COMPUTER TO MODEL NERVOUS SYSTEM

OF LOBSTER AT CARNEGIE-MELLON 9

A Bimonthly Publication of the ACM Special Interest Group on Artificial Intelligence

SIGART CHAIRMAN George W. Ernst	2 a
Computing and Information Sciences	
Case Western Reserve University	
Cleveland, Ohio 44106	
Telephone: 216-368-2936	
	2a1
NEWSLETTER EDITOR Steve Coles	2 b
Artificial Intelligence Center	
Stanford Research Institute	
Menlo Park, Calif. 94025	
Telephone: 415 326-6200 ext. 4601	

ASSOCIATE EDITOR Rich Fikes

Artificial Intelligence Center Stanford Research Institute Menlo Park, Calif. 94025
Telephone: 415 326-6200 ext. 4620

The Editors encourage contributions from authors, including Letters to the Editor (AI Forum), Technical Contributions (1 to 2 pages), Abstracts (preferably 100-200 words), Book Reviews, Bibliographies of Special Topics in AI, News Items (Conferences, Meetings, Course Announcements, Personals, etc.), advertisements, puzzles, poems, cartoons, etc.

Copy deadilne for the April Issue: March 23rd.
To indicate a change of address or if you wish to become a member of SIGART, please complete the form on the bottom of the last page of this hard copy issue.
$2 f$

Usually at this time of the year I talk about SIGART activities at the SJCC. Obviously, there will be none this year. Hence, I would like to take this opportunity to bring you up to date on the membership statistics.

SIGART currently has 1672 members. At the end of 1971 , there were 1241. Thus, in 1972 there was an increase in the membership of 431 or about 35%. SIGPLAN and SIGOPS are the largest SIG'S; both are about twice as large as SIGART. SIGART is the fourth largest SIG with the SIGBDP membership being about half-way between that of SIGART and SIGPLAN.

Of course, quantity does not necessarily indicate quality. But, I feel that the steady increase in our membership is due to two factors. There is a steady increase of computer professionals who are interested in AI, and the members of SIGART feel that they are getting their money ${ }^{\circ}$ s worth. Since the newsletter is SIGART's main activity, I feel that the steady increase in our membership is a real vote of confidence for Steve Coles, Woody Bledsoe, and their predecessors, all of whom have done an excellent job in preparing the newsletters.

Credit is also due to the many members who have sent us news items in the past. I would like to encourage you to continue to send us news items, some of which may be opinions based upon expertise in either AI or some other area. As an example of the latter, the August 1972 newsletter contained a letter by Bobby Caviness about symbolic integration which I found very interesting and informative. I hope there will be more contributions of this sort in the future.

In keeping with our philosophy of compiling and editing as much of the Newsletter on-line as we cang Rich and I have begun to enter newsletter material directly in machine-readable form immediately upon receipt from reporters or others. This explains the minor change in paragraph format, etc. in the current issue. We hope the more timely access possible over the Network will more than compensate for lack of direct underlining and subscripting capability in the final published version. Please give us your comments.
2. Newsletter Reporters

As of this date, the following persons have agreed to act as SIGART Newsletter Reporters at their respective locations:

Since reporters will soon be getting instructions about how to submit material directly over the Network, if you reside in one of the above AI centers, your first point of contact for submitting material should be your local reporter. However, you should still feel free to communicate directly with us, as the occasion demands. Conversely, as your local reporter solicits news or contributions from you, we hope you will cooperate.
3. Five Year Prediction is Satisfied (Almost)

While your Editor was present at a panel discussion on AI at Noon on August 6, 1966 at Edinburgh University, Scotland, Prof. John McCarthy made the following public prediction:
"A robot hand-eye project will screw a nut onto a bolt within five years."
4. AI-Delphi Study

For those who would like to try their "own" hand at forcasting future developments in the field of artificial intelligence (extending to the end of this century), the "AI-Delphi Questionnaire" may be just the thing. As promised in the Editor's Entry last October (Item No. 4), we have designed a three-round Delphi-style questionnaire and cast it around hypothetical products based largely on AI technology. A fourteen-page, first-round questionnaire has already been mailed to approximately 60 respondents chosen for their expertise in AI and drawn largely from the International Joint AI Council (although a number of younger researchers have been added, together with a few vociferously anti-AI types for the sake of balance). The questionnaire, instructions for filling it out, and a cover letter accompanylng the mailing have been entered on an NLS file named DELPHI in our SIGART directory on the Network. Please feel free to browse and/or fill out the questionnaire yourself, making comments as indicated.

```
# See p. }8\mathrm{ for more details on this film and how to
obtain it.
```

5．Cassette Tapes Available of AI Debate

```

If there is sufficient interest within the AI Community，＊ we will make available for the price of \(\$ 4.00\) a copy娄 a ninety minute unedited，casette tape－recording of a recent Colloquium held at Berkeley on the afternoon of January 16 entitled，＂A Debate on Artificial Intelligence，＂moderated by Prof．L．A．Zadeh of the Department of Electrical Engineering and Computer Sciences with the major protagonists being
\(4 e\)
1．Prof．Hubert Dreyfus，Department of Philosophy at
Berkeley，
2．Prof．Joseph Weizenbaum，Center for Advanced Study
in the

Behavior Sciences at
Stanford, and
3. Dr. Stephen Coles, Stanford Research Institute, 4ela
and including a lively discussion by participants from an audience numbering almost 400 ．

The adversaries adopted predictable lines of argument（for those who are familiar with their public positions），but toward the latter part of the discussion，attention was heavily focused on the social implications of having highly intelligent machines participating in the world of human affairs．Address requests to the Editor，SIGART Newsletter．Do not send money at this time．You will be billed later．

6．Norman Cousins Plays Chess on the Computer

In the introduction to his book，＂The Shape of Automation，＂戠率 Herbert Simon said，
＂Computers have captured man＇s imagination．That is to say，like a psychiatrist＇s ink blot，they serve the imagination as symbols for all that is mysterious， potential，portentous．For when man is faced with ambiguity，with complex shadows he only partly understands，he rejects the ambiguity and reads meaning into the shadows．And when he lacks the knowledge and technical means to find the real meanings of the shadows，he reads into them the meanings in his own heart and mind，uses them to give external shape to his private hopes and fears．So the ambiguous stimulus，the ink blot，becomes a mirror．When man describes it，he depicts not some external reality，but himself．＂

Norman cousins，Editor of WORLD Magazinea，recently played chess with a computer at Dartmouth College．His comments regarding the matcha＠are a magnificient illustration of Simon＇s remarks quoted above．
```

* A minimum of twenty orders will be necessary.
*辛 This price includes the cost of copying the tape, a brand
new cassette, and postage.
卒卒市 p. ix, Harper and Row, 1965.
a A newly-formed publication derived largely from the old
staff of Saturday Review (before they broke up and transferred
their offices from New York to San Francisco and divided the
Magazine into four separate concurrent monthlys: Science,
Arts, Education, and Society.)
@ด) Editorial, "Humans Versus the computer," WORLD, pp.18-19,
Feb. 13, 1973.

```
"In the course of the evening, I learned a number of things about the chess-playing computer. First of all, it was not invincible. It played correctly but quite routinely. It made no stupid mistakes, such as exposing a major piece to attack by a lesser piece. And it never overlooked a slip you might make, such as foolishly leaving a rook on a diagonal covered by a bishop. Its strategy of victory, in fact, was based on the virtual certainty that, at one point or another, its human opponent would do something foolish. It would translate this advantage into ultimate victory.

But the machine also had weaknesses. Its play was characterized by very little imagination or daring; in fact, it was a rather dull opponent. Having played it once, you had the advantage in later games of being able to know with considerable certainty what it was going to do. And it was rather inept in dealing with disclosed [discovered] checks, especially when they came in rapid succession. Also, it was reassuring to see that the machine required time to figure out its next move; sometimes it would take three minutes or more to make a
decision.

4 g 3

4 g 4

Earlier in the editorial he went into a diatribe about how the "blasted computer mangled thousands of subscriptions" in World Magazine's subscription service system and his "cosmic frustration" about not being able to turn back, since hand-processing of subscriptions was out of the question. A little later he adds,
"There is something rather comforting in the demonstrated fact of computer fallibility. We need to preserve the illusion that the human brain is still sovereign. We want to delegate our chores, some of which may be rather sophisticated; but we want neither to be outsmarted nor upstaged. The fact that a computer can be obstinately wrong and even stupid at times gives us not just a friendly feeling about the species but a sense that we are really kin after all.

It is a shame that an otherwise reasonable man could so pathetically miss the boat as far as computers are concerned. I would hope that someone in the AI Chess-playing community might write a letter to Mr. cousins setting the record straight. Do we have any volunteers?

\section*{NEWS FROM THE STANFORD UNIVERSITY AI PROJECT}
by
Pegey Karp
1. New Movie Available

A new tilm, entitled "MOTION AND VISION," is divided into three segments, each presenting a research project completed at the Stanford AI Lab during the Summer of 1972. The first segment presents research performed by Richard Paul. The use of a computer-controlled mechanical arm is demonstrated through a series of increasingly difficult tasks, culminating with the locating and screwing of a nut on a bolt, a preliminary task used in a current pump assembly project.

The second segment presents Aharon Gill's use of visual feedback from a TV camera for self correction in the motion of the mechanical arm during tasks requiring precise manipulation. A toy block placement task is shown.

The final segment presents Gerald Agon's research using depth information from a laser triangulation system for description of curved and complex objects. A doll and a clay snake are used to demonstrate the processing of laser profiles into segmented volume models.

The technical level of the film is more advanced than that of earlier films. The material in the first two segments is expanded in the authors' theses, Stanford AI memos 177 and 178 , respectively. The film is approximately 25 minutes in duration. It can be borrowed at no cost for a 2-week loan period by contacting Ms. Barbara Barnett, Stanford A.I. Project, Stanford Calif. 94305, (415) 321-2300 ext. 4971 or can be purchased for approximagely \(\$ 150\) from Cine-Chrome Lab, 4075 Transport St., Palo Alto, California. (415) 321-5678.
2. Charniak Gives Colloquium

Dr. Eugene Charniak of the MIT Artificial Intelligence Laboratory gave a well-attended lecture on the subject of his recent Ph.D. Thesis, "Toward a Model of Children's Story Comprehension" on January 23rd. [Ed.Note: See p. 21 this issue for an abstract of Charniak's thesis.]

COMPUTER TO MODEL NERVOUS SYSTEM OF LOBSTER AT CARNEGIE-MELLON (As reported in Carnegie Alumni News, Dec. 1972, p.7)

Through construction of a computer simulation, scientists hope to find out more about the correlation between the nerve cell structure and function. The project is funded by a \(\$ \mathbf{1 7 6 , 2 0 0}\) grant from the National Science Foundation.

Principal investigator for the project at CMU is Dr. D. R. J. Reddy, associate professor of computer science. Working with Dr. Reddy is Dr. W. J. Davis, professor of biology at the University of California at Santa Cruz.

In the study, Professor Reddy will construct a geometrical representation of a lobster ganglion (a set of nerve cells), specifically the ganglion system which operates the lobster's swimmerets, the appendages used for swimming and carrying egeg .

Computer reconstruction is required to make the necessary comparisons and measurements on the neural structures. To do this, a very sophisticated computer system incorporating elements on the frontiers of computer science. It will be capable of constructing a three-dimensional model of a nerve system from photographs of sections, transforming the model into a two-dimensional graphical display with perspective, and permitting manipulation of the graphical image so that it can be studied from any viewpoint, enlarged, or reduced.

Professor Reddy has done extensive work with visual and voice input to computers at Stanford and Carnegie-Mellon.
"Despite some of the sensational stories which have appeared about computers and robots replacing human beings, ll says Dr. Reddy, "we are a long way from any such possibility. In fact, in recent years we have begun to realize how little we know and how much more work needs to be done before we can even begin to construct computers or robots which might perform any but the most simple functions comparable to the human brain."

Dr. Reddy notes: "In effect we re working with a mini-brain, or a limited neural system. Lobsters have various systems of nerve cells which perform limited functions."

Lobsters are being used for the study because the swimmeret system is one of the best understood small systems of nerve cells, a result of several years of intensive investigation. Dr. Davis has been one of the foremost researchers in these studies.
```

The study ultimately aims to provide "the
most complete functional and structural
understanding yet available of the
neuronal control of a specific, relatively
complex act of overt animal behavior."
Techniques developed in the study are
expected to be directly usable in the
analysis of other invertebrate nervous
systems, and ultimately to the analysis of
any restricted neural network.

```
"Yes.... I Believe that it is possible [in principle] for me to be beaten by a computer... But they have a long way to go. They're only playing at the class "B" level, which is five or six levels be low me. And up to now they \({ }^{\boldsymbol{7}}\) ve only had computer scientists developing such programs, and they won't get anywhere until they actually involve some good chess players."

Bobby Fisher
World Chess Champion
Dec. 21, 1972
On the Dick Cavett Show (ABC-TV) 7al

RESHEVSKY EXONERATED
1. Did the PDP Go Astray?
by
I. Jack Good

December 25, 1972
Dept, of Statistics
Virginia Polytechnic Institute and
State University
Blacksburg, Virginia

The Third United States Computer Chess Championship was played in August 1972 and was won by Northwestern University \({ }^{\boldsymbol{i}} \mathrm{s}\) team of Larry Atkin, Keith Gorlen, David Slate, and a CDC 6400, with three straight wins. A commentary by Sam Reshevsky on the best of these three games appeared in the New York Times on August 17, 1972, and was reprinted in the SIGART Newsletter of October 1972. Northwestern had White against Carnegie-Mellon (James Gillogly and a PDP-10). The position after 27 P-KR4 is shown in the diagram on the next page.

7b1a

Here Black played 27...P-QB4?, and Reshevsky says that 27...P-KR3 would have given an even position. This seems undeniable for current chess programs, but it seems to me that White has an objectively won position. He can play \(28 \mathrm{~N}-\mathrm{N} 2\) intending \(N-B 4-R 5\) ch winning a pawn. I here give two examples of reasonable continuations.
```

A. 28...P-QB4 29 N-B4, B-B3
30 N-R5 ch, K-R1 31 NxP,
P-KR4 32 R-K2 (or NxP), PxPch
33 KxP, forced, but wins by
the plan P-R5-R6, K-B4, R-N2,
P-R7, R-N8 mate. This plan is
unanswerable; for example,
33.... B-N2 34 P-R5, P-B3 35 P-R6, R-K2 36 K-B4, R-B2 }3
R-N2, R-B1 38 P-R7, B-R1 39 R-N8ch, RxR 40 PxR = R mate.

```
                                    \(7 \mathrm{blb1}\)
B. 28... P-KR4 \(29 \mathrm{P}-\mathrm{N} 5\), PxP 30 PxP , BxP (the only chance)
31 PxB, RxPch \(32 \mathrm{~N}-\mathrm{B} 4\), RxP \(33 \mathrm{R}-\mathrm{N} 2\), \(\mathrm{K}-\mathrm{R} 334 \mathrm{RxR}, \mathrm{XxR} 35\)
\(\mathrm{P}-\mathrm{N} 4\), K-B4 \(36 \mathrm{P}-\mathrm{R} 4\), \(\mathrm{K}-\mathrm{K} 437 \mathrm{P}-\mathrm{R} 5\), , \(\mathrm{K}-\mathrm{Q} 538 \mathrm{P}-\mathrm{N} 5\) and
wins; or here \(35 \ldots \mathrm{P}-\mathrm{R} 536 \mathrm{P}-\mathrm{R} 4\), K-B3 \(37 \mathrm{P}-\mathrm{R} 5\), \(K-K 238\)
\(K-N 4\) and wins, although the verification of the win
requires a little more analysis.
\(7 \mathrm{b1b2}\)
2. PDP Astray (Con't.), December 31, 1972

7b2

Here is the "little more analysis" mentioned at the end of the note of 25th December 1972.

7 b2a
\[
\begin{aligned}
& 38 \ldots \mathrm{P}-\mathrm{Q} 439 \mathrm{P}-\mathrm{N} 5 \text {, BPxNP } 40 \text { PxNP, K-Q2 } 41 \text { PxP, K-B1 } 42 \\
& \mathrm{NxP}, \mathrm{~K}-\mathrm{N} 143 \mathrm{~N}-\mathrm{K} 3 \text {, K-R2 } 44 \mathrm{~N}-\mathrm{B} 4 \text {, } \mathrm{KxP} 45 \mathrm{KxP} \text { and wins. Or } \\
& 38 \ldots \mathrm{P}-\mathrm{QB4} 39 \mathrm{P}-\mathrm{N} 5, \mathrm{~K}-\mathrm{Q} 240 \mathrm{~N}-\mathrm{Q} 5 \text { and wins. 7b2al }
\end{aligned}
\]
3. [Ed. Note: At this point I wrote a letter to Mr. Reshevsky, enclosing the correspondence in 1 and 2 above and saying, "It is alleged that '27... P-R3' does not yield an even position as you said earlier, and assuming this is true, I don't believe you should be faulted for not realizing that White may still have a winning advantage. After all, it was a position that occurred approximately in the middle of a uniformly poor game by master standards)."]
4. Response
by
Samuel Reshevsky
January 16, 1973
5 Hadassah Lane
```

Spring Valley, New York

```

I disagree with Mr. Good"s conclusion. Mr. Good has omitted two of Black's best replies to 28. N-N2. First of all, after 28 N-N2 (threatening \(N-B 4-R 5\) ) Black can defend the KBP with 28 ... K-B1, and if \(29 \mathrm{~N}-\mathrm{B4} 4 \mathrm{R} 5\), Black continues ... K-K2. Secondly, after \(28 \mathrm{~N}-\mathrm{N} 2, \mathrm{Black}\) equalizes with \(28 \ldots \mathrm{P}-\mathrm{KR} 4 ; 29 \mathrm{P}-\mathrm{N} 5\), PxP; 30 PxP, P-Q4, etc. 7b4a
P.S. Until you will engage a Grandmaster of high repute, the computer will never get anywhere. 7b4b
5. [Ed. Note: Being unaware of Mr. Reshevshy's response I.J. Good continues the original correspondence.] 7b5

PDP Astray (Con't.), January 16, 1973 7b5a
Grandmaster Robert Byrne has been kind enough to point out that \(28 \mathrm{~N}-\mathrm{N} 2\) can be met by \(28 \ldots \mathrm{~K}-\mathrm{B} 1 \quad 29 \mathrm{~N}-\mathrm{B} 4, \mathrm{R}-\mathrm{K} 1 \quad 30 \mathrm{~N}-\mathrm{R} 5\), K-K2. He points out that now White has a slight advantage but it is doubtful whether he can force a win. The most promising line \(I\) have found is \(31 \mathrm{P}-\mathrm{B5}, \mathrm{R}-\mathrm{KR} 1\) (to prevent an exchange of the knight for three pawns) \(32 \mathrm{R}-04\), with some prospect of exploiting Black's weak pawn structure.
\(7 \mathrm{b5b}\)

Dr. Tan of the School of Artificial Intelligence at Edinburgh points out that after \(27 \ldots \mathrm{P}-\mathrm{KR} 328 \mathrm{~N}-\mathrm{N} 2\), P-KR4 \(29 \mathrm{P}-\mathrm{N} 5\), PxP \(30 \mathrm{PxP}, \mathrm{P}-\mathrm{Q4}\) at least equalizes. I think White is better off in the variation \(29 \mathrm{~N}-\mathrm{B4}\), PxPch \(30 \mathrm{~K}-\mathrm{N} 3\), RxKP \(31 \mathrm{~N}-\mathrm{R} 5 \mathrm{ch}\), \(\mathrm{K}-\mathrm{B} 1\) or R1 \(32 \mathrm{NxP}, \mathrm{R}-\mathrm{K} 2 \quad 33 \mathrm{KxP}\). Then for example, \(33 \ldots \mathrm{~B}-\mathrm{B} 1\) \(34 \mathrm{~K}-\mathrm{N} 5\), R-K4 \(35 \mathrm{R}-\mathrm{KB} 2\) and White has chances of a win but a thorough analysis would be complicated.
6. PDP Astray (Con't.), January 24, 1973

I now belleve Reshevsky was right, in view of the following line
\[
\begin{aligned}
& 27 \text {... P-KR3 } 28 \mathrm{~N}-\mathrm{N} 2 \text {, P-KR4 } 29 \mathrm{~N}-\mathrm{B} 4, \mathrm{PxP} \text { ch } 30 \mathrm{~K}-\mathrm{N} 3 \text {, } \\
& \mathrm{K}-\mathrm{R} 3 \text { 31 R-K2, R-K1 7b6a1 }
\end{aligned}
\]

It whould be interesting to know if Reshevsky saw all this or whether he just used judgement.
```

[Ed. Note: This was probably the most carefully analyzed
position in the history of computer chess] 7b6c

```

\begin{tabular}{llllll} 
OSTRICH & X & 1 & 1 & 2 \\
TECH & 0 & \(x\) & 1 & 1 & \\
COKO III & 0 & 0 & \(x\) & 0 & \(7 c 11 \mathrm{al}\)
\end{tabular}

\section*{THE FOURTH ANNUAL UNITED STATES COMPUTER CHESS CHAMPIONSHIP}

> Atlanta, Georgia

August 26-28, 1973
The ACM will host the Fourth United States Computer Chess Championship at its Annual Conference in Atlanta, Georgia. The tournament is a four round \(S w i s s\) style tournament with the first two rounds on Sunday, August 26 at 1 P.M. and \(7: 30\) P.M.; the last two rounds will be played Monday August 27 at \(7: 30 \mathrm{P}\). M. and Tuesday, August 28 at 7:30 P. M. David Levy, an international Master from Scotland, will return to serve as Tournament Director. A panel discussion involving the authors of the programs will be moderated by Prof. Benjamin Mittman, Director of the Northwestern University Vogelback Computer Center. 7d2

At this time four teams have tentatively entered the competition. The three time champions, Larry Atkin, Keith Gorlen, and David Slate are expected to return and defend their program's title. They have used the CDC 6400 computer at Northwestern for the last three years. Also tentatively entered are the programs of George Arnold and Monty Newborn of Columbia University using a Data General Supernova, Jim Gillogly of Carnegie-Mellon University using a PDP-10 and the team of Dennis Cooper and Ed Kozdrowicko. Cooper is a researcher at Bell Telephone Laboratories and Kozdrowicko is on the faculty of the Electrical Engineering Department at the University of California, Davis. If the number of entries exceeds eight, it will be necessary to qualify for participation. The official tournament rules are indicated on the next page. Entries must be submitted by May 15 , 1973. For further information, please contact
```

Prof. Monty Newborn
Department of Electrical Engineering
and Computer Science
Columbia University
New York, N.Y. 10027

```
Telephone: (212) 280-4229 or 3105.
[Ed. Note: In a recent telephone conversation with Prof. Newborn I learned that he already has 18 entries, so it looks as though a qualification match may be necessary. He is actively seeking Russian participation for this year's tournament with the only remaining difiliculty being the approximately \(\$ 2500\) cost for phone lines between Atlanta and the Soviet Union.] 7d4

\section*{TOURNAMENT RULES}
1. The tournament is a four round Swiss style tournament with trophies to be awarded to the winner and runner-up.
2. Games begin 1 PM Sunday, August 26; 7:30 PM, August 26; 7:30 PM, August 27; and 7:30 PM, August 28. A team may ask for a 30 minute delay if it is having technical difficulties. 7e2
3. Unless otherwise specified below, rules of play are identical to those of regular "human" tournament play. If a point is in question, the tournament director has the authority to make the final decision. 7 e3
4. Games are played at a speed of 40 moves per player in the first two hours and then 10 moves every 30 minutes thereafter. 7e4
5. The tournament director has the right to adjudicate a game after six hours of total elapsed time.

7 es
6. If a team encounters technical difficulties fachine failure, communications failure or error, or program failure) during the course of a game, the tournament director may allow them to stop their clock for as long as necessary, but not to exceed 20 minutes, in order to restore their system. At the end of the 20 minutes, their clock will be started again. The tournament director may grant a team permission to stop their clock at most three times during the course of a game.
7. There is no manual adjustment of program parameters during the course of a game. In the case of program failures, program parameters must be reset to their original settings if it is at all possible. Information regarding castling status, en passant status, etc., may be typed in after a failure. If at any time during the progress of a game, the computer asks for the time remaining on either his or his opponent's clock, this information may be provided. However, the computer must initiate the request for information. 7e7
8. At the end of each game, each team is expected to turn in a game listing along with a record of the CPU time required for each move. A record of initial settings on fanout parameters and time control parameters must also be recorded.
9. The number of participants is limited to 8. (If this number can be increased, then the following is not relevant. However at this time it seems that we will be limited to 8). If there are more than eight teams interested in participating, the decision on who will participate will be made by the tournament director. His decision will be based on information provided to him by the entrant. It is expected that participants who have done well in the past U. S. Computer Chess Championships will not have to qualify.
10. Each team must include the principal author of the program that they are using.

\title{
ADVANCED STUDY INSTITUTE (ASI) COMPUTER REPRESENTATION AND MANIPULATION OF CHEMICAL INFORMATION sponsored by NATO and the CNA
}

June 4-15, 1973
Noordwijkerhout, Holland 8 a
The ASI will be a high level teaching workshop designed for students at the post-doctoral level. The ASI will deal with the broad range of problems and methodologies encountered in the representation and manipulation of various types of chemical information.

8 al
It will include heuristic problem solving in mass spectroscopy by
the DENDRAL Project and problems of chemical synthesis by the
Princeton Heuristic SECS program. The conference wwll attempt to
center discussion on representational issues and non-numerical
problem solving.
Organizing Committee:
```

W. T. Wipke (Princeton)
E. Hyde (ICI)
R. J. Feldmann (DCRT, NIH)
S. R. Heller (DCRT, NIH).

```
Limited financial assistance will be available for some
participants. Application forms may be obtained from Professor W.
T. Wipke, Chemistry Department, Princeton University, Princeton,
New Jersey 08540 USA.
```

8 a 3

1973 SAGAMORE COMPUTER CONFERENCE ON PARALLEL PROCESSING

August 22-24, 1973
Sagamore, New York
(120 miles $N . E$. of Syracuse, N. Y.)
8b
Authors are invited to submit papers describing recent advances on all aspects of parallel processing, including circuit design, system architecture, reliability and diagnostics, simulation techniques, performance measurements, operating systems, languages, and various application studies. The conference will accept both regular and short papers. The deadline for submission is May 15, 1973. For regular papers a 50 -word abstract and a 500 -word summary is required. Mail abstracts and/or summaries to 8b1
Prof. T. Feng
Department of Electrical and Computer Engineering
111 Link Hall
Syracuse University
Syracuse, New York 13210
8bla

1973 IEEE SYSTEMS MAN AND CYBERNETICS CONFERENCE
 Sponsored by IEEE Systems Man and Cybernetics Society

Two types of papers are being solicited:
(1) regular papers describing more complete work in greater detail and
(2) short papers describing recent and perhaps preliminary work. Prospective authors are asked to submit five copies of complete manuscript for regular papers or five copies of a $700-$ word summary for short papers, to: 8c3b

```
Dr. Sheldon Baron
Bolt Beranek and Newman, Inc.
50 Moulton Street
Cambridge, Massachusetts 02138.
```

Deadline is April 1, 1973 for regular papers, and June 1, 1973 for short papers. Each regular paper will be reviewed for possible presentation at the Conference and for possible publication in the IEEE Transactions on Systems, Man, and Cybernetics. All papers accepted for presentation at the conference will be published in the Conference Proceedings.

COMPUTER ARTS AT EDINBURGH FESTIVAL

$8 d$

The Scottish Arts council is providing generous financial support for the computer Arts Society to mount an exhibition and live events at the 1973 Edinburgh International Festival．

8 d 1

Computer composed music，dance，theater，poetry and even robots are planned among the live events during the week beginning 27 August 1973．Artists using computers will give explanations and demonstrations of their work and methods．As a background there will be a display of computer graphics．

In conjunction with the University of Edinburgh a conference is to be held during the mornings of the same week．Contributions are being invited on the interactions of men，machines，and society， and on computer controlled art works．

8 d 3

CONFERENCE
－－ー－ー－ー－8d4

Papers dealing with any aspects of the use of computers in the arts are called for，and particularly ones on the following themes：

```
Interaction: man-machine-society
The artist as model maker
Computer controlled systems in music, sculpture, and beyond
Languages for the arts
Procedural composition
What I've done and how I did it
Analytical studies
Analysis and synthesis: Can scholars and artists meet?
Modelling the creative process
Surveys and criticism
\(8 d 5 a\)
```

A summary of $300-500$ words is required by 28 February 1973 and the complete paper by 15 June 1973．Copies of these final scripts will be available to all those attending the conference．8d6

EVENTIBITION
$8 d 7$

Live events of all kinds involving the use of computers are invited：music，dance，theater，poetry，robots，and systems of all sorts．Works in graphics，film，recorded sound，or any other passive medium are requested for the exhibition．8d7a

Demonstrations and explanations of methods and results will also be given by artists as part of the Eventibition．These could be popular versions of conference papers．

For information contact：
$8 d 7 c$

```
R. John Lansdown
Secretary - Computer Arts Society
50-51 Russell Square
```

London WCIB 4JX 8d7e1

```
COURSE ANNOUNCEMENTS FROM THE UNIVERSITY OF WISCONSIN by
Rob Kling
```


CS731 ARTIFICIAL INTELLIGENCE AND MODELS OF THINKING 9a

Description

We will study several areas of artificial intelligence, drawn from:

Concept Formation
Problem Solving
Theorem Proving
Question Answering Systems
Pattern Recognition and Scene Analysis Robots
Game Playing
Applications: (Spectrum Analysis, Trust Investment Program Synthesis) 9alail

There will be dual attention to A.I. as 9alb
(1) A design discipline for creating sophisticated tools that require some automated intelligence and 9aibl
(2) A set of concepts for understanding specific aspects of human thinking.

9 a 1 b 2

This course emphasized independent reading, research and writing with mutual help and criticism. 9aic

Texts:

Computers and Thought
Problem Solving Methods in Artificial Intelligence
Human Problem Solving
Human Information Processing

CS762 DEDUCTION AND PROBLEM SOLVING 9b

Description

> A study of the role of concept formation (planning, analogy, induction, learning) in human and machine problem solving. Selected problem solving languages such as QA4, PLANNER and CONNIVER will be carefully considered. WIS-PLANNER, a local dialect of MICRO-PLANNER is available for experimental use.
Understanding Natural Language 9 b 2 a

COMPUTER LEARNING FROM ENGLISH TEXT

 byNagib A. Badre
Memorandum No. ERL-M372
Electronics Research Laboratory
University of California at Berkeley
(Dec. 1972)

This thesis develops a theory and a computer model of learning based on English text. The model is experimentally implemented as a computer program, called CLET (Computer Learning from English Textl, which achieves the learning of elementary arithmetic from an ordinary fourth-grade textbook. CLET takes all of its input from unmodified sentences appearing in this book. It performs syntactic, semantic, and discourse level analyses of the input material. CLET must then induce the general algorithms from the examples presented to it. It builds up, automatically, a program to perform the required operations. CLET then solves elementary arithmetic problems using the program it has itself constructed.

Logic, deductions, and procedural power have been heavily emphasized in previous approaches to computer understanding of natural Language. These earlier systems had many shortcomings which prevented them from being able to learn directly from English texts. The hypothesis asserted here is that these difficulties cannot be solved by slightly increasing the sophistication of earlier methods. A more complete inguistic analysis, of the sort carried out in CLET, is required. $10 a 2$

CLET does not attempt to provide a psychological model of a child's learning behavior. On the other hand, its capabilities go far beyond the simple numeric adjustment of a predetermined mode. It emphasizes semantic structure as well as elaborating procedures that analyze coherent discourse. CLET can be said to learn because it "understands" and makes inferences from connected text. 10 a 3
Learning is one of the most remarkable aspects of human intelligence. By exploring this process on computers, we hope to go one step further in the quest for artificial intelligence. 10a4

TOWARD A MODEL OF
CHILDREN'S STORY COMPREHENSION
by
Eugene Charniak
AI TR-266
MIT Ph.D. Thesis
(Dec. 192)

How does a person answer qestions about children's stories? For example, consider "Janet wanted Jack's paints. She looked at the picture he was painting and said, "Those paints make the picture look funny. " The question to ask is, "why did Janet say that?" 10b1
We propose a model which answers such questions by relating the story to background real-world knowledge. The model tries to generate and answer important questions about the story as it goes along. Part of the information connected with a "concept" is the set of facts which might be relevant to stories which include the concept. When the concept occurs in the story these facts are "made available" in the sense that they can be used to make deductions. In general all the necessary information to make a deduction may not be around at the time the fact is made available. Hence, the facts are allowed to wait around "looking" for the necessary information. For this reason the facts are called "demons," This model also sheds light on some problems of reference and disambiguation (such as "funny" as "bad" in the above example). The demons (serving as "context") can assign a particular meaning to a word, or a particular referent to a noun phrase.

A major problem is formalizing real-world knowledge to fit into the comprehension model, and we explore in detail one small topic (piggy banks). Note that it is the researcher, not the model, who discovers and organizes the facts. That is, the model does not learn.

An earlier version of the model described in the thesis was computer implemented and handles two story fragments (about 100 sentences). The problems involved in going from natural language to internal representation were not considered, so the program does not accept English, but an input language similar to the internal representaion is used. Naturally, this is only a first attempt at a model for children's stories, and many suggestions for further work are included.

10b4

NATURAL LANGUAGE INQUIRY SYSTEMS by
Stan Mark Rifkin
Computer Science Master'S Thesis UCLA (1972)

Natural language inquiry systems are those computer programs which allow manipulaton of large data bases by users in a time-sharing mode. The user communicates his storage and retrieval requirements in English. Nine systems are each individually surveyed system-by-system in order to give the reader some background in the diverse design philosophies represented. The systems are then reviewed feature-by-feature with respect to the following common features:
 10 c 1

1) power of the input language

10 c 1 a
2) treatment of syntactically and semantically ambiguous queries

10 clb
3) ease and effectiveness of input language extensibility 10cic
4) representation of the underlying meaning and facts; and
$10 c 1 d$
5) the extent of attention to data base management and file
organization issues.
10 c 1 e

The result is a list of features which appear to run through all the systems.

FUZZY PLANNER: COMPUTING
UNCERTAINTY IN A PROCEDURAL
PROBLEM-SOLVING LANGUAGE
by
Rob Kling
Tech Report No. 168
Computer Sciences Department
University of Wisconsin at Madison
10 d

Most contemporary deductive problem-solving paradigms deal with a world in which assertions are true (false) and action-rules valid (invalid). This simplified situation is inadequate for realistic applications which include uncertain or inexact information. This paper describes a precise computationally specific method for coupling a particular many-valued logic with a procedural problem-solving system (PLANNER). Solutions to deductive problems can be found which meet specific criteria of reliability. This particular scheme enables the system to dynamically compute the truth-value of a subgoal during the search process. Thus, the reliability of a subgoal may be used to direct the heuristic search procedure.

POLYFACT: A LEARNING PROGRAM THAT FACTORS MULTIVARIABLE POLYNOMIALS by
Billy G. Claybrook Virginia Polytechnic Institute and State University Blacksburg, Virginia

POLYFACT, a learning program that determines the symbolic
factorization of multivariable polynomials is described. Learning is implemented thorugh the dynamic modificaton of heuristics. This implementation requires a new representation that permits the dynamic modification and creation of heuristics. A slightly modified first-order predicate calculus notation is utilized. The research considers two types of learning schemes: concept learning and generalized learning.

Tests are developed to evaluate the performance of POLYFACT in accomplishing the following objectives with respect to learning:

1. demonstrate that learning can be used successfully in a complex environment to increase the efficiency of the program, 10 e 2 a
2. Show that a classification scheme can be used to allow POLYFACT to extend itself to newly classified polynomials, and $10 e 2 b$
3. demonstrate that a classification scheme can be used as a mechanism for implementing localized learning. 10e2c

About 85% of the over 300 polynomials factored in the performance tests are generated by a random polynomial generator. The random polynomials have coefficlents $[-10000$, 10000$]$, number of variables $[2,5]$, degree of the variables $[0,12]$, and number of terms $[2,84]$.

10 e 3
An analysis of variance experiment provides an indication of the significant sources of variation influencing the factorization time. The degree of the polynomial is found to contribute very little to the factorization time.

PROGRESS IN PICTURE PROCESSING: 1969-71 *
 by

Azriel Rosenfeld
TR-176 University of Maryland
College Park, Maryland
(January 1972)

Developments in the field of picture processing by computer during 1969-71 are surveyed. The topics covered and surveyed include picture compression, image enhancement, pictorial pattern recognition, scene analysis, and picture grammars.

REPRESENTATICNS OF THE 章
LA NGUAGE RECOGNITION PROELEM
FOR A THEOREM PROVER
by
Jack Minker
Gordon J. Vanderbrug
TR-199, University of Maryland
College Park, Maryland
(September 1972)

Two representations of the language recognition problem for a theorem prover in first-order logic are presented and contrasted. One of the representations is based on the familiar method of generating sentential forms of the language, and the other is based on the Cocke parsing algorithm.

10h1
An augmented theorem-prover is described which permits recognition of recursive languages. The state-transformation method developed by Cordell Green to construct problem solutions in resolution-based systems can be used to obtain the parse tree. In particular, the end-order traversal of the parse tree is derived in one of the representations. The paper defines an inference system, termed the cycle inference system, which makes it possible for the theorem prover to model the method on which the representation is based. The general applicability of the cycle inference system to state-space problems is discussed. Given an unsatisfiable set S, where each clause has at most one positive literal, it is shown that there exists an input proof. The clauses for the two representations satisfy these conditions, as do many state-space problems. 10h2

A HEURISTIC SOLUTION TO * THE TANGRAM PUZZLE
by
E.S. Deutsch,
and Kenneth C. Hayes
TR-177, University of Maryland
College Park, Maryland
(January 1972)

A heuristic program leading to the solution of tangram puzzles is described. The program extracts puzzle pieces using a set of rules which search for piece-defining edges. The rules decrease in their rigor, and hence in their reliability, in the sense that the edge requirements become more lax. Such edges include those constructed during the solution process. Composites of puzzles are also formed and are treated like puzzle pieces. The solution procedure is such that the most reliable rules are applied recursively as often as possible. It is only when the solution process comes to a halt that the lower reliability rules are applied in order for the process to continue. Sometimes it is necessary to commence with one of the weaker rules after which a return to the more reliable rules is made.

```
THE MARYLAND REFUTATION PROOF
    *
PROCEDURE SYSTEM (MRPPS)
                        by
            Jack Minker
    D. H. Fishman and J. R. McSkimin
TR72-208, Computer Science Center
    University of Maryland
    College Park, Maryland
        (December 1972)
```

The Maryland Refutation Proof Procedure System (MRPPS) is an interactive experimental system intended for studying deductive search methods. Although the work is oriented towards question answering, MRPPS provides a general problem solving capability.

10 k 1
There are three major components within MRPPS. These are:
10 k 1 a
(1) an inference system
(2) a search strategy
(3) a base clause selection strategy.

10k1a1

The "inference system" is based on the resolution principle and performs the logical deductions specified. The user may select from a wide variety of refinements of resolution. Current refinements are: set of support, linear, PI, SL, input, and combinations of the above. Paramodulation and deletion by tautologies and subsumption are also provided with the system.

10 k 2
The "search strategy" directs the deductions to be made by selecting from clauses already generated those that have the best merit. The merit of a clause is given by 10k3
$f(n)=w[0] g(n)+w[1] h[1](n)+w[2] h[2](n)+\ldots+w[k] h[k](n)$.
10 k 3 a
If the user can specify tie-breaking rules for equal values of clause merit, an upper diagonal search results in the sense of Kowalski. The upper diagonal search included in MRPPS generalizes the Kowalski upper-diagonal search to an n-dimensional search.

10 k 4
The "base clause selection strategy" determines which facts and general axioms to select from the data base. Such a clause may be generated regardless of whether it has the best merit. 10 k 5

Heuristic techniques are applied within each of the three major components. This technical report describes the current implementation of MRPPS. It describes each of the components and how they are integrated into what has been termed the Q^{*} algorithm.

MRPPS is written in FORTRAN V for the UNIVAC 1108 (a version of FORTRAN IV) and runs under EXEC 8 at the University of Maryland. The current implementation is core bound and requires approximately 60 K words of memory to rung of which 35 K is for the data base and for working storage. 10k7

```
* See footnote p. }2
```


OUTLINE, BIBLIOGRAPHY, AND *

KWIC INDEX ON MECHANICAL THEOREM PROVING AND ITS APPLICATIONS
by
G.J. VanderBrug,
D.H. Fishman,
and J. Minker
TR-159
University of Maryland
College Park, Maryland (June 1971)
10 m

In the last decade much work has been done in both the formalization of theorem proving procedures and the development of theorem proving programs. In addition, the general logical inference capability of a theorem prover has been applied to such areas as: question-answering systems, problem-solving systems, proving theorems in abstract mathematical systems, proving the correctness of programs, writing programs, and robot technology. 10 m 1
In this paper we outline the significant achievements in mechanical theorem proving applications. These achievements range from foundational work in the 1920° s and $1930^{\circ} \mathrm{s}$ to current efforts. A comprehensive bibliography and KWIC index on this subject is then presented.

[^0]```
Mr. Harry Ohan
University of Maryland
Computer Science Center
College Park, Maryland 20742 10n1a
```


# VISUAL LEARNING AND RECOGNITION BY COMPUTER <br> by <br> Stephen A. Underwood <br> and C. L. Coates <br> Technical Report No. 123 <br> April 1972 <br> Information Systems Research Laboratory <br> The University of Texas At Austin 

When a three-dimensional object is visually perceived, it can be described by its shape, the shape of its various surfaces, and how these surfaces are interconnected to form the object. As the object is rotated in space, certain characteristics of the shape of each of the surfaces of the object remain invariant along with the connections between the various surfaces. 1001

The objective of this study is to formulate an algorithm for forming a description of three-dimensional objects that will be invariant with the objects position in three-space. The objects are three-dimensional convex objects with planar surfaces and are observed by a television camera system which is interconnected with a digital computer system.

The computer forms a two-dimensional line drawing description of the object by edge following techniques. The object is rotated in space so that all surfaces of the object are observed and the interconections of all surfaces are determined. The line drawing descripitions of the object are used by the computer to form a complete description of the object which is position invariant. No previous knowledge about the object being observed is supplied to the computer program except that the surfaces of the object are planar.
1003

After a library of several different objects has been obtained by the computer, any one of these objects may be placed before the television camera in any position. The computer program will recognize and name the object being observed by matching its description to a description stored in the library.

by<br>G. J. Sussman $\varepsilon$ D. V. McDermott<br>No. 255A MIT Project MAC<br>(April 1972)

This paper is a critique of a computer programming language, Carl Hewitt's PLANNER, a formalism designed especially to cope with the problems that AI encounters. The contention is that the backtrack control structure that is the backbone of PLANNER is more of a hindrance in the solution of problems than a help. In particular, automatic back-tracking encourages inefficient algorithms, conceals what is happening from the user and misleads him with primitives having powerful names whose power is only superficial. An alternative language, CONNIVER, which avoids these problems, is presented from the point of view of this critique.

A HETERARCHICAL PROGRAM FOR RECOGNITION OF POLYHEDRA
by
Yoshiaki Shirai
No. 263 MIT Progect MAC
(June 1972)

Recognition of polyhedra by a heterarchical program is presented. The program is based on the strategy of recognizing objects step by step, at each time making use of the previous results. At each stage, the most obvious and simple assumption is made and the assumption is tested. To find a line segment, a range of search is proposed. Once a line segment is found, more of the line is determined by tracking along it. Whenever a new fact is found, the program tries to reinterpret the scene taking the obtained information into consideration.

10q1

Results of the experiment using an image disector are satisfactory for scenes containing a few blocks and wedges. Some limitations of the present program and proposals for future developments are described.
EVALUATION AND RESOLUTION
by
A. Bundy
No. 55
Department of Computational Logic
School of Artificial Intelligence
Edinburgh University

The Concept of the evaluation of literals is generalized to include the solving of equations. This generalization is shown to be compatible with resolution.

MACRO-INFERENCE STEPS IN
PROOFS OF PROGRAM CORRECTNESS

## by

S. Weir and R. M. Burstall

MIP-R-96
Department of Machine
Intelligence and Perception
School of Artificial
Intelligence
Edinburgh University
(May 1972)

This paper develops the idea of a cooperative, man/machine proof-checker for a system where certain 'obvious" chains of inference are done automatically.

SCENE ANALYSIS AND PICTURE GRAMMARS
(presented at NPL Conference, April, 1972)

> by
M.B. Clowes

Laboratory of Experimental Psychology University of Sussex
The problems posed in scene analysis have many of the characteristics of those which earlier prompted the ilinguistic approach' to picture processing. This paper considers whether those problems have a meaningful solution within the earlier (linguistic) paradigm and in particular whether 'picture grammar' is a useful vehicle for scene analysis. 10t1

## SEVENTH MACHINE INTELLIGENCE WORKSHOP

## by

Pat Hayes
Dept. of Computational Logic
University of Edingurgh
(As Reported in AISB BULLETIN, Nov. 1972)

The seventh workshop was, as usual, an interesting and enjoyable occasion. The proceedings will soon be appearing as Machine Intelligence $7^{\prime \prime}$ (Edinburgh University Press).

Of the 23 papers presented, seven where concerned with various aspects of theorem-proving, two with the theory of computation, two with formal grammatical theory, three with robotics, the rest being harder to classify. Biased and subjective remarks on some papers follow:

Jared Darlington is continuing his methodical work on higher-order theorem-proving. Bob Boyer and J.Moore described their ingenious methods of squeezing lots of logical expressions into moderately sized core stores. This prompted an interesting discussion starting from the observation that the Boyer/Moore method shows strong resemblances to techniques of subroutine linking in LISP and ALGOL interpreters. David Cooper has a very attractive theorem-proving system for the important special case of Presburger arithmetic (i.e., sums without multiplication).

11 c
Robin Milner and Richard Weyhrauch gave a beautifully elegant presentation of some equally elegant work in the machine checking proofs of the correctness of a simple (but not TOO simple) compiler. In contrast, Rod Burstall's paper was concerned with extending existing techniques of program proving to programs involving manipulations of complex data structures. There was a general feeling that it is nice to see theory of computation reaching out to $\begin{array}{ll}\text { realistically difficult programs at last. } & 11 d\end{array}$
A. Rosenfeld gave us another installment in the theory of web grammars. Web grammars seem to me to be an intriguing idea, and I was bold enough to suggest that they seem the appropriate tool to formally analyze certain kinds of modelling used in several vision programs: the general response was apathetic, but Rosenfeld agreed. Herinan and Walker gave an interesting application of (more conventional) grammars describing the growth of biologlcal systems. The AI interest comes from the fact that they want to inductively GUESS a grammar, given the evidence.

Robots at SRI (Shakey - a very professional film with color, sound, exotic camera angles, etc.), Edinburgh (how to get a useful hand-eye system using British hardware , and MIT were mentioned. Pat Wington described some recent MIT vision work by a graduate student, Waltz. The program extends the now classical clowes/Huffman grammatical techniques to include shadows, illumination, and cracks. It is suprisingly successful; why does it work so well? We also heard about other new vision work at MIT, such as a new super Line-finder which uses contextual information to guide its guesswork. Interestingly, the MIT group has abandoned further robot hardware development just as the first British robot goes 'live" If

Of other papers, Bob Kowalski has an interesting discussion of several general aspects of heuristic search. Stephen Isard and Julian Davies see conversations as reciprocal programming (when i say to you 'open the window' you are the computer and $I$ am the programmer: when you reply 'won't', vice versa).

Deutsch and Hayes described an elegant heuristic program for solving tangram puzzles. (I would like to see a program which could have WRITTEN their program: I think it is only a little outside the current state of the art.) Patrick Krolak is using heuristic programming to organize school bussing, garbage collection (real garbage), etc... It works. Ed Feigenbaum, having licked the chemists with his Dendral program, is now trying to put himself out of work with META-dendral. Peter Buneman and David willshaw asked, 'What counts as a generalization?', which is (still) a very good question. Pat winston told us about CONNIVER, which is positively the latest thing in problem-solving languages. There was a very interesting discussion here between winston, Dan Bobrow, and others on ways of implementing complex control structures.

Richard Gregory gave an interesting illustrated talk on certain visual illusions in which an illusory shape itself causes further illusions; showing, he claimed, that such illusions were due to mistaken information processing rather than simple physiological malfunction. (This conclusion was disputed by Rosenfeld.) John McCarthy observed that one could get the secondary illusion merely by IMAGINING the illusory shape, and we all tried this in unison: it worked for most people. This strengthened Gregory's case.

There were a number of discussions. One fairly acrimonious debate was over the vexed question of defining AI. The definition which seemed to receive most assent was roughly: AI is THE STUDY OF INTELLIGENCE BY COMPUTATIONAL MODELLING. This is to be carefully distinguished from (i) trying to do smart things by programming (engineering) and (ii) studying human/animal behavior by computer modelling (psychology); although of course both of these have very close links with AI.

Towards the end of the workshop, John McCarthy led a discussion of the "where do we go from here" variety. The one central thing we could all agree on was, we need better ways of representing knowledge of all kinds. McCarthy tried to suggest useful extensions to the predicate calculus, but Max Clowes vociferously could not see the relevance of this; and Pat Winston, wearing his official MIT hat, thought that the predicate calculus was a loser to start with, as it wasn't "computational" enough. This caused a lengthy, noisy discussion which finished with McCarthy asserting that predicate calculus seemed like the MINIMAL amount for expressive power one might need. Nobody disagreed with that. Bernard Meltzer announced later that a future special issue of the AI Journal (perhaps late in 1973) might be entirely devoted to the "representation problem". 11 k

It remains only to say that the administration and organization of the workshop was up to the usual high standard, perhaps to be faulted only by the impossibility of opening windows in the conference hall

On Monday evening, January 22, ABC aired the first in a scheduled monthly series of half-hour specials dramatizing how today's technological breakthroughs are shaping the future. Entitled "What about tomorrow?", the series seems a close sequel to CBS's "Twenty-First Century" of four years ago. The first show, "On the Side of Man" -- with ABC News Science Editor Jules Bergman -- dealt with the "humanization" of computer technology and reported primarily on the work of scientists at Bell Labs and MiT's Artificial Intelligence Laboratory. Terry Winograd's "block world" shown in action on a graphic display and Seymour Papert's "Turtle" robot in use by children in an educational setting were highlights of the program. Next month's offering will be concerned with the problem of urbanization.

The Stanford Research Institute A.I. Center is implementing an anbitious new perceptual system for a robot. We need an experienced A. I. programmer/researcher (Lisp, Fortran, and Assembly Language) who can transtate conceptual ideas into running code. 13a

Send resume to:

```
Dr. Peter E. Hart
Artificial Intelligence Center
Stanford Research Institute
Menlo Park, California 94025
```


## 14886 Distribution

 Coles, L. Stephen , Fikes, Richard E. ,SIGART NEWSLETTER Number 38 FEBRUARY 1973
(J14886) 5-MAR-73 17:59; Title: Author(s): Kelley, Kirk E. /KIRK; Distribution: /Lsc ref ; Sub-Collections: SRI-ARC; Clerk: KIRK; Origin: <SIGART>FEBODP.NLS;5, 6-FEB-73 18:36 KIRK ;

In the unlikely event that you get any messages through the journal that do not seem to apply to you.

Dear Karen, Your ident has accidently been placed next to my name in one place in the CURRENT DIRECTORY OF ARPA PARTICIPANTS. This is unfortunate as you may recieve journal mail intended for me. Although this is unlikely, there are two things you can do in case this happens. If you receive your mail on-line, you can execute secondary distribution and send any mail you think might be for me to my ident: KIRK. If you are totally off-line, let me know and maybe we can work something out.-- Kirk Kelley (SRI-ARC)

In the unlikely event that you get any messages through the journal that do not seem to apply to you.
(J14887) 5-MAR-73 18:16; Title: Author(s): Kelley, Kirk E. /KIRK; Distribution: /kk ; Sub-Collections: SRI-ARC; Clerk: KIRK;
(J14888) 5-MAR-73 18:22; Title: Author(s): Kelley, Kirk E. /KIRK; Distribution: / comment ; Sub-Collections: SRI-ARC COMMENT; CLerk: KIRK;
There are other possibilities: 1
We contribute to their coffers either through
a) increased prices, or $\quad$ 1al
b) by supporting one-quarter or so of their labor charges
via our own project numbers, or
c) by sending one of our people down their to make coffee
on some equitable basis.via our own project numbers, or
alternative solutions

```
(J14889) 5-MAR-73 8:43; Title: Author(s): Kudlick, Michael D. /MDK;
Distribution: /dvn ; Sub-Collections: SRI-ARC; Clerk: MDK;
Origin: <KUDLICK>COFFEE.NLS;1, 5-MAR-73 8:35 MDK ;
```

please comment

I've made the following changes relevant to user documentation:
The folklore branch of the file <nls>status has been moved into the directory userguides (see -- userguides folklore, 1)

I've already picked up alot of the DNLS documentation contained therein and put it into the online copies of the various sections of the DNLS User Guide.

When the DNLS User Guide is republished, those entries will be deleted from the folklore file. The same procedure will be used with the TNLS, Journal, and DEX documentation.

Also, this folklore file is not the one which will be sent to te user community. Users will receive sequential spinoffs from this file.

There will be a companion file to this which will contain only the changes in the most recent version of the system. This is the file which will be distributed to users via the proposed NLS Newsletter mechanism.

I've renamed most of the files in the Userguides directory as follows: (Locator will be changed to reflect these changes)

DNLS
1b1
(dnls-intro, :xb)
1b1a
(dinls-environment, $: \times \mathrm{xb}$ ) 1b1b
(dnls-files, : xb: xb) 1b1c
(dnls-address, : xb) 1b1d
(dnls-viewing, :xb) 1ble
( onls-editing, :xb) 1b1f
(dnls-tenex, $: x b$ ) $\quad 1 \mathrm{blg}$
(dnls-summary, :xb)
1b1h

TNLS $\quad 1 \mathrm{~b} 2$
(tnls-beginners, :xb) old loc10814 1b2a
(TNLS-contents, : xb) old loco7470 1b2b
(TNLS-tenex, :xb) old loc7471 ..... 1b2c
(TNLS-files,:xb) old Loc7472 ..... 1b2d
(TNLS-address,: xb) old loc7473 ..... 1b2e
(TNLS-text,: xb) old Loc7474 ..... 1 b2f
(TNLS-editing, :xb) old Loc7475 ..... 1 b 2 g
(TNLS-charcodes, : xb) old loc7476 ..... 1b2h
(TNLS-directives, :xb) old loc7477 ..... 1b21
(TNLS-errormessages, :xb) old loc7478 ..... $1 \mathrm{b2} \mathbf{j}$
(TNLS-commandsum, : xb ) old loc 7479 ..... 1 b 2 k
(TNLS-glossary,:xb) old loc 7480 ..... 1 b 21
(TNLS-index, :xb) old loc7481 ..... 1 b 2 m
JOURNAL ..... 1 b3
(JOURNAL-contents,:xb) old loc7635 ..... 1 b3a
(JOURNAL-intro,: xb) old loc7636 ..... 1 b 3 b
(JOURNAL-journal,:xb) old loc 7637 ..... 1 h3c
(JOURNAL-idents, :xb) old loc7638 -- missing ..... $1 \mathrm{b3c}$
(JOURNAL-numbers, : xb) old loc 7639 ..... 1 b3e
(JOURNAL-summary, : xb ) old loc 7640 ..... 1 b3f
(JOURNAL-index, :xb) old loc7644 ..... 1 b 3 g
L 10 ..... 1b4
(110-110,:xb) old loc9246 ..... $1 b 4 a$
DEX ..... 1b5
I've started building a master index to all files in the userguides directory (see -- userguides,master,1) ..... 1 c

The table of contents to the TNLS Beginner's Guide is being fixed (by Kirk) and will be republished ASAP.

All of the files in the userguides will be changed to contain as many named statements as possible and appropriate to facilitate online usage through mnemonic addressing.
$1 d$

1 e
(J14890) 5-MAR-73 12:06; Title: Author(s): Auerbach, Marilyn F. /MFA ; Distribution: /sri-arc ; Sub-Collections: SRI-ARC; Clerk: MFA ;

PROPOSED GUIDELINES FOR A TNLS PRIMER

INTRODUCTION

The following are my ideas on the basic content for the proposed TNLS primer. There are three categories: key concepts, goals (or what the user should be able to do after using the primer), and the TENEX and TNLS commands and control characters to be covered.

I see the need for structuring the Primer in two basic oarts. The first is a narrative which is designed to be read only from beginning to end with no contact with the system. The second part is a series of terminal sessions which in cookbook fashion take the reader through online demonstration and work exercises.

The order of items presented here is by no means the final ordering $I$ envison for the Primer. The flow of the primer, in writing, will dictate the organization of information. I intend to use the model of a writer (such as myself) and use that analogy throughout the narrative.

KEY CONCEPTS

## file (filename)

## directory

initial file ..... 2c
partial copy ..... $2 d$
statement ..... $2 e$
addressing - the $C M$ ..... $2 f$
statement numbers ..... 2 f 1
SIDs ..... $2 f 2$
content ..... 273
branch 0 (a means of referencing the whole file) ..... 214
view modification - viewspecs ..... $2 g$
links - embedded in text only ..... 2h
formattting hardcopy ..... $2 i$
journal 2.j
online resource query
GOALS - after reading/practicising with the Primer, the user should be able to:

```
get help
log In and out of TENEX and nls
create an NLS file
 no structure
edit an nls file
 by statement, character, word, text manipulation)
address/move around in a file
 by statement numbers, SIDs, content search,
 ">","&",predecessor, successor, "LF", "&", and by using
 viewspecs mn, ts, IJ
```

format for printing (local)
viewspecs, execute viewchange print commands
print 3g
stop printing 3n
maintain his directory 3 i
$\begin{array}{ll}\text { submit Journal items } & 3 \mathrm{j}\end{array}$
deferred numbers only and using interrogate 3j1
find IDENTs of other users
- Lastname in Journal
read Journal items send to him
query NIC resources online
query language
$3 m 1$

PROPOSED GUIDELINES FOR A TNLS PRIMER
link to other users online 3n
send messages to other users 3o
COMMANDS AND CONTROL CHARACTERS 4
TENEX 4 a
directory $\quad 4$ a.
delete $\quad 4 a^{2}$
expunge $\quad 4 \mathrm{a} 3$
interrogate 4a4
where $\quad 4 \mathrm{a} 5$
systat $\quad 4 \mathrm{a} 6$
link 4a7
bye $\quad 4 \mathrm{a} 8$
nLs $\quad 4$ a9
logout $\quad 4$ a.10
continue $\quad 4 \mathrm{a} 11$
sndmessage $\quad 4$ a12
message 4a13
NLS 4 4b
load file 4b1
null file $\quad 4 \mathrm{~b} 2$
update 4b3
output 4b4
print 4b5
all, journal, statement 4b5a


## PROPOSED GUIDELINES FOR A TNLS PRIMER

## execute logout <br> 4 b24

CONTROL CHARACTERS 4c
$\mathrm{CR} \quad 4 \mathrm{c} 1$
ESC 4 c 2
$4 \mathrm{C} \quad 4 \mathrm{c} 3$
T T 4c4
A 4 4c5
4 X 4c6

+ w 4c7
10 4c8
1v 4c9
is $\quad 4 \mathrm{c} 10$

| 18 | 4 c 11 |
| :--- | :--- |

$4 \mathrm{D} \quad 4 \mathrm{c} 12$

PROPOSED GUIDELINES FOR A TNLS PRIMER
(J14891) 5-MAR-73 14:28; Title: Author(s): Auerbach, Marilyn $F$. /MFA; Distribution:/dirt rww ; Sub-Collections: SRI-ARC DIRT; Clerk: MPA;
Qrigin: <USERGUIDES>PRIMER.NLS; 8, 2-MAR-73 11:48 RWW ;
Wayne-- I just got another message from an Ames-tip user who
claims that the problem with the carrier line going away at 2
A.M. still exists He also claims that it has nothing to do with
the amount of time that he has been on the line. Could you
please check into this again and let me know the results? Thanks
very much - Nancy Neigus (BBN)
Themessage was from Larry Masinter: (IJOURNAL, 14862, $1: w$ )

## 14892 Distribution

 Hathaway, A. Wayne,Ames-tip phone lines
(J14892) 5-MAR-73 6:42; Title: Author(s): Neigus, Nancy J. /NJN; Distribution: /AWH; Sub-Collections: NYC; Clerk: NJN;

```
Dave-- Things have really been hopping here, with everybody on
our backs to get the network fixede A couple of other things
have come up too, and I'm afraid I won't be able to work on
Netref for a while. This has already been true for a few days.
ILL try to get back to it as soon as I cane - -Nancy
```

a necessary pause
(J14893) 5-MAR-73 7:02; Title: Author(s): Neigus, Nancy J. /NJN; Distribution:/DHC; Sub-Collections: NIC; Clerk: NJN;

## IRA:

1 a

WE HAVE REACHED A NUMBER OF TENTATIVE EVALUATIONS ABOUT THE CURRENT PROTOCOL AND ITS EXTENSIONS AND FEEL QUITE STRONGLY ABOUT HAVING ANOTHER MEETING OF THE GRAPHICS GROUP TO IMPROVE AND EXTEND THE PROTOCOL, BOTH FOR OUTPUT AND FOR INPUT.

SEND ME A NOTE HERE AT NIC WHEN YOU CAN. 1d
$\begin{array}{llll}\text { WJB } & 3 / 4 / 73 \text { OF I } & \text { 1e }\end{array}$
(J14894) 4-MAR-73 18:22; Title: Author(s): Bouknight, W. Jack/WJB; Distribution: /IWC; Sub-Collections: NIC; Obsoletes Document(s): ; Clerk: wJB;

CURRENT ARC PROJECT AND OVERHEAD SUBNUMBERS, UPDATE TO PROJECT 1868 OPERATIONS ACCOUNTING CODES
).)

REF: (11824, )
The following account code has been added to ARC's operations subileld.

107, CSO HARDWARE ON-LINE REPAIRS $2 a$

This code will be used by Hardware and Software personnel when doing on-line Hardware troubleshooting and repairs.

14896 Distribution
Van De Riet, Edwin K. , Van Nouhuys, Dirk H. , Victor, Kenneth E. (Ken) , Wallace, Donald C. (Smokey), Watson, Richard W. , Andrews, Don I. ,
Keeney, Marcia Lynn, Hoffman, Carol B. , Lee, Susan R. , Michael, Elizabeth K. , Dornbush, Charles F. , ARC, Guest O. , Feinler, Elizabeth J. (Jake), Handbook, Augmentation Research, Kelley, Kirk E. , Meyer, N. Dean , Byrd, Kay F. , Prather, Ralph, White, James E. (Jim), Vallee, Jacques F., Kaye, Diane S., Rech, Paul , Kudlick, Michael D. , Ferguson, Ferg R. , Lane, Linda L. , Auerbach, Marilyn F. , Bass, Walt, Engelbart, Douglas C. , Hardeman, Beauregard A. , Hardy, Martin E., Hopper, J. D. , Irby, Charles H. , Jernigan, Mil E. , Lehtman, Harvey G., North, Jeanne B. , Norton, James C. , Paxton, William H. , Peters, Jeffrey C. , Ratliff, Jake

LINKS OLD AND NEW, A SUGGESTION ON HOW TO MAKE IT EASIER TO FIND THEM

It would be extremely nice to have an on-line index file of links. This file, or files, could provide an easy way to locate new links to previously journalized documents. The implementation of this concept appears inexpensive, especially in relationship to what we would get in return.

WHAT IS NEEDED:

1. A mechanism for submitting links.

- new submit journal field; (LINKS: .......)?

1a1

1ala
3. One could easily add links by submitting the new Link/s for appendage to (documentation, Links,).
4. This file, or files, would form a web of links independent of the documents.
(ie: not requiring the documents to be on line) 1b4a
5. Would provide a quick and easy way to locate links.

LINKS OLD AND NEW, A SUGGESTION ON HOW TO MAKE IT EASIER TO FIND THEM

6. Could easily be adapted to a better system when one came along.

1 bб

```
14897 Distribution
 Irby, Charles H. , Norton, James C. , Watson, Richard W. , Irby,
 Charles H. ,Hopper, J. D. ,
```

LINKS OLD AND NEW, A SUGGESTION ON HOW TO MAKE IT EASIER TO FIND THEM
(J14897) 9-MAR-73 16:38; Title: Author(s): Hardy, Martin E. /MEH ; Distribution: /np jcn rww chi jdh ; Sub-Collections: SRI-ARC NP; Clerk: MEH;

IMLAC, Adding a mouse and keyset.

From recent discussions (3/13) with Imlac Corp and Cybernex. It has been concluded that any Imlacs can easly be modified to include a mouse and keyset. Essentially all that is necessary is a "bare bones" unit. (Writing of the mouse is done through short vectors, which is a basic part of the bare bones.)

Imlac Corp will supply a kit containing all necessary cards ( 2ea), sockets, and cabling complete with wiring lists and installation instructions. The kit can be installed by the customer's service technician at the customer's location.

Cost $=$ see (note) below.

Cybernex also supplies a mouse and keyset kit with instructions for field installations.

Cost $=$ Normally a minimum order of 2 , but in particular ci rcumstances will supply kits in single quanities.
(note)

1. Rought single unit kit cost queried from both suppliers was less than $\$ 2,000$.
2. The kit is easier to install in lower serial number models because of more free cabinet space.

IMLAC, Adding a mouse and keyset.
(J14898) 13-MAR-73 12:31; Title: Author(s): Hardy, Martin E. /MEH ; Distribution: /emc chi dcw kev ; Sub-Collections: SRI-ARC EMC; Clerk: MEH;

## GEFERENCES: ( 13592, ) $(13584),(13527$,

CONTENTS: (A) progress report on efforts to correct Tasker problems as stated in (13592,)
(B) a plan and request to down tasker (7-12) for 7 consecutive days to implement (G2)
[JCN]: Jim by April 30 we will be ready to implement (G2) [items 7-11] on tasker (7-12). It will require downing TASKER (7-12) for 7 consecutive days. (Actually only 4 stations, since 2 are already down) Unless $I$ hear from you otherwise $I$ will send a journal item and notify Jeff Tuesday of next week (4/3) of the schedule and plan as stated in (B).
(A) PROGRESS REPORT
(G1) IMMEDIATE IMPROVEMENTS W/O DOWNING TASKER

1. TV MONITORS 4a. 1

In limbo waiting completion of other investigations. 4ala
Expecting to complete by $4 / 30$.
2. DEF. AMPS

The further investigation we needed to do here is done. It has been determined that the problems can be solved through adjustments. We will adjust tasker (7-12) first as part of implementing (G2) group, then later (some time in MAY) take one bin at a time [two stations] on tasker (1-6).
3.

LENS FOCUS 4a3

$$
\begin{aligned}
& \text { We have located a good quality lens. Waiting } \\
& \text { manufacturer to ship a demo }(35 \text { MM } 1.3) \text { for further } \\
& \text { trials. Expected around the end of May }(5 / 30) \text {. } \\
& 4,5 \text { MOUSE }
\end{aligned}
$$

$\begin{array}{ll}\text { Correction completed. We redesigned symbol and had [CHI] } \\ \text { change the NLS code to rewrite } 3 \text { consecutive times for } \\ \text { each writing of the mouse. } & 4 a 4 a \\ \text { SPOT SIZE } & 4 a 5 \\ \text { low priority, still waiting investigation. }\end{array}$
(G2) IMMEDIATE IMPROVEMENTS REQUIRING DOWNING A TASKER ..... 4b
(We are ready to implement) ..... $4 b 1$
7. POWER SUPPLY ..... $4 b 2$
trial hook-up ..... 4 b 2 a
8. CHARACTERS ..... $4 b 3$adjust Def. amps and then if time permits redesignbad characters4 b3a
9. DYNAMIC FOCUS ..... 4b4test (in one bin; 2 stations) cards repaired andcalibrated in shop, after trial determine what to donext
4b4a
10. MAINTENANCE PANEL ..... $4 b 5$
repair ..... $4 b 5 a$
11. TASKER (7-12) WIGGLING CHARACTERS ..... 4b 6
repair
$4 b 6 a$
(G3) IMPROVMENTS REQUIRING BACK ORDERING OF PARTS OR SUPPORT EQUIPMENT. ..... $4 c$
12. TV TEXT SIZE ..... 4 c 1
I have requested the purchase of a calibration unit (TV OPTOLINER) that should allow us to accurately adjust and standardize the aspect ratios of our TV Text. ..... $4 c 1 a$
13. PERSISTENCE ..... $4 c 2$
Not much to report here, we are still busy looking at a lot of things -- scan converters, CRT phosphors, TV video amplifier calibration methods, ...etc. 4 c 2 a
(B) A POSSIBLE (G2) IMPLEMENTATION PLAN

## Starting Monday April 30 ;

- Take Tasker (7-12) down for 7 consecutive days to implement (G2) repairs. (Monday morning to Sunday night)


SUMMARY OF TASKER PROBLEMS, progress report 1
(J14900) 29-MAR-73 11:18; Title: Author(s): Hardy, Martin E. /MEH; Distribution: /EMC; Sub-Collections: SRI-ARC EMC; Clerk: KFB;

MOUSE AND KEYSET CONVERTER, a first cut description.

This is a first cut at a functional design of a prototype Mouse and Keyset converter "Mouse Box".

Contents:
(A) Introduction
(B) Functional description $\quad$ 1a2
(C) Summary 1a3
(D) Typical operation 1a4
(E) Notes about Keyset table (F) 1a5
(F) Table of a suggested alternate Keyset and Mouse Codes 1 a6
(G) Mouse codes 1a7
(A) Introduction

The design objective will be to interface our Mouse and Keyset to a general class of EIA ASCII display terminals that allow Curser addressing. Specifically the unit will interact with and be the go-between for a display terminal, Mouse and Keyset, and an external processor. Connections may be via modem, acoustic coupler or hardwire with communication code ASCII in accordance with EIA Bit Serial Standards.

## (B) Mouse Box functions:

(B1) Sense the Mouse $x$ and $y$ analogue voltages and convert to an $(x, y)$ digital pair.

Each coordinate address will have a microprogrammable length from 4 to 8 bits.
(B2) Sense the Mouse buttons and Keyset switches
Any down level and all up transitions.
(B3) Convert Mouse and Keyset switches to standard ASCII 7 bit characters.

As specified in (F), (G), and (B7).
(B4) Automatically transmit converted Mouse buttons and Keyset codes to an external processor.

Initiated by transmit commands specified in: (F), (G), and ( 87 ).
(B5) Provide mouse interrogate capabilities.
A mouse position string will be sent to the external processor upon receipt of a special character from the external processor or upon completion of a down/up cycle of the mouse (CA) button (mouse code 001). The special character match will be microprogrammable.

I plan not to buffer characters coming from the display terminal, therefore any display terminal characters transmitted at the same time this function is in progress will be lost or garbled.

String format:
1 or 2 header characters (each microprogrammable) followed by a 2 character $(x, y)$ Mouse position address. 3e3a e.g.: (SC)(SC)(x)(y) or (SC)(x)(y)
(B6) Provide an on/off controllable function that repeatedly sends Mouse position address to terminal.

```
The external processor will be able to control this
function by sending special enable, initiate, or inhibit
```

characters. There also will be a switch for manual control. ..... 3 f 1This feature will enable mouse updates and does not requiretranslation or echoing by the external processor.$3+2$
If a conflict exists between the Mouse string and incomingexternal processor characters intended for the displayterminal, the processor characters will be buffered andsent in strings of 4 multiplexed between the Mouse addressstrings.
String format:$3 f 4$
1 or 2 header characters (each microprogrammable)followed by a 2 character Mouse position address. Thisstring will be identical to the one defined in (B5).$3 f 4 a$
(87) Send Viewspec character string3 g
When a viewspec command from the Mouse buttons is detected(buttons 110 depressed) A special header character will besent to the external processor to signify the followingcharacters are viewspec characters. The string's end willbe signified by a special terminator character sent whenall Mouse buttons are released (code 000).
If a Mouse button code 010 is sensed before a termination
code 000 , coinciding Keyset characters will be transmitted
as upper case. (This function may come free as the
attribute of another circuit and will be a new feature notincorporated in our present system.)3 g 2
String format: ..... 3 g 3
1 header character and 1 terminator character (each microprogrammable). ..... 3 g 3 a
String sequence and map: ..... 3 g 3 b
mouse buttons states (110) .....(010)....(000)character string (hc)(ks)...(KS)(KS)...(tc)3 g 3 b 1

## (C) Summary

The unit $I$ am describing here is a prototype. It's construction will enable us to evaluate and determine costs of such a device.

I estimate it will take 3 to 4 man weeks to do all circuit design +3 man weeks to build + parts delivery delay.... 2 to 8 weeks? If we started immediately and all went well the unit might be operational in 8 to 9 weeks.

Since time is of the essence, and this functional design has not been reviewed by anyone other than hardware personnel. I recommend we implement concurrently with the review of the hardware design not effected by the unit"s overall operation; (Mouse $A / D$ conversion, keyswitch detection, line transmitters, buffers, etc). This will shorten the design time necessary after completion of the review process. There is currently an Engineer available from the Digital Development Group and we should take advantage of this and have him start on the aforementioned design.
[MDK] says be would like very much to review my suggested alternative Mouse and Keyset switch correspondence. If the correspondence is not acceptable, or more investigation is desired, I recommend someone other than myself be the principal investigator, I am personally swamped and have other priorities $I$ would rather attend to in addition to directing this Device's circuit design.

1. To DISPLAY MOUSE POSITION CONTINUOUSLY on display terminals screen:

The external processor must send "enable character" (B6) and an "initiate character" (B6), Mouse Box will decode and immediately start sending display terminal repeatedly "mouse positioning strings" (B6), multiplexing between each string all other characters intended for the display terminal (B6).
2. To READ MOUSE POSITION:

The external processor must send an "interrogate character" (B5), Mouse Box will decode and send back to the external processor a "position string" (B5).

## 3. To SEND MOUSE POSITION:

Depress and release Mouse (CA) button, the Mouse Box will send to the external processor a "position String" (B5).
4. To TRANSMIT KEYSET CHARACTERS:

Depress any and release all keyset switches, Mouse Box will detect and send to the external processor a "character" (B4).
5. To SEND VIEWSPEC $s$ ..... $5 e$
See (B7). ..... 5e1
6. To REPLACE CHARACTER or WORD, initiated by (CA) button function: ..... 51

Mouse Box sends a "Mouse position string" (BS) to the external processor. the external processor sends back an "inhibit Mouse update character" (B6), followed by a "display terminal curser address string" "replacement character or word" and last an "enable Mouse update character" (B6).

```
MOUSE AND KEYSET CONVERTER, a first cut description.
```

7. To REPLACE TEXT, initiated by (CA) button function:
The external processor waits for receipt of 3 "mouse position string" (B6), when received the external Processor sends "inhibit Mouse update character" (B5), "display terminal Curser address string", "replacement text", and last an "enable Mouse update character" (B6).
8. To REPLACE CHARACTER, WORD or TEXT, initiated by the External Processor:
External processor sends "inhibit Mouse update character" ( 85 ), "display terminal Curser position string" "text" and last an "enable Mouse update character" (B5).

MOUSE AND KEYSET CONVERTER, a first cut description.
(E) Notes about Code table (F)

It appears impossible to preserve the exact code correspondence for our Mouse and Keyset without seemingly excessive hardware costs. I estimate to make an exact code conversion the units net hardware cost will be increased by greater than $\$ 100.00$ this means at least $\$ 300.00$ to a buyer. I therefore have taken the liberty to draw up an alternative correspondence shown in table (F). This correspondence is very similar to what we have now. All Alpha-Numeric and Mouse Button functions are unchanged. The only differences $I$ can find are those $I$ have signified by asterisks. The additional control character field (Mouse buttons 101) was added because it seemed to be a logical and easy extension. I personally think this table represents a reasonable alternative since it preserves the most often used codes and keeps hardware costs within bounds.

```
Determined by: (any Keyset switch down then all up) and (Mouse
button levels)
MO, 2, 4, \(5=\) octal code of Mouse button
```

    (The binary translations of these codes are an exact image
    of the Mouse buttons as seen and operated by a user,
    assuming both are in normal position.)
    7b1

```
```

ASC = x3.4-1968 ASCII code standard

```
 DOUBLE CHARACTER fields (the field with an asterisk mark
 to the left):
 LEFT character is the suggested new correspondence
 RIGHT character is our present correspondence
 7 c 1
NOM \(=\) ASCII symbol or name 7d
 \(K=\) Keyset code (5 bits, octal)
 least significant bit is the right most keyset switch 7e
() = see notes at end of table\(7 x\)

MOUSE AND KEYSET CONVERTER, a first cut description.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline M & K & ASC & NOM & \\
\hline 5 & 00 & 0 & Null & 0 & 37 & 40 & SP & - & -- & 100 & @ (1) & - & -- & 140 & '(1) & \(7 h\)
\(7 i\) \\
\hline 5 & 01 & 1 & SOH & 4 & 01 & 41 & & 2 & 01 & 101 & A & 0 & 01 & 141 & a & 7 j \\
\hline 5 & 02 & 2 & STX & 4 & 02 & 42 & " & 2 & 02 & 102 & B & 0 & 02 & 142 & b & 7 k \\
\hline 5 & 03 & 3 & ETX & 4 & 03 & 43 & \# & 2 & 03 & 103 & C & 0 & 03 & 143 & c & 71 \\
\hline 5 & 04 & 4 & EOT & 4 & 04 & 44 & \$ & 2 & 04 & 104 & D & 0 & 04 & 144 & d & 7 m \\
\hline 5 & 05 & 5 & ENO & 4 & 05 & 45 & \% & 2 & 05 & 105 & E & 0 & 05 & 145 & e & 7 n \\
\hline 5 & 06 & 6 & ACQ & 4 & 06 & 46 & \(\varepsilon\) & 2 & 06 & 106 & F & 0 & 06 & 146 & \(f\) & 70 \\
\hline 5 & 07 & 7 & BEL & 4 & 07 & 47 & , & 2 & 07 & 107 & G & 0 & 07 & 147 & g & 7p \\
\hline 5 & 10 & 10 & BS & 4 & 10 & 50 & \((\) & 2 & 10 & 110 & H & 0 & 10 & 150 & h & 7 q \\
\hline 5 & 11 & 11 & HT & 4 & 11 & 56 &) & 2 & 11 & 111 & I & 0 & 11 & 151 & i & 7 r \\
\hline 5 & 12 & 12 & LF & * 4 & 12 & 52 & 辛 (& 2 & 12 & 112 & J & 0 & 12 & 152 & j & 7 s \\
\hline 5 & 13 & 13 & VT & 4 & 13 & 53 & + & 2 & 13 & 113 & K & 0 & 13 & 153 & k & 7 t \\
\hline 5 & 14 & 14 & FF & 4 & 14 & 54 & , & 2 & 14 & 114 & L & 0 & 14 & 154 & 1 & 7 l \\
\hline 5 & 15 & 15 & CR & 4 & 15 & 55 & - & 2 & 15 & 115 & M & 0 & 15 & 155 & m & 7 v \\
\hline 5 & 16 & 16 & So & 4 & 16 & 56 & * & 2 & 16 & 116 & N & 0 & 16 & 156 & n & \(7 w\) \\
\hline 5 & 17 & 17 & S1 & 4 & 17 & 57 & 1 & 2 & 17 & 117 & 0 & 0 & 17 & 157 & 0 & 7 x \\
\hline 5 & 20 & 20 & DLE & 4 & 20 & 60 & 0 & 2 & 20 & 120 & P & 0 & 20 & 160 & p & \(7 y\)
\(7 z\) \\
\hline 5 & 21 & 21 & DC 1 & 4 & 21 & 61 & 1 & 2 & 21 & 121 & Q & 0 & 21 & 161 & q & 7 - \\
\hline 5 & 22 & 22 & DC2 & 4 & 22 & 62 & 2 & 2 & 22 & 122 & R & 0 & 22 & 162 & r & 7 aa \\
\hline 5 & 23 & 23 & DC3 & 4 & 23 & 63 & 3 & 2 & 23 & 123 & S & 0 & 23 & 163 & \(s\) & 7 ab \\
\hline 5 & 24 & 24 & DC4 & 4 & 24 & 64 & 4 & 2 & 24 & 124 & T & 0 & 24 & 164 & t & 7 ac \\
\hline 5 & 25 & 25 & NAK & 4 & 25 & 65 & 5 & 2 & 25 & 125 & U & 0 & 25 & 165 & u & 7 ad \\
\hline 5 & 26 & 26 & SYN & 4 & 26 & 66 & 6 & 2 & 26 & 126 & v & 0 & 26 & 166 & v & 7 ae \\
\hline 5 & 27 & 27 & ETE & 4 & 27 & 67 & 7 & 2 & 27 & 127 & W & 0 & 27 & 167 & w & 7 af \\
\hline 5 & 30 & 30 & CAN & 4 & 30 & 70 & 8 & 2 & 30 & 130 & X & 0 & 30 & 170 & x & 7 ag \\
\hline 5 & 31 & 31 & EM & 4 & 31 & 71 & 9 & 2 & 31 & 131 & Y & 0 & 31 & 171 & \(y\) & 7 ah \\
\hline 5 & 32 & 32 & Sub & * 4 & 32 & 72 & \[
: \quad=
\] & 2 & 32 & 132 & Z & 0 & 32 & 172 & \[
\mathbf{z}
\] & 7 ai \\
\hline 5 & 33 & 33 & ESC & 荈4 & 33 & 73 & & *2 & 33 & 133 & [< & * 0 & 33 & 173 & (3) & 7 aj \\
\hline 5 & 34 & 34 & FS & * 4 & 34 & 74 & \(<]\) & *2 & 34 & 134 & > & *0 & 34 & 174 & - & 7 ak \\
\hline 5 & 35 & 35 & GS & +4 & 35 & 75 & \[
=<
\] & *2 & 35 & 135 &] : & * 0 & 35 & 175 & ; & 7 al \\
\hline 5 & 36 & \[
36
\] & RS & * 4 & 36 & 76 & \[
>\mathrm{ALT}
\] & *2 & 36 & 136 & (2) & * 0 & 36 & 176 & ? & 7 am \\
\hline 5 & 37 & 37 & US & * 4 & 47 & 77 & \[
? \mathrm{CR}
\] & *2 & 37 & 137 & - SP & - & -- & 177 & DEL & 7 an \\
\hline & & & & & & & & & & & & & & & & 7 ao \\
\hline \multicolumn{16}{|l|}{code notes} & 7 ap \\
\hline \multicolumn{17}{|c|}{(1) = characters that cannot be generated} \\
\hline \multicolumn{16}{|c|}{\multirow[t]{2}{*}{\((2)=\) circumflex}} & 7 ap 1 \\
\hline & & & & & & & & & & & & & & & & 7ap3 \\
\hline
\end{tabular}
(G) Mouse codes 8
Mouse buttons down and Keyset down/up 8a
\(110=\) lower case Viewspec; Sends a character string (B7). 8a1\(010=\) upper case character: will be within a viewspecstring if immediately preceded by a Mouse code 110 withoutreleasing the 010 button.8 a 2
Mouse button down/up and not Keyset 8b
\(001=C A \quad 100=B C\) 8b1
\(010=C D \quad 110=B W\) 8 b 2

MOTOR GENERATOR, Memo to SRI purchasing (Mr Cannon) requesting bids.

Frank: In response to our telephone conversation (4/4). Enclosed is guideline specifications for a request for bids on a 50 KW and 100 Kw Motor Generator unit with ride through capabilities. The double hid is necessary because it is not yet settled (and some what dependent on returned bids) whether or not the power unit will supply more than one facility. We will concider bids for purchasing, leasing or renting a new or reconditioned unit. Only one unit is needed, therefore bids should be for single units.

Some possible suppliers:
General Electri; new/reconditioned 1b
Applied Logic; reconditioned/used Ic
Others? 1d
QUOTATION GUIDE 2
(A) Introduction 2a
(B) Specification for a 50 KW unit 2b
(C) Specification for a 100 KW unit 2c
(A) Introduction

This Motor Generator unit will supply the primary power to one or more Computer facilities. It will be installed in the basement of Engineering building 30 room L-0006. The input power available for running this unit is 480 volts, 3 phase "Y" connected.

MOTOR GENERATOR, Memo to SRI purchasing (Mr Cannon) requesting bids.
(B) GUIDELINE SPECIFICATION FOR A 50KW RIDE-THROUGH POWER SUPPLY

Rating: Atleast 50 kw and 62.5 kva output at \(120 / 208\) volts, 3 phase, 60 hertz (nominal) with input at 480 volts, 3 phase, 60 hertz "Y" connection in a dripproof enclosure with class B insulation to provide \(100 \%\) output at \(100 \%\) volts during a power interruption lasting 1 second (1000 milliseconds) while maintaining full load frequency of not less than 59.5 hertz.

This unit will be built in accordance with applicable NEMA standards with the following, or comparable, features:

FLYWHEEL -- Pedestal-mounted
Precision balanced with sufficient rotating inertia to
maintain generator output frequency above 59.50 hz for
\(\begin{array}{ll}\text { 1.0 seconds after power interruption. }\end{array}\)
INPUT MOTOR -- Low-slip induction-type
Suitable \(h p, 1800\)-rpin 480 volts, "Y" connection, 3-phase, 60 hz with \(1 / 2 \%\) slip if for 3-phase generator output, having special starting circuit which limits in-rush current to \(200 \%\) of full load current.

4 b2a

OUTPUT GENERATOR - Brushless, synchronous
4b3
\(50 \mathrm{kw}, 1800 \mathrm{rpm}, 120 / 208\) volts 3 -phase 60 hertz, 0.8 power factor with brushless exciter.
\(4 b 3 a\)
BASE - Fabricated steel, self-supporting
\(4 b 4\)

Vibration mounts with fabricated steel guards covering flywheel and all couplings for operator's safety.

INPUT CONTROL
4b4a
\(4 b 5\)
```

* NEMA 2 driptight enclosure.
* Motor starter.
* Disconnect switch, motor input power.
* Time-delay relay (TDR), adjustable,
on motor starter for ride-through.
* Start-stop pushbutton with provision
for remote start-stop pushbuttons.
* Indicating light indicating motor-on; with provision
for remotoring.

```

OUTPUT CONTROL
 辛 NEMA 2 driptight enclosure.
 * Voltage regulator, \(+/-2 \%\)
 accuracy.
 辛 Relay to remove generator excitation
 at low speed to protect generator from
 overexcitation.
 * Voltage adjusting potentiometer with
 provision to remote \(+/-10 \%\) adjustment.
 交 Circuit breaker for generator output.
 * Voltmeter.
 辛 Voltmeter selector switch to monitor
 3-phase.
* Ammeter on each phase.
* Elapsed time meter.

CONTROL OPTIONS
```

* Output underfrequency relay, adjustable over range of
5 5 ~ t o ~ 6 0 ~ H z , ~ t o ~ s i g n a l ~ c r i t i c a l ~ l o a d ~ w h e n ~ o u t p u t
frequency has decayed to preselected level.
4b7a

```
(C) GUIDELINE SPECIFICATION FOR A 100 KW RTDE-THROUGH POWER SUPPLY
Rating: Atleast 100 kw and 100 kva output at \(120 / 208\) volts, 3 phase, 60 hertz (nominal) with input at 480 volts, 3 phase, 60 hertz "Y" connection in a dripproof enclosure with Class B insulation to provide \(100 \%\) output at \(100 \%\) volts during a power interruption lasting . 3 second (300 milliseconds) while maintaining full load frequency of not less than 59.5 hertz.
This unit will be built in accordance with applicable NEMA st andards with the following, or comparable, features:

FLYWHEEL -- Pedestal-mounted

\begin{abstract}
Precision balanced with sufficient rotating inertia to maintain generator output frequency above 59.00 hz for . 3 seconds after power interruption.
\end{abstract}

INPUT MOTOR -- Low-slip induction-type
```

Suitable hp, 1800-rpm 480 volts, "Y" connection,
3-phase, 60 hz with 1/2% slip if for 3-phase generator
output, having special starting circuit which limits
in-rush current to 200% of full load current.
OUTPUT GENERATOR -- Brushless, synchronous ..... $5 b 3$
$100 \mathrm{kw}, 1800 \mathrm{rpm}, 120 / 208$ volts 3 -phase 60 hertz, 0.8 power factor with brushless exciter.
BASE -- Fabricated steel, self-supporting ..... 5b4
Vibration mounts with fabricated steel guards covering flywheel and all couplings for operator's safety.

## INPUT CONTROL

```
* NEMA 2 driptight enclosure.
* Motor starter.
* Disconnect switch, motor input power.
* Time-delay relay (TDR), adjustable,
 on motor starter for ride-through.
* Start-stop pushbutton with provision
 for remote start-stop pushbuttons.
* Indicator light, Indicating motor-on;
 with provision for remotoring.
OUTPUT CONTROL 5b6
* NEMA 2 driptight enclosure.
* Voltage regulator, +/- 2 \%
accuracy.
thelay to remove generator excitationat low speed to protect generator fromoverexcitation.
* Voltage adjusting potentiometer withprovision to remote \(+/-10 \%\) adjustment.
t Circuit breaker for generator output.
产 Voltmeter.
* Voltmeter selector switch to monitor
3-phase.
劵 Ammeter on each phase.
* Elapsed time meter.5b6a
CONTROL OPTIONS5 b 7
* Output underfrequency relay, adjustable over range of 55 to 60 Hz , to signal critical load when output frequency has decayed to preselected level. 5 b 7 a

\footnotetext{
SUMMRY OF TASKER PROBLEMS, Implementation of G2.
}
Ref: \((14900),(13592),(13584),(13527\), 1
Tasker stations (9, 10, 11, 12) will be taken down Saturday, May 18 for 7 consecutive days to perform necessary maintenance outlined in (\(13592, G 2=\)). (A hardcopy is pinned up on the Journal bulletin board in display area next to RWW's office.) 2
Interim arrangements will be as follows: 3
TASKER STATIONS 3 a
(1); DCE's office \(3 a 1\)
(2, 3, 4, 5); display area \(3 a 2\)
(6); 525 inne system set up in the conference room and connected into the TV projector system. \(3 a 3\)
IMLAC 3b
; connected as normal 3b1
TELETYPE LIKE TERMINALS 3 c
4 TI terminals set up in display area to replace the downed taskers. \(3 c 1\)
(If necessary we will unplug some of the dial-up ines during regular hours to accommodate.) \(3 c 2\)
Please bear with us and hopefully we will see some noticeableImprovements. Thanks.4

\section*{14903 Distribution}

Van De Riet, Edwin K. , Van Nouhuys, Dirk H. , Victor, Kenneth E. (Ken), Wallace, Donald C. (Smokey), Watson, Richard W. , Andrews, Don I. .
Keeney, Marcia Lynn, Hoffman, Carol Be, Lee, Susan R. , Michael, Elizabeth K. , Dornbush, Charles F., ARC, Guest O. Feinler, Elizabeth J. (Jake), Handbook, Augmentation Research, Kelley, Kirk E. , Meyer, N. Dean , Byrd, Kay F., Prather, Ralph, White, James E. (Jim), Vallee, Jacques F., Kaye, Diane S., Rech, Paul, Kudlick, Michael D. Ferguson, Ferg \(R_{\text {, , Lane, Linda L. , Auerbach, Mafilyn }}\) F. Bass, Walt, Engelbart, Douglas C., Hardeman, Beauregard A. , Hardy, Martin E., Hopper, J. D. Irby, Charles H. , Jernigan, Mil E. Lehtman, Harvey G., North, Jeanne B. , Norton, James C. , Paxton, William H. Peters, Jeffrey C. , Ratliff, Jake

This is a status report for the proto Mouse box we are designing that will connect our Mouse and Keyset to a class of low cost video display terminals.
Ref: (15734,)(15399,)(15313,)(14901,) 1 a
Contents:
(A) Summary
(B) Design Decisions and General Decussions
(C) Construction Status
(D) Cost Estimates 1 b

\section*{(A) Summary}

The proto unit is being designed using a mass produced mi cro-computer (Intel's MSC-4 series) and a few other large and medium scale intergration devices.

Don Andrews will do the initial microprogramming of the micro-computer, probably through Tymshare since they have the assembler and hardware simulator for the intel unit, and Walter Greene of the Digital Development Group (org 720) will do the detailed hardware design.

By the end of this month (5/31) we hope to have a video terminal here and the proto unit working, so if all goes well the configuration will be ready for experimental use by the first of June.

Once some experimenting is done we will settle on the exact design, determine packaging, and then reevaluate to minimize end user costs. (A rough estimate still has it under \(\$ 1000\).)

One problem we have is the ROM manufacturers charge a setup fee of \(\$ 600\) for the first 3 ROM's and thereafter minimum orders of 25 at \(\$ 25\) each. This means at some point we will have to face this fact and find a reasonbale solution (guarantee sales, absorb setup charge, amortize, etc.)??

There is an alternative that is desirable from a software standpoint: We could use a programmable ROM (PROM) instead of an ROM, actually this is what we will be using in the
proto-type unit.
1) You can burn in programs yourself, if you have the right gadget.
2) You can erase burned in programs by exposing the PROM to ultra violet light. Then reprogram. (Perhaps a disadvantage?)

2d1a2
\(2 d 1 a 3\)
\(2 d 1 b\)

2d1b1

Mouse and Keyset Converter, Status Report \#1
(B) Design Decisions and General Dicussions

It was decided to design the proto Mouse box around a
micro-computer unit. The state of the art these days is a
complete micro-unit (with an operating instruction set of 45
instructions) packaged in a 2 x 3 square inch area. The
micro-computer's data bussing and micro-peripherals will be
designed using LSI and MSI devices. These devices will collect and
pass conditioned information to and from the micro-computer for
interimprocessing. Data formatting, string conversion, code
conversions, routines, and the like will be pre-programmed
(initially by Don Andrews) and burned into (as they say) a
Read-Onlymemory (ROM) that is part of the micro-computer set.
This particular micro-computer is limited by a 4-bit parallel \(1 / 0\) buss and an instruction cycle of 10.8 micro seconds. The external world is 8 -bits serial with comparatively slow data rates. (a TIP's KSR limit is 2400 baud \(=4150\) micro seconds/word). This means in the worst case the micro-computer can execute approximately 400 instructions (do Mouse keyset conversion or send datal before it must service the external processor and display terminal receive communication channels. This appeared to be a workable margin, and coupled with cost (< \(\$ 150\) for the micro-computer unit) was enough to convince us to try.

Another decision was to build the proto unit in modular form to get a clear picture of the cost of each functional module and allow flexibility to reconfigure without total redesign. We could then make subsets (mouse only?) from this unit with little alterations if so desired.

The proto unit will be rather bulky and ugly because we are not doing final design or worrying much about packaging. This will come later when we know exactly what we want.

The proto design is mostly done and will be finished by 5/11. There exists at SRI a lab micro-computer set (one that was bought by SRI for experimenting and multi-purpose use). It's size is rather large (\(12^{\prime \prime} \times 24^{\prime \prime}\)) but we will use it anyway and couple to it \(2 \mathrm{~A} / \mathrm{D}\) converters, switch detect logic, data multiplexing and the like, so you can see it will be at best ugly and bulky. I anticipate our final product to be contained in a box no larger than (\(5^{\prime \prime} \times 12^{\prime \prime}\)).

During the first part of the week \(5 / 14\) construction of circuitry and cable make-up should get started. We expect to have all the parts we ordered in by the end of that week, meaning we can test our circuitry the week of 5/21. If all goes well, the proto Mouse box will be ready for system hook-up and experimental use by the week of \(5 / 21\). Dirk informs me our Hazeltine Display Terminal should be here by then. So with any luck we will see a proto Mouse box in operation by the first part of June.

Mouse and Keyset Converter, Status Report \#1
(D) Cost Estimates

So far it looks like the cost of parts for one Mouse box will be under \$400. (This assumes the design we are currently talking about and buying in single quantities.)

Once we have finalized the the Mouse box design \(I\) will look for someone to build it for resale. Since all the engineering cost and art work will be done, the tacked-on charge should be minimal, at least not the normal \(3 X\) factor. The target and current estimate is and end user product for under (hopefully well under) \(\$ 1000\).
NMDT meeting report: March 5, 1973 1
Participats: CFD, OHI, JGM 1 a
Agenda: 1b
1) Disposition of the justification paper IbINo objections were raised to the literary efforts ofJGM, and it was agreed to let nim make whatever estheticchanges he considered necessary in the paper. We agreedto pass the paper on to any interested parties by theend of this week, to allow us to concentrate our fullattention to the modeliing of NLS task.
2) Progress on modelling NLs. Ib2
Most of our discussion centerd on the interface between the "user interface" and "command Ianguage interpreter" sections of NLS. We tried to define the types of messages that would appear over the port connecting

these two sections, and compiled the following list: 102a
102alID2ala
fail code: last request could not be satisfied 1b2alb
11teral string lb2alc
t-ptr (including display area id and screen coords) lo2ald
character 1b2ale
U. I. receives (from C. L. I.) 102a2
get bug 102a2a
get literal (text area) 1b2a2b
get literal (name area) Ib2a.2c
get character Ib2a2d
process viewspecs Lo2a2e
reset Ib2a2fset literal terminatorsIb2a.2gIt is clear that we have not handed the general problemof handling user feedback. We need some method ofinvoking device dependent feedback in a deviceindependent manner. I think we need to consider thedefinition of parse states in the \(C\). I. I. Associatedwith each parse state is a feedback operation, We alsoneed the concept of definable parse states in order todo a decent job of handiing the generalized "nelp"proolem. What do you think?1b2b
Next Meeting: 1 c
The next meeting of NMDT will be held on Wed, Mar. 7 at10:00 AM. It is apparent that we need to spend as muchtime as possible in the next seveal weeks to define aclean model for NLS.1cI
1.4906 Distribution

Irby, Charles H. , Dornbush, Charles F. , Mitchell, James G. , Paxton, William H. , Deutsch, L. Peter, Wallace, Donald C. (Smokey) , Satterthwaite, Ed H. , Bass, Walt, Andrews, Don I. , Watson, Richard \(W\). ,

I got a snamsg back from Duane today. He says to chose a file that shows off COM. You pick one. They will need 30 copies on the26th. Aversion of the com user guiae or part of it might be good. You've got the problem. I ran deldir as an assimilate on SPQR, it ran a long time, used up cpu time, but what I got was that blank file.
(J14907) 6-MAR-73 16:50; Title: Author(s): Van Nouhuys, Dirk H. /DVN; Distribution: /NDM JCN(for your information) DLS(for your
information) ; Sub-Collections: DPCS RADC SRI-ARC; Clerk: DVN;
```

Ca11 for contributions to the Quarteriy Management Report

```
Each quarterly managnent reporthas a section entitled Major
Accomplishments.

1
For last quarter's major accomplisment's see --journal,13744,3)

I propse the following outline and responsiblity for this quarter's major accomplisments:

Network Information Center (NIC)=-MDK 2a
D土alog Support System (DSS)-=CHI 2b
Software Development---RwW 2c
preparation for Utilitym-mJN 2d
I would apprecaite each of the people named preparing about half a page for the report by next Tuesday (3/1.3). Be brief. If there are no accomplishments, don't claim any.

3

Cail for Contributions to the Quarteriy Management Report
(J14908) 6-MAR-73 17:12; Titie: Author(s): Van Nounuys, Dirk H. /DVN; Distribution: MDK RWW JCN CHI KFB(please make 4 copies of this and deliver it manually to the four gentiemen.); Sub-collections: SRI-ARC; Clerk: DVN;
Origjn: <VANNOUHUYS>PLNPLN.NLS;I, 6-MAR-73 17:09 DVN ;

Status of ARPANEWS, Progress Report to JI

Jean=- Doin to the wire. V. Cerf is too frantically busy to give us the summary, so that may be in next month. The files are in shape, I think. The file which the nic language will access is in <nic-work>arpanews. The iile to be used for printing, either odT or ODP, is in 〈nic>arpanews. The file in my directory is the odp file, for backup. The only holdup now is the last step in the nic language to eliminate having to -b (ringj<nic-work>arpanews. inis Was to be ifxed by tonignt, but it will be tomorrow, it seems. I still have to proofread Davis full text, which someone else entered, and journalize it so the link works. Also tomorrow morning. --Jeanne
(J14909) 6-MAR-73 16:06; Title: Author(s): North, Jeanne B. /JBN; Distribution: /ji rww mdk nicsta ; Sub-Collections: SRI-ARC NICSTA; Clerk: JBN;

1
```

Default setting1a

```
The default setting of the sub-collection field depends on whether the author:
has a sub-collection field in the ident file, in which case 1t is used, or if the author is a group, the group ident is used or if he is an individual with affiliation SRI-ARC, SRI-ARC is used,
or if he is an individual with some other affiliation, NIC is used.

If the author is set by the journal subcommand, the subcollection field is cleared to the default setting for that author by the default algorithm above. (I haven't tried this, but this is what I get from reading the code)

The sub-collection subcommand in the journal accepts a list of group idents and changes the sub-collection field to that list.

After submission is complete, the deilvery process adas to the subcollection list any group idents not already there. In addition, if the submission is an RFC, then NWG and NIC are added (if they aren't there already).

The status subcommand shows the above iaents as part of "sub-collections". Thus these idents are out of the direct control of the user.
(JILsIO) 6-MAR-73 13:03; Title: Author(s): Hopper, ü. D. /JDH; Distribution: /mdk chi ; Sub-Collections: SRI-ARC; Clerk: JDH;

Alex--
with regard to (14577,), the intended function of control-0 in 'Print journal' is to halt printout at the end of the current STATEMENT.

I can construct no situation in which in fails to do this. If you know of a case, I need to know what it is. If you want to abort the current statement (right now!) and contnue with the next, control-s will do that, as it does everywhere in NLS.

The fact that a string of characters disappears at the point in time when you hit control-0, as oppposed to when it actually takes effect, is something that's not easily gotten rid of, and results from the asynchrony between input and output; your output buffer gets flushed when the control-0 is received. Control-0 behaves in the same way wherever eise it's allowed in the system.
(JI4911) 6-MAR-73 16:21; Title: Author(s): White, James E. (Jim) /JEW; Distribution: /aan ; Sub-Collections: SRI-ARC; CLerk: JEw; Origin: <HAITE〉PJ.NLS;2, 6-MAR-73 16:20 JEW;

Bequests to be considered in DEX desien review.

In defence of the DEX design principle to make DEX as much like TNLS as possible, I request that in addition to the characters used in simplified DEX for \(B W\) " In " and \(^{\prime} B C\) " \(>\) ", that the characters used in TNLS for BW " \(+W^{\prime \prime}\) and BC " " ALSO be available for use in DEX.

Although this "violates" one of the design principles of DEX in that \(f\) would be invisible, it gives the alternative to the user at no cost to any other user's input time who would want to have a visible signal.

Also another help to the user's ability to transfer from DEX to TNLS and back would be that BW work in the simplified version of DEX as it currently does in TNLS.

The reasons for these requests are as follows:

The simplified version of DEX is more for the use of good trascribers on TI's, than the use of offline Display onLine System users using \(33^{\prime \prime}\) s.

A good transcriber does not look at what IS BEING transcribed or at the keyboard but instead, looks at what is TO BE transcribed. Also, a transcriber is more concerned with what is being transcribed than the system in which it is being transcribed.

For these reasons it is important that the same buttons do the same things no matter whether the transcriber is in TNLS or DEX.

Requests to be considered in DEX design review.
(J14912) 6-MAR-73 16:56; Title: Author(s): Kelley, Kirk E. /KIRK; Distribution: /hgl chi wlb dee jen dvn ; Sub-Collections: SRI-ARC; Clerk: KIRK;

ARC Function - IDENT table

\section*{ARC Function - IDENT table}
(J14914) 6-MAR-73 22:03; Title: Author(s): Kelley, Kirk E. /KIRK; Sub-Collections: SRI-ARC; Clerk: KIRK;

1

One, it means that in TNLS one can always use the up-arrow to take the first link in a citation, witnout worrying whether the author placed parenthetical expressions in his title.

Two, the readability is improved, and the number of text lines needed for the citation is reduced by one.

Incidentally, I don't think the string "Location: " is needed.
2) The citation for MESSAGES should contain the appropriate link, in the same way as for other journal items.
3) The default viewspecs for the initial file when it is first opened following the Exec command "inLs" should be xbryn (for TNLS they should be xbrym) in addition to Whatever is now in the default. The default statement address should be "JOURNAL".

The "status" command in the Journal subsystem should let you see some more things, specifically:
- the name of the file, or statement, plex, branch, that is
being submitted;
- the message that has been submitted (In its entirety); 2b
- all default values that the system assigns.

MINOR SUGGESTIONS re the Journal．
（J14915）6－MAR－73 9：07；Tさもle：Author（s）：Kualick，Michael D．／MDK； Distribution：lougs jun rww ；Sub－Coliections：SRI－ARC BUGS；Olerk： MDK；
Origin：＜KUDLICK〉OITES．NLS；2，6mMAR－73 9：04 MDK ；

I believe that due to an increased work load, it would be well to hire another part-time person for the days carol is not here (Mon., Wed., and Fri.). At times this person coula help Mil with herwork. From my viewpoint it seems that one new part time person could fill the one empty PSo position (the other members of pSo might not agree).

Request for another part-time person
(JI4916) 6-MAR-73 14:36; Title: Author (s): Lee, Susan R. /SRL; Distribution: /JCN DVN JBN; Sub-Collections: SRI-ARC; Clerik: SRL;
〈ILLINOIS>WJB.NLS;3, 6-MAR-73 7:22 WJB ; 1
STEVE: \(\quad 1 \mathrm{a}\)
MIKE AND I LOOKING FORWARD TO YOUR VISIT THIS WEEK. 1b
IF YOU HAVE ANY PARTICULAR TOPICS YOU WANT TO DISCUSS THAT WE
SHOULD PREPARE FOR, PLEASE DROP ME A NOTE HERE AT NIC WITH A
LISTING.
1 c
THANKS...SEE YOU FRIDAY. ICt
WJB \(\quad 1\) e

\section*{14917 Distribution} Bouknight, W. Jack, Sher, Michael S. , Cohen, Stanley,
(J14917) 6-MAR-73 7:28; Title: Author(s): Bouknight, W. Jack/WJB; Distribution: /WJB MSS SC; Sub-Collections: NIC; Obsoletes Document(s): ; Clerk: WJE;

SORRY.. THE PREVIOUS NOTE WAS INTENDED FOR STEVE CROCKER AND I TYPED HIS IDENT WRONG.
\(J\) BOUKNIGHT U OF I 1 c

\section*{14918 Distribution}

Cohen, Stanley, Bouknight, W. Jack , Sher, Michael S. ,
\(\qquad\)
(J14918) 6-MAR-73 7:31; Title: Author(s): Bouknight, W. Jack /WJB; Distribution: /SC WJB MSS; Sub-Collections: NIC; CLerk: WJB;

IMP/TIP Memory Retrofit Schedule (Revision 2)

IMP/TIP Memory Retrofit Schedule
This revision contains two types of changes to RFC \#447. First, the retrofits to Utah, Belvoir, NOAA, USC, Stanford, ISI, Case, and CCA have been completed and are therefore removed from the schedule. Second, the retrofits to UCSB, ETAC, Aberdeen, and Rome have been rescheduled.
The revised text of RFC \#447 follows:

During the first several months of 1973 we will be retrofitting each IMP and TIP with additional core memory. At the end of the retrofit program, the memory sizes of the various machines will be as follows:
IMP (516 or 316) - 16 K words 1c. 1
TIP \(-28 K\) words 1c2
TIP with Magnetic Tape Option - 32K words 1 c 3
In addition, the expansion of the TIP core memory will necessitate enlarging the TIP to two cabinets. 1 d
Listed below is the schedule for the remaining retrofits. We have arranged this schedule to coincide with the usual monthly Preventive Maintenance at each site so as to minimize user inconvenience, but the work required will frequently require the machines to be down longer than normal. I will issue additional RFC's updating this schedule as necessary.Any site which anticipates difficulty with the expansion ofTIP size, and thus the floor space requirement, should contactHawley Rising (BBN) at
(617) 491-1850 ext. 473
All dates given below are in the form (month/day) \(1 f\)
SRI (3/7) \(1 f 1\)
ETAC (3/15) \(1 f 2\)
FNWC (3/15) \(1 f 3\)
Rome (3/16) 114
UCLA (3/19) \(1 f 5\)
AMES IMP (3/21) 1f6
GWC (3/22) 1 f7
Carnegie (4/4) \(1 f 8\)
SDC (4/17) \(1 f 9\)
Illinois (4/18) \(1 f 10\)
UCSB (5/1) 1 f 11
Aberdeen (postponed indefinitely) 1 f12

Ashenhurst, Robert L. ,
Rosewall, Connie D. Webster, Linda M. , Coley, Anita L. , Mostrom, Carol J., Tinker Air Force Base, Dunn, Robert M. , Reid, Joseph B. , Misencik, William T., Sakai, Toshiyuki, Pouzin, Louis, Lundh,
Yngvar, Hinckley, Robert H. , Zelkowitz, Marvin, Cowan, Donald, Pepper, Marianne, Dixon, Louis F., Lee, Ted, O'Malley, Michael, Kirstein, Peter, Farber, David J., Twyver, Dave, Bernstein, Art J. , Liddle, Dave E. , Showalter, A. Kenneth , Aufenkamp, D. D. , Barber, Derek Leslie Arthur, Schipper, Tjaart, Van Sylke, Richard M. , Aupperle, E. M. , Lipinski, Hubert, LeGates, John C. , Hargraves, Robert \(F\). , Shephard, C. D. , Brown, Maurice P. Lee, Susan R., Gilliard, Lucille C. (Lucy), Falk, Gil, Collins, Ed J. , Blunck, Gary, Heafner, John F., Beaman, Kathy , King, David J. , Moody, C. Jane, Lemaro, Maria E., Pitkin, Sue, Fitzsimmons, Jerry, Hicks, Gregory P., Maxey, Gloria Jean , Peeler, Roberta J., Baxter, Faye , Fields, Craig , McCauley, Ermalee R. , Iwamoto, Margaret, Larson, Dee, Doane, Robert E. , Odom, Dan , Monroe, Brenda, Reynolds, Dorothy A. North, Jeanne B. , Cutler, Pam J. Klotz, Barnett, Barbara, Forman, Ernest H. , Golding, Stan , Chipman, Steve G. , Barden, John P. , Ginsberg, Martha A. , Watkins, Shirley W. , Connelly, Linda M. , Troxel, Janet W.
Fink, Robert L. , Meir, Jaacov, North, Jeanne B. Crocker, Steve D. , Lawrence, Thomas F. , McConnell, John W. , ollikainen, Ari A. J. , White, James E. (Jim) , Hathaway, A. Wayne, Foulk, Patrick W. , Winter, Richard A. , Van Zoeren, Harold R., McKenzie, Alex A. , Winett, Joel M. , Bhushan, Abhay K. , Pyke, Thomas N. , Wilber, B. Michael , Feigenbaum, Edward A., Braden, Robert T. , Pepin, James M. Wessler, Barry D. , Melvin, John T. , Air Force Global Weather Central (DN), Bassett, Margaret A. (Maggie), Smith, J. A. , Boone, Leina M., Jones, Diana L. Colman, Harold, Neigus, Nancy J., Sack, Terry, McHale, Frances A. (Toni), Young, Helen D. Martin, Reg E. , Leichner, Gene, Falk, Gil, Iseli, Jean, Donnelley, Jed E. , Kantrowitz, William, Wolfberg, Michael S. , Feinroth, Yeshiah S., Hurt, James, Hearn, Anthony C. , Stein, James H. , Shoshani, Arie, Harslem, Eric F., Metcalfe, Robert M. (Bob), Reussow, Bradley A. , Reins, E. R. (Dick), Kadunce, Daniel L. , McCutchen, Samuel \(P_{0}\), Petregal, George N. , Madden, James M. , Young, Michael B. , Padlipsky, Michael A., Stevenson, Schuyler, Deutsch, L. Peter, Davidson, John, O*Sullivan, Thomas, Seroussi, Sol F. , Bradner, Scott , Thomas, Robert H. , Thomas, John C. , Romanelli, Michael J., Stoughton, Ronald M. , Owen, A. D. (Buz)```

[^0]: * A Limited number of University of Maryland reports are available and may be obtained by writing to:

 10n1

