' ' IBM PALO ALTO SCIENTIFIC CENTER
IBM Z2220-6431, June 1976

A FAST ASSEMBLY TECHNIQUE USING APL

H. J. MYERS

Fi

X)
/3
LJOOA

1974 IBM PALO ALTO SCIENTIFIC CENTER REPORTS
IBM CONFIDENTIAL AND IBM INTERNAL USE ONLY

Z2Z20-6426 March 1974
P.SMITH and K. PRICE — An Architectural and
Design Overview of SCAMP (42 p.) IBM Confidential
until March 1984, Limited Distribution

ZZ220-6427 October 1974
HARRY F.SMITH, JR. — VM/7 Virtual Memory for
the S/7 (68 p.) IBM Confidential until November 1979,

1975 IBM PALO ALTO SCIENTIFIC CENTER REPORTS
IBM CONFIDENTIAL AND IBM INTERNAL USE ONLY

ZZ20-6428 February 1975
A. HASSITT and L. E. LYON — The APL Assists
(RPQ S00256) (115 p.) IBM Internal Use Only

ZZ20-6429 June 1975
M. J. BENISTON, R. J. CREASY, A. HASSITT,
J. W. LAGESCHULTE, L. E. LYON — Writing an
APL/CMS Auxiliary Processor (with complete example
code) (76 p.) 1BM Internal Use Only

1976 1BM PALO ALTO SCIENTIFIC CENTER REPORTS
|BM CONFIDENTIAL AND IBM INTERNAL USE ONLY

ZZ220-6431 June 1976 -

H..J. MYERS - A Fast Assembly Technique
using APL (19 p.) IBM Internal Use Only

ZZ20-6495 August 1975
Abstracts of IBM Confidential and IBM Internal Use
Only Palo Alto Scientific Center Reports (43 p.)
IBM Confidential

The availability of reports is correct as of the printing date of this report.

* These reports are available only on the need to know basis, please contact the Scientific Center for information on copies.

® Copies are no longer available from the Scientific Center.

IBM PALO ALTO SCIENTIFIC CENTER TECHNICAL REPORT NO. 7Z27Z20-643

S

A Fast Assembly Technidue usSing APL

Hes Joseph Myers kj,

IBM Scientific Center

P. 0. Box 10500

Palo Alto, California 94304

JUNE 1976

ABSTRACT

A technique ls described which reduces the cost of
producing assemblers for a wide variety of machine
architectures. Assembly is accomplished by executing
each instruction of the source program as an APL
functione. An assembler has been generated capable of
speeds of about 2000 1lines per minute in an APL
environment on an IBM System 370/145.

Index Terms for the IBM Subject Index

APL
Assemblers
Per formance

PAGE 2

INTRODUCTION

The recent Years have seen the introduction of many
microcomputers in a wide variety of machine architectures. The
prices of these machines are extremely low (on the order of a few
hundred dollars). Neither the vendors nor the users of these
machines can invest much capital in programming support for them
without losing the advantages of their low cost.

APL presents an excellent environment for low cost programminge
The nature of the APL language also makes it attractive for
implementing computer simulators. {Such simulators could be used
by vendors to validate their machine designsy; and by buyers to
check out their application programs before actual acquisition of
the harware.) It is naturally desirable to provide an assembler
in the same environment as the simulator. Howevery, assemblers
written in APL usually execute very slowly (about 100 times
slower than comparable assemblers written in machine language on
the same computer).

A technique has been developed that overcomes this speed
drawbacky, and allows production of (non-macro) assemblers with
performance in the neighborhood of their machine—language

counterparts. It also reduces the time to preduce an assembler
in an APL environment from 4-5 man—weeks to one or two man—dayse.
The rapid availability and Llow cost of this type of assembler
will be of considerable benefit to both vendors and buyers of
this new breed of inexpensive computer.

OVERVIEW OF THE METHOD
In order to understand the method of fast assembly, one should

first think about the functions an assembler performs. Each line
of the source program must be scanned to isolate the tokens of

the languages ("Tokens" are labels, op—codes, parentheses,
commas and other atomic components that make up the assembler
statementse.) Labels wmust be entered into a symbol table;

op—codes must be looked up in an op—-code table to select the
appropriate actions for each line. These and many other language
processing functions must be carried out by the assembler. The
nature of these language processing functions is not unigque to
assemblers. Indeedy, the APL system also performs many of them.

The +typical approach to building an assembler in an APL
environment would consist of writing (in APL) subroutines that
would read a line of source codey, break it up into tokens, store
labels in a symbol table, look up op—codesy and so forth. The
fast assembly technigue involves harnessing these functions
already inherent in the APL system itself. By doing this we not
only avoid the coding of these functionsy; but achieve dramatic
performance benefits because these functions (within the APL
system) are coded in machine language.

The organization of a typical two—pass assembler is diagrammed in

IBM Internal Use Only

PAGE 3

Figure 1. Pass 1 is principally concerned with allocating
storage for each instruction and constant, and with assigning
values to symbolic labels 1n the programe. Pass 2 uses

information developed by pass 1 to assemble the bit patterns of
instructions and constants that constitute the program into a
loadable formaty, and to Llist the resultse. A symbol table and
inter—pass file constitute the principal data 1linking the two
passese. The symbol table contains labels and their values, and
1the inter—pass file contains a copy of the source program,
usually encoded for efficient interpretation by pass 2.

LEGEND

Sr8BOL TABLE
NRME [P E |UALUE

LIX

LOCATION
COUNTER

CBJECT
CODE

LOCATION
COUNTER

LISTINGS

X\ INTEF-PASS |
Rt 7 (4]

Fj.‘ul"a 1.

The fast assembly technique takes advantage of a similarity
between the syntaxes of APL and assembly languagee. One can view
a line of assembly code as a function call. The instruction
mnemonic is the name of the functione. The operand fields of the
instruction, separated by commas, are catenated to form the
(vector) argument of the function. Thus +the APL function ADD
would generate the bit pattern for an ADD instruction in the
target machinee. (Note that throughout this report the names of
APL functions and variables will be italicized.) With this view,
an assembly source program would be an APL function consisting of
a series of <calls upon ADD and other such "assembly functions".

IBM Internal Use Only

PAGE 4

Fur thermore, execution of this source program {in the proper
context) would actually perform the entire assembly. In essence,
this view is the core of the method we will call the '"fast
assembly" technigue.

V SOURCE
{1] @a SAMPLE SOURCE PROGRAM
{21 ENTRY A4,ERR
(31 EXTRN"X1,X2"
[4] ADD NB4NX
[5]1 Al1:ADDI NB,O
[6] IF NX,GT,NB,A1l
(7] CGOTO NByERR,A1,A2,A43¢A4,A5,A6
[R] @A START OF BRANCH GROUP
[9) A2:ADD NA,NC
[{10] A3:EQU A2+4
[11) A4:ADD NB4NX-1
({12] AS5:ADDIAL+1),Xx2
[13] A6:ADDI X1,° 5
[14] f CONSTANTS
[15) NB:DC 3
[16]1 NA:DS 20
(17) NX:DC 5
[18] NC:0RG 100
[19] ERR:DC A4
{20] END
v

Figure 2.

A sample source program is shown 1n Figure 2. This program is
both an APL program and an assembly source program for a
hypothetical computer. When SOURCE (in Figure 1) is executed,
the first 1line is skipped because it is a commente. The second
line invokes the function ENTRY. ENTRY performs the ENTRY
assembly function (described in detail Llater)s The third line
invokes the EXTRN functiony the fourth liney the ADD function and
S0 oOne By constraining the syntax of the assembly language to
conform to that of APL we can cause this program to take on a
dual function of allowing the language processing functions of
the APL system to be applied to the task of assembly. As a
result, approximately two orders of magnltude in speed
improvement can be achieved over coding these language functions
in APL.

The data flow for the fast assembly technique is shown in Figure
3. Pass 1 executes the source programy SOURCE for example, to
collect storage allocation informatione. Each function called by
SOURCE is capable of operating in each of A two modes —— pass 1
mode,y, and pass 2 mode. Because APL line labels have values that
are APL line numbers,; (not related to assembly values), operand

fields are ignored during pass 1. (Operand fields of machine
instructions typically are not evaluated during pass 1 anyway.)
Instead, those instructions ordinarily requiring operand

IBM Internal Use Only

PAGE S

evaluation during pass 1 are deferred. (Their pass 1 action is
to place themselves on a deferral Llist.) After pass 1 but before
pass 2, an "interlude!" process is carried out. The function of
the interlude 1is to create the pass 2 context for the second
execution of SOURCE.

LEGEND
SOUPCE
- >
PASS 1
=SOURCE
DATA

LOCATION

COUNTER

IHNCREMENTS

DEFERRED

1 INSTRUCTIONS ‘
bl EHTRY CEXTRN]
CONTEXT w
FA5T RSSEMELER SOURCE* FINAL
nAT Cl (1 *MODIFIED LOCATION
DATA FLOW SOURCE COUNTER
(NOTE: SOUPCE* AND CONTEXT
ARE FUNCTIONS DYNAMICALLY PASS 2=
CREATED BY INTERLUDE, THEN CONTENT»
EXECUTED AS PASS Z2.) SOURCE '
LISTINGS OBJECT CODE

Figure 3.

In the pass 2 context all APL 1labels are redefined to have the
assembly-related values determined by pass 1. To do this, the
interlude process creates a "context function" and modifies the
original source programe Pass 2 consists of invocation of the
context function which establishes the new context, executes the
deferred instructionsy and finally calls the modified source
programes In the pass 2 mode all of the functions invoked by
SOURCE (modified) generate object code and associated listings.
Figure 4 shows the call topography of the fast assembler. (In
Figure 4 1levels of call are shown by indentatione. Eege ASM
calls SOURCEy AINTERLUDE and ACONTEXT.)

IBM Internal Use Only

PAGE 6

ASM
SOURCE = Pass 1
Assembler Instructions (Pass 1 mode)
Machine Instructions
| Code Generator (Pass 1 mode)
AINTERLUDE (build ACONTEXT and APASSTWO)
ACONTEXT = Pass 2
| Deferred Instructions (ORGy EQUy DS)
| APASSTWO (SOURCE modified) = Pass 2 text
| | Assembler Instructions (Pass 2 mode)
| | Machine Instructions
| | | Code Generator (Pass 2 mode)

Figure 4.

Because the language functions native to APL need not be
explicitly present in the fast assembler, its size 1s also
considerably reducede. A fast assembler will consist of about 160
lines of basic function written in APL, plus two additional APL
lines for each instruction in the target machine. For a machine
of 80 instructions the assembler will consist of 160+2x80 or 320
lines of APL code. (A traditionally coded assembler [1] required
about 500 lines of APL codes) This does not tell the whole story
because the 160 machine instruction lines are quite simple and
rapidly coded with little probability of error. The base 160
lines need little modification from one assembler to another.

Another advantage of the technique is that the source program can
be edited with the standard APL function editor. No separate
source program editor need be providede.

DETAILS OF THE METHOD

The APL listings for a sample fast assembler are displayed in the
appendixe We will examine below how it works in contrast to a
typical two—-pass assemblers The sample assembler supports object
code relocation and generates code for a hypothetical machinee.
The target machine has 16=bit wordsy; but is addressable in 8-bit
bytese. Its instructions are variable in length and consist of of
one or more wordses The first word of each instruction holds its
op-code.

The sample fast assembler supports the following typical
assembler instructions: EQU, ORGy ENTRY, EXTRNy DS (define
storage), PC (define constant) and ENDe It is assumed that the
reader is familiar with at least one assembly language, and that
the functions of these assembler instructions are known to him.
(See [2] for an example of a typical assembler Llanguage.) We
will now describe the method in detail, using the sample program
called SOURCE shown in Figure 2.

IBM Internal Use Only

PAGE 7

The user enters
ASM "SOURCE?"

to invoke the assemblere. The results of the assembly are left in
some APL global variables (described later)s This information is
sufficient for sone post processor (not described in this report)
to form a relocatable object module of any desired formate. ({The
function DUMP displays object code and relocation information to
demonstrate thise.)

Typical Pass 1.

A typical assembler will perform certain initializations (esg.y
set a location counter to zero) and start the first of two passes
over the source program. A typical pass 1 would perform the
following functions:

1) Tokenize each liney copy the encoded line to an
external file (for later use by pass 2), and extract
the label and instruction mnemonice.

2) For those lines containing a labely, place the label
in a symbol tablee. Except for EQU and ORG
instructions, place the current location counter
value in the symbol table entry for the label and
set the "relocation" bit on. In any case, advance
the location counter by an amount depending on the
instructions

3) For EQU, ORG and DS instructicnsy, the operand field
must be evaluatede. Evaluation must take into
account the relocation attribute of symbolic values.
It also regquires parsing and evaluation of the
operand for an infix algebraic expressione. EQU
assigns its operand value (including relocation bit)
to its label (in the symbol table). ORG and DS
increment the location counter by the amount
computed from their operands. ORG assigns the new
value to its label if any is presente

4) ENTRY looks up or enters each label from its operand
into the symbol table. The "entry" bit for each of
these labels is set one.

5) EXTRN enters each of the labels in its operand into
the symbol table and sets the "external" bit one.

After pass 1, all source program Llines are on an external
(inter—pass) fille in an encoded forme. All of the labels in the
symbol table have been assigned a value and had their relocation,
entry and external attribute bits sete. Before we go on to
describe pass 2y let?'s see how the fast assembler handles the
first passe.

IBM Internal Use Only

PAGE 8

Fast Assembler Pass 1.

The fast assembler, ASM, first establishes a special environment
(consisting of constants and empty Llists) and then executes
SOURCE « (Recall that each line of SOURCE is an APL function with
a name that is an assembler mnemonics) During the first pass the
following actions are carried out.

1) Machine functions —— such as ADD (using the function
AGENWDS) insert into the vector ALCX a count of the
number of addressable units of storage they use.
(ALCX hes one element for each line in SOURCE.)

2) Assembly functions EQUy, ORG and DS record their line

numbers on a list, thereby deferring their
executions until the end of the firsti passe. These
are among the few instructions that cause

manipulations of the source program as texte.
3) Comments are ignoreds.
4) ENTRY records its arguments on a list.

5) EXTRN converts its operands into APL variables and
assigns them external symbol values. (Note that the
EXTRN operands must be quoted so as to avoid
evaluation by the APL interpreter —--— line 3 in
SOURCE » This is the most noticeable intrusion of
APL syntax into the syntax of the assembly language.
More will be said about syntax in the section on
drawbackse.) EXTRN is the other instruction that
causes manipulation of the source program as texte.

Fast Assembler Inter lude.

At the end of pass 1 ASM is not in the same state as the typical
assembler. The location counter increments are held in a vector
ALCXa EQUy ORG and DS have been deferred because the values of
labels during pass 1 are those of APL line numbers; not location
counter values. The deferred instructions are the only ones
which must hawe their operands evaluated before pass 2 starts.
When that evaluation takes place; the labels must have the proper
valuess To this endy a function <called AINTERLUDE is invoked at
the end of pass 1. The purpose of the interlude function is to
cause the APL label wvariables (Aly, A2, NX;, ERR etce.) of the
source program to take on their assembly values. Once this is
doney the deferred functions (EQUy ORG and DS) can be executed
and final location counter assignments can be made.

AINTERLUDE forms an APL function called ACONTEXT shown in Figure
5. In this function all labels from SOURCE are made into local
APL variables. Each 1is assigned a value determined by its line
number and the value in the corresponding position of a variable

IBM Internal Use Only

PAGE 9

named ALC. (ALC—+\AK65,ALCX) Recalling that ALCX contains only
location counter incrementsy the reader will realize that ALC
contains the location counter setting without taking into account
the etffect of ORG and DS functions. Note that the value for each
label is augmented by the contents of AA. AA is an adjustment
(initially AK65) due to location counter manipulation by the ORG
and DS functionse AK65=2%16 and is a relocation bit appended to
all location counter values. (More will be said about relocation
bit strategy later.) Note that the deferred functions are
interleaved with the assignments of the labelse They are all in
the same order as they appeared in SOURCE.

V ACONTEXT;;AA; APASSTWO;A1;A25A3;A45A5A6;NB;NASNXNCs ERR
(1] AA~-AK65+0xALVe——1+p[]LC

F21 Al ~AA+ 6
[3] A2 ~AA+ 40
[4] A3+ 10AEQU A2+4
[5] Ad ~AA+ 46
(6] AS ~AA+ 52
[71 A6 ~AA+ 58
[8] NB ~AA+ 64
(91 NA= 16ADS 20
[10] NX —~AA+ 66
[11] 18 AORG 100
[12] NC ~AA+ 68

[13] ERR ~AA+ 68

[14] AMEM~ (] .5%xAK65|[/ALC+ALCX,0)p0
[15] ALCLAEQL[;01]1+-AEQL[:1]

[16]1 e[FX AF

Figure 5.

By the +time ACONTEXT reaches line 16 (see Figure 5) all labels
are defined and ALC has the location counter values for each of
the lines of the source programe We are then 1in the same
position as the typical assembler was at the end of pass 1, and
are ready to begin pass 2.

Typical Pass 2.

At the beginning of pass 2 the typical assembler opens an object
code output file. It then emits into the buffer of this file
entry and external symbol information from the symbol table.
Then in pass 2 each line of encoded text is read from the
inter—pass file and the following functions are per formede

1) For machine instructions and other bit generators
(such as DC), operand fields are evaluatede.
Evaluation of operands requires parsing of infix
algebraic expressionse. The results of evaluation
are packed according to the format requirements of
each instruction. The pPacked data and its location
counter value are emitted to the output buffere. The

IBM Internal Use Only

PAGE 10

location counter is advanced as it was in pass 1.

2) When listing is required, the generated data,
location counter value and source Lline image |is
formatted and placed into an output listing filee.

At the end of pass 2, the symbol table is printed with values and
cross reference information for each label. Error messages, if
anyy are printed just before or after the symbol table. Finally,
relocation information from the symbol table is sent to the
output buffer, and assembly is completed.

Fast Assembler Pass 2.

Pass 2 execution is similarly straight—forward in the fast
assembler. AINTERLUDE, in addition to preparing ACONTEXT, also
prepared SOURCE for pass 2 executions The preparation consisted
of removing all the labelsy, and changing the header line to
APASSTWO. Figure 6 shows this new version of SOURCE.

V APASSTWO
[1] @a SAMPLE SOURCE PROGRAM
(21 ENTRY A4,ERR {
[3] EXTRN'"X1,X2°¢
(4] ADD NB,NX
[5) ADDI NB,0
[6] IF NX,GT4NB,;Al
(74 CGOTO NByERR3yA1,A2,A3,44,A5,A6
[8) @A START OF BRANCH GROUP
[9] ADD NA,NC
[10] EQU A2+4
[11] ADD NB,NX-1
[12] ADD(AL1+1),Xx2
[13] ADDI X1, 5
[14] A CONSTANTS

{15} bDc 3
({161 DS 20
[17] DC«S

{181 ORG 100
[19)] DC A4
[20) END

Figure 6.

ACONTEXT (on line 16) calls APASSTWO (the text image of which was
left in AF by AINTERLUDE) and the following actions are carried
out by the assembler functions called from APASSTWO.

1) Machine instructions (through the function AGENWDS)
place the proper data and relocation bits into the
vector AMEM. If listing is required, the function
APRT is called upons Machine instructions
(including DC) are the only instructions whose

IEM Internal Use Only

PAGE 11

operands are evaiuated during pass 2. When they are
evaluated, the values of labels are those
established by ACONTEXT.

2) Functions EQUy, ORGy, DS and EXTRN only Llist (their
functions having been completed before pass 2).

3) Comments are not executeds Therefore in order to
list themy the print routine looks at the 1line
following each one it prints to see if the successor
is a comments. if it isy, the successor is printed
(and its successor checked). This procedure will
guarantee listing of all comments except one
appearing on line 1. For this case ASM must perform
the check and call APRT if requirede.

4) ENTRY forms all of iits listed items (entry labels)
into the matrix AENL. The values of the items are
taken from ALC. Listing is performed as regquirede.

At the end of pass 2 (if a listing is requested) the symbol table
is printeds Error messages, if presenty; are listed and assembly
is completes The equivalent of the object code file 1is held in
the global variables AMEMy; AENL, and AEXL.

ERROR CHECKING

Many of the errors in the source program will be detected by APL
itself. If there are any syntax errors they will occur in pass
1. Assembly will stop and the user can usually correct them by
editing the source programy and then resuming the assembly as he
would the execution of any APL programe This should not be
confusing because the APL error messages come out in the context

of the source programs The code displayed 1is familiar to the
useres This is contrary to the usual case where an APL error
message is in the context of the assembler =— a program the user

did not write. APL checking also eliminates considerable code
that would have to be included in the typical assembler.

Value errors will occur either during pass 1 (when a label is
misspelled or missing)y or during the interlude (when the operand
of a deferred instruction is not defined earlier in the source
program) . If the error Iin either of these cases is not in the
line at which the assembler stoppedy; the assembly must be aborted
before the correction is made. Otherwisey; the Lline causing the
error may be modified and the assembly resumede

The assembler makes a number of checks itself AGENWDS checks data
and relocation bits it is passed for compatabilitye. If they
don't match an error message is dissued, but the assembly
continuese. EQUy ORG and DS check their operands for proper shape
and value and issue any needed error messages. All error
messages are set up by a common routiney, AERR. AERR places the
message and line number on an error Llist. If no listing is

IBM Internal Use Only

PAGE 12

requested, the source line image is included on the list. At the
end of assembly, any accumulated error messages are printed
following the symbol table.

Some errors will escape detection. For example, duplicate labels
will not be noticed. Some relocatable expressions (like A+B, A+X
and X+1, where A and B are relocatable 1labelsy, and X is an
external label) will be wrong without being noted. These could
be detected at additional cost of assembly speed. There are no
attempts to catch errors introduced through malicious use (such
as real numbers or guoted strings in the operand fields). These
errors will cause the assembler to stop with some APL error
message (probably INDEX or DOMAIN error).

RELOCATION CONVENTIONS

For this particular machine architecture (16-bit words) it is
convenient to include the relocation bits as part of the label
value. These bits are the 17th and 18th bits (counting from the
right) of a binary representation of the label value. Bit 17 is
one if the value 1Is relocatable. Bit 18 is one if the label is
an external labele. These values are easily tested for relocation
type determination by the loader. The object code vector, AMEM,
readlly holds one 16—bit word plus two relocation bits per
elements (On a S/370 inmplementation of APL up to 56 bits can be
held per elements) The final format of the relocatable object
code is beyond the scope of this reporte. Such &a format depends
heavily wupon the relocating loader requirementse. However,
sufficient information is produced by the assembler to allow the
construction of any desired format. Inclusion of an object code
formatter would not appreciably increase assembly timee.

MACROS

This report describes only a basic assembler that has no macro
capabilitye. Implementation of macros so that macro definitions
could appear as part of the source program would Llead to
relatively slow text processings. Howevery, one can, without
significant loss of execution speed, implement what are
classically called "built in" macrose That isy one can implement
APL functions which generate multiple machine instructions per
invokatione Such APL functions can take on all of the properties
generally associated with conditional macrose. The only
difference between these macros and definable macros is that they
operate in terms of "inside the assembler" rather as part of the
source Llanguages.

DRAWBACKS

The fast assembly technique described above has a number of
drawbacksy none judged to be seriouse. The sSource program format
is dictated by APL syntax requirements. Labels must appear
followed by a colone (Some people will wview this as .an
advantagee.) Comments can appear only on comment Llines (a

IBM Internal Use Only

PAGE 13

distinct disadvantage). Operands must be evaluated right to left
without operator precedence. This means that all operands but
the rightmost must be enclosed in parentheses if they contain an
operator. (See line 12 in SOURCE.) Program labels cannot be the
same as op-codes because all names are in the same APL symbol
tables The labels DUMP and ASM can't be used, though this
restriction could be removede. (Note that all intermal assembler
functions and variables have names beginning with *A%.) Neither
more complete error checking, macro processing nor Llabel—-use
recording can be achieved without considerable loss in assembly
speede Some features such as literals, hexadecimal and EBCDIC
data specification are not included in the sample assembler, but
could be added with little cost in speed or implementation time.

TIMINGS AND CONCLUSIONS

The sample assembler has been tested and timed to a Llimited
extent on an IBM S/370/145 (under VM/370) and on an IBM 5100.
The timing formulas for assemblies with and without listings are
shown belowe The output from the assembly of our sample program
is show in Figure 7 at the end of this report.

on S/370/145 (with microcode assist) Maximum
with listing seconds = <037xLINES + .141 1608 lpm
without listing seconds = .029xLINES + .106 2077 lpm

on 5100
with listing seconds = 5.71xLINES + 22.5 il lpm
without listing seconds = 2.70xLINES + 16.7 22 lpm

The numbers following the formulas (under the heading "Maximum')
give the maximum number of lines per minute achievable according
to the formulas.

The fast assembler was implemented in two man—-days, once the
concept was perceived by the authore. A similar assembler [1]
using "typical" techniques was constructed by the author in about
four man—weeksS. It is estimated that only one or two man—days
would be required to write and check out an assembler for any of
a variety of typical machine architectures. This low
implementation cost, coupled with the high execution speed brings
the cost of the fast APL assembler to the point of wviability in
the realm of micro—computer economics.

REFERENCES

1) Myers, He Joseph, and Friedl, Paul Jegy "A
Terminal—-Oriented Assembler/Simulator for System/79,
IBM Scientific Center Report ZZ20-6412, December
1971. (IBM Internal Use Onlys.)

2) ITBM Coproration, "IBM System/360 Disk and Tape

Operating System Assembler Language', Form C24-3414,
1969.

IBM Internal Use Only

PAGE 14

ASM "SOURCE '

LOC OPR OPND OPND OFPND | SOURCE PAGE 1
c— 1|a SAMPLE SOURCE PROGRAM
0000: 2| ENTRY A4,ERR
0000: 3] EXTRN"X1,X2"
0000:003B 0040 0056 4| ADD NB4NX
0006:003D 0040 0000 5|a1 ADDI NB,;0

000Cc: 1057 0056 0040 0006 6| IF NX,GT,NB,Al
0014:0056 0040 0006 C064 71 CGOTO NB,ERRyAl1,A2,A3;A4,A5,A6

0006 0028 002C O0O02E
0034 0034

C—- 8|a START OF BRANCH GROUP
0028:003B 0042 0064 9] A2 ADD NA,NC

002c: 10|43 EQU A2+4
002E:003B 0040 0055 11| A4 ADD NByNX-1
0034:0038B 0007 0001 12| AS ADD(A1+1) X2
003A:003D 0000 FFFH 13] A6 ADDI X1, 5
c— 14|a CONSTANTS

0040: 0003 15|NB DCc 3

0042: 16|NA DS 20

0056: 0005 17|NXx DC S

0064: 18|NnC ORG 100

0064:002E 19| ERR DC A4

0066: 20| END

SYMBOL TABLE

Al 5 6=R 0006

A2 9 40=R 0028

A3 10 44=R 002C

A4 11 46=R 002E

AS 12 52=R 0034

A6 13 58=R 0034

ERR 19 100=R 0064

NB 1§ 64=R 0040

NA 16 66=R 0042

NX 17 86=R 0056

NC 18 100=R 0064
ENTRIES

A4 = 4 46

ERR = i 100

EXTERNAL SYMBOLS
X1
X2

Figure 7.

IBM Internal Use Only

PAGE 15

R APPENDIX: A SAMPLE FAST ASSEMBLER

V ASM AN;ALSTSW;ALCX; APASS2;AH4;AF;ACONTEXT;AK65;00I0;
APGN; APGH; ALCT ; ALV ; AEQL; AERL;ASY ; AMT ; ALBL ; AHEX ; ALC
(1] AMT«AENL~AECL+~AERL=ASY+pAPGN=ALCT-APASS2«[I0«0
[2] -1 2>pALCX~(11pAF+[CR AN) 10
(31 ALSTSW="' ®eAN
(4] ALVs—1+p[JLC
[5] ALBL*~¢ 6
[61 AK65«] 2%16
(71 AH4«4p16
[B] AEXL+-0 O0pAHEX+~'0123456789ABCDEF"

[9] eAN
[10] APASS2+1
[11] APGH«[AVIS5p1691,'LOC OPR OPND OPND OPND | *yAF[O

:1,' PAGE °*
(12] 2[FX AINTERLUDE
(131 APRSYM
v

V Z+AINTERLUDE;I;J;K;L;M3N
[1] a EXTRACT LINE LABELS (FOR SYMBOL TABLE)
[2] ASY+-AF[; ALBL]
[3] I~M/tpM~=ASYVe="31"
[4] ASY+~ASY[I;]
[5] ASY=(N=pASY) p(J=V\ASY=":9)@ASY,[T0.5]" *
[6] @8a EXTRACT EQU/DS LINES (FOR CONTEXT FUNCTION)
71 K=AF[L+ (0<AEQL)/AEQL;]
[8] A CREATE PASS 2 FUNCTION (PASS 1 LESS LABELS)
(9] AF[031=(13pAF) 1" APASSTWO"
[10] AF[I;ALBL])*NplJ=1,0 ~1l~J)OAF[I;ALBL)4[051" ¢
[11) AF[ALBL«I; l~(N=+/J)$AF[X;]
[12] A CONVERT EQU/DS TO AEQU/ADS (FOR CONTEXT FUNCTION)
[13] ALC+=+\AK65,ALCX
[14]) I« (JAASY) et 0A0 a0 040 (O OQWALC[(J=~ALBLeAEQL) /ALBL)
°0"',ﬂK65
[15] Ke(=N)P'+~*,(3 0FLoe+40)3°A%"4,0 14(N="14(~J)/N)PK
[16] A EXTRACT ORG LINES (FOR CONTEXT FUNCTION)
({171 N«AFLL+~|(AEQL<0)/AEQL;]
(18] N«<(®Loo+,0),"A",N
[{19] a COMBINE SEGMENTS INTO CONTEXT FUNCTION
[20] L«21TpZ=(Z#" ') /Z<*ACONTEXT ; AA;APASSTWO" 4,"';",ASY
[21) 2Z«(L1Z)3(0.5]L1*AA~AK6S5+0%ALV~—1+p[JLC"
{22] I+~K AVCAT N AVCAT I
[23]1 AEQL+~0 2pK«~{N/AEQL) 4 (~N<~AEQL>0) /AEQL
[24) 2Z+Z AVCAT I[4(|K)y(~ALBLeK)/ALBL;)
[25] 2Z«~Z AVCAT AINTI1
[26] A PREPARE SYMBOL TABLE
[27] ASY=MXASY
[28] ASY[(I/epI+-AF[;0])="a®;]1-JAV[255]
[29] =—=c'p*#£AF[1;0]
[30] *'C-—="APRT 1

IBM Internal Use Only

V N AGENWDS A;I;JiLiM;T
[11] -~APASS2/A1
[21] ALCX[L tALVI[LC1+2xpN
(31 -0
[4] Al:L-|l0e5xAK65|T=ALC[J=**pALVI[LC]
[5] -(0=I+pN) /A4
(6] <(NAe=AK65<A~TtA) /A3
(71 J AERRYRELOCATION ERROR!'
(8] A3:AMEMI[L+c¢I]l~A
[9] A4:-(~ALSTSW
[10) I«,(QAHEX[AH4TT A]1),* *
[11] I[4]e*:?
(12] I APRT J

v

A ASSEMBLER INSTRUCTIONS

V EQU L;I
[1] —-APASS2/A3xALSTSW

[2] I-*'p51 tALVI[LC

[3] —=(1=L+p,L) /A1l

(4] I AERR(®L)," OPERANDS"
[5] Al:=(':"eAF[I;ALBL])/A2
[6] I AERR'"LABEL MISSING"

(71 -0

[8] A2:AEQL-AEQL,I

(91 -0

[10] A3:AMT AGENWDS AMT
v

V Z«N AEQU L
(1] -({2xAK65)>L) /A1l
[2] N AERR'RELOCATION ERROR!
[3] L+0
[4)] Al1:AEQL-AEQLs[0INyZ-11tL
v

Vv ORG L
[1] -APASS2/A1xALSTSW
219 AEQL«-AEQL =" " pALV t[JLC
[3] -0
[4] Al:AMT AGENWDS AMT
v

V N AORG L
(11 —(~2|L)/A1
(2] N AERR'ODD ORIGIN'
(3] L+-L+1
[4] Al:AA~AA+ALCX[N])=(L-AK65|L)=AK65|ALCIN]
(5] AEQL=AEQL 4(0IN,L+AK65
(61 ALC++\AK65,ALCX
v

IBM Internal Use Only

PAGE 16

(1]

(11
[2]
(3]
(4]
[5]
(6]
(7]
[8]
(9]

(1]
(2]
(3]
(4]
(5]
[6]

(1)
(2]
(3]
[4]
(5]
[6]

(71
(8]
[91]

(1}
(2]
£31]
(4]

v

v

v

v

v

v

v

v

v

v

v

v

PAGE 17

DS L
EQU L

Z~N ADS L
-(0<L-1tL)/A1

N AERR'"ILLEGAL NEGATIVE"
L~0
Al:-=(AK65>L) /A2

N AERRYRELOCATION ERROR?*
L«0
A2:Z+-ALC[N]
AA~AA+ALCX[N]+L
ALC+~+\AK654ALCX

ENTRY L
-APASS2/A1+~ALSTSW

AENL-AENL,L

-0
Al: AMT AGENWDS AMT

=1 2=ppAENL

AENL=ASY[AENL; 1,'=",%Q(3,AK65) TALC[AENL]

EXTRN AL;AI;AJ:A

—~APASS2/A1xALSTSW

= (0=110pAL)vO0=py AL

AJ=(AT g pAL)Y~ 03 1+AJ-AT/ e pATI+~AL=","

-t 0epAJ~(0=[NC AJ)¥AJ-(pAJd)p(sAaJd=ATo>el /0TI\(~AT)/AL
AEXL+~AEXL AVCAT AJ

AT=((LLpad) 1A), [0]AT=AT, "=, F((=11pAJ) te11pAEXL)Oat,
2xAK65

e[FX AJ

-0
Al: AMT AGENWDS AMT

END
-A1xAPASS2AALSTSW
A1:AMT AGENWDS AMT

Z«~I AVCAT J
Z~0y 11 (pI)[pJd
Z-((Zl pI) TI)4[01(2Z1 pJ) tJ

J AERR M
M~[AVI[73),(4 0®J),%: ",M
-ALSTSW/A1

M-(291M),* |?AF[J;]
Al: AERL~AERL M

IBM Internal Use Only

(1]
[2]
(3]
[4)
(5]
[el
[7]
[8]
[9]
[10]
[11}
[12]
[13]

(1]
[2]
(31
[4]
[5]
(6]
(7]
(8]
(9]
(101
[11]
[12]
(13]
(14]
[(15]
[16]
[17]
(18]

(1]

(2]

(1]
(2]

1)
-

V I APRT J3L
-1 ~ALSTSW

Al1:=(0<ALCT+~ALCT—1)/A2
[~(5x1=APGN) |APGH ,$APGN+~APGN+1
ALCT+60

A2:=(' *=11I)/A3
L-((L#[AV[255]1)/L~aSY[(J;1),8F[J}]
C~(25t1)4(4 0WJ) " |*,L
A3:—=(252pI) /A4

Ce-25tI-1 ',254I
A1
Ad:=c(11pAF) <d=J+1

I 2 Fore

—-Alxtqt=AF[J;0]
v

V APRSYM;I;J;CR

CR+[AV[73]

~(~ALSTSW) /A3

—=(0epASY~(~ASY[;0]e* *'",JAVI(255])+ASY)/A2
=((ALCT-5)>2+11pAS5Y) /AL

O~ (ALCT+6) p[JAVI[169]
Al1:[(~CR,*SYMBOL TABLE?

ASY=~ASY,0 OWALBL,{0.5)(xJ)xAK65|I+~|J-aLC[ALBL]
J-ASY,'=%,9 RY[2|LI*AK65]," ",QAHEX[AHAT,J]
C~* *,J[A"ABCDEFGHIJKLMNOPQRSTUVWXYZ"'¢J[30];]
—-(0epAENL) /A2

[C+~CRy "ENTRIES®

E"" ' ,ﬂENL
A2:-(0epAEXL)/AJ

[J~CRy " EXTERNAL SYMBOLS"

(' *,AEXL
A3: 1«EX AEXL

- 0=pAERL

[C+~-CRs Y ERRORS:" y AERL

v

A MACHINE INSTRUCTIONS

V ADD L
AADD T, F
0 1 1 AGENWDS S59,L
v

vV ADDI L
AADDI T,FI
0 1 0 AGENWDS 61,L

v
vV GOTO L

0 1 AGENWDS 85,L
v

IBM Internal Use Only

PAGE 18

I3
[2]

(1)
(21

1]
[2]

(1]
[2]

{11}
(2]

(11l
[2]
(3]
[4]
[5]
(6]
(7]
[8]
(9]
[10]
(11])
(12}

[13]

[i]

(1]
[2]
[31

v

v

v

v

v

v

v

v

v

CGOTO L
A CGOTO Ix,ERR'LlpngnochN
(0 1 O0y14L=L)AGENWDS 86,L[0],(2+pL),1IL

IF L

AIF AyCP,B,LOC (WHERE CP= GTy EQy GEy LTy NE OR LE)

0 1 1 1 AGENWDS(87+L[11),1 0 1 1/L

IFI L

AIFI A,CP,BI,LOC (WHERE CP= GTy EQy GE, LT, NE OR LE)

0 1 0 1 AGENWDS(32855+L[1])y,1 0 1 1/L

DC L
ADC V1,V23eee3VN
(L=2AK65) AGENWDS L+4L

A AUXILIARY FUNCTIONS

Ze-A

- ~Z-APASS2

Z~oLC["' pALVI[LC]

Z~DUMP N;I;J3K;L;CR;[CIO
Z+0pCR~{JAV[73+ I0+0]

Ne| |21N22

I-N[O]

Ne=("1+pAMEM)LI /21N
Al:=(N<I
“((K#1)AJ[0]Ae=TJ~AMEM[I+t K-8BL 14N=-IT]) /A2
Z+Z4CRo (T LIACVH Ix2)4%: " LACVB J
Al I-I+K
A2:LeT

AJ:=(N<I~I+K) /A4
=(J[0]A.=AMEM[IT+¢K-8L 1+N-1]) /A3

A4:Z"ZQCR'. .|(QCVH Z‘L"'THRU .|(QCVH 2‘1-1},'

CONTAIN *'4,ACVB J[0]
-A1l

Z-ACVH N
Z~3(R'0123456789ABCDEF*'[16 16 16 16T N]),* °*

Z=ACVB N

Z~3 16 16 16 16T4N

Z~" RX"[(Z[0;1xN20]y[01"0123456789ABCDEF"'[1 0}2]
Z—=eQ1 0 1 1 1 1 0XxZ

IBM Internal Use Only

PAGE 19

"8l - 0Qvd

wa

SCIENTIFIC CENTER REPORT INDEXING INFORMATION

9. SUBJECT INDEX TERMS

1. AUTHOR(S) :
H.J. Myers
APL
2. TITLE : Assemblers
Performance

A Fast Assembly Technique Using APL

3. ORIGINATING DEPARTMENT
Palo Alto Scientific Center

4. REPORT NUMBER

2220-64 31
Sa. NUMBER OF PAGES 5b. NUMBER OF REFERENCES
19 0
6a. DATE COMPLETED 6b. DATE OF INITIAL PRINTING | 6c. DATE OF LAST PRINTING
May 5, 1976 June 1976
7. ABSTRACT :

A technique is described which reduces the cost of
producing assemblers for a wide variety of machine
architectures. Assembly is accomplished by executing
each instruction of the source program as an APL
function. An assembler has been generated capable of
speeds of about 2000 lines per minute in an APL
environment on an IBM System 370/145.

8. REMARKS :

IBM INTERNAL USE ONLY

TEN IMLUNMYT 28 Ouri

® Nl

SUATEQUEOWS OU U TN 2Aspen 330\T¢2°’

abeeGe OfF TPoAF 3000 JTves BeX WIUOES TU 9U YED
TRUCETON® YU S2@SWPTER p9s pecuy dsusxureg ovbeprs og
GIGE TURFLAGEIOU OL FPe womRce brodiew @ e yhT
ULnUTEecEnLeR” yuseupTA 72 wcoowb)repeq pA exscapTud
brognarud SEESUPTHLE [OL § MJQe ANLTEFA Of WECUTUE

v secyuidne TR QGSCLTPOY MPTOY L&QUOCER [U6 COBF OF

47 YiRLNVLL) _

o

[1 HORORY S

NeA 2% Tase 4% T30 .
™ U7l Lmu.h 0 DVIE Gh IMIIIYT ML e~ Wu OF FYLL niNe
T g
e HORRGE O S¥eRR W AmEEN 0L WELCSERR
285004 3T

H

T rnﬂinw 1ireee oviEh'e i lavviad

EUTO ¥TFO RCTBULTRTC GOUSEX

'y wweps yeeewprh gecpuydne neyud vir HULLORWINCE
= __ yessuprere
2 el . r ‘_-. ur
H'1" Khezae | "
1 VOURoND | ¥ ENPIECL 1AD0E ADNTR

Ly LA

2CIEALIEIC CEALER. ERLOKL [MDEXIMC TALOENYLION

L ARSEN- il

	102679734-05-01-src
	102679734-05-02-src
	102679734-05-03-src
	102679734-05-04-src
	102679734-05-05-src
	102679734-05-06-src
	102679734-05-07-src
	102679734-05-08-src
	102679734-05-09-src
	102679734-05-10-src
	102679734-05-11-src
	102679734-05-12-src
	102679734-05-13-src
	102679734-05-14-src
	102679734-05-15-src
	102679734-05-16-src
	102679734-05-17-src
	102679734-05-18-src
	102679734-05-19-src
	102679734-05-20-src
	102679734-05-21-src
	102679734-05-22-src
	102679734-05-23-src
	102679734-05-24-src

