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P-2000 Central 
Processing Unit 

The central processing unit (CPU) of the 
Prodac 2000 computer consists of 16 x 
28-inch printed circuit cards mounted ver­
tically in a slide-out rack . Four cards (see 
Figure 1) are required for each unit: the 
maintenance panel and fast access mem­
ory card (frequently ca lied the bit card), 
the arithmetic and control card, at least 
one memory card handling 4,096 to 
16,384 words, and an input/output (I/O) 
card. Additional memory cards (up to a 
total of four cards) can be added to in­
crease core memory size to 65,536 words. 
The slide-out rack is large enough to ac­
commodate all seven cards which make 
up the maximum system. 

Card positions in the rack are interchange­
able, except those of the maintenance 
panel and fast access memory card and 
the arithmetic and control card which 
must be used in that sequence because of 
interconnecting cables. All other inter­
connections among the cards are made 
with 14 ribbon siderails, installed seven 
on each side of the cards. Connection to 
the cards is made through 18-pin con­
nectors on the siderails. All siderail sig­
nals go to all cards; it is this feature which 
permits the interchanging of card positions. 

The maintenance panel and fast access 
memory card houses the maintenance con­
trol pushbuttons and the logic elements . 
Elimination of the cable usually required 
to connect the maintenance panel with the 
system removes a major source of noise 
and system failure. Fast access memory, 
accessible in less than 500 nanoseconds, 
includes all of the first 16 locations in 
working memory. It is also able to operate 
directly and quickly on any location in 
either fast access memory or core mem­
ory. All fast access memory locations 
can be addressed in the normal way by 
any instruction; however, the first six 

locations are general-purpose registers 
which can be addressed by name as well 
as by memory location. These registers 
include the program address register, two 
base or index registers used for address 
calculation, a shift instruction register, the 
accumulator and an extended accumulator. 

May, 1970 
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The arithmetic and control card handles 
double precision add and subtract instruc­
tions to permit direct arithmetic operation 
on 32-bit numbers . It therefore gives ac­
curate representation over a range of 
- 32,768 to + 32 ,768 to the nearest unit. 
Both multiply and divide instructions are 
standard to speed program execution by 

Figure 1. Four Cards Make up the P-2000 CPU 

eliminating the LJ'se of subroutines for 
these instruction ~. 

! 
Each memory card handles 4, 8 or 16K 
words of core memory. However, decod­
ing for the full 16K is provided on each 
card, regardless of the amount of memory 
purchased. Additional memory up to the 

full card capability can, therefore, be field 
added easily without special adapters, 
connectors or hardware changes. Word 
manipu lation instructions, such as shifts, 
increments or decrements can be per­
formed on any location in core memory 
without transfer of the word to the ac­
cumulator. 

Panel 1-Maintenance Panel and Fast Access Memory Panel 2-Arithmetic and Control Board 



Any block or blocks of memory can be 
used as buffers for input or output opera­
tions betweeen the CPU and mass mem­
ory or the process. Buffers can be of any 
length and any number of buffers may be 
established by the program . Because data 
transfer is asynchronous, instruction times 
depend on the speed of the memory card 

Panel 3-Memory 

or the I/O ca rd . Therefore, even after a 
machine has been in operation, it can easi­
ly be speeded up by replacing the orig­
inal memory and/or I/O card with units 
designed for faster operation . The func­
tionally separate cards provide a clean 
break between the I/O data bus and the 
memory bus, permitting the I/O structure 
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to be relatively independent. 

The input/output card in the CPU handles 
the interface with the process I/O system 
-the high speed receiving and transmit­
ting of information between the computer 
and machines or instruments involved in 
the process being controlled as well as 

Panel 4-lnput / Output Control 
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document devices such as typewriters, 
teletypes, line printers, card readers and 

punches . 

The P-2000 CPU can be supplied in sev­
eral forms , depending on system require­
ments. The standard industrial cabinet is 
a double-door cabinet 87 inches high, 53 
inches wide and 33 inches deep . The bal ­
ance of the space in the cabinet is then 
used for process input / output equipment. 
For engineering laboratories, small control 
systems, and other installations where 
space is limited, a smaller cabinet is avail­
able- 69 inches high, 24 inches wide and 
30 inches deep. The small cabinet may be 
supplied with a solid door, a door with a 
glass window, or no door at all. The win ­
dow is a sliding glass panel centered 46 
inches above floor level so that it reveals 
the maintenance panel. A lock on the win ­
dow prevents unauthorized access. The 
CPU can also be provided with no cabinet 

at all for OEM use. 

Advantages 
• Fast access memory is accessible in less 
than 500 nanoseconds. Sixteen flip-flop 
locations in working memory, including 
six general-purpose registers, are located 

on a single card. 

Field - expandable memory . Memory 

cards are supplied with 4K , 8K or 16K 
words. Decoding for 16K is supplied on 

all cards, so that additional memory up to 
the full card capacity can be added in the 
field. 

• Double precision add and subtract is 
standard. Accurate representation is pro­
vided over a range of -32,768 to + 32,768. 
Floating point hardware is available as 
an option. 

• Hardware mUltiply and divide. Sub­
routines are not required for these instruc­
tions. Program execution is speeded up. 

• Ease of troubleshooting. The functional 
and physical orientation of the cards helps 

speed up the diagnosis of trouble. Inter­
changeability of the cards permits close 
inspection of a suspect card in the ma­
chine. Cards can also be tested off line, 

utes by pulling the siderails free and un­
bolting the card . Spare cards can be 
leased from Westinghouse, and defective 

cards will be repaired at the factory. 

• Usable in industrial environments . The 
P-2000 CPU operates over a wide range 
of temperatures and humidity : from 0 to 

55C, and from 5 to 95%, noncondensat­
ing. Voltage tolerance is ± 10%. Frequen­
cy is 48 to 62 Hz. 

• Powerful addressing capability. The P-
2000 CPU operates in eight different 
modes, depending on the type of address­
ing used. 

• Convenient instruction repertoire. The 
capability of the 32-instruction repertoire 
is extended by the flexilibity of its use. 
For example, a macro-instruction permits 
multiple loading and storing .of the pro­
gram registers and the designator register. 
Another provides eight different types of 
shifting from a single instruction. 

Operation 

The P-2000 CPU offers high-speed com­
putation ability without loss of power in 
the instruction repertoire in regard to core 
addressing or referencing. The first 256 
locations in core can be addressed abso­
lutely by any instruction located anywhere 
in memory . The first sixteen locations (0 
through 15) are high-speed , integrated 
circuit flip-flops. Six of these locations are 
used for the general-purpose program reg­
isters; the remaining ten are available for 
small, high-speed subroutines. Locations 
16 through 255 ]0 can be used to store 
system constants . 

Instruction Format 

The P-2000 CPU uses a 16 - bit word 
length. The instruction format is shown 
in Figure 2. 

Function Code. The 5-bit F field, w h ;ch rep­

resents the function of the instruct ion, is 

Bit No. 15 114 1,3 112 1 11 10 1 9 1 
because each contains its own timing cir- Usage Function Mode 

cuits. Symbol F m 

• Ease of maintenance. When a defective 
card is located, it can be replaced in min- Figure 2. P-2000 Instruction Format 

decoded by the CPU hardware which then 
executes the instruction accordingly. The 
5-bit size dictates a basic instruction rep­
ertoire of 32 instructions. For programming 
convenience, each of these 32 instruc­
tions is assigned a mnemonic symbol 
which is an abbreviation of its function. 
These instructions are listed and de­
scribed later in this bulletin. 

In actual operation, however, the P-2000 
computer extends this repertoire of 32 in­
structions in several ways: 

1. The SST and EST instructions permit 
multiple loading and storing of the general 
program registers and the designator reg­
ister. 

2. The shift instruction can provide eight 
different types of shifting operations or 
the no-shift operation. 

3. Addressing capability is flexible and 
efficient . 

Address Mode. The 3-bit m field defines 
the mode of operation, telling the CPU 
how to determine (or calculate) the ad­
dress of the operand (the location to be 
acted upon by the instruction). The use 
of this code to obta in a variety of modes 
of operation gives the P-2000 CPU an 
extremely flexible and powerful address­

ing structure. 

Displacement Address. The 8-bit y field 
specifies the basic operand address or the 
desired channel for input/output func­
tions. It has a total span of 256 addresses, 
normally from 0 through 255. However, 

in some instances, bit 7 is treated as a 
sign bit, giving the field a decimal number 
range from ~128 through + 127. For in­
structions wh ich use core addressing, the 

number in the displacement field is cal­
culated with other va ri ables specified by 
the m ode (m) bits to obtain the operand 
ad dress. Addressing will be discussed in 
greater deta i l lat er in this bulletin . 

8 7 18151413121110 
Displacement Address 

y, y* 
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Figure 3. CPU Block Diagram 

Basic CPU Hardware 

A functional block diagram of the P-2000 
CPU is shown in Figure 3. Working core 
memory contains a maximum of 65 ,536 
(65K) words and a minimum of 4 ,096 
(4K) words , expandable in modular incre­
ments of 4K, 8K or 16K. The first 16 lo­
cations (0-FI 6) are integrated circuit flip­
flops with a cycle time of less than 500 
nanoseconds. The first six locations are 
used as general program registers. The 
remaining ten locations are available for 
any function for which the extra high 
speed is desirable. All 16 locations can be 
addressed in the norma I way by any in­

struction. 

The P-2000 CPU has the instruction abil­
ity to work directly on any memory loca­
tion without disrupting the contents of 
the accumulator or any other of the gen­
eral program registers. Shifting, decre­
menting, incrementing and storing zeros 

can be done directly on the operand lo­
cation . The designator register will con­
tain the status (zero, positive, carry and 
overflow) of the result of this type of in­
struction, because the designators are ref­
erenced in the hardware to the adder, not 
the accumulator. 

This direct memory ability is invaluable 
to the programmer in interrogating flags 
or changing software counters while leav-

X 

Fm -
...... 

D 
r---

Z .... ~ 

Adder 

ing the data in the general program reg­
isters intact. After such an instruction is 
executed, the status contained in the des­
ignators can then be tested by the jump 

instructions to provide logic decisions in 
the program. 

Hardware Registers 
External to Memory 

Registers S, Z, X, Fm, Adder and Dare 
hardware registers external to core mem­
ory . They are used only in regulating the 
flow of instructions to and from the CPU 
and none but the D register can be directly 
referenced by any instruction. 

S Register- Memory Address Register ­

Contains the 16-bit address of the mem­
ory location to be accessed for the Read 
or Write function. 

External Request 
Lockout 

L..-___ External Interrupt 
Lockout 

Figure 4. Format in the Designator Register 
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Z Register- Memory Read Data Buffer­
Contents of the addressed memory loca­
tion are copied into this register. These 16 
bits provide one input to the adder. 

X Register-Data Buffer Register-Pro­
vides the second 16-bit input to the adder. 

Fm- Instruction Function Code and Ad­
dress Mode Register- Conta ins the 5-bit 
function code and the 3-bit address mode 
of an instruction read from core memory. 

The CPU decodes this register to deter­
mine the hardware sequencing required to 
execute an instruction . 

Adder- Twos complement, 16-bit adder 
circuitry. Although the adder is discussed 
here as a register, it has no storage capac­
ity because it contains no flip-flops. The 
output of the adder, which is always, in­
stantaneously, the sum of the contents of 
the Z and X registers, provides the input 
data to core . The sum of the Z and X 
registers is written into the addressed 
core location , giving additional flexibility 
in the hardware restoration of that loca­
tion. Although the output of the adder 
follows the sum of the Z and X registers , 
the use of the 16-bit output is controlled 
by hardware - determined gating signals 
(e.g., Adder ~S) . 

D- Designator Register-The 8-bit desig­
nator register, as shown in Figure 4, con ­
tains three sets of conditions: 

1. The final status of the executed in­
struction data in the adder . 

2. Lockout of external interrupts and 

service request interrupts. These are dis­
cussed later in this bulletin . 

3. Post-indirect indexing mode. 

Post - Index Mode 

1....-____ Zero Designator 

L..-______ Positive Designator 

L..-_______ Overflow Designator 

L--_________ Carry Designator 
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Status of data in the adder (not in the ac­
cumulator) is indicated in the low order 
six bits by flip-flops preset in certain po­
sitions for: 

Zero-All bit positions contain O. 

Positive-The most significant bit of the 
word contains O. 

Carry-the adder function has generated 
an arithmetic carry (special for shifting). 

Overflow-The most significant bit in the 
number in the adder is opposite to the 
most significant bit in the Z and X regis­
ters (positive+ positive=negative; nega­
tive+negative=positive) . 

General Program Registers in 
Fast Access Memory 
The general program registers are com­
puting registers which complement the 
fixed CPU hardware registers to provide 
the powerful instruction and addressing 
capability of the P-2000 computer . They 
are located in fast access memory and can 
be directly addressed by the program. 
They form the flexible basis for instruction 
execution, address calculation, shifting 
description and the results of arithmetic 
operations. 

P Register (location 0)-The program ad­
dress register which contains the address 
of the instruction being executed. At the 
initiation of an instruction execution, the 
P register contains a number which is one 
less than the address of the instruction to 
be executed. 

B Register (location 1 )-A base or index 
register used for address calculation. 

C Register (location 2)-A second base 
or index register used for address calcu­
lation. 

G Register (location 3)-Describes the 
shift instruction. 

E Register (location 4)-The extended ac­
cumulator. In double precision operations 
(multiply, divide, double word shifts, etc.), 
contains the most significant half of the 
double word . 

A Register (location 5)-The accumulator. 
In double precision operations, contains 
the least significant half of the double 
word. 

Address Calculation 
The operand address calculation is a func­
tion of the P-2000 CPU hardware and 
three possible variables: 

1. y-the 8-bit displacement field in the 
instruction word. 

2. m-the 3-bit address mode in the in­
struction word . 

3. M-the 2-bit post-index bits in the 
designator register. 

The y and m variables are contained di­
rectly in the instruction being executed. 
The M variable must have been properly 
set by a programmed designator instruc­
tion (CD R) before execution of any in­
struction which is to use that variable in 
its calculation. 

The operand address calculation can be 
used to combine and implement the fol­
lowing types of addressing: 

Absolute or Relative 
Pre-index 
Direct or Indirect 
Indirect Relative or Post-index 

P-2000 address calculation is based on 
the relationship of the 8-bit displacement 
field and the maximum of 65K of memory. 
The 8-bit displacement field permits di­
rect addressing of 256 10 locations. A 16-
bit number is required for direct access 
to 65K of memory. However, the various 
modes of addressing allow modification 
of the 8-bit number for full access to 65K 
and provide valuable application tools to 
the programmer. 

Absolute Addressing. The 8-bit displace­
ment field number can be used as a 16-bit 
positive number to provide direct address­
ing within a 256-location band starting 
at location 0, from an instruction located 

anywhere in memory. The general pro­
gram registers are included in this band 
of locations. 

Absolute addressing is accomplished in 
the CPU hardware by making the 8-bit 
displacement field number a 16-bit posi­
tive number. This is done by clearing bits 
8 through 15 to O. This number is then 
used as the operand address. An example 
of absolute addressing is shown in Figure 
5. 

Example: 6003 STZ y where y=7. 

The instruction at 6003 will zero the con­
tents of location 7 . 

Relative Addressing. The 8-bit displace­
ment field number can be used in refer­
ence (or relative) to the address of the 
instruction being executed. The instruc­
tion address is used as the center of the 
256-location band and the limits of the 
band are - 128 10 to +127 10 from that 
center. 

Relative addressing is accomplished in 
the CPU hardware by treating the 8-bit 
displacement field number as a 7-bit num­
ber, with bit 7 as the sign of that number. 
When bit 7 is 0, bits 8 through 15 are 
cleared to 0, providing a 16-bit positive 
number from 0 to 127 10 , When bit 7 is 
1, bits 8 through 15 are set to 1, providing 
a 16-bit negative number from - 1 to 
- 128 10 , 

This 16-bit number is added to the ad­
dress of the instruction being executed. 
The result is used as the operand address . 
An example of relative addressing is 
shown in Figure 6. 

Example: 6003 STZ y where y=6. 

The instruction at 6003 will zero the con­
tents of location 6009. 

1° 256 l .... -o-p-.ra-n-d--..~------ 6003 '---S-T-Z-Y--" 

LLO~tI=s I 

FF 16 

Figure 5. Absolute Addressing 



Pre-index Addressing. The 8-bit displace­
ment field number can be referenced to 
the contents of either the B or C index 
register to provide direct addressing with­
in a 256-location band in memory, starting 
at the location referenced by the contents 
of the index register from an instruction 
located anywhere in core. Pre-indexing is 
accomplished in the CPU hardware by 
making the 8-bit displacement field num­
ber a 16-bit positive number (0 through 
255 10 ). This number is added to the con­
tents of the specified index register, the 
result being the operand address. Pre­
index addressing is shown in Figure 7. 

Example: 6003 y,B Where y=7 and the 
contents of B=3000 

In this mode of addressing, the contents 
of the index register are often called the 
Base Address. Pre-index addressing is 
therefore sometimes referred to as base 
relative addressing. 

Direct and Indirect Addressing. In the pre­
vious descriptions of absolute, relative 
and pre-index addressing, it was assumed 
that the operand was contained within the 
direct addressable band of memory. This 
is called direct addressing. However, the 
location of the operand is frequently re­
quired to be external to the 256-location 
band which is directly addressable by an 
instruction. One method of accessing such 
an operand is to store the operand ad­
dress in a direct addressable location in 
the 256-location band. In that case, when 
the direct address is calculated (absolute, 
relative or pre-index), the address con­
tained in that location is used as the oper­
and address. This is indirect addressing. 

Indirect addressing is accomplished in 
the CPU hardware by calculating the di­
rect address and using the contents of 
that address as the operand address. An 
example of pre-index indirect addressing 
is shown in Figure 8. 

Example: 6003 STX ·y,B Where • indi­
cates indirect addressing 
y=7 (B)=3000 (3007)=4000 

The instruction at 6003. will zero the con­
tents of location 4000. 

Post-index Addressing. If pre-index in­
direct addressing is used, it is also pos-

256 
Locations 

Figure 6. Relative Addressing 

600l 

6009 

STZy 

Operand 
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-128 
Locations 

.------;----- 0 

+ 127 
Locations 

Base 

T
3

r ~-\---­--....-----.... ---- .... -----.... 
Operand I ------ 600ll ... _S_T_Z_*_Y_'B __ .. 

256 l007 

Locations 1 

130FF 
Figure 7. Pre-index Addressing 

Base lOOO 

1 ... ____ ~~ -------- 600ll ... _S_T_Z_*_Y_' _B_ .. 

256 l007 
Locations 

~ lOFF 

Figure 8. Pre-index Indirect Addressing 

...... 

" ....... 

sible to modify the calculated address 
with the contents of either the B or C base 
register to accomplish post-index address­
ing. In this case, the CPU hardware cal­
culates the pre-index indirect address 
(post-index can only be used with the 
pre-index indirect mode) and adds the 

....... 
...... 

4~1 ..... ___ .... 

calculated address to the contents of the 
specified post-index register (B or C). The 
result is used as the operand address. The 
pre-index and post-index registers (B or 
C) mayor may not be the same register. 
An example of post-index addressing is 
shown in Figure 9, pre-indexing on regis-
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ter 8 and post-indexing on register C. 

Example : 6003 STZ "y, 8 where" indi ­

cates indirect addressing 
y = 7 (8) = 3000 (C) = 3 

The instruction STZ "y,8 is identical with 
the instruction given in the example of 
pre-index indirect addressing. The differ­
ence is in the status of M in the designa­

tor register. 

Indirect Relative Addressing. After pre­
index indirect addressing, it is also pos­
sible to modify the calculated indirect ad­
dress with the contents of that indirect 
address to accomplish indirect relative 
addressing. In this case , the CPU hard­
ware calculates the pre-index indirect ad ­
dress (indirect relative can only be used 
with the pre-index mode) and adds the 
contents of the indirect address to the in­
direct address. The result is used as the 
operand address. Indirect relative address­

ing is shown in Figure 10. 

Example : 6003 STZ "y,S where * indi­

cates indirect addressing 
y=2 (8) = 3000 (3002) = 1004 

The instruction at 6003 will zero the con­
tents of location 4006. The example used 
here is again identical with that used for 
pre-index indirect addressing and for post­
index addressing . As before, the differ­
ence is determined by the status of M in 
the designator register. 

Sequence of Address Calculation. The 
CPU hardware sequencing of the address 
calculation is: 

1. Absolute or relative 

2. Pre-index 

3. Direct or indirect 

4. Indirect relative or post-index 

The line of definition between pre- and 
post-indexing is the point in hardware 
sequencing where the decision is made to 
use a direct or an indirect address. If 
indexing is done before this point, it is 
pre-indexing; after this point it is post­
indexing . 

Specifying the Address Calculation. In­
structions for calculating the address are 
contained in the m field and, if required, 
the M field of the designator register. The 
m field can specify the entire address cal­
culation, except for pre-index indirect ad-

Base 3000 r I 
I~--------- 6003 1 3007 1 4000 STZ * y,B 

256 
Locations " l " 4000 " " " 4001 

30FF " " "- 4002 

40031 
Operand 

Figure 9. Post-index Addressing 

Base 3000 

T ... __ ,_00_4 __ .. 1 ~ - - - - - - - 60031 .. _S_T_Z_*_y_,_B_ .. 3002 
256 

Locations 

1 30FF 

Figure '0. Indirect Relative Addressing 

dressing which requires that the M field 
be tested . Address modifications are tab­
ulated in Table I. 

Type of Address 
Calculation m M 

Absolute- Direct 000 

Relative-Direct 010 

Pre-Index 8-Direct 100 

Pre-Index C-Direct 110 

Abso I ute-I n direct 001 

Relative-Indirect 011 

Pre-Index 8-lndirect 
No Post Addressing 101 00 
Indirect Relative 101 01 
Post-Index 8 101 10 
Post-Index C 101 11 

Pre-Index C-Indirect 
No Post Addressing 111 00 
Indirect Relative 111 01 
Post-Index 8 111 10 
Post-Index C 111 11 

Table I. Address Modification 

40061~_o_pe_r_a_n_d_. 

The absolute or relative specification is 
not shown in the symbolic representation 
of an instruction (as in the examples 
shown earlier in this section). The tagging 
(.8 or ,C) indicates pre-indexing and an 
asterisk ( .. ) indicates the indirect address . 

Once again, it should be noted that the 
programmer must store the M field with 
the proper information if he wishes to 
achieve post-indexed address calculation. 

Repertoire of Inst(uctions 
STP-Stop. Program execution and I/O 
activity is stopped pending manual re­
start. The stop occurs very early in the 
instruction sequence, when instruction bits 
10 and 8 have not been considered. There­
fore, regardless of their value, only the 
middle bit of m (bit 9) will have been 
acted on. Therefore, the Z register will 
contain y or y", the X register will contain 
a number equal to 0 or to (P), and the S 
register will contpin y or y* + (P)' for m = 
¢ O¢ or m =¢1 ¢ , respectively. Designators 
are not changed . 



LOA-Load Accumulator. The accumula­
tor is cleared and loaded from the oper­
and address location. The operand ad­
dress location is not changed. The zero, 
and positive designators are set or cleared, 

depending on the resultant contents of the 
accumulator. Carry, lockout and overflow 
designators are not changed. 

LOE-Load Extended Accumulator. The ex­
tended accumulator is cleared and loaded 
from the operand address location. The 
operand address location is not changed. 
The zero, and positive designators are set 
or cleared, depending on the resultant 
contents of the extended accumulator. The 
carry, lockout and overflow designators 
are not changed. 

LOB-Load Base Register B. Base register 
B is cleared and loaded from the operand 
address location. The operand address 
location is not changed. The zero, and 
positive designators are set or cleared, 

depending on the resultant contents of the 
base register . The carry, lockout and over­
flow designators are not changed. 

LOC-Load Base Register C. Base regis­
ter C is cleared and loaded from the oper­
and address location. The operand ad­
dress location is not changed. The zero, 
and positive designators are set or cleared, 
depending on the resultant contents of 
base register C. Carry, lockout and over­
flow designators are not changed. 

LOG-Load Shift Description Register­
G. Shift description register G is cleared 
and loaded from the operand address lo­
cation. The operand address location is 
not changed . The zero, and positive desig­
nators are set or cleared depending on the 
resultant contents of shift register G. The 

carry, lockout, and overflow designators 
are not changed. 

CDR-Change Designator Register. The 
designator register is manipulatec accord­
ing to the bit pattern in the displacement 
address, y. Normal address calculation is 
not done, regardless of the bits in m. The 
instruction operates as follows: 

Change Post Index, M 

If bit 2 of y is 1, transfer bits ° and 1 of y 
into M. If bit 2 of y is 0, do not change M. 
y is not changed. 

Clear Overflow 

If bit 3 of y is 1, clear the overflow desig­
nator to 0. If bit 3 of y is 0, do not change 
designator. y is not changed. 

Change External Request Lockout 
If bit 5 of y is 1, transfer bit 4 of y into the 
External Request Lockout Designator. If 
bit 5 of y is 0, do not change External 
Request Lockout. y is not changed. 

Change Interrupt Lockout 

If bit 7 of y is 1, transfer bit 6 of y into 
the Interrupt Lockout Designator. If bit 7 
of y is 0, do not change Interrupt Lockout. 
y is not changed. 

EST-Enter Status. The seven accessible 
registers (P, B, C, G, E, A and D) are 

cleared and loaded from a table starting 
at the operand address location and pro­
ceeding in monotonic increasing sequence, 
in the order stated. The table locations are 
not changed. The designators are left 
equal to the content of the final table lo­
cation, with no further changes. 

STA-Store Accumulator. The operand 

address location is cleared and loaded 
from the accumulator. The accumulator 
is not changed. The zero, and positive 
designators are set or cleared depending 
on the resultant contents of the operand 
address location. The carry, lockout, and 
overflow designators are not changed . 

STE-Store Extended Accumulator. The 
operand address location is cleared and 
loaded from the extended accumulator. 
The extended accumulator is not changed. 
The zero, and positive designators are set 
or cleared depending on the resultant con­
tents of the operand address location. The 
carry, lockout, and overflow designators 
are not changed. 

SST-Store Status. This instruction is ab­
normal in its address calculation in that 
regardless of the content of bit 10 of the 
instruction, the address reference uses 
m=O¢¢. Thus, direct and indirect pre­
indexing are suppressed. Bit 10 becomes 

abnormally defined, for this instruction 
only, as follows: 

Bit 10=0; the calculated address is taken 

as the table pointer for storage of the 
seven accessible registers (P, B, C, G, E, 
A, and D) and as the program pointer for 
the next instruction. The next instruction 
will be taken from the location one higher 
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than the calculated address. The storage 
table will commence at the calculated 
address and proceed backward, clearing 

7 memory locations in monotonic se­
quence and there storing the contents of 
the accessible registers in the sequence 
stated, with (P) being placed in the low­

est numbered address of the sequence. 
The six registers B, C, G, E, A, and Dare 
not changed. The designators are not 
changed. Externa I interrupt action and ex­
ternal request action are inhibited imme­
diately following this instruction. 

Bit 10 = 1; the calculated address is taken 
as the program pointer for the next in­
struction. The next instruction will be 
taken from the location one higher than 
the calculated address. The content of the 
B-register will be taken as the table 
pointer for storage of the seven accessible 
registers (P, B, C, G, E, A. and D). The 
storage table will commence at the loca­
tion specified by B and proceed backward, 
clearing 7 memory locations in monotonic 
sequence and there storing the contents 
of the accessible registers in the sequence 
stated, with (P) being placed in the low­
est numbered address of the sequence. 
At the end of this storage sequence, (B) 
is decreased by seven. The five registers 

C, G, E, A. and D are not changed. The 
designators are not changed. External in­
terrupt action and external request action 
are inhibited immediately following this 
instruction. 

ADD-Add to Accumulator. The operand 
is added to the content of the accumula­
tor, algebraically. The result is left in the 
accumulator. End-around carry is not pro­
vided, and negative quantities are ex­

pressed in two's - complement notation. 
The zero, positive, and carry designators 
are set or cleared depending on the results 
of the adding. The overflow designator 
will be set if an overflow occurs; other­
wise it is unchanged. The lockout desig­
nator is not changed. The content of the 

operand location is unchanged. 

SUB-Subtract from Accumulator. The 
operand is subtracted from the content of 
the accumulator, algebraically. The result 

is left in the accumulator. The content of 
the operand location is not changed. End­
around carry is not provided, and negative 
quantities are expressed in two's-comple­
ment notation. The zero, positive, and 



D8-23-202 Page 10 

Westinghouse 

carry designators are set or cleared de­
pending on the results of the subtracting . 
The overflow designator will be set if an 
overflow occurs; otherwise it is unchanged. 
The lockout designator is not changed. 

MPY-Multiply Accumulator . The oper­
and is multiplied by the content of the ac­
cumulator, algebraically. The result is left 
in the extended accumulator and the ac­
cumulator with the low order in the accu­
mulator . Sign logic is included such that 
the product is a proper double- length al­
gebraic product with the sign at the left 
of the extended accumulator. The content 
of the operand location is not changed. 
Negative quantities are expressed in two's­
complement notation. The zero, and posi­
tive designators are set or cleared depend­
ing on the double-length product results. 
The carry designator is cleared and the 
overflow designator is not changed. The 
lockout designator is not changed . 

DIV-Divide. The content of the extended 
accumulator and the accumulator is di­
vided by the operand, algebraically. The 
dividend low-order portion is placed in 
the accumulator. The quotient appears, 
properly signed, in the accumulator. The 
remainder appears, also properly signed, 
in the extended accumulator. The content 
of the operand location is not changed. 

It is presumed that at least the most sig­
nificant bit of the dividend (in E) will rep­
resent dividend sign. Note that remainder 
sign will agree with the dividend sign as 
seen prior to execution. All negative quan­
tities are expressed in two's-complement 
notation. 

The zero , and positive designators are set 
or cleared depending on the quotient re­
sults. The carry designator is made equal 
to the sign of the remainder (i.e., set to 
1 implies negative), and the overflow des­
ignator will be set if the quotient over­
flows the accumulator. This will happen , 
for instance, whenever the content of the 
operand location fails to exceed in magni ­
tude twice the content of E, prior to exe­
cution. 

ADA-Add Double Length to Accumulator. 
The double- length operand is added to 
the double-.length accumulator, algebra­
ically. The result is left in the double­
length accumulator . End-around carry is 

not provided, and negative quantities are 
expressed in two 's-complement notation. 
The zero, positive, and carry designators 
are set or cleared depending on the re­
sults of the adding. The overflow desig­
nator will be set if an overflow occurs; 
otherwise it is unchanged. The lockout 
designator is not changed. The content 
of the double- length operand location is 
unchanged. 

The double-length accumulator is the end­
to-end combination of registers A and E 
considered as a single register , with E 
containing sign and most significant bits . 
The double-length operand location is the 
end-to-end combination of the addressed 
location and that location with address 
larger by unity, considered as a single 
register. The addressed location contains 
sign and most significant bits. 

SDA-Subtract Double Length from Accu­
mulator. The double - length operand is 
subtracted from the double- length accu­
mulator, algebraically . The result is left 
in the double-length accumulator. End­
around carry is not provided , and nega ­
tive quantities are expressed in two 's­
complement notation. The zero, positive, 
and carry designators are set or cleared 
depending on the results of the adding. 
The overflow designator will be set if an 
overflow occurs; otherwise it is unchanged. 
The lockout designator is not changed. 
The content of the double-length operand 
location is unchanged. 

The double-length accumulator is the end­
to-end combination of registers A and E 
considered as a single register, with E 
containing sign and most significant bits. 
The double-length operand location is the 
end-to-end combination of the addressed 
location and that location with address 
larger by unity, considered as a single reg­
ister. The addressed location contains 
sign and most significant bits. 

AND-And with Accumulator. A bit-by-bit 
logical product of the operand and the ac­
cumulator content is formed. The result is 
left in the accumulator. The content of the 
operand location is not changed. The zero, 
and positive designators are set or cleared 
depending on the resultant accumulator 
content. The carry, overflow, and lockout 
designators are not changed. 

EOR-Exclusive OR with Accumulator. A 
bit-by-bit logical "exclusive OR" of the 
operand and the accumulator content is 
formed. The result is left in the accumu­
lator. The content of the operand location 
is not changed . The zero , and positive 
designators are set or cleared depending 
on the resultant accumulator content. The 
carry, overflow, and lockout designators 
are not changed ; 

INC-Increment Location. The operand is 
increased by un ity without involving the 
accumulator. The result is left in the oper-

. and location . The zero, positive, and carry 
designators are set or clea red depending 
on the results of the Incrementing. The 
overflow designator will be set if an over­
flow occurs; otherwise it is unchanged . 
The lockout designator is not changed . 

DCR-Decrement Location. The operand 
is decreased by unity without involving 
the accumulator. The result is left in the 
operand location. The zero , positive, and 
carry designators are set or cleared de­
pending on the results of the decrement­
ing. The overflow designator will be set 
if an overflow occurs; otherwise it is un­
changed . The lockout designator is not 

changed. 

SHF-Shift Location. The operand loca­
tion is shifted in' a manner and to an ex­
tent dictated by the content of the Shift 
Description Register, G. The result is left 
in the location(s) shifted . The zero, and 
positive designators are set or cleared de­
pending on the results of the shifting. The 
carry designator is set equal to the last 
bit shifted off of either end of the single or 
double word being shifted. The overflow 
designator is set if the most significant 
bit of the location(s) shifted is changed 
during the left shifting. Otherwise, it is 
unchanged. The lockout designator is not 

changed. 

Shifts provided are left and right, circular 
and open ended with sign or zero exten­
sion, for both single and double words. 
Up to 31 positions may be shifted. The 
Shift Description Register, G, provides 
type and number of places information, 
and is not changed by the shift command. 

In double-length shifting , the operand ad­
dress is the most significant word loca­
tion . The least significant word location is 



one higher. For instance SHF, 4 with 
double shifting called by (G) causes \A) 

and (E) to shift. 

JMP-Jump Unconditional. Uncondition­
ally transfer the operand address to the 
P register. The designators are not changed 
as a result of this instruction. External 
interrupt action is inhibited immediately 

following this instruction. 

PJP-Positive Jump. If the positive des­
ignator is set, transfer the operand ad­
dress to the P register . Otherwise take the 
next instruction . The designators are not 
changed as a result of this instruction . 
External interrupt action is inhibited im­
mediately following this instruction. 

OJP-Overflow Jump. If the overflow des­
ignator is set, transfer the operand ad­
dress to the P register. Otherwise take the 
next instruction. The designators are not 
changed as a result of this instruction. 
External interrupt action is inhibited im­
mediately following this instruction. 

CJP-Carry Jump. If the carry designator 
is set, transfer the operand address to the 
P register. Otherwise take the next in­
struction. The designators are not changed 
as a result of this instruction. External 
interrupt action is inhibited immediately 

following this instruction . 

NJP-Negative Jump. If the positive des­
ignator is not set, transfer the operand 
address to the P register. Otherwise take 
the next instruction. The designators are 
not changed as a result of this instruction . 
External interrupt action is inhibited im­
mediately following this instruction. 

ZJP-Zero Jump. If the zero designator is 
set, transfer the operand add ress to the 
P register. Otherwise take the next in­
struction. The designators are not changed 
as a result of this instruction . External 
interrupt action is inhibited immediately 

following this instruction. 

ITR-Input Transfer. The operar.d address 
location is cleared and loaded from the 
input data trunk and an input acknowledge 
signal is transmitted to the I/O subsys­
tem. The designators are not changed . 

OTR-Output Transfer. The content of 
the operand address location is placed 
on the I/O data trunk and an output ac­
knowledge signal is transmitted to the 

I/O subsystem. The designators are not 
changed. 

lOA-Input To or Output From Accumu­
lator. The operand address is transmitted 
to the I/O subsystem, then either of two 
alternatives occurs depending on the state 
of bit 7 of the operand address: 

Bit 7= 1; The accumulator is cleared and 
loaded from the I/O data trunk. The zero 
an~ positive designators are set or cleared 
depending on the resultant content of the 
accumulator. The carry, lockout, and over­
flow designators are not changed. 

Bit 7=0; The content of the accumulator 
is placed on the I / O data trunk. The con ­
tent of the accumulator is not changed. 
The zero and positive designators are set 
or cleared depending on the resultant in ­
formation placed on the I/O data trunk. 
The carry, lockout, and overflow desig­
nators are not changed . 

Up to 128 channels may be accessed 
using the lOA instruction . Also , up to 64 
multiplexer words may be associated with 
any of the channel s for multiplexed for­
mat. The lOA formats are summarized 
below: 

lOA y where y , bit 7 is 1 for input or 0 

for output and y, bits 6-0 contain 
the direct channel number 0-127 1 o . 

lOA * ex where ex, bit 7 is 0 for output and 
ex , bits 13-8 contain a multiplexer 
word address 0-63 10 and ex , bits 
6-0 contain the channel number 

0-127 10 ' 

Note that data output and input will be 
done from bit positions left justified to 
bit position 14. 

STZ-Store Zero. The operand address 
location is cleared to zero without regard 
to the accumulator . The zero and positive 
desigators are set . The carry, lockout, and 
overflow designators are not changed . 

Input / Output Channel Operation 
The P-2000 CPU provides both direct 
channel and buffered channel operation. 
The input / output hardware configuration 
dictates what equipment will be direct 
and what will be buffered. 

Direct channel operation requires that the 
program execute an lOA instruction (in­
put to or output from the accumulator) for 
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each word of data to be transferred into 
or out of the CPU . It also requires that 
input data from the accumulator be stored 
in memory before the next lOA is executed 
or that output data be loaded in the accu­
mulator before the lOA is executed. 

Buffered channel operation requires that 
the program reference the buffer (any­
where in memory) , initialize the buffer 
size (index count) , and in itiate the chan­
nel operation . Once started, the data will 
be loaded sequentially into (input) or out 
of (output) the buffer without further pro­
gram attention. 

Channel Data Transfer 
Completion Signal 
When a direct or buffered channel data 
transfer operation is executed, the CPU 
is free to process program instructions 
while awaiting the completion signal from 
the channel hardware. When the channel 
function is accomplished, the channel 
completion signal is generated into the 
CPU . 
Direct Channel Data Completion. A direct 
channel mayor may not require a comple­
tion signal. If a completion signal is re ­
quired , it enters the CPU as an external 
interrupt. (This does not imply that ex­
ternal interrupts are used only for direct 
channel completion signals.) 

The CPU reacts to the external interrupt 
by executing an instruction out of se­
quence to the running program. This in­
struction is contained in memory loca­
tion 100 16 which is hardware-defined as 
the common entry for all external inter­
rupts . The instruction in this location ini­
tiates a special program to accomplish 
the desired function for the channel and 
then returns to the original running pro­
gram. 

Completion interrupt processing is con ­
trolled by the CPU hardware up to and 
including the execution of the out of se­
quence instruction. The specification of 
that instruction, the special program, and 
the return to the running program is ac­
complished in software. 

Buffered Channel Data Completion. A 
completion signal for a buffered channel 
data transfer enters the CPU as a service 
request interrupt. The P-2000 computer 
can accommodate a maximum of 63 serv­
ice request interrupts. However, four of 
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• 
these are committed to specific functions, 
leaving only 59 available for other process 

functions including the buffered channel 
data completion signals. 

Each service request interrupt is hardware­
assigned to two memory locations which 
are defined as 100 16 + 2 x SRI and 101 16 

+ 2 x SRI. The service request interrupt 
used for a buffered channel data comple­
tion signal uses the two locations as fol­
lows: 

100 1 6 + 2 x SRI-will contain an OTR 
(output) or ITR (input) instruction. 

101 16 + 2 x SRI-will contain a number 
which is the negative equivalent of the 
buffer size (index count). 

When the service request interrupt which 
represents a completion signal is detected 
by the CPU, the instruction at location 

100 16 + 2 x SRI is executed out of se­
quence to the running program (with all 
designator activity suppressed). Execution 
of this instruction includes special ad­
dress calculation to determine the buffer 
start address, increment of the negative 
index count, adding of that count to the 
buffer start address, and finally, the data 
transfer to or from the location in the buf­
fer . Return is then made immediately to 
the running program. 

Buffered Channel-
Buffer Completion Signal 

When the specified buffer has been ex­
hausted, the CPU hardware generates a 
buffer overflow service request interrupt 
(SRI 1). This situation occurs whenever 
a service request interrupt has incre­

mented its negative index count to zero. 
The interrupt is detected and processed 
in the CPU hardware by the execution of 
the out of sequence instruction at 102 16 , 

This instruction initiates a special pro­
gram which scans the contents of the 
service request interrupt index counter 
for O. After the zero index count is deter­
mined, the software accomplishes what­

ever function is required due to the buffer 
completion and then returns control to 
the original program. 

Service request interrupts not being used 
should contain a positive, non-zero num­
ber in the corresponding index count to 

accommodate the overflow buffer scan 
function. 

Direct Channel Address 

The direct channel function requires that 
the CPU hardware address that channel 
by using the operand address as the sub­
channel address. This, then, requires an 
extension of the definition for the operand 

address: 

1. For memory access instructions, the 
operand address contains the address of 
the location which contains the operand. 

2. For channel access instructions, the 
operand address contains the address of 
the specified subchannel. 

The channel may require either single or 
two - dimensional addressing, depending 
on the channel hardware. Where two­
dimensional addressing is required, one 
coordinate is the subchannel address and 
the other is the word address. The term 
subchannel is used here to distinguish 
this type of addressing from direct chan­

nel and buffered channel functions. 

Direct Channel Functioning 

The basic tool of direct channel operation 
is the lOA (input to or output from the ac­
cumulator) instruction . The lOA instruc­
tion has the normal P-2000 address cal­

culation. 

lOA-absolute addressing. Absolute ad­
dressing can be used whenever single di­
mensional channel addressing is required. 

For example: 
6003 lOA 009 

The instruction at 6003 outputs the con­
tents of the accumulator to channel 9. The 
instruction format is shown in Figure 11. 
Bit 7 ind icates whether an input or output 
is to be done; if bit 7 is a 1, an input is 
required; if bit 7 is 0, an output is re­
quired. In the example in Figure 11, an 

output is called for. If an input were 

15 14 13 12 11 10 9 8 

lOA function code mode 

needed, the instruction would be: 

6003 lOA 89 1 6 

lOA-other than absolute addressing. Two 
dimensional addressing requires too many 

bits for it to be fully specified in the in­
struction word 8-bit displacement field. 
Therefore, absolute addressing cannot be 
used . Figure 12 shows relative indirect 
address calculation for an lOA instruction. 

In this example, the instruction is: 
6003 lOA *y 

where y = 4, m=011, and (6007)=1109. 
The instruction at 6003 outputs the con­
tents of the accumulator to the channel 
specified by two - dimensional address 
word 11 16 and subchannel 9. The instruc­
tion address calculation is relative in­
direct and the operand address contains 
the channel address. The format for the 
operand address (location 6007) is shown 
in Figure 13. 

The output function is specified by bit 7 
in the operand address word. A zero in 
bit 7 calls for an output; a one calls for 
an input. In the example shown, if an in­
put were required, the operand address 
for the same channel address would be 
1189 1 6 , 

Example of Direct Channel Output. (See 
Figure 14.) The block diagram shows the 
relationship of the CPU hardware config­
uration and the direct channel output to 
the I/O equipment. When the lOA in­
struction is executed, the following results 
occur: 

1. The operand address is loaded into the 
S register. The subchannel address is de­
coded from the S register. 

2. The contents of the accumulator are 
stored in the X register (via the Z register) 
and the Z register is zeroed. The output 
of the adder presents the accumulator 
data to the I/O equipment. 

3. The data from the adder is gated into 

the addressed I/O equipment. 

7 6 5 4 3 2 o 

..... .....---- Channel Address ---........ 

output 

Figure 11. Instruction Format for Absolute Addressing on an lOA 



[;;] 
11 0 9 r-Channel Address 

9 15 12 11 10 14 13 6003 

+ 
6007 .. 
Figure 12. Relative Indirect Address Calculation 

8 7 6 5 4 
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3 2 o 

~~------- 5ubchannel --------__ ~ 
(7 bits) 

output 

for an lOA Figure 13. Operand Address Format for an lOA 

Note that the completion signal through 
the external interrupt is not shown. This 
operation is described earlier in this sec­
tion. 

Example of Direct Channel Input. (See 
Figure 15 .) The block diagram shows the 
relationship of the CPU hardware config­
uration and the direct channel input to the 
I/O equipment. When the IDA instruction 
is executed, the following results occur: 

1. The operand address is loaded into the 
S register. The channel address is de­
coded from the S register. 

2. The I / O data is stored in the X reg­
ister (via gating into the Z register) and 
the Z register is zeroed. The output of the 
adder presents the I/O data to memory . 

3. The I/O data is stored in the accumu­
lator. 

Note that no completion signal through 
the external interrupt is shown in Figure 
15. This operation is described earlier in 
this section. 

Buffered Channel Output 
Functioning 
This operation is a mixture of hardware 
and software. The block diagram (Figure 
16) shows the relationship of the CPU 
hardware and the buffered channell/ 0 
device. In this example, it is assumed that 
the buffered channel completion signal is 
wired to service request interrupt number 
6 and the contents of the 3-word buffer 
5000 - 5002 are to be output. 

1. Service request interrupt number 6 
memory definition. The memory locations 
assigned to that service request interrupt 
are 100 1 6 + 2 x 6 = 10C 1 6 and 101 16 

+2x6=10D I6 • 

5 
,.-

(Adder~ 5) 

Working 
Memory 

ACC I 

I 

Channel Address To I/O 

x 

Adder 

Figure 14. Block Diagram of Direct Channel Output 
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Figure 15. Block Diagram of Direct Channel Input 
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2. Program initialization. The program­
mer has arbitrarily selected location 1301 6 

to contain the output buffer start address 
(5002) . 

The service request interrupt locations are 
loaded with: 

10C OTR *80 
100 OAT-3 

(2's complement of the buffer size) 

The address calculation for the OTR at 
location 10C is special, because it will 
be done in the buffer mode due to the 
service request interrupt. The address is 
calculated in referenGe to 100 16 not 10C. 
This buffered channel data completion is 
explained earlier in this section. 

3. The programmer has loaded the 3-
word output buffer with data in the for­
mat required by the I/O device. 

Channel Initiation. An OTR instruction 
executed in the program (not as an out-of­
sequence execution due to a service re­
quest interrupt) initiates either an output 
or an input channel operation. The ITR 
instruction cannot be used to initiate buf­
fered channel operation . 

The CPU hardware and the service re­
quest interrupt hardware retain informa­
tion as to whether or not an instruction is 

S -

(Adder~S) 

OTR To Initiate 

S = SRI Number 

Core Address 

100 + 2 SRI 

, 
t 

External 
Request 
Logic 

10Cffi 
10D -3 

180 I 5002 h 
~ " 1/ 

5000 
/ 

5001 

5002 

X 

I I I 

Adder 

I/O Complete 

Channel Address 

Fm 

D 
~ 

--z 
I 
• 

1/0 
Device 

Data 
To 
1/0 

initiated by the detection and subsequent Figure 16. Block Diagram of Buffered Channel Output 
processing of a service request interrupt. 

The initiating OTR contains the service 
request interrupt number 6 as its operand 
address. When this instruction is exe­
cuted, service request interrupt number 6 
is gated from the S register into the serv­
ice request interrupt logic. This forces 
that logic to react as if the interrupt has 
occurred and the interrupt operation is ini­
tiated as follows: 

1. When the service request interrupt log­
ic detects the number 6 request, it stores 
the number 6 in a counter and begins the 
buff·er mode of operation. 

2. The instruction in location 10C is ob­
tained and the address is calculated as 
follows: 

a. 10016 is added to the instruction word 
displacement field. Result: 18016 , 

b. The contents of location 1801 6 are ob­
tained. Result: (5002). 

c . The negative index count in location 
100 16 is incremented (first cycle , to -2) . 

If the incremented index count equals 
zero , the buffer overflow service request 
interrupt (# 1) is generated. 

d. The contents of location 180 16 are 
added to the incremented index count and 
the result (first cycle, 5002 -2 = 5000) is 
the operand address . 

3. The OTR to the calculated operand ad­
dress is executed . Contents of location 
5000 are copied into the X register (via 
the Z), and the Z register is cleared. The 
output of the adder presents the data to 
the I/O device. 

4. The count of 6 retained in the service 
request interrupt logic is used to address 
the channel, causing gating of the data 
into the addressed I/O device. 

After the OTR execution, the running pro­
gram is immediately resumed. (Note that 
the execution of an out-of-sequence in­
struction due to a service request interrupt 

is done with designator activity suppress­
ed) . When the I/O device data transfer 
function is complete, the service request 
interrupt operation is repeated. 

This recycling is continued until all the 
words in the buffer have been transferred. 
When the buffer is exhausted, the buffer 
overflow service request interrupt is gen­
erated and recycling stops. The buffer 
overflow function is explained more fully 
later in this bulletin. 

Buffered Channel Input 
Functioning 
Buffered channel input operation is simi ­
lar to the output functioning . The same 
parameters are assumed as given in the 
output example, except that the 3-word 
buffer at 5000 - 5002 is loaded with data 
from the I/O device. The entire operation 
is then the same as for the output ex­
ample with the following exceptions: 



1. Location 10C will contain ITR *SO. 

2. When the ITR to the calculated oper­
and address (at location 10C) is exe­
cuted, the data is gated from the I/O 
device and stored directly in the buffer 
location (via the Z register and the adder.) 

External Interrupts 
External interrupts give the P-2000 sys­
tem the ability to detect an event, imme­
diately interrupt the running program, and 
execute an instruction out of sequence to 
that program. The P-2000 computer can 
accommodate a maximum of 64 external 
interrupts (number 0 through 63). 

Although each external interrupt is a dis­
crete signal, a common single entry is 
sent to the CPU when any external inter­
rupt is detected. The single entry point 
has a hardware-assigned memory loca­
tion (100 1 6 ), In this location, the pro­
grammer loads the SST instruction which 
wi II be executed out of sequence and wi II 
be used as the entry to an extern a I inter-

When the scanner detects an interrupt, it 
generates a common signal (HIT) to the 
CPU and stops the scanning, retaining the 
interrupt number in the counter. 

Processing The Interrupt 
1. The CPU detects the presence of the 
HIT signal. At the end of the next non­
jump instruction, the HIT signal is woc­
essed as follows: . 

a. Forcing address 1001 6 and obtaining 
the instruction SST INT contained in that 
location. Contents of the P register are not 
disturbed. 

b. External interrupt lockout is set. 

c. The SST INT instruction is executed. 
This instruction saves the status of the 
interrupted running program and initiates 
a special program. 

2. The special program executes an lOA 
FF 16 to input the interrupt number from 
the counter into the accumulator. This in­
struction also resets the external interrupt 

rupt subroutine. logic counter to zero and allows scanning 
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Service Request Interrupts 
Service request interrupts have already 
been discussed in some detail in the ex­
planation of buffered channel operation . 
However, they are also used for other 
functions. Service request interrupts are 
completely independent from external in­
terrupts. 

The P-2000 computer can accommodate 
a maximum of 63 service request inter­
rupts (numbered 1 through 63 10 ) for var­
ious process input/ output devices. Those 
devices can be the type that can utilize 
interrupt functioning or the automatic 
counting feature or the buffer referencing 
capability inherent in this type of inter­
rupt. 

Each service request interrupt (SRI) is 
hardware assigned two memory locations 
which are defined as: 

101 1 6 +2xSRI Contains the index count. 

to be resumed. 
External Interrupt lockout. When an ex- 100 1 6 + 2xSRI Used to contain the out 
ternal interrupt is detected and the ex­
terna I interrupt lockout is not set, the 
CPU hardware sets the interrupt lockout 
flip-flop in the designator register. This 
prevents another external interrupt from 
being processed before the first is ac­
complished. Although the interrupt lock­
out prevents an external interrupt from 
being processed, the hardware retains any 
interrupt signClI until it is processed. 

Interrupt lockout is cleared by program­
ming (CDR) when the need for the protec­
tion no longer exists. 

The interrupt lockout can also be set by 
the programmer (CD R) if it is desired to 
protect a portion of any given program 
from other program execution. 

External Interrupt Functioning. (See Fig­
ure 17.) 

The block diagram shows the relationship 
of the CPU hardware to the external in­
terrupt logic. 

Individual interrupts are scanned by an 
oscillator, counter-decoder network con­
tained in the external interrupt logic hard­
ware. The scanning is completely inde-

3. The special program uses the interrupt 
number to transfer program control to an­
other program specifically written for this 
interrupt. 

4. When the interrupt program is com­
pleted, the CPU returns control to the in­
terrupted running program and the inter­
rupt lockout is cleared (reset). 

H't (P I rocesse d) 

100 16 
S 100 16 I SST INT 
~ 

ACC I .... P""" 

X 

I 
(Adder - S) 

of sequence instruction. 

Processing of a service request interrupt 
causes the incrementing of the assigned 
index count if that count number is nega­
tive . If the count is already positive, the 
count will not be changed. 

Exterior Interrupt Logic 

Scanner 
lOA FF 16 ---- Signal - -

Counter From 
Process 

Fm 
~ 

D -
z 

I I I -I I 

Adder 

pendent of the CPU instruction execution. Figure 17. Block Diagram of External Interrupt Processing 
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Committed (Dedicated) Service Request 
Interrupts. In all P-2000 systems, the first 
four service request interrupts are com­
mitted to the following functions: 

SRI No. Function Location 
1 Buffer Overflow 102, 103 
2 Power Failure 104,105 

3 Sync Int-60 CPS 106, 107 
4 Sync Int-1000 CPS 108,109 

Buffer Overflow. The buffer overflow inter­
rupt can be considered a signal internal 
to CPU hardware. It is processed the 
same as any other service request inter­
rupt . The buffer overflow signai is gener­
ated any time another service request 
interrupt increments its assigned index 
count to zero. The signal is used to flag 
this condition in the hardware and to ini­
tiate a software scan of all index counts 
to determine which service request inter­
rupt activity caused the overflow (buffer 
exhausted) condition. Appropriate action 
is then taken in the software. 

Service Request Interrupt Operation. (See 
Figure 18.) 

The block diagram shows the relationship 
of the CPU hardware to the service re­
quest interrupt logic. 

Individual requests are scanned by oscil­
lator counter-decoder hardware contained 
in the interrupt logic. The scanning is 

S -

--

OTR Initiate 

10016 + 2xSRI 

10116 + 2xSRI 

REF LOC 

Service Request 
Interrupt Logic 

Scanner 

---
Counte r 

INST REF 

IND. eNT 

X 

Adder 

Signal From Process 

Fm 

D 
D -

Z -~ 

;, I 

completely independent of the CPU in- Figure 18. Block Diagram of Service Request Interrupt Operation 

struction execution. When a request is 
detected, an I/O request signal is gen­
erated in the CPU, scanning is stopped, 
and the service request interrupt number 
is retained in the logic counter. 

OTR Initiation. In the application of the 
service request interrupt for the buffered 
channel completion signal, the service re­
quest interrupt logic can be directly ac­
cessed by an OTR instruction executed 
in the program mode. The program mode 
is defined by the CPU and service request 
interrupt logic hardware. Basically, it is 
any time a service request interrupt out­
of-sequence instruction is NOT being exe­
cuted. When an OTR instruction is exe­
cuted, the service request interrupt num­
ber contained in the operand address is 
gated from the S register into the service 
request interrupt logic. This will simulate 
the particular request and the logic will 

react as if it had detected the signal from 
the process. 

Note: An ITR cannot be used to initiate a 
channel by directly accessing the service 
request interrupt logic. 

Processing the Service 
Request Interrupt 
1. The CPU detects the I/O request sig­
nal. At the end of the next non-jump in­
struction, the I/O request signal is proc­
essed by: 

a. Forcing address 100 1 6 + 2 x SRI and 
obtaining the instruction in that location . 
Contents of the P register are not dis­
turbed. 

b. Initiating the SRI mode of operation in 
the hardware. 

2. The instruction at 100 16 +2 x SRI is 
executed out of sequence. Designator ac-
tivity is suppressed. 

a . 10016 is added to the reference num­
ber contained in the displacement field of 
the instruction. Contents of the resulting 
address are obtained. 

b. The index count is incremented if the 
count is a negative number. Buffer over­
flow is generated if the incremented num­
ber equals zero. 

c. The index count is added to the con­
tents of the address obtained in step a. 
The sum is the operand address for the 
out of sequence instruction. 

3. At the completion of the out of se­
quence instruction, the SRI mode is com­
pleted (return to program mode). The 



counter in the service request interrupt 
logic is reset, allowing scanning to be 
resumed. 

Service Request Lockout 
Service request lockout is never set by 
the CPU or service request interrupt logic 
as the result of processing a service re­
quest interrupt. Service request lockout 
must be set or cleared by programming 
by means of the CDR instruction . It is 
used at the discretion of the programmer. 

Processing A Second Service 
Request Interrupt 
A second service request interrupt is 
locked out by the CPU hardware until the 
out of sequence instruction is completed. 
This lockout is extended through the next 
instruction if that instruction is a CDR. 
The programmer can , therefore, use the 
CDR to set request lockout for subroutine 
protection in processing the current serv­
ice request interrupt . 

SST and EST Instructions 
Two instructions in the P-2000 instruction 
repertoire (SST and EST) provide hard­
ware mUltiple storing and loading of the 
general program registers and the desig­
nator register. These instructions are re­
ferred to as "macro-instructions,'" be­
cause they eliminate the need for individ­
ual instructions to accomplish this com­
mon function. Storing or loading is done 
in a fixed order, to or from a specified 
list of seven consecutive locations which 
may be anywhere in memory. 

SST Instruction (Store Status and Jump). 
This instruction stores the contents of the 
general program registers and the desig­
nator reg ister in seven consecutive core 
locations . The starting address of the list 
for the SST instruction is the highest ad­
dress location and is specified in the in­
struction word. After storing the list, pro­
gram control is transferred (jump) to the 
next instruction spec ified by the SST in­
struction . 

For example, let us assume that the SST 
instruction is to be used to store the pro­
gram status in a memory list which has 
its highest address equal to 5008. The 
next instruction w i ll be at location 5009 . 

The instruction is , therefore: 
6000 SST 5008 

The instruction is contained in memory 
at location 6000. When the register stor­
ing is complete, the list will be: 

5002 (P) 

5003 (B) 

5004 (C) 

5005 (G) 

5006 (E) 

5007 (A) 

5008 (D) 

5009 Next Instruction 

The jump to the next instruction (at loca­
tion 5009) is then made. 

The register list is always stored in the 
same order . The hardware stores from the 
high location (starting at address 5008) 
in decrementing order until the contents 
of the last location (5002) are stored with 
the contents of the P register. 

EST Instruction (Enter or Restore Status 
and Jump) This instruction enters the con­
tents of the general program registers and 
the designator register from the specified 
list of seven consecutive memory loca­
tions. The starting address of the list for 
the EST instruction is the lowest address 
location and is specified in the instruc­
tion . After the contents of the list have 
been entered into the registers, program 
control is transferred to the instruction 
dictated by the newly entered contents 
of the P register. This transfer actually 
accomplishes the function of a jump and 
is inherent in the EST instruction. 

For example, let us assume that the con­
tents of seven locations from 5021 through 

PRG 1 

6000 SST 5008 

I • 
6001 LDA X 
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5027 are to be entered into the general 
program registers , and that the number to 
be stored in the P reg ister is 6000. The 
instruction is : 

7000 EST 5021 

The result will be : 
5021 6000 to P 
5022 Data to B 
5023 Data to C 
5024 Data to G 
5025 Data to E 
5026 Data to A 
5027 Data to 0 

After the EST instruction has entered the 
contents of the list into the major regis­
ters and the designator register, the P 
register contains the number 6000 and the 
CPU will automatically transfer control to 
the next instruction at location 6001. 

The registers are always entered from the 
contents of the list in the same order . The 
hardware effectively starts from the lowest 
location (5021) and proceeds in incre­
menting order until the contents of the 
last location are stored in the designator 
register. 

SST and EST Temp.orary Location. A core 
location 257 10 (or 101 1 6 ) is used for tem­
porary storage during the execution of 
SST and EST instructions . This location 
should, therefore, not be used in applica­
tion programming . 

SST and EST Used Together. The SST and 
EST instructions are completely independ­
ent and can be used individually. How­
ever, they may also be used together as 
reversible functions, as shown in Figure 
19. In that example, a basic program (PRG 

5002 = (P) 6000 
5003 (B) 

5004 (e) 

5005 (G) 
5006 (E) 
5007 (A) 

• 5008 (D) 
5009 PRG 2 , 
5100 EST 5002 

Figure 19. SST and EST Instructions Used Together 
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1) uses the SST to store its current status 
and jump to a second program (PRG 2) 
which can be visualized as a subroutine. 
At the end of the second program, an EST 
is executed to restore the status of the 
basic program and resume that program at 
the instruction following the SST. No 
address mode calculation is used in this 
example. 

1. PRG 1-Execute instruction at 6000. 
When the SST instruction is executed, the 
current status of PRG 1 is stored at loca­
tions 5002 through 5008. The stored P 
(location 5002) will contain 6000. 

2. PRG 1-Jump to instruction at 5009. 
The SST jumps to location 5009 which is 
the starting point of PRG 2. 

3. PRG 2-Execution. The instruction list 
of PRG 2 is executed until the instruction 
at 5100 is reached. 

4. PRG 2-Execute instruction at 5100. 
The EST instruction at 5100 enters the 
contents of the list at 5002 through 5008 
into the major registers and the designator 
register. The inherent jump is performed 
to the next number via the number now 
contained in the P register (P=6000, next 
instruction at 6001 ). 

5. PRG 1-Execute instruction at 6001. 
PRG 1 is resumed at the point where it 
was interrupted by the execution of the 
SST. Major registers (except P) and the 
designator register are in exactly the same 
state as before the interruption. 

The preceding examples of SST and EST 
instructions were limited to simple ad­
dressing in order to keep the explanation 
as clear as possible. However, the SST 
instruction has special addressing mode 
capability which enables the programmer 
to specify the starting address of the save 
list through the contents of the B register 
as well as the calculated operand address. 
After the SST has been executed, the B 
register contains a number which is seven 
less than the original address. The pro­
grammer thus has a pointer which can 
be extremely valuable in push-down list 
operations (relating to compiler functions). 

The EST instruction has the normal full 
address capabi I ity of the P-2000 computer. 

Shifting 
The P-2000 CPU permits direct shifting 

15 14 13 12 n 10 9 

DIS = Double or Single Word 
R I L = Right or Left 
CI A = Circular or Arithmetic 

Figure 20. Shift Description Format 

on any memory location without disturb­
ing the contents of the general program 
registers. The description of the shifting 
operation and the number of bits to be 
shifted is stored in the G register before 
execution of the shift instruction. The 
format of the shift description register (G) 
is shown in Figure 20. The shift count can 
contain a number from 0 through 31 10 , 

Single and Double Word Shifting. Single 
word shifting shifts the contents of the 
specified single, 16-bit word. Double word 
shifting shifts the contents of two consec­
utive memory locations which are treated 
as a single, 32-bit number. In double word 
shifting, the most significant half of the 
double word is contained in word 1, which 
is the operand location. Word 2 is in the 
operand location plus 1. For example, to 
shift locations 5000 and 5001 as a double 
word, location 5000 is word 1 and loca­
tion 5001 is word 2. The operand address 
is 5000. 

Examples of single and double word shift­
ing are shown in Figure 21. In these ex­
amples, a 4-bit word length is used to 
represent a condensed version of a 16-bit 
word to simplify the example. The bit at 
the extreme left is the sign bit. In all of 
the examples, the initial status of the word 
(or words) is shown on the left and the 
result of the first shift on the right. 

Designator Operation on Shift 
Carry designator-On a right shift, the 
carry designator is set whenever the last 

shifted off bit contained a 1. On a left 

8 7 6 5 4 

I 
I· 

3 2 o 

5 Bits 

Shift Count 

shift, the carry designator is set whenever 
the last most significant bit (single word, 
bit 15; double word, bit 31) shifted off 
contained a 1. 

Overflow designator-Set during left shift­
ing if the initial sign bit has been changed 
at the completion of the shift. 

Zero designator-Set if the result of the 
shift (single word or both words of a 
double) are all zeros. 

Positive designator-Set if the most sig­
nificant bit of the result of a shift opera­
tion contains a 0 (single word, bit 15; 
double word, bit 31 ). 

Sign Extension. Sign extension is used in 
right arithmetic shifts to continue the ini­
tial positive or negative number value. It 
is accomplished by copying the sign bit 
into the next bit (and holding the original 
sign bit) each time a bit shift is per­
formed. 

Zero insert. Zero insert, used in left arith­
metic shifting, is accomplished by storing 
a 0 in bit 0 each time a bit shift is per­
formed. 

No Shift Case. When the shift instruction 
is used and the shift count in the G reg­
ister equals 0, no shift will be performed. 
However, the designators will be set ac­
cording to the nonshifted value. The no­
shift function is valuable in interrogating 
the contents of any core location without 
changing the numerical value of those 
contents. 



Single Right Circular Shift 

0 

Double Right Circular Shift 

0 0 II 0 0 

Single Left Circular Shift 

o 

Double Left Circular Shift 

'__0----L...----I..._O 
....1.-....... 11 0 .1 0 

Single Right Arithmetic Shift (Sign Extension) . 

o 

. Double Right Arithmetic Shift (Sign Extension). 

Single Left Arithmetic Shift (Zero Insert) 

o 

Double Left Arithmetic Shift (Zero Insert) 

o 

1 • 

~ 

y 

y 

0 0 

0 0 

0 
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Bit 0 to bit 15=1 
Set Carry 

Bit 0 to bit 15=0 
Clear Carry 

Bit 15 to bit 0=1 
Set Carry 

~I 1 0 

Bit 15 to bit 0=0 
Clear Carry 

J-. 1 Set Carry 

0 P 

I 0 , 0 11 I 0 ~11 1 0 11 11 ~ 0 
Clear 
Carry 

""---__ O_""---........ _O~~ 0 

Set Carry 

o~ 1 I 0 I 1 I 0 I~ 1 11 I 0 lor--- 0 

Clear Carry 

Figure 21. Example. of Shifting 
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