
Westinghouse

•

Contents
Operation ~
Instruction Format
Basic CPU Hardware
Address Calculation
Repertoire of Instructions

4 Input/Output Channel Operation 11
4 External Interrupts. 15
5 Service Request Interrupts 15
6 SST and EST Instructions 17
8 .Shifting..... • 18

08-23-202 Page 1

P-2000 Central
Processing Unit

The central processing unit (CPU) of the
Prodac 2000 computer consists of 16 x
28-inch printed circuit cards mounted ver­
tically in a slide-out rack . Four cards (see
Figure 1) are required for each unit: the
maintenance panel and fast access mem­
ory card (frequently ca lied the bit card),
the arithmetic and control card, at least
one memory card handling 4,096 to
16,384 words, and an input/output (I/O)
card. Additional memory cards (up to a
total of four cards) can be added to in­
crease core memory size to 65,536 words.
The slide-out rack is large enough to ac­
commodate all seven cards which make
up the maximum system.

Card positions in the rack are interchange­
able, except those of the maintenance
panel and fast access memory card and
the arithmetic and control card which
must be used in that sequence because of
interconnecting cables. All other inter­
connections among the cards are made
with 14 ribbon siderails, installed seven
on each side of the cards. Connection to
the cards is made through 18-pin con­
nectors on the siderails. All siderail sig­
nals go to all cards; it is this feature which
permits the interchanging of card positions.

The maintenance panel and fast access
memory card houses the maintenance con­
trol pushbuttons and the logic elements .
Elimination of the cable usually required
to connect the maintenance panel with the
system removes a major source of noise
and system failure. Fast access memory,
accessible in less than 500 nanoseconds,
includes all of the first 16 locations in
working memory. It is also able to operate
directly and quickly on any location in
either fast access memory or core mem­
ory. All fast access memory locations
can be addressed in the normal way by
any instruction; however, the first six

locations are general-purpose registers
which can be addressed by name as well
as by memory location. These registers
include the program address register, two
base or index registers used for address
calculation, a shift instruction register, the
accumulator and an extended accumulator.

May, 1970

08-23-202 Page 2

Westinghouse

•
The arithmetic and control card handles
double precision add and subtract instruc­
tions to permit direct arithmetic operation
on 32-bit numbers . It therefore gives ac­
curate representation over a range of
- 32,768 to + 32 ,768 to the nearest unit.
Both multiply and divide instructions are
standard to speed program execution by

Figure 1. Four Cards Make up the P-2000 CPU

eliminating the LJ'se of subroutines for
these instruction ~.

!
Each memory card handles 4, 8 or 16K
words of core memory. However, decod­
ing for the full 16K is provided on each
card, regardless of the amount of memory
purchased. Additional memory up to the

full card capability can, therefore, be field
added easily without special adapters,
connectors or hardware changes. Word
manipu lation instructions, such as shifts,
increments or decrements can be per­
formed on any location in core memory
without transfer of the word to the ac­
cumulator.

Panel 1-Maintenance Panel and Fast Access Memory Panel 2-Arithmetic and Control Board

Any block or blocks of memory can be
used as buffers for input or output opera­
tions betweeen the CPU and mass mem­
ory or the process. Buffers can be of any
length and any number of buffers may be
established by the program . Because data
transfer is asynchronous, instruction times
depend on the speed of the memory card

Panel 3-Memory

or the I/O ca rd . Therefore, even after a
machine has been in operation, it can easi­
ly be speeded up by replacing the orig­
inal memory and/or I/O card with units
designed for faster operation . The func­
tionally separate cards provide a clean
break between the I/O data bus and the
memory bus, permitting the I/O structure

08-23-202 Page 3

P-2000 Central
Processing Unit

to be relatively independent.

The input/output card in the CPU handles
the interface with the process I/O system
-the high speed receiving and transmit­
ting of information between the computer
and machines or instruments involved in
the process being controlled as well as

Panel 4-lnput / Output Control

08-23-202 Page 4

Westinghouse

•
document devices such as typewriters,
teletypes, line printers, card readers and

punches .

The P-2000 CPU can be supplied in sev­
eral forms , depending on system require­
ments. The standard industrial cabinet is
a double-door cabinet 87 inches high, 53
inches wide and 33 inches deep . The bal ­
ance of the space in the cabinet is then
used for process input / output equipment.
For engineering laboratories, small control
systems, and other installations where
space is limited, a smaller cabinet is avail­
able- 69 inches high, 24 inches wide and
30 inches deep. The small cabinet may be
supplied with a solid door, a door with a
glass window, or no door at all. The win ­
dow is a sliding glass panel centered 46
inches above floor level so that it reveals
the maintenance panel. A lock on the win ­
dow prevents unauthorized access. The
CPU can also be provided with no cabinet

at all for OEM use.

Advantages
• Fast access memory is accessible in less
than 500 nanoseconds. Sixteen flip-flop
locations in working memory, including
six general-purpose registers, are located

on a single card.

Field - expandable memory . Memory

cards are supplied with 4K , 8K or 16K
words. Decoding for 16K is supplied on

all cards, so that additional memory up to
the full card capacity can be added in the
field.

• Double precision add and subtract is
standard. Accurate representation is pro­
vided over a range of -32,768 to + 32,768.
Floating point hardware is available as
an option.

• Hardware mUltiply and divide. Sub­
routines are not required for these instruc­
tions. Program execution is speeded up.

• Ease of troubleshooting. The functional
and physical orientation of the cards helps

speed up the diagnosis of trouble. Inter­
changeability of the cards permits close
inspection of a suspect card in the ma­
chine. Cards can also be tested off line,

utes by pulling the siderails free and un­
bolting the card . Spare cards can be
leased from Westinghouse, and defective

cards will be repaired at the factory.

• Usable in industrial environments . The
P-2000 CPU operates over a wide range
of temperatures and humidity : from 0 to

55C, and from 5 to 95%, noncondensat­
ing. Voltage tolerance is ± 10%. Frequen­
cy is 48 to 62 Hz.

• Powerful addressing capability. The P-
2000 CPU operates in eight different
modes, depending on the type of address­
ing used.

• Convenient instruction repertoire. The
capability of the 32-instruction repertoire
is extended by the flexilibity of its use.
For example, a macro-instruction permits
multiple loading and storing .of the pro­
gram registers and the designator register.
Another provides eight different types of
shifting from a single instruction.

Operation

The P-2000 CPU offers high-speed com­
putation ability without loss of power in
the instruction repertoire in regard to core
addressing or referencing. The first 256
locations in core can be addressed abso­
lutely by any instruction located anywhere
in memory . The first sixteen locations (0
through 15) are high-speed , integrated
circuit flip-flops. Six of these locations are
used for the general-purpose program reg­
isters; the remaining ten are available for
small, high-speed subroutines. Locations
16 through 255]0 can be used to store
system constants .

Instruction Format

The P-2000 CPU uses a 16 - bit word
length. The instruction format is shown
in Figure 2.

Function Code. The 5-bit F field, w h ;ch rep­

resents the function of the instruct ion, is

Bit No. 15 114 1,3 112 1 11 10 1 9 1
because each contains its own timing cir- Usage Function Mode

cuits. Symbol F m

• Ease of maintenance. When a defective
card is located, it can be replaced in min- Figure 2. P-2000 Instruction Format

decoded by the CPU hardware which then
executes the instruction accordingly. The
5-bit size dictates a basic instruction rep­
ertoire of 32 instructions. For programming
convenience, each of these 32 instruc­
tions is assigned a mnemonic symbol
which is an abbreviation of its function.
These instructions are listed and de­
scribed later in this bulletin.

In actual operation, however, the P-2000
computer extends this repertoire of 32 in­
structions in several ways:

1. The SST and EST instructions permit
multiple loading and storing of the general
program registers and the designator reg­
ister.

2. The shift instruction can provide eight
different types of shifting operations or
the no-shift operation.

3. Addressing capability is flexible and
efficient .

Address Mode. The 3-bit m field defines
the mode of operation, telling the CPU
how to determine (or calculate) the ad­
dress of the operand (the location to be
acted upon by the instruction). The use
of this code to obta in a variety of modes
of operation gives the P-2000 CPU an
extremely flexible and powerful address­

ing structure.

Displacement Address. The 8-bit y field
specifies the basic operand address or the
desired channel for input/output func­
tions. It has a total span of 256 addresses,
normally from 0 through 255. However,

in some instances, bit 7 is treated as a
sign bit, giving the field a decimal number
range from ~128 through + 127. For in­
structions wh ich use core addressing, the

number in the displacement field is cal­
culated with other va ri ables specified by
the m ode (m) bits to obtain the operand
ad dress. Addressing will be discussed in
greater deta i l lat er in this bulletin .

8 7 18151413121110
Displacement Address

y, y*

5 P I Cor.
~ : I

G I
A I

.... 1""""

E I

I

(Adder __ 5)

Figure 3. CPU Block Diagram

Basic CPU Hardware

A functional block diagram of the P-2000
CPU is shown in Figure 3. Working core
memory contains a maximum of 65 ,536
(65K) words and a minimum of 4 ,096
(4K) words , expandable in modular incre­
ments of 4K, 8K or 16K. The first 16 lo­
cations (0-FI 6) are integrated circuit flip­
flops with a cycle time of less than 500
nanoseconds. The first six locations are
used as general program registers. The
remaining ten locations are available for
any function for which the extra high
speed is desirable. All 16 locations can be
addressed in the norma I way by any in­

struction.

The P-2000 CPU has the instruction abil­
ity to work directly on any memory loca­
tion without disrupting the contents of
the accumulator or any other of the gen­
eral program registers. Shifting, decre­
menting, incrementing and storing zeros

can be done directly on the operand lo­
cation . The designator register will con­
tain the status (zero, positive, carry and
overflow) of the result of this type of in­
struction, because the designators are ref­
erenced in the hardware to the adder, not
the accumulator.

This direct memory ability is invaluable
to the programmer in interrogating flags
or changing software counters while leav-

X

Fm -
......

D
r---

Z ~

Adder

ing the data in the general program reg­
isters intact. After such an instruction is
executed, the status contained in the des­
ignators can then be tested by the jump

instructions to provide logic decisions in
the program.

Hardware Registers
External to Memory

Registers S, Z, X, Fm, Adder and Dare
hardware registers external to core mem­
ory . They are used only in regulating the
flow of instructions to and from the CPU
and none but the D register can be directly
referenced by any instruction.

S Register- Memory Address Register ­

Contains the 16-bit address of the mem­
ory location to be accessed for the Read
or Write function.

External Request
Lockout

L..-___ External Interrupt
Lockout

Figure 4. Format in the Designator Register

DB-23-202 Page 5

P-2000 Central
Processing Unit

Z Register- Memory Read Data Buffer­
Contents of the addressed memory loca­
tion are copied into this register. These 16
bits provide one input to the adder.

X Register-Data Buffer Register-Pro­
vides the second 16-bit input to the adder.

Fm- Instruction Function Code and Ad­
dress Mode Register- Conta ins the 5-bit
function code and the 3-bit address mode
of an instruction read from core memory.

The CPU decodes this register to deter­
mine the hardware sequencing required to
execute an instruction .

Adder- Twos complement, 16-bit adder
circuitry. Although the adder is discussed
here as a register, it has no storage capac­
ity because it contains no flip-flops. The
output of the adder, which is always, in­
stantaneously, the sum of the contents of
the Z and X registers, provides the input
data to core . The sum of the Z and X
registers is written into the addressed
core location , giving additional flexibility
in the hardware restoration of that loca­
tion. Although the output of the adder
follows the sum of the Z and X registers ,
the use of the 16-bit output is controlled
by hardware - determined gating signals
(e.g., Adder ~S) .

D- Designator Register-The 8-bit desig­
nator register, as shown in Figure 4, con ­
tains three sets of conditions:

1. The final status of the executed in­
struction data in the adder .

2. Lockout of external interrupts and

service request interrupts. These are dis­
cussed later in this bulletin .

3. Post-indirect indexing mode.

Post - Index Mode

1....-____ Zero Designator

L..-______ Positive Designator

L..-_______ Overflow Designator

L--_________ Carry Designator

00-23-202 Page 6

Westinghouse

•
Status of data in the adder (not in the ac­
cumulator) is indicated in the low order
six bits by flip-flops preset in certain po­
sitions for:

Zero-All bit positions contain O.

Positive-The most significant bit of the
word contains O.

Carry-the adder function has generated
an arithmetic carry (special for shifting).

Overflow-The most significant bit in the
number in the adder is opposite to the
most significant bit in the Z and X regis­
ters (positive+ positive=negative; nega­
tive+negative=positive) .

General Program Registers in
Fast Access Memory
The general program registers are com­
puting registers which complement the
fixed CPU hardware registers to provide
the powerful instruction and addressing
capability of the P-2000 computer . They
are located in fast access memory and can
be directly addressed by the program.
They form the flexible basis for instruction
execution, address calculation, shifting
description and the results of arithmetic
operations.

P Register (location 0)-The program ad­
dress register which contains the address
of the instruction being executed. At the
initiation of an instruction execution, the
P register contains a number which is one
less than the address of the instruction to
be executed.

B Register (location 1)-A base or index
register used for address calculation.

C Register (location 2)-A second base
or index register used for address calcu­
lation.

G Register (location 3)-Describes the
shift instruction.

E Register (location 4)-The extended ac­
cumulator. In double precision operations
(multiply, divide, double word shifts, etc.),
contains the most significant half of the
double word .

A Register (location 5)-The accumulator.
In double precision operations, contains
the least significant half of the double
word.

Address Calculation
The operand address calculation is a func­
tion of the P-2000 CPU hardware and
three possible variables:

1. y-the 8-bit displacement field in the
instruction word.

2. m-the 3-bit address mode in the in­
struction word .

3. M-the 2-bit post-index bits in the
designator register.

The y and m variables are contained di­
rectly in the instruction being executed.
The M variable must have been properly
set by a programmed designator instruc­
tion (CD R) before execution of any in­
struction which is to use that variable in
its calculation.

The operand address calculation can be
used to combine and implement the fol­
lowing types of addressing:

Absolute or Relative
Pre-index
Direct or Indirect
Indirect Relative or Post-index

P-2000 address calculation is based on
the relationship of the 8-bit displacement
field and the maximum of 65K of memory.
The 8-bit displacement field permits di­
rect addressing of 256 10 locations. A 16-
bit number is required for direct access
to 65K of memory. However, the various
modes of addressing allow modification
of the 8-bit number for full access to 65K
and provide valuable application tools to
the programmer.

Absolute Addressing. The 8-bit displace­
ment field number can be used as a 16-bit
positive number to provide direct address­
ing within a 256-location band starting
at location 0, from an instruction located

anywhere in memory. The general pro­
gram registers are included in this band
of locations.

Absolute addressing is accomplished in
the CPU hardware by making the 8-bit
displacement field number a 16-bit posi­
tive number. This is done by clearing bits
8 through 15 to O. This number is then
used as the operand address. An example
of absolute addressing is shown in Figure
5.

Example: 6003 STZ y where y=7.

The instruction at 6003 will zero the con­
tents of location 7 .

Relative Addressing. The 8-bit displace­
ment field number can be used in refer­
ence (or relative) to the address of the
instruction being executed. The instruc­
tion address is used as the center of the
256-location band and the limits of the
band are - 128 10 to +127 10 from that
center.

Relative addressing is accomplished in
the CPU hardware by treating the 8-bit
displacement field number as a 7-bit num­
ber, with bit 7 as the sign of that number.
When bit 7 is 0, bits 8 through 15 are
cleared to 0, providing a 16-bit positive
number from 0 to 127 10 , When bit 7 is
1, bits 8 through 15 are set to 1, providing
a 16-bit negative number from - 1 to
- 128 10 ,

This 16-bit number is added to the ad­
dress of the instruction being executed.
The result is used as the operand address .
An example of relative addressing is
shown in Figure 6.

Example: 6003 STZ y where y=6.

The instruction at 6003 will zero the con­
tents of location 6009.

1° 256 l -o-p-.ra-n-d--..~------ 6003 '---S-T-Z-Y--"

LLO~tI=s I

FF 16

Figure 5. Absolute Addressing

Pre-index Addressing. The 8-bit displace­
ment field number can be referenced to
the contents of either the B or C index
register to provide direct addressing with­
in a 256-location band in memory, starting
at the location referenced by the contents
of the index register from an instruction
located anywhere in core. Pre-indexing is
accomplished in the CPU hardware by
making the 8-bit displacement field num­
ber a 16-bit positive number (0 through
255 10). This number is added to the con­
tents of the specified index register, the
result being the operand address. Pre­
index addressing is shown in Figure 7.

Example: 6003 y,B Where y=7 and the
contents of B=3000

In this mode of addressing, the contents
of the index register are often called the
Base Address. Pre-index addressing is
therefore sometimes referred to as base
relative addressing.

Direct and Indirect Addressing. In the pre­
vious descriptions of absolute, relative
and pre-index addressing, it was assumed
that the operand was contained within the
direct addressable band of memory. This
is called direct addressing. However, the
location of the operand is frequently re­
quired to be external to the 256-location
band which is directly addressable by an
instruction. One method of accessing such
an operand is to store the operand ad­
dress in a direct addressable location in
the 256-location band. In that case, when
the direct address is calculated (absolute,
relative or pre-index), the address con­
tained in that location is used as the oper­
and address. This is indirect addressing.

Indirect addressing is accomplished in
the CPU hardware by calculating the di­
rect address and using the contents of
that address as the operand address. An
example of pre-index indirect addressing
is shown in Figure 8.

Example: 6003 STX ·y,B Where • indi­
cates indirect addressing
y=7 (B)=3000 (3007)=4000

The instruction at 6003. will zero the con­
tents of location 4000.

Post-index Addressing. If pre-index in­
direct addressing is used, it is also pos-

256
Locations

Figure 6. Relative Addressing

600l

6009

STZy

Operand

08-23-202 Page 7

P-2000 Central
Processing Unit

-128
Locations

.------;----- 0

+ 127
Locations

Base

T
3

r ~-\---­--....-----.... ---- -----....
Operand I ------ 600ll ... _S_T_Z_*_Y_'B __ ..

256 l007

Locations 1

130FF
Figure 7. Pre-index Addressing

Base lOOO

1 ... ____ ~~ -------- 600ll ... _S_T_Z_*_Y_' _B_ ..

256 l007
Locations

~ lOFF

Figure 8. Pre-index Indirect Addressing

......

"

sible to modify the calculated address
with the contents of either the B or C base
register to accomplish post-index address­
ing. In this case, the CPU hardware cal­
culates the pre-index indirect address
(post-index can only be used with the
pre-index indirect mode) and adds the

.......
......

4~1 ___

calculated address to the contents of the
specified post-index register (B or C). The
result is used as the operand address. The
pre-index and post-index registers (B or
C) mayor may not be the same register.
An example of post-index addressing is
shown in Figure 9, pre-indexing on regis-

D8-23-202 Page 8

Westinghouse

•
ter 8 and post-indexing on register C.

Example : 6003 STZ "y, 8 where" indi ­

cates indirect addressing
y = 7 (8) = 3000 (C) = 3

The instruction STZ "y,8 is identical with
the instruction given in the example of
pre-index indirect addressing. The differ­
ence is in the status of M in the designa­

tor register.

Indirect Relative Addressing. After pre­
index indirect addressing, it is also pos­
sible to modify the calculated indirect ad­
dress with the contents of that indirect
address to accomplish indirect relative
addressing. In this case , the CPU hard­
ware calculates the pre-index indirect ad ­
dress (indirect relative can only be used
with the pre-index mode) and adds the
contents of the indirect address to the in­
direct address. The result is used as the
operand address. Indirect relative address­

ing is shown in Figure 10.

Example : 6003 STZ "y,S where * indi­

cates indirect addressing
y=2 (8) = 3000 (3002) = 1004

The instruction at 6003 will zero the con­
tents of location 4006. The example used
here is again identical with that used for
pre-index indirect addressing and for post­
index addressing . As before, the differ­
ence is determined by the status of M in
the designator register.

Sequence of Address Calculation. The
CPU hardware sequencing of the address
calculation is:

1. Absolute or relative

2. Pre-index

3. Direct or indirect

4. Indirect relative or post-index

The line of definition between pre- and
post-indexing is the point in hardware
sequencing where the decision is made to
use a direct or an indirect address. If
indexing is done before this point, it is
pre-indexing; after this point it is post­
indexing .

Specifying the Address Calculation. In­
structions for calculating the address are
contained in the m field and, if required,
the M field of the designator register. The
m field can specify the entire address cal­
culation, except for pre-index indirect ad-

Base 3000 r I
I~--------- 6003 1 3007 1 4000 STZ * y,B

256
Locations " l " 4000 " " " 4001

30FF " " "- 4002

40031
Operand

Figure 9. Post-index Addressing

Base 3000

T ... __ ,_00_4 __ .. 1 ~ - - - - - - - 60031 .. _S_T_Z_*_y_,_B_ .. 3002
256

Locations

1 30FF

Figure '0. Indirect Relative Addressing

dressing which requires that the M field
be tested . Address modifications are tab­
ulated in Table I.

Type of Address
Calculation m M

Absolute- Direct 000

Relative-Direct 010

Pre-Index 8-Direct 100

Pre-Index C-Direct 110

Abso I ute-I n direct 001

Relative-Indirect 011

Pre-Index 8-lndirect
No Post Addressing 101 00
Indirect Relative 101 01
Post-Index 8 101 10
Post-Index C 101 11

Pre-Index C-Indirect
No Post Addressing 111 00
Indirect Relative 111 01
Post-Index 8 111 10
Post-Index C 111 11

Table I. Address Modification

40061~_o_pe_r_a_n_d_.

The absolute or relative specification is
not shown in the symbolic representation
of an instruction (as in the examples
shown earlier in this section). The tagging
(.8 or ,C) indicates pre-indexing and an
asterisk (..) indicates the indirect address .

Once again, it should be noted that the
programmer must store the M field with
the proper information if he wishes to
achieve post-indexed address calculation.

Repertoire of Inst(uctions
STP-Stop. Program execution and I/O
activity is stopped pending manual re­
start. The stop occurs very early in the
instruction sequence, when instruction bits
10 and 8 have not been considered. There­
fore, regardless of their value, only the
middle bit of m (bit 9) will have been
acted on. Therefore, the Z register will
contain y or y", the X register will contain
a number equal to 0 or to (P), and the S
register will contpin y or y* + (P)' for m =
¢ O¢ or m =¢1 ¢ , respectively. Designators
are not changed .

LOA-Load Accumulator. The accumula­
tor is cleared and loaded from the oper­
and address location. The operand ad­
dress location is not changed. The zero,
and positive designators are set or cleared,

depending on the resultant contents of the
accumulator. Carry, lockout and overflow
designators are not changed.

LOE-Load Extended Accumulator. The ex­
tended accumulator is cleared and loaded
from the operand address location. The
operand address location is not changed.
The zero, and positive designators are set
or cleared, depending on the resultant
contents of the extended accumulator. The
carry, lockout and overflow designators
are not changed.

LOB-Load Base Register B. Base register
B is cleared and loaded from the operand
address location. The operand address
location is not changed. The zero, and
positive designators are set or cleared,

depending on the resultant contents of the
base register . The carry, lockout and over­
flow designators are not changed.

LOC-Load Base Register C. Base regis­
ter C is cleared and loaded from the oper­
and address location. The operand ad­
dress location is not changed. The zero,
and positive designators are set or cleared,
depending on the resultant contents of
base register C. Carry, lockout and over­
flow designators are not changed.

LOG-Load Shift Description Register­
G. Shift description register G is cleared
and loaded from the operand address lo­
cation. The operand address location is
not changed . The zero, and positive desig­
nators are set or cleared depending on the
resultant contents of shift register G. The

carry, lockout, and overflow designators
are not changed.

CDR-Change Designator Register. The
designator register is manipulatec accord­
ing to the bit pattern in the displacement
address, y. Normal address calculation is
not done, regardless of the bits in m. The
instruction operates as follows:

Change Post Index, M

If bit 2 of y is 1, transfer bits ° and 1 of y
into M. If bit 2 of y is 0, do not change M.
y is not changed.

Clear Overflow

If bit 3 of y is 1, clear the overflow desig­
nator to 0. If bit 3 of y is 0, do not change
designator. y is not changed.

Change External Request Lockout
If bit 5 of y is 1, transfer bit 4 of y into the
External Request Lockout Designator. If
bit 5 of y is 0, do not change External
Request Lockout. y is not changed.

Change Interrupt Lockout

If bit 7 of y is 1, transfer bit 6 of y into
the Interrupt Lockout Designator. If bit 7
of y is 0, do not change Interrupt Lockout.
y is not changed.

EST-Enter Status. The seven accessible
registers (P, B, C, G, E, A and D) are

cleared and loaded from a table starting
at the operand address location and pro­
ceeding in monotonic increasing sequence,
in the order stated. The table locations are
not changed. The designators are left
equal to the content of the final table lo­
cation, with no further changes.

STA-Store Accumulator. The operand

address location is cleared and loaded
from the accumulator. The accumulator
is not changed. The zero, and positive
designators are set or cleared depending
on the resultant contents of the operand
address location. The carry, lockout, and
overflow designators are not changed .

STE-Store Extended Accumulator. The
operand address location is cleared and
loaded from the extended accumulator.
The extended accumulator is not changed.
The zero, and positive designators are set
or cleared depending on the resultant con­
tents of the operand address location. The
carry, lockout, and overflow designators
are not changed.

SST-Store Status. This instruction is ab­
normal in its address calculation in that
regardless of the content of bit 10 of the
instruction, the address reference uses
m=O¢¢. Thus, direct and indirect pre­
indexing are suppressed. Bit 10 becomes

abnormally defined, for this instruction
only, as follows:

Bit 10=0; the calculated address is taken

as the table pointer for storage of the
seven accessible registers (P, B, C, G, E,
A, and D) and as the program pointer for
the next instruction. The next instruction
will be taken from the location one higher

OB-23-202 Page '9.

P-2000' Centra·1
Processing :~ nit

than the calculated address. The storage
table will commence at the calculated
address and proceed backward, clearing

7 memory locations in monotonic se­
quence and there storing the contents of
the accessible registers in the sequence
stated, with (P) being placed in the low­

est numbered address of the sequence.
The six registers B, C, G, E, A, and Dare
not changed. The designators are not
changed. Externa I interrupt action and ex­
ternal request action are inhibited imme­
diately following this instruction.

Bit 10 = 1; the calculated address is taken
as the program pointer for the next in­
struction. The next instruction will be
taken from the location one higher than
the calculated address. The content of the
B-register will be taken as the table
pointer for storage of the seven accessible
registers (P, B, C, G, E, A. and D). The
storage table will commence at the loca­
tion specified by B and proceed backward,
clearing 7 memory locations in monotonic
sequence and there storing the contents
of the accessible registers in the sequence
stated, with (P) being placed in the low­
est numbered address of the sequence.
At the end of this storage sequence, (B)
is decreased by seven. The five registers

C, G, E, A. and D are not changed. The
designators are not changed. External in­
terrupt action and external request action
are inhibited immediately following this
instruction.

ADD-Add to Accumulator. The operand
is added to the content of the accumula­
tor, algebraically. The result is left in the
accumulator. End-around carry is not pro­
vided, and negative quantities are ex­

pressed in two's - complement notation.
The zero, positive, and carry designators
are set or cleared depending on the results
of the adding. The overflow designator
will be set if an overflow occurs; other­
wise it is unchanged. The lockout desig­
nator is not changed. The content of the

operand location is unchanged.

SUB-Subtract from Accumulator. The
operand is subtracted from the content of
the accumulator, algebraically. The result

is left in the accumulator. The content of
the operand location is not changed. End­
around carry is not provided, and negative
quantities are expressed in two's-comple­
ment notation. The zero, positive, and

D8-23-202 Page 10

Westinghouse

carry designators are set or cleared de­
pending on the results of the subtracting .
The overflow designator will be set if an
overflow occurs; otherwise it is unchanged.
The lockout designator is not changed.

MPY-Multiply Accumulator . The oper­
and is multiplied by the content of the ac­
cumulator, algebraically. The result is left
in the extended accumulator and the ac­
cumulator with the low order in the accu­
mulator . Sign logic is included such that
the product is a proper double- length al­
gebraic product with the sign at the left
of the extended accumulator. The content
of the operand location is not changed.
Negative quantities are expressed in two's­
complement notation. The zero, and posi­
tive designators are set or cleared depend­
ing on the double-length product results.
The carry designator is cleared and the
overflow designator is not changed. The
lockout designator is not changed .

DIV-Divide. The content of the extended
accumulator and the accumulator is di­
vided by the operand, algebraically. The
dividend low-order portion is placed in
the accumulator. The quotient appears,
properly signed, in the accumulator. The
remainder appears, also properly signed,
in the extended accumulator. The content
of the operand location is not changed.

It is presumed that at least the most sig­
nificant bit of the dividend (in E) will rep­
resent dividend sign. Note that remainder
sign will agree with the dividend sign as
seen prior to execution. All negative quan­
tities are expressed in two's-complement
notation.

The zero , and positive designators are set
or cleared depending on the quotient re­
sults. The carry designator is made equal
to the sign of the remainder (i.e., set to
1 implies negative), and the overflow des­
ignator will be set if the quotient over­
flows the accumulator. This will happen ,
for instance, whenever the content of the
operand location fails to exceed in magni ­
tude twice the content of E, prior to exe­
cution.

ADA-Add Double Length to Accumulator.
The double- length operand is added to
the double-.length accumulator, algebra­
ically. The result is left in the double­
length accumulator . End-around carry is

not provided, and negative quantities are
expressed in two 's-complement notation.
The zero, positive, and carry designators
are set or cleared depending on the re­
sults of the adding. The overflow desig­
nator will be set if an overflow occurs;
otherwise it is unchanged. The lockout
designator is not changed. The content
of the double- length operand location is
unchanged.

The double-length accumulator is the end­
to-end combination of registers A and E
considered as a single register , with E
containing sign and most significant bits .
The double-length operand location is the
end-to-end combination of the addressed
location and that location with address
larger by unity, considered as a single
register. The addressed location contains
sign and most significant bits.

SDA-Subtract Double Length from Accu­
mulator. The double - length operand is
subtracted from the double- length accu­
mulator, algebraically . The result is left
in the double-length accumulator. End­
around carry is not provided , and nega ­
tive quantities are expressed in two 's­
complement notation. The zero, positive,
and carry designators are set or cleared
depending on the results of the adding.
The overflow designator will be set if an
overflow occurs; otherwise it is unchanged.
The lockout designator is not changed.
The content of the double-length operand
location is unchanged.

The double-length accumulator is the end­
to-end combination of registers A and E
considered as a single register, with E
containing sign and most significant bits.
The double-length operand location is the
end-to-end combination of the addressed
location and that location with address
larger by unity, considered as a single reg­
ister. The addressed location contains
sign and most significant bits.

AND-And with Accumulator. A bit-by-bit
logical product of the operand and the ac­
cumulator content is formed. The result is
left in the accumulator. The content of the
operand location is not changed. The zero,
and positive designators are set or cleared
depending on the resultant accumulator
content. The carry, overflow, and lockout
designators are not changed.

EOR-Exclusive OR with Accumulator. A
bit-by-bit logical "exclusive OR" of the
operand and the accumulator content is
formed. The result is left in the accumu­
lator. The content of the operand location
is not changed . The zero , and positive
designators are set or cleared depending
on the resultant accumulator content. The
carry, overflow, and lockout designators
are not changed ;

INC-Increment Location. The operand is
increased by un ity without involving the
accumulator. The result is left in the oper-

. and location . The zero, positive, and carry
designators are set or clea red depending
on the results of the Incrementing. The
overflow designator will be set if an over­
flow occurs; otherwise it is unchanged .
The lockout designator is not changed .

DCR-Decrement Location. The operand
is decreased by unity without involving
the accumulator. The result is left in the
operand location. The zero , positive, and
carry designators are set or cleared de­
pending on the results of the decrement­
ing. The overflow designator will be set
if an overflow occurs; otherwise it is un­
changed . The lockout designator is not

changed.

SHF-Shift Location. The operand loca­
tion is shifted in' a manner and to an ex­
tent dictated by the content of the Shift
Description Register, G. The result is left
in the location(s) shifted . The zero, and
positive designators are set or cleared de­
pending on the results of the shifting. The
carry designator is set equal to the last
bit shifted off of either end of the single or
double word being shifted. The overflow
designator is set if the most significant
bit of the location(s) shifted is changed
during the left shifting. Otherwise, it is
unchanged. The lockout designator is not

changed.

Shifts provided are left and right, circular
and open ended with sign or zero exten­
sion, for both single and double words.
Up to 31 positions may be shifted. The
Shift Description Register, G, provides
type and number of places information,
and is not changed by the shift command.

In double-length shifting , the operand ad­
dress is the most significant word loca­
tion . The least significant word location is

one higher. For instance SHF, 4 with
double shifting called by (G) causes \A)

and (E) to shift.

JMP-Jump Unconditional. Uncondition­
ally transfer the operand address to the
P register. The designators are not changed
as a result of this instruction. External
interrupt action is inhibited immediately

following this instruction.

PJP-Positive Jump. If the positive des­
ignator is set, transfer the operand ad­
dress to the P register . Otherwise take the
next instruction . The designators are not
changed as a result of this instruction .
External interrupt action is inhibited im­
mediately following this instruction.

OJP-Overflow Jump. If the overflow des­
ignator is set, transfer the operand ad­
dress to the P register. Otherwise take the
next instruction. The designators are not
changed as a result of this instruction.
External interrupt action is inhibited im­
mediately following this instruction.

CJP-Carry Jump. If the carry designator
is set, transfer the operand address to the
P register. Otherwise take the next in­
struction. The designators are not changed
as a result of this instruction. External
interrupt action is inhibited immediately

following this instruction .

NJP-Negative Jump. If the positive des­
ignator is not set, transfer the operand
address to the P register. Otherwise take
the next instruction. The designators are
not changed as a result of this instruction .
External interrupt action is inhibited im­
mediately following this instruction.

ZJP-Zero Jump. If the zero designator is
set, transfer the operand add ress to the
P register. Otherwise take the next in­
struction. The designators are not changed
as a result of this instruction . External
interrupt action is inhibited immediately

following this instruction.

ITR-Input Transfer. The operar.d address
location is cleared and loaded from the
input data trunk and an input acknowledge
signal is transmitted to the I/O subsys­
tem. The designators are not changed .

OTR-Output Transfer. The content of
the operand address location is placed
on the I/O data trunk and an output ac­
knowledge signal is transmitted to the

I/O subsystem. The designators are not
changed.

lOA-Input To or Output From Accumu­
lator. The operand address is transmitted
to the I/O subsystem, then either of two
alternatives occurs depending on the state
of bit 7 of the operand address:

Bit 7= 1; The accumulator is cleared and
loaded from the I/O data trunk. The zero
an~ positive designators are set or cleared
depending on the resultant content of the
accumulator. The carry, lockout, and over­
flow designators are not changed.

Bit 7=0; The content of the accumulator
is placed on the I / O data trunk. The con ­
tent of the accumulator is not changed.
The zero and positive designators are set
or cleared depending on the resultant in ­
formation placed on the I/O data trunk.
The carry, lockout, and overflow desig­
nators are not changed .

Up to 128 channels may be accessed
using the lOA instruction . Also , up to 64
multiplexer words may be associated with
any of the channel s for multiplexed for­
mat. The lOA formats are summarized
below:

lOA y where y , bit 7 is 1 for input or 0

for output and y, bits 6-0 contain
the direct channel number 0-127 1 o .

lOA * ex where ex, bit 7 is 0 for output and
ex , bits 13-8 contain a multiplexer
word address 0-63 10 and ex , bits
6-0 contain the channel number

0-127 10 '

Note that data output and input will be
done from bit positions left justified to
bit position 14.

STZ-Store Zero. The operand address
location is cleared to zero without regard
to the accumulator . The zero and positive
desigators are set . The carry, lockout, and
overflow designators are not changed .

Input / Output Channel Operation
The P-2000 CPU provides both direct
channel and buffered channel operation.
The input / output hardware configuration
dictates what equipment will be direct
and what will be buffered.

Direct channel operation requires that the
program execute an lOA instruction (in­
put to or output from the accumulator) for

DB-23-202 Page 11

P-2000 Central
Processing Unit

each word of data to be transferred into
or out of the CPU . It also requires that
input data from the accumulator be stored
in memory before the next lOA is executed
or that output data be loaded in the accu­
mulator before the lOA is executed.

Buffered channel operation requires that
the program reference the buffer (any­
where in memory) , initialize the buffer
size (index count) , and in itiate the chan­
nel operation . Once started, the data will
be loaded sequentially into (input) or out
of (output) the buffer without further pro­
gram attention.

Channel Data Transfer
Completion Signal
When a direct or buffered channel data
transfer operation is executed, the CPU
is free to process program instructions
while awaiting the completion signal from
the channel hardware. When the channel
function is accomplished, the channel
completion signal is generated into the
CPU .
Direct Channel Data Completion. A direct
channel mayor may not require a comple­
tion signal. If a completion signal is re ­
quired , it enters the CPU as an external
interrupt. (This does not imply that ex­
ternal interrupts are used only for direct
channel completion signals.)

The CPU reacts to the external interrupt
by executing an instruction out of se­
quence to the running program. This in­
struction is contained in memory loca­
tion 100 16 which is hardware-defined as
the common entry for all external inter­
rupts . The instruction in this location ini­
tiates a special program to accomplish
the desired function for the channel and
then returns to the original running pro­
gram.

Completion interrupt processing is con ­
trolled by the CPU hardware up to and
including the execution of the out of se­
quence instruction. The specification of
that instruction, the special program, and
the return to the running program is ac­
complished in software.

Buffered Channel Data Completion. A
completion signal for a buffered channel
data transfer enters the CPU as a service
request interrupt. The P-2000 computer
can accommodate a maximum of 63 serv­
ice request interrupts. However, four of

08-23-202 Page 12

Westinghouse

•
these are committed to specific functions,
leaving only 59 available for other process

functions including the buffered channel
data completion signals.

Each service request interrupt is hardware­
assigned to two memory locations which
are defined as 100 16 + 2 x SRI and 101 16

+ 2 x SRI. The service request interrupt
used for a buffered channel data comple­
tion signal uses the two locations as fol­
lows:

100 1 6 + 2 x SRI-will contain an OTR
(output) or ITR (input) instruction.

101 16 + 2 x SRI-will contain a number
which is the negative equivalent of the
buffer size (index count).

When the service request interrupt which
represents a completion signal is detected
by the CPU, the instruction at location

100 16 + 2 x SRI is executed out of se­
quence to the running program (with all
designator activity suppressed). Execution
of this instruction includes special ad­
dress calculation to determine the buffer
start address, increment of the negative
index count, adding of that count to the
buffer start address, and finally, the data
transfer to or from the location in the buf­
fer . Return is then made immediately to
the running program.

Buffered Channel-
Buffer Completion Signal

When the specified buffer has been ex­
hausted, the CPU hardware generates a
buffer overflow service request interrupt
(SRI 1). This situation occurs whenever
a service request interrupt has incre­

mented its negative index count to zero.
The interrupt is detected and processed
in the CPU hardware by the execution of
the out of sequence instruction at 102 16 ,

This instruction initiates a special pro­
gram which scans the contents of the
service request interrupt index counter
for O. After the zero index count is deter­
mined, the software accomplishes what­

ever function is required due to the buffer
completion and then returns control to
the original program.

Service request interrupts not being used
should contain a positive, non-zero num­
ber in the corresponding index count to

accommodate the overflow buffer scan
function.

Direct Channel Address

The direct channel function requires that
the CPU hardware address that channel
by using the operand address as the sub­
channel address. This, then, requires an
extension of the definition for the operand

address:

1. For memory access instructions, the
operand address contains the address of
the location which contains the operand.

2. For channel access instructions, the
operand address contains the address of
the specified subchannel.

The channel may require either single or
two - dimensional addressing, depending
on the channel hardware. Where two­
dimensional addressing is required, one
coordinate is the subchannel address and
the other is the word address. The term
subchannel is used here to distinguish
this type of addressing from direct chan­

nel and buffered channel functions.

Direct Channel Functioning

The basic tool of direct channel operation
is the lOA (input to or output from the ac­
cumulator) instruction . The lOA instruc­
tion has the normal P-2000 address cal­

culation.

lOA-absolute addressing. Absolute ad­
dressing can be used whenever single di­
mensional channel addressing is required.

For example:
6003 lOA 009

The instruction at 6003 outputs the con­
tents of the accumulator to channel 9. The
instruction format is shown in Figure 11.
Bit 7 ind icates whether an input or output
is to be done; if bit 7 is a 1, an input is
required; if bit 7 is 0, an output is re­
quired. In the example in Figure 11, an

output is called for. If an input were

15 14 13 12 11 10 9 8

lOA function code mode

needed, the instruction would be:

6003 lOA 89 1 6

lOA-other than absolute addressing. Two
dimensional addressing requires too many

bits for it to be fully specified in the in­
struction word 8-bit displacement field.
Therefore, absolute addressing cannot be
used . Figure 12 shows relative indirect
address calculation for an lOA instruction.

In this example, the instruction is:
6003 lOA *y

where y = 4, m=011, and (6007)=1109.
The instruction at 6003 outputs the con­
tents of the accumulator to the channel
specified by two - dimensional address
word 11 16 and subchannel 9. The instruc­
tion address calculation is relative in­
direct and the operand address contains
the channel address. The format for the
operand address (location 6007) is shown
in Figure 13.

The output function is specified by bit 7
in the operand address word. A zero in
bit 7 calls for an output; a one calls for
an input. In the example shown, if an in­
put were required, the operand address
for the same channel address would be
1189 1 6 ,

Example of Direct Channel Output. (See
Figure 14.) The block diagram shows the
relationship of the CPU hardware config­
uration and the direct channel output to
the I/O equipment. When the lOA in­
struction is executed, the following results
occur:

1. The operand address is loaded into the
S register. The subchannel address is de­
coded from the S register.

2. The contents of the accumulator are
stored in the X register (via the Z register)
and the Z register is zeroed. The output
of the adder presents the accumulator
data to the I/O equipment.

3. The data from the adder is gated into

the addressed I/O equipment.

7 6 5 4 3 2 o

.....---- Channel Address ---........

output

Figure 11. Instruction Format for Absolute Addressing on an lOA

[;;]
11 0 9 r-Channel Address

9 15 12 11 10 14 13 6003

+
6007 ..
Figure 12. Relative Indirect Address Calculation

8 7 6 5 4

DB-23-202 Page 13

P-2000 Central
Processing Unit

3 2 o

~~------- 5ubchannel --------__ ~
(7 bits)

output

for an lOA Figure 13. Operand Address Format for an lOA

Note that the completion signal through
the external interrupt is not shown. This
operation is described earlier in this sec­
tion.

Example of Direct Channel Input. (See
Figure 15 .) The block diagram shows the
relationship of the CPU hardware config­
uration and the direct channel input to the
I/O equipment. When the IDA instruction
is executed, the following results occur:

1. The operand address is loaded into the
S register. The channel address is de­
coded from the S register.

2. The I / O data is stored in the X reg­
ister (via gating into the Z register) and
the Z register is zeroed. The output of the
adder presents the I/O data to memory .

3. The I/O data is stored in the accumu­
lator.

Note that no completion signal through
the external interrupt is shown in Figure
15. This operation is described earlier in
this section.

Buffered Channel Output
Functioning
This operation is a mixture of hardware
and software. The block diagram (Figure
16) shows the relationship of the CPU
hardware and the buffered channell/ 0
device. In this example, it is assumed that
the buffered channel completion signal is
wired to service request interrupt number
6 and the contents of the 3-word buffer
5000 - 5002 are to be output.

1. Service request interrupt number 6
memory definition. The memory locations
assigned to that service request interrupt
are 100 1 6 + 2 x 6 = 10C 1 6 and 101 16

+2x6=10D I6 •

5
,.-

(Adder~ 5)

Working
Memory

ACC I

I

Channel Address To I/O

x

Adder

Figure 14. Block Diagram of Direct Channel Output

5 -

-I""

(Adder~ 5)

Working
Memory

ACC I

I

Channel Address To I/O

x

Adder

Figure 15. Block Diagram of Direct Channel Input

Fm

D -
z --I

I/O Data -- Z

Fm

D -
Z --I

I/O
Device

Data
To
I/O

I/O
Device

I

08-23-202 Page 14

Westinghouse

•
2. Program initialization. The program­
mer has arbitrarily selected location 1301 6

to contain the output buffer start address
(5002) .

The service request interrupt locations are
loaded with:

10C OTR *80
100 OAT-3

(2's complement of the buffer size)

The address calculation for the OTR at
location 10C is special, because it will
be done in the buffer mode due to the
service request interrupt. The address is
calculated in referenGe to 100 16 not 10C.
This buffered channel data completion is
explained earlier in this section.

3. The programmer has loaded the 3-
word output buffer with data in the for­
mat required by the I/O device.

Channel Initiation. An OTR instruction
executed in the program (not as an out-of­
sequence execution due to a service re­
quest interrupt) initiates either an output
or an input channel operation. The ITR
instruction cannot be used to initiate buf­
fered channel operation .

The CPU hardware and the service re­
quest interrupt hardware retain informa­
tion as to whether or not an instruction is

S -

(Adder~S)

OTR To Initiate

S = SRI Number

Core Address

100 + 2 SRI

,
t

External
Request
Logic

10Cffi
10D -3

180 I 5002 h
~ " 1/

5000
/

5001

5002

X

I I I

Adder

I/O Complete

Channel Address

Fm

D
~

--z
I
•

1/0
Device

Data
To
1/0

initiated by the detection and subsequent Figure 16. Block Diagram of Buffered Channel Output
processing of a service request interrupt.

The initiating OTR contains the service
request interrupt number 6 as its operand
address. When this instruction is exe­
cuted, service request interrupt number 6
is gated from the S register into the serv­
ice request interrupt logic. This forces
that logic to react as if the interrupt has
occurred and the interrupt operation is ini­
tiated as follows:

1. When the service request interrupt log­
ic detects the number 6 request, it stores
the number 6 in a counter and begins the
buff·er mode of operation.

2. The instruction in location 10C is ob­
tained and the address is calculated as
follows:

a. 10016 is added to the instruction word
displacement field. Result: 18016 ,

b. The contents of location 1801 6 are ob­
tained. Result: (5002).

c . The negative index count in location
100 16 is incremented (first cycle , to -2) .

If the incremented index count equals
zero , the buffer overflow service request
interrupt (# 1) is generated.

d. The contents of location 180 16 are
added to the incremented index count and
the result (first cycle, 5002 -2 = 5000) is
the operand address .

3. The OTR to the calculated operand ad­
dress is executed . Contents of location
5000 are copied into the X register (via
the Z), and the Z register is cleared. The
output of the adder presents the data to
the I/O device.

4. The count of 6 retained in the service
request interrupt logic is used to address
the channel, causing gating of the data
into the addressed I/O device.

After the OTR execution, the running pro­
gram is immediately resumed. (Note that
the execution of an out-of-sequence in­
struction due to a service request interrupt

is done with designator activity suppress­
ed) . When the I/O device data transfer
function is complete, the service request
interrupt operation is repeated.

This recycling is continued until all the
words in the buffer have been transferred.
When the buffer is exhausted, the buffer
overflow service request interrupt is gen­
erated and recycling stops. The buffer
overflow function is explained more fully
later in this bulletin.

Buffered Channel Input
Functioning
Buffered channel input operation is simi ­
lar to the output functioning . The same
parameters are assumed as given in the
output example, except that the 3-word
buffer at 5000 - 5002 is loaded with data
from the I/O device. The entire operation
is then the same as for the output ex­
ample with the following exceptions:

1. Location 10C will contain ITR *SO.

2. When the ITR to the calculated oper­
and address (at location 10C) is exe­
cuted, the data is gated from the I/O
device and stored directly in the buffer
location (via the Z register and the adder.)

External Interrupts
External interrupts give the P-2000 sys­
tem the ability to detect an event, imme­
diately interrupt the running program, and
execute an instruction out of sequence to
that program. The P-2000 computer can
accommodate a maximum of 64 external
interrupts (number 0 through 63).

Although each external interrupt is a dis­
crete signal, a common single entry is
sent to the CPU when any external inter­
rupt is detected. The single entry point
has a hardware-assigned memory loca­
tion (100 1 6), In this location, the pro­
grammer loads the SST instruction which
wi II be executed out of sequence and wi II
be used as the entry to an extern a I inter-

When the scanner detects an interrupt, it
generates a common signal (HIT) to the
CPU and stops the scanning, retaining the
interrupt number in the counter.

Processing The Interrupt
1. The CPU detects the presence of the
HIT signal. At the end of the next non­
jump instruction, the HIT signal is woc­
essed as follows: .

a. Forcing address 1001 6 and obtaining
the instruction SST INT contained in that
location. Contents of the P register are not
disturbed.

b. External interrupt lockout is set.

c. The SST INT instruction is executed.
This instruction saves the status of the
interrupted running program and initiates
a special program.

2. The special program executes an lOA
FF 16 to input the interrupt number from
the counter into the accumulator. This in­
struction also resets the external interrupt

rupt subroutine. logic counter to zero and allows scanning

DB-23-202 Page 15

P-2000 Central
Processing Unit

Service Request Interrupts
Service request interrupts have already
been discussed in some detail in the ex­
planation of buffered channel operation .
However, they are also used for other
functions. Service request interrupts are
completely independent from external in­
terrupts.

The P-2000 computer can accommodate
a maximum of 63 service request inter­
rupts (numbered 1 through 63 10) for var­
ious process input/ output devices. Those
devices can be the type that can utilize
interrupt functioning or the automatic
counting feature or the buffer referencing
capability inherent in this type of inter­
rupt.

Each service request interrupt (SRI) is
hardware assigned two memory locations
which are defined as:

101 1 6 +2xSRI Contains the index count.

to be resumed.
External Interrupt lockout. When an ex- 100 1 6 + 2xSRI Used to contain the out
ternal interrupt is detected and the ex­
terna I interrupt lockout is not set, the
CPU hardware sets the interrupt lockout
flip-flop in the designator register. This
prevents another external interrupt from
being processed before the first is ac­
complished. Although the interrupt lock­
out prevents an external interrupt from
being processed, the hardware retains any
interrupt signClI until it is processed.

Interrupt lockout is cleared by program­
ming (CDR) when the need for the protec­
tion no longer exists.

The interrupt lockout can also be set by
the programmer (CD R) if it is desired to
protect a portion of any given program
from other program execution.

External Interrupt Functioning. (See Fig­
ure 17.)

The block diagram shows the relationship
of the CPU hardware to the external in­
terrupt logic.

Individual interrupts are scanned by an
oscillator, counter-decoder network con­
tained in the external interrupt logic hard­
ware. The scanning is completely inde-

3. The special program uses the interrupt
number to transfer program control to an­
other program specifically written for this
interrupt.

4. When the interrupt program is com­
pleted, the CPU returns control to the in­
terrupted running program and the inter­
rupt lockout is cleared (reset).

H't (P I rocesse d)

100 16
S 100 16 I SST INT
~

ACC I P"""

X

I
(Adder - S)

of sequence instruction.

Processing of a service request interrupt
causes the incrementing of the assigned
index count if that count number is nega­
tive . If the count is already positive, the
count will not be changed.

Exterior Interrupt Logic

Scanner
lOA FF 16 ---- Signal - -

Counter From
Process

Fm
~

D -
z

I I I -I I

Adder

pendent of the CPU instruction execution. Figure 17. Block Diagram of External Interrupt Processing

DB-23-202 Page 16

Westinghouse

•
Committed (Dedicated) Service Request
Interrupts. In all P-2000 systems, the first
four service request interrupts are com­
mitted to the following functions:

SRI No. Function Location
1 Buffer Overflow 102, 103
2 Power Failure 104,105

3 Sync Int-60 CPS 106, 107
4 Sync Int-1000 CPS 108,109

Buffer Overflow. The buffer overflow inter­
rupt can be considered a signal internal
to CPU hardware. It is processed the
same as any other service request inter­
rupt . The buffer overflow signai is gener­
ated any time another service request
interrupt increments its assigned index
count to zero. The signal is used to flag
this condition in the hardware and to ini­
tiate a software scan of all index counts
to determine which service request inter­
rupt activity caused the overflow (buffer
exhausted) condition. Appropriate action
is then taken in the software.

Service Request Interrupt Operation. (See
Figure 18.)

The block diagram shows the relationship
of the CPU hardware to the service re­
quest interrupt logic.

Individual requests are scanned by oscil­
lator counter-decoder hardware contained
in the interrupt logic. The scanning is

S -

--

OTR Initiate

10016 + 2xSRI

10116 + 2xSRI

REF LOC

Service Request
Interrupt Logic

Scanner

Counte r

INST REF

IND. eNT

X

Adder

Signal From Process

Fm

D
D -

Z -~

;, I

completely independent of the CPU in- Figure 18. Block Diagram of Service Request Interrupt Operation

struction execution. When a request is
detected, an I/O request signal is gen­
erated in the CPU, scanning is stopped,
and the service request interrupt number
is retained in the logic counter.

OTR Initiation. In the application of the
service request interrupt for the buffered
channel completion signal, the service re­
quest interrupt logic can be directly ac­
cessed by an OTR instruction executed
in the program mode. The program mode
is defined by the CPU and service request
interrupt logic hardware. Basically, it is
any time a service request interrupt out­
of-sequence instruction is NOT being exe­
cuted. When an OTR instruction is exe­
cuted, the service request interrupt num­
ber contained in the operand address is
gated from the S register into the service
request interrupt logic. This will simulate
the particular request and the logic will

react as if it had detected the signal from
the process.

Note: An ITR cannot be used to initiate a
channel by directly accessing the service
request interrupt logic.

Processing the Service
Request Interrupt
1. The CPU detects the I/O request sig­
nal. At the end of the next non-jump in­
struction, the I/O request signal is proc­
essed by:

a. Forcing address 100 1 6 + 2 x SRI and
obtaining the instruction in that location .
Contents of the P register are not dis­
turbed.

b. Initiating the SRI mode of operation in
the hardware.

2. The instruction at 100 16 +2 x SRI is
executed out of sequence. Designator ac-
tivity is suppressed.

a . 10016 is added to the reference num­
ber contained in the displacement field of
the instruction. Contents of the resulting
address are obtained.

b. The index count is incremented if the
count is a negative number. Buffer over­
flow is generated if the incremented num­
ber equals zero.

c. The index count is added to the con­
tents of the address obtained in step a.
The sum is the operand address for the
out of sequence instruction.

3. At the completion of the out of se­
quence instruction, the SRI mode is com­
pleted (return to program mode). The

counter in the service request interrupt
logic is reset, allowing scanning to be
resumed.

Service Request Lockout
Service request lockout is never set by
the CPU or service request interrupt logic
as the result of processing a service re­
quest interrupt. Service request lockout
must be set or cleared by programming
by means of the CDR instruction . It is
used at the discretion of the programmer.

Processing A Second Service
Request Interrupt
A second service request interrupt is
locked out by the CPU hardware until the
out of sequence instruction is completed.
This lockout is extended through the next
instruction if that instruction is a CDR.
The programmer can , therefore, use the
CDR to set request lockout for subroutine
protection in processing the current serv­
ice request interrupt .

SST and EST Instructions
Two instructions in the P-2000 instruction
repertoire (SST and EST) provide hard­
ware mUltiple storing and loading of the
general program registers and the desig­
nator register. These instructions are re­
ferred to as "macro-instructions,'" be­
cause they eliminate the need for individ­
ual instructions to accomplish this com­
mon function. Storing or loading is done
in a fixed order, to or from a specified
list of seven consecutive locations which
may be anywhere in memory.

SST Instruction (Store Status and Jump).
This instruction stores the contents of the
general program registers and the desig­
nator reg ister in seven consecutive core
locations . The starting address of the list
for the SST instruction is the highest ad­
dress location and is specified in the in­
struction word. After storing the list, pro­
gram control is transferred (jump) to the
next instruction spec ified by the SST in­
struction .

For example, let us assume that the SST
instruction is to be used to store the pro­
gram status in a memory list which has
its highest address equal to 5008. The
next instruction w i ll be at location 5009 .

The instruction is , therefore:
6000 SST 5008

The instruction is contained in memory
at location 6000. When the register stor­
ing is complete, the list will be:

5002 (P)

5003 (B)

5004 (C)

5005 (G)

5006 (E)

5007 (A)

5008 (D)

5009 Next Instruction

The jump to the next instruction (at loca­
tion 5009) is then made.

The register list is always stored in the
same order . The hardware stores from the
high location (starting at address 5008)
in decrementing order until the contents
of the last location (5002) are stored with
the contents of the P register.

EST Instruction (Enter or Restore Status
and Jump) This instruction enters the con­
tents of the general program registers and
the designator register from the specified
list of seven consecutive memory loca­
tions. The starting address of the list for
the EST instruction is the lowest address
location and is specified in the instruc­
tion . After the contents of the list have
been entered into the registers, program
control is transferred to the instruction
dictated by the newly entered contents
of the P register. This transfer actually
accomplishes the function of a jump and
is inherent in the EST instruction.

For example, let us assume that the con­
tents of seven locations from 5021 through

PRG 1

6000 SST 5008

I •
6001 LDA X

DB-23-202 Page 17

P-2000 Central
Processing Unit

5027 are to be entered into the general
program registers , and that the number to
be stored in the P reg ister is 6000. The
instruction is :

7000 EST 5021

The result will be :
5021 6000 to P
5022 Data to B
5023 Data to C
5024 Data to G
5025 Data to E
5026 Data to A
5027 Data to 0

After the EST instruction has entered the
contents of the list into the major regis­
ters and the designator register, the P
register contains the number 6000 and the
CPU will automatically transfer control to
the next instruction at location 6001.

The registers are always entered from the
contents of the list in the same order . The
hardware effectively starts from the lowest
location (5021) and proceeds in incre­
menting order until the contents of the
last location are stored in the designator
register.

SST and EST Temp.orary Location. A core
location 257 10 (or 101 1 6) is used for tem­
porary storage during the execution of
SST and EST instructions . This location
should, therefore, not be used in applica­
tion programming .

SST and EST Used Together. The SST and
EST instructions are completely independ­
ent and can be used individually. How­
ever, they may also be used together as
reversible functions, as shown in Figure
19. In that example, a basic program (PRG

5002 = (P) 6000
5003 (B)

5004 (e)

5005 (G)
5006 (E)
5007 (A)

• 5008 (D)
5009 PRG 2 ,
5100 EST 5002

Figure 19. SST and EST Instructions Used Together

08-23-202 Page 18

Westinghouse

•
1) uses the SST to store its current status
and jump to a second program (PRG 2)
which can be visualized as a subroutine.
At the end of the second program, an EST
is executed to restore the status of the
basic program and resume that program at
the instruction following the SST. No
address mode calculation is used in this
example.

1. PRG 1-Execute instruction at 6000.
When the SST instruction is executed, the
current status of PRG 1 is stored at loca­
tions 5002 through 5008. The stored P
(location 5002) will contain 6000.

2. PRG 1-Jump to instruction at 5009.
The SST jumps to location 5009 which is
the starting point of PRG 2.

3. PRG 2-Execution. The instruction list
of PRG 2 is executed until the instruction
at 5100 is reached.

4. PRG 2-Execute instruction at 5100.
The EST instruction at 5100 enters the
contents of the list at 5002 through 5008
into the major registers and the designator
register. The inherent jump is performed
to the next number via the number now
contained in the P register (P=6000, next
instruction at 6001).

5. PRG 1-Execute instruction at 6001.
PRG 1 is resumed at the point where it
was interrupted by the execution of the
SST. Major registers (except P) and the
designator register are in exactly the same
state as before the interruption.

The preceding examples of SST and EST
instructions were limited to simple ad­
dressing in order to keep the explanation
as clear as possible. However, the SST
instruction has special addressing mode
capability which enables the programmer
to specify the starting address of the save
list through the contents of the B register
as well as the calculated operand address.
After the SST has been executed, the B
register contains a number which is seven
less than the original address. The pro­
grammer thus has a pointer which can
be extremely valuable in push-down list
operations (relating to compiler functions).

The EST instruction has the normal full
address capabi I ity of the P-2000 computer.

Shifting
The P-2000 CPU permits direct shifting

15 14 13 12 n 10 9

DIS = Double or Single Word
R I L = Right or Left
CI A = Circular or Arithmetic

Figure 20. Shift Description Format

on any memory location without disturb­
ing the contents of the general program
registers. The description of the shifting
operation and the number of bits to be
shifted is stored in the G register before
execution of the shift instruction. The
format of the shift description register (G)
is shown in Figure 20. The shift count can
contain a number from 0 through 31 10 ,

Single and Double Word Shifting. Single
word shifting shifts the contents of the
specified single, 16-bit word. Double word
shifting shifts the contents of two consec­
utive memory locations which are treated
as a single, 32-bit number. In double word
shifting, the most significant half of the
double word is contained in word 1, which
is the operand location. Word 2 is in the
operand location plus 1. For example, to
shift locations 5000 and 5001 as a double
word, location 5000 is word 1 and loca­
tion 5001 is word 2. The operand address
is 5000.

Examples of single and double word shift­
ing are shown in Figure 21. In these ex­
amples, a 4-bit word length is used to
represent a condensed version of a 16-bit
word to simplify the example. The bit at
the extreme left is the sign bit. In all of
the examples, the initial status of the word
(or words) is shown on the left and the
result of the first shift on the right.

Designator Operation on Shift
Carry designator-On a right shift, the
carry designator is set whenever the last

shifted off bit contained a 1. On a left

8 7 6 5 4

I
I·

3 2 o

5 Bits

Shift Count

shift, the carry designator is set whenever
the last most significant bit (single word,
bit 15; double word, bit 31) shifted off
contained a 1.

Overflow designator-Set during left shift­
ing if the initial sign bit has been changed
at the completion of the shift.

Zero designator-Set if the result of the
shift (single word or both words of a
double) are all zeros.

Positive designator-Set if the most sig­
nificant bit of the result of a shift opera­
tion contains a 0 (single word, bit 15;
double word, bit 31).

Sign Extension. Sign extension is used in
right arithmetic shifts to continue the ini­
tial positive or negative number value. It
is accomplished by copying the sign bit
into the next bit (and holding the original
sign bit) each time a bit shift is per­
formed.

Zero insert. Zero insert, used in left arith­
metic shifting, is accomplished by storing
a 0 in bit 0 each time a bit shift is per­
formed.

No Shift Case. When the shift instruction
is used and the shift count in the G reg­
ister equals 0, no shift will be performed.
However, the designators will be set ac­
cording to the nonshifted value. The no­
shift function is valuable in interrogating
the contents of any core location without
changing the numerical value of those
contents.

Single Right Circular Shift

0

Double Right Circular Shift

0 0 II 0 0

Single Left Circular Shift

o

Double Left Circular Shift

'__0----L...----I..._O
....1.-....... 11 0 .1 0

Single Right Arithmetic Shift (Sign Extension) .

o

. Double Right Arithmetic Shift (Sign Extension).

Single Left Arithmetic Shift (Zero Insert)

o

Double Left Arithmetic Shift (Zero Insert)

o

1 •

~

y

y

0 0

0 0

0

DB-23-202 Page 19

P-2000 Central
Processing Unit

Bit 0 to bit 15=1
Set Carry

Bit 0 to bit 15=0
Clear Carry

Bit 15 to bit 0=1
Set Carry

~I 1 0

Bit 15 to bit 0=0
Clear Carry

J-. 1 Set Carry

0 P

I 0 , 0 11 I 0 ~11 1 0 11 11 ~ 0
Clear
Carry

""---__ O_""---........ _O~~ 0

Set Carry

o~ 1 I 0 I 1 I 0 I~ 1 11 I 0 lor--- 0

Clear Carry

Figure 21. Example. of Shifting

OB-23-202 Page 20

P-2000 Central
Processing Unit

Westinghouse Electric Corporation
Computer & Instrumentation Division, Pittsburgh, Pa. 15238
Printed in USA

	102659314-05-01-src
	102659314-05-02-src
	102659314-05-03-src
	102659314-05-04-src
	102659314-05-05-src
	102659314-05-06-src
	102659314-05-07-src
	102659314-05-08-src
	102659314-05-09-src
	102659314-05-10-src
	102659314-05-11-src
	102659314-05-12-src
	102659314-05-13-src
	102659314-05-14-src
	102659314-05-15-src
	102659314-05-16-src
	102659314-05-17-src
	102659314-05-18-src
	102659314-05-19-src
	102659314-05-20-src

