovl!. D · 2 ~ '/1-'-t---:1 1..::.1(~-------~<._ ADDR ""DS8L 

I I .ILl 'Db !D:sll' II' !. "'/l\oiCII ~~ .;1~ 12 II LC.M D ~ r;q. D ">-'--'------------------~~ O'f' LJ 

D 1 !---'-L:J---'.:.:.·1..:.c~c'<'::..'r r+---!--t-1-1rf-!-t-•l· ______ ~rl--'-"'4'-iD '::-!'~3 ________________ -? D:) 1 
~ / 

"RII~ Q 
D2~:--~ ___ .-...::r4:.!.-,.!:!. .. ..._ Y -1--t--1-lrl-1-._ ________ 1 ++-...:::c.{'-1 c. ~s+----=--------------~~ oo2 ~ 

Ric~ ~ 
D3 ~'] __ _:::;·1 . ..:.:7::..K!..__. ·i--4-1-lf-1-..._--------rl--t-t--'e"-j~ ~..>y.3f------------------:'~ D03 ~ 

~~ / 

-------.....-IH-+-i~-'-"11<\€ . 1 ~ ~ DO't ~ 
"RI ~ r-' 

t\'1 3 .. , .. l__ 

R•'ir 
0s~--i~f._~r------+-+_. ______________ ~r+1-~1-r'~~- c. >·ll'' ~ +---------------------------------~nos ~ 

n~ . .. :!i__ -: 'z'iL ----------11-+-+-1r++-H..L><J ~~ ) J)o ~ ~ 
~]~ r _ ,7 r +SV DOl §:9 

c0 ....... --+----,L_;r '-ILG~~a;~i3L~~~:'_r----=;;_J!I,J:!1;:.._;::__:;:-;-:,5;::v-;< Do Ds BL 
·~~----

8060 
~1'-l ~ R:"Z.O 1 ll:l "' Diet> ~ 

~~12'---------------.._~-~-Z.-+---<, D-r: 1 §] 

H-+-+1"1.'<: F ~2=-----------------~-Q.~--+---<, D"t 2 ~ 
r c A 

fl l .9 410 

I? .'o 41 0 

---------

s • {'\(' ~. .. lii"--------·-·· D - ~ 

, ,..., 
TC Rpo 

l ~ · " ~ ~ ~-++-4"~j F~~~~~L-------------_.--+----<~DL3 ~ 

~ +. ~ H-++-+-1'~·' F 1-2.=-.,.. ___________ .._l_ iO.s-t---<-(Di:.'-/ 0 

r*-~-+-+-1-+--+'ls"< .F 1-l:lui ____________ _. __ t----<, DI 5 §I 

+ H-++-+-++-+-'<7 F 1-J' 

0~--------------1 ...__,-+---<."'PH::. §] 
I'{ 

,_ ~ ~ 
H~+-+-++-+-I'~~F~'~n __________________ ._~-t-----<<Dil ~ 

I ~ 
L----H+H-+++--------------j_.:.:..;...:._ __ < ss ~ 

r
--HH-+H++----1 .--..--'~oN~:\~"......,--.., +5V L-----1~~>--------<, RuN ~ 

;J.,c..~ r T 2 , I( 12• 
..____!E. I~ ~ ~ ~ .3 " SJ:NTA. B 

16 

8212. 

22 K 

9 

7 

5 

c, 5 '5WO 

}I _, 
' S1:1\Lt> ~ 

_E +S\/ 
R."l-1 

'i '-l H .9 _..., SME:I'I\~ EJ L-------------~3~ I~ ~ 
" I. 10~ __ "./ 

L~--------------'J_ 1 

1

,.3 [ z3 liZ ~sTA.Tus ost!>L ~ 
~ '------- G.t-11:> ZC.O 

r--+·-· +---+--· -_-_-_·-:_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-'_~----' .....:....~6o~N~-t::>----~~-=--=--=--=-~;-;?)~..._ ~~~~C (Z ~~) ~ 
R"ZZ. ~+SV 

\>I'll N. ..LL._ _____ ,, .J -1 +-+-+-----------------------------------~-~~-_....,~ PD1H~ ~ 
;>--'--...._-t---- 9 o2J 5 1 ,. Qc DSBL. 

WI'. IT .Z.~ . --·---~~ __ ---·· · r - r ~ "PWP.."lT ·E2] 

w-R J.u ~>.:J..."" ~+--+-+-+---+-------------------?,. l>WR 62) 
~ -- ~ 

Hl.!lA· '-"-'..__ ~----t--''"'i' :f):L~· -4------i-1-------+-----------~---r----:-;:----~~ "?1-\lDA. b r- r-·+5V 

~~~: ."l.i_O -tS\1 Rll Rl 

r I'l l c 11£> 1(1).:.9-+---------+-+--------+------------------t--!l-:-trit llr,1~Kti '----~ l'r N.. "Tii II(Hi h::1 1-'-"'"----------1 r I It l<t.l.d!l..ll~., , z. . ~

Rt;.I>.P'< 23 ····-· ·-· ·-· ... t--t-·---~-----·-----.J;L9<./-1·r~~li.)L._ _____ -:-:-;--t-...5.'""'-iJ '/ Z. 74 7~ ~ I f#¢ .,~r-•--kPROY
,_._~------------ -- · - - ·-- ·-r --- 'f-1 ID ;t:.~ II 9: rr_£_ -{:~~r:-+5Y d <x~"(,

HOI. \) t:3.._ _ _ _ _ __ ________ _ t--r- -·----------5.""--<J'fl~'L-'----<)(l.!J"',;._-1-+-41 1(l 7~7'-j l11 ?i"\OL.t) F7tfl ~
~ .~ ::Z::CL t"""i~ LJ

tNi ~-H~--------------t--t------------"..I...(,J.g b s ~9 11 il1w·_ /tril'o\T §
f'l- 12 ~ J L- J) I~ h.]

~E5ETr~~?------------------------~~r----------------~~~~~~~~P-----~~~~~-----------1~~K--,/~~~~T ~
L_--~-----~~.~~b~S:~~---------~~- ~+':---------:r--~~' ¢1 ~

~-----------------------------,~'· ·-----------~~~~~~e ~
; _, . '€: . ..

lQ IQ

XY-"=-+--'-Cl '" 'tz (1'-i 12 ~)

~--------------~0

2. 0 00 M\4.1!.

880-102
SYSTEM CLOCK

=-~
>6 \

'-----~ ¢2.

~-----------=~ ~ 2.

I I a'-/ ")0__:_:1 0:::._ ___________ ~ C LCX:.

t 8 V (UNREG))

Cll

+ 18 V (UNR£9)

- 16 V CUMRU)

+I
HSV '"'1

":"

R46

33 OHMS
2 w
5 ..

R45

220 OHMS
2W
e-.

'I
IC S

pA78Q!! i·
J:
":"

01
12.0
ZENER

02
5 .1 v
ZENER

I

\...._

) 1' 5 V (REG)

CI2I I -------I SC20 SCI

···T 1 1~.u~· .. ·~ ISV

--

C7
.luF I lOY

C9 C8

+T::-: T :.-~

-=-

1ev CAPS (20)

~

-=-

+ 12 V (RE6)

-5 V (REG)

880-103
CPU ON-BOARD REGULATORS

I
I
__ __

(_+ 8 V)(UNREG)) I \ 1 C P 12) +!! V(REG)

~ . >---CI21.---· ----.--CI31 ------1 "AfO 1------..--.--SCI l_ __ -______ -_______ ~ ___ 1 S-C20 ~
i~ ~·r ~ :,T 1 1~·: SUPPRESSOR CAPS •• o,

'880-1 04
DISPLAY/CONTROL ON-BOARD REGULATOR

(

(

(\ ___

+'5V ' 880-105
/ COMPUTER FRONT PANEL DISPLAY
>
' / ,,
/

/ .,
/

'
/

'
' /

'/

: ~

~
~ ~~ i<~ ~~ ~:2-.S i. £.:<<(R33 R3:2 ~ f23f ~ R-.29 ~2? ~ R:z~

-:::

~'- -' "";..,o -"'- -'1'-- -'I'-- ---' '- -''- -'1'-- --"f- --''-
=~-n.. 5~ c.~ ~~l-,.~ ~..,.,.. SM\ ~llol'l' SM!<.MR. ~ ?X-.-,.lll

DA/A? ~PATH 1,~7A5 lMTA¥ ~WA3 ~~TA .2 ~>ATA I 1 J:>-4TA <I
"0 /1 <;)I~ t>l.3 T)J'/ lll:l Dl" !:117 DIS

-'1'-- -'I'-- --<_ _,__ ~ -''-

Dlo 'D9 J:>~ 'D'l'])f. j)~ D"'' l>.!S D2.])t
:: ~

~ ,:t R~9 ! R.3s -~ ~3'- £.37 ~ R38 RM /!.'10 R'll ~ >

Ll z 1!!. · Q ~ IZ. 8 ! 0 2..

·7'"~" f . ., .. 7"1/t.SOV 7"/lt.SO</ 7</LSlW 7+'1!.~0<1 ·7"'1'£.S0'/ 7"'~

:;rc./4-A ::!.:...44 ;rc.M : uA~ - 9

n~l '>-----1---J
Dlb>-----+---~
DIS'>-----1---~--~
DL~~>-----1---~--------------------~

.·, :cc..

·,-:._
nr3,.>-----i---~

·'3
~.:.aB

9 u11e

t~c,.>-----i---~--_j

~1)>-----+---~
Dl .r-..

Art>

AI '>-----;---~
AZ '>-----;---~
A3 >----~--~
A4))-----+---~----------------------------------~--------------------~
AS >-----1---~------------~
A0)>-----t---,
A7)>-----+---~
A8))-----+--,
AS))-----+---,
A I ~)>-----+---------------------------~--~
All'>-----+---~
Al 2'>-----+---~
A/3'>-----+--,
A I~)>-----+-----------------------------------~

!

I

II .;r,a~
o!>

I
I
I

I
i
I
j

5)>-----+-------------------------~
'

i i's' :£,. • £>7 : ~<s• E <= ,! 2SV ' Ks; ~ Rs;. i Rot 1 tsD e•; 'l N 8 > '"' R<ll. > E<>' ' R•s I ivv + 2<>

f::~ ::: r;~~ t;~: f;:3 ~~~. ~~~, f;~: f~:, ~:. I :,. f:c f;,, ~~:~ f::, f:;. t:~"- f;:
~~D _,>-----~--~--------~---------+--------~---------4~-------4~--------._~------._--------~--------~--------~--------+---------~--------~--------~--------_.--------~--------~

·.1 ,,

·I

-.. -~-=-~ f

~~ ;

1
.-~

I

~·~

------· ___ . ___ . __ . ·----------·---~---·--·- -·

880-106
COMPUTER FRONT PANEL CONTROL

ffll "P WR. >-------,
I

~ sou ,>----------'

L02
..LZ.. f2.

~ DDS,>-----------------~
45V~-----~r-----------,

+SV

PDBIN /)--~ j c

~~"-g
i.l3 !n ~ ~ ~"

S2~t:l=~~
I I (j) i {J

';~1~' . 0 ·~
I ~ - l ev
L ____ __!_j

80.11'1 l!lE.""C>

~ ~T 1:£~ " 'f...T

)
j c) I

j
I•J

..ss sf

Z7!0K
.l.:l.{l

S4S

S.qg

5.410

SAil

SAI2

5.4 13

SA,'f

SAI5

a~~
U/T

R u N

E

o--

o--

-

-

t-

"-"-------------~:::" tlroNR.IT E ~

rr> ~~~: .. ~: .;"'~
"""" ' "~ ·, 6~ .. -.;

't>\ .. 1\ ~"" "1

(

(

~
.--------------------------------· · ·· ~. ---------·---------------------------!:.~"'1~ ~....:.'.:3 _________ 4';i'Rt>Y' I§

l,...

1.~
I

(.~ I

i'lli>7 tl-;;..'
I

.___:.r

(},.JD-_!LCoNOQII

._l~e /z(74L 73) f{.f...._

~

I' tO
L..4><J> II '-4>4>

'7 ;;;
..

~J''-y'1---------~ P5 ~
l,...~

~
~

~

"" ': 1.4. <;I

/').

li}I>J;J(t)7 1-Jb</) (p 13 L~
I I

..___

~ ¢1 -----------'

~ ¢2----------------------------~'

~ ::r----------------------------~======================================~
(7*1.5:1.)

l7 :) 0 ~JJ..._ _ _::~~~--------....1
---------------------~~:::j------------~-------j~t------~=-~~~I[f~~6

1
~:-----+--+----~-------.-+---+------.-+--+-----+-----------+-~
A1---------------------------------------r4-----------~-r,_-t------------~+4--+------------4~~~~----------~~~~------------~~--~----------~~+--+------------~~--+------------.
A·--~-t---------~~-t-r~r----------4~-+~-4-----------4~~4-~----------~-+~+--4----------~-+~+--4----------~-+~+--+----------~~4-+--+-----------.
A~--1-t---------.-~-+~~r---------~~-+4--4----------~~~4-~----------~-+~+--4--------~~-+~+--4--------~~-+~+--+----------~-+4-+--+---------.
A7---------------------------------1-t-------~4-1-t-~--1-------~~-+~4-t--+--------~+-~-+~--}-------~~4-t-~--~------~~-+-+4-+--4--------~+-+-~-+--+-------~-+~4-t-~~--------.
A£ --+-t-----~~+-+-~-4--+-----~r+-t-+4-+-t--+------~+-~r+-+~--~-----.~4-+-~~--4-------~-+~~4-t--+------~4-+-~-+-+--+-----~-+-+4-+-}-~~------~
Ao------------------------t-~-~-+-+4-4-t-t-t--r--~,_1-+-t-~~-1---~1-t-t-r1-t-r-+---.-~~-+-+-+4--~--~-+-+-+-++-+--4--~~-+-+~+-+-+--+--~-+-+~+-+-~~-+--~

T T I
T I T T T T I 1 I 1 I 1 TTT T I T I I 1 I I

2 RfW¢f: 1 R!w~ 21 R{W ~ s 5 R/-;;; 6 R!W~ 7 R(w~ 4 Riw~
Grs ~5 ~~ •S ~s ~s 0r5

8\0' Cf£1.
8 10 \

c c:~
~10 \ CEz. 81 0 \ a .. ' 8 •0 • CEL 8 • 0 \ Cb. 8 • 0 ' CEz. 8 1 Q I

I~ t'-1 ll 1 ~ !~A 2 CEIH6~ MB/ .&.. MB2 fl• II MC I
18 MC 2

18 MDI I~ MDl.
CEi Ia ffi P ~· ~ I~ [[/ ~~.~ ~a' ti~ u,~

! T3f T" II · ~ , 6 I I y:;- I"' rr II "' ~, ~ 12. I . / i'J l'i f6 "''"' " " f' 2- II "' ~, r, rn ~ ,~ ... 9 1/

r r l I I I
l 1

J ; I 3--t-~--------~+-+-+-+-~----~~~+-~~-+--------------._~-+-+--+-----+-+-~-4-+-+~-------------*~~4-+---~----~-+-+~~+-+-----------~
·--+-~----------4-+-+-+--+----~~4-+-~~-+----------------~-4-+--+-----~~~~-+~~--------------~-+4-+---~--~~-+-+~~+-+---------------+-~~~-+----_j

o o1---+-+------------~-4-+--+----------o~~~+---------------~;-+-~-+----------~+-+-~----------------~~-+--~--------~~~-+~---------------+~~~--~--------~ !!il 5 M ii. M R

§] M--__._1 ~----4--,~~ 0 ~=====3J'8L-+--~-IC.£~~'----r+-~+----+-+-l-+----~--+----+--1---+-t----~-+--+---1--+-+--t-----J
!;;:::! ,AJ</ _ _ r~~?~~ J .------"-1 '-¥ ; -- (.£ ~,2 'I
t::J , v · · r::; ~ (.01) ~

~I l -- (0"1)

~A I.J ____ .._! _ __,_~, O ')--- ...____ ~_s.,

§) Al1 _______ l._ ___ .s.!4~~· ~ ·~

l ~ r--------~ E2J 1>11 --------·--~9~, 0 -

~ _., , ____ .._l =u_IL.j« ~ ~· ~ -

~--___JI
Cll.

L----4-+++-+--------,./J /~
~

I ~

1 rn __________ ~G~'-.

CE 13

~ r, i ' >7'-+----'

L-~--~----------------------~~~ >~,~~--------'
880-107

..

3
R(w !!..!!

CQ ~
CEI A
I

-- ------------------------A4LI ~'~----------~ lK STATIC MEMORY BOARD
.9

s

I
j

l·
I

l

'l

. '

\

'I
+IV {UNREGl)r--...----~-----1

Cl I .. I
~;1 ~~1

IC P

JJ.A 7805

r --

I • 1-------.------.----........-----____,) + 5 V {RE6l

.. .1 SCI I __ -____ l sc 20

35
ut I r·· uF SUPPRESSOR CAPS (20) ~· I ••

880-108
lK STATIC MEMORY ON-BOARD REGULATOR

(
\

880-109
POWER SUPPLY

(schematic rev. 1)

-

+ CL

I
33Qq..,&"
/(,II

~Cil

I
soo~F
:lSv

c

+ . c~
330Q_,H,&"

I /C.J/.

C4
33ooftF + c~.~ r-

T 161"
.;_,&""

T I /"1.
AOY

-=- -:-

i or-r--1--_J
~--r---__j

!

-+----G
r+-o I

I
[I

!
I

I I
i I I

I I
I

I ! y

I ~---------------------
I I

-- " -
7'

-

GND
-16v
+16v
+8vA
+8vB
GND

-------·----- -----------

I

TOP OF BOARD BOTTOM OF BOARD

I +5 v
2 +1!5 v
3 N, JY • "

5 + .'J v 0

i
' 5 55

6 .1 56 F
T '3 5
8 : .. 58

' 5 9
10 41 0
II 7
12
13 ' 14
I !I
16 T
1

1'8 IMn!E 19 I~ III
20 I IMf, T

58 Mr.. RITE V
6a IW
70 PRI E'CT X

I

E l2. IZI
Z3
l4
5

lS Ill lA

7 N Y
72 P lY Z

~~~~ 
JO.O 

Z7 Pial< IT "ffr:J ~ 
21 P INTE 
2~ A5 .. , 

10 A4 
J 3 2. k 
2. ,15 
3 12 

6 L 

9 • n 
I 13 b . ,.. ;. 

7 I 
t 

II ~ 
'1 t 

19 ,_. 
I 7 v 

41 .1 ·~ I"' •z ' :.s 
43 17 
44 
45 / .s UT 

2..125 

46 
47 IQ 

48 ... 
49 ~ :11Jtzl 
50 , 0 

5.0 

880-110 
. SYSTEM BUS STRUCTURE 

( 
\,__ 


