
IBM
J~

IBM PALO ALTO SCfENTI FIC CENTER
ZZ20-6431, June 1976

A FAST ASSEMBLY TECHNIQUE USING APL

H. J. MYERS

I ? .'
IPlIER" 2' IISF ON! X

4

1974 IBM PALO ALTO SCIENTIFIC CENTER REPORTS
IBM CONFIDENTIAL AND IBM INTERNAL USE ONLY

ZZ20-6426 March 1974
P. SMITH and K. PRICE - An Architectural and
Design Overview of SCAMP (42 p.) I BM Confidential
until March 1984, Limited Distribution

ZZ2O-6427 October 1974
HARRY F. SMITH, JR. - VM/7 Virtual Memory for
the S/7 (68 p.) I BM Confidential until November 1979.

1975 IBM PALO ALTO SCIENTIFIC CENTER REPORTS
IBM CONFIDENTIAL AND IBM INTERNAL USE ONLY

ZZ20-6428 February 1975
A. HASSITT and L. E. LYON - The APL Assists
(RPO S00256) (115 p.) IBM Internal Use Only

ZZ20-6429 June 1975
M. J. BENISTON, R. J.CREASY, A. HASSITT,
J. W. LAGESCHULTE, L. E. LYON - Writing an
APL/CMS Auxiliary Processor (with complete example
code) (76 p.) I BM I nternal Use Only

1976 IBM PALO ALTO SCIENTIFIC CENTER REPORTS
IBM CONFIDENTIAL AND IBM INTERNAL USE ONLY

ZZ20-6431 June 1976
H. J. MYE RS - A Fast Assembly Technique
using APL (19 p.) IBM Internal Use Only

ZZ20~6495 August 1975
Abstracts of IBM Confidential and IBM Internal Use
Only Palo Alto Scientific Center Reports (43 p.)
I BM Confidential

The availability of reports is correct as of the printing date of this report.

* These reports are ava ilable only on the need to know basis, please contact the Scientific Center for information on copies.

• COpies are no longer available from the Scientific Center.

,.

IBM PALO ALTO SCIENTIFIC CENTER TECHNICAL REPORT NO. ZZ20-6~

A Fast

H. Joseph Myers \).

IBM Scientl£ic Center

P. O. Box 10500

Palo Alto, Cati£ornia 94304

JUNE 1976

ABSTRACT

A technique Is described which reduces the cost o£
producing assemblers £or a wide variety o£ machine
architectures. Assembly is accomplished by executing
each instruction o£ the source program as an APL
£unctlon. An assembler has been generated capable o£
speeds o£ about 2000 lines per minute in an APL
environment on an IBM System 370/145.

Ind~~ Terms ~~ ~ ~~ SubJect Index

APL
Assemblers
Performance

IBM Int%i nal Use 9al.oy

PAGE 2

INTRODUCTION

The recent Years have seen th. introduction o~ many
microcomputers in a wide variety o~ machine archi~ectures. The
prices o£ these machines are extremely low (on the order o~ a £ew
hundred dollars). Neither the vendors nor the users o£ these
machines can invest much capital in programming support ~or them
without losing the advantages o£ their low cost.

APL presents an excellent environment £or low cost programming.
The nature o£ the APL language also makes it attractive £or
implementing computer simulators. (Such simulators could be used
by vendors to va~idate their machine designs, and by buyers to
check out their application programs be~ore Actual acquisition o£
the harware.) It is naturally desirable to provide an assembler
in the same environment as the slmu~ator. However, assemblers
written in APL usually execute very slowly (about 100 times
slower than comparable assemblers written in machine language on
the same computer).

A technique has been developed that overcomes this speed
drawback, and allows production o~ (non-macro) assemblers with
per£ormance in the neighborhood o£ their machine-language
counterparts. It also reduces the time to produce an assembler
in an APL environment £rom 4-5 man-weeks to one or two man-days.
The rapid availability and low cost o£ this type o~ assembler
will be o£ considerable bene£it to both vendors and buyers o£
this new breed o£ inexpensive computer.

In order to understand the method o~ £ast assembly, one should
£irst think about the £unctions an assembler per£orms. Each line
o£ the source program must be scanned to isolate the tokens o£
the language. ("Tokens" are labels, op-codes, parentheses,
commas and other atomic components that make up the assembler
statements.) Labels must be entered into a symbol table;
op-codes must be looked up in an op-code table to select the
appropriate actions :£or each line. These and many other language
processing £unctions must be carried out by the assembler. The
nature o£ these language processing ~unctions is not unique to
assemblers. Indeed, the APL system also per£orms many o£ them.

The typiCal approach to building an assembler in an APL
environment would consist o£ writing (in APL) subroutines that
would read a line o£ source code, break it up into tokens, store
labels in a symbol table, look up op-codes, and so ·£orth. The
£ast assembly technique involves harnessing these ~unctions

already inherent in the APL system itsel£. By doing this we -not
only avoid the coding o£ these £unctions, but achieve dramatic
per£ormance bene£its because these £unctions (within the APL
system) are coded in machine language.

The organization o£ a typical two-pass assembler is diagrammed in

IBM Internal Use Only

PAGE 3

Figure 1. Pass 1 is principally concerned with allocating
s~orage ~or each instruction and constant, and with assigning
values to symbolic labels in the program. Pass 2 uses
in£orma~ion developed by pass 1 to assemble the bit patterns of
ins~ructions and constants that constitute the program into a
loadable £ormat, and to list the results. A symbol table and
inter-pass £ile constitute the principal data linking the two
passes. The symbol table contains labels and their values, and
the inter-pass ~ile contains a copy of the source program,
u s ually encoded for efficient interpretation by pass 2.

LEGEf/[l

<i,R
OCES5 >

NHtlE P E V~LUE IDHTR
L X

INTEP -PASS
•• • F ILE •••

...... , ",..f/D I I_'~H" ',' L ," C ("' C/'1 h'L CR H._1 __ 1,- ,...... '-

Figure 1.

The ~ast assembly technique takes advantage o£ a similarity
between the syntaxes o~ APL and assembly l~nguage. One can view
a line 01 assembly code as a function call. The instruction
mnemonic Is the name of the ~unction. The operand fields o£ the
instruction, separa~ed by commas, are catenated to form the
(vector) argument o~ the function. Thus the APL ~unction ADD
would generate the bit pattern for an ADD instruction in the
target machine. (Note that throughout this report the names o£
APL £uncticns and variables will be italicized., With this view,
an assembly source program would be an APL function consisting of
a series 01 calts upon ADD and other such "assembly functions".

IBM Int ernal Use Only

... -.

PAGE 4

Furthermore, execution o£ this source program (in the proper
context) would actual~y per£orm the entire assembly. In essence,
this view is the core o£ the method we will call the "£ast
assembly" technique.

(1]
[2]
[3]
(4]

(S]
[6]
[7]
[8]
[9]
(10]
[11]
(12]
[13]
[14]
[lS]
(16]
(17]
[18]
[19]
(20]

V SOURCE

v

A SAMPLE SOURCE PROGRAM
ENTRY A4,ERR
EXTRNIX1,X2'
ADD NB,NX

Al:ADDI NB,O
IF NX,GT,NB,Al
CGOTO NB,ERR,Al,A2,A3.A4,AS,A6

A START OF BRANCH GROUP
A2:ADD NA,NC
A3:EQU A2+4
A4:ADD NB,NX-l
A5:ADD(Al+1),X2
A6:ADDI Xl,-S
A CONSTANTS
NB:DC 3
NA:DS 20
NX:DC S
NC:ORG 100
E.RR:DC A4

END

Figure 2.

A sample source program is shown in Figure 2. This program is
both an APL program and an assembly source program £or a
hypothetical computer. When SOURCE (in Figure 1) is executed,
the £irst ~lne is skipped because it is a comment. The second
line invokes the £unction ENTRY. ENTRY per£orms the ENTRY
assembly £unctlon (described in detail later). The third line
invokes the EXTRN £unction, the £ourth line, the ADD £unction and
so on. By constraining the syntax o£ the assembly language to
con£orm to that o£ APL we can cause this program to take on a
dual £unction o£ allowIng the language processing £unctions o£
the APL system to be applied to the task o£ assembly. As a
result, approximately two orders o£ magnitude in speed
improvement can be achieved over coding these language £unctions
.in APL.

The data £low £or the £ast assembly technique is shown in Figure
3. Pass 1 executes the source program, SOURCE £or , example, to
collect storage allocation in£ormation. Each £unctlon called by
SOURCE is capable o£ operating in each o£ . two modes -- pass 1
mode, and pass 2 mode. Because APL line labels have values that
are APL line numbers, (not related to assembly values), operand
£ields are ignored during pass 1. (Operand £ields o£ machine
instructions typically are not evaluated during pass 1 anyway.)
Instead, those instructions ordinarily requiring operand

IBM Internal Use Only

PAGE 5

evaluation during pass 1 are de~erred. (Their pass 1 action is
to place themselves on a de~erral List.) A£ter pass 1 but be£ore
pass 2, an "interlude" process is carried out. The £unctJ.on o£
the interlude Is to create the pass 2 context £or the second
execu~ion o£ SOURCE.

LOC~TION
';;OUNTE~

INCRP1ENTS

DEFERRED
'----~ INSTFUCTION$

'--__ ~ EtirR~', ' f.'>: TR~

LISTS

F.AST HSS£NBLE,/;,r
DHTA FLOU

(NOTE: soupcr' HND CONTEXT
HRE FUNCTIONS D'y'NAtIICALL Y
CREATED BY INTERLUDE, rHEN
EXECUTED AS P~SS ~.)

LEGEND

DHTA

Figure 3.

In the pass 2 context al~ APL labels are rede£ined to
assembly-related values determined by pass 1. To do

have the
this, the

interlude process creates a "context £unction" and modi£ies the
original source program. Pass 2 consists o£ invocation o~ the
context £unction which estab~ishes the new context, executes the
de£erred instructions, and £lna1~y calls the modi£led source
program. In the pass 2 mode all o£ the ~unctions invoked by
SOURCE (modi£ied) generate object code and associated listings.
Figure 4 shows the ca~l ~opography o£ the £ast assembler. (In
Figure 4 levels o£ call are shown by indentation. E.g. ASM
calls SOURCE, AINTERLUDE and ACONTEXT.)

IBM Internal Use Only

ASM
t SOURCE = Pass 1
I Assembler Ins~ructions (Pass 1 mode)
I Machine Instructions
I I Code GeneratGr (Pass 1 mode)
I ~INTERLUDE (build· ~CONTEXT and ~PASSTWO)
I ~CONTEXT = Pass 2
I I De~erred Instructions (ORG, EQU, DS)
I I ~PASSTWO (SOURCE modi1ied) = Pass 2 text
I I I Assembler Instructions (Pass 2 mode)
I I I Machine Instructions
I t I I Code Generator (Pass 2 mode)

Figure 4.

PAGE 6

Because the language functions native to APL need not be
explicitly p~esent in the £ast assembler, its size is also
considerably reduced. A £ast assembler will consls~ o£ about 160
lines o£ basic function written in APL, plus two additional APL
lines ~or each instruction in the target machine. For a machine
o£ 80 instructions the assembler wLll consist o£ 160+2xBO or 320
lines o£ APL code. (A traditionally coded assembler [1] required
about 500 ~ines o£ APL code.) This does not tell the whole story
because the 160 machine instruction ~ines are quite simple and
rapidly coded with little probability o£ error. The base 160
lines need little modi£ication £rom one assembler ~o another.

Another .advantage o£ the technique is that the source program can
be edited with the standard APL £unction editor. No separate
source program editor need be provided.

DETA!.b§ QE TIm METHOD

The APL listings ~or a sampLe £ast assembler are displayed in the
appendlx. We will examine be~ow how it works in contrast to a
typical iwo-pass assembler. The sample assembler supports obJec~
code relocation and generates code £or a hypo±hetical machine.
The target machine has 16-bit words, but is addressable in 8-bit
bytes. Its instructions are variable in length and consist o~ o£
one or more words. The £irst word 01 each instruction holds i~s
op-code.

The sample £ast assembler supports the £ollowing typical
assembler instructions: EQU, ORG, ENTRY, EXTRN, DS (de£ine
storage), DC (define constant) and END. It is assumed that the
reader is familiar with at least one assembly language, and that
the £unctions 01 these assembler instructions are known to him.
(See [2] £or an example o£ a typical assembler language.) We
will now describe the method in detail, using the sample program
called SOURCE shown in Figure 2.

IBM Internal Use Only

PAGE 7

The user enters

ASM • SOURCE'

to invoke the assembler. The results o£ the assembly are le£t in
some APL global variables (described later). This in£ormation is
su11icient £or so~e post processor (not described in this report)
to 10rm a relocatable object module o£ any desired £ormat. (The
~une~ion DUMP displays object code and relocation in£ormation to
demonstrate this.)

Typical Pass 1.

A typical assembler will per10rm certain initializations (e.g.,
set a location counter to zero) and start the £irst o£ two passes
over the s .ouree program. A typical pass 1 would per£orm the
£ollowing 1unctions:

1) Tokenize each line, copy the encoded line to an
external £ile (£or later use by pass 2), and extract
the label and instruction mnemonic.

2) For those lines containing a label, place the label
in a symbol table. Except £or EQU and ORG
instructions, place the current location counter
value in the symbol table entry £or the label and
se~ the "relocation"
the location counter
instruction.

bit on. In any case,
by an amount depending

advance
on the

3) For EQU., ORG and DS instructions, the operand 1ield
must be evaluated. Evaluation must take into
account the relocation attribute o£ symbolic values.
It also requires parsing and evaluation o£ the
operand £or an in1ix algebraic expression. EQU
assigns its operand value (including relocation bit)
to its label (in the symbol table). ORG and DS
increment the location counter by the amount
computed £rom their operands. ORG assigns the new
value to its label i£ any is present.

4) ENTRY looks up or enters each label £rom its operand
into the symbol. table. The "entry" bit £or each o£
these labels is set on.

5) EXTRN enters each o£ the labels in its operand into
the symbol table and sets the "external" bit on.

After pass 1, all source program lines are on an external
(inter-pass) £ile in an encoded ~orm. All o£ the labels in the
symbol table have been assigned a value and had their relocation,
entry and external attribute bits set. Be£ore we go on to
describe pass 2, let's see how the £ast assembler handles the
first pass.

IBM Internal Use Only

r

PAGE 8

Fast Assembler Pass 1.

The £ast assembler, ASM, £irs~ estab1ishes a special environment
(consisting o£ constants and empty lists, and then executes
SOURCE. (Recall that each line o£ SOURCE is an APL £unction with
a name that is an assembler mnemonic.'
following actions are carried ou~.

During the £irst pass the

1) Machine £unctions -- such as ADD (using the £unction
6GENWDS' insert into the vector 6LCX a count o£ the
number OI addressable units o£ storage they use.
(6LCX has one element £or each line in SOURCE.)

2) Assembly Iuncti o ns EQU , ORG and DS record their line
numbers on a list, thereby de£erring their
executIons un~il the end of the £irst pass. These
are among the £ew instructions that cause
manipulations o£ the source program as text.

3) Comments are ignored.

4) ENTRY records its arguments on a list.

5) EXTRN converts its operands into APL variab1es and
assigns them external symbol values. (Note that the
EXTRN operands must be quoted so as to avoid
evaluation by the APL interpreter -- tine 3 in
SOURCE. This is the most noticeable intrusion of
APL syntax into the syntax o£ the assembly language.
More will be said about syntax in the section on
drawbacks.) EXTRN is the other instruction that
causes manipulation of the source program as text.

Fast Assembler Interlude.

At the end of pass 1 ASM is not in the same state as the typical
assembler. The location counter increments are held in a vector
bLCX. EQU, ORG and DS have been deferred because the values o£
labels during pass 1 are those of APL 1ine numbers, not location
counter values. The deferred instructions are the only ones
which must ha~e their operands evaluated before pass 2 starts.
When that evaluation takes place, the labels must have the proper
values. To this end, a £unction called bINTERLUDE is invoked at
the end of pass 1. The purpose of the interlUde 1unction is to
cause the APL label variables (At, A2, NX, ERR etc.) of the
source program "to take on their assembly va lues. On'ce this is
done, the deferred £unctions (EQU, ORG and DS) can be executed
and £1na1 location counter assignments can be made.

bTNTERLUDE £orms an APL £unction called bCONTEXT shown in Figure
5. In this function all 1abels £rom SOURCE are made into local
APL variables. Each is assigned a value determined by its line
number and the value in the corresponding position 01 a variable

IBM Internal Use Only

PAGE 9

named 6LC. (6LC-+\bK65,6LCX) Reca~ling that 6LCX contains only
location counter increments, the reader will realize that ALC
contains the location counter setting without taking into account
the e~£ect o£ ORG and DS £unctions. Note that the value £or each
~abe~ is augmented by the contents o£ 66. 66 is an adjustment
(initially 6K65) due to ~ocation counter manipulation by the ORG
and DS £unctions. bK65=2*16 and is a relocation bIt appended to
all location counter values. (More will be said about relocation
bit strategy later.) Note that the de£erred £unc~ions are
1nterleaved with the assignments o£ the labe1s. They are all in
the same order as they appeared in SOURCE.

(1]
(2]
[3]
[4]
[5]
[6]
(7]
[8]
[9]

V ~CONTEXT;66;6PASSTWO;Al;A2;A3;A4;A5;A6;NB;NA;NX;NC;ERR
6A-6K65+0 X 6LV--l+pDLC

[10]
[11]
[12]
[13]
[14]
(15)
[16]

v

Al -Al\+ 6
A2 -l\~+ 40
A3- 10bEQU A2+4
A4 -6A+ 46
A5 -AA+ · 52
A6 -66+ 58
NB -l\A+ 64
NA- 166DS 20
NX -A6+ 66
18 60RG 100
NC -AA+ 68
ERR -l\~+ 68
bMEM-(f.5 x 6K65If/l\LC+6LCX,O)pO
ALC(AEQL[;O]]-AEQL[;l]
-CFX 6F

Figure 5.

By the time 6CONTEXT reaches line 16 (see Figure 5)
are de£ined and ALe has the location counter values
the lines o£ the source program. We are then
posi~ion as the typical assembler was at the end o£
are ready to begin pass 2.

Typical. Pass 2.

all labels
£or each o£

in the same
pass 1, and

At the beginning o£ pass 2 the typical assembler opens an object
code outpu~ ~ile. It then emits into the bu~£er o£ this £ile
entry and external symbol in£ormation £rom the symbol tabl.e.
Then in pass 2 each line o£ encoded text is read £rom the
inter-pass £ile and the £ollowing Iunctions are per1ormed.

I) For machine instructions and other bit generators
(such as DC), operand £ields are evaluated.
Evaluation o£ operands requires parsing o£ in£ix
algebraiC expressions. The results o£ evaluation
are packed according to the £ormat requirements o£
each instruction. The packed data and its location
counter value are emitted to the output bu~£er. The

IBM Internal Use Only

PAGE 10

loca~ion coun~er is advanced as it was in pass 1.

2) When listing is required, the generated da~a,

location counter value and source line image is
£ormatted and placed into an output listing file.

At the end o~ pass 2, the symbol table is printed wit~ values and
cross re1erence information ~or each label. Error messages, i£
any, are printed just be£ore or after the symbol table. Finally,
relocation information from the symbol table is sent to the
outpu~ bu£1er, and assembly is comp~eted.

Fast Assembler Pass 2.

Pass 2 execution is Simi~arly straight-forward in the fast
assembler. 6INTERLUDE, in addition to preparing ACONTEXT, also
prepared SOURCE for pass 2 execution. The preparation consisted
of removing all the labels, and changing the ' header line to
6PASSTWO. Figure 6 shows this new version of SOURCE.

V flPASSTWO
[1] A SAMPLE SOURCE PROGRAM
[2] ENTRY A4,ERR
[3] EXTRN'Xl,X2'
[4] ADD NB,NX
[5] ADDI NB,O
[61 IF "NX,GT,NB,Al
(7] CGOTO NB,ERR,A1,A2,A3,A4,A5,A6
[8] A START OF BRANCR GROUP
(9] ADD NA,NC
(10] EQU A2+4
(11] ADD NB,NX-l
[12] ADD(Al+1),X2
[13] ADDI Xl,-5
[14] A CONSTANTS
(15] DC 3
(16] DS 20
[17] DC 5
(18] ORG 100
[19] DC A4
(20] END

V

Figure 6.

6CONTEXT (on line 16) calls APASSTWO (the text image 01 Which was
left in 6F by flINTERLUDE) and the following actions "are carried
out by the assembler ~unctions called ~rom flPASSTWO.

1) Machine instruc~ions (through the £unction AGENWDS)
place the proper data and relocation bits into the
vector flMEM. If listing is required, the function
6PRT is called upon. Machine instructions
(including DC) are the only instructions whose

IBM Internal Use Only

operands are evaluated during pass 2.
evaluated, the values o£ labels
es~ablished by ~CONTEXT.

PAGE 11

When they are
are those

2) Functions EQU, ORG, DS and EXTRN only list (their
~unctions having been completed be£ore pass 2).

3) Comments are not execu~ed. There£ore in order to
list them, the print routine looks at the line
£ollowing each one it prints to see i£ the successor
is a comment. 1£ it is, the successor is printed
(and its successor checked). This procedure will
guarantee listing o£ all comments except one
appearing on line 1. For this case ASM must per£orm
the check and call 6PRT i£ required.

4) ENTRY £orms all o£ lys listed items (entry labels)
into the matrix
taken ~rom ~LC.

~ENL. The values o£ the items are
Listing is per£ormed as required.

At the end o£ pass 2 (i£ a listing is requested) the symbol table
is printed. Error messages, i£ present, are listed and assembly
is complete. The equivalent o£ the object code ~ile is held in
the global variables ~MEM, 6ENL, and AEXL.

ERROR CHECKING

Many o£ the errors in the source program will be detected by APL
itsel£. 1£ there are any syntax errors they will occur in pass
1. Assemb~y will stop and the user can usually correct them by
editing the source program, and then resuming the assembly as he
would the execution o~ any APL program. This should not be
con£using because the APL error messages come out in the context
of the source program. The code displayed is £amiliar to the
user. This is contrary to the usual case where an APL error
message is in the context o£ the assembler -- a program the user
did not write. APL checking also eliminates considerable code
that would have to be included ~n the typical assembler.

Value errors will occur either during pass 1 (when a label is
mLsspelled or missing), or during the interlude (when the operand
o~ a de£erred instruction is not de£ined earlier in the source
program). Ix the error In either o£ these cases Is not in the
line at which the assembler stopped, ~he assembly must be aborted
be£ore the correction is made. OtherWise, ~he line causing the
error may be modi~ied and the assembly resumed.

The assembler makes a number o~ checks itsel£ ~GENWDS checks data
and relocation bits it is passed £or compatability. 1£ they
don't match an error message is issued, but the assembly
continues. EQU, ORG and DS check their operands 10r proper shape
and value and issue any needed error messages. All error
messages are set up by a common routIne, ~ERR. AERR places the
message and line number on an error list. 1£ no lIsting is

IBM Internal Use Only

PAGE 12

requested, the source line image is Included on the lis~. At ~he
end o£ assembly, any accumulated error messages are printed
£ollowing the symbol table.

Some errors wil~ escape detection. For example, dup1icate 1abels
will not be noticed. Some relocatab1e expressions (like A+B, A+X
and X+1, where A and Bare relocatable labels, and X is an
external label) will be wrong without being noted. These could
be detected at additional cost o£ assembly speed. There are no
attempts to catch errors introduced through malicious use (such
as real numbers or quoted strings in the operand £ields'. These
errors will cause ~he assembler to stop with some APL error
message (probably INDEX or DOMAIN error).

por thiS particu~ar machine architecture (16-bit words) it is
convenient ~o inclUde the relocation bits as part o£ the label
value. These bits are the 17th and 18th bits (counting £rom the
right) o£ a binary representation o£ the label value. Bit 17 is
one i£ the value is relocatable. Bit 18 is one i£ the 1abel is
an external label. These va~ues are easily tested £or relocation
~ype determination by 'the loader. The object code vector, 6MEM,
readily holds one 16-bit word plus two relocation bits per
element. (On a S/370 implementation o£ APL up to 56 bits can be
held per element.) The £1na1 f~rmat o£ the relocatable object
code is beyond the scope of this report. Such a £ormat dePends
heavily upon the relocating loader requirements. However,
suf£icient information is produced by the assembler to a110w the
construction o~ any desired format. Inclusion of an object code
formatter would not appreciably increase assembly time.

This report describes only a basic assembler that has no macro
capability. Implementation of macros so that macro definitions
could appear as part of the source program would lead to
relatively slo~ text processing. However, one can, without
significant loss of execution speed, implement what are
classically called "built in" macros. That is, one can implement
APL functions which generate mUltiple machine instructions per
invokation. Such APL functions can take on all of the properties
general~y associated with conditional macros. The only
di££erence between these macros and de£inable macros is that they
operate in terms 01 "inside the assembler" rather as part of the
source language.

DRAWBACKS

The £ast assembly technique described above has a number of
drawbacks, none judged to be serious. The source program £orma~
is dictated by APL syntax requirements. Labels mus~ appear
£ollowed by a colon. (Some people will view ~h~s as an
advantage.) Commen~s can appear only on comment lines (a

IBM Internal Use Only

PAGE 13

distinct disadvantage). Operands mus~ be evaluated rlgh~ ~o le£t
without operator precedence. This means ~hat a~l operands but
the rightmost must be enclosed in parentheses i£ they con~aln an
operator. (See line 12 in SOURCE.) Program labels cannot be the
same as op-codes because alt names are in the same APL symbol
table. The labels DUMP and ASMcan't be used, though this
restriction could be removed. (Note that all internal assembler
£unctions and variables have names beginning with 'A'.) Neither
more complete error checking, macro processing nor label-use
recording can be achieved without considerable loss in assembly
speed. Some £eatures such as literals, hexadecimal and EBCDIC
data speci~ication are not included in the sample assembler, but
could be added with little cost in speed or implementation time.

TIMINGS AND CONCLUSIONS

The sample assembler has been tested and timed to a limited
extent on an IBM S/370/145 (under VM/370) and on an IBM 5100.
The timing £ormulas ~or assemblies with and without listings are
shown below. The output ~rom the assembly o£ our sample program
is show in Figure 7 at the end o£ this report.

on S/370/145 (with microcode assist) Maximum
with listing seconds = .037xLINES + .141 1608 Ipm
without listing seconds = .029xLINES + .106 2077 Ipm

on 5100
with listing seconds = 5.71xLINES + 22.5 11 Ipm
without listing seconds = 2.70xLINES + 16.7 22 lpm

The numbers 1ollowlng the £ormulas (under the heading "Maximum")
give the maximum number o£ lines per minute achievable according
to the £ormulas.

The 1ast assembler was implemen~ed in two man-days, once the
concept was perceived by ~he author. A similar assembler [1]
using "typical" techniques was constructed by ~he author in about
£our man-weeks. It is estimated that only one or two man-days
would be required to wrl~e and check out an assembler £or any o~
a variety o~ typical machine archi~ecxures. This low
implementation cost, coupled with the high execution speed brings
the cost o£ the £ast APL assembler to the point o£ viability in
the realm o£ micro-computer economics.

REFERENCES

1) Myers, H. Joseph, and Friedl, Paul J~, "A
Terminal-Orien~ed ~ssembler/Simulator 10r System/7",
IBM Scienti£ic Cen~er Report ZZ20-6412, December
1971. (IBM In~ernal Use Only.)

2) IBM Coproration, "IBM SYstem/360 Disk and Tape
Operating System Assembler Language", Form C24-3414,
1969.

IBM Internal Use Only

ASltI. • SOURCE •
LOC OPR OPND OPND OPND
c--
0000:
0000:
0000:003B 0040 0056
0006:003D 0040 0000
OOOC:I057 0056 0040 0006
0014:0056 0040 0006 0064

0006 0028 002e 002E
0034 003A

C--
0028: 003B 0042 0064
002C:
002E: 003B 0040 0055
0034:003B 0007 0001
003A:00JD 0000 FFFB
c--
0040:0003
0042:
0056:0005
0064:
0064:002E
0066:

SYMBOL TABLE
Al
A2
A3
A4
AS
A6
ERR
NB
NA
NX
NC

ENTRIES
A4 =
ERR =

5
9

10
11
12
13
19
15
16
17
18

6=R
40=R
44=R
46=R
52=R
58=R

100=R
64=R
66=R
86=R

100=R

1 46
1 100

EXTERNAL SYMBOLS
Xl
X2

0006
0028
002C
002E
0034
003A
0064
O()40
0042
0056
0064

PAGE 14

I SOURCE PAGE 1
ItA SAMPLE SOURCE PROGRAM
21 ENTRY A4,ERR
31 EXTRN' Xl ,X2'
41 ADD NB,NX
SiAl ADDI NB,O
61 IF NX,GT,NB,Al
71 CGOTO NB,ERR,Al,A2,A3 t A4,A5,A6

8 A START OF BRANCR GROUP
9 A2 ADD NA,NC

10 A3 EQU A2+4
11 A4 ADD NB,NX-1
12 AS ADD(Al+1),X2
13 A6 ADDI Xl,-S
14 A CONSTANTS
15 NB DC 3
16 NA DS 20
17 NX DC S
18 NC ORG 100
19 ERR DC A4
20 END

Figure 7.

IBM Internal Use On~y

(1]
(2]
(3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]

. (12]
{ 13]

[1]
[2J
[3]
[4]
(5]
[6]
[7]
[8]
[9]
(10]
[11]
(12]
(13]
(14]

[15]
[16]
{17]
[18]
[19]
(20]
[21]
[22]
(23]
(24]
[25]
(261
[27]
[28]
[29)
[30]

PAGE 15

A APPENDIX: A SAMPLE FAST ASSEMBLER

v ASM 6N;6LSTSW;6LCX;~PASS2;6R4;~F;~CONTEXT;6K65;OIO;
APGN;APGH;6LCT;6LV;6EQL;AERL;ASY;AMT;ALBL;AHEX;ALC
AMT-AENL-6EQL-AERL-ASY-p~PGN-ALCT-APASS2-DIO-O

-L2>pALCX-(1fpAF-[CR AN'fO

v

ALST SW-' 'e AN
llLV-l+pOLC
ALBL-, 6
6K65-l2*16
AH4-4p16
AEXL-O OpAHEX-'0123456789ABCDEF'
.AN
APASS2-1
APGH-DAV[5p169],'LOC OPR OPND OPND OPND I ',AF[O
;1,' PAGE'
.CFX 6INTERLUDE
APRSYM

v Z-AINTERLUDE;I;J;K;L;M;N
A EXTRACT LINE LABELS (FOR SYMB·OL TABLE'

ASY-AF[; ALBL]
I-M/,pM-ASYv.=':'
ASY-ASY[I ; 1
ASY-(N-pASY'p(J-v\ASY=':',e6SY,[-0.5]' ,

A EXTRACT EQU/DS LINES (FOR CONTEXT FUNCTION)
K-AF[L-(O<AEQL'/IlEQL;]

A CREATE PASS 2 FUNCTION (PASS 1 LESS LABELS)
AF[O;]-(11pAF'f'APASSTWO'
AF[I; ALBL]-Np(J-l ,0 -11-J,eAF[I; ALBL], [-0.5]' ,
AF[ALBL-I;]-(N-+/J)~AF(I;]

A CONVERT EQU/DS TO AEQU/~DS (FOR CONTEXT FUNCTION)
ALC-+\AK65,ALCX
I-(J~ASy),'-','A't'A','+',O O_ALC((J--ALBLeAEQL)/ALBL]
o.-,AK65
K-(-N)~'-',(3 O_Lo.+,O','A',O l'(N--l+(-J)/N)~K

A EXTRACT ORG LINES (FOR CONTEXT FUNCTION'
N-AF[L-I(6EQL<O'/AEQL;]
N-(_Lo.+,O),'A',N

A COMBINE SEGMENTS INTO CONTEXT FUNCTION
L-21fpZ-(Z*' "/Z-'ACONTEXT;AA;APASSTWO',,';',ASY
Z-(LfZ),(-O.5]L"AA-AK65+0 x ALV--l+pOLC'
I-K AVCAT N AVCAT I
AEQL-O 2pK-(N/AEQL), (-N-AEQL.>O) /AEQL
Z-Z AVCAT I(.(IK),(-ALBLeK)/ALBL;]
Z-Z AVCAT AINTI

A PREPARE SYMBOL TABLE
ASY-M~ASY

ASY(I/,pI-AF(;Ol='A';J-DAV(255]
-"A'*AF[1;O]
'C--'APRT 1

IBM Internal Use Only

V N AGE'NWDS A;I;J;C;M;T
(1] -APASS2/Al
[2] ALCX[lfALVfC~C]-2xpN
(3] -0
[4] Al:L-lO.5x AK65IT-ALC[J-"pALVfCLC]
(5] -(0=I-pN)/A4
(6] -(NA.=AK65~A-IfA)/A3

[7] J AERR'RELOCATION ERROR'
(8] A3:AMEM(L+,I]-A
[9] A4:-,-ALSTSW
[10] I-,(~AHEX[6H4TT,A]',"

[11] 1(4]-':'
[12] I APRT J

V

A ASSEMBLER INSTRUCTIONS

V EQU L; I
[1] -APASS2/A3xA~STSW

(2] 1-"plfALVfDLC
[3] -(1=L-p,L"A1
[4] I AERR(_L),' OPERANDS'
[5] Al:·(':'eAF(1;ALBL]'/A2
(6] I AERR'LABEL MISSING'
[7] -0
[8] A2:AEQL-AEQL,I
[9] -0
[10] A3:AMT AGENWDS AMT

V

V Z-N AEQU L
[1] -((2XAK6S'>L'/Al
[2] N AERR'RELOCAT10N ERROR'
[3] L-O
[4] Al:AEQL-AEQL,[O]N,Z-lfL

V

V ORG L
[1] -APASS2/AlxALSTSW
[2] AEQL-AEQL,-'~pALVfOLC
[3] -0
[4] Al:AMT AGENWDS AMT

V

V N AORG L
[1] -(-2IL'/Al
(2] N AERR'ODD ORIGIN'
[3] L-L+l
[4] Al:AA-AA+ALCX[N]-(L-AK6SIL'-AK6SIALC(N]
[5] AEQL-AEQL,(O]N,L+AK65
(6] ALC-+\AK65,ALCX

V

IBM Internal Use On~y

PAGE 16

V DS L
[1] EQD L

V

V Z-N ADS L
[1] -(O~L-1tL)/A1

[2] N AERR'ILLEGAL NEGATIVE'
[3] L-O
[4] A1:-(AK65>L)/A2
[5] N 6ERR'RELOCATION ERROR'
[6] L-O
[7] A2:Z-ALC[N]
[8] 6'l~-6A+ALCX[N]-L
[9] 6LC-+\6K65,6LCX

V

V ENTRY L
[1] -6PASS2/A1+-6LSTSW
[2] AENL-AENL,L
[3] -0
[4] Al:6MT AGENWDS AMT
[5] -L2=pp6ENL
[6] 6ENL-6SY(AENL;],·=',.~(3,AK65)TALC[AENL]

V

V EXTRN AL;6I;6J;A
[1] -6PASS2/AlxALSTSW
[2] -L(O=ltOpAL)VO=p,AL
[3] AJ-(bJ,p6L'-0,1+AJ-AI/,pAI-AL=','

PAGE 17

(4] -LO~pAJ-(O=CNC 6J'fAJ-(pAJ)p(,AJ-AJo.>,r/6J)\(-AI)/AL
[5] AEXL-AEXL bVCAT AJ
[6] AJ-«1tp6J'f'A',,[O]AJ-AJ,'-·,W«(-lfpAJ'f,lfpAEXL'o.+,

2XAK65
[7] -OFX AJ
[8] -0
[9] A1:AMT AGENWDS AMT

V

V END
[1] -A 1 xAPASS2AALSTSW
[2] A1:AMT AGENWDS AMT

V

V Z-I AVCAT J
[1] Z-O,-lf(pI,rpJ
[2] Z- ((Zr pI) t I' , [0] (Zr pJ) f J

V

V J AERR M

[1] M-DAV[73],(4 O.J),': ',M
[2] -ALSTSW/Al
[3] M-(29fM,,"',AF(J;]
[4] Al:6ERL-AERL,M

V

IBM In~ernal Use On~y

V I llPRT J;I,
[1] -t-IlLSTSW
[2] Al:-(O<IlLCT-IlLCT-l)/A2
(3] [-(Sx1=IlPGN)!APGH,_IlPGN-llPGN+1
(4] ALCT-60
(S] A2:-(' '=ltI)/A3
[6] L-«L~[AV(255])/L-llSY(J;]),IlF(J;]

[7] [-(25fI),(40-J),'I',L
[8] A3:-(25~pI)/A4

[9] Q-25fI-' ',25'1
[10] -Al
[11] A4:-,(lfpllF)~J-J+l
[12] 1- , C-- •
[13] -Alx'A'=IlF[J;O]

V

[1]
(2]
[3]
[4]
[5]
[6]
[7]
(8]
[9]
[10]
[11]
[12]
(13]
[14]
[15]
(16]
(17]
[18]

v llPRSYM;I;J;CR
CR-OAV[73]
-(-IlLSTSW)/A3

V

-(OEpllSY-(-Il$Y[;O]£' ',OAV(255])~IlSY'/A2

-«IlLCT-5»2+1fpllSY'/Al
Q-(IlLCT+6)pOAV(169]

A1:[-CR,'SYMBOL TABLE'
ASY-ASY,O 0_IlLBL,£O.5](XJ'XAK6SII-IJ-llLC[IlLBL]
J-llSY,'=',' R'(2IlI*IlK6S],' ',~AHEX[IlH4T,J]
[_I ',JC.'ABCDEFGHIJKLMNOPQRSTVVWXYZ',J(;O];]
-(0£pAENL)/A2
C-CR,'ENTRIES'
c-' ',IlENL

A2:-(OEpAEXL'/A3
Q-CR,'EXTERNAL SYMBOLS'
0-' ',AEXL

A3:I-CEX AEXL
-,O=pllERL
Q-CR,'ERRORS:',AERL

A MACHINE INSTRUCTIONS

V ADD L
(1] AADD T,F
(2] 0 1 1 llGENWDS 59,L

V

V ADDI L
[1] A AD D IT, F I
[2] 0 1 0 llGENWDS 61,L

V

V GOTO L
[1] 0 1 AGENWDS 8S,L

V

IBM In~erna~ Use Only

PAGE 18

V CGOTO L
(1] A CGOTO IX,ERR,Ll,L2, ••• ,LN
[2] (0 1 O,l'L=L)~GENWDS 86,L(O],(-2+pL),11L

V

V IP L
[11 AIF A,CP,B,LOC (WHERE CP= GT, EQ, GE, LT, NE OR LE)
{2] 0 1 1 1 ~GENWDS(87+L{1]),1 0 1 IlL

V

V IFf L
[1] AIFI A,CP,BI,LOC (WHERE CP= GT, EQ, GE, LT, NE OR LE)
(2] 0 10 1 ~GENWDS(32855+L[l]),1 0 1 IlL

V

V DC L
[1] ADC Vl,V2, ••• ,VN
(2] (L~~K65)AGENWDS L-,L

V

A AUXILIARY FUNCTIONS

V Z-A
(1] -L-Z-APASS2
(2] Z-ALC("pALvtDLC]

V

[1]
(2]

[3]
[4]
(5]
{6]
[7]
[8]
[9]
{ 10]
(11]
(121

(13]

V Z-DUMP N;I;J;K;L;CR;[fO
Z-OpCR-DAV[73+CIO-O]
N-lI2fN+2

V

I-N[O]
N-(-1+pAMEM)lr/2tN

Al:-,N<I
-«(K*1)AJ(O]A.=J-~MEM[I+'K-8L1+N-I])/A2
Z-Z,CR,(-11ACVH 1x2),': ',ACVB J
-Al,I-I+K

A2:L-I
A3:-(N<I-I+K)IA4
-(J(O]A.=AMEM[I+,K-8l1+N-l]'/A3

A4:Z-Z,CR,' ',(ACVH 2xL),'THRU ',(ACVH 2 x I-l),'
CONTAIN ',ACVB J[O]
-A1

V Z-ACVH N
(1] Z-,(~'OI23456789ABCDEF'(16 16 16 16T,N]),' ,

V

V Z-ACVB N
(1] Z-3 16 16 16 16T,N
[2] Z-' RX'(Z(O;]xN~O],[O]'0123456789ABCDEF'[1 OlZ]
[3] Z-,~l 0 1 1 1 1 O~Z

V

IBM Internal Use On~y

PAGE 19

" l>
o
(")

SCIENTIFIC CENTER REPORT INDEXING INFORMATION

1.. AUTHOR(S) :

H.J. Myers

2. TITLE:

A Fast Assembly Technique Using APL

3. ORIGINATING DEPARTMENT

Palo Al to 'Scientific Center

4. REPORT NUMBER

ZZ20-6431

Sa. NUMBER OF PAGES

19

Sb. NUMBER OF REFERENCES

o

9. SUBJECT INDEX TERMS

APL
Assemblers
Performance

6a. DATE COMPLETED 6b. DATE OF INITIAL PRINTING 6c. DATE OF LAST PRINTING

May 5, 1976 June 1976

7. ABSTRACT:

A technique is described which reduces the cost of
producing assemblers for a wide variety of machine
architectures. Assembly is accomplished by executing
each instruction of the source program as an APL
function. An assembler has been generated capable of
speeds of about 2000 lines per minute in anAPL
environment on an IBM System 370/145.

8. REMARKS:

IBM INTEru~AL USE ONLY

"

Palo Alto Scientific Center, P. O. Box 10500, Palo Alto, California 94304

I

{

	102679734-05-01-src
	102679734-05-02-src
	102679734-05-03-src
	102679734-05-04-src
	102679734-05-05-src
	102679734-05-06-src
	102679734-05-07-src
	102679734-05-08-src
	102679734-05-09-src
	102679734-05-10-src
	102679734-05-11-src
	102679734-05-12-src
	102679734-05-13-src
	102679734-05-14-src
	102679734-05-15-src
	102679734-05-16-src
	102679734-05-17-src
	102679734-05-18-src
	102679734-05-19-src
	102679734-05-20-src
	102679734-05-21-src
	102679734-05-22-src
	102679734-05-23-src
	102679734-05-24-src

